
MINIX VFS

Design and implementation of the
MINIX Virtual File system

Balázs Ger̋ofi

A master’s thesis in
Computer Science

August, 2006

vrije Universiteitamsterdam

MINIX VFS

Design and implementation of the
MINIX Virtual File system

Balázs Ger̋ofi

APPROVED BY

prof. dr. Andrew S. Tanenbaum
(supervisor)

dr. Herbert Bos
(second reader)

Abstract

The Virtual File system (VFS) is an abstraction layer over the file system im-
plementations in the operating system. It handles all system calls related to the
file system and allows for client applications to access different types of file sys-
tems in a uniform way. It also provides a common interface to several kinds of file
system implementations. The VFS layer was introduced first in the SunOS and it
is present in many modern operating systems.

MINIX 3 is a microkernel based POSIX compliant operating system designed
to be highly reliable, flexible, and secure. A minimal kernel provides interrupt
handlers, a mechanism for starting and stopping processes, a scheduler, and inter-
process communication. Standard operating system functionality that is present
in a monolithic kernel is moved to user space, and no longer runs at the highest
privilege level. Device drivers, the file system, the network server and high-level
memory management run as separate user processes that are encapsulated in their
private address space.

By splitting an operating system into small, independent modules, the sys-
tem becomes less complex and more robust, because the smaller parts are more
manageable and help to isolate faults.

This thesis describes the Virtual File system design and implementation in the
MINIX 3 operating system. It also gives a comparison to other VFS designs. Ex-
ploiting modularity is a key idea behind MINIX, therefore the design of the Virtual
File system layer is also driven by this idea. The result is a substantially differ-
ent architecture from the Virtual File system layer in other UNIX-like operating
systems.

The main contribution of this work is that the MINIX FS server was fully
revised in order to divide it into an abstract layer and the actual MINIX file sys-
tem driver. New data structures and methods were added to the virtual layer and
modifications were realized in the actual file system implementation.

Contents

1 Introduction 1
1.1 The MINIX 3 operating system 1
1.2 The Virtual File System layer . 3
1.3 Outline of the thesis . 3
1.4 Acknowledgements . 4

2 The MINIX Virtual File System 5
2.1 Design Principles . 5
2.2 Components and functionalities 6

2.2.1 Processes . 6
2.2.2 Functionalities . 7
2.2.3 Main steps of the execution of a system call 8

2.3 Comparison . 11

3 VFS in details 13
3.1 VFS data-structures . 13

3.1.1 Vnode object . 13
Vnode operations . 14

3.1.2 Vmnt object . 16
Vmnt operations . 16

3.1.3 Filp object . 17
3.1.4 Filelock object . 17
3.1.5 Fproc object . 18

3.2 Interface description . 19
3.2.1 General VFS request message type 19
3.2.2 Getnode and putnode request messages 20

3.3 Path name traverse control . 20
3.4 Implementation steps . 24
3.5 Replacing the root partition . 26
3.6 Handling block special device files 26
3.7 Recovering from driver crash . 27

i

4 System calls’ implementation 29
4.1 System calls with a path name argument 29

4.1.1 mkdir(), access(), chmod() 30
4.1.2 open(), creat() . 30

Example scenario . 32
4.1.3 mknod() . 35
4.1.4 chdir(), chroot() . 36
4.1.5 unlink() . 37
4.1.6 utime() . 37
4.1.7 truncate() . 38
4.1.8 chown() . 38
4.1.9 mount() . 39
4.1.10 unmount() . 41
4.1.11 rename() . 42
4.1.12 link() . 42
4.1.13 slink() . 43
4.1.14 rdlink() . 44
4.1.15 stat() . 44

4.2 System calls with file descriptor argument 46
4.2.1 lseek() . 46
4.2.2 read(), write() . 46

Example scenario . 47
4.2.3 close() . 48
4.2.4 fchdir() . 48
4.2.5 pipe() . 48
4.2.6 fstat(), fstatfs() . 49
4.2.7 ftruncate() . 49
4.2.8 dup() . 49
4.2.9 fcntl() . 50

4.3 System calls without arguments 51
4.3.1 fork(), exit() . 51
4.3.2 sync(), fsync() . 51
4.3.3 cloneopcl() . 51

5 Performance measurements 53

6 Related work 55
6.1 The System V File System Switch 55
6.2 The Sun VFS/Vnode Architecture 56
6.3 The SVR4 VFS/Vnode Architecture 57

6.3.1 The Directory Name Lookup Cache 58

ii

6.4 BSD File System Architecture 58
6.5 Linux Virtual File System Switch 59

6.5.1 Linux from the 2.4 Kernel Series 59
6.5.2 Linux 2.6 VFS . 59
6.5.3 The Dentry Cache . 60

6.6 QNX Neutrino RTOS . 61

7 Summary and conclusion 63
7.1 Contributions . 63

7.1.1 Virtual File system layer 63
7.1.2 MINIX file system driver 64
7.1.3 Other contributions . 64

7.2 Future work . 64
7.2.1 Buffer cache as shared library 64
7.2.2 Asynchronous VFS/FS interface 64
7.2.3 Framework for BSD file system implementations 65

A VFS/FS interface 69
A.1 Request, operation, response . 71

A.1.1 REQGETNODE . 71
A.1.2 REQPUTNODE . 71
A.1.3 REQOPEN . 72
A.1.4 REQPIPE . 73
A.1.5 REQREAD . 73
A.1.6 REQWRITE . 74
A.1.7 REQCLONE OPCL . 75
A.1.8 REQTRUNC . 75
A.1.9 REQFTRUNC . 76
A.1.10 REQCHOWN . 77
A.1.11 REQCHMOD . 77
A.1.12 REQACCESS . 78
A.1.13 REQMKNOD . 78
A.1.14 REQMKDIR . 79
A.1.15 REQINHIBREAD . 79
A.1.16 REQSTAT . 79
A.1.17 REQFSTAT . 80
A.1.18 REQUNLINK . 80
A.1.19 REQRMDIR . 81
A.1.20 REQUTIME . 81
A.1.21 REQFSTATS . 82
A.1.22 REQGETDIR . 82

iii

A.1.23 REQLINK . 83
A.1.24 REQSLINK . 84
A.1.25 REQRDLINK . 84
A.1.26 REQRENAME . 85
A.1.27 REQMOUNTPOINT 85
A.1.28 REQREADSUPER . 86
A.1.29 REQUNMOUNT . 87
A.1.30 REQSYNC . 87
A.1.31 REQLOOKUP . 87
A.1.32 REQSTIME . 89
A.1.33 REQBREAD . 89
A.1.34 REQBWRITE . 90

B How to implement a new file system... 91
B.1 The Binary Tree file system . 91
B.2 Main program of the file system server 91
B.3 Inode handling . 93
B.4 Request operations . 96

B.4.1 Readsuper . 96
B.4.2 Unmount . 96
B.4.3 Stime . 97
B.4.4 Get node . 98
B.4.5 Put node . 98
B.4.6 Path name lookup . 99
B.4.7 Stat . 104
B.4.8 Open . 105
B.4.9 Getdir . 106
B.4.10 Access . 106
B.4.11 Read . 107

iv

List of Figures

1.1 The structure of the system. The operating system runs as a col-
lection of isolated user-mode processes on top of a tiny kernel. . . 2

2.1 The two layers of the MINIX Virtual File system. 6
2.2 Messages changed and data copied during the stat() system call. . 9

3.1 Request message to increase/decrease inode usage counters. . . . 20
3.2 Path name lookup request message. 22
3.3 Values of the path name lookup’s action flag. 23
3.4 Response message for a lookup request in case of a mount point

has been encountered. 23
3.5 Response message for a succesful path name lookup. 24

4.1 Request message for checking or changing permissions of a file. . 30
4.2 Request message for creating a directory. 30
4.3 Request message for creating or opening a file. 31
4.4 Response message for an open request. 31
4.5 Lookup request to the root FS 32
4.6 FS server’s reply, mount point encountered 33
4.7 Lookup request for the ”/usr” partition’s FS process. 33
4.8 OK reply from the ”/usr” partition’s FS process. 34
4.9 Open request for the ”/usr” partition’s FS process. 34
4.10 OK reply from the ”/usr” partition’s FS process. 35
4.11 Request message for creating a special file. 36
4.12 Request message for changing a process’ working or root directory. 36
4.13 Request message for unlinking a file. 37
4.14 Request message for changing time stamps of a file. 37
4.15 Request message for changing size of a file. 38
4.16 Request message for changing owner and group ID of a file. . . . 38
4.17 Steps performed by the mount command. 39
4.18 Request message for reading the superblock of a partition and get-

ting details of the root inode. 40

vii

4.19 Request message for renaming a file. 42
4.20 Request message to create a hard link. 43
4.21 Request message for creating a symbolic link. 44
4.22 Request message for reading a symbolic link’s content. 44
4.23 Request message for getting statistics of a file. 45
4.24 Request message for inhibiting read ahead on a file. 46
4.25 Request message for reading from or writing to a file. 47
4.26 Response message for a read/write request. 47
4.27 Request and response for reading 1024 bytes. 48
4.28 Request message for getting statistics of an opened file. 49
4.29 Request message for changing size of an opened file. 49
4.30 Request message for freeing a section of a file. 50
4.31 Request message for cloning a character special file. 51

Listings

B.1 Main program of the file server 92
B.2 The inode table . 93
B.3 The inode loader function . 93
B.4 The inode finder function . 94
B.5 The inode dropper function . 95
B.6 The inode duplicator function . 95
B.7 Reading superblock and root inode. 96
B.8 Unmounting the partition. 97
B.9 Setting boot time stamp. 97
B.10 Getting an inode. 98
B.11 Dropping an inode. 98
B.12 Getting the next component of a path name. 99
B.13 Looking up a component. 100
B.14 Parsing the path. 101
B.15 Path name lookup. 103
B.16 Inode stat. 104
B.17 Stat. 105
B.18 Opening a file. 105
B.19 Getting a directory. 106
B.20 Checking permissions. 106
B.21 Reading from a file. 107

xi

Chapter 1

Introduction

Reading the term ”Virtual File System” immediately raises the issue ”What
is virtualization?”. Virtualization means different things to different people de-
pending on the term’s context. According to the Open Grid Services Architecture
Glossary of Terms [Tre04]Virtualizemeans ”Making a common set of abstract in-
terfaces available for a set of similar resources, thereby hiding differences in their
properties and operations, and allowing them to be viewed and/or manipulated in
a common way”, which is a suitable definition in the file system case.

In this chapter MINIX 3 is introduced (Section 1.1) and a general description
about the Virtual File system layer is given (Section 1.2). The outline of the thesis
is also described (Section 1.3).

1.1 The MINIX 3 operating system

MINIX 3 is a microkernel based POSIX compliant operating system designed
to be highly reliable, flexible, and secure [HBT06]. The approach is based on
the ideas of modularity and fault isolation by breaking the system into many self-
contained modules. In general the MINIX design is guided by the following prin-
ciples:

• Simplicity: Keep the system as simple as possible so that it is easy to un-
derstand and thus more likely to be correct.

• Modularity: Split the system into a collection of small, independent mod-
ules and therefore prevent failures in one module from indirectly affecting
another module.

• Least authorization: Reduce privileges of all modules as far as it is possi-
ble.

1

2 CHAPTER 1. INTRODUCTION

• Fault tolerance: Design the system in a way that it withstands failures. De-
tect the faulty component and replace it, while the system continues running
the entire time.

The operating system is structured as follows. A minimal kernel provides
interrupt handlers, a mechanism for starting and stopping processes, a scheduler,
and interprocess communication. Standard operating system functionality that
is usually present in a monolithic kernel is moved to user space, and no longer
runs at the highest privilege level. Device drivers, the file system, the network
server and high-level memory management run as separate user processes that are
encapsulated in their private address space.

VFS MFS Network Memory

Driver DriverDriver

Shell Compiler User

Mode
User

Kernel
Mode

. . .

. . .

Interrupts, MMU, scheduling, IPC

. . .

Operating
System

Separate Processes

Figure 1.1: The structure of the system. The operating system runs as a collection of
isolated user-mode processes on top of a tiny kernel.

Although from the kernel’s point of view the server and driver processes are
also just user-mode processes, logically they can be structured into three layers.
The lowest level of user-mode processes are the device drivers, each one control-
ling some device. Drivers for IDE, floppy, and RAM disks, etc. Above the driver
layer are the server processes. These include the VFS server, underlying file sys-
tem implementations, process server, reincarnation server, and others. On top of
the servers come the ordinary user processes including shells, compilers, utilities,
and application programs. Figure 1.1 shows the structure of the operating system.

Because the default mode of interprocess communication (IPC) are synchronous
calls, deadlocks can occur when two or more processes simultaneously try to
communicate and all processes are blocked waiting for one another. Therefore,
a deadlock avoidance protocol has been carefully devised that prescribes a partial,
top-down message ordering. The message ordering roughly follows the layering

1.2. THE VIRTUAL FILE SYSTEM LAYER 3

that is described above. Deadlock detection is also implemented in the kernel. If
a process unexpectedly were to cause a deadlock, the offending is denied and an
error message is returned to the caller.

Recovering from failures is an important reliability feature in MINIX. Servers
and drivers are started and guarded by a system process called the reincarnation
server. If a guarded process unexpectedly exits or crashes this is immediately de-
tected – because the process server notifies the reincarnation server whenever a
server or driver terminates – and the process is automatically restarted. Further-
more, the reincarnation server periodically polls all servers and drivers for their
status. If one does not respond correctly within a specified time interval, the rein-
carnation server kills and restarts the misbehaving server or driver.

1.2 The Virtual File System layer

As an explanation of the definition given above, the Virtual File System is an
abstraction layer – over the file system implementations – in the operating sys-
tem. It provides a common interface for the applications so that they can access
different types of underlying file systems in a uniform way and therefore the dif-
ferences in their properties are hidden. This interface consist of the file system
related system calls.

The VFS also provides a common interface for the underlying file systems and
manages resources that are independent from the underlying file systems. This
common interface ensures that new file system implementations can be added
easily.

Since the interface between the applications and the VFS is the standard POSIX
interface our main concern is the design of the interface between the VFS and the
actual file system implementations, which mainly depends on the functionalities
of the single components.

1.3 Outline of the thesis

This document is structured as follows. The next chapter provides an overview
about the MINIX Virtual File system. It covers the design principles, the compo-
nents and their functionalities and gives an example in order to show the overall
mechanism.

Chapter 3 discusses the VFS in details. The data structures and the operations
related to them are described. It provides a general overview of the VFS/FS in-
terface, covers the approach taken during the implementation and shows how the
VFS behaves during boot-up.

4 CHAPTER 1. INTRODUCTION

Chapter 4 considers the system calls – related to the file system – and their
implementation. It is organized according to the arguments of the system calls.
The VFS/FS interface is detailed during the discussion of the system calls’ imple-
mentation.

Chapter 5 provides a comparison between the original FS and the VFS from
the performance point of view. It shows the duration of some system calls and
examines the results.

Chapter 6 surveys related work in the Virtual File system topic. It describes
the main evolutionary path that UNIX took from the early research editions. A
brief description about the BSD and Linux operating systems from a file system
perspective is provided. It also mentions the QNX file system architecture.

Finally, Chapter 7 concludes the thesis. It provides an overview of the major
contributions by summarizing the results. It also describes possible areas of future
work.

In the end, two appendices cover the details that did not fit in the main text.
Appendix A provides a detailed description about the VFS/FS interface; Appendix
B gives assistance to file system developers with an example file system imple-
mentation.

1.4 Acknowledgements

First and foremost, I wish to thank Andy Tanenbaum for giving me this great
opportunity, I wish to thank for his excellent support and guideance. I would
like to thank Jorrit N. Herder for his contributions and for nudging me in the
right direction, I wish to thank Ben Gras and Philip Homburg for their help and
constructive advice.

I wish to thank my friend Walley for the technical support and Diana for her
excellent cooks. I like to thank Ma Li for her sweet smile that gave me strength
all along the road.

Chapter 2

The MINIX Virtual File System

This chapter provides an overview of the MINIX Virtual File system and gives
a comparison to other UNIX solutions. First the design principles are introduced
(Section 2.1), then the components and their functionalities is described (Section
2.2), finally a short comparison is given to monolithic VFS designs (Section 2.3).

2.1 Design Principles

Exploiting modularity is a key idea behind MINIX, therefore the design of the
Virtual File system layer is also driven by this idea. In contrast to the monolithic
kernels, where the VFS layer access the implementation of the underlying file
systems through function pointers, in MINIX the drivers are different processes
and they communicate through IPC. During the design of the MINIX Virtual File
system the most important decisions that had to be made were the followings:

- Which components are responsible for which functionalities.

- Which resources are handled by the VFS and which are handled by the
actual file system implementations.

- Where to divide the former FS process in order to get an abstract virtual
layer and the actual MINIX file system implementation.

Comparing the MINIX VFS to the VFS layer in other – monolithic – UNIX
kernels some functionalities have to be handled in a different way. In monolithic
kernels the communication between the VFS layer and the underlying file system
implementation is cheap, simple function calls, while sending messages between
processes is more expensive. For this reason, keeping the number of messages
low during a system call is important.

5

6 CHAPTER 2. THE MINIX VIRTUAL FILE SYSTEM

It is also worth mentioning that in a monolithic kernel data structures can be
easily referred at any point of the code. Between different processes this data
structures have to be copied, which is again an expensive operation. On the other
hand separating not related data structures into different address spaces prevents
unauthorized access and therefore improves reliability and security. All in all,
resources have to be distributed in an optimal way among the processes.

2.2 Components and functionalities

In this section the processes and their functionalities are introduced. The main
steps of the execution of an example system call is shown in order to describe the
overall mechanism.

2.2.1 Processes

The MINIX Virtual File system is built in a distributed, multiserver manner:
it consists of a top-level VFS process and separate FS process for each mounted
partition.

....(/)
FS

(/usr)

FS
(/mnt)

FS

VFS

Figure 2.1: The two layers of the MINIX Virtual File system. The VFS is above the actual
file system implementations according to the dependencies.

As we mentioned before, server processes are the same as the regular user
processes from the kernel’s point of view, although they can be layered according
to the dependencies among them. Three main layer was shown by Figure 1.1. As
the figure describes, the VFS and the FS processes are on the same level, however
they can be divided in two sub levels.

The top-level VFS process receives the requests from user programs through
system calls. If actual file system operation is involved the VFS requests the

2.2. COMPONENTS AND FUNCTIONALITIES 7

corresponding FS process to do the job. This dependency is depicted by Figure
2.2.1.

The interaction between the VFS process and the FS processes is synchronous.
The VFS sends a request to the FS process and waits until the response arrives.

2.2.2 Functionalities

The top-level VFS process is responsible for the maintenance of the following
data structures and the operations related to them.

• Virtual nodes: Virtual node is the abstract correspondence of a file on any
kind of file system. It stores an identification number of the file (usually
the inode number) on the underlying file system and the FS process kernel
endpoint number.

• Virtual mounts: Virtual mounts store information about the mounted parti-
tions. Most important attribute of this structure is the kernel endpoint num-
ber of the FS process that manages the given partition.

• File objects: The file object symbolizes an open file. Important fields of
this structure is the corresponding virtual node and the current position in
the file.

• File descriptors: A file descriptor is an offset value in the file descriptor
table. Every slot of the file descriptor table either points to a file object or it
is empty. Each process has its own file descriptor table.

• Per-process information:Per-process information holds information about
the user who runs the process, it stores the current working and root direc-
tory. It also contains the file descriptor table.

• File locks: File lock table is responsible for the POSIX lock functionality.
Each entry used refers to a virtual node that is locked.

• Select entries:Select entries are used for the implementation of the POSIX
select operation.

• Driver mapping: Driver mapping holds entries between major device num-
bers and the kernel endpoint number of the given driver.

• Character special files:The VFS process is also in charge of handling the
character special files, managing suspension and notification of the process
that are interacting with character special files.

8 CHAPTER 2. THE MINIX VIRTUAL FILE SYSTEM

Each mounted partition is maintained by a different FS process. FS processes
that handle inode based file systems usually manage the inodes and the superblock
object of the partition, although a non inode – for example File Allocation Table
(FAT) – based file system driver can have different structures. Each FS process
has its own buffer cache.

For further details about the VFS data structures and methods please consult
Chapter 3.

2.2.3 Main steps of the execution of a system call

In order to demonstrate the overall mechanism of the MINIX Virtual File sys-
tem, consider the system call stat() with the argument ”/usr/src/vfs.c”. Let us
assume that there is a partition mounted on the ”/usr” directory which is handled
by a separate FS process.

Figure 2.2 shows the main steps. Regular lines with numbers mean messages
that are exchanged during the system call, dashed lines and letters mean data that
are copied.

1. The user process calls the stat() function of the POSIX library which builds
the stat request message and sends it to the VFS process.

a. The VFS process copies the path name from userspace.

2. The VFS first issues a lookup for the path name. It determines that the given
path is absolute, therefore the root FS process has to be requested to perform
the lookup.

b. The root FS process copies the path name from the VFS’ address space.

3. During the lookup in the root FS process the root directory has to be read in
order to find the string ”usr”. Let us assume that this information is not in the
buffer cache. The root FS asks the Driver process to read the corresponding
block from the disk.

4. The driver reads the block and transfers back to the FS process. It reports
OK.

c. The driver copies the disk content into the FS’ buffer cache.

5. The root FS process examines the ”usr” directories inode data and real-
izes that there is a partition mounted on this directory. It sends the EEN-
TER MOUNT message to the VFS that also contains the number of char-
acters that were processed during the lookup.

2.2. COMPONENTS AND FUNCTIONALITIES 9

6. The VFS looks up in the virtual mount table which FS process is responsible
for the ”/usr” partition. The lookup has to be continued in that FS process.
The VFS sends the lookup request and with the rest of the path name.

if (−1 == stat("/usr/src/vfs.c", &buf)) {

...
...

...

struct stat buf;

Messages:
1 − stat()
2 − REQ_LOOKUP
3 − DEV_READ
4 − OK
5 − EENTERMOUNT
6 − REQ_LOOKUP
7 − DEV_READ
8 − OK
9 − OK
10 − REQ_STAT
11 − OK
12 − OK

Driver

(/)
FS

VFS

FS
(/usr)

user
process

1

2 11

3

6

9

10

4 7

8

5

12

a

b

c

d

e

f

Data copy:
a − pathname
b − pathname
c − disk content
d − pathname
e − disk content
f − stat buffer

Figure 2.2: Messages changed and data copied during the stat() system call.

d. The ”/usr” FS process copies the path name from the VFS’ address space.

10 CHAPTER 2. THE MINIX VIRTUAL FILE SYSTEM

7. The FS process that handles the ”/usr” partition continues the lookup of the
path name. It needs additional information from the disk, therefore it asks
the driver process to read the given block and transfer it into the FS process’
buffer cache.

8. The driver reads the disk and transfers back to the FS process. It reports
success.

e. The driver copies the disk content into the ”/usr” FS process’ buffer cache.

9. The FS process finishes the lookup and transfers back the inode’s details to
the VFS.

10. The VFS has all the necessary information in order to issue the actual
REQ STAT request. The FS process is asked to perform the stat()opera-
tion.

11. The FS process fills in the stat buffer. Let us assume that all the information
needed for this operation is in the FS process’ buffer cache, therefore no
interaction is involved with the Driver process. The FS copies back to the
user process’ address space. It reports success for the VFS.

f. The FS process copies the stat buffer to the caller process’ address space.

12. The VFS receives the response message from the FS process and sends the
return value back to the POSIX library. The function reports success back
to the user process.

2.3. COMPARISON 11

2.3 Comparison

Monolithic kernels are finely tuned and optimized to be efficient. Performance
is one of the key issue. In contrast, the MINIX design is about reliability andse-
curity. An immediate consequence of these is that the MINIX VFS has a different
structure, it has different properties. Some of these differences are given in this
section.

As we mentioned before, kernel data structures can be easily accessed in
monolithic kernels and the communication between components are simple func-
tion calls. This implies that the border between the virtual layer and the actual
file system implementations is not at the same place where it is in the MINIX
VFS. Monolithic kernels keep as much functionality in the VFS layer as they can.
Communication is free between the VFS and the underlying file system drivers
therefore it makes sense to keep the virtual layer as abstract as it is possible and
to reduce the functionality of the actual file system implementations. This make
the implementations of a new file system easier.

Path name lookup is an other issue. In the Linux and BSD kernels, during a
path name lookup the VFS calls the lookup function for every single component
of the path that is not in the name cache. (See the name cache below.) This would
cause a lot of messages in the MINIX case. Instead of sending messages for each
component, in MINIX path name lookup is performed in the actual file system
implementations. Transferring the path name and the number of characters – that
were processed – is sufficient this way.

It is also worth mentioning that monolithic kernels tend to cache everything
that they can. They use dynamically allocated memory for caches, while MINIX
operates with static data structures. C programs with dynamically allocated mem-
ory use pointers a great deal and tend to suffer from bad pointer errors all the
time, although static data structures are much simpler to manage and can never
fail. MINIX VFS uses static data structures for the virtual node table, for the
virtual mount table and so on.

One example of the caches in monolithic kernels is the directory name lookup
cache (DNLC). The DNLC – introduced initially in 4.2BSD – provides a fast way
to get from a path name to a vnode. MINIX VFS does not contain this feature,
although a name cache for this purpose can be implemented in the FS processes.

12 CHAPTER 2. THE MINIX VIRTUAL FILE SYSTEM

Chapter 3

VFS in details

This chapter provides a detailed description of the MINIX VFS’ datastruc-
tures and the operations that are used for manipulating these objects (Section 3.1).
It gives a general overview of the VFS/FS interface (Section 3.2) and describes
the path name traversal control (Section 3.3).

3.1 VFS data-structures

This section gives a detailed description of the VFS data-structures and the
related operations.

3.1.1 Vnode object

The vnode object refers to an inode. It contains the on disk inode number, the
endpoint number of the File system where the file resides, the type of the file and
the file size.

Type Field Description
int v fs e fs process endpoint
int v inode nr inode number
mode t v mode file type, protection, etc
off t v file size file size
int v count usage counter
dev t v sdev device number (in case of special file)
int v fifo rd pos read position of a fifo
int v fifo wr pos write position of a fifo

Table 3.1: Fields of the vnodestructure

13

14 CHAPTER 3. VFS IN DETAILS

Vnode operations

Vnode objects are stored in a fixed-size array for simplicity and to avoid mem-
ory leaks. The following operations are used by the VFS to maintain the vnode
structures:

get free vnode: Searches an unused vnode slot and returns it.

Return value:
struct vnode* Pointer to the free vnode slot.

find vnode: Finds the vnode slot specified by the major device number
and the inode number or returns a nullpointer.

Parameters:
[in] int fs e FS process endpoint number.
[in] int numb Inode number.

Return value:
struct vnode* Pointer to the vnode slot (or NILVMNT).

dup vnode: Increases the vnode’s usage counter and requests the corre-
sponding FS server to increase the inode’s usage.

Parameters:
[in] struct vnode *vp Pointer to the vnode object.

put vnode: Decreases the vnode’s usage counter and requests the cor-
responding FS server to decrease the inode’s usage.

Parameters:
[in] struct vnode *vp Pointer to the vnode object.

get vnode: Requests the corresponding FS server to find/load the in-
ode specified by the inode number parameter. The FS
server sends back the details of the inode. The VFS checks
whether the inode is already in use or not and increases the
usage counter if it is. It returns back the vnode. If it is
not already in use it acquires a free vnode object, fills in its
fields and return back a pointer to it.

3.1. VFS DATA-STRUCTURES 15

Parameters:
[in] int fs e FS process endpoint number.
[in] int numb Inode number.

Return value:
struct vnode* Pointer to the vnode slot (or NILVMNT in case of error).

16 CHAPTER 3. VFS IN DETAILS

3.1.2 Vmnt object

The vmnt object represents a mounted file system. It contains the devicenum-
ber, the mount flags, the maximum file size on the given partition. It refers to the
mounted file system’s root vnode and to the vnode on which the file system is
mounted on.

Type Field Description
dev t m dev whose mount struct is this?
int m flag mount flag
int m fs e FS process’ endpoint number
int m max file size maximum file size
unsigned short m block size block size
struct vnode* m mountedon vnode on which the file system is mounted on
struct vnode* m rootnode mounted file system’s root vnode

Table 3.2: Fields of the vmnt structure

The mflag field of the structure indicates whether the mounted file system is
read-only or not.

Vmnt operations

Vmnt objects are maintained in a fixed size array. There are two functions
related to the vnode objects used by the VFS:

get free vmnt: Searches an unused vmnt slot and returns it with its index
in the vmnt table.

Parameters:
[out] short *index Index of the free vmnt slot in the vmnt table.

Return value:
struct vmnt* Pointer to the free vmnt slot.

find vmnt: Finds the vmnt slot specified by the major device number or
returns a nullpointer.

Parameters:
[in] int fs e FS process endpoint number.

Return value:
struct vmnt* Pointer to the vmnt slot (or NILVMNT).

3.1. VFS DATA-STRUCTURES 17

3.1.3 Filp object

The filp object represents an opened file. It specifies how the file was opened,
which vnode it refers to and the current file position. The rest of the fields are
used by the implementation of the select system call.

Type Field Description
mode t filp mode RW bits, telling how file is opened
int filp flags flags from open and fcntl
int filp count how many file descriptors share this slot?
struct vnode* filp vno referred vnode
off t filp pos file position
int filp selectors select()ing processes blocking on this fd
int filp select ops interested in these SEL * operations
int filp pipe select ops fd-type-specific select()

Table 3.3: Fields of the filp structure

3.1.4 File lock object

Structure used to manage file locking. The difference compared to the former
FS implementation is the vnode pointer instead of the inode.

Type Field Description
short lock type F RDLOCK or F WRLOCK
pid t lock pid pid of the process holding the lock
struct vnode * lock vnode pointer to the vnode locked
off t lock first offset of the first byte locked
off t lock last offset of the last byte locked

Table 3.4: Fields of the file lock structure

18 CHAPTER 3. VFS IN DETAILS

3.1.5 Fproc object

The fproc object maintains per-process information. Compared to the former
FS implementation the differences are the working and root directories which are
vnode pointers.

Type Field Description
mode t fp umask mask set by umask system call
struct vnode* fp wd working dir’s inode and fs proc reference
struct vnode* fp rd root dir’s inode and fs proc reference
struct filp * fp filp[OPEN MAX] the file descriptor table
uid t fp realuid real user id
uid t fp effuid effective user id
gid t fp realgid real group id
gid t fp effgid effective group id
dev t fp tty major/minor of controlling tty
int fp fd place to save fd if rd/wr can not finish
char * fp buffer place to save buffer if rd/wr can not finish
int fp nbytes place to save bytes if rd/wr can not finish
int fp cum io partial partial byte count if rd/wr can not finish
char fp suspended set to indicate process hanging
char fp revived set to indicate process being revived
int fp driver which driver is proc suspended on
char fp sesldr true if proc is a session leader
char fp execced true if proc has exec()ced after fork
pid t fp pid process id
long fp cloexec bit map for POSIX Table 6-2 FD CLOEXEC
int fp endpoint kernel endpoint number of this process

Table 3.5: Fields of the fproc structure

It is worth noting that there are fields that are necessary for an underlying file
system implementation in order to perform its functionality (e.g. the user and
group IDs during a lookup operation), but these values are logically pertain to the
abstract layer. Therefore, they are transfered during the requests in case they are
needed.

3.2. INTERFACE DESCRIPTION 19

3.2 Interface description

The VFS communicates with the FS processes through messages. A request
message contains general information about the caller process and additional ar-
guments according to the request. Requests that refer to a file have to contain the
inode number of the referred file. If data is transfered to the user process during
the request, the user process’ kernel endpoint number and the user space buffer
address have to be transferred too.

The details of the messages exchanged and the behavior of the VFS is provided
through the description of the system calls’ implementation (Chapter 4). There is
also a clean description given especially about the VFS/FS interface (Appendix
A).

3.2.1 General VFS request message type

MINIX messages consist of a general header – which contains the sender pro-
cess’ endpoint number and the message type – and an additional part. The addi-
tional part is defined as an union of different structures that were needed for the
communication between processes. A new structure has been defined which is
used for most VFS requests. The type, name and size of the structure’s fields are
the following:

Type Field Num of bytes
long m6 l1 4
long m6 l2 4
long m6 l3 4
short m6 s1 2
short m6 s2 2
short m6 s3 2
char m6 c1 1
char m6 c2 1
char* m6 p1 4
char* m6 p2 4

The overall size of the structure is 28 bytes which is equal to the biggest struc-
ture that was used before. Thus the size of the union did not change.

Each VFS request and response message will be described in a table with
five columns. Type, name, size and a short description is given for each field
of a particular message. In addition a mapping to the a general message is also
given. Messages that refer a path name will be mapped to the general VFS request
message structure.

20 CHAPTER 3. VFS IN DETAILS

3.2.2 Getnode and put node request messages

Get node and put node messages are used in many cases (as will be shown
below). They increase and decrease the usage counter of the referred inode,re-
spectively. Figure 3.1 shows the fields of the message.

Type Field Bytes Mapping Description
int req request 4 m type request code
ino t req inode nr 4 m6 l1 inode number

Figure 3.1: Fields of the request message to increase/decrease inode usage counters.
Sent by the VFS to the FS process.

3.3 Path name traverse control

Path name lookup has to be performed if the given system call has a path name
argument. Lookup requests can have different intentions depending on the given
system call. The intended behavior is specified by the action flag. Possible values
of the action flag listed below.

The main steps that the VFS performs during the lookup call are the following:
It checks whether the path name is absolute or relative and sets up the starting
directory field of the message to the caller process’ root or working directory
inode number, respectively. During the path name traversal the process must not
enter a directory which is above the process’ root directory in the path tree. If the
lookup is performed in the FS process which maintains the same file system on
which the process’ root directory lives, the root directory’s inode number has to
be transfered. As it is shown below, for this reason a special field is reserved in
the request message which will have a nonzero value in order to indicate that the
root directory is on the current file system.

Symbolic links are traversed unless it is prohibited by a specific action flag.
When a symbolic link is encountered, the path name contained in the link con-
catenated with the rest of the path name is transferred back to the VFS and the
number of characters processed is restarted. For this reason, the VFS informs the
FS processes about a buffer address where the path name can be stored in case
of a symbolic link. Each lookup request message contains the current value of
the symbolic link loop counter in order to prevent translating symbolic links more
times than a predefined limit.

Each mounted partition is maintained by a different FS process. During a path
name lookup, mount points can be encountered. When a mount point is encoun-
tered, the current FS process sends back a reply which indicates that the lookup

3.3. PATH NAME TRAVERSE CONTROL 21

method should be continued on an other partition. The reply contains the inode
number on which a partition is mounted and the offset in the path that has been
already processed. The VFS looks up the vmnt table and finds the corresponding
virtual mount object, thus the FS process that maintains the partition.

Note that the actual lookup takes place in the FS processes. When a new
component has to be searched, the permissions of the caller process have to be
checked. For this reason the VFS must transfer the caller process’ user and group
ID in the request. Depending on which system call is being performed these IDs
can be the effective or real ones.

General description of the path name lookup method on the VFS level:

1. The VFS determines the starting directory vnode (FS process endpoint and
inode number). If the path name is absolute the starting directory vnode
will be the caller process’ root directory vnode else the working directory
vnode. Checks whether the process’ root directory is on the same partition
on which the lookup is to be performed and sets the root directories inode
number. If the process’ root directory is not on the given partition the field
is set to zero, since zero is not a valid inode number.

2. Sends the request to the FS process.

3. Wait until response arrives.

- If error, frees resources and reports failure.

- If OK, return.

- If a mountpoint encountered, the VFS gets the number of the inode
on which a partition is mounted and looks it up in the virtual mount
table. From the vmnt object the VFS can access the root vnode (FS
process’ endpoint and root inode number) of the partition. Checks
whether the process’ root directories inode is on the partition and sets
the root inode number respectively. Fills in the request message with
the new vnode and the rest of the path and issues the lookup request
again. (Go back to 3.)

- If the path name traversal leaves a mounted partition, the VFS checks
which vnode the partition is mounted on. The FS process’ endpoint
and inode number can be determined from the vnode’s fields. The
VFS also checks whether the process’ root directory resides on this
partition and sets the root inode number respectively. It fills in the re-
quest message with the new vnode and the rest of the path and reissues
the lookup request. (Go back to 3.)

22 CHAPTER 3. VFS IN DETAILS

- If the lookup encounters a symbolic link that contains an absolute path
it transfers the link’s path concatenated with the rest of the path name
to the VFS. The increased symbolic link loop counter is also trans-
ferred back. The VFS restarts the counter for the characters that have
been already processed and reissues the request with the new values.
(Go back to 3.)

Note that when the path name traversal leaves a partition, the new request
will contain the inode number on which the partition left is mounted on. In this
case (and only in one) the FS server receives a lookup request with a starting
inode on which an other partition is mounted. Since the lookup method is actually
interested in the parent directory of the one on which the left partition is mounted
and the last ”..” component of the path is already processed in the FS process that
maintains the partition that has been left, the current FS process has to lookup the
parent of the starting inode first and than continue processing the path it received
in the request.

Figure 3.2 shows the fields of the lookup request message:

Type Field Bytes Mapping Description
int req request 4 m type request code
ino t req inode nr 4 m6 l1 inode number of the starting directory

of the path name lookup
ino t req chroot nr 4 m6 l2 inode number of the process’ root di-

rectory
uid t req uid 2 m6 s1 effective or real user ID of the caller
gid t req gid 1 m6 c1 effective or real group ID of the caller
char* req path 4 m6 p1 path argument
short req path len 2 m6 s2 length of the path string
int req flag 4 m6 l3 action flag of the lookup request
char* req lastc 4 m6 p2 place where the last component can

be stored
char req symloop 1 m6 c2 current value of the symbolic link loop

counter

Figure 3.2: Fields of the path name lookup request message. Sent by the VFS to the FS
process.

3.3. PATH NAME TRAVERSE CONTROL 23

The action flag has one of the following values:

Name Description
EAT PATH lookup the whole path name
EAT PATH OPAQUE if the last component is a symbolic link, do not interpret it
LAST DIR lookup the directory that includes the last component of the

path name (note: if the directory is a symbolic link, it is not
interpreted)

LAST DIR EATSYM if the parent directory is a symlink, interpret it

Figure 3.3: Possible values of the path name lookup’s action flag.

When the VFS performs a lookup with the LASTDIR or LAST DIR EATSYM
intention the last component of the path name can be stored into a character array
specified by the reqlastc field on the request message.

Figure 3.4 shows the fields of the response message in case of a mount point
has been encountered during the lookup procedure.

Type Field Bytes Mapping Description
int res result 4 m type result value
ino t res inode nr 4 m6 l1 inode number on which a partition is

mounted
short res offset 2 m6 s2 number of characters processed from

the path
char res symloop 1 m6 c1 current value of the symbolic link loop

counter

Figure 3.4: Fields of the response message for a lookup request in case of a mount point
has been encountered. Sent by the FS process to the VFS.

The resresult value can indicate whether a mount point has been encountered
and the lookup has to be continued in the FS process which maintains the partition
described by vmnt object which has the vnode (identified by the inode number
res inodenr) as its mmountedon field.

Figure 3.5 shows the fields of the reply message that the FS process issup-
posed to send for a successful lookup.

24 CHAPTER 3. VFS IN DETAILS

Type Field Bytes Mapping Description
int res result 4 m type result value
ino t res inode nr 4 m6 l1 inode number
mode t res mode 2 m6 s1 file type, mode, etc..
off t res file size 4 m6 l2 file size
dev t res dev 4 m6 l3 device number (special file)

Figure 3.5: Fields of the response message for a succesful path name lookup request.
Sent by the FS process to the VFS.

3.4 Implementation steps

In this section the approach that were taken during the implementation isde-
scribed. Since finding bugs in a parallel/distributed application is not easy, it
seemed to be more convenient to implement an emulation of the whole procedure
first and to keep everything in one process. This approach was also useful from
the aspect of the verification. The original FS code was kept in the background so
that the proper mechanism of the VFS layer could be verified.

The basic idea was to divide the VFS and FS related code and let them com-
municate only through messages. Since the final VFS and FS processes will ac-
cess their – received and to be sent – messages as global variables, the interface
consisted of global message variables in the emulation too.

The first function that was divided was open(). At the same time the close()
also had to be modified. This made it possible to refer to the opened (regular) files
as vnodes in the filp objects. Direct reference to the inode object were kept be-
cause most part of the FS code still used it. After the open(), the pipe() command
was divided to its VFS and FS related parts. The next one was the internal read-
write() function to substitute the read and write operation and at the same time
the cloneopcl() was also divided so that special character device files could be
opened properly too. At this point the pipe related code, the data structures and
code that handles the select() and the lock() got also be modified. The modifi-
cation of the ftrunc(), the fstat() and the fstatfs() functions was the next step. At
that point the direct reference to the file’s inode object could be removed since the
file system code that was related to files was already operating only on the vnode
layer.

The following functions were modified at the same time: chown(), chmod(),
access(), mknod(), mkdir(), inhibit read ahead for the lseek(), stat(), unlink(),
rmdir(), utime(), lstat(). These functions perform path name traverse for which
the starting directory of the caller process is needed. At this time the starting di-
rectories inode was directly referred from the process’ fproc object, but the request
and the result were transferred through messages.

3.4. IMPLEMENTATION STEPS 25

In order to keep on track with the working and root directory of the running
processes on the vnode layer, the init method and the mount() had to be modified.
Both the chdir() and the chroot() functions use the same ”get directory” request,
which had to be implemented in order to make them work. At that point the fproc
objects referred through vnodes to the actual working and root directories, but the
direct reference to the inode was still kept. The path name traverse was still using
these direct references. The next step was to modify the path name traverse so that
it started the lookup according to the inodes specified in the request messages. At
that time the directly referred inodes were used to verify the process’ directory
vnodes at the beginning of a path name lookup. This method basically verified
the mechanism of the chdir() operation too. Two special system calls, tlink() and
rename() got modified next.

The next step was to implement the path name travers control in the VFS layer,
which also needed some modification in parsepath() and in advance() functions
in the FS code. Namely, they had to transfer back the special EENTERMOUNT
and ELEAVEMOUNT error codes when a mount point is encountered instead
of traversing it. After this step the working and root directories inode references
could be removed from the fproc objects. Some modification was needed in the
rename() and link() system calls. The check of the mount points changed, it isin-
dicated by the errcode after the advance() function instead of the different device
numbers between the inode of the last component’s parent and the last component.

Since VFS related code was entirely operating on the vnode layer, the FS
related code could be separated. The genio function had to be divided in order to
achieve one which handles only block special devices so it could be used in the
FS server. The division was necessary since the genio operation handles restart
of suspended processes that are hanging on a character special I/O and the FS
processes are not able to access per-process information.

First an experimental FS server was implemented and used only for one par-
tition so that the proper behavior of the FS could be verified. Afterwards the
FS/VFS code was completely separated into different processes. The mount sys-
tem call had to be modified in order to ask the reincarnation server to execute
the FS process before it sends the actual mount request to the VFS process. One
MINIX FS process was included into the bootimage and into the RAM disk. See
section 3.5 for more details about this.

26 CHAPTER 3. VFS IN DETAILS

3.5 Replacing the root partition

This section gives a detailed description about the behavior of the VFS process
during the boot method.

When MINIX 3 starts up the first partition that gets mounted is the RAM disk.
Since at this time there is no partition from which the FS process could be exe-
cuted, one MINIX FS process is included into the bootimage. The VFS knows the
kernel endpoint number of this process and it issues a request in order to mount the
RAM disk. When the real on-disk root partition is about to be mounted the system
executes a new MINIX FS process from the RAM disk, therefore the MINIX FS
process binary is also present on the RAM disk. During the mount of the new root
partition the VFS sends a request which contains a nonzero value in its reqisroot
field in order to indicate that the partition is going to be the root partition of the
system. The working and root directories of the processes are replaced with the
root directory of the new partition. Afterwards the boot procedure can access the
files on the disk.

3.6 Handling block special device files

Block special files are handled dynamically by the FS processes according to
the mounted partitions. The main purpose of accessing a block special file through
a FS process is the ability of caching without increasing the memory need of the
VFS.

Minor devices that are not mounted are accessed through the root FS process,
therefore it also maintains a mapping between major device numbers and driver
endpoints. Minor devices that are mounted must be handled by the FS process that
maintains the partition in order to avoid inconsistency between the buffer caches.

There are three special cases when additional care has to be taken:

- Mounting a partition which lives on a minor device that is opened.

- Opening a minor device which is mounted.

- Unmounting a partition that is opened as a block special file.

In the first case the already opened minor device is being handled by the root
FS process, most probably with active blocks in the FS process’ buffer cache. The
handling of this device has to be moved transparently into the FS process that
will handle the mounted partition. During the mount the VFS checks the vnode
table whether there is an opened block special file with the same minor number
as the partition that is about to be mounted. If there is, the root FS process has
to be noticed in order to sync the buffer cache. In case the mount is successfully

3.7. RECOVERING FROM DRIVER CRASH 27

performed the requests for this minor is forwarded to the FS process that handles
the partition.

During the open operation of a block special file the VFS checks whether the
given minor is mounted or not. If it is, all the requests will be forwarded to the FS
process that handles the partition.

Unmounting a partition that handles an open block special file requires tore-
assign the block special file handling to the root FS process. In this case the VFS
sends the driver endpoint of the given device to the root FS process and modifies
the vnode of the block special file so that all the request will be forwarded to the
root FS.

3.7 Recovering from driver crash

The VFS is capable of surviving a driver crash by unmapping the driver end-
point and remapping the new endpoint of the restarted driver. The reincarnation
server (RS) is responsible for restarting the new driver process. The recognition
of a dead driver takes place in the low-level I/O function that interacts with the
driver. Since this functionality moved to the underlying file system implementa-
tions but the driver mapping is maintained by the VFS, the recovery mechanism is
more complicated in the VFS’ case than it was in the former FS implementation.

When an I/O error occures in the FS server and the reported status is dead
endpoint the FS process propagates back the error code to the VFS. Each VFS
request is issued by a low-level function that handles the dead driver response.
The VFS unmaps the endpoint for that device and waits until the RS sends the
new endpoint. It maps the new endpoint number and sends it to each FS processes.
Finally, it reissues the original request.

28 CHAPTER 3. VFS IN DETAILS

Chapter 4

System calls’ implementation

The POSIX library provides wrapping functions for system calls. Such awrap-
per function builds the appropriate message and sends it to the corresponding
server process. This chapter provides a description about the file system related
system calls’ implementation. The system calls that have path name argument
are described first (Section 4.1), then system calls that have a file descriptor argu-
ment are considered (Section 4.2). Finally, system calls without either path or file
descriptor argument are described. (Section 4.3).

We emphasize that the aim of this Chapter is to describe the behavior of the
virtual layer during the system calls. Although, the messages that are part of
the VFS/FS interface are also detailed here, they are organized according to the
system calls. For a clean description about the VFS/FS interface and the desired
behavior of the underlying file system implementation please consult Appendix
A. For further instructions about how to attach a new file system implementation
to the VFS see in Appendix B.

4.1 System calls with a path name argument

In this section the system calls with a path name argument are considered since
they are common in the sense that all of them performs a path name lookup before
the actual request. The lookup operation translates the specified path name into
the details of the file/inode that the path name refers. These values are used during
the actual request. The system calls are classified into groups according to their
arguments and the behavior that the VFS has to perform.

29

30 CHAPTER 4. SYSTEM CALLS’ IMPLEMENTATION

4.1.1 mkdir(), access(), chmod()

These system calls contains only a path name argument and a mode parameter:
const char *path, modet mode. The chmod() and access() system calls issue a
path name lookup request with the EATPATH flag. Figure 4.1 shows the fields of
the actual request message.

Type Field Bytes Mapping Description
int req request 4 m type request code
ino t req inode nr 4 m6 l1 inode number of the file
mode t req mode 2 m6 s3 specified mode

Figure 4.1: Fields of the request message for checking or changing permissions of a file.
Sent by the VFS to the FS process.

The mkdir() system call requests a lookup with the LASTDIR flag and stores
the last component of the path name. If the lookup of the parent directory of the
new directory is successful the actual request message is sent. Figure 4.2 shows
the fields of the message.

Type Field Bytes Mapping Description
int req request 4 m type request code
ino t req inode nr 4 m6 l1 inode number of the parent directory
mode t req mode 2 m6 s3 specified mode
char* req path 4 m6 p1 address of the last component string
short req path len 2 m6 s2 length of the last component

Figure 4.2: Fields of the request message for creating a directory. Sent by the VFS to the
FS process.

4.1.2 open(), creat()

Since the creat() system call is equivalent to open() with the flags equal to
O CREAT|O WRONLY|O TRUNC, creat() is considered as a special case of the
open(). The open() system call’s arguments are:const char *path, int flags,
modet mode.

However, the open() and the creat() system calls perform a slightly different
behavior on the VFS layer from the path name lookup point of view. Namely,
the open() attempts to lookup the whole path name, while the creat requests only
for the last directory. The actual open request differs in the fields related to the
last component of the path name, the creat() includes the last component in the
request, while the open() not.

4.1. SYSTEM CALLS WITH A PATH NAME ARGUMENT 31

The system call sees whether a free filp slot and a file descriptor is available. It
also checks the vnode table for a free vnode slot. In case of successful allocation of
these resources the VFS requests the lookup of the file/last directory, respectively.
If the lookup was successful, the following request message is sent:

Type Field Bytes Mapping Description
int req request 4 m type request code
ino t req inode nr 4 m6 l1 inode number of the file (in case of

open()) or the last directory (in case
of creat())

uid t req uid 2 m6 s1 effective or real user ID of the caller
gid t req gid 1 m6 c1 effective or real group ID of the caller
mode t req mode 2 m6 s3 specified mode
int req flags 4 m6 l3 flags
char* req path 4 m6 p1 last component of the path (in case of

creat())
short req path len 2 m6 s2 length of the last component (in case

of creat())

Figure 4.3: Fields of the request message for creating or opening a file. Sent by the VFS
to the FS process.

In case of success the FS process has to send back the details of the inode so
that the vnode’s fields can be filled in. If the file to be opened is a special file the
device number also has to be transferred back. Figure 4.4 shows the fields of the
reply message.

Type Field Bytes Mapping Description
int res result 4 m type result value
ino t res inode nr 4 m6 l1 inode number
mode t res mode 2 m6 s1 file type, mode, etc..
off t res file size 4 m6 l2 file size
dev t res dev 4 m6 l3 device number (special file)

Figure 4.4: Fields of the response message for an open request. Sent by the FS process
to the VFS.

If the method fails, the VFS reports failure and the error value. The filede-
scriptor table, the filp and the vnode objects were not changed so far.

If the method is successful, the VFS’ further behavior depends on the file type.
In case of a regular or a special file the VFS checks whether the inode specified in
the response is already in use. If it is, the vnode – which already refers the given
inode – has to associated with the filp slot and the vnode’s usage counter has to be

32 CHAPTER 4. SYSTEM CALLS’ IMPLEMENTATION

increased. If not the VFS fills in the fields of the free vnode and associates it with
the filp slot. For special files the corresponding device’s open function also has to
be performed.

In case of a pipe the VFS checks if there is at least one reader/writer pair for the
pipe, if not the caller has to be suspended, otherwise all other blocked processes
– that hanging on the pipe – have to be revived. The VFS also checks whether
there isco-reader or co-writer of the pipe. If there is, the same filp object has to
be used, otherwise the free vnode’s fields have to be filled with the values from
the response message and it has to be associated with the free filp slot. Finally the
file descriptor is returned.

Example scenario

In this section a detailed description is provided about the behavior of the VFS
and FS servers and the content of the messages during the following system call:

fd = open("/usr/src/servers/fs/open.c", 0);

VFS

1.:

r_inode_nr:
r_chroor_nr:
r_uid:
r_gid:

(/)
FS

FS
(/usr)

LOOKUP

caller’s effective user id
caller’s effective group id

root inode number of the root partition
root inode number of the root partition

r_path_len:
r_path: pointer to the "/usr/src/servers/fs/open.c" string

length of the string (26)

r_request:

Figure 4.5: Lookup request to the root FS

In order to describe the exact behavior, some assumptions have to be made.
Let us assume that there are two partitions, the root partition and one mounted on
the ”/usr” directory, which has the index value 1 in the vmnt table. Let us also
assume that the process’ root directory is the root directory of the root partition
and the user who is performing the system call is permitted to open the given file.

The VFS first determines that the request is an open() system call. Therefore,
the path name has to be transferred from the caller process’ user space. It allocates
some resources, namely a free file descriptor slot, a free filp object and a free

4.1. SYSTEM CALLS WITH A PATH NAME ARGUMENT 33

vnode have to be found. If any of these is not available the appropriate error value
is reported back. Next step is to issue the lookup request message for the path
name.

VFS

2.:

(/)
FS

FS
(/usr)

r_offset:

r_result: ENTER_MOUNT

number of characters processed (5)
r_inode_nr: inode number of the mountpoint

Figure 4.6: FS server’s reply, mount point encountered

Since the path name is absolute and the process’ root directory is on the root
partition both the starting directories inode number and the process’ rootdirecto-
ries inode number will be the same, the root partition’s root inode.

VFS

(/)
FS

FS
(/usr)

3.:

r_request:
r_inode_nr:
r_chroor_nr:
r_uid:
r_gid:

r_path_len:
r_path:

LOOKUP
root inode number of the "/usr" partition
not on this partition (0)
caller’s effective user id
caller’s effective group id
pointer to the "src/servers/fs/open.c" string
length of the string (21)

Figure 4.7: Lookup request for the ”/usr” partition’s FS process.

The path name field points the first character of the path name. The length
field is the length of the whole path name. Figure 4.5 shows the message.

34 CHAPTER 4. SYSTEM CALLS’ IMPLEMENTATION

The FS server that maintains the root file system performs the path name
lookup. It encounters a mount point after the translation of the ”usr” component.

(/)
FS

FS
(/usr)

4.:

r_result:
r_inode_nr:
r_mode:
r_file_size:
r_dev:

OK
inode number of the open.c file
mode, type, etc..
size of open.c
0 (not a special file)

VFS

Figure 4.8: OK reply from the ”/usr” partition’s FS process.

This causes the FS process to send back a reply to the VFS and let it know that
the path name lookup has to be continued in an other FS process.

FS
(/usr)

VFS

(/)
FS

5.:

r_request:
r_inode_nr:

OPEN
inode number of the file

r_uid:
r_gid:
r_mode:
r_flags:

specified mode (0)
specified flags (0)

caller’s effective user id
caller’s effective group id

Figure 4.9: Open request for the ”/usr” partition’s FS process.

Figure 4.6 shows the fields of the message. The message contains the mount
point’s inode number so that the VFS looks up the vmnt table and finds the one
which refers the specified inode as its mount point. The VFS fills in the new the

4.1. SYSTEM CALLS WITH A PATH NAME ARGUMENT 35

request message that has to be sent to the FS process determined by the root vnode
of the referred vmnt object. The FS process that maintains the root file system
already processed 6 characters from the path. The new request will contain only
the remainder of the path name. Figure 4.7 shows the message. The FS process
of the ”/usr” partition translates the given path name ”src/servers/fs/open.c” to the
corresponding inode. It fills the reply message and sends back to the VFS process.
Figure 4.8 illustrates the message.

The VFS can refer the file to be opened now. It fills in the actual open request
message’s fields and sends the request to the FS process that maintains the ”/usr”
partition. The mode and the flag parameters are set according to the values in the
message sent to the VFS process. Figure 4.9 shows the message.

(/)
FS

FS
(/usr)

r_result:
r_inode_nr:
r_mode:
r_file_size:
r_dev:

OK
inode number of the open.c file
mode, type, etc..
size of open.c
0 (not a special file)

6.:

VFS

Figure 4.10: OK reply from the ”/usr” partition’s FS process.

The FS process verifies the permissions and sends back the details of the inode.
Figure 4.10 illustrates the reply message.

The VFS process checks whether the inode in ther reply is already in use or
not. If it is the usage counter has to be increased and the filp object will refer the
used vnode. If not the VFS fills in the free vnode object’s fields according to the
reply. It sets the filp object that it will refer the file’s vnode. It also sets up the file
descriptor slot so that it will point to the filp object that has been filled in. Finally,
the VFS returns the file descriptor number.

4.1.3 mknod()

The mknod() system call’s arguments are:const char *path, modet mode,
dev t dev. It requests a lookup for the parent directory and stores the lastcom-

36 CHAPTER 4. SYSTEM CALLS’ IMPLEMENTATION

ponent of the path name. The actual request message contains the device number
and the name of the last component, the fields are shown by Figre 4.11.

Type Field Bytes Mapping Description
int req request 4 m type request code
ino t req inode nr 4 m6 l1 inode number of the parent directory
uid t req uid 2 m6 s1 effective or real user ID of the caller
gid t req gid 1 m6 c1 effective or real group ID of the caller
mode t req mode 2 m6 s3 specified mode
dev t req dev 4 m6 l3 device number
char* req path 4 m6 p1 name of the last component
short req path len 2 m6 s2 length of the last component

Figure 4.11: Fields of the request message in order to create a special file. Sent by the
VFS to the FS process.

Note: the mkfifo() system call is implemented with the same request, the
POSIX library adds the SIFIFO flag to the mode parameter in this case.Pos-
sible errors are handled in the FS and reported back.

4.1.4 chdir(), chroot()

The argument of the these system calls is:const char *path. The chdir() and
chroot() system calls request a lookup for the whole path name. In case of the
successful lookup the VFS checks whether the resulted inode is a directory or not.
If it is a GET DIR request is sent, with the fields shown by Figure 4.12.

Type Field Bytes Mapping Description
int req request 4 m type request code
ino t req inode nr 4 m6 l1 inode number of the directory
uid t req uid 2 m6 s1 effective or real user ID of the caller
gid t req gid 1 m6 c1 effective or real group ID of the caller

Figure 4.12: Fields of the request message for changing a process’ working or root direc-
tory. Sent by the VFS to the FS process.

The FS process checks whether the caller is permitted to browse the directory
and reports back the result. In case of success the VFS changes the working/root
directory of the process, respectively.

4.1. SYSTEM CALLS WITH A PATH NAME ARGUMENT 37

4.1.5 unlink()

The unlink() system call has only a path name argument:const char *path. It
request a lookup with the LASTDIR flag and stores the last component. In case
of successful lookup the actual request contains the fields shown by Figure 4.13.

Type Field Bytes Mapping Description
int req request 4 m type request code
ino t req inode nr 4 m6 l1 inode number of the parent directory
uid t req uid 2 m6 s1 effective or real user ID of the caller
gid t req gid 1 m6 c1 effective or real group ID of the caller
char* req path 4 m6 p1 name of the last component
short req path len 2 m6 s2 length of the last component

Figure 4.13: Fields of the request message for unlinking a file. Sent by the VFS to the FS
process.

4.1.6 utime()

The utime() system calls arguments are:const char *path, struct utimbuf
*times. The implementations of the utime() system call performs the lookup for
the whole path name. In case of successful lookup the actual request message
includes the access and modification timestamps. Figure 4.14 shows the fields.

Type Field Bytes Mapping Description
int req request 4 m type request code
ino t req inode nr 4 m6 l1 inode number of the file
uid t req uid 2 m6 s1 effective or real user ID of the caller
gid t req gid 1 m6 c1 effective or real group ID of the caller
int req actime 4 m6 l2 access time
int req modtime 4 m6 l3 modification time

Figure 4.14: Fields of the request message in order to change access and modification
time stamps of a file. Sent by the VFS to the FS process.

38 CHAPTER 4. SYSTEM CALLS’ IMPLEMENTATION

4.1.7 truncate()

The arguments of the truncate() system call are:const char *path, offt length.
The implementation of the truncate() system call does the following steps: first it
requests a lookup for the whole path name. If the lookup is successful, the actual
request message contains the new length of the file. Figure 4.15 shows the fields
of the message.

Type Field Bytes Mapping Description
int req request 4 m type request code
ino t req inode nr 4 m6 l1 inode number of the file
uid t req uid 2 m6 s1 effective or real user ID of the caller
gid t req gid 1 m6 c1 effective or real group ID of the caller
mode t req mode 2 m6 s3 specified mode
int req length 4 m6 l3 length

Figure 4.15: Fields of the request message for changing size of a file. Sent by the VFS
to the FS process.

4.1.8 chown()

The arguments of the chown() system call are:const char *path, int owner, int
group. The implementations of the chown() system call is based on the general
method that the VFS performs if a path name argument present. If the lookup
successful, the request message contains the new user and group IDs, the fields
are shown by Figure 4.16.

Type Field Bytes Mapping Description
int req request 4 m type request code
ino t req inode nr 4 m6 l1 inode number of the file
uid t req uid 2 m6 s1 effective or real user ID of the caller
gid t req gid 1 m6 c1 effective or real group ID of the caller
uid t req newuid 2 m6 s3 new user ID
gid t req newgid 1 m6 c2 new group ID

Figure 4.16: Fields of the request message for changing owner and group ID of a file.
Sent by the VFS to the FS process.

4.1. SYSTEM CALLS WITH A PATH NAME ARGUMENT 39

4.1.9 mount()

The mount() system call has the following arguments:char *special, char
*name, int flag.

The VFS has to know the kernel endpoint number of the FS process which will
handle the new partition. The mount command is modified for this reason. The
following steps are performed by the new mount command. Figure 4.17 shows
the steps.

1.:

2.:

VFS

RS

mount

request for execution
of the new FS
process

IPC endpoint of the new FS process

3.:

new FS process’ IPC endpoint
actual mount request with the

Figure 4.17: Steps performed by the mount command.

The POSIX library sends a request to the reincarnation server (RS) to start the
new FS process. The reincarnation server forks a child that executes the FSpro-
cess and the RS sends back its kernel endpoint number so that it can be transferred
to the VFS server in the mount request.

When the VFS receives the mount request it has to check whether the caller
is the superuser or not. It also stores the kernel endpoint number of the new FS
process. In order to perform the mount the first step is to determine the device
number from the name of the special file. For this reason the VFS performs a
lookup request with path name of the special file. The corresponding FS process
is supposed to send back the device number.

The VFS is now able to check the vmnt table whether this device is already
mounted on or not. If it is, and the partition is not allowed to remount the VFS
reports failure. (Note: replacing the root partition is a special case, it will be
considered later in section 3.5.) If not, the VFS attempts to open the device and
finds a free vmnt slot in the vmnt table.

At this point the VFS has a vmnt object which is either free or valid to remount.
In case of a free vmnt, the VFS has to request the corresponding FS process to read

40 CHAPTER 4. SYSTEM CALLS’ IMPLEMENTATION

the superblock and transfer back the root inode’s details. Figure 4.18 shows the
fields of the request message.

Type Field Bytes Mapping Description
int req request 4 m type request code
int req boottime 4 m6 l1 timestamp of the boot time
int req driver e 4 m6 l2 kernel endpoint number of the driver

process
char req readonly 1 m6 c1 mount flag
char req isroot 1 m6 c2 indicates root partition
char* req slink storage 4 m6 p1 buffer for storing symbolic link’s con-

tent (in the VFS’ address space)

Figure 4.18: Fields of the request message for reading the superblock of a partition and
getting details of the root inode. Sent by the VFS to the FS process.

The request contains the driver process’ endpoint number, the mount flag so
that the FS process is able to register whether the partition isread-only or not and
it also contains the boottime timestamp since the current time is a relative value
and the FS process needs the current time in many situations. There is a special
field in the message that indicates whether the partition is the root partition of
the system or not. (This value is needed when the partition is to be left during
a path name lookup. The FS process has to know if it is the root partition or
it should report an ELEAVEMOUNT error code.) The message also contains a
buffer address in the VFS’ address space where a path name can be stored in case
of a symbolic link has been encountered.

The FS attempts to read the superblock. If the partition does not contain a
valid superblock the error value is reported back.

The next step is to send a request message to lookup the mount point and get
the corresponding inode. If the lookup is successful a special mountpoint request
is sent. Figure 4.1 shows the fields of this message.

Type Field Bytes Mapping Description
int req request 4 m type request code
ino t req inode nr 4 m6 l1 inode number of the starting directory

of the path name lookup

Table 4.1: Fields of the request message in order to register a mount point on a partition.
Sent by the VFS to the FS process.

The answer message contains the details of the inode, the message has the
same layout as the reply for the lookup. Figure 3.5 shows the fields. Possible

4.1. SYSTEM CALLS WITH A PATH NAME ARGUMENT 41

errors related to the mount point is handled by the FS process. The mount point’s
inode is now determined.

Finally the VFS fills in the fields of the vmnt structure and reports success.

4.1.10 unmount()

First step of the unmount() system call is to determine the device number from
the name of the special file. For this reason the VFS performs a request with path
name of the special file. The corresponding FS process is supposed to send back
the device number.

The VFS can check the vmnt table whether the device is mounted. If it is the
VFS sends the unmount request for the FS process that manages the partition. If
the given partition is not in use the unmount can be performed. The VFS drops
the vnode on which the partition was mounted and clears the fields of the vmnt
object.

42 CHAPTER 4. SYSTEM CALLS’ IMPLEMENTATION

4.1.11 rename()

The rename() system call has two path name arguments. The call can be per-
formed only if the two names refer to the same partition. Since different partitions
are maintained by different FS processes the VFS has to perform this system call
using multiple messages. The first step is to determine the inode number of the
parent directory of the first path name and to save the last component. In case of
the successful lookup the request message contains the parent directories inode
number, otherwise the appropriate error value is reported back.

The VFS performs a full path name lookup for the new name in order to de-
termine whether it is a directory or not. During the rename this directory is to be
removed, but removing a directory is not allowed if it is a working or root direc-
tory of any processes, therefore the VFS verifies this condition. If the directory
can be removed or the last component is not a directory the VFS requests a parent
lookup for the new name and stores the last component.

Type Field Bytes Mapping Description
int req request 4 m type request code
ino t req old dir 4 m6 l2 inode number of the old name parent

dir
ino t req new dir 4 m6 l3 inode number of the new name par-

ent dir
uid t req uid 2 m6 s1 effective or real user ID of the caller
gid t req gid 1 m6 c1 effective or real group ID of the caller
char* req path 4 m6 p1 last component of the old name
short req path len 2 m6 s2 length of the component
char* req user addr 4 m6 p2 last component of the new name
short req slen 2 m6 s3 length of the component

Figure 4.19: Fields of the request message for renaming a file. Sent by the VFS to the
FS process.

If the last directory of the new name and the old name are on the same partition
the VFS can request the actual rename. This message contains the inode number
of the last directory of the existing name and the last component of the existing
path. It also contains the inode number of the last directory of the new name and
the last component of the new name path (i.e. the new name). The fields of the
message are shown by Figure 4.19.

4.1.12 link()

The link() system call has two path name argument. Linking is only possible if
the two names are on the same partition. Since different partitions are maintained

4.1. SYSTEM CALLS WITH A PATH NAME ARGUMENT 43

by different FS processes the VFS has to perform this system call using multiple
messages.

First the file to be linked has to be found. A lookup request is sent for the
whole path name for this reason. Second step is to find the last directory of the
link name. This is performed by a parent lookup request and the last component
of the path stored. The VFS checks whether the file to be linked and the parent
directory of the link name is on the same partition. If not, the appropriate error
value is reported back. The final request is the actual linking. It contains the inode
number of the file to be linked, the inode number of the parent directory of the
link and the last component of the link name. The FS process performs the actual
rename and reports success or the appropriate error value. Figure 4.20 shows the
fields of the message.

Type Field Bytes Mapping Description
int req request 4 m type request code
ino t req linked file 4 m6 l1 inode number of the file to be linked
ino t req link parent 4 m6 l2 inode number of link’s parent dir
uid t req uid 2 m6 s1 effective or real user ID of the caller
gid t req gid 1 m6 c1 effective or real group ID of the caller
char* req path 4 m6 p1 last component of the link name
short req path len 2 m6 s2 length of the component

Figure 4.20: Fields of the request message to create a hard link. Sent by the VFS to the
FS process.

4.1.13 slink()

The slink() system call has two path name argument. The target file’s path
name (i.e. the content of the symbolic link) and the link’s name itself.

The implementation first issues a parent lookup for the link’s path name and
saves the last component of the path in a character array.

44 CHAPTER 4. SYSTEM CALLS’ IMPLEMENTATION

The fields of the actual request message is shown by Figure 4.21.

Type Field Bytes Mapping Description
int req request 4 m type request code
ino t req inode nr 4 m6 l1 inode number of the file
uid t req uid 2 m6 s1 effective user ID of the caller
gid t req gid 1 m6 c1 effective group ID of the caller
char* req path 4 m6 p1 last component of the link name
short req path len 2 m6 s2 length of the component
int req who e 4 m6 l3 kernel endpoint number of the caller
char* req user addr 4 m6 p2 user space buffer address (link con-

tent)
short req slen 2 m6 s3 length of the referred path

Figure 4.21: Fields of the request message for creating a symbolic link. Sent by the VFS
to the FS process.

4.1.14 rdlink()

The rdlink() system call has two arguments: a path name – the link’s path –
and the size of the buffer in the user’s address space. The implementationre-
quests a lookup for the path name without interpreting the link (i.e. with the
EATH PATH OPAQUE flag). The actual request contains the inode number of
the symlink file, the kernel endpoint of the caller, the user space buffer address
and the size of the buffer. Figure 4.22 shows the fields of the message.

Type Field Bytes Mapping Description
int req request 4 m type request code
ino t req inode nr 4 m6 l1 inode number of the file
uid t req uid 2 m6 s1 effective user ID of the caller
gid t req gid 1 m6 c1 effective group ID of the caller
int req who e 4 m6 l3 kernel endpoint number of the caller
char* req user addr 4 m6 p2 user space buffer address
short req slen 2 m6 s3 size of the buffer

Figure 4.22: Fields of the request message for reading a symbolic link’s content. Sent by
the VFS to the FS process.

4.1.15 stat()

The arguments of the stat() system call are:const char *path, struct stat *buf,
The implementation of the system call is based on the general method that the

4.1. SYSTEM CALLS WITH A PATH NAME ARGUMENT 45

VFS performs if a path name argument present. In case of the successful lookup
the actual request message contains the kernel endpoint of the caller process and
the user space buffer’s address, the fields are shown by Figure 4.23.

Type Field Bytes Mapping Description
int req request 4 m type request code
ino t req inode nr 4 m6 l1 inode number of the file
uid t req uid 2 m6 s1 effective or real user ID of the caller
gid t req gid 1 m6 c1 effective or real group ID of the caller
int req who e 4 m6 l3 kernel endpoint number of the caller
char* req user addr 4 m6 p2 user space buffer address

Figure 4.23: Fields of the request message for getting statistics of a file. Sent by the VFS
to the FS process.

46 CHAPTER 4. SYSTEM CALLS’ IMPLEMENTATION

4.2 System calls with file descriptor argument

In this section the system calls which operate on a file descriptor arecon-
sidered. Each system call determines first which filp object and therefore which
vnode the file descriptor refers to. If the file descriptor is not valid it reports fail-
ure. Otherwise the corresponding vnode specifies the FS process and the inode
number on which the particular system call operates.

In general, the reply message that the FS process is supposed to send contains
the result value, stored in the mtype field of the response message. This value
is reported back to the caller process. In case the FS process is supposed to send
additional information, the message is explicitly described.

4.2.1 lseek()

The lseek() system call has the following arguments:int fd, off t offset, int
whenceand it is mainly performed on the VFS level. It updates the file position
according to its argument. In case of the new position is different than the old
one the VFS request the FS process to inhibit the read ahead on the inode that the
vnode refers to. The request message contains the message code and the inode
number. The fields of the message are shown by Figure 4.24.

Type Field Bytes Mapping Description
int req request 4 m type request code
ino t req fd inode nr 4 m2 i1 inode number of the file

Figure 4.24: Fields of the request message for inhibiting read ahead feature on a given
file. Sent by the VFS to the FS process.

4.2.2 read(), write()

The read() and write() system calls have the following arguments:int fd, void
*buff, sizet nbytes. During the execution of each of these system calls the VFS
finds the corresponding filp object and the vnode specified by the file descriptor.
The VFS checks whether the user process has the memory it needs. It checks
whether the file is a special file. If it is, the corresponding IO call is performed. If
the vnode refers to a pipe and the operation is write() the VFS has to check how
many bytes are allowed to write (partial count). The minimum of the requested
bytes and the partial count has to be transfered. Figure 4.25 shows the fields of
the request message.

4.2. SYSTEM CALLS WITH FILE DESCRIPTOR ARGUMENT 47

The FS process performs the request and reports back the result. In case of
any error the corresponding error value is sent back.

Type Field Bytes Mapping Description
int req request 4 m type request code
ino t req fd inode nr 4 m2 i1 inode number of the file
int req fd who e 4 m2 i2 kernel endpoint number of the caller
int req fd seg 4 m2 l2 segment
off t req fd pos 4 m2 i3 current position
size t req fd nbytes 4 m2 l1 number of bytes to be transfered
char* req fd user addr 4 m2 p1 user space buffer address

Figure 4.25: Fields of the request message for reading from or writing to a file. Sent by
the VFS to the FS process.

If the operation succeeds the number of bytes transferred is sent back. In case
of a write() the new file size also has to be transferred back. The fields of the reply
message are shown by Figure 4.26.

Type Field Bytes Mapping Description
int res result 4 m type result value (number of bytes trans-

ferred or error value)
off t res file size 4 m2 i1 new file size (in case of write())
int res cum io 4 m2 i2 number of bytes transfered

Figure 4.26: Fields of the response message for a read/write request. Sent by the FS
process to the VFS.

Example scenario

In this section a detailed description will be given about the behavior of the
VFS and FS servers and the content of the messages during the following system
call:

read(fd, buf, 1024);

The VFS server first finds the filp object and the vnode which are specified by
the file descriptor. It checks whether the user process has the memory that it needs
in order to perform the required transfer.

Let us assume that the file descriptor in the example specifies a regular file
on the root partition. The VFS process will send a message to the FS process –
specified by the vnode. Figure 4.27 shows the request and the response messages.

48 CHAPTER 4. SYSTEM CALLS’ IMPLEMENTATION

The request message is filled in by the values of the filp object and the referred
vnode.

VFS

FS
(/)

1.:

r_request:
r_inode_nr:

READ

r_who_e:
r_pos:
r_nbytes:
r_user_addr:

endpoint number of the caller process
current file pos (from the filp object)
number of bytes to transfer (1024)
address of the buf array

inode number of the file

r_seg: D

2.:

r_result:
new file size (not changed)r_file_size:

r_cum_io: 1024

OK (0)

Figure 4.27: Request and response for reading 1024 bytes.

Let us also assume that the request can be performed without any error by
the FS process. In this case it sends back a message with the number of bytes
transferred.

4.2.3 close()

The close() system call checks whether the corresponding vnode represents a
special file. If it does the VFS closes the device. It clears the file descriptor. If
the filp object’s usage counter becomes zero it drops the referred inode with the
put node message. It releases the lock if the file was locked and returns.

4.2.4 fchdir()

The fchdir() system call drops the current working dir’s vnode with a putnode
message and replaces is with the vnode that is referred by the file descriptor given
in the argument. It increases the usage counter of the corresponding inode with a
get node message.

4.2.5 pipe()

The pipe() system call first acquires two file descriptors. Afterwards it sends
a request for the root file system so that it allocates an inode for the pipe. The
message contains only the request code and causes the FS process to allocate an

4.2. SYSTEM CALLS WITH FILE DESCRIPTOR ARGUMENT 49

inode with the INAMED PIPE mode flag. The FS process increases the inode’s
counter since it is needed twice. The reply contains the inode number of the
allocated inode.

4.2.6 fstat(), fstatfs()

The fstat() and the fstatfs() have the argumentsint fd, struct stat *bufandint
fd, struct statfs *bufrespectively. Each of them sends the same request message.
Figure 4.28 shows the fields.

Type Field Bytes Mapping Description
int req request 4 m type request code
ino t req fd inode nr 4 m2 i1 inode number of the file
int req fd who e 4 m2 i2 kernel endpoint number of the caller
char* req fd user addr 4 m2 p1 user space buffer address

Figure 4.28: Fields of the request message for getting statistics of an opened file or
getting statistics of a partition. Sent by the VFS to the FS process.

4.2.7 ftruncate()

The ftruncate() system call has the following arguments:int fd, off t length.
After it determines the corresponding vnode it sends the actual request message is
sent. The fields of the message are shown by Figure 4.29.

Type Field Bytes Mapping Description
int req request 4 m type request code
ino t req fd inode nr 4 m2 i1 inode number of the file
off t req fd length 4 m2 i2 new length

Figure 4.29: Fields of the request message for changing size of an opened file. Sent by
the VFS to the FS process.

4.2.8 dup()

The dup() system call operates on the VFS level, it does the same as the former
FS implementation.

50 CHAPTER 4. SYSTEM CALLS’ IMPLEMENTATION

4.2.9 fcntl()

The fcntl() system call has the following arguments:int fd, int cmdand an
optional data arguments which can be a user space buffer address. The fcntl()
operation is performed mainly on the VFS level, except when a section of a file is
to be freed. In this case the actual request message is sent. Figure 4.30 shows the
fields.

Type Field Bytes Mapping Description
int req request 4 m type request code
ino t req fd inode nr 4 m2 i1 inode number of the file
off t req fd start 4 m2 i2 start position
off t req fd end 4 m2 i3 end position

Figure 4.30: Fields of the request message for freeing a section of a file. Sent by the VFS
to the FS process.

4.3. SYSTEM CALLS WITHOUT ARGUMENTS 51

4.3 System calls without arguments

4.3.1 fork(), exit()

The fork() and the exit() system calls work the same way how they worked
in the former FS server, except that they operate on vnodes (i.e. they use the put
node and get node routines).

4.3.2 sync(), fsync()

Although the fsync() system call has a file descriptor argument in MINIX it
behaves the same as the sync() call. Both of them iterate through the vmnt objects
and send a sync request to each mounted partition.

4.3.3 cloneopcl()

Some devices which can be accessed through character special files needspe-
cial processing upon open. Such a device is replaced with a new unique minor
device number after open. This causes the VFS to request the root FS server to
create a new character special inode with the new device number. The fields of
the request message is shown by Figure 4.31.

Type Field Bytes Mapping Description
int req request 4 m type request code
dev t req dev 4 m6 l3 device number

Figure 4.31: Fields of the request message for cloning a character special file. Sent by
the VFS to the FS process.

The FS server allocates the new inode, sets the device number and returns back
the inode’s details. The VFS than replaces the vnode referred by the filp object
with a new one that refers to the inode just created.

52 CHAPTER 4. SYSTEM CALLS’ IMPLEMENTATION

Chapter 5

Performance measurements

This chapter provides a brief comparison between the original FS server and
the VFS system from the performance point of view. The duration of POSIX
system calls have been measured with and without VFS on the 3.1.3 version of
MINIX 3. The hardware was a 400MHz PII with 256 megabytes of RAM and a
30G IDE hard drive.

System call original FS VFS Overhead
Lseek 6.5µs 6.7µs 3%
Open+Close 24.6µs 65.6µs 166%
Read 1K 29.0µs 42.8µs 47%
Read 8K 45.8µs 61.2µs 33%
Read 64K 382.3µs 435.2µs 13%
Read 128M 124s 131s 5%
Creat+Write+Del 120.5µs 216.3µs 80%
Write 128M 189s 193s 2%
Fork 1456.8µs 1508.4µs 3%
Fork+Exec 2790.2µs 2910.1µs 4%
Mkdir+Rmdir 109.6µs 182.3µs 66%
Rename 39.8µs 117.2µs 200%
Chdir 15.4µs 41.2µs 173%
Chmod 24.4µs 32.6µs 33%
Stat 15.1µs 22.4µs 48%

Table 5.1: Duration of the system calls with and without VFS.

A user program was programmed to record the real time in units of clock ticks,
then make a system call millions of times, then record the real time again. The
system call time was computed as the difference between the end and start time

53

54 CHAPTER 5. PERFORMANCE MEASUREMENTS

divided by the number of calls, minus the loop overhead, which was measured
separately. The number of loop iterations was different for each test becausetest-
ing getpid 100 million times was reasonable but reading a 128-MB file 100 million
times would have taken too long. All tests were made on an idle system.

Let us briefly examine the results. Lseek() performs basically with the same
efficiency, which is reasonable, it is almost doing the same. Open() and close()
have to manage resources on the VFS layer and due to the split it also changes
messages, the overhead is significant. The read() system calls show that the more
data is being transferred the less overhead it means. The creat()+write()+del(),
the mkdir()+rmdir() and the rename() cause a siginificant overhead. In this cases
resources on the virtual layer have to be managed and extra data (path name) has
to be copied during the system calls. Chdir() changes two messages and manages
the vnode table. Chmod() and Stat() do the same in the two cases, except the split
and therefore the messages involved in the operation. As the table shows in both
cases the difference is around 7-8µs.

Let us take a closer look at the system calls, which cause significant overhead.
Rename() gives the highest, although it is basically not important since it is a
rare operation. The main reason is the number of messages exchanged and the
extra data copy involved. During this system call two lookup requests are issued
– each of them involves data copy – and the actual rename request is sent, which
again involves the copying of the last components of the path names. Chdir()
issues two requests. The first is a lookup for the directory name, the second is the
special get directory request. It also has to scan the vnode table in order to find
out whether the specified node is already in use or not. Although, chdir() is not a
frequent system call either. The most important is the open()+close() case. Open()
has basically the same overhead with the chdir(), the two operations almost do the
same – in case of opening a regular file – except that open() does more verification.
Although, open() is a frequent and therefore important system call.

Decreasing the number of messages exchanged during these system calls could
be managed with the introduction of an intention flag in the lookup request. It
could handle special cases – like open(), chdir() and rename() – and perform the
actual request in case the inode has been found. Thus, the extra message for the
actual request would be unnecessary. A more sophisticated method could be im-
plemented for the rename() system call. Since it can be successful only if the two
inodes are on the same partition, during the lookup the last components of the
path names could be stored in the FS server. Thus, the actual operation would
not need any extra data copy for the pathnames. Moreover, the second lookup
could contain a rename intention and the actual operation could be immediately
performed.

Chapter 6

Related work

This chapter surveys related work on Virtual File systems. It describes the
main evolutionary path that UNIX took from the early research editions through to
System V Release 4, which involved the last major enhancements to the UNIX file
system architecture. It gives an overview of the development of the File System
Switch (FSS) architecture in SVR3, the Sun VFS/vnode architecture in SunOS,
and then the merge between the two to produce SVR4. Many different UNIX and
UNIX-like vendors adopted the Sun VFS/vnode interface, however their imple-
mentations differed in many areas. A brief description about the BSD and Linux
operating systems from a file system perspective is also given. The chapter is
based on the book ”UNIX File systems: Evolution, Design and Implementation”
[Pat03].

The need for change

The research editions of UNIX had a single file system type. Before long, the
need to add new file system types, including non-UNIX file systems, resulted in
a shift away from the old style file system implementation to a newer architec-
ture that clearly separated the different physical file system implementations from
those parts of the kernel that dealt with file and file system access.

6.1 The System V File System Switch

Introduced with System V Release 3.0, the File System Switch (FSS) archi-
tecture provided a framework under which multiple different file system types
could coexist in parallel. As with earlier UNIX versions, SVR3 kept the mapping
between file descriptors in the user area to the file table to in-core inodes.

55

56 CHAPTER 6. RELATED WORK

The boundary between the filesystem-independent layer of the kernel and the
file system-dependent layer occurred mainly through a new implementation of the
in-core inode. Each file system type could potentially have a very different on-disk
representation of a file. Newer diskless file systems such as Network File system
(NFS) had different, non-disk-based structures. Thus, the new inode contained
fields that were generic to all file system types such as user and group IDs and file
size, as well as the ability to reference data that was file system-specific.

The set of file system-specific operations was defined in a structure. An ar-
ray held an entry with this structure for each possible file system. When a file was
opened for access, the corresponding field of the inode was set to point to the entry
– in the array, which holds the structures for the file system-specific operations –
for that file system type. In order to invoke a file system-specific function, the ker-
nel performed a level of indirection through a macro that accessed the appropriate
function.

All file systems followed the same calling conventions so they clould all un-
derstand how arguments would be passed.

6.2 The Sun VFS/Vnode Architecture

Developed on Sun Microsystem’s SunOS operating system, the world first
came to know about vnodes through Steve Kleiman’s often-quoted Usenix paper
”Vnodes: An Architecture for Multiple File System Types in Sun UNIX” [Kle86].
The paper stated four design goals for the new file system architecture:

- The file system implementation should be clearly split into a file system
independent and file system-dependent layer. The interface between the
two should be well defined.

- It should support local disk file systems such as the 4.2BSD Fast File System
(FSS), non-UNIX like file systems such as MS-DOS, stateless file systems
such as NFS, and stateful file systems such as RFS.

- It should be able to support the server side of remote file systems such as
NFS and RFS.

- File system operations across the interface should be atomic such that sev-
eral operations do not need to be encompassed by locks.

Because the architecture encompassed non-UNIX- and non disk-based file
systems, the in-core inode that had been the memory-based representation of a
file over the previous 15 years was no longer adequate. A new type, the vnode

6.3. THE SVR4 VFS/VNODE ARCHITECTURE 57

was introduced. This simple structure contained all that was needed by the file
system-independent layer while allowing individual file systems to hold a refer-
ence to a private data structure; in the case of the disk-based file systems this may
be an inode, for NFS, an rnode, and so on.

There is nothing in the vnode that is UNIX specific or even pertains to a local
file system. Of course not all file systems support all UNIX file types. For exam-
ple, the DOS file system does not support symbolic links. However, file systems in
the VFS/vnode architecture are not required to support all vnode operations. For
those operations not supported, the appropriate field was set to a special function
used only for this reason. All operations that can be applied to a file were held in
the vnode operations vector. The set of vnode operations were accessed through
macros.

To provide more coherent access to files through the vnode interface, the im-
plementation provided a number of functions that other parts of the kernel could
invoke. This layer was called the ”Veneer layer”. The Veneer layer avoids du-
plication throughout the rest of the kernel by providing a simple, well-defined
interface that kernel subsystems can use to access file systems.

The Sun VFS/vnode interface was a huge success. Its merger with the File
System Switch and the SunOS virtual memory subsystem provided the basis for
the SVR4 VFS/vnode architecture. There were a large number of other UNIX
vendors who implemented the Sun VFS/vnode architecture. With the exception
of the read and write paths, the different implementations were remarkably similar
to the original Sun VFS/vnode implementation.

6.3 The SVR4 VFS/Vnode Architecture

System V Release 4 was the result of a merge between SVR3 and Sun Mi-
crosystems’ SunOS. One of the goals of both Sun and AT&T was to merge the
Sun VFS/vnode interface with AT&T’s File System Switch.

The new VFS architecture, which has remained largely unchanged for over
15 years, introduced and brought together a number of new ideas, and provided
a clean separation between different subsystems in the kernel. One of the fun-
damental changes was eliminating the tight coupling between the file system and
the VM subsystem which was particularly complicated resulting in a great deal of
difficulty when implementing new file system types.

With the introduction of SVR4, file descriptors were allocated dynamically up
to a fixed but tunable limit. The Virtual File System Switch Table, which contains
an entry for each file system that can reside in the kernel was built dynamically
during kernel compilation. The vnode structure had only some subtle differences.
The vnode operations were still accessed through the use of macros.

58 CHAPTER 6. RELATED WORK

6.3.1 The Directory Name Lookup Cache

Introduced initially in 4.2BSD and then in SVR4, the directory name lookup
cache (DNLC) provided an easy and fast way to get from a path name to a vnode.
For example, in the old inode cache method, parsing the path name /usr/src/server-
s/fs would involve working on each component of the path name one at a time.
The inode cache merely saved going to disk during processing of iget(), not to say
that this is not a significant performance enhancement. However it still involved a
directory scan to locate the appropriate inode number. With the DNLC, a search
may be made by the name component alone. If the entry is cached, the vnode is
returned.

The structures held by the DNLC are hashed to improve lookups. This al-
leviates the need for unnecessary string comparisons. To access an entry in the
DNLC, a hash value is calculated from the filename and parent vnode pointer.
The appropriate entry in the hash array is accessed, through which the cache can
be searched.

6.4 BSD File System Architecture

The first version of BSD UNIX, introduced in 1978, was based on 6th Edi-
tion UNIX. Almost from day one, subtle differences between the two code bases
started to appear. However, with 3BSD, introduced in 1980 and based on 7th
Edition, one can still see very similar code paths between 3BSD and 7th Edition
UNIX.

The three the most significant contributions that the Berkeley team made in the
area of file systems were quotas, the directory name lookup cache (DNLC), and
the introduction of the Berkeley Fast File System (FFS), which would eventually
be renamed UFS (UNIX File System).

Around the time of 4.3BSD, traces of the old UNIX file system had disap-
peared. The file system disk layout was that of early UFS, which was consider-
ably more complex than its predecessor. The in-core file structure still pointed to
an in-core inode but this was changed to include a copy of the disk-based portion
of the UFS inode when the file was opened. The implementation of namei() also
became more complex with the introduction of the name cache (DNLC).

The vnode layer which was introduced by Sun Microsystems is also present
in the BSD kernel since the 4.4BSD version. However, there are many differences
in the implementation. For further information on the BSD Virtual File system
layer please consult the book ”The Design and Implementation of the 4.4BSD
Operating System” [MBKQ96].

6.5. LINUX VIRTUAL FILE SYSTEM SWITCH 59

6.5 Linux Virtual File System Switch

The Linux community named their file system architecture the Virtual File
System Switch, or Linux VFS which is a misnomer because it was substantially
different from the Sun VFS/vnode architecture and the SVR4 VFS architecture
that preceded it. However, as with allPOSIX-compliant, UNIX-like operating
systems, there are many similarities between Linux and other UNIX variants.

This section gives some notes about the changes in the Linux 2.4 and a brief
description about the VFS in Linux 2.6 kernel series. For further details on the
earlier Linux kernels see [BHBK+96], for further details on the 2.6 series consult
the book ”Understanding the Linux Kernel” [BC05].

6.5.1 Linux from the 2.4 Kernel Series

The Linux 2.4 series of kernels substantially changes the way that file systems
are implemented. Some of the more visible changes are:

- File data goes through the Linux page cache rather than through the buffer
cache. There is still a tight relationship between the buffer cache and page
cache, however.

- The dcache is tightly integrated with the other file system-independent struc-
tures such that every open file has an entry in the dcache and each dentry
(which replaces the old dircacheentry structure) is referenced from the file
structure.

- There has been substantial rework of the various operations vectors and the
introduction of a number of functions more akin to the SVR4 page cache
style vnode ps.

- A large rework of the SMP-based locking scheme results in finer grain ker-
nel locks and therefore better SMP performance.

The migration towards the page cache for file I/O actually started prior to
the 2.4 kernel series, with file data being read through the page cache while still
retaining a close relationship with the buffer cache.

6.5.2 Linux 2.6 VFS

The key idea behind the Linux VFS consists of introducing acommon file
modelcapable of representing all supported file systems. This model strictly mir-
rors the file model provided by the traditional Unix file system. This is not sur-
prising, because Linux wants to run its native file system with minimum overhead.

60 CHAPTER 6. RELATED WORK

However, each specific file system implementation must translate its physical or-
ganization into the VFS’ common file model.

One can think of the common file model as object-oriented, where an object is
a software construct that defines both a data structure and the methods that operate
on it.

The common file model’s most important object types:

Superblock : Stores information concerning a mounted file system. For disk-
based file systems, this object usually corresponds to a file system control
block stored on disk.

Inode : Stores general information about a specific file. For disk-based file sys-
tems, this object usually corresponds to a file control block stored on disk.
Each inode object is associated with an inode number, which uniquely iden-
tifies the file within the file system.

File : Stores information about the interaction between an open file and a process.
This information exists only in kernel memory during the period when a
process has the file open.

Dentry : Stores information about the linking of a directory entry (that is, a par-
ticular name of the file) with the corresponding file. Each disk-based file
system stores this information in its own particular way on disk.

6.5.3 The Dentry Cache

Because reading a directory entry from disk and constructing the correspond-
ing dentry object requires considerable time, it makes sense to keep in memory
dentry objects that might be needed later. For instance, people often edit a file
and then compile it, or copy it and then edit the copy. In such cases, the same file
needs to be repeatedly accessed.

To maximize efficiency in handling dentries, Linux uses a dentry cache. The
dentry cache also acts as a controller for the inode cache. The inodes in kernel
memory that are associated with unused dentries are not discarded, because the
dentry cache is still using them. Thus, the inode objects are kept in RAM and can
be quickly referenced by means of the corresponding dentries.

6.6. QNX NEUTRINO RTOS 61

6.6 QNX Neutrino RTOS

QNX is a commercial,real-time operating system (RTOS) with a microkernel
architecture [Ltd06]. Because of its real-time properties it is widely used in em-
bedded devices. QNX was originally created at the University of Waterloo, but
has been commercialized and produced by QNX Software Systems since 1981.

QNX Neutrino supports a variety of file systems. Like most service-providing
processes in the QNX OS, these file systems execute outside the kernel and appli-
cations use them by communicating via messages generated by the shared-library
implementation of the POSIX API. Most of these file systems are so-called re-
source managers. Each file system adopts a portion of the path name space (i.e. a
mountpoint) and provides file system services through the standard POSIX API.
File system resource managers take over a mountpoint and manage the directory
structure below it. They also check the individual path name components for per-
missions and for access authorizations.

According to the website this implementation means that:

- File systems may be started and stopped dynamically.

- Multiple file systems may run concurrently.

- Applications are presented with a single unified path name space and inter-
face, regardless of the configuration and number of underlying file system.

- A file system running on one node is transparently accessible from any other
node.

When a file system resource manager registers a mountpoint, the process man-
ager creates an entry in the internal mount table for that mountpoint and its corre-
sponding server ID.

This table joins multiple file system directories into what users perceive as a
single directory. The process manager handles the mountpoint portion of the path
name, the individual file system resource managers take care of the remaining
parts of the path name.

The file systems are implemented as shared libraries (essentially passive blocks
of code resident in memory), which can be be dynamically loaded to provide file
system interfaces and services.

62 CHAPTER 6. RELATED WORK

Chapter 7

Summary and conclusion

This chapter gives a summary of this master’s thesis. Section 7.1 starts with
an overview of the major contributions of this project by summarizing the results
presented in the previous chapters. Section 7.2 gives a description of open issues
and directions for future research.

7.1 Contributions

The main contribution of this work is that the original FS server was fully
revised in order to split it into a virtual layer and the actual MINIX file system
implementation. The MINIX Virtual File system is built in a distributed,multi-
server manner, which is a substantially different architecture compared to other
UNIX-like solutions.

7.1.1 Virtual File system layer

An abstract layer has been designed and implemented, which is in charge of
controlling the overall mechanism of the VFS by issuing accurate requests for the
appropriate FS servers during the system calls. It is also in charge of maintain-
ing abstract data structures that are independent from the underlying file system
drivers and are playing important roles within the Virtual File system’s function-
ality. In order to achieve this several data structures and functions operating on
them had to be designed and added to the former FS server. The communication
with underlying file system drivers also had to be implemented.

63

64 CHAPTER 7. SUMMARY AND CONCLUSION

7.1.2 MINIX file system driver

The MINIX file system implementation had to be separated from the original
FS code and some part of it had to be rewritten so that it would be capable of
cooperating with the virtual layer. Modifications relating to the inode handling
and the path name lookup had to be realized. The communication according to
the VFS/FS interface also had to be implemented.

7.1.3 Other contributions

As part of this work the mount system call got modified so that it issues a
request for the reincarnation server to execute a new FS binary. The functionality
of reporting back a newly executed server’s kernel endpoint number had to be
added to the reincarnation server. One instance of the MINIX FS server was
included into the boot image and into the RAM disk.

As a reference document the VFS/FS interface is detailed in this thesis. A
developer’s guide is also provided by an example binary tree file system in order
to show how to realize and attach a new file system implementation to the MINIX
VFS.

7.2 Future work

7.2.1 Buffer cache as shared library

FS processes have their own buffer cache. Very often a process that handles a
special partition is idle. Since the buffer cache is allocated by static memory even
in an idle state the FS process holds the memory and prevents it to be used by other
processes. This phenomenon also means that the distribution of the overall buffer
cache memory is not proportional by the needs of the single partitions (again, one
FS’ buffer cache can not be used by an other FS). For this reason a shared library
buffer cache could be implemented and linked to each FS binary so that the buffer
cache could adapt for the needs.

7.2.2 Asynchronous VFS/FS interface

Currently the VFS/FS interface supports only synchronous interaction. It has
its advantage, namely it can be easily implemented and it is also easy to use.Al-
though, many cases would require the opportunity of asynchronous interaction.
For instance, a network based file system. An asynchronous interface could be
implemented with a similar – notification based – technique, how the VFS com-
municates with character special files.

7.2. FUTURE WORK 65

7.2.3 Framework for BSD file system implementations

The VFS layer in monolothic UNIX kernels – like the BSD – performsfunc-
tionalities that are entirely moved to the FS processes in the MINIX VFS case.
For instance, the path name lookup in monolothic kernels is performed on the
VFS layer and low-level lookup functions provide access for finding a component
in a directory. This functionality is common in each FS process in the MINIX VFS
system. Therefore a general framework could be written that handles the lookup
and calls the low-level file system specific functions. This layer could behave as
an interface between the MINIX VFS and the actual file system implementations
in a monolothic – for example the BSD – kernel. The low-level I/O functions that
are called by the file system implementation code could also be provided by the
framework and could be translated to MINIX I/O messages in order to interact
with the driver processes.

66 CHAPTER 7. SUMMARY AND CONCLUSION

Bibliography

[BC05] Daniel P. Bovet and Marco Cesati.Understanding the Linux Kernel.
O’Reilly Publishing, 3rd edition, 2005. ISBN:0-596-00565-2.

[BHBK+96] M. Beck, M. Dzaizka H. Bohme, U. Kunitz, R. Magnus, and D. Ver-
worner. Linux Kernel Internals. Addison-Wesley, 1996. ISBN:
0-201-87741-4.

[HBT06] Jorrit N. Herder, Herbert Bos, and Andrew S. Tanenbaum. A
lightweight method for building reliable operating systems despite
unreliable device drivers. Technical Report IR-CS-018, Vrije Uni-
versiteit, Amsterdam, 2006.http://www.cs.vu.nl/˜jnherder/
ir-cs-018.pdf .

[Kle86] S. Kleiman. Vnodes: An architecture for multiple file system types
in sun unix.USENIX Conference, pages 238–247, 1986.

[Ltd06] QNX Software Systems Ltd.QNX Documentation Library. QNX
Website, 2006.http://www.qnx.com .

[MBKQ96] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and
John S. Quarterman.The Design and Implementation of the 4.4BSD
Operating System. Addison-Wesley, 1996. ISBN: 0-201-54979-4.

[Pat03] Steve D. Pate.UNIX Filesystems: Evolution, Design and Implemen-
tation. Wiley Publishing, 2003. ISBN: 0-471-16483-6.

[Tre04] J. Treadwell. Open grid services architecture glossary of terms.
2004. http://www.ggf.org/Meetings/GGF12/Documents/
draft-ggf-ogsa-glossary.pdf .

67

http://www.cs.vu.nl/~jnherder/ir-cs-018.pdf
http://www.cs.vu.nl/~jnherder/ir-cs-018.pdf
http://www.qnx.com
http://www.ggf.org/Meetings/GGF12/Documents/draft-ggf-ogsa-glossary.pdf
http://www.ggf.org/Meetings/GGF12/Documents/draft-ggf-ogsa-glossary.pdf

68 BIBLIOGRAPHY

Appendix A

VFS/FS interface

This Appendix covers the details of the VFS/FS interface. It is organized
according to the request codes that the VFS sends to an underlying file system
implementation, thus the interface is shown from the file system implementation
point of view. The fields of the input and output messages are given and the
desired behavior of the file system implementation is described.

The possible requests that the VFS can send to the FS process is declared in the
”include/minix/vfsif.h” header file. This file also contains the macro declarations
for the mappings used in the fields of the interface messages.

The Appendix is structured as follows. First an overall view of the request
message types is given in Table A. Then, each request type is considered one by
one. Only the additional part of the message type is shown. The mtype field of
the message is determined by the request code. (See Section 3.2.1 for avoiding
confusion.) The exact input and output messages are shown in tables with three
columns. The type, the mapping macro declaration and a short description is
given for each field of the message. The operation that the FS server is supposed
to perform is also given.

69

70 APPENDIX A. VFS/FS INTERFACE

The following request types are used during the interaction between the VFS
and the actual file system implementations:1

Request type Description
REQ GETNODE Increase node’s counter
REQ PUTNODE Decrease node’s counter
REQ OPEN Open file
REQ PIPE Create pipe
REQ READ Read file
REQ WRITE Write file
REQ CLONE OPCL Create temporary character special file
REQ TRUNC Truncate a file
REQ FTRUNC Truncate an already opened file
REQ CHOWN Change owner/group
REQ CHMOD Change mode
REQ ACCESS Check permissions
REQ MKNOD Create a special file
REQ MKDIR Create a directory
REQ INHIBREAD Inhibit read ahead
REQ STAT Get file’s statistics
REQ FSTAT Get an already opened file’s statistics
REQ UNLINK Unlink file
REQ RMDIR Remove directory
REQ UTIME Set file time
REQ FSTATFS Get file system statistics
REQ GETDIR Increase counter for directory file
REQ LINK Create hard link
REQ SLINK Create soft link
REQ RDLINK Read soft link
REQ RENAME Rename file
REQ MOUNTPOINT Register mount point
REQ READSUPER Read superblock and root node
REQ UNMOUNT Unmount partition
REQ SYNC Sync buffer cache
REQ LOOKUP Lookup path name
REQ STIME Set time
REQ BREAD Read block spec file
REQ BWRITE Write block spec file

Table A.1: VFS/FS interface request types.

1REQ STAT and REQFSTAT, REQTRUNC and REQFTRUNC are different from the inode
handling point of view.

A.1. REQUEST, OPERATION, RESPONSE 71

A.1 Request, operation, response

This section details the interface messages one by one. Each request isde-
scribed as the request message, the operation that the FS is supposed to perform
and the response message. In case the response message is not detailed the FS
server is supposed to transfer OK or the appropriate error code in the mtype of
the response message.

A.1.1 REQ GETNODE

Request message fields:

Type Field Description
int REQ INODE NR Inode number

Desired FS behavior:

The FS server finds the inode in the inode table and increases the counter. If
the inode is not in the table it has to be loaded. It fills the response message’s
fields and reports OK. In case of the inode can not be found or loaded EINVAL
has to be returned.

Response message fields:

Type Field Description
int RES INODE NR Inode number
short RES MODE File type, mode, etc.
int RES FILE SIZE File size
int RES DEV Device number for special files

A.1.2 REQ PUTNODE

Request message fields:

Type Field Description
int REQ INODE NR Inode number
short REQ INODE INDEX Index in the inode table

72 APPENDIX A. VFS/FS INTERFACE

Desired FS behavior:

The FS server finds the inode in the inode table and decreases the counter. In
case of the inode can not be found EINVAL has to be returned.

A.1.3 REQ OPEN

Request message fields:

Type Field Description
int REQ INODE NR Inode number
short REQ UID User ID
char REQ GID Group ID
int REQ FLAGS Open flags
short REQ MODE Open mode
char* REQ PATH Last components address (in the VFS)
short REQ PATH LEN Last component’s length

Desired FS behavior:

If the creat flag is set the FS server transfers the last component of the path
name and tries to create the file, otherwise the FS server finds the inode in the
inode table and increases the counter. If the inode is not in the table it has to
be loaded. The FS server checks the permission for the specified mode. The
appropriate error code has to transfered back in case of error. Otherwise, the FS
fills the response message’s fields and reports OK.

Response message fields:

Type Field Description
int RES INODE NR Inode number
short RES MODE File type, mode, etc.
int RES FILE SIZE File size
int RES DEV Device number (for special files)
int RES INODE INDEX Index in inode table
short RES UID Owner’s user ID
char RES GID Owner’s group ID
int RES CTIME Time of inode’s change (for regular files)

A.1. REQUEST, OPERATION, RESPONSE 73

A.1.4 REQ PIPE

Request message fields:

Type Field Description
short REQ UID User ID
char REQ GID Group ID

Desired FS behavior:

The FS server allocates an inode, sets the usage counter to two and the file
type to I PIPE. It fills the response message’s fields and reports OK. In case of the
inode can not be allocated the appropriate error code has to be transfered back.

Response message fields:

Type Field Description
int RES INODE NR Inode number
short RES MODE File type, mode, etc.
int RES FILE SIZE File size
int RES INODE INDEX Index in inode table

A.1.5 REQ READ

Request message fields:

Type Field Description
int REQ FD INODE NR Inode number
short REQ FD INODE INDEX Index in the inode table
int REQ FD WHO E User process’ kernel endpoint
int REQ FD SEG Segment
int REQ FD POS Position
int REQ FD NBYTES Number of bytes to be transferred
char* REQ FD USER ADDR User’s buffer address

74 APPENDIX A. VFS/FS INTERFACE

Desired FS behavior:

The FS server transfers at most REQFD NBYTES bytes from the specified
position of the specified file to the user buffer. It reports success and the number
of bytes transferred or sends the appropriate error code.

Response message fields:

Type Field Description
int RES FD POS New position
int RES FD CUM IO Bytes transferred
int RES FD SIZE File size

A.1.6 REQ WRITE

Request message fields:

Type Field Description
int REQ FD INODE NR Inode number
short REQ FD INODE INDEX Index in the inode table
int REQ FD WHO E User process’ kernel endpoint
int REQ FD SEG Segment
int REQ FD POS Position
int REQ FD NBYTES Number of bytes to be transferred
char* REQ FD USER ADDR User’s buffer address

Desired FS behavior:

The FS server transfers at most REQFD NBYTES bytes from the user buffer
to the user specified position of the specified file. It reports success, the number
of bytes transferred and the new file size or sends the appropriate error code.

Response message fields:

Type Field Description
int RES FD POS New position
int RES FD CUM IO Bytes transferred
int RES FD SIZE File size

A.1. REQUEST, OPERATION, RESPONSE 75

A.1.7 REQ CLONE OPCL

Request message fields:

Type Field Description
int REQ DEV Device number

Desired FS behavior:

The FS server allocates an inode and sets the mode to character special file,
device number is specified in the request message. Since interaction withcharac-
ter special files are performed on the VFS layer, the real purpose of this operation
is to provide a valid inode which can be fstated. The FS server fills the response
message’s fields and reports OK. Otherwise the appropriate error value has to be
transferred back.

Response message fields:

Type Field Description
int RES INODE NR Inode number
short RES MODE File type, mode, etc.
int RES FILE SIZE File size
int RES DEV Device number for special files

A.1.8 REQ TRUNC

Request message fields:

Type Field Description
int REQ INODE NR Inode number
short REQ UID User ID
char REQ GID Group ID
int REQ LENGTH New file length

76 APPENDIX A. VFS/FS INTERFACE

Desired FS behavior:

The FS server loads the inode and changes the file size. Note that it is possible
that the inode is not in use, in this case the FS server has to load the inode from the
disk. It reports success or the appropriate error value has to be transferred back.

A.1.9 REQ FTRUNC

Request message fields:

Type Field Description
int REQ INODE NR Inode number
short REQ UID User ID
char REQ GID Group ID
int REQ FD START Start position of freeing
int REQ FD END End position of freeing

Desired FS behavior:

This request is also used by the fcnt() for freeing a section of a file. The FS
server finds the inode and frees the file section or changes the file size. Zero in
REQ FD END indicates the simple truncate, where the new file size is defined
in the REQFD START field of the message. Note that it is not possible that the
inode is not in use, in this case the FS server has to report error, otherwise it reports
success.

A.1. REQUEST, OPERATION, RESPONSE 77

A.1.10 REQ CHOWN

Request message fields:

Type Field Description
int REQ INODE NR Inode number
short REQ UID User ID
char REQ GID Group ID
short REQ NEW UID New user ID
char REQ NEW GID New group ID

Desired FS behavior:

The FS server has load the inode and check whether the caller has thepermis-
sion to perform the change. If the caller is permitted then the FS assigns the new
values. It reports success or the appropriate error value.

A.1.11 REQ CHMOD

Request message fields:

Type Field Description
int REQ INODE NR Inode number
short REQ UID User ID
char REQ GID Group ID
short REQ MODE New mode

Desired FS behavior:

The FS server loads the inode and checks whether the caller has the permission
to perform the change. If the caller is permitted then the FS assigns the new value.
It reports success or the appropriate error value.

78 APPENDIX A. VFS/FS INTERFACE

A.1.12 REQ ACCESS

Request message fields:

Type Field Description
int REQ INODE NR Inode number
short REQ UID User ID
char REQ GID Group ID
short REQ MODE New mode

Desired FS behavior:

The FS server loads the inode and checks whether the caller has the permission
specified in the REQMODE field of the message. It reports OK or the appropriate
error value.

A.1.13 REQ MKNOD

Request message fields:

Type Field Description
int REQ INODE NR Inode number of the parent directory
short REQ UID User ID
char REQ GID Group ID
short REQ MODE Specified mode
int REQ DEV Device number
char* REQ PATH Last component’s address (in the VFS)
short REQ PATH LEN Last component’s length

Desired FS behavior:

The FS server is supposed to allocate a new inode and set the mode and
the device number according to the request message, create a directory entry in
the directory specified by the REQINODE NR with the name specified by the
REQ PATH. It reports success or the appropriate error value.

A.1. REQUEST, OPERATION, RESPONSE 79

A.1.14 REQ MKDIR

Request message fields:

Type Field Description
int REQ INODE NR Inode number of the parent directory
short REQ UID User ID
char REQ GID Group ID
char* REQ PATH Last component’s address (in the VFS)
short REQ PATH LEN Last component’s length

Desired FS behavior:

The FS server is supposed to allocate a new inode, create a directory entry in
the directory specified by the REQINODE NR with the name specified by the
REQ PATH. It has to create the ”.” and ”..” entries in the directory just created. It
reports success or the appropriate error value.

A.1.15 REQ INHIBREAD

Request message fields:

Type Field Description
int REQ INODE NR Inode number of the parent directory

Desired FS behavior:

The FS finds the inode in the inode table and turns the readahead feature on
the given inode off. It reports success or the appropriate error value.

A.1.16 REQ STAT

Request message fields:

Type Field Description
int REQ INODE NR Inode number
int REQ WHO E User process’ kernel endpoint
char* REQ USER ADDR User’s buffer address

80 APPENDIX A. VFS/FS INTERFACE

Desired FS behavior:

The FS server loads the inode specified by the REQINODE NR field of the
message, fills in a stat structure and transfers back to the caller process to the
address specified by the REQUSERADDR. Note that it is possible that the FS
server has to load the inode details from the disk, the inode does not have to be
necessarily in the inode table. It report success or the appropriate error value.

A.1.17 REQ FSTAT

Request message fields:

Type Field Description
int REQ FD INODE NR Inode number
int REQ FD WHO E User process’ kernel endpoint
int REQ FD POS Current position in the pipe (if a pipe is fstated)
char* REQ FD USER ADDR User’s buffer address

Desired FS behavior:

The FS server finds the inode in the inode table, fills in a stat structure and
transfers back to the caller process to the address specified by the REQFD USERADDR
field of the message. Note that during an fstat request the specified inode has to
be in use and therefore in the inode table, in case if it is not there it is an error. It
report success or the appropriate error value.

A.1.18 REQ UNLINK

Request message fields:

Type Field Description
int REQ INODE NR Inode number of the parent directory
short REQ UID User ID
char REQ GID Group ID
char* REQ PATH Last component’s address (in the VFS)
short REQ PATH LEN Last component’s length

A.1. REQUEST, OPERATION, RESPONSE 81

Desired FS behavior:

The FS server is supposed to check whether the caller has the permission to
perform the unlink. If it has the FS deletes the directory entry specified by the
REQ PATH field of the message from the directory specified by the REQINODE NR.
The link counter of the file’s inode has to be decreased. The FS reports success or
the appropriate error value.

A.1.19 REQ RMDIR

Request message fields:

Type Field Description
int REQ INODE NR Inode number of the parent directory
short REQ UID User ID
char REQ GID Group ID
char* REQ PATH Last component’s address (in the VFS)
short REQ PATH LEN Last component’s length

Desired FS behavior:

The FS server is supposed to check whether the caller has the permission to
perform the rmdir. If it has the FS checks for emptiness and deletes the directory
specified by the REQPATH field of the message from the directory specified by
the REQINODE NR. Note that the ”.” and ”..” entries from the directory have to
be erased too. The FS reports success or the appropriate error value.

A.1.20 REQ UTIME

Request message fields:

Type Field Description
int REQ INODE NR Inode number
short REQ UID User ID
char REQ GID Group ID
int REQ ACTIME Access time
int REQ MODTIME Modification time

82 APPENDIX A. VFS/FS INTERFACE

Desired FS behavior:

The FS server check the permission whether the caller is allowed to change
the times or not. It changes the inode’s time values if the caller is permitted. It
report success or the appropriate error value.

A.1.21 REQ FSTATS

Request message fields:

Type Field Description
int REQ FD INODE NR Inode number
int REQ FD WHO E User process’ kernel endpoint
int REQ FD POS Current position in the pipe (if a pipe is fstated)
char* REQ FD USER ADDR User’s buffer address

Desired FS behavior:

The FS server finds the inode in the inode table, fills in a stat structure and
transfers back to the caller process to the address specified by the REQFD USERADDR
field of the message. Note that during an fstats request the specified inode has to
be in use and therefore in the inode table, in case of it is not there it is an error. It
report success or the appropriate error value.

A.1.22 REQ GETDIR

Request message fields:

Type Field Description
int REQ INODE NR Inode number
short REQ UID User ID
char REQ GID Group ID

Desired FS behavior:

The FS server loads the inode and checks whether it is a directory and if the
caller has the execution permission (i.e. it can browse the directory). If so, the
usage counter is to be increased and inode’s details is transferred back. Otherwise
the appropriate error value has to be transferred back. Note that this request is

A.1. REQUEST, OPERATION, RESPONSE 83

different from the REQGETNODE, since the permissions and the file type has to
be checked here.

Response message fields:

Type Field Description
int RES INODE NR Inode number
short RES MODE File type, mode, etc.
int RES FILE SIZE File size

A.1.23 REQ LINK

Request message fields:

Type Field Description
short REQ UID User ID
char REQ GID Group ID
int REQ LINKED FILE File to be linked
int REQ LINK PARENT Parent directory of the link
char* REQ PATH Last component’s address (in the VFS)
short REQ PATH LEN Last component’s length

Desired FS behavior:

The FS server creates a new directory entry in the directory specified with
REQ LINK PARENT with the name contained in REQPATH. The inode of the
entry is specified in REQLINKED FILE. The link counter of the inode has to be
increased. FS reports success or the appropriate error value.

84 APPENDIX A. VFS/FS INTERFACE

A.1.24 REQ SLINK

Request message fields:

Type Field Description
int REQ INODE NR Parent directory of the link
short REQ UID User ID
char REQ GID Group ID
char* REQ PATH Last component’s address (in the VFS)
short REQ PATH LEN Last component’s length
int REQ WHO E User process’ kernel endpoint
char* REQ USER ADDR Symbolic link path
short REQ SLENGTH Length of the path

Desired FS behavior:

The FS server is supposed to allocate an inode, create a new directory entry
with the name contained in REQPATH in the directory specified by REQINODE NR
and transfer the path name from the user address REQUSERADDR into the file.
The type of the file has to be symlink. FS reports success or the appropriate error
value.

A.1.25 REQ RDLINK

Request message fields:

Type Field Description
int REQ INODE NR Parent directory of the link
short REQ UID User ID
char REQ GID Group ID
int REQ WHO E User process’ kernel endpoint
char* REQ USER ADDR Symbolic link path
short REQ SLENGTH Length of the path

Desired FS behavior:

The FS server loads the link’s inode and transfers the link content to the user
address specified by the message. At most REQSLENGTH number of bytes is
allowed to be transfered. FS reports success or the appropriate error value.

A.1. REQUEST, OPERATION, RESPONSE 85

A.1.26 REQ RENAME

Request message fields:

Type Field Description
int REQ OLD DIR Inode number of the old parent directory
int REQ NEW DIR Inode number of the new parent directory
short REQ UID User ID
char REQ GID Group ID
char* REQ PATH Old name’s address (in the VFS)
short REQ PATH LEN Old name’s length
char* REQ USER ADDR New name’s address (in the VFS)
short REQ SLENGTH New name’s length

Desired FS behavior:

The FS server is supposed to remove the directory entry from the REQOLD DIR
directory with the name specified by the REQPATH, the old file name. A new
directory entry has to be created in the REQNEW DIR directory with the name
specified by the REQUSERADDR and associated to the same inode that was
used by the old name. Depending on the underlying file system type, some sanity
check have to be performed:

- Parent directories must be writable, searchable.

- The old inode must not be a superdirectory of the new parent directory.

FS reports success or the appropriate error value.

A.1.27 REQ MOUNTPOINT

Request message fields:

Type Field Description
int REQ INODE NR Inode number
short REQ UID User ID
char REQ GID Group ID

86 APPENDIX A. VFS/FS INTERFACE

Desired FS behavior:

The FS process loads the inode and checks whether the inode is in use or not.
Only directory inodes that are not in use are allowed to be a mountpoint. The FS
registers that this inode is a mount point and sends back it’s details.

Response message fields:

Type Field Description
int RES INODE NR Inode number
short RES MODE File type, mode, etc.
int RES FILE SIZE File size

A.1.28 REQ READSUPER

Request message fields:

Type Field Description
char REQ READONLY Mount read-only?
int REQ BOOTIME System boottime timestamp
int REQ DRIVER E Device driver process’ endpoint (on which the file

system lives)
int REQ DEV Device number
char* REQ SLINK STORAGE Buffer address in the VFS address space where

symbolic link’s content can be copied

Desired FS behavior:

The FS process reads and checks the superblock of the partition. It loads
the root inode and fills in the response message fields. It reports success or the
appropriate error value.

Response message fields:

Type Field Description
int RES INODE NR Inode number
short RES MODE File type, mode, etc.
int RES FILE SIZE File size

A.1. REQUEST, OPERATION, RESPONSE 87

A.1.29 REQ UNMOUNT

Desired FS behavior:

The FS process checks the inode table and counts the in use inodes. If there
is only one – the root inode, which is hold by the mount –, the unmount can be
performed. The FS process reports success or the appropriate error value.

A.1.30 REQ SYNC

Desired FS behavior:

The FS process writes the whole buffer cache to the disk. This operation can
fail only in one case, namely if the driver process dies. In this case the VFS will
reissue the request after the new driver endpoint has mapped. The FS reports
success.

A.1.31 REQ LOOKUP

Request message fields:

Type Field Description
int REQ INODE NR Inode number of the starting directory
int REQ CHROOT NR Inode number of the process’ root directory
int REQ FLAGS Lookup action flag
short REQ UID User ID
char REQ GID Group ID
char* REQ PATH Path string’s address (in the VFS)
short REQ PATH LEN Path name’s length
char* REQ USER ADDR Address where the last component can be stored

(in the VFS)
char REQ SYMLOOP Symbolic link loop counter

Desired FS behavior:

The FS process is supposed to process the path, translate it to an inode object
and transfer back the inode details. Although during the lookup many things can
happen:

- Encountering a mount point: the FS process is supposed to send back
the inode number of the mount point. The response message also contains
the number of characters that were processed and the current value of the

88 APPENDIX A. VFS/FS INTERFACE

symbolic link loop counter. The mtype field of the message has theEEN-
TER MOUNT value.

- Leaving the partition: the FS process is supposed to send back the number
of characters that were processed and the current value of the symbolic link
loop counter. The mtype field of the message has the ELEAVEMOUNT
value.

- Symbolic link with absolute path: the FS process is supposed to transfer
back in the VFS process the new path name to the address that was specified
by the REQSLINK STORAGE field of the readsuper request and the new
value of the symbolic link loop counter. The mtype field of the message
has the ESYMLINK value.

In case the FS server encounters a mountpoint the following message is sent,
(note that the message type is EENTERMOUNT).

Response message fields:

Type Field Description
int RES INODE NR Inode number
int RES OFFSET Number of characters processed
char RES SYMLOOP Number of times symbolic links were started to

be processed

In case of a successful lookup the FS process sends back the details of the
inode. Otherwise the appropriate error value has to be transferred back.

Response message fields:

Type Field Description
int RES INODE NR Inode number
short RES MODE File type, mode, etc.
int RES FILE SIZE File size
int RES DEV Device number for special files

A.1. REQUEST, OPERATION, RESPONSE 89

A.1.32 REQ STIME

Request message fields:

Type Field Description
int REQ BOOTTIME New boottime timestamp

Desired FS behavior:

The FS server stores the boottime value and uses is as a base reference in the
clock time() function.

A.1.33 REQ BREAD

Request message fields:

Type Field Description
int REQ FD BDEV Device number of the block spec file
short REQ FD BLOCK SIZE Block size
int REQ FD WHO E User process’ kernel endpoint
int REQ FD POS Position
int REQ FD NBYTES Number of bytes to be transferred
char* REQ FD USER ADDR User’s buffer address

Desired FS behavior:

The FS server transfers at most REQFD NBYTES bytes from the specified
position of the specified device to the user buffer. It reports success and thenum-
ber of bytes transferred or sends the appropriate error code.

Response message fields:

Type Field Description
int RES FD POS New position
int RES FD CUM IO Bytes transferred

90 APPENDIX A. VFS/FS INTERFACE

A.1.34 REQ BWRITE

Request message fields:

Type Field Description
int REQ FD BDEV Device number of the block spec file
short REQ FD BLOCK SIZE Block size
int REQ FD WHO E User process’ kernel endpoint
int REQ FD POS Position
int REQ FD NBYTES Number of bytes to be transferred
char* REQ FD USER ADDR User’s buffer address

Desired FS behavior:

The FS server transfers at most REQFD NBYTES bytes to the specifiedposi-
tion of the specified device from the user buffer. It reports success and the number
of bytes transferred or sends the appropriate error code.

Response message fields:

Type Field Description
int RES FD POS New position
int RES FD CUM IO Bytes transferred

Appendix B

How to implement a new file
system...

This Appendix aims to provide a tutorial how to write a file systemimplemen-
tation. Note that main goal is to show how to structure the code in order to easily
cooperate with the VFS through the interface described above. Therefore, we will
not provide a real on-disk file system driver here.1 As an example, a binary tree
file system is given.

B.1 The Binary Tree file system

The binary tree file system is a read-only file system that consists only of
directories. Each directory has two subdirectories with the names ”0” and ”1”2.
The root directories inode has the value 1. The ”0” subdirectory of the directory
with the inode numberN has the inode value 2∗N while the subdirectory ”1”
has the inode number 2∗N+1. The file system can be mounted and unmounted.
The directories can be traversed, opened and read. Each directory can be stated,
fstated, lstated and accessed. Thus, the implementation of the operations that have
been just enumerated will be described.

B.2 Main program of the file system server

Listing B.1 shows the code of the file server’s main program.

1For a real file system implementation please consult the MINIX file system driver source
under”/usr/src/servers/mfs”.

2Actually four, because each directory has to contain the ”.” and ”..” subdirectories.

91

92 APPENDIX B. HOW TO IMPLEMENT A NEW FILE SYSTEM...

Listing B.1: Main program of the file server

1 PUBLIC i n t main (vo id)
2 {
3 i n t who e ; /∗ c a l l e r ∗ /
4 i n t e r r o r ;
5 message min , m out ;
6
7 /∗ I n i t i a l i z e t h e se rve r , t hen go t o work .∗ /
8 i n i t s e r v e r () ;
9

10 m in . m type = FSREADY ;
11 i f (s e n d r e c (VFSPROCNR, & m in) ! = OK) {
12 re turn −1;
13 }
14
15 /∗ Check f o r p roper r e p l y ∗ /
16 i f (m in . m type ! = REQREADSUPER) {
17 re turn −1;
18 }
19 e l s e {
20 /∗ Read s u p e r b l o c k and r o o t inode∗ /
21 m out . m type = f s r e a d s u p e r (&min , & m out) ;
22 r e p l y (VFSPROCNR, & m out) ;
23 i f (m out . m type ! = OK) re turn −1;
24 }
25
26 f o r (; ;) {
27 /∗ Wait f o r r e q u e s t message .∗ /
28 ge t work (&m in) ;
29
30 who e = m in . m source ;
31 r e q n r = m in . m type ;
32
33 i f (r e q n r < 0 | | r e q n r >= NREQS) {
34 e r r o r = EINVAL ;
35 }
36 e l s e {
37 /∗ Process r e q u e s t∗ /
38 e r r o r = (∗ f s c a l l v e c [r e q n r]) (& m in , & m out) ;
39 }
40
41 /∗ Send r e p l y ∗ /
42 m out . m type = e r r o r ;
43 r e p l y (who e , & m out) ;
44 }
45 }

The main program of a file system server contains the following steps:

B.3. INODE HANDLING 93

- Initialization of the server program.

- Login to the VFS.

- Main (infinite) loop that receives a request, performs the operation and
sends the reply.

Usually file servers have similar structure with this. Minor differences are
possible like handling the read ahead feature, which takes place after processing
the current request.

B.3 Inode handling

The binary tree file system works as an inode based file system. Inodes are
representing files, although in this particular case there are only directories. The
fields of the inode structure are shown in listing B.2.

Listing B.2: The inode table
1 s t r u c t i node {
2 mode t i mode ; /∗ f i l e type , p r o t e c t i o n , e t c .∗ /
3 d e v t i d e v ; /∗ which d e v i c e i s t h e inode on∗ /
4 o f f t i s i z e ; /∗ c u r r e n t f i l e s i z e i n b y t e s∗ /
5 i n t i c o u n t ; /∗ usage c o u n t e r o f t h i s inode∗ /
6 i n o t i num ; /∗ i node number ∗ /
7 i n t i n l i n k s ; /∗ number o f l i n k s r e f e r t h i s inode∗ /
8 } i node [NRINODES] ;

The server stores the in-use inodes in a static array. For managing them, a
couple of functions have to be introduced. There are three important ones, loading,
finding and dropping the inode. The inode loading functions first checks the inode
table whether the inode to be loaded is already in use. It increases its counter, or
loads the values and assigns the value one to the usage counter in case if it was
not in use. The function:

Listing B.3: The inode loader function
1 PUBLIC s t r u c t i node ∗ g e t i n o d e (dev , numb)
2 d e v t dev ; /∗ d e v i c e on which inode r e s i d e s∗ /
3 i n t numb ; /∗ i node number ∗ /
4 {
5 r e g i s t e r s t r u c t i node ∗ r i p , ∗ xp ;
6
7 /∗ Search t h e inode t a b l e bo th f o r (dev , numb) and a f r e e s l o t .∗ /
8 xp = NIL INODE ;
9 f o r (r i p = & inode [0] ; r i p < & inode [NR INODES] ; r i p ++) {

10 /∗ on l y check used s l o t s f o r (dev , numb)∗ /

94 APPENDIX B. HOW TO IMPLEMENT A NEW FILE SYSTEM...

11 i f (r i p−> i c o u n t > 0) {
12 i f (r i p−>i d e v = = dev && r i p−>i num = = numb) {
13 /∗ Th is i s t h e inode t h a t we are l o o k i n g f o r .∗ /
14 r i p−> i c o u n t ++;
15 re turn (r i p) ; /∗ (dev , numb) found∗ /
16 }
17 }
18 e l s e {
19 xp = r i p ; /∗ remember t h i s f r e e s l o t f o r l a t e r∗ /
20 }
21 }
22
23 /∗ Inode we want i s no t c u r r e n t l y i n use .
24 ∗ Did we f i n d a f r e e s l o t ?∗ /
25 i f (xp = = NIL INODE) { /∗ i node t a b l e c o m p l e t e l y f u l l ∗ /
26 e r r c o d e = ENFILE ;
27 re turn (NIL INODE) ;
28 }
29
30 /∗ A f r e e inode s l o t has been l o c a t e d .
31 ∗ Load t h e inode i n t o i t . ∗ /
32 xp−>i d e v = dev ;
33 xp−>i num = numb ;
34 xp−>i mode = I DIRECTORY | ALL MODES;
35 xp−> i s i z e = 4 ∗ s i z e o f(s t r u c t f l d i r e c t) ;
36 xp−> i c o u n t = 1 ;
37 xp−> i n l i n k s = 3 ;
38 re turn (xp) ;
39 }

The binary tree file system’s inodes are all directories and accessible for every-
one. Properties are given between the 32nd and the 37th lines. Each file contains
exactly four flexible directory entries, therefore the size of them is 4 times the
structure size. Note that this values would be filled in from the disk in a real file
system implementation.

In many cases the file system server has to find an in-use inode. For this
purpose an inode finder function is defined:

Listing B.4: The inode finder function
1 PUBLIC s t r u c t i node ∗ f i n d i n o d e (dev , numb)
2 d e v t dev ; /∗ d e v i c e on which inode r e s i d e s∗ /
3 i n t numb ; /∗ i node number ∗ /
4 {
5 s t r u c t i node ∗ r i p ;
6
7 f o r (r i p = & inode [0] ; r i p < & inode [NR INODES] ; r i p ++) {
8 i f (r i p−> i c o u n t > 0) {
9 /∗ on l y check used s l o t s f o r (dev , numb)∗ /

B.3. INODE HANDLING 95

10 i f (r i p−>i d e v = = dev && r i p−>i num = = numb) {
11 /∗ Th i s i s t h e inode t h a t we are l o o k i n g f o r .∗ /
12 re turn (r i p) ; /∗ (dev , numb) found∗ /
13 }
14 }
15 }
16
17 re turn NIL INODE ;
18 }

Note that this function does not modify the usage counter of the inode. For
dropping an inode (e.g. decreasing the usage counter) the following function is
defined:

Listing B.5: The inode dropper function
1 PUBLIC vo id p u t i n o d e (r i p)
2 r e g i s t e r s t r u c t i node ∗ r i p /∗ p o i n t e r t o inode t o be r e l e a s e d∗ /
3 {
4 /∗ ch ec k i ng here i s e a s i e r than i n c a l l e r∗ /
5 i f (r i p = = NIL INODE) re turn ;
6
7 −−r i p−> i c o u n t ;
8 }

This routine is a simplified form of inode loader for the case where the inode
pointer is already known. It increases the usage counter:

Listing B.6: The inode duplicator function
1 PUBLIC vo id dup inode (r i p)
2 r e g i s t e r s t r u c t i node ∗ r i p /∗ Inode t o be d u p l i c a t e d∗ /
3 {
4 /∗ I n c r e a s e usage c o u n t e r∗ /
5 ++ r i p−> i c o u n t ;
6 }

Inode handling routines will be used in many request operations. Although, in
a real file system implementation these functions can be more complicated they
can follow the same structure as it was shown.

96 APPENDIX B. HOW TO IMPLEMENT A NEW FILE SYSTEM...

B.4 Request operations

This section describes the implementation of the supported requests.

B.4.1 Readsuper

First the mount request is shown:

Listing B.7: Reading superblock and root inode.
1 PUBLIC i n t f s r e a d s u p e r (message∗ m in , message∗ m out)
2 {
3 s t r u c t i node ∗ r o o t i p ;
4
5 /∗ Get i n p u t message v a l u e s∗ /
6 f s d e v = m in−>REQ DEV;
7 f s d r i v e r e = m in−>REQ DRIVER E ;
8 boo t t im e = min−>REQ BOOTTIME;
9 v f s s l i n k s t o r a g e = min−>REQ SLINK STORAGE ;

10
11 /∗ Get t h e r o o t inode o f t h e mounted f i l e sys tem .∗ /
12 r o o t i p = NIL INODE ;
13 i f ((r o o t i p = g e t i n o d e (f s dev , ROOTINODE)) = = NIL INODE)
14 re turn EINVAL ;
15
16 /∗ Root inode p r o p e r t i e s∗ /
17 m out−>RES INODE NR = r o o t i p −>i num ;
18 m out−>RESMODE = r o o t i p −>i mode ;
19 m out−>RES FILE SIZE = r o o t i p −> i s i z e ;
20
21 /∗ P a r t i t i o n p r o p e r t i e s ∗ /
22 m out−>RESMAXSIZE = 1 0 2 4 ;
23 m out−>RES BLOCKSIZE = 0 ;
24
25 re turn OK;
26 }

The binary tree file system does not have a superblock. Therefore nosu-
perblock reading operation is present, although in a real file system implementa-
tion the reading of the superblock takes place here. It is worth mentioning that the
FS server gets the driver process endpoint number in the readsuper request. It also
receives the device number, the boottime time stamp and the buffer address in the
VFS address space where the content of a symbolic link can be stored.

B.4.2 Unmount

The implementation of the unmount request:

B.4. REQUEST OPERATIONS 97

Listing B.8: Unmounting the partition.

1 PUBLIC i n t f s unmount (message∗ m in , message∗ m out)
2 {
3 i n t coun t ;
4 r e g i s t e r s t r u c t i node ∗ r i p ;
5
6 /∗ Count i n use i n o d e s∗ /
7 coun t = 0 ;
8 f o r (r i p = & inode [0] ; r i p < & inode [NR INODES] ; r i p ++) {
9 i f (r i p−> i c o u n t > 0 && r i p −>i d e v = = f s d e v) {

10 coun t + = r i p−> i c o u n t ;
11 }
12 }
13
14 /∗ Only t h e r o o t inode shou ld be i n use w i th
15 ∗ t h e c o u n t e r v a l u e 1∗ /
16 i f (coun t > 1) {
17 re turn EBUSY ; /∗ Can ’ t umount a busy f i l e sys tem∗ /
18 }
19
20 /∗ Put t h e r o o t inode ∗ /
21 r i p = f i n d i n o d e (f s dev , ROOTINODE) ;
22 p u t i n o d e (r i p) ;
23
24 re turn OK;
25 }

The unmount operation counts the in use inodes. The partition can beun-
mounted only if there is one inode in use, the root inode which is held by the
corresponding virtual mount object in the VFS process. Otherwise the partition
is considered to be busy. Real file system implementations usually call the sync
operation after dropping the root inode so that everything gets copied back to the
disk.

B.4.3 Stime

Setting the boot time is done by the following simple routine:

Listing B.9: Setting boot time stamp.

1 PUBLIC i n t f s s t i m e (message∗ m in , message∗ m out)
2 {
3 boo t t ime = min−>REQ BOOTTIME;
4 re turn OK;
5 }

98 APPENDIX B. HOW TO IMPLEMENT A NEW FILE SYSTEM...

B.4.4 Get node

For the get node request the FS has to load (or find) the inode specified by the
request message and increase its usage counter. The implementation:

Listing B.10: Getting an inode.
1 PUBLIC i n t f s g e t n o d e (message∗ m in , message∗ m out)
2 {
3 s t r u c t i node ∗ r i p ;
4
5 /∗ Get t h e inode ∗ /
6 i f ((r i p = g e t i n o d e (f s dev , m in−>REQ INODE NR))
7 == NIL INODE)
8 re turn EINVAL ;
9

10 /∗ T r a n s f e r back t h e inode ’ s d e t a i l s∗ /
11 m out−>m source = r i p−>i d e v ;
12 m out−>RES INODE NR = r i p−>i num ;
13 m out−>RESMODE = r i p−>i mode ;
14 m out−>RES FILE SIZE = r i p−> i s i z e ;
15
16 re turn OK;
17 }

B.4.5 Put node

The put node request aims to decrease an in use inode’s usage counter:

Listing B.11: Dropping an inode.
1 PUBLIC i n t f s p u t n o d e (message∗ m in , message∗ m out)
2 {
3 s t r u c t i node ∗ r i p ;
4
5 /∗ Find t h e inode ∗ /
6 i f ((r i p = f i n d i n o d e (f s dev , m in−>REQ INODE NR))
7 == NIL INODE)
8 re turn EINVAL ;
9

10
11 p u t i n o d e (r i p) ;
12 re turn OK;
13 }

B.4. REQUEST OPERATIONS 99

B.4.6 Path name lookup

In order to describe the path name lookup some additional functions have to
be introduced. Although the path name lookup in the binary tree file system could
be done in a very simple way, this section tries to give a common solution so that
the general method of this functionality can also be shown. The whole lookup
mechanism is built of four functions. The first is responsible for breaking the path
name string into components:

Listing B.12: Getting the next component of a path name.

1 PRIVATE char ∗ get name (old name , s t r i n g)
2 char ∗ old name ; /∗ path name t o parse∗ /
3 char s t r i n g [NAMEMAX] ; /∗ component e x t r a c t e d from ’ o ldname ’ ∗ /
4 {
5 r e g i s t e r i n t c ;
6 r e g i s t e r char ∗ np , ∗ rnp ;
7
8 np = s t r i n g ; /∗ ’ np ’ p o i n t s t o c u r r e n t p o s i t i o n ∗ /
9 rnp = old name ; /∗ ’ rnp ’ p o i n t s t o unparsed s t r i n g ∗ /

10 whi le ((c = ∗ rnp) = = ’ / ’) {
11 rnp ++; /∗ s k i p l e a d i n g s l a s h e s∗ /
12 p a t h p r o c e s s e d + + ;/∗ coun t c h a r a c t e r s ∗ /
13 }
14
15 /∗ Copy t h e unparsed path , ’ o ldname ’ ,
16 ∗ t o t h e array , ’ s t r i n g ’ . ∗ /
17 whi le (rnp < & old name [PATHMAX] && c ! = ’ / ’ && c ! = ’ \0 ’) {
18 i f (np < & s t r i n g [NAME MAX]) ∗ np ++ = c ;
19 c = ∗++ rnp ; /∗ advance t o n e x t c h a r a c t e r∗ /
20 p a t h p r o c e s s e d + + ; /∗ coun t c h a r a c t e r s ∗ /
21 }
22
23 /∗ Sk ip t r a i l i n g s l a s h e s . ∗ /
24 whi le (c = = ’ / ’ && rnp < & old name [PATHMAX]) {
25 c = ∗++ rnp ;
26 p a t h p r o c e s s e d + + ; /∗ coun t c h a r a c t e r s ∗ /
27 }
28
29 i f (np < & s t r i n g [NAME MAX])
30 ∗np = ’\0 ’ ; /∗ Termina te s t r i n g ∗ /
31
32 i f (rnp >= & old name [PATHMAX]) {
33 e r r c o d e = ENAMETOOLONG;
34 re turn ((char ∗) 0) ;
35 }
36 re turn rnp ;
37 }

100 APPENDIX B. HOW TO IMPLEMENT A NEW FILE SYSTEM...

The function skips the leading slashes, copies the next component to the char-
acter array given as the second parameter, then skips the trailing slashes and ter-
minates the string. It also counts the characters that were processed during the
operation.

The next function is used for looking up a component in a given directory:

Listing B.13: Looking up a component.

1 PUBLIC s t r u c t i node ∗ advance (d i rp , s t r i n g , mout)
2 s t r u c t i node ∗ d i r p ; /∗ i node f o r d i r e c t o r y t o be sea rched∗ /
3 char s t r i n g [NAMEMAX] ; /∗ component name t o look f o r∗ /
4 message∗ m out ; /∗ r e p l y message∗ /
5 {
6 r e g i s t e r s t r u c t i node ∗ r i p ;
7
8 /∗ Check f o r NILINODE . ∗ /
9 i f (d i r p = = NIL INODE) re turn NIL INODE ;

10
11 /∗ I f ’ s t r i n g ’ i s empty , y i e l d same inode s t r a i g h t away .∗ /
12 i f (s t r i n g [0] = = ’\0 ’)
13 re turn g e t i n o d e (d i rp−>i dev , d i rp−>i num) ;
14
15 /∗ ” Find component ” ∗ /
16 i f (! s t rcmp (s t r i n g , ”1 ”))
17 r i p = g e t i n o d e (d i rp−>i dev , d i rp−>i num ∗ 2 + 1) ;
18 e l s e i f (! s t rcmp (s t r i n g , ”0 ”))
19 r i p = g e t i n o d e (d i rp−>i dev , d i rp−>i num ∗ 2) ;
20 e l s e i f (! s t rcmp (s t r i n g , ” . . ”)) {
21 i f (d i rp−>i num = = ROOTINODE) {
22 e r r c o d e = ELEAVEMOUNT;
23 m out−>RESMOUNTED = 0 ;
24 m out−>RES OFFSET = p a t hp r o c e s s e d ;
25 m out−>RESSYMLOOP = symloop ;
26 r i p = NIL INODE ;
27 }
28 e l s e
29 r i p = g e t i n o d e (d i rp−>i dev , d i rp−>i num / 2) ;
30 }
31 e l s e i f (! s t rcmp (s t r i n g , ” . ”)) {
32 dup inode (d i r p) ;
33 r i p = d i r p ;
34 }
35 e l s e {
36 e r r c o d e = ENOENT;
37 re turn NIL INODE ;
38 }
39 re turn (r i p) ; /∗ r e t u r n p o i n t e r t o inode ’ s component∗ /
40 }

B.4. REQUEST OPERATIONS 101

As we mentioned before the binary tree file system has only four kind of file
names. ”0”, ”1” and the two regular entry for directories ”.” and ”..”. Therefore
the lookup is easy in this case. All the four strings are checked and the appropriate
functionality is performed. In a real file system this function would call a low level
routine that performs the search in the directory file. It is worth noting that leaving
the partition is handled in this function, the reply message’s fields are filled in with
the error value and a null inode pointer is returned.

The next function controls the whole lookup mechanism:

Listing B.14: Parsing the path.

1 PUBLIC s t r u c t i node ∗ p a r s e p a t h (path , s t r i n g , a c t i o n , min , m out)
2 char ∗ pa th ; /∗ t h e pa th name t o be parsed∗ /
3 char s t r i n g [NAMEMAX] ; /∗ t h e f i n a l component i s r e t u r n e d here∗ /
4 i n t a c t i o n ; /∗ a c t i o n on l a s t p a r t o f pa th ∗ /
5 message∗ m in ; /∗ r e q u e s t message∗ /
6 message∗ m out ; /∗ r e p l y message∗ /
7 {
8 s t r u c t i node ∗ r i p , ∗ d i r i p ;
9 s t r u c t i node ∗ v e r r i p ;

10 char ∗ new name ;
11 char l s t r i n g [NAME MAX] ;
12
13 /∗ Find s t a r t i n g inode inode acco rd ing t o t h e r e q u e s t message∗ /
14 i f ((r i p = f i n d i n o d e (f s dev , m in−>REQ INODE NR)) = = NIL INODE) {
15 e r r c o d e = ENOENT;
16 re turn NIL INODE ;
17 }
18
19 /∗ Find c h r o o t inode acco rd ing t o t h e r e q u e s t message∗ /
20 i f (m in−>REQCHROOTNR ! = 0) {
21 i f ((c h r o o t d i r = f i n d i n o d e (f s dev , m in−>REQCHROOTNR))
22 == NIL INODE) {
23 e r r c o d e = ENOENT;
24 re turn NIL INODE ;
25 }
26 }
27 e l s e
28 c h r o o t d i r = NIL INODE ;
29
30 /∗ No c h a r a c t e r s were p r o c e s s e d y e t∗ /
31 p a t h p r o c e s s e d = 0 ;
32
33 dup inode (r i p) ; /∗ i node w i l l be r e t u r n e d w i th p u ti n o d e ∗ /
34
35 /∗ Look ing f o r t h e s t a r t i n g d i r e c t o r y ?
36 ∗ Note : t h i s happens a f t e r EENTERMOUNT or ELEAVEMOUNT
37 ∗ w i t h o u t more pa th component∗ /

102 APPENDIX B. HOW TO IMPLEMENT A NEW FILE SYSTEM...

38 i f (∗ pa th = = ’\0 ’) {
39 re turn r i p ;
40 }
41
42 i f (s t r i n g = = (char ∗) 0) s t r i n g = l s t r i n g ;
43
44 /∗ Scan t h e pa th component by component .∗ /
45 whi le (TRUE) {
46 /∗ E x t r a c t one component .∗ /
47 i f ((new name = getname (path , s t r i n g)) = = (char ∗) 0) {
48 p u t i n o d e (r i p) ; /∗ bad path i n use r space∗ /
49 re turn (NIL INODE) ;
50 }
51 i f (∗ new name = = ’\0 ’ && (a c t i o n & PATH PENULTIMATE)) {
52 i f ((r i p−>i mode & I TYPE) = = I DIRECTORY) {
53 re turn (r i p) ; /∗ normal e x i t ∗ /
54 }
55 e l s e {
56 /∗ l a s t f i l e o f pa th p r e f i x i s no t a d i r e c t o r y∗ /
57 p u t i n o d e (r i p) ;
58 e r r c o d e = ENOTDIR ;
59 re turn (NIL INODE) ;
60 }
61 }
62
63 /∗ There i s more pa th . Keep p a r s i n g .∗ /
64 d i r i p = r i p ;
65 r i p = advance (d i ri p , s t r i n g , m out) ;
66
67 i f (∗ new name ! = ’\0 ’) {
68 p u t i n o d e (d i r i p) ;
69 pa th = newname ;
70 con t inue ;
71 }
72
73 /∗ E i t h e r l a s t name reached or s ymb o l i c l i n k i s opaque∗ /
74 i f ((a c t i o n & PATHNONSYMBOLIC) ! = 0) {
75 p u t i n o d e (r i p) ;
76 re turn (d i r i p) ;
77 }
78 e l s e {
79 p u t i n o d e (d i r i p) ;
80 re turn (r i p) ;
81 }
82 }
83 }

The path parser finds the inode which represents the starting directory of the
lookup and the chroot directory if it is specified in the request message. After

B.4. REQUEST OPERATIONS 103

a couple of sanity checks it starts breaking the path name into components and
looking them up. It returns the inode with increased usage counter. The function
that handles the actual lookup request:

Listing B.15: Path name lookup.

1 PUBLIC i n t lookup (message∗ m in , message∗ m out)
2 {
3 char s t r i n g [NAMEMAX] ;
4 s t r u c t i node ∗ r i p ;
5 i n t s e r r o r ;
6
7 s t r i n g [0] = ’\0 ’ ;
8
9 /∗ Copy t h e pa th name and s e t up c a l l e r ’ s use r and group ID∗ /

10 e r r c o d e = s y sd a t a c o p y (VFSPROCNR , (v i r b y t e s) m in−>REQ PATH ,
11 SELF , (v i r b y t e s) u s e rp a t h , (p h y s b y t e s) m in−>REQ PATH LEN) ;
12
13 i f (e r r c o d e ! = OK) re turn e r r c o d e ;
14
15 c a l l e r u i d = m in−>REQ UID ;
16 c a l l e r g i d = m in−>REQ GID ;
17
18 /∗ Lookup inode ∗ /
19 r i p = p a r s e p a t h (u s e r p a t h , s t r i n g , min−>REQ FLAGS , m in , m out) ;
20
21 /∗ Copy back t h e l a s t name i f i t i s r e q u i r e d∗ /
22 i f ((m in−>REQ FLAGS & LAST DIR | | m in−>REQ FLAGS & LAST DIR EATSYM)
23 && e r r c o d e ! = ENAMETOOLONG) {
24 s e r r o r = s y s d a t a c o p y (SELFE , (v i r b y t e s) s t r i n g , VFSPROCNR ,
25 (v i r b y t e s) m in−>REQ USERADDR , (p h y s b y t e s)
26 MIN(s t r l e n (s t r i n g) + 1 , NAMEMAX)) ;
27 i f (s e r r o r ! = OK) re turn s e r r o r ;
28 }
29
30 /∗ Error or mount p o i n t enc oun te red∗ /
31 i f (r i p = = NIL INODE)
32 re turn e r r c o d e ;
33
34 m out−>RES INODE NR = r i p−>i num ;
35 m out−>RESMODE = r i p−>i mode ;
36 m out−>RES FILE SIZE = r i p−> i s i z e ;
37
38 /∗ Drop inode (pa th parse i n c r e a s e d t h e c o u n t e r)∗ /
39 p u t i n o d e (r i p) ;
40 re turn OK;
41 }

104 APPENDIX B. HOW TO IMPLEMENT A NEW FILE SYSTEM...

It copies the path name from the VFS’ address space and sets up the caller’s
user and group ID according to the request, then it issues the path name parse
and fills in the response message respectively. Finally the inode is dropped and
success is reported.

B.4.7 Stat

As it was shown the binary tree file system is able to handle path name lookup.
One of the most frequently called system call is the statistics about a file. In order
to show how the stat request is implemented, an internal stat function has to be
introduced, which is called by the stat and fstat requests.

The internal stat function is the following:

Listing B.16: Inode stat.
1 PRIVATE i n t s t a t i n o d e (r i p , u s e ra d d r , who e)
2 r e g i s t e r s t r u c t i node ∗ r i p ; /∗ p o i n t e r t o inode t o s t a t ∗ /
3 char ∗ u s e r a d d r ; /∗ use r space add ress ∗ /
4 i n t who e ; /∗ e n d p o i n t o f t h e c a l l e r ∗ /
5 {
6 /∗ Common code f o r s t a t and f s t a t r e q u e s t s .∗ /
7 s t r u c t s t a t s t a t b u f ;
8 i n t r ;
9

10 s t a t b u f . s t d e v = r i p−>i d e v ;
11 s t a t b u f . s t i n o = r i p−>i num ;
12 s t a t b u f . s tmode = r i p−>i mode ;
13 s t a t b u f . s t n l i n k = r i p−> i n l i n k s ;
14 s t a t b u f . s t u i d = c a l l e r u i d ;
15 s t a t b u f . s t g i d = c a l l e r g i d ;
16 s t a t b u f . s t r d e v = NODEV;
17 s t a t b u f . s t s i z e = r i p−> i s i z e ;
18 s t a t b u f . s t a t i m e = s t a t b u f . s tm t ime =
19 s t a t b u f . s t c t i m e = b oo t t ime ;
20
21 /∗ Copy t h e s t r u c t t o use r space .∗ /
22 r = s y s d a t a c o p y (SELF , (v i r b y t e s) & s t a t b u f ,
23 who e , (v i r b y t e s) u s e ra d d r , (p h y s b y t e s) s i z e o f(s t a t b u f)) ;
24
25 re turn r ;
26 }

The routine fills in a stat structure and transfers it back to the address in user
space. It is worth noting that in the binary tree file system each file is owned by the
current caller and all the time stamps related to the files are the boot time stamp of
the system. This values would be filled in by the inode data in case of a real file
system.

B.4. REQUEST OPERATIONS 105

The function that handles the stat request from the VFS is the following:

Listing B.17: Stat.
1 PUBLIC i n t f s s t a t (message∗ m in , message∗ m out)
2 {
3 r e g i s t e r s t r u c t i node ∗ r i p ;
4 r e g i s t e r i n t r ;
5
6 /∗ Load inode t o be s t a t e d∗ /
7 i f ((r i p = g e t i n o d e (f s dev , m in−>REQ INODE NR))
8 == NIL INODE)
9 re turn (EINVAL) ;

10
11 /∗ Ca l l t h e i n t e r n a l s t a t f u n c t i o n ∗ /
12 r = s t a t i n o d e (r i p , 0 , m in−>REQ USERADDR , m in−>REQWHO E) ;
13 p u t i n o d e (r i p) ; /∗ r e l e a s e t h e inode∗ /
14 re turn (r) ;
15 }

It loads the inode and calls the internal inode stat function.

B.4.8 Open

Although there are no regular files on the binary tree file system, the open ser-
vice has to be provided by the FS in order to browse directories. In the binary tree
case the open code simply increases the usage counter of the inode and transfers
back the details. The implementation:

Listing B.18: Opening a file.
1 PUBLIC i n t f s o p e n (message∗ m in , message∗ m out)
2 {
3 i n t r ;
4 s t r u c t i node ∗ r i p ;
5
6 /∗ Get f i l e inode . ∗ /
7 i f ((r i p = g e t i n o d e (f s dev , m in−>REQ INODE NR)) = = NIL INODE) {
8 re turn ENOENT;
9 }

10
11 /∗ Reply message∗ /
12 m out−>RES INODE NR = r i p−>i num ;
13 m out−>RESMODE = r i p−>i mode ;
14 m out−>RES FILE SIZE = r i p−> i s i z e ;
15
16 re turn OK;
17 }

106 APPENDIX B. HOW TO IMPLEMENT A NEW FILE SYSTEM...

B.4.9 Getdir

The getdir request is used when a process is about changing its working or
chroot directory. In the binary tree file system case the FS has to load the inode
and increase the usage counter, since each file is a directory and each directory
is browsable on the file system. Although, in a real file system driver it has to
be checked whether the caller has the right permissions in order to perform the
change. The implementation is the following:

Listing B.19: Getting a directory.
1 PUBLIC i n t f s g e t d i r (message∗ m in , message∗ m out)
2 {
3 r e g i s t e r s t r u c t i node ∗ r i p ;
4
5 /∗ Try t o open t h e new d i r e c t o r y .∗ /
6 i f ((r i p = g e t i n o d e (f s dev , m in−>REQ INODE NR))
7 == NIL INODE) {
8 re turn (EINVAL) ;
9 }

10
11 /∗ I f OK send back inode d e t a i l s∗ /
12 m out−>RES INODE NR = r i p−>i num ;
13 m out−>RESMODE = r i p−>i mode ;
14 m out−>RES FILE SIZE = r i p−> i s i z e ;
15
16 re turn OK;
17 }

B.4.10 Access

In the binary tree file system case everyone is allowed to do anything. The
access function is therefore simply returns OK:

Listing B.20: Checking permissions.
1 PUBLIC i n t f s a c c e s s (message∗ m in , message∗ m out)
2 {
3 re turn OK;
4 }

B.4. REQUEST OPERATIONS 107

B.4.11 Read

Since there are only directories on the binary tree file system and eachdirec-
tory contains the same directories – except that the inode numbers are different –
reading from them equals with creating a pseudo content and copy it back to the
user space address. The implementation:

Listing B.21: Reading from a file.

1 PUBLIC i n t f s r e a d w r i t e (message∗ m in , message∗ m out)
2 {
3 i n t r , usr , seg , chunk ;
4 o f f t p o s i t i o n , n r b y t e s ;
5 unsigned i n t cum io ;
6 char ∗ u s e r a d d r ;
7 s t r u c t i node ∗ r i p ;
8
9 /∗ Four d i r e c t o r y e n t r i e s are i n each d i r e c t o r y∗ /

10 s t r u c t f l d i r e c t d i r e n t s [4] ;
11
12 /∗ Find t h e inode r e f e r r e d ∗ /
13 i f ((r i p = f i n d i n o d e (f s dev , m in−>REQ FD INODE NR))
14 == NIL INODE) {
15 re turn EINVAL ;
16 }
17
18 /∗ B u i l d pseudo d i r e c t o r y da ta∗ /
19 d i r e n t s [0] . d i n o = r i p−>i num ; /∗ ” . ” e n t r y ∗ /
20 d i r e n t s [0] . d e x t e n t = 0 ;
21 d i r e n t s [0] . dname [0] = ’ . ’ ;
22 d i r e n t s [0] . dname [1] = 0 ;
23
24 d i r e n t s [1] . d i n o = (r i p−>i num ! = 1) ?
25 (r i p−>i num > > 1) : 1 ; /∗ ” . . ” e n t r y ∗ /
26 d i r e n t s [1] . d e x t e n t = 0 ;
27 d i r e n t s [1] . dname [0] = ’ . ’ ;
28 d i r e n t s [1] . dname [1] = ’ . ’ ;
29 d i r e n t s [1] . dname [2] = 0 ;
30
31 d i r e n t s [2] . d i n o = r i p−>i num ∗ 2 ; /∗ ” 0 ” e n t r y ∗ /
32 d i r e n t s [2] . d e x t e n t = 0 ;
33 d i r e n t s [2] . dname [0] = ’ 0 ’ ;
34 d i r e n t s [2] . dname [1] = 0 ;
35
36 d i r e n t s [3] . d i n o = r i p−>i num ∗ 2 + 1 ; /∗ ” 1 ” e n t r y ∗ /
37 d i r e n t s [3] . d e x t e n t = 0 ;
38 d i r e n t s [3] . dname [0] = ’ 1 ’ ;
39 d i r e n t s [3] . dname [1] = 0 ;
40

108 APPENDIX B. HOW TO IMPLEMENT A NEW FILE SYSTEM...

41 /∗ Get message f i e l d s∗ /
42 u s r = m in−>REQ FD WHO E ;
43 seg = min−>REQ FD SEG ;
44 p o s i t i o n = min−>REQ FD POS ;
45 n r b y t e s = (unsigned) m in−>REQ FD NBYTES ;
46 u s e r a d d r = m in−>REQ FD USERADDR ;
47
48 /∗ Determine t h e number o f b y t e s t o copy∗ /
49 chunk = MIN(n r b y t e s , (s i z e o f(d i r e n t s) − p o s i t i o n)) ;
50
51 /∗ Copy t h e chunk t o use r space .∗ /
52 r = s y s v i r c o p y (SELF E , D , (p h y s b y t e s) ((char ∗) d i r e n t s + p o s i t i o n) ,
53 usr , seg , (p h y sb y t e s) u s e ra d d r , (p h y s b y t e s) chunk) ;
54
55 p o s i t i o n + = chunk ;
56 cum io = chunk ;
57
58 m out−>RES FD POS = p o s i t i o n ;
59 m out−>RES FD CUM IO = cum io ;
60 m out−>RES FD SIZE = r i p−> i s i z e ;
61 re turn r ;
62 }

The function finds the inode specified in the request message. It creates the
pseudo file data with the four directory entries. Note that the inode numbers are
computed according to the directory being read. It computes the number of bytes
to be read. Since the user can request less than the size of the data buffer it
has to be checked. It sends back the new file position and the number of bytes
successfully transfered.

In a real file system implementation this function most probably calls a low
level function that access the buffer cache to perform the data transfer.

