

Formal Refinement for Operating System Kernels

123

Iain D. Craig

Formal Refinement
for Operating System
Kernels

Printed on acid-free paper.

9 8 7 6 5 4 3 2 1

springer.com

e-ISBN

..
Iain Craig, MA, PhD, FBCF, CITP

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 978-1-84628-966-8 978-1-84628-967-5

Library of Congress Control Number: 2007931774

The publisher makes no representation, express or implied, with regard to the accuracy of

the information contained in this book and cannot accept any legal responsibility or liability

for any errors or omissions that may be made.

Apart from any fair dealing for the purposes of research or private study, or criticism or

review, as permitted under the Copyright, Designs and Patents Act 1988, this publication

may only be reproduced, stored or transmitted, in any form or by any means, with the

prior permission in writing of the publishers, or in the case of reprographic reproduction in

accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries

concerning reproduction outside those terms should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in

the absence of a specific statement, that such names are exempt from the relevant laws and

regulations and therefore free for general use.

c© Springer-Verlag�London�Limited�2007

To my Father at 75

Preface

This book was written as a companion to my book on modelling operating
system kernels. It is intended to demonstrate that the formal derivation of
kernels is possible (and, actually, quite easy, or so I have found thus far).

It is important for the reader to understand that the refinements contained
in this book are not the only ones I have performed of microkernels. To date,
I have refined four microkernels down to executable code and have now pro-
duced a kit of formally specified components that can be composed to form
kernels. The first kernel included in this book is just one example of this work.
The second kernel, the Separation Kernel, is new and was partly constructed
out of the kit of parts (and the reader will see reuse in its specification and
refinement) and was included for specific reasons that will become clear anon.
Both kernels took less than three months’ working time to produce (the actual
time is rather hard to calculate because of frequent interruptions). Previous
experience in refining kernels also paid off in the sense that there was lit-
tle revision involved in their specification or refinement; the usual process of
yo-yoing between levels of the derivation was absent. This appears to be an
inevitable consequence of experience.

The time factor has been important in the production of the various kernels
that I have derived. The micro kernel helps in no little way by imposing the
rule that the kernel should be as small as possible. This is not to say that I
would not be interested or willing to refine a kernel such as the second one
I modelled in [4]. Such an exercise would be extremely interesting and one
I would very much like to undertake; however, it would require time (and I
am quite willing to put it in) and would require financial support. In today’s
climate, one would probably also have to ask what the point of such an exercise
would be.

It is necessary to position this book. Mainly, I believe it to be an essay
in formal methods software engineering and in operating systems. It can be
argued that this book is a contribution to refinement, in particular, to re-
finement in the large. There is nothing in the literature on the scale of the
refinements that are the subject of this book, as far as I am aware.

viii Preface

The Separation Kernel was included for specific reasons. First, there is at
least one document from the US National Security Agency (NSA) recommend-
ing the Separation Kernel as the cryptographic kernel par excellence. In their
documents, the NSA also states that the formal specification of a Separation
Kernel would be highly desirable. Having looked at the various documents,
the original paper by Rushby [11] in particular, the structure and functioning
of the Separation Kernel appeared to be fairly simple. This would appear to
have been one of the goals that Rushby had in mind when defining the archi-
tecture in the first place—it is another good example of how simplicity wins
every time (Less is more.) As a result, I wondered what a specification would
look like. What I found was what I expected. The result was quite easy to
specify and to refine.

The reader will observe that there is little or nothing about bootstrapping
or hardware-specific initialisation. This is because we do not consider these
matters to be part of the kernel; they belong to the environment within which
the kernel executes.

I think it necessary to make a couple of observations about the refinement
itself. In the Z literature, two kinds of refinement are described: one relational,
one functional. The relational refinement is the worst-case scenario. The func-
tional refinement is, in my experience, the usual case. Indeed, in more than
twenty years’ experience refining specifications, I have found that the rela-
tionship between the abstract and concrete statements is almost always an
identity. This experience is not restricted to kernels (of course) for a great
deal of the code I have produced during that time has had at least some for-
mally specified component (usually the components that are the hardest to
understand). The code has included virtual machines and parts of compilers,
so it is quite varied. For this reason, the fact that the abstraction relations in
this book are identities does not cause me any concern. (Steve Schumann re-
ports in a private communication the same experience.) I decided that proofs,
which are strictly unnecessary when using a functional abstraction relation,
should be included in the book. This was to show how they enter the refine-
ment process and to show that they are relatively simple (given the prevalence
of identity relationships, proofs of similar complexity are to be expected and
that is a level of complexity that can easily be handled). Furthermore, I wanted
to counter the claims that either the proofs could not be done or that they
were too complicated; neither is the case. In the case of the Separation Kernel,
a number of proofs are omitted (this was also for the reason that space was
getting short and devoting much more space to such a simple system did not
appear warranted). This is particularly the case with operations defined over
conjunctions of state spaces. The proofs and preconditions of the components
are given, as are the abstraction relations, so the production of the required
proofs is a straightforward matter and can be produced in a relatively short
period. In each case, the compound operation was checked against the com-
ponents and short (i.e., outline or sketch) proofs produced as a safety device.

Preface ix

The purely textual parts of this book were written using voice-input soft-
ware because my daily typing time was severely restricted on medical advice.
Using voice-input software for the first time was an interesting and sometimes
frustrating experience. The frustrations were mostly due to my being so used
to typing and I found that having to speak rather than compose on the key-
board sometimes confusingly difficult. In particular, initially, I found it quite
hard to navigate back and forth using just voice commands. (It led to the
occasional and unwanted inclusion of expletives in the text and I hope that
I have removed them all!) With greater experience, it turned out to be an
effective method for producing text. It is worth trying!

A Note on Interrupts

When I started out, it was conventional wisdom that interrupts should be
disabled for as short a period as possible. The reader will note that the space
between disabling and enabling interrupts in the specifications and refinements
that follow can be rather large. In some case (e.g., the interface routines at
the end of Chapter 3), the reason for this is that I wanted to emphasise the
fact that interrupts should be disabled for some part of the operation (for
reasons that will become clear in a second, without necessarily being forced
into saying which parts). Some processors have pipelines that might affect
the exact time at which the interrupt operation is performed; this cannot
be taken into account until the processor is known, so the safe option was
chosen. In addition, the period during which interrupts are disabled can be
extended when the desired response time of the system is known (here, we
have no such knowledge). In such a case, the interrupt operations can be
moved using the distributive law (p ∨ (q ∧ r) ⇔ (p ∧ q) ∨ (p ∧ r)) and the
idempotent laws (p ∧ p ⇔ p and p ∨ p ⇔ p). In the other cases, the change
to the interrupt flag (or whatever mechanism is used on the implementation
platform) might have some interaction with another part of the system (e.g.,
on the IA32, if the INT bit in the EFLAGS register is not the same value as
the processor interrupt flag, the system will crash); again, without knowing
the exact hardware, precise location of the interrupt operationsis impossible.

Acknowledgements

First of all, I would like to thank Beverley Ford for agreeing to publish this
book. Thanks are due in equal measure to Helen Desmond for making the
process of producing this book as painless as possible. They have jointly per-
formed the proof and copy editing stages of the test in order to expedite its
publication. I would like to thank Steve Schuman for reading the manuscript
while it was in sketch and in a more developed form and for a number of
extremely interesting discussions on the refinement process (any errors are,
naturally, my own fault). Considerable thanks are due to my brother, Adam.
Once again, he drew the figures for me; in addition, he patiently typed those

x Preface

parts from my dictation that could not easily be done using voice-input soft-
ware. Without his dedicated effort, the text of this book could not have been
completed. As for the others who have helped (the regulars), as always, I offer
my thanks.

Iain Craig

North Warwickshire

April, 2007

Contents

1 Introduction . 1
1.1 Reasons for Selecting the Examples . 3
1.2 Refinement Method . 7
1.3 Code Production . 9
1.4 Organisation of this Book . 10
1.5 Relationship to Other Work . 10

2 The Simple Kernel’s Organisation . 11

3 A Simple Kernel . 19
3.1 Types . 19
3.2 Hardware . 23
3.3 The Process Table . 28

3.3.1 Top Level . 28
3.3.2 Refinement One . 34
3.3.3 Refinement Two . 44

3.4 Process Queue . 56
3.4.1 Top Level . 56
3.4.2 Refinement One . 59
3.4.3 Refinement Two . 65

3.5 Priority Queue . 70
3.5.1 Top Level . 70
3.5.2 Refinement One . 78
3.5.3 Refinement Two . 91

3.6 The Scheduler . 100
3.6.1 Top Level . 100
3.6.2 Refinement One . 115
3.6.3 Refinement Two . 118

3.7 Semaphores . 119
3.7.1 Top Level . 120
3.7.2 Refinement . 126

xii Contents

3.8 Semaphore Table . 126
3.8.1 Top Level . 126
3.8.2 Refinement One . 130
3.8.3 Refinement One–Again . 133

3.9 Synchronous Messages . 141
3.9.1 Preliminaries . 142
3.9.2 Top Level . 143
3.9.3 Refinement One . 155
3.9.4 Refinement Two . 158

3.10 The Clock . 158
3.11 Sleepers . 161

3.11.1 Top Level . 163
3.11.2 Refinement One . 170
3.11.3 Refiment Two . 180

3.12 User Interface . 188
3.12.1 System Initialisation . 188
3.12.2 Process Creation . 191
3.12.3 Process Management . 193
3.12.4 Inter-process Communication and Synchronisation 198
3.12.5 Clock Operations and the Clock ISR 201
3.12.6 Final Remarks . 202

4 The Separation Kernel . 203
4.1 Basic Architecture . 203
4.2 Extending the Architecture . 205
4.3 Summary . 206
4.4 An Overview of the Formal Specification 207

5 A Separation Kernel . 211
5.1 Basic Types . 211
5.2 Hardware Issues . 215
5.3 Security Exits and Return Values . 218
5.4 The Process Table . 219

5.4.1 Top Level . 220
5.4.2 Refinement One . 228
5.4.3 Refinement Two . 237

5.5 Process Queues . 239
5.5.1 Top Level . 239
5.5.2 Refinement . 242

5.6 The Scheduler . 242
5.7 Storage Pools . 251

5.7.1 Top Level . 252
5.7.2 Refinement One . 257

5.8 Raw Storage . 264
5.8.1 Top level . 264

Contents xiii

5.8.2 Message Buffering . 266
5.9 Message Queues . 269

5.9.1 Top Level . 270
5.9.2 Refinement One . 277

5.10 Kernel Interface – User Processes . 286
5.10.1 Auxilliary Operations . 286
5.10.2 Initialisation . 288
5.10.3 Process Management . 291
5.10.4 Message Passing . 294

5.11 Devices—Trusted Code . 299
5.11.1 Device replies . 304
5.11.2 Device numbers . 306
5.11.3 Device process creation . 307

5.12 Process Interface to the Kernel . 313
5.13 Final Thoughts . 316

6 Closing Thoughts . 317

References . 323

List of Definitions . 325

List of Figures

1.1 The NSA cryptographic architecture. 6

2.1 Organisation of the simple kernel. 15

4.1 Devices and interfaces in the Separation Kernel. 206
4.2 The internal organisation of our Separation Kernel. 207

1

Introduction

This book is a follow-up to our earlier one on the modelling of operating
system kernels [4]. The aim of that book was to argue that formal specifi-
cation of kernels was possible in the sense that formal modelling could be
undertaken and then followed by a specification, a design and then refinement
to running code. The first part of this was the subject of [4]. This book is
concerned entirely with the specification, design and refinement to executable
code of two operating system kernels. One kernel is of the kind found in small
systems, while the other is intended for use in cryptographic and other secure
systems. The book does not contain reasoning about models and concentrates
on refinement. The refinements are from abstract or high-level specifications
to a level at which programming language code can be immediately derived
by obvious translation from the last stage of the refinement process.

In [4], it was our aim to show that detailed models were useful. This allows
designers to identify properties of their designs without the need to construct
a system. This could well have economic advantages and might spark new
and necessary work in the general area of operating systems. It was also
argued in that book that the post hoc verification of systems, particularly
critical systems and components such as kernels, was not a good solution to
the problem of reliability; instead, we argued that a synthetic method was
superior.

The main purpose of the book is to demonstrate that the refinement of for-
mal specifications of (micro) kernels is possible and, moreover, quite tractable.
This should be obvious, given the fact that it is possible to model a (micro)
kernel formally. The refinement is a process of documentation, as well as proof
and justification, so it is worthwhile to record it, thus adding weight to the
argument at the start of [4].

A secondary purpose is to give examples of refinements that are larger
than those we have found in the literature. There are issues raised by the
refinement process that are never considered in the standard literature:

• How many refinements should complex operations receive?

2 1 Introduction

• When should implicit preconditions be used?
• When is it worth relying on the properties of functional abstraction rela-

tions?

Some might now argue that this is not a complete specification and
refinement because we have not included device drivers and low-level device-
interface code. Some might even go as far as to claim that this is not possible
because, for example, it involves bitmasks; it also requires processes to wait
for flags to change state. It is our opinion that the formal specification of such
things is possible; this opinion is based upon experience with small examples
and with the specification of low-level operations (for example, the bitmap
that is used as the basis for the semaphore table in the first refinement below;
we also specified some generic device-handlers while writing [4] but they had
to be omitted for reasons of time and space).

In any case, at this point, we cannot specify the actual pieces of hardware
that might be controlled by this book’s systems. For this reason, we have
to be as generic as possible, so we have concentrated on the specification
of portable systems. This does mean that we have ignored low-level issues.
On the contrary, we felt it essential that context switches and other essential
kernel operations should be included in the specification. The approach we
have taken is that the hardware and instruction set is a given and cannot be
further refined. One aim of the work reported here was to reduce the assembly
language programming to the level of triviality, thus making it possible to
encapsulate the assembly language in a couple of operations1.

As can be seen from the specifications, interrupt-driven architectures are
assumed, thus rendering the interface between the software and hardware
specifications as small as possible. The context switch is thus reduced to a
single instruction, one which raises an interrupt. The major part of the hard-
ware specification is as generic as this. For the hardware architecture we have
in mind, this is quite adequate and represents a reasonable specification of it;
for other architectures (e.g., MIPS), it might be necessary to refine, perhaps,
the high-level operations defined here.

By the publication of this book, we have shown that it is possible (and
relatively easy) to specify small kernels and refine them to running code. What
we have not done is try to specify a monolithic kernel such as the one used by
Linux. One reason for this is that we do not care very much for the monolithic
kernel for the reasons that it is too tempting just to add a feature to such a
kernel on the grounds that there is nowhere else to put it (i.e., it is tempting
not to solve a problem, just to throw things into the kernel); that is, the
monolithic kernel does not require a clear separation of kernel versus non-
kernel functionality. This lack of distinction has many implications for the
performance of the resulting system. Instead, we prefer a smaller kernel that

1 We write this as if assembly language were some kind of toxic material. There is
no a priori reason why one cannot formally specify assembly-language programs,
even though it is rarely done.

1.1 Reasons for Selecting the Examples 3

includes only those functions that are necessary. We prefer not to engage in
further justification of our position; like many such debates, it is based upon
a combination of technical and æsthetic factors.

1.1 Reasons for Selecting the Examples

This book contains the specification and refinement of two kernels:

1. A small and simple kernel.
2. A microkernel for cryptographic and other secure applications. This kernel

is an instance of the Separation Kernel concept of Rushby [11].

The first kernel is related to the µC/OS kernel of Labrosse [8], a kernel
that has been employed in a number of real-time and embedded systems. The
kernel specified and refined in this book is also a close relative of the first
kernel model in our [4]2.

Another reviewer complained that the specification we gave in another
paper was too simple to be of any use in real systems. We need to address
this point because it could be levelled by the same reviewer of this work. The
small kernel that is refined in this book is similar to µC/OS and other kernels
for small systems. We have read the code of such systems, and also used
them, over the period of a good many years. The kernels that we have looked
at are not undergraduate exercises or simplified versions, they are real kernels
that are used in real applications. The initial design of the small kernel is
based upon this experience. It was intended that the level of functionality be
such that it could be used with only minor modification (context switch and
interrupt enable/disable operations) in a real application. The modifications
expected require only minor modifications to the formal specification; the
remainder would remain the same.

It is true that we have not included sophisticated real-time scheduling
methods. However, the kernels that we have inspected and used do not con-
tain them, either; to claim that we have an unrealistic, over-simplified system
because it lacks some particular real-time scheduling algorithm appears unrea-
sonable. It is also true that we have not included alarm timers. The reasons
for this are that they are not always provided by the kernels that we have

2 A reviewer of a paper we wrote on this kernel strongly objected to the use of
the adjective (they said “term”) “real-time” in connection with this model. They
claimed that the model could not be of a “real-time” system because it does not
contain any temporal operators. There is a number of replies to this: (i) C and
Ada are “real-time” programming languages but they do not contain temporal
operators (and their formal semantics do not required them); (ii) there is a con-
siderable number of small kernels similar to ours, µC/OS being one example, that
are used in the development of “real-time” systems. We have read the descrip-
tions, specifications and code of quite a few of these systems and have failed to
locate a single temporal operator.

4 1 Introduction

examined or used and that they are not particularly difficult to specify and,
therefore, to refine to code using the formal method. If we extend the small
kernel, asynchronous events such as alarms will constitute the first extension.

In brief, the kernel is composed of the following components.

• A process representation (the process table).
• A scheduler based on a priority queue.
• Semaphores in a global semaphore table.
• A simple synchronous message-passing system.
• A mechanism for putting processes to sleep for a specified period of time.

(There is no alarm mechanism in this kernel, however).
• A set of initialisation and interface routines so that user-supplied code can

call kernel operations (i.e., perform system calls).

User processes execute in the same address space as the kernel. To produce a
working system, the code for user processes is linked to that of the kernel and
the result bootstrapped somehow (this is considered outside of the specifica-
tion, being, really, a processor-specific matter). Storage must be allocated by
the user. This implies that they must define a memory map when designing
their system.

It seemed appropciate to select this kernel as the first example refinement
because

• It is a relatively simple example of a kernel. It contains no storage man-
agement, device drivers or Interrupt-Service Routines (ISRs).

• It makes few assumptions about the hardware upon which it runs. Indeed,
it is quite portable; only a relatively few lines of code need be changed
when porting to another processor.

On the other hand, the very simplicity of this first kernel is a problem
precisely because it is processor-independent. In particular, there are no de-
vice drivers and ISRs to specify (other than the simple one for the clock).
The specification and refinements employ a hardware model that is relatively
general and portable; indeed, it can be employed on a number of processors.
However, the interrupt mechanisms of processors vary considerably, so the
specification included here is tailored to the Intel IA32 architecture3.

We could have included specific hardware devices into the specification
and its refinement just to show that it is possible. This was not done be-
cause we want this kernel to be portable and the inclusion of a specific device
might have suggested that we were not being portable. In addition, we had
already encountered space problems with this book and the inclusion of the
description of a hardware device, its interface and the specification of its ISR

3 The MIPS has also been considered and would have been used. However, we found
problems with the GNU C compiler for the simulated MIPS that we intended to
use.

1.1 Reasons for Selecting the Examples 5

and driver would have caused us to omit the Separation Kernel’s specifica-
tion, something we preferred not to do. We hope to specify a device’s support
software elsewhere in the near future.

The second example is the Separation Kernel introduced by Rushby in
1981 [11] for secure systems. The Separation Kernel derives its name from the
fact that user processes are separated from each other both in space and in
time. This implies that the address spaces of all user processes are disjoint
and that the time during which one process executes can be identified as
being different from that during which any other user process executes. The
Separation Kernel is intended as a simulation of a distributed system. In a
distributed system, in theory, all processes execute on their own processor,
thus affording disjointness of address space. In addition, the execution of one
process occurs on a processor during a particular time but does not affect
the execution of other processes on other processors. Thus, one can say that
process P1 executes on processor p1 during the period t1 . . tn , while process
P2 executes on processor p2 during the period ti . . tm .

The problem is to translate this scheme to uniprocessor systems. This
can be done by ensuring that all address spaces are disjoint, say by means
of segmentation. Temporal separation can be had by ensuring that only one
process executes at any point in time. Temporal separation is easy to arrange
on a sequential processor (indeed, it is so obvious a property that it can be a
little hard to explain convincingly).

The reasons for including the Separation Kernel are as follows:

• It is a little-known architecture and its specification and refinement are
novel.

• It is a simple architecture and is, thus, easy to specify and refine in a few
pages.

• It is an architecture that was explicitly defined for applications that
should demand a formal approach to software development. Indeed, the
US National Security Agency has stated [10] that the formal specification
of Separation Kernels is highly desirable.

The specification and refinement in this book follow the recommenda-
tions of the National Security Agency’s document [10]. The Separation Kernel
proper is a microkernel that is formally specified. Upon the microkernel, there
is a layer of so-called “trusted” code, principally device drivers and associated
code. This trusted layer need not be formally specified but its specification,
design and construction is carefully monitored so that it cannot engage in
activities that would compromise the security of the system. Above this layer
comes user-supplied code. This code is completely untrusted and can perform
any activity and might be compromised in some way; although one might
want this layer to be formally specified and tightly controlled, it is unlikely
that it will be, at least in the near term. The overall architecture is depicted
in Figure 1.1.

6 1 Introduction

User Processes
(untrusted)

Device

Processes
(trusted)

ISRs
(trusted)

Separation

Kernel

External

Environment

Fig. 1.1. The NSA cryptographic architecture.

The Separation Kernel itself is organised as follows (the reader will see
that it is a simple structure):

• A process representation.
• A round-robin scheduler.
• Asynchronous inter-process message passing.
• Storage allocation mechanisms.

In addition, the specification includes:

• An interface for system calls from user processes.
• A collection of operations to support the construction of ISRs and device

drivers.

These two last items are added so that the security of the system can be
enhanced.

Our specification assumes that the processor upon which the microkernel
executes supports segmentation. It was decided that virtual storage would not
be included for the following reasons:

• Virtual storage requires some form of external store for page swapping.
This would commit the specification to a particular hardware configura-
tion, which was considered undesirable.

• It is possible in principle that external virtual storage can be attacked
by malicious persons (e.g., corrupting or replacing pages). This was also
considered undesirable.

1.2 Refinement Method 7

It was, therefore, assumed that all user processes would reside in main storage
and that they would be composed of two memory segments (the GNU C com-
piler generates two segments); they would be, in any case, memory resident.
The kernel would also be memory resident. It would reside in segments that
are disjoint from all others. Device drivers and ISRs are trusted code, so can
be stored in the same segments as the kernel. This is more of an optimisation
than anything else because it was considered that the time required to perform
an address-space switch would not be tolerable for device-related code. Since
this kind of code is trusted, it can be assumed that it will not interfere with
the operations of the kernel (which is, in any case, an opaque chunk of code as
far as they are concerned). The loading of user-process images into main store
is something that we do not consider here (it is a matter that depends upon
the hardware configuration); indeed, we have it in mind that the Separation
Kernel would probably run on a co-processor. Finally, it was assumed that the
processor would provide some mechanism for detecting illegal cross-segment
references (segmentation errors) and that an ISR could be written to handle
such references.

The assumptions of segmentation and cross-segment reference detection
are reasonable. There are many processors supporting these features. The
Intel IA32 and IA64 series of processors support them, for example.

For a full security kernel, it is necessary to write a formal security policy.
This is an abstract model of the system that shows how violations of temporal
and spatial separation are handled. This model has not been included in this
book for the reason that it is not strictly relevant to the current task. However,
readers should note that such a model for this specification is in the process
of being documented and the relevant proofs are being undertaken.

1.2 Refinement Method

The method adopted in this book follows the conventional approach as defined
by Spivery [12] and Woodcock and Davies [13].

First, an abstract specification is created, then a refined version (the con-

crete version) is created; the two are then related by the definition of an
abstraction relation. Proofs are then undertaken to show that concrete opera-
tions represent abstract ones correctly. The concept of correctness reduces to
showing the following two properties. First, the states in which an abstract
operation can start are also, modulo the abstraction relation, those states in
which the concrete one can start. Second, it is shown that if the abstract
operation terminates in a state, s, then the concrete operation terminates
in a state, sc , that is related to s by the abstraction relation. In addition, a
theorem is proved that the initialisation of the two state spaces are equivalent.

Once this has been completed, what was the concrete version becomes the
new abstract version. A new concrete representation and abstraction relation
are defined and the process iterates.

8 1 Introduction

For the specifications in this book, some modules required no refinement,
while others required two steps. In some cases, therefore, a state space was
defined that does not require refinement; this is done when the state space
consists of simple variables that are just updated by simple assignments.
Example cases are the clock in the first refinement, parts of the scheduler
in both refinements and the semaphore counter component in the first speci-
fication. In contrast, there are modules that required three refinement steps.
It could be argued that two steps could be used instead. The reduction to
two steps would, in our opinion, have made the refinement process less clear
and clarity is an essential aspect of system design as well as documentation.
The PROCESSQUEUE and PRIOQUEUE types both require two refinement
steps: one from an abstract specification to an array-based representation and
then to a representation based on the next attribute in the process table. The
reader could try to refine the top-level specification to the one using next ; it
is certainly possible but, we consider, less clear than the three-step version.

In addition, the abstraction relation is an identity4. This makes proofs
particularly simple. Indeed, because identity is a functional relation, the re-
finement process can be modified slightly, as outlined in [13]. Woodcock et

al. show how the operation schemata can be calculated from the abstract
specification and the abstraction relation. This has the implication that the
proofs listed above need not be undertaken because they are guaranteed by
the abstraction relation.

In this book, particularly in the first part, proofs are included; in the re-
finement of the separation kernel, some proofs are given but not others. In
both exercises, the reader will see that the abstraction relations are all identi-
ties. We could have omitted the proofs in the refinement of the first kernel. We
preferred not to do this for a number of reasons. First, we wanted to show how
the full method operates on a scale somewhat larger than those usually found
in the published literature. Second, we wanted to include proofs to counter the
claim that they were either impossible, unintelligible or excessively complex;
they are none of these and are all quite straightforward. In another of the
kernel refinements that we have performed (but not published), some proofs
did cause problems which were eventually resolved. Third, we also wanted
to show how proofs are still possible even when working on conjoined state
spaces. Fourth, undertaking a proof is a good way to gain a better understand-
ing of the operation and it is also useful as a way of checking the abstract
and concrete operation specifications as well as the abstraction relation. In
another piece of work, we defined a concrete operation in a way that looked
entirely sensible but it was found that it caused a revision of the abstraction
relation which, it turned out, had not been properly thought out. Such er-
rors or misconceptions should not be a cause for censure. Instead, they are
valuable.

4 This is something that we have found in almost every refinement we have done
over the last twenty-odd years.

1.3 Code Production 9

In the refinement of the Separation Kernel, proofs of individual modules
have been included. The two proofs associated with many of the complex
operations (those defined over conjunctions of state spaces) are not included,
even though they have been undertaken and recorded. One reason for this is
space (the book would become excessively long); another is that too many
obvious proofs become rather tedious and would put the reader off continu-
ing. Finally, there is the reason that the proofs are not required because the
abstraction relations are identities; the proofs of the components are given, so
those of the complex operations can be derived in an obvious fashion.

Finally, as always, there is the matter of hardware. As in [4], we have
treated the hardware as a given. For the purposes of refinement, this implies
that it is a state space and set of operations that cannot be further refined.
This does mean that the specification can appear a little low-level in places
but, as usual, appropriate abstract operations are defined over the hardware
state space (context switch, half context switch, raise interrupt and so on),
so some measure of abstraction can be had. The approach adopted is, in any
case, akin to that one must adopt when specifying software that interfaces to
a pre-existant library or subsystem; the software external to the specification
can only be treated as a given. In the case of system models, this implies
that the properties of the external entity must be inferred. In the case of
refinements, it implies that no further refinement can be undertaken (in any
case, one has no control over pre-existant entities).

1.3 Code Production

This book does not contain any code that can be executed. There are examples
of the translation between final refinements and Dijkstra’s Guarded Command
Language [6]. These translations are included to show just how close to a
programming notation the refinements reach.

There is no C or Ada. The complete code is not included. The reason for
this is that there is no space.

We are, at the time of writing, translating the final refinements of the
simple kernel into code so that it can be executed. The first refinement is has
been translated to GNU C compiler. The target hardware is the Intel IA32
Pentium processor. The translation is a simple matter given the detail of the
final refinement. Once translated into C, the result is tested and is, in this
case, fairly exhaustive. It is pleasing to report that the code passed all of the
tests. Testing, we believe, should be a confidence-building part of the method;
we are making relatively exhaustive tests in this case because of the nature
and size of the problem. All modules have passed their tests first time, so the
refinement process can be argued to have worked. The low-level operations
included in the specification are coded in assembly language; this is, again, a
relatively simple activity. At the time of writing, the implementation has yet
to be completed.

10 1 Introduction

1.4 Organisation of this Book

This book naturally falls into four main sections:

1. This introduction (Chapter 1).
2. The specification and formal refinement of a small kernel (Chapters 2 and

3).
3. The specification and formal refinement of a Separation Kernel (Chapters

4 and 5).
4. Concluding remarks (Chapter 6).

The two refinements are also accompanied by a short, informal, introduction
that outlines the organisation of each kernel in high-level terms. The refine-
ments are annotated in English; the main concern is to justify the decisions
made in the face of alternatives.

1.5 Relationship to Other Work

It has been pointed out that other workers have produced models of operating
systems. This was a fact known to us when [4] was written. What made us
continue with that book was the fact that it was intended that proofs of
many properties, some obvious, some less so would be included in the book.
Comparing what we wanted to do with the published literature, we found
that published material either lacked proofs altogether or did not contain the
range that we intended to produce (typically the former); we also wanted to
work in a framework that was not based upon temporal logic.

As far as we are aware, there is nothing in the literature on the formal
refinement of operating system kernel code from a formal specification.

In the case of verification, if one single bit in the code is altered, the entire
system must be re-verified. Furthermore, verification often involves taking
an informally specified object and reconstructing a formal specification from
it. Unless the original designers are part of the exercise, it does not appear
possible to determine whether the result of verification really does conform
to the design. This must be true even when design documents are available
for, as is often stated, a natural-language specification leaves a considerable
amount unspecified because of our understanding of language. On the other
hand, and this is another frequently made point, formal specification captures
specifications unambiguously. The formal specification and refinement process
requires that everything be captured in documents. It is clear that, should a
single bit of a formally specified program be altered, the program no longer
conforms to the specification. Unlike verification, it is possible, in this case,
to determine whether the change is significant or not. It is also possible to
propagate design decisions through a formal specification without requiring
the production of code (by its very nature, verification depends upon the
existence of code).

2

The Simple Kernel’s Organisation

The purpose of this chapter is to describe in informal terms the organisation
and purpose of the “simple” kernel that is specified in the remainder of this
chapter.

As noted in Chapter 1, the kernel specified in this chapter is intended
for use, actual or otherwise, as the kernel of embedded and simple real-time
systems. The kernel is similar to Labrosse’s µC/OS [8] and the first kernel
modelled in [4]. This kernel was deliberately chosen as a link back to [4] and
because we consider it important to demonstrate that this class of kernel can
be formally specified and refined to working code.

In this kernel, each process has a unique identifier that is assigned to
it by the kernel from a fixed set in a purely sequential fashion. The first
process to be allocated is the idle process, the process that runs when no other
processes are ready for execution; the second to be allocated will usually be the
initial process, the process that creates all the other processes in the system
(the model is not related to the one employed by Unix, it should be noted).
Thereafter, the identifiers are allocated to processes in order of creation.

At present, each process has to make an explicit system call to obtain its
identifier and there is no facility for determining, at runtime, the identifier
of other processes (unless they, too, have determined their identity by means
of the same system call). An obvious extension would be to make process
identifiers available in a more usable way. Meanwhile, the mechanism specified
here is workable.

The process representation is a set of mappings that are refined to vectors
(one-dimensional arrays). The collection of these mappings is equivalent to the
process table in other systems and we will refer to this collection of mappings
as the process table or PTAB (this is the name of the state representation in
the specification). The mappings are keyed by the identifier of the process and
each mapping represents a different piece of information about the process.

In this kernel, the representation of processes is uniform in the sense that
all processes are associated with the same kinds of information (in the other
kernel specified in this book, there is a distinction imposed between different

12 2 The Simple Kernel’s Organisation

types of process). In this kernel, processes are represented by the following
information:

• Stack pointer. This is a pointer to the top of the process’ stack. It is used
when performing a context switch.

• Priority. This is a small integer value. Small negative values represent high
priorities, while small positive values represent low priorities. The default
value is 0. The priority is used to sort the scheduler’s ready queue and is
also used to determine whether or not to cause a context switch.

• State. This is an enumeration type. The value associated with each process
denotes the current state of the process. The state is used by the scheduler
when determining whether a context switch can be performed. It is also
used to document the process; an extension to the system is the inclusion
of an operation that obtains the states of all the processes in the system
(an operation similar to the Unix ps operation).

• Incoming Message. Processes can communicate using synchronous mes-
sages. This mapping is used to hold the latest message that has been sent
to each process. When there is no message to be received or a message has
just been read by its receiver, the value of the mapping is nullmsg.

• Waking Time. Processes can perform a system call that makes them wait
for a specified period of time. The process specifies the duration of its
sleeping time. The value stored in this mapping is the sum of the current
time and the time at which the process should wake up. When a process
wakes up, it is returned to the scheduler’s ready queue and can be executed
at some subsequent time.

In many kernels, processes are represented by structures or blocks of
storage; the Linux kernel [2], on the other hand, employs an array-based
representation similar to the one adopted here. A block/structure-based rep-
resentation can be specified in Z and would use promotion to include the
structure in the containing table. This approach separates the refinement of
the structure from that of the table. The refinement process employed here
combines the refinement of the mappings.

There are arguments for and against the benefits of these representations.
As far as we are can see, the arguments balance out and what is left is per-
sonal preference. In other kernel specifications, we have adopted the other
representation to good effect; in the end, though, we just like the mapping-
or vector-based implementation of the process table.

In addition, the process table contains a state variable, used. This contains
the identifiers of those processes that have been allocated. If a process identi-
fier is not in this set, it does not represent a process that currently exists in
the system. This variable is refined to the freechain. The freechain is a chain
of elements in a vector called next. If an element is in the freechain, it denotes
a process that is not in the system; the identifier of the process is the index
of the element in next.

2 The Simple Kernel’s Organisation 13

The next major component is the scheduler. The scheduling régime is
based on a simple priority queue with highest priority at the head. We refer
to this queue as the ready queue. When a process is added to this queue, its
priority is used to determine where it should be inserted.

The priority queue is first specified as a separate module, whose elements
are in a variable called pq. For the specification of the scheduler proper, promo-
tion is used so the refinement of the priority queue can proceed independently
of that of the rest of the scheduler.

The priority queue is refined to a chain through the next PTAB map.
This removes the need to allocate additional storage inside the kernel. The
complexity of the chain operations is a little higher than those on a simple
one-dimensional vector but it was employed here for the following reasons:

• It shows that such chaining can be handled formally.
• Chaining, as noted above, uses no more space in the kernel.

The scheduler proper contains three variables in addition to the ready
queue. One variable contains the identifier of the null process so that it can
be easily accessed when the scheduler determines that there is nothing to do.

The null process is included explicitly as a process for the following reasons:

• It can be removed in other versions of the system.
• Its behaviour can be altered from a completely null behaviour (an infinite

loop with no body) to something else.

These modifications require trivial respecifications of the system.
The other variables contain the identifier of the process that is currently

executing and that of the process that ran immediately before the current
one. The identifier of the currently executing process is required by the sched-
uler when performing a rescheduler operation, as follows. A slightly simpli-
fied account of the scheduler’s conditions for rescheduling are as follows. If a
reschedule is to be performed and the following conditions are satisfied, the
scheduler schedules another process and performs a context switch:

• There are processes in the ready queue.
• The priority of the current process is lower than that on the head of the

ready queue.
• The state of the current process is not marked as ready or running.

If there are no processes in the ready queue, the idle process is run. If either
of the other conditions is not satisfied, the current process is continued and
no context switch is performed.

Keeping the current and previous process identifiers is also useful when
performing the context switch because it allows the switching code to access
process data. It is also useful when testing systems built using the kernel. In
the current version, it allows the scheduler to access the stacks of the two
processes.

The scheduler provides the following operations:

14 2 The Simple Kernel’s Organisation

• An operation to initialise the various data structures. This is called on
system start-up.

• An operation to schedule the next process (SchedNext).
• An operation that suspends its caller and schedules the next process. If

there are no other processes in the ready queue, the idle process is run.
The operation forces a context switch.

Processes can synchronise using semaphores. The kernel contains a single
table that holds all the semaphores that can be used by processes. The size
of the table is a compile-time constant. It is organised as a bit map. The
semaphores held in the table are counting semaphores; this is no restriction
upon the semaphores’ behaviour because the semaphore type contains an
initialisation variable that can be set to 1 for binary semaphores.

Semaphores are defined as a separate type. Semaphore operations are pro-
moted by the table type. There are three operations provided by semaphores:

1. Initialise.
2. Allocate a semaphore if possible (if not, an error is reported).
3. Free a semaphore1.
4. Signal (the V operation).
5. Wait (the P operation).

The refinement of the semaphore table to bit maps was performed in or-
der to demonstrate that structures requiring “bit banging” can be specified
formally2.

Semaphores are implemented using promotion. The semaphore proper con-
tains a counter and a FIFO queue. The queue is defined as a separate type
and its operations are promoted by the semaphore, thus simplifying the refine-
ment. The FIFO is, like the priority queue, refined to a chain through the next

map in the process table. In this case, chaining was considered essential. This
is because there could be many semaphores in the system. Each semaphore
contains its own, independent, FIFO queue. If the FIFO were implemented
as a vector, this would mean allocation of a vector of suitable size for each
semaphore. The scheme adopted here has the advantages that the space is
allocated once and that each FIFO can be of arbitrary length.

Processes can also communicate by the synchronous exchange of messages.
When a process is ready to receive a message, it executes a system primitive
and enters the psreceiving state and is suspended. It remains in that state

1 No check on ownership is performed, so freeing someone else’s semaphore is a
neat way to cause trouble! In a more secure version, recording the ownership of
resources would be a good idea.

2 In other work, we have also attempted the specification of the kinds of operations
required, for example, in controlling hardware devices. Device controllers typically
require bits to be set and unset by controlling software; they are often cited as
a problem for the formal approach. After a little thought, we found that there is
no such problem—provided, that is, one thinks clearly about it.

2 The Simple Kernel’s Organisation 15

System Calls

Previous

Process

Priority-Based

Scheduler

Process

Repn

Clock ISR

Kernel

ISRs

Current

Process

Messager

Semaphore

Tables

Sleep

List

Fig. 2.1. Organisation of the simple kernel.

until another process sends a message to it. When the message is received,
the receiver’s state is set to psready and it is put back into the scheduler’s
ready queue. If a process sends a message to a process that is not blocked
in the psreceiving state, the system reports the fact and the sender must try
again (this rather crude approach could be hidden inside a library routine).

The organisation of this kernel is shown in Figure 2.1.
The interface to the system’s facilities are made as simple and direct as

possible so that the result is reasonably fast. In addition, the kernel assumes
that the code implementing processes is linked with the kernel to form a
single, loadable image. Storage is allocated by the programmer; the kernel,
as it stands, does not contain any storage-allocation code. Storage can be
allocated as data structures in C or assembly code or can be allocated as part
of the linkage process.

The specification defines system calls for many of the operations mentioned
above. Included in the calls are the following:

• Create process.
• Terminate. This operation is used when a process needs to terminate itself

(it should be the last operation performed by all processes except the
initial one). The operation works by killing the currently active process.

• Get process identifier.
• Send a synchronous message.

16 2 The Simple Kernel’s Organisation

• Receive a synchronous message.
• Allocate a semaphore; an identifier is returned.
• Deallocate a semaphore. The identifier returned by the allocation opera-

tion is used to identify the semaphore to be freed.
• Wait. The P operation on a semaphore.
• Signal. The V operation on a semaphore.
• Sleep. This causes the suspension of the caller for the specified period of

time. When the time has elapsed, the caller is resumed.

Each system call works as follows. It first disables interrupts, then performs
the operation and finally re-enables interrupts. Disabling interrupts ensures
that the operation is indivisible. Most of the operations are quite short, so
interrupt disabling should not cause too many problems (this is not a kernel
for hard real-time processing, in any case).

The specification includes the mechanism for making processes sleep. This
is another case in which a high-level specification is refined to a chain through
the next vector in the process table. When processes are not sleeping, their
waking time value is 0; when they are sleeping, the waking time value is greater
than 0. This provides a quick check that a process is not asleep.

To make the sleep mechanism work, the specification contains a clock. The
clock is intended to be implemented as an Interrupt Service Routine (ISR) or
interrupt handler.

The clock should work as follows. On every interrupt from the real
hardware clock, the clock ISR increments a tick variable. If there are t ticks
each second, when tick = t , the time in seconds since boot time is incremented
by one, as is a second variable that records the number of ticks since boot
time. If the number of seconds since boot is 0 mod 60, the minute counter is
incremented by one; if the minute counter is 0 mod 60, the hour counter
is incremented by one. In the current version, the actual clock time is not
recorded (this could be included with relatively little work but could involve
a hardware dependency).

If the clock used by the processor ticks at a rate such as once every
100msec, the above scheme can be used. Unfortunately, some processors do
not have such accommodating clocks. The Intel IA32, for example, has a clock
that has a cycle of something like 18.4MHz, a rate that is not all that help-
ful for keeping the time. For the IA32, the clock ISR is activated on every
clock interrupt, as usual. When activated, the ISR increments an activation
counter. When the activation counter reaches a certain value, the tick counter
is incremented, as above. The IA32 clock’s rate is doubly awkward because
it does not divide the second exactly, so either a little clock drift has to be
tolerated or a correction must be made from time to time. In the specification
here, drift is tolerated (it is an example, after all!)

Now, many readers will be wondering about the real hardware issues. In
particular, how context switches are performed. Furthermore, nothing has
been said about processor registers—the process context, in other words.

2 The Simple Kernel’s Organisation 17

The answer is that we prefer to have as little as possible to do with the
processor’s low-level details! One reason for this is that it makes the kernel
more portable (all the hardware-specific operations are firmly delineated). The
low-level operations required are:

• Enable and disable interrupts. These operations are usually performed by
one instruction each.

• A return from interrupt (IRET) is also required to terminate ISRs. This
is also frequently implemented as one or two instructions (usually one but,
on the MIPS, for example, interrupts must be re-enabled and the return
has to be performed explicitly).

• A context switch. The scheme adopted in this specification is that the
registers are stored on the top of the process stack. This has the advantage
that there is no permanent store allocated in the process table for the
register set; this also implies that it is not necessary, a priori to fix the
number of registers in the process table.

• A “half-context switch”. This is used to set up the intial process’ regis-
ters when creating it. This operation pushes one value (0) onto the initial
process’ stack when it is created. The reason for this is explained immedi-
ately below.

The context-switching scheme is also a fairly standard one. When the sched-
uler requires a context switch, it raises an interrupt. This interrupt is handled
by an ISR that pushes the outgoing process’ registers onto its stack and then
pops the incoming process’ registers from the stack. The ISR then immediately
executes an IRET instruction and the incoming process is switched in.

Because the incoming process has been suspended using an interrupt, it
will have the registers needed by the IRET instruction on its stack immediately
below its other registers. This is clearly impossible if the process has never
been interrupted, as is the case with the initial process. In this case, the stack
must be set up so that the processor finds all the information it requires. To do
this, dummy values are pushed onto the stack when creating the inital process.
The IRET instruction needs to have an address to which control should be
returned. Usually, this is the address of the instruction that was interrupted.
In the case of the initial process, the address has to be its entry point.

On an Intel IA32, the above scheme is extremely easy to implement. The
hardware pushes the return address and the flags register onto the interrupted
process’ stack when an interrupt occurs. The pushad instruction pushes the
general-purpose registers onto the stack and the popad instruction pops them
back. If the kernel executes within a single address space (as this one does),
there is no problem with the scheme outlined above (the Separation Kernel
in Chapter 5 uses multiple address spaces, so another approach is required).

On a MIPS, the scheme outlined above can still be used. However, it is
up to the implementer to push and pop the registers. In addition, the return-
from-interrupt operation must be implemented as a macro. First, the interrupt
flag is reset; next, the instruction pointer in force when the interrupt occurred

18 2 The Simple Kernel’s Organisation

must be fetched from a co-processor register and incremented by four (four
bytes, i.e.) and stored in a register; finally, a jump-on-register instruction is
executed, citing the register in which the old instruction pointer is stored.

Although a bit longer, the MIPS sequence is still comparatively simple. It
is clear that it can be represented in Z with a little work. Because we are aim-
ing our refinements and implementation at the IA32/64 (simply because we
have them available), we have omitted a detailed specification of the context-
switching operation. A specification for the MIPS (or any other processor like
it, for that matter) would include the specification of the registers and the
operations required to implement the push and pop operations, as well as the
return-from-interrupt operation. This is not difficult; indeed, we undertook it
when examining a refinement of this kernel to the MIPS processor3.

With this general outline of the kernel and the refinement out of the way,
it is possible to progress to the specification and refinement proper. Both
top-level specification and the various refinements are accompanied by a com-
mentary to aid the reader’s understanding.

3 We did this as an exercise in refining to a RISC machine to determine what the
problems, if any, might be; as with the IA32/64, we were pleased to find that
it was straightforward. Unfortunately, we do not have a MIPS or other RISC
available so that we can run the result—perhaps, one day!

3

A Simple Kernel

The first specification and refinement is of a small kernel of the type often used
in embedded and real-time systems. The kernel resembles Labrosse’s µC/OS
[8] and the kernel of Chapter 3 of our [4].

The structure of the chapter is as follows. First, the types that are used
throughout the specification and the refinement are defined.

Second, a specification of the hardware is given. This specification is at a
relatively high level but could be refined to a lower one. The specification is
aimed at an Intel IA32 implementation but should be sufficiently general to
change to another architecture.

Third comes the specification and refinement of the kernel proper. This
part occupies the vast majority of the chapter. Each major component is spec-
ified and then refined; this constitutes a section of the chapter. Refinements
constitute a subsection and usually consist of the refined state space and oper-
ations followed by the abstraction relation; in some cases, where it seems more
appropriate, the abstraction relation comes before the refined operations. The
relevant proofs come at the end of each section. In a couple of cases, proofs
are included within the statement of the refined operations.

3.1 Types

In this section, the major types are defined. As noted above, the types defined
here are used throughout the rest of this chapter.

First, the PID and GPID types are defined. These types are used to name
processes. The PID type is a subrange type with range minpid to maxpid ,
while GPID extends PID by the addition of the nullpid . The nullpid is defined
below and represents the null process. The null process should not be confused
with the idle process; the former is intended to be a null reference, while the
latter merely does nothing while it executes—it is executed when the processor
has nothing to do. The idle process has a normal process identifier (an element
of PID) and is allocated at system startup time.

20 3 A Simple Kernel

PID =̂ minpid . . maxpid

GPID =̂ {nullpid} ∪ PID

nullpid : N

∀ p : PID •

p < nullpid

The null value is usually the least element or somewhere in the middle. How-
ever, in a implementation using C vectors, indexing is zero-based, so the
natural choice of zero is not available. The actual choice of value for nullpid

is, in any case, arbitrary; what must be ensured is that there is no way in
which nullpid can be confused with a valid value.

The PSTATE type is defined next.

PSTATE ::= psterm

| psrunning

| psready

| pswaitsema

| pssleeping

| pssending

| psreceiving

This type represents the state of processes. A process can be in exactly one
state at any time. The names denote states:

• State psterm denotes the terminated state.
• State psrunning is the state of a process that is currently executing.
• State psready is the state of a process that is ready to execute but not yet

executing.
• State pswaitsema is the state of a process that is waiting on a semaphore.
• State pssleeping is the state of a process that is in a sleeping state (i.e., is

waiting for a timer to expire before it can resume execution).
• State pssending is the state of a process that is sending a message (this

might involve the process being suspended before the message can be
exchanged).

• State psreceiving is the state of a process that is ready to receive a message.

The next definitions concern process priorities. Priorities are defined in
terms of the range maxprio . . minprio, with smaller values denoting higher
priorities.

minprio,maxprio : Z

The type denoting process priorities is PPRIO .

PPRIO == maxprio . . minprio

3.1 Types 21

The type representing messages is, for simplicity, defined as atomic.

[MSG]

The MSG type includes a value denoting the null message:

nullmsg : MSG

It will be necessary to access components of elements of MSG . It is common,
for checking purposes, to require access to the sender (msgsrc) and destination
(msgdest) of a message; in addition, the msgsize function returns the size of
a message

msgsrc : MSG → PID

msgdest : MSG → PID

msgsize : MSG → N

The WORD type denotes the contents of a word of storage.

[WORD]

Addresses in the store are represented by the ADDR type.

ADDR == nulladdr . . maxaddr

Addresses are defined in terms of a range. The lower bound, nulladdr is address
zero.

nulladdr : N

maxaddr : N

nulladdr = 0

nulladdr < maxaddr

A representation is also required for time. This representation is called
TIME . It is defined as a synonym for the naturals. Time can be assumed, for
now, to start when the system is started.

TIME == N

Finally, the SYSERR type is defined. This type defines the values of the
error variable set by various system components. When all is well, the error
variable is set to sysok ; when an error has occurred, the variable is set to
another value.

SYSERR ::= sysok

| pdinuse

| unusedpd

| ptabfull

22 3 A Simple Kernel

| emptyqueue

| schedqfull

| schedqempty

| alreadyasleep

| toomanysleepers

| notallocsema

| nofreesemas

| procalreadyhasmsg

| destinationnotrcving

| badmsgdestination

| nomsg

The interpretation of the values are:

• Value pdinuse denotes the state in which a process descriptor (process
identifier) is already in use;

• Value unusedpd denotes the state in which a reference has been made to
a process descriptor that is not in use.

• Value ptabfull denotes the state in which no more process descriptors can
be allocated.

• Value emptyqueue denotes the state in which a queue of processes is empty
and an attempt to dequeue a process has taken place.

• Value schedqfull denotes the state in which the scheduler’s ready queue is
full.

• Value schedqempty denotes the state in which the scheduler’s ready queue
is empty.

• Vaue alreadyasleep denotes the state in which an attempt is made by a
process to enter a sleep state but that process is already marked as being
asleep.

• Value toomanysleepers denotes the state in which there are too many
processes in the sleep list.

• Value notallocsema denotes the state in which an attempt has been made
to access a semaphore that has not been allocated.

• Value nofreesemas denotes the state in which no more semaphores can be
allocated.

• Value procalreadyhasmsg denotes the state in which a receiving process
already has an incoming message but has not yet processed it (thereby
freeing its incoming-message slot).

• Value destinationnotrcving denotes the state in which the intended desti-
nation of a message is not currently in the state to receive it. The sender
should wait until later.

• Value badmsgdestination denotes the state in which the destination process
of a message does not exist.

• Value nomsg denotes the state in which there is no message in the
incoming-message slot when an attempt to receive a message is made.

3.2 Hardware 23

This section concludes with the definition of three schemata that are used
in generic error situations.

When all is well, the SysOk schema sets the error variable, serr !, to sysok .

SysOk

serr ! : SYSERR

serr ! = sysok

The following operation tests err to determine whether it is sysok .

IsSysOk

err : SYSERR

err = sysok

This operation is used to re-direct the value of serr !. It is intended that
terr? should be renamed when using this schema.

ReturnSysError

terr? : SYSERR

serr ! : SYSERR

serr ! = terr?

3.2 Hardware

The reader is warned that this section is heavily influenced by the Intel
IA32/64 architecture.

First, a type is defined to denote the values on and off . This type is to be
the value of the interrupt status flag (the “interrupt flag”).

ONOFF == off | on

The processor implements a finite number of interrupt types, each denoted
by a small integer in the range minintno to maxintno.

minintno,maxintno : N

minintno < maxintno

A type, INTRPTNO is defined to represent the interrupt number.

INTRPTNO == minintno . . maxintno

The hardware state is represented by the following schema.

24 3 A Simple Kernel

HARDWARE

genregs : REGID → WORD

intflg : ONOFF

intno : INTRPTNO

The hardware has a set of general-purpose registers, genregs, an interrupt flag,
intflg and a number denoting the current interrupt (if there is one), intno.
In a fuller model, intno would be used to activate the appropriate interrupt
service routine. Here, it is used just to provide a parameter to the operation
that raises software interrupts. The general-purpose registers, genregs, is a
function from register identifier, REGID , to a value (represented as a single
word).

First of all, we need operations to enable and disable interrupts. First, the
operation to enable interrupts is defined.

EnableInts

∆HARDWARE

intflg ′ = on

Next, the operation that disables interrupts is defined.

DisableInts

∆HARDWARE

intflg ′ = off

Since these operations do not refer to the before state, their precondition is
true.

The above operations merely operate on the interrupt flag in the simplified
hardware models.

A Return From Interrupt instruction is assumed. On many processors, this
operation corresponds to a single instruction, often called rti. Amongst other
things, this operation disables interrupts, increments the program counter so
that it points to the instruction after the one that caused the interrupt and
restores it to the hardware so that execution can continue. Since much of this
is internal to the processor, we only specify it in outline.

ReturnFromInterrupt =̂

. . .
o
9
EnableInts

The process table, PTAB , is the structure maintained by the kernel to
represent processes. Processes are represented as a collection of data items
that collectively represent a process. As far as the hardware is concerned, it
is necessary for each process’ current stack top pointer to be stored in the

3.2 Hardware 25

process table. The reason for this is that, between activations, the values of
the registers belonging to a process are stored on top of the stack.

PTAB
...

stacktop : PID �→ ADDR
...

...

dom stacktop = used
...

When a context switch occurs, the registers belonging to the outgoing
process are pushed onto its stack. Then the registers of the incoming process
are popped off its stack.

ContextSwitch

∆HARDWARE

ΞPTAB

inpid?, outpid? : PID

pushregs(stacks(outpid?))
o
9
popregs(stacks(inpid?))

where pushregs is an operation that pushes all (necessary) registers onto the
stack pointed to by stacks(outpid?) and popregs pops the equivalent registers
from the stack pointed to by stacks(inpid?). This is an old technique for stor-
ing registers; it has the enormous advantage that it does not require storage
in the process table. It has another advantage: the registers are always in an
easily accessible location and access to them is relatively cheap.

Because of the architecture of most processors, we are compelled to assume
that there will always be sufficient space on the outgoing process’ stack to hold
all the necessary registers. This is, however, a matter for the programmer.
Furthermore, nowhere is the size limit for the stack saved, so it is not possible
to determine whether there is any space available; even if there were, the test
might be too expensive to apply, so we are left where we began.

The precondition of ContextSwitch could be true or it could be

preContextSwitch =̂ {inpid?, outpid?} ⊆ used

The process is only partially complete at this point. When the first process
is executed, where do the outgoing registers come from? To solve this problem,
we define the following operation

26 3 A Simple Kernel

HalfContextSwitch

∆HARDWARE

ΞPTAB

inproc? : PID

pushregszero(stacks(inproc?))

where pushregszero is a function that pushes one zero on the stack pointed to
by stacks(inproc?) for every register that must be used by the process inproc?.

Finally, it is assumed that when a context switch is to occur, an interrupt is
raised. On many processors, when an interrupt is raised, the program counter
of the interrupting process is stored on the stack. On other processors, the
program counter is stored in a well-defined location, usually in a designated
register (as it is on MIPS processors). In order to complete the specification
of the context switch, it is necessary to define an operation that raises the
interrupt (RaiseInterrupt).

RaiseInterrupt

∆HARDWARE

ino? : INTRPTNO

intno′ = ino?

Note that we say nothing about how the hardware responds to this. The
precondition of this operation is true, as the following calculation shows. First,

∃HARDWARE ′ •

intno′ = ino?

This then becomes

∃ genregs ′ : REGID → WORD ; intflg ′ : ONOFF ; intno′ : INTRPTNO •

intno′ = ino? ∧

genregs ′ = genregs ∧

intflg ′ = intflg

Using the one-point rule, this simplifies to

∃ genregs ′ : REGID → WORD ; intflg ′ : ONOFF ; intno′ : INTRPTNO •

ino? = ino? ∧

genregs = genregs ∧

intflg = intflg

This is clearly equivalent to true, so we can state

preRaiseInterrupt =̂ true

To cause a context-switching interrupt, the following operation is invoked

3.2 Hardware 27

CTXTSW =̂

∃ ino : INTRPTNO | ino = context switch •

RaiseInterrupt [ino/ino?]

This expands into

CTXTSW

∆HARDWARE

intno′ = context switch

In this case, too, the precondition is

preCTXTSW =̂ true

This fact saves a good deal of work when defining the scheduler’s main
operation.

When the interrupt occurs, the ISR performs the following operations

CTXTSWISR =̂

ContextSwitch o
9
ReturnFromInterrupt

This operation calls the context switch to push the outgoing process’ registers
onto its stack. The outgoing process was the one that was executing before the
context switch occurred, so its program counter will be pushed onto the stack
by the CTXTSW operation. The incoming process will have had its stack
organised by the CTXTSW operation, so we can expect its stack to have
its registers at the top and its program counter underneath. By popping the
registers, the stack is left in the state required by the ReturnFromInterrupt.
In this case, however, control is passed to the incoming process, not to the
one that caused the interrupt.

Although the principle of the above is quite general, it assumes that there
is a rti instruction and that the stack contains the program counter on inter-
rupt. These assumptions are not universal. There are processors that only push
the interrupted process’ program counter on the stack; there are processors
that store the interrupting process’ program counter in a register. MIPS does
this and MIPS requires the programmer to increment the program counter
themselves; its equivalent of the rti instruction just clears the interrupt flag.
In the case of MIPS, therefore, a little more work must be done than we have
outlined here.

The ISR for the half context switch also needs to find a program counter
on the incoming process’ stack. Since the process has not executed yet, so
the stack has to be pre-loaded with program counter and default values for
the other data that is pushed by the raise interrupt operation. The program
counter value will be the entry point of the first process.

In a similar fashion, when a process is run for the first time, there is no
program counter for it. In this case also, the program counter’s value should
be the entry point to the main procedure in the process.

28 3 A Simple Kernel

3.3 The Process Table

In the last section, reference was made to the Process Table, a data structure
maintained by the kernel to represent the processes it currently contains.
Here, the process table, PTAB , and the operations required to support it, are
defined.

First, the error schemata are defined.
The first operation is used to set the error flag when a process descriptor

is unused and something wants to operate on it.

UnusedPD

serr ! : SYSERR

serr ! = unusedpd

The next schema represents the operation that records the error state when
a process descriptor is in use and an attempt to allocate it again is made.

PDInUse

serr ! : SYSERR

serr ! = pdinuse

The final schema represents the operation to set the error value when the
process table is full.

PTABFull

serr ! : SYSERR

serr ! = ptabfull

3.3.1 Top Level

Now, the state schema for the process table is defined.

PTAB

used : F PID

prio : PID �→ PPRIO

state : PID �→ PSTATE

stacktop : PID �→ ADDR

smsg : PID �→ MSG

wakingtime : PID �→ TIME

used = dom prio

dom prio = dom state

dom prio = dom smsg

dom prio = domwakingtime

dom prio = dom stacktop

3.3 The Process Table 29

The used variable records the identifiers of those processes currently in the
system. Each process in used has a priority that is represented by prio and a
state that is represented by state. A pointer to the top of each process’ stack
is represented by stacktop. Processes are permitted to communicate using
messages, following a synchronous régime, and messages, when received, are
stored in smsg . Processes are each associated with a value that denotes the
period, expressed in seconds, that it is to be suspended on a timer queue;
when the period expires, the process is made ready for execution. By default,
a process that is not sleeping is assigned a wakingtime value of 0 (zero).

When allocating process identifiers, it is useful to know which identifiers
are free and which are used. Since PID is finite and used ⊆ PID , we can
define free as:

PID \ used = free

This definition will make refinement considerably easier. It will also help in
reasoning about the process table.

The process table is initialised by the following operation. Initialisation
consists simply of setting used to empty. Since the domains of the partial
functions comprising the rest of the PTAB schema are identical to used , this
implies that the domains of these functions is also ∅.

PTABInit

PTAB ′

used ′ = ∅

The UsedPID schema defines an operation that is true when the input,
p?, is an element of used . When this is the case, p? refers to a known process
(i.e., one that is present in the system).

UsedPID

ΞPTAB

p? : PID

p? ∈ used

The next operation is true when there are process identifiers that can be
allocated.

GotFreePIDs

ΞPTAB

used ⊂ PID

Note that ∅ ⊂ PID . In this case, there are no allocated PIDs. If used = PID ,
then used ⊂ PID is false and there are no free elements of PID . This scheme is
used because process identifiers are cycled in the sense that a single identifier

30 3 A Simple Kernel

can be allocated (i.e., denoting some process) at one time and unallocated (i.e.,
denoting no process) at another time. This is similar to the cycling indices
when process identifiers are represented by array indices. The operation to
allocate a process identifier is the following:

AllocPID

∆PTAB

p! : PID

p!
∈ used

used ′ = used ∪ {p!}

By the definition of free, p! �∈ free follows from the predicate of AllocPID ’s
schema.

When deallocating or freeing a process identifier, the FreePID operation
is employed.

FreePID

∆PTAB

p? : PID

used ′ = used \ {p?}

The definition of free permits the inference from the schema of FreePID that
p? ∈ free ′, or that p? is an element of free in the after state of this operation.

The lowest level of process descriptor allocation is the creation of the
initial representation of the process. When a process is created, an identifier
is allocated and some basic information about it is recorded in the process
table. This second part of the operation is captured by AddPDESC .

AddPDESC

∆PTAB

p? : PID

st? : PSTATE

pr? : PPRIO

prio′ = prio ∪ {p? �→ pr?}

state ′ = state ∪ {p? �→ st?}

smsg ′ = smsg ∪ {p? �→ nullmsg}

wakingtime ′ = wakingtime ∪ {p? �→ 0}

It is clear that p? ∈ used is required. It can also be seen that the default value
for wakingtime is used to denote the fact that p? is not currently sleeping.

The full operation to create a representation of a process within the process
table is the following.

3.3 The Process Table 31

AddPD =̂

((GotFreePIDs ∧ AllocPID)o
9

(¬ UsedPID [p!/p?] ∧ AddPDESC [p!/p?] ∧ SysOk)

∨ PDInUse)

∨ PTABFull

First, a test is performed to determine that the process table is not empty.
If this is the case, a process identifier is allocated and a check is made to
determine whether the newly allocated identifier is currently in use (if it is,
something serious has gone wrong, perhaps an attack—we do not deal with
such matters in this system but we do record the fact). If all is well, basic
information about the process is recorded in the process table and sysok is
returned.

This expands into:

AddPD

∆PTAB

p! : PID

pr? : PPRIO

st? : PSTATE

serr ! : SYSERR

((used ⊂ PID ∧

p!
∈ used ∧ used ′ = used ∪ {p!} ∧

p! ∈ used ′ ∧ prio′ = prio ∪ {p! �→ pr?} ∧

state ′ = state ∪ {p! �→ st?} ∧ smsg ′ = smsg ∪ {p! �→ nullmsg} ∧

wakingtime ′ = wakingtime ∪ {p! �→ 0} ∧

serr ! = sysok)

∨ serr ! = pdinuse)

∨ serr ! = ptabful

For the purposes of refinement, it is necessary to calculate the precondition
of this operation. It is

preAddPD =̂

used ⊂ PID

It is equivalent to

PID \ used
= ∅

and to

used
= PID

When a process terminates, its descriptor must be removed from the sys-
tem. The DelPD operation does this.

32 3 A Simple Kernel

DelPD =̂

(UsedPID ∧ FreePID ∧ SysOk)

∨ UnusedPD

The deletion of process descriptors is simplified by the fact that the domain
of each of the maps that constitute its representation is identical to used .
Therefore, by deleting the process identifier from used , it is also removed
from the other domains.

The DelPD operation expands into:

DelPD

∆PTAB

p? : PID

serr ! : SYSERR

(p? ∈ used ∧

used ′ = used \ {p?} ∧

serr ! = sysok)

∨ serr ! = unusedpd

The precondition of DelPD is given by

preDelPD =̂

∃PTAB ′ • p? ∈ used

The next few operations are required to read and write the attributes that
comprise the representation of a process. The attributes of interest here are
prio, state and wakingtime. In the case of state, there are operations that set
the state to specific values; later in this specification, there will be other such
operations defined. The structure of the operations is very much as one would
expect, given the definition of the types in question. For this reason, little is
said about the details.

ProcPrio

ΞPTAB

p? : PID

pr ! : PPRIO

pr ! = prio(p?)

SetProcPrio

∆PTAB

p? : PID

pr? : PPRIO

prio′ = prio ⊕ {p? �→ pr?}

3.3 The Process Table 33

ProcState

ΞPTAB

p? : PID

st ! : PSTATE

st ! = state(p?)

SetProcState

∆PTAB

p? : PID

st? : PSTATE

state ′ = state ⊕ {p? �→ st?}

It is useful to have operations that set the value of state. The most useful
is the one that sets the state to psready (this operation is applied when a
process enters the scheduler’s ready queue).

SetProcessStateToReady =̂

∃ st : PSTATE | st = psready •

SetProcState[st/st?]

It expands into

SetProcessStateToReady

∆PTAB

p? : PID

state ′ = state ⊕ {p? �→ psready}

SetWaitingTime

∆PTAB

p? : PID

t? : TIME

wakingtime ′ = wakingtime ⊕ {p? �→ t?}

WaitingTime

ΞPTAB

p? : PID

t ! : TIME

t ! = wakingtime(p?)

34 3 A Simple Kernel

3.3.2 Refinement One

In this refinement, a free chain of process descriptors is introduced. This is
used to allocate and free descriptors. At present, the free chain is defined in
terms of an additional function, freech; in the next subsection, the free chain
is refined to the next chain that forms part of PTAB .

The state representation for the refined process table, PTAB1, is as follows.

PTAB1

hdfree, endfree : GPID

freech : PID � GPID

prio1 : PID → PPRIO

state1 : PID → PSTATE

smsg1 : PID → MSG

stacktop1 : PID → ADDR

wakingtime1 : PID → TIME

hdfree = nullpid ⇔ endfree = nullpid

hdfree = nullpid ⇔ dom freech = ∅

hdfree
= nullpid ⇔ dom freech
= ∅

hdfree
= nullpid ⇔ hdfree ∈ dom freech

hdfree
= nullpid ⇔ endfree ∈ dom freech

hdfree
= nullpid ⇔ freech(endfree) = nullpid)

First, it should be noted that prio1, state1 and wakingtime1 are similar to
those in PTAB ; in PTAB , these variables are partial functions, while here they
are total functions. This clearly has implications for the domain constraint on
them that was used so successfully in the specification of PTAB .

The other point of interest is the representation of the free chain. We use two
variables, hdfree and endfree to denote the first and last elements of the chain.
So that an empty chain can be represented, these variables are of type GPID ,
so can be assigned to the value nullpid . The main part of the chain is rep-
resented by the (finite) partial injection freech. For the reason that freech is
an injection, it follows immediately that it is 1-1; for the reason that freech is
partial, it allows some elements of PID to be absent from its domain. When
the freechain is empty, dom freech = ∅. An empty free chain implies that
there are no more process identifiers to allocate. This is the central point of
the initialisation operation for PTAB1:

PTAB1Init

PTAB1′

hdfree ′ = minpid ∧ endfree ′ = maxpid

∀ p : PID •

(p = maxpid ⇒ freech ′(p) = nullpid) ∧ (p < maxpid ⇒ freech ′(p) = p + 1)

3.3 The Process Table 35

This operation merely sets freech to map to the next process identifier (second
conjunct). The last proper process identifier is mapped to nullpid by the first
conjunct.

The following operation corresponds to UsedPID . It employs the same
logic as in the case of PTAB : a process identifier is used iff it is not free. Here,
free is equivalent to being in the free chain, or, more precisely, in the domain
of the freech.

UsedPID1

ΞPTAB1

p? : PID

p?
∈ dom freech

The next operation could be defined in terms of dom freech. However,
it is somewhat more useful to use hdfree. The invariant of PTAB1 states
that hdfree = nullpid ⇔ endfree = nullpid , and that hdfree = nullpid ⇔
dom freech = ∅. This permits a good deal of simplification so that the follow-
ing schema is obtained.

GotFreePIDs1

ΞPTAB1

hdfree
= nullpid

Using the invariant, the predicate of this schema implies that endfree =
nullpid and dom freech = ∅, so there can be no free identifiers.

The next operation allocates a new process identifier from the free chain.

AllocPID1

∆PTAB1

p! : PID

p! = hdfree

freech ′ = freech −⊳ {p!}

hdfree ′ = freech(hdfree)

First, the next free identifier is the value of hdfree, so it can be made the
output variable, p!. The value of hdfree must be updated to freech(hdfree), so
that hdfree ′ is the successor of hdfree in freech. It is also necessary to remove
hdfree or p! from freech; p! is a domain element of freech, so the −⊳ operation
suffices to remove it from freech. It should be noted that, since p! is hdfree, it
can only occur in the domain of freech, so the domain subtraction operation
is adequate and there is no requirement to remove p! from the codomain.

This operation corresponds to AddPDESC . The correspondence should be
clear.

36 3 A Simple Kernel

AddPDESC1

∆PTAB1

p? : PID

pr? : PPRIO

st? : PSTATE

prio1′ = prio1 ⊕ {p? �→ pr?}

state1′ = state1 ⊕ {p? �→ st?}

wakingtime1′ = wakingtime1 ⊕ {p? �→ 0}

The following operation corresponds to AddPD .

AddPD1 =̂

((GotFreePIDs1 ∧ AllocPID1)
o
9
(UsedPID1[p!/p?] ∧ AddPDESC1[p!/p?]) ∧ SysOk)

∨ PDInUse

∨ PTABFull

This expands into:

AddPD1

∆PTAB1

p! : PID

serr ! : SYSERR

((hdfree
= nullpid ∧

p! = hdfree ∧ freech ′ = freech −⊳ {p!} ∧

hdfree ′ = freech(hdfree)) ∧

(p!
∈ dom freech ′ ∧

prio1′ = prio1 ⊕ {p! �→ pr?} ∧

state1′ = state1 ⊕ {p! �→ st?}) ∧

smsg1′ = smsg1 ⊕ {p! �→ nullpid} ∧

wakingtime1′ = wakingtime1 ⊕ {p! �→ 0} ∧

serr ! = sysok)

∨ serr ! = pdinuse

∨ serr ! = ptabfull

Using the fact that pre(A ∨ B) ⇔ preA ∨ preB , we can omit serr ! =
ptabfull immediately. In addition, the assignments serr ! = unusedpd and
serr ! = sysok contribute nothing to the precondition and can also be omitted.

The precondition of AddPD1 is required so that refinement proofs can be
undertaken.

3.3 The Process Table 37

preAddPD1 =̂

∃PTAB1′; p! : PID •

hdfree
= nullpid ∧

p! = hdfree ∧

freech ′ = freech −⊳ {p!} ∧

hdfree ′ = freech(hdfree)) ∧

(p!
∈ dom freech ′ ∧

prio1′ = prio1 ⊕ {p! �→ pr?} ∧

state1′ = state1 ⊕ {p! �→ st?})

This simplifies to:

preAddPD1 =̂

hdfree
= nullpid ∧

hdfree
∈ dom(freech −⊳ {hdfree} ∧

It is equivalent to

hdfree
= nullpid

The next few schemata define operations over the free chain. The pur-
pose of defining these operations is to make manipulation of the free chain
somewhat easier.

The first schema defines a predicate that is true when the free chain is
empty.

EmptyFreeChain1

ΞPTAB1

dom freech = ∅

The next schema defines an operation that adds an element to the end of
the free chain.

AddNewLastFreechain

∆PTAB1

p? : PID

freech ′ = freech ⊕ {endfree �→ p?}

The next schema defines an operation that maps the last element of the free
chain to nullpid .

AddFreechainLast

∆PTAB1

p? : PID

freech ′ = freech ∪ {p? �→ nullpid}

38 3 A Simple Kernel

The SetFCHead operation sets the value of hdfree.

SetFCHead

∆PTAB1

p? : PID

hdfree ′ = p?

Analogously, SetFCLast sets the value of endfree.

SetFCLast

∆PTAB1

p? : PID

endfree ′ = p?

Using the schemata just defined, the operation to deallocate a process
identifier can be defined. The freeing operation is initially defined as follows:

FreePID1 =̂

(UsedPID1 ∧

(((EmptyFreeChain1 ∧ AddFreechainLast ∧

SetFCLast ∧ SetFCHead)

∨ (UsedPID1 ∧

(AddNewLastFreechain o
9
AddFreechainLast) ∧

SetFCLast)) ∧

SysOk))

∨ UnusedPID

This version is adequate but not very good. In particular, if EmptyFreeChain1
is true, this fact implies that UsedPID1 is also true. That is, dom freech = ∅

implies that p? �∈ dom freech. By omitting UsedPID1, the following is ob-
tained:

FreePID1 =̂

(((EmptyFreeChain1 ∧

AddFreechainLast ∧ SetFCLast ∧ SetFCHead)

∨ (UsedPID1 ∧

(AddNewLastFreechain o
9
AddFreechainLast) ∧ SetFCLast)) ∧

SysOk)

∨ UnusedPID

This can be transformed by distribution of SysOk . The transformation is
justified by the propositional calculus theorem (p ∨ q) ∧ r ⇔ (p ∧ r) ∨ (q ∧
r). The use of this theorem occurs frequently and can be used both to expand
a schema by producing copies of conjuncts and to contract them by reducing
multiple occurrences of a conjunct to a single one.

3.3 The Process Table 39

FreePID1 =̂

((EmptyFreeChain1 ∧

AddFreechainLast ∧ SetFCLast ∧ SetFCHead ∧ SysOk)

∨ (UsedPID1 ∧

(AddNewLastFreechain o
9
AddFreechainLast) ∧ SetFCLast ∧ SysOk))

∨ UnusedPID1

This definition can then be expanded into the schema that follows. A little
simplification has been performed on the schema, it should be noted. Very
often, when expanding definitions into schemata, we will take the opportunity
to engage in some simplification; we will, though, outline the transformations
employed unless they are obvious.

FreePID1

∆PTAB1

p? : PID

serr ! : SYSERR

((dom freech = ∅ ∧

freech ′ = freech ∪ {p? �→ nullpid} ∧

endfree ′ = p? ∧

hdfree ′ = p? ∧

serr ! = sysok)

∨ (p?
∈ dom freech ∧

freech ′ = (freech ⊕ {endfree �→ p?}) ∪ {p? �→ nullpid} ∧

endfree ′ = p? ∧

serr ! = sysok))

∨ serr ! = usedpd

In order to prove that FreePID1 is a correct refinement of FreePID , the
precondition of FreePID1 is required. It is calculated as follows.

preFreePID1 =̂

∃PTAB1′ •

(dom freech = ∅ ∧

freech ′ = freech ∪ {p? �→ nullpid} ∧

endfree ′ = p? ∧

hdfree ′ = p?)

∨ (p?
∈ dom freech ∧

freech ′ = (freech ⊕ {endfree �→ p?}) ∪ {p? �→ nullpid} ∧

endfree ′ = p?)

This simplifies to

40 3 A Simple Kernel

preFreePID1 =̂

∃PTAB1′ •

((dom freech = ∅ ∧

freech ∪ {p? �→ nullpid} = freech ∪ {p? �→ nullpid} ∧

p? = p? ∧ p? = p?)

∨ (p?
∈ dom freech ∧

(freech ⊕ {endfree �→ p?}) ∪ {p? �→ nullpid}) =

(freech ⊕ {endfree �→ p?}) ∪ {p? �→ nullpid}) ∧

p? = p?)

and again to

preFreePID1 =̂

dom freech = ∅ ∧

∨ p?
∈ dom freech

It is equivalent to

p?
∈ dom freech

This is justified as follows. If dom freech = ∅, then p? �∈ dom freech, trivially.
The DelPD1 operation can be defined as an equivalence:

DelPD1 =̂ FreePID1

The operations to access and set state components must be defined for
PTAB1, just as they were for PTAB . The definitions are quite obvious, so
we just give one as an example. As with the corresponding operations over
PTAB , there is the tacit assumption that p? is in used . The operations are
not used as independent operations but as components of larger operations
that require that p? ∈ used or some equivalent condition.

SetProcState1

∆PTAB1

p? : PID

st? : PSTATE

state1′ = state1 ⊕ {p? �→ st?}

The relationship between PTAB and PTAB1 is expressed by the predicate
of the AbsPTAB1 schema. This schema is referred to below as the “abstraction
relation”.

3.3 The Process Table 41

AbsPTAB1

PTAB

PTAB1

dom freech = PID \ used

dom freech ∩ used = ∅

∀ p : PID •

p ∈ used ⇒ prio(p) = prio1(p)

∀ p : PID •

p ∈ used ⇒ state(p) = state1(p)

∀ p : PID •

p ∈ used ⇒ wakingtime(p) = wakingtime1(p)

∀ p : PID •

p ∈ used ⇒ smsg(p) = smsg1(p)

∀ p : PID •

p ∈ used ⇒ stacktop(p) = stacktop1(p)

It is clear that the predicate of the AbsPTAB1 schema is a function; indeed,
it is an identity. Abstraction relations of this kind are extremely common.
It is possible to calculate the various operations of the refinement from a
functional abstraction relation and this we resist. Moreover, the fact that the
abstraction relation is an identity implies that the refinement proofs are quite
simple (perhaps even trivial); we include the proofs as a demonstration.

With the abstraction relation defined, it is possible to prove the initialisa-
tion theorem.

Theorem 1. ∀PTAB ′; PTAB1′ • PTAB1Init ∧ AbsPTAB1 ⇒ PTABInit.

Proof. By the predicate of AbsPTAB1, dom freech ′ = PID \used ′. The uni-
versally quantified formula in PTAB1Init ’s predicate implies that maxpid ∈
dom freech ′ and for all p < maxpid , p ∈ dom freech ′. This implies that
PID = dom freech ′, so, by the abstraction relation, used ′ = ∅. ✷

Until the end of this section, refinement proofs are presented, two for each
operation that is refined. The proofs are the standard ones (cf. [12] or [13]).

Theorem 2. ∀PTAB ; PTAB1 • preAddPD ∧ AbsPTAB1 ⇒ preAddPD1

Proof. We have the following preconditions:

preAddPD =̂ PID \ used
= ∅

and

AddPD1 =̂ hdfree
= nullpid

By the abstraction relation, dom freech = PID \ used . If PID \ used �= ∅,
it follows that dom freech �= ∅. By the invariant of PTAB1, dom freech �= ∅

implies that hdfree �= nullpid . ✷

42 3 A Simple Kernel

Theorem 3.

∀PTAB ; PTAB ′; PTAB1; PTAB1′;

pr? : PRIO ; st? : PSTATE ; p! : PID ; serr ! : SYSERR •

preAddPD

∧ AbsPTAB1 ∧ AbsPTAB1′

∧ AddPD1

⇒ AddPD

Proof. By the invariant of PTAB1, it is clear that hdfree �= nullpid implies
that dom freech �= ∅. By the abstraction relation, this implies that PID \
used �= ∅, and so used ⊂ PID . If used = ∅, used ⊂ PID since ∅ ⊂ S , for all
S ; if, on the other hand, used �= ∅, used ⊂ PID by definition.

If p! = hdfree then p! �∈ used .
Now, freech −⊳ {p!} implies used ∪ {p!} and by the abstraction relation,

dom freech ′ = PID \ used ′, so dom freech −⊳ {p!} = (PID \ used)∪ {p!}, which
is equivalent to PID \ (used ∪ {p!}) since free ∪ used = PID , and this is
equivalent to PID \ used by the predicate of AbsPTAB1′. From this, we can
infer that used ∪ {p!} = used ′.

By the abstraction relation, AbsPTAB1

∀ p : PID •

p ∈ used ⇒ prio(p) = prio1(p)

and

∀ p : PID •

p ∈ used ⇒ state(p) = state1(p)

Now, we need to observe that AddPD is defined in terms of a sequential
composition, so the start state of the second component is the after state
of the first. Writing the after state for used as used ′′, it can be seen that
used ′ = used ′′. Therefore, p! �∈ dom freech ′ is equivalent to p! �∈ dom freech ′′

and implies p! �∈ used ′ or p! �∈ used ′′. From this, it can be inferred that
prio1 ⊕ {p! �→ pr?} = prio ⊕ {p! �→ pr?}. Since p! �∈ used ′, prio ⊕ {p? �→
pr?} = prio ∪ {p? �→ pr?} and prio ∪ {p? �→ pr?} = prio′ since prio1′ =
prio1⊕{p! �→ pr?} and prio1′(p) = prio′(p) for all p ∈ used ′ by AbsPTAB1′.
✷

Theorem 4. ∀PTAB ; PTAB1; p? : PID • preDelPD ∧ AbsPTAB1 ⇒
preDelPD1

Proof. The precondition of DelPD is p? ∈ used and that of DelPD1 is
p? �∈ dom freech. By the abstraction relation, dom freech = PID \ used , so
p? ∈ used implies that p? �∈ PID \ used . From this, it may be inferred that
p? �∈ dom freech. ✷

3.3 The Process Table 43

Theorem 5.

∀PTAB ; PTAB ′; PTAB1; PTAB1′; p? : PID ; serr ! : SYSERR •

preDelPD ∧

AbsPTAB1 ∧ AbsPTAB1′ ∧

DelPD1

⇒ DelPD

Proof. First, we note that the precondition of DelPD is p? ∈ used . We have
a proof composed of two cases.
Case 1. dom freech = ∅ implies that used = PID and freech∪{p?} implies that
dom freech∪{p?}. By the identity in AbsPTAB1, dom freech = PID\used , this
clearly implies used \ {p?} iff dom freech ∪ {p?}. More formally, we can write
this as follows. We start with dom freech = PID \ used , so if dom freech = ∅,
we have:

dom freech = PID \ used

= dom freech ∪ {p?} = PID \ (used \ {p?})

= ∅ ∪ {p?} = used \ {p?} = {p?} = used \ {p?}

By the predicate of FreePID1, dom freech ′ = dom freech ∪ {p?}, and, by the
predicate of AbsPTAB1′, dom freech ′ = PID\used ′. Then, dom freech∪{p?} =
dom freech ′ = PID \ used ′, so, by the above reasoning, used ′ = used \ {p?}.
Case 2. dom freech �= ∅. In a similar fashion, dom freech = PID \ used , so

dom freech ∪ {p?} = PID \ (used \ {p?})

= dom freech ′ = PID \ (used \ {p?}

Since dom freech ′ = PID \ used ′ by the predicate of AbsPTAB1′ and by the
above reasoning, dom freech ′ = PID \ (used ∪ {p?}) = used ′. ✷

At this point, it is necessary to point out that, throughout the specification
and refinement of this kernel, there are many operations on the state-describing
components of PTAB and its derivatives. For example, the operation to update
the value of the state component of PTAB is

SetProcState

∆PTAB

p? : PID

st? : PSTATE

state ′ = state ⊕ {p? �→ st?}

In each case, it would be possible to write such an operation as

(p? ∈ used ∧ Op ∧ SysOk) ∨ Error

In the case of SetProcState, it would be

(p? ∈ used ∧ SetProcState ∧ SysOk) ∨ UnusedPD

44 3 A Simple Kernel

However, the operations are only defined in terms of their testing or of their
effect on PTAB components (and their refinements). The reason for this is
that the operation or predicate is used within a context that ensures that
p? ∈ used is always the case. We argue that this condition does not have to
be ensured by the operation because some other component will do it anyway.
If the operations were defined as disjunctions, it would be necessary to use
(p ∨ q) ∧ r ⇔ (p ∧ r) ∨ (q ∧ r) to move and combine SysOk (and possibly
move the error schema).

As far as the precondition of these operations is concerned, they typically
occur as conjuncts and therefore must be recalculated wherever they occur.
There appears to be very little to be gained by explicitly calculating the
precondition when defining the operation.

It might be argued that the refinement process is not complete until these
two steps have been completed. We argue that the refinement of these op-
erations is a rather trivial matter, a matter that can be done in one’s head,
by inspection, so the requirement that the proofs be recorded should not de-
tain us—they are obvious given the abstraction relation. We can assure the
reader that the necessary checking (making the assumption that p? ∈ used

and p? �∈ dom freechain) has been done by us in order to verify the refinement.
Should the above prove too offensive to the reader, they can always assume

that the operation has been defined in the “export” (disjunctive) form and
that the precondition has been calculated. The reader can, in any case, always
supply the proofs for themselves; each should take no more than a couple of
seconds.

3.3.3 Refinement Two

In this refinement, the function freech is replaced by the next function. The in-
tention is that next allows us to represent a list of process descriptors (actually
a list of process identifiers).

The next function will be used in other modules. In particular, it will be
used by refinement of the PROCESSQUEUE type to implement FIFO queues.

PTAB2

freehd , freelst : GPID

prio2 : PID → PPRIO

state2 : PID → PSTATE

smsg2 : PID → MSG

stacktop2 : PID → ADDR

wakingtime2 : PID → TIME

next : PID GPID

freehd = nullpid ⇔ freelst = nullpid

freehd = nullpid ⇒ next∗(| {freehd} |) = ∅

3.3 The Process Table 45

freehd
= nullpid ⇔

∀ p : PID •

p = freehd ⇒ nullpid ∈ next+(| {freehd} |)

freehd
= nullpid ⇔

∀ p : PID •

p = freelst ⇒ next(freelst) = nullpid

freehd
= nullpid ⇒ ∃
1
k : N • nextk (freehd) = nullpid

The new function, next , replaces freech (as will be seen in the next para-
graph, it actually does a little more). In this refinement, next is an injection, so
it is 1-1. Furthermore, it is a total function for the reason that other operations
(e.g., queues of various kinds) are implemented using next , thus accounting
for the majority of process identifiers. When an identifier is not present in a
structure, it is mapped to nullpid (this is the justification for the codomain
type).

The fact that next will be used by other modules implies that we are not
permitted to assume that all of its domain is relevant to the free list. This in
turn implies that the reflexive transitive closure of the next , next∗, must be
used to determine membership of the free list.

PTAB2Init

PTAB2′

freehd ′ = minpid

freelst ′ = maxpid

∀ p : PID •

p = maxpid ⇒ next ′(p) = nullpid ∧

p < maxpid ⇒ next ′(p) = p + 1

Note that the invariant on PTAB2 does not mention the state-denoting func-
tions prio2, state2, stacktop2 and wakingtime2. In the present case, they are
all total functions, so their domains are pre-defined. The question as to their
initialisation also arises. It is considered that the operations defined below
are sufficient to guarantee that a valid value is not supplied to a non-existant
process.

Since the PTAB refinement has already progressed some way, the abstrac-
tion relation is presented immediately.

AbsPTAB2

PTAB1

PTAB2

freehd = hdfree

freelst = endfree

46 3 A Simple Kernel

freehd
= nullpid ⇔ next∗(| {freehd} |) \ {nullpid} = dom freech

dom freech = ∅ ⇔ freehd = freelst ∧ freehd = nullpid

freehd
= nullpid ⇔ ∀ p : PID • p ∈ dom freech ⇒ next(p) = freech(p)

dom freech ⊆ domnext

ran freech ⊆ rannext

∀ p : PID • p ∈ dom freech ⇔ next(p) = freech(p)

∀ p : PID •

p
∈ next∗(| {freehd} |) \ {nullpid} ⇒ state1(p) = state2(p)

∀ p : PID •

p
∈ next∗(| {freehd} |) \ {nullpid} ⇒

prio1(p) = prio2(p)

∀ p : PID •

p
∈ next∗(| {freehd} |) \ {nullpid} ⇒

smsg1(p) = smsg2(p)

∀ p : PID •

p
∈ next∗(| {freehd} |) \ {nullpid} ⇒

stacktop1(p) = stacktop2(p)

∀ p : PID •

p
∈ next∗(| {freehd} |) \ {nullpid} ⇒

wakingtime1(p) = wakingtime2(p)

One of the interesting features of this schema is the implication

freehd
= nullpid ⇒

next∗(| {freehd} |) \ {nullpid} = dom freech

In what follows, relational images will be used quite extensively. In this case,
the relational image is that of the transitive closure of the head of the next

chain; the set that results includes the nullpid that terminates the next chain
and this has to be removed to yield a set of type F PID .

A second interesting feature is the use of the next function together with
the freehd and freelst variables. The next function has a domain that includes
the domain of freech and its codomain includes freech’s domain. The freehd

and freelst variables record the head and last elements of the chain, so it is
easy to remove elements from the head and add them at the end.

The initialisation theorem can now be proved. Over the years, we have
found it useful to attempt the initialisation theorem as soon as the abstraction
relation has been defined, for it is a good way of determining whether the
abstraction relation is adequate.

Theorem 6. ∀PTAB1′; PTAB2′ • PTAB1Init ∧ AbsPTAB2 ⇒ PTAB2Init

Proof. By the abstraction relation, freehd ′ = hdfree ′ and freelst ′ = endfree ′,
so freehd ′ = minpid ⇒ hdfree ′ = minpid and freelst ′ = maxpid ⇒

3.3 The Process Table 47

endfree ′ = maxpid . By the invariants of PTAB1 and PTAB2, next ′(freelst ′) =
nullpid = freech ′(endfree ′). Finally, the quantified formulae are equivalent by
the abstraction relation. The two conjuncts have the same antecedents and
p = maxpid and p < maxpid imply that p ranges over all of PID . By the
consequents, p ∈ domnext ′ for all p ∈ PID , which implies, by dom freech ′ ⊆
domnext ′, that dom freech ′ = domnext ′ for the reason that domnext ′ = PID

by this quantified formula. This also implies that dom freech �= ∅, so freehd ′ =
nullpid is justified. ✷

The operations that are now defined should be familiar to the reader by
now. In any case, they are defined in the obvious fashion, given the definition
of PTAB2. The one exception is that the transitive closure of a relational
image is frequently used for PTAB2 operations where a simple set operation
is used by the corresponding operation over PTAB1.

GotFreePIDs2

ΞPTAB2

freehd
= nullpid

AllocPID2

∆PTAB2

p! : PID

p! = freehd

freehd ′ = next(freehd)

UsedPID2

ΞPTAB2

p? : PID

p?
∈ next∗(| {freehd} |) \ {nullpid}

AddPDESC2

∆PTAB2

p? : PID

pr? : PPRIO

st? : PSTATE

prio2′ = prio2 ⊕ {p? �→ pr?}

state2′ = state2 ⊕ {p? �→ st?}

wakingtime2′ = wakingtime2 ⊕ {p? �→ 0}

stacktop2′ = stacktop2 ⊕ {p? �→ nulladdr}

48 3 A Simple Kernel

The next few operations deal with addition to the free chain. The defin-
itions are directly analogous to those employed for PTAB1 and the overall
structure of the composite operations is similar. For these reasons, we believe
there is little to be said about these schemata.

SetFCLast2

∆PTAB2

p? : PID

freelst ′ = p?

SetFCHead2

∆PTAB2

p? : PID

freehd ′ = p?

AddFreechainLast2

∆PTAB2

p? : PID

next ′ = next ⊕ {p? �→ nullpid}

AddNewLastFreechain2

∆PTAB2

p? : PID

next ′ = next ⊕ {freelst �→ p?}

AddPD2 =̂

((GotFreePIDS2 ∧ AllocPID2)
o
9
((UsedPID2[p!/p?] ∧ AddPDESC2[p!/p?] ∧ SysOk)

∨ PDInUse))

∨ PTABFull

This expands to:

3.3 The Process Table 49

AddPD2

∆PTAB2

p! : PID

serr ! : SYSERR

pr? : PPRIO

st? : PSTATE

((freehd
= nullpid ∧

p! = freehd ∧

freehd ′ = next(freehd))
o
9
(p!
∈ next∗(| {next(freehd)} |) \ {nullpid} ∧

prio2′ = prio2 ⊕ {p! �→ pr?} ∧

state2′ = state2 ⊕ {p! �→ st?} ∧

serr ! = sysok)

∨ serr ! = pdinuse)

∨ serr ! = ptabful

Note that the form of this operation causes a little confusion, especially
when transcribed to code.

Expanding the sequential composition, o
9, we obtain the following schema:

AddPD2

∆PTAB2

p! : PID

serr ! : SYSERR

pr? : PPRIO

st? : PSTATE

(∃next ′′ : PID GPID •

freehd
= nullpid ∧

p! = freehd ∧

freehd ′′ = next(freehd) ∧

p!
∈ next∗(| {freehd ′′} |) \ {nullpid} ∧

prio2′ = prio2 ⊕ {p! �→ pr?} ∧

state2′ = state2 ⊕ {p! �→ pr?} ∧

serr ! = sysok)

∨ serr ! = pdinuse

∨ serr ! = ptabfull

This can be simplified in a number of steps. First, next ′′ = next and, what is
more, next ′ = next for the reason that it is never updated (all that is done
is to move freehd down the chain). It is also the case that freehd ′′ = freehd ′.
The output p! is retained. This entitles us to rewrite AddPD2 as:

50 3 A Simple Kernel

AddPD2

∆PTAB2

p! : PID

serr ! : SYSERR

pr? : PPRIO

st? : PSTATE

(freehd
= nullpid ∧

p! = freehd ∧

freehd ′ = next(freehd) ∧

p!
∈ next∗(| {next(freehd)} |) \ {nullpid} ∧

prio2′ = prio2 ⊕ {p! �→ pr?} ∧

state2′ = state2 ⊕ {p! �→ pr?} ∧

serr ! = sysok)

∨ serr ! = pdinuse

∨ serr ! = ptabfull

For reasons that will later become clear, it should be noted that prio2 = prio2′′

and state2 = state2′′.
Omitting the assignments to serr ! (since they contribute nothing to the

precondition), we have

preAddPD2 =̂

∃PTAB2′; p! : PID •

freehd
= nullpid ∧

p! = freehd ∧

freehd ′ = next(freehd) ∧

p!
∈ next∗(| {next(freehd)} |) \ {nullpid} ∧

prio2′ = prio2 ⊕ {p! �→ pr?} ∧

state2′ = state2 ⊕ {p! �→ pr?}

This simplifies to

preAddPD2 =̂

freehd
= nullpid ∧

freehd
∈ next∗(| {next(freehd)} |) \ {nullpid}

This can be simplified to

freehd
= nullpid

If freehd �= nullpid , next∗(| {next(freehd)} |) \ {nullpid} = next+(| {freehd} \
{nullpid} and freehd is not an element of this set by definition. If freehd =
nullpid , then next∗(| {next(freehd)} |) \ {nullpid} = ∅, so freehd cannot be an
element.

Because we are dealing with modified relational images so frequently, it is
essential to prove the following theorem.

3.3 The Process Table 51

Theorem 7. The following are equivalent.

p ∈ next∗(| {next(freehd)} |) \ {nullpid}

and

p = freehd

∨ ∃ k : N •

0 < k ∧ k ≤ #domnext∗(| {next(freehd)} |) \ {nullpid} •

p = nextk (freehd)

Proof. By the definition of ∗,

next∗(| {next(freehd)} |) \ {nullpid}

= {freehd} ∪ next+(| {next(freehd)} |) \ {nullpid}

for the reason that R∗ =
⋃
{k : N • Rk} and R+ =

⋃
{k : N1 • Rk}. As

usual, for k > 0, Rk = R o
9 Rk−1, here, expressed as a function, so nextk =

next(nextk−1(x)). We also note that the above expressions in next are well-
typed (F PID) owing to the elimination of nullpid .

For convenience, let N = next∗(| {next(freehd)} |)\{nullpid}. If p = freehd ,
p ∈ N by the identity at the start of this proof. Otherwise, assume that there
is some n − 1 < #domN such that ∀ i : 1 . . n − 1 • p �= next i(freehd). Then,
for n, either p = nextn(freehd) or p �= nextn(freehd). If p = nextn(freehd), it
follows that p ∈ N and we are done. Otherwise, we continue. If n = #N and
p �= nextn(freehd), then p �∈ N ; otherwise, p ∈ N . ✷

This result permits us to re-write p ∈ next∗(| {next(freehd)} |) \ {nullpid}
as

p = freehd

∨ ∃ k : N •

0 < k ∧ k ≤ #domnext∗(| {next(freehd)} |) \ {nullpid} •

p = nextk (hd)

and p �∈ next∗(| {next(freehd)} |) \ {nullpid} as

p
= freehd

∨ ¬ ∃ k : N •

0 < k ∧ k ≤ #domnext∗(| {next(freehd)} |) \ {nullpid} •

p = nextk (hd)

The reason for this is that the quantified form of set membership is, we
believe, much closer to a computationally realisable form than the somewhat
more cryptic relational image.

There are other cases in which this equivalence can be used to re-write
schemata. They will be indicated and the re-written schema will be given.
Therefore, given the equivalence, AddPD2 becomes

52 3 A Simple Kernel

AddPD2

∆PTAB2

p! : PID

serr ! : SYSERR

pr? : PPRIO

st? : PSTATE

(freehd
= nullpid ∧

p! = freehd ∧

freehd ′ = next(freehd) ∧

p!
∈ next∗(| {next(freehd)} |) \ {nullpid} ∧

(p
= freehd

∨ (¬ ∃ k : N •

0 < k ≤ #next∗(| {next(freehd)} |) \ {nullpid} ∧

nextk (freehd) = p) ∧

prio2′ = prio2 ⊕ {p! �→ pr?} ∧

state2′ = state2 ⊕ {p! �→ pr?} ∧

serr ! = sysok)

∨ serr ! = pdinuse

∨ serr ! = ptabfull

For FreePID2, we need to define EmptyFreeChain2. It is the negation of
GotFreePIDs2:

EmptyFreeChain2

ΞPTAB2

freehd = nullpid

(This schema is exactly as we would expect.)
The operation to deallocate a process identifier is similar to FreePID2.

The reader can compare the two to see that this is the case (in fact, FreePID2
was defined by rewriting FreePID1, substituting the operations directly).

FreePID2 =̂

((EmptyFreeChain2 ∧

AddFreechainLast2 ∧ SetFCLast2 ∧ SetFCHead2 ∧

SysOk)

∨ (UsedPID2 ∧

(AddNewLastFreechain2 o
9
AddFreechainLast2) ∧

SetFCLast2 ∧

SysOk)

∨ UnusedPID

The definition of FreePID2 expands into the following schema:

3.3 The Process Table 53

FreePID2

∆PTAB2

p? : PID

serr ! : SYSERR

(freehd = nullpid ∧

next ′ = next ⊕ {p? �→ nullpid} ∧

freelst ′ = p? ∧

freehd ′ = p? ∧

serr ! = sysok)

∨ ((p?
∈ next∗(| {freehd} |) \ {nullpid} ∧

(∃next ′′ : PID GPID •

next ′′ = next ⊕ {freelst �→ p?} ∧

next ′ = next ′′ ⊕ {p? �→ nullpid}) ∧

freelst ′ = p? ∧

serr ! = sysok)

∨ serr ! = unusedpd)

The schema can be simplified, so we obtain the following:

∆PTAB2

p? : PID

serr ! : SYSERR

(freehd = nullpid ∧

next ′ = next ⊕ {p? �→ nullpid} ∧

freelst ′ = p? ∧

freehd ′ = p? ∧

serr ! = sysok)

∨ ((p?
= freehd ∨

¬ (∃ k : N •

0 < k ∧ k ≤ #next∗(| {freehd} |) \ {nullpid} ∧

nextk (freehd) = p)

next ′ = (next ⊕ {freelst �→ p?}) ⊕ {p? �→ nullpid} ∧

freelst ′ = p? ∧

serr ! = sysok)

∨ serr ! = unusedpd)

The precondition of FreePID2 is required by the refinement proofs. It is
calculated as follows.

preFreePID2 =̂

freehd = nullpid

∨ p?
∈ next∗(| {freehd} |) \ {nullpid}

This simplifies to

54 3 A Simple Kernel

p?
∈ next∗(| {freehd} |) \ {nullpid} preFreePID2 =̂

freehd = nullpid

∨ p?
∈ next∗(| {freehd} |) \ {nullpid}

This simplifies to

p?
∈ next∗(| {freehd} |) \ {nullpid}

If freehd = nullpid , then next∗(| {freehd} |) \ {nullpid} = ∅, so p? cannot be
an element.

We continue with the statement and proof of the theorems required by the
refinement process.

Theorem 8.

∀PTAB1; PTAB2; pr? : PPRIO ; st? : PSTATE •

preAddPD1 ∧ AbsPTAB2 ⇒ AddPD2

Proof. If freehd = nullpid , then next∗(| {freehd} |) \ {nullpid} = ∅, so p?
cannot be an element. ✷

Theorem 9.

∀PTAB1; PTAB2; pr? : PPRIO ; st? : PSTATE •

preAddPD1 ∧ AbsPTAB2 ⇒ AddPD2

Proof. The precondition of AddPD1 is hdfree �= nullpid , while that of
AddPD2 is freehd �= nullpid . By the predicate of AbsPTAB2, freehd = hdfree.
✷

Theorem 10.

∀PTAB1; PTAB1′; PTAB2; PTAB2′; pr? : PPRIO ; st? : PSTATE

p! : PID ; serr ! : SYSERR •

preAddPD1 ∧

AbsPTAB2 ∧

AbsPTAB2′ ∧

AddPD2

⇒ AddPD1

Proof. By the predicate of AbsPTAB2, freehd �= nullpid implies hdfree �=
nullpid , so freehd = hdfree. We note that freehd �= nullpid is preAddPD1.
The same identity, this time in the after state, as required by AbsPTAB2′,
permits us to reason that freehd ′ = hdfree ′ = p!.

It is given that next ′ = next(freehd). This implies that

domnext ′ =

(next∗(| {freehd} |) \ {nullpid}) \ {freehd}

= next+(| {freehd} |) \ {nullpid})

= next∗(| {next(freehd)} |) \ {nullpid}

3.3 The Process Table 55

and by the predicate of AbsPTAB2

(next∗(| {freehd} |) \ {nullpid}) \ {freehd}

= (dom freech) \ {freehd}

By the definition of −⊳, dom freech \{freehd} implies freech−⊳{freehd}. We may
infer that domnext ′ = dom freech \ {freehd} = freech −⊳ {freehd} and, for the
reason that freehd = p!, we have freech −⊳ {p!}. The predicate of AbsPTAB2′

permits us to infer that, since next ′ = freech −⊳ {p!}, freech ′ = freech −⊳ {p!}.
For the remainder, we need to remember that the operation is defined in

terms of sequential composition. The variables updated by the first component
are unaffected by the second, so next ′ = next ′′. We can express the condition
on prio1 and prio2 and on state1 and state2 as:

∀ p : PID •

p!
∈ next∗(| {next(freehd)} |) \ {nullpid} ⇒

prio1(p) = prio2(p)

and

∀ p : PID •

p!
∈ next∗(| {next(freehd)} |) \ {nullpid} ⇒

state1(p) = state2(p)

The antecedent in both cases has already been established, so prio1(p) =
prio2(p) and state1(p) = state2(p) for all p not in the next chain, so prio1⊕
{p! �→ pr?} = prio2 ⊕ {p! �→ pr?} and state1 ⊕ {p! �→ st?} = state2 ⊕ {p! �→
st?}. In the first case, prio2⊕{p! �→ st?} = prio2′ by the predicate of AddPD2
and, by the predicate of AbsPTAB2′, prio2′(p) = prio1′(p) for all p not in
the modified next chain. The case for state1 is similar. ✷

Theorem 11. ∀PTAB1; PTAB2; p? : PID • preFreePID1 ∧ AbsPTAB2 ⇒
preFreePID2

Proof. The precondition of FreePID1 is p? �∈ dom freech and that of
FreePID2 is p? �∈ next∗(| {freehd} |){nullpid}. By the predicate of AbsPTAB2,
dom freech = next∗(| {freehd} |) \ {nullpid}. The result is immediate. ✷

Theorem 12.

∀PTAB1; PTAB1′; PTAB2; PTAB2′; p? : PID ; serr ! : SYSERR •

preFreePID1 ∧

AbsPTAB2 ∧

AbsPTAB2′ ∧

FreePID2

⇒ FreePID1

Proof. The result immediately follows from the identities in AbsPTAB1 and
AbsPTAB2. ✷

The schemata from this last refinement have now been shown to be correct.
They can be converted directly into executable code.

56 3 A Simple Kernel

3.4 Process Queue

Process queues are used in a variety of places, most notably in semaphores.
The queue type defined in this section is not the one used by the scheduler.
The scheduler employs a priority queue that is, ultimately, implemented as a
vector (one-dimensional array). The queue defined here will be implemented
as a list of process descriptor references. comprising th The plan is to refine
the top-level representation to a chain in next . This will require two steps of
refinement.

As usual, we begin with the statement of the error schemata. In the case
of PROCESSQUEUE , there is only one such schema. It reports the condition
that the process queue is empty (presumably this condition is reported when
an attempt to dequeue an element has been attempted).

ProcessQueueEmpty

serr ! : SYSERR

serr ! = emptyqueue

3.4.1 Top Level

This is a relatively straightforward specification of a FIFO queue. It uses a
sequence as its basic container structure.

The queue state space is defined as follows. The queue itself is procs.

PROCESSQUEUE

PTAB

procs : iseqPID

ran procs ⊂ used

Note that the invariant is being used to enforce a global condition upon the
queue, namely that all elements of the queue must also be elements of used—
in other words, every process identifier in the queue must be that of a process
that exists in the system.

PROCESSQUEUEInit

PROCESSQUEUE ′

procs ′ = 〈 〉

The initialisation is as one would expect. The queue is set to empty (to the
empty sequence, that is). This initialisation trivially preserves the invariant.

The next operation is a predicate that evaluates to true when the queue,
procs, is not empty.

3.4 Process Queue 57

IsNotEmptyPROCESSQUEUE

ΞPROCESSQUEUE

procs
= 〈 〉

The operation to enqueue a process identifier on the queue is defined next.
It is defined in the obvious fashion.

EnqueuePROCESSQUEUE

∆PROCESSQUEUE

p? : PID

procs ′ = procs � 〈p?〉

By substitution of identicals, the precondition of the enqueue operation is
obtained.

preEnqueuePROCESSQUEUE =̂

procs � 〈p?〉 = procs � 〈p?〉

This version of the precondition is clearly equivalent to the following:

preEnqueuePROCESSQUEUE =̂ true

The next few operations are concerned with dequeueing elements. In the
present case, the operation is decomposed into a number of smaller operations,
the first of which merely returns the head of the queue.

TheHeadOfPROCESSQUEUE

ΞPROCESSQUEUE

p! : PID

p! = head procs

Note that this operation leaves the queue, procs, invariant.
The previous operation cannot be used in isolation because it does not

include checks that the queue is empty (if procs = 〈 〉, head procs is undefined).
Therefore, the following is defined.

HeadOfPROCESSQUEUE =̂

(IsNonEmptyPROCESSQUEUE ∧

TheHeadOfPROCESSQUEUE ∧

SysOk)

∨ ProcessQueueEmpty

This composite operation expands into:

58 3 A Simple Kernel

HeadOfPROCESSQUEUE

ΞPROCESSQUEUE

p! : PID

serr ! : SYSERR

(procs
= 〈 〉 ∧

p! = head procs ∧

serr ! = sysok)

∨ serr ! = emptyqueue

We calculate the precondition, should it be required by refinement proofs.

preHeadOfPROCESSQUEUE =̂

procs
= 〈 〉

The dequeue operation is defined in terms of the removal of the first ele-
ment of the queue. Removal is performed by the following schema.

DelHeadOfPROCESSQUEUE

∆PROCESSQUEUE

procs ′ = tail procs

This is another partial operation (partial in the sense that when procs = 〈 〉,
tail procs is undefined). In order to make the operation useful, it is necessary
to test whether the queue, procs, is empty. Therfore, the following is required:

DequeuePROCESSQUEUE =̂

(IsNotEmptyPROCESSQUEUE ∧

HeadOfPROCESSQUEUEU ∧

DelHeadOfPROCESSQUEUE ∧

SysOk)

∨ ProcessQueueEmpty

This composite operation expands into:

DequeuePROCESSQUEUE

∆PROCESSQUEUE

p! : PID

serr ! : SYSERR

(procs
= 〈 〉 ∧

p! = head procs ∧

procs ′ = tail procs ∧

serr ! = sysok)

∨ serr ! = emptyqueue

3.4 Process Queue 59

The precondition is easily calculated:

preDequeuePROCESSQUEUE =̂

procs
= 〈 〉

3.4.2 Refinement One

In this subsection, we will refer to PROCESSQUEUE ’s refinement as PQ1;
this is just so that typing is reduced.

PQ1

hdproc, lstproc : GPID

procseq : PID � GPID

hdproc = nullpid ⇔ lstproc = nullpid

(hdproc = nullpid ∧

lstproc = nullpid ⇔

dom procseq = 〈 〉)

(hdproc
= nullpid ⇔

hdproc ∈ dom procseq ∧

lstproc ∈ dom procseq ∧

dom procseq
= ∅)

The sequence procs is represented by procseq a partial injection between PID

and GPID . It will be remembered that GPID = PID ∪ {nullpid}. The func-
tion procseq is 1-1, so each element maps to exactly one element of PID , thus
permitting each domain element exactly one successor; procseq is partial be-
cause not all process identifiers are in the queue at any one time (and because
they enter and leave the queue). The function procseq models the ordered
part of the sequence procs, as well as procs’ rôle as a container. The value
nullpid is the value that is always assigned to the last element of procseq .
The two variables hdproc and lstproc represent the first and last elements of
the sequence, so when hdproc = lstproc and hdproc = nullpid , the queue is
empty.

We will now give the abstraction relation. It is very much as one would
expect and it is, once more, an identity.

AbsPQ1

PROCESSQUEUE

PQ1

dom procseq = ran procs

hdproc = nullpid ⇔ procs = 〈 〉

(hdproc
= nullpid ∧ hdproc = lstproc ⇔ head procs = last procs)

hdproc
= nullpid ⇔

hdproc = head procs

60 3 A Simple Kernel

hdproc
= nullpid ⇔

lstproc = last procs

hdproc
= nullpid ⇔

procseq(lstproc) = nullpid

hdproc
= nullpid ⇔

∀ i : 1 . . #procs − 1 •

procseq(procs(i)) = procs(i + 1))

The initialisation operation is as one would expect:

PQ1Init

PQ1′

hdproc′ = nullpid

lstproc′ = nullpid

It merely sets the queue to empty.
The emptiness of PQ1 is determined by the following operation:

IsNonEmptyPQ1

ΞPQ1

hdproc
= nullpid

The invariant of PQ1 states that hdproc �= nullpid implies hdproc �= lstproc,
which, in turn, implies that procseq is not empty.

The operation to enqueue a process identifier is slightly more complex
than for the top-level state space. It is necessary to divide enqueueing into
two cases: where the queue is empty (so the newly added element will be both
first and last), and where the queue is not empty (and so the newly added
element is the last).

EnqueuePQ1

∆PQ1

p? : PID

(hdproc = nullpid ∧

procseq ′ = {p? �→ nullpid} ∧

hdproc′ = p? ∧

lstproc′ = p?)

∨ ((∃ procseq ′′ : PID � GPID •

procseq ′′ = procseq ⊕ {lstproc �→ p?} ∧

procseq ′ = procseq ′′ ∪ {p? �→ nullpid} ∧

lstproc′ = p?)

The existential quantifier can be removed using the one-point rule and the
schema becomes

3.4 Process Queue 61

EnqueuePQ1

∆PQ1

p? : PID

(hdproc = nullpid ∧

procseq ′ = {p? �→ nullpid} ∧

hdproc′ = p? ∧

lstproc′ = p?)

∨ (procseq ′ = (procseq ⊕ {lstproc �→ p?}) ∪ {p? �→ nullpid} ∧

lstproc′ = p?)

Rewriting the identities, the schema now becomes

EnqueuePQ1

∆PQ1

p? : PID

(hdproc = nullpid ∧

{p? �→ nullpid} = {p? �→ nullpid} ∧

p? = p? ∧

p? = p?)

∨ (procseq ⊕ {lstproc �→ p?}) ∪ {p? �→ nullpid}

= (procseq ⊕ {lstproc �→ p?}) ∪ {p? �→ nullpid} ∧

p? = p?)

To calculate the precondition, the fact that lstproc ∈ dom procseq allows us
to infer that dom procseq �= ∅, so we have

(hdproc = nullpid) ∨ (hdproc
= nullpid)

⇔ true

More formally,

preEnqueuePQ1 =̂ true

The next few operations constitute the sub-operations needed to define
the dequeue operation. These operations are directly analogous to those re-
quired by PROCESSQUEUE and are presented in the same order. First, the
operation to return the head of the queue is defined.

TheHeadOfPQ1

ΞPQ1

p! : PID

p! = hdproc

In the present case, returning the head of the queue is as easy as it was at top
level. The head is always hdproc, so p! = hdproc returns the head element.

62 3 A Simple Kernel

The above operation does not guard for the empty queue, so the following
is required:

HeadOfPQ1 =̂

(IsNonEmptyPQ1 ∧ TheHeadOfPQ1 ∧ SysOk)

∨ ProcessQueueEmpty

It expands into:

HeadOfPQ1

ΞPQ1

p! : PID

serr ! : SYSERR

(hdproc
= nullpid ∧

p! = hdproc ∧

serr ! = sysok)

∨ serr ! = emptyqueue

A simple and easy calculation yields the precondition.

preHeadOfPQ1 =̂ hdproc
= nullpid

The operation to remove the head of the queue is a little more complex
than in the top-level case.

DelHeadOfPQ1

∆PQ1

procseq ′ = procseq −⊳ {hdproc}

hdproc′ = procseq(hdproc)

The head element must be removed and the head pointer must be updated.
In this case, if the queue becomes empty by the deletion of the head element,
the last element must be updated to nullpid . Note that when hdproc′ is bound
to nullpid , the invariant requires that lstproc′ is also assigned to that value.

To make the operation safer, the following is defined. Schema DequeuePQ1
is similar to the corresponding operation defined for PROCESSQUEUE .

DequeuePQ1 =̂

(IsNonEmptyPQ1 ∧ HeadOfPQ1 ∧ DelHeadOfPQ1 ∧ SysOk)

∨ ProcessQueueEmpty

The definition expands into:

3.4 Process Queue 63

DequeuePQ1

∆PQ1

p! : PID

serr ! : SYSERR

(hdproc
= nullpid ∧

p! = hdproc ∧

procseq ′ = procseq −⊳ {hdproc} ∧

hdproc′ = procseq(hdproc) ∧

serr ! = sysok)

∨ serr ! = emptyqueue

(Again, it is worth noting that, by the invariant, the assignment of nullpid to
hdproc′ implies that lstproc′ is also bound to nullpid .)

Substitution of identicals yields the following as the precondition:

hdproc
= nullpid

by the invariant of PQ1, this is equivalent to

dom procseq
= ∅

To see the first version, it should be noted that hdproc = lstproc ∧ lstproc′ =
nullpid has the implication that hdproc �= lstproc ∧ lstproc′ = lstproc. In any
case, hdproc = lstproc and hdproc �= nullpid conjointly imply that lstproc �=
nullpid , so dom procseq �= ∅, so the precondition is quite adequate.

Theorem 13. ∀PROCESSQUEUE ′; PQ1′ • PQ1Init ∧ AbsPTAB1′ ⇒
PQInit

Proof. By the invaraiant of PQ1, hdproc′ = nullpid ⇔ lstproc′ = nullpid .
Since hdproc′ = nullpid , it follows that procs ′ = 〈 〉. The initialisation schema
of PQ is precisely procs ′ = 〈 〉. ✷

Theorem 14. ∀PROCESSQUEUE ; PQ1; p? : PID • preEnqueue ∧
AbsPQ1 ⇒ preEnqueue1

Proof. Trivial (true ⇒ true). ✷

Theorem 15.

∀PROCESSQUEUE ; PROCESSQUEUE ′; PQ1; PQ1′; p? : PID •

preEnqueue ∧

AbsPQ1 ∧ AbsPQ1′ ∧

EnqueuePQ1

⇒ Enqueue

64 3 A Simple Kernel

Proof. By the invariant of PQ1, hdproc = nullpid , which, by the predicate
of AbsPQ1, implies that dom procseq = ∅. The abstraction relation states
that dom procseq = ran procs, so procs = 〈 〉.

By the predicate of AbsPQ1′, hdproc′ = head procs ′ and lstproc′ =
last procs ′. We have hdproc′ = p? ∧ lstproc′ = p?, so head procs ′ =

last procs ′ = p?, so procs ′ = 〈p?〉 = 〈 〉 � 〈p?〉 = procs � 〈p?〉.
Otherwise, dom procseq �= 〈 〉. We have (procseq ⊕{lstproc �→ p?} ∪ {p? �→

nullpid})(p?) = nullpid and this implies that lstproc′ = p? (since the invariant
requires that procseq(lstproc) = nullpid). This, by the predicate of AbsPQ1′,
implies that last procs ′ = p?. Since hdproc �= nullpid , the last conjunct of the
abstraction schema,

∀ i : 1 . . #procs; p : PID •

procseq(procs(i)) = procs(i + 1)

allows us to infer that procs � 〈p?〉 is equivalent to procseq ′ and, therefore,

procs � 〈p?〉 = procs ′ as required. ✷

Theorem 16.

∀PROCESSQUEUE ; PQ1 •

preDequeuePROCESSQUEUE ∧ AbsPQ1 ⇒ preDequeuePQ1

Proof. The precondition of DequeuePROCESSQUEUE is procs �= 〈 〉 and
that of DequeuePQ1 is dom procseq �= ∅. The predicate of the AbsPQ1
states that dom procseq = ran procs, so procs �= 〈 〉 implies that ran procs �=
∅. Therefore, we have ran procs �= ∅ and ran procs = dom procseq , so
dom procseq = ∅. ✷

Theorem 17.

∀PROCESSQUEUE ; PROCESSQUEUE ′; PQ1; PQ1′;

p! : PID ; serr ! : SYSERR •

preDequeuePROCESSQUEUE ∧

AbsPQ1 ∧ AbsPQ1′ ∧

DequeuePQ1

⇒ DequeuePROCESSQUEUE

Proof. First of all, we have hdproc �= nullpid . By the invariant, this implies
that dom procseq �= ∅ which, in turn, by the abstraction relation, AbsPQ1,
implies that ran procs �= ∅ or procs �= 〈 〉.

Now, by the predicate of AbsPQ1, hdproc = head procs , so head procs =
p?.

We have procseq −⊳ {hdproc} implies (dom procseq) \ {hdproc}. By the ab-
straction schema, AbsPQ1, hdproc = head procs , so we are entitled to infer
that ran procs \ {head procs} = (dom procseq) \ {hdproc}, so head procs is re-
moved from procs when hdproc is. By the identity, hdproc′ = procseq(hdproc),

3.4 Process Queue 65

head procs ′ = procseq(head procs) = procseq(procs(1)) = procs(1 + 1) =
procs(2). This implies that procs ′ = tail procs.

We can check that the result has sufficient elements by observing that
#(procseq −⊳ {hdproc}) = (#dom procseq)− 1 = # tail procs = #procs − 1. ✷

3.4.3 Refinement Two

In this refinement, the process queue is reduced to a queue in the process
table. This refimenent uses the next attribute of the process descriptor. The
refinement process is achieved by reducing the function procseq to the next

sequence in a manner that should be relatively clear and familiar.
This refinement saves space in the kernel by reducing every FIFO queue

of processes to a head and end pointer and a chain using the next process
attribute.

Comparison of the following schema and PQ1 will reveal that the differ-
ences are more apparent than real. In the present case, the next function in
PTAB2 takes over from procseq , thus permitting the abbreviation of the PQ2
schema.

PQ2

PTAB2

hdq , endq : GPID

hdq = nullpid ⇔ endq = nullpid

hdq
= nullpid ⇔

next(endq) = nullpid

hdq
= nullpid ⇒

endq ∈ next∗(| {hdq} |)

Here, again, the transitive closure of a relational image is employed to denote
a subset.

The initialisation schema is as one would expect:

PQ2Init

PQ2′

hdq ′ = nullpid

endq ′ = nullpid

The operation to enqueue a process identifier on PQ2 is defined. Just as
was the case with PQ1, the predicate is divided into two cases: the case in
which the queue is empty and that in which the queue is non-empty.

In the first case, the head and last variables must be assigned to p?,
the identifier of the process being enqueued, and p? must be added to next .
Since p? is now the last element of the chain, the image of p? under next must
be nullpid , so {p? �→ nullpid} must be added to next . In the second case, the

66 3 A Simple Kernel

queue is not empty, so p? must be added to the end of the queue. To satisfy
the invariant, next ′(p?) = nullpid so nullpid must be added to next , as well
as p?; for the reason that there are two additions, not one, what amounts to
a sequential composition is hidden within this schema.

EnqueuePQ2

∆PQ2

p? : PID

(hdq = nullpid ∧

hdq ′ = p? ∧

endq ′ = p? ∧

next ′ = next ⊕ {p? �→ nullpid})

∨ (endq ′ = p? ∧

(∃next ′′ : PID → GPID •

next ′′ = next ⊕ {endq �→ p?} ∧

next ′ = next ′′ ⊕ {p? �→ nullpid})

The schema simplifies to

EnqueuePQ2

∆PQ2

p? : PID

(hdq = nullpid ∧

hdq ′ = p? ∧

endq ′ = p? ∧

next ′ = next ⊕ {p? �→ nullpid})

∨ (endq ′ = p? ∧

next ′ = (next ⊕ {endq �→ p?}) ⊕ {p? �→ nullpid}

Immediately, the precondition can be calculated and can be questioned:

preEnqueuePQ2 =̂

hdq = nullpid ∨ endq = p?

It is clear that endq = p? implies that hdq �= nullpid , so the precondition can
be further simplified to

preEnqueuePQ2 =̂ true

The remaining operations are defined in the same order as for PQ1. The
definitions are all straightforward and should be immediately obvious, given
the definition of PQ1 and PQ2.

IsNonEmptyPQ2

ΞPQ2

hdq
= nullpid

3.4 Process Queue 67

The invariant of PQ2 states that hdq = nullpid exactly when endq = nullpid

and in this case, the image of hdq through next is the emtpy set, so the queue
must be empty.

The operation to remove the head of the queue is defined as follows. As
should now be familiar, this definition will have to be strengthened to account
for the empty queue.

TheHeadOfPQ2

ΞPQ2

p! : PID

p! = hdq

The strengthened definition now follows.

HeadOfPQ2 =̂ (IsNonEmptyPQ2 ∧ TheHeadOfPQ2) ∨ ProcessQueueEmpty

DelHeadOfPQ2

∆PQ2

hdq ′ = next(hdq)

next ′ = next ⊕ {hdq �→ nullpid}

hdq = endq ∧ endq ′ = nullpid

The operation to dequeue an element from the queue is now defined.

DequeuePQ2 =̂ (HeadOfPQ2 ∧ DelHeadOfPQ2 ∧ SysOk) ∨ ProcessQueueEmpty

It expands into

DequeuePQ2

∆PQ2

p! : PID

serr ! : SYSERR

(hdq
= nullpid ∧

p! = hdq ∧

hdq ′ = next(hdq) ∧

next ′ = next ⊕ {hdq �→ nullpid} ∧

serr ! = sysok)

∨ serr ! = emptyqueue

The precondition can now be calculated.

preDequeuePQ2 =̂

∃PQ2′; p! : PID •

hdq
= nullpid ∧

p! = hdq ∧

hdq ′ = next(hdq) ∧

next ′ = next ⊕ {hdq �→ nullpid}

68 3 A Simple Kernel

This version simplifies to

preDequeuePQ2 =̂

hdq
= nullpid ∧

hdq = hdq ∧

next(hdq) = next(hdq) ∧

next ⊕ {hdq �→ nullpid} = next ⊕ {hdq �→ nullpid}

and then to

hdq
= nullpid

A more general statement of the above is

next∗(| {hdq} |) \ {nullpid}
= ∅

Therefore, we have

preDequeuePQ2 =̂ next∗(| {hdq} |) \ {nullpid}
= ∅

The abstraction relation is now defined. It should be obvious.

AbsPQ2

PQ1

PQ2

hdq = hdprocs

endq = lastprocs

dom procseq ⊆ domnext

ran procseq ⊆ rannext

dom procq = next∗(| {hdq} |) \ {nullpid}

∀ p : PID •

p ∈ dom procseq ⇒ procseq(p) = next(p)

Once again, this abstraction relation is mostly the identity. The two ⊆ rela-
tions do not cause much of a problem and should not deter us from considering
the above a function, for they are not the most important conjuncts.

Theorem 18. ∀PQ1′; PQ2′ • PQ2Init ∧ AbsPQ2′ ⇒ PQ1Init

Proof. By the abstraction relation, hdq ′ = hdproc′ and endq ′ = lstproc′, so
hdq ′ = nullpid = hdproc′ and endq ′ = nullpid = lstproc′. ✷

Theorem 19. ∀PQ1; PQ2; p? : PID • preEnqueuePQ1 ∧ AbsPQ2 ⇒
preEnqueuePQ2

Proof. Both preconditions are true and true ⇒ true is, clearly, true. ✷

3.4 Process Queue 69

Theorem 20.

∀PQ1; PQ1′; PQ2; PQ2′; p? : PID •

preEnqueuePQ1 ∧

AbsPTAB2 ∧

AbsPTAB2′ ∧

EnqueuePQ2

⇒ EnqueuePQ1

Proof. Immediate from the abstraction relations. ✷

Theorem 21.

∀PQ1; PQ2 •

preDequeuePQ1 ∧ AbsPQ2 ⇒ preDequeuePQ2

Proof. The precondition of preDequeuePQ1 is dom procseq �= ∅ and that of
preDequeuePQ2 is next∗(| {hdq} |){nullpid} �= ∅. By the abstraction relation,
AbsPQ2, we have dom procseq = next∗(| {hdq} |){nullpid}. ✷

Theorem 22.

∀PQ1; PQ1′; PQ2; PQ2′; p! : PID ; serr ! : SYSERR •

preDequeuePQ1 ∧

AbsPQ2 ∧

AbsPQ2′ ∧

DequeuePQ2

⇒ DequeuePQ1

Proof. The precondition of DequeuePQ1 is hdproc �= nullpid .
The interesting part of the proof is as follows. hdq ′ = next(hdq) = next ′ =

next ⊕ {hd �→ nullpid}. By the predicate of AbsPQ2′, hdq ′ = hdproc′, so

hdproc′

= next(hdq)

= procseq(hdq)

= procseq(hdproc).

We have next ′ = next ⊕ {hdq �→ nullpid}, which implies that procseq −⊳
{hdproc} = procseq ′.

To see this, consider

dom procseq

= next∗(| {hdq} |) \ {nullpid}

= next∗(| {next(hdq)} |) \ {nullpid}

= next+(| {hdq} |) \ {nullpid}

= (next∗(| {hdq} |) \ {nullpid}) \ {hdq}

= (dom procseq) \ {hdq}

= (dom procseq) \ {hdproc} By definition of −⊳

= procseq −⊳ {hdproc}

✷

70 3 A Simple Kernel

The schemata from this last refinement have now been shown to be correct.
They can be converted directly into executable code.

3.5 Priority Queue

In this kernel, the data structure used by the scheduler is a priority queue. This
is to be interpreted as a sequence of process identifiers, ordered by priority.
The operations are the usual ones (enqueue, dequeue). The enqueue operation
requires either that the sequence is sorted or that the appropriate place to
insert the new element is found.

In this section, the priority queue is specified in terms of a sequence. The
aim is eventually to refine it to a chain running through the next function in
PTAB2.

As usual, the error schemata are defined first. There are two cases: the
case in which the queue is full and that in which it is empty.

PRIOQFull

serr ! : SYSERR

serr ! = schedqfull

PRIOQEmpty

serr ! : SYSERR

serr ! = schedqempty

3.5.1 Top Level

PRIOQ

PTAB

pq : seqPID

maxs : N1

#pq ≤ maxs

ran pq ⊂ used

∀ i : 1 . . #pq − 1 •

prio(pq(i)) ≤ prio(pq(i + 1))

The queue container is pq and its maximum size is represented by maxs.
The elements of pq are held in ascending order so that the highest priority
corresponds to the lowest index. The invariant requires that all elements of pq

3.5 Priority Queue 71

must be elements of used and that nullpid is never an element of the queue.
It is also required that the identifier of the idle process should never be an
element of pq but this is harder to do.

The initialisation operation merely sets the maximum length of the queue
and the queue to empty.

PRIOQInit

PRIOQ ′

mps? : N1

maxs ′ = mps?

pq ′ = 〈 〉

The following schema determines whether the priority queue is empty.

IsEmptyPRIOQ

ΞPRIOQ

pq = 〈 〉

The current head of the priority queue is returned as p! by the next schema.
The priority queue is a sequence, so the head operation is applicable.

PRIOQHd

ΞPRIOQ

p! : PID

p! = head pq

When enqueueing an element, it is necessary to be able to obtain the last
element of the queue. The following schema represents an operation that does
just that.

PRIOQLast

ΞPRIOQ

p! : PID

p! = last pq

The operation of enqueueing an element is quite involved. This is because
the queue is sorted by priority. The first part of the operation enqueues a
new element on the head of the queue. This operation is performed whenever
the priority of the new element, p?, is higher (lower in value, note) than the
current head of pq .

PRIOQEnqueueHd

∆PRIOQ

p? : PID

〈p?〉 � pq = pq ′

72 3 A Simple Kernel

Next, the operation to enqueue an element at the end of the queue is defined.
This operation is performed whenever the priority of the new element p? is
lower (higher in value, note) than the current last element of pq .

PRIOQEnqueueLast

∆PRIOQ

p? : PID

pq ′ = pq�〉p?〉

If the queue is empty and a new element is to be added, the following schema
defines the operation to enqueue on an empty queue.

PRIOQAddSingleton

∆PRIOQ

p? : PID

pq ′ = 〈p?〉

Finally, there is the operation that inserts a new element, p?, into a queue.
When this operation is used, it is known that the priority of p? is less than
that of the head of pq and greater than its last element.

PRIOQInsert

∆PRIOQ

p? : PID

∃ s1, s2 : seqPID | s1
= 〈 〉 ∧ s2
= 〈 〉 ∧ s1 � s2 = pq •

prio(last s1) < prio(p?) ∧

prio(p?) ≤ prio(head s2) ∧

pq ′ = s1 � 〈p?〉 � s2

This operation divides the queue, pq , into two parts, s1 and s2, where the last
element of s1 has a priority higher than that of p? and the first element of s2
has a priority that is at least that of p?.

The next schema defines one of the priority tests required by the enqueue
operation. It is satisfied when the priority of p?, the element to be enqueued,
is higher (i.e., of lower value) than that of the head of pq . In this case, p?
should be added to the head of the queue using PRIOQEnqueueHd.

ShouldAddPRIOQHd

ΞPRIOQ

p? : PID

prio(p?) ≤ prio(head pq)

The following schema defines a predicate that is satisfied when the priority
of the last element of pq is lower than that of p?. When this is the case, p? is
added to pq at the end using PRIOQEnqueueLast.

3.5 Priority Queue 73

ShouldAddPRIOQLast

ΞPRIOQ

p? : PID

prio(last pq) < prio(p?)

The specification of the enqueue operation is given by the PRIOQEnqueue
schema.

PRIOQEnqueue =̂

(CanEnqueuePRIOQ ∧

((IsEmptyPRIOQ ∧ PRIOQAddSingleton) ∨

(ShouldAddPRIOQHd ∧ PRIOQEnqueueHd) ∨

(ShouldAddPRIOQLast ∧ PRIOQEnqueueLast) ∨

PRIOQInsert) ∧

SysOk)

∨ PRIOQFull

This schema expands as follows:

PRIOQEnqueue

∆PRIOQ

p? : PID

serr ! : SYSERR

(#pq < maxs ∧

((pq = 〈 〉 ∧ pq ′ = 〈p?〉) ∨

(prio(p?) ≤ prio(head pq) ∧ pq ′ = 〈p?〉 � pq) ∨

(prio(last pq) < prio(p?) ∧ pq ′ = pq � 〈p?〉) ∨

(∃ s1, s2 : seqPID | s1
= 〈 〉 ∧ s2
= 〈 〉 ∧ s1 � s2 = pq •

prio(last s1) < prio(p?) ∧

prio(p?) ≤ prio(head s2) ∧

pq ′ = s1 � 〈p?〉 � s2)) ∧

serr ! = sysok)

∨ serr ! = schedqfull

Before moving on, it is necessary to prove a small result. This will help us
at a later stage. The result is similar to the “implicit” precondition.

Lemma 1. ∀ p : PID • p ∈ ran pq ′ ⇒ p ∈ used

Proof. By the invariant of PRIOQ , ran pq ⊂ used . Since there is no modifi-
cation of used in the schema of PRIOQEnqueue, so the addition of p? to pq

does not affect used . Therefore, for the invariant to hold, it is necessary for

p? ∈ used , so ran(pq � 〈p?〉) ⊂ used .

74 3 A Simple Kernel

Moreover, the invariant of PTAB states that dom prio = used . For this
operation to be well-defined, prio(p)?) must also be well-defined. For this to
be the case, p? ∈ used , as required. ✷

The enqueue operation will be refined in the next subsection, so its pre-
condition must be calculated.

prePRIOQEnqueue =̂

∃PRIOQ ′; serr ! : SYSERR •

(#pq < maxs ∧

((pq = 〈 〉 ∧ pq ′ = 〈p?〉) ∨

(prio(p?) ≤ prio(head pq) ∧ pq ′ = 〈p?〉 � pq) ∨

(prio(last pq) < prio(p?) ∧ pq ′ = pq � 〈p?〉) ∨

(∃ s1, s2 : seqPID | s1
= 〈 〉 ∧ s2
= 〈 〉 ∧ s1 � s2 = pq •

prio(last s1) < prio(p?) ∧

prio(p?) ≤ prio(head s2) ∧

pq ′ = s1 � 〈p?〉 � s2)) ∧

serr ! = sysok)

∨ serr ! = schedqfull

Since serr ! does not contribute to the precondition and for the reason that
pre(A ∨ B) ⇔ preA ∨ preB , we can omit all occurrences of this variable
immediately. This gives

prePRIOQEnqueue =̂

∃PRIOQ ′; serr ! : SYSERR •

(#pq < maxs ∧

((pq = 〈 〉 ∧ pq ′ = 〈p?〉) ∨

(prio(p?) ≤ prio(head pq) ∧ pq ′ = 〈p?〉 � pq) ∨

(prio(last pq) < prio(p?) ∧ pq ′ = pq � 〈p?〉) ∨

(∃ s1, s2 : seqPID | s1
= 〈 〉 ∧ s2
= 〈 〉 ∧ s1 � s2 = pq •

prio(last s1) < prio(p?) ∧

prio(p?) ≤ prio(head s2) ∧

pq ′ = s1 � 〈p?〉 � s2)))

We can now simplify the precondition schema to

prePRIOQEnqueue =̂

(#pq < maxs ∧

(pq = 〈 〉

∨ (prio(p?) ≤ prio(head pq))

∨ (prio(last pq) < prio(p?))

∨ (∃ s1, s2 : seqPID | s1
= 〈 〉 ∧ s2
= 〈 〉 ∧ s1 � s2 = pq •

prio(last s1) < prio(p?) ∧

prio(p?) ≤ prio(head s2))))

It is clear that

3.5 Priority Queue 75

(prio(p?) ≤ prio(head pq))

∨ (prio(last pq) < prio(p?))

∨ (∃ s1, s2 : seqPID | s1
= 〈 〉 ∧ s2
= 〈 〉 ∧ s1 � s2 = pq •

prio(last s1) < prio(p?) ∧

prio(p?) ≤ prio(head s2))

implies that prio(p?) ∈ PPRIO and that pq �= 〈 〉. It is also clear that
prio(p?) ∈ PPRIO ⇔ true, so this part reduces to pq �= 〈 〉. Plugging this
back into the rest of the precondition, we obtain

#pq < maxs ∧ (pq = 〈 〉 ∨ pq
= 〈 〉)

or

#pq < maxs ∧ true ⇔

#pq < maxs

So, we may conclude that

prePRIOQEnqueue =̂ #pq < maxs

The operation to remove an element of pq is defined by the following
schema:

PRIOQRemove

∆PRIOQ

p? : PID

∃ s1, s2 : seqPID •

s1 � 〈p?〉 � s2 = pq ∧

s1 � s2 = pq ′

Unfortunately, it is not possible to remove an element from an empty queue.
Indeed, it is necessary to define an operation that first tests whether pq is
empty. The reason for this is that when the scheduler’s queue is empty, the
idle process must be scheduled.

DelPRIOQElem =̂

¬ IsEmptyPRIOQ ∧ PRIOQRemove

This operation expands into the following schema:

DelPRIOQElem

∆PRIOQ

p? : PID

pq
= 〈 〉

∃ s1, s2 : seqPID •

s1 � 〈p?〉 � s2 = pq ∧

s1 � s2 = pq ′

76 3 A Simple Kernel

This is an operation that will be used by the scheduler, so will be refined.
For this reason, its precondition must be calculated.

preDelPRIOQElem =̂

∃PRIOQ ′ •

pq
= 〈 〉 ∧

(∃ s1, s2 : seqPID •

s1 � 〈p?〉 � s2 = pq ∧

s1 � s2 = pq ′)

This simplifies to:

preDelPRIOQElem =̂

pq
= 〈 〉 ∧ p? ∈ ran pq

The second conjunct is justified as follows.I It is clear that ran pq = ran(s1 �

〈p?〉 � s2) by the definition of � and of sequence. Therefore, let ran s1 = R1

and ran s2 = R2. It follows that, since p? ∈ ran pq , p? �∈ R1 ∪ R2, so ran pq =
R1 ∪ R2 ∪ {p?}.

Finally, we observe that p? ∈ ran pq implies pq �= 〈 〉, so

preDelPRIOQElem =̂ p? ∈ ran pq

The scheduler requires that it must be possible to inspect the head of pq
and also to remove pq ’s head as a separate operation. Dequeueing is, therefore,
composed of these two operations. The following schema defines an operation
to remove the head of pq . Since pq is just a sequence, the tail operation is
perfect for our needs.

PRIOQDelHd

∆PRIOQ

pq ′ = tail pq

For the precondition, calculation yields

tail pq = tail pq

⇔ true

However, this is not of much use. The stronger precondition, namely pq �= 〈 〉
is preferred.

The dequeue operation is composed of returning the head and then re-
moving it. This is the core of the following definition.

PRIOQDequeue =̂

(¬ IsEmptyPRIOQ ∧ PRIOQHd ∧ PRIOQDelHd ∧ SysOk)

∨ PRIOQEmpty

3.5 Priority Queue 77

The interesting part is the second conjunct:

PRIOQHd ∧ PRIOQDelHd

∆PRIOQ

p! : PID

p! = head pq

pq ′ = tail pq

Again, calculation yields the weak precondition, true. A moment’s thought
shows that the precondition pq �= 〈 〉 also implies the operation.

The entire schema expands into

PRIOQDequeue

∆PRIOQ

p! : PID

serr ! : SYSERR

(pq
= 〈 〉 ∧

p! = head pq ∧

pq ′ = tail pq ∧

serr ! = sysok)

∨ serr ! = schedqempty

Schema PRIOQDequeue’s precondition can now be calculated. We first
have

prePRIOQDequeue =̂

∃PRIOQ ′; p! : PID ; serr ! : SYSERR •

(pq
= 〈 〉 ∧

p! = head pq ∧

pq ′ = tail pq ∧

serr ! = sysok)

∨ serr ! = schedqempty

This simplifies to:

prePRIOQDequeue =̂

(pq
= 〈 〉 ∧

head pq = head pq ∧

tail pq = tail pq ∧

sysok = sysok)

∨ schedqempty = schedqempty

This is clearly equivalent to

prePRIOQDequeue =̂

pq
= 〈 〉

78 3 A Simple Kernel

3.5.2 Refinement One

The first refinement consists of replacing the sequence by a function. The
domain of the function is a numeric type, 1 . . maxs1, where maxs1 = maxs
or the maximum length of the sequence, pq , in the top-level specification (the
maximum number of elements in this queue, too). The range is PID , as was
the case in the specification. Therefore, the domain permits the function to
represent as many values as the original sequence. The variable maxs1 records
the maximum size of the queue at this level, pq1. The final variable is nxtp,
the index of the next element to be added to pq1 (which can be thought of as
a one-dimensional array or vector).

PRIOQ1

pq1 : 1 . . maxs1 → PID

maxs1 : N1

nxtp : 1 . . maxs + 1

∀ i : 1 . . nxtp − 2 •

prio1(pq1(i)) ≤ prio(pq1(i + 1))

Note that pq1 is ordered by priority. The condition that every element of pq1
is in used (or, equivalently, at this level, not in the free chain) is not repeated.
The reason for this is that it can be inferred from the equivalent schema in
the specification.

The initialisation operation is defined next.

PRIOQInit1

PRIOQ1′

mps? : N1

maxs1′ = mps?

nxtp′ = 1

The initialisation consists only of setting the maximum length of the queue
and setting the initial value of nxtp to 1 (i.e., the beginning of the vector).

The next schema defines a predicate that is true when pq1 is empty.

IsEmptyPRIOQ1

ΞPRIOQ1

nxtp = 1

This operation’s predicate should be compared with the initialisation schema.
In both cases nxtp takes the value 1. The scheme adopted here is that the
element is assigned to the element indexed by nxtp which is then incremented.

The following few operations are concerned with accessing the first and
last elements of the queue, with determining whether the element to be added

3.5 Priority Queue 79

to the queue has an appropriate priority and with inserting a new element into
the queue. The operations correspond directly to those in the specification as
presented in the last section.

PRIOQHd1

ΞPRIOQ1

p! : PID

p! = pq1(1)

PRIOQLast1

ΞPRIOQ1

p! : PID

p! = pq1(nxtp − 1)

The next schema defines an operation that is satisfied when the length of
the queue is less than the maximum.

CanEnqueuePRIOQ1

ΞPRIOQ1

nxtp < maxs + 1

As in the specification, this operation enqueues an element at the head of
the queue (because it has a priority higher than any queue element).

PRIOQEnqueueHd1

∆PRIOQ1

p? : PID

pq1′ = pq1 ⊕ {1 �→ p?}

The following operation enqueues an element at the end of the queue
(because it has a priority lower than any in the queue).

PRIOQEnqueueLast1

∆PRIOQ1

p? : PID

pq1′ = pq1 ⊕ {nxtp �→ p?}

nxtp′ = nxtp + 1

The next schema defines an operation that moves the elements of a vector
up by one place. Note that this is an example of how arrays (vectors) and
functions are considered equivalent.

80 3 A Simple Kernel

MovePRIOQUp1

∆PRIOQ1

∀ i : 1 . . nxtp − 1 •

pq1′ = pq1 ⊕ {i + 1 �→ pq1(i)}

nxtp′ = nxtp + 1

Finally, we are able to define the enqueue operation. As with the specifi-
cation, the operation is defined in small parts that are composed to form the
final operation. First, the operation to enqueue on the head is defined.

PRIOQEnqueueHd1 =̂

MovePRIOQUp1 o
9
PRIOQEnqueueHd1

This expands into:

PRIOQEnqueueHd1

∆PRIOQ1

p? : PID

∃ pq1′′ : 1 . . maxs1 → PID •

(∀ i : 1 . . nxtp − 1 •

pq1′′ = pq1 ⊕ {i + 1 �→ pq1(i)}) ∧

nxtp′ = nxtp + 1 ∧

pq1′ = pq1′′ ⊕ {1 �→ p?}

If the queue is empty, the following is used to enqueue the new element.

PRIOQAddSingleton1

∆PRIOQ1

p? : PID

pq1′ = {nxtp �→ p?}

nxtp′ = nxtp + 1

This schema defines the inverse of the MovePRIOQUp1 schema. In this
case, the elements of the vector are moved down one place and the first element
is over-written.

PRIOQMoveUpFrom

∆PRIOQ1

where? : 1 . . maxs1

∀ j : where? + 1 . . nxtp − 1 •

pq1′ = pq1 ⊕ {j + 1 �→ pq1(j)}

The next operation sets the i + 1st element to p?. This is used when
inserting a new element into the queue.

3.5 Priority Queue 81

PRIOQSetIthSucc

∆PRIOQ1

p? : PID

i? : 1 . . maxs1

pq1′ = pq1 ⊕ {i + 1 �→ p?}

This schema defines a predicate that is true when the new element should
be enqueued on the head of pq1 (i.e, when it has a higher priority than the
current head—recall that higher priority is equivalent to lower value for the
priority).

ShouldAddPRIOQHd1

ΞPRIOQ1

p? : PID

prio1(p?) ≤ prio1(pq1(1))

The test for adding at the end is defined next.

ShouldAddPRIOQLast1

ΞPRIOQ1

p? : PID

prio1(pq1(nxtp − 1)) < prio1(p?)

Next comes a predicate that is true when the priority of the element to
be added to the queue is somewhere between those of the head and the last
elements.

PRIOQInsertMidPoss1

ΞPRIOQ1

p? : PID

i? : 1 . . maxs1

prio1(pq1(i)) < prio1(p?)

prio1(p?) ≤ prio1(pq1(i + 1))

Associated with this predicate is the PRIOQInsert1 operation. This operation
inserts a new element somewhere between the head and the last elements,
based upon its priority.

PRIOQInsert1 =̂

∃ i : 1 . . nxtp − 2 •

PRIOQInsertMidPoss1[i/i?] ∧

(PRIOQMoveUpFrom[i/where?] o
9
PRIOQSetIthSucc[i/i?]) ∧

nxtp′ = nxtp + 1

82 3 A Simple Kernel

This expands into:

∆PRIOQ1

p? : PID

∃ i : 1 . . nxtp − 2 •

prio1(pq1(i)) < prio1(p?) ∧

prio1(p?) ≤ prio1(pq1(i + 1)) ∧

(∃ pq1′′ : 1 . . maxs1 → PID •

(∀ j : i + 1 . . nxtp − 1 •

pq1′′ = pq1 ⊕ {j + 1 �→ pq1(j)}) ∧

pq1′ = pq1′′ ⊕ {i + 1 �→ p?}) ∧

nxtp′ = nxtp + 1

Finally, the enqueue operation can be defined. It is given by the following
formula:

PRIOQEnqueue1 =̂

(CanEnqueuePRIOQ1 ∧

((IsEmptyPRIOQ1 ∧ PRIOQAddSingleton1) ∨

(ShouldAddPRIOQHd1 ∧ PRIOQEnqueueHd1) ∨

(ShouldAddPRIOQLast1 ∧ PRIOQEnqueueLast1) ∨

PRIOQInsert1) ∧

SysOk)

∨ PRIOQFull

This complex definition expands into the following schema

PRIOQEnqueue1

∆PRIOQ1

p? : PID

serr ! : SYSERR

(nxtp < maxs1 + 1 ∧

((nxtp = 1 ∧ pq1′ = {1 �→ p?} ∧ nxtp′ = 2) ∨

(prio1(p?) ≤ prio1(pq1(1)) ∧

(∃ pq1′′ : 1 . . maxs1 → PID •

(∀ i : 1 . . nxtp − 1 •

pq1′′ = pq1 ⊕ {i + 1 �→ pq1(i)}) ∧

nxtp′ = nxtp + 1 ∧ pq1′ = pq1′′ ⊕ {1 �→ p?}))

∨ (prio1(pq1(nxtp − 1)) < prio1(p?) ∧

pq1′ = pq1 ⊕ {nxtp �→ p?} ∧ nxtp′ = nxtp + 1)

∨ (∃ i : 1 . . nxtp − 2 •

prio1(pq1(i)) < prio(p?) ∧ prio1(p?) ≤ prio1(pq1(i + 1)) ∧

(∃ pq1′′ : 1 . . maxs1 → PID •

3.5 Priority Queue 83

(∀ j : i + 1 . . nxtp − 1 •

pq1′′ = pq1 ⊕ {j + 1 �→ pq1(j)}) ∧

pq1′ = pq1′′ ⊕ {i + 1 �→ p?}) ∧ nxtp′ = nxtp + 1)) ∧

serr ! = sysok) ∨ serr ! = schedqfull

The schema’s predicate can be simplified in a fairly obvious way. After sim-
plification, the schema becomes

PRIOQEnqueue1

∆PRIOQ1

p? : PID

serr ! : SYSERR

(nxtp ≤ maxs1 ∧

((nxtp = 1 ∧ pq1′ = {1 �→ p?} ∧ nxtp′ = 2) ∨

(prio1(p?) ≤ prio1(pq1(1)) ∧

(∀ i : 1 . . nxtp − 1 •

pq1′ = (pq1 ⊕ {i + 1 �→ pq1(i)}) ⊕ {1 �→ p?}) ∧

nxtp′ = nxtp + 1) ∨

(prio1(pq1(nxtp − 1)) < prio1(p?) ∧

pq1′ = pq1 ⊕ {nxtp �→ p?} ∧

nxtp′ = nxtp + 1) ∨

(∃ i : 1 . . nxtp − 2 •

prio1(pq1(i)) < prio1(p?) ∧ prio1(p?) ≤ prio1(pq1(i + 1)) ∧

(∀ j : i + 1 . . nxtp − 1 •

pq1′ = (pq1 ⊕ {j + 1 �→ pq1(j)}) ⊕ {i + 1 �→ p?} ∧

nxtp′ = nxtp + 1)) ∧

serr ! = sysok)

∨ serr ! = schedqfull

The enqueue operation is a refinement, so we need to calculate its precon-
dition. It is given by the following predicate:

prePRIOQEnqueue1 =̂

∃PRIOQ1′; serr ! : SYSERR •

(nxtp ≤ maxs1 ∧

((nxtp = 1 ∧ pq1′ = {1 �→ p?} ∧ nxtp′ = 2) ∨

(prio1(p?) ≤ prio1(pq1(1)) ∧

(∃ pq1′′ : 1 . . maxs1 → PID •

(∀ i : 1 . . nxtp − 1 •

pq1′′ = pq1 ⊕ {i + 1 �→ pq1(i)}) ∧

nxtp′ = nxtp + 1 ∧

pq1′ = pq1′′ ⊕ {1 �→ p?})) ∨

84 3 A Simple Kernel

(prio1(pq1(nxtp − 1)) < prio1(p?) ∧

pq1′ = pq1 ⊕ {nxtp �→ p?} ∧

nxtp′ = nxtp + 1) ∨

(∃ i : 1 . . nxtp − 2 •

prio1(pq1(i)) < prio1(p?) ∧ prio1(p?) ≤ prio1(pq1(i + 1)) ∧

(∃ pq1′′ : 1 . . maxs1 → PID •

(∀ j : i + 1 . . nxtp − 1 •

pq1′′ = pq1 ⊕ {j + 1 �→ pq1(j)}) ∧

pq1′ = pq1′′ ⊕ {i + 1 �→ p?} ∧

nxtp′ = nxtp + 1)) ∧

serr ! = sysok)

∨ serr ! = schedqfull

Since serr ! makes no contribution to the precondition, we can omit it. The
second outermost disjunct can be immediately deleted by this fact. The inner
occurrence can be removed by noting that pre(A ∨ B) ⇔ preA ∨ preB
and serr ! = sysok , by the one-point rule, is sysok = sysok (a tautology). So,
simplifying the existential quantifier involving pq1′′ using the one-point rule

prePRIOQEnqueue1 =̂

∃PRIOQ1′; serr ! : SYSERR •

(nxtp ≤ maxs1 ∧

((nxtp = 1 ∧ pq1′ = {1 �→ p?} ∧ nxtp′ = 2) ∨

(prio1(p?) ≤ prio1(pq1(1)) ∧

(∀ i : 1 . . nxtp − 1 •

pq1′ = (pq1 ⊕ {i + 1 �→ pq1(i)}) ⊕ {1 �→ p?}) ∧

nxtp′ = nxtp + 1 ∧

(prio1(pq1(nxtp − 1)) < prio1(p?) ∧

pq1′ = pq1 ⊕ {nxtp �→ p?} ∧

nxtp′ = nxtp + 1) ∨

(∃ i : 1 . . nxtp − 2 •

prio1(pq1(i)) < prio1(p?) ∧ prio1(p?) ≤ prio1(pq1(i + 1)) ∧

(∀ j : i + 1 . . nxtp − 1 •

pq1′ = (pq1 ⊕ {j + 1 �→ pq1(j)}) ⊕ {i + 1 �→ p?} ∧

nxtp′ = nxtp + 1))))

Next, the one-point rule is applied repeatedly to give

prePRIOQEnqueue1 =̂

nxtp ≤ maxs1 ∧

(nxtp = 1 ∧

∨ (prio1(p?) ≤ prio1(pq1(1)))

∨ (prio1(pq1(nxtp − 1)) < prio1(p?))

∨ (∃ i : 1 . . nxtp − 2 •

prio1(pq1(i)) < prio1(p?) ∧ prio1(p?) ≤ prio1(pq1(i + 1))))

Again, the 3 disjuncts

3.5 Priority Queue 85

(prio1(p?) ≤ prio1(pq1(1)))

∨ (prio1(pq1(nxtp − 1)) < prio1(p?))

∨ (∃ i : 1 . . nxtp − 2 •

prio1(pq1(i)) < prio1(p?) ∧ prio1(p?) ≤ prio1(pq1(i + 1)))

jointly imply that prio1(p) ∈ PPRIO . This permits us to reduce these dis-
juncts to true. In addition, they also imply that nxtp > 1 for the reason that
there must be at least one element in pq1 for any of these comparisons to
succeed.

We therefore have at this stage nxtp < maxs1+1 ∧ (nxtp = 1 ∧ nxtp > 1).
The second conjunct implies that nxtp ≥ 1 and we can infer that 1 ≤ nxtp <
maxs1+1 or 1 ≤ nxtp ≤ maxs1. This is equivalent to nxtp ∈ 1 . .maxs1, which
is the definition of nxtp’s type, so reduces to true.

The precondition, therefore, reduces to

prePRIOQEnqueue1 =̂ nxtp ≤ maxs1

We must now handle the operations that remove elements from the priority
queue. The first operation to be defined removes a specified element, p?, from
the queue. If p? is not present in the queue, the operation just terminates,
otherwise it removes p? and adjusts the insertion point (nxtp).

PRIOQRemove1

∆PRIOQ1

p? : PID

∃ i : 1 . . nxtp − 1 •

pq1(i) = p? ∧

(∀ j : i + 1 . . nxtp − 1 •

pq1′ = pq1 ⊕ {j − 1 �→ pq1(j)}) ∧

nxtp′ = nxtp − 1

The operation to remove the head of the priority queue is defined next
and is

PRIOQDelHd1

∆PRIOQ1

nxtp′ = nxtp − 1

∀ i : 1 . . nxtp − 2 •

pq1′ = pq1 ⊕ {i �→ pq1(i + 1)}

The precondition of this operation is as now given.

prePRIOQDelHd1 =̂ nxtp > 1

This can be seen from the following. If nxtp = 1, there are no elements in pq1,
so the operation must fail.

86 3 A Simple Kernel

The operation performing the dequeue operation is the following

PRIOQDequeue1 =̂

(¬ IsEmptyPRIOQ1 ∧ PRIOQHd1 ∧ PRIOQDelHd1 ∧ SysOk)

∨ PRIOQEmpty

The entire schema, after expansion, is

PRIOQDequeue1

∆PRIOQ1

p! : PID

serr ! : SYSERR

(nxtp > 1 ∧

p! = pq1(1) ∧

(∀ i : 1 . . nxtp − 2 •

pq1′ = pq1 ⊕ {i �→ pq1(i + 1)}) ∧

nxtp′ = nxtp − 1 ∧

serr ! = sysok)

∨ serr ! = schedqempty

The precondition is

prePRIOQDequeue1 =̂

∃PRIOQ1′; p! : PID ; serr ! : SYSERR •

(nxtp > 1 ∧

p! = pq1(1) ∧

(∀ i : 1 . . nxtp − 2 •

pq1′ = pq1 ⊕ {i �→ pq1(i + 1)}) ∧

nxtp′ = nxtp − 1 ∧

serr ! = sysok)

∨ serr ! = schedqempty

For well-advertised reasons, this immediately reduces to

prePRIOQDequeue1 =̂

∃PRIOQ1′; p! : PID ; serr ! : SYSERR •

(nxtp > 1 ∧

p! = pq1(1) ∧

(∀ i : 1 . . nxtp − 2 •

pq1′ = pq1 ⊕ {i �→ pq1(i + 1)}) ∧

nxtp′ = nxtp − 1)

This now reduces to

3.5 Priority Queue 87

prePRIOQDequeue1 =̂

∃PRIOQ1′; p! : PID ; serr ! : SYSERR •

(nxtp > 1 ∧

pq1(1) = pq1(1) ∧

(∀ i : 1 . . nxtp − 2 •

pq1 ⊕ {i �→ pq1(i + 1)} = pq1 ⊕ {i �→ pq1(i + 1)}) ∧

nxtp − 1 = nxtp − 1)

or

prePRIOQDequeue1 =̂ nxtp > 1

This can be expressed as the proposition that the queue is not empty.
The abstraction relation is now presented.

AbsPRIOQ1

PRIOQ

PRIOQ1

maxs1 = maxs

nxtp = #pq + 1

∀ i : 1 . . nxtp − 1 •

pq(i) = pq1(i)

The important parts are the second and third conjuncts. The second conjunct,
nxtp = #pq +1 states that nxtp−1 is always the current length of the queue;
nxtp always points to the next free element in the queue vector or has the
value of the maximum length of the queue plus one. The third conjunct states
that all the elements in pq1 are also in pq and all elements appear in the same
order. The abstraction relation inherits the constraint that all elements in pq

and pq1 must be elements of used (or, equally, not on the free chain).

Theorem 23.

∀PRIOQ ′; PRIOQ1 •

PRIOQInit1 ∧ AbsPRIOQ1′ ⇒ PRIOQInit

Proof. By the abstraction relation, maxs ′ = maxs1′, and by the predicate
of PRIOQInit1, maxs1′ = mps?, so maxs ′ = mps?. Also by the abstraction
relation, nxtp′ = #pq ′ + 1; by the predicate of PRIOQInit1, nxtp′ = 1 =
#pq ′ + 1, so #pq ′ = 0. ✷

Theorem 24.

∀PRIOQ ; PRIOQ1; p? : PID •

prePRIOQEnqueue ∧ AbsPRIOQ ⇒ prePRIOQEnqueue1

88 3 A Simple Kernel

Proof. We have

prePRIOQEnqueue =̂ #pq < maxs

and

prePRIOQEnqueue1 =̂ nxtp < maxs1 + 1

.
By the predicate of AbsPRIOQ , maxs = maxs1 and nxtp = #pq + 1.

Since #pq = nxtp − 1, and #pq < maxs, then nxtp − 1 < maxs1 and nxtp <
maxs1 + 1, as required. ✷

Theorem 25.

∀PRIOQ ; PRIOQ ′; PRIOQ1; PRIOQ1′; p? : PID ; serr ! : SYSERR •

prePRIOQEnqueue ∧

AbsPRIOQ1 ∧ AbsPRIOQ1′ ∧

PRIOQEnqueue1

⇒ PRIOQEnqueue

Proof. The precondition of PRIOQEnqueue is #pq < maxs.
Now, nxtp < maxs + 1, by AbsPRIOQ1, maxs1 = maxs and nxtp =

#pq + 1, substituting, we obtain #pq + 1 < maxs + 1 ⇔ #pq < maxs.
Given nxtp = 1, by absPRIOQ1, pq = 〈 〉, for nxtp = 1 implies #pq = 0.

It is clear that {1 �→ p?} = pq1′(1) = p?, and we note that {1 �→ p?} = 〈p?〉,
If {1 �→ p?} = pq1′(1) = p? and, by AbsPRIOQ1′, pq1′(i) = pq ′(i), for all
i ∈ 1 . . #pq ′, so pq1′(1) = pq ′(1) = head pq ′ by the definition of head . Now,
nxtp′ = 2, which implies that #pq ′ = 1 since nxtp′ = #pq ′+1 by the predicate
of AbsPRIOQ1′ and we have 2 = nxtp′ = #pq ′ + 1, so nxtp′ − 1 = #pq ′ = 1.
Therefore, pq ′ = 〈p?〉.

By AbsPTAB1, prio1(p) = prio(p), provided that p ∈ used . By the
predicate of AbsPRIOQ1, pq1(1) = pq(1) = head pq . From this, we have
prio1(p?) ≤ prio(pq1(1)) ⇔ prio(p?) ≤ prio(head pq). It should be noted
that last pq can be handled in a similar fashion, noting that nxtp = #pq + 1,
so nxtp − 1 = #pq and pq(#pq) = last pq . This allows us to infer that
prio1(pq1(nxtp − 1)) < prio1(p?) ⇔ prio(last pq) < prio(p?). Now, returning
to prio(p?) ≤ prio(head pq), we have, by AbsPRIOQ1,

∀ i : 1 . . nxtp − 1 •

pq1′ = (pq1 ⊕ {i + 1 �→ pq1(i)})) ⊕ {1 �→ p?}

= (pq ⊕ {i + 1 �→ pq(i)}) ⊕ {1 �→ p?}

and

(pq ⊕ {i + 1 �→ pq(i)}) ⊕ {1 �→ p?}

= {1 �→ p?} ⊕ (pq ⊕ {i + 1 �→ pq(i)})

= 〈p?〉 � pq

3.5 Priority Queue 89

The second line is justified by the fact that the domains of the two maplets
are disjoint. More specifically, {i + 1 �→ pq(i)} is undefined at 1.

In the next case, we have pq1′ = pq1 ⊕ {nxtp �→ p?}. By AbsPRIOQ1,
nxtp = #pq + 1, so, by AbsPRIOQ1′, pq1′(nxtp) = pq ′(nxtp) = pq ′(#pq + 1)
and p? = pq1′(nxtp) = pq ′(nxtp) = pq ′(#pq + 1) which implies that pq ′ =

pq � 〈p?〉.
By the arguments given above, it can be inferred that the condition (the

guard) is correct. We may then concentrate on the quantified formulæ. Note
that the existential has range 1 . . nxtp − 2, so pq1(1) and pq1(nxtp − 1) are
not to be altered.

The predicate prio1(pq1(i)) < prio(p?) ∧ prio1(p?) ≤ prio1(pq1(i + 1))
divides pq1 into two segments, one with priority < prio(p?) and one with
priority > prio(p?). Neither segment can, then, be empty. We can, therefore,
consider two segments, s1 and s2 of pq , s.t. s1 �= 〈 〉 and s2 �= 〈 〉 and s.t.

s1
� s2 = pq . This is valid according to the conjunct of AbsPRIOQ1 which

states ∀ i : 1 . . #pq • pq1(i) = pq(i).

Now, let #s1 = i , so pq(i) = s1(i) = last s1 and pq1(i + 1) = (s1 �

s2)(i + 1) = pq(i + 1) = head s2. Let j = i + 1, then the quantified formula
implies that pq1′(j) = pq1(j) and, in particular, that pq1′(i +1) = pq1(i) and
pq1′(nxtp) = pq1(nxtp − 1) and we now have three segments:

pq1′(k) = pq1(k), 1 ≤ k ≤ i

pq1′(i + 1) = pq1(i + 1)

pq1′(l) = pq1(i + 1 + n), i + 1 ≤ n ≤ nxtp − 1

For the central segment, it can be seen from the universal that pq1′(i+1) = p?
(i.e., {i + 1 �→ p?}), so by AbsPRIOQ1′, pq ′(i + 1) = p?. We can iden-
tify the first component, pq1′(k) = pq1(k), with s1 since k < nxtp − 1 and
pq1(k) = pq(k) by AbsPRIOQ1. The third segment is s2 by AbsPRIOQ1.
Since AbsPRIOQ1′ requires that pq1′(i) = pq ′(i), i ∈ 1 . . #pq ′, we have

pq1′ = s1
� 〈p?〉 � s2 = pq ′.

Finally, nxtp′ = nxtp + 1 in each case. By AbsPRIOQ1, nxtp = #pq + 1,
nxtp + 1 = #pq + 2 which implies that #pq ′ = #pq + 1.

✷

Theorem 26. ∀PRIOQ ; PRIOQ1 • prePRIOQDequeue ∧ AbsPRIOQ1 ⇒
prePRIOQDequeue1

Proof. The preconditions are as follows:

prePRIOQDequeue =̂ pq
= 〈 〉

prePRIOQDequeue1 =̂ nxtp > 1

By the abstraction relation, the predicate of AbsPRIOQ1, nxtp = #pq +1, so
pq �= 〈 〉 implies that #pq > 0. If #pq = 0, then nxtp = 1. Therefore, pq �= 〈 〉
implies that nxtp > 1. ✷

90 3 A Simple Kernel

Theorem 27.

∀PRIOQ ; PRIOQ ′; PRIOQ1; PRIOQ1′; p! : PID ; serr ! : SYSERR •

prePRIOQDequeue ∧

AbsPRIOQ1 ∧

AbsPRIOQ1′ ∧

PRIOQDequeue1

⇒ PRIOQDequeue

Proof. The preconditon of PRIOQDequeue is pq �= 〈 〉.
Now, nxtp > 1, impiles that pq �= 〈 〉. By AbsPRIOQ1, nxtp = #pq + 1, so

if #pq = 0, nxtp = 1 and #pq = 0 implies that pq = 〈 〉. Therefore, it follows
that nxtp > 1 implies pq �= 〈 〉.

The assignment, p! = pq1(1) is equivalent to p! = pq(1) = head pq . The
predicate of AbsPRIOQ1 states that ∀ i : 1. .#pq • pq1(i) = pq(i), so pq1(1) =
pq(1) and, using the definition of head , it is immediate that pq(1) = head pq .

Now, the quantified formala can be handled, ∀ i : 1. .#pq • pq1(i) = pq(i),
as follows.

∀ i : 1 . . nxtp − 2 •

pq1′ = pq ⊕ {i �→ pq1(i + 1)}

= pq ⊕ {i �→ pq1(i + 1)}

= pq ⊕ {i �→ pq(i + 1)}

= tail pq

To see this, consider that

(tail pq)(1) = pq(2)

. . . (tail pq)(# tail pq) = pq(#tailpq + 1)

= pq(#pq)

since #pq = # tail pq + 1. By the predicate of AbsPRIOQ1′, pq1′ = pq ′ for
all i ∈ 1 . . #pq ′, so pq1′ = tail pq = pq ′. ✷

Theorem 28. ∀PRIOQ ; PRIOQ1 • prePRIOQDelHD ∧ AbsPRIOQ1 ⇒
prePRIOQDelHd1

Proof. The two preconditions are

prePRIOQDelHd =̂ pq
= 〈 〉

prePRIOQDelHd1 =̂ nxtp > 1

The proof is concluded in a manner similar to the proof of Theorem 26 ✷

Theorem 29.

∀PRIOQ ; PRIOQ ′; PRIOQ1; PRIOQ1′ •

prePRIOQDelHd ∧

AbsPRIOQ1 ∧

AbsPRIOQ1′ ∧

PRIOQDelHd1

⇒ PRIOQDelHd

3.5 Priority Queue 91

Proof. The definition of PRIOQDelHd is

∆PRIOQ

pq ′ = tail pq

and it precondition is pq �= 〈 〉.
The definition of PRIOQDelHd1 is

∆PRIOQ1

nxtp′ = nxtp − 1

∀ i : 1 . . nxtp − 2 •

pq1′ = pq1 ⊕ {i �→ pq1(i + 1)}

and its precondition is nxtp > 1.
It should be clear that

∀ i : 1 . . nxtp − 2 •

(tail pq)(i) = pq1 ⊕ {i �→ pq1(i + 1)}

so pq1′ = tail pq = pq ′. To see this consider the following:

(tail pq)(1) = pq(2) = pq1(2)
...

last(tail pq) = tail pq(# tail pq) = pq1(nxtp − 1)

✷

The result of this refinement is a collection of schemata that can be trans-
lated to executable code. This produces a priority queue implemented in terms
of a vector, a perfectly adequate implementation. However, we continue with
a second refinement which will refine the vector to a list threaded through the
next function (i.e., a list of process identifiers or, equivalently, a list of process
descriptors).

3.5.3 Refinement Two

In this refinement, the queue elements are now stored in next , a component
of PTAB2. In many real-time kernels, the ready queue (which is really the
priority queue) is implemented as a small vector of process identifiers or ref-
erences. The vector implementation saves a few operations and is justified by
the fact that only a few processes are usually in the ready queue at any time.
The advantages of the current approach are that any number of processes
can be in the ready queue and that it occupies no extra space whatsoever;

92 3 A Simple Kernel

access and update of the two structures take very roughly the same number
of instructions on most contemporary processors.

The state space for this refinement is the following.

PRIOQ2

PTAB2

qhd , qlst : GPID

qlen : N

maxs2 : N1

qlen ≤ maxs2 ∧ qhd = nullpid ⇔ qlst = nullpid

qhd = nullpid ⇔ qlen = 0 ∧ qhd
= nullpid ⇔ next(qlst) = nullpid

qhd
= nullpid ⇔ qlst ∈ next∗(| {qhd} |) \ {nullpid}

The variables qhd and qlst represent the head and last elements of the ready
queue; the length of the queue is represented by qlen. The maximum length
to which the ready queue can grow is determined by maxs2. The invariant
states that the length of the queue must always be less than maxs2 + 1 and
that when the queue is empty, qhd = qlst = nullpid . There is more that could
be included in the invariant but the above is quite adequate for our current
needs.

The initialisation schema is defined next. Given the last paragraph, the
predicate of PRIOQInit2 should be clear.

PRIOQInit2

PRIOQ2′

mps? : N1

qhd ′ = qlst ′ = nullpid

maxs2′ = mps?

qlen ′ = 0

The operations now follow in the same order as they were presented for
PRIOQ1, so nothing will be said about them unless there is a point of interest.

IsEmptyPRIOQ2

ΞPRIOQ2

qlen = 0

The approach adopted to the definition of the enqueue operation is the
same as in the last subsection.

PRIOQHd2

ΞPRIOQ2

p! : PID

p! = qhd

3.5 Priority Queue 93

PRIOQLast2

ΞPRIOQ2

p! : PID

p! = qlst

CanEnqueuePRIOQ2

ΞPRIOQ2

qlen < maxs2

PRIOQEnqueueHd2

∆PRIOQ2

p? : PID

qhd ′ = p?

next ′ = next ⊕ {p? �→ qhd}

qlen ′ = qlen + 1

PRIOQAddSingleton2

∆PRIOQ2

p? : PID

qhd ′ = p?

qlst ′ = p?

next ′ = next ⊕ {p? �→ nullpid}

qlen ′ = 1

ShouldAddPRIOQHd2

ΞPRIOQ2

p? : PID

prio2(p?) ≤ prio2(qhd)

ShouldAddPRIOQLast2

ΞPRIOQ2

p? : PID

prio2(qlst) < prio2(p?)

The following is the insertion operation:

94 3 A Simple Kernel

PRIOQInsert2

∆PRIOQ2

p? : PID

∃ p1, p2 : PID •

p1 ∈ next∗(| {qhd} |) \ {nullpid} ∧

p2 ∈ next∗(| {qhd} |) \ {nullpid} ∧

prio2(p1) ≤ prio2(p?) ∧

prio2(p?) < prio2(p2) ∧

next(p1) = p2 ∧

next ′ = next ⊕ {p1 �→ p?, p? �→ p2} ∧

qlen ′ = qlen + 1

Note how next is updated by the addition of p?. Also, the update of next is
really a sequential composition since two elements are added to it. The two
elements have been reduced to one as a notational nicety.

Finally, the enqueue operation proper is defined.

PRIOQEnqueue2 =̂

(CanEnqueuePRIOQ2 ∧

((IsEmptyPRIOQ2 ∧ PRIOQAddSingleton2)

∨ (ShouldAddPRIOQHd2 ∧ PRIOQEnqueueHd2)

∨ (ShouldAddPRIOQLast2 ∧ PRIOQEnqueueLast2)

∨ PRIOQInsert2) ∧

SysOk)

∨ PRIOQFull

It expands into

PRIOQEnqueue2

∆PRIOQ2

p? : PID

serr ! : SYSERR

qlen < maxs2

(qlen = 0 ∧

qhd ′ = p? ∧ qlst ′ = p? ∧

next ′ = next ⊕ {p? �→ nullpid} ∧

qlen ′ = 1)

∨ (prio2(p?) ≤ prio2(qhd) ∧

qhd ′ = p? ∧

next ′ = next ⊕ {p? �→ qhd} ∧

qlen ′ = qlen + 1)

∨ (prio2(qlst) < prio2(p?) ∧

qlst ′ = p? ∧

next ′ = next ⊕ {qlst �→ p?, p? �→ nullpid} ∧

qlen ′ = qlen + 1)

3.5 Priority Queue 95

∨ (∃ p1, p2 : PID •

p1 ∈ next∗(| {qhd} |) \ {nullpid} ∧

p2 ∈ next∗(| {qhd} |) \ {nullpid} ∧

prio2(p1) ≤ prio2(p?) ∧

prio2(p?) < prio2(p2) ∧

next(p1) = p2 ∧

next ′ = next ⊕ {p1 �→ p?, p? �→ p2} ∧

qlen ′ = qlen + 1) ∧

∨ serr ! = sysok)

∨ serr ! = schedqfull

The predicate of this schema can be simplified to

qlen < maxs2 ∧

[((qlen = 0 ∧

qhd ′ = p? ∧ qlst ′ = p? ∧

next ′ = next ⊕ {p? �→ nullpid})

∨ (prio2(p?) ≤ prio2(qhd) ∧

qhd ′ = p? ∧

next ′ = next ⊕ {p? �→ qhd})

∨ (prio2(qlst) < prio2(p?) ∧

qlst ′ = p? ∧

next ′ = next ⊕ {qlst �→ p?, p? �→ nullpid})

∨ (∃ p1, p2 : PID •

p1 ∈ next∗(| {qhd} |) \ {nullpid} ∧

p2 ∈ next∗(| {qhd} |) \ {nullpid} ∧

prio2(p1) ≤ prio2(p?) ∧

prio2(p?) < prio2(p2) ∧

next(p1) = p2 ∧

next ′ = next ⊕ {p1 �→ p?, p? �→ p2}))

∧ qlen ′ = qlen + 1

∧ serr ! = sysok]

∨ serr ! = schedqfull

It is also clear that the calculation of prio2(p?) can be turned into a local
variable using existential quantification

∃ pr : PPRIO | pr = prio2(p?) •

qlen < maxs2 ∧

[((qlen = 0 ∧

qhd ′ = p? ∧ qlst ′ = p? ∧

next ′ = next ⊕ {p? �→ nullpid})

∨ (pr ≤ prio2(qhd) ∧

qhd ′ = p? ∧

next ′ = next ⊕ {p? �→ qhd})

96 3 A Simple Kernel

∨ (prio2(qlst) < pr ∧

qlst ′ = p? ∧

next ′ = next ⊕ {qlst �→ p?, p? �→ nullpid})

∨ (∃ p1, p2 : PID •

p1 ∈ next∗(| {qhd} |) \ {nullpid} ∧

p2 ∈ next∗(| {qhd} |) \ {nullpid} ∧

prio2(p1) ≤ prio2(p?) ∧

prio2(p?) < prio2(p2) ∧

next(p1) = p2 ∧

next ′ = next ⊕ {p1 �→ p?, p? �→ p2}))

∧ qlen ′ = qlen + 1

∧ serr ! = sysok]

∨ serr ! = schedqfull

This is one case in which the re-introduction of quantifiers can lead to better
code.

The precondition of PRIOQEnqueue2 is

prePRIOQEnqueue2 =̂ qlen < maxs2

As above, the deletion and dequeueing operations are defined next.

PRIOQDelHd2

∆PRIOQ2

qlen ′ = qlen − 1

qhd ′ = next(qhd)

By calculation, we obtain

prePRIOQDelHd2 =̂ true

but this is not particularly useful. Instead, the following weaker form is
employed:

prePRIOQDelHd2 =̂ qlen > 0

This formula is also employed by the predicate of PRIOQDelHd2.

PRIOQDequeue2 =̂

(¬ IsEmptyPRIOQ2 ∧

PRIOQHd2 ∧

PRIOQDelHd2 ∧

SysOk)

∨ PRIOQEmpty

This complex definition expands into

3.5 Priority Queue 97

PRIOQDequeue2

∆PRIOQ2

p! : PID

serr ! : SYSERR

(qlen
= 0 ∧

p! = qhd ∧

qlen ′ = qlen − 1 ∧

qhd ′ = next(qhd) ∧

serr ! = sysok)

∨ serr ! = schedqempty

This operation’s precondition is immediately calculated

prePRIOQDequeue2 =̂ qlen
= 0

However, since qlen ∈ N, this can be re-written as

prePRIOQDequeue2 =̂ qlen > 0

To end the sequence of definitions, the abstraction relation is now defined.

AbsPRIOQ2

PRIOQ1

PRIOQ2

maxs2 = maxs2

nxtp > 1 ⇔ qhd = pq1(1)

nxtp > 1 ⇔ qlst = pq1(nxtp − 1)

qlen = nxtp − 1

next(pq1(nxtp − 1)) = nullpid

∀ i : 1 . . nxtp − 2 •

i = j − 1 ⇒

next(pq1(i)) = pq1(i + 1)

This is yet another identity, so the proofs of refinement are straightforward.

Theorem 30. ∀PRIOQ1; PRIOQ2 • PRIOQInit2 ∧ AbsPRIOQ2′ ⇒
PRIOQInit1

Proof. By the abstraction relation, qlen ′ = nxtp′ − 1, so we have 1 − 1 =
0 = qlen ′. In addition, the same realtion states that maxs2 = maxs1. ✷

Theorem 31. ∀PRIOQ1; PRIOQ2; p? : PID • prePRIOQEnqueue1 ∧
AbsPRIOQ2 ⇒ prePRIOQEnqueue2

98 3 A Simple Kernel

Proof. The two preconditions are

prePRIOQEnqueue1 =̂ nxtp ≤ maxs1

and

prePRIOQEnqueue2 =̂ qlen < maxs2

Since maxs1 = maxs2, we have

nxtp ≤ maxs2

and

qlen < maxs2

The abstraction relation, states that qlen = nxtp − 1, so qlen + 1 ≤ maxs2,
which imples that qlen < maxs2 as required. ✷

Theorem 32.

∀PRIOQ1; PRIOQ1′; PRIOQ2; PRIOQ2′; p? : PID ; serr ! : SYSERR •

prePRIOQEnqueue1

∧ AbsPRIOQ2

∧ AbsPRIOQ2′

∧ PRIOQEnqueue2

⇒ PRIOQEnqueue1

Proof. There are four cases.
Case 1. qlen < maxs2. By the abstraction relation, qlen = nxtp − 1 and
maxs2 = maxs1, so nxtp − 1 < maxs2 implies nxtp − 1 < maxs1, which
implies nxtp ≤ maxs1. Ad qlen = 0, again using qlen = nxtp− 1, 0 = nxtp− 1
implies nxtp = 1. By the predicate of AbsPRIOQ2′ qhd ′ = pq1′(1) and qlst ′ =
pq1′(nxtp′ − 1), so qhd ′ = p? implies pq1 ⊕ {1 �→ p?} = pq1′ and qlst ′ = p?
implies pq1 ⊕ {1 �→ p?} = pq1′ since nxtp = 1. The identity qlen ′ = qlen + 1,
implies that nxtp′ = nxtp + 1 = nxtp′ = 2.
Case 2. prio2(p?) implies prio1(p?) by AbsPTAB1; this is justified by the in-
variant condition that ran pq ⊂ used . We also have prio2(qhd) = prio2(pq1(1))
= prio1(pq1(1)) by the abstraction relation and therefore pq1′ = pq1 ⊕ {1 �→
p?}. By the universal formula in the abstraction relation, next ′ = next⊕{p? �→
qhd} implies next ′ = next⊕{p? �→ pq1(1)}; this now implies that pq1′(1) = p?,
pq1′(2) = pq1(1) and by induction, we have pq1′ = (pq1 ⊕ {i + 1 �→
pq1(i)}) ⊕ {1 �→ p?}. The increase in qlen is as in Case 1 above.
Case 3. The abstraction relation permits us to infer that prio2(qlst) =
prio2(pq1(nxtp − 1)) = prio1(pq1(nxtp − 1)) since pq1(nxtp − 1) is a known
process. For p? to be an element of the queue, p? must be a defined process,
so prio2(p?) = prio1(p?) by AbsPTAB2. We note that qlst = pq1(nxtp − 1),
so that we may continue. Next, we deal with next ′ = next ⊕ {qlst �→
p?, p? �→ nullpid}. First, we note that the map {p? �→ nullpid} is required
by the invariant of PRIOQ2, thus permitting us to concentrate on the map
{qlst �→ p?}, which implies that next ′(qlst) = p?, so next ′(nxtp − 1) = p? so
next ′(nxtp) = p?. The increment of nxtp and qlen is as in Case 1 above.

3.5 Priority Queue 99

Case 4. Since p1, p2 ∈ next∗(| {qhd} |) \ {nullpid}, it follows, by the invariant,
that {p1, p2} ⊂ used , so prio2(p1) = prio1(p1) and prio2(p2) = prio1(p1).
For p? to be a valid element of the queue, it must also be a defined process
identifier (p? ∈ used or equivalent). If next(p1) = p2, it must be true that
∃ i : 1 . . nxtp − 2 • p1 = pq1(i) ∧ pq1(i + 1) = p2 (this follows from the
abstraction relation). The remainder can be proved by induction. ✷

Theorem 33.

∀PRIOQ1; PRIOQ2 •

prePRIOQDequeue1 ∧ AbsPRIOQ2 ⇒ prePRIOQDequeue2

Proof. The two preconditions are:

prePRIOQDequeue1 =̂ nxtp > 1

and

prePRIOQDequeue2 =̂ qlen
= 0

The abstraction relation states that qlen = nxtp−1, so nxtp > 1 iff qlen +1 >
1, which implies that qlen > 0 and it follows that qlen �= 0. ✷

Theorem 34.

∀PRIOQ1; PRIOQ1′; PRIOQ2; PRIOQ2′; p! : PID ; serr ! : SYSERR •

prePRIOQDequeue1

∧ AbsPRIOQ2

∧ AbsPRIOQ2′

∧ PRIOQDequeue2

⇒ PRIOQDequeue1

Proof. We start with qlen �= 0, because of the definition of qlen’s type,
this implies that qlen > 0. By the abstraction relation, qlen = nxtp − 1, so
qlen �= 0 implies nxtp − 1 �= 0 and qlen > 0 implies nxtp − 1 > 0, so nxtp > 1,
as required.

By the abstraction relation, pq1(1) = qhd if the queue is not empty; it
cannot be empty by the definition of the operation, so this equation holds. It
follows that p! = qhd implies p! = pq1(1).

The queue-length reduction, qlen ′ = qlen − 1 requires us to take the pred-
icate of AbsPRIOQ2′ into account. By AbsPRIOQ2, we have qlen = nxtp − 1
and, by AbsPRIOQ2′, we have qlen ′ = nxtp′−1. From this, qlen−1 = nxtp−2,
so qlen ′ = nxtp − 2 or nxtp′ − 1 = nxtp − 2, so nxtp′ = nxtp − 1.

Finally, since pq1(1) = qhd , and qhd ′ = next(qhd), then qhd ′ = next(qhd)
= pq1(2). Using the quantified formula in the abstraction relation, it can be
inferred that ∀ i : 1 . . nxtp − 2 • pq1′ = pq1 ⊕ {i �→ pq1(i + 1)}; this can be
verified by a simple induction. ✷

Theorem 35. ∀PRIOQ1; PRIOQ2 • prePRIOQDelHd1 ∧ AbsPRIOQ2 ⇒
prePRIOQDelHd2

100 3 A Simple Kernel

Proof. The precondition of PRIOQDelHd1 is nxtp > 1 and that of PRIO-

QDelHd2 is qlen > 0. The abstraction relation states that qlen = nxtp − 1.
From the abstraction relation, we have qlen + 1 = nxtp, and so qlen + 1 > 1,
from which it follows that qlen > 0. ✷

Theorem 36.

∀PRIOQ1; PRIOQ1′; PRIOQ2; PRIOQ2′ •

prePRIOQDelHd1

∧ AbsPRIOQ2

∧ AbsPRIOQ2′

∧ PRIOQDelHd2

⇒ PRIOQDelHd1

Proof. By the predicate of AbsPRIOQ2, nxtp = qlen − 1 and, by that of
AbsPRIOQ2′, we have nxtp′ = qlen ′−1, so qlen ′ = nxtp′ +1. In the predicate
of PRIOQDelHd2, qlen ′ = qlen−1, so qlen−1 = nxtp−2, so qlen ′ = nxtp−2,
from which it follows that nxtp′ − 1 = nxtp − 2, or nxtp′ = nxtp − 1.

Now, assuming qlen > 1, by the predicate of AbsPRIOQ2, qhd = pq1(1)
and next(qhd) = next(pq1(1)) = pq1(2). Using the quantified formula, the
index of each element of pq1 decreases by 1.

On the other hand, if qlen = 1, the next(qhd) = nullpid , so qhd ′ = qlst

which, by the invariant, implies that qhd ′ = nullpid and qlen = 0, so nxtp = 1
and the queue is empty. ✷

The schemata from this last refinement have now been shown to be correct.
They can be converted directly into executable code.

3.6 The Scheduler

The scheduler is comprised of the priority queue whose refinement has just
been undertaken, together with a variable to identify the currently executing
process, a variable to identify the process that was executing immediately
before the current one; there is also a varible to identify the idle process.

The scheduler undergoes 3 refinements to reach the level at which code
can be extracted. Without further ado, we press on, therefore.

3.6.1 Top Level

This section contains the specification of the scheduler.
Before presenting the specification, let us prove the following little theo-

rem. The variable curr denotes the current process; SchedNext is the name of
the scheduler routine.

The idle process (sometimes called the “null” process) is just a process
that does little or nothing. It can be implemented as a simple loop, such as:

3.6 The Scheduler 101

while true do

skip

od

The idle process is executed when there is nothing else to do.
As far as this part of the specification is concerned, support for the idle

process is required.
It is assumed that the idle process is an element of used . This has the

implication that the identifier of the idle process cannot be nullpid .
Here, then, is the definition of the scheduler’s state space. The variable

curr denotes the currently executing process, prev denotes the previously
executed process, iprc is the identifier of the idle process (it is a write-once
variable that is set at initialisation time). Finally, sq is the scheduler’s queue,
an instance of PRIOQ . It will be remembered that PRIOQ is a schema, so
we have a promotion in this case. This is good for it reduces the amount of
work required of us.

SCHED

curr , prev : PID

iprc : PID

sq : PRIOQ

iprc
= nullpid

Theorem 37. If pq �= 〈 〉, ∀ p : PID • p ∈ ran pq ⇒ p ∈ used.

Proof. By the invariant of PRIOQ , ran pq ⊂ used . This clearly implies that
∀ p : PID • p ∈ ran pq ⇒ p ∈ used . ✷ It has two corollaries.

Corollary 1. curr ∈ used ∨ state(curr) = psterm.

Proof. There is only one operation that sets state(curr) to psterm. That is
TerminateSelf. As part of its operation, it deletes curr from the process table
and causes a reschedule via a call to SchedNext. Before the call to SchedNext,
TerminateSelf sets the state of the current process as state ′ = state⊕{curr �→
psterm}, so state(curr) = psterm.

The other operations updating curr are SchedNext (as noted in the last
paragraph) and SuspendMe.

The SuspendMe operation removes the head from the ready queue, pq ,
if there is one and requeues curr . If the ready queue is empty, iprc (the idle
process) is selected instead. The old queue head (or iprc) is made curr for exe-
cution. The setting of curr is performed by SetNewCurrentProcess[head pq/p?].
If the ready queue, pq , is empty, curr is updated by MakeIdleProcessCurrent .

Inspection of SchedNext shows that the same two operations are used to
set the state of curr and prev . Their definitions are repeated.

102 3 A Simple Kernel

SetNewCurrentProcess

∆SCHED

p? : PID

curr ′ = p?

prev ′ = curr

MakeIdleProcessCurrent

∆SCHED

curr ′ = iprc

prev ′ = curr

It can be seen that neither operator affects used in any way (indeed, used is
not mentioned by either schema). It is therefore necessary to determine where
p? and iprc originate.

In SuspendMe and in SchedNext, there is a substitution instance of
SetNewCurrentProcess, SetNewCurrentProcess[head pq/p?]. This expands to

curr ′ = head pq

prev ′ = curr

By Theorem 37, head pq ∈ used .
The null or idle process is created by CreateNullProcess which is defined

in terms of AddPD . The output, p!, of AddPD is then assigned to iprc via
SCHEDInit . The initialisation SCHEDInit in the system initialisation has an
instance of

SCHEDInit

SCHED ′

p? : PID

curr ′ = minpid ∧ prev ′ = minpid ∧ iprc′ = p?

sq ′ = θPRIQOInit

in a substitution instance [ipid/p?]. Inspection of the definition of CreateNull-

Process shows that there are no operations that rebind ipid . Now, AddPD

implies that ipid ∈ used , so iprc = ipid .
It should be noted that it will usually be the case that iprc is bound to

minpid . This permits the inference that curr ∈ used at initialisation time,
also. ✷

Corollary 2. prev ∈ used ∨ state(prev) = psterm

Proof. As noted in Corollary 1, only TerminateSelf can set the process
state to psterm. The TerminateSelf operation is defined in terms of SchedNext

3.6 The Scheduler 103

which, at various points, updates prev (prev ′ = curr). The variable prev is
always a copy of curr . The critical operation is SetNewCurrentProcess, whose
definition is

∆SCHED

p? : PID

curr ′ = p?

prev ′ = curr

So, the value bound prev ′ is identical to that bound to curr , so must have
the same properties. In particular, if curr ∈ used , prev ′ ∈ used and if
state(curr) = psterm, state(prev ′) = psterm.

It should be clear that the assignment prev ′ = curr establishes the binding
of prev from that point until it is next updated. This permits us to reach the
conclusion that prev ∈ used ∨ state(prev) = psterm.

Finally, as noted above, iprc is usually bound to minpid , so the statement
of this corollary also applies at initialisation time. ✷

Here is the framing or promotion schema.

ΦSCHED

∆SCHED

∆PRIOQ

sq = θPRIOQ

sq ′ = θPRIOQ ′

The definition of the initialisation schema is repeated. The definition is
comparatively straightforward, as can be seen. The only thing to notice is
that sq ′ = θPRIOQInit , since sq is of a schema type.

SCHEDInit

SCHED ′

p? : PID

curr ′ = minpid ∧ prev ′ = minpid ∧ iprc′ = p?

sq ′ = θPRIOQInit

Recall that PRIOQ includes PTAB in its state.
The next operation returns the identifier of the idle process.

IDLEPROCESSIdent

ΞSCHED

p! : PID

p! = iprc

104 3 A Simple Kernel

When the identifier of the currently executing process is required to be
set, this schema defines the operation that performs it.

SetCurrentProcessId

∆SCHED

p? : PID

curr ′ = p?

The names of the next few schemata should be all that is required to
interpret them.

MakeCurrentPrevious

∆SCHED

prev ′ = curr

IsCurrentProcess

ΞSCHED

p? : PID

p? = curr

CurrentProcessId

ΞSCHED

p! : PID

p! = curr

SetStateToRunning =̂

∃ st : PSTATE | st = psrunning •

SetProcState[st/st?]

or

SetStateToRunning

∆PTAB

p? : PID

state ′ = state ⊕ {p? �→ psrunning}

SetNewCurrentProcess =̂

(MakeCurrentPrevious ∧ SetCurrentProcessId)
o
9
(CurrentProcessId [c/p!] ∧ SetStateToRunning [c/p?]) \ {c}

3.6 The Scheduler 105

After simplification, this expands into

∆SCHED

p? : PID

curr ′ = p?

prev ′ = curr

state ′ = state ⊕ {curr ′ �→ psrunning}

IsPreviousProcess

ΞSCHED

p? : PID

p? = prev

IsCurrentProcessIdle

ΞSCHED

curr = iprc

This predicate is true iff the previously active process was the idle process.

IsPrevProcessIdle

ΞSCHED

prev = iprc

SetProcessStateToReady =̂

∃ st : PSTATE | st = psready •

SetProcState[st/st?]

This expands and simplifies to

SetProcessStateToReady

∆PTAB

p? : PID

state ′ = state ⊕ {p? �→ psready}

The operation that places a process identifier in the scheduler’s ready
queue is called MakeReady. The main part of MakeReady is defined by the
following

106 3 A Simple Kernel

MakeReadya =̂

∃∆PRIOQ •

ΦSCHED ∧ PRIOQEnqueue

To make life a little easier and to avoid errors, the following operation is
defined. It sets the state of the process being added to the ready queue as well
as performing the queue-insertion operation. This operation is used in a lot of
places and it is easy to forget to set the state; this is the reason for defining
this operation.

MakeReady =̂

(SetProcessStateToReady ∧ MakeReadya)

It expands into the following. It should be noted that the strict expansion of
the promoted action should yield a queue whose name is sq .pq .

MakeReady

∆PRIOQ

p? : PID

serr ! : SYSERR

state ′ = state ⊕ {p? �→ psready} ∧

(#sq .pq < maxs ∧

((sq .pq = 〈 〉 ∧ sq .pq ′ = 〈p?〉) ∨

(prio(p?) ≤ prio(head sq .pq) ∧ sq .pq ′ = 〈p?〉 � sq .pq) ∨

(prio(last sq .pq) < prio(p?) ∧ sq .pq ′ = sq .pq � 〈p?〉) ∨

(∃ s1, s2 : seqPID | s1
= 〈 〉 ∧ s2
= 〈 〉 ∧ s1 � s2 = sq .pq •

prio(last s1) < prio(p?) ∧

prio(p?) ≤ prio(head s2) ∧

sq .pq ′ = s1 � 〈p?〉 � s2)) ∧

serr ! = sysok)

∨ serr ! = schedqfull

This schema can be simplified to the following:

∆PRIOQ

p? : PID

serr ! : SYSERR

(#sq .pq < maxs ∧

((sq .pq = 〈 〉 ∧ sq .pq ′ = 〈p?〉) ∨

(prio(p?) ≤ prio(head sq .pq) ∧ sq .pq ′ = 〈p?〉 � sq .pq) ∨

(prio(last sq .pq) < prio(p?) ∧ sq .pq ′ = sq .pq � 〈p?〉) ∨

(∃ s1, s2 : seqPID | s1
= 〈 〉 ∧ s2
= 〈 〉 ∧ s1 � s2 = sq .pq •

prio(last s1) < prio(p?) ∧

prio(p?) ≤ prio(head s2) ∧

3.6 The Scheduler 107

sq .pq ′ = s1 � 〈p?〉 � s2)) ∧

state ′ = state ⊕ {p? �→ psready} ∧

serr ! = sysok)

∨ serr ! = schedqfull

The precondition is

preMakeReady =̂ #sq < maxs

Note that this precondition can rely upon the lemma proved above (Lemma
1) to ensure that p? ∈ used , so that the update of state is well defined.

Next, we define a number of operations in terms of promotion. Each defi-
nition is accompanied by its simplification; in some cases, a complete step-by-
step simplification is given so that the reader can be sure of the derivation,
as well as the logical form of these operations.

The test for an empty ready queue in the scheduler is defined by the
following

IsEmptySCHEDQ =̂

∃∆PRIOQ •

ΦSCHED ∧ IsEmptyPRIOQ

Its predicate expands into (using the same abuse of notation mentioned above)

∃ pq , pq ′ : seqPID ; maxs,maxs ′ : N •

sq = θPRIOQ ∧

sq ′ = θPRIOQ ′ ∧

pq = 〈 〉

or

sq = 〈| pq �→ pq ,maxs �→ maxs |〉 ∧

sq ′ = 〈| pq � pq ′,maxs � maxs ′ |〉 ∧

pq = 〈 〉

which is

∃ pq , pq ′ : seqPID ; maxs,maxs ′ : N •

sq = 〈| pq �→ pq ,maxs �→ maxs |〉 ∧

sq ′ = 〈| pq � pq ′,maxs �→ maxs ′ |〉 ∧

pq = 〈 〉

or

sq = sq ′ ∧

sq .maxs = sq .maxs ′ ∧

sq .pq = 〈 〉

108 3 A Simple Kernel

The scheduler’s dequeue operation is defined as the following promotion

SCHEDQDequeue =̂

∃∆PRIOQ •

ΦSCHED ∧ PRIOQDequeue

It simplifies to

sq .pq = pq

sq .maxs = maxs

((sq .pq
= 〈 〉

p! = head sq .pq

sq ′.pq = tail sq .pq

serr ! = sysok)

∨ serr ! = schedqempty)

An operation that returns the head element of the ready queue is as follows

SCHEDQHd =̂

∃∆PRIOQ •

ΦSCHED ∧ PRIOQHd

It expands and simplifies to

sq = sq ′

sq .maxs = sq ′.maxs

p! = head sq .pq

The operation to remove the head of the scheduler’s queue is another
promotion

SCHEDQDelHd =̂

∃∆PRIOQ •

ΦSCHED ∧ PRIOQDelHd

The predicate expands and simplifies to

sq .pq = pq

sq ′.maxs = sq .maxs

sq ′.pq = tail sq .pq

The arbitrary element deletion operation is another promotion.

DelSCHEDQElem =̂

∃∆PRIOQ • ΦSCHED ∧ DelPRIOQElem

This expands into

3.6 The Scheduler 109

∃ pq , pq ′ : seqPID ; maxs,maxs ′ : N •

sq = θPRIOQ ∧

sq ′ = θPRIOQ ′ ∧

pq
= 〈 〉 ∧

(∃ s1, s2 : seqPID •

s1 � 〈p?〉 � s2 = pq ∧

pq ′ = s1 � s2)

Ignoring the intermediate steps, we have

sq .maxs = sq ′.maxs

sq .pq
= 〈 〉

(∃ s1, s2 : seqPID •

s1 � 〈p?〉 � s2 = sq .pq ∧

sq ′.pq = s1 � s2)

The precondition is not much of a surprise, as the following calculation
shows.

preDelSCHEDQElem =̂

pre ΦSCHED ∧ preDelPRIOQElem

⇔ preDelPRIOQElem

This is equivalent to

p? ∈ ran pq

or

ran pq
= ∅

When there is nothing else to do, the idle process is executed. The following
schema defines the operation that sets the schedulers’ local variables ready to
switch to the idle process’ context.

MakeIdleProcessCurrent

∆SCHED

curr ′ = iprc

prev ′ = curr

Under the right conditions, the current process is continued:

ContinueCurrent

ΞSCHED

curr ′ = curr

prev ′ = prev

110 3 A Simple Kernel

This is just an identity (which is what is required).
If the current process’ state is not psready or psrunning , it can no longer be

considered for execution by the scheduler. The next definition is of a predicate
that performs this test.

CurrentProcessStateIsReadyOrRunning =̂

(CurrentProcessId [c/p!] ∧

(∃ st : PSTATE | st = psready •

ProcState[c/p?, st/st !]) ∧

(∃ st : PSTATE | st = psrunning •

ProcState[c/p?, st/st !])) \ {c}

The definition expands into:

CurrentProcessStateIsReadyOrRunning

ΞSCHED

ΞPTAB

∃ c : PID •

curr = c ∧

(∃ st : PSTATE | st = psready •

state(c) = st)

∨ (∃ st : PSTATE | st = psrunning •

state(c) = st)

It simplifies to:

ΞSCHED

ΞPTAB

(state(curr) = psready) ∨ (state(curr) = psrunning)

Note that ¬ CurrentProcessStateIsReadyOrRunning is

¬ CurrentProcessStateIsReadyOrRunning

ΞSCHED

ΞPTAB

state(curr)
= psready ∧ state(curr)
= psrunning

It is easy, when not paying sufficient attention, to forget to change ∨ to ∧
when negating.

Before defining SchedNext, we need

QueueHdHasHigherPriority =̂

(CurrentPriority [cp/pr !] ∧

SCHEDQHd [h/p!] ∧

ProcPrio[h/p?, hpr/pr !] ∧

hpr < cp) \ {h, hpr , cp}

3.6 The Scheduler 111

This expands to

QueueHdHasHigherPriority

ΞPTAB

ΞSCHED

∃ h, cp : PID ; hpr : PPRIO •

prio(curr) = cp ∧

head sq .pq = h ∧

prio(h) = hpr ∧

hpr < cp

The predicate of this schema simplifies to

prio(head sq .pq) < prio(curr)

The schema is

QueueHdHasHigherPriority

ΞPTAB

ΞSCHED

prio(head sq .pq) < prio(curr)

Finally, we reach the scheduling function itself. It is a complex operation
but should not prove difficult to understand.

SchedNext =̂

(IsCurrentProcessIdle ∧

((IsEmptySCHEDQ ∧ ContinueCurrent)

∨ (SCHEDQDequeue[p/p!] ∧

SetNewCurrentProcess[p/p?]
o
9
CTXTSW) \ {p}))

∨ (IsEmptySCHEDQ ∧ MakeIdleProcessCurrent o
9
CTXTSW)

∨ ((¬ CurrentProcessStateIsReadyOrRunning

∨ QueueHdHasHigherPriority) ∧

(SCHEDQHd [hpid/p!] ∧

SCHEDQDelHd ∧

SetNewCurrentProcess[hpid/p?]
o
9
CTXTSW) \ {hpid})

∨ ContinueCurrent

Since CTXTSW does not have any variables that interact with any others in
SchedNext, it is possible to reduce the strength of o

9 to ∧.
The definition expands into the following schema. The context-switching

operation, CTXTSW, is left unexpanded (its predicate consists solely of
intno′ = context swictch).

112 3 A Simple Kernel

∆SCHED

(curr = iprc ∧

((sq .pq = 〈 〉 ∧ curr ′ = curr ∧ prev ′ = prev)

∨ (∃ p : PID •

p = head pq ∧ curr ′ = p ∧ prev ′ = curr ∧

state ′ = state ⊕ {head sq .pq �→ psrunning} ∧ CTXTSW)))

∨ (sq .pq = 〈 〉 ∧ prev ′ = curr ∧ curr ′ = iprc ∧ CTXTSW)

∨ ((state(curr)
= psready ∧ state(curr)
= psrunning

∨ prio(head sq .pq) < prio(curr)) ∧

(∃ hpid : PID •

head sq .pq = hpid ∧

sq ′.pq = tail sq .pq ∧

curr ′ = hpid ∧

state ′ = state ⊕ {hpid �→ psrunning} ∧

prev ′ = curr ∧ CTXTSW))

∨ (curr ′ = curr ∧ prev ′ = prev)

This simplifies to

∆SCHED

(curr = iprc ∧

((sq .pq = 〈 〉 ∧ curr ′ = curr ∧ prev ′ = prev)

∨ (curr ′ = head sq .pq ∧ prev ′ = curr ∧

state ′ = state ⊕ {head sq .pq �→ psrunning} ∧ CTXTSW)))

∨ (sq .pq = 〈 〉 ∧ prev ′ = curr ∧ curr ′ = iprc ∧ CTXTSW)

∨ ((state(curr)
= psready ∧ state(curr)
= psrunning

∨ prio(head sq .pq) < prio(curr)) ∧

sq ′.pq = tail sq .pq ∧

curr ′ = head sq .pq ∧

state ′ = state ⊕ {head sq .pq �→ psrunning} ∧

prev ′ = curr ∧ CTXTSW)

∨ (curr ′ = curr ∧ prev ′ = prev)

To calculate the precondition of SchedNext, it is first noted that Sched-

Next takes the form of a disjunction, so it is permitted to decompose the
precondition into disjuncts since pre(P ∨ Q) ⇔ preP ∨ preQ). Therefore,
we decompose the SchedNext schema into its components and handle them
separately; then we combine the result to form the precondition.

3.6 The Scheduler 113

preSchedNext =̂

pre[(IsCurrentProcessIdle ∧

((IsEmptySCHEDQ ∧ ContinueCurrent)

∨ (SCHEDQDequeue[p/p!] ∧ SetNewCurrentProcess[p/p?]
o
9
CTXTSW) \ {p}))

∨ (IsEmptySCHEDQ ∧ MakeIdleProcessCurrent o
9
CTXTSW)

∨ ((¬ CurrentProcessStateIsReadyOrRunning

∨ QueueHdHasHigherPriority) ∧

(SCHEDQHd [hpid/p!] ∧

SCHEDQDelHd ∧

SetNewCurrentProcess[hpid/p?]
o
9
CTXTSW) \ {hpid})

∨ ContinueCurrent]

The SchedNext operation is composed of disjunctions. Each disjunct can be
treated independently, so we have:

preSchedNext =̂

pre(IsCurrentProcessIdle ∧

((IsEmptySCHEDQ ∧ ContinueCurrent)

∨ (SCHEDQDequeue[p/p!] ∧

SetNewCurrentProcess[p/p?]
o
9
CTXTSW) \ {p}))

∨ pre(IsEmptySCHEDQ ∧ MakeIdleProcessCurrent o
9
CTXTSW)

∨ pre((¬ CurrentProcessStateIsReadyOrRunning

∨ QueueHdHasHigherPriority) ∧

(SCHEDQHd [hpid/p!] ∧

SCHEDQDelHd ∧

SetNewCurrentProcess[hpid/p?]
o
9
CTXTSW) \ {hpid})

∨ preContinueCurrent

Taking each disjunct in turn, we obtain, after simplification:

preSchedNext =̂

curr = iprc

∨ sq .pq = 〈 〉

∨ (state(curr)
= psready ∨ state(curr)
= psrunning

∨ prio(head sq .pq) < prio(curr))

and we note that the precondition of the fourth disjunct simplifies to true.
There are two

Theorem 38. curr ∈ used ∨ curr = minpid.

Proof. By inspection, it can be seen that curr is assigned a value that is
head sq .pq . Since ran sq .pq ⊂ used , curr ∈ used . The idle process, iprc, as will
be seen, is allocated a normal PID , like any other process, so iprc ∈ used .
After the initialisation of the scheduler, curr ′ = minpid . ✷

114 3 A Simple Kernel

Corollary 3. prev ∈ used ∨ prev = minpid.

Proof. In all cases, prev obtains is value by assignments prev ′ = curr . Given
that curr ∈ used , it follows immediately prev ∈ used . The other case holds
immediately after the initialisation operation has been applied. ✷

In this kernel, processes can request that they be suspended, This is the
operation as far as the scheduler is concerned.

SuspendMe =̂

((IsEmptySCHEDQ ∧ MakeIdleProcessCurrent)

∨ ((SCHEDQDequeue[p/p!]o
9

(CurrentProcessId [c/p!] ∧ MakeReady [c/p?]) \ {c})
o
9
SetNewCurrentProcess[p/p?]) \ {p})

o
9
CTXTSW

(Note, again, that o
9CTXTSW can be reduced in strength to ∧ CTXTSW .)

The definition of SuspendMe expands and simplifies to the following
schema:

SuspendMe

∆SCHED

∆PRIOQ

state ′ = state ⊕ {curr �→ psready}

((pq = 〈 〉 ∧ curr ′ = prev ∧ prev ′ = curr)

∨ (curr ′ = head pq ∧

(#(tail pq) < maxs ∧

prev ′ = curr ∧

((tail pq = 〈 〉 ∧ pq ′ = 〈curr〉)

∨ (prio(curr) ≤ prio(head tail pq) ∧ pq ′ = 〈curr〉 � tail pq)

∨ (prio(last tail pq) < prio(curr) ∧ pq ′ = (tail pq) � 〈curr〉)

∨ (∃ s1, s2 : seqPID | s1
= 〈 〉 ∧ s2
= 〈 〉 ∧ s1 � s2 = tail pq •

prio(last s1) < prio(curr) ∧

prio(curr) ≤ prio(head s2) ∧

pq ′ = s1 � 〈curr〉 � s2) ∧

serr ! = sysok))

∨ serr ! = schedqfull) ∧

CTXTSW

The movement of prev ′ = curr is justified by the combination of Distrib∨ and
p ∧ q ⇒ p; the conjunction of CTXTSW is also a simplification of the orginal
statement (the simplification is justified above).

The precondition is

preSuspendMe =̂ pq = 〈 〉 ∨ # tail pq < maxs

There is an argument that SuspendMe should be defined as follows

3.6 The Scheduler 115

SuspendMe =̂

((IsEmptySCHEDQ ∧ MakeIdleProcessCurrent ∧

(CurrentProcessId [c/p!] ∧

MakeReady [c/p?]) \ c)

∨ ((SCHEDQDequeue[p/p!]o
9

(CurrentProcessId [c/p!] ∧ MakeReady [c/p?]) \ {c})
o
9
SetNewCurrentProcess[p/p?]) \ {p})

o
9
CTXTSW

After expansion and simplification (note that CTXTSW is moved inwards
using the Distrib rule for ∧ over ∨), we have

SuspendMe

∆SCHED

∆PRIOQ

state ′ = state ⊕ {curr �→ psready}

((sq .pq = 〈 〉 ∧ curr ′ = iprc ∧ prev ′ = curr ∧ sq .pq ′ = 〈curr〉 ∧ CTXTSW)

∨ (curr ′ = head sq .pq ∧

(#(tail sq .pq) < maxs ∧

prev ′ = curr ∧

((tail sq .pq = 〈 〉 ∧ sq .pq ′ = 〈curr〉)

∨ (prio(curr) ≤ prio(head tail sq .pq) ∧

sq .pq ′ = 〈curr〉 � tail sq .pq)

∨ (prio(last tail sq .pq) < prio(curr) ∧

sq .pq ′ = (tail sq .pq) � 〈curr〉)

∨ (∃ s1, s2 : seqPID | s1
= 〈 〉 ∧ s2
= 〈 〉 ∧ s1 � s2 = tail sq .pq •

prio(last s1) < prio(curr) ∧

prio(curr) ≤ prio(head s2) ∧

sq .pq ′ = s1 � 〈curr〉 � s2) ∧

CTXTSW ∧

serr ! = sysok))

∨ serr ! = schedqfull)

The precondition is the same as in the other version.

3.6.2 Refinement One

There is a number of things that should be said about the refinement of
the scheduler. The first thing is that, since the scheduler consists of three
simple variables and a promoted schema, the refinement of the three variables
will consist of the identity, leaving the refinement of the promoted schema.
However, the refinement of a promotion is equivalent to the promotion of a
refinement, so there is nothing to do for the reason that the refinement of
PRIOQ has already been completed in the last section. For these reasons, all

116 3 A Simple Kernel

we need do in this and the next subsection is to write out the definitions of
the various schemata using the operations of the current level of refinement.
In this subsection, the current level of refinement is 1; in the next, it is 2.

We have little or nothing to say about these refinements. We have not said
all there is to say about them already but believe that what we have not said
is inessential1.

MakeReady1 =̂

SetProcessStateToReady1 ∧

∃∆PRIOQ1 •

ΦSCHED ∧ PRIOQEnqueue1

CurrentProcessStateIsReadyOrRunning1 =̂

(CurrentProcessId [c/p!] ∧

(∃ st1, st2 : PSTATE | st1 = psready ∧ st2 = psrunning •

ProcState1[c/p?, st1/st !] ∨ ProcState1[c/p?, st2/st !])) \ {c}

This expands to

CurrentProcessStateIsReadyOrRunning1

ΞPTAB1

ΞSCHED

∃ c : PID •

c = curr ∧

(∃ st1, st2 : PSTATE | st1 = psready ∧ st2 = psrunning •

st1 = state1(c) ∨ st2 = state1(c))

It can be simplified to

CurrentProcessStateIsReadyOrRunning1

ΞPTAB1

ΞSCHED

psready = state1(curr) ∨ psrunning = state1(curr)

QueueHdHasHigherPriority1 =̂

(CurrentPriority [cp/pr !] ∧

SCHEDQHd1[h/p!] ∧

ProcPrio1[h/p?, hpr/pr !] ∧

hpr < cp) \ {h, hpr , cp}

This expands into

1 We hope!

3.6 The Scheduler 117

QueueHdHasHigherPriority1

ΞSCHED

ΞPTAB1

∃ h : PID ; hpr , cp : PPRIO •

prio1(curr) = cp ∧

h = pq1(1) ∧

prio1(h) = hpr ∧

hpr < cp

and then to

QueueHdHasHigherPriority1

ΞSCHED

ΞPTAB1

∃ hpr , cp : PPRIO •

h = pq1(1) ∧

prio1(h) = hpr ∧

hpr < prio1(curr)

and finally to

QueueHdHasHigherPriority1

ΞSCHED

ΞPTAB1

prio1(pq1(1)) < prio1(curr)

SchedNext1 =̂

(IsCurrentProcessIdle ∧

((IsEmptySCHEDQ1 ∧ ContinueCurrent)

∨ (SCHEDQDequeue1[p/p!] ∧ SetNewCurrentProcess[p/p?]
o
9
CTXTSW) \ {p}))

∨ (IsEmptySCHEDQ1 ∧ MakeIdleProcessCurrent o
9
CTXTSW)

∨ ((¬ CurrentProcessStateIsReadyOrRunning1

∨ QueueHdHasHigherPriority1) ∧

(SCHEDQHd1[hpid/p!] ∧

SCHEDQDelHd1 ∧

SetNewCurrentProcess[hpid/p?] o
9
CTXTSW) \ {hpid})

∨ ContinueCurrent

The precondition, when simplified, is

118 3 A Simple Kernel

preSchedNext1 =̂

curr = iprc

∨ nxtp = 1

∨ (prio1(pq1(1)) < prio1(curr)

∨ psready
= state1(curr) ∨ psrunning
= state1(curr))

The reader should not be surprised at the similarity between this precondition
and that of SchedNext1. This is clearly because the abstraction relation is an
identity.

The first refinement of SuspendMe1 is

SuspendMe1 =̂

((IsEmptySCHEDQ1 ∧ MakeIdleProcessCurrent ∧

(CurrentProcessId [c/p!] ∧

MakeReady1[c/p?]) \ c)

∨ ((SCHEDQDequeue1[p/p!]o
9

(CurrentProcessId [c/p!] ∧ MakeReady1[c/p?]) \ {c})
o
9
SetNewCurrentProcess[p/p?]) \ {p})

o
9
SwitchContext

3.6.3 Refinement Two

These refinements are mostly concerned with the PTAB2 component of sched-
uler operations. We have already refined the priority queue as far as we require,
so all components included from the priority queue are the same as in the pre-
vious refinement. The priority queue component is a promoted component, so
there are no refinement proofs required. The other immediate components of
the scheduler are scalar variables and they cannot be refined for the very rea-
son that they have reached their final level of refinement already. This leaves
components of PTAB as candidates for refinement proofs. In each case, there
is the requirement that p? ∈ used (or equivalent under refinement) and this
condition is met by the implicit precondition to PRIOQ that ran pq ⊂ used .
We believe, therefore, that no refinement proofs are required in this subsec-
tion. We will, though, include the refinements of the primary schemata plus
some auxilliary operations.

CurrentProcessStateIsReadyOrRunning2 =̂

(CurrentProcessId [c/p!] ∧

(∃ st1, st2 : PSTATE | st1 = psready ∧ st2 = psrunning •

ProcState2[c/p?, st1/st !] ∨ ProcState2[c/p?, st2/st !])) \ {c}

As in the previous cases, this operation refines to

CurrentProcessStateIsReadyOrRunning2

ΞPTAB1

ΞSCHED

psready = state2(curr) ∨ psrunning = state2(curr)

3.7 Semaphores 119

QueueHdHasHigherPriority2 =̂

(CurrentPriority [cp/pr !] ∧

SCHEDQHd1[h/p!] ∧

ProcPrio2[h/p?, hpr/pr !] ∧

hpr < cp) \ {h, hpr , cp}

As in the previous cases, this expands and simplifies to

QueueHdHasHigherPriority1

ΞSCHED

ΞPTAB1

prio2(pq1(1)) < prio2(curr)

SchedNext2 =̂

(IsCurrentProcessIdle ∧

((IsEmptySCHEDQ1 ∧ ContinueCurrent)

∨ (SCHEDQDequeue1[p/p!] ∧ SetNewCurrentProcess[p/p?]
o
9
CTXTSW) \ {p}))

∨ (IsEmptySCHEDQ1 ∧ MakeIdleProcessCurrent o
9
CTXTSW)

∨ ((¬ CurrentProcessStateIsReadyOrRunning2

∨ QueueHdHasHigherPriority2) ∧

(SCHEDQHd1[hpid/p!] ∧

SCHEDQDelHd1 ∧

SetNewCurrentProcess[hpid/p?] o
9
CTXTSW) \ {hpid})

∨ ContinueCurrent

The second refinement of SuspendMe is

SuspendMe2 =̂

((IsEmptySCHEDQ2 ∧ MakeIdleProcessCurrent ∧

(CurrentProcessId [c/p!] ∧

MakeReady2[c/p?]) \ c)

∨ ((SCHEDQDequeue2[p/p!]o
9

(CurrentProcessId [c/p!] ∧ MakeReady2[c/p?]) \ {c})
o
9
SetNewCurrentProcess[p/p?]) \ {p})

o
9
CTXTSW

The schemata from this last refinement have now been shown to be correct.
They can be converted directly into executable code.

3.7 Semaphores

The kernel allows processes to synchronise using semaphores. This section
contains the definition of the semaphore type.

120 3 A Simple Kernel

The kernel only uses semphores. It would be very easy to extend it so that
it included, say, condition variables. We refrain from such extensions because
of their effect on the length of this book.

Semaphores are defined as a counter and a queue. The queue is the FIFO
queue type defined for processes. This is done using promotion. This en-
ables the separate refinement of the queue of waiting processes, waiters (of
type PROCESSQUEUE). Since the PROCESSQUEUE type has already been
specified and refined, there is no work to do with respect to its use in the cur-
rent context. The only thing we really have to do is to rename the components
of the PROCESSQUEUE and its operations so that they are more appropriate
to semaphores.

The definition of the semaphore state space schema is

SEMAPHORE

scnt : Z

waiters : PROCESSQUEUE

where scnt is the semaphore’s counter and waiters is the queue of waiting
processes.

3.7.1 Top Level

We will need to prove the following result:

Theorem 39. If waiters �= 〈 〉, ∀ p : PID • p ∈ ranwaiters ⇒ p ∈ used

It should be noted that the schema for semaphore has an often ignored in-
teraction with the scheduler. If there is more than one waiter and the current
process waits on the same semaphore, if the scheduler’s queue is now empty,
the semaphore will hang indefinitely because the idle process will run. Consid-
eration of this leads to the inevitable conclusion that this is correct behaviour
for the semaphore. If all runnable processes are waiting on the semaphore,
there is no process to signal on it, so they must wait indefinitely.

A promotion schema is clearly required so that the relevant operations on
PROCESSQUEUE can be promoted to semaphore operations.

ΦSEMAPHORE

∆SEMAPHORE

∆PROCESSQUEUE

waiters = θPROCESSQUEUE

waiters ′ = θPROCESSQUEUE ′

The operations to add and remove a waiting process (a “waiter”) are
defined by promotion as follows:

3.7 Semaphores 121

AddWaiter =̂

∃∆SEMAWAITERS •

ΦSEMAPHORE ∧ EnqueuePROCESSQUEUE

RemoveWaiter =̂

∃∆SEMAWAITERS •

ΦSEMAPHORE ∧ DequeuePROCESSQUEUE

Semaphores are initialised by clearing their queue of waiters and by setting
the counter to some value (here ival?). Appropriate setting of the semaphore
gives a binary semaphore and a larger value for ival? will give a general
semaphore.

SEMAPHOREInit

SEMAPHORE ′

ival? : Z

scnt ′ = ival?

waiters ′ = θPROCESSQUEUEInit

The wait and signal operations require the counter to be incremented and
decremented, so the following operations are required. Note that they do not
depend upon promotion but act on the variables of the SEMAPHORE type.

IncSEMACNT

∆SEMAPHORE

scnt ′ = scnt + 1

DecSEMACNT

∆SEMAPHORE

scnt ′ = scnt − 1

The following schema defines a predicate which is true iff scnt is negative.

NegativeSemaCount

ΞSEMAPHORE

scnt < 0

The next schema defines a predicate which is true iff scnt is not positive—i.e.,
is either 0 or negative.

NonpositiveSemaCount

ΞSEMAPHORE

scnt ≤ 0

122 3 A Simple Kernel

A process that is waiting on a semaphore has a state value pswaitsema
(reasonably enough!). The following schema on PTAB defines the appropriate
action:

SetStateToWaitSema =̂

∃ st : PSTATE | st = pswaitsema •

SetProcState[st/st?]

This expands and simplifies to

SetStateToWaitSema

∆PTAB

p? : PID

state ′ = state ⊕ {p? �→ pswaitsema}

The operation that waits on a semaphore is defined as:

WaitSema =̂

DecSEMACNT o
9

((NegativeSemaCount ∧

SetStateToWaitSema ∧

AddWaiter [caller?/p?]o
9

SchedNext)

∨ ContinueCurrent)

The caller, caller?, is always the currently executing process, so caller? =
curr , so the WaitSema operation is, more correctly

WaitSema =̂

DecSEMACNT o
9

((NegativeSemaCount ∧

(CurrentProcessId [c/p!] ∧

SetStateToWaitSema[c/p?] ∧

AddWaiter [c/p?]) \ {c}
o
9
SchedNext)

∨ ContinueCurrent)

Notice that WaitSema can be equivalently expressed as follows

WaitSema =̂

DecSEMACNT o
9

((NegativeSemaCount ∧

(CurrentProcessId [c/p!] ∧

SetStateToWaitSema[c/p?] ∧

(∃∆PROCESSQUEUE •

ΦSEMAPHORE ∧

EnqueuePROCESSQUEUE [c/p?])) \ {c} ∧
o
9
SchedNext)

∨ ContinueCurrent)

3.7 Semaphores 123

The full expansion is as follows. The WaitSema schema expands first (after
elimination of the existential quantifier by the one-point rule) into

WaitSemaa

∆PTAB

∆SEMAPHORE

∆PROCESSQUEUE

∆SCHED

serr ! : SYSERR

(scnt ′ = scnt − 1 ∧

(scnt ′ < 0 ∧

state ′ = state ⊕ {curr �→ pswaitsema} ∧

waiters.procs = waiters.procs � 〈curr〉o
9

SchedNext)

∨ (curr ′ = curr ∧ prev ′ = prev))

Its second expansion is

WaitSema

∆SCHED

∆PTAB

∆SEMAPHORE

∆PROCESSQUEUE

serr ! : SYSERR

∃ state ′′ : PID �→ PSTATE •

(scnt ′ = scnt − 1 ∧

((scnt ′ < 0 ∧

waiters.procs ′ = waiters.procs � 〈curr〉 ∧

state ′′ = state ⊕ {curr �→ pswaitsema} ∧

(curr = iprc ∧

((pq = 〈 〉 ∧ curr ′ = curr ∧ prev ′ = prev)

∨ (curr ′ = head pq ∧ prev ′ = curr ∧

state ′ = state ⊕ {head pq �→ psrunning}

∧ CTXTSW)))

∨ (pq = 〈 〉 ∧ prev ′ = curr ∧ curr ′ = iprc ∧ CTXTSW)

∨ ((state ′′(curr)
= psready ∧ state ′′(curr)
= psrunning

∨ prio(head pq) < prio(curr)) ∧

pq ′ = tail pq ∧

curr ′ = head pq ∧

state ′ = state ⊕ {head pq �→ psrunning} ∧

prev ′ = curr ∧

CTXTSW)

∨ (curr ′ = curr ∧ prev ′ = prev)

∨ (curr ′ = curr ∧ prev ′ = prev))

124 3 A Simple Kernel

In the call to SchedNext , the state of curr is clearly pswaitsema, this can be
used as an additional fact in simplifying the predicate.

WaitSema

∆SCHED

∆PTAB

∆SEMAPHORE

∆PROCESSQUEUE

serr ! : SYSERR

((scnt ≤ 0 ∧

waiters.procs ′ = waiters.procs � 〈curr〉 ∧

state ′ = state ⊕ {curr �→ pswaitsema} ∧

((pq = 〈 〉 ∧ prev ′ = curr ∧ curr ′ = iprc)

∨ (pq = tail pq ∧

curr ′ = head pq ∧

state ′ = state ⊕ {head pq �→ psrunning} ∧

prev ′ = curr)))

∨ (curr ′ = curr ∧ prev ′ = prev))

and its precondition is

preWaitSema =̂ scnt ≤ 0

Note that the SignalSema operation can be performed by any piece of
code, not just the current process. This implies that it can be called by, for
example, a device interface.

Finally, it should be noted that curr ′ = curr ∧ prev ′ = prev is just skip
when implemented. Next we have the signal operation (the V operation in
the original):

SignalSema =̂

IncSEMACNT o
9

(NonPositiveSemaCount ∧

(∃ p : PID •

RemoveWaiter [p/p!] ∧

MakeReady [p/p?])) ∧

ContinueCurrent)

Schema SignalSema expands into:

SignalSema

∆SEMAPHORE

∆PROCESSQUEUE

serr ! : SYSERR

scnt ′ = scnt + 1 ∧

(scnt ′ ≤ 0 ∧

waiters.procs ′ = tail waiters.procs ∧

3.7 Semaphores 125

MakeReady [head waiters.procs/p?]) ∧

(curr ′ = curr ∧ prev ′ = prev)

Note how this specification is much simpler than in [4]. This is because
we are interested only in the refinement not in a (relatively) complete micro
model of the operation of the semaphore.

The SignalSema operation expands next into the following schema:

SignalSema

∆PRIOQ

∆SEMAPHORE

∆PROCESSQUEUE

serr ! : SYSERR

(scnt < 0 ∧

waiters.procs ′ = tail waiters.procs ∧

((#sq .pq < maxs ∧

((sq .pq = 〈 〉 ∧ sq .pq ′ = 〈head waiters.procs〉)

∨ (prio(head waiters.procs) ≤ prio(head sq .pq) ∧

sq .pq ′ = 〈head waiters.procs〉 � sq .pq)

∨ (prio(last sq .pq) < prio(head waiters.procs) ∧

sq .pq ′ = sq .pq � 〈head waiters.procs〉)

∨ (∃ s1, s2 : seqPID |

s1
= 〈 〉 ∧ s2
= 〈 〉 ∧ s1 � s2 = sq .pq •

prio(last s1) < prio(head waiters.procs) ∧

prio(head waiters.procs) ≤ prio(head s2) ∧

sq ′ = s1 � 〈head waiters〉 � s2)) ∧

state ′ = state ⊕ {head waiters �→ psready} ∧

serr ! = sysok)

∨ serr ! = schedqfull))

∧ (curr ′ = curr ∧ prev ′ = prev)

The final conjunct (curr ′ = curr ∧ prev ′ = prev) reduces to skip because
it is just the identity applied to the scheduler’s state. It could, therefore, be
omitted; it will be left as a reminder when translating the schema.

There is not a great deal that can be done with this schema! Let us,
instead, calculate the precondition.

preSignalSema =̂

scnt + 1 ≤ 0 ∧ #sq .pq < maxs ∧ waiters.procs
= 〈 〉

or:

scnt < 0 ∧ #sq .pq < maxs ∧ waiters.procs
= 〈 〉

126 3 A Simple Kernel

3.7.2 Refinement

Because of the use of promotion in the definition of SEMAPHORE, there is
very little to do as far as refinement is concerned. The refinement of scnt is just
scnt itself (it is just a scalar variable), while the refinement of the queue type
has already been completed. The only slight complication is the alteration of
the state variable in PTAB ; two refinements of PTAB should be taken into
account.

The production of refinement schemata consists only of substituting new
names into those presented above. There is no need to engage in any correct-
ness proofs because they have already been done.

The substitution of the apporpriate promoted schemata into the schemata
defining WaitSema and SignalSema produces schemata that are suitable for
translation into code.

The schemata derived in this section can be implemented directly as ex-
ecutable code. In the current case, the semaphore construct is composed of
already refined constructs, its implementation is less obvious in the schemata.

3.8 Semaphore Table

Now that we have semaphores, a table to hold them can be defined. This table
will be maintained by the kernel, so a measure of control can be exerted on
the number of semaphores in the system.

The table has the usual operations.
Following our convention, the error schemata are defined first. There are

two error schemata: NotAllocSema for when an attempt has been made to per-
form an operation on a semaphore that has not been allocated and NoFreeSe-

mas which reports that the semaphore table is full.

NotAllocSema

serr ! : SYSERR

serr ! = notallocsema

NoFreeSemas

serr ! : SYSERR

serr ! = nofreesemas

3.8.1 Top Level

This subsection contains the specification of the semaphore table. The table
supports the following operations:

3.8 Semaphore Table 127

• Initialisation.
• Allocate a new semaphore.
• Free a semaphore.

Since semaphores were specified and refined to near code in the last section,
the semaphore table can be specified using promotion.

An indentifier type for semaphores must first be defined. This is an atomic
type. Its elements are semaphore identifiers.

[SID]

This type will be refined.
The semaphore table is defined as follows:

SEMATBL

semas : SID �→ SEMAPHORE

semasinuse : F SID

semasinused = dom semas

The variable semas is the table, a partial mapping from semaphore identifiers
to semaphores; semasinuse contains the identifiers of those semaphores that
are currently in use. The semasinuse variable is used to determine whether it
is possible to allocate another semaphore, whether a semaphore is in use, and
so on.

The initialisation schema is defined as:

SEMATBLInit

SEMATBL′

semasinuse′ = ∅

This is very much as would be expected. By making semasinuse ′ = ∅, the
domain of semas is also made empty.

The promotion schema is a textbook case:

ΦSEMATBL

∆SEMATBL

∆SEMAPHORE

s? : SID

s? ∈ semasinuse

semas(s?) = θSEMAPHORE

semas ′ = semas ⊕ {s? �→ θSEMAPHORE ′}

The following schema defines the operation to free a semaphore. Freeing a
semaphore consists of removing the semaphore’s identifier from semasinuse.

128 3 A Simple Kernel

FreeSema

∆SEMATBL

s? : SID

semasinuse′ = semasinuse \ {s?}

The following schema defines the allocation operation for semaphore iden-
tifiers. A semaphore can be allocated only when an identifier has been allo-
cated, so this schema amounts to the first stage in allocating a semaphore.

AllocSID

∆SEMATBL

s! : SID

s!
∈ semasinuse

semasinuse′ = semasinuse ∪ {p!}

The operation is nondeterministic. The identifier to be returned, s!, is chosen
nondeterministically so that it does not occur in semasinuse (the operation
must be used only when it is known that semasinuse �= ∅). The newly allo-
cated identifier is added to semasinuse in the last conjunct.

The next schema defines a predicate which is satisfied when there are some
elements of SID that are not elements of semasinuse.

FreeSIDs

ΞSEMATBL

semasinuse ⊂ SID

The following defines the initialisation of a semaphore, once allocated.
Given a semaphore identifier, s?, the associated semaphore is initialised us-
ing θSEMAPHOREInit . There is no magic here; the value used to initialise
the semaphore is merely implicitly declared in the signature of the InitSema
schema).

InitSema

∆SEMATBL

s? : SID

semas ′ = semas ∪ {s? �→ θSEMAPHOREInit}

The operation to allocate semaphores is

AllocSema =̂

(AllocSID ∧ InitSema ∧ SysOk)

∨ NoFreeSemas

3.8 Semaphore Table 129

It expands into:

AllocSema

∆SEMATBL

s! : SID

serr ! : SYSERR

(s?
∈ semasinuse ∧

semasinuse′ = semasinuse ∪ {s!} ∧

semas ′ = semas ∪ {s? �→ θSEMAPHOREInit} ∧

serr ! = sysok)

∨ serr ! = nofreesemas

The precondition is

preAllocSema =̂ ∃ s : SID • s ∈ semasinuse

To free a semaphore, the ReleaseSema operation is used. This operation
is defined as follows.

ReleaseSema =̂

(SemaInUse ∧ FreeSema ∧ SysOk)

∨ NotAllocSema

This definition expands into the following schema:

ReleaseSema

∆SEMATBL

s? : SID

serr ! : SYSERR

(s? ∈ semasinuse ∧

semasinuse′ = semasinuse \ {s?} ∧

serr ! = sysok)

∨ serr ! = notallocsema

The ReleaseSema schema’s precondition is given by the following schema.

preReleaseSema =̂ s? ∈ semasinuse

The semaphore operations can be promoted to operations on the table.
The definitions are quite standard and are as follows:

STWaitSema =̂

∃∆SEMAPHORE •

ΦSEMATBL ∧ WaitSema

and

130 3 A Simple Kernel

STSignalSema =̂

∃∆SEMAPHORE •

ΦSEMATBL ∧ SignalSema

There is no refinement necessary for these operations.

3.8.2 Refinement One

The first object of concern is the type SID . This was an atomic type when
initially defined. For this refinement, it is itself refined to:

SID == minsid . . maxsid

In addition, it is necessary to define:

minsid ,maxsid : N1

minsid < maxsid

Good values for minsid are zero or one.
The semaphore table type can now be defined as the following schema

ST1

semas1 : SID → SEMAPHORE

sinuse : SID → {0, 1}

Here, the set, semasinuse, is replaced by a function. The evaluation of the
function for an arbitrary value of s is sinuse(s) = 1 iff s ∈ semasinuse,
sinuse(s) = 0 otherwise. In other words, sinuse is the characteristic function
of semasinuse. The other component, semas1, is now a total function but its
domain and codomain are identical. Moreover, it is intended that the value of
semas1(s) is defined at s iff sinuse(s) = 1.

The initialisation schema is very much as one might expect:

ST1Init

ST1′

∀ s : SID •

sinuse ′(s) = 0

The operation to allocate a semaphore is, again, nondeterministic.

AllocST1

∆ST1

s! : SID

∃ s : SID •

sinuse(s) = 0 ∧

sinuse ′ = sinuse ⊕ {s �→ 1} ∧

s! = s

3.8 Semaphore Table 131

Here, the nondeterminism is located in the choice of s, not s!, as was the case
in the last subsection. The predicate of this schema is equivalent to

sinuse(s!) = 0

sinuse ′ = sinuse ⊕ {s! �→ 1}

which, we believe, makes the nondeterminism harder to detect. Nonetheless,
the two definitions of the operation are perfectly adequate for our needs; we do
not care which particular identifier is chosen, as long as one is. The identifier
should not be in current use; once chosen, it should be marked as being in
use. This is what the operation states, so it is adequate.

FreeSID1

∆ST1

s? : SID

sinuse ′ = sinuse ⊕ {s? �→ 0}

The operation to free a semaphore identifier is just an update of the sinuse

function. This is obvious given the relationship between semasinuse and
sinuse.

The semaphore initialisation operation is next.

InitSema1

∆ST1

s? : SID

semas1′ = semas1 ⊕ {s? �→ θSEMAPHOREInit}

The next schema defines a predicate that is satisfied when s? is in use.

SemaInUse1

ΞST1

s? : SID

sinuse(s?) = 1

The allocation operation should cause no problems. It is defined as

AllocSema1 =̂

(AllocSID1 ∧ InitSema![s!/s?] ∧ SysOk)

∨ NoFreeSema

and expands into:

132 3 A Simple Kernel

AllocSema1

∆ST1

s! : SID

serr ! : SYSERR

((∃ s : SID •

sinuse(s) = 0 ∧

sinuse ′ = sinuse ⊕ {s �→ 1} ∧

s! = s) ∧

semas1′ = semas1 ⊕ {s! �→ θSEMAPHOREInit} ∧

serr ! = sysok)

∨ serr ! = nofreesema

The precondition of AllocSema1 is easily calculated. It is

preAllocSema1 =̂

∃ s : SID •

sinuse(s) = 0

The operation to free a semaphore is the following:

ReleaseSema1 =̂

(SemaInUse1 ∧ FreeSID1 ∧ SysOk)

∨ NotAllocSema

It expands into the next schema:

ReleaseSema

∆ST1

s? : SID

(sinuse(s?) = 1 ∧

sinuse ′ = sinuse ⊕ {s? �→ 0} ∧

serr ! = sysok)

∨ serr ! = notallocsema

An abstraction relation is needed so that this level of representation can be
related to the top-level specification. The abstraction relation is the obvious
one.

AbsST1

ST

ST1

∀ s : SID •

sinuse(s) ⇔ s ∈ semasinuse

∀ s : SID •

s ∈ semasinuse ⇒ semas1(s) = semas(s)

3.8 Semaphore Table 133

3.8.3 Refinement One–Again

The first refinement of SEMATBL refines the partial function to what amounts
to an array indexed by SID . The other component of ST1, sinuse, is a mapping
between semaphore identifiers and the set {0, 1}, which is used to represent
semasinuse. The object of this refinement is to find a more compact repre-
sentation for semasinuse or sinuse. The aim is to refine sinuse to a bitmap.

First, the number of bits per machine word must be defined.

bpw : N1

Next, it is necessary to define how many words are required to represent
the elements of SID , one element per bit.

msize : N1

msize = ⌈maxsid−minsid
bpw

⌉

Clearly, if minsid = 0, this simplifies to

⌈
maxsid

bpw
⌉

One machine word can represent values in the range 0 . . 2bpw − 1. This
can also be written as {0 . . bpw − 1} if log2 s, s ∈ SID is used. Therefore, the
type

MWORD == {0 . . bpw − 1}

is defined.
The first definition of the bitmap is:

BMASK == 0 . . msize − 1 → MWORD

This can be interpreted as a vector of msize elements each of which is a set
of bits. It can be verified that the union of the domain elements of BMASK

covers all elements of SID .
An encoding is required for elements of SID . It is fairly obvious and that

integer division and mod are appropriate. Integer division will be written ÷.
Let bm : BMASK , so

s ∈ semasinuse ⇔ (s mod bpw) ∈ bm(s ÷ bpw)

⇒ {(s mod bpw)} ⊆ bm(s ÷ bpw)

semasinuse ∪ {s} ⇔ {(s mod bpw)} ∪ bm(s ÷ bpw)

semasinuse \ {s} ⇔ bm(s ÷ bpw) \ {(s mod bpw)}

These equivalents are straightforward to verify. For example, the implication
on line two can be proved from the biconditional on line one using the fact
that x ∈ X ⊆ Y ⇒ x ∈ Y .

134 3 A Simple Kernel

We have defined MWORD as {0 . . bpw − 1}. This can be improved upon
with relative ease. First, consider the effect of redefining MWORD as 0 . .
bpw − 1 and define a new type, BM , as:

BM : 0 . . bpw − 1 → {0, 1}

This is the characteristic function of the membership function defined for
SID . In particular, if f ∈ BM (f : BM), define x ∈ dom f ⇔ f (x) = 1 and
x �∈ dom f ⇔ f (x) = 0.

The following operations can be defined. Note that BM has a fixed finite
domain, so it is possible to iterate over it.

& : BM × BM → BM

∀ f1, f2 : BM •

∃
1
fr : BM | fr = f1&f2 •

∀ i : 0 . . bpw − 1 •

f1(i) = 1 ∧ f2(i) = 1 ⇒ fr (i) = 1 ∧

f1(i)
= 1 ∨ f2(i)
= 1 ⇒ fr (i) = 0

| : BM × BM → BM

∀ f1, f2 : BM | fr = f1|f2 •

∃
1
fr : BM •

∀ i : 0 . . bpw − 1 •

f1(i) = 1 ∨ f2(i) = 1 ⇒ fr (i) = 1 ∧

f1(i) = 0 ∧ f2(i) = 0 ⇒ fr (i) = 0

∼ : BM → BM

∀ f1 : BM •

∃
1
fr : BM | fr =∼ f1 •

∀ i : 0 . . bpw − 1 •

f1(i) = 1 ⇒ fr (i) = 0 ∧

f1(i) = 0 ⇒ fr (i) = 1

↑: BM × BM → BM

∀ f1, f2 : BM •

∃
1
fr : BM | fr = f1 ↑ f2 •

∀ i : 0 . . bpw − 1 •

f1(i) = f2(i) ⇒ fr (i) = 0 ∧

f1(i)
= f2(i) ⇒ fr (i) = 1

In particular, it should be noted that x ∈X can be written as ({x}∩X) �=∅.
This is the memebership test for bit maps, as a moment’s thought reveals.

3.8 Semaphore Table 135

Lemma 2. & represents set intersection. It is bitwise “and.”

Proof. Actually, quite easy given the definitions. If f1 and f2 are interpreted
as the characteristic function of ∈, the definition of ∩ is readily retrieved.
Given two sets, X and Y , x ∈ X ∩ Y ⇔ x ∈ X ∧ x ∈ Y . ✷

Lemma 3. | represents set union. It is bitwise “or.”

Proof. Again, taking f1 and f2 to be the characteristic function of ∈, the
function is immediately seen to define ∪: given two sets, X and Y , x ∈
X ∪ Y ⇔ (x ∈ X) ∨ (x ∈ Y); if x �∈ X ∧ x �∈ Y , it is not in X ∪ Y . This is
equivalent to an expansion of the definition of |. ✷

Lemma 4. ∼ rerpesents set complementation. It is bitwise complement.

Proof.This is, again, easy to deduce. If x ∈ X , x �∈∼ X ; if x �∈∼ X , x ∈ X .
✷

Lemma 5. ↑ represents a form of set difference, specifically symmetric set

difference.

Proof. The easiest way to view this is with a Venn diagram from which it can
be deduced that X ↑ Y = (X∪Y)\(X∩Y), or X ↑ Y = (X \Y)∪(Y \X). This
is the symmetric set difference operator; it is also an exclusive-or operation.
✷

These operations correspond to bit operations provided by languages like
C, C++ and Ada.

Note that the above construction can easily be generalised. The domain
SID upon which this construction is based can be replaced by any arbitrary
set, X , subject to the restrictions that (a) X is discrete, (b) X is bounded
above and below.

With these operations in place, a bit map type can be defined for the
semaphore table type.

Now let us define a new type:

BITMAP =̂ 0 . . msize − 1 → BM

or, in expanded form:

BITMAP =̂ 0 . . msize = 1 → (0 . . bpw − 1 → {0, 1})

Let s be an arbitrary element of SID and let

w = s ÷ bpw

b = {s mod bpw �→ 1} ⊕ (λ i : 0 . . bpw − 1 • 0)

In the identity expression defining b, the λ expression defines a function whose
domain is 0. .bpw−1 and whose value is uniformly zero (i.e., if f is the function,
∀ x : 0. .bpw−1 • ((λ i : 0. .bpw−1 • 0)x) = 0). The maplet {s mod bpw �→ 1}
clearly has the value at s mod bpw : viz., {s mod bpw �→ 1}(s mod bpw) = 1.

136 3 A Simple Kernel

Therefore, the composition of these two functions has the following behaviour.
Let the function {s mod bpw �→ 1} ⊕ (λ i : 0 . . bpw − 1 • 0) be called f , then:

f (x) =

{
1, x = s mod bpw
0, otherwise

Now assume:

sinuse : BITMAP

We can write the following identities. Each identity is justified by one or more
of the lemmata above.

s ∈ semasinuse ⇔ sinuse(w) | b

semasinuse ∪ {s} ⇔ sinuse(w) | b

semasinuse \ {s} ⇔ (∼ sinuse(w) ↑ b

The appropriate updates are as follows:

semasinuse′ = semasinuse ∪ {s} ⇔

sinuse = sinuse ⊕ {w �→ sinuse(w) & b}

semasinuse′ = semasinuse \ {s} ⇔

sinuse = sinuse ⊕ {w �→ (∼ sinuse(w)) ↑ b}

Using this new structure, it is possible to define new schemata for the
semaphore table. These schemata will be given a a subscript for now (and the
state schema will be similarly annotated).

SemaInUsea

ΞST1a

s? : SID

sinuse(s? ÷ bpw) & ((λ i : 0 . . bpw − 1 • 0) ⊕ {s? mod bpw �→ 1})

= ((λ i : 0 . . bpw − 1 • 0) ⊕ {s? mod bpw �→ 1})

FreeSIDa

∆ST1a

s? : SID

∃w : 0 . . bpw − 1; b : 0 . . bpw − 1 → {0, 1} •

w = s? ÷ bpw ∧

b = (λ i : 0 . . bpw − 1 • 0) ⊕ {s? mod bpw �→ 1} ∧

sinuse ′ = sinuse ⊕ {w �→ ((∼ sinuse(w)) ↑ b)}

Using the one-point rule twice, the predicate becomes

3.8 Semaphore Table 137

sinuse ′ =

sinuse ⊕ {(s? ÷ bpw) �→

((∼ sinuse(s? ÷ bpw))

↑ (λ i : 0 . . bpw − 1 • 0) ⊕ {s? mod bpw �→ 1})}

AllocST1a

∆ST1a

s! : SID

∃ s : SID •

(∃w : 0 . . bpw − 1; b : 0 . . bpw − 1 → {0, 1} •

w = s ÷ bpw ∧

b = (λ i : 0 . . bpw − 1 • 0) ⊕ {s mod bpw �→ 1} ∧

(sinuse(w) & b)
= b ∧

sinuse ′ = sinuse ⊕ {w �→ (sinuse(w) | b)} ∧

s! = s)

∃w : 0 . . bpw − 1; b, bv : 0 . . bpw − 1 → {0, 1} •

w = s! ÷ bpw ∧

bv = {s! mod bpw �→ 1} ∧

b = (λ i : 0 . . bpw − 1 • 0) ⊕ bv ∧

(sinuse(w) & b)
= b ∧

sinuse ′ = sinuse ⊕ {w �→ (sinuse(w) | b)} ∧

s! = w + bv

where + is integer addition. The last line is jutified by the observation that
if b = s mod bpw and w = s ÷ bpw then w × b = s. This predicate can be
further simplified:

sinuse(s? ÷ bpw) & (λ i : 0 . . bpw − 1 • 0) ⊕ {s? mod bpw �→ 1}

= (λ i : 0 . . bpw − 1 • 0) ⊕ {s? mod bpw �→ 1}

sinuse ′ =

sinuse ⊕ {(s? ÷ bpw) �→ sinuse(s? ÷ bpw) |

(λ i : 0 . . bpw − 1 • 0) ⊕ {s? mod bpw �→ 1}

s! = (s? ÷ bpw) × (s? mod bpw)

The argument preceding the definition of these schemata amounts to their
refinement proof.

The specification at this level can therefore be completed as follows.

SID == minsid . . maxsid

minsid ,maxsid : N1

minsid < maxsid

138 3 A Simple Kernel

msize : N1

bpw : N1

The semaphore table is now defined by the following schema:

ST1

semas1 : SID → SEMAPHORE

sinuse : BITMAP

The initialisation operation is given by the next schema.

ST1Init

ST1′

∀w : 0 . . msize − 1 •

∀ b : 0 . . bpw − 1 → {0, 1} •

sinuse ′(w)(b) = 0

The next schema defines the operation to initialise a semaphore once its
identifier, s?, has been allocated.

InitSema1

∆ST1

s? : SID

semas1′ = semas1 ⊕ {s? �→ θSEMAPHOREInit}

The deallocation operation is given by

FreeSID1 =̂ FreeSIDa

and the allocation operation by

AllocSID1 =̂ AllocST1a

The operation to allocate a new semaphore identifier and to initialise the
semaphore is defined as

AllocSema1 =̂

(AllocSID1 ∧ InitSema[s!/s?] ∧ SysOk)

∨ NoFreeSema

The operation that performs the required checks when freeing a semaphore is
the following

ReleaseSema1 =̂

(SemaInUse1 ∧ FreeSID1 ∧ SysOk) ∨ NotAllocSema

3.8 Semaphore Table 139

We now define the abstraction relation

AbsST1

SEMATBL

ST1

∀ s : SID •

s ∈ semasinuse ⇔ semas(s) = semas1(s)

∀ s : SID •

s ∈ semasinuse ⇔

(∃w : 0 . . msize − 1; b : 0 . . bpw − 1 → {0, 1} •

sinuse(w)(b) = 1)

Theorem 40. ∀SEMATBL′; ST1′ • SEMATBLInit ∧ AbsST1 ⇒ ST1Init

Proof. The predicate of SEMATBLInit is semasinuse ′ = ∅. By the abstrac-
tion relation,

∀ s : SID •

s
∈ semasinuse ⇔

 (∃w : 0 . . msize − 1; b : 0 . . bpw − 1 → {0, 1} •

sinuse(w)(b) = 1)

The predicate of ST1Init is

∀w : 0 . . msize − 1; b : 0 . . bpw − 1 → {0, 1} •

sinuse(w)(b) = 0

By predicate calculus (¬ ∃ x • P(x) ⇔ ¬ ¬ ∀ x • ¬ P(x) ⇔ ∀ x • ¬ P(x))
the two are equivalent. ✷

Theorem 41.

∀SEMATBL; ST1 •

preAllocSema ∧ AbsST1 ⇒ preAllocSema1

Proof. The two preconditions are

preAllocSema =̂ s
∈ semasinuse

and

preAllocSema1 =̂ sinuse(s ÷ bpw)(s mod bpw) = 0

First note that

((λ i : 0 . . bpw − 1 • 0) ⊕ {s mod bpw �→ 1})(x) =

{
1, x = s
0, otherwise

140 3 A Simple Kernel

By the definition of &, it is evident that

sinuse(s ÷ bpw)&(λ i : 0 . . bpw − 1 • 0) ⊕ {s mod bpw �→ 1}

= (λ i : 0 . . bpw − 1 • 0) ⊕ {s mod bpw �→ 1}

when sinuse(s÷bpw)(b mod bpw) = 0. By the above defintiions, this is equiv-
alent to s �∈ semasinuse. ✷

Theorem 42.

∀SEMATBL; SEMATBL′; ST1; ST1′; s! : SID •

preAllocSema ∧

AbsST1 ∧

AbsST1′ ∧

AllocSema1

⇒ AllocSema

Proof. The important part of predicate of AllocSema1 is

sinuse ′ = sinuse ⊕ {w �→ (sinuse(w) | b)}

where w = s ÷ bpw and b = s mod bpw . Expanding the right-hand side, the
following is obtained

sinuse ′

= sinuse⊕

{w �→ (sinuse(s ÷ bpw)

|(λ i : 0 . . bpw − 1 • 0) ⊕ {s mod bpw �→ 1})

It should be noted that ((λ i : 0 . . bpw −1 • 0)⊕{s mod bpw �→ 1}))(x) = 1 if
x = s mod bpw , so sinuse(w)(b) = 1 iff s = w+b. From this, it can be inferred
that sinuse ′(w)(b) = 1, i.e., s? ∈ semasinuse ′ by the abstraction relation. ✷

Theorem 43. ∀SEMATBL; ST1; s? : SID • preReleaseSema ∧ AbsST1 ⇒
preReleaseSema1.

Proof. In this case, we have

sinuse(s? ÷ bpw)&(λ i : 0 . . bpw − 1 • 0) ⊕ {s? mod bpw �→ 1}

= (λ i : 0 . . bpw − 1 • 0) ⊕ {s? mod bpw �→ 1}

For this to be true, sinuse(s?÷ bpw)(s? mod bpw) = 1, so s ∈ semasinuse by
the abstraction relation. ✷

Theorem 44.

∀SEMATBL; SEMATBL′; ST1; ST1′; s? : SID ; serr ! : SYSERR •

preReleaseSema ∧

AbsST1 ∧

AbsST1′ ∧

ReleaseSema1

⇒ ReleaseSema

3.9 Synchronous Messages 141

Proof. This is the dual of AllocSema.
Let w = s? ÷ bpw and v = s? mod bpw .
The interesting part is w �→ (∼ sinusew(w)) ↑ b. By the definition of ∼,

and thinking pointwise,

∼ sinuse(w)(v) =

{
0, sinuse(w)(v) = 1,
1, otherwise

That is, ∼ complements sinuse(w)’s elements.
Now, let b = (λ i : 0 . . bpw − 1 • 0) ⊕ {s mod bpw �→ 1}, noting that

((λ i : 0 . . bpw − 1 • 0) ⊕ {s mod bpw �→ 1})(s mod bpw) = 1), it should be
clear that

∼ sinuse(w) ↑ (λ i : 0 . . bpw − 1 • 0) ⊕ {s mod bpw �→ 1}

=

{
0, if ∼ sinuse(w)(s mod bpw) = 1
1, otherwise

Therefore, if sinuse(w)(v) = 1, sinuse ′(w)(v) = 0 for the important part of
the predicate of ReleaseSema1 is

sinuse ′ = sinuse ⊕ {w �→ ((∼ sinuse(w) ↑ b)}

Writing out the interesting part, we have

∼ sinuse(w) ↑ (λ i : 0 . . bpw − 1 • 0) ⊕ {s mod bpw �→ 1}

=

{
0, if ∼ sinuse(w)(s mod bpw) = 1
1, otherwise

By AbsST1′,

∀ s : SID •

s ∈ semasinuse′ ⇔

(∃w : 0 . . msize − 1; b : 0 . . bpw − 1 → {0, 1} •

sinuse ′(w)(b) = 1)

it can be seen that the above expression is equivalent to semasinuse \ {s?}
which is equivalent, by FreeSIDa ’s predicate, to semasinuse ′. ✷

The schemata derived in this subsection can now be translated into exe-
cutable code. The code will employ a bitmask to represent those slots in the
table that are in use.

3.9 Synchronous Messages

This section is concerned with the specification and refinement of the synchro-
nous message-passing subsystem in the kernel. Message passing is used as the
primary means for processes to exchange information while using semaphores
as a synchronisation mechanism.

142 3 A Simple Kernel

3.9.1 Preliminaries

First, a few definitions are required. In particular, it is necessary to define a
type to represent the data held by messages. The type representing messages,
MSG , was defined at the start of this chapter, as was the constant nullmsg .

[MDATA]

Using this new type, the type of messages, MSG , can be defined.

MSG =̂ PID × PID × MDATA

In addition, a constructor function is useful, so one is defined

mkmsg : PID × PID × MDATA

∀ s, t : PID ; d : MDATA •

mkmsg(s, t , d) = (s, (t , d))

Furthermore, some functions to access the components of a message are
needed. In particular, functions to access the sender’s and destination’s iden-
tifiers is required; a function to return the data held in a message is required.

msgsrc,msgdest : MSG → PID

msgdata : MSG → MDATA

∀m : MSG •

msgsrc(m) = fst m

msgdest(m) = fst(snd m)

msgdata(m) = snd2 m

Just to make schema definition and manipulation a little easier, the fol-
lowing schema is defined. It just creates a new message and returns it as m.

MakeMessage

sndr?, dest? : PID

payload? : MDATA

m : MSG

m = mkmsg(sndr?, dest?, payload?)

The error schemata now follow. The names for these schemata are intended
to be suggestive as to their functions.

AlreadyHasMsg

serr ! : SYSERR

serr ! = procalreadyhasmsg

3.9 Synchronous Messages 143

DestinationNotReceiving

serr ! : SYSERR

serr ! = destinationnotrcving

BadDestination

serr ! : SYSERR

serr ! = badmsgdestination

NullMsgValue

serr ! : SYSERR

serr ! = nomsg

The two following operations are added to PTAB :

SourceExists

ΞPTAB

src? : PID

src? ∈ used

and

DestinationExists

ΞPTAB

dest? : PID

dest? ∈ used

3.9.2 Top Level

The top-level specification can now be started.
The process table, PTAB , is also extended by the addition of a new state

variable:

144 3 A Simple Kernel

PTAB
...

smsg : PID �→ MSG
...

...

dom smsg = dom prio
...

The mapping, smsg , maps process identifiers to messages, including, of course,
the nullmsg . Each process maps to exactly one message. The idea is that each
process should have at most one message available to it at any one time.

The initialisation schema is implicit and can be inferred from that of
PTAB .

GotSynchMsg

ΞPTAB

p? : PID

smsg(p?)
= nullmsg

A sending process can send a message (attach it to the smsg slot) only
when the destination has no message in smsg . In other words, if d is the
destination, then a sender, s, can tell that d can be passed a message when
smsg(d) = nullmsg . This justifies the definition

CanSendSynchMsg =̂ ¬ GotSynchMsg

which expands into:

ΞPTAB

p? : PID

smsg(p?) = nullmsg

The actual operation of sending a synchronous message is considered to
be assigning the destination’s smsg to the message. In symbols:

SendSynchMsg

∆PTAB

dest? : PID

m? : MSG

smsg ′ = smsg ⊕ {dest? �→ m?}

3.9 Synchronous Messages 145

When a process receives a message, it should copy the contents of the
message to some place and to set smsg to nullmsg .

ClrSynchMsgSlot

∆PTAB

p? : PID

smsg ′ = smsg ⊕ {p? �→ nullmsg}

Receiving proper is considered to be the act of removing the latest message
from smsg . The next schema puts this into symbols.

ReceiveSMsg

ΞPTAB

p? : PID

m! : MSG

m! = smsg(p?)

Ideally, when one process is to send a message to another, it should check
the state that the destination is in. If the destination is in the psreceiving
state, the message can be sent. This is captured by the following definition.

IsDestinationReceiving =̂

∃ st : PSTATE | st = psreceiving •

ProcState[st/st !]

This definition expands into:

IsDestinationReceiving

ΞPTABS

p? : PID

state(p?) = psreceiving

Conversely, when a process wants to receive a message, it should enter the
psreceiving state. The following defines this operation.

MakeReceiver =̂

∃ st : PSTATE | st = psreceiving •

SetProcState[st/st?]

The schema that results by expansion is the following.

MakeReceiver

∆PTABS

p? : PID

state ′ = state ⊕ {p? �→ psreceiving}

146 3 A Simple Kernel

Similarly, if a process wants to send a message, it should enter the
pssending state. It might have to wait in this state before it can actually
send the message.

MakeSender =̂

∃ st : PSTATE | st = pssending •

SetProcState[st/st?]

This definition expands to form the following schema:

MakeSender

∆PTAB

p? : PID

state ′ = state ⊕ {p? �→ pssending}

The complete operation to send a synchronous message is defined thus:

SendASynchMsg =̂

(DestinationExists ∧

((IsDestinationReceiver [dest?/p?] ∧

((¬ GotSynchMsg [dest?/p?] ∧

SendSynchMsg ∧

MakeSender
o
9
(MakeReady [dest?/p?] o

9
SchedNext) ∧

SysOk)

∨ AlreadyHasMsg))

∨ DestinationNotReceiving))

∨ BadDestination

The basic idea is that the destination must be a process that is currently in the
system and must be in the receiving state but not have a message assigned to
it by smsg . If this is the case, the sender places the message in smsg and sets
its state to pssending . It then places the destination on the scheduler’s ready
queue and calls SchedNext so that a reschedule is performed. The remainder
of the operations just set serr ! appropriately, depending upon the condition
being reported.

This operation contains a reschedule at is core. This will lead to an inter-
esting argument when simplifying this definition.

We now need to expand and simplify this definition. This will be done in
pieces.

The composition (MakeReady [dest?/p?] o
9 SchedNext) must be calculated

and simplified.

3.9 Synchronous Messages 147

SchedNext =̂

(IsCurrentProcessIdle ∧

((IsEmptySCHEDQ ∧ ContinueCurrent)

∨ (SCHEDQDequeue[p/p!] ∧ SetNewCurrentProcess[p/p?]
o
9
CTXTSW) \ {p}))

∨ (IsEmptySCHEDQ ∧ MakeIdleProcessCurrent o
9
CTXTSW)

∨ ((¬ CurrentProcessStateIsReadyOrRunning

∨ QueueHdHasHigherPriority) ∧

(SCHEDQHd [hpid/p!] ∧

SCHEDQDelHd ∧

SetNewCurrentProcess[hpid/p?] o
9
CTXTSW) \ {hpid})

∨ ContinueCurrent

We know a priori that the current process is not idle (for otherwise, how
could this call have been made?), the first disjunct can be omitted. Equally,
we know that the ready queue (pq) cannot be empty if the first component of
the composition MakeReady [dest?/p?] o

9 SchedNext succeeds. This permits us
to remove the disjunct IsEmptySCHEDQ ∧ MakeIdleProcessCurrent . We are
left, therefore, with

∨ ((¬ CurrentProcessStateIsReadyOrRunning

∨ QueueHdHasHigherPriority) ∧

(SCHEDQHd [hpid/p!] ∧

SCHEDQDelHd ∧

SetNewCurrentProcess[hpid/p?] o
9
CTXTSW) \ {hpid})

∨ ContinueCurrent

The state of curr is pssending when SchedNext is executed, so it is obvious that
¬ CurrentProcessStateIsReadyOrRunning is satisfied. To see this, consider

¬ CurrentProcessStateIsReadyOrRunning

⇔ state(curr)
= psready ∧ state(curr)
= psrunning

We have state(curr) = pssending , so, given the last equivalence, we have

state(curr)
= psready ∧ state(curr)
= psrunning ∧ state(curr) = pssending

which is true, so the disjunction

¬ CurrentProcessStateIsReadyOrRunning ∨ QueueHdHasHigherPriority)

is satisfied; this permits MakeReady [dest?/p?] o
9 SchedNext to be simplified to

MakeReady [dest?/p?]
o
9
(SCHEDQHd [hpid/p!] ∧

SCHEDQDelHd ∧ SetNewCurrentProcess[hpid/p?] o
9
CTXTSW) \ {hpid}

Noting that o
9CTXTSW can be simplified to ∧ CTXTSW because it does not

affect any variables that occur in the rest of the schema, this composition now
expands into

148 3 A Simple Kernel

MakeReady
o
9

(∃ hpid : PID •

hpid = head sq .pq ′′ ∧

sq .pq ′ = tail sq .pq ′′ ∧

curr ′ = hpid ∧ prev ′ = curr ∧

CTXTSW)

and the existential simplifies to

MakeReady
o
9

(curr ′ = head sq .pq ′′ ∧ prev ′ = curr ∧ sq .pq ′ = tail sq .pq ′′ ∧ CTXTSW)

This composition simplifies to the following predicate:

(#sq .pq < maxs ∧

((sq .pq = 〈 〉 ∧

∧ curr ′ = dest? ∧ prev ′ = curr ′′ ∧ sq .pq ′ = 〈 〉 ∧ CTXTSW) ∨

(prio(dest?) ≤ prio(head sq .pq) ∧

curr ′ = dest? ∧ prev ′ = curr ∧ CTXTSW) ∨

(prio(last sq .pq) < prio(dest?)

∧ curr ′ = head sq .pq ′′ ∧ prev ′ = curr ∧

sq .pq ′ = (tail sq .pq) � 〈dest?〉 ∧ CTXTSW) ∨

(∃ s1, s2 : seqPID | s1
= 〈 〉 ∧ s2
= 〈 〉 ∧ s1 � s2 = sq .pq •

prio(last s1) < prio(dest?) ∧

prio(dest?) ≤ prio(head s2) ∧

sq .pq ′ = (tail s1) � 〈dest?〉 � s2)) ∧

state ′ = state ⊕ {dest? �→ psready} ∧

curr ′ = head s1 ∧ prev ′ = curr ∧

CTXTSW ∧

serr ! = sysok)

∨ serr ! = schedqfull

The complete expansion of SendASynchMsg is

SendASynchMsg

∆PTAB

∆SCHED

dest? : PID

m? : MSG

serr ! : SYSERR

∃ state ′′ : PID �→ PSTATE •

(dest? ∈ used ∧

((state(dest?) = psreceiving ∧

((smsg(dest?) = nullmsg ∧

smsg ′ = smsg ⊕ {dest? �→ m?} ∧

3.9 Synchronous Messages 149

state ′′ = state ⊕ {p? �→ pssending} ∧

(#sq .pq < maxs ∧

((sq .pq = 〈 〉 ∧

∧ curr ′ = dest? ∧ prev ′ = curr ′′ ∧ sq .pq ′ = 〈 〉

∧ CTXTSW) ∨

(prio(dest?) ≤ prio(head sq .pq) ∧

curr ′ = dest? ∧ prev ′ = curr ∧ CTXTSW) ∨

(prio(last sq .pq) < prio(dest?)

∧ curr ′ = head sq .pq ′′ ∧ prev ′ = curr ∧

sq .pq ′ = (tail sq .pq) � 〈dest?〉 ∧ CTXTSW)

∨ (∃ s1, s2 : seqPID |

s1
= 〈 〉 ∧ s2
= 〈 〉 ∧ s1 � s2 = sq .pq •

prio(last s1) < prio(dest?) ∧

prio(dest?) ≤ prio(head s2) ∧

sq .pq ′ = (tail s1) � 〈dest?〉 � s2)) ∧

state ′ = state ⊕ {dest? �→ psready} ∧

curr ′ = head s1 ∧ prev ′ = curr ∧

CTXTSW ∧

serr ! = sysok)

∨ serr ! = schedqfull

serr ! = sysok)

serr ! = procalreadyhasmsg))

serr ! = destinationnotrcving))

∨ serr ! = badmsgdestination

It is easy to see how this can be re-arranged as follows

SendASynchMsg

∆PTAB

∆SCHED

dest? : PID

m? : MSG

serr ! : SYSERR

(dest? ∈ used ∧

((state(dest?) = psreceiving ∧

((smsg(dest?) = nullmsg ∧

((sq .pq = 〈 〉 ∧ curr ′ = dest? ∧

state ′ = state ⊕ {p? �→ pssending , dest? �→ psrunning})

∨ ((#sq .pq < maxs ∧

∨ (prio(dest?) ≤ prio(head sq .pq) ∧ curr ′ = dest? ∧

state ′ = state ⊕ {p? �→ pssending , dest? �→ psrunning})

150 3 A Simple Kernel

∨ (prio(last sq .pq) < prio(dest?) ∧

curr ′ = head sq .pq ∧

sq .pq ′ = (tail sq .pq) � 〈dest?〉 ∧

state ′ = state ⊕ {p? �→ pssending , dest? �→ psready})

∨ (∃ s1, s2 : seqPID | s1
= 〈 〉 ∧ s2
= 〈 〉 ∧ s1 � s2 = sq .pq •

prio(last s1) < prio(dest?) ∧

prio(dest?) ≤ prio(head s2) ∧

sq .pq ′ = (tail s1) � 〈dest?〉 � s2 ∧

curr ′ = head s1) ∧

prev ′ = curr ∧

CTXTSW ∧

serr ! = sysok)

∨ serr ! = schedqfull))

∨ serr ! = procalreadyhasmsg))

∨ serr ! = destinationnotrcving))

∨ ser ! = badmsgdestination)

The precondition can now be seen to be

preSendASynchMsg =̂

dest? ∈ used ∧

state(dest?) = psreceiving

However, dest? ∈ used is an implicit precondition provided by PTAB ’s invari-
ant. It can, if required, be omitted.

We now turn our attention to the top-level message reception operation.
First, we define a simple operation that actually receives a message.

RcvSynchMsg =̂

(GotSynchMsg ∧ ReceiveMsg ∧ ClrSynchMsgSlot ∧ SysOk)

∨ NullMsgValue

The definition expands into

RcvSynchMsg

∆PTAB

p? : PID

m! : MSG

(smsg(p?)
= nullmsg ∧

m! = smsg(p?) ∧

smsg ′ = smsg ⊕ {p? �→ nullmsg} ∧

serr ! = sysok)

∨ m! = nullmsg

3.9 Synchronous Messages 151

Next, the full top-level operation is defined. This operation, like the send-
message operation, includes a reschedule. The presence of the reschedule (i.e.,
the SchedNext schema) complicates the expansion of the operation, just as it
did for the send-message operation.

ReceiveSynchMsg =̂

MakeReceiver
o
9
SchedNext

o
9
(RcvSynchMsg ∧

((IsSysOk ∧

(∃ s : PID | s = msgsrc(m!) •

MakeReady [s/p?]) ∧

SysOk)

∨ NullMsgValue)

The definition expands into

ReceiveSynchMsg

∆SCHED

∆PTAB

m! : MSG

serr ! : SYSERR

∃ state ′′ : PID �→ PSTATE ; sq .pq ′′ : seqPID •

state ′′ = state ⊕ {p? �→ psreceiving}
o
9

(curr = iprc ∧

((sq .pq ′′ = 〈 〉 ∧ curr ′ = curr ∧ prev ′ = prev)

∨ (curr ′ = head sq .pq ∧ prev ′ = curr o
9
CTXTSW)))

∨ (sq .pq = 〈 〉 ∧ prev ′ = curr ∧ curr ′ = iprc o
9
CTXTSW)

∨ ((state(curr)
= psready ∧ state(curr)
= psrunning

∨ prio(head sq .pq) < prio(curr)) ∧

sq .pq ′′ = tail sq .pq ∧

curr ′ = head sq .pq ∧

prev ′ = curr
o
9
CTXTSW)

∨ (curr ′ = curr ∧ prev ′ = prev)o
9

((smsg(p?)
= nullmsg ∧

m! = smsg(p?) ∧

smsg ′ = smsg ⊕ {p? �→ nullmsg} ∧

serr ! = sysok)

∨ (m! = nullmsg ∧ serr ! = nomsg))

152 3 A Simple Kernel

∧ serr ! = sysok

∧ ∃ s : PID | s = msgsrc(m!) •

state ′ = state ′′ ⊕ {s �→ psready} ∧

(#sq .pq < maxs ∧

((sq .pq ′′ = 〈 〉 ∧ sq .pq ′ = 〈s〉) ∨

(prio(s) ≤ prio(head sq .pq ′′) ∧ sq .pq ′ = 〈s〉 � sq .pq ′′) ∨

(prio(last sq .pq ′′) < prio(s) ∧ sq .pq ′ = sq .pq ′′ � 〈s〉) ∨

(∃ s1, s2 : seqPID | s1
= 〈 〉 ∧ s2
= 〈 〉 ∧ s1 � s2 = sq .pq ′′ •

prio(last s1) < prio(s) ∧

prio(s) ≤ prio(head s2) ∧

sq .pq ′ = s1 � 〈s〉 � s2)) ∧

serr ! = sysok)

∨ serr ! = schedqfull

∧ serr ! = sysok ∨ serr ! = nomsg

We now turn to the simplification of this schema.
It should be clear that the caller, p?, is always the current process, curr ,

so curr = p?. It is also clear that state(curr) = psrunning . However, it is not
known a priori whether the scheduler’s ready queue is empty or not. Given
that the predicate can be written as

state ′′ = state ⊕ {p? �→ psreceiving}
o
9
SchedNext

o
9
(((smsg(p?)
= nullmsg ∧

m! = smsg(p?) ∧

smsg ′ = smsg ⊕ {p? �→ nullmsg} ∧

serr ! = sysok)

∨ serr ! = nomsg ∧ m! = nullmsg)

∧ ((serr ! = sysok ∧

(∃ s : PID | s = msgsrc(p?) • MakeReady [s/p?]) ∧

serr ! = sysok)

∨ serr ! = nomsg)

Since it is known that the current process is not the idle process, the first
disjunct of SchedNext can be omitted, leaving

(IsEmptySCHEDQ ∧ MakeIdleProcessCurrent o
9
CTXTSW)

∨ ((¬ CurrentProcessStateIsReadyOrRunning

∨ QueueHdHasHigherPriority) ∧

(SCHEDQHd [hpid/p!] ∧

SCHEDQDelHd ∧

SetNewCurrentProcess[hpid/p?]
o
9
CTXTSW) \ {hpid})

∨ ContinueCurrent

3.9 Synchronous Messages 153

When the message-receiving operation is called, the state of curr must be
psrunning and CurrentProcessStateIsReadyOrRunning is defined as

state(curr) = psready ∨ state(curr) = psrunning

so ¬ CurrentProcessStateIsReadyOrRunning is

state(curr)
= psready ∧ state(curr)
= psrunning

so the current process’ state satisfies this condition, so the remaining guard
need not be attempted.

The predicate of SchedNext can now be simplified to

(IsEmptySCHEDQ ∧ MakeIdleProcessCurrent o
9
CTXTSW)

∨ (SCHEDQHd [hpid/p!] ∧

SCHEDQDelHd ∧

SetNewCurrentProcess[hpid/p?] o
9
CTXTSW) \ {hpid}

It can be further simplified: the update of prev can be factored out using
(p ∧ q) ∨ (r ∧ q) ⇒ (p ∨ r) ∧ q to yield

(((sq .pq = 〈 〉 ∧ curr ′ = iprc)

∨ (sq .pq ′′ = tail sq .pq ∧

curr ′′ = head pq)) ∧

prev ′′ = curr ∧

CTXTSW)

The sequential composition of CTXTSW can be reduced to conjunction, as
noted many times above, and can also be moved to the end. The movement
can be justified by the same theorem as above. Note that this predicate is
part of a sequential composition, so its after-state must be doubly primed.

The existential ∃ s : PID | s = msgsrc(m!) • MakeReady [s/p?] simplifies
as follows. First, the existential formula expands into the following. (It must
be remembered that the before state of this schema is the intermediate state
of a sequential composition.)

MakeReady [s/p?]

∆PRIOQ

p? : PID

serr ! : SYSERR

state ′ = state ⊕ {s �→ psready}

(#sq .pq ′′ < maxs ∧

((sq .pq ′′ = 〈 〉 ∧ sq .pq ′ = 〈s〉) ∨

(prio(s) ≤ prio(head sq .pq ′′) ∧ sq .pq ′ = 〈s〉 � sq .pq ′′) ∨

(prio(last sq .pq ′′) < prio(s) ∧ sq .pq ′ = sq .pq ′′ � 〈s〉) ∨

(∃ s1, s2 : seqPID | s1
= 〈 〉 ∧ s2
= 〈 〉 ∧ s1 � s2 = sq .pq ′′ •

prio(last s1) < prio(s) ∧

prio(s) ≤ prio(head s2) ∧

154 3 A Simple Kernel

sq .pq ′ = s1 � 〈s〉 � s2)) ∧

serr ! = sysok)

∨ serr ! = schedqfull

Using the one-point rule to substitute msgsrc(m!) for s, the predicate becomes

state ′ = state ⊕ {msgsrc(m!) �→ psready}

(#sq .pq ′′ < maxs ∧

((sq .pq ′′ = 〈 〉 ∧ sq .pq ′ = 〈msgsrc(m!)〉) ∨

(prio(msgsrc(m!)) ≤ prio(head sq .pq ′′) ∧

sq .pq ′ = 〈msgsrc(m!)〉 � sq .pq ′′) ∨

(prio(last sq .pq ′′) < prio(msgsrc(m!)) ∧

sq .pq ′ = sq .pq ′′ � 〈msgsrc(m!)〉)

∨ (∃ s1, s2 : seqPID | s1
= 〈 〉 ∧ s2
= 〈 〉 ∧ s1 � s2 = sq .pq ′′ •

prio(last s1) < prio(msgsrc(m!)) ∧

prio(msgsrc(m!)) ≤ prio(head s2) ∧

sq .pq ′ = s1 � 〈msgsrc(m!)〉 � s2)) ∧

serr ! = sysok)

∨ serr ! = schedqfull

The ReceiveSynchMsg operation can now be considerably simplified. This
yields the following schema:

ReceiveSynchMsg

∆SCHED

∆PTAB

m! : MSG

serr ! : SYSERR

((smsg(curr)
= nullmsg ∧

m! = smsg(curr) ∧

smsg ′ = smsg ⊕ {curr �→ nullmsg} ∧

state ′ = (state ⊕ {curr �→ psreceiving}) ⊕ {msgsrc(m!) �→ psready} ∧

((sq .pq = 〈 〉 ∧ curr ′ = iprc ∧ sq .pq ′ = 〈msgsrc(m!)〉 ∧ CTXTSW)

∨ [(#sq .pq ≤ maxs ∧

(curr ′ = head sq .pq ∧

prev ′ = curr ∧

((prio(msgsrc(m!)) ≤ prio(head tail sq .pq) ∧

sq .pq ′ = 〈msgsrc(m!)〉 � tail sq .pq)

∨ (prio(last sq .pq) < prio(msgsrc(m!)) ∧

sq .pq ′ = tail sq .pq � 〈msgsrc(m!)〉)

∨ (∃ s1, s2 : seqPID | s1
= 〈 〉 ∧ s2
= 〈 〉 ∧ s1 � s2 = sq .pq •

prio(last s1) < prio(msgsrc(m!)) ∧

prio(msgsrc(m!)) ≤ prio(head s2) ∧

s1 � 〈msgsrc(m!)〉 � s2 = sq .pq ′)) ∧

3.9 Synchronous Messages 155

CTXTSW ∧

serr ! = sysok))

∨ serr ! = schedqfull]))

∨ serr ! = nomsg

The precondition is immediately

preReceiveSynchMsg =̂

smsg(p?)
= nullmsg

To justify this, it is noted that the first disjunct simplifies to smsg(curr) �=
nullmsg . Similarly, sq .sq .pq = 〈 〉 ∧ curr ′ = iprc ∧ sq .pq ′ = 〈msgsrc(m!)〉 ∧
CTXTSW simplifies to sq .sq .pq = 〈 〉 ∧ true ∧ true ∧ intno′ = context switch,
so it finally reduces to sq .sq .pq = 〈 〉. Given this, the remainder of the simpli-
fication is as follows:

smsg(p?)
= nullmsg ∧ sq .pq = 〈 〉

∨ (#sq .pq ≤ maxs ∧

(prio(msgsrc(m!)) ≤ prio(head tail sq .pq)

∨ prio(last sq .pq) < prio(msgsrc(m!))

∨ (∃ s1, s2 : seqPID | s1
= 〈 〉 ∧ s2
= 〈 〉 ∧ s1 � s2 = sq .pq •

prio(last s1) < prio(msgsrc(m!)) ∧

prio(msgsrc(m!)) ≤ prio(head s2))))

Now, from

(prio(msgsrc(m!)) ≤ prio(head tail sq .pq)

∨ (prio(last sq .pq) < prio(msgsrc(m!)))

∨ (∃ s1, s2 : seqPID | s1
= 〈 〉 ∧ s2
= 〈 〉 ∧ s1 � s2 = sq .pq •

prio(last s1) < prio(msgsrc(m!)) ∧

prio(msgsrc(m!)) ≤ prio(head s2)

it can be inferred that prio(msgsrc(m!)) ∈ PPRIO . This is true, so all that
remains is

smsg(p?)
= nullmsg ∧ sq .pq = 〈 〉 ∨ #sq .pq ≤ maxs

The disjunction sq .pq = 〈 〉 ∧ #sq .pq ≤ maxs imply sq .pq = 〈 〉 ∨ sq .pq �= 〈 〉,
so we are left with smsg(p?) �= nullmsg , which is our precondition.

3.9.3 Refinement One

This is the first of two refinments. It is concerned with the refinement of the
scheduler’s structures and the process table. The second refinement concerns
the refinement of PTAB1 to PTAB2.

156 3 A Simple Kernel

In a sense, all refinements are trivial because, once more, the abstration
relation is a set of identities. Furthermore, the operations in this section are
defined in terms of promotions that are embedded in operations over PTAB.
However, we present the refinement (making use of promotion and of the
existing refinements of PTAB) just to convince ourselves that the refinement
really does work and in an attempt to convince the reader of the correctness
of the development.

The contents of this subsection mirror that of the last. For this reason, we
will not comment as much.

DestinationExists1

ΞPTAB1

dest? : PID

dest?
∈ dom freech

MakeReceiver1 =̂

∃ st : PSTATE | st = psreceiving •

SetProcState1[st/st?]

MakeSender1 =̂

∃ st : PSTATE | st = pssending •

SetProcState1[st/st?]

IsDestinationReceiving1

ΞPTAB1

p? : PID

state1(p?) = psreceiving

GotSynchMsg1

ΞPTAB1

p? : PID

smsg1(p?)
= nullmsg

ClrSynchMsgSlot1

∆PTAB1

p? : PID

smsg1′ = smgs1 ⊕ {p? �→ nullmsg}

3.9 Synchronous Messages 157

Partly out of interest and partly to see whether any simplifications can be
performed (which they can), the major operations are fully expanded (and
simplified). However, as noted above, there is little that can usefully be done
in the refinement process for reasons given above.

SendASynchMsg1 =̂

(DestinationExists1 ∧

((IsDestinationReceiver1[dest?/p?] ∧

((¬ GotSynchMsg1[dest?/p?] ∧

SendSynchMsg1 ∧

MakeSender1
o
9
(MakeReady [dest?/p?] o

9
SchedNext) ∧

SysOk)

∨ AlreadyHasMsg))

∨ DestinationNotReceiving))

∨ BadDestination

Immediately, we are in a position to prove the following theorems. The
proofs are quite straightforward but are omitted because of their length.

Theorem 45.

∀PTAB ; PTAB1; SCHED ; dest? : PID ; m? : MSG •

pre SendASynchMsg ∧ AbsPTAB1 ⇒ pre SendASynchMsg1

Proof. Omitted. ✷

Theorem 46.

∀PTAB ; PTAB ′; PTAB1; PTAB1′; SCHED ;

dest? : PID ; m? : MSG ; serr ! : SYSERR •

pre SendASynchMsg

∧ AbsPTAB1

∧ AbsPRIOQ1

∧ SendASynchMsg1

⇒ SendASyncMsg1

Proof. Omitted. ✷

The first-level refinement of the receive operation is defined as:

ReceiveSynchMsg =̂

MakeReceiver1
o
9
SchedNext

o
9
(RcvSynchMsg1 ∧

((IsSysOk ∧

(∃ s : PID | s = msgsrc(m!) •

MakeReady [s/p?]) ∧

SysOk)

∨ NullMsgValue)

158 3 A Simple Kernel

3.9.4 Refinement Two

The second-level refinements can be derived with ease.

SendASynchMsg2 =̂

(DestinationExists2 ∧

((IsDestinationReceiver2[dest?/p?] ∧

((¬ GotSynchMsg1[dest?/p?] ∧

SendSynchMsg1 ∧

MakeSender2
o
9
(MakeReady [dest?/p?] o

9
SchedNext) ∧

SysOk)

∨ AlreadyHasMsg))

∨ DestinationNotReceiving))

∨ BadDestination

and

ReceiveSynchMsg2 =̂

MakeReceiver2
o
9
SchedNext

o
9
(RcvSynchMsg2 ∧

((IsSysOk ∧

(∃ s : PID | s = msgsrc(m!) •

MakeReady [s/p?]) ∧

SysOk)

∨ NullMsgValue)

Although it is not entirely clear from the schemata in this section, the
constructs derived here can now be translated directly into executable code.
The reason that matters are not clear is that the operations are defined in
terms of a mixture of existing schemata (e.g., the scheduler and the process
table) and new ones. However, the claim that an implementation is the next
step can be readily verified.

3.10 The Clock

This section contains the specification of the real-time clock. The clock is used
by processes to determine the current time. It is also used to determine how
long processes have slept and when to wake them.

The time between clock ticks is denoted by the following constant

ticklength : TIME

On some machines, this will be 100ms, on others it will be another value.

3.10 The Clock 159

The error schema is the following. It denotes the fact that a process is
requesting a 0 sleep time.

SleepTooShort

err ! : SYSERR

err ! = sleeptimetooshort

This is the basic clock. It just contains the time since the system was
booted in multiples of ticklength seconds.

TIMESINCEBOOT

tnow : TIME

Clearly, when the system starts, the time is 0.

TIMESINCEBOOTInit

TIMESINCEBOOT ′

tnow ′ = 0

The clock is updated every time the hardware clock interrupts the proces-
sor. The hardware clock interrupts every ticklength seconds, so on every
interrupt, the software clock is updated as follows.

UpdateTIMESINCEBOOT

∆TIMESINCEBOOT

tnow ′ = tnow + ticklength

To find out what the current time is, the following schema is used:

TimeNow

ΞTIMESINCEBOOT

tn! : TIME

tn! = tnow

tickspersec : N

Unfortunately, people want the time in seconds, minutes and hours. The
following schema defines the variables used to record the time in human-
oriented units.

CLOCKTIME

secs,mins, hrs : TIME

0 ≤ secs < 60

0 ≤ mins < 60

160 3 A Simple Kernel

Note that the invariant merely states the moduli for seconds and minutes.
We consider it unnecessary to include days; they could be added, should the
reader wish.

The clock time is initialised in the obvious manner.

CLOCKTIMEInit

CLOCKTIME ′

secs ′ = 0

mins ′ = 0

hrs ′ = 0

On every hardware interrupt, the time since boot is incremented. At the
same time, the human-readable time is also updated when there have been
enough interrupts since the last one. This is the purpose of tickspersec—after
tickspersec interrupts, the seconds counter is incremented by one, possibly
causing the other counters to be updated.

UpdateClockTime

∆CLOCKTIME

t? : TIME

((t? mod tickspersec = 0) ∧

((secs + 1 mod 60 = 0 ∧

secs ′ = 0 ∧

((mins + 1 mod 60 = 0 ∧

mins ′ = 0 ∧

hrs ′ = hrs + 1)

∨ mins ′ = mins + 1))

∨ secs ′ = secs + 1))

To find out what the human-readable time is since boot, use the following
operation:

ClocktimeNow

ΞCLOCKTIME

s!,m!, h! : TIME

s! = secs

m! = mins

h! = hrs

It is now necessary to consider the operations required by the sleep timer.
When a process requests a period of sleep, it also specifies the period

through which it will sleep. The period is specified in seconds and is added to
the current time to produce the time at which the process is to be awakened.
This is what the following schema does. The variable tn? denotes the time

3.11 Sleepers 161

now, stm? is the length to time the process wants to remain asleep and cst !
is the computed sleep time—i.e., the time at which the process should be
returned to the ready queue. The time is expressed in seconds since boot.

CorrectWakeTime

tn?TIME

stm? : TIME

cst ! : TIME

stm? + tn? = cst !

The above operation requires the current time (in units since boot time)
and the following composition defines the required operation:

ComputeWakeTime =̂

(TimeNow [tn/tn!] ∧ CorrectWakeTime[tn/tn?]) \ {tn}

This expands and simplifies into:

ComputeWakeTime

ΞTIMESINCEBOOT

stm? : TIME

cst ! : TIME

stm? + tnow = cst !

The schemata defined in this section can be translated directly into
executable code. In the present case, there is no refinement because the state
schema contains only simple variables.

3.11 Sleepers

We need a conception of time. For the purposes of this specification, the
following suffices:

TIME =̂ N

(It was defined at the start of this chapter.)
We also need an extension of PTAB :

PTAB

PTAB
...

wakingtime : PID �→ TIME
...

162 3 A Simple Kernel

...

domwakingtime = dom prio
...

The reader is reminded of the convention that a process without a waking
time has a zero as the value of wakingtime. That is, if p is a process that is
not sleeping, waketime(p) = 0.

The wakingtime function must be refined along with the remainder of
PTAB , it should be noted. This refinement can be omitted for the reason
that wakingtime has exactly the same form as prio.

The following PTAB schemata are also required.

SetWaitingTime

∆PTAB

p? : PID

t? : TIME

wakingtime ′ = wakingtime ⊕ {p? �→ t?}

In order to arrive at a valid waiting time, the actual time, ta , is added to the
time tr , requested by process, p?. When defining the ISR, this will be taken
into account. Furthermore, a value of tr = 0 will be considered invalid.

WaitingTime

ΞPTAB

p? : PID

t ! : TIME

t ! = wakingtime(p?)

The waiting (waking) time must be cleared when a process is awakened
(i.e., returned to the scheduler’s ready queue). The following schema defines
this operation:

ClearWaitingTime

∆PTAB

p? : PID

∃ t : TIME | t = 0 • wakingtime ′ = wakingtime ⊕ {p? �→ t}

The predicate of this schema simplifies to wakingtime ′ = wakingtime⊕{p? �→
0}.

We need a way to determine whether a process is sleeping. This will be
used when determining whether a sleep request can be honoured.

3.11 Sleepers 163

IsProcessSleeping

ΞPTAB

p? : PID

wakingtime(p?) > 0

The relevant error schemata are as follows.

TooManySleepers

serr ! : SYSERR

serr ! = toomanysleepers

There are too many processes in the system that are asleep.

AlreadyAsleep

serr ! : SYSERR

serr ! = alreadyasleep

The process requesting a sleep period is already recorded as being asleep. (Has
someone hacked in?)

3.11.1 Top Level

We can proceed to the top-level specification of the sleep module. The speci-
fication is contained in this subsection.

This is another case in which we require PTAB to be included in a the
state schema.

SLEEPERS

PTAB

slps : F PID

maxslps : N1

slps ⊂ used

∀ p : PID •

p ∈ slps ⇒ state(p) = pssleeping

∀ p : PID •

p ∈ slps ⇒ wakingtime(p) > 0

∀ p : PID •

p ∈ slps ⇒ p ∈ used

The correctness of the final universal can be seen when it is considered that
not all processes in used are asleep at any given time but all processes that
are asleep are in used . We will need to prove the following.

164 3 A Simple Kernel

Theorem 47. If p ∈ slps, then p ∈ used.

The initialisation operation is the obvious one:

SLEEPERSInit

SLEEPERS ′

smax? : N1

slps ′ = ∅

maxslps ′ = smax?

The following is a predicate that is true iff there are currently processes
that are asleep.

GotSleepers

ΞSLEEPERS

slps
= ∅

The following is a predicate that is true iff the process p? is currently
asleep (i.e., an element of slps).

IsAsleep

ΞSLEEPERS

p? : PID

p? ∈ slps

The variable maxslps is the maximum number of process identifiers that
can be in slps—i.e., it is the maximum cardinality for slps. A sleeper can be
added if #slps is strictly less than the maximum size which it can attain.

CanAddSleeper

ΞSLEEPERS

#slps < maxslps

The operation to add a sleeper, p?, to the sleepers set, slps, is specified by
the following schema. It is the obvious operation, given the definitions.

AddSleeperProc

∆SLEEPERS

p? : PID

slps ′ = slps ∪ {p?}

To define the first main operation, it is necessary to define two new oper-
ations on PTAB .

3.11 Sleepers 165

SetWaitingTime

∆PTAB

p? : PID

t? : TIME

wakingtime ′ = wakingtime ⊕ {p? �→ t?}

SetStateToSleeping

∆PTAB

p? : PID

state ′ = state ⊕ {p? �→ pssleeping}

The operation to add a sleeper process is defined by

AddSleeper =̂

(IsAsleep ∧ AlreadyAsleep)

∨ (CanAddSleeper ∧

AddSleeperProc ∧

SetWaitingTime ∧

SysOk)

∨ TooManySleepers

(Note that the operation represented by this schema requires a reschedule
after use.) The definition expands into the following schema:

AddSleeper

∆SLEEPERS

∆SCHED

p? : PID

t? : TIME

serr ! : SYSERR

(p? ∈ slps ∧ serr ! = alreadyasleep)

∨ (#slps < maxslps ∧

slps ′ = slps ∪ {p?} ∧

wakingtime ′ = wakingtime ⊕ {p? �→ t?} ∧

serr ! = sysok)

∨ serr ! = toomanysleepers

Since AddSleeper is a major operation, we need to calculate its precondi-
tion. The calculation is simple and the precondition obvious.

preAddSleeper =̂

p? ∈ slps ∨ #slps < maxslps

166 3 A Simple Kernel

When a process’ sleep time expires, it must be removed from the set of
sleeping processes. The following schema defines this operation—it is, again,
obvious.

RemoveSleeper

∆SLEEPERS

p? : PID

slps ′ = slps \ {p?}

If the time a process, p, requires to wake is t , and 0 < t ≤ now , p should
wake up now. This is expressed by the following schema:

ShouldWakeUp

t? : TIME

now? : TIME

0 < t?

t? ≤ now?

A process should wake if the following condition is met:

ShouldWake =̂

(WakingTime[t/t !] ∧ ShouldWakeUp[t/t?]) \ {t}

This condition can be expanded into the following schema. It turns out to
be an important operation in deciding which processes to wake when such a
decision is required.

ShouldWake

ΞPTAB

p? : PID

now? : TIME

∃ t : TIME •

t = waitingtime(p?) ∧

0 < t ∧ t ≤ now?

After simplification, it becomes:

ShouldWake

ΞPTAB

p? : PID

now? : TIME

0 < waitingtime(p?) ≤ now?

Next, we define the FindAndWake operation.

3.11 Sleepers 167

FindAndWake =̂

GotSleepers ∧

(∀ p : PID •

IsAsleep[p/p?] ∧

ShouldWake[p/p?] ⇒

RemoveSleeper [p/p?] ∧

ClearWaitingTime[p/p?] ∧

MakeReady [p/p?]

It expands into

FindAndWake

∆SLEEPERS

ΞPTAB

∆SCHED

now? : TIME

slps
= ∅

∀ p : PID •

p ∈ slps ∧

0 < waitingtime(p) ≤ now? ⇒

waitingtime ′ = waitingtime ⊕ {p �→ 0} ∧

slps ′ = slps \ {p} ∧

state ′ = state ⊕ {p �→ psready} ∧

(#sq .pq < maxs ∧

((sq .pq = 〈 〉 ∧ sq .pq ′ = 〈p〉) ∨

(prio(p) ≤ prio(head sq .pq) ∧ sq .pq ′ = 〈p〉 � sq .pq) ∨

(prio(last sq .pq) < prio(p) ∧ sq .pq ′ = sq .pq � 〈p〉) ∨

(∃ s1, s2 : seqPID | s1
= 〈 〉 ∧ s2
= 〈 〉 ∧ s1 � s2 = sq .pq •

prio(last s1) < prio(p) ∧

prio(p) ≤ prio(head s2) ∧

sq .pq ′ = s1 � 〈p〉 � s2)) ∧

state ′ = state ⊕ {p �→ psready} ∧

serr ! = sysok)

∨ serr ! = schedqfull

Note that sequential composition is not required between ClearWaitingTIme

and MakeReady because the components of PTAB they update are distinct.
The FindAndWake operation is important, so its precondition must be

calculated. The precondition is

preFindAndWake =̂

slps
= ∅ ∧ ∀ p : PID • p ∈ slps ∧ 0 < waitingtime(p) ≤ now? ∧ #sq < maxs

or, after simplification, it becomes

168 3 A Simple Kernel

preFindAndWake =̂

slps
= ∅ ∧

{p : PID | p ∈ slps ∧ 0 < waitingtime(p) ≤ now?} ⊆ slps ∧

#sq + #{p : PID | p ∈ slps ∧ 0 < waitingtime(p) ≤ now?} < maxs

When a process is sleeping, its state value should be pssleeping . Setting
state to pssleeping is performed by the following operation:

SetStateToSleeping =̂

∃ st : PSTATE | st = pssleeping •

SetProcState[st/st?]

The operation expands and simplifies to:

SetStateToSleeping

∆PTAB

p? : PID

state ′ = state ⊕ {p? �→ pssleeping}

The following is a predicate. It is used to determine when a process is
trying to sleep for a period of 0 seconds—any longer period is valid.

BadSleepTime

t? : TIME

t? = 0

An operation, called SendMeToSleep is required. It is defined by

SendMeToSleep =̂

(BadSleepTime ∧ SleepTooShort)

∨ (ComputeWakeTime[t?/stm?, cst/cst !] ∧ AddSleeper [cst/t?] ∧

SetStateToSleeping) \ {cst}

Again this operation requires a reschedule after use.
Expansion of this definition yields the following schema:

SendMeToSleep

∆SLEEPERS

ΞTIMESINCEBOOT

∆PTAB

p? : PID

t? : TIME

tnow? : TIME

serr ! : SYSERR

(t? = 0 ∧ serr ! = sleeptimetooshort)

∨ (∃ cst : TIME | cst = t? + tnow •

(p? ∈ slps ∧ serr ! = alreadyasleep)

3.11 Sleepers 169

∨ (#slps < maxslps ∧

slps ′ = slps ∪ {p?} ∧

wakingtime ′ = wakingtime ⊕ {p? �→ t? + tnow?} ∧

serr ! = sysok)

∨ serr ! = toomanysleepers ∧

serr ! = sysok))

∨ serr ! = toomanysleepers)

∧ state ′ = state ⊕ {p? �→ pssleeping}

We can immediately simplify this schema to the following:

ΞTIMESINCEBOOT

∆SLEEPERS

∆PTAB

p? : PID

t? : TIME

tnow? : TIME

serr ! : SYSERR

(t? = 0 ∧ serr ! = sleeptimetooshort)

(p? ∈ slps ∧ serr ! = alreadyasleep)

∨ (#slps < maxslps ∧

slps ′ = slps ∪ {p?} ∧

wakingtime ′ = wakingtime ⊕ {p? �→ t? + tnow?} ∧

serr ! = sysok)

∨ serr ! = toomanysleepers ∧

serr ! = sysok))

∨ serr ! = toomanysleepers)

∧ state ′ = state ⊕ {p? �→ pssleeping}

By repeated application of Distrib-∨ and p ∧ q ⊢ p, the predicate can be
transformed into

(t? = 0 ∧ serr ! = sleeptimetooshort)

∨ (p? ∈ slps ∧ serr ! = alreadyasleep)

∨ (#slps < maxslps ∧

slps ′ = slps ∪ {p?} ∧

wakingtime ′ = wakingtime ⊕ {p? �→ t? + tnow?} ∧

state ′ = state ⊕ {p? �→ pssleeping} ∧

serr ! = sysok)

∨ serr ! = toomanysleepers ∧

serr ! = sysok))

∨ serr ! = toomanysleepers)

The precondition of this important operation is easy to calculate.

170 3 A Simple Kernel

preSendMeToSleep =̂

t? = 0 ∨ p? ∈ slps ∨ #slps < maxslps

3.11.2 Refinement One

Having defined the sleeper set and the operations required to maintain it, it
is time to engage in the first refinement. The strategy is to refine the set to
a singly linked list of process identifiers in the next mapping in PTAB . By
implementing the sleeper set this way, space is saved; the list is, in any case,
limited in length.

The first step of the refinement is to find a representation for the sleeper
set. The identifier set slps is replaced by slps1 but now slps1 is a partial
(finite) injection from process identifiers to GPIDs (process identifiers plus
nullpid). The idea is that slps1 contains the elements of slps in some order.
The first element is denoted by hds and the last by ends—we can talk of “first”
and “last” because of the temporal ordering on the insertion of identifiers into
slps. The number of elements in slps1 is recorded in slcnt1, so slcnt1 = #slps.
The limit on the size of slps1 is maxslps1 (which is intended to be equal to
maxslps). The refinement state space is given by the following schema:

SLEEPERS1

slps1 : PID � GPID

hds, ends : GPID

slcnt1 : N

maxslps1 : N1

hds = nullpid ⇔ ends = nullpid

hds = nullpid ⇔ dom slps1 = ∅

hds = nullpid ⇔ maxslps1 = 0

slcnt1 = #dom slps1

hds
= nullpid ⇔

slps1(ends) = nullpid ∧

hds ∈ dom slps1 ∧

ends ∈ dom slps1 ∧

#dom slps1 > 0

SLEEPERSInit1

SLEEPERS1′

smax? : N1

maxslps1′ = smax?

hds ′ = ends ′ = nullpid

slcnt1′ = 0

3.11 Sleepers 171

IsAsleep1

ΞSLEEPERS1

p? : PID

p? ∈ dom slps1

(We can, and will, do better than this.)

CanAddSleeper1

ΞSLEEPERS1

slcnt1 < maxslps1

AddSleeperProc1

∆SLEEPERS1

p? : PID

(hds = nullpid ∧

hds ′ = p? ∧

ends ′ = p? ∧

slps1′ = slps1 ⊕ {p? �→ nullpid})

∨ (ends ′ = p? ∧

slps1′ = slps1 ⊕ {ends �→ p?, p? �→ nullpid})

∧ slcnt1′ = slcnt1 + 1

AddSleeper1 =̂

(IsAsleep ∧ AlreadyAsleep)

∨ (CanAddSleeper ∧ AddSleeperProc ∧ SetWaitingTime ∧ SysOk)

∨ TooManySleepers

This expands to:

∆SLEEPERS1

∆PTAB1

p? : PID

t? : TIME

serr ! : SYSERR

(p? ∈ dom slps1 ∧ serr ! = alreadyasleep)

∨ (p?
∈ dom slps1 ∧

(slcnt1 < maxslps1 ∧

((hds = nullpid ∧

hds ′ = ends ′ = p? ∧

172 3 A Simple Kernel

slps1′ = slps1 ⊕ {p? �→ nullpid})

∨ (ends ′ = p? ∧ slps1′ = slps1 ⊕ {ends �→ p?, p? �→ nullpid})) ∧

slcnt1′ = slcnt1 + 1 ∧

wakingtime ′ = wakingtime ⊕ {p? �→ t?} ∧

serr ! = sysok))

∨ serr ! = toomanysleepers

DelSleeperProc1

∆SLEEPERS1

p? : PID

(hds = p? ∧

slps1′ = slps1 −⊳ {p?} ∧

hds ′ = slps1(hds))

∨ (∃ p1 : PID | p? = slps1(p1) •

(∃ slps1′′ : PID � GPID •

slps1′′ = slps1 ⊕ {p1 �→ slps1(p?)}) ∧

slps1′ = slps1 −⊳ {p?})

slcnt1′ = slcnt1 − 1

This simplifies to:

∆SLEEPERS1

p? : PID

(hds = p? ∧ slps1′ = slps1 −⊳ {p?} ∧

hds ′ = slps1(p?))

∨ (∃ p1 : PID | p? = slps1(p1) •

slps1′ = (slps1 −⊳ {p?}) ⊕ {p1 �→ slps1(p?)})

slcnt1′ = slcnt1 − 1

The test whether there are any processes in the list of sleepers is now
refined to a test of the counter, slcnt1. The counter is incremented by one
when a process is added to the list and decremented by one when a process
is removed.

GotSleepers1

ΞSLEEPERS1

slcnt1
= 0

The removal of a process from the list of sleeping processes is refined to
the following schema. If the process to be removed, p?, is the head of the list,
the head, hds, is updated and p? removed from slps1. Otherwise, p? is just

3.11 Sleepers 173

removed from slps1. In both cases, slcnt1 is decremented by one, as stated
above.

RemoveSleeper1

∆SLEEPERS1

p? : PID

((p? = hds ∧

hds ′ = slps1(hds) ∧

slps1′ = slps1 −⊳ {p?})

∨ slps1′ = slps1 −⊳ {p?})

slcnt1′ = slcnt1 − 1

The following is the refinement of the ShouldWakeUp predicate. The con-
dition is the same as in the specification.

ShouldWakeUp1

t?,now? : TIME

0 < t?

t? ≤ now?

The ShouldWake predicate is refined to the following:

ShouldWake1 =̂

(WakingTime1[t/t !] ∧ ShouldWakeUp1[t/t?]) \ {t}

The definition expands into the following schema:

ShouldWake1

ΞPTAB

p? : PID

now? : TIME

∃ t : TIME •

t = waitingtime1(p?) ∧

0 < t ∧ t ≤ now?

which can be simplified using the one-point rule to

ShouldWake1

ΞPTAB

p? : PID

now? : TIME

0 < waitingtime1(p?) ≤ now?

174 3 A Simple Kernel

The form of the refinement of FindAndWake is identical to the specifica-
tion (only identifiers are altered).

FindAndWake1 =̂

GotSleepers1 ∧

(∀ p : PID •

IsAsleep1[p/p?] ∧

ShouldWake1[p/p?] ⇒

RemoveSleeper1[p/p?] ∧

ClearWaitingTime1[p/p?] ∧

MakeReady1[p/p?]

In order to work with the definition, it must be expanded. The expansion is
as follows:

FindAndWake1

∆SLEEPERS1

∆SCHED1

now? : TIME

slcnt1
= 0

∀ p : PID •

p ∈ dom slps1 ∧

0 < waitingtime1(p) ≤ now? ⇒

slps1′ = slps1 −⊳ {p} ((p = hds ∧

hds ′ = slps1(hds) ∧

slps1′ = slps1 −⊳ {p?})

∨ slps1′ = slps1 −⊳ {p?}) ∧

slcnt1′ = slcnt1 − 1 ∧

waitingtime1′ = waitingtime1 ⊕ {p �→ 0} ∧

state1′ = state1 ⊕ {p �→ psready} ∧

(nxtp ≤ maxs1 ∧

((nxtp = 1 ∧ sq .pq1′ = {1 �→ p} ∧ nxtp′ = 2) ∨

(prio1(p) ≤ prio1(sq .pq1(1)) ∧

(∀ i : 1 . . nxtp − 1 •

sq .pq1′ = (sq .pq1 ⊕ {i + 1 �→ sq .pq1(i)}) ⊕ {1 �→ p}) ∧

nxtp′ = nxtp + 1) ∨

(prio1(sq .pq1(nxtp − 1)) < prio1(p) ∧

sq .pq1′ = sq .pq1 ⊕ {nxtp �→ p} ∧

nxtp′ = nxtp + 1) ∨

(∃ i : 1 . . nxtp − 2 •

prio1(sq .pq1(i)) < prio1(p) ∧

prio1(p) ≤ prio1(sq .pq1(i + 1))

∨ (∀ j : i + 1 . . nxtp − 1 •

sq .pq1′ = (sq .pq1 ⊕ {j + 1 �→ sq .pq1(j)}) ⊕ {i + 1 �→ p}

∧ nxtp′ = nxtp + 1)) ∧

3.11 Sleepers 175

serr ! = sysok)

∨ serr ! = schedqfull

The precondition of FindAndWake1 must be calculated. The calculation
yields the following predicate:

preFindAndWake1 =̂

slcnt1
= 0

nxtp + #{p : PID | p ∈ dom slps1 ∧ 0 < waitingtime1(p) ≤ now?} < maxs1

{p : PID | p ∈ dom slps1 ∧ 0 < waitingtime1(p) ≤ now?} ⊆ dom slps1

The composite operation that places processes in a sleeping state refines
to the following definition (it is similar to the specification):

SendMeToSleep1 =̂

(BadSleepTime ∧ SleepTooShort)

∨ (ComputeWakeTime[t?/stm?, cst/cst !] ∧ AddSleeper1[cst/t?] ∧

SetStateToSleeping1) \ {cst}

Its expansion is the following schema:

SendMeToSleep1

∆PTAB1

∆SLEEPERS1

p? : PID

t?,now? : TIME

serr ! : SYSERR

(t? = 0 ∧ serr ! = sleeptimetooshort)

∨ (∃ cst : TIME •

(cst = t? + now? ∧

(p? ∈ dom slps1 ∧ serr ! = alreadyasleep)

∨ (p?
∈ dom slps1 ∧

(slcnt1 < maxslps1 ∧

((hds = nullpid ∧

hds ′ = ends ′ = p? ∧

slps1′ = slps1 ⊕ {p? �→ nullpid})

∨ (ends ′ = p? ∧ slps1′ = slps1 ⊕ {ends �→ p?, p? �→ nullpid})) ∧

slcnt1′ = slcnt1 + 1 ∧

wakingtime ′ = wakingtime ⊕ {p? �→ t?} ∧

serr ! = sysok))

∨ serr ! = toomanysleepers)

∧ state1′ = state ⊕ {p? �→ pssleeping})

This schema can be simplified in a fairly obvious way. After simplification,
the following is obtained:

176 3 A Simple Kernel

∆PTAB1

∆SLEEPERS1

p? : PID

t?,now? : TIME

serr ! : SYSERR

(t? = 0 ∧ serr ! = sleeptimetooshort)

∨ (p? ∈ dom slps1 ∧ serr ! = alreadyasleep)

∨ (p?
∈ dom slps1 ∧

(slcnt1 < maxslps1 ∧

((hds = nullpid ∧

hds ′ = ends ′ = p? ∧

slps1′ = slps1 ⊕ {p? �→ nullpid})

∨ (ends ′ = p? ∧ slps1′ = slps1 ⊕ {ends �→ p?, p? �→ nullpid})) ∧

slcnt1′ = slcnt1 + 1 ∧

∧ state1′ = state ⊕ {p? �→ pssleeping})

wakingtime ′ = wakingtime ⊕ {p? �→ t? + now?} ∧

serr ! = sysok))

∨ serr ! = toomanysleepers)

Since this is an important operation, its precondition must be calculated.
It is easy to see that the precondition is

preSendMeToSleep1 =̂

t? = 0 ∨ p? ∈ dom slps1 ∨ slcnt1 < maxslps1

Finally, we have the abstraction relation. It is an extremely simple relation
and is given as the predicate of the following schema.

AbsSLEEPERS1

SLEEPERS

SLEEPERS1

maxslps1 = maxslps

dom slps1 = slps

slcnt1 = #slps

Theorem 48.

∀SLEEPERS ′; SLEEPERS1′ •

SLEEPERSInit ∧ AbsSLEEPERS1′ ⇒ SLEEPERSInit1

Proof. By the abstraction relation, maxslps1′ = maxslps ′ = smax?. Also
by the invariant of SLEEPERRS1′, hds ′ = ends ′ = nullpid ⇒ dom slps1′ =
∅ = slps ′ by the one-point rule. Finally, #slps ′ = slcnt1′ and slps ′ = ∅, so
#slps ′ = 0, from which we are entitled to conclude that slcnt1′ = 0. ✷

3.11 Sleepers 177

Theorem 49.

∀SLEEPERS ; SLEEPERS1; now? : TIME •

preFindAndWake ∧ AbsSLEEPERS1 ⇒ preFindAndWake1

Proof. The preconditions are

preFindAndWake =̂

slps
= ∅ ∧

{p : PID | p ∈ slps ∧ 0 < waitingtime(p) ≤ now?} ⊆ slps ∧

#sq .pq + #{p : PID | p ∈ slps ∧ 0 < waitingtime(p) ≤ now?} < maxs ∧

and

preFindAndWake1 =̂

slcnt1
= 0

nxtp + #{p : PID | p ∈ dom slps1 ∧ 0 < waitingtime1(p) ≤ now?} < maxs1

{p : PID | p ∈ dom slps1 ∧ 0 < waitingtime1(p) ≤ now?} ⊆ dom slps1

The abstraction relation, AbsSLEEPERS1 gives the relevant identities. The
predicate of AbsSLEEPERS1 states that p ∈ dom slps1 ⇔ p ∈ slps and
slps ⊂ used , so the refinement of waitingtime is correct. The remainder of the
proof is immediate. ✷

Theorem 50.

∀SLEEPERS ; SLEEPERS ′; SLEEPERS1; SLEEPERS1′;

now? : TIME ; serr ! : SYSERR •

preFindAndWake ∧

AbsSLEEPERS1 ∧

AbsSLEEPERS1′ ∧

FindAndWake1

⇒ FindAndWake1

Proof. The predicate of AbsSLEEPERS1 states that slcnt1 = #slps,
so slcnt1 �= 0 implies slps �= ∅. Next, p ∈ dom slps1, by the predicate
of AbsSLEEPERS1, implies p ∈ slps, since dom slps1 = slps. The in-
variant of SLEEPERS states that slps ⊂ used and this guarantees that
p ∈ domwaitingtime; from this, it may be inferred first that waitingtime(p) =
waitingtime1(p) and consequently that 0 < waitingtime1(p) ≤ now? implies
that 0 < waitingtime(p) ≤ now?.

As far as the update of slps1 is concerned, the important conjunct is
slps1′ = slps1 −⊳ {p}. The predicate of AbsSLEEPERS1′ states that slps ′ =
dom slps1. This fact permits the following inference slps1′ = slps1 −⊳ {p}
implies that

dom slps1′

= (dom slps) \ {p}

= slps \ {p}

= slps ′

178 3 A Simple Kernel

as required.
By AbsSLEEPERS1, slcnt1 = #slps and by AbsSLEEPERS1′, slcnt1 =

#slps ′, so slcnt1′ = slcnt − 1 = #slps − 1 = slps ′.
The update of waitingtime1 is justified as follows. It is known, for rea-

sons that have already been given, that p ∈ used , so waitingtime1(p) =
waitingtime(p) for all p ∈ slps. It also follows that waitingtime1′(p) =
waitingtime ′(p) for all p ∈ used , so

waitingtime1′

= waitingtime1 ⊕ {p �→ 0}

= waitingtime ⊕ {p �→ 0}

= waitingtime ′

The update of state1 and its equivalence to state also follows the same line of
reasoning

state1′

= state1 ⊕ {p �→ psready}

= state ⊕ {p �→ psready}

= state ′

The refinement of MakeReady has already been taken into account above.
As noted there, MakeReady is defined in terms of promotion.

✷

Theorem 51.

∀SLEEPERS ; SLEEPERS1; p? : PID ; t? : TIME ; now? : TIME •

pre SendMeToSleep ∧ AbsSLEEPERS1 ⇒ pre SendMeToSleep1

Proof. We have:

preSendMeToSleep =̂ #slps < maxslps ∨ t? = 0 ∨ p?
∈ slps

preSendMeToSleep1 =̂ t? = 0 ∨ slcnt1 < maxslps1 ∨ p?
∈ dom slps1

Clearly t? = 0 is the same in both cases and the result can be deduced using
∨-introduction.

For the second case, the abstraction relation states that slcnt1 = #slps and
maxslps = maxslps1, so substituting into #slps < maxslps, slcnt1 < maxslps1
is obtained. Again, a step of ∨-introduction permits the conclusion to be
reached, viz. t? = 0 ∨ slcnt1 < maxslps1.

Finally, p? �∈ dom slps1 and, by the abstraction relation, dom slps1 = slps,
so p? �∈ slps is equivalent to p? �∈ dom slps1. ✷

3.11 Sleepers 179

Theorem 52.

∀SLEEPERS ; SLEEPERS ′; SLEEPERS1; SLEEPERS1′;

p? : PID ; t?,now? : TIME ; serr ! : SYSERR •

pre SendMeToSleep ∧

AbsSLEEPERS1 ∧

AbsSLEEPERS1′ ∧

SendMeToSleep1

⇒ SendMeToSleep

Proof. We can safely ignore the first disjunct,

t? = 0 ∧ serr ! = sleeptimetooshort

It is the same in both cases and contributes only t? = 0 to the precondition.
Everything is relatively straightforward; the interesting part is the update

of slps1. We start with slps1 = slps1⊕ {p? �→ nullpid}. By AbsSLEEPERS1,
dom slps1 = slps, so taking domains, we have

dom slps1′

= dom(slps1 ⊕ {p? �→ nullpid}

= dom(slps1 ∪ {p? �→ nullpid}), p?
∈ dom slps1

= (dom slps1) ∪ (dom{p? �→ nullpid})

= (dom slps1) ∪ {p?}

= slps ∪ {p?}

= slps ′

where the last step is justified by AbsSLEEPERS1′ (dom slps1′ = slps ′).
Similarly, for slps1′ = slps1 ⊕ {p? �→ hds}, for the same reason, we again

take domains

dom slps1′

= dom(slps1 ⊕ {send �→ p?, p? �→ nullpid})

= dom(slps1 ∪ {send �→ p?, p? �→ nullpid}), p?
∈ dom slps1

= dom slps1 ∪ (dom{p? �→ nullpid})

= dom slps1 ∪ {p?}

= slps ∪ {p?}

= slps ′

again, the final step is justified by AbsSLEEPERS1′ (dom slps1′ = slps ′).
Finally, since p? ∈ used and slps ⊂ used and ∀ p : PID • p ∈ used ⇒

wakingtime(p) = wakingtime1(p) in AbsPTAB1, and ∀ p : PID • p ∈ used ′ ⇒
wakingtime ′(p) = wakingtime1′(p), we can infer that

wakingtime1′

= wakingtime1 ⊕ {p? �→ t? + now?}

= wakingtime ⊕ {p? �→ t? + now?}

= wakingtime ′

The correspondence between state and state1 is proved in a similar fashion.
✷

180 3 A Simple Kernel

3.11.3 Refiment Two

SLEEPERS2

PTAB1

slcnt2 : N

maxslprs2 : N

shd , send : GPID

shd = nullpid ⇔ send = nullpid

shd
= nullpid ⇔ slcnt2 > 0

shd
= nullpid ⇔

next∗(| {shd} |) \ {nullpid}
= ∅shd
= nullpid ⇔

next(send) = nullpid

shd
= nullpid ⇔

∀ p : PID •

p ∈ next∗(| {shd} |) \ {nullpid} ⇒

∃ k : N • k ≥ 0 ∧ k ≤ maxslprs2 ∧ nextk (shd) = p

SLEEPERSInit2

SLEEPERS2

smax? : N1

maxslprs2′ = smax?

shd ′ = nullpid

slcnt2′ = 0

IsAsleep2

ΞSLEEPERS2

p? : PID

shd = p? ∨

send = p? ∨

p? ∈ next+(| {shd} |) \ {nullpid}

CanAddSleeper2

ΞSLEEPERS2

slcnt2 < maxslprs2

3.11 Sleepers 181

AddSleeperProc2

∆SLEEPERS2

p? : PID

slcnt2′ = slcnt2 + 1

(shd = nullpid ∧

shd ′ = p? ∧

send ′ = p? ∧

next ′ = next ⊕ {p? �→ nullpid})

∨ (send ′ = p? ∧

next ′ = next ⊕ {send �→ p?, p? �→ nullpid})

DelSleeperProc2

∆SLEEPERS2

p? : PID

slcnt2′ = slcnt2 − 1

((shd = p? ∧ shd ′ = next(shd))

∨ (∃ p1 : PID | p? = next(p1) •

next ′ = next ⊕ {p1 �→ next(p?)})

AddSleeper2 =̂

(IsAsleep2 ∧ AlreadyAsleep)

∨ (CanAddSleeper2 ∧

(¬ IsAsleep2 ∧

AddSleeperProc2 ∧

SetWaitingTime2 ∧

SysOk))

∨ TooManySleepers

AddSleeper2

∆SLEEPERS2

p? : PID

serr ! : SYSERR

t? : TIME

(shd = p? ∨ p? ∈ next+(| {shd} |) \ {nullpid} ∧

serr ! = alreadyasleep)

∨ (shd
= p? ∧

∨ (slcnt2 < maxslprs2 ∧

p?
∈ next+(| {shd} |) \ {nullpid} ∧

wakingtime2′ = wakingtime2 ⊕ {p? �→ t?} ∧

slcnt2′ = slcnt2 + 1 ∧

182 3 A Simple Kernel

((shd = nullpid ∧

shd ′ = p? ∧

send ′ = p? ∧

next ′ = next ⊕ {p? �→ nullpid})

∨ (send ′ = p? ∧

next ′ = next ⊕ {send �→ p?, p? �→ nullpid})

∧ serr ! = sysok))

∨ serr ! = toomanysleepers

Note that

p?
= shd ∧

p?
∈ next+(| {shd} |) \ {nullpid}

can be rewritten as

p?
= shd ∧

¬ ∃ k : N •

0 < k ∧ k ≤ #next∗(| {shd} |) \ {nullpid} ∧

nextk (shd)
= p?

GotSleepers2

ΞSLEEPERS1

slcnt2
= 0

RemoveSleeper2

∆SLEEPERS2

p? : PID

(p? = shd ∧

shd ′ = next(hds))

∨ next ′ = next ⊕ {p? �→ nullpid}

slcnt2′ = slcnt2 − 1

ShouldWakeUp2

p? : PID

t?,now? : TIME

0 < t?

t? ≤ now?

3.11 Sleepers 183

ShouldWake2 =̂

(WakingTime2[t/t !] ∧ ShouldWakeUp2[t/t?]) \ {t}

This expands into

ShouldWake2

ΞPTAB

p? : PID

now? : TIME

∃ t : TIME •

t = waitingtime2(p?) ∧

0 < t ∧ t ≤ now?

or

ShouldWake2

ΞPTAB

p? : PID

now? : TIME

0 < waitingtime2(p?) ≤ now?

FindAndWake2 =̂

GotSleepers2 ∧

(∀ p : PID •

IsAsleep2[p/p?] ∧ ShouldWake2[p/p?] ⇒

RemoveSleeper2[p/p?] ∧ ClearWaitingTime2[p/p?] ∧ MakeReady1[p/p?]

This expands into

FindAndWake2

∆SLEEPERS2

∆SCHED

∆PTAB2

now? : TIME

slcnt2
= 0

∀ p : PID •

p ∈ next∗(| {shd} |) \ {nullpid} ∧ 0 < waitingtime2(p) ≤ now? ⇒

((p = shd ∧ shd ′ = next(hds))

184 3 A Simple Kernel

∨ next ′ = next ⊕ {p �→ nullpid}) ∧

slcnt2′ = slcnt2 − 1 ∧

waitingtime2′ = waitingtime2 ⊕ {p �→ 0} ∧

MakeReady1[p/p?]

preFindAndWake2 =̂

slcnt2
= 0 ∧

nextp + #{p : PID | 0 < waitingtime2(p) ≤ now? ∧

next∗(| {shd} |) \ {nullpid}} − 1 < maxs1 ∧

{p : PID | 0 < waitingtime2(p) ≤ now? ∧

p ∈ next∗(| {shd} |) \ {nullpid}}

⊆ next∗(| {shd} |) \ {nullpid}

SendMeToSleep2 =̂

(BadSleepTime ∧ SleepTooShort)

∨ (ComputeWakeTime[t?/stm?, cst/cst !] ∧

AddSleeper2[cst/t?] ∧

SetStateToSleeping2) \ {cst}

This expands into and simplifies to

SendMeToSleep2

∆SLEEPERS2

∆PTAB2

t?,now? : TIME

p? : PID

serr ! : SYSERR

(t? = 0 ∧ serr ! = sleeptimetooshort)

∨ (slcnt2 < maxslps2 ∧

(shd = p? ∨

(∃ k : N •

0 < k ∧ k ≤ #next+(| {shd} |) \ {nullpid} ∧

nextk (shd) = p)) ∧

serr ! = alreadyasleep)

∨ (shd
= p? ∧ p?
∈ next+(| {shd} |) \ {nullpid} ∧

wakingtime2′ = wakingtime2 ⊕ {p? �→ t? + now?} ∧

slcnt2′ = slcnt2 + 1 ∧

((shd = nullpid ∧ shd ′ = p? ∧ send ′ = p? ∧

next ′ = next ⊕ {p? �→ nullpid})

∨ (shd ′ = p? ∧ next ′ = next ⊕ {p? �→ shd}))

∧ state2′ = state2 ⊕ {p? �→ pssleeping}

∧ serr ! = sysok))

∨ serr ! = toomanysleepers)

3.11 Sleepers 185

This is interesting because shd = p? ∨ p? ∈ next+(| {shd} |) \ {nullpid} is
equivalent to p? ∈ next∗(| {shd} |) \ {nullpid}.

preSendMeToSleep2 =̂

t? = 0

∨ (shd = p? ∨

(∃ k : N •

0 < k ∧ k ≤ #next+(| {shd} |) \ {nullpid} ∧

nextk (shd) = p))

∨ slcnt2 < maxslps2

AbsSLEEPERS2

SLEEPERS1

SLEEPERS2

maxslprs2 = maxslprs1

dom slps1 ⊆ domnext

ran slps1 ⊆ rannext

slscnt2 = slscnt1

dom slps1 = next∗(| {shd} |) \ {nullpid}

∀ p : PID •

p ∈ dom slps1 ⇒

slps1(p) = next(p)

shd = hds

send = ends

Theorem 53.

∀SLEEPERS1′; SLEEPERS2′ •

SLEEPERSInit2 ∧ AbsSLEEPERS2′ ⇒ SLEEPERSInit1

Proof. By the abstraction relation, maxslprs2′ = maxslps1′, and since
maxslprs2′ = smax?, we may infer maxslps1′ = smax?.

Again, by the abstraction relation, slcnt2′ = slcnt1′, and since slcnt2′ = 0,
we are entitled to infer that slcnt1′ = 0.

We deal with hds and ends as follows. The abstraction relation states
that hds ′ = shd and shd ′ = nullpid , so hds ′ = nullpid by the transitivity of
identity. Given that shd ′ = nullpid ⇒ send ′ = nullpid and, by the abstraction
relation, send ′ = ends ′, Modus Ponens allows us to infer that ends ′ = nullpid .
By transitivity of identity, we have the desired shd ′ = ends ′ = nullpid . ✷

Theorem 54.

∀SLEEPERS1; SLEEPERS2; now? : TIME •

preFindAndWake1 ∧ AbsSLEEPERS2 ⇒ preFindAndWake2

186 3 A Simple Kernel

Proof.

preFindAndWake1 =̂

slcnt1
= 0

nxtp + #{p : PID | p ∈ dom slps1 ∧ 0 < waitingtime1(p) ≤ now?} < maxs1

{p : PID | p ∈ dom slps1 ∧ 0 < waitingtime1(p) ≤ now?} ⊆ dom slps1

preFindAndWake2 =̂

slcnt2
= 0 ∧

nextp + #{p : PID | 0 < waitingtime2(p) ≤ now? ∧

next∗(| {shd} |) \ {nullpid}} − 1 < maxs1 ∧

{p : PID | 0 < waitingtime2(p) ≤ now? ∧

p ∈ next∗(| {shd} |) \ {nullpid}}

⊆ next∗(| {shd} |) \ {nullpid}

The abstraction relation, AbsSLEEPERS2 gives the relevant identities.
By a previous result, we have it that p ∈ dom slps1 ⇔ p ∈ slps and slps ⊂
used and nxtp#next∗(| {shd} |) \ {nullpid} = dom slps1, so the refinement of
waitingtime1 is correct. The remainder of the proof is immediate. ✷

Theorem 55.

∀SLEEPERS1; SLEEPERS1′; SLEEPERS2; SLEEPERS2′;

now? : TIME ; serr ! : SYSERR •

preFindAndWake1 ∧

AbsSLEEPERS2 ∧

AbsSLEEPERS2′ ∧

FindAndWake2

⇒ FindAndWake1

Proof. By the predicate of AbsSLEEPER2, slcnt2 = slcnt1, so slcnt2 �= 0
implies slcnt1 �= 0. By that same predicate, next∗(| {shd} |) \ {nullpid} =
dom slps1, so p ∈ next∗(| {shd} |) \ {nullpid} implies that p ∈ dom slps1.

Next, it is clear that next∗(| {freehd} |) \ {nullpid} = dom slps1 by the
predicate of the abstraction relation AbsSLEEPERS2 and that dom slps1 =
slps by AbsSLEEPERS1 and slps ⊂ used , p ∈ next∗(| {freehd} |) \ {nullpid}
(∗) implies that 0 < waitingtime2(p) ≤ now? implies 0 < waitingtime1(p) ≤
now?.

The removal of p from the list of sleepers is given, in FindAndWake2, as

(p = shd ∧ shd ′ = next(shd))

∨ (∃ p1 : PID •

next(p1) = p ∧

next ′ = next ⊕ {p1 �→ next(p)}

It is clear that each should be taken separately (and an appeal to ∨-I would
be made if one wanted a fully formal proof).

3.11 Sleepers 187

By the predicate of the schema AbsSLEEPERS2, hds = shd and by the
predicates of both AbsSLEEPERS2 and AbsSLEEPERS2′, shd ′ = next(shd)
= slps1(hds) = hds ′. The identity next(shd) = slps1(hds) is justified by the
observation that

hds ∈ next∗(| {hds} |) \ {nullpid} = dom slps1

Next, the existential contains next ′ = next ⊕{p1 �→ next(p)}. This implies
that p �∈ domnext ′ and, by AbsSLEEPERS2′, next ′(p) = slps1′(p), for all p ∈
dom slps1′ (or equivalently, p ∈ next∗(| {shd} |)\{nullpid}). For p �∈ dom slps1′

and p ∈ dom slps1 both to be true, it must be the case that dom slps1′ =
(dom slps1) \ {p} which is equivalent to slps1 \ {p} and slps1 \ {p} = slps1′.

By the abstraction relations, slcnt2 = slcnt1 and slcnt2′ = slcnt1′, so
slcnt2′ = slcnt2 − 1 = slcnt1 − 1 = slcnt1′.

The update of waitingtime2 and state2 can be handled in a simple way.
The chain of equivalences ∗ above is required.

Finally, MakeReady1, as observed elsewhere is defined in terms of promo-
tion and its refinement has already been undertaken.

✷

Theorem 56.

∀SLEEPERS1; SLEEPERS2; p? : PID ; t?,now? : TIME •

pre SendMeToSleep1 ∧ AbsSLEEPERS1 ⇒ pre SendMeToSleep2

Proof. We have

preSendMeToSleep1 =̂ t? = 0

∨ slcnt1 < maxslps1

∨ p?
∈ dom slps1

preSendMeToSleep2 =̂

t? = 0 ∨ slcnt2 < maxslps2 ∨

p?
∈ next∗(| {shd} |) \ {nullpid}

The abstraction relation states that slcnt1 = slcnt2 and that maxslps1 =
maxslps2. Furthermore, next∗(| {shd} |) \ {nullpid} = dom slps1. ✷

Theorem 57.

∀SLEEPERS1; SLEEPERS1′; SLEEPERS2; SLEEPERS2′;

p? : PID ; t?,now? : TIME ; serr ! : SYSERR •

pre SendMeToSleep1 ∧

AbsSLEEPERS2 ∧

AbsSLEEPERS2′ ∧

SendMeToSleep2

⇒ SendMeToSleep1

188 3 A Simple Kernel

Proof. We can ignore with impunity the first conjunct (t? = 0 ∧ serr ! =
sleeptimetooshort).

By the predicate of AbsSLEEPERS2, we have slcnt2 = slcnt1 and
maxslps1 = maxslps2, so slcnt2 < maxslps2 ⇔ slcnt1 < maxslps1.

The guard

shd = p? ∨ p? ∈ next∗(| {shd} |) \ nullpid}

implies

p? ∈ next∗(| {shd} |) \ nullpid}

which, in turn, by the predicate of AbsSLEEPERS2, implies that p? ∈
dom slps1.

If shd = nullpid , next∗(| {shd} |) \ nullpid} = ∅, which implies that
dom slps1 = ∅. We now reason as follows.

next ′

= next ⊕ {p? �→ nullpid}

= slps1 ⊕ {p? �→ nullpid}, since dom slps1 = ∅

= slps1′

The last step is justified by AbsSLEEPERS2′.
In addition, we have

next ′

= next ⊕ {send �→ p?, p? �→ nullpid}

= slps1 ⊕ {endss �→ p?, p? �→ nullpid}, since send = ends

= slps1′

The last step is, once more, justified by AbsSLEEPERS2′.
Since p? is not an element of the free chain, the proof of wakingtime2′ =

wakingtime1′ and state2′ = state1′ is straightforward.
In the final section, it will become clear that we are justified in assuming

that p? is not on the free chain. ✷

The operations and data structures derived in this section can now be
translated directly into execuable code.

3.12 User Interface

Here, the interface operations are defined. These are the operations that con-
stitute the system as far as user processes are seen.

3.12.1 System Initialisation

This consists of

3.12 User Interface 189

• Creation and initialisation of process table (PTAB);
• Creation of idle (null) process
• Initialisation of scheduler
• Initialisation of semaphore table
• Initialisation of sleeper list

This operation creates the idle process (variously called “null process” or
“idle process”).

CreateNullProcess =̂

∃ st : PSTATE ; pr : PPRIO •

st = psready ∧

pr = minprio ∧

AddPD [st/st?, pr/pr?] ∧

InitProcessStack

It expands into

CreateNullProcess

∆PTAB

p! : PID

serr ! : SYSERR

((used ⊂ PID ∧

p!
∈ used ∧

used ′ = used ∪ {p!} ∧

p! ∈ used ′ ∧

prio′ = prio ∪ {p! �→ pr} ∧

state ′ = state ∪ {p! �→ st} ∧

smsg ′ = smsg ∪ {p? �→ nullmsg} ∧

wakingtime ′ = wakingtime ∪ {p! �→ 0} ∧

InitProcessStack ∧

serr ! = sysok)

∨ serr ! = pdinuse)

∨ serr ! = ptabful

The update of state by the addition of p! satisfies the update condition for prio

(etc.) as already noted. This is because the AddPD operation is a sequential
composition and what would be the intermediate state, used ′′, is identical to
the after state, used ′, because it is not further updated.

The InitProcessStack operation is defined below when discussing the cre-
ation of new processes in general.

The definition of CreateNullProcess is just a substitution instance of
AddPD. The refinement of this operation is just the refinement of AddPD

suitably instantitated.

190 3 A Simple Kernel

SystemInit =̂

PTABInit
o
9
(TIMESINCEBOOTInit ∧ CLOCKTIMEInit)

o
9
(CreateNullProcess[ipid/p!, err/serr !] ∧

((IsSysOk ∧ SCHEDInit [ipid/p?] ∧ SEMATBLInit)

∨ ReturnSysErr [err/terr?])) \ {ipid , err}
o
9
ExitCritical

After re-arrangement, the predicate simplifies to

tnow ′ = 0

secs ′ = 0

mins ′ = 0

hrs ′ = 0

curr ′ = minpid

prev ′ = minpid

iprc′ = ipid

sq ′.pq = 〈 〉

semasinuse′ = ∅

used ′ = {ipid}

prio′ = {ipid �→ pr?}

state ′ = {ipid �→ st?}

smsg ′ = {ipid �→ nullmsg}

wakingtime ′ = {ipid �→ 0}

The assignment to prio′, state ′, smsg ′ and wakingtime ′ are justified by the fact
that dom prio′ = dom state ′ = dom smsg ′ = domwakingtime ′ = used ′ and
used ′ = {ipid}. The initialisation of the scheduler is obtained by expanding
θPRIOQInit to sq ′.pq = 〈 〉.

Some of the components of the definition of SystemInit do not refine.
Removing them, the following is revealed

PTABInit
o
9
CreateNullProcess

o
9
SEMATABInit

This forms the core of the refinement. (For verification purposes, the invariant
components can be added and checked that the result satisfies the refinement
homomorphism)

The initial process is the one that is started first. More important, it is the
root process and is responsible for the creation of all processes in the system.

CreateInitialProcess =̂

NewProcess
o
9
SchedNext

3.12 User Interface 191

Since SchedNext is defined in terms of a promotion, the refinement of New-

Process is the central aspect. The refinement of this operation is discussed in
the next subsection.

3.12.2 Process Creation

Process creation involves:

• Adding a descriptor to the process table
• Insertion of process reference in scheduler queue (MakeReady)

With the exception of the null (idle) and initial processes, each process is
created by some other process. The other process, the parent, must be the
currently executing process, of course, when the operation is performed. This
has the consequence that the NewProcess operation can handle errors in any
way it sees fit. It also means that there is no need to obtain the identifier of
the current process before doing anything else.

It should be noted that the entire operation is wrapped in an EnterCritical ,
LeaveCritical pair. These operations disable and enable interrupts, respec-
tively.

NewProcess =̂

EnterCritical

(∃ st : PSTATE | st = psready •

(AddPD [mypid !/p!, err/serr !] ∧

InitProcessStack
o
9
((IsSysOk [err/serr !] ∧ MakeReady [mypid !/p?, err/serr !] ∧ SysOk)

∨ ReturnSysErr [err/terr?])) \ {err})
o
9
ExitCritical

As far as the refinement process is concerned, this operation is the reason
for our making the assumption p? ∈ used above; every process must be created
by the above operation and it ensures that p ∈ used holds, for all newly
allocated p. Below, we are able to discharge the assumption.

The last definition expands and simplifies to

((used ⊂ PID ∧

(mypid !
∈ used ∧

used ′ = used ∪ {mypid !} ∧

prio′ = prio ⊕ {mypid ! �→ pr?} ∧

smsg ′ = smsg ⊕ {mypid ! �→ nullmsg} ∧

wakingtime ′ = wakingtime ⊕ {mypid ! �→ 0} ∧

InitProcessStack ∧

state ′ = (state ⊕ {mypid �→ st?}) ⊕ {mypid ! �→ psready} ∧

((pq = 〈 〉 ∧ pq ′ = 〈p?〉 ∧ serr ! = sysok)

192 3 A Simple Kernel

∨ (((#pq < maxs ∧

((prio(p?) ≤ prio(head pq) ∧ pq ′ = 〈p?〉 � pq)

∨ (prio(last pq) < prio(p?) ∧ pq ′ = pq � 〈p?〉)

∨ (∃ s1, s2 : seqPID | s1
= 〈 〉 ∧ s2
= 〈 〉 ∧ s1 � s2 = pq •

prio(last s1) < prio(p?) ∧

prio(p?) ≤ prio(head s2) ∧

pq ′ = s1 � 〈p?〉 � s2)) ∧

serr ! = sysok))

∨ serr ! = schedqfull))

∨ serr ! = pdinuse))

∨ serr ! = ptabful)

The NewProcess operation is called by the initial process to create processes.
The precondition is

preNewProcess =̂ used
= PID ∧ #pq < maxs

The first conjunct is derived from used ⊂ PID , note.
Again, some of the components do not refine. This implies that the refine-

ment process should be in terms of

AddPD o
9
MakeReady

This expands into

AddPDo
9

SetStateToReady ∧

∃∆PRIOQ •

ΦSCHED ∧ MakeReady

This is a refinement and the refinement of MakeReady has already been under-
taken. Furthermore, the refinement of MakeReady in this context involves the
substitution of a value (p?) whose priority is not affected by that operation.
It appears logical, therefore, to concentrate on the composition

AddPD o
9
SetStateToReady

It should be noted that mypid ! ∈ used , so SetStateToReady is valid in this
case.

The InitProcessStack is a low-level operation that is hardware-specific. On
the Intel IA32 processor, for example, this operation would first simulate a
procedure call (so that any parameters can be passed to the new process);
next, it would push a dummy flags register (set to denote interrupted code),
followed by a word containing the offset of the code segement in a table (the
TSS), then the entry point of the process; the eight 0s (one per register) are
then pushed onto the stack and the operation is ready. On other machines,
this operation would be different, hence the reason for merely stating its spec-
ification in English. (But note that we could specify it formally—all of the
concepts are readily amenable to formalisation.)

3.12 User Interface 193

3.12.3 Process Management

Here, we deal with

• Self-suspension
• Sleep
• Termination

All process-management operations are performed by the currently exe-
cuting process. This has the consequence that any errors must be handled
either by the process itself or just left for something else to pick them up. In
addition, the operations must be wrapped inside the operations that disable
and then enable interrupts. The reason for this is that the operation must be
atomic as far as other processes are concerned.

As will be seen, a useful property of both EnterCritical and ExitCritical
is that they can be omitted when calculating preconditions. The reason for
this is that they only affect the after state. Here, again, is the definition of
EnterCritical , by way of example:

EnterCritical

∆HW

intflg ′ = on

The predicate of this schema reduces to true when existentially quantified and
then simplified.

The SuspendSelf operation suspends its caller. It is the SuspendMe oper-
ation wrapped in the interrupt disable/enable operations.

SuspendSelf =̂

EnterCritical
o
9
SuspendMe

o
9
ExitCritical

Given the property of the interrupt-flag manipulation operations, we can
express the precondition immediately

preSuspendSelf =̂ preSuspendMe

The critical-section operations do not refine (or, more correctly, refine to
themselves), so SuspendSelf refines to SuspendMe. The SuspendMe opera-
tion, however, is defined as the composition of SCHED operations (which
refine to themselves) and SCHED operations defined in terms of promotion.
This implies that the refinement of the PRIOQ operations has already been
performed, so there is nothing left to be done here.

The SendSelfToSleep operation puts the caller to sleep for a period deter-
mined by a parameter to the operation.

194 3 A Simple Kernel

SendSelfToSleep =̂

EnterCritical
o
9
((CurrentProcessId [c/p!] ∧

TimeNow [t/tn!] ∧

SendMeToSleep[c/p?, t/tnow?]) \ {c, t}
o
9
SchedNext)

o
9
ExitCritical

The precondition is given by the next definition

preSendSelfToSleep =̂ preSendMeToSleep ∧ preSchedNext

The precondition can be written thus because its components contain disjoint
sets of variables.

The definition again involves components that do not refine, so refinement
should concentrate on

(CurrentProcessId [c/p!] ∧

TimeNow [t/tn!] ∧

SendMeToSleep[c/p?, t/tnow?]) \ {c, t}
o
9
SchedNext

Since TimeNow does not refine any further, this can be simplified to

(CurrentProcessId [c/p!] ∧ SendMeToSleep[c/p?, tnow/tnow?]) \ {c}
o
9
SchedNext

where the substitution (not strictly Z) [tnow/tnow?] merely substitutes the
current value of the clock from the global variable. (The precondition of
TimeNow is true, in any case.)

We begin with

(CurrentProcessId [c/p!] ∧ SendMeToSleep[c/p?, tnow/tnow?]) \ {c}

but this is just a substitution instance of SendMeToSleep and this operation
has already been refined.

When a process is terminated by some external agency (but not an error—
this kernel is too simple) or by calling TerminateSelf, its state has to be set
to psterm.

SetProcessStateToTerminated =̂

∃ st : PSTATE | st = psterm •

SetProcState[st/st?]

This expands into

SetProcessStateToTerminated

∆PTAB

p? : PID

state ′ = state ⊕ {p? �→ psterm}

3.12 User Interface 195

The termination operation is now defined. Clearly, it is only called by
the currently executing process. In this system, it is not possible for one
process directly to terminate another. Each process is responsible for freeing
the resources it holds.

TerminateSelf =̂

EnterCritical
o
9
((CurrentProcessId [c/p!] ∧

SetProcessStateToTerminated [c/p?])
o
9
DelPD [c/p?]) \ {c}

o
9
SchedNext

This is

TerminateSelf

ΞSCHED

∆PTAB

serr ! : SYSERR

∃ c : PID : PTAB •

curr = c ∧

(state ′′ = state ⊕ {c �→ psterm} ∧

c ∈ used ∧

used ′ = used \ {c} ∧

serr ! = sysok)

∨ serr ! = unusedpd
o
9
SchedNext

This is equivalent to

∃PTAB •

state ′′ = state ⊕ {curr �→ psterm} ∧

(curr ∈ used ∧

used ′ = used \ {curr} ∧

serr ! = sysok)

∨ serr ! = unusedpd
o
9
SchedNext

and to

TerminateSelf

∆PTAB

serr ! : SYSERR

((state ′ = state ⊕ {curr �→ psterm} ∧ curr ∈ used ∧ used ′ = used \ {curr} ∧

serr ! = sysok)

∨ serr ! = unusedpd)
o
9
SchedNext

196 3 A Simple Kernel

The precondition can be written as

preTerminateSelf =̂ curr ∈ used ∧ preSchedNext

or as

preTerminateSelf =̂

curr ∈ used ∧

curr = iprc

∨ sq .pq = 〈 〉

∨ (state(curr)
= psready ∨ state(curr)
= psrunning

∨ prio(head sq .pq) < prio(curr))

The operation refines as follows. It can be seen that the definition involves
components that can not be further refined. This suggests that the refinement
be of

SetProcessStateToTerminated [curr/p?]
o
9
DelPD [curr/p?]

The refinement of SchedNext is that of a promotion, so it can be removed
from the process.

First, the following operation is required.

SetProcessStateToTerminated1

∆PTAB

p? : PID

state1′ = state1 ⊕ {p? �→ psterm}

TerminateSelf 1 =̂

EnterCritical
o
9
((CurrentProcessId [c/p!] ∧

SetProcessStateToTerminated1[c/p?])
o
9
FreePID1[c/p?]) \ {c}

o
9
SchedNext1

The inner composition expands into, after use of the one-point rule, is

state1′ = state ⊕ {curr �→ psterm} ∧

((dom freech = ∅ ∧

freech ′ = freech ∪ {curr �→ nullpid} ∧

endfree ′ = curr ∧

hdfree ′ = curr ∧

serr ! = sysok)

∨ (curr
∈ dom freech ∧

freech ′ = (freech ⊕ {endfree �→ curr}) ∪ {curr �→ nullpid} ∧

endfree ′ = curr ∧

serr ! = sysok))

∨ serr ! = usedpd

3.12 User Interface 197

In this kernel, process can change their priority. The following is the defi-
nition of this operation.

ChangeMyPriority =̂

EnterCritical
o
9
(CurrentProcessId [c/p!] ∧ SetProcPrio[c/p?]) \ {c}

o
9
ExitCritical

This definition expands into the following schema:

ChangeMyPriority

∆HARDWARE

∆PTAB

pr? : PPRIO

EnterCritical
o
9
(∃ c : PID •

c = curr ∧

prio′ = prio ⊕ {c �→ pr?})
o
9
ExitCritical

which simplifies, using the one-point rule, to

ChangeMyPriority

∆HARDWARE

∆PTAB

pr? : PPRIO

EnterCritical
o
9
prio′ = prio ⊕ {curr �→ pr?}

o
9
ExitCritical

The refinement of this operation has already been undertaken. It is the
refinement of SetProcPrio (with the substitution of curr for p?).

Its first refinement is

ChangeMyPriority1

∆HARDWARE

∆PTAB1

pr? : PPRIO

EnterCritical
o
9
prio1′ = prio1 ⊕ {curr �→ pr?}

o
9
ExitCritical

The second refinement of ChangeMyPriority is

198 3 A Simple Kernel

ChangeMyPriority2

∆HARDWARE

∆PTAB2

pr? : PPRIO

EnterCritical
o
9
prio2′ = prio2 ⊕ {curr �→ pr?}

o
9
ExitCritical

One way for a process to obtain is identifier is by calling the following
operation:

MyProcessId =̂

EnterCritical
o
9
CurrentProcessId

o
9
ExitCritical

This expands into

MyProcessId

∆HARDWARE

ΞSCHED

p! : PID

EnterCritical

p! = curr
o
9
ExitCritical

This schema does not refine. The reason for this is that SCHED does not
refine (although its component priority queue does).

3.12.4 Inter-process Communication and Synchronisation

This consists of semaphore operations:

• Allocate and intialise semaphores in semaphore table
• Wait
• Signal
• Deallocate semaphore

As noted above, it is always the current process that calls these operations.
The use of curr is already handled in the semaphore operations WaitSema and
SignalSema but not in the operations to allocate and deallocate semaphores
in the semaphore table.

AllocateSemaphore =̂

EnterCritical
o
9
AllocSema

o
9
ExitCritical

3.12 User Interface 199

Apart from being wrapped in the interrupt flag operations, this operation is
just AllocSema. It refines to AllocSema1 and its precondition is

preAllocateSemaphore =̂ preAllocSema

DeallocateSemaphore =̂

EnterCritical
o
9
ReleaseSema

o
9
ExitCritical

This refines to ReleaseSema1 for reasons similar to that mentioned above.
The precondition is, trivially,

preDeallocateSemaphore =̂ preReleaseSema

The wait and signal operations on semaphores are, here, those defined in
terms of the semaphore table. As will be remembered, wait and signal are
provided by the semaphore table as promoted operations. There is no need
to refine these operations because the semaphore table’s refinement already
takes care of them in the sense that the refinement of the table is independent
of the refinement of the semaphore operations proper.

SemaphoreWait =̂

EnterCritical
o
9
STWaitSema

o
9
ExitCritical

The precondition is unaffected by the locking operations

preSemaphoreWait =̂ preSemaWait

SemaphoreSignal =̂

EnterCritical
o
9
STSignalSema

o
9
ExitCritial

preSemaphoreSignal =̂ preSemaSignal

The message operations

• Send synchronous message
• Receive synchronous message

are supported.
First, the send operation.

200 3 A Simple Kernel

SendSMsg =̂

EnterCritical
o
9
(CurrentProcessId [c/p!] ∧

MakeMessage[c/sndr?] ∧ SendASynchMsg [c/p?,m/m?]) \ {c,m}
o
9
ExitCritical

Ignoring the critical-section operations (they refine to themselves, in any case),
this partially expands into

SendSMsg

∆HARDWARE

∆SCHED

dest? : PID

payload? : MDATA

∃ c : PID ; m : MSG | c = curr ∧ m = mkmsg(curr , dest?, payload?) •

SendASynchMsg [c/p?,m/m?]

This particular schema expands into

SendSMsg

∆PTAB

∆SCHED

dest? : PID

payload? : MDATA

serr ! : SYSERR

(dest? ∈ used ∧

((state(dest?) = psreceiving ∧

((smsgs(dest?) = nullmsg ∧

smsgs ′ = smsgs ⊕ {dest? �→ mkmsg(curr , dest?, payload?)} ∧

state ′ = state ⊕ {curr �→ pssending , dest? �→ psready} ∧

((pq = 〈 〉 ∧ curr ′ = dest?)

∨ ((#pq < maxs ∧

(prio(dest?) ≤ prio(head pq) ∧ curr ′ = dest?)

∨ (((prio(last pq) < prio(dest?) ∧

pq ′ = (tail pq) � 〈dest?〉)

(∃ s1, s2 : seqPID | s1
= 〈 〉 ∧ s2
= 〈 〉 ∧ s1 � s2 = pq •

prio(last s1) < prio(dest?) ∧

prio(dest?) ≤ prio(head s2) ∧

pq ′ = (tail s1) � 〈dest?〉 � s2)) ∧

curr ′ = head pq) ∧

prev ′ = curr ∧ serr ! = sysok)

∨ serr ! = schedqfull)))

∨ serr ! = procalreadyhasmsg))

3.12 User Interface 201

∨ serr ! = destinationnotrcving))

∨ serr ! = badmsgdestination

This is merely a substitution instance of the predicate of SendASynchMsg, so
the refinement is identical to that of SendASynchMsg.

preSendSMsg =̂ SendASynchMsg

Next, the receive operation.

RcvSMsg =̂

EnterCritical
o
9
(CurrentProcessId [c/p!] ∧ ReceiveSynchMsg [c/p?]) \ {c}

o
9
ExitCritical

The RcvSMsg schema is a substition instance of ReceiveSynchMsg, so it has
already been refined.

preRcvSMsg =̂ ReceiveSynchMsg

Finally, an operation that first puts the calling process to sleep for a spec-
ified time and then tries to receive a message.

3.12.5 Clock Operations and the Clock ISR

In this section, we include the operations of the clock and the system operation
FindAndWake an operation that is invoked on every clock tick.

The clock is intended as an interrupt-service routine that is executed when-
ever there is a clock interrupt. On activation, the time-denoting variables are
updated and the list of waiting processes is searched to determine whether
there are any processes to activate. These operations are performed when
interrupts are disabled, so there is no need to put them in a critical section.

SystemClockOps =̂

UpdateTIMESINCEBOOT
o
9
(TimeNow [now/tn!] ∧ UpdateClockTime[now/t?] ∧

FindAndWake[now/now?]) \ {now}

If an interrupt-service routine is required, here it is:

CLOCKISR =̂ SystemClockOps

The expansion of the definition of SystemClockOps is the following schema.
This is again a case in which promotion does much of the work; the rest is
handled by the fact that simple variables refine to themselves.

202 3 A Simple Kernel

SystemClockOps

∆TIMESINCEBOOT

∆CLOCKTIME

∆SLEEPERS

∆SCHED

tnow ′ = tnow + ticklength

∃now : TIME | now = tnow ′ ∧

((now mod tickspersec = 0) ∧

((secs + 1 mod 60 = 0 ∧

secs ′ = 0 ∧

((mins + 1 mod 60 = 0 ∧

mins ′ = 0 ∧

hrs ′ = hrs + 1)

∨ mins ′ = mins + 1))

∨ secs ′ = secs + 1)) ∧

slps
= ∅ ∧

(∀ p : PID | p ∈ slps ∧ 0 < waitingtime(p) ≤ now •

slps ′ = slps \ {p} ∧

waitingtime ′ = waitingtime ⊕ {p �→ 0} ∧

MakeReady [p/p?])

This simplifies to

((tnow + ticklength mod tickspersec = 0) ∧

((secs + 1 mod 60 = 0 ∧ secs ′ = 0 ∧

((mins + 1 mod 60 = 0 ∧ mins ′ = 0 ∧ hrs ′ = hrs + 1)

∨ mins ′ = mins + 1))

∨ secs ′ = secs + 1)) ∧

slps
= ∅ ∧

(∀ p : PID | p ∈ slps ∧ 0 < waitingtime(p) ≤ tnow + ticklength •

slps ′ = slps \ {p} ∧

waitingtime ′ = waitingtime ⊕ {p �→ 0} ∧

MakeReady [p/p?])

3.12.6 Final Remarks

Some operations defined in this section cannot be further refined (e.g., the
stack initialisation operation) but others can and their refinement has been
outlined in this section. It is now an easy step to translate the resulting
schemata results into executable code. We have, with this, concluded the
refinement of the first kernel.

4

The Separation Kernel

The next refinement is of a Separation Kernel. The Separation Kernel is an
architecture introduced by John Rushby as an architecture of cryptographic
and other secure applications [11].

The purpose of this chapter is to describe the architecture and to outline
its refinement.

4.1 Basic Architecture

The architecture of the Separation Kernel is simple. It is a single-processor
model of a distributed system in which all user processes are separated in
time and space from each other. In a distributed system, the execution of
each process takes place in a manner independent of any other. Processes can
wait for data inputs, particularly inputs from communications channels. For
the remainder of the time, the component processes execute at rates inde-
pendent of all others. There is, in a distributed system, temporal separation
between the execution of one process and all other processes. Separation in
space means that the processes constituting a distributed system each have
their own disjoint address spaces. If two address spaces are disjoint, it is not
possible for one process directly to write to the address space of any other
process.

The Separation Kernel is based on these two fundamental observations.
Separation in time results from the fact that no two processes can be ac-
tive at exactly the same time. Furthermore, if processes communicate using
asynchronous channels, no synchronisation points are required, so processes
can proceed at their own rate. Separation in space results from the fact that
processes are allocated their own disjoint address spaces.

Temporal separation can be enforced by the system’s scheduler and by
a message-passing system. On a uni-processor system, the scheduler ensures
that only one process executes at any time and executions are interleaved in
time. The length of time during which any process will be executing (be

204 4 The Separation Kernel

active) depends upon the scheduling algorithm and, as will be seen, the
algorithm proposed by Rushby is particularly simple. In addition, the use
of asynchronous messages means that processes do not synchronise during
the exchange of messages, although they are permitted to wait for responses
or results to be returned. Even in the case of waiting for a response, the wait-
ing state depends upon the algorithms used to implement processes, not upon
the underlying system.

Spatial separation can be enforced by segmentation. Most processors sup-
porting segmented address spaces also have mechanisms for detecting and
reacting to attempts by one process to access the segments of another. On
the Intel IA32 and IA64 machines, for example, attempts to cross segment
boundaries causes a hardware exception; a handler can be provided to handle
the exception by, for example, killing the offending process. Each process is,
therefore, allocated one or more segments. Should a process, either by error or
through malice, attempt to address a location in another process’ segments,
the hardware should cause an exception to be raised. This permits the kernel
to detect such illegal accesses and to perform some action.

The original proposal for the Separation Kernel was included the stipula-
tion that a round-robin scheduler would be adequate. The round-robin scheme
can be used in real-time applications because of its simplicity; it can also be
used to simulate distributed systems because processes only enter the queue
when they are ready to execute. Temporal separation is supported by the fact
that, under pure round-robin, there is no a priori limit to the length of the
period during which a process can execute. In many systems, timeslicing is
used to share the processor between processes; each process is permitted to
execute for a defined period of time and, when this period is exhausted, the
process is suspended and another continues its execution. The property that
round-robin scheduling allows processes to execute for indefinite periods must
be qualified. Processes execute until such time as they are no longer able to
continue and at such a time, they must relinquish the processor. Processes
relinquish the processor either on a purely voluntary basis by executing a
voluntary suspension operation or by executing some other operation whose
definition includes the an operator that suspends the caller. The primitive
that sends messages might suspend the caller, for example.

It should be clear that the kernel must reside in an address space that is
disjoint from all user address spaces. This ensures that the kernel is protected
against malicious processes. Furthermore, it is also separated in time because,
by definition, it executes only when processes do not. In order to enforce
the spatio-temporal separation of the kernel, it is essential to define a clean
interface between it and user processes.

4.2 Extending the Architecture 205

4.2 Extending the Architecture

The Separation Kernel defines a basic and simple set of mechanisms for mana-
ging secure applications. It makes a distinction between trusted software (the
kernel) and untrusted software (applications in user processes). The architec-
ture requires some extension in order to include devices such as communica-
tions lines, printers and so on.

The US National Security Agency has produced an extension to the Sepa-
ration Kernel architecture [10] so that device handling can be included. This
introduces the concept of “trusted” code into the system. The context in
which trusted code is introduced is the following. The document [10] assumes
that the kernel proper is formally specified and that its properties are there-
fore well understood. Because it is formally specified, it is completely trusted.
User processes are completely untrusted; this is because they are not under
the control of the developers of the kernel and are assumed not to have been
formally constructed. There is no control, it is assumed, over the content of
user processes. Device processes (drivers and associated support code) require
greater access to kernel facilities and might have to do such things as allocating
their own storage, directly accessing the scheduler queues, and so on. This has
the implication that devices should only be introduced into a secure system
if they are trusted to a much greater extent than user code. The production
of device-related code must be carefully controlled. Ideally, this code would
be constructed using formal methods. One reason for assuming that it is not
so constructed is the range of possible hardware that any implementation of
the Separation Kernel can control (this is quite reasonable—it is a constraint
adopted for the work in reported in this book and was also adopted in our
[4]). A second reason is that the NSA probably do not believe that device-
handling code can be constructed formally—our opinion is at variance with
theirs (and we have unpublished cases that tend to support our position). No
matter what the reason, it is important that device-handling code should be
trusted.

It is important, then, to support device-handling code. This kind of code
needs to be fast and it needs access to low-level facilties. One way to sup-
port device-handling is to make the kernel open. This subverts the whole
project. Instead, it is better to define and formally construct an interface to
the kernel for use by device-handling code. The interface should only give
device code access to a miminal set of services. In particular, it should define
operations that

• Pass parameters from and to requesting user processes.
• Allow device-handling processes to suspend themselves.
• Cause device-handling processes to become active (i.e., to enter the sched-

uler’s queue of processes ready to execute).

In addition, it should be possible to determine whether the services requested
by user processes correspond to what is possible.

206 4 The Separation Kernel

Kernel Space

Device

Process1

ISR1

Device

Processn

ISRn

Sep Kern

User Process Space1

User Process Spacem

Fig. 4.1. Devices and interfaces in the Separation Kernel.

This is the approach adopted in this book. A set of operations is defined
that provide exactly those capabilities listed above. In addition, devices are
represented by “device numbers” as far as user processes are concerned. The
kernel maps device numbers to actual devices, thus decoupling device (service)
naming from the devices themselves (it also allows for some flexibility in the
kernel). Some might object that device numbers are a low-level representation.
The reply is that user processes use library calls to request such services; the
bottom level of such libraries will use device numbers, not the higher levels
and not user code.

4.3 Summary

The Separation Kernel can be summarised as follows

• A segmented main store that is supported by the processor hardware.
• A round-robin scheduling régime.
• Natural-break scheduling by user and device processes.
• A well-defined set of interfaces for device-handling processes.
• A well-defined interface for user processes (see Figure 4.2).

The internal organisation of our Separation Kernel can be seen in Figure 4.2.

4.4 An Overview of the Formal Specification 207

User-Process Interface

Processes Repn

R-R Scheduler

Main Store Allocator

Ctx Sw

Msg Buffer Area

Device

Process

Interface

Fig. 4.2. The internal organisation of our Separation Kernel.

4.4 An Overview of the Formal Specification

The purpose of this section is to describe in outline the formal specification
of the Separation Kernel that is included in this book. In particular, it out-
lines the structures included in the kernel and attempts to make clear the
assumptions upon which the major decisions were made.

The first thing to note is that a number of components are the same in
the Separation Kernel and in the simple kernel that precedes it in this book.
Firstly, the process table’s general format is identical in both cases; the two
tables contain slightly different information but the representations are the
same in both cases. Second, the primary data structure used by the Separa-
tion Kernel’s scheduler is a pair of FIFO queues. The round-robin scheduling
régime only requires a simple FIFO for its implementation. Processes enter
the queue at the end and progressively move to the head; when a process
reaches the head of the queue, it is ready to execute. The Separation Ker-
nel requires two FIFOs in its scheduler: one for user processes and one for
device processes (device-handling processes, that is). The reason for this is
that device processes run at a higher priority than user processes. This spec-
ification uses a synchronous I/O model. For present purposes, it is assumed
that device processes are concerned with input and output operations, so
the model seems appropriate. This choice has the consequence that device

208 4 The Separation Kernel

processes can be scheduled in a strictly FIFO manner. Further consequences
of these decisions are:

• The process table’s refinement can proceed by analogy with that in the
first kernel’s refinement. We include the full refinement, however.

• The refinement of the FIFO can be taken directly from that in the earlier
kernel.

This makes the refinement of the Separation Kernel a little simpler.
The operations required by the scheduler differ from those in the first

kernel. However, the refinement relations are identities, so the necessary proofs
are straightforward.

The major problem is the asynchronous message-passing component. One
issue is preventing processes from evesdropping. For this reason, it was decided
that messages would be handed to the kernel and the kernel would then copy

them to kernel space. Copying is not usually a good idea because it requires
space and time to perform. However, there seemed to be no alternative. This
decision requires that the kernel allocates a buffer area for messages. It has
the consequence that the message queues owned by user processes can contain
pointers to messages stored in the kernel’s buffer area. This poses no problems
from the specification viewpoint but it does require some form of pointer-
dereference operation is required when handing the message to the destination
when it is to be read. It is also necessary to have a mechanism for deleting
the store occupied by a message when it is no longer required. It is clear that
such deletion cannot be left to user processes (for one thing, it provides an
appealing way to crash the system).

The low-level message operations are implemented using a type that rep-
resents the buffer space itself (essentially a vector of storage elements, say
bytes) together with storage-management operations. The latter is provided
by the same mechanisms that is used to allocate the large chunks of store that
hold processes and their data and stack areas. The difference between the two
is some renaming and the scales upon which the two instances act. This is
another case in which we were able to re-use specifications and refinements in
the development of a new specification.

In both cases, the storage manager uses tables that are separate from
the store that is managed. Some might object to this. The two could be
conflated to form a single module. This would require a number of type-
transfer functions, as well as other very low-level operations. There is much
detail in this work1 that does not add much to the overall presentation. There
is another reason. In the case of the main store allocator, the aim is to have
separate segments that are allocated from a pool that, in essence, belongs
to no-one. We do not want anything to reside in the main store that could
be used by a malicious process. The separation of store from its description

1 This statement is based on experience. We have attempted this very conflation
in other, unpublished, work.

4.4 An Overview of the Formal Specification 209

achieves this, even at a cost. All the pointers and size annotations in the
scheme adopted here are in a space that is formally specified and under the
control of formally specified operations; there is no data in places where other
processes can manipulate them.

The design of the Separation Kernel should ensure security. As stated,
user processes cannot be trusted, while device processes can. Trust can be
maintained by ensuring that certain development methods be followed and
that development is done by trusted persons under appropriate supervision.
However, as far as the specification and its refinement are concerned, this
has a number of consequences. First, an interface must be defined to support
device processes. A device process is a device driver and requires access to
a set of kernel functions and to fixed chunks of main store that it and its
associated ISR use to hold data during transfer.

The kernel operations are mostly those supporting processes but a security
“feature” of this specification is that device processes are known by a device

number, a small numeric code that denotes a device process (and associated
device); device numbers are allocated when the system is configured. Further-
more, device processes do not have external identifiers; instead, their device
number serves as their identifier. Message passing between device processes
is not permitted, but there is the requirement that user processes be able to
send data to and receive data from device processes; this impacts upon the
interface presented by device processes.

The specification contains a separate module that implements the inter-
face required by device processes. The aim of this module is to provide the
minimum set of operations required by device processes in order to do their
job. This set of operations is also required to isolate the kernel from device
processes so that the latter are required

1. To know as little possible about the kernel and its operations, and
2. To make the task of interfacing device processes as simple as possible.

It is assumed that there is some way to map main store in the kernel segment so
that shared memory can be allocated; if this is not possible, it is relatively easy
to introduce another storage manager, one distinct from the others employed
in this system (for security reasons).

As is the case with the other kernel, there are low-level operations that
require the direct use of machine-level operations. As before, there are the
context-switch and interrupt-related operations to be specified. There are also
ISRs to be specified. The approach adopted here is different from that in the
other kernel. In particular, it is assumed that the Separation Kernel will exe-
cute on the Intel IA32/64 range of processors. This permits us to exploit the
task-management instructions provided by them. Furthermore, there a prob-
lems with the management of a segmented store. The hardware instructions
solve these problems for us2.

2 In the current case, we have not examined the implications of porting it to another
hardware architecture such as the MIPS or ARM.

5

A Separation Kernel

This chapter is concerned with the specification and refinement of a Separation
Kernel. This, as described in the last chapter, is a type of kernel that was
specifically designed for cryptographic and other secure applications.

The specification and refinement in this chapter relies to a certain extent
on the existence of components that were specified and refined in the chapter
on the simple kernel (Chapter 3). In particular, the queue types used to define
the Separation Kernel’s round-robin scheduler were specified in full in Chapter
3. The process representation employed in this chapter is related to that used
for the earlier exercise.

The abstraction relations in this refinement are all identities (which is not
at all unusual). This allows the refinement process to be shortened somewhat,
for, once the abstraction relation has been identified, it is possible immediately
to write out the refinements of the various operations. Furthermore, since the
relationship between specification and refinement is that of identity, there
is, strictly speaking, no need to engage in a proof. Below, we do present
proofs, mainly for new state spaces or for state spaces that are markedly
different from those in the previous refinement; we believe that these proofs
are worth doing and recording as a safety check (they are, in any case, almost
entirely straightforward). We are therefore permitted to reduce the length of
the current chapter by the omission of much immediately derivable material.

5.1 Basic Types

We need to define the main types to be used by the Separation Kernel. The
reader will find the majority of the types familiar from Chapter 3.

First, a type that will take the place of explicit truth values:

YESNO ::= yes | no

The type for process identifiers is very much as in the previous exercise.

212 5 A Separation Kernel

PID =̂ minpid . . maxpid

GPID =̂ {nullpid} ∪ PID

In this specification, the nullpid , null process value is also required.

nullpid : N

∀ p : PID •

nullpid < p

This last definition might need a bit of a tweak.
Since this is a secure kernel, it is necessary to have a naming scheme for

user processes. These names are intended to be unrelated to process identifiers.
The simplest form of user identifier is to use a natural number to denote each
process. It is assumed that the supply of natural numbers is large enough to
suit the needs of the user.

UPID =̂ N

We need to distinguish between user and device processes for scheduling
purposes.

PTYPE ::= uproc | dproc

The reason for this is that the scheduler maintains two queues: one for user
processes and one for device processes. Device processes are always at a higher
priority than user processes.

Device processes are assumed to be trusted code that controls peripheral
devices. They reside within the kernel’s address space and are independent of
user processes.

Devices are identified by a unique number (the “device” or “service” num-
ber).

mindev ,maxdev : N

mindev < maxdev

These two values determine the type DEVNO :

DEVNO == mindev . . maxdev

All Separation Kernel processes are in a unique state at any time. The
Separation Kernel has fewer types than the one in Chapter 3.

PSTATE ::= psterm

| psrunning

| psready

| psdevwait

| pswtgdev

5.1 Basic Types 213

The last value of PSTATE denotes the state in which a device process is
waiting for a request from a user process or when it is waiting for a device to
return data to it.

The ADDR type defines addresses. Addresses must be between 0 and the
maximum address supported by the particular processor being used (or some
other a priori limit).

ADDR == nulladdr . . maxaddr

nulladdr : N

maxaddr : N

nulladdr = 0

nulladdr < maxaddr

The following type

[PSU]

denotes the Primary Storage Unit. On some machines, this is 8 bits, while on
others it is 16-, 32- or 64-bits. It is the unit by which main store is addressed
and is used in the specification of storage mechanisms.

[MSG]

[MSGDATA]

nullmsg : MSG

Although there is no use put to the following, it is still useful to include it as
a reminder that messages containing no data are also possible.

nullmsgdata : MSGDATA

User processes communicate with the Separation Kernel using struc-
tures that look rather like messages (even though they are not handled like
messages—a somewhat more direct method is used). Each “message” has a
single opcode to denote its function. The type to which opcodes belong is
SYSOPCODE :

SYSOPCODE ::= newuproc

| suspself

| termself

| sndmsg

| gotmsgs

| gotmsgfromsrc

| nextmsg

| nextmsgfromsrc

| devrequest

214 5 A Separation Kernel

Finally, we still need the error type. Here it is:

SYSERR ::= sysok

| unusedpd

| pdinuse

| ptabfull

| emptyqueue

| nospaceinstore

| blocklocerror

| badblockaddr

| msgqfull

| emptymsgq

| nomsgsfrom

| calleridentmismatch

| mainstorefull

| badmsgdest??

| nodevreply

| baddevnum

| badcallerid

In this kernel, the latest error is stored in a global variable. The variable
is the state component of the following schema:

ERRV

serr : SYSERR

This variable is updated by various kernel operations and could be inspected
by user processes. At present, the user-level operation required to inspect serr

is not provided; its inclusion is a simple matter, though.
The error variable is initially set to ok :

ERRVInit

ERRV ′

serr ′ = sysok

The error variable is set by the following operation

SetSysErr

∆ERRV

e? : SYSERR

serr ′ = e?

and is read by the next one

5.2 Hardware Issues 215

SysErr

ΞERRV

e! : SYSERR

e! = serr

We define an abbreviation for recording the fact that an operation has
gone according to plan.

SysOk =̂ (∃ e : SYSERR | e = sysok • SetSysErr [e/e?])

5.2 Hardware Issues

In the case of the Separation Kernel, we are aiming our specification mostly

at the Intel IA32/64 architectures in uni-processor versions only (we could
run on a multi-core by executing on one processor only but this will still
complicate our assumptions and require some additional machinery).

The IA32 architecture supports tasking by providing appropriate instruc-
tions and data formats. In particular, it has a structure called a TSS (Task

Structure Segment) which contains all the registers of a process (including its
segment registers).

Since we are aiming at an IA32 implementation, it will be necessary to
refer to TSSs from within this specification, it is necessary to define a type

[TSS]

A few functions need to be defined:

tss stacktop : TSS → ADDR

tss stackseg : TSS → ADDR

The first returns a pointer to the top of the current stack (often the ESP
registers on the Intel IA32), the second returns the start address (the base)
of the segment in which the stack resides.

The TSS must be pointed to by the process descriptor. It is necessary to
define the TSS table, together with allocation and deallocation operations.
We sketch them only.

HW
...

tsstab : seqTSS
...

We assume an operation AllocateTSS that allocates the TSS table in main
store; we also assume that AllocateIDT is defined—this is the operation to
allocate the IDT (interrupt vector) in main store.

216 5 A Separation Kernel

The AllocateProcTSS operation allocates a TSS when a new process is
allocated.

AllocateProcTSS

∆HW
...

tss! : TSS
...

...

When a process terminates, its TSS must be returned to the pool. This is
the outline of the deallocation operation that returns a process’ TSS to the
free pool.

DeallocateTSS

∆HW

p? : PID

tss? : TSS
...

...

The process table must refer to TSS:

PTAB
...

tss : PID �→ TSS
...

dom tss = used

∀ p : PID •

p ∈ dom tss ⇔ ptype(p) = uproc

(We assume that device processes have a TSS.)
The context switch proper now handled by a single instruction and can be

defined as

ContextSwitch

∆HARDWARE

outproc? : PID

jmp tss(outproc?)

This will automatically switch between the currently running process and
outproc?. The IA32/64 processor records the identity of the suspended process
(however, it will be recorded by software).

5.2 Hardware Issues 217

The IA32 makes the combination of interrupts and context switches nat-
ural. Therefore, the context-switching mechanism will be specified as interrupt
driven. To do this, an interrupt number is allocated for the context switch op-
eration and an ISR that acutally performs the context switch (by calling the
ContextSwitch operation, in particular), must be defined. Inside the kernel,
an operation to cause an interrupt must be defined.

First, we define the interrupt type. As far as we are concerned, interrupts
are just small positive integers:

minint ,maxint : N

minint < maxint

INTNO == minint . . maxint

The operation of causing a software interrupt is performed by the following
operation:

RaiseInterrupt

∆HW

ino? : INTNO

intno′ = ino?

The number of the interrupt that causes system termination is (partially)
defined as

killintno : INTNO

The operation to cause killintno is

RaiseKillInterrupt =̂

∃ ino : INTNO | ino = killintno •

RaiseInterrupt [ino/ino?]

Below, more will be said on the content of the ISR that must service this
interrupt.

Finally, we define the number of the interrupt that will cause the context
switch

ctxtswintno : INTNO

The operation that causes this interrupt is the following

CTXTSW =̂

∃ ino : INTNO | ino = ctxtswintno •

RaiseInterrupt [ino/ino?]

There is very little else to say about context switches because the IA32 handles
the rest. It switches registers between TSSs when context switches occur. This
is very pleasant for IA32 users; for users of other processors, more work will
have to be done.

218 5 A Separation Kernel

5.3 Security Exits and Return Values

In this kernel design, the information returned to users is deliberately minimal.
This is so that malicious users can infer as little as possible about what has
happened.

In some cases of error, the kernel halts and all processes are killed. This
can occur, for example, if an attempt is made to create more processes than
there are slots in the process table or if a segmentation fault occurs. The
kernel kill prints a message stating “Kernel halted. Security violation?”. This
requires the types

CHAR == ‘a ′ . . ‘z ′,

‘A′ . . ‘Z ′,

‘0′ . . ‘9′,

‘.′, ‘,′ , ‘\n ′, ‘?′

(where ‘\n’ is the newline character, as in C; other characters can be assumed
as required) and

STRING == seqCHAR

The printing is effected by the following operation

PrintKMsg

km? : STRING

kprint(km?)

It is assumed that there is some mechanism outside of the kernel that can
print a string on some screen or send it elsewhere. The kprint operation is not
further specified. It is hardware dependent.

Next, we define a mechanism which will halt the processor and kill all
current processes. It should do this when a fatal error occurs. The operation
is to be called from an ISR that is executed as a result of some piece of code
raising the killintno interrupt. This interrupt is raised to signal the fatal error.

The kernel kill operation requires the DeleteAllProcesses operation defined
over the process table (PTAB). It also sets the current process to the idle
process.

KillKernel =̂

(IDLEPROCESSIdent [ip/p!] ∧

UpdateCurrentProcess[ip/p?]) \ {ip}
o
9
DeleteAllProcesses

o
9
(∃msg : STRING | msg = “Kernel halted . Security violation?′′ •

PrintKMsg [msg/km?])

This definition expands into the following schema.

5.4 The Process Table 219

KillKernel

∆PTAB

∃ ip : PID •

ip = ipid ∧

curr ′ = ip ∧

prev ′ = curr ∧

used ′ = ∅ ∧

(∃msg : STRING | msg = “Kernel halted . Security violation?′′ •

kprint(msg))

The KillKernel schema can then be simplified and we obtain (using the one-
point rule):

KillKernel

∆PTAB

curr ′ = ipid

prev ′ = curr ′

used ′ = ∅

kprint(“Kernel halted . Security violation?′′)

The KillKernel operation is intended to constitute a generic ISR. This ISR
is executed whenever a lethal (or in the present case, any) error is encoun-
tered. For simplicity, as well as to demonstrate the paranoia principle, this
specification and its refinement treats all errors as possible indications that
something untoward has happened, so the KillKernel operation is invoked for
every error.

5.4 The Process Table

The process table is very similar to that used by the first system.
First, the error schemata are defined.

UnusedPD =̂

(∃ e : SYSERR | e = unusedpd •

SetSysErr [e/e?]) ∧

RaiseKillInterrupt

When it is detected that a process identifier has already been allocated,
the error is raised by the following schema:

PDInUse =̂

(∃ e : SYSERR | e = pdinuse •

SetSysErr [e/e?]) ∧

RaiseKillInterrupt

220 5 A Separation Kernel

If an attempt to allocate more process identifiers than there are slots in
the process table, the following schema is used to report the error.

PTABFull =̂

(∃ e : SYSERR | e = ptabfull •

SetSysErr [e/e?]) ∧

RaiseKillInterrupt

5.4.1 Top Level

This specification organises the process table as a collection of arrays. At
the top level, the arrays are modelled as partial functions whose domain is
almost always PID , the type of process identifiers. The reader will see that the
process table, again called PTAB , is somewhat more complex than the one
used in Chapter 3. In particular, the need to provide user-oriented identifiers
for user processes introduces the nextupid , extpid and pidext variables. The
variables devmap, devrqs and devrpy are used to support device processes.
The remainder of the variables are common to user and device processes.

PTAB

nextupid : UPID

extpid : UPID �→ PID

pidext : PID �→ UPID

used : F PID

tss : PID �→ TSS

devmap : DEVNO �→ PID

state : PID �→ PSTATE

ptype : PID �→ PTYPE

msgq : PID �→ MSGQ

devrqs : PID �→ MSG

devmsg : PID �→ (GPID × MSG)

devrpy : PID �→ MSG

cdseg : PID �→ SDESC

dsseg : PID �→ SDESC

∃ devs, uprocs : F PID |

devs = {p : PID | p ∈ used ∧ ptype(p) = dproc} ∧

uprocs = {p : PID | p ∈ used ∧ ptype(p)
= dproc} •

used = dom state ∧

used = dom ptype ∧

uprocs = dom cdseg ∧

uprocs = dom dsseg ∧

used = dom tss ∧

ran devmap = dprocs ∧

uprocs = dommsgq ∧

5.4 The Process Table 221

dprocs = dom devrqs ∧

dprocs = dom devmsg ∧

dprocs = dom devrpy

ran extpid = uprocs

dom pidext = uprocs

pidext = extpid−1

∀ d : DEVNO •

d ∈ dom devmap ⇒

∃
1
p : PID •

p = devmap(d)

The invariant of this schema is somewhat more complex than in the corre-
sponding one in Chapter 3. This is because some components relate only to
device processes. For example, device processes have device numbers, which
are stored in the devmap variable, while the identifiers user processes are given
to identify themselves and other processes are stored in pidext and extpid .
Note that these two functions are mutually inverse. The pidext map trans-
lates internal process identifiers to external ones, while extpid performs the
inverse operation. We decided to have two functions to make the operations
more explicit.

The various components will be explained in more detail when the relevant
operations are defined.

We can define free as:

PID \ used = free

This is the same as in Chapter 3, so proofs involving used and free identifiers
will be the same here as they were there.

The initialisation operation for this version of PTAB is scarcely more com-
plex than the other one. The difference is that the external process identifier
source, nextupid , must be initialised to 1.

PTABInit

PTAB ′

used ′ = ∅

nextupid ′ = 1

The following is a schema that is true when the internal process identifier,
p?, is an element of used .

UsedPID

ΞPTAB

p? : PID

p? ∈ used

222 5 A Separation Kernel

The next schema defines a predicate. The interpretation and justification
for this schema is the same in this case as in the previous one.

GotFreePIDs

ΞPTAB

used ⊂ PID

In this kernel, process identifiers are allocated by a non-deterministic op-
eration, called AllocPID. This operation is the same as in the previous speci-
fication.

AllocPID

∆PTAB

p! : PID

p!
∈ used

used ′ = used ∪ {p!}

In this kernel, however, we do not want user processes to have any knowledge
of the workings of the kernel. One aspect of this is that we do not want user
processes to know what their process identifier (an element of PID) is. This is
achieved by allocating another identifier, an element of UPID , which can be
used by user processes. This requires translation between PID and UPID at
various points in the kernel but this is a small price for privacy. The operation
to allocate an element of UPID is defined by the following schema.

AllocUPID

∆PTAB

u! : UPID

u! = nextupid

nextupid ′ = nextupid + 1

The operation is, itself, quite simple. The current value of nextupid is used as
the external process identifier. The counter, nextupid , is then incremented by
one.

The following schema defines an operation that adds an external identifier
to the extpid external identifier mapping table.

AddProcUPID

∆PTAB

p? : PID

u? : UPID

extpid ′ = extpid ⊕ {u? �→ p?}

When a user process is created, the following operation is used to generate
the two identifiers associated with it.

5.4 The Process Table 223

NewUPIDForProcess =̂

AllocPID ∧

AllocUPID ∧

AddProcUPID [p!/p?, u!/u?]

The definition of NewUPIDForProcess expands into the following schema:

NewUPIDForProcess

∆PTAB

u! : UPID

p!
∈ used

used ′ = used ∪ {p!}

u! = nextupid

nextupid ′ = nextupid + 1

extpid ′ = extpid ⊕ {u! �→ p!}

The kernel allows two kinds of process to be created: user and device
processes. The type PTYPE has two elements, one denoting user processes,
the other denoting device processes. The type of each process is stored in
ptype. The operation to add the type of a new process is defined thus:

SetProcType

∆PTAB

p? : PID

pt? : PTYPE

ptype ′ = ptype ∪ {p? �→ pt?}

The operation to allocate user-process identifiers (if there are any free), an
external identifier and record the type of the new process (if it can be created)
is defined by the following formula. The operation has the same name as the
similar operation in the first specification, namely AddPD.

AddPD =̂

((GotFreePIDs ∧

NewUPIDForProcess[uu!/u!] ∧

SetProcType[p!/p?] ∧

SysOk)

∨ PTABFull

The AddPD operation expands into:

AddPD

∆PTAB

∆HW

∆ERRV

224 5 A Separation Kernel

p! : PID

u! : UPID

pt? : PTYPE

(used ⊂ PID ∧

p!
∈ used ∧

used ′ = used ∪ {p!} ∧

u! = nextupid ∧

nextupid ′ = nextupid + 1 ∧

extpid ′ = extpid ⊕ {u! �→ p!} ∧

ptype ′ = ptype ∪ {p! �→ pt?} ∧

serr ′ = sysok)

∨ (serr ′ = ptabfull ∧ intno′ = killintno)

The AddPD operation is very important, so its precondition has to be
calculated. It is:

preAddPD =̂

used ⊂ PID ∧

p!
∈ used

This formula implies

preAddPD =̂ used ⊂ PID

We can prove a useful result at this stage.

Theorem 58. AddPD ⇒ p! �∈ free ′. In other words, p! is not a free process

identifier in the after state of AddPD.

Proof. The predicate contains the conjunct used ′ = used ∪ {p!}. By the
definition of used , free = PID \ used , so if p! ∈ used ′, p! �∈ free ′ for the
equation implies free \{p!} = PID \ (used ∪{p!}) since the set of all identifiers
is fixed. ✷

We need to define an operation that sets the initial values for process
attributes. This operation will be used when a process is created.

AddPDESC

∆PTAB

p? : PID

st? : PSTATE

state ′ = state ∪ {p? �→ st?}

An operation is required to create the idle process. This process does not
have a UID since it cannot be accessed outside the kernel. Even though it

5.4 The Process Table 225

resides in the kernel, the idle process is still regarded as a user process (this
is really just a matter of choice—it could equally be a device process).

AddIdleProcess =̂

∃ pt : PTYPE ; st : PSTATE | pt = uproc ∧ st = psready •

AllocPID [ip!/p!] ∧

AddPDESC [ip!/p?, st/st?]

SetProcType[ip!/p?, pt/pt?]

This definition expands to:

AddIdleProcess

∆PTAB

p! : PID

∃ pt : PTYPE ; st : PSTATE | pt = dproc ∧ st = psready •

ip!
∈ used ∧

used ′ = used ∪ {ip!} ∧

state ′ = state ∪ {ip! �→ st} ∧

ptype ′ = ptype ∪ {ip! �→ pt}

Removing the existential quantifier using the one-point rule, the following is
obtained:

AddIdleProcess

∆PTAB

ip! : PID

ip!
∈ used

used ′ = used ∪ {ip!}

state ′ = state ∪ {ip! �→ psready}

ptype ′ = ptrype ∪ {ip! �→ dproc}

The next schema defines the operation that translates an external user
process identifier, an element of UPID , and translates it into an element of
PID .

PIDforUPID

ΞPTAB

u? : UPID

p! : PID

p! = extpid(u?)

The following is the definition of the operation that deallocates a process
identifier. It is similar to the one in the earlier specification and its justification
is also similar.

226 5 A Separation Kernel

FreePID

∆PTAB

p? : PID

used ′ = used \ {p?}

On termination, the external identifier of a process must be cancelled. This
schema defines the operation.

DelProcUPID

∆PTAB

p? : PID

extpid ′ = extpid −⊳ {p?}

We need an operation to remove a process’ external identifier when it is
terminated. This schema defines that operation.

DelExtPD

∆PTAB

p? : PID

extpid ′ = extpid −⊳ {p?}

To delete a user process, the following is required:

DelUserPD =̂ DelExtPD ∧ FreePID

This operation expands into

∆PTAB

p? : PID

extpid ′ = extpid −⊳ {p?}

used ′ = used \ {p?}

By calculation, the precondition of this operation is just true. This does not
seem adequate, so we define

preDelUserPD =̂ p? ∈ used

Sometimes, it is necessary to terminate all processes and to do it as
quickly as possible. The following operation deletes all the information about
processes.

DeleteAllProcesses

∆PTAB

used ′ = ∅

5.4 The Process Table 227

This operation is used (gleefully!) by the ISR that responds to lethal errors.
Operations to access and set various process attributes are defined in the

next few schemata. The structure of these schemata is relatively simple and
their interpretation should be immediate.

ProcType

ΞPTAB

p? : PID

pt ! : PTYPE

pt ! = ptype(p?)

ProcState

ΞPTAB

p? : PID

st ! : PSTATE

st ! = state(p?)

SetProcState

∆PTAB

p? : PID

st? : PSTATE

state ′ = state ⊕ {p? �→ st?}

preSetProcState =̂ p? ∈ used

Note that this is implied by the invariant.

SetStateToReady =̂

∃ st : PSTATE | st = psready •

SetProcState[st/st?]

SetStateToRunning =̂

∃ st : PSTATE | st = psrunning •

SetProcState[st/st?]

SetStateToTerminated =̂

∃ st : PSTATE | st = psterm •

SetProcState[st/st?]

Because all of the SetState operations are similar, only SetStateToReady
is expanded here.

228 5 A Separation Kernel

SetStateToReady

∆PTAB

p? : PID

state ′ = state ⊕ {p? �→ psready}

(The remainder can be obtained by an obvious substitution.)
The reader is warned that a significant number of operations, those dealing

with device processes, are not included in this subsection. The missing class
of operation is defined in the section dealing with device processes. The re-
finement of the device-process operations is directly analogous to the process
whose documentation now begins.

5.4.2 Refinement One

Having defined the process table and the general operations that act upon it,
the refinement can begin. The first step is to define the refined process table
and its initialisation schema; then the abstraction relation is defined.

This first refinement corresponds closely to that of the PTAB in the first
specification. The strategy is exactly the same as in that case, namely that
the set of free process table entries (denoted by process identifiers) should
be implemented as a chain through a vector, called next , that maps process
identifiers to process identifiers. As a first step, used is replaced by a free
chain mapping. In addition, we require that all the partial functions that
initially specified the various attributes of processes should be refined to func-
tions whose domains are PID and whose codomains are the sets defining each
attribute type (e.g., for state, we want a function PID → PSTATE). This
second goal is achieved at this stage in the refinement. The first goal is only
partially reached; it will require a second step to refine to the representation
in which next is used.

Now, it should be clear that this refinement strategy is identical to that
used in the refinement documented in Chapter 3 of this book. The represen-
tation of the process tables in this and in the other case are extremely close
(sets and partial functions). For this reason and for reasons given after the
abstraction relation has been stated, most of the refinement proofs that would
normally be associated with refinement steps are omitted from this chapter.

PTAB1

hdfree, endfree : GPID

freech : PID � GPID

nextupid1 : UPID

extpid1 : UPID → PID

pidext1 : PID → UPID

devmap1 : DEVNO → PID

tss1 : PID → TSS

state1 : PID → PSTATE

5.4 The Process Table 229

ptype1 : PID → PTYPE

msgq1 : PID → MSGQ

devrqs1 : PID → MSG

devmsg1 : PID → (GPID × MSG)

devrpy1 : PID → MSG

cdseg1 : PID → SDESC

dsseg1 : PID → SDESC

hdfree = nullpid ⇔ endfree = nullpid

hdfree = nullpid ⇔ dom freech = ∅

(hdfree
= nullpid ⇒

dom freech
= ∅ ∧

hdfree ∈ dom freech ∧

endfree ∈ dom freech ∧

freech(endfree) = nullpid)

The initialisation schema is much as one would expect.

PTAB1Init

PTAB1′

hdfree ′ = minpid

endfree ′ = maxpid

∀ p : PID •

(p = maxpid ⇒ freech ′(p) = nullpid) ∧

(p < maxpid ⇒ freech ′(p) = p + 1)

nextupid1′ = 0

UsedPID1

ΞPTAB1

p? : PID

p? ∈ dom freech

GotFreePIDs1

ΞPTAB1

hdfree
= nullpid

230 5 A Separation Kernel

AllocPID1

∆PTAB1

p! : PID

p! = hdfree

freech ′ = freech −⊳ {p!}

hdfree ′ = next(hdfree)

AllocUPID1

∆PTAB1

u! : UPID

u! = nextupid1

nextupid1′ = nextupid1 + 1

AddProcUPID1

∆PTAB1

p? : PID

u? : UPID

extpid1′ = extpid1 ⊕ {u? �→ p?}

NewUPIDForProcess1 =̂

AllocPID1 ∧

AllocUPID1 ∧

AddProcUPID1[p!/p?, u!/u?]

The definition of NewUPIDForProcess1 expands into the following schema:

NewUPIDForProcess1

∆PTAB1

p! : PID

u! : UPID

p! = hdfree

freech ′ = freech −⊳ {p!}

hdfree ′ = next(freech)

u! = nextupid1

nextupid1′ = nextupid1 + 1

extpid1′ = extpid1 ⊕ {u! �→ p!}

5.4 The Process Table 231

SetProcType1

∆PTAB1

p? : PID

pt? : PTYPE

ptype1′ = ptype1 ⊕ {p? �→ pt?}

AddPD =̂

((GotFreePIDs1 ∧

NewUPIDForProcess1[uu!/u!] ∧

SetProcType1[p!/p?] ∧

SysOk)

∨ PTABFull

The AddPD1 operation expands into:

AddPD1

∆PTAB1

∆ERRV

∆HW

p! : PID

u! : UPID

pt? : PTYPE

(hdfree
= nullpid ∧

p! = hdfree ∧

freech ′ = freech −⊳ {p!} ∧

hdfree ′ = next(freech) ∧

u! = nextupid1 ∧

nextupid1′ = nextupid1 + 1 ∧

extpid1′ = extpid1 ⊕ {u! �→ p!} ∧

ptype1′ = ptype1 ⊕ {p! �→ pt?} ∧

serr ′ = sysok)

∨ (serr ′ = ptabfull ∧ intno′ = killintno)

The AddPD1 operation is very important, so its precondition has to be
calculated. It is:

preAddPD1 =̂

hdfree
= nullpid

This formula implies

preAddPD1 =̂ used ⊂ PID

We need to refine the operation that sets the initial values for process
attributes. It is as follows:

232 5 A Separation Kernel

AddPDESC1

∆PTAB

p? : PID

st? : PSTATE

state1′ = state1 ⊕ {p? �→ st?}

AddIdleProcess1 =̂

∃ pt : PTYPE ; st : PSTATE | pt = uproc ∧ st = psready •

AllocPID1[ip!/p!] ∧

AddPDESC1[ip!/p?, st/st?]

SetProcType1[ip!/p?, pt/pt?]

PIDforUPID1

ΞPTAB1

u? : UPID

p! : PID

p! = extpid1(u?)

The following schemata define operations on the free chain. They are iden-
tical to those in the previous refinement.

EmptyFreeChain1

ΞPTAB1

dom freech = ∅

The AddNewLastFreechain schema defines an operation that adds an ele-
ment to the end of the free chain.

AddNewLastFreechain

∆PTAB1

p? : PID

freech ′ = freech ⊕ {endfree �→ p?}

The AddFreechainLast schema defines an operation that maps the last
element of the free chain to nullpid .

AddFreechainLast

∆PTAB1

p? : PID

freech ′ = freech ∪ {p? �→ nullpid}

5.4 The Process Table 233

The SetFCHead operation sets the value of hdfree.

SetFCHead

∆PTAB1

p? : PID

hdfree ′ = p?

Analogously, SetFCLast sets the value of endfree.

SetFCLast

∆PTAB1

p? : PID

endfree ′ = p?

The following is the definition of the operation that deallocates a process
identifier. It is similar to the one in the earlier specification and its justification
is also similar.

FreePID1 =̂

(((EmptyFreeChain1 ∧

AddFreechainLast ∧ SetFCLast ∧ SetFCHead)

∨ (UsedPID1 ∧

(AddNewLastFreechain o
9
AddFreechainLast) ∧ SetFCLast)) ∧

SysOk)

∨ UnusedPID

This can be transformed by distribution of SysOk . The transformation is
justified by the propositional calculus theorem (p ∨ q) ∧ r ⇔ (p ∧ r) ∨ (q ∧
r). The use of this theorem occurs frequently and can be used both to expand
a schema by producing copies of conjuncts and to contract them by reducing
multiple occurrences of a conjunct to a single one.

FreePID1 =̂

((EmptyFreeChain1 ∧

AddFreechainLast ∧ SetFCLast ∧ SetFCHead ∧ SysOk)

∨ (UsedPID1 ∧

(AddNewLastFreechain o
9
AddFreechainLast) ∧ SetFCLast ∧ SysOk))

∨ UnusedPID1

This definition can then be expanded into the schema that follows. A small
amount of simplification has been performed on the schema, it should be
noted. Very often, when expanding definitions into schemata, we will take
the opportunity to engage in some simplification; we will, though, outline the
transformations employed unless they are obvious.

234 5 A Separation Kernel

FreePID1

∆PTAB1

∆ERRV

∆HW

p? : PID

((dom freech = ∅ ∧

freech ′ = freech ∪ {p? �→ nullpid} ∧

endfree ′ = p? ∧

hdfree ′ = p? ∧

serr ′ = sysok)

∨ (p?
∈ dom freech ∧

freech ′ = (freech ⊕ {endfree �→ p?}) ∪ {p? �→ nullpid} ∧

endfree ′ = p? ∧

serr ′ = sysok))

∨ (serr ′ = usedpd ∧ intno′ = killintno)

On termination, the external identifier of a process must be cancelled. This
schema defines the operation.

DelProcUPID1

∆PTAB1

p? : PID

extpid1′ = extpid1 −⊳ {p?}

We need an operation to remove a process’ external identifier when it is
terminated. This schema defines that operation.

DelExtPD1

∆PTAB1

p? : PID

extpid1′ = extpid1 −⊳ {p?}

To delete a user process, the following is required:

DelUserPD1 =̂ DelExtPD1 ∧ FreePID1

This operation expands into

∆PTAB1

∆ERRV

∆HW

p? : PID

extpid1′ = extpid1 −⊳ {p?}

5.4 The Process Table 235

((dom freech = ∅ ∧

freech ′ = freech ∪ {p? �→ nullpid} ∧

endfree ′ = p? ∧

hdfree ′ = p? ∧

serr ′ = sysok)

∨ (p?
∈ dom freech ∧

freech ′ = (freech ⊕ {endfree �→ p?}) ∪ {p? �→ nullpid} ∧

endfree ′ = p? ∧

serr ′ = sysok))

∨ (serr ′ = usedpd ∧ intno′ = killintno)

By calculation, the precondition of this operation is just true. This does not
seem adequate, so we define

preDelUserPD1 =̂ p?
∈ freech

Sometimes, it is necessary to terminate all processes and to do it as
quickly as possible. The following operation deletes all the information about
processes.

DeleteAllProcesses1

∆PTAB1

hdfree ′ = nullpid

dom freech ′ = ∅

This operation is used by the ISR that responds to lethal errors. Its precon-
dition is true, so it can be applied at any time!

ProcType1

ΞPTAB1

p? : PID

pt ! : PTYPE

pt ! = ptype(p?)

ProcState1

ΞPTAB1

p? : PID

st ! : PSTATE

st ! = state(p?)

236 5 A Separation Kernel

SetProcState1

∆PTAB1

p? : PID

st? : PSTATE

state ′ = state ⊕ {p? �→ st?}

preSetProcState1 =̂ p? ∈ used

Note that this is implied by the invariant.

SetStateToReady1 =̂

∃ st : PSTATE | st = psready •

SetProcState1[st/st?]

SetStateToRunning1 =̂

∃ st : PSTATE | st = psrunning •

SetProcState1[st/st?]

SetStateToTerminated1 =̂

∃ st : PSTATE | st = psterm •

SetProcState1[st/st?]

Because all of the SetState1 operations are similar, only SetStateToReady1
is expanded here.

SetStateToReady1

∆PTAB1

p? : PID

state1′ = state1 ⊕ {p? �→ psready}

We now give the abstraction schema. The difference between the schema
as presented here and the one in the previous refinement is that the current
one has more process attributes to relate. The “structural” components (those
dealing with the existence of processes) are the same in both cases.

AbsPTAB1

PTAB

PTAB1

dom freech = PID \ used

dom freech ∩ used = ∅

nextupid1 = nextupid

∀ p : PID • p ∈ used ⇔ pidext(p) = pidext1(p)

∀ p : PID • p ∈ used ⇔ extpid(pidext(p)) = extpid1(pidext1(p))

∀ p : PID • p ∈ used ⇔ state(p) = state1(p)

5.4 The Process Table 237

∀ p : PID • p ∈ used ⇔ ptype(p) = ptype1(p)

∀ p : PID • p ∈ used ⇔ msgq(p) = msgq1(p)

∀ p : PID • p ∈ used ⇔ pidext(p) = pidext1(p)

∀ p : PID • p ∈ used ∧ ptype(p)
= dproc ⇔ cdseg(p) = cdseq1(p)

∀ p : PID • p ∈ used ∧ ptype(p)
= dproc ⇔ dsseg(p) = dsseg1(p)

∀ p : PID • p ∈ used ∧ ptype(p) = dproc ⇔ devrqs(p) = devrqs1(p)

∀ p : PID • p ∈ used ∧ ptype(p) = dproc ⇔ devrpy(p) = devrpy1(p)

∀ p : PID • p ∈ used ∧ ptype(p) = dproc ⇔ devmsg(p) = devmsg1(p)

∀ d : DEVNO • devmap(d) ∈ used ⇔ devmap1(d) = devmap(d)

This schema is yet another identity (and this is usual). This implies that we
can compute the operations we require for PTAB1, using those defined for
PTAB . It also implies that the refinement proofs must be straightforward. We
give the initialisation theorem as an example proof.

Next, we state and prove the initialisation theorem for PTAB1. This is
the only proof in this section. It is included to demonstrate to the reader that
the abstraction relation is sensible. The other proofs could be included but
they are all relatively straightforward. (The interested reader might like to
compare this abstraction relation with the parallel one in Chapter 3 and thus
gain an idea of what the proofs are like.)

Theorem 59. ∀PTAB ′; PTAB1′ • PTAB1Init ∧ AbsPTAB1 ⇒ PTABInit

Proof. The universal implies that dom freech ′ = PID since PID \ used ′ =
freech ′. We have PID \ used = PID , so used ′ = ∅, dom freech ′ �= ∅ for
hdfree �= endfree �= nullpid .

By AbsPTAB1′, nextupid ′ = nextupid1′ = 1. ✷

5.4.3 Refinement Two

The second refinement of PTAB is the subject of this subsection. The new
PTAB2 schema is given immediately.

PTAB2

freehd , freelst : GPID

next : PID GPID

nextupid2 : UPID

extpid2 : UPID → PID

pidext2 : PID → UPID

devmap2 : DEVNO → PID

state2 : PID → PSTATE

tss2 : PID → TSS

ptype2 : PID → PTYPE

msgq2 : PID → MSGQ

devrqs2 : PID → MSG

238 5 A Separation Kernel

devmsg2 : PID → (GPID × MSG)

devrpy2 : PID → MSG

cdseg2 : PID → SDESC

dsseg2 : PID → SDESC

freehd = nullpid ⇔ freelst = nullpid

freehd = nullpid ⇒ next∗(| {freehd} |) = ∅

freehd
= nullpid ⇔

∀ p : PID •

p = freehd ⇒ nullpid ∈ next+(| {freehd} |)

freehd
= nullpid ⇔

∀ p : PID •

p = freelst ⇒ next(freelst) = nullpid

freehd
= nullpid ⇒ ∃
1
k : N • nextk (freehd) = nullpid

The reader should compare this with the corresponding schema in the refine-
ment of the other kernel in this book. It will be seen that the two are quite
similar. We make use of the similarity in the remainder of this subsection.

We immediately present the abstraction schema.

AbsPTAB2

PTAB1

PTAB2

freehd = hdfree

freelst = endfree

freehd
= nullpid ⇒

next∗(| {freehd} |) \ {nullpid} = dom freech

dom freech = ∅ ⇔ freehd = freelst ∧ freehd = nullpid

freehd
= nullpid ⇔ ∀ p : PID • p ∈ dom freech ⇒ next(p) = freech(p)

dom freech ⊆ domnext

ran freech ⊆ rannext

∀ p : PID •

p ∈ dom freech ⇔ next(p) = freech(p)

Again, this is similar to the corresponding schema in Chapter 3. With the
exception of the relationships between the domain and codomain of freech

and next , the other conjuncts are identities. We can treat the predicate of this
schema as if it were an identity. This has what, by now, should be familiar
consequences for the conduct of the refinement.

We state the initialisation schema (it is quite obvious):

5.5 Process Queues 239

PTAB2Init

PTAB2′

freehd ′ = minpid

freelst ′ = maxpid

∀ p : PID •

p = maxpid ⇒ next ′(p) = nullpid ∧

p < maxpid ⇒ next ′(p) = p + 1

The schemata defined at this level can be translated with ease into a
programming language, so there is no more to be done here.

5.5 Process Queues

This section contains the refinement of the FIFO queue type used to imple-
ment the process queues manipulated by the Separation Kernel’s scheduler.
The type is identical to that defined in Chapter 3. This means that we can
import all refinements and proofs intact from that earlier exercise and use
them in the current context. This clearly saves us a little work; it also serves
to shorten this book a little.

We will state the single error schema required by the process queue type.
It is

ProcessQueueEmpty =̂

(∃ e : SYSERR | e = emptyqueue •

SetSysErr [e/e?]) ∧

RaiseKillInterrupt

5.5.1 Top Level

This is a relatively straightforward specification of a FIFO queue. It uses a
sequence as its basic container structure.

The state schema is the following.

PROCESSQUEUE

procs : seqPID

As was the case with the previous example, it is possible to include PTAB

in the PROCESSQUEUE schema, thus making used a visible component.
This would permit the invariant to include ran procs ⊆ used . Equally, the
sequence type could be declared as being an injective sequence. This would
imply that elements can appear only once. In this case, as in the last, we
prefer not to take these measures. We can prove that only elements of used

can be in procs since only elements of used can execute on the processor.

240 5 A Separation Kernel

Furthermore, it is not necessary to use an injective sequence. The reason for
this is that when a process is in the scheduler’s queue, it cannot be executed
and cannot, therefore, be placed on the scheduler’s queue; necessarily, each
process identifier occurs in procs exactly once.

The initialisation operation is the obvious one.

PROCESSQUEUEInit

PROCESSQUEUE ′

procs ′ = 〈 〉

The test for queue emptiness is equally obvious.

IsEmptyPROCESSQUEUE

ΞPROCESSQUEUE

procs = 〈 〉

New elements are enqueued at the back of the queue (it is a FIFO queue).
This is captured by the following schema.

EnqueuePROCESSQUEUE

∆PROCESSQUEUE

p? : PID

procs ′ = procs � 〈p?〉

The head of the queue is the first element or head procs , since head procs =
procs(1) iff procs �= 〈 〉. The next schema defines the basic operation; the
condition on the queue will be imposed at a later time.

TheHeadOfPROCESSQUEUE

ΞPROCESSQUEUE

p! : PID

p! = head procs

The above operation is not useful. It must test for the empty queue. This
extension is made in the following definition.

HeadOfPROCESSQUEUE =̂

(IsNonEmptyPROCESSQUEUE ∧

TheHeadOfPROCESSQUEUE ∧

SysOk)

∨ ProcessQueueEmpty

The definition expands into:

5.5 Process Queues 241

HeadOfPROCESSQUEUE

ΞPROCESSQUEUE

∆ERRV

∆HW

p! : PID

(procs
= 〈 〉 ∧

p! = head procs ∧

serr ′ = sysok)

∨ (serr ′ = emptyqueue ∧ intno′ = killintno)

When a process is removed from the queue, it is removed from the head.
The following schema defines this operation. It is the obvious specification,
taking the tail of the queue and assigning it to the after state of the queue
(procs ′):

DelHeadOfPROCESSQUEUE

∆PROCESSQUEUE

procs ′ = tail procs

A dequeue can only take place when the queue is not empty. The operation
to perform the dequeue is totalised by the addition of checks. It is

DequeuePROCESSQUEUE =̂

(IsNotEmptyPROCESSQUEUE ∧

HeadOfPROCESSQUEUEU ∧

DelHeadOfPROCESSQUEUE ∧

SysOk)

∨ ProcessQueueEmpty

This compound operation expands into:

DequeuePROCESSQUEUE

∆PROCESSQUEUE

∆ERRV

∆HW

p! : PID

(procs
= 〈 〉 ∧

p! = head procs ∧

procs ′ = tail procs ∧

serr ′ = sysok)

∨ (serr ′ = emptyqueue ∧ intno′ = killintno)

This is all there is to the queue type used by the scheduler. The round
robin scheduling algorithm requires a strict FIFO queue. This is what has
been presented.

242 5 A Separation Kernel

5.5.2 Refinement

The refinement of this type follows that in the PROCESSQUEUE section of
the first kernel. The proofs are not repeated here.

It should be noted that the DEVPROCQUEUE type is defined in the
next section. Type DEVPROCQUEUE is another FIFO queue type whose
elements are elements of PID. The DEVPROCQUEUE type is defined in
terms of renaming components of PROCESSQUEUE. The refinement proofs
for DEVPROCQUEUE are identical to those for PROCESSQUEUE, so they
may safely be omitted.

5.6 The Scheduler

The separation kernel is intended to model a distributed sytem. This implies
that the scheduler can be very simple.

The original paper on Separation Kernels, [10], specifies the round-robin
scheduling algorithm. A problem can arise when high-priority devices need
to be included in the system. To solve this, the scheduler is specified as two
queues. One queue is used to schedule user-level processes. The second queue
is used to schedule device processes. The device process queue has higher
priority than the one for scheduling user processes.

It is necessary to begin by defining a separate queue type for device
processes. This is required so that the names of device and process queue
components and operations do not clash. We continue by defining new queue
types and operations by renaming those defined for FIFO queues. Note that
name substitutions must be performed in order to ensure that the new queue
type does not contain names that clash with any existing (or to be defined)
types.

DEVPROCQUEUE =̂ PROCESSQUEUE [devs/procs]

DEVPROCQUEUEInit =̂ PROCESSQUEUEInit [devs/procs]

IsEmptyDEVPROCQUEUE =̂ IsEmptyPROCESSQUEUE [devs/procs]

EnqueueDEVPROCQUEUE =̂

EnqueuePROCESSQUEUE [devs/procs, devs ′/procs ′, dp?/p?]

DequeueDEVPROCQUEUE =̂

DequeuePROCESSQUEUE [devs/procs, devs ′/procs ′, dp!/p!]

To assure the reader that this is proper, the above operations are now
expanded so that their full definition can be seen.

First, there is the queue type schema:

DEVPROCQUEUE

devs : seqPID

The device queue is initialised by the following operation:

5.6 The Scheduler 243

DEVPROCQUEUEInit

DEVPROCQUEUE ′

devs ′ = 〈 〉

The emptiness of the device queue is tested by the following operation:

IsEmptyDEVPROCQUEUE

ΞDEVPROCQUEUE

devs = 〈 〉

The enqueue operation for device processes is defined by the following
schema:

EnqueueDEVPROCQUEUE

∆DEVPROCQUEUE

dp? : PID

devs ′ = devs � 〈dp?〉

The dequeue operation expands to the following:

DequeueDEVPROCQUEUE

∆DEVPROCQUEUE

∆ERRV

∆HW

dp! : PID

(devs
= 〈 〉 ∧

dp! = head devs ∧

devs ′ = tail devs ∧

serr ′ = sysok)

∨ (serr ′ = emptyqueue ∧ intno′ = killintno)

Finally, the scheduler schema can be defined. This schema contains vari-
ables to represent the currently executing process, the previously executed
process, the identifier of the idle process and two FIFO queues, one each for
user and device processes. The schema is:

SKSCHED

curr , prev : PID

ipid : PID

devq : DEVPROCQUEUE

procq : PROCESSQUEUE

It should be noted that the user-process queue is just an unmodified copy of
PROCESSQUEUE.

244 5 A Separation Kernel

Upon seeing this definition, it should be clear that promotion is to be used
in the definition of the scheduler, just as it was in the case of the previous
one. This is a natural method for the specification of the scheduler (it also
cuts down the work to be done in refining it to executable code).

The associated initialisation schema is the next one to be defined.

SKSCHEDInit

SKSCHED ′

p? : PID

curr ′ = minpid

prev ′ = minpid

ipid ′ = p?

devq ′ = θDEVPROCQUEUEInit

procq ′ = θPROCESSQUEUEInit

Note that the initialisation of the two FIFO queues, devq and procq uses the
θ notation.

The component ipid is the identifier of the idle process (sometimes called
the “null” process). This is just a process that does nothing; it is there to ab-
sorb processor time in when there is nothing else to do. It can be implemented
as a simple loop, such as:

while true do

skip

od

The next few schemata define operations that manipulate the scalar vari-
ables in the scheduler’s schema. Their names are chosen so that they indicate
function. The names of the variables are identical to those in the previous
specification, so the reader can refer to the previous scheduler for explana-
tion, should it be required.

IDLEPROCESSIdent

ΞSKSCHED

p! : PID

p! = ipid

RunningProcess

ΞSKSCHED

p! : PID

p! = curr

5.6 The Scheduler 245

SetRunningProcess

∆SKSCHED

p? : PID

curr ′ = p?

PreviouslyRunningProcess

ΞSKSCHED

p! : PID

p! = prev

SetPreviousProcess

∆SKSCHED

p? : PID

prev ′ = p?

The final operation in this set is a little more complex. It is defined as the
composition of other schemata:

UpdateCurrentProcess =̂

SetRunningProcess ∧

(RunningProcess[p/p!] ∧ SetPreviousProcess[p/p?]) \ {p}

It expands into a simple schema that can be simplified to give the following
schema:

∆SKSCHED

p? : PID

curr ′ = p?

prev ′ = curr

The scheduler, SKSCHED, is defined in terms of promotion. The promoted
components are the user- and device-process queues. The promotion schema
is defined in the obvious fashion as follows.

ΦSKSCHED

∆SKSCHED

∆DEVPROCQUEUE

∆PROCESSQUEUE

devq = θDEVPROCQUEUE

devq ′ = θDEVPROCQUEUE ′

procq = θPROCESSQUEUEInit

procq ′ = θPROCESSQUEUEInit ′

246 5 A Separation Kernel

We can now define the promoted operations. Again, names are chosen to
indicate function. We have little to say about these definitions. The operations
correspond to those defined for device queues and are defined in a fashion
similar to them.

IsEmptyUSERPROCESSQUEUE =̂

∃∆PROCESSQUEUE •

ΦSKSCHED ∧ IsEmptyPROCESSQUEUE

EnqueueUSERPROCESSQUEUE =̂

∃∆PROCESSQUEUE •

ΦSKSCHED ∧ EnqueuePROCESSQUEUE

DequeueUSERPROCESSQUEUE =̂

∃∆PROCESSQUEUE •

ΦSKSCHED ∧ DequeuePROCESSQUEUE

IsEmptyDEVICEQUEUE =̂

∃∆DEVPROCQUEUE •

ΦSKSCHED ∧ IsEmptyDEVPROCQUEUE

EnqueueDEVICEPROCESS =̂

∃∆DEVPROCQUEUE •

ΦSKSCHED ∧ EnqueueDEVPROCQUEUE

DequeueDEVICEQUEUE =̂

∃∆DEVPROCQUEUE •

ΦSKSCHED ∧ DequeueDEVPROCQUEUE

The operation that enqueues a user process in the user process ready queue
is defined as follows:

MakeReady =̂

SetStateToReady ∧ EnqueueUSERPROCQUEUE

It is possible to strengthen this definition, making it more secure. The
definition of MakeReady would look something like:

5.6 The Scheduler 247

MakeReady =̂

(KnownPID ∧

(IsUserPID ∧

SetStateToReady ∧

EnqueueUSERPROCQUEUE ∧

SysOk)

∨ NotUserPID)

∨ UnknownPID

This would be a much more secure operation. However, it would require addi-
tional checks, KnownPID and IsUserPID, whose execution might incur unac-
ceptable amounts of additional time (KnownPID must search the free chain in
PTAB). The use of this operation (which requires the definition of additional
schemata) remains an option but it is one with which we do not continue.

Next, the operation to place a device process on the ready devices queue,
devq , is defined:

ReadyDeviceProcess =̂

SetStateToReady ∧ EnqueueDEVPROCQUEUE

This expands and simplifies to:

∆PTAB

∆SKSCHED

∆PROCESSQUEUE

state ′ = state ⊕ {p? �→ psready}

devs ′ = devs � 〈p?〉

The operation is now defined that executes the idle process at times when
the scheduler determines that there is nothing else to do.

RunIdleProcess =̂

(IDLEPROCESSIdent [i/p] ∧

SetStateToRunning [i/p?] ∧

UpdateCurrentProcess[i/p?]) \ {i}

This expands and simplifies to:

∆PTAB

∆SKSCHED

∆PROCESSQUEUE

state ′ = state ⊕ {ip �→ psrunning}

curr ′ = ip

prev ′ = curr

248 5 A Separation Kernel

It is sometimes necessary for a process to be removed from the scheduler
queue in which it currently resides. When this happens, the process is said to
be unreadied. Unreadying can occur when, for example, the current process
makes a request for an I/O operation. I/O operations require time to complete
and a device process must be scheduled, data transferred and the requesting
process must be notified and then put back into the scheduler’s queue. This
is the most common case of unreadying and is, probably the only case rele-
vant to the Separation Kernel. In other cases, a process that is not currently
running is identified and removed from the queue. It is considered that, in the
configuration of the Separation Kernel defined in this chapter, that this will
not be a frequent operation; the case is included in the schema defining the
unready operation, however.

In the operations specified here, an unready operation will not be used.
Instead, use will be made of the fact that it is the current process that is
performing the operation that requires the current process to be suspended.
Nevertheless, the provision of the operation is useful because it provides a
clean operation that can be employed by device processes (which are not
specified in detail in this book).

It is also expected that device processes will never be unreadied. Therefore,
the following definition is of the operation to remove user-level processes from
the scheduler. If the process is the currently executing one, another process
must be selected to execute. If the process to be unreadied is not yet executing
(and is, therefore, in the user-process queue), it is merely removed from the
queue and the current process continued.

SKMakeUnready =̂

(RunningProcess[r/p!] ∧

(IsEmptyUSERPROCESSQUEUE ∧ RunIdleProcess o
9
CTXTSW)

∨ (DequeueUSERPROCESSQUEUE [n/p!] ∧

SetStateToRunning [n/p?] ∧

UpdateCurrentProcess[n/p?] o
9
CTXTSW) \ {n}) \ {r}

The main scheduling operation is the following:

SKSchedNext =̂

(IsEmptyDEVICEQUEUE ∧

(IsEmptyUSERPROCESSQUEUE ∧ RunIdleProcess o
9
CTXTSW)

∨ (DequeueUSERPROCESSQUEUE [n/p!] ∧

SetStateToRunning [n/p?] ∧

UpdateCurrentProcess[i/p?] o
9
CTXTSW) \ {n})

∨ (DequeueDEVICEQUEUE [d/p!] ∧

SetStateToRunning [d/p?] ∧

UpdateCurrentProcess[d/p?] o
9
CTXTSW) \ {d}

Notice that SKSchedNext always stores in prev the identifier of the process
that was current in its before state. After simplification, this operation can
be written as

5.6 The Scheduler 249

∆SKSCHED

(devq = 〈 〉 ∧

(procq = 〈 〉 ∧

curr ′ = ip ∧ prev ′ = curr ∧

state ′ = state ⊕ {ip �→ psrunning} o
9
CTXTSW)

∨ (state ′ = state ⊕ {head procq �→ psrunning} ∧

procq ′ = tail procq ∧

curr ′ = head procq ∧ prev ′ = prev o
9
CTXTSW))

∨ (devq ′ = tail devq ∧

state ′ = state ⊕ {head devq �→ psrunning} ∧

curr ′ = head devq ∧ prev ′ = curr o
9
CTXTSW)

Since this is such an important operation, its precondition must be calcu-
lated.

preSKSchedNext =̂ true

The requeue operation just puts an unreadied process back onto the ap-
propriate queue in the scheduler. Requeueing occurs, for example, when a user
process has received data from a device request (e.g., received a data buffer
from an input device). There are two versions of this operation, one each for
user and device processes. Here, initially, is the requeue operation for user
processes.

RequeueUserProcess =̂

(SKSchedNext o
9
MakeReady)

This definition expands into

RequeueUserProcess

∆SCHED

p? : PID

∃ procq ′′ : seqPID ; curr ′′, prev ′′ : PID ; state ′′ : PID �→ PSTATE •

((devq = 〈 〉 ∧

(procq = 〈 〉 ∧

curr ′ = ip ∧ prev ′ = curr ∧

state ′′ = state ⊕ {ip �→ psrunning} o
9
CTXTSW)

∨ (state ′ = state ⊕ {head procq �→ psrunning} ∧

procq ′′ = tail procq ∧

curr ′ = head procq ∧ prev ′ = curr o
9
CTXTSW))

∨ (devq ′ = tail devq ∧

state ′′ = state ⊕ {head devq �→ psrunning} ∧

curr ′ = head devq ∧ prev ′ = curr o
9
CTXTSW))

∧ procq ′ = procq ′′ � 〈p?〉

∧ state ′ = state ′′ ⊕ {p? �→ psready}

250 5 A Separation Kernel

The operation deals only with user processes, so only that part of SKSchedNext
is affected by simplification (this is also the reason for the omission of devq in
the enclosing existential quantifier). The simplified operation is

RequeueUserProcess

∆SCHED

p? : PID

(devq = 〈 〉 ∧

(procq = 〈 〉 ∧ curr ′ = ip ∧ prev ′ = curr ∧

state ′ = state ⊕ {ip �→ psrunning , p? �→ psready} ∧

procq ′ = 〈p?〉
o
9
CTXTSW)

∨ (state ′ = state ⊕ {head procq �→ psrunning , p? �→ psready} ∧

procq ′ = (tail procq) � 〈p?〉 ∧

curr ′ = head procq ∧ prev ′ = curr
o
9
CTXTSW))

∨ (devq ′ = tail devq ∧

state ′ = state ⊕ {head devq �→ psrunning} ∧

curr ′ = head devq ∧ prev ′ = curr
o
9
CTXTSW)

This is another important operation, so its precondition is calculated.

preRequeueUserProcess =̂ true

The requeue operation for device processes is now defined. Uses of this
operation will be seen when the device-process interface is defined. The device-
requeue operation is analogous to that for user processes, as can be seen from
its definition.

RequeueDeviceProcess =̂

(SKSchedNext o
9
ReadyDeviceProcess)

The reader will undoubtedly notice the considerable similarity between the
definiton of this operation and the corresponding one for user processes. The
definition of RequeueDeviceProcess expands to

RequeueDeviceProcess

∆SKSCHED

p? : PID

∃ devq ′′ : seqPID ; curr ′′, prev ′′ : PID ; state ′′ : PID �→ PSTATE •

(devq = 〈 〉 ∧

(procq = 〈 〉 ∧

curr ′ = ip ∧ prev ′ = curr ∧

state ′′ = state ⊕ {ip �→ psrunning} o
9
CTXTSW)

∨ (state ′′ = state ⊕ {head procq �→ psrunning} ∧

procq ′ = tail procq ∧

5.7 Storage Pools 251

curr ′ = head procq ∧ prev ′ = curr o
9
CTXTSW))

∨ (devq ′′ = tail devq ∧

state ′′ = state ⊕ {head devq �→ psrunning} ∧

curr ′ = head devq ∧ prev ′ = curr o
9
CTXTSW)

o
9

devq ′′ = devq � 〈p?〉 ∧

state ′ = state ′′ ⊕ {p? �→ psready}

Simplification of the above schema yields the following:

RequeueDeviceProcess

∆SKSCHED

p? : PID

(devq = 〈 〉 ∧

devq ′ = 〈p?〉 ∧

(procq = 〈 〉 ∧

curr ′ = ip ∧ prev ′ = curr ∧

state ′ = state ⊕ {ip �→ psrunning , p? �→ psready}
o
9
CTXTSW)

∨ (state ′ = state ⊕ {head procq �→ psrunning , p? �→ psready} ∧

procq ′ = tail procq ∧

curr ′ = head procq ∧ prev ′ = curr
o
9
CTXTSW))

∨ (devq ′ = (tail devq) � 〈p?〉 ∧

state ′ = state ⊕ {head devq �→ psrunning , p? �→ psready} ∧

curr ′ = head devq ∧ prev ′ = curr o
9
CTXTSW)

Again, the precondition is required and is, therefore, calculated:

preRequeueDeviceProcess =̂ true

5.7 Storage Pools

The Separation Kernel requires storage allocation to be performed in a number
of places:

• In main store when processes are allocated. This operation consists of al-
locating the store and partitioning it into the required number of segments
(2 in the current scheme).

• Inside the kernel, to allocate buffer space for inter-process messages.

The same operations can be used to implement storage allocation in both
contexts. Although this might not be ideal, due to the fact that the allocator

252 5 A Separation Kernel

was originally specified for the allocation and deallocation of small buffers and
might not be optimal when operating on larger chunks of store, it shows how
one specification can be employed in a number of contexts.

The error schemata are defined before the operations, as is our convention.
There are 3 schemata.

The NoSpace operation sets the error varible when all the space in the
pool has been allocated (this is probably going to be a rarely used operation).

NoSpace =̂

(∃ e : SYSERR | e = nospaceinstore •

SetSysErr [e/e?]) ∧

RaiseKillInterrupt

5.7.1 Top Level

The top-level specification now follows. The specification introduces a state
space (called STOREPOOL), its initialistion schema and the following oper-
ations:

• An allocation operation.
• A deallocation operation.
• A scavenge operation that is called periodically to merge any isolated free

blocks.

The storage-freeing operation specified in this section is relatively naive. The
basic idea behind it is that it merges blocks whenever possible. However, due to
the fact that the order in which deallocation requests occur is unrelated to that
in which blocks were allocated, it is possible for isolated blocks to be left in the
pool. These isolated blocks count as storage leaks and must be collected and
merged with other blocks. For this reason, the scavenge operation is included.

Before defining the operations, it is necessary to define a type.
The MD type is the Memory Descriptor type. It consists of the address of

the start of a block of storage and the size of the block in bytes. An element
of MD represents a block of storage.

MD = ADDR × N1

It is necessary to define three operations: one to construct elements of MD
(mkmd), one to access the address of the block (mdaddr) and one to access
the block’s size (mdsz). The definitions are simple and are as follows:

5.7 Storage Pools 253

mkmd : ADDR × N1 → MD

mdaddr : MD → ADDR

mdsz : MD → N1

∀ a : ADDR; sz : N1 •

mkmd(a, sz) = (a, sz)

∀m : MD •

mdaddr(m) = fst m

mdsz (m) = snd m

Next, the definition of the storage pool schema is given; it is called STORE-
POOL:

STOREPOOL

freebs : seqMD

maxfree : N1

alloc : N

psize : N1

scavthresh : N

scavcnt : N

(freebs = 〈 〉 ∧ alloc = psize)

∨ (freebs
= 〈 〉 ∧∑i=#freebs

i=1
mdsz (freebs(i)) + alloc = psize)

The schema is composed of the following components:

• freebs: A sequence of memory descriptors. The descriptors point into the
area of storage that is to be operated upon. Elements of this sequence de-
note the free blocks in the storage area; initially, there is just one descriptor
in the sequence.

• maxfree: The maximum number of free blocks permitted in the storage
pool.

• alloc: The number of bytes currently allocated in the storage pool.
• psize: The size of the storage area in bytes.
• scavthresh: The scavenge threshold (see below).
• scavcnt : The scavenge count (see below).

The initialisation operation is as follows:

STOREPOOLInit

STOREPOOL′

mf ? : N1

ba? : ADDR

ps? : N1

254 5 A Separation Kernel

scthrsh? : N

maxfree ′ = mf ?

psize′ = ps?

alloc′ = 0

freebs ′ = 〈mkmd(ba?, ps?)〉

scavthresh ′ = scthrsh?

scavcnt ′ = 0

The amount allocated is set to 0 (alloc′ = 0) and the various sizes are also set
by input variables. The scavenger-related variables are set (see below).

The interesting part is the assignment to freebs ′. A single element of type
MD is assigned to the sequence. The MD element is composed of the start
address of the storage pool (i.e., a pointer to the start of the pool), ba?,
and the size of the pool in bytes, ps?. Initially, the storage pool is completely
unallocated, so this memory descriptor correctly describes the initial situation.

The following operation checks that there is sufficient space left in the
buffer pool and there are sufficient blocks remaining, it also tests that there
is a block whose size is at least that requested.

CanAllocateBlock

ΞSTOREPOOL

rqsz? : N1

alloc + rqsz? ≤ psize

#freebs < maxfree

∃ i : 1 . . #freebs •

mdsz (freebs(i)) ≥ rqsz?

The basic block allocation operation is now given.

AllocBlk

∆STOREPOOL

rqsz? : N1

a! : ADDR

∃ i : 1 . . #freebs •

(mdsz (freebs(i)) = rqsz? ∧

freebs ′ = freebs −⊲ {freebs(i)} ∧

alloc′ = alloc + rqsz? ∧

a! = mdaddr(freebs(i)))

∨ (mdsz (freebs(i)) > rqsz? ∧

freebs ′ =

freebs ⊕ {i �→

mkmd(mdaddr(freebs(i))

+rqsz?,mdsz (freebs(i)) − rqsz?)} ∧

5.7 Storage Pools 255

alloc = alloc + rqsz? ∧

a! = mdaddr(freebs(i)))

The operation works by iterating over the free blocks in freebs. If there is a
block of identical size, it is returned; if there is a block of size greater than
that requested, it is split into two.

The AllocBlk operation is important, so its precondition is calculated.

preAllocBlk =̂

∃ i : 1 . . #freebs •

mdsz (freebs(i)) ≥ rqsz?

The block-freeing operation is as follows. It works by iterating over the
free blocks, looking for a block that starts immediately after or immediately
before the one being freed. If there is no such block in the storage pool, the
one being freed is added to the end of the MD list in freebs.

FreeBlk

∆STOREPOOL

a? : ADDR

sz? : N1

(∃ i : 1 . . #freebs •

(mdaddr(freebs(i)) = a? + sz? ∧

alloc′ = alloc − sz? ∧

freebs ′ = freebs ⊕ {i �→ mkmd(a?,mdsz (freebs(i)) + sz?)})

∨ (mdaddr(freebs(i)) + mdsz (freebs(i)) = a? ∧

alloc′ = alloc − sz? ∧

freebs ′ =

freebs ⊕ {i �→ mkmd(mdaddr(freebs(i)),mdsz (freebs(i)) + sz?)})

∨ (freebs ′ = freebs � 〈mkmd(a?, sz?)〉 ∧

alloc′ = alloc − sz?)

This operation’s precondition is also required.

preFreeBlk =̂ true

Finally, a block-scavenging operation is defined. This reduces the store as
far as possible to a single block. This requires the following function

mergemds : MD × MD → MD

∀m1,m2 : MD •

mergemds(m1,m2) = mkmd(mdaddr(m1),mdsz (m1) + mdsz (m2))

The block scavenger operation is applied on a periodic basis. It iterates over
the storage pool and tries to merge blocks wherever possible.

256 5 A Separation Kernel

BlockScavenge

∆STOREPOOL

∀ i : 1 . . #freebs •

∀ j : 1 . . #freebs | i
= j •

[mdaddr(freebs(i)) + mdsz (freebs(i)) = mdaddr(freebs(j)) ∧

∃ freebs ′′ : seqMD •

freebs ′′ = freebs −⊲ {freebs(j)} ∧

freebs ′ = freebs ′′ ⊕ {i �→ mergemds(freebs(i), freebs(j))}]

∨ [mdaddr(freebs(j)) + mdsz (freebs(j)) = mdaddr(freebs(i)) ∧

∃ freebs ′′ : seqMD •

freebs ′′ = freebs −⊲ {freebs(i)} ∧

freebs ′ = freebs ⊕ {j �→ mergemds(freebs(j), freebs(i))]

The BlockScavenge operation’s precondition must be calculated. It is:

preBlockScavenge =̂

∀ i : 1 . . #freebs •

∀ j : 1 . . #freebs | i
= j •

mdaddr(freebs(i)) + mdsz (freebs(i)) = mdaddr(freebs(j))

∨ mdaddr(freebs(j)) + mdsz (freebs(j)) = mdaddr(freebs(i))

The scavenger is triggered by a “scavenge counter”. This counter is incre-
mented when a deallocation is performed. It is:

IncFreeCnt

∆STOREVEC

scavcnt ′ = scavcnt + 1

After a block scavenge operation is performed, the counter should be
cleared. The following operation defines it:

ClearFreeCnt

∆STOREVEC

scavcnt ′ = 0

When the scavenge counter reaches the threshold, the next operation, a
predicate, is true.

ShouldScavenge

∆STOREVEC

scavcnt = scavthresh

The specification is now complete and the refinement can start.

5.7 Storage Pools 257

5.7.2 Refinement One

This is the first level of refinement.
Initially, a nullmd must be defined. It is clear that it should be the following

unique definition:

nullmd : MD

nullmd = mkmd(0, 0)

The first refinement of the STOREPOOL schema is the following:

STOREPOOL1

freebs1 : 1 . . maxfblocks → MD

maxfblocks : N1

nextm : N1

alloc1 : N

psize1 : N

scavthresh1 : N

scavcnt1 : N

(nextm = 1 ∧ alloc1 = psize1)

∨ (nextm > 0 ∧
∑i=nextm−1

i=1
mdsz (freebs1(i)) + alloc1 = psize1)

The biggest difference between this schema and the one in the specification is
that freebs is to be related to freebs1, whose type is 1 . . maxfblocks → MD ,
not seqMD .

Note that the variable nextm has been introduced. This variable is used
to indicate the next element of freebs1 into which an MD can be stored. The
nextm variable is used only when deallocating variables.

STOREPOOLInit1

STOREPOOL1′

mf ? : N1

ba? : ADDR

ps? : N1

scthrsh? : N

maxfblocks ′ = mf ?

psize1′ = ps?

alloc1′ = 0

nextm ′ = 2

freebs1′(1) = mkmd(ba?, ps?)

scavthresh1′ = scthrsh?

scavcnt1′ = 0

258 5 A Separation Kernel

The initialisation schema is as one would expect. The principle behind it is
identical.

The next schema corresponds directly to the one in the specification.

EnoughSpace1

ΞSTOREPOOL

rqsz? : N1

alloc1 + rqsz? ≤ psize1

The following schema also corresponds directly to CanAllocateBlock :

CanAllocateBlock1

ΞSTOREPOOL1

rqsz? : N1

alloc1 + rqsz? ≤ psize1

nextm ≤ maxfblocks

∃ i : 1 . . nextm − 1 •

mdsz (freebs1(i)) ≥ rqsz?

The allocation operation is now defined. It is also very close to the original
specification, the differences being due to the different representation of the
free block list.

AllocBlk1

∆STOREPOOL1

rqsz? : N1

a! : ADDR

∃ i : 1 . . nextm − 1 •

(mdsz (freebs1(i)) = rqsz? ∧

alloc1′ = alloc1 + rqsz? ∧

a! = mdaddr(freebs1(i)) ∧

nextm ′ = nextm − 1 ∧

∀ j : i . . nextm − 2 •

freebs1′ = freebs1 ⊕ {j �→ freebs1(j + 1)})

∨ (mdsz (freebs1(i)) > rqsz? ∧

alloc1′ = alloc1 + rqsz? ∧

a! = mdaddr(freebs1(i)) ∧

freebs1′ =

freebs1 ⊕ {i �→

mkmd(mdaddr(freebs1(i)) + rqsz?,

mdsz (freebs1(i)) − rqsz?)})

The deallocation operation’s schema refines to the following schema:

5.7 Storage Pools 259

FreeBlk1

∆STOREPOOL1

a? : ADDR

sz? : N1

(∃ i : 1 . . nextm − 1 •

(mdaddr(freebs1(i)) = a? + sz? ∧

alloc1′ = alloc1 − sz? ∧

freebs1′ = freebs1

⊕{i �→ mkmd(a?,mdsz (freebs1(i)) + sz?)})

∨ (mdaddr(freebs1(i)) + mdsz (freebs1(i)) = a? ∧

alloc1′ = alloc1 − sz? ∧

freebs1′ =

freebs1⊕

{i �→ mkmd(mdaddr(freebs1(i)),mdsz (freebs1(i)) + sz?)})

∨ (freebs1′ = freebs1 ⊕ {nextm �→ mkmd(a?, sz?)} ∧

nextm ′ = nextm + 1 ∧

alloc1′ = alloc1 − sz?)

The different representation of the free list is quite clear from a comparison
of this schema with the original specification.

Finally, the block scavenger’s first refinement now follows:

BlockScavenge1

∆STOREPOOL

∀ i : 1 . . nextm − 1 •

∀ j : 1 . . nextm − 1 | i
= j •

[mdaddr(freebs1(i)) + mdsz (freebs1(i)) = mdaddr(freebs1(j)) ∧

nextm ′ = nextm − 1 ∧

∃ freebs1′′ : 1 . . maxfblocks → MD •

freebs1′′ = freebs1 −⊲ {freebs1(j)} ∧

freebs1′ = freebs1′′ ⊕ {i �→ mergemds(freebs1(i), freebs1(j))}]

∨ [mdaddr(freebs1(j)) + mdsz (freebs1(j)) = mdaddr(freebs1(i)) ∧

nextm ′ = nextm − 1 ∧

∃ freebs1′′ : 1 . . maxfblocks → MD •

freebs1′′ = freebs1 −⊲ {freebs1(i)} ∧

freebs1′ = freebs1 ⊕ {j �→ mergemds(freebs1(j), freebs1(i))]

preBlockScavenge =̂

∀ i : 1 . . nextm − 1 •

∀ j : 1 . . nextm − 1 | i
= j •

mdaddr(freebs1(i)) + mdsz (freebs1(i)) = mdaddr(freebs1(j))

∨ mdaddr(freebs1(j)) + mdsz (freebs1(j)) = mdaddr(freebs1(i))

260 5 A Separation Kernel

The refined scavenge count operations are now given.
First, the operation to increment the scavenge count.

IncFreeCnt1

∆STOREVEC1

scavcnt1′ = scavcnt1 + 1

It is identical to the original specification, as is the schema to clear the scav-
enge count.

ClearFreeCnt1

∆STOREVEC1

scavcnt1′ = 0

The schema defining the operation that determines whether a block scavenge
should occur is also identical to the specification:

ShouldScavenge1

∆STOREVEC1

scavcnt1 = scavthresh1

That these 3 operations are identical to the specification should not come
as too much of a surprise, for all 3 schemata perform simple operations on
scalar variables. In each case, the variable name is different but operation is
the same. This suggests how the abstraction relation will be defined. It is to
this relation that we now turn.

The abstraction relation is defined by the following schema.

AbsSTOREPOOL1

STOREPOOL

STOREPOOL1

alloc1 = alloc

psize1 = psize

maxfblocks = maxfree

#freebs = nextm − 1

∀ i : 1 . . #freebs •

freebs1(i) = freebs(i)

scavcnt1 = scavcnt

scavthresh1 = scavthresh

The abstraction relation is an identity. The scalar variables are just renamed
and so their refinement is not terribly interesting. The most interesting
conjunct (if there is anything interesting about this relation, it is so straight-
forward) are:

5.7 Storage Pools 261

#freebs = nextm − 1∀ i : 1 . . #freebs •

freebs1(i) = freebs(i)

Here, the relationship between the index of the next free element of freebs1
and the length of freebs is defined. The nextm variable always points to the
next element of freebs1 that can be used to store an MD ; this corresponds to
the next element after the end of freebs, so must be equal to nextm − 1.

The other conjunct relates the two free block lists. It states that all de-
scriptors in the two representations of the list are identical.

Theorem 60.

∀STOREPOOL′; STOREPOOL1′ •

STOREPOOLInit1 ∧ AbsSTOREPOOL1′ ⇒ STOREPOOLInit

Proof. It is immediate from the abstraction relation that maxfblocks ′ =
maxfree = mf ?, alloc1′ = alloc′ = 0 and psize ′ = psize1′ = ps?.

The abstraction relation states that nextm ′ = #freebs ′ + 1, so nextm ′ =
2 implies that #freebs = 1, which, in turn, implies that freebs ′ = 1. The
predicate of the abstraction relation requires that freebs1′(i) = freebs ′(i) for
all i ∈ 1 . . #freebs ′ (or, equivalently i ∈ 1 . . nextm ′ − 1. Since nextm ′ = 2,
nextm ′ − 1 = 1 and freebs1′(1) = freebs ′(1) (= head freebs ′) and freebs1′(1) =
mkmd(ba?, ps?) = freebs ′(1).

Finally, since scavcnt1 = scavcnt and scavthresh1 = scavthresh, the proof
is done. ✷

Theorem 61. ∀STOREPOOL; STOREPOOL1; rqsz? : N1 • preAllocBlk ∧
AbsSTOREPOOL1 ⇒ preAllocBlk1

Proof. The precondition of AllocBlk is

∃ i : 1 . . #freebs • mdsz (freebs(i)) ≥ rqsz?

and that of AllocBlk1 is

∃ i : 1 . . nextm − 1 • mdsz (freebs1(i)) ≥ rqsz?

By the predicate of AbsSTOREPOOL1, nextm = #freebs + 1, so #freebs =
nextm − 1. Since 1 ≤ i ≤ #freebs (or, equivalently, 1 ≤ i ≤ nextm − 1), by
the abstraction relation, freebs(i) = freebs1(i). The remainder is immediate.
✷

Theorem 62.

∀STOREPOOL; STOREPOOL′; STOREPOOL1; STOREPOOL1′;

rqsz? : N1; s! : ADDR •

preAllocBlk ∧

AbsSTOREPOOL1 ∧

AbsSTOREPOOL1′ ∧

AllocBlk1

⇒ AllocBlk

262 5 A Separation Kernel

Proof. First, that the ranges of the quantifiers are identical can be seen from
the following. By the predicate of AbsSTOREPOOL1, nextm = #freebs + 1,
so #freebs = nextm − 1. Next, by the same predicate, alloc = alloc1, so
alloc1 + rqsz? = alloc + rqsz?, while the predicate of AbsSTOREPOOL1′

requires that alloc′ = alloc1′, so alloc1 + rqsz? = alloc + rqsz? = alloc1′ =
alloc′.

For the reason that 1 ≤ i ≤ nextm − 1, or equivalently that 1 ≤ i ≤
#freebs, freebs1(i) = freebs(i) and freebs1′(i) = freebs ′(i) by the predi-
cates of the two abstraction schemata. From this, it can be inferred that
mdsz (freebs1(i)) = rqsz? = mdsz (freebs(i)), mdsz (freebs1(i)) > rqsz? im-
plies mdsz (freebs(i)) > rqsz? and mdaddr(freebs1(i)) = mdaddr(freebs(i)). A
consequence of the last is that a! = mdaddr(freebs1(i)) = mdaddr(freebs(i)).

All that remains is the equivalence of ∀ j : i . . nextm − 2 • freebs1′ =
freebs1 ⊕ {j �→ freebs1(j + 1)} and freebs ′ = freebs −⊲ {freebs(i)} (the update
in the second disjunct is a simple consequence of the abstraction relations and
the range condition, 1 ≤ i ≤ #freebs). It should be clear that freebs1′(i) =
freebs1(i + 1); that is, freebs1′ = freebs1 −⊲ {freebs1(i)} and the abstraction
relations permit the proof to be completed. ✷

Theorem 63.

∀STOREPOOL; STOREPOOL1; a : ADDR; sz? : N1 •

preFreeBlk ∧ AbsSTOREPOOL1 ⇒ preFreeBlk1

Proof. Trivial. ✷

Theorem 64.

∀STOREPOOL; STOREPOOL′; STOREPOOL1; STOREPOOL1′;

a : ADDR; sz? : N1 •

preFreeBlk ∧

AbsSTOREPOOL1 ∧

AbsSTOREPOOL1′ ∧

FreeBlk1

⇒ FreeBlk

Proof. The quantifier range 1 . . nextm − 1 is equivalent, by the predicate of
AbsSTOREPOOL1, to 1 . . #freebs since nextm = #freebs + 1.

The rest of the proof divides into three cases. However, in all cases, the
equation alloc1′ = alloc1 − sz? occurs. By the predicate of the abstrac-
tion relation, AbsSTOREPOOL1, alloc1 = alloc and by the predicate of
AbsSTOREPOOL1′, alloc1′ = alloc′, so alloc1′ = alloc1− sz? = alloc− sz? =
alloc′.

It should be noted that in all three cases, 1 ≤ i ≤ nextm − 1, by the
predicate of the abstraction relation AbsSTOREPOOL1, is equivalent to 1 ≤
i ≤ #freebs, so i is always in range. This has the implication, by the predicates

5.7 Storage Pools 263

of the two abstraction relations, that freebs(i) = freebs1(i) and freebs ′(i) =
freebs1′(i).
Case 1. mdaddr(freebs1(i)) = a? + sz?. By the above remarks, this is clearly
equivalent to mdaddr(freebs(i)) = a? + sz?. The update of freebs1 follows
(RHS) from the fact that i is in the range 1 . . nextm − 1 or, equivalently, to
1 . . #freebs and (LHS) from the fact that freebs1′(i) = freebs ′(i), 1 ≤ i ≤
nextm − 1.
Case 2. Similar to Case 1.
Case 3. First, it is clear that nextm − 1 = nextm ′ = #freebs ′ = #freebs − 1,
since, by AbsSTOREPOOL1, nextm = #freebs+1 and, by AbsSTOREPOOL1,
nextm ′ = #freebs ′ + 1. Finally, letting m denote mkmd(a?, sz?),

freebs1′

= freebs1 ⊕ {nextm �→ m}

= freebs ⊕ {nextm �→ m}

= freebs ⊕ {#freebs + 1 �→ m}

= freebs ∪ {#freebs + 1 �→ m}

= freebs � 〈m〉

= freebs ′

where, nextm = #freebs + 1. The equivalence of the first and last lines is
a consequence of AbsSTOREPOOL1′. The fourth to sixth lines are justified
by the fact that nextm = #freebs + 1 and #freebs + 1 �∈ dom freebs, so
freebs⊕{#freebs+1 �→ m} = freebs∪{#freebs+1 �→ m}; it is also the case that
(freebs∪{#freebs+1 �→ m})(#freebs) = last freebs, while (freebs∪{#freebs �→

m})(#freebs + 1) = m or last freebs ′ = m; therefore, freebs ′ = freebs � 〈m〉.
✷

Theorem 65.

∀STOREPOOL; STOREPOOL1 •

preBlockScavenge ∧ AbsSTOREPOOL1 ⇒ preBlockScavenge1

Proof. Since, by the abstraction relation, 1 ≤ i , j ≤ next − 1 iff 1 ≤ i , j ≤
#freebs, freebs(i) = freebs1(i) and freebs(j) = freebs1(j). The remainder is
trivial. ✷

Theorem 66.

∀STOREPOOL; STOREPOOL′; STOREPOOL1; STOREPOOL1′ •

preBlockScavenge ∧

AbsSTOREPOOL1 ∧

AbsSTOREPOOL1′ ∧

BlockScavenge1

⇒ BlockScavenge

264 5 A Separation Kernel

Proof. By the predicates of AbsSTOREPOOL1 and AbsSTOREPOOL1′ and
by the fact that, given AbsSTOREPOOL1, 1 ≤ i , j ≤ next − 1 iff 1 ≤ i , j ≤
#freebs, freebs(i) = freebs1(i) and freebs(j) = freebs1(j) and, furthermore,
freebs ′(i) = freebs1′(i) and freebs ′(j) = freebs1′(j). The result then follows
using the definition of mergemds. ✷

The rest of the refined operations are trivially related to the top-level
specification and the associated proofs are also trivial (simple identities), so
they are omitted.

5.8 Raw Storage

The last section dealt with a storage allocator. The current section deals with
the storage itself. The specification is quite obvious.

First, the necessary error schema is defined. It sets the error variable when-
ever an attempt to address a block fails.

BlockLocError =̂

(∃ e : SYSERR | e = blocklocerror •

SetSysErr [e/e?]) ∧

RaiseKillInterrupt

The specification requires the definition of a new type, PSU :

[PSU]

This is the Primary Storage Unit. On some machines it is a byte and on others
it is a 16-, 32- or 64-bit word.

5.8.1 Top level

The schema representing raw storage is as follows:

STOREVEC

sv : 1 . . svsize → PSU

svsize : N1

startaddr : ADDR

scavcnt : N

scavthresh : N1

The store proper is represented by sv . The size of the store (in terms of PSU)
is given by svsize. The store starts at address startaddr . The remaining two
variables are used for storage management.

This schema can be directly implemented as code, as, indeed, can the
operations defined over it. There is no refinement required in the case of
STOREVEC and its associated operations.

5.8 Raw Storage 265

The initialisation operation is given by the schema:

STOREVECInit

STOREVEC ′

ps? : N1

sa? : ADDR

svsize ′ = ps?

startaddr ′ = sa?

The following schema defines a predicate that is true when the address,
loc?, plus the block size, sz?, is within the storage area being modelled.

CanStoreBlock

ΞSTOREVEC

loc? : ADDR

sz? : N1

startaddr ≤ loc?

loc? + sz? ≤ startaddr + svsize

The next schema defines an operation that copies a block of store from
one location to another.

CopyBlock

∆STOREVEC

v? : 1 . . sz? → PSU

loc? : ADDR

sz? : N1

∃ a : 1 . . svsize | a = startaddr − loc? •

∀ i : 1 . . sz? •

sv ′ = sv ⊕ {a + (i − 1) �→ v?(i)

The entire block is passed as v? and the destination address is passed as loc?
and its size is passed as sz?.

The CopyBlock operation is unsafe in the sense that it performs no checks
that the address and size passed to it are correct in the sense that the start
and end of the block are inside the storage area to which the block is to be
copied.

StoreBlock =̂

(CanStoreBlock ∧ CopyBlock ∧ SysOk)

∨ BlockLocError

The definition expands into

266 5 A Separation Kernel

StoreBlock

∆STOREVEC

∆ERRV

∆HW

v? : 1 . . sz? → PSU

loc? : ADDR

sz? : N1

(startaddr ≤ loc? ∧

loc? + sz? ≤ startaddr + svsize ∧

(∃ a : 1 . . svsize | a = startaddr − loc? •

∀ i : 1 . . sz? •

sv ′ = sv ⊕ {a + (i − 1) �→ v?(i)) ∧

serr ′ = sysok)

∨ (serr ′ = blocklocerror ∧ intno′ = killintno)

The following operation is a checking operation. It returns a block of stor-
age that has been stored in the vector. The returned block is bound to v ! and
its size is sz?; the address at which the block starts in the storage vector is
addr?.

StoredBlock

ΞSTOREVEC

∆ERRV

∆HW

addr? : ADDR

sz? : N

v ! : 1 . . sz? → PSU

(startaddr ≤ addr? ∧

addr? + sz? ≤ startaddr + svsize ∧

(∃ v : 1 . . sz? → PSU •

(∀ i : 1 . . sz? •

v(i) = sv(addr? + i)) ∧

v ! = v) ∧

serr ′ = sysok)

∨ (serr ′ = badblockaddr ∧ intno′ = killintno)

The simplification is omitted because it will be used in the expansion and
simplification of the next schema.

5.8.2 Message Buffering

This subsection contains the definitions required to turn the storage vector just
defined into an area of store that can be used to represent a buffer pool suitable

5.8 Raw Storage 267

for use by a message-passing system. The basic definitions are performed by
renaming existing components.

First, we define the storage area for messages. This is done in terms of
renaming, using the STOREVEC state schema and its associated operations.
Note that renaming, in effect, provides us with a new copy of STOREVEC.

It is necessary for the reader to remember that the definitions that fol-
low are of the storage area only. The storage-management operations will be
defined at this subsection.

MSGSTORE =̂ STOREVEC [mv/sv ,mvsize/svsize, mstartaddr/startaddr ,

mscavcnt/scavcnt ,mscavthresh/scavthresh]

MSGSTOREInit =̂ STOREVECInit

[MSGSTORE ′/STOREVEC ′,mps?/ps?,msa?/sa?]

CanStoreMsg =̂ CanStoreBlock [MSGSTORE/STOREVEC]

StoreMsg =̂ StoreBlock [MSGSTORE/STOREVEC]

StoredMsg =̂ StoredBlock [MSGSTORE/STOREVEC]

In these definitions, as in the ones that occur at the end of this subsec-
tion, it is assumed that the substitution of the name of the new state schema
(MSGSTORE) for the basic one (STOREVEC) also substitutes the appro-
priate state variables, thus renaming the variables. This convention applies to
CanStoreMsg, StoreMsg and StoredMsg.

The operation to delete stored messages must perform checking. It is de-
fined as:

DeleteStoredMsg =̂

(∃ sz : N | sz = msgsz (msgat(a?)) •

(StoredMsg [a?/addr?,m/v !, sz/sz?] ∧

FreeMsg))
o
9
(IncMsgFreeCnt ∧

((ShouldScavengeMsgs ∧ MsgScavenge) o
9
ClearMsgFreeCnt))

After expansion and simplification, this operation can be transformed into

268 5 A Separation Kernel

DeleteStoredMsg

∆MSGSTORE

∆STOREPOOL

∆ERRV

∆HW

a? : ADDR

(startaddr ≤ a? ∧

a? + msgsz (msgat(a?)) ≤ startaddr + svsize ∧

(∀ i : 1 . . msgsz (msgat(a?)) •

v !(i) = sv(a? + i)) ∧

FreeMsg
o
9
(scavcnt = scavthresh − 1 ∧

MsgScavenge ∧

scavcnt ′ = 0)

serr ′ = sysok)

∨ (serr ′ = badblockaddr ∧ intno′ = killintno)

Since it is known that FreeBlk1 is a proper refinement of FreeBlk and that
BlockScavenge1 properly refines BlockScavenge, and noting that STOREVEC
does not refine any further, the above can immediately be refined to

DeleteStoredMsg

∆MSGSTORE

∆STOREPOOL1

∆ERRV

∆HW

a? : ADDR

(startaddr ≤ a? ∧

a? + msgsz (msgat(a?)) ≤ startaddr + svsize ∧

(∀ i : 1 . . msgsz (msgat(a?)) •

v !(i) = sv(a? + i)) ∧

FreeMsg1
o
9
(scavcnt = scavthresh − 1 ∧

MsgScavenge1 ∧

scavcnt ′ = 0)

serr ′ = sysok)

∨ (serr ′ = badblockaddr ∧ intno′ = killintno)

The remaining storage-area operations are defined as follows. In these and
the next set of definitions, the renaming convention we described above is
assumed.

IncMsgFreeCnt =̂ IncFreeCnt [MSGSTORE/STOREVEC]

ShouldScavengeMsgs =̂ ShouldScavenge[MSGSTORE/STOREVEC]

ClearMsgFreeCnt =̂ ClearFreeCnt [MSGSTORE/STOREVEC]

5.9 Message Queues 269

The next set of operations deal with storage management. The state space
is called MSGPOOL and corresponds to STOREPOOL. The same renaming
convention is assumed here as for MSGSTORE.

MSGPOOL =̂ STOREPOOL[msgbs/freebs, mgfree/maxfree,

msgalloc/alloc,mpsize/psize,

mscavthresh/scavthresh,mscavcnt/scavcnt]

MSGPOOLInit =̂ STOREPOOLInit [MSGPOOL/STOREPOOL,

mmf ?/mf ?,mba?/ba?,mps?/ps?,mscthrsh?/scthrsh?]

CanAllocateMsg =̂ CanAllocateBlock [MSGPOOL/STOREPOOL]

AllocMsg =̂ AllocBlk [MSGPOOL/STOREPOOL]

FreeMsg =̂ FreeBlk [MSGPOOL/STOREPOOL]

MsgScavenge =̂ BlockScavenge[MSGPOOL/STOREPOOL]

5.9 Message Queues

The separation kernel is intended as a simulation of a distributed system. In
distributed systems, asynchronous message passing is the norm.

The specification begins, as usual, with the error schemata.
Each process has a message queue. If the queue becomes full and an at-

tempt is made to enqueue another message, the following schema is used.

MessageQueueFull =̂

(∃ e : SYSERR | e = msgqfull •

SetSysErr [e/e?]) ∧

RaiseKillInterrupt

If an attempt is made to dequeue a message from an empty message queue,
the following operation is used to signal the error.

EmptyMessageQueue =̂

(∃ e : SYSERR | e = emptymsgq •

SetSysErr [e/e?]) ∧

RaiseKillInterrupt

This message-passing system allows processes to ask for messages from a
designated source. The following schema sets the error variable when there
are no messages from the designated source.

NoMessagesFrom =̂

(∃ e : SYSERR | e = nomsgsfrom •

SetSysErr [e/e?]) ∧

RaiseKillInterrupt

270 5 A Separation Kernel

5.9.1 Top Level

The specification can now be undertaken. Basically, the requirement is that a
FIFO queue of message structures is to be specified. The specification that fol-
lows differs from many others in an important aspect. Instead of operating on
message-representing structures, this specification consists of schemata defin-
ing operations over message pointers. The queue is, here, a queue of pointers
to messages and the dequeue operation returns a pointer to a message; clearly,
the enqueue operation adds a pointer to a message to the queue. This has the
implication that we must, at some stage, specify the way in which messages
are stored.

The following function creates a message. It requires the source and des-
tination process identifiers and some data.

mkmsg : PID × (PID × MSGDATA)

∀ src, dest : PID ; data : MSGDATA •

mkmsg(src, dest , data) = (src, (dest , data))

The length of message payloads (the data component) is given by the first
of the following two functions. The second function returns the length of the
message header; for any system, this function should be a constant.

msgpayloadlen : MSG → N

msghdrlen : MSG → N1

The message header is composed of the source and destination slots (it might
also contain the length of the payload). The header imposes a fixed overhead
on messages and will always be the same.

These two functions are not further specified.
Given the structure of a message as a product, it is possible to give defi-

nitions for the functions that return the source, destination and data compo-
nents of a message:

msgsrc : MSG → PID

msgdest : MSG → PID

msgdata : MSG → MSGDATA

∀m : MSG •

msgsrc(m) = fst m

msgdest(m) = fst(snd m)

msgdata(m) = snd(snd m)

The address of a message structure is given by the following (partially-
defined) function:

msgaddr : MSG → ADDR

5.9 Message Queues 271

The total size of the message is the size of the payload plus the size of the
header. It is computed by the following function.

msgsz : MSG → N1

∀m : MSG •

msgsz (m) = msgpayloadlen(m) + msghdrlen(m)

Below, the MPTR type is defined. It is the type of message pointers. The
msgat function takes a message pointer and returns the message that is located
at that address; if the pointer is null, msgat returns the null message. Other
than that, the function is not further defined.

msgat : MPTR → MSG

∀mp : MPTR •

msgat(nullmptr) = nullmsg

. . .

msgToPSU : MSG → seqPSU

PSUsToMsg : seqPSU → MSG

These two functions are just type-changing functions or casts.

msz : MSG → N

∀m : MSG •

msz (m) =

{
0, if m = nullmsg
msgsz (m), otherwise

We need to get down to the byte level in this specification and its refine-
ment.

BYTE == 0 . . 255

msgtobytes : MSG → seqBYTE

This is used by the copy operation.
The message pointer type is a subset of ADDR:

MPTR ⊂ ADDR

The null message pointer:

nullmptr : MPTR

Message queues are implemented by a slot in the PTAB . The definition
at the top level is the following.

272 5 A Separation Kernel

PTAB

. . .

msgq : PID �→ MSGQ

. . .

dommsgq = used

The usual constraint is imposed upon the domain of msgq .
In the following, the subscript, M , is used. In the schema, all components

of PTAB that do not relate to msgq are assumed constant. This differentiates
this schema from all others.

ΦPTABM

∆PTAB

∆MSGQ

p? : PID

θMSGQ = msgq(p?)

msgq ′ = msgq ⊕ {p? �→ θMSGQ ′}

The message queue proper is defined by the following schema. Note that
there is a limit to the size of the queue. The queue obeys the FIFO discipline
and there can be duplicates; a simple sequence is the obvious representation.

MSGQ

mq : seqMPTR

maxms : N1

#mq ≤ maxms

The initialisation schema is defined in the obvious manner.

MSGQInit

MSGQ ′

mm? : N1

maxms ′ = mm?

mq ′ = 〈 〉

The schema that follows defines the operation that answers the question:
is there enough space in the queue for a new message?

CanEnqueueMsg

ΞMSGQ

#mq < maxms

5.9 Message Queues 273

The enqueue operation simply adds a new message to the end of the queue:

EnqueueMsg

∆MSGQ

mp? : MPTR

mq ′ = mq � 〈mp?〉

As with process queues, the dequeue operation is decomposed into obtain-
ing the queue head and removing it. The complete operation is given by the
following schema:

DelMSGQHd

∆MSGQ

mp! : MPTR

mp! = head mq

mq ′ = tail mq

GotMsgs

ΞMSGQ

mq
= 〈 〉

This is a predicate which is true if there are any messages left in the queue.

GotMsgsFromSrc

ΞMSGQ

src? : PID

∃ i : 1 . . #mq •

msgsrc(msgat(mq(i))) = src?

This is a predicate which is true when the message queue is not empty and
there is at least one message from process src?. This is the first point where the
fact that the entries of the mq FIFO are message pointers becomes important.

In addition to GotMsgsFromSrc, there is the NextMsgFromSrc operation.
It is used when there are messages and at least one is from the destination
specified by src?. The message is returned as mp!.

NextMsgFromSrc

∆MSGQ

src? : PID

mp! : MPTR

∃ i : 1 . . #mq ; q1, q2 : seqMPTR •

∃m : MPTR | m = mq(i) •

q1
� 〈m〉 � q2 = mq ∧

274 5 A Separation Kernel

q1
� q2 = mq ′ ∧

msgsrc(msgat(mq(i))) = src? ∧

mp! = m ∧

(∀ j : 1 . . i − 1 •

msgsrc(msgat(mq(j)))
= src?)

The precondition is clearly

preNextMsgFromSrc =̂

mq
= 〈 〉 ∧

∃m : MSG | m ∈ ranmq •

msgsrc(msgat(m)) = src?

The operation to add a message to the queue is defined as follows:

AddMsg =̂

∃ sz : N | sz = msgsz (m?) •

(CanAllocateBlock [sz/rqsz?] ∧

((CanEnqueueMsg ∧

AllocMsg [sz/rqsz?, m/a!] ∧

(∃ v : 1 . . N1 → PSU ; sz : N1

| v = msgToPSU (m?) ∧ sz = msgsz (m?) •

StoreMsg [v/v?,m/loc?, sz/sz?]) ∧

EnqueueMsg [m/mp!] ∧

SysOk)

∨ MessageQueueFull)) \ {m}

∨ NoSpace

The operation checks whether a buffer can be allocated (if not, the operation
aborts—why continue when the store cannot be allocated?); if it can, the
operation tests that there is space left in the destination process’ message
queue. Next, the message is allocated a buffer and stored; it is then enqueued.

The schema for the operation expands and simplifies to:

AddMsg

∆MSGQ

∆ERRV

∆HW

m? : MSG

(alloc + msgsz (m?) ≤ psize ∧ #freebs < maxfree ∧

(#mq < maxms ∧

((∃ i : 1 . . #freebs •

msgsz (freebs(i)) ≥ msgsz (m?) ∧

(mdsz (freebs(i)) = msgsz (m?) ∧

freebs ′ = freebs −⊳ {freebs(i)} ∧

5.9 Message Queues 275

alloc′ = alloc + msgsz (m?) ∧

mq ′ = mq � 〈mdaddr(freebs(i))〉 ∧

startaddr ≤ mdaddr(freebs(i)) ∧

mdaddr(freebs(i)) + msgsz (m?) ≤ startaddr + svsize ∧

∀ j : 1 . . msgsz (m?) •

sv ′ = sv ⊕ {(startaddr − mdaddr(freebs(i))) + (j − 1)

�→ msgToPSU (m?)(j)})

∨ (mdsz (freebs(i)) > msgsz (m?) ∧

freebs ′ = freebs ⊕ {i �→

mkmd(mdaddr(freebs(i)) + msgsz (m?),

mdsz (freebs(i)) − msgsz (m?))} ∧

alloc′ = alloc + msgsz (m?) ∧

mq ′ = mq � 〈mdaddr(freebs(i))〉 ∧

startaddr ≤ mdaddr(freebs(i)) ∧

mdaddr(freebs(i)) + msgsz (m?) ≤ startaddr + svsize ∧

∀ j : 1 . . msgsz (m?) •

sv ′ = sv ⊕ {(startaddr − mdaddr(freebs(i))) + (j − 1)

�→ msgToPSU (m?)(j)})) ∧

serr ′ = sysok)

∨ (serr ′ = msgqfull ∧ intno′ = killintno)

∨ (serr ′ = nospaceinstore ∧ intno′ = killintno))

The precondition must be calculated. It is:

preAddMsg =̂

alloc + msgsz (m?) < psize ∧ #mq < maxms ∧

(∃ i : 1 . . #freebs • msgsz (freebs(i)) ≥ msgsz (m?)) ∧

startaddr ≤ mdaddr(freebs(i)) ∧

mdaddr(freebs(i)) + msgsz (m?) ≤ startaddr + svsize

The NextMsg operation is, basically, a dequeue operation. It tests that
there are messages in the queue and returns the head. If there are no messages,
EmptyMessageQueue is used).

NextMsg =̂

(GotMsgs ∧ DelMSGQHd ∧ SysOk) ∨ EmptyMessageQueue

The operation expands into

NextMsg

∆MSGQ

∆ERRV

∆HW

mp! : MPTR

(mq
= 〈 〉 ∧ mp! = head mq ∧ mq ′ = tail mq ∧ serr ′ = sysok)

∨ (serr ′ = emptymsgq ∧ intno′ = killintno)

276 5 A Separation Kernel

The precondition is

preNextMsg =̂ mq
= 〈 〉

The following is similar to NextMsg but, instead of returning just the head,
it returns the first element of the queue that is from the designated source.
The operation performs the relevant checks.

NextMessageFromSource =̂

((GotMsgsFromSrc ∧ NextMsgFromSrc ∧ SysOk) ∨ NoMessagesFrom

The definition expands into

NextMessageFromSource

∆MSGQ

∆ERRV

∆HW

src? : PID

mp! : MPTR

(∃ i : 1 . . #mq •

msgsrc(msgat(mq(i))) = src?) ∧

(∃ i : 1 . . #mq ; q1, q2 : seqMPTR •

∃m : MPTR | m = mq(i) •

q1
� 〈m〉 � q2 = mq ∧

q1
� q2 = mq ′ ∧

msgsrc(msgat(mq(i))) = src? ∧

mp! = m ∧

(∀ j : 1 . . i − 1 •

msgsrc(msgat(mq(j)))
= src?)

This can be simplified as follows. First, the two outer quantifiers have the
same range and matrix, so they can be merged. Next, the one-point rule can
be applied to remove mp!.

NextMessageFromSource

∆MSGQ

∆ERRV

∆HW

src? : PID

mp! : MPTR

serr ! : SYSERR

(∃ i : 1 . . #mq ; q1, q2 : seqMPTR •

q1
� 〈mp!〉 � q2 = mq ∧

q1
� q2 = mq ′ ∧

msgsrc(msgat(mp!)) = src? ∧

(∀ j : 1 . . i − 1 •

msgsrc(msgat(mq(j)))
= src?)

5.9 Message Queues 277

The precondition must be calculated for this important operation.

preNextMessageFromSource =̂

∃ i : 1 . . #mq •

msgsrc(msgat(mq(i))) = src? ∧

¬ (∃ j : 1 . . i − 1 •

msgsrc(msgat(mq(j))) = src?)

This concludes the specification. We now turn to its refinement.

5.9.2 Refinement One

We immediately state the refined version of the message queue type. Note
that, by use of promotion, we are separating the development of the queue
type from that of the process table.

MSGQ1

mq1 : 1 . . maxmsgs → MPTR

maxmsgs : N1

mnxt : N

mnxt ≤ maxmsgs + 1

The refined message queue type differs from the original in that the former uses
a function to represent the queue; the original used a sequence. The domain
of the function is an subrange of the naturals, so the function represents a
vector. The variable, mnxt , is the index of the next free element of the vector,
mq1.

The initialisation schema is exactly as one might expect.

MSGQInit1

MSGQ1′

mm? : N1

maxmsgs ′ = mm?

mnxt ′ = 1

The predicate determining whether there are free elements of mq1, the
message queue, is now defined in terms of indices:

CanEnqueueMsg1

ΞMSGQ1

mnxt ≤ maxmsgs

Equally, the predicate determining whether there are messages in the queue
is definded in terms of the mnxt index.

278 5 A Separation Kernel

GotMsgs1

ΞMSGQ1

mnxt > 1

The enqueueing operation consists of assigning a message (pointer) to the
next free element of mq1 and then incrementing mnxt , the end pointer, by
one.

EnqueueMsg1

∆MSGQ1

mp? : MPTR

mq1′ = mq1 ⊕ {mnxt �→ mp?}

mnxt ′ = mnxt + 1

Removal of a message consists of copying the first element, then copying
the vector down one element; finally, the insertion point is moved down one
position.

DelMSGQHd1

∆MSGQ1

mp! : MPTR

mp! = mq1(1)

∀ i : 1 . . mnxt − 2 • mq1′ = mq1 ⊕ {i �→ mq1(i + 1)}

The next operation is the refinment of GotMsgsFromSrc. At any time, there
are only mnxt − 1 elements in mq1 (when there are no elements, mnxt = 1).

GotMsgsFromSrc1

ΞMSGQ1

src? : PID

∃ i : 1 . . mnxt − 1 • msgsrc(msgat(mq1(i))) = src?

The following operation corresponds to NextMsgFromSrc. The two uni-
versals can be accounted for as follows. The second moves all elements from
the one selected for output down one position (so that the hole produced by
selecting a message is healed). The first is part of the condition: the selected
message is the first in the queue from the source specified by src?.

5.9 Message Queues 279

NextMsgFromSrc1

∆MSGQ1

src? : PID

mp! : MPTR

∃ i : 1 . . mnxt − 1; m : MPTR | m = mq1(i) •

msgsrc(msgat(m)) = src? ∧

(∀ j : 1 . . i − 1 • msgsrc(msgat(mq1(j)))
= src?) ∧

(∀ j : i + 1 . . mnxt − 1 • mq1′ = mq1 ⊕ {j − 1 �→ mq1(j)}) ∧

mp! = m

This schema easily simplifies to:

NextMsgFromSrc1

∆MSGQ1

src? : PID

mp! : MPOTR

∃ i : 1 . . mnxt − 1 •

mp! = mq(i) ∧

msgsrc(msgat(mp!)) = src? ∧

(∀ j : 1 . . i − 1 •

msgsrc(msgat(mq1(j)))
= src?) ∧

(∀ j : i + 1 . . mnxt − 1 •

mq1′ = mq1 ⊕ {j − 1 �→ mq1(j)})

The AddMsg1 operation corresponds to AddMsg :

AddMsg1 =̂

∃ sz : N | sz = msgsz (m?) •

(CanAllocateBlock [sz/rqsz?] ∧

((CanEnqueueMsg1 ∧

AllocMsg1[sz/rqsz?, m/a!] ∧

(∃ v : 1 . . N1 → PSU ; sz : N1

| v = msgToPSU (m?) ∧ sz = msgsz (m?) •

StoreMsg [v/v?,m/loc?, sz/sz?]) ∧

EnqueueMsg1[m/mp!] ∧

SysOk)

∨ MessageQueueFull)) \ {m}

∨ NoSpace

After expansion and simplification, it is

280 5 A Separation Kernel

AddMsg1

∆MSGQ

∆ERRV

∆HW

m? : MSG

(alloc1 + msgsz (m?) ≤ psize1 ∧ nextm ≤ maxfblocks ∧

(mnxt ≤ maxmsgs ∧

((∃ i : 1 . . nextm − 1 •

msgsz (freebs1(i)) ≥ msgsz (m?) ∧

(mdsz (freebs1(i)) = msgsz (m?) ∧

(∀ j : i . . nextm − 1 •

freebs1′ = freebs1 ⊕ {j �→ freebs1(j + 1)}) ∧

alloc1′ = alloc1 + msgsz (m?) ∧

mq1′ = mq1 ⊕ {nextm �→ mdaddr(freebs1(i))} ∧

nextm ′ = nextm + 1 ∧

startaddr ≤ mdaddr(freebs1(i)) ∧

mdaddr(freebs1(i)) + msgsz (m?) ≤ startaddr + svsize ∧

∀ j : 1 . . msgsz (m?) •

sv ′ = sv ⊕ {(startaddr − mdaddr(freebs1(i))) + (j − 1)

�→ msgToPSU (m?)(j)})

∨ (mdsz (freebs1(i)) > msgsz (m?) ∧

freebs1′ = freebs1⊕

{i �→

mkmd(mdaddr(freebs1(i)) + msgsz (m?),

mdsz (freebs1(i)) − msgsz (m?))} ∧

alloc1′ = alloc1 + msgsz (m?) ∧

mq1′ = mq1 ⊕ {nextm �→ mdaddr(freebs1(i))} ∧

− nextm ′ = nextm + 1 ∧

startaddr ≤ mdaddr(freebs(i)) ∧

mdaddr(freebs1(i)) + msgsz (m?) ≤ startaddr + svsize ∧

∀ j : 1 . . msgsz (m?) •

sv ′ = sv ⊕ {(startaddr − mdaddr(freebs1(i))) + (j − 1)

�→ msgToPSU (m?)(j)})) ∧

serr ′ = sysok)

∨ (serr ′ = msgqfull ∧ intno′ = killintno))

∨ (serr ′ = nospaceinstore ∧ intno′ = killintno))

The precondition is calculated:

preAddMsg1 =̂

alloc1 + msgsz (m?) < psize1 ∧

mnxt < maxmsgs ∧

(∃ i : 1 . . nextm − 1 • msgsz (freebs1(i)) ≥ msgsz (m?)) ∧

startaddr ≤ mdaddr(freebs1(i)) ∧

mdaddr(freebs1(i)) + msgsz (m?) ≤ startaddr + svsize

5.9 Message Queues 281

Operation NextMsg1 corresponds to NextMsg :

NextMsg1 =̂

(GotMsgs1 ∧ DelMSGQHd1 ∧ SysOk)

∨ EmptyMessageQueue

This definition expands into:

NextMsg1

∆MSGQ1

∆ERRV

∆HW

mp! : MPTR

(mnxt > 1 ∧

mp! = mq1(1) ∧

(∀ i : 1 . . mnxt − 2 • mq1′ = mq1 ⊕ {i �→ mq1(i + 1)}) ∧

serr ′ = sysok) ∨ (serr ′ = emptymsgq ∧ intno′ = killintno)

The precondition of this operation is

preNextMsg1 =̂ mnxt > 1

The NextMessageFromSrc1 operation corresponds to NextMessageFrom-
Src. The definition is

NextMessageFromSrc1 =̂

((GotMsgsFromSrc1 ∧

NextMsgFromSrc1 ∧ SysOk)

∨ NoMessagesFrom

The definition expands to

NextMessageFromSrc1

∆MSGQ1

∆ERRV

∆HW

src? : PID

mp! : MPOTR

((∃ i : 1 . . mnxt − 1 •

msgsrc(msgat(mq1(i))) = src?) ∧

(∃ i : 1 . . mnxt − 1; m : MPTR •

m = mq(i) ∧ mp! = m ∧

msgsrc(msgat(mp!)) = src? ∧

(∀ j : 1 . . i − 1 •

msgsrc(msgat(mq1(j)))
= src?) ∧

(∀ j : i + 1 . . mnxt − 1 •

mq1′ = mq1 ⊕ {j − 1 �→ mq1(j)})) ∧

mnxt ′ = mnxt − 1 ∧

282 5 A Separation Kernel

serr ′ = sysok)

∨ (serr ′ = nomsgsfrom ∧ intno′ = killintno)

This schema can be simplified to produce

NextMessageFromSrc1

∆MSGQ1

∆ERRV

∆HW

src? : PID

mp! : MPOTR

(∃ i : 1 . . mnxt − 1 •

mp! = mq1(i) ∧

msgsrc(msgat(mp!)) = src? ∧

(∀ j : 1 . . i − 1 •

msgsrc(msgat(mq1(j)))
= src?) ∧

(∀ j : i + 1 . . mnxt − 1 •

mq1′ = mq1 ⊕ {j − 1 �→ mq1(j)})) ∧

mnxt ′ = mnxt − 1 ∧

serr ′ = sysok)

∨ (serr ′ = nomsgsfrom ∧ intno′ = killintno)

The precondition is

preNextMessageFromSrc1 =̂

∃ i : 1 . . mnxt − 1 •

msgsrc(msgat(mq1(i))) = src? ∧

¬ (∃ j : 1 . . i − 1 •

msgsrc(msgat(mq1(i))) = src?)

Finally, the abstraction relation is defined.

AbsMSGQ1

MSGQ

MSGQ1

maxmsgs = maxms

mnxt = #mq + 1

∀ i : 1 . . #mq •

mq(i) = mq1(i)

There should be no surprises here!

Theorem 67.

∀MSGQ ′; MSGQ1′ •

MSGQ1Init ∧ AbsMSGQ1 ⇒ MSGQInit

5.9 Message Queues 283

Proof. By the abstraction relation, maxmsgs ′ = maxms ′, so mm? =
maxmsgs ′ = maxms ′. The abstraction relation also states that mnxt =
#mq + 1, so mnxt ′ = 1 = #mq + 1 = 0 + 1, from which it follows that
mq ′ = 〈 〉. ✷

Theorem 68.

∀MSGQ ; MSGQ1; m? : MSG

preAddMsg ∧ AbsMSGQ1 ∧ AbsSTOREPOOL1 ⇒ preAddMsg1

Proof. The preconditions are:

preAddMsg =̂

alloc + msgsz (m?) < psize ∧

#mq < maxms ∧

(∃ i : 1 . . #freebs • msgsz (freebs(i)) ≥ msgsz (m?)) ∧

startaddr ≤ mdaddr(freebs(i)) ∧

mdaddr(freebs(i)) + msgsz (m?) ≤ startaddr + svsize

and

preAddMsg1 =̂

alloc1 + msgsz (m?) < psize1 ∧

mnxt ≤ maxmsgs ∧

(∃ i : 1 . . nextm − 1 • msgsz (freebs1(i)) ≥ msgsz (m?)) ∧

startaddr ≤ mdaddr(freebs1(i)) ∧

mdaddr(freebs1(i)) + msgsz (m?) ≤ startaddr + svsize

It should be noted that the STOREVEC component cannot be subjected
to refinement. Therefore, there is an identity relation between the components
of STOREVEC in the two preconditons.

The abstraction relation states that psize = psize1, alloc = alloc1 and
that maxmsgs = maxms. It also states that mnxt = #mq + 1. This permits
the inferences that alloc +msgsz (m?) < psize ⇔ alloc1+msgsz (m?) < psize1
and #mq < maxms ⇔ mnxt ≤ maxmsgs.

The range of the quantifier is 1 . . #freebs and by the abstraction relation
for STOREPOOL, #freebs = nextm − 1, and that abstraction relation also
states that ∀ i : 1 . . #freebs • freebs(i) = freebs1(i)x, so it follows that

msgsz (freebs(i)) ≥ msgsz (m?)

⇔ msgsz (freebs1(i)) ≥ msgsz (m?)

mdaddr(freebs(i)) = mdaddr(freebs1(i)) and, finally, that

mdaddr(freebs(i)) + msgsz (m?) ≤ startaddr + svsize

⇔ mdaddr(freebs1(i)) + msgsz (m?) ≤ startaddr + svsize

✷

284 5 A Separation Kernel

Theorem 69.

∀MSGQ ; MSGQ ′; MSGQ1; MSGQ1′; m? : MSG •

preAddMsg ∧

AbsMSGQ1 ∧

AbsMSGQ1′ ∧

AbsSTOREPOOL1 ∧

AbsSTOREPOOL1′ ∧

AddMsg1

⇒ AddMsg

Proof. The abstraction relations states that alloc = alloc1, maxfree =
maxfblocks and #freebs = nextm − 1. This permits the inference that
alloc + msgsz (m?) = alloc1 + msgsz (m?) and #freebs < maxfree implies
that nextm ≤ maxfblocks. The relation also states that #mq = mnxt − 1,
so mnxt ≤ maxmsgs implies #mq < maxms. The same relation permits the
inference that nextm−1 = #freebs, so the bound variable of the outer existen-
tial quantifier is in range and it can be inferred that freebs(i) = freebs1(i) (for
the reason that ∀ i : 1 . . #freebs • freebs(i) = freebs1(i) ⇒ ∃ i : 1 . . #freebs •
freebs(i) = freebs1(i)). This permits the inference that mdsz (freebs(i)) =
mdsz (freebs1(i)) and mdaddr(freebs(i)) = mdaddr(freebs1(i)). Most of the
remainder of the proof follows immediately.

The only point of note is

∀ j : i . . nextm − 1 •

freebs1′ = freebs1 ⊕ {j �→ freebs1(j + 1)}

This clearly removes freebs1(i) from freebs1 and corresponds directly to
freebs ′ = freebs −⊲ {freebs(i)}. In support of this claim, the following rea-
soning is offered. The above formula implies that freebs1′(i) = freebs1(i + 1),
so freebs1(i) is no longer an element of freebs1′. By the equivalence of freebs ′

and freebs1′ required by AbsSTOREPOOL1′, freebs(i) cannot be an element
of freebs ′(i), so freebs ′ = freebs −⊲ {freebs(i)}. ✷

Theorem 70.

∀MSGQ ; MSGQ1 •

preNextMsg ∧ AbsMSGQ1 ⇒ preNextMsg1

Proof. The preconditions are as follows:

preNextMsg =̂ mq
= 〈 〉

and

preNextMsg1 =̂ mnxt > 1

By the abstraction relation, mnxt = #mq + 1, so if mq = 〈 〉, mnxt = 1 since
#〈 〉 = 0. If mq �= 〈 〉, #mq > 0, so mnxt > 1. ✷

5.9 Message Queues 285

Theorem 71.

∀MSGQ ; MSGQ ′; MSGQ1; MSGQ1′; mp! : MPTR; •

preNextMsg ∧

AbsMSGQ1 ∧

AbsMSGQ1′ ∧

NextMsg1

⇒ NextMsg

Proof. By the previous result, mnxt > 1 implies mq �= 〈 〉. Since 1 is in
range as an index of mq1, the predicate of AbsMSGQ1 permits the inference
that mq1(1) = mq(1) and mq(1) = head mq by the definition of head ; so,
mp! = mq1(1) = head mq .

The quantified formula ∀ i : 1 . . mnxt • mq1′ = mq1 ⊕ {i �→ mq1(i + 1)}
translates mq1 one position downwards with the result that mq1′(1) = mq1(2)
and so on. This is the removal of the first element of mq1 which, as noted in
the last paragraph is equivalent to head mq . The removal of the head of a
sequence is the result of the tail operation and it is clear that the universally
quantified formula is equivalent to mq ′ = tail mq . ✷

Theorem 72.

∀MSGQ ; MSGQ1; src? : PID •

preNextMessageFromSource ∧ AbsMSGQ1 ⇒ preNextMessageFromSource1

Proof. The preconditions are:

preNextMessageFromSource =̂

∃ i : 1 . . #mq •

msgsrc(msgat(mq(i)) = src? ∧

¬ (∃ j : 1 . . j − 1 •

msgsrc(msgat(mq(j))) = src?)

and

preNextMessageFromSource1 =̂

∃ 1 . . mnxt − 1 •

msgsrc(msgat(mq1(i))) = src? ∧

¬ (∃ j : 1 . . i − 1 •

msgsrc(msgat(mq1(i))) = src?)

By the abstractin relation, mnxt = #mq − 1, so #mq = mnxt − 1. From
this, the equivalence of ranges of the outer quantifiers can be inferred. This
equivalence also permits us to infer that ∀ i : 1 . .#mq • mq(i) = mq1(i)) and,
then, that msgsrc(msgat(mq(i))) = msgsrc(msgat(mq1(i))) for 1 ≤ i ≤ #mq .
✷

286 5 A Separation Kernel

Theorem 73.

∀MSGQ ; MSGQ ′; MSGQ1; MSGQ1′; src? : PID ; mp! : MPTR •

preNextMessageFromSource ∧

AbsMSGQ1 ∧

AbsMSGQ1′ ∧

NextMessageFromSource1

⇒ NextMessageFromSource

Proof. First of all, it is necessary to observe that mnxt−1 = #mq is a simple
consequence of AbsMSGQ1, so it can be inferred that the outermost quantifier
ranges are equivalent. This also permits the inference that ∀ i : 1 . . #mq •
mq(i) = mq1(i) and that msgsrc(msgat(mq(i))) = msgsrc(msgat(mq1(i)))
for 1 ≤ i ≤ #mq ; in particular, if 1 ≤ i ≤ #mq and j < i , this identity also
holds. It also permits the inference that

∀ j : i + 1 . . mnxt − 1 •

mq1′

= mq1 ⊕ {j − 1 �→ mq1(j)}

= mq ⊕ {j − 1 �→ mq1(j)}

= mq ⊕ {j − 1 �→ mq(j)}

= mq ′

The equivalence of mq1′ and mq ′ is assured by the condition in AbsMSGQ1′

that ∀ i : 1 . .#mq ′ • mq ′(i) = mq1′(i); the remainder of the steps are justified
by the equivalence noted above.

Finally, it can be seen that if msgsrc(msgat(mq1(i))) = src?, mq1 is di-
vided into three segments: an initial segment (1 ≤ j < i), the segment con-
sisiting only of mq1(i) and a final segment whose indices are in the range
i +1 ≤ j ≤ mnxt−1. The last range, in mq , is i +1 ≤ j ≤ #mq . Since mq and

mq1 coincide by the AbsMSGQ1, it is possible to write mq as q1
�〈mq(i)〉�q2,

where q1(j) = mq(j) for 1 ≤ j < i , and q2(j) = mq(j) for i + 1 ≤ j ≤ #mq .
The quantifier ∀ j : i + 1 . . mnxt − 1 • mq1′ = mq1⊕{j − 1 �→ mq1(j) clearly

removes mq1(i) from mq1. From this, it can be concluded that mq ′ = q1
� q2.

To verify this, mq1′(i) = mq1(i + 1) and mq ′(i) = mq(i + 1) = head q2; by
the abstraction relation, head q2 = mq1(i + 1). ✷

This module is now at a level where implementation is possible.

5.10 Kernel Interface – User Processes

5.10.1 Auxilliary Operations

VerifyCallerIdent =̂

(RunningProcess[c/p!] ∧ PIDforUPID [c/p!]) \ {c}

5.10 Kernel Interface – User Processes 287

or

VerifyCallerIdent

ΞPTAB

u? : UPID

curr = extpid(u?)

InsufficientMainStore =̂

(∃ e : SYSERR | e = mainstorefull •

SetSysErr [e/e?]) ∧

RaiseKillInterrupt

SEGMENTS =̂

STOREPOOL[frees/freebs,maxsgs/maxfree,

allocs/alloc, spsize/psize, spaddr/paddr]

SEGMENTSInit =̂ STOREPOOLInit [frees/freebs,maxsgs/maxfree,

allocs/alloc, spsize/psize, spaddr/paddr]

AllocateSegment =̂ AllocBlk [frees/freebs, maxsgs/maxfree, allocs/alloc]

FreeSegment =̂ FreeBlk [frees/freebs,maxsgs/maxfree, allocs/alloc]

CanAllocateSegment =̂ CanAllocateBlock [allocs/alloc, frees/freebs]

The following is just a convenience

SegmentTableInit =̂ SEGMENTSInit

For present purposes, it is assumed that segmentation is aimed at the
output of the GNU C compiler, which requires two segments. One segment
is the code segment (also called the “text” segment and is assumed to be
read-only), the other is the combined stack and data segment. In the latter
segment, the stack is assumed to grow downwards from the top, while data is
allocated upwards from the bottom.

The size of the code segment is codesz and that of the combined stack and
data segment is dssize. The descriptors returned are sd ! for the stack segment
and ds! for the other segment.

The descriptors are sd? for the stack segment and ds? for the combined
segments.

It is also necessary to declare some store to be used as a message
pool. This entails the allocation of a STOREVEC and a STROREPOOL;
the STOREPOOL, however, must be distinct from the segment table just
described.

288 5 A Separation Kernel

5.10.2 Initialisation

This subsection deals with system initialisation for non-device processes.
The first task is to define the operations on segments in main store. To

do this, it is necessary to define the type for segment descriptors. Segment
descriptors are composed of an address (the start of the segment) and a size
(the size of the segment in some units—bytes seem the most appropriate).

SDESC == ADDR × N

The size (the second component) must admit zero so that the null process can
be represented.

Given this type definition, it is useful to have a constructor function for
segment descriptors, just as we had for storage descriptors (type MD).

mksdesc : ADDR × N → SDESC

∀ a : ADDR; s : N •

mksdesc(a, s) = (a, s)

The constructor function just creates pairs.
It is also useful to have accessor functions, one for each component.

segaddr : SDESC → ADDR

segsize : SDESC → N

∀ s : SDESC •

segaddrs(s) = fst s

segsize(s) = snd s

The first accessor returns the segment’s start address, while the second returns
the size.

The process table is expanded by two components: one to record code seg-
ment information and one to record data and stack segment information. The
code segment information is stored in cdseg and that for the combined data
and stack segement is stored in dsseg . Clearly there must be one segment of
each type for every process (the idle, or null, process must have zero segments,
recall for the reason that it does not have any data, does not consume a stack,
nor does it have a code segment—the code for the idle process is a part of the
kernel).

PTAB
...

cdseg : PID �→ SDESC

dsseg : PID �→ SDESC

5.10 Kernel Interface – User Processes 289

· · ·

...

The segment usage of the GNU C compiler is assumed (it uses two segments,
one for code and one for data and the stack—the stack resides at the top of
the data segment and grows downwards towards the area in which data is
stored). The invariant for cdseg (the code segment) and that for the combined
stack and data segment, dsseg , is the same.

The operation to set the code segment information for a process is defined
by the following schema:

SetCodeSegInfo

∆PTAB

p? : PID

a? : ADDR

sz? : N

cdseg ′ = cdseg ∪ {p? �→ mksdesc(a?, sz?)}

Segments are allocated only once, so any data that is set remains in the process
table until its owning process is deleted.

In a similar fashion, the combined stack and data segment information for
a new process is set by the following schema:

SetStackDataSegInfo

∆PTAB

p? : PID

a? : ADDR

sz? : N

dsseg ′ = dsseg ∪ {p? �→ mksdesc(a?, sz?)}

The next two schemata use the accessor functions defined for segment
descriptors and apply them to the segments of a process. This first schema
returns the descriptor for the code segment.

CodeSegAddr

ΞPTAB

p? : PID

a! : ADDR

a! = segaddr(cdseg(p?))

The second schema returns the combined segment for the named process.

290 5 A Separation Kernel

StackDataSegAddr

ΞPTAB

p? : PID

a! : ADDR

a! = segaddr(dsseg(p?))

The following operation sets the registers up ready for the context switch
to the intial process. The most important part of this consists of setting the
registers to default or dummy values so that they can be switched into the
processor’s registers. The entry point of the initial process must be specified
as the address at which to start the execution of the initial process when
swapped onto the processor.

SwitchToFirstProcess =̂

CreateDummyRegs
o
9

. . .

The idle process must be created. The kernel contains the code that imple-
ments this process. The code has to be made into a process. First, a process
identifier (PID) must be created using AddIdleProcess. Next, the segments
must be created. As noted above, each segment has a zero start address (rep-
resented by nulladdr and has a size of 0. The segment information must be
stored in the process table.

CreateIdleProcess =̂

AddIdleProcess ∧

AllocateProcTSS ∧

∧ (∃na : ADDR; nsz : N | na = nulladdr ∧ nsz = 0 •

SetCodeSegInfo[ip!/p?,na/a?,nsz/sz?]
o
9
SetStackDataSegInfo[ip!/p?,na/a?,nsz/sz?])

The CreateIdleProcess operation is required so that the scheduler can be
initialised. It is now possible to define the SKInitSys operation, the operation
that represents the initialisation of the system proper.

SKInitSys =̂

AllocateGDT ∧ AllocateIDT ∧ AllocateTSSs ∧

InitDevNums ∧

PTABInit ∧

SegmentTableInit ∧

MSGSTOREInit ∧

MSGPOOLInit ∧

((SKCreateNullProcess[ip/ip!] ∧ SKSCHEDInit [ip/p?]) \ {ip}
o
9
SKCreateAndRunInitialProcess)

First, the process table is initialised to empty and the segment table is also
initialised to empty. The storage area for messages is allocated and initialised,

5.10 Kernel Interface – User Processes 291

as is the descriptor space. Next the idle (null) process is created and its data
stored in the process table. The scheduler is then initialised and the identifier
of the idle process is stored in the variable in the scheduler. Finally, the initial
process is created and its data stored in the process table. The intial process
is then executed.

5.10.3 Process Management

The process management operations must be defined. These operations handle
such matters as segment allocation and process creation. The operations in
this section deal with user processes only.

The segment allocation operation is defined as follows:

AllocateSegments =̂

∃ totsize : N1 | totsize = cdssize? + stkdsize? •

(CanAllocateSegment [totsize/rqsz?] ∧

AllocateSegment [totsize/rqsz?, csaddr !/c!] ∧

stkaddr ! = csaddr ! + cdssize? ∧

SysOk)

∨ InsufficientMainStore

The definition expands into:

AllocateSegments

∆STOREPOOL

∆ERRV

∆HW

cdssize?, stkdsize? : N

csaddr !, stkdaddr ! : ADDR

∃ totsize : N1 | totsize = cdssize? + stkdsize? •

(totsize + alloc ≤ psize ∧

(#frees < maxsgs ∧

(∃ i : 1 . . #frees • mdsz (frees(i)) ≥ totsize) ∧

AllocateSegment [totsize/rqsz?, csaddr !/a!] ∧

stkaddr ! = csaddr ! + cdssize? ∧

serr ′ = sysok)

∨ (serr ′ = mainstorefull ∧ intno′ = killintno)

The primitive for creating new processes is as follows:

292 5 A Separation Kernel

SKNewProcess =̂

(AllocSegments[totsize?/rqsz?, csaddr/csaddr !, stkdaddr/stkdaddr] ∧

(∃ pt : PTYPE | pt = uproc • AddPD)
o
9
SetCodeSegInfo[cdssize?/sz?, csaddr/a?]

o
9
SetSetDataSegInfo[stkdsize?/sq?, stkdaddr/a?]))

o
9
AllocateProcTSS ∧ AddPD

o
9
InitDevReply

o
9
ClearMsgQ

o
9
Clear o

9
MakeReady [p!/p?]

∧ SysOk) \ {csaddr , stkdaddr}

First, the segments for the new process are allocated. The segment informa-
tion is then stored in PTAB and the process is made ready (added to the
scheduler’s ready queue).

The UPID for each process is returned to the newly created process, while
the PID is retained by the kernel and never revealed to an untrusted process.

The expansion of SKNewProcess is quite long and can be transformed by
the use of the distributive rule for ∧ over ∨.

Register values need to be set before the process can run. All the informa-
tion is, though, present.

When a request to create a new process is made, it must be made by some
process or other. In the basic model, it should be the initial process but it
is possible to arrange for other processes to have the ability to create child
processes. Whatever approach is adopted, the identity of the creating process
must be verified. If verification succeeds, SKNewProcess is called to create the
process in PTAB and add it to the ready queue. The operation is defined as
follows:

USKNewProcess =̂

(VerifyCallerIdent ∧

SKNewProcess[p/p!] \ {p})

∨ BadCallerIdent

Creating a processes is only half the story. It is necessary to create and
execute an initial process just so that there is something to which a half
context switch can be made. The initial process can be put to many uses, one
of which is as the ancestor of all processes in the system. For present purposes,
the initial process in this specification just serves as a place to which context
can be switched.

CreateAndRunInitialProcess =̂

(SKNewProcess[fp/p!] o
9
RunFirstProcess[fp/p?]) \ {fp}

The RunFirstProcess operation assumes that no other processes are execut-
ing. It must be executed during the low-level initialisation operation. If this
condition is violated, process switches will fail. The operation basically sets
up the stack with registers that can be popped when the first context switch

5.10 Kernel Interface – User Processes 293

occurs; in order for the first context switch not to fail, the stack have the
contents the hardware expects. Since we are not using the process stack for
intermediate register storage, the stack need only to be initialised to the entry
point of the initial process and the flags register (F register on the IA32).

The operation can be approximated by the following:

SetupFirstProcess

p? : PID

ep? : ADDR

flgs? : WORD

push stack(p?, ep?)

push stack(p?,flgs?)

SetHWTSS

∆HW

ΞPTAB

p? : PID

hwtss ′ = tss(p?);

RunFirstProcess =̂

(SetupFirstProcess o
9
SetHWTSS) o

9
ContextSwithc

Processes must be able to suspend themselves. The basic idea adopted for
the Separation Kernel is that natural-break scheduling should be employed.
This has the implication that each process, by and large, determines for itself
when it should be suspended. The self-suspending operation is defined by the
next schema:

SKSuspendSelf =̂ (RequeueUserProcess o
9
SwitchContext)

This operation is then wrapped inside a check on the identity of the re-
questing process, as follows:

USKSuspendSelf =̂

(VerifyCallerIdent ∧ SKSuspendSelf)

∨ BadCallerIdent

The last action a process takes is to terminate itself. The following schema
defines this operation.

SKTerminateSelf =̂

((RunningProcess[c/p!] ∧

SetStateToTerminated [c/p?] ∧

FreeCodeSegment [c/p?] ∧

FreeSDSegment [c/p?] ∧

(DelProcUPID o
9
DelPD [c/p?]) \ {c})

o
9
SKSchedNext)

294 5 A Separation Kernel

For security, it must be wrapped inside an identity test.

USKTerminateSelf =̂

(VerifyCallerIdent ∧ SKTerminateSelf)

∨ BadCallerIdent

5.10.4 Message Passing

The operations in this subsection are mostly those defined above. The main
difference is that what is defined here is part of the system call’s handling
code.

In the definition of message-passing operations at the interface between
the kernel and user processes, promotion is extensively employed. The reader
will remember that in the section in which the message-passing primitives
were defined, the ΦPTABM schema was defined but not used; it is in the defi-
nition of the following operations that this schema finds its use. It is necessary
to recall that promotion has the useful property that the refinement of the
contained and containing state spaces can proceed independently. Because of
this, the refinement of the operations in this section requires little or no extra
work here.

When sending a message, the user process (or libary routine) has the
following interface

UsrSendMsgI
...

dest? : UPID

data? : MSGDATA
...

...

At the interface to the message-passing subsystem, user processes only
communicate identifiers as elements of UPID , not as elements of PID . The
interface operation for sending a message can be defined as

...

dest? : UPID

data? : MSGDATA

result ! : YESNO

...

Inside the module handling message passing, a translation scheme will need
to be employed. Note first that the above schema does not actually construct

5.10 Kernel Interface – User Processes 295

a message object, while the message-queueing operations do. This provides an
opportunity, as follows.

First, assume that the following is called after the verification of the caller
(or src?, that is).

TranslateMessageAddrs

ΞPTAB

src?, dest? : UPID

data? : MSGDATA

m! : MSG

∃ srcpid , destpid : PID •

PIDforUPID [src?/u?, srcpid/p!] ∧

PIDforUPID [dest?/u?, destpid/p!] ∧

∃m : MSG •

msgsrc(m) = srcpid ∧

msgdest(m) = destpid ∧

msgdata(m) = data? ∧

m! = m

This operation could be implemented as a pair of assignments if the number
of bits required to store elements of PID ≤ the number of bits required to
store elements of UPID .

On the output side, there is the need to translate a message structure into
a form that can be understood by a user process.

MSGToUserData

ΞPTAB

src! : UPID

dest ! : UPID

data! : MSGDATA

m? : MSG

src! = pidext(msgsrc(m?))

dest ! = pidext(msgdest(m?))

data! = msgdata(m?)

In order for this operation to work properly, it is essential that the outputs
are placed on the user-process stack.

Using this approach, it is possible to define the remaining user-level oper-
ations.

When a message is sent, the user interface passes objects of type UPID as
well as the message payload (the message data, an object of type MSGDATA).
It is necessary to translate the UPID objects to objects of type PID and to
create an object of type MSG .

296 5 A Separation Kernel

TranslateMsgAddrs

ΞPTAB

src?, dest? : UPID

data? : MSGDATA

m! : MSG

∃ srcpid , destpid : PID •

PIDforUPID [src?/u?, srcpid/p!] ∧

PIDforUPID [dest?/u?, destpid/p!] ∧

∃m : MSG •

msgsrc(m) = srcpid ∧

msgdest(m) = destpid ∧

msgdata(m) = data? ∧

m! = m

This schema simplifies to:

ΞPTAB

src?, dest? : UPID

data? : MSGDATA

m! : MSG

msgsrc(m!) = extpid(src?)

msgdest(m!) = extpid(dest?)

msgdata(m!) = data?

The object, m!, will have to be stored using AddMsg ; meanwhile, it remains
on the stack. This causes no problems because AddMsg allocates dynamic
storage for the message and only requires that the message take the form of
a record or structure.

Promotion is used to define the basic operations, as observed when defining
the message queue type. The SendToProcess operation adds a message to the
destination process/

SendToProcess =̂

∃∆MSGQ • ΦPTABM ∧ AddMsg

The full send-message primitive is defined as:

USKSendMsg =̂

(VerifyCallerId ∧

(∃mu : MSG ; sz : N1; d : PID | sz = msgsz (mu) •

PIDforUPID [dest?/u?, d/p!] ∧

TranslateMsgAddrs[u?/src?,mu/m!] ∧

SendToProcess[d ,mu/m?, sz/rqsz?] ∧

SysOk))

∨ BadCallerIdent

5.10 Kernel Interface – User Processes 297

This is the interface operation. It verifies the caller’s identity.
The data in a message has to be extracted so that it can be handed to the

destination process. the following operation does this.

MSGToUserData

ΞPTAB

src! : UPID

dest ! : UPID

data! : MSGDATA

datalen! : N

m? : MPTR

src! = pidext(msgsrc(msgat(m?)))

dest ! = pidext(msgdest(msgat(m?)))

data! = msgdata(msgat(m?))

datalen! = msgpayload(msgat(m?))

This operation is a surrogate boolean. It is used to return a value to user
processes attempting to determine whether they have messages (or messages
from a stated source) in their message queue.

UReturnYes

resp! : YESNO

resp! = yes

UReturnNo

resp! : YESNO

resp! = no

The operation that tests for the presence of messages in its message queue
is now defined. This is a promoted operation.

ProcessHasMsgs =̂

∃∆MSGQ • ΦPTABM ∧ GotMsgs

The interface primitive for the GotMsgs predicate is the following:

USKGotMsgs =̂

(VerifyCallerIdent ∧

(PIDforUPID [p/p!] ∧

((ProcessHasMsgs[p/p?] ∧ UReturnYes) ∨ UReturnNo) \ {p}

SysOk)

∨ BadCallerIdent

298 5 A Separation Kernel

This operation can be called from a user process.
The operation to return the next message in the queue is now defined by

promotion.

NextMsgForProcess =̂

∃∆MSGQ • ΦPTABM ∧ NextMsg

The user-interface level operation for getting the next message is defined
as

SKNextMsg =̂

(VerifyCallerIdent ∧

(PIDforUPID [p/p!] ∧

(∃mp : MPTR •

((NextMsgForProcess[mp/mp!] ∧ MSGToUserData[mp/m?])
o
9
DeleteStoredMsg [mp/addr?])

∧ SysOk))

∨ BadCallerIdent

As can be seen from the definition of the message queue type, processes
can determine whether there are any messages from a given source in its input
message queue.

ProcessHasMsgsFromSrc =̂

∃∆MSGQ •

ΦPTABM ∧ GotMsgsFromSrc

The operation that can be invoked from a user interface is the following:

SKProcessHasMsgsFromSrc =̂

(VerifyCallerIdent ∧

(PIDforUPID [src?/u?, srcpid/p!] ∧

PIDforUPID [destpid/p!] ∧

(ProcessHasMsgsFromSrc[destpid/p?, srcpid/src?] ∧ UReturnYes)

∨ UReturnNo)) \ {srcpid , destpid}

∨ BadCallerIdent

Promotion is used to define the actual operation.

NextMsgForProcessFromSrc =̂

∃∆MSGQ •

ΦPTABM ∧ NextMsgFrom

The operation actually to get the next message is defined below.

5.11 Devices—Trusted Code 299

SKNextMsgFrom =̂

(VerifyCallerIdent ∧

(PIDforUPID [src?/u?, srcpid/p!] ∧

PIDforUPID [destpid/p!] ∧

(∃mp : MPTR •

SKNextMsgFromSrc[destpid/p?, srcpid/src?,mp/mp!] ∧

MSGToUserData[mp/m?))
o
9
DeleteStoredMsg) \ {srcpid , destpid})

∨ BadCallerIdent

5.11 Devices—Trusted Code

Devices are trusted processes. In this design, trust only goes so far. Devices
are not permitted full access to the kernel and have to respect a well-defined
interface.

It would be extremely expensive to have each device process occupy its
own set of segments. It is more convenient to have them reside in the same
address space as the kernel. It would be preferable for each device not to have
a stack but, inevitably, many will.

Device processes are expected never to terminate. For simplicity, it is as-
sumed that, should it be necessary to replace a driver, the system must be
shut down and rebooted with the new driver configured.

There are two main parts:

1. activation as a result of a user-process request, and
2. activation as a result of the device becoming ready or having data ready

to read.

The links between device processes, the devices they control and the
processes that require their services must be provided. The relationship be-
tween the device process and the physical device is a matter of addressing;
each physical device has its own set of reserved addresses, so this is not an
issue. This alone requires device processes either to be constructed of

• a component that operates on the physical device, and
• a component that handles requests from user processes and that passes

data back to user processes (when required).

This separation of concerns is attractive.
Clearly, there must be an ISR to handle interrupts generated by the phys-

ical device’s interface. The ISR can cause a component of the device process
to execute. One way to do this is to use a semaphore. A second way is for the
ISR to send a message. The message need not be anything involved because
it merely denotes the availability of the device for writing or the availability
of data for reading.

300 5 A Separation Kernel

On the other side, user processes must make a request to the device process.
The user process might then wait for the request to be serviced (e.g., when
it is a request for data) or might continue (e.g., when the request is to write
data). Synchronous protocols for writing might also be employed in which
the servicing entity returns a sucess code to the user process. A synchronous
interface can be implemented using the standard message-passing operations.

For the time being, it is assumed that the low-level device interface consists
of an ISR and a set of addresses plus a piece of code that interfaces to the
command bits in that address set. It is assumed that the code can be directly
accessed by the device process.

A simple solution at the bottom level for reads is that the ISR hands a
pointer to the newly input buffer to the device process, then places the device
process on the device ready queue and causes a reschedule.

The device process, on the other hand, has made the device request and
has passed any parameters to the device. Immediately thereafter, the device
process suspends. Upon resumption, the device process reads the contents of
the buffer passed to it by the ISR and passes the associated data or result
code to the requesting user process.

This assumes that requests can be serviced in a simple FIFO manner and
that the ISR knows the identifier of the device process. It also assumes that the
device interface can be directly addressed by the device process. The second
assumption suggests that:

• The device process resides in the same address space as the device-
manipulating code. This implies that the device process resides in the
kernel’s address space.

• There must be some kind of buffer space inside the kernel to hold the data
passed to and from devices.

• The interface to device processes can be effected via a mapping table.
This has the implication that all devices are configured before the sys-
tem is started. This scheme also permits the user-process interface to be
extended to include a (polymorphic) DeviceCall operation. Furthermore,
this scheme is in line with the general approach adopted here that user
processes access the kernel and its services only by means of a well-defined
and relatively small set of operations.

Storing device processes in the kernel’s address space is just a convenience to
avoid an expensive segment swap; it is also necessary for most processors allow
only a limited number of physical segments. In this specification, only physical
segmentation is assumed for the reason that it does not involve any secondary
storage. Swapping between main and secondary storage could provide a secu-
rity hole for the malicious; the assumption also has speed advantages.

Placing device processes in the kernel address space does not imply that
they have complete access to the kernel. Even for device processes, all kernel
operations are in terms of a small, well-defined set of processes. There is the
chance that a device process could write to kernel data structures but this is an

5.11 Devices—Trusted Code 301

inevitable risk that the design implies. However, an assumption is that device
processes are trusted not to operate in malicious ways. It would be far better to
avoid this but, as noted above, it would require each device process to reside
in its own, totally separate, address space. This, in turn, would require an
address-space swap when entering the kernel, an operation that is somewhat
costly on most machines (inter alia, it involves saving the entire context of
the calling process). The introduction of virtual store appears to solve some of
the problems. Again, as noted above, swapping processes between main store
and some form of backing store is attractive but is costly and also opens up
the possibility of attack.

The current scheme also appears to keep the design as simple as possible.
It is our belief, based upon experience with similar and other software, that
the simpler the software the easier it is to maintain and the easier it is to
protect.

Some processors (e.g., Intel IA32) have instructions to support context
switches. On the IA32, a jump or call instruction can be used to switch be-
tween address spaces. It is attractive to employ instructions such as these
whenever possible on the grounds of potential speed improvement (although
the IA32 switching times are about the same for all methods). By placing
device processes in the same address space, the address-space switch is no
longer required; this might require an additional piece of code to switch de-
vice contexts.

There is another issue that must be discussed. By permitting device
processes to reside in the kernel’s address space, the possibility of concur-
rency within that address space is opened up. This is particularly the case
when prioritised interrupts are supported by the hardware. For simplicity, it
will be assumed that all devices have the same interrupt priority (this is not
uncommon and is assumed in many portable operating systems). Higher pri-
ority interrupts (hardware and software error conditions except segmentation
violations) can be handled in the normal way and are orthogonal. Under this
assumption, there is no contention between device processes and between de-
vice processes and ordinary ones. The scheduler’s organisation only permits
either a device or a user process to execute at any time.

It is first necessary to define a collection of operations that deal directly
with the data structures relating to device processes. We will begin with a
state-setting operation.

SetDevProcStateToWaiting =̂

∃ st : PSTATE | st = pswtgdev •

SetProcState[st/st?]

This sets the state of a device process to pswtgdev when it is waiting for a
request or for data from a device (the two states can be separately identifier,
if so wished).

The following operation is a predicate that is true if the process identifier
bound to p? is that of a device process.

302 5 A Separation Kernel

IsDeviceProcess

ΞPTAB

p? : PID

ptype(p?) = dproc

When a device process is created, its device-message slot is initialised to
the null message.

InitDeviceMsg

∆PTAB

d? : PID

devmsg ′ = devmsg ∪ {d? �→ (nullpid ,nullmsg)}

After a device process has serviced a request, it clears its device-message
slot in PTAB by setting it to a null message.

ClearDevMsg

∆PTAB

d? : PID

devmsg ′ = devmsg ⊕ {d? �→ (nullpid ,nullmsg)}

When a user process makes a request to a device process, it performs
an action akin to sending a message. This “device message’ is stored in the
devmsg slot corresponding to the device process.

SetDevMsg

∆PTAB

d? : PID

p? : PID

m? : MSG

devmsg ′ = devmsg ⊕ {d? �→ (p?,m?)}

The following is the operation performed by a device process when it reads
a request message.

GetDevMsg

ΞPTAB

d? : PID

m! : MSG

m! = snd devmsg(d?)

The next two schemata define operations on device-process requests. The
first returns the identifier of the requesting process (which can never be a
device process)

5.11 Devices—Trusted Code 303

DevRequesterId

ΞPTAB

d? : PID

p! : PID

p! = fst devmsg(d?)

The next schema defines a predicate that is true when the device message for
the device, d?, is not null.

GotDevMSg

ΞPTAB

d? : PID

devmsg(d?)
= (nullpid ,nullmsg)

The following is just another name for the same operation.

NonNullDevRq =̂ GotDevMsg

Device requests cannot be made by the null process, the idle process or
another device process:

ValidDevRqProcessId

ΞPTAB

rqid? : GPID

iprc? : PID

rqid?
= nullpid

rqid?
= iprc?

ptype(rqid?)
= dproc

ISRs use this operation to pass data to the associated device process.

PassDataToDeviceProcess =̂

SetDevMsg
o
9
ReadyDeviceProcess

PassDataToDeviceProcess

∆PTAB

∆SKSCHED

∆PROCESSQUEUE

d? : PID

p? : PID

304 5 A Separation Kernel

m? : MSG

devmsg ′ = devmsg ⊕ {d? �→ (p?,m?)}

state ′ = state ⊕ {d? �→ psready}

devq ′ = devq � 〈d?〉

The precondition is (notionally) required for the refinement process, so we
calculated it.

prePassDataToDeviceProcess =̂ true

5.11.1 Device replies

When a device process has completed its operation, it sends a reply message
to the requesting user process. In the case of write-only devices, the reply will
consist of a return code denoting the success of the operation (it might also
contain some other date, say confirmation of the number of bytes written).
These device replies are stored in PTAB and each process has a devrpy entry.

The following schema defines the operation to initialise the device reply
entry for a newly created process.

InitDevReply

∆PTAB

p? : PTAB

devrpy ′ = devrpy ∪ {p? �→ nullmsg}

When a process has received a reply from a device process, it should copy
the data to its own address space and then clear the reply entry. This schema
defines the operation:

ClearDevReply

∆PTAB

p? : PID

devrpy ′ = devrpy ⊕ {p? �→ nullmsg}

When a device process has completed its task, it reports the result to the
requesting user process by setting a “message” in the devrpy table within
PTAB . This is achieved by the operation defined by the following schema:

SetDevReply

∆PTAB

p? : PID

m? : MSG

devrpy ′ = devrpy ⊕ {p? �→ m?}

5.11 Devices—Trusted Code 305

The user process obtains device replies by means of the operation defined
by the following schema:

ReplyFromDeviceProc

ΞPTAB

p? : PID

m! : MSG

m! = devrpy(p?)

Should a process be unsure about the result of a device request, the fol-
lowing predicate is defined.

GotReplyFromDeviceProc

ΞPTAB

p? : PID

devrpy(p?)
= nullmsg

If a process does not receive a device reply when it should, it can use the
following schema to notify the system of this eventuality.

NoDeviceReply =̂

(∃ e : SYSERR | e = nodevreply •

SetSysErr [e/e?]) ∧

RaiseKillInterrupt

The operation employed by a device process to reply to a user process
request is defined as:

DevReplyToUserProc =̂

(GotReplyFromDeviceProc ∧

(ReplyFromDeviceProc o
9
ClearDevReply) ∧

SysOk)

∨ NoDeviceReply

The condition NoDeviceReply should never happen!
The expansion of DevReplyToUserProc is

DevReplyToUserProc

∆PTAB

∆ERRV

∆HW

p? : PID

m! : MSG

(devrpy(p?)
= nullmsg ∧

m! = devrpy(p?) ∧

devrpy ′ = devrpy ⊕ {p? �→ nullmsg} ∧

306 5 A Separation Kernel

serr ′ = sysok)

∨ (serr ′ = nodevreply ∧ intno′ = killintno)

preDevReplyToUserProc =̂

p? ∈ dom devrpy ∧ devrpy(p?)
= nullmsg

5.11.2 Device numbers

The following is an error-reporting schema:

BadDeviceNumber =̂

(∃ e : SYSERR | e = baddevnum •

SetSysErr [e/e?]) ∧

RaiseKillInterrupt

This schema is used when it is detected that a process is requesting a ser-
vice from a device whose number is unknown to the system. Devices are known
internally to the system by process identifiers (elements of PID); outside the
kernel, user processes know them only by device numbers (or service numbers).
When a device process is created, it is allocated a PID and a DEVNO (device
number). The following operation sets the device number in the devmap table
in PTAB when a device process is created.

InitDeviceNum

∆PTAB

dno? : DEVNO

d? : PID

devmap′ = devmap ∪ {dno? �→ d?}

The precondition is simply

pre InitDeviceNum =̂ true

Checking that a device number exists is done by the operation defined by
the following schema:

IsKnownDeviceNumber

ΞPTAB

dno? : DEVNO

dno? ∈ dom devmap

Device numbers are allocated by the person who configures the system, not
by the system proper. This way, the implementers of user processes as well as
the system can know the device numbers that are in use.

5.11 Devices—Trusted Code 307

Given a device number, dno?, what is the corresponding process identifier?
The following schema defines this operation. The result is returned in d !. The
operation can only be applied when it is known that dno? is an element of
devmap’s domain (is a defined device number, that is).

DeviceProcessId

ΞPTAB

dno? : DEVNO

d ! : PID

d ! = devmap(dno?)

Device suspension. Devices are responsible for suspending themselves.

SuspendDeviceProcess =̂

RequeueDeviceProcess[d?/p?]

This operation was defined when specifying the scheduler.

5.11.3 Device process creation

Device processes must be created, usually at boot time. Unlike user processes,
it is expected that device processes will not terminate until the system as a
whole is shut down.

There is no need to create a user-level identifier, so the following new
composition is adequate.

SetPDState

∆PTAB

p? : PID

st? : PSTATE

state ′ = state ∪ {p! �→ st?}

ptype ′ = ptype ∪ {p! �→ dproc}

The fact that device processes do not have external identifiers means that
the operation to enter their basic details into the process table is a little dif-
ferent from the one used for user processes. The operation for device processes
is:

AddDevPD =̂

((GotFreePIDs ∧ AllocPID)
o
9
SetPDState[p!/p?] ∧

SysOk)

∨ PTABFull

This definition expands, after slight simplification, into

308 5 A Separation Kernel

AddDevPD

∆PTAB

∆ERRV

∆HW

p! : PID

st? : PSTATE

(used ⊂ PID ∧

p!
∈ used ∧

used ′ = used ∪ {p!} ∧

state ′ = state ∪ {p! �→ st?} ∧

ptype ′ = ptype ∪ {p! �→ dproc} ∧

serr ′ = sysok)

∨ (serr ′ = ptabfull ∧ intno′ = killintno)

The simplification is to identify state with state ′′ and ptype ′ with ptype ′′. This
is permitted because they are only updated in the second component of the
sequential composition.

preAddDevPD =̂ used ⊂ PID

The primitive that creates a new device process is specified ass

NewDeviceProcess =̂

(IsKnownDeviceNumber ∧ BadDeviceNumber)

∨ (AddDevPD [d !/p!] o
9
InitDeviceNum[d !/d?] o

9
InitDeviceMsg [d !/d?]o

9

InitDeviceRq [d !/d?] o
9
InitDevReply [d !/p?]o

9

SetDevProcStateToWaiting)

After merging the existentials, this definition expands into the following
schema:

NewDeviceProcess

∆PTAB

∆ERRV

∆HW

d ! : PID

dno? : DEVNO

∃ devmsg ′′ : PID �→ MSG ; devrqs ′′ : PID �→ MSG ;

devrpy ′ : PID �→ MSG •

(dno? ∈ dom devmap ∧ serr ′ = baddevnum ∧ intno′ = killintno)

∨ (used ⊂ PID ∧

d !
∈ used ∧ used ′ = used ∪ {d !} ∧

state ′ = state ∪ {d ! �→ st?} ∧ ptype ′ = ptype ∪ {d ! �→ dproc} ∧

serr ′ = sysok)

∨ (serr ′ = ptabfull ∧ intno′ = killintno)

5.11 Devices—Trusted Code 309

o
9
devmap′ = devmap′′ ∪ {d ! �→ dno?}

o
9
devmsg ′ = devmsg ′′ ∪ {d ! �→ nullmsg}

o
9
devrqs ′ = devrqs ′′ ∪ {d ! �→ nullmsg}

o
9
devrpy ′ = devrpy ′′ ∪ {d ! �→ nullmsg}

Note that the double-primed variables are only affected once and in their
respective composition elements. This permits the following simplification.

NewDeviceProcess

∆PTAB

∆ERRV

∆HW

d ! : PID

dno? : DEVNO

(dno? ∈ dom devmap ∧ serr ′ = baddevnum ∧ intno′ = killintno)

∨ ((used ⊂ PID ∧ d !
∈ used ∧ used ′ = used ∪ {d !} ∧

state ′ = state ∪ {d ! �→ st?} ∧ ptype ′ = ptype ∪ {d ! �→ dproc} ∧
o
9
devmap′ = devmap′′ ∪ {d ! �→ dno?}

devmsg ′ = devmsg ′′ ∪ {d ! �→ nullmsg} ∧

devrqs ′ = devrqs ′′ ∪ {d ! �→ nullmsg} ∧

devrpy ′ = devrpy ′′ ∪ {d ! �→ nullmsg} ∧

serr ′ = sysok)

∨ (serr ′ = ptabfull ∧ intno′ = killintno))

The precondition of NewDeviceProcess is given by:

preNewDeviceProcess =̂

dno? ∈ dom devmap ∨ used
= PID

There is only one thing left. Some device processes will need to initialise
their hardware as soon as the system boots. This has to be included as an
option. Therefore, the following is added.

NewDeviceProcessPossInitHW =̂

NewDeviceProcess o
9
(runatboot? = yes ∧ ReadyDeviceProcess[d !/dp?])

After a little obvious transformation and expansion, this schema expands into

NewDeviceProcessPossInitHW

∆PTAB

d ! : PID

dno? : DEVNO

runatboot? : YESNO

(dno? ∈ dom devmap ∧ serr ! = baddevnum)

∨ ((used ⊂ PID ∧

310 5 A Separation Kernel

d !
∈ used ∧ used ′ = used ∪ {d !} ∧

state ′ = state ∪ {d ! �→ st?} ∧ ptype ′ = ptype ∪ {d ! �→ dproc} ∧

devmsg ′ = devmsg ′′ ∪ {d? �→ nullmsg} ∧

devrqs ′ = devrqs ′′ ∪ {d? �→ nullmsg} ∧

devrpy ′ = devrpy ′′ ∪ {d? �→ nullmsg} ∧

(runatboot? = yes ∧

ReadyDeviceProcess[d !/dp?])

∧ serr ′ = sysok)

∨ (serr ′ = ptabfull ∧ intno′ = killintno)

The precondition is:

preNewDeviceProcessPossInitHW =̂

dno? ∈ dom devmap

∨ used
= PID

It is now necessary to account for three things:

1. Communicating parameters to the device process;
2. Readying a device process when its associated ISR has completed;
3. Returning values to the user process that initially made the request.

It must be pointed out that a synchronous I/O model is assumed in this
specification. The reason for this is that it is simple to specify and to imple-
ment.

It is assumed that user processes communicate with device processes via
an interrupt. The ISR associated with this interrupt decodes the request and
passes appropriate parameters to the device process. Until the device process
has completed its operations and has returned at least a return code to the
caller, the caller is suspended in a waiting state (pswaitdev). When the device
process has completed, it must ready the requesting user process—this implies
that the device process stores the identifier of the requesting process.

SetStateToDevWait =̂

∃ st : PSTATE | st = psdevwait •

SetProcState[st/st?]

It must be emphasised that this operation is intended for use by user
processes only. Device processes have their own waiting state and setter op-
eration.

When a device request is made, the requesting process’ PID and device
number are checked. Should either fail, an error value is returned in serr .
The device data is passed to the device process, together with the requesting
process’ PID.

The parameters passed by the requesting process take the form of a mes-
sage. The message is passed to the device process using PassDataToDevice-

Process. The requesting process then waits until the device process posts a

5.11 Devices—Trusted Code 311

message to its devrpy slot using DevReplyToUserProc and then readies the
requesting process using MakeReadyUserProcess. The identifier of the request-
ing process must be checked to see that it is valid (not the null or idle process
and not another device process).

The following operation is part of the handler code that activates device
processes. If device requests are handled by an interrupt, the following oper-
ation will be used by the associated ISR.

BadCallerIdent =̂

(∃ e : SYSERR | e = badcallerid •

SetSysErr [e/e?]) ∧

RaiseKillInterrupt

When a request is made to a device process, it must be verified and the
device process activated. Verification, here, consists of verifying that there is
a device process corresponding to the specified device number and that the
requesting process is genuine. If the tests have been passed, the request is
passed to the device process and the requesting user process’ state is set to
“waiting on device” (psdevwait). The operation is defined as follows:

VerifyAndActivateDevProc =̂

(VerifyCallerIdent ∧ PIDforUPID [caller/p!] ∧

IDLEPROCESSIdent [iprc/p!] ∧

(ValidDevRqProcessId [caller/rqid?, iprc/iprc?] ∧

(IsKnownDevideNumber ∧

(DeviceProcessId [dp/d !] ∧

((PassDataToDeviceProcess[dp/d?, caller/p?]
o
9
SetStateToDevWait [caller/p?]) ∧

SysOk
o
9
SKSchedNext)) \ {dp})

∨ BadDeviceNumber)) \ {caller , iprc}

∨ BadCallerIdent

For safety, this operation is expanded.

VerifyAndActivateDevProc

∆SCHED

∆PRIOQ

∆HW

∆ERRV

ΞPTAB

u? : UPID

dno? : DEVNO

m? : MSG

∃ caller , iprc : PID •

(curr = extpid(u?) ∧ caller = extpid(u?) ∧ iprc = ipid ∧

((caller
= nullpid ∧ caller
= iprc ∧ ptype(caller)
= dproc ∧

312 5 A Separation Kernel

(∃ dp : PID •

dno? ∈ dom devmap ∧ dp = devmap(dno?) ∧

(∃ devq : seqPID •

(∃ state ′′ : PID �→ PSTATE •

devmsg ′ = devmsg ⊕ {dp �→ (caller ,m?)} ∧

state ′′ = state ⊕ {dp �→ psready} ∧

devq ′′ = devq � 〈dp〉 ∧

state = state ′′ ⊕ {caller �→ psdevwait}) ∧

serr ′ = sysok

∧ SKSchedNext)))

∨ (serr ′ = baddevnum ∧ intno′ = killintno))

∨ (serr ′ = badcallerident ∧ intno′ = killintno))

The expansion of this operation shows that a request to a device causes the
device process to be readied on the scheduler’s ready device queue (devq) and
the requesting process is suspended. The operation also causes a reschedule.

This definition exemplifies our use of the reschedule operation instead of
the MakeUnready. It is known that when the above is exceuted, the current
process is the one that needs to be removed from the scheduling queue.

Note that device requests are a case where the currently executing process
is unreadied. The requesting user process remains in a waiting state until the
device process whose services it has requested has completed and placed a
reply message in the requesting process’ reply slot in PTAB .

The method by which the device process communicates with the hardware
device under its control is not further specified here. Some shared memory
will probably be employed for data buffering. Since this specification is not
machine specific, it is impossible to decide here which methods should be used.

When the device process has obtained a reply from the hardware, it uses
the following operation to return the data to the requesting user process. It
then suspends itself ready for the next request.

DevReturnDataAndSuspend =̂

((DevRequesterId [rqid/p!] ∧

DevReplyToUserProc[rqid/p?] ∧

MakeReadyUserProcess[rqid/p?]) \ {rqid}
o
9
SKSchedNext) o

9
SetDevProcStateToWaiting

This partially expands into:

DevReturnDataAndSuspend

∆PTAB

∆SKSCHED

∆ERRV

∆HW

d? : PID

5.12 Process Interface to the Kernel 313

m! : MSG

(∃ rqid : PID | rqid = fst devmsg(d?) •

((devrpy(rqid)
= nullmsg ∧

m! = devrpy(rqid) ∧

devrpy ′ = devrpy ⊕ {rqid �→ nullmsg} ∧

serr ′ = sysok)

∨ (serr ′ = nodevreply ∧ intno′ = killintno) ∧

MakeReadyUserProcess[rqid/p?])
o
9
SKSchedNext o

9
SetDevProcStateToWaiting

This operation can be used to return status information as well as requested
data. In the case of output devices, a completion code could be returned in
the message passed to the requesting user process.

SetDeviceProcessData =̂

(DevRequestId [rqid/p!] ∧ SetDevReply [rqid/p?])

It is now necessary to specify how the reply from the device process is
handed to the requesting process. This is, basically, an architecture-specific
issue but a general solution is to return the data as a message on the requesting
process’ stack.

In this model, when a device process makes a request to its associated
hardware, it must suspend itself until the device has completed the requested
operation (generally, it is assumed that the operation returns a value). When
the ISR or device interface has completed, it must ready the device process
so that it can perform its next operation. If the device process deals with
hardware that does not require it to wait, it should immediately suspend ready
for the next user request. The suspension of a device process is achieved by
action of SKSchedNexto

9SwitchContext) because this operation unconditionally
schedules a new process and switches the context to it.

Because device processes are trusted, a suspension operation can be defined
that does not engage in all the checking required for user processes. It is

SelfSuspendDeviceProcess =̂ SKSchedNext

The ISR needs, however, to obtain the device process’ identifier; this might
change between boots. However, the device number does not, so the ISR can
call DeviceProcessId to obtain the device number.

AwakenDeviceProcessFromISR =̂

(DeviceProcessId [d/d !] ∧ ReadyDeviceProcess[d/dp?]) \ {d}

5.12 Process Interface to the Kernel

It is assumed that user processes, when performing a system call, place the
input parameters on their stack. They will also retrieve results from the kernel

314 5 A Separation Kernel

from their stack. This requires that user-process stacks be accessible from
within the kernel even though user-process stacks reside in segments other
than the one in which the kernel resides.

Finally, device processes are trusted code and are programmed by systems
programmers. It seems permissible, therefore, to provide direct access to all of
the operations defined above. Moreover, there are no problems with crossing
segment boundaries when device processes are active. The only issue is how
a user process can activate a device process. This operation will be included
in this section.

The first calls that are considered are those performing message-passing
functions. They are directly called from user processes and are relatively com-
plex to specify.

It should be noted that the above operations deal mostly with pointers to
messages, not to message structures proper. In particular, this leads to two
problems:

1. How to pass a message structure to the destination process. (This involves
crossing address space boundaries.)

2. Deletion of the message structure after the destination has read the mes-
sage.

In addition, there is the question of reclaiming all storage in the message pool.
As noted above, the FreeBlk algorithm does not collect and merge all possible
blocks but, if a block cannot be connected immediately to an existing free
block, the algorithm just adds the newly freed block to the end of the free
block chain. This leads to space leaks and is the reason for the definition of
the block scavenging operation. The block scavenging operation is relatively
expensive, so should not be called very frequently.

Of the process control operations, those that suspend and terminate their
caller are intended to be called directly by a user-level process. The process
creation operation is intended to be called from a library routine; the library
routine will be called by the initial or some other process.

As an intermediate solution to the above problems, the following opera-
tion is defined. This operation is intended to be called from the ISR that is
activated when a user process performs a system call; system calls consist of
a number of operations on the user stack (essentially a conventional proce-
dure call) followed by the raising of a dedicated interrupt. The top of the user
stack is the opcode, rqop? (requested operation—an element of SYSOPCODE)
which determines the operation to be performed by the system. Immediately
underneath the opocde are the parameters to the system call. The decode rou-
tine performs the operation and returns values on the user’s stack. All that is
missing from the DecodeSysCall specification is the mechanism for accessing
the user-process stack.

5.12 Process Interface to the Kernel 315

DecodeSysCall

rqop? : SYSOPCODE

(rqop? = newuproc ∧ USKNewProcess)

∨ (rqop? = suspself ∧ USKSuspendSelf)

∨ (rqop? = termself ∧ USKTerminateSelf)

∨ (rqop? = sndmsg ∧ USKSendMsg)

∨ (rqop? = gotmsgs ∧ USKGotMsgs)

∨ (rqop? = gotmsgfromsrc ∧ SKProcessHasMsgsFromSrc)

∨ (rqop? = nextmsg ∧ USKNextMsg)

∨ (rqop? = nextmsgfromsrc ∧ SKNextMsgFrom)

∨ (rqop? = devrequest ∧ VerifyAndActivateDevProc)

We have ignored the issue of obtaining parameters from the user process.
The actual answer, of course, depends upon the processor being used. On
the IA32, the parameters are on the user’s stack. On interrupt, the user’s
stack is pointed to by the current hardware TSS register; the stack pointer is
stored in the TSS; when an interrupt occurs, the stack regiser can be retrieved
from the TSS. This is not the entire story because the IA32 is a segmented
architecture, so a segment register has to be set up to point to the stack
segment (combined stack and data segment in the present case) so that the
user’s stack can be addressed. When an interrupt occurs, the IA32 pushes two
double words (two 32-bit quantities, i.e.) on the current stack—one is the flags
(F) register, the other is the PC. Underneath these comes the parameter area
that can be accessed to obtain parameter values. Once extracted, the stack can
be adjusted ready to return results. Other architectures will arrange matters
in a different way, it must be stressed.

When this operation has completed, the ISR returns. The reason for this is
that any context switches are performed by component operations as their last
operation (context switches also perform a Return From Interrupt operation
as standard). For this reason, the DecodeSysCall operation does not assign a
value to the standard error-return variable, serr .

As far as the user stack is concerned, the following must be emphasised:

• Input values are taken from the user-process stack. This resides in the user

process stack segment, not in the kernel’s address space.
• Output values are placed on the user-process stack, not the kernel stack.

When taking inputs and returning outputs, access to the user stack is required.
This is a low-level operation programmed in assembly code. The complexity
of this operation is dependent upon the architecture of the processor upon
which the separation kernel runs.

The problem is not in principle difficult. Within the structure representing
each process’ state (in its process table), there is a slot each for its segments.
The stack pointer is also stored there. Depending upon the architecture and
compiler, there might also be a pointer to the user process’ zcurrent stack

316 5 A Separation Kernel

frame. This last pointer allows the kernel direct access to the top of the user’s
stack, albeit at the cost of a number of accesses to the process table and other
structures.

5.13 Final Thoughts

The NSA documents [10] frequently refer to threads inside each Separation
Kernel process. The specification that is refined in this chapter makes no
mention of threads. The explicit inclusion of threads would increase the length
of the chapter somewhat.

There is, however, no real need to include threads in this chapter because
they can be included by simple modifications to the specification, in particular
the mechanisms of the simple kernel specified and refined in Chapter 3 can
be included in the Separation Kernel. The inclusion requires, among others,
a few changes to the Separation Kernel’s process table (PTAB). To see that
this works, it is necessary to consider that the simple kernel operates in a
single address space. The processes that the simple kernel supports do not
require address-space manipulation when context switches occur; indeed, they
resemble threads quite closely.

This is the other reason for combining the simple kernel and the Separation
Kernel in this book.

6

Closing Thoughts

In this last chapter, we will try to collect some threads and review the content
of this book.

First, the book contains the specification and refinement of two micro
kernels. The first is suitable for use in embedded systems and the other is
specifically a kernel for cryptographic systems. Each specification is relatively
complete and the refinements reach the level at which executable code in a
language such as C or Ada can be read off from the Z schemata.

The refinements are based on the standard Z technique as it is described
in the literature (e.g., [12, 13]). The refined state schema was defined and then
the abstraction relation was defined. Thereafter, the operation schemata were
defined. The initialisation theorem was used as a test of the adequacy of the
abstraction relation.

It was found that the abstraction relations were

• Functions;
• Identities.

These properties, in principle, permitted the calculation of all operations in
the refinement and obviated all the associated proofs. We included all proofs
in the first refinement so that the reader could see that they were possible
(actually, quite simple). In the second refinement (that of the Separation Ker-
nel), we included all the bottom-level proofs but had to omit those for the
more complex operations (this had also to be done in a few cases in the first
refinement); this was done to reduce the length of an already over-long book
and so as not further to bore the reader with straightforward proofs.

The fact that we included proofs in both refinements is an indication of our
position on formal methods. We consider that, even though they are strictly
unnecessary, the inclusion of explicit and complete proofs is an essential part
of the refinement to code. Proofs require us to examine our definitions and to
reason about them. By engaging in proof, we have a guarantee that our defin-
itions (state schemata) and relationships between them (operation schemata)
are correct according to the axioms of the various theories we use. Without

318 6 Closing Thoughts

proof, we might as well not bother for there is no guarantee of anything—it
is like sleepwalking through a formal notation, much as we sleepwalk from an
informal specification to a piece of (one hopes) working code. The production
of proofs forces us to think carefully and in detail about things; this is, we
believe, essential.

That the abstraction relations are all identities is not a surprise to us. As
we have already noted, the vast majority of the abstraction relations we have
found over a very long period have been identities.

The specification of hardware poses a slight problem for us. This was
because we did not want, in the case of this book, to specify any particular
piece of hardware for the kernel of Chapters 2 and 3; the Separation Kernel is
aimed at the Intel IA32 and 64 processors, so we could be a little more defi-
nite. In the case of the Separation Kernel, we specified the IA32/64 hardware
operations at a level of detail that we felt adequate for the production of the
tiny amounts of assembly code required to complete the kernel. In the case
of the kernel of Chapters 2 and 3, the register-save operation was specified
as operations on the process’ stack; the operations correspond exactly to two
IA32 instructions. In both cases, context switches are caused by a software
interrupt (which is specified).

Turning to the refinement process itself, there are some points that can be
made.

First, there is the fact that a specification is a conjunction of wffs. This
implies that they lack structure. The lack of structure can be exploited by the
distributive rules for ∧ and ∨. However, it poses problems if one expects that
what one considers to be a routine should be represented in a modular fashion;
after all, standard software engineering requires us to consider routines as
abstractions that are referred to by name.

This lack of structure is clear when a complex definition (i.e., a definition
involving more than one operation schema) is expanded for simplification or
for the calculation of a precondition. It would be highly desirable if each
operation schema could be represented by a precondition (and, possibly, by
a postcondition). This is not always possible because preconditions are rep-
resented by existentially quantified wffs in Z. In some cases, it is possible to
separate operation schemata from the surrounding conjuncts in some cases
(and we have encountered them in this book) but they must first be inves-
tigated in order to determine that such treatment is valid. The organisation
of a specification as a conjunct is rarely mentioned in the literature. It has
a further implication: as a specification grows in size, so do the conjunctions
that result from the composition of operations.

As can be seen from the calculations in this book, it is sometimes possible
to exploit substitutions as a way to handle complexity in expanded operations.

The definition of complex operations has implications other than visibility.
It is to these that we now turn.

We have used simplification extensively above. In some cases, it was the
simplification of simple operations; in others, it was the simplification of

6 Closing Thoughts 319

complex operations; in still others, it was the simplification of preconditions.
We need to ask what the purpose of simplification is. In the case of the simpli-
fication of simple operations (those composed of a single schema), we have a
form of optimisation. The simplified operation can be used directly in refine-
ment or the production of code. In the case of preconditions, we are interested
in the logical form of the operation; this is what simplification gives us, for a
simplified precondition is at least implied by the unsimplified version (at best,
it is materially equivalent). It is the case of complex operations, operations
composed of more than one operation schema, that is interesting. Clearly,
it is possible to view the simplification as an optimisation. In this case, the
simplified version can be employed in refinement or the production of code.
However, the simplification of a complex operation violates the modularity
of its components (this, again, is the problem that specifications are large
conjunctions).

If a simple (or less complex) operation is included in more than one com-
plex one, and the more complex operations are simplified, it is more than
possible that the boundaries of the included operations will not be respected
in the formula that results from simplification. This might not appear prob-
lematic but an example shows that it poses problems.

Consider the case of a storage-allocation operation. In a complex sys-
tem (such as an operating system or a virtual machine for a programming
language), the allocation operation might be included in a number of com-
plex operations. The storage-allocation operation will, almost certainly, be
a complex operation defined in terms of a number of suboperations. When
the storage-allocation operations is included in more complex operations, it
becomes a candidate for simplification. When simplified, the storage-allocation
operation’s abstraction boundary will probably not be respected. While we
are dealing with a mathematical abstraction, this is not a problem (it might
be when manipulating the resulting wffs but that is another matter). It can
become a problem when the production of code is concerned. If the simplified
operations are considered the basis for refinement or code production, it is
clear that we have the following to consider:

• Parts of the code that would comprise the storage-allocation operation
appear in various other, more complex operations. It is possible (indeed,
probable) that the entire operation never appears intact.

• It is possible (probable) that there will be replication of code because
the simplifications will not necessarily remove the same conjuncts of the
original operation.

It can be argued that the first of these two cases is not much of a problem
and that it is, on the contrary, a benefit. The process of producing the final
simplified operation is clearly documented and the result proved to be correct.
The second case is more of a problem. In traditional software engineering, we
are taught to define abstractions and to avoid destroying them; simplification
is a clear case in which abstraction boundaries are broken. Furthermore, we

320 6 Closing Thoughts

are used, using traditional methods, not to expand code without good reason
(object-oriented progamming is another case in which this principle is violated,
often for what appears not to be a very good reason and could be solved if
compilation and linking were more selective).

We do not agree with the position that storage chips are becoming cheaper
all the time, so we can be profligate with code and data structures. This
position is, in our opinion, an attempt to justify sloppy thinking. We need
more thought in Computer Science and Software Engineering, not less!

Next, we have to comment on the use of deferred assumptions and implicit
preconditions. In some parts of the specification, particularly those parts speci-
fying some simpler operations over the process table, we could have guarded
each operation with a test that the process identifier bound to the input
variable was an element of used . This was something we did not do. Instead,
we assumed that this was true and continued with the refinement. At the
final stage, it was clear that the current process was always bound to the
input variable p? and, by other reasoning, it can be shown that p? ∈ used .
The alternative would have been to include a check that became increasingly
costly as the refinement progressed (this is something we observed in Chapter
4). We consider that waiting to discharge assumptions is a reasonable option,
at least on logical grounds, even though it is, in human terms, a bit risky (one
has to remember to discharge the assumption). It is part of our refinement
plan to make the assumption that p? ∈ used early on and then to discharge
the assumption later on. In a case such as this, the process is harmless for the
reason that we had to discharge the assumption later on (and the assumption
was, in any case, quite harmless). There will be cases where the logical position
should not be adopted for pragmatic reasons.

We also used an implicit precondition (a precondition that derives from
the invariant) in order to show that the ready queue was valid. This is logically
valid and appears to us to be a technique that should be adopted. The use
of implicit preconditions makes the invariant more central. The refinement
method, as presented in the literature, centres on the abstraction relation.
However, it is essential that the invariant of the specification and that of the
refinement be related by the abstraction relation for the reason that it is the
invariant that determines the integrity (correctness) of an operation’s effects
in the sense that it defines the set of legal states (the invariant plays a much
greater part in refinement in the B Method [1]). The use of the invariant does
not appear to be as prominent as it might be (a proof that the invariants are
so related should appear as part of the refinement process). Strictly speak-
ing, when defining each operation schema, there should be a proof that the
operation’s predicate preserves the invariant; this is important for possibly
interacting operations (e.g., operations defined by the composition of simpler
ones).

Of course, it can be argued that the invariant is always implicitly present in
all proofs because they universally. Our points are that this is not prominent

6 Closing Thoughts 321

enough and that the refinement relations should, ideally, be established between
invariants in specification and refinement. quantify over state schemata.

In the construction of some proofs, we referred to invariants or to results at
a higher level in the refinement process. This is, we believe, to be quite valid; it
is justified by the following reasoning. The abstraction realtion should be a pair
of homomorphisms: one transforming the specification into the refinement,
the other performing the opposite transformation (they should be mutually
inverse). The composition of homomorphisms is also be a homomorphism. If
we have a specification, S , and two refinements of this specifiction, R1 and
R2, such that R1 is a refinement of S and R2 is a refinement of R1, and
if h1 : S → R1 and h2 : R1 → R2, there exists a h1,2 : S → R2. In the
particular case of the refinements in this book, h1 and h2 are both identities,
so h1,2 = h2 ◦h1 (with h2 ◦h1 = h2(h1(S))) definitely exists and is well defined.

In our second refinement, we reused components from the first and relied
upon existing proofs as our guarantees of correctness. Reuse of this kind is
natural in formal specification and is, we believe, superior to the reuse of
executable code. One reason for this claim is that the reuse of specifications
makes the assumptions about components explicit.

Is formal refinement worth the effort? If one is used to informal methods
(or no methods), particuarly when one does not engage in extensive docu-
mentation, formal methods will cost more in time and effort. A resistence
to documentation is something that we have often encountered in so-called
“real-world” contexts—it is often “justified” on cost grounds (but consider
the costs of having to justify undocumented software as part of a court case).
We believe that the amount of work required to produce a formal specification
and its refinement is about the same as producing informal documents. Fur-
thermore, formal methods yield connections between decisions made at one
level with those as a lower level. In addition, there is the matter of testing.
In our case, we have engaged in testing. This is just so we can check that
the resulting code is a correct transcription (i.e., contains no transcription
errors); it also serves to increase our confidence that the result is correct. In
the case of the first kernel, we engaged in quite exhaustive testing just to
assure ourselves that the code is correct. However, this testing is not only a
way to increase confidence; it provides additional evidence that the code is
correct. Fairly extensive testing appears useful in cases such as kernels where
we want to be as sure as we can be that the code behaves correctly; in other
cases, we might want to be assured that the code contains no transcription
errors. It would, in any case, be far better to have a mechanical method for
checking the result, for the process is fairly mechanical. We found, of course,
that the code performs exactly as it should in all cases. (We have also to admit
that we tested somewhat more thoroughly than usual when dealing with for-
mally derived code so that we could state that it behaved correctly. We have
previous experience of the correct functioning of code derived from formally
refined specifications.)

322 6 Closing Thoughts

To conclude this chapter and this book, one last issue must be raised:
automation. We did all of the work in this book by hand (or by mouth because
much of the text was dictated). It is clear that a good deal of automation
should be possible. The construction of schema compositions can be mecha-
nised with ease and would be most welcome as a way of helping with document
management. The complete automation of simplification and proof does not
appear within reach at the moment but it is clear that there are ways in
which it can be supported. By this, we do not mean using current-generation
proof assistants which can be rather hard to use and have a long learning
curve, requiring the user to learn new names for methods and new notations.
Of course, some of us find the production of proofs to be one of the more
interesting and enjoyable aspects of formal specification—complete automa-
tion would deprive us of that pleasure. The checking that code conforms to
the bottom level of refinement is also a case in which automation could assist,
for example in generating verification conditions that can be related to the
final stage of refinement. A moderate amount of carefully designed automation
would help considerably.

We hope that this book has served to indicate that there are interesting
issues raised by refinement in the large and that these issues have not been
discussed much in the published literature. We hope that we have also demon-
strated that the formal specification of operating system kernels is viable; in
addition to the refinements in this book, our experience with our collection of
components has been extremely positive.

References

1. Abrial, J.-R., The B Book: Assigning Programs to Meanings, CUP, 1996.
2. Bivot, Daniel C. and Cesati, Marco, Understanding the LINUX Kernel, O’Reilly

& Associates, Sebastapol, CA, 2001.
3. Craig, I. D., Formal Specification of Advanced AI Architectures, Ellis Horwood,

Chichester, England, 1991?
4. Craig, I. D., Formal Models of Operating System Kernels, Springer-Verlag,

London, England, 2006.
5. Derrick, J. and Boiten, E., Refinement in Z and Object-Z, Springer-Verlag,

London, 2001.
6. Dijkstra, E. J., A Discipline of Programming, Prentice-Hall, Englewood Cliffs,

NJ, 1976.
7. Jones, C. B., Systematic Software Development Using VDM, Prentice-Hall,

Englewood Cliffs, NJ, 1986.
8. Labrosse, Jean J., MicroC/OS-II, The Real-Time Kernel, Miller Freeman, Inc.,

Lawrence, KS, 1999.
9. Morgan, C. C., Programming from Specifications, 2nd edn., Prentice-Hall, Hemel

Hempstead, England, 1994.
10. National Security Agency, Separation Kernel Documents, e.g., SSE-100-1; many

others on line at www:nsa.gov.
11. Rushby, John, Design and Verification of Secure Systems, ACM Operating Sys-

tems Review, Vol. 15, No. 5, pp. 12–21, 1981.
12. Spivey, J. M., The Z Notation: A Reference Manual, 2nd edn., Prentice-Hall,

Hemel Hempstead, 1992.
13. Woodcock, J. and Davies, J., Using Z: Specification, Refinement and Proof,

Prentice-Hall, Hemel Hempstead, 1996.

List of Definitions

Type:

ADDR 213
ADDR 21
BITMAP 135
BM 134
BMASK 133
BYTE 271
CHAR 218
DEVNO 212
GPID 19
GPID 211
INTNO 217
INTRPTNO 23
MD 252
MDATA 142
MPTR 271
MSG 142
MSG 213
MSG 21
MSGDATA 213
MWORD 133
ONOFF 23
PID 19
PID 211
PPRIO 20
PSTATE 20
PSTATE 212
PSU 264
PTYPE 212
SDESC 288

SID 127
SID 130
SID 137
STRING 218
SYSERR 214
SYSERR 21
SYSOPCODE 213
TIME 161
TIME 21
TSS 215
UPID 212
WORD 21
YESNO 211

Constant:

bpw 133
ctxtswintno 217
killintno 217
maxaddr 21, 213
maxdev 212
maxint 217
maxintno 23
maxprio 20
maxsid 130
mindev 212
minint 217
minintno 23
minprio 20
minsid 130
msize 133
nulladdr 21, 213

326 List of Definitions

nullmd 257
nullmsg 21, 213
nullmsgdata 213
nullpid 20, 212
ticklength 158
tickspersec 159

Function:

PSUsToMsg 271
& 134
| 134
↑ 134
∼ 134
mdaddr 252
mdsz 252
mergemds 255
mkmd 252
mkmsg 270
mksdesc 288
msgToPSU 271
msgaddr 270
msgat 271
msgdata 142, 270
msgdest 21, 142, 270
msgpayloadlen 270
msgsize 21
msgsrc 21, 142, 270
msgsz 271
msgtobytes 271
msz 271
segaddr 288
segsize 288
tss stackseg 215
tss stacktop 215

Precondition:

AddDevPD 308
AddMsg 275
AddMsg1 280
AddPD 31, 224
AddPD1 231
AddPD1 36
AddPD2 50
AddSleeper 165
AllocBlk 255

AllocSema 129
AllocSema1 132
AllocateSemaphore 199
BlockScavenge1 259
ContextSwitch 25
DeallocateSemaphore 199
DelPD 32
DelPRIOQElem 76
DelSCHEDQElem 109
DequeuePQ2 67
DequeuePROCESSQUEUE 59
EnqueuePQ1 61
EnqueuePQ2 66
EnqueuePROCESSQUEUE 57
FindAndWake 167
FindAndWake1 175
FindAndWake2 184
FreeBlk 255
FreePID1 39
FreePID2 53
HeadOfPROCESSQUEUE 58
NewDeviceProcess 309
NewDeviceProcessPossInitHW 310
NewProcess 192
NextMessageFromSource 277
NextMessageFromSrc1 282
NextMsg 276
NextMsg1 281
PRIOQDelHd1 85
PRIOQDequeue 77
PRIOQDequeue1 86
PRIOQEnqueue 74
PRIOQEnqueue1 83
PRIOQEnqueue2 96
RcvSMsg 201
ReceiveSynchMsg 155
ReleaseSema 129
RequeueDeviceProcess 251
RequeueUserProcess 250
SKSchedNext 249
SchedNext 112
SemaphoreSignal 199
SemaphoreWait 199
SendASynchMsg 150
SendMeToSleep 169

List of Definitions 327

SendMeToSleep1 176
SendMeToSleep2 185
SendSMsg 201
SendSelfToSleep 194
SetProcState 227
SetProcState1 236
SignalSema 125
SuspendMe 114
SuspendSelf 193
TerminateSelf 196

Schema:

AbsMSGQ1 282
AbsPQ1 59
AbsPQ2 68
AbsPRIOQ1 87
AbsPRIOQ2 97
AbsPTAB1 40, 236
AbsPTAB2 45, 238
AbsSLEEPERS1 176
AbsSLEEPERS2 185
AbsST1 132
AbsSTOREPOOL1 260
AddDevPD 307
AddFreechainLast 37, 48, 232
AddIdleProcess 225
AddMsg 274
AddMsg1 279
AddNewLastFreechain 37, 48, 232
AddPD 30, 223
AddPD1 36, 231
AddPD2 48
AddPDESC 30, 224
AddPDESC1 35, 231
AddPDESC2 47
AddProcUPID 222
AddProcUPID1 230
AddSleeper 165
AddSleeper1 171
AddSleeper2 181
AddSleeperProc 164
AddSleeperProc1 171
AddSleeperProc2 180
AddWaiter 120
AllocBlk 254

AllocBlk1 258
AllocMsg 269
AllocPID 30, 222
AllocPID1 35, 229
AllocPID2 47
AllocSID 128
AllocSID1 138
AllocST1 130
AllocST1a 137
AllocSema 128
AllocSema1 131, 138
AllocUPID 222
AllocUPID1 230
AllocateProcTSS 216
AllocateSegment 287
AllocateSegments 291
AllocateSemaphore 198
AlreadyAsleep 163
AlreadyHasMsg 142
AwakenDeviceProcessFromISR 313
BadCallerIdent 311
BadDestination 143
BadDeviceNumber 306
BlockLocError 264
BlockScavenge 255
BlockScavenge1 259
CLOCKISR 201
CLOCKTIME 159
CLOCKTIMEInit 160
CTXTSW 26, 217
CTXTSWISR 27
CanAddSleeper 164
CanAddSleeper1 171
CanAddSleeper2 180
CanAllocateBlock 254
CanAllocateBlock1 258
CanAllocateMsg 269
CanAllocateSegment 287
CanEnqueueMsg 272
CanEnqueueMsg1 277
CanEnqueuePRIOQ1 79
CanEnqueuePRIOQ2 93
CanSendSynchMsg 144
CanStoreBlock 265
CanStoreMsg 267

328 List of Definitions

ChangeMyPriority 197
ChangeMyPriority1 197
ChangeMyPriority2 197
ClearDevMsg 302
ClearDevReply 304
ClearFreeCnt 256
ClearFreeCnt1 260
ClearMsgFreeCnt 268
ClearWaitingTime 162
ClocktimeNow 160
ClrSynchMsgSlot 145
ClrSynchMsgSlot1 156
ComputeWakeTime 161
ContextSwitch 25, 216
ContinueCurrent 109
CopyBlock 265
CreateAndRunInitialProcess 292
CreateIdleProcess 290
CreateInitialProcess 190
CreateNullProcess 189
CurrentProcessId 104
CurrentProcessStateIsReady−

OrRunning 110
DEVPROCQUEUE 242
DEVPROCQUEUEInit 242
DeallocateSemaphore 199
DeallocateTSS 216
DecSEMACNT 121
DecodeSysCall 314
DelExtPD 226
DelExtPD1 234
DelHeadOfPQ1 62
DelHeadOfPQ2 67
DelHeadOf−

PROCESSQUEUE 58, 241
DelMSGQHd 273
DelMSGQHd1 278
DelPD 31
DelPD1 40
DelPRIOQElem 75
DelProcUPID 226
DelProcUPID1 234
DelSCHEDQElem 108
DelSleeperProc1 172
DelSleeperProc2 181

DeleteAllProcesses 226
DeleteAllProcesses1 235
DeleteStoredMsg 267
DequeueDEVICEQUEUE 246
DequeueDEVPROCQUEUE 242
DequeuePQ1 62
DequeuePQ2 67
DequeuePROCESSQUEUE 58, 241
DequeueUSER−

PROCESSQUEUE 246
DestinationExists 143
DestinationExists1 156
DestinationNotReceiving 143
DevReplyToUserProc 305
DevRequesterId 302
DevReturnDataAndSuspend 312
DeviceProcessId 307
DisableInts 24
ERRV 214
ERRVInit 214
EmptyFreeChain1 37, 232
EmptyFreeChain2 52
EmptyMessageQueue 269
EnableInts 24
EnoughSpace1 258
EnqueueDEVICEPROCESS 246
EnqueueDEVPROCQUEUE 242
EnqueueMsg 273
EnqueueMsg1 278
EnqueuePQ1 60
EnqueuePQ2 66
EnqueuePROCESSQUEUE 57, 240
Enqueue−

USERPROCESSQUEUE 246
EnterCritical 193
FindAndWake 166
FindAndWake1 174
FindAndWake2 183
FreeBlk 255
FreeBlk1 258
FreeMsg 269
FreePID 30, 225
FreePID1 38, 233
FreePID2 52
FreeSID1 131, 138

List of Definitions 329

FreeSIDa 136
FreeSIDs 128
FreeSegment 287
FreeSema 127
GetDevMsg 302
GotDevMSg 303
GotFreePIDs 222
GotFreePIDs 29
GotFreePIDs1 35, 229
GotFreePIDs2 47
GotMsgs 273
GotMsgs1 277
GotMsgsFromSrc 273
GotMsgsFromSrc1 278
GotReplyFromDeviceProc 305
GotSleepers 164
GotSleepers1 172
GotSleepers2 182
GotSynchMsg 144
GotSynchMsg1 156
HARDWARE 23
HW 215
HalfContextSwitch 25
HeadOfPQ1 62
HeadOfPQ2 67
HeadOfPROCESSQUEUE 57, 240
IDLEPROCESSIdent 103, 244
IncFreeCnt 256
IncFreeCnt1 260
IncMsgFreeCnt 268
IncSEMACNT 121
InitDevReply 304
InitDeviceMsg 302
InitDeviceNum 306
InitSema 128
InitSema1 131
InitSema1 138
InsufficientMainStore 287
IsAsleep 164
IsAsleep1 170
IsAsleep2 180
IsCurrentProcess 104
IsCurrentProcessIdle 105
IsDestinationReceiving 145
IsDestinationReceiving1 156

IsDeviceProcess 301
IsEmptyDEVICEQUEUE 246
IsEmptyDEVPROCQUEUE 242
IsEmptyPRIOQ 71
IsEmptyPRIOQ1 78
IsEmptyPRIOQ2 92
IsEmptyPROCESSQUEUE 240
IsEmptySCHEDQ 107
IsEmpty−

USERPROCESSQUEUE 246
IsKnownDeviceNumber 306
IsNonEmptyPQ1 60
IsNonEmptyPQ2 66
IsNotEmptyPROCESSQUEUE 56
IsPrevProcessIdle 105
IsPreviousProcess 105
IsProcessSleeping 162
IsSysOk 23
KillKernel 218
MSGPOOL 269
MSGPOOLInit 269
MSGQ 272
MSGQ1 277
MSGQInit 272
MSGQInit1 277
MSGSTORE 267
MSGSTOREInit 267
MSGToUserData 295
MakeCurrentPrevious 104
MakeIdleProcessCurrent 102
MakeMessage 142
MakeReady 106, 246
MakeReady1 116
MakeReadya 105
MakeReceiver 145
MakeReceiver1 156
MakeSender 146
MakeSender1 156
MessageQueueFull 269
MovePRIOQUp1 79
MsgScavenge 269
MyProcessId 198
NegativeSemaCount 121
NewDeviceProcess 308
NewDeviceProcessPossInitHW 309

330 List of Definitions

NewProcess 191
NewUPIDForProcess 222
NewUPIDForProcess1 230
NextMessageFromSource 276
NextMessageFromSrc1 281
NextMsg 275
NextMsg1 281
NextMsgForProcess 298
NextMsgForProcessFromSrc 298
NextMsgFromSrc 273
NextMsgFromSrc1 278
NoDeviceReply 305
NoFreeSemas 126
NoMessagesFrom 269
NoSpace 252
NonNullDevRq 303
NonpositiveSemaCount 121
NotAllocSema 126
NullMsgValue 143
PDInUse 28, 219
PIDforUPID 225
PQ1 59
PQ1Init 60
PQ2 65
PQ2Init 65
PRIOQ 70
PRIOQ1 78
PRIOQ2 92
PRIOQAddSingleton 72
PRIOQAddSingleton1 80
PRIOQAddSingleton2 93
PRIOQDelHd 76
PRIOQDelHd1 85
PRIOQDelHd2 96
PRIOQDequeue 76
PRIOQDequeue1 86
PRIOQDequeue2 96
PRIOQEmpty 70
PRIOQEnqueue 73
PRIOQEnqueue1 82
PRIOQEnqueue2 94
PRIOQEnqueueHd 71
PRIOQEnqueueHd1 79
PRIOQEnqueueHd2 93
PRIOQEnqueueLast 72

PRIOQEnqueueLast1 79
PRIOQFull 70
PRIOQHd 71
PRIOQHd1 79
PRIOQHd2 92
PRIOQInit 71
PRIOQInit1 78
PRIOQInit2 92
PRIOQInsert 72
PRIOQInsert1 81
PRIOQInsert2 93
PRIOQInsertMidPoss1 81
PRIOQLast 71
PRIOQLast1 79
PRIOQLast2 93
PRIOQMoveUpFrom 80
PRIOQRemove 75
PRIOQRemove1 85
PRIOQSetIthSucc 80
PROCESSQUEUE 56, 239
PROCESSQUEUEInit 56, 240
PTAB 25, 143, 161, 216, 220, 271, 288
PTAB1 34, 228
PTAB1Init 34, 229
PTAB2 44, 237
PTAB2Init 45, 238
PTABFull 28, 220
PTABInit 29, 221
PassDataToDeviceProcess 303
PreviouslyRunningProcess 245
PrintKMsg 218
ProcPrio 32
ProcState 33, 227
ProcState1 235
ProcType 227
ProcType1 235
ProcessHasMsgs 297
ProcessHasMsgsFromSrc 298
ProcessQueueEmpty 56, 239
QueueHdHasHigherPriority 110
QueueHdHasHigherPriority1 116
QueueHdHasHigherPriority2 119
RaiseInterrupt 26, 217
RaiseKillInterrupt 217
RcvSMsg 201

List of Definitions 331

RcvSynchMsg 150
ReadyDeviceProcess 247
ReceiveSMsg 145
ReceiveSynchMsg 151
ReceiveSynchMsg1 157
ReceiveSynchMsg2 158
ReleaseSema 129, 132
ReleaseSema1 138
RemoveSleeper 166
RemoveSleeper1 173
RemoveSleeper2 182
RemoveWaiter 120
ReplyFromDeviceProc 305
RequeueDeviceProcess 250
RequeueUserProcess 249
ReturnFromInterrupt 24
ReturnSysError 23
RunFirstProcess 293
RunIdleProcess 247
RunningProcess 244
SCHED 101
SCHEDInit 102
SCHEDInit 103
SCHEDQDelHd 108
SCHEDQDequeue 108
SCHEDQHd 108
SEGMENTS 287
SEGMENTSInit 287
SEMAPHORE 120
SEMAPHOREInit 121
SEMATBL 127
SEMATBLInit 127
SKInitSys 290
SKMakeUnready 248
SKNewProcess 291
SKNextMsg 298
SKNextMsgFrom 298
SKProcessHasMsgsFromSrc 298
SKSCHED 243
SKSCHEDInit 244
SKSchedNext 248
SKSuspendSelf 293
SKTerminateSelf 293
SLEEPERS 163
SLEEPERS1 170

SLEEPERS2 180
SLEEPERSInit 164
SLEEPERSInit1 170
SLEEPERSInit2 180
ST1 130
ST1Init 130
ST1Init 138
STOREPOOL 253
STOREPOOLInit 253
STOREPOOLInit1 257
STOREVEC 264
STOREVECInit 265
SchedNext 111
SchedNext1 117
SchedNext2 119
SegmentTableInit 287
SelfSuspendDeviceProcess 313
SemaInUse1 131
SemaInUsea 136
SemaphoreSignal 199
SemaphoreWait 199
SendASynchMsg 146
SendASynchMsg1 157
SendASynchMsg2 158
SendMeToSleep 168
SendMeToSleep1 175
SendMeToSleep2 184
SendSMsg 199
SendSelfToSleep 193
SendSynchMsg 144
SendToProcess 296
SetCodeSegInfo 289
SetCurrentProcessId 104
SetDevMsg 302
SetDevReply 304
SetDeviceProcessData 313
SetFCHead 38, 233
SetFCHead2 48
SetFCLast 38, 233
SetFCLast2 48
SetHWTSS 293
SetNewCurrentProcess 101
SetPDState 307
SetPreviousProcess 245
SetProcPrio 32

332 List of Definitions

SetProcState 33, 227
SetProcState1 40, 235
SetProcType 223
SetProcType1 230
SetProcessStateToReady 105
SetProcessStateToReady 33
SetProcessStateToTerminated 194
SetProcessStateToTerminated 196
SetRunningProcess 244
SetStackDataSegInfo 289
SetStateToDevWait 310
SetStateToReady 227
SetStateToReady1 236
SetStateToRunning 104, 227
SetStateToRunning1 236
SetStateToSleeping 165
SetStateToTerminated 227
SetStateToWaitSema 122
SetSysErr 214
SetWaitingTime 33, 162
SetupFirstProcess 293
ShouldAddPRIOQHd 72
ShouldAddPRIOQHd1 81
ShouldAddPRIOQHd2 93
ShouldAddPRIOQLast 72
ShouldAddPRIOQLast1 81
ShouldAddPRIOQLast2 93
ShouldScavenge 256
ShouldScavenge1 260
ShouldScavengeMsgs 268
ShouldWake1 173
ShouldWake2 182
ShouldWakeUp 166
ShouldWakeUp1 173
ShouldWakeUp2 182
SignalSema 124
SleepTooShort 159
SourceExists 143
StackDataSegAddr 289
StoreBlock 265
StoreMsg 267
StoredBlock 266
StoredMsg 267
SuspendDeviceProcess 307
SuspendMe 114

SuspendMe1 118
SuspendMe2 119
SuspendSelf 193
SwitchToFirstProcess 290
SysErr 214
SysOk 23, 215
SystemClockOps 201
SystemInit 189
TIMESINCEBOOT 159
TIMESINCEBOOTInit 159
TerminateSelf 195
TerminateSelf 1 196
TheHeadOfPQ1 61
TheHeadOfPQ2 67
TheHeadOf−

PROCESSQUEUE 57, 240
TimeNow 159
TooManySleepers 163
TranslateMessageAddrs 295
TranslateMsgAddrs 295
UReturnNo 297
UReturnYes 297
USKGotMsgs 297
USKNewProcess 292
USKSendMsg 296
USKSuspendSelf 293
USKTerminateSelf 294
UnusedPD 28, 219
UpdateClockTime 160
UpdateCurrentProcess 245
UpdateTIMESINCEBOOT 159
UsedPID 29, 221
UsedPID1 35
UsedPID2 47
UsrSendMsgI 294
ValidDevRqProcessId 303
VerifyAndActivateDevProc 311
VerifyCallerIdent 286
WaitSema 122
WaitingTime 33, 162
ΦPTABM 272
ΦSCHED 103
ΦSEMAPHORE 120
ΦSEMATBL 127
ΦSKSCHED 245

	cover-image-large.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	back-matter.pdf

