lain D. Craig

Formal Refinement for Operating System Kernels

Formal Refinement for Operating System Kernels

Iain D. Craig

Formal Refinement for Operating System Kernels

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library
Library of Congress Control Number: 2007931774
ISBN 978-1-84628-966-8 e-ISBN 978-1-84628-967-5

(C) Springer-Verlag London Limited 2007

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

Printed on acid-free paper.
987654321
springer.com

To my Father at 75

Preface

This book was written as a companion to my book on modelling operating system kernels. It is intended to demonstrate that the formal derivation of kernels is possible (and, actually, quite easy, or so I have found thus far).

It is important for the reader to understand that the refinements contained in this book are not the only ones I have performed of microkernels. To date, I have refined four microkernels down to executable code and have now produced a kit of formally specified components that can be composed to form kernels. The first kernel included in this book is just one example of this work. The second kernel, the Separation Kernel, is new and was partly constructed out of the kit of parts (and the reader will see reuse in its specification and refinement) and was included for specific reasons that will become clear anon. Both kernels took less than three months' working time to produce (the actual time is rather hard to calculate because of frequent interruptions). Previous experience in refining kernels also paid off in the sense that there was little revision involved in their specification or refinement; the usual process of yo-yoing between levels of the derivation was absent. This appears to be an inevitable consequence of experience.

The time factor has been important in the production of the various kernels that I have derived. The micro kernel helps in no little way by imposing the rule that the kernel should be as small as possible. This is not to say that I would not be interested or willing to refine a kernel such as the second one I modelled in [4]. Such an exercise would be extremely interesting and one I would very much like to undertake; however, it would require time (and I am quite willing to put it in) and would require financial support. In today's climate, one would probably also have to ask what the point of such an exercise would be.

It is necessary to position this book. Mainly, I believe it to be an essay in formal methods software engineering and in operating systems. It can be argued that this book is a contribution to refinement, in particular, to refinement in the large. There is nothing in the literature on the scale of the refinements that are the subject of this book, as far as I am aware.

The Separation Kernel was included for specific reasons. First, there is at least one document from the US National Security Agency (NSA) recommending the Separation Kernel as the cryptographic kernel par excellence. In their documents, the NSA also states that the formal specification of a Separation Kernel would be highly desirable. Having looked at the various documents, the original paper by Rushby [11] in particular, the structure and functioning of the Separation Kernel appeared to be fairly simple. This would appear to have been one of the goals that Rushby had in mind when defining the architecture in the first place - it is another good example of how simplicity wins every time (Less is more.) As a result, I wondered what a specification would look like. What I found was what I expected. The result was quite easy to specify and to refine.

The reader will observe that there is little or nothing about bootstrapping or hardware-specific initialisation. This is because we do not consider these matters to be part of the kernel; they belong to the environment within which the kernel executes.

I think it necessary to make a couple of observations about the refinement itself. In the Z literature, two kinds of refinement are described: one relational, one functional. The relational refinement is the worst-case scenario. The functional refinement is, in my experience, the usual case. Indeed, in more than twenty years' experience refining specifications, I have found that the relationship between the abstract and concrete statements is almost always an identity. This experience is not restricted to kernels (of course) for a great deal of the code I have produced during that time has had at least some formally specified component (usually the components that are the hardest to understand). The code has included virtual machines and parts of compilers, so it is quite varied. For this reason, the fact that the abstraction relations in this book are identities does not cause me any concern. (Steve Schumann reports in a private communication the same experience.) I decided that proofs, which are strictly unnecessary when using a functional abstraction relation, should be included in the book. This was to show how they enter the refinement process and to show that they are relatively simple (given the prevalence of identity relationships, proofs of similar complexity are to be expected and that is a level of complexity that can easily be handled). Furthermore, I wanted to counter the claims that either the proofs could not be done or that they were too complicated; neither is the case. In the case of the Separation Kernel, a number of proofs are omitted (this was also for the reason that space was getting short and devoting much more space to such a simple system did not appear warranted). This is particularly the case with operations defined over conjunctions of state spaces. The proofs and preconditions of the components are given, as are the abstraction relations, so the production of the required proofs is a straightforward matter and can be produced in a relatively short period. In each case, the compound operation was checked against the components and short (i.e., outline or sketch) proofs produced as a safety device.

The purely textual parts of this book were written using voice-input software because my daily typing time was severely restricted on medical advice. Using voice-input software for the first time was an interesting and sometimes frustrating experience. The frustrations were mostly due to my being so used to typing and I found that having to speak rather than compose on the keyboard sometimes confusingly difficult. In particular, initially, I found it quite hard to navigate back and forth using just voice commands. (It led to the occasional and unwanted inclusion of expletives in the text and I hope that I have removed them all!) With greater experience, it turned out to be an effective method for producing text. It is worth trying!

A Note on Interrupts

When I started out, it was conventional wisdom that interrupts should be disabled for as short a period as possible. The reader will note that the space between disabling and enabling interrupts in the specifications and refinements that follow can be rather large. In some case (e.g., the interface routines at the end of Chapter 3), the reason for this is that I wanted to emphasise the fact that interrupts should be disabled for some part of the operation (for reasons that will become clear in a second, without necessarily being forced into saying which parts). Some processors have pipelines that might affect the exact time at which the interrupt operation is performed; this cannot be taken into account until the processor is known, so the safe option was chosen. In addition, the period during which interrupts are disabled can be extended when the desired response time of the system is known (here, we have no such knowledge). In such a case, the interrupt operations can be moved using the distributive law $(p \vee(q \wedge r) \Leftrightarrow(p \wedge q) \vee(p \wedge r))$ and the idempotent laws $(p \wedge p \Leftrightarrow p$ and $p \vee p \Leftrightarrow p)$. In the other cases, the change to the interrupt flag (or whatever mechanism is used on the implementation platform) might have some interaction with another part of the system (e.g., on the IA32, if the INT bit in the EFLAGS register is not the same value as the processor interrupt flag, the system will crash); again, without knowing the exact hardware, precise location of the interrupt operationsis impossible.

Acknowledgements

First of all, I would like to thank Beverley Ford for agreeing to publish this book. Thanks are due in equal measure to Helen Desmond for making the process of producing this book as painless as possible. They have jointly performed the proof and copy editing stages of the test in order to expedite its publication. I would like to thank Steve Schuman for reading the manuscript while it was in sketch and in a more developed form and for a number of extremely interesting discussions on the refinement process (any errors are, naturally, my own fault). Considerable thanks are due to my brother, Adam. Once again, he drew the figures for me; in addition, he patiently typed those
parts from my dictation that could not easily be done using voice-input software. Without his dedicated effort, the text of this book could not have been completed. As for the others who have helped (the regulars), as always, I offer my thanks.

Iain Craig
North Warwickshire
April, 2007

Contents

1 Introduction 1
1.1 Reasons for Selecting the Examples 3
1.2 Refinement Method 7
1.3 Code Production 9
1.4 Organisation of this Book 10
1.5 Relationship to Other Work 10
2 The Simple Kernel's Organisation 11
3 A Simple Kernel 19
3.1 Types 19
3.2 Hardware 23
3.3 The Process Table 28
3.3.1 Top Level 28
3.3.2 Refinement One 34
3.3.3 Refinement Two 44
3.4 Process Queue 56
3.4.1 Top Level 56
3.4.2 Refinement One 59
3.4.3 Refinement Two 65
3.5 Priority Queue 70
3.5.1 Top Level 70
3.5.2 Refinement One 78
3.5.3 Refinement Two 91
3.6 The Scheduler 100
3.6.1 Top Level 100
3.6.2 Refinement One 115
3.6.3 Refinement Two 118
3.7 Semaphores 119
3.7.1 Top Level 120
3.7.2 Refinement 126
3.8 Semaphore Table 126
3.8.1 Top Level 126
3.8.2 Refinement One 130
3.8.3 Refinement One-Again 133
3.9 Synchronous Messages 141
3.9.1 Preliminaries 142
3.9.2 Top Level 143
3.9.3 Refinement One 155
3.9.4 Refinement Two 158
3.10 The Clock 158
3.11 Sleepers 161
3.11.1 Top Level 163
3.11.2 Refinement One 170
3.11.3 Refiment Two 180
3.12 User Interface 188
3.12.1 System Initialisation 188
3.12.2 Process Creation 191
3.12.3 Process Management 193
3.12.4 Inter-process Communication and Synchronisation 198
3.12.5 Clock Operations and the Clock ISR 201
3.12.6 Final Remarks 202
4 The Separation Kernel 203
4.1 Basic Architecture 203
4.2 Extending the Architecture 205
4.3 Summary 206
4.4 An Overview of the Formal Specification 207
5 A Separation Kernel 211
5.1 Basic Types 211
5.2 Hardware Issues 215
5.3 Security Exits and Return Values 218
5.4 The Process Table 219
5.4.1 Top Level 220
5.4.2 Refinement One 228
5.4.3 Refinement Two 237
5.5 Process Queues 239
5.5.1 Top Level 239
5.5.2 Refinement 242
5.6 The Scheduler 242
5.7 Storage Pools 251
5.7.1 Top Level 252
5.7.2 Refinement One 257
5.8 Raw Storage 264
5.8.1 Top level 264
5.8.2 Message Buffering 266
5.9 Message Queues 269
5.9.1 Top Level 270
5.9.2 Refinement One 277
5.10 Kernel Interface - User Processes 286
5.10.1 Auxilliary Operations 286
5.10.2 Initialisation 288
5.10.3 Process Management 291
5.10.4 Message Passing 294
5.11 Devices-Trusted Code 299
5.11.1 Device replies 304
5.11.2 Device numbers 306
5.11.3 Device process creation 307
5.12 Process Interface to the Kernel 313
5.13 Final Thoughts 316
6 Closing Thoughts 317
References 323
List of Definitions 325

List of Figures

1.1 The NSA cryptographic architecture. 6
2.1 Organisation of the simple kernel. 15
4.1 Devices and interfaces in the Separation Kernel. 206
4.2 The internal organisation of our Separation Kernel. 207

Introduction

This book is a follow-up to our earlier one on the modelling of operating system kernels [4]. The aim of that book was to argue that formal specification of kernels was possible in the sense that formal modelling could be undertaken and then followed by a specification, a design and then refinement to running code. The first part of this was the subject of [4]. This book is concerned entirely with the specification, design and refinement to executable code of two operating system kernels. One kernel is of the kind found in small systems, while the other is intended for use in cryptographic and other secure systems. The book does not contain reasoning about models and concentrates on refinement. The refinements are from abstract or high-level specifications to a level at which programming language code can be immediately derived by obvious translation from the last stage of the refinement process.

In [4], it was our aim to show that detailed models were useful. This allows designers to identify properties of their designs without the need to construct a system. This could well have economic advantages and might spark new and necessary work in the general area of operating systems. It was also argued in that book that the post hoc verification of systems, particularly critical systems and components such as kernels, was not a good solution to the problem of reliability; instead, we argued that a synthetic method was superior.

The main purpose of the book is to demonstrate that the refinement of formal specifications of (micro) kernels is possible and, moreover, quite tractable. This should be obvious, given the fact that it is possible to model a (micro) kernel formally. The refinement is a process of documentation, as well as proof and justification, so it is worthwhile to record it, thus adding weight to the argument at the start of [4].

A secondary purpose is to give examples of refinements that are larger than those we have found in the literature. There are issues raised by the refinement process that are never considered in the standard literature:

- How many refinements should complex operations receive?
- When should implicit preconditions be used?
- When is it worth relying on the properties of functional abstraction relations?

Some might now argue that this is not a complete specification and refinement because we have not included device drivers and low-level deviceinterface code. Some might even go as far as to claim that this is not possible because, for example, it involves bitmasks; it also requires processes to wait for flags to change state. It is our opinion that the formal specification of such things is possible; this opinion is based upon experience with small examples and with the specification of low-level operations (for example, the bitmap that is used as the basis for the semaphore table in the first refinement below; we also specified some generic device-handlers while writing [4] but they had to be omitted for reasons of time and space).

In any case, at this point, we cannot specify the actual pieces of hardware that might be controlled by this book's systems. For this reason, we have to be as generic as possible, so we have concentrated on the specification of portable systems. This does mean that we have ignored low-level issues. On the contrary, we felt it essential that context switches and other essential kernel operations should be included in the specification. The approach we have taken is that the hardware and instruction set is a given and cannot be further refined. One aim of the work reported here was to reduce the assembly language programming to the level of triviality, thus making it possible to encapsulate the assembly language in a couple of operations ${ }^{1}$.

As can be seen from the specifications, interrupt-driven architectures are assumed, thus rendering the interface between the software and hardware specifications as small as possible. The context switch is thus reduced to a single instruction, one which raises an interrupt. The major part of the hardware specification is as generic as this. For the hardware architecture we have in mind, this is quite adequate and represents a reasonable specification of it; for other architectures (e.g., MIPS), it might be necessary to refine, perhaps, the high-level operations defined here.

By the publication of this book, we have shown that it is possible (and relatively easy) to specify small kernels and refine them to running code. What we have not done is try to specify a monolithic kernel such as the one used by Linux. One reason for this is that we do not care very much for the monolithic kernel for the reasons that it is too tempting just to add a feature to such a kernel on the grounds that there is nowhere else to put it (i.e., it is tempting not to solve a problem, just to throw things into the kernel); that is, the monolithic kernel does not require a clear separation of kernel versus nonkernel functionality. This lack of distinction has many implications for the performance of the resulting system. Instead, we prefer a smaller kernel that

[^0]includes only those functions that are necessary. We prefer not to engage in further justification of our position; like many such debates, it is based upon a combination of technical and æsthetic factors.

1.1 Reasons for Selecting the Examples

This book contains the specification and refinement of two kernels:

1. A small and simple kernel.
2. A microkernel for cryptographic and other secure applications. This kernel is an instance of the Separation Kernel concept of Rushby [11].
The first kernel is related to the $\mu \mathrm{C} / \mathrm{OS}$ kernel of Labrosse [8], a kernel that has been employed in a number of real-time and embedded systems. The kernel specified and refined in this book is also a close relative of the first kernel model in our $[4]^{2}$.

Another reviewer complained that the specification we gave in another paper was too simple to be of any use in real systems. We need to address this point because it could be levelled by the same reviewer of this work. The small kernel that is refined in this book is similar to $\mu \mathrm{C} / \mathrm{OS}$ and other kernels for small systems. We have read the code of such systems, and also used them, over the period of a good many years. The kernels that we have looked at are not undergraduate exercises or simplified versions, they are real kernels that are used in real applications. The initial design of the small kernel is based upon this experience. It was intended that the level of functionality be such that it could be used with only minor modification (context switch and interrupt enable/disable operations) in a real application. The modifications expected require only minor modifications to the formal specification; the remainder would remain the same.

It is true that we have not included sophisticated real-time scheduling methods. However, the kernels that we have inspected and used do not contain them, either; to claim that we have an unrealistic, over-simplified system because it lacks some particular real-time scheduling algorithm appears unreasonable. It is also true that we have not included alarm timers. The reasons for this are that they are not always provided by the kernels that we have

[^1]examined or used and that they are not particularly difficult to specify and, therefore, to refine to code using the formal method. If we extend the small kernel, asynchronous events such as alarms will constitute the first extension.

In brief, the kernel is composed of the following components.

- A process representation (the process table).
- A scheduler based on a priority queue.
- Semaphores in a global semaphore table.
- A simple synchronous message-passing system.
- A mechanism for putting processes to sleep for a specified period of time. (There is no alarm mechanism in this kernel, however).
- A set of initialisation and interface routines so that user-supplied code can call kernel operations (i.e., perform system calls).
User processes execute in the same address space as the kernel. To produce a working system, the code for user processes is linked to that of the kernel and the result bootstrapped somehow (this is considered outside of the specification, being, really, a processor-specific matter). Storage must be allocated by the user. This implies that they must define a memory map when designing their system.

It seemed appropciate to select this kernel as the first example refinement because

- It is a relatively simple example of a kernel. It contains no storage management, device drivers or Interrupt-Service Routines (ISRs).
- It makes few assumptions about the hardware upon which it runs. Indeed, it is quite portable; only a relatively few lines of code need be changed when porting to another processor.

On the other hand, the very simplicity of this first kernel is a problem precisely because it is processor-independent. In particular, there are no device drivers and ISRs to specify (other than the simple one for the clock). The specification and refinements employ a hardware model that is relatively general and portable; indeed, it can be employed on a number of processors. However, the interrupt mechanisms of processors vary considerably, so the specification included here is tailored to the Intel IA32 architecture ${ }^{3}$.

We could have included specific hardware devices into the specification and its refinement just to show that it is possible. This was not done because we want this kernel to be portable and the inclusion of a specific device might have suggested that we were not being portable. In addition, we had already encountered space problems with this book and the inclusion of the description of a hardware device, its interface and the specification of its ISR

[^2]and driver would have caused us to omit the Separation Kernel's specification, something we preferred not to do. We hope to specify a device's support software elsewhere in the near future.

The second example is the Separation Kernel introduced by Rushby in 1981 [11] for secure systems. The Separation Kernel derives its name from the fact that user processes are separated from each other both in space and in time. This implies that the address spaces of all user processes are disjoint and that the time during which one process executes can be identified as being different from that during which any other user process executes. The Separation Kernel is intended as a simulation of a distributed system. In a distributed system, in theory, all processes execute on their own processor, thus affording disjointness of address space. In addition, the execution of one process occurs on a processor during a particular time but does not affect the execution of other processes on other processors. Thus, one can say that process P_{1} executes on processor p_{1} during the period $t_{1} \ldots t_{n}$, while process P_{2} executes on processor p_{2} during the period $t_{i} \ldots t_{m}$.

The problem is to translate this scheme to uniprocessor systems. This can be done by ensuring that all address spaces are disjoint, say by means of segmentation. Temporal separation can be had by ensuring that only one process executes at any point in time. Temporal separation is easy to arrange on a sequential processor (indeed, it is so obvious a property that it can be a little hard to explain convincingly).

The reasons for including the Separation Kernel are as follows:

- It is a little-known architecture and its specification and refinement are novel.
- It is a simple architecture and is, thus, easy to specify and refine in a few pages.
- It is an architecture that was explicitly defined for applications that should demand a formal approach to software development. Indeed, the US National Security Agency has stated [10] that the formal specification of Separation Kernels is highly desirable.

The specification and refinement in this book follow the recommendations of the National Security Agency's document [10]. The Separation Kernel proper is a microkernel that is formally specified. Upon the microkernel, there is a layer of so-called "trusted" code, principally device drivers and associated code. This trusted layer need not be formally specified but its specification, design and construction is carefully monitored so that it cannot engage in activities that would compromise the security of the system. Above this layer comes user-supplied code. This code is completely untrusted and can perform any activity and might be compromised in some way; although one might want this layer to be formally specified and tightly controlled, it is unlikely that it will be, at least in the near term. The overall architecture is depicted in Figure 1.1.

Fig. 1.1. The NSA cryptographic architecture.

The Separation Kernel itself is organised as follows (the reader will see that it is a simple structure):

- A process representation.
- A round-robin scheduler.
- Asynchronous inter-process message passing.
- Storage allocation mechanisms.

In addition, the specification includes:

- An interface for system calls from user processes.
- A collection of operations to support the construction of ISRs and device drivers.

These two last items are added so that the security of the system can be enhanced.

Our specification assumes that the processor upon which the microkernel executes supports segmentation. It was decided that virtual storage would not be included for the following reasons:

- Virtual storage requires some form of external store for page swapping. This would commit the specification to a particular hardware configuration, which was considered undesirable.
- It is possible in principle that external virtual storage can be attacked by malicious persons (e.g., corrupting or replacing pages). This was also considered undesirable.

It was, therefore, assumed that all user processes would reside in main storage and that they would be composed of two memory segments (the GNU C compiler generates two segments); they would be, in any case, memory resident. The kernel would also be memory resident. It would reside in segments that are disjoint from all others. Device drivers and ISRs are trusted code, so can be stored in the same segments as the kernel. This is more of an optimisation than anything else because it was considered that the time required to perform an address-space switch would not be tolerable for device-related code. Since this kind of code is trusted, it can be assumed that it will not interfere with the operations of the kernel (which is, in any case, an opaque chunk of code as far as they are concerned). The loading of user-process images into main store is something that we do not consider here (it is a matter that depends upon the hardware configuration); indeed, we have it in mind that the Separation Kernel would probably run on a co-processor. Finally, it was assumed that the processor would provide some mechanism for detecting illegal cross-segment references (segmentation errors) and that an ISR could be written to handle such references.

The assumptions of segmentation and cross-segment reference detection are reasonable. There are many processors supporting these features. The Intel IA32 and IA64 series of processors support them, for example.

For a full security kernel, it is necessary to write a formal security policy. This is an abstract model of the system that shows how violations of temporal and spatial separation are handled. This model has not been included in this book for the reason that it is not strictly relevant to the current task. However, readers should note that such a model for this specification is in the process of being documented and the relevant proofs are being undertaken.

1.2 Refinement Method

The method adopted in this book follows the conventional approach as defined by Spivery [12] and Woodcock and Davies [13].

First, an abstract specification is created, then a refined version (the concrete version) is created; the two are then related by the definition of an abstraction relation. Proofs are then undertaken to show that concrete operations represent abstract ones correctly. The concept of correctness reduces to showing the following two properties. First, the states in which an abstract operation can start are also, modulo the abstraction relation, those states in which the concrete one can start. Second, it is shown that if the abstract operation terminates in a state, s, then the concrete operation terminates in a state, s_{c}, that is related to s by the abstraction relation. In addition, a theorem is proved that the initialisation of the two state spaces are equivalent.

Once this has been completed, what was the concrete version becomes the new abstract version. A new concrete representation and abstraction relation are defined and the process iterates.

For the specifications in this book, some modules required no refinement, while others required two steps. In some cases, therefore, a state space was defined that does not require refinement; this is done when the state space consists of simple variables that are just updated by simple assignments. Example cases are the clock in the first refinement, parts of the scheduler in both refinements and the semaphore counter component in the first specification. In contrast, there are modules that required three refinement steps. It could be argued that two steps could be used instead. The reduction to two steps would, in our opinion, have made the refinement process less clear and clarity is an essential aspect of system design as well as documentation. The PROCESSQUEUE and PRIOQUEUE types both require two refinement steps: one from an abstract specification to an array-based representation and then to a representation based on the next attribute in the process table. The reader could try to refine the top-level specification to the one using next; it is certainly possible but, we consider, less clear than the three-step version.

In addition, the abstraction relation is an identity ${ }^{4}$. This makes proofs particularly simple. Indeed, because identity is a functional relation, the refinement process can be modified slightly, as outlined in [13]. Woodcock et al. show how the operation schemata can be calculated from the abstract specification and the abstraction relation. This has the implication that the proofs listed above need not be undertaken because they are guaranteed by the abstraction relation.

In this book, particularly in the first part, proofs are included; in the refinement of the separation kernel, some proofs are given but not others. In both exercises, the reader will see that the abstraction relations are all identities. We could have omitted the proofs in the refinement of the first kernel. We preferred not to do this for a number of reasons. First, we wanted to show how the full method operates on a scale somewhat larger than those usually found in the published literature. Second, we wanted to include proofs to counter the claim that they were either impossible, unintelligible or excessively complex; they are none of these and are all quite straightforward. In another of the kernel refinements that we have performed (but not published), some proofs did cause problems which were eventually resolved. Third, we also wanted to show how proofs are still possible even when working on conjoined state spaces. Fourth, undertaking a proof is a good way to gain a better understanding of the operation and it is also useful as a way of checking the abstract and concrete operation specifications as well as the abstraction relation. In another piece of work, we defined a concrete operation in a way that looked entirely sensible but it was found that it caused a revision of the abstraction relation which, it turned out, had not been properly thought out. Such errors or misconceptions should not be a cause for censure. Instead, they are valuable.

[^3]In the refinement of the Separation Kernel, proofs of individual modules have been included. The two proofs associated with many of the complex operations (those defined over conjunctions of state spaces) are not included, even though they have been undertaken and recorded. One reason for this is space (the book would become excessively long); another is that too many obvious proofs become rather tedious and would put the reader off continuing. Finally, there is the reason that the proofs are not required because the abstraction relations are identities; the proofs of the components are given, so those of the complex operations can be derived in an obvious fashion.

Finally, as always, there is the matter of hardware. As in [4], we have treated the hardware as a given. For the purposes of refinement, this implies that it is a state space and set of operations that cannot be further refined. This does mean that the specification can appear a little low-level in places but, as usual, appropriate abstract operations are defined over the hardware state space (context switch, half context switch, raise interrupt and so on), so some measure of abstraction can be had. The approach adopted is, in any case, akin to that one must adopt when specifying software that interfaces to a pre-existant library or subsystem; the software external to the specification can only be treated as a given. In the case of system models, this implies that the properties of the external entity must be inferred. In the case of refinements, it implies that no further refinement can be undertaken (in any case, one has no control over pre-existant entities).

1.3 Code Production

This book does not contain any code that can be executed. There are examples of the translation between final refinements and Dijkstra's Guarded Command Language [6]. These translations are included to show just how close to a programming notation the refinements reach.

There is no C or Ada. The complete code is not included. The reason for this is that there is no space.

We are, at the time of writing, translating the final refinements of the simple kernel into code so that it can be executed. The first refinement is has been translated to GNU C compiler. The target hardware is the Intel IA32 Pentium processor. The translation is a simple matter given the detail of the final refinement. Once translated into C, the result is tested and is, in this case, fairly exhaustive. It is pleasing to report that the code passed all of the tests. Testing, we believe, should be a confidence-building part of the method; we are making relatively exhaustive tests in this case because of the nature and size of the problem. All modules have passed their tests first time, so the refinement process can be argued to have worked. The low-level operations included in the specification are coded in assembly language; this is, again, a relatively simple activity. At the time of writing, the implementation has yet to be completed.

1.4 Organisation of this Book

This book naturally falls into four main sections:

1. This introduction (Chapter 1).
2. The specification and formal refinement of a small kernel (Chapters 2 and $3)$.
3. The specification and formal refinement of a Separation Kernel (Chapters 4 and 5).
4. Concluding remarks (Chapter 6).

The two refinements are also accompanied by a short, informal, introduction that outlines the organisation of each kernel in high-level terms. The refinements are annotated in English; the main concern is to justify the decisions made in the face of alternatives.

1.5 Relationship to Other Work

It has been pointed out that other workers have produced models of operating systems. This was a fact known to us when [4] was written. What made us continue with that book was the fact that it was intended that proofs of many properties, some obvious, some less so would be included in the book. Comparing what we wanted to do with the published literature, we found that published material either lacked proofs altogether or did not contain the range that we intended to produce (typically the former); we also wanted to work in a framework that was not based upon temporal logic.

As far as we are aware, there is nothing in the literature on the formal refinement of operating system kernel code from a formal specification.

In the case of verification, if one single bit in the code is altered, the entire system must be re-verified. Furthermore, verification often involves taking an informally specified object and reconstructing a formal specification from it. Unless the original designers are part of the exercise, it does not appear possible to determine whether the result of verification really does conform to the design. This must be true even when design documents are available for, as is often stated, a natural-language specification leaves a considerable amount unspecified because of our understanding of language. On the other hand, and this is another frequently made point, formal specification captures specifications unambiguously. The formal specification and refinement process requires that everything be captured in documents. It is clear that, should a single bit of a formally specified program be altered, the program no longer conforms to the specification. Unlike verification, it is possible, in this case, to determine whether the change is significant or not. It is also possible to propagate design decisions through a formal specification without requiring the production of code (by its very nature, verification depends upon the existence of code).

The Simple Kernel's Organisation

The purpose of this chapter is to describe in informal terms the organisation and purpose of the "simple" kernel that is specified in the remainder of this chapter.

As noted in Chapter 1, the kernel specified in this chapter is intended for use, actual or otherwise, as the kernel of embedded and simple real-time systems. The kernel is similar to Labrosse's $\mu \mathrm{C} / \mathrm{OS}$ [8] and the first kernel modelled in [4]. This kernel was deliberately chosen as a link back to [4] and because we consider it important to demonstrate that this class of kernel can be formally specified and refined to working code.

In this kernel, each process has a unique identifier that is assigned to it by the kernel from a fixed set in a purely sequential fashion. The first process to be allocated is the idle process, the process that runs when no other processes are ready for execution; the second to be allocated will usually be the initial process, the process that creates all the other processes in the system (the model is not related to the one employed by Unix, it should be noted). Thereafter, the identifiers are allocated to processes in order of creation.

At present, each process has to make an explicit system call to obtain its identifier and there is no facility for determining, at runtime, the identifier of other processes (unless they, too, have determined their identity by means of the same system call). An obvious extension would be to make process identifiers available in a more usable way. Meanwhile, the mechanism specified here is workable.

The process representation is a set of mappings that are refined to vectors (one-dimensional arrays). The collection of these mappings is equivalent to the process table in other systems and we will refer to this collection of mappings as the process table or $P T A B$ (this is the name of the state representation in the specification). The mappings are keyed by the identifier of the process and each mapping represents a different piece of information about the process.

In this kernel, the representation of processes is uniform in the sense that all processes are associated with the same kinds of information (in the other kernel specified in this book, there is a distinction imposed between different
types of process). In this kernel, processes are represented by the following information:

- Stack pointer. This is a pointer to the top of the process' stack. It is used when performing a context switch.
- Priority. This is a small integer value. Small negative values represent high priorities, while small positive values represent low priorities. The default value is 0 . The priority is used to sort the scheduler's ready queue and is also used to determine whether or not to cause a context switch.
- State. This is an enumeration type. The value associated with each process denotes the current state of the process. The state is used by the scheduler when determining whether a context switch can be performed. It is also used to document the process; an extension to the system is the inclusion of an operation that obtains the states of all the processes in the system (an operation similar to the Unix ps operation).
- Incoming Message. Processes can communicate using synchronous messages. This mapping is used to hold the latest message that has been sent to each process. When there is no message to be received or a message has just been read by its receiver, the value of the mapping is nullmsg.
- Waking Time. Processes can perform a system call that makes them wait for a specified period of time. The process specifies the duration of its sleeping time. The value stored in this mapping is the sum of the current time and the time at which the process should wake up. When a process wakes up, it is returned to the scheduler's ready queue and can be executed at some subsequent time.

In many kernels, processes are represented by structures or blocks of storage; the Linux kernel [2], on the other hand, employs an array-based representation similar to the one adopted here. A block/structure-based representation can be specified in Z and would use promotion to include the structure in the containing table. This approach separates the refinement of the structure from that of the table. The refinement process employed here combines the refinement of the mappings.

There are arguments for and against the benefits of these representations. As far as we are can see, the arguments balance out and what is left is personal preference. In other kernel specifications, we have adopted the other representation to good effect; in the end, though, we just like the mappingor vector-based implementation of the process table.

In addition, the process table contains a state variable, used. This contains the identifiers of those processes that have been allocated. If a process identifier is not in this set, it does not represent a process that currently exists in the system. This variable is refined to the freechain. The freechain is a chain of elements in a vector called next. If an element is in the freechain, it denotes a process that is not in the system; the identifier of the process is the index of the element in next.

The next major component is the scheduler. The scheduling régime is based on a simple priority queue with highest priority at the head. We refer to this queue as the ready queue. When a process is added to this queue, its priority is used to determine where it should be inserted.

The priority queue is first specified as a separate module, whose elements are in a variable called $p q$. For the specification of the scheduler proper, promotion is used so the refinement of the priority queue can proceed independently of that of the rest of the scheduler.

The priority queue is refined to a chain through the next PTAB map. This removes the need to allocate additional storage inside the kernel. The complexity of the chain operations is a little higher than those on a simple one-dimensional vector but it was employed here for the following reasons:

- It shows that such chaining can be handled formally.
- Chaining, as noted above, uses no more space in the kernel.

The scheduler proper contains three variables in addition to the ready queue. One variable contains the identifier of the null process so that it can be easily accessed when the scheduler determines that there is nothing to do.

The null process is included explicitly as a process for the following reasons:

- It can be removed in other versions of the system.
- Its behaviour can be altered from a completely null behaviour (an infinite loop with no body) to something else.

These modifications require trivial respecifications of the system.
The other variables contain the identifier of the process that is currently executing and that of the process that ran immediately before the current one. The identifier of the currently executing process is required by the scheduler when performing a rescheduler operation, as follows. A slightly simplified account of the scheduler's conditions for rescheduling are as follows. If a reschedule is to be performed and the following conditions are satisfied, the scheduler schedules another process and performs a context switch:

- There are processes in the ready queue.
- The priority of the current process is lower than that on the head of the ready queue.
- The state of the current process is not marked as ready or running.

If there are no processes in the ready queue, the idle process is run. If either of the other conditions is not satisfied, the current process is continued and no context switch is performed.

Keeping the current and previous process identifiers is also useful when performing the context switch because it allows the switching code to access process data. It is also useful when testing systems built using the kernel. In the current version, it allows the scheduler to access the stacks of the two processes.

The scheduler provides the following operations:

- An operation to initialise the various data structures. This is called on system start-up.
- An operation to schedule the next process (SchedNext).
- An operation that suspends its caller and schedules the next process. If there are no other processes in the ready queue, the idle process is run. The operation forces a context switch.

Processes can synchronise using semaphores. The kernel contains a single table that holds all the semaphores that can be used by processes. The size of the table is a compile-time constant. It is organised as a bit map. The semaphores held in the table are counting semaphores; this is no restriction upon the semaphores' behaviour because the semaphore type contains an initialisation variable that can be set to 1 for binary semaphores.

Semaphores are defined as a separate type. Semaphore operations are promoted by the table type. There are three operations provided by semaphores:

1. Initialise.
2. Allocate a semaphore if possible (if not, an error is reported).
3. Free a semaphore ${ }^{1}$.
4. Signal (the V operation).
5. Wait (the P operation).

The refinement of the semaphore table to bit maps was performed in order to demonstrate that structures requiring "bit banging" can be specified formally ${ }^{2}$.

Semaphores are implemented using promotion. The semaphore proper contains a counter and a FIFO queue. The queue is defined as a separate type and its operations are promoted by the semaphore, thus simplifying the refinement. The FIFO is, like the priority queue, refined to a chain through the next map in the process table. In this case, chaining was considered essential. This is because there could be many semaphores in the system. Each semaphore contains its own, independent, FIFO queue. If the FIFO were implemented as a vector, this would mean allocation of a vector of suitable size for each semaphore. The scheme adopted here has the advantages that the space is allocated once and that each FIFO can be of arbitrary length.

Processes can also communicate by the synchronous exchange of messages. When a process is ready to receive a message, it executes a system primitive and enters the psreceiving state and is suspended. It remains in that state

[^4]

Fig. 2.1. Organisation of the simple kernel.
until another process sends a message to it. When the message is received, the receiver's state is set to psready and it is put back into the scheduler's ready queue. If a process sends a message to a process that is not blocked in the psreceiving state, the system reports the fact and the sender must try again (this rather crude approach could be hidden inside a library routine).

The organisation of this kernel is shown in Figure 2.1.
The interface to the system's facilities are made as simple and direct as possible so that the result is reasonably fast. In addition, the kernel assumes that the code implementing processes is linked with the kernel to form a single, loadable image. Storage is allocated by the programmer; the kernel, as it stands, does not contain any storage-allocation code. Storage can be allocated as data structures in C or assembly code or can be allocated as part of the linkage process.

The specification defines system calls for many of the operations mentioned above. Included in the calls are the following:

- Create process.
- Terminate. This operation is used when a process needs to terminate itself (it should be the last operation performed by all processes except the initial one). The operation works by killing the currently active process.
- Get process identifier.
- Send a synchronous message.
- Receive a synchronous message.
- Allocate a semaphore; an identifier is returned.
- Deallocate a semaphore. The identifier returned by the allocation operation is used to identify the semaphore to be freed.
- Wait. The P operation on a semaphore.
- Signal. The V operation on a semaphore.
- Sleep. This causes the suspension of the caller for the specified period of time. When the time has elapsed, the caller is resumed.

Each system call works as follows. It first disables interrupts, then performs the operation and finally re-enables interrupts. Disabling interrupts ensures that the operation is indivisible. Most of the operations are quite short, so interrupt disabling should not cause too many problems (this is not a kernel for hard real-time processing, in any case).

The specification includes the mechanism for making processes sleep. This is another case in which a high-level specification is refined to a chain through the next vector in the process table. When processes are not sleeping, their waking time value is 0 ; when they are sleeping, the waking time value is greater than 0 . This provides a quick check that a process is not asleep.

To make the sleep mechanism work, the specification contains a clock. The clock is intended to be implemented as an Interrupt Service Routine (ISR) or interrupt handler.

The clock should work as follows. On every interrupt from the real hardware clock, the clock ISR increments a tick variable. If there are ticks each second, when tick $=t$, the time in seconds since boot time is incremented by one, as is a second variable that records the number of ticks since boot time. If the number of seconds since boot is $0 \bmod 60$, the minute counter is incremented by one; if the minute counter is $0 \bmod 60$, the hour counter is incremented by one. In the current version, the actual clock time is not recorded (this could be included with relatively little work but could involve a hardware dependency).

If the clock used by the processor ticks at a rate such as once every 100 msec , the above scheme can be used. Unfortunately, some processors do not have such accommodating clocks. The Intel IA32, for example, has a clock that has a cycle of something like 18.4 MHz , a rate that is not all that helpful for keeping the time. For the IA32, the clock ISR is activated on every clock interrupt, as usual. When activated, the ISR increments an activation counter. When the activation counter reaches a certain value, the tick counter is incremented, as above. The IA32 clock's rate is doubly awkward because it does not divide the second exactly, so either a little clock drift has to be tolerated or a correction must be made from time to time. In the specification here, drift is tolerated (it is an example, after all!)

Now, many readers will be wondering about the real hardware issues. In particular, how context switches are performed. Furthermore, nothing has been said about processor registers - the process context, in other words.

The answer is that we prefer to have as little as possible to do with the processor's low-level details! One reason for this is that it makes the kernel more portable (all the hardware-specific operations are firmly delineated). The low-level operations required are:

- Enable and disable interrupts. These operations are usually performed by one instruction each.
- A return from interrupt (IRET) is also required to terminate ISRs. This is also frequently implemented as one or two instructions (usually one but, on the MIPS, for example, interrupts must be re-enabled and the return has to be performed explicitly).
- A context switch. The scheme adopted in this specification is that the registers are stored on the top of the process stack. This has the advantage that there is no permanent store allocated in the process table for the register set; this also implies that it is not necessary, a priori to fix the number of registers in the process table.
- A "half-context switch". This is used to set up the intial process' registers when creating it. This operation pushes one value (0) onto the initial process' stack when it is created. The reason for this is explained immediately below.

The context-switching scheme is also a fairly standard one. When the scheduler requires a context switch, it raises an interrupt. This interrupt is handled by an ISR that pushes the outgoing process' registers onto its stack and then pops the incoming process' registers from the stack. The ISR then immediately executes an IRET instruction and the incoming process is switched in.

Because the incoming process has been suspended using an interrupt, it will have the registers needed by the IRET instruction on its stack immediately below its other registers. This is clearly impossible if the process has never been interrupted, as is the case with the initial process. In this case, the stack must be set up so that the processor finds all the information it requires. To do this, dummy values are pushed onto the stack when creating the inital process. The IRET instruction needs to have an address to which control should be returned. Usually, this is the address of the instruction that was interrupted. In the case of the initial process, the address has to be its entry point.

On an Intel IA32, the above scheme is extremely easy to implement. The hardware pushes the return address and the flags register onto the interrupted process' stack when an interrupt occurs. The pushad instruction pushes the general-purpose registers onto the stack and the popad instruction pops them back. If the kernel executes within a single address space (as this one does), there is no problem with the scheme outlined above (the Separation Kernel in Chapter 5 uses multiple address spaces, so another approach is required).

On a MIPS, the scheme outlined above can still be used. However, it is up to the implementer to push and pop the registers. In addition, the return-from-interrupt operation must be implemented as a macro. First, the interrupt flag is reset; next, the instruction pointer in force when the interrupt occurred
must be fetched from a co-processor register and incremented by four (four bytes, i.e.) and stored in a register; finally, a jump-on-register instruction is executed, citing the register in which the old instruction pointer is stored.

Although a bit longer, the MIPS sequence is still comparatively simple. It is clear that it can be represented in Z with a little work. Because we are aiming our refinements and implementation at the IA32/64 (simply because we have them available), we have omitted a detailed specification of the contextswitching operation. A specification for the MIPS (or any other processor like it, for that matter) would include the specification of the registers and the operations required to implement the push and pop operations, as well as the return-from-interrupt operation. This is not difficult; indeed, we undertook it when examining a refinement of this kernel to the MIPS processor ${ }^{3}$.

With this general outline of the kernel and the refinement out of the way, it is possible to progress to the specification and refinement proper. Both top-level specification and the various refinements are accompanied by a commentary to aid the reader's understanding.

[^5]
3

A Simple Kernel

The first specification and refinement is of a small kernel of the type often used in embedded and real-time systems. The kernel resembles Labrosse's $\mu \mathrm{C} / \mathrm{OS}$ [8] and the kernel of Chapter 3 of our [4].

The structure of the chapter is as follows. First, the types that are used throughout the specification and the refinement are defined.

Second, a specification of the hardware is given. This specification is at a relatively high level but could be refined to a lower one. The specification is aimed at an Intel IA32 implementation but should be sufficiently general to change to another architecture.

Third comes the specification and refinement of the kernel proper. This part occupies the vast majority of the chapter. Each major component is specified and then refined; this constitutes a section of the chapter. Refinements constitute a subsection and usually consist of the refined state space and operations followed by the abstraction relation; in some cases, where it seems more appropriate, the abstraction relation comes before the refined operations. The relevant proofs come at the end of each section. In a couple of cases, proofs are included within the statement of the refined operations.

3.1 Types

In this section, the major types are defined. As noted above, the types defined here are used throughout the rest of this chapter.

First, the PID and GPID types are defined. These types are used to name processes. The PID type is a subrange type with range minpid to maxpid, while GPID extends PID by the addition of the nullpid. The nullpid is defined below and represents the null process. The null process should not be confused with the idle process; the former is intended to be a null reference, while the latter merely does nothing while it executes-it is executed when the processor has nothing to do. The idle process has a normal process identifier (an element of $P I D$) and is allocated at system startup time.

```
PID \(\widehat{=}\) minpid . . maxpid
\(G P I D \widehat{=}\{\) nullpid \(\} \cup P I D\)
    nullpid: \(\mathbb{N}\)
    \(\forall p: P I D \bullet\)
    \(p<\) nullpid
```

The null value is usually the least element or somewhere in the middle. However, in a implementation using C vectors, indexing is zero-based, so the natural choice of zero is not available. The actual choice of value for nullpid is, in any case, arbitrary; what must be ensured is that there is no way in which nullpid can be confused with a valid value.

The PSTATE type is defined next.

PSTATE	$::=$ psterm
	$\|$psrunning psready pswaitsema pssleeping pssending psreceiving

This type represents the state of processes. A process can be in exactly one state at any time. The names denote states:

- State psterm denotes the terminated state.
- State psrunning is the state of a process that is currently executing.
- State psready is the state of a process that is ready to execute but not yet executing.
- State pswaitsema is the state of a process that is waiting on a semaphore.
- State pssleeping is the state of a process that is in a sleeping state (i.e., is waiting for a timer to expire before it can resume execution).
- State pssending is the state of a process that is sending a message (this might involve the process being suspended before the message can be exchanged).
- State psreceiving is the state of a process that is ready to receive a message.

The next definitions concern process priorities. Priorities are defined in terms of the range maxprio . . minprio, with smaller values denoting higher priorities.

```
minprio, maxprio : \mathbb{Z}
```

The type denoting process priorities is PPRIO.
PPRIO $==$ maxprio.. minprio

The type representing messages is, for simplicity, defined as atomic.

[MSG]

The $M S G$ type includes a value denoting the null message:

```
nullmsg : MSG
```

It will be necessary to access components of elements of $M S G$. It is common, for checking purposes, to require access to the sender (msgsrc) and destination (msgdest) of a message; in addition, the msgsize function returns the size of a message

```
msgsrc : MSG ->PID
msgdest: MSG }->\mathrm{ PID
msgsize : MSG }->\mathbb{N
```

The WORD type denotes the contents of a word of storage.

[WORD]

Addresses in the store are represented by the $A D D R$ type.
$A D D R==$ nulladdr \ldots maxaddr
Addresses are defined in terms of a range. The lower bound, nulladdr is address zero.

```
nulladdr : \mathbb{N}
maxaddr : N
nulladdr = 0
nulladdr < maxaddr
```

A representation is also required for time. This representation is called TIME. It is defined as a synonym for the naturals. Time can be assumed, for now, to start when the system is started.

TIME $==\mathbb{N}$
Finally, the SYSERR type is defined. This type defines the values of the error variable set by various system components. When all is well, the error variable is set to sysok; when an error has occurred, the variable is set to another value.


```
emptyqueue
schedqfull
schedqempty
alreadyasleep
toomanysleepers
notallocsema
nofreesemas
procalreadyhasmsg
destinationnotrcving
badmsgdestination
nomsg
```

The interpretation of the values are:

- Value pdinuse denotes the state in which a process descriptor (process identifier) is already in use;
- Value unusedpd denotes the state in which a reference has been made to a process descriptor that is not in use.
- Value ptabfull denotes the state in which no more process descriptors can be allocated.
- Value emptyqueue denotes the state in which a queue of processes is empty and an attempt to dequeue a process has taken place.
- Value schedqfull denotes the state in which the scheduler's ready queue is full.
- Value schedqempty denotes the state in which the scheduler's ready queue is empty.
- Vaue alreadyasleep denotes the state in which an attempt is made by a process to enter a sleep state but that process is already marked as being asleep.
- Value toomanysleepers denotes the state in which there are too many processes in the sleep list.
- Value notallocsema denotes the state in which an attempt has been made to access a semaphore that has not been allocated.
- Value nofreesemas denotes the state in which no more semaphores can be allocated.
- Value procalreadyhasmsg denotes the state in which a receiving process already has an incoming message but has not yet processed it (thereby freeing its incoming-message slot).
- Value destinationnotrcving denotes the state in which the intended destination of a message is not currently in the state to receive it. The sender should wait until later.
- Value badmsgdestination denotes the state in which the destination process of a message does not exist.
- Value nomsg denotes the state in which there is no message in the incoming-message slot when an attempt to receive a message is made.

This section concludes with the definition of three schemata that are used in generic error situations.

When all is well, the SysOk schema sets the error variable, serr!, to sysok.
_SysOk \qquad
serr! : SYSERR
serr $!=$ sysok

The following operation tests err to determine whether it is sysok.
IsSysOk \qquad
err : SYSERR
err $=$ sysok

This operation is used to re-direct the value of serr!. It is intended that terr? should be renamed when using this schema.

ReturnSysError \qquad
terr? : SYSERR
serr! : SYSERR
serr $!=t e r r ?$

3.2 Hardware

The reader is warned that this section is heavily influenced by the Intel IA32/64 architecture.

First, a type is defined to denote the values on and off. This type is to be the value of the interrupt status flag (the "interrupt flag").

ONOFF $==$ off \mid on
The processor implements a finite number of interrupt types, each denoted by a small integer in the range minintno to maxintno.

minintno, maxintno $: \mathbb{N}$
minintno $<$ maxintno

A type, INTRPTNO is defined to represent the interrupt number.
INTRPTNO $==$ minintno.. maxintno
The hardware state is represented by the following schema.

HARDWARE \qquad
genregs: REGID \rightarrow WORD
intflg : ONOFF
intno : INTRPTNO

The hardware has a set of general-purpose registers, genregs, an interrupt flag, intflg and a number denoting the current interrupt (if there is one), intno. In a fuller model, intno would be used to activate the appropriate interrupt service routine. Here, it is used just to provide a parameter to the operation that raises software interrupts. The general-purpose registers, genregs, is a function from register identifier, $R E G I D$, to a value (represented as a single word).

First of all, we need operations to enable and disable interrupts. First, the operation to enable interrupts is defined.

EnableInts \qquad
$\triangle H A R D W A R E$

$$
i n t f l g^{\prime}=o n
$$

Next, the operation that disables interrupts is defined.
DisableInts \qquad
$\triangle H A R D W A R E$
${ }^{\text {intflg }}{ }^{\prime}=$ off

Since these operations do not refer to the before state, their precondition is true.

The above operations merely operate on the interrupt flag in the simplified hardware models.

A Return From Interrupt instruction is assumed. On many processors, this operation corresponds to a single instruction, often called rti. Amongst other things, this operation disables interrupts, increments the program counter so that it points to the instruction after the one that caused the interrupt and restores it to the hardware so that execution can continue. Since much of this is internal to the processor, we only specify it in outline.

ReturnFromInterrupt $\widehat{=}$
...
${ }_{9}$ EnableInts
The process table, $P T A B$, is the structure maintained by the kernel to represent processes. Processes are represented as a collection of data items that collectively represent a process. As far as the hardware is concerned, it is necessary for each process' current stack top pointer to be stored in the
process table. The reason for this is that, between activations, the values of the registers belonging to a process are stored on top of the stack.

```
PTAB
\vdots
    stacktop:PID }->ADDR
    \vdots
    dom stacktop = used
    \vdots
```

When a context switch occurs, the registers belonging to the outgoing process are pushed onto its stack. Then the registers of the incoming process are popped off its stack.

ContextSwitch
$\triangle H A R D W A R E$
$\Xi P T A B$
inpid?, outpid? : PID
pushregs(stacks(outpid?))
${ }_{9}{ }^{\text {popregs }}($ stacks(inpid?))
where pushregs is an operation that pushes all (necessary) registers onto the stack pointed to by stacks(outpid?) and popregs pops the equivalent registers from the stack pointed to by stacks(inpid?). This is an old technique for storing registers; it has the enormous advantage that it does not require storage in the process table. It has another advantage: the registers are always in an easily accessible location and access to them is relatively cheap.

Because of the architecture of most processors, we are compelled to assume that there will always be sufficient space on the outgoing process' stack to hold all the necessary registers. This is, however, a matter for the programmer. Furthermore, nowhere is the size limit for the stack saved, so it is not possible to determine whether there is any space available; even if there were, the test might be too expensive to apply, so we are left where we began.

The precondition of ContextSwitch could be true or it could be
pre ContextSwitch $\widehat{=}\{$ inpid?, outpid $?\} \subseteq$ used
The process is only partially complete at this point. When the first process is executed, where do the outgoing registers come from? To solve this problem, we define the following operation

```
    HalfContextSwitch
    \triangleHARDWARE
    \XiPTAB
    inproc?: PID
pushregszero(stacks(inproc?))
```

\qquad
where pushregszero is a function that pushes one zero on the stack pointed to by stacks (inproc?) for every register that must be used by the process inproc?.

Finally, it is assumed that when a context switch is to occur, an interrupt is raised. On many processors, when an interrupt is raised, the program counter of the interrupting process is stored on the stack. On other processors, the program counter is stored in a well-defined location, usually in a designated register (as it is on MIPS processors). In order to complete the specification of the context switch, it is necessary to define an operation that raises the interrupt (RaiseInterrupt).

```
RaiseInterrupt
    \triangleHARDWARE
    ino?: INTRPTNO
    intno' = ino?
```

Note that we say nothing about how the hardware responds to this. The precondition of this operation is true, as the following calculation shows. First,

```
\exists HARDWARE'\bullet
    intno' = ino?
```

This then becomes

```
\(\exists\) genregs \(^{\prime}:\) REGID \(\rightarrow\) WORD; intflg \({ }^{\prime}:\) ONOFF; intno \({ }^{\prime}:\) INTRPTNO •
    intno \(^{\prime}=\) ino? \(^{\prime} \wedge\)
    genregs \({ }^{\prime}=\) genregs \(\wedge\)
    \(i_{n t f l g}=\) intflg \(^{\prime}\)
```

Using the one-point rule, this simplifies to

```
\(\exists\) genregs \(^{\prime}:\) REGID \(\rightarrow\) WORD; intflg \({ }^{\prime}:\) ONOFF; intno' \(:\) INTRPTNO •
    ino? \(=\) ino? \(\wedge\)
    genregs \(=\) genregs \(\wedge\)
    intflg \(=\) intflg
```

This is clearly equivalent to true, so we can state
pre RaiseInterrupt $\widehat{=}$ true
To cause a context-switching interrupt, the following operation is invoked

```
CTXTSW \(\widehat{=}\)
    \(\exists\) ino : INTRPTNO \(\mid\) ino \(=\) context_switch \(\bullet\)
    RaiseInterrupt[ino/ino?]
```

This expands into

```
    CTXTSW
    \triangleHARDWARE
    intno' = context_switch
```

In this case, too, the precondition is
pre $C T X T S W$ = true
This fact saves a good deal of work when defining the scheduler's main operation.

When the interrupt occurs, the ISR performs the following operations

CTXTSWISR $\widehat{=}$

ContextSwitch ${ }_{9}$ ReturnFromInterrupt
This operation calls the context switch to push the outgoing process' registers onto its stack. The outgoing process was the one that was executing before the context switch occurred, so its program counter will be pushed onto the stack by the CTXTSW operation. The incoming process will have had its stack organised by the $C T X T S W$ operation, so we can expect its stack to have its registers at the top and its program counter underneath. By popping the registers, the stack is left in the state required by the ReturnFromInterrupt. In this case, however, control is passed to the incoming process, not to the one that caused the interrupt.

Although the principle of the above is quite general, it assumes that there is a rti instruction and that the stack contains the program counter on interrupt. These assumptions are not universal. There are processors that only push the interrupted process' program counter on the stack; there are processors that store the interrupting process' program counter in a register. MIPS does this and MIPS requires the programmer to increment the program counter themselves; its equivalent of the rti instruction just clears the interrupt flag. In the case of MIPS, therefore, a little more work must be done than we have outlined here.

The ISR for the half context switch also needs to find a program counter on the incoming process' stack. Since the process has not executed yet, so the stack has to be pre-loaded with program counter and default values for the other data that is pushed by the raise interrupt operation. The program counter value will be the entry point of the first process.

In a similar fashion, when a process is run for the first time, there is no program counter for it. In this case also, the program counter's value should be the entry point to the main procedure in the process.

3.3 The Process Table

In the last section, reference was made to the Process Table, a data structure maintained by the kernel to represent the processes it currently contains. Here, the process table, $P T A B$, and the operations required to support it, are defined.

First, the error schemata are defined.
The first operation is used to set the error flag when a process descriptor is unused and something wants to operate on it.

UnusedPD \qquad
serr! : SYSERR
serr $!=$ unusedpd
The next schema represents the operation that records the error state when a process descriptor is in use and an attempt to allocate it again is made.

PDInUse \qquad
serr! : SYSERR
serr $!=p$ dinuse

The final schema represents the operation to set the error value when the process table is full.

PTABFull \qquad
serr! : SYSERR
serr $!=$ ptabfull

3.3.1 Top Level

Now, the state schema for the process table is defined.
PTAB \qquad
used : \mathbb{F} PID
prio : PID \rightarrow PPRIO
state : PID \rightarrow PSTATE
stacktop $: P I D \rightarrow A D D R$
smsg: PID $\rightarrow M S G$
wakingtime : PID \rightarrow TIME
used $=$ dom prio
dom prio $=$ dom state
dom prio $=$ dom smsg
dom prio $=$ dom wakingtime
dom prio $=$ dom stacktop

The used variable records the identifiers of those processes currently in the system. Each process in used has a priority that is represented by prio and a state that is represented by state. A pointer to the top of each process' stack is represented by stacktop. Processes are permitted to communicate using messages, following a synchronous régime, and messages, when received, are stored in smsg. Processes are each associated with a value that denotes the period, expressed in seconds, that it is to be suspended on a timer queue; when the period expires, the process is made ready for execution. By default, a process that is not sleeping is assigned a wakingtime value of 0 (zero).

When allocating process identifiers, it is useful to know which identifiers are free and which are used. Since $P I D$ is finite and used $\subseteq P I D$, we can define free as:
$P I D \backslash$ used $=$ free
This definition will make refinement considerably easier. It will also help in reasoning about the process table.

The process table is initialised by the following operation. Initialisation consists simply of setting used to empty. Since the domains of the partial functions comprising the rest of the $P T A B$ schema are identical to used, this implies that the domains of these functions is also \varnothing.

PTABInit
PTAB'
$u s e d^{\prime}=\varnothing$

The UsedPID schema defines an operation that is true when the input, p ?, is an element of used. When this is the case, p ? refers to a known process (i.e., one that is present in the system).

UsedPID
$\Xi P T A B$
p ? : PID
$p ? \in$ used

The next operation is true when there are process identifiers that can be allocated.

GotFreePIDs \qquad
$\Xi P T A B$
used \subset PID

Note that $\varnothing \subset P I D$. In this case, there are no allocated PIDs. If used $=P I D$, then used $\subset P I D$ is false and there are no free elements of $P I D$. This scheme is used because process identifiers are cycled in the sense that a single identifier
can be allocated (i.e., denoting some process) at one time and unallocated (i.e., denoting no process) at another time. This is similar to the cycling indices when process identifiers are represented by array indices. The operation to allocate a process identifier is the following:

```
AllocPID
\trianglePTAB
p!: PID
p! & used
used'}=\mathrm{ used }\cup{p!
```

By the definition of free, $p!\notin$ free follows from the predicate of AllocPID's schema.

When deallocating or freeing a process identifier, the FreePID operation is employed.

FreePID \qquad
$\triangle P T A B$
p ? : PID
$u^{\text {sed }}{ }^{\prime}=u s e d \backslash\{p ?\}$

The definition of free permits the inference from the schema of FreePID that $p ? \in f r e e^{\prime}$, or that $p ?$ is an element of free in the after state of this operation.

The lowest level of process descriptor allocation is the creation of the initial representation of the process. When a process is created, an identifier is allocated and some basic information about it is recorded in the process table. This second part of the operation is captured by $A d d P D E S C$.

```
AddPDESC
\trianglePTAB
p?: PID
st?: PSTATE
pr?: PPRIO
prio}\mp@subsup{}{}{\prime}=prio\cup{p?\mapstopr?
state}\mp@subsup{}{}{\prime}=\mathrm{ state }\cup{p?\mapstost?
smsg' = smsg \cup{p?\mapsto nullmsg}
wakingtime' }=\mathrm{ wakingtime }\cup{p?\mapsto0
```

It is clear that $p ? \in$ used is required. It can also be seen that the default value for wakingtime is used to denote the fact that p ? is not currently sleeping.

The full operation to create a representation of a process within the process table is the following.

```
\(\operatorname{AddPD} \widehat{=}\)
    ((GotFreePIDs \(\wedge\) AllocPID) \({ }_{9}\)
        \((\neg \operatorname{UsedPID}[p!/ p ?] \wedge \operatorname{AddPDESC}[p!/ p ?] \wedge S y s O k)\)
        \(\checkmark\) PDInUse)
    \(\vee\) PTABFull
```

First, a test is performed to determine that the process table is not empty. If this is the case, a process identifier is allocated and a check is made to determine whether the newly allocated identifier is currently in use (if it is, something serious has gone wrong, perhaps an attack-we do not deal with such matters in this system but we do record the fact). If all is well, basic information about the process is recorded in the process table and sysok is returned.

This expands into:
AddPD \qquad

```
\trianglePTAB
p!: PID
pr?: PPRIO
st?: PSTATE
serr! : SYSERR
((used \subset PID ^
    p!\not\inused \wedge used}\mp@subsup{}{}{\prime}=\mathrm{ used }\cup{p!}
    p!\in\mp@subsup{used}{}{\prime}\wedge prio'}=\mathrm{ prio }\cup{p!\mapstopr?}
    state}\mp@subsup{}{}{\prime}=\mathrm{ state }\cup{p!\mapstost?}^smsg' = smsg\cup{p!\mapsto nullmsg} ^
    wakingtime' = wakingtime \cup{p!\mapsto0}^
    serr! = sysok)
\vee serr! = pdinuse)
\vee serr! = ptabful
```

For the purposes of refinement, it is necessary to calculate the precondition of this operation. It is
pre $A d d P D \widehat{=}$
used \subset PID
It is equivalent to

$$
P I D \backslash u s e d \neq \varnothing
$$

and to
used $\neq P I D$
When a process terminates, its descriptor must be removed from the system. The DelPD operation does this.

```
DelPD \widehat{=}
    (UsedPID ^ FreePID ^ SysOk)
    \checkmark ~ U n u s e d P D ~
```

The deletion of process descriptors is simplified by the fact that the domain of each of the maps that constitute its representation is identical to used. Therefore, by deleting the process identifier from used, it is also removed from the other domains.

The DelPD operation expands into:
DelPD
$\triangle P T A B$
p ? : PID
serr! : SYSERR
(p ? \in used \wedge
used $^{\prime}=$ used $\backslash\{p ?\} \wedge$
serr! $=$ sysok $)$
\vee serr! $=$ unusedpd

The precondition of DelPD is given by

```
pre DelPD \widehat{=}
    \exists PTAB' \bullet p? \in used
```

The next few operations are required to read and write the attributes that comprise the representation of a process. The attributes of interest here are prio, state and wakingtime. In the case of state, there are operations that set the state to specific values; later in this specification, there will be other such operations defined. The structure of the operations is very much as one would expect, given the definition of the types in question. For this reason, little is said about the details.

ProcPrio \qquad
Ξ ITAB
p ? : PID
pr! : PPRIO
$p r!=\operatorname{prio}(p ?)$

SetProcPrio
$\triangle P T A B$
p ? : PID
pr? : PPRIO
prio ${ }^{\prime}=$ prio $\oplus\{p ? \mapsto p r ?\}$

ProcState
$\Xi P T A B$
p ? : PID
st! : PSTATE
$s t!=s t a t e(p ?)$

SetProcState \qquad
$\triangle P T A B$
p ? : PID
st? : PSTATE

$$
\text { state }^{\prime}=\text { state } \oplus\{p ? \mapsto \text { st? }\}
$$

It is useful to have operations that set the value of state. The most useful is the one that sets the state to psready (this operation is applied when a process enters the scheduler's ready queue).

SetProcessStateToReady $\widehat{=}$

$$
\exists s t: \text { PSTATE } \mid \text { st }=\text { psready }
$$

SetProcState[st/st?]
It expands into
SetProcessStateToReady

```
    \trianglePTAB
    p?: PID
    state' = state }\oplus{p?\mapstopsready
```

SetWaitingTime
$\triangle P T A B$
p ? : PID
t ? : TIME
wakingtime $^{\prime}=$ wakingtime $\oplus\{p ? \mapsto t ?\}$

WaitingTime
$\Xi P T A B$
p ? : PID
t! : TIME
$t!=$ wakingtime $(p ?)$

3.3.2 Refinement One

In this refinement, a free chain of process descriptors is introduced. This is used to allocate and free descriptors. At present, the free chain is defined in terms of an additional function, freech; in the next subsection, the free chain is refined to the next chain that forms part of PTAB.

The state representation for the refined process table, $P T A B 1$, is as follows.

```
PTAB1
hdfree, endfree : GPID
freech: PID }->\mathrm{ GPID
prio1: PID }->\mathrm{ PPRIO
state 1: PID }->\mathrm{ PSTATE
smsg1: PID }->\mathrm{ MSG
stacktop 1: PID }->\mathrm{ ADDR
wakingtime 1: PID }->\mathrm{ TIME
hdfree = nullpid }\Leftrightarrow\mathrm{ endfree = nullpid
hdfree = nullpid \Leftrightarrowdom freech =\varnothing
hdfree }\not=\mathrm{ nullpid }\Leftrightarrow\mathrm{ dom freech }\not=
hdfree }\not=\mathrm{ nullpid }\Leftrightarrow\mathrm{ hdfree }\in\mathrm{ dom freech
hdfree }\not=\mathrm{ nullpid }\Leftrightarrow\mathrm{ endfree }\in\mathrm{ dom freech
hdfree }\not=\mathrm{ nullpid }\Leftrightarrow\mathrm{ freech(endfree })=\mathrm{ nullpid }
```

First, it should be noted that prio1, state 1 and wakingtime 1 are similar to those in PTAB; in PTAB, these variables are partial functions, while here they are total functions. This clearly has implications for the domain constraint on them that was used so successfully in the specification of $P T A B$.

The other point of interest is the representation of the free chain. We use two variables, $h d f r e e$ and endfree to denote the first and last elements of the chain. So that an empty chain can be represented, these variables are of type GPID, so can be assigned to the value nullpid. The main part of the chain is represented by the (finite) partial injection freech. For the reason that freech is an injection, it follows immediately that it is $1-1$; for the reason that freech is partial, it allows some elements of $P I D$ to be absent from its domain. When the freechain is empty, dom freech $=\varnothing$. An empty free chain implies that there are no more process identifiers to allocate. This is the central point of the initialisation operation for PTAB1:

```
PTAB1Init
PTAB1 \({ }^{\prime}\)
    \(h d\) free \(^{\prime}=\) minpid \(\wedge\) endfree \(^{\prime}=\) maxpid
    \(\forall p: P I D \bullet\)
    \(\left(p=\right.\) maxpid \(\Rightarrow\) freech \(^{\prime}(p)=\) nullpid \() \wedge\left(p<\right.\) maxpid \(\Rightarrow\) freech \(\left.^{\prime}(p)=p+1\right)\)
```

This operation merely sets freech to map to the next process identifier (second conjunct). The last proper process identifier is mapped to nullpid by the first conjunct.

The following operation corresponds to UsedPID. It employs the same logic as in the case of PTAB: a process identifier is used iff it is not free. Here, free is equivalent to being in the free chain, or, more precisely, in the domain of the freech.

UsedPID1 \qquad
$\Xi P T A B 1$
p ? : PID
$p ? \notin \operatorname{dom}$ freech

The next operation could be defined in terms of dom freech. However, it is somewhat more useful to use hdfree. The invariant of PTAB1 states that $h d f r e e=$ nullpid \Leftrightarrow endfree $=$ nullpid, and that hdfree $=$ nullpid \Leftrightarrow dom freech $=\varnothing$. This permits a good deal of simplification so that the following schema is obtained.

GotFreePIDs1 \qquad
$\Xi P T A B 1$
hdfree \neq nullpid

Using the invariant, the predicate of this schema implies that endfree $=$ nullpid and dom freech $=\varnothing$, so there can be no free identifiers.

The next operation allocates a new process identifier from the free chain.

$\begin{aligned} & \triangle P T A B 1 \\ & p!: \text { PID } \\ & \hline p!=\text { hdfree } \\ & \text { freech }^{\prime}=\text { freech } \&\{p!\} \\ & \text { hdfree }^{\prime}=\text { freech }(\text { hdfree }) \end{aligned}$	

First, the next free identifier is the value of hdfree, so it can be made the output variable, p !. The value of $h d f r e e$ must be updated to freech($h d f r e e$), so that $h d f r e e^{\prime}$ is the successor of $h d f r e e$ in freech. It is also necessary to remove $h d f r e e$ or p ! from freech; p ! is a domain element of freech, so the \triangleleft operation suffices to remove it from freech. It should be noted that, since $p!$ is hdfree, it can only occur in the domain of freech, so the domain subtraction operation is adequate and there is no requirement to remove p ! from the codomain.

This operation corresponds to $A d d P D E S C$. The correspondence should be clear.

AddPDESC1 \qquad

```
\trianglePTAB1
p?: PID
pr?: PPRIO
st?: PSTATE
prio1' = prio 1 }\oplus{p?\mapstopr?
state 1' = state 1 }\oplus{p?\mapstost?
wakingtime 1' = wakingtime 1 }\oplus{p?\mapsto0
```

The following operation corresponds to $A d d P D$.

```
AddPD1 \widehat{=}
    ((GotFreePIDs1 ^ AllocPID1)
        g}(UsedPID1[p!/p?]^ AddPDESC1[p!/p?])^ SysOk
        \vee PDInUse
    \vee PTABFull
```

This expands into:
AddPD1 \qquad
$\triangle P T A B 1$
$p!: P I D$
serr! : SYSERR

```
\(((h d f r e e \neq\) nullpid \(\wedge\)
    \(p!=\) hdfree \(\wedge\) freech \(^{\prime}=\) freech \(\triangleleft\{p!\} \wedge\)
    \(h d f r e e^{\prime}=\) freech \(\left.(h d f r e e)\right) \wedge\)
    ( \(p!\notin \operatorname{dom}\) freech \(h^{\prime} \wedge\)
                prio1 \(1^{\prime}=\) prio \(1 \oplus\{p!\mapsto p r ?\} \wedge\)
                state \(1^{\prime}=\) state \(\left.1 \oplus\{p!\mapsto s t ?\}\right) \wedge\)
                smsg \(1^{\prime}=\operatorname{smsg} 1 \oplus\{p!\mapsto\) nullpid \(\} \wedge\)
                wakingtime \(1^{\prime}=\) wakingtime \(1 \oplus\{p!\mapsto 0\} \wedge\)
                serr! = sysok)
    \(\vee\) serr \(!=\) pdinuse
    \(\vee\) serr \(!=\) ptabfull
```

Using the fact that $\operatorname{pre}(A \vee B) \Leftrightarrow$ pre $A \vee$ pre B, we can omit serr! $=$ ptabfull immediately. In addition, the assignments serr! = unusedpd and serr $!=$ sysok contribute nothing to the precondition and can also be omitted.

The precondition of $A d d P D 1$ is required so that refinement proofs can be undertaken.

```
pre AddPD1 \widehat{=}
    \existsPTAB1'; p!: PID \bullet
    hdfree }\not=\mathrm{ nullpid }
    p! = hdfree ^
    freech'}=\mathrm{ freech }\triangleleft{p!}
    hdfree' = freech(hdfree)) ^
    (p!& dom freech' ^
        prio1' = prio 1 }\oplus{p!\mapstopr?} ^
        state }\mp@subsup{1}{}{\prime}=\mathrm{ state }1\oplus{p!\mapstost?}
```

This simplifies to:
pre $\operatorname{AddPD} 1 \widehat{=}$
hdfree \neq nullpid \wedge
$h d$ free $\notin \operatorname{dom}($ freech $\triangleleft\{h d$ free $\} \wedge$
It is equivalent to
hdfree \neq nullpid
The next few schemata define operations over the free chain. The purpose of defining these operations is to make manipulation of the free chain somewhat easier.

The first schema defines a predicate that is true when the free chain is empty.

EmptyFreeChain1 \qquad
EPTAB1
dom freech $=\varnothing$

The next schema defines an operation that adds an element to the end of the free chain.

AddNewLastFreechain \qquad

```
\trianglePTAB1
p?: PID
freech'}=\mathrm{ freech }\oplus{\mathrm{ endfree }\mapstop?
```

The next schema defines an operation that maps the last element of the free chain to nullpid.

AddFreechainLast \qquad
$\triangle P T A B 1$
p ? : PID
freech $^{\prime}=$ freech $\cup\{p ? \mapsto$ nullpid $\}$

The SetFCHead operation sets the value of hdfree.
SetFCHead \qquad
$\triangle P T A B 1$
p ? : PID
$h d$ free $^{\prime}=p$?

Analogously, SetFCLast sets the value of endfree.

```
    SetFCLast
    \trianglePTAB1
    p?: PID
    endfree}\mp@subsup{}{}{\prime}=p\mathrm{ ?
```

Using the schemata just defined, the operation to deallocate a process identifier can be defined. The freeing operation is initially defined as follows:

```
FreePID1 \widehat{=}
    (UsedPID1^
        (((EmptyFreeChain 1 ^ AddFreechainLast ^
            SetFCLast ^ SetFCHead)
        \vee (UsedPID 1 ^
            (AddNewLastFreechain % AddFreechainLast) ^
            SetFCLast))^
        SysOk))
    \vee UnusedPID
```

This version is adequate but not very good. In particular, if EmptyFreeChain 1 is true, this fact implies that UsedPID1 is also true. That is, dom freech $=\varnothing$ implies that $p ? \notin$ dom freech. By omitting UsedPID1, the following is obtained:

```
FreePID1 \widehat{=}
    (((EmptyFreeChain1 ^
    AddFreechainLast ^ SetFCLast ^ SetFCHead)
    \vee UsedPID1 ^
            (AddNewLastFreechain g}\mathrm{ AddFreechainLast) }\wedge\mathrm{ SetFCLast)) ^
        SysOk)
    \vee UnusedPID
```

This can be transformed by distribution of SysOk. The transformation is justified by the propositional calculus theorem $(p \vee q) \wedge r \Leftrightarrow(p \wedge r) \vee(q \wedge$ r). The use of this theorem occurs frequently and can be used both to expand a schema by producing copies of conjuncts and to contract them by reducing multiple occurrences of a conjunct to a single one.

FreePID1 $\widehat{=}$
((EmptyFreeChain $1 \wedge$
AddFreechainLast \wedge SetFCLast \wedge SetFCHead \wedge SysOk)
$\vee($ UsedPID $1 \wedge$
$\left(\right.$ AddNewLastFreechain ${ }_{9}$ AddFreechainLast) \wedge SetFCLast \wedge SysOk) $)$
\checkmark UnusedPID1
This definition can then be expanded into the schema that follows. A little simplification has been performed on the schema, it should be noted. Very often, when expanding definitions into schemata, we will take the opportunity to engage in some simplification; we will, though, outline the transformations employed unless they are obvious.

```
FreePID1
```

\qquad

```
\(\triangle P T A B 1\)
\(p\) ? : PID
serr! : SYSERR
( \((\operatorname{dom}\) freech \(=\varnothing \wedge\)
    freech \({ }^{\prime}=\) freech \(\cup\{p ? \mapsto\) nullpid \(\} \wedge\)
    endfree \({ }^{\prime}=p ? \wedge\)
    \(h d\) free \(^{\prime}=p ? \wedge\)
    serr! \(=\) sysok \()\)
\(\vee(p ? \notin \operatorname{dom}\) freech \(\wedge\)
    freech \(^{\prime}=(\) freech \(\oplus\{\) endfree \(\mapsto p ?\}) \cup\{p ? \mapsto\) nullpid \(\} \wedge\)
    endfree \({ }^{\prime}=p ? \wedge\)
    serr! \(=\) sysok \()\) )
\(\vee \operatorname{serr}!=\) usedpd
```

In order to prove that FreePID1 is a correct refinement of FreePID, the precondition of FreePID1 is required. It is calculated as follows.

```
pre FreePID1 =
    \exists PTAB1'\bullet
            (dom freech = \varnothing ^
            freech'}=\mathrm{ freech }\cup{p?\mapsto nullpid} }
            endfree' = p?^
            hdfree' = p?)
    \vee (p?\not\in\operatorname{dom}\mathrm{ freech }\wedge
        freech'}=(\mathrm{ freech }\oplus{\mathrm{ endfree }\mapstop?})\cup{p?\mapsto nullpid } ^
        endfree }\mp@subsup{}{}{\prime}=p\mathrm{ ?)
```

This simplifies to

```
pre FreePID1 \(\widehat{=}\)
    \(\exists P T A B 1^{\prime}\) 。
            ((dom freech \(=\varnothing \wedge\)
                        freech \(\cup\{p ? \mapsto\) nullpid \(\}=\) freech \(\cup\{p ? \mapsto\) nullpid \(\} \wedge\)
            \(p ?=p ? \wedge p ?=p ?)\)
    \(\vee(p ? \notin \operatorname{dom}\) freech \(\wedge\)
        \((\) freech \(\oplus\{\) endfree \(\mapsto p ?\}) \cup\{p ? \mapsto\) nullpid \(\})=\)
                            \((\) freech \(\oplus\{\) endfree \(\mapsto p ?\}) \cup\{p ? \mapsto\) nullpid \(\}) \wedge\)
        \(p ?=p ?)\)
```

and again to

```
pre FreePID1 \widehat{=}
    dom freech = \varnothing^
    \vee p?& dom freech
```

It is equivalent to
$p ? \notin \operatorname{dom}$ freech
This is justified as follows. If dom freech $=\varnothing$, then $p ? \notin \operatorname{dom}$ freech, trivially.
The DelPD1 operation can be defined as an equivalence:
DelPD1 $\widehat{=}$ FreePID1
The operations to access and set state components must be defined for $P T A B 1$, just as they were for $P T A B$. The definitions are quite obvious, so we just give one as an example. As with the corresponding operations over $P T A B$, there is the tacit assumption that p ? is in used. The operations are not used as independent operations but as components of larger operations that require that $p ? \in$ used or some equivalent condition.

```
SetProcState1
```

$\triangle P T A B 1$
p?: PID
st? : PSTATE
state $1^{\prime}=$ state $1 \oplus\{p ? \mapsto s t ?\}$

The relationship between $P T A B$ and $P T A B 1$ is expressed by the predicate of the $A b s P T A B 1$ schema. This schema is referred to below as the "abstraction relation".

```
AbsPTAB1
    PTAB
    PTAB1
```

```
dom freech \(=P I D \backslash\) used
```

dom freech $=P I D \backslash$ used
dom freech \cap used $=\varnothing$
dom freech \cap used $=\varnothing$
$\forall p: P I D \bullet$
$\forall p: P I D \bullet$
$p \in$ used $\Rightarrow \operatorname{prio}(p)=\operatorname{prio} 1(p)$
$p \in$ used $\Rightarrow \operatorname{prio}(p)=\operatorname{prio} 1(p)$
$\forall p: P I D \bullet$
$\forall p: P I D \bullet$
$p \in$ used $\Rightarrow \operatorname{state}(p)=\operatorname{state} 1(p)$
$p \in$ used $\Rightarrow \operatorname{state}(p)=\operatorname{state} 1(p)$
$\forall p: P I D \bullet$
$\forall p: P I D \bullet$
$p \in$ used \Rightarrow wakingtime $(p)=$ wakingtime $1(p)$
$p \in$ used \Rightarrow wakingtime $(p)=$ wakingtime $1(p)$
$\forall p: P I D \bullet$
$\forall p: P I D \bullet$
$p \in$ used $\Rightarrow \operatorname{smsg}(p)=\operatorname{smsg} 1(p)$
$p \in$ used $\Rightarrow \operatorname{smsg}(p)=\operatorname{smsg} 1(p)$
$\forall p: P I D \bullet$
$\forall p: P I D \bullet$
$p \in \operatorname{used} \Rightarrow \operatorname{stacktop}(p)=\operatorname{stacktop} 1(p)$

```
    \(p \in \operatorname{used} \Rightarrow \operatorname{stacktop}(p)=\operatorname{stacktop} 1(p)\)
```

It is clear that the predicate of the $A b s P T A B 1$ schema is a function; indeed, it is an identity. Abstraction relations of this kind are extremely common. It is possible to calculate the various operations of the refinement from a functional abstraction relation and this we resist. Moreover, the fact that the abstraction relation is an identity implies that the refinement proofs are quite simple (perhaps even trivial); we include the proofs as a demonstration.

With the abstraction relation defined, it is possible to prove the initialisation theorem.

Theorem 1. $\forall P T A B^{\prime} ; P T A B 1^{\prime} \bullet P T A B 1$ Init $\wedge A b s P T A B 1 \Rightarrow$ PTABInit.
Proof. By the predicate of $A b s P T A B 1$, dom freech ${ }^{\prime}=P I D \backslash$ used $^{\prime}$. The universally quantified formula in PTAB1Init's predicate implies that maxpid \in dom freech ${ }^{\prime}$ and for all $p<$ maxpid, $p \in \operatorname{dom}$ freech ${ }^{\prime}$. This implies that $P I D=\operatorname{dom}$ freech $^{\prime}$, so, by the abstraction relation, used ${ }^{\prime}=\varnothing$.

Until the end of this section, refinement proofs are presented, two for each operation that is refined. The proofs are the standard ones (cf. [12] or [13]).

Theorem 2. $\forall P T A B ; P T A B 1 \bullet$ pre $A d d P D \wedge A b s P T A B 1 \Rightarrow$ pre $A d d P D 1$
Proof. We have the following preconditions:
pre $A d d P D \widehat{=} P I D \backslash$ used $\neq \varnothing$
and
AddPD $1 \widehat{=}$ hdfree \neq nullpid
By the abstraction relation, dom freech $=P I D \backslash$ used. If $P I D \backslash$ used $\neq \varnothing$, it follows that dom freech $\neq \varnothing$. By the invariant of PTAB1, dom freech $\neq \varnothing$ implies that $h d$ free \neq nullpid.

Theorem 3.

```
\forall PTAB; PTAB'; PTAB1; PTAB1';
    pr? : PRIO; st? : PSTATE; p! : PID; serr! : SYSERR \bullet
pre AddPD
    ^ AbsPTAB1 ^ AbsPTAB1'
    \wedge AddPD1
=> AddPD
```

Proof. By the invariant of PTAB1, it is clear that hdfree \neq nullpid implies that dom freech $\neq \varnothing$. By the abstraction relation, this implies that PID \} used $\neq \varnothing$, and so used $\subset P I D$. If used $=\varnothing$, used $\subset P I D$ since $\varnothing \subset S$, for all S; if, on the other hand, used $\neq \varnothing$, used $\subset P I D$ by definition.

If $p!=h d f r e e ~ t h e n ~ p!\notin$ used .
Now, freech $\triangleleft\{p!\}$ implies used $\cup\{p!\}$ and by the abstraction relation, dom freech $^{\prime}=P I D \backslash$ used $^{\prime}$, so dom freech $\triangleleft\{p!\}=(P I D \backslash$ used $) \cup\{p!\}$, which is equivalent to $P I D \backslash($ used $\cup\{p!\})$ since free \cup used $=P I D$, and this is equivalent to $P I D \backslash$ used by the predicate of $A b s P T A B 1^{\prime}$. From this, we can infer that used $\cup\{p!\}=u s e d^{\prime}$.

By the abstraction relation, $A b s P T A B 1$

```
\(\forall p: P I D \bullet\)
    \(p \in\) used \(\Rightarrow \operatorname{prio}(p)=\operatorname{prio} 1(p)\)
and
\(\forall p: P I D \bullet\)
    \(p \in \operatorname{used} \Rightarrow \operatorname{state}(p)=\operatorname{state} 1(p)\)
```

Now, we need to observe that $A d d P D$ is defined in terms of a sequential composition, so the start state of the second component is the after state of the first. Writing the after state for used as used ${ }^{\prime \prime}$, it can be seen that $u s e d^{\prime}=u s e d^{\prime \prime}$. Therefore, $p!\notin \operatorname{dom}$ freech $^{\prime}$ is equivalent to $p!\notin \operatorname{dom}$ freech $^{\prime \prime}$ and implies $p!\notin u s e d^{\prime}$ or $p!\notin u s e d^{\prime \prime}$. From this, it can be inferred that prio $1 \oplus\{p!\mapsto p r ?\}=$ prio $\oplus\{p!\mapsto p r ?\}$. Since $p!\notin$ used $^{\prime}$, prio $\oplus\{p ? \mapsto$ pr?\} $=$ prio $\cup\{p ? \mapsto p r ?\}$ and prio $\cup\left\{p ? \mapsto\right.$ pr?\} = prio' since prio $1^{\prime}=$ prio $1 \oplus\{p!\mapsto p r ?\}$ and $\operatorname{prio1}^{\prime}(p)=\operatorname{prio}^{\prime}(p)$ for all $p \in u s e d^{\prime}$ by $\operatorname{AbsPTAB1} 1^{\prime}$.

Theorem 4. $\forall P T A B ; ~ P T A B 1 ; ~ p ?: P I D ~-~ p r e D e l P D \wedge A b s P T A B 1 \Rightarrow$ pre DelPD1

Proof. The precondition of DelPD is $p ? \in$ used and that of $\operatorname{DelPD1}$ is $p ? \notin$ dom freech. By the abstraction relation, dom freech $=P I D \backslash$ used, so $p ? \in$ used implies that $p ? \notin P I D \backslash$ used. From this, it may be inferred that $p ? \notin \operatorname{dom}$ freech .

Theorem 5.

```
\forallPTAB; PTAB'; PTAB1; PTAB1'; p?: PID; serr!:SYSERR\bullet
    pre DelPD ^
    AbsPTAB1^AbsPTAB1'^
    DelPD1
# DelPD
```

Proof. First, we note that the precondition of DelPD is $p ? \in$ used. We have a proof composed of two cases.
Case 1. dom freech $=\varnothing$ implies that used $=P I D$ and freech $\cup\{p ?\}$ implies that dom freech $\cup\{p ?\}$. By the identity in $A b s P T A B 1$, dom freech $=P I D \backslash$ used, this clearly implies used $\backslash\{p ?\}$ iff dom freech $\cup\{p ?\}$. More formally, we can write this as follows. We start with dom freech $=P I D \backslash$ used, so if dom freech $=\varnothing$, we have:

```
dom freech \(=\) PID \(\backslash\) used
    \(=\operatorname{dom}\) freech \(\cup\{p ?\}=P I D \backslash(\) used \(\backslash\{p ?\})\)
    \(=\varnothing \cup\{p ?\}=\) used \(\backslash\{p ?\} \quad=\{p ?\}=\) used \(\backslash\{p ?\}\)
```

By the predicate of FreePID1, dom freech $h^{\prime}=\operatorname{dom}$ freech $\cup\{p ?\}$, and, by the predicate of AbsPTAB1', dom freech ${ }^{\prime}=P I D \backslash u s e d^{\prime}$. Then, dom freech $\cup\{p ?\}=$ dom freech ${ }^{\prime}=P I D \backslash$ used $^{\prime}$, so, by the above reasoning, used ${ }^{\prime}=u s e d \backslash\{p ?\}$. Case 2. dom freech $\neq \varnothing$. In a similar fashion, dom freech $=P I D \backslash$ used, so

```
dom freech }\cup{p?}=PID\(used \{p?}
    = dom freech'}=PID\(used \{p?
```

Since dom freech ${ }^{\prime}=P I D \backslash u s e d^{\prime}$ by the predicate of $A b s P T A B 1^{\prime}$ and by the above reasoning, dom reech $^{\prime}=P I D \backslash($ used $\cup\{p ?\})=u$ sed $^{\prime}$.

At this point, it is necessary to point out that, throughout the specification and refinement of this kernel, there are many operations on the state-describing components of $P T A B$ and its derivatives. For example, the operation to update the value of the state component of $P T A B$ is

```
SetProcState
    \trianglePTAB
    p?: PID
    st? : PSTATE
    state }\mp@subsup{}{}{\prime}=\mathrm{ state }\oplus{p?\mapstost?
```

In each case, it would be possible to write such an operation as
$(p ? \in$ used $\wedge O p \wedge$ Sys $O k) \vee$ Error
In the case of SetProcState, it would be
$(p ? \in$ used \wedge SetProcState \wedge SysOk $) \vee$ UnusedPD

However, the operations are only defined in terms of their testing or of their effect on PTAB components (and their refinements). The reason for this is that the operation or predicate is used within a context that ensures that $p ? \in$ used is always the case. We argue that this condition does not have to be ensured by the operation because some other component will do it anyway. If the operations were defined as disjunctions, it would be necessary to use $(p \vee q) \wedge r \Leftrightarrow(p \wedge r) \vee(q \wedge r)$ to move and combine SysOk (and possibly move the error schema).

As far as the precondition of these operations is concerned, they typically occur as conjuncts and therefore must be recalculated wherever they occur. There appears to be very little to be gained by explicitly calculating the precondition when defining the operation.

It might be argued that the refinement process is not complete until these two steps have been completed. We argue that the refinement of these operations is a rather trivial matter, a matter that can be done in one's head, by inspection, so the requirement that the proofs be recorded should not detain us-they are obvious given the abstraction relation. We can assure the reader that the necessary checking (making the assumption that p ? \in used and $p ? \notin$ dom freechain) has been done by us in order to verify the refinement.

Should the above prove too offensive to the reader, they can always assume that the operation has been defined in the "export" (disjunctive) form and that the precondition has been calculated. The reader can, in any case, always supply the proofs for themselves; each should take no more than a couple of seconds.

3.3.3 Refinement Two

In this refinement, the function freech is replaced by the next function. The intention is that next allows us to represent a list of process descriptors (actually a list of process identifiers).

The next function will be used in other modules. In particular, it will be used by refinement of the PROCESSQUEUE type to implement FIFO queues.

```
PTAB2
    freehd, freelst : GPID
    prio2: PID }->\mathrm{ PPRIO
    state 2: PID }->\mathrm{ PSTATE
    smsg2:PID }->MS
    stacktop2: PID }->ADD
    wakingtime 2: PID }->\mathrm{ TIME
    next : PID }->GPI
    freehd = nullpid }\Leftrightarrow\mathrm{ freelst = nullpid
    freehd = nullpid }=>\mp@subsup{\mathrm{ next }}{}{*}(|{\mathrm{ freehd } })=
```

```
freeh \(d \neq\) nullpid \(\Leftrightarrow\)
    \(\forall p: P I D \bullet\)
        \(p=\) freehd \(\Rightarrow\) nullpid \(\in\) next \(^{+}(\{\)freehd \(\})\)
freehd \(\neq\) nullpid \(\Leftrightarrow\)
    \(\forall p: P I D \bullet\)
    \(p=\) freelst \(\Rightarrow\) next \((\) freelst \()=\) nullpid
freehd \(\neq\) nullpid \(\Rightarrow \exists_{1} k: \mathbb{N} \bullet\) next \(^{k}(\) freehd \()=\) nullpid
```

The new function, next, replaces freech (as will be seen in the next paragraph, it actually does a little more). In this refinement, next is an injection, so it is 1-1. Furthermore, it is a total function for the reason that other operations (e.g., queues of various kinds) are implemented using next, thus accounting for the majority of process identifiers. When an identifier is not present in a structure, it is mapped to nullpid (this is the justification for the codomain type).

The fact that next will be used by other modules implies that we are not permitted to assume that all of its domain is relevant to the free list. This in turn implies that the reflexive transitive closure of the next, next*, must be used to determine membership of the free list.

```
PTAB2Init
PTAB2'
freehd' = minpid
freelst' = maxpid
\forallp:PID \bullet
    p= maxpid => next }\mp@subsup{}{}{\prime}(p)=\mathrm{ nullpid }
    p<maxpid }=>\mp@subsup{\operatorname{next}}{}{\prime}(p)=p+
```

\qquad

Note that the invariant on PTAB2 does not mention the state-denoting functions prio2, state 2 , stacktop 2 and wakingtime 2 . In the present case, they are all total functions, so their domains are pre-defined. The question as to their initialisation also arises. It is considered that the operations defined below are sufficient to guarantee that a valid value is not supplied to a non-existant process.

Since the PTAB refinement has already progressed some way, the abstraction relation is presented immediately.

```
AbsPTAB2
PTAB1
PTAB2
    freehd = hdfree
    freelst = endfree
```

```
freehd \(\neq\) nullpid \(\Leftrightarrow\) next \(^{*}(\{\) freehd \(\} \backslash\{\) nullpid \(\}=\operatorname{dom}\) freech
\(\operatorname{dom}\) freech \(=\varnothing \Leftrightarrow\) freehd \(=\) freelst \(\wedge\) freehd \(=\) nullpid
freehd \(\neq\) nullpid \(\Leftrightarrow \forall p: P I D \bullet p \in \operatorname{dom}\) freech \(\Rightarrow \operatorname{next}(p)=\operatorname{freech}(p)\)
dom freech \(\subseteq\) dom next
ran freech \(\subseteq\) ran next
\(\forall p: P I D \bullet p \in \operatorname{dom} f r e e c h \Leftrightarrow \operatorname{next}(p)=\operatorname{freech}(p)\)
\(\forall p: P I D \bullet\)
    \(p \notin\) next \({ }^{*}(\{\) freehd \(\}) \backslash\{\) nullpid \(\} \Rightarrow \operatorname{state} 1(p)=\operatorname{state} 2(p)\)
\(\forall p: P I D \bullet\)
    \(p \notin\) next \(^{*}(\{\) freehd \(\} \backslash \backslash\) nullpid \(\} \Rightarrow\)
    \(\operatorname{prio} 1(p)=\operatorname{prio} 2(p)\)
\(\forall p: P I D \bullet\)
    \(p \notin\) next \(^{*}(\{\) freehd \(\}\) D \(\backslash\{\) nullpid \(\} \Rightarrow\)
        \(\operatorname{smsg} 1(p)=\operatorname{smsg} 2(p)\)
\(\forall p: P I D \bullet\)
    \(p \notin\) next \(^{*}(\{\) freehd \(\} \backslash \backslash\) nullpid \(\} \Rightarrow\)
        stacktop \(1(p)=\operatorname{stacktop} 2(p)\)
\(\forall p: P I D \bullet\)
    \(p \notin\) next \(^{*}(\{\) freehd \(\} \backslash\{\) nullpid \(\} \Rightarrow\)
    wakingtime \(1(p)=\) wakingtime \(2(p)\)
```

One of the interesting features of this schema is the implication
freehd \neq nullpid \Rightarrow
next ${ }^{*}(\{$ freehd $\} \backslash\{$ nullpid $\}=$ dom freech
In what follows, relational images will be used quite extensively. In this case, the relational image is that of the transitive closure of the head of the next chain; the set that results includes the nullpid that terminates the next chain and this has to be removed to yield a set of type $\mathbb{F} P I D$.

A second interesting feature is the use of the next function together with the freehd and freelst variables. The next function has a domain that includes the domain of freech and its codomain includes freech's domain. The freehd and freelst variables record the head and last elements of the chain, so it is easy to remove elements from the head and add them at the end.

The initialisation theorem can now be proved. Over the years, we have found it useful to attempt the initialisation theorem as soon as the abstraction relation has been defined, for it is a good way of determining whether the abstraction relation is adequate.

Theorem 6. $\forall P T A B 1^{\prime} ; P T A B 2^{\prime} \bullet P T A B 1$ Init $\wedge A b s P T A B 2 \Rightarrow P T A B 2$ Init
Proof. By the abstraction relation, freehd ${ }^{\prime}=h d f r e e^{\prime}$ and freelst ${ }^{\prime}=$ endfree $^{\prime}$, so freehd ${ }^{\prime}=$ minpid \Rightarrow hdfree $^{\prime}=$ minpid and freelst ${ }^{\prime}=$ maxpid \Rightarrow
endfree ${ }^{\prime}=$ maxpid. By the invariants of PTAB1 and PTAB2, next ${ }^{\prime}\left(\right.$ freelst $\left.^{\prime}\right)=$ nullpid $=$ freech $^{\prime}\left(\right.$ endfree $\left.{ }^{\prime}\right)$. Finally, the quantified formulae are equivalent by the abstraction relation. The two conjuncts have the same antecedents and $p=$ maxpid and $p<$ maxpid imply that p ranges over all of $P I D$. By the consequents, $p \in \operatorname{dom} n e x t^{\prime}$ for all $p \in P I D$, which implies, by dom freech ${ }^{\prime} \subseteq$ dom next', that dom freech $h^{\prime}=$ dom next ${ }^{\prime}$ for the reason that dom next ${ }^{\prime}=P I D$ by this quantified formula. This also implies that dom freech $\neq \varnothing$, so freehd ${ }^{\prime}=$ nullpid is justified.

The operations that are now defined should be familiar to the reader by now. In any case, they are defined in the obvious fashion, given the definition of PTAB2. The one exception is that the transitive closure of a relational image is frequently used for $P T A B 2$ operations where a simple set operation is used by the corresponding operation over PTAB1.
freehd \neq nullpid

```
AllocPID2
    \trianglePTAB2
    p!: PID
    p! = freehd
    freehd' = next(freehd)
```

\qquad
UsedPID2
$\Xi P T A B 2$
p ? : PID
$p ? \notin$ next $^{*}(\{$ freehd $\} \backslash$ \nullpid $\}$
AddPDESC2
$\triangle P T A B 2$
p? : PID
pr? : PPRIO
st? : PSTATE
prio $2^{\prime}=$ prio $2 \oplus\{p ? \mapsto$ pr? $\}$
state $2^{\prime}=$ state $2 \oplus\{p ? \mapsto s t ?\}$
wakingtime $2^{\prime}=$ wakingtime $2 \oplus\{p ? \mapsto 0\}$
stacktop $2^{\prime}=$ stacktop $2 \oplus\{p ? \mapsto$ nulladdr $\}$

The next few operations deal with addition to the free chain. The definitions are directly analogous to those employed for $P T A B 1$ and the overall structure of the composite operations is similar. For these reasons, we believe there is little to be said about these schemata.

SetFCLast2
$\triangle P T A B 2$
p ? : PID
freelst $^{\prime}=p$?

SetFCHead2
$\triangle P T A B 2$
p ? : PID
freehd $^{\prime}=p$?

AddFreechainLast2 \qquad
$\triangle P T A B 2$
p ? : PID
next ${ }^{\prime}=n e x t \oplus\{p ? \mapsto$ nullpid $\}$

AddNewLastFreechain2 \qquad
$\triangle P T A B 2$
p ? : PID
next ${ }^{\prime}=$ next $\oplus\{$ freelst $\mapsto p ?\}$

```
AddPD2 \widehat{=}
    ((GotFreePIDS2 ^ AllocPID2)
        @((UsedPID2[p!/p?]^ AddPDESC2[p!/p?]^SysOk)
        \vee PDInUse))
    \vee PTABFull
```

This expands to:

```
AddPD2
\trianglePTAB2
p!: PID
serr! : SYSERR
pr?: PPRIO
st? : PSTATE
((freehd }\not=\mathrm{ nullpid }
        p! = freehd ^
        freehd' }=n\operatorname{next(freehd))
        g(p!\not\in next* ( {next(freehd)} D \{nullpid} ^
        prio2' = prio 2 }\oplus{p!\mapstopr?}
        state 2' = state }2\oplus{p!\mapstost?}
        serr! = sysok)
    \vee serr! = pdinuse)
    \veeserr! = ptabful
```

Note that the form of this operation causes a little confusion, especially when transcribed to code.

Expanding the sequential composition, ${ }_{9}$, we obtain the following schema:
AddPD2 \qquad
$\triangle P T A B 2$
$p!$: PID
serr! : SYSERR
pr? : PPRIO
st? : PSTATE
(\exists next ${ }^{\prime \prime}$: PID \longmapsto GPID
freehd \neq nullpid \wedge
$p!=$ freehd \wedge
freehd ${ }^{\prime \prime}=\operatorname{next}($ freehd $) \wedge$
$p!\notin$ next $^{*}\left(\mid\left\{\right.\right.$ freehd $\left.^{\prime \prime}\right\} \backslash \backslash$ nullpid $\} \wedge$
prio2 $2^{\prime}=$ prio $2 \oplus\{p!\mapsto p r ?\} \wedge$
state $2^{\prime}=$ state $2 \oplus\{p!\mapsto p r ?\} \wedge$
serr! $=$ sysok)
\vee serr! $=$ pdinuse
\vee serr $!=$ ptabfull

This can be simplified in a number of steps. First, next ${ }^{\prime \prime}=$ next and, what is more, next ${ }^{\prime}=$ next for the reason that it is never updated (all that is done is to move freehd down the chain). It is also the case that freehd ${ }^{\prime \prime}=$ freehd $^{\prime}$. The output p ! is retained. This entitles us to rewrite $A d d P D 2$ as:

AddPD2

```
\trianglePTAB2
p! : PID
serr! : SYSERR
pr?: PPRIO
st? : PSTATE
(freehd \not= nullpid ^
    p! = freehd }
    freehd'}=\operatorname{next}(\mathrm{ freehd ) }
    p!\not\innext*(| {next(freehd)} D \{nullpid} ^
    prio2'}=\mathrm{ prio }2\oplus{p!\mapstopr?}
    state 2' = state 2 }\oplus{p!\mapstopr?}^
    serr! = sysok)
    \vee serr! = pdinuse
\vee serr! = ptabfull
```

For reasons that will later become clear, it should be noted that prio $2=$ prio $2^{\prime \prime}$ and state $2=$ state $2^{\prime \prime}$.

Omitting the assignments to serr! (since they contribute nothing to the precondition), we have

```
pre AddPD2 \widehat{=}
    \exists PTAB2'; p!: PID
    freehd }\not=\mathrm{ nullpid }
        p! = freehd }
        freehd'}=next(freehd ) ^
        p!\not\innext* ( {next(freehd)} D \{nullpid} ^
        prio2' = prio 2 }\oplus{p!\mapstopr?}
        state 2' = state 2 }\oplus{p!\mapstopr?
```

This simplifies to

```
pre AddPD2 \widehat{=}
    freehd \not= nullpid ^
    freehd & next* { {next(freehd)} D \{nullpid}
```

This can be simplified to
freehd \neq nullpid
If freehd \neq nullpid, next $^{*}(\{$ next $($ freehd $)\} \backslash \backslash$ nullpid $\}=$ next $^{+}(\mid\{$freehd $\} \backslash$ $\{$ nullpid $\}$ and freehd is not an element of this set by definition. If freehd $=$ nullpid, then $\operatorname{eext}^{*}(\mid\{$ next $($ freehd $)\} \backslash\{$ nullpid $\}=\varnothing$, so freehd cannot be an element.

Because we are dealing with modified relational images so frequently, it is essential to prove the following theorem.

Theorem 7. The following are equivalent.

```
p\in next* ( {next(freehd)} D \{nullpid}
```

and
$p=$ freehd
$\vee \exists k: \mathbb{N}$
$0<k \wedge k \leq \#$ dom next* $(\mid\{n e x t(f r e e h d)\} \backslash\{$ nullpid $\} \bullet$
$p=n e x t{ }^{k}($ freehd $)$
Proof. By the definition of *,

```
next*(| {next(freehd)} D\{nullpid}
    ={freehd }}\cupnex\mp@subsup{t}{}{+}\{next(freehd)} \\{nullpid
```

for the reason that $R^{*}=\bigcup\left\{k: \mathbb{N} \bullet R^{k}\right\}$ and $R^{+}=\bigcup\left\{k: \mathbb{N}_{1} \bullet R^{k}\right\}$. As usual, for $k>0, R^{k}=R{ }_{9} R^{k-1}$, here, expressed as a function, so next ${ }^{k}=$ $n e x t\left(n e x t{ }^{k-1}(x)\right)$. We also note that the above expressions in next are welltyped (\mathbb{F} PID) owing to the elimination of nullpid.

For convenience, let $N=n e x t^{*}(\mid\{n e x t($ freehd $)\} \backslash \backslash\{$ nullpid $\}$. If $p=$ freehd, $p \in N$ by the identity at the start of this proof. Otherwise, assume that there is some $n-1<\# \operatorname{dom} N$ such that $\forall i: 1 \ldots n-1 \bullet p \neq$ next $^{i}($ freehd $)$. Then, for n, either $p=n \operatorname{ext}^{n}($ freehd $)$ or $p \neq n \operatorname{ext}^{n}($ freehd $)$. If $p=n e x t^{n}($ freehd $)$, it follows that $p \in N$ and we are done. Otherwise, we continue. If $n=\# N$ and $p \neq n \operatorname{ext}^{n}($ freehd $)$, then $p \notin N$; otherwise, $p \in N$.

This result permits us to re-write $p \in \operatorname{next}^{*}(\mid\{$ next $($ freehd $)\} D \backslash\{$ nullpid $\}$ as
$p=$ freehd
$\vee \exists k: \mathbb{N}$
$0<k \wedge k \leq \# \operatorname{dom} \operatorname{next}{ }^{*}(\mid\{n e x t(f r e e h d)\} \backslash\{$ nullpid $\} \bullet$
$p=n e x t^{k}(h d)$
and $p \notin n \operatorname{ext}^{*}(\backslash\{\operatorname{next}($ freehd $)\} D \backslash\{$ nullpid $\}$ as
$p \neq$ freehd
$\vee \neg \exists k: \mathbb{N} \bullet$
$0<k \wedge k \leq$ \# dom next ${ }^{*}(\mid\{n e x t(f r e e h d)\} ~ D \backslash$ nullpid $\} \bullet$ $p=n e x t^{k}(h d)$

The reason for this is that the quantified form of set membership is, we believe, much closer to a computationally realisable form than the somewhat more cryptic relational image.

There are other cases in which this equivalence can be used to re-write schemata. They will be indicated and the re-written schema will be given. Therefore, given the equivalence, $A d d P D 2$ becomes

```
AddPD2
\trianglePTAB2
p! : PID
serr! : SYSERR
pr?: PPRIO
st? : PSTATE
(freehd }\not=\mathrm{ nullpid }
    p! = freehd ^
    freehd'}=next (freehd ) ^
    p!\not\innext*(| {next(freehd)} D \{nullpid} ^
    ( }p\not=\mathrm{ freehd
        \vee (\neg\existsk:\mathbb{N}\bullet
            0<k\leq#next* ( {next(freehd)} D \{nullpid} ^
            next }\mp@subsup{}{}{k}(\mathrm{ freehd })=p)
    prio2'}=\mathrm{ prio 2 }\oplus{p!\mapstopr?}
    state 2' = state 2 }\oplus{p!\mapstopr?}
    serr! = sysok)
    verr! = pdinuse
\veeerr! = ptabfull
```

For FreePID2, we need to define EmptyFreeChain2. It is the negation of GotFreePIDs2:

EmptyFreeChain2 \qquad
$\Xi P T A B 2$
freehd $=$ nullpid
(This schema is exactly as we would expect.)
The operation to deallocate a process identifier is similar to FreePID2. The reader can compare the two to see that this is the case (in fact, FreePID2 was defined by rewriting FreePID1, substituting the operations directly).

FreePID2 $\widehat{=}$
((EmptyFreeChain $2 \wedge$
AddFreechainLast $2 \wedge$ SetFCLast $2 \wedge$ SetFCHead $2 \wedge$
SysOk)
$\vee($ UsedPID $2 \wedge$
(AddNewLastFreechain g $_{9}$ AddFreechainLast2) \wedge SetFCLast $2 \wedge$ SysOk) \checkmark UnusedPID

The definition of FreePID2 expands into the following schema:

FreePID2

```
\trianglePTAB2
p?: PID
serr! : SYSERR
(freehd = nullpid ^
    next }\mp@subsup{}{}{\prime}=\mathrm{ next }\oplus{p?\mapsto nullpid } ^
    freelst' = p?^
    freehd' = p?^
    serr! = sysok)
    \vee ((p?\not\innext* (| freehd } ) \{nullpid} ^
    (\existsnext ' }: PID ↔GPID
            next'\prime}=\mathrm{ next }\oplus{\mathrm{ freelst }\mapstop?}
            next ' = next '' }\oplus{p?\mapsto nullpid }) ^
    freelst' = p?^
    serr! = sysok)
    verr! = unusedpd)
```

The schema can be simplified, so we obtain the following:

```
\(\triangle P T A B 2\)
\(p ?: P I D\)
serr! : SYSERR
(freehd \(=\) nullpid \(\wedge\)
    next \({ }^{\prime}=\) next \(\oplus\{p ? \mapsto\) nullpid \(\} \wedge\)
    freelst \({ }^{\prime}=p ? \wedge\)
    freeh \(d^{\prime}=p ? \wedge\)
    serr \(!=\) sysok \()\)
\(\vee((p ? \neq\) freehd \(\vee\)
    \(\neg(\exists k: \mathbb{N}\)
        \(0<k \wedge k \leq \#\) next \({ }^{*}(\mid\{\) freehd \(\} \backslash\{\) nullpid \(\} \wedge\)
        \(n e x t^{k}(\) freehd \(\left.)=p\right)\)
    next \({ }^{\prime}=(\) next \(\oplus\{\) freelst \(\mapsto p ?\}) \oplus\{p ? \mapsto\) nullpid \(\} \wedge\)
    freelst \({ }^{\prime}=p ? \wedge\)
    serr \(!=\) sysok)
    \(\vee \operatorname{serr}!=\) unusedpd)
```

The precondition of FreePID2 is required by the refinement proofs. It is calculated as follows.
pre FreePID2 $\widehat{=}$
freehd $=$ nullpid
$\vee p ? \notin$ next $^{*}(\{$ freehd $\}$ D \backslash \{nullpid $\}$
This simplifies to

```
p?\not\innext*({ {freehd} \ \ {nullpid} pre FreePID2 \widehat{=}
    freehd = nullpid
    \vee p?\not\innext* ( {freehd} D \{nullpid}
```

This simplifies to
$p ? \notin$ next ${ }^{*}(\mid\{$ freehd $\} ~ D \backslash\{$ nullpid $\}$
If freehd $=$ nullpid, then next $^{*}(\{$ freehd $\} \backslash \backslash\{$ nullpid $\}=\varnothing$, so p ? cannot be an element.

We continue with the statement and proof of the theorems required by the refinement process.

Theorem 8.

```
\forallPTAB1; PTAB2; pr?: PPRIO; st?: PSTATE \bullet
    pre AddPD1 ^ AbsPTAB2 => AddPD2
```

Proof. If freehd $=$ nullpid, then next $(\mid\{$ freehd $\} \mid) \backslash\{$ nullpid $\}=\varnothing$, so p ? cannot be an element.

Theorem 9.

\forall PTAB1; PTAB2; pr?: PPRIO; st?: PSTATE • pre AddPD1 \wedge AbsPTAB2 \Rightarrow AddPD2

Proof. The precondition of $A d d P D 1$ is hdfree \neq nullpid, while that of $A d d P D 2$ is freeh $d \neq$ nullpid. By the predicate of $A b s P T A B 2$, freehd $=h d f r e e$.

Theorem 10.

```
\(\forall\) PTAB1; PTAB1'; PTAB2; PTAB2'; pr?: PPRIO; st? : PSTATE
    \(p!: P I D ;\) serr! : SYSERR
pre AddPD1 ^
    AbsPTAB2 ^
    AbsPTAB2' \(\wedge\)
    AddPD2
\(\Rightarrow\) AddPD1
```

Proof. By the predicate of $A b s P T A B 2$, freehd \neq nullpid implies hdfree \neq nullpid, so freehd $=$ hdfree. We note that freehd \neq nullpid is pre AddPD1. The same identity, this time in the after state, as required by $A b s P T A B 2^{\prime}$, permits us to reason that freehd $d^{\prime}=h d f r e e^{\prime}=p$!.

It is given that next ${ }^{\prime}=n e x t($ freehd $)$. This implies that

```
dom next' =
    (next* ( {freehd} D \{nullpid})\{freehd}
    = next + ( {freehd} D \{nullpid})
    = next*}|{\mathrm{ next(freehd)} D\{nullpid}
```

and by the predicate of $A b s P T A B 2$

```
(next*}\{\mathrm{ freehd } D \{nullpid})\{freehd}
    =(dom freech )\{freehd}
```

By the definition of \triangleleft, dom freech $\backslash\{$ freeh $d\}$ implies freech $\triangleleft\{$ freeh $d\}$. We may infer that dom next ${ }^{\prime}=\operatorname{dom}$ freech $\backslash\{$ freehd $\}=$ freech $\triangleleft\{$ freehd $\}$ and, for the reason that freehd $=p$!, we have freech $\triangleleft\{p!\}$. The predicate of AbsPTAB2' permits us to infer that, since next ${ }^{\prime}=$ freech $\triangleleft\{p!\}$, freech ${ }^{\prime}=$ freech $\triangleleft\{p!\}$.

For the remainder, we need to remember that the operation is defined in terms of sequential composition. The variables updated by the first component are unaffected by the second, so next ${ }^{\prime}=n e x t^{\prime \prime}$. We can express the condition on prio1 and prio2 and on state 1 and state 2 as:
$\forall p: P I D \bullet$

```
\(p!\notin \operatorname{next}^{*}(\mid\{\) next \((\) freehd \()\} D \backslash\{\) nullpid \(\} \Rightarrow\)
        \(\operatorname{prio} 1(p)=\operatorname{prio} 2(p)\)
```

and

```
\(\forall p: P I D \bullet\)
    \(p!\notin\) next \(^{*}()\{\) next \((\) freehd \(\left.)\}\right) \backslash\{\) nullpid \(\} \Rightarrow\)
        \(\operatorname{state} 1(p)=\operatorname{state} 2(p)\)
```

The antecedent in both cases has already been established, so $\operatorname{prio} 1(p)=$ $\operatorname{prio} 2(p)$ and $\operatorname{state} 1(p)=\operatorname{state} 2(p)$ for all p not in the next chain, so prio1 \oplus $\{p!\mapsto p r ?\}=$ prio $2 \oplus\{p!\mapsto p r ?\}$ and state $1 \oplus\{p!\mapsto$ st $?\}=$ state $2 \oplus\{p!\mapsto$ $s t ?\}$. In the first case, prio $2 \oplus\{p!\mapsto s t ?\}=$ prio 2^{\prime} by the predicate of $A d d P D 2$
 the modified next chain. The case for state 1 is similar.

Theorem 11. $\forall P T A B 1 ; ~ P T A B 2 ; p$? : PID • pre FreePID $1 \wedge A b s P T A B 2 \Rightarrow$ pre FreePID2

Proof. The precondition of FreePID1 is $p ? \notin \operatorname{dom}$ freech and that of FreePID2 is $p ? \notin$ next* ($\{$ freehd $\} \mid$ \{nullpid $\}$. By the predicate of AbsPTAB2, dom freech $=$ next $^{*}(\{$ freehd $\} D \backslash\{$ nullpid $\}$. The result is immediate.

Theorem 12.

```
\forall PTAB1; PTAB1'; PTAB2; PTAB2'; p? : PID; serr! : SYSERR \bullet
pre FreePID1 ^
    AbsPTAB2^
    AbsPTAB2' ^
    FreePID2
=> FreePID1
```

Proof. The result immediately follows from the identities in $A b s P T A B 1$ and AbsPTAB2.

The schemata from this last refinement have now been shown to be correct. They can be converted directly into executable code.

3.4 Process Queue

Process queues are used in a variety of places, most notably in semaphores. The queue type defined in this section is not the one used by the scheduler. The scheduler employs a priority queue that is, ultimately, implemented as a vector (one-dimensional array). The queue defined here will be implemented as a list of process descriptor references. comprising th The plan is to refine the top-level representation to a chain in next. This will require two steps of refinement.

As usual, we begin with the statement of the error schemata. In the case of PROCESSQUEUE, there is only one such schema. It reports the condition that the process queue is empty (presumably this condition is reported when an attempt to dequeue an element has been attempted).

```
ProcessQueueEmpty
serr! : SYSERR
serr! = emptyqueue
```


3.4.1 Top Level

This is a relatively straightforward specification of a FIFO queue. It uses a sequence as its basic container structure.

The queue state space is defined as follows. The queue itself is procs.
PROCESSQUEUE
PTAB
procs : iseq PID
ran procs \subset used

Note that the invariant is being used to enforce a global condition upon the queue, namely that all elements of the queue must also be elements of usedin other words, every process identifier in the queue must be that of a process that exists in the system.

> PROCESSQUEUEInit
\qquad
PROCESSQUEUE'
procs $^{\prime}=\langle \rangle$

The initialisation is as one would expect. The queue is set to empty (to the empty sequence, that is). This initialisation trivially preserves the invariant.

The next operation is a predicate that evaluates to true when the queue, procs, is not empty.

IsNotEmptyPROCESSQUEUE \qquad
EPROCESSQUEUE
procs $\neq\langle \rangle$

The operation to enqueue a process identifier on the queue is defined next. It is defined in the obvious fashion.

EnqueuePROCESSQUEUE \qquad
\triangle PROCESSQUEUE
p ? : PID
procs ${ }^{\prime}=$ procs ${ }^{\wedge}\langle p ?\rangle$

By substitution of identicals, the precondition of the enqueue operation is obtained.
pre EnqueuePROCESSQUEUE $\widehat{=}$

$$
\text { procs } \frown\langle p ?\rangle=\text { procs }^{\wedge} \frown\langle p ?\rangle
$$

This version of the precondition is clearly equivalent to the following:
pre EnqueuePROCESSQUEUE $\widehat{=}$ true
The next few operations are concerned with dequeueing elements. In the present case, the operation is decomposed into a number of smaller operations, the first of which merely returns the head of the queue.

TheHeadOfPROCESSQUEUE \qquad
EPROCESSQUEUE
$p!$: PID
$p!=$ head procs

Note that this operation leaves the queue, procs, invariant.
The previous operation cannot be used in isolation because it does not include checks that the queue is empty (if procs $=\langle \rangle$, head procs is undefined). Therefore, the following is defined.

HeadOfPROCESSQUEUE $\widehat{=}$
(IsNonEmptyPROCESSQUEUE \wedge TheHeadOfPROCESSQUEUE \wedge SysOk)
\checkmark ProcessQueueEmpty
This composite operation expands into:

HeadOfPROCESSQUEUE \qquad

```
EPROCESSQUEUE
p! : PID
serr! : SYSERR
(procs }\not=\langle\rangle
    p! = head procs ^
    serr! = sysok)
\vee serr! = emptyqueue
```

We calculate the precondition, should it be required by refinement proofs.

```
pre HeadOfPROCESSQUEUE \widehat{=}
```

 procs \(\neq\langle \rangle\)
 The dequeue operation is defined in terms of the removal of the first element of the queue. Removal is performed by the following schema.

DelHeadOfPROCESSQUEUE \qquad
\triangle PROCESSQUEUE

```
procs' = tail procs
```

This is another partial operation (partial in the sense that when procs $=\langle \rangle$, tail procs is undefined). In order to make the operation useful, it is necessary to test whether the queue, procs, is empty. Therfore, the following is required:

```
DequeuePROCESSQUEUE \(\widehat{=}\)
    (IsNotEmptyPROCESSQUEUE \(\wedge\)
        HeadOfPROCESSQUEUEU ^
        DelHeadOfPROCESSQUEUE \(\wedge\)
        SysOk)
    \(\checkmark\) ProcessQueueEmpty
```

This composite operation expands into:

```
    DequeuePROCESSQUEUE
```

\qquad
$\triangle P R O C E S S Q U E U E$
$p!$: PID
serr! : SYSERR
(procs $\neq\langle \rangle \wedge$
$p!=$ head procs \wedge
procs ${ }^{\prime}=$ tail procs \wedge
serr! $=$ sysok $)$
\vee serr! = emptyqueue

The precondition is easily calculated:

```
pre DequeuePROCESSQUEUE \(\widehat{=}\)
    procs \(\neq\langle \rangle\)
```


3.4.2 Refinement One

In this subsection, we will refer to PROCESSQUEUE's refinement as $P Q 1$; this is just so that typing is reduced.
$P Q 1$ \qquad
hdproc, lstproc : GPID
procseq : PID \rightarrow GPID
hdproc $=$ nullpid \Leftrightarrow lstproc $=$ nullpid
(hdproc $=$ nullpid \wedge
lstproc $=$ nullpid \Leftrightarrow
dom procseq $=\langle \rangle$)
(hdproc \neq nullpid \Leftrightarrow
hdproc $\in \operatorname{dom}$ procseq \wedge
lstproc $\in \operatorname{dom}$ procseq \wedge
dom procseq $\neq \varnothing$)

The sequence procs is represented by procseq a partial injection between PID and GPID. It will be remembered that $G P I D=P I D \cup\{$ nullpid $\}$. The function procseq is $1-1$, so each element maps to exactly one element of PID, thus permitting each domain element exactly one successor; procseq is partial because not all process identifiers are in the queue at any one time (and because they enter and leave the queue). The function procseq models the ordered part of the sequence procs, as well as procs' rôle as a container. The value nullpid is the value that is always assigned to the last element of procseq. The two variables hdproc and lstproc represent the first and last elements of the sequence, so when $h d p r o c=l$ stproc and $h d p r o c=$ nullpid, the queue is empty.

We will now give the abstraction relation. It is very much as one would expect and it is, once more, an identity.

```
AbsPQ1
PROCESSQUEUE
PQ1
dom procseq \(=\) ran procs
hdproc \(=\) nullpid \(\Leftrightarrow\) procs \(=\langle \rangle\)
\((\) hdproc \(\neq\) nullpid \(\wedge\) hdproc \(=\) lstproc \(\Leftrightarrow\) head procs \(=\) last procs \()\)
hdproc \(\neq\) nullpid \(\Leftrightarrow\)
    hdproc \(=\) head procs
```

```
hdproc \(\neq\) nullpid \(\Leftrightarrow\)
    lstproc \(=\) last procs
hdproc \(\neq\) nullpid \(\Leftrightarrow\)
    procseq \((\) lstproc \()=\) nullpid
hdproc \(\neq\) nullpid \(\Leftrightarrow\)
    \(\forall i: 1 . . \#\) procs - \(1 \bullet\)
        \(\operatorname{procseq}(\operatorname{procs}(i))=\operatorname{procs}(i+1))\)
```

The initialisation operation is as one would expect:
$P Q 1$ Init \qquad
$P Q 1^{\prime}$
hdproc ${ }^{\prime}=$ nullpid
lstproc $^{\prime}=$ nullpid

It merely sets the queue to empty.
The emptiness of $P Q 1$ is determined by the following operation:
IsNonEmptyPQ1 \qquad
$\Xi P Q 1$
hdproc \neq nullpid

The invariant of $P Q 1$ states that hdproc \neq nullpid implies hdproc \neq lstproc, which, in turn, implies that procseq is not empty.

The operation to enqueue a process identifier is slightly more complex than for the top-level state space. It is necessary to divide enqueueing into two cases: where the queue is empty (so the newly added element will be both first and last), and where the queue is not empty (and so the newly added element is the last).

```
EnqueuePQ1
\(\Delta P Q 1\)
\(p\) ? : PID
(hdproc \(=\) nullpid \(\wedge\)
    procseq \(^{\prime}=\{p ? \mapsto\) nullpid \(\} \wedge\)
    hdproc \({ }^{\prime}=p ? \wedge\)
    lstproc \(^{\prime}=p\) ?)
    \(\vee\left(\left(\exists\right.\right.\) procseq \({ }^{\prime \prime}:\) PID \(\rightarrow\) GPID
    procseq" \(=\) procseq \(\oplus\{\) lstproc \(\mapsto p ?\} \wedge\)
    procseq \({ }^{\prime}=\) procseq \(^{\prime \prime} \cup\{p ? \mapsto\) nullpid \(\} \wedge\)
    lstproc \({ }^{\prime}=p\) ?)
```

\qquad

The existential quantifier can be removed using the one-point rule and the schema becomes

EnqueuePQ1 \qquad
$\triangle P Q 1$
p ? : PID
(hdproc $=$ nullpid \wedge
procseq $^{\prime}=\{p ? \mapsto$ nullpid $\} \wedge$
$h d p r o c^{\prime}=p ? \wedge$
lstproc $^{\prime}=p ?$)
$\vee\left(\right.$ procseq $^{\prime}=($ procseq $\oplus\{$ lstproc $\mapsto p ?\}) \cup\{p ? \mapsto$ nullpid $\} \wedge$
lstproc ${ }^{\prime}=p ?$)
Rewriting the identities, the schema now becomes

```
EnqueuePQ1
\(\triangle P Q 1\)
\(p\) ? : PID
    (hdproc \(=\) nullpid \(\wedge\)
    \(\{p ? \mapsto\) nullpid \(\}=\{p ? \mapsto\) nullpid \(\} \wedge\)
    \(p ?=p ? \wedge\)
    \(p ?=p\) ?)
    \(\vee(\) procseq \(\oplus\{\) lstproc \(\mapsto p ?\}) \cup\{p ? \mapsto\) nullpid \(\}\)
    \(=(\) procseq \(\oplus\{\) lstproc \(\mapsto p ?\}) \cup\{p ? \mapsto\) nullpid \(\} \wedge\)
    \(p ?=p ?\) )
```

To calculate the precondition, the fact that lstproc \in dom procseq allows us to infer that dom procseq $\neq \varnothing$, so we have

```
(hdproc = nullpid ) \vee (hdproc }\not=\mathrm{ nullpid }
    & true
```

More formally,
pre EnqueuePQ1 $\widehat{=}$ true
The next few operations constitute the sub-operations needed to define the dequeue operation. These operations are directly analogous to those required by PROCESSQUEUE and are presented in the same order. First, the operation to return the head of the queue is defined.

TheHeadOfPQ1 \qquad
$\Xi P Q 1$
$p!: P I D$
$p!=h d p r o c$

In the present case, returning the head of the queue is as easy as it was at top level. The head is always hdproc, so $p!=h d p r o c$ returns the head element.

The above operation does not guard for the empty queue, so the following is required:

```
HeadOfPQ1 \widehat{=}
    (IsNonEmptyPQ1 ^ TheHeadOfPQ1 ^ SysOk)
    \vee ProcessQueueEmpty
```

It expands into:
HeadOfPQ1 \qquad
$\Xi P Q 1$
$p!: P I D$
serr! : SYSERR
(hdproc \neq nullpid \wedge
$p!=h d p r o c \wedge$
serr! $=$ sysok)
\vee serr! = emptyqueue

A simple and easy calculation yields the precondition.
pre HeadOfPQ1 $\widehat{=}$ hdproc \neq nullpid
The operation to remove the head of the queue is a little more complex than in the top-level case.

DelHeadOfPQ1 \qquad
$\triangle P Q 1$
procseq $^{\prime}=$ procseq $\leftrightarrow\{$ hdproc $\}$
$h d p r o c^{\prime}=\operatorname{procseq}(h d p r o c)$

The head element must be removed and the head pointer must be updated. In this case, if the queue becomes empty by the deletion of the head element, the last element must be updated to nullpid. Note that when hdproc' is bound to nullpid, the invariant requires that lstproc ${ }^{\prime}$ is also assigned to that value.

To make the operation safer, the following is defined. Schema DequeuePQ1 is similar to the corresponding operation defined for PROCESSQUEUE.

DequeuePQ1 $\widehat{=}$

$($ IsNonEmptyPQ1 \wedge HeadOfPQ $1 \wedge$ DelHeadOfPQ $1 \wedge$ SysOk $)$
\checkmark ProcessQueueEmpty
The definition expands into:

```
DequeuePQ1
\trianglePQ1
p! : PID
serr! : SYSERR
(hdproc }\not=\mathrm{ nullpid }
    p! = hdproc ^
    procseq' = procseq }\triangleleft{h\mathrm{ dproc} }
    hdproc'}= procseq(hdproc) ^
    serr! = sysok)
\vee serr! = emptyqueue
```

(Again, it is worth noting that, by the invariant, the assignment of nullpid to $h d p r o c^{\prime}$ implies that lstproc' is also bound to nullpid.)

Substitution of identicals yields the following as the precondition:
hdproc \neq nullpid
by the invariant of $P Q 1$, this is equivalent to
dom procseq $\neq \varnothing$
To see the first version, it should be noted that hdproc $=l$ stproc \wedge lstproc ${ }^{\prime}=$ nullpid has the implication that $h d p r o c \neq l$ stproc \wedge lstproc $^{\prime}=l$ lstproc. In any case, $h d p r o c=$ lstproc and hdproc \neq nullpid conjointly imply that lstproc \neq nullpid, so dom procseq $\neq \varnothing$, so the precondition is quite adequate.

Theorem 13. $\forall P R O C E S S Q U E U E^{\prime} ; ~ P Q 1^{\prime} \bullet P Q 1$ Init \wedge AbsPTAB1 \Rightarrow PQInit

Proof. By the invaraiant of $P Q 1$, hdproc ${ }^{\prime}=$ nullpid \Leftrightarrow lstproc ${ }^{\prime}=$ nullpid . Since hdproc ${ }^{\prime}=$ nullpid, it follows that procs ${ }^{\prime}=\langle \rangle$. The initialisation schema of $P Q$ is precisely procs ${ }^{\prime}=\langle \rangle$.

Theorem 14. \forall PROCESSQUEUE; PQ1; p? : PID • preEnqueue \wedge AbsPQ1 \Rightarrow pre Enqueue 1

Proof. Trivial (true \Rightarrow true).

Theorem 15.

\forall PROCESSQUEUE; PROCESSQUEUE'; PQ1; PQ1'; p? : PID • pre Enqueue \wedge AbsPQ1 $\wedge A b s P Q 1^{\prime} \wedge$ Enqueue $P Q 1$
\Rightarrow Enqueue

Proof. By the invariant of $P Q 1$, hdproc $=$ nullpid, which, by the predicate of $A b s P Q 1$, implies that dom procseq $=\varnothing$. The abstraction relation states that dom procseq $=$ ran procs, so procs $=\langle \rangle$.

By the predicate of $A b s P Q 1^{\prime}, h d p r o c^{\prime}=$ head procs ${ }^{\prime}$ and lstproc $^{\prime}=$ last procs ${ }^{\prime}$. We have hdproc ${ }^{\prime}=p$? \wedge lstproc $^{\prime}=p$?, so head procs ${ }^{\prime}=$ last procs ${ }^{\prime}=p$?, so procs $^{\prime}=\langle p ?\rangle=\langle \rangle \frown\langle p ?\rangle=$ procs $\frown\langle p ?\rangle$.

Otherwise, dom procseq $\neq\langle \rangle$. We have (procseq $\oplus\{$ lstproc $\mapsto p ?\} \cup\{p ? \mapsto$ nullpid $\})(p ?)=$ nullpid and this implies that lstproc $^{\prime}=p$? (since the invariant requires that procseq $(l$ stproc $)=$ nullpid $)$. This, by the predicate of $A b s P Q 1^{\prime}$, implies that last procs ${ }^{\prime}=p$?. Since hdproc \neq nullpid, the last conjunct of the abstraction schema,

```
\foralli:1..#procs; p:PID \bullet
    procseq(procs(i))=procs(i+1)
```

allows us to infer that procs ${ }^{\frown}\langle p ?\rangle$ is equivalent to procseq ${ }^{\prime}$ and, therefore, procs ${ }^{\wedge}\langle p ?\rangle=$ procs $^{\prime}$ as required.

Theorem 16.

\forall PROCESSQUEUE; PQ1 •

pre DequeuePROCESSQUEUE $\wedge A b s P Q 1 \Rightarrow$ pre DequeuePQ1
Proof. The precondition of DequeuePROCESSQUEUE is procs $\neq\langle \rangle$ and that of DequeuePQ1 is dom procseq $\neq \varnothing$. The predicate of the $A b s P Q 1$ states that dom procseq $=$ ran procs, so procs $\neq\langle \rangle$ implies that ran procs \neq \varnothing. Therefore, we have ran procs $\neq \varnothing$ and ran procs $=\operatorname{dom}$ procseq, so dom procseq $=\varnothing$.

Theorem 17.

\forall PROCESSQUEUE; PROCESSQUEUE'; PQ1; PQ1';
p! : PID; serr! : SYSERR
pre DequeuePROCESSQUEUE \wedge
AbsPQ1 $\wedge A b s P Q 1^{\prime} \wedge$
Dequeue $P Q 1$
\Rightarrow DequeuePROCESSQUEUE
Proof. First of all, we have hdproc \neq nullpid. By the invariant, this implies that dom procseq $\neq \varnothing$ which, in turn, by the abstraction relation, $A b s P Q 1$, implies that ran procs $\neq \varnothing$ or procs $\neq\langle \rangle$.

Now, by the predicate of $A b s P Q 1, h d p r o c=$ head procs, so head procs $=$ p ?.

We have procseq $\triangleleft\{h d p r o c\}$ implies (dom procseq) $\backslash\{h d p r o c\}$. By the abstraction schema, $A b s P Q 1, h d p r o c=$ head procs, so we are entitled to infer that ran procs $\backslash\{$ head procs $\}=($ dom procseq $) \backslash\{h d p r o c\}$, so head procs is removed from procs when hdproc is. By the identity, hdproc' $=$ procseq $(h d p r o c)$,
head procs ${ }^{\prime}=\operatorname{procseq}($ head procs $)=\operatorname{procseq}(\operatorname{procs}(1))=\operatorname{procs}(1+1)=$ procs (2). This implies that procs ${ }^{\prime}=$ tail procs .

We can check that the result has sufficient elements by observing that $\#($ procseq $\notin\{h d p r o c\})=(\#$ dom procseq $)-1=\#$ tail procs $=\#$ procs -1 .

3.4.3 Refinement Two

In this refinement, the process queue is reduced to a queue in the process table. This refimenent uses the next attribute of the process descriptor. The refinement process is achieved by reducing the function procseq to the next sequence in a manner that should be relatively clear and familiar.

This refinement saves space in the kernel by reducing every FIFO queue of processes to a head and end pointer and a chain using the next process attribute.

Comparison of the following schema and $P Q 1$ will reveal that the differences are more apparent than real. In the present case, the next function in $P T A B 2$ takes over from procseq, thus permitting the abbreviation of the $P Q 2$ schema.

```
PQ2
PTAB2
hdq, endq : GPID
hdq}=\mathrm{ nullpid }\Leftrightarrow\mathrm{ endq = nullpid
hdq}\not=\mathrm{ nullpid }
    next(endq) = nullpid
    hdq}\not=\mathrm{ nullpid }
    endq \in next*( {hdq} )
```

Here, again, the transitive closure of a relational image is employed to denote a subset.

The initialisation schema is as one would expect:

PQ2 Init
$P Q 2^{\prime}$
$h d q^{\prime}=$ nullpid
$e n d q^{\prime}=$ nullpid

The operation to enqueue a process identifier on $P Q 2$ is defined. Just as was the case with $P Q 1$, the predicate is divided into two cases: the case in which the queue is empty and that in which the queue is non-empty.

In the first case, the head and last variables must be assigned to p ?, the identifier of the process being enqueued, and p ? must be added to next. Since p ? is now the last element of the chain, the image of p ? under next must be nullpid, so $\{p ? \mapsto$ nullpid $\}$ must be added to next. In the second case, the
queue is not empty, so p ? must be added to the end of the queue. To satisfy the invariant, next ${ }^{\prime}(p ?)=$ nullpid so nullpid must be added to next, as well as p ?; for the reason that there are two additions, not one, what amounts to a sequential composition is hidden within this schema.

```
EnqueuePQ2
\(\triangle P Q 2\)
\(p\) ? : PID
\((h d q=\) nullpid \(\wedge\)
    \(h d q^{\prime}=p ? \wedge\)
    \(e n d q^{\prime}=p ? \wedge\)
    next \(t^{\prime}=\) next \(\oplus\{p ? \mapsto\) nullpid \(\left.\}\right)\)
\(\vee\left(e n d q^{\prime}=p ? \wedge\right.\)
    ( \(\exists\) next \({ }^{\prime \prime}\) : PID \(\rightarrow\) GPID
            \(n e x t^{\prime \prime}=n e x t \oplus\{e n d q \mapsto p ?\} \wedge\)
            next \({ }^{\prime}=\) next \({ }^{\prime \prime} \oplus\{p ? \mapsto\) nullpid \(\left.\}\right)\)
```

The schema simplifies to

```
EnqueuePQ2
    \(\triangle P Q 2\)
    \(p\) ? : PID
    ( \(h d q=\) nullpid \(\wedge\)
    \(h d q^{\prime}=p ? \wedge\)
    \(e n d q^{\prime}=p ? \wedge\)
    next \(t^{\prime}=\) next \(\oplus\{p ? \mapsto\) nullpid \(\left.\}\right)\)
    \(\vee\left(e n d q^{\prime}=p ? \wedge\right.\)
    next \({ }^{\prime}=(\) next \(\oplus\{\) end \(q \mapsto p ?\}) \oplus\{p ? \mapsto\) nullpid \(\}\)
```

Immediately, the precondition can be calculated and can be questioned:
pre Enqueue $P Q 2 \widehat{=}$
$h d q=$ nullpid \vee end $q=p ?$
It is clear that $e n d q=p$? implies that $h d q \neq$ nullpid, so the precondition can be further simplified to
pre Enqueue $P Q 2 \widehat{=}$ true
The remaining operations are defined in the same order as for $P Q 1$. The definitions are all straightforward and should be immediately obvious, given the definition of $P Q 1$ and $P Q 2$.

IsNonEmptyPQ2 \qquad
$\Xi P Q 2$
$h d q \neq$ nullpid

The invariant of $P Q 2$ states that $h d q=$ nullpid exactly when end $q=$ nullpid and in this case, the image of $h d q$ through next is the emtpy set, so the queue must be empty.

The operation to remove the head of the queue is defined as follows. As should now be familiar, this definition will have to be strengthened to account for the empty queue.

TheHeadOfPQ2 \qquad
$\Xi P Q 2$
$p!: P I D$
$p!=h d q$
The strengthened definition now follows.
HeadOfPQ2 $\widehat{=}($ IsNonEmptyPQ2 \wedge TheHeadOfPQ2) \vee ProcessQueueEmpty
DelHeadOfPQ2
$\triangle P Q 2$
$h d q^{\prime}=n \operatorname{ext}(h d q)$
next ${ }^{\prime}=$ next $\oplus\{h d q \mapsto$ nullpid $\}$
$h d q=e n d q \wedge e n d q^{\prime}=$ nullpid
The operation to dequeue an element from the queue is now defined.
DequeuePQ2 $\widehat{=}($ HeadOfPQ2 \wedge DelHeadOfPQ2 \wedge SysOk $) \vee$ ProcessQueueEmpty It expands into

DequeuePQ2 \qquad
$\triangle P Q 2$
$p!: P I D$
serr! : SYSERR
$(h d q \neq$ nullpid \wedge
$p!=h d q \wedge$
$h d q^{\prime}=\operatorname{next}(h d q) \wedge$
next ${ }^{\prime}=$ next $\oplus\{h d q \mapsto$ nullpid $\} \wedge$
serr $!=$ sysok $)$
\vee serr! = emptyqueue
The precondition can now be calculated.
pre Dequeue $P Q 2 \widehat{=}$
$\exists P Q 2^{\prime} ; p!: P I D \bullet$
$h d q \neq$ nullpid \wedge
$p!=h d q \wedge$
$h d q^{\prime}=\operatorname{next}(h d q) \wedge$
next ${ }^{\prime}=$ next $\oplus\{h d q \mapsto$ nullpid $\}$

This version simplifies to

```
pre Dequeue \(P Q 2 \widehat{=}\)
    \(h d q \neq\) nullpid \(\wedge\)
    \(h d q=h d q \wedge\)
    \(\operatorname{next}(h d q)=\operatorname{next}(h d q) \wedge\)
    next \(\oplus\{h d q \mapsto\) nullpid \(\}=\) next \(\oplus\{h d q \mapsto\) nullpid \(\}\)
```

and then to
$h d q \neq$ nullpid
A more general statement of the above is

Therefore, we have
pre DequeuePQ2 $\widehat{=} \operatorname{next}^{*}\left(\left\{\begin{array}{l} \\ \text { dq }\} \\ D \backslash\{\text { nullpid }\} \neq \varnothing\end{array}\right.\right.$
The abstraction relation is now defined. It should be obvious.

```
AbsPQ2
    \(P Q 1\)
    \(P Q 2\)
    \(h d q=h d p r o c s\)
    end \(q=\) lastprocs
    dom procseq \(\subseteq\) dom next
    ran procseq \(\subseteq\) ran next
    dom procq \(=\) next \({ }^{*}(\{h d q\} D \backslash\{\) nullpid \(\}\)
    \(\forall p: P I D \bullet\)
        \(p \in \operatorname{dom}\) procseq \(\Rightarrow \operatorname{procseq}(p)=\operatorname{next}(p)\)
```

Once again, this abstraction relation is mostly the identity. The two \subseteq relations do not cause much of a problem and should not deter us from considering the above a function, for they are not the most important conjuncts.

Theorem 18. $\forall P Q 1^{\prime} ; P Q 2^{\prime} \bullet P Q 2$ Init $\wedge A b s P Q 2^{\prime} \Rightarrow P Q 1$ Init
Proof. By the abstraction relation, $h d q^{\prime}=h d p r o c^{\prime}$ and $e n d q^{\prime}=l$ stproc ${ }^{\prime}$, so $h d q^{\prime}=$ nullpid $=h d p r o c^{\prime}$ and endq $q^{\prime}=$ nullpid $=$ lstproc $^{\prime}$.

Theorem 19. $\forall P Q 1 ; ~ P Q 2 ; ~ p$? : PID • pre Enqueue $P Q 1 \wedge A b s P Q 2 \Rightarrow$ pre EnqueuePQ2

Proof. Both preconditions are true and true \Rightarrow true is, clearly, true.

Theorem 20.

```
\(\forall P Q 1 ; P Q 1^{\prime} ; P Q 2 ; P Q 2^{\prime} ; p\) ? : PID •
    pre Enqueue \(P Q 1 \wedge\)
        AbsPTAB2 \(\wedge\)
        AbsPTAB2' \(\wedge\)
        Enqueue \(P Q 2\)
    \(\Rightarrow\) EnqueuePQ1
```

Proof. Immediate from the abstraction relations.
Theorem 21.
$\forall P Q 1 ; P Q 2 \bullet$
pre DequeuePQ1 \wedge AbsPQ2 \Rightarrow pre Dequeue $P Q 2$
Proof. The precondition of pre Dequeue $P Q 1$ is dom procseq $\neq \varnothing$ and that of pre Dequeue $P Q 2$ is $n e x t^{*}(\{\{h d q\} D\{$ nullpid $\} \neq \varnothing$. By the abstraction relation, AbsPQ2, we have dom procseq $=$ next ${ }^{*}(|\{h d q\}|$) nullpid $\}$.

Theorem 22.

$\forall P Q 1 ; P Q 1^{\prime} ; P Q 2 ; P Q 2^{\prime} ; p!: P I D ; s e r r!: S Y S E R R \bullet$
pre DequeuePQ1 \wedge
Abs $P Q 2 \wedge$
Abs $P Q 2^{\prime} \wedge$
DequeuePQ2
\Rightarrow DequeuePQ1
Proof. The precondition of DequeuePQ1 is hdproc \neq nullpid.
The interesting part of the proof is as follows. $h d q^{\prime}=n \operatorname{ext}(h d q)=n e x t^{\prime}=$ next $\oplus\{h d \mapsto$ nullpid $\}$. By the predicate of $A b s P Q 2^{\prime}, h d q^{\prime}=h d p r o c^{\prime}$, so
hdproc ${ }^{\prime}$

$$
\begin{aligned}
& =\operatorname{next}(h d q) \\
& =\operatorname{procseq}(h d q) \\
& =\operatorname{procseq}(h d p r o c) .
\end{aligned}
$$

We have next ${ }^{\prime}=$ next $\oplus\{h d q \mapsto$ nullpid $\}$, which implies that procseq \triangleleft $\{$ hdproc $\}=$ procseq $^{\prime}$.

To see this, consider
dom procseq

```
\(=\) next \(^{*}(\mid\{h d q\}\) D \\{nullpid } \}
\(=n e x t *(\{\) next \((h d q)\} \backslash \backslash\) nullpid \(\}\)
\(=\) next \(^{+}(\{\)hdq \(\}) \backslash\{\) nullpid \(\}\)
\(=\left(\right.\) next \({ }^{*}(\{h d q\}) \backslash\{\) nullpid \(\left.\}\right) \backslash\{h d q\}\)
\(=(\) dom procseq \() \backslash\{h d q\}\)
\(=(\) dom procseq \() \backslash\{\) hdproc \(\} \quad\) By definition of \(\triangleleft\)
\(=\) procseq \(\triangleleft\{h d p r o c\}\)
```

The schemata from this last refinement have now been shown to be correct. They can be converted directly into executable code.

3.5 Priority Queue

In this kernel, the data structure used by the scheduler is a priority queue. This is to be interpreted as a sequence of process identifiers, ordered by priority. The operations are the usual ones (enqueue, dequeue). The enqueue operation requires either that the sequence is sorted or that the appropriate place to insert the new element is found.

In this section, the priority queue is specified in terms of a sequence. The aim is eventually to refine it to a chain running through the next function in PTAB2.

As usual, the error schemata are defined first. There are two cases: the case in which the queue is full and that in which it is empty.

PRIOQFull \qquad
serr! : SYSERR
serr $!=$ schedqfull

PRIOQEmpty

```
serr! : SYSERR
```

 serr \(!=\) schedqempty

3.5.1 Top Level

```
PRIOQ
    PTAB
    \(p q\) : seq PID
    maxs : \(\mathbb{N}_{1}\)
    \(\# p q \leq\) maxs
    ran \(p q \subset\) used
    \(\forall i: 1 . . \# p q-1 \bullet\)
    \(\operatorname{prio}(p q(i)) \leq \operatorname{prio}(p q(i+1))\)
```

The queue container is $p q$ and its maximum size is represented by maxs. The elements of $p q$ are held in ascending order so that the highest priority corresponds to the lowest index. The invariant requires that all elements of $p q$
must be elements of used and that nullpid is never an element of the queue. It is also required that the identifier of the idle process should never be an element of $p q$ but this is harder to do.

The initialisation operation merely sets the maximum length of the queue and the queue to empty.

PRIOQInit \qquad
PRIOQ'
$m p s ?: \mathbb{N}_{1}$
$\operatorname{maxs}^{\prime}=m p s ?$
$p q^{\prime}=\langle \rangle$
The following schema determines whether the priority queue is empty.

IsEmptyPRIOQ
EPRIOQ
$p q=\langle \rangle$

The current head of the priority queue is returned as $p!$ by the next schema. The priority queue is a sequence, so the head operation is applicable.

PRIOQHd
EPRIOQ
$p!: P I D$
$p!=$ head $p q$
When enqueueing an element, it is necessary to be able to obtain the last element of the queue. The following schema represents an operation that does just that.

PRIOQLast \qquad
EPRIOQ
$p!: P I D$
$p!=$ last $p q$
The operation of enqueueing an element is quite involved. This is because the queue is sorted by priority. The first part of the operation enqueues a new element on the head of the queue. This operation is performed whenever the priority of the new element, p ?, is higher (lower in value, note) than the current head of $p q$.
_PRIOQEnqueueHd \qquad
\triangle PRIOQ
p ? : PID
$\langle p ?\rangle \wedge p q=p q^{\prime}$

Next, the operation to enqueue an element at the end of the queue is defined. This operation is performed whenever the priority of the new element p ? is lower (higher in value, note) than the current last element of $p q$.

PRIOQEnqueueLast \qquad
\triangle PRIOQ
p ? : PID

```
pq' = pq`\p?\rangle
```

If the queue is empty and a new element is to be added, the following schema defines the operation to enqueue on an empty queue.

PRIOQAddSingleton
$\triangle P R I O Q$ $p ?: P I D$
$p q^{\prime}=\langle p ?\rangle$

Finally, there is the operation that inserts a new element, p ?, into a queue. When this operation is used, it is known that the priority of p ? is less than that of the head of $p q$ and greater than its last element.

```
PRIOQInsert
\trianglePRIOQ
p?: PID
```



```
    prio(last s⿱1 )}<\operatorname{prio}(p?)
    prio(p?)\leqprio(head s2)}
    pq' = s1`}\\langlep?\rangle`\mp@subsup{s}{2}{
```

This operation divides the queue, $p q$, into two parts, s_{1} and s_{2}, where the last element of s_{1} has a priority higher than that of p ? and the first element of s_{2} has a priority that is at least that of p ?.

The next schema defines one of the priority tests required by the enqueue operation. It is satisfied when the priority of p ?, the element to be enqueued, is higher (i.e., of lower value) than that of the head of $p q$. In this case, p ? should be added to the head of the queue using PRIOQEnqueueHd.

ShouldAddPRIOQHd \qquad
EPRIOQ
p ? : PID
prio $(p ?) \leq$ prio(head $p q$)
The following schema defines a predicate that is satisfied when the priority of the last element of $p q$ is lower than that of p ?. When this is the case, p ? is added to $p q$ at the end using PRIOQEnqueueLast.

ShouldAddPRIOQLast \qquad

```
\XiPRIOQ
p?: PID
prio(last pq)< prio(p?)
```

The specification of the enqueue operation is given by the PRIOQEnqueue schema.

```
PRIOQEnqueue \widehat{=}
    (CanEnqueuePRIOQ ^
        ((IsEmptyPRIOQ ^ PRIOQAddSingleton) \vee
            (ShouldAddPRIOQHd ^ PRIOQEnqueueHd) \vee
            (ShouldAddPRIOQLast }\wedge PRIOQEnqueueLast) \vee
            PRIOQInsert) ^
        SysOk)
    \vee PRIOQFull
```

This schema expands as follows:
PRIOQEnqueue \qquad

```
\trianglePRIOQ
p?: PID
serr! : SYSERR
(#pq< maxs }
    ((pq=\langle\rangle\wedge pq' = \langlep?\rangle) \vee
        (prio (p?) \leqprio(head pq)\wedge p\mp@subsup{q}{}{\prime}=\langlep?\rangle`pq)\vee
        (prio(last pq)<prio(p?)\wedge pq' = pq^}\langlep?\rangle)
```



```
            prio(last s s ) < prio(p?)}
            prio(p?) \leqprio(head s2)^
            pq'}=\mp@subsup{s}{1}{`}\\langlep?\rangle`\mp@subsup{s}{2}{}))
        serr! = sysok)
\vee serr! = schedqfull
```

Before moving on, it is necessary to prove a small result. This will help us at a later stage. The result is similar to the "implicit" precondition.

Lemma 1. $\forall p: P I D \bullet p \in \operatorname{ran} p q^{\prime} \Rightarrow p \in$ used
Proof. By the invariant of $P R I O Q, \operatorname{ran} p q \subset u s e d$. Since there is no modification of used in the schema of PRIOQEnqueue, so the addition of p ? to $p q$ does not affect used. Therefore, for the invariant to hold, it is necessary for $p ? \in$ used, so $\operatorname{ran}\left(p q q^{\frown}\langle p ?\rangle\right) \subset$ used.

Moreover, the invariant of $P T A B$ states that dom prio $=$ used. For this operation to be well-defined, $\operatorname{prio}(p)$?) must also be well-defined. For this to be the case, $p ? \in u s e d$, as required.

The enqueue operation will be refined in the next subsection, so its precondition must be calculated.

```
pre PRIOQEnqueue \(\widehat{=}\)
    \(\exists\) PRIOQ' \(^{\prime}\); serr! : SYSERR
        \((\# p q<\operatorname{maxs} \wedge\)
            \(\left(\left(p q=\langle \rangle \wedge p q^{\prime}=\langle p ?\rangle\right) \vee\right.\)
\(\left(\right.\) prio \((p ?) \leq\) prio \((\) head \(\left.p q) \wedge p q^{\prime}=\langle p ?\rangle \frown p q\right) \vee\)
\(\left(\right.\) prio \((\) last \(p q)<\) prio \(\left.(p ?) \wedge p q^{\prime}=p q \frown\langle p ?\rangle\right) \vee\)
\(\left(\exists s_{1}, s_{2}: \operatorname{seq} P I D \mid s_{1} \neq\langle \rangle \wedge s_{2} \neq\langle \rangle \wedge s_{1} \frown s_{2}=p q \bullet\right.\)
\(\quad\) prio \(\left(\right.\) last \(\left.s_{1}\right)<\) prio \((p ?) \wedge\)
prio \((p ?) \leq\) prio \(\left(\right.\) head \(\left.s_{2}\right) \wedge\)
\(\left.\left.\quad q^{\prime}=s_{1} \frown\langle p ?\rangle \frown s_{2}\right)\right) \wedge\)
serr \(!=\) sysok \()\)
\(\vee\) serr \(!=\) schedqfull
```

Since serr! does not contribute to the precondition and for the reason that $\operatorname{pre}(A \vee B) \Leftrightarrow \operatorname{pre} A \vee$ pre B, we can omit all occurrences of this variable immediately. This gives
pre PRIOQEnqueue $\widehat{=}$
\exists PRIOQ' $^{\prime}$; serr! : SYSERR•
$(\# p q<\operatorname{maxs} \wedge$

$$
\begin{aligned}
& \left(\left(p q=\langle \rangle \wedge p q^{\prime}=\langle p ?\rangle\right) \vee\right. \\
& \left(\text { prio }(p ?) \leq \text { prio }(\text { head } p q) \wedge p q^{\prime}=\langle p ?\rangle p q\right) \vee \\
& \quad\left(\text { prio }(\text { last } p q)<\text { prio }(p ?) \wedge p q^{\prime}=p q \curvearrowleft\langle p ?\rangle\right) \vee \\
& \left(\exists s_{1}, s_{2}: \operatorname{seq} P I D \mid s_{1} \neq\langle \rangle \wedge s_{2} \neq\langle \rangle \wedge s_{1} \frown s_{2}=p q \bullet\right. \\
& \quad \text { prio }\left(\text { last } s_{1}\right)<\text { prio }(p ?) \wedge \\
& \quad \text { prio }(p ?) \leq \text { prio }\left(\text { head } s_{2}\right) \wedge \\
& \left.\left.\left.p q^{\prime}=s_{1} \curvearrowleft\langle p ?\rangle \frown s_{2}\right)\right)\right)
\end{aligned}
$$

We can now simplify the precondition schema to

```
pre PRIOQEnqueue }\widehat{=
```

 \((\# p q<\operatorname{maxs} \wedge\)
 $$
\begin{aligned}
& (p q=\langle \rangle \\
& \vee(\text { prio }(p ?) \leq \text { prio }(\text { head } p q)) \\
& \vee(\text { prio }(\text { last pq })<\text { prio }(p ?)) \\
& \vee\left(\exists s_{1}, s_{2}: \operatorname{seq} \text { PID } \mid s_{1} \neq\langle \rangle \wedge s_{2} \neq\langle \rangle \wedge s_{1} \frown s_{2}=p q \bullet\right. \\
& \quad \text { prio }\left(\text { last } s_{1}\right)<\text { prio }(p ?) \wedge \\
& \left.\left.\left.\quad \text { prio }(p ?) \leq \text { prio }\left(\text { head } s_{2}\right)\right)\right)\right)
\end{aligned}
$$

It is clear that

```
(prio(p?) \leq prio(head pq))
\vee ( p r i o ( l a s t ~ p q ) < p r i o ( p ? ) )
```



```
    prio(last s1)< prio(p?)}
    prio(p?) \leq prio(head s2))
```

implies that $\operatorname{prio}(p ?) \in P P R I O$ and that $p q \neq\langle \rangle$. It is also clear that $\operatorname{prio}(p ?) \in P P R I O \Leftrightarrow$ true, so this part reduces to $p q \neq\langle \rangle$. Plugging this back into the rest of the precondition, we obtain

```
#pq<maxs \wedge(pq=\langle\rangle\vee pq\not=\langle\rangle)
```

or

$$
\begin{gathered}
\# p q<\text { maxs } \wedge \text { true } \Leftrightarrow \\
\# p q<\text { maxs }
\end{gathered}
$$

So, we may conclude that
pre PRIOQEnqueue $\widehat{=} \# p q<$ maxs
The operation to remove an element of $p q$ is defined by the following schema:

PRIOQRemove \qquad
$\triangle P R I O Q$
p? : PID

$$
\begin{aligned}
\exists s_{1}, s_{2} & : \operatorname{seq} P I D \bullet \\
s_{1} & \frown\langle p ?\rangle s_{2}=p q \wedge \\
s_{1} & \frown s_{2}=p q^{\prime}
\end{aligned}
$$

Unfortunately, it is not possible to remove an element from an empty queue. Indeed, it is necessary to define an operation that first tests whether $p q$ is empty. The reason for this is that when the scheduler's queue is empty, the idle process must be scheduled.

DelPRIOQElem $\widehat{=}$
\neg IsEmptyPRIOQ \wedge PRIOQRemove
This operation expands into the following schema:
DelPRIOQElem \qquad

```
\trianglePRIOQ
p?: PID
pq}\not=\langle
\exists s}\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}:\mathrm{ seq PID
    s}\mp@subsup{s}{1}{`}\langlep?\rangle`\mp@subsup{s}{2}{}=pq
    s}\mp@subsup{s}{1}{`}\mp@subsup{s}{2}{}=p\mp@subsup{q}{}{\prime
```

This is an operation that will be used by the scheduler, so will be refined. For this reason, its precondition must be calculated.

```
pre DelPRIOQElem \(\widehat{=}\)
    \(\exists\) PRIOQ \(^{\prime}\)
```

```
\(p q \neq\langle \rangle \wedge\)
```

$p q \neq\langle \rangle \wedge$
$\left(\exists s_{1}, s_{2}: \operatorname{seq} P I D \bullet\right.$
$\left(\exists s_{1}, s_{2}: \operatorname{seq} P I D \bullet\right.$
$s_{1} \frown\langle p ?\rangle \frown s_{2}=p q \wedge$
$s_{1} \frown\langle p ?\rangle \frown s_{2}=p q \wedge$
$\left.s_{1} \frown s_{2}=p q^{\prime}\right)$

```
    \(\left.s_{1} \frown s_{2}=p q^{\prime}\right)\)
```

This simplifies to:

```
pre DelPRIOQElem \widehat{=}
    pq\not=\langle\rangle\wedgep?\in\operatorname{ran}pq
```

The second conjunct is justified as follows.I It is clear that $\operatorname{ran} p q=\operatorname{ran}\left(s_{1} \frown\right.$ $\langle p ?\rangle s_{2}$) by the definition of \frown and of sequence. Therefore, let ran $s_{1}=R_{1}$ and $\operatorname{ran} s_{2}=R_{2}$. It follows that, since $p ? \in \operatorname{ran} p q, p ? \notin R_{1} \cup R_{2}$, so ran $p q=$ $R_{1} \cup R_{2} \cup\{p ?\}$.

Finally, we observe that $p ? \in \operatorname{ran} p q$ implies $p q \neq\langle \rangle$, so
pre $\operatorname{DelPRIOQElem} \widehat{=} p ? \in \operatorname{ran} p q$
The scheduler requires that it must be possible to inspect the head of $p q$ and also to remove $p q$'s head as a separate operation. Dequeueing is, therefore, composed of these two operations. The following schema defines an operation to remove the head of $p q$. Since $p q$ is just a sequence, the tail operation is perfect for our needs.

PRIOQDelHd
$\triangle P R I O Q$
$p q^{\prime}=$ tail $p q$

For the precondition, calculation yields

$$
\begin{gathered}
\text { tail } p q=\text { tail } p q \\
\Leftrightarrow \text { true }
\end{gathered}
$$

However, this is not of much use. The stronger precondition, namely $p q \neq\langle \rangle$ is preferred.

The dequeue operation is composed of returning the head and then removing it. This is the core of the following definition.

```
PRIOQDequeue \(\widehat{=}\)
    \((\neg\) IsEmptyPRIOQ \(\wedge\) PRIOQHd \(\wedge\) PRIOQDelHd \(\wedge\) SysOk \()\)
    \(\checkmark\) PRIOQEmpty
```

The interesting part is the second conjunct:

```
PRIOQHd \(\wedge\) PRIOQDelHd
```

\qquad
\triangle PRIOQ
$p!: P I D$
$p!=$ head $p q$
$p q^{\prime}=$ tail $p q$

Again, calculation yields the weak precondition, true. A moment's thought shows that the precondition $p q \neq\langle \rangle$ also implies the operation.

The entire schema expands into
PRIOQDequeue \qquad
\triangle PRIOQ
$p!: P I D$
serr! : SYSERR

$$
\begin{aligned}
& (p q \neq\langle \rangle \wedge \\
& p!=\text { head } p q \wedge \\
& p q^{\prime}=\text { tail } p q \wedge \\
& \text { serr }!=\text { sysok }) \\
& \vee \text { serr }!=\text { schedqempty }
\end{aligned}
$$

Schema PRIOQDequeue's precondition can now be calculated. We first have

```
pre PRIOQDequeue \(\widehat{=}\)
    \(\exists\) PRIOQ \(^{\prime} ; p!:\) PID; serr! : SYSERR•
    \((p q \neq\langle \rangle \wedge\)
        \(p!=\) head \(p q \wedge\)
        \(p q^{\prime}=\) tail \(p q \wedge\)
        serr! \(=\) sysok)
    \(\vee\) serr \(!=\) schedqempty
```

This simplifies to:

```
pre PRIOQDequeue \(\widehat{=}\)
    \((p q \neq\langle \rangle \wedge\)
        head \(p q=\) head \(p q \wedge\)
        tail \(p q=\) tail \(p q \wedge\)
        sysok \(=\) sysok)
    \(\vee\) schedqempty \(=\) schedqempty
```

This is clearly equivalent to
pre PRIOQDequeue $\widehat{=}$

$$
p q \neq\langle \rangle
$$

3.5.2 Refinement One

The first refinement consists of replacing the sequence by a function. The domain of the function is a numeric type, $1 \ldots \operatorname{maxs} 1$, where $\operatorname{maxs} 1=\operatorname{maxs}$ or the maximum length of the sequence, $p q$, in the top-level specification (the maximum number of elements in this queue, too). The range is $P I D$, as was the case in the specification. Therefore, the domain permits the function to represent as many values as the original sequence. The variable maxs 1 records the maximum size of the queue at this level, $p q 1$. The final variable is $n x t p$, the index of the next element to be added to $p q 1$ (which can be thought of as a one-dimensional array or vector).

```
PRIOQ1
pq1:1..maxs 1 }->\mathrm{ PID
maxs1: N
nxtp:1.. maxs +1
\foralli:1..nxtp-2 \bullet
    prio1(pq1(i))\leqprio(pq1(i+1))
```

Note that $p q 1$ is ordered by priority. The condition that every element of $p q 1$ is in used (or, equivalently, at this level, not in the free chain) is not repeated. The reason for this is that it can be inferred from the equivalent schema in the specification.

The initialisation operation is defined next.
_PRIOQInit1 \qquad
PRIOQ1'
$m p s$? : \mathbb{N}_{1}
$\operatorname{maxs} 1^{\prime}=m p s ?$
$n x t p^{\prime}=1$

The initialisation consists only of setting the maximum length of the queue and setting the initial value of $n x t p$ to 1 (i.e., the beginning of the vector).

The next schema defines a predicate that is true when $p q 1$ is empty.
_IsEmptyPRIOQ1
EPRIOQ1
$n x t p=1$

This operation's predicate should be compared with the initialisation schema. In both cases nxtp takes the value 1. The scheme adopted here is that the element is assigned to the element indexed by $n x t p$ which is then incremented.

The following few operations are concerned with accessing the first and last elements of the queue, with determining whether the element to be added
to the queue has an appropriate priority and with inserting a new element into the queue. The operations correspond directly to those in the specification as presented in the last section.

```
    PRIOQHd1
    \XiPRIOQ1
    p! : PID
    p!=pq1(1)
```

PRIOQLast1 \qquad
EPRIOQ1
$p!: P I D$
$p!=p q 1(n x t p-1)$

The next schema defines an operation that is satisfied when the length of the queue is less than the maximum.

CanEnqueuePRIOQ1 \qquad
EPRIOQ1

```
    nxtp < maxs + 1
```

As in the specification, this operation enqueues an element at the head of the queue (because it has a priority higher than any queue element).

PRIOQEnqueueHd 1 \qquad
$\triangle P R I O Q 1$
p ? : PID
$p q 1^{\prime}=p q 1 \oplus\{1 \mapsto p ?\}$

The following operation enqueues an element at the end of the queue (because it has a priority lower than any in the queue).

PRIOQEnqueueLast1 \qquad
$\triangle P R I O Q 1$
p ? : PID
$p q 1^{\prime}=p q 1 \oplus\{n x t p \mapsto p ?\}$
$n x t p^{\prime}=n x t p+1$

The next schema defines an operation that moves the elements of a vector up by one place. Note that this is an example of how arrays (vectors) and functions are considered equivalent.

MovePRIOQUp1 \qquad
$\triangle P R I O Q 1$

```
\foralli:1..nxtp-1\bullet
    pq1' = pq1\oplus{i+1\mapstopq1(i)}
nxtp}\mp@subsup{}{}{\prime}=nxtp+
```

Finally, we are able to define the enqueue operation. As with the specification, the operation is defined in small parts that are composed to form the final operation. First, the operation to enqueue on the head is defined.

PRIOQEnqueueHd1 $\widehat{=}$
MovePRIOQUp 1 g PRIOQEnqueueHd1
This expands into:
PRIOQEnqueueHd1 \qquad
\triangle PRIOQ1
p ? : PID
$\exists p q 1^{\prime \prime}: 1 \ldots \operatorname{maxs} 1 \rightarrow P I D \bullet$
($\forall i: 1 \ldots n x t p-1 \bullet$
$\left.p q 1^{\prime \prime}=p q 1 \oplus\{i+1 \mapsto p q 1(i)\}\right) \wedge$
$n x t p^{\prime}=n x t p+1 \wedge$
$p q 1^{\prime}=p q 1^{\prime \prime} \oplus\{1 \mapsto p ?\}$

If the queue is empty, the following is used to enqueue the new element.
PRIOQAddSingleton 1 \qquad
$\triangle P R I O Q 1$
p ? : PID
$p q 1^{\prime}=\{n x t p \mapsto p ?\}$
$n x t p^{\prime}=n x t p+1$

This schema defines the inverse of the MovePRIOQUp1 schema. In this case, the elements of the vector are moved down one place and the first element is over-written.

PRIOQMoveUpFrom \qquad $\triangle P R I O Q 1$
where? : $1 . . \operatorname{maxs} 1$

$$
\begin{aligned}
& \forall j: \text { where } ?+1 \ldots n x t p-1 \bullet \\
& \quad p q 1^{\prime}=p q 1 \oplus\{j+1 \mapsto p q 1(j)\}
\end{aligned}
$$

The next operation sets the $i+1$ st element to p ?. This is used when inserting a new element into the queue.

PRIOQSetIthSucc \qquad

```
\trianglePRIOQ1
    p?: PID
    i?: 1 .. maxs1
    pq\mp@subsup{1}{}{\prime}=pq1\oplus{i+1\mapstop?}
```

This schema defines a predicate that is true when the new element should be enqueued on the head of $p q 1$ (i.e, when it has a higher priority than the current head-recall that higher priority is equivalent to lower value for the priority).

ShouldAddPRIOQHd1 \qquad
EPRIOQ1
p ? : PID

```
prio1(p?) \leq prio1(pq1(1))
```

The test for adding at the end is defined next.
ShouldAddPRIOQLast1 \qquad

```
\XiPRIOQ1
    p?: PID
    prio1(pq1(nxtp - 1)) < prio1(p?)
```

Next comes a predicate that is true when the priority of the element to be added to the queue is somewhere between those of the head and the last elements.

```
    PRIOQInsertMidPoss1
    EPRIOQ1
    p?: PID
    i?:1 . .maxs 1
    prio1(pq1(i)) < prio1(p?)
    prio1(p?)}\leq\operatorname{prio1}(pq1(i+1)
```

Associated with this predicate is the PRIOQInsert1 operation. This operation inserts a new element somewhere between the head and the last elements, based upon its priority.

```
PRIOQInsert1 \widehat{=}
    \existsi:1..nxtp-2\bullet
        PRIOQInsertMidPoss1[i/i?]^
        (PRIOQMoveUpFrom[i/where?] g PRIOQSetIthSucc[i/i?]) ^
        nxtp}\mp@subsup{}{}{\prime}=nxtp+
```

This expands into:

```
\(\triangle P R I O Q 1\)
\(p ?: P I D\)
\(\exists i: 1 \ldots n x t p-2 \bullet\)
    \(\operatorname{prio} 1(p q 1(i))<\operatorname{prio} 1(p ?) \wedge\)
    \(\operatorname{prio} 1(p ?) \leq \operatorname{prio} 1(p q 1(i+1)) \wedge\)
    \(\left(\exists p q 1^{\prime \prime}: 1 \ldots \operatorname{maxs} 1 \rightarrow P I D \bullet\right.\)
        \((\forall j: i+1 \ldots n x t p-1 \bullet\)
            \(\left.p q 1^{\prime \prime}=p q 1 \oplus\{j+1 \mapsto p q 1(j)\}\right) \wedge\)
        \(\left.p q 1^{\prime}=p q 1^{\prime \prime} \oplus\{i+1 \mapsto p ?\}\right) \wedge\)
    \(n x t p^{\prime}=n x t p+1\)
```

Finally, the enqueue operation can be defined. It is given by the following formula:

```
PRIOQEnqueue 1 \widehat{=}
    (CanEnqueuePRIOQ1^
        ((IsEmptyPRIOQ1 ^ PRIOQAddSingleton 1) \vee
            (ShouldAddPRIOQHd1 ^ PRIOQEnqueueHd1) \vee
            (ShouldAddPRIOQLast1 ^ PRIOQEnqueueLast1) \vee
            PRIOQInsert1) ^
        SysOk)
    \vee PRIOQFull
```

This complex definition expands into the following schema
PRIOQEnqueue 1 \qquad
$\triangle P R I O Q 1$
p ? : PID
serr! : SYSERR
(nxtp $<\operatorname{maxs} 1+1 \wedge$
$\left(\left(n x t p=1 \wedge p q 1^{\prime}=\{1 \mapsto p ?\} \wedge n x t p^{\prime}=2\right) \vee\right.$
$(\operatorname{prio1}(p ?) \leq \operatorname{prio} 1(p q 1(1)) \wedge$
$\left(\exists p q 1^{\prime \prime}: 1 \ldots \operatorname{maxs} 1 \rightarrow P I D\right.$
($\forall i: 1 \ldots n x t p-1 \bullet$
$\left.p q 1^{\prime \prime}=p q 1 \oplus\{i+1 \mapsto p q 1(i)\}\right) \wedge$
$\left.\left.n x t p^{\prime}=n x t p+1 \wedge p q 1^{\prime}=p q 1^{\prime \prime} \oplus\{1 \mapsto p ?\}\right)\right)$
$\vee(\operatorname{prio} 1(p q 1(n x t p-1))<\operatorname{prio} 1(p ?) \wedge$ $\left.p q 1^{\prime}=p q 1 \oplus\{n x t p \mapsto p ?\} \wedge n x t p^{\prime}=n x t p+1\right)$
$\vee(\exists i: 1 \ldots n x t p-2 \bullet$
$\operatorname{prio} 1(p q 1(i))<\operatorname{prio}(p ?) \wedge \operatorname{prio} 1(p ?) \leq \operatorname{prio} 1(p q 1(i+1)) \wedge$ ($\exists p q 1^{\prime \prime}: 1 . . \operatorname{maxs} 1 \rightarrow P I D \bullet$

```
    (\forallj:i+1..nxtp - 1 \bullet
    pq\mp@subsup{1}{}{\prime\prime}=pq1\oplus{j+1\mapstopq1(j)})^
    pq\mp@subsup{1}{}{\prime}=pq\mp@subsup{1}{}{\prime\prime}\oplus{i+1\mapstop?})\wedgenxt\mp@subsup{p}{}{\prime}=nxtp+1))\wedge
    serr! = sysok)\vee serr! = schedqfull
```

The schema's predicate can be simplified in a fairly obvious way. After simplification, the schema becomes

PRIOQEnqueue 1 \qquad

```
\trianglePRIOQ1
p?: PID
serr! : SYSERR
(nxtp \leqmaxs 1 ^
    ((nxtp=1\wedgepq\mp@subsup{1}{}{\prime}={1\mapstop?}\wedgenxtp}\mp@subsup{}{\prime}{\prime}=2)
        (prio1(p?) \leq prio1(pq1(1))^
            (\foralli:1..nxtp-1\bullet
                            pq\mp@subsup{1}{}{\prime}=(pq1\oplus{i+1\mapstopq1(i)})\oplus{1\mapstop?})\wedge
            nxtp}\mp@subsup{p}{}{\prime}=nxtp+1)
        (prio1(pq1(nxtp-1))<prio1(p?)}
            pq\mp@subsup{1}{}{\prime}=pq1\oplus{nxtp\mapstop?}^
            nxtp}\mp@subsup{}{}{\prime}=nxtp+1)
```

 (\(\exists i: 1 \ldots n x t p-2 \bullet\)
 \(\operatorname{prio} 1(p q 1(i))<\operatorname{prio} 1(p ?) \wedge \operatorname{prio} 1(p ?) \leq \operatorname{prio} 1(p q 1(i+1)) \wedge\)
 \((\forall j: i+1 \ldots n x t p-1 \bullet\)
 \(p q 1^{\prime}=(p q 1 \oplus\{j+1 \mapsto p q 1(j)\}) \oplus\{i+1 \mapsto p ?\} \wedge\)
 \(\left.\left.n x t p^{\prime}=n x t p+1\right)\right) \wedge\)
 serr \(!=\) sysok \()\)
 \vee serr $!=$ schedqfull

The enqueue operation is a refinement, so we need to calculate its precondition. It is given by the following predicate:
pre PRIOQEnqueue $1 \widehat{=}$
\exists PRIOQ1'; serr! : SYSERR
(nxtp $\leq \operatorname{maxs} 1 \wedge$

$$
\left(\left(n x t p=1 \wedge p q 1^{\prime}=\{1 \mapsto p ?\} \wedge n x t p^{\prime}=2\right) \vee\right.
$$

$$
(\operatorname{prio} 1(p ?) \leq \operatorname{prio} 1(p q 1(1)) \wedge
$$

$\left(\exists p q 1^{\prime \prime}: 1 \ldots \operatorname{maxs} 1 \rightarrow P I D\right.$
($\forall i: 1 \ldots n x t p-1$
$\left.p q 1^{\prime \prime}=p q 1 \oplus\{i+1 \mapsto p q 1(i)\}\right) \wedge$
$n x t p^{\prime}=n x t p+1 \wedge$ $\left.\left.p q 1^{\prime}=p q 1^{\prime \prime} \oplus\{1 \mapsto p ?\}\right)\right) \vee$

```
    \((\operatorname{prio} 1(p q 1(n x t p-1))<\operatorname{prio} 1(p ?) \wedge\)
    \(p q 1^{\prime}=p q 1 \oplus\{n x t p \mapsto p ?\} \wedge\)
    \(\left.n x t p^{\prime}=n x t p+1\right) \vee\)
( \(\exists i: 1 \ldots n x t p-2 \bullet\)
    \(\operatorname{prio} 1(p q 1(i))<\operatorname{prio} 1(p ?) \wedge \operatorname{prio} 1(p ?) \leq \operatorname{prio1}(p q 1(i+1)) \wedge\)
    ( \(\exists p q 1^{\prime \prime}: 1 \ldots \operatorname{maxs} 1 \rightarrow P I D \bullet\)
        ( \(\forall j: i+1 \ldots n x t p-1 \bullet\)
            \(\left.p q 1^{\prime \prime}=p q 1 \oplus\{j+1 \mapsto p q 1(j)\}\right) \wedge\)
            \(p q 1^{\prime}=p q 1^{\prime \prime} \oplus\{i+1 \mapsto p ?\} \wedge\)
            \(\left.\left.n x t p^{\prime}=n x t p+1\right)\right) \wedge\)
    serr! \(=\) sysok)
\(\vee\) serr \(!=\) schedqfull
```

Since serr! makes no contribution to the precondition, we can omit it. The second outermost disjunct can be immediately deleted by this fact. The inner occurrence can be removed by noting that pre $(A \vee B) \Leftrightarrow$ pre $A \vee$ pre B and serr $!=s y s o k$, by the one-point rule, is sysok $=$ sysok (a tautology). So, simplifying the existential quantifier involving $p q 1^{\prime \prime}$ using the one-point rule

```
pre PRIOQEnqueue 1 \widehat{=}
    \exists PRIOQ1'; serr!:SYSERR\bullet
        (nxtp \leqmaxs 1 ^
            ((nxtp=1\wedge pq\mp@subsup{1}{}{\prime}={1\mapstop?}\wedgenxtp}\mp@subsup{}{}{\prime}=2)
                (prio1(p?)\leqprio1(pq1(1))^
            (\foralli:1..nxtp-1\bullet
                pq\mp@subsup{1}{}{\prime}=(pq1\oplus{i+1\mapstopq1(i)})\oplus{1\mapstop?})^
                    nxtp}\mp@subsup{}{}{\prime}=nxtp+1
                (prio1(pq1(nxtp - 1))<prio1(p?) ^
                        pq\mp@subsup{1}{}{\prime}=pq1\oplus{nxtp\mapstop?}^
                nxtp}\mp@subsup{}{}{\prime}=nxtp+1)
                (\existsi:1..nxtp-2\bullet
                prio1(pq1(i))< prio1(p?) ^ prio1(p?) \leq prio1(pq1(i+1))^
                (\forallj:i+1..nxtp - 1 \bullet
                    pq\mp@subsup{1}{}{\prime}=(pq1\oplus{j+1\mapstopq1(j)})\oplus{i+1\mapstop?}\wedge
                    nxtp' = nxtp + 1))))
```

Next, the one-point rule is applied repeatedly to give

```
pre PRIOQEnqueue 1 \widehat{=}
    nxtp\leqmaxs 1 ^
    (nxtp = 1 ^
    \vee ( p r i o 1 ( p ? ) \leq p r i o 1 ( p q 1 ( 1 ) ) )
    \vee (prio1(pq1(nxtp - 1))<prio1(p?))
    \vee (\existsi:1..nxtp-2 \bullet
        prio1(pq1(i))<prio1(p?) ^prio1(p?) \leq prio1(pq1(i+1))))
```

Again, the 3 disjuncts

```
\((\operatorname{prio} 1(p ?) \leq \operatorname{prio} 1(p q 1(1)))\)
\(\vee(\operatorname{prio} 1(p q 1(n x t p-1))<\operatorname{prio1}(p ?))\)
\(\vee(\exists i: 1 \ldots n x t p-2 \bullet\)
    \(\operatorname{prio} 1(p q 1(i))<\operatorname{prio} 1(p ?) \wedge \operatorname{prio} 1(p ?) \leq \operatorname{prio} 1(p q 1(i+1)))\)
```

jointly imply that $\operatorname{prio} 1(p) \in P P R I O$. This permits us to reduce these disjuncts to true. In addition, they also imply that $n x t p>1$ for the reason that there must be at least one element in $p q 1$ for any of these comparisons to succeed.

We therefore have at this stage $n x t p<\operatorname{maxs} 1+1 \wedge(n x t p=1 \wedge n x t p>1)$. The second conjunct implies that $n x t p \geq 1$ and we can infer that $1 \leq n x t p<$ $\operatorname{maxs} 1+1$ or $1 \leq n x t p \leq \operatorname{maxs} 1$. This is equivalent to $n x t p \in 1 \ldots \operatorname{maxs} 1$, which is the definition of $n x t p$'s type, so reduces to true.

The precondition, therefore, reduces to
pre PRIOQEnqueue $1 \widehat{=} n x t p \leq \operatorname{maxs} 1$
We must now handle the operations that remove elements from the priority queue. The first operation to be defined removes a specified element, p ?, from the queue. If p ? is not present in the queue, the operation just terminates, otherwise it removes p ? and adjusts the insertion point ($n x t p$).

PRIOQRemove 1 \qquad

```
\(\triangle\) PRIOQ1
\(p\) ? : PID
\(\exists i: 1 \ldots n x t p-1 \bullet\)
    \(p q 1(i)=p\) ? ^
    \((\forall j: i+1 \ldots n x t p-1 \bullet\)
        \(\left.p q 1^{\prime}=p q 1 \oplus\{j-1 \mapsto p q 1(j)\}\right) \wedge\)
    \(n x t p^{\prime}=n x t p-1\)
```

The operation to remove the head of the priority queue is defined next and is

PRIOQDelHd 1
$\triangle P R I O Q 1$

```
    \(n x t p^{\prime}=n x t p-1\)
    \(\forall i: 1 \ldots n x t p-2\) •
        \(p q 1^{\prime}=p q 1 \oplus\{i \mapsto p q 1(i+1)\}\)
```

The precondition of this operation is as now given.
pre $\operatorname{PRIOQDelHd1~} \widehat{=} n x t p>1$
This can be seen from the following. If $n x t p=1$, there are no elements in $p q 1$, so the operation must fail.

The operation performing the dequeue operation is the following

```
PRIOQDequeue1 \widehat{=}
    (\neg IsEmptyPRIOQ1 ^ PRIOQHd 1 ^ PRIOQDelHd 1 ^ SysOk)
    \vee PRIOQEmpty
```

 The entire schema, after expansion, is
 PRIOQDequeue 1
    ```
\(\triangle\) PRIOQ1
\(p!: P I D\)
serr! : SYSERR
(nxtp \(>1 \wedge\)
    \(p!=p q 1(1) \wedge\)
    ( \(\forall i: 1 \ldots n x t p-2\) •
        \(\left.p q 1^{\prime}=p q 1 \oplus\{i \mapsto p q 1(i+1)\}\right) \wedge\)
    \(n x t p^{\prime}=n x t p-1 \wedge\)
    serr! \(=\) sysok)
    \(\vee\) serr \(!=\) schedqempty
```

The precondition is

```
pre PRIOQDequeue 1 \widehat{=}
    \existsPRIOQ1'; p!: PID; serr!:SYSERR\bullet
        (nxtp>1^
        p!=pq1(1)^
        (\foralli:1..nxtp-2 \bullet
            pq\mp@subsup{1}{}{\prime}=pq1\oplus{i\mapstopq1(i+1)})^
        nxtp}\mp@subsup{}{}{\prime}=nxtp-1
        serr! = sysok)
    \vee serr! = schedqempty
```

For well-advertised reasons, this immediately reduces to

```
pre PRIOQDequeue 1 气
    \existsPRIOQ1'; p!: PID; serr! : SYSERR\bullet
        (nxtp>1^
    p!=pq1(1)^
    (\foralli:1..nxtp-2 \bullet
        pq\mp@subsup{1}{}{\prime}=pq1\oplus{i\mapstopq1(i+1)})^
        nxtp' = nxtp - 1)
```

This now reduces to

```
pre PRIOQDequeue \(1 \widehat{=}\)
\(\exists\) PRIOQ1'; p! : PID; serr! : SYSERR
(nxtp \(>1 \wedge\)
\(p q 1(1)=p q 1(1) \wedge\)
( \(\forall i: 1 \ldots n x t p-2\) •
        \(p q 1 \oplus\{i \mapsto p q 1(i+1)\}=p q 1 \oplus\{i \mapsto p q 1(i+1)\}) \wedge\)
\(n x t p-1=n x t p-1)\)
```

or
pre PRIOQDequeue $1 \widehat{=} n x t p>1$
This can be expressed as the proposition that the queue is not empty.
The abstraction relation is now presented.
AbsPRIOQ1
PRIOQ
PRIOQ1

$$
\begin{aligned}
& \operatorname{maxs} 1=\operatorname{maxs} \\
& n x t p=\# p q+1 \\
& \forall i: 1 \ldots n x t p-1 \bullet \\
& \quad p q(i)=p q 1(i)
\end{aligned}
$$

The important parts are the second and third conjuncts. The second conjunct, $n x t p=\# p q+1$ states that $n x t p-1$ is always the current length of the queue; $n x t p$ always points to the next free element in the queue vector or has the value of the maximum length of the queue plus one. The third conjunct states that all the elements in $p q 1$ are also in $p q$ and all elements appear in the same order. The abstraction relation inherits the constraint that all elements in $p q$ and $p q 1$ must be elements of used (or, equally, not on the free chain).

Theorem 23.

```
\forallPRIOQ'; PRIOQ1 •
    PRIOQInit1 ^ AbsPRIOQ1' }=>\mathrm{ PRIOQInit
```

Proof. By the abstraction relation, $\operatorname{maxs}^{\prime}=\operatorname{maxs} 1^{\prime}$, and by the predicate of PRIOQInit1, $\operatorname{maxs} 1^{\prime}=m p s$?, so $m a x s^{\prime}=m p s ?$. Also by the abstraction relation, $n x t p^{\prime}=\# p q^{\prime}+1$; by the predicate of PRIOQInit1, nxtp ${ }^{\prime}=1=$ $\# p q^{\prime}+1$, so $\# p q^{\prime}=0$.

Theorem 24.

```
\forallPRIOQ; PRIOQ1; p? : PID - 
    pre PRIOQEnqueue ^ AbsPRIOQ }=>\mathrm{ pre PRIOQEnqueue1
```

Proof. We have
pre PRIOQEnqueue $\widehat{=} \# p q<$ maxs
and
pre PRIOQEnqueue $1 \widehat{=} n x t p<\operatorname{maxs} 1+1$

By the predicate of $\operatorname{AbsPRIOQ}$, maxs $=\operatorname{maxs} 1$ and $n x t p=\# p q+1$. Since $\# p q=n x t p-1$, and $\# p q<\operatorname{maxs}$, then $n x t p-1<\operatorname{maxs} 1$ and $n x t p<$ $\operatorname{maxs} 1+1$, as required.

Theorem 25.

\forall PRIOQ; PRIOQ'; PRIOQ1; PRIOQ1'; p? : PID; serr! : SYSERR• pre PRIOQEnqueue \wedge

AbsPRIOQ1 $\wedge A b s P R I O Q 1^{\prime} \wedge$
PRIOQEnqueue 1
\Rightarrow PRIOQEnqueue
Proof. The precondition of PRIOQEnqueue is $\# p q<$ maxs.
Now, nxtp $<$ maxs +1 , by AbsPRIOQ1, maxs $1=$ maxs and nxtp $=$ $\# p q+1$, substituting, we obtain $\# p q+1<\operatorname{maxs}+1 \Leftrightarrow \# p q<$ maxs.

Given $n x t p=1$, by absPRIOQ1, $p q=\langle \rangle$, for $n x t p=1$ implies $\# p q=0$. It is clear that $\{1 \mapsto p ?\}=p q 1^{\prime}(1)=p ?$, and we note that $\{1 \mapsto p ?\}=\langle p ?\rangle$, If $\{1 \mapsto p ?\}=p q 1^{\prime}(1)=p$? and, by AbsPRIOQ1 $1^{\prime}, p q 1^{\prime}(i)=p q^{\prime}(i)$, for all $i \in 1 \ldots \# p q^{\prime}$, so $p q 1^{\prime}(1)=p q^{\prime}(1)=$ head $p q^{\prime}$ by the definition of head. Now, $n x t p^{\prime}=2$, which implies that $\# p q^{\prime}=1$ since $n x t p^{\prime}=\# p q^{\prime}+1$ by the predicate of $A b s P R I O Q 1^{\prime}$ and we have $2=n x t p^{\prime}=\# p q^{\prime}+1$, so $n x t p^{\prime}-1=\# p q^{\prime}=1$. Therefore, $p q^{\prime}=\langle p$? \rangle.

By $\operatorname{AbsPTAB} 1, \operatorname{prio} 1(p)=\operatorname{prio}(p)$, provided that $p \in$ used. By the predicate of $\operatorname{AbsPRIOQ1,pq1(1)}=p q(1)=$ head $p q$. From this, we have $\operatorname{prio} 1(p ?) \leq \operatorname{prio}(p q 1(1)) \Leftrightarrow \operatorname{prio}(p ?) \leq \operatorname{prio}($ head $p q)$. It should be noted that last $p q$ can be handled in a similar fashion, noting that $n x t p=\# p q+1$, so $n x t p-1=\# p q$ and $p q(\# p q)=$ last $p q$. This allows us to infer that $\operatorname{prio} 1(p q 1(n x t p-1))<\operatorname{prio} 1(p ?) \Leftrightarrow \operatorname{prio}($ last $p q)<\operatorname{prio}(p ?)$. Now, returning to $\operatorname{prio}(p ?) \leq \operatorname{prio}($ head $p q)$, we have, by AbsPRIOQ1,

```
\foralli:1..nxtp - 1 \bullet
    pq\mp@subsup{1}{}{\prime}=(pq1\oplus{i+1\mapstopq1(i)}))\oplus{1\mapstop?}
    =(pq\oplus{i+1\mapstopq(i)})\oplus{1\mapstop?}
```

and

$$
\begin{aligned}
& (p q \oplus\{i+1 \mapsto p q(i)\}) \oplus\{1 \mapsto p ?\} \\
& \quad=\{1 \mapsto p ?\} \oplus(p q \oplus\{i+1 \mapsto p q(i)\}) \\
& \quad=\langle p ?\rangle \frown p q
\end{aligned}
$$

The second line is justified by the fact that the domains of the two maplets are disjoint. More specifically, $\{i+1 \mapsto p q(i)\}$ is undefined at 1 .

In the next case, we have $p q 1^{\prime}=p q 1 \oplus\{n x t p \mapsto p ?\}$. By AbsPRIOQ1, $n x t p=\# p q+1$, so, by AbsPRIOQ1', pq1 $1^{\prime}(n x t p)=p q^{\prime}(n x t p)=p q^{\prime}(\# p q+1)$ and $p ?=p q 1^{\prime}(n x t p)=p q^{\prime}(n x t p)=p q^{\prime}(\# p q+1)$ which implies that $p q^{\prime}=$ $p q \frown\langle p ?\rangle$.

By the arguments given above, it can be inferred that the condition (the guard) is correct. We may then concentrate on the quantified formulæ. Note that the existential has range $1 \ldots n x t p-2$, so $p q 1(1)$ and $p q 1(n x t p-1)$ are not to be altered.

The predicate $\operatorname{prio} 1(p q 1(i))<\operatorname{prio}(p ?) \wedge \operatorname{prio} 1(p ?) \leq \operatorname{prio} 1(p q 1(i+1))$ divides $p q 1$ into two segments, one with priority $<\operatorname{prio}(p$?) and one with priority $>\operatorname{prio}(p$? $)$. Neither segment can, then, be empty. We can, therefore, consider two segments, s_{1} and s_{2} of $p q$, s.t. $s_{1} \neq\langle \rangle$ and $s_{2} \neq\langle \rangle$ and s.t. $s_{1} \frown s_{2}=p q$. This is valid according to the conjunct of AbsPRIOQ1 which states $\forall i: 1 \ldots \# p q \bullet p q 1(i)=p q(i)$.

Now, let $\# s_{1}=i$, so $p q(i)=s_{1}(i)=$ last s_{1} and $p q 1(i+1)=\left(s_{1} \frown\right.$ $\left.s_{2}\right)(i+1)=p q(i+1)=$ head s_{2}. Let $j=i+1$, then the quantified formula implies that $p q 1^{\prime}(j)=p q 1(j)$ and, in particular, that $p q 1^{\prime}(i+1)=p q 1(i)$ and $p q 1^{\prime}(n x t p)=p q 1(n x t p-1)$ and we now have three segments:

```
pq1'(k)=pq1(k),1\leqk\leqi
pq\mp@subsup{1}{}{\prime}(i+1)=pq1(i+1)
pq\mp@subsup{1}{}{\prime}(l)=pq1(i+1+n),i+1\leqn\leqnxtp-1
```

For the central segment, it can be seen from the universal that $p q 1^{\prime}(i+1)=p$? (i.e., $\{i+1 \mapsto p ?\})$, so by $\operatorname{AbsPRIOQ1}, p q^{\prime}(i+1)=p$?. We can identify the first component, $p q 1^{\prime}(k)=p q 1(k)$, with s_{1} since $k<n x t p-1$ and $p q 1(k)=p q(k)$ by AbsPRIOQ1. The third segment is s_{2} by AbsPRIOQ1. Since $A b s P R I O Q 1^{\prime}$ requires that $p q 1^{\prime}(i)=p q^{\prime}(i), i \in 1 \ldots \# p q^{\prime}$, we have $p q 1^{\prime}=s_{1} \frown\langle p ?\rangle{ }^{\wedge} s_{2}=p q^{\prime}$.

Finally, $n x t p^{\prime}=n x t p+1$ in each case. By AbsPRIOQ1, nxtp $=\# p q+1$, $n x t p+1=\# p q+2$ which implies that $\# p q^{\prime}=\# p q+1$.

Theorem 26. $\forall P R I O Q ; ~ P R I O Q 1 \bullet$ pre PRIOQDequeue $\wedge A b s P R I O Q 1 \Rightarrow$ pre PRIOQDequeue 1

Proof. The preconditions are as follows:
pre PRIOQDequeue $\widehat{=} p q \neq\langle \rangle$
pre PRIOQDequeue $1 \widehat{=} n x t p>1$
By the abstraction relation, the predicate of AbsPRIOQ1, nxtp $=\# p q+1$, so $p q \neq\langle \rangle$ implies that $\# p q>0$. If $\# p q=0$, then $n x t p=1$. Therefore, $p q \neq\langle \rangle$ implies that $n x t p>1$.

Theorem 27.

\forall PRIOQ; PRIOQ'; PRIOQ1; PRIOQ1'; p! : PID; serr! : SYSERR • pre PRIOQDequeue \wedge

AbsPRIOQ1 \wedge
AbsPRIOQ1' \wedge
PRIOQDequeue 1
\Rightarrow PRIOQDequeue
Proof. The preconditon of PRIOQDequeue is $p q \neq\langle \rangle$.
Now, $n x t p>1$, impiles that $p q \neq\langle \rangle$. By AbsPRIOQ1, nxtp $=\# p q+1$, so if $\# p q=0, n x t p=1$ and $\# p q=0$ implies that $p q=\langle \rangle$. Therefore, it follows that $n x t p>1$ implies $p q \neq\langle \rangle$.

The assignment, $p!=p q 1(1)$ is equivalent to $p!=p q(1)=$ head $p q$. The predicate of $A b s P R I O Q 1$ states that $\forall i: 1 . . \# p q \bullet p q 1(i)=p q(i)$, so $p q 1(1)=$ $p q(1)$ and, using the definition of head, it is immediate that $p q(1)=$ head $p q$.

Now, the quantified formala can be handled, $\forall i: 1 . . \# p q \bullet p q 1(i)=p q(i)$, as follows.

$$
\begin{aligned}
& \forall i: 1 \ldots n x t p-2 \bullet \\
& \qquad \begin{aligned}
p q 1^{\prime} & =p q \oplus\{i \mapsto p q 1(i+1)\} \\
& =p q \oplus\{i \mapsto p q 1(i+1)\} \\
& =p q \oplus\{i \mapsto p q(i+1)\} \\
& =\text { tail } p q
\end{aligned}
\end{aligned}
$$

To see this, consider that

$$
\begin{aligned}
& (\text { tail } p q)(1)=p q(2) \\
& \quad \ldots(\text { tail } p q)(\# \text { tail } p q)=p q(\# \text { tail } p q+1) \\
& \quad=p q(\# p q)
\end{aligned}
$$

 all $i \in 1 \ldots \# p q^{\prime}$, so $p q 1^{\prime}=$ tail $p q=p q^{\prime}$.

Theorem 28. $\forall P R I O Q ; ~ P R I O Q 1 ~-~ p r e P R I O Q D e l H D ~ \wedge A b s P R I O Q 1 \Rightarrow$ pre PRIOQDelHd1
Proof. The two preconditions are

```
pre PRIOQDelHd \widehat{= pq}\not=\langle\rangle
```

pre PRIOQDelHd1 $\widehat{=} n x t p>1$
The proof is concluded in a manner similar to the proof of Theorem 26

Theorem 29.

\forall PRIOQ; PRIOQ'; PRIOQ1; PRIOQ1' •
pre PRIOQDelHd \wedge
AbsPRIOQ1 \wedge
AbsPRIOQ1' \wedge
PRIOQDelHd1
\Rightarrow PRIOQDelHd

Proof. The definition of PRIOQDelHd is

```
\trianglePRIOQ
pq' = tail pq
```

and it precondition is $p q \neq\langle \rangle$.
The definition of PRIOQDelHd 1 is

```
\trianglePRIOQ1
    nxtp}\mp@subsup{}{}{\prime}=nxtp-
    \foralli:1..nxtp-2 \bullet
        pq\mp@subsup{1}{}{\prime}=pq1\oplus{i\mapstopq1(i+1)}
```

and its precondition is $n x t p>1$.
It should be clear that

```
\foralli:1..nxtp-2\bullet
```

 \((\) tail \(p q)(i)=p q 1 \oplus\{i \mapsto p q 1(i+1)\}\)
 so $p q 1^{\prime}=$ tail $p q=p q^{\prime}$. To see this consider the following:
$($ tail $p q)(1)=p q(2)=p q 1(2)$
\vdots
$\operatorname{last}(\operatorname{tail} p q)=\operatorname{tail} p q(\#$ tail $p q)=p q 1(n x t p-1)$

The result of this refinement is a collection of schemata that can be translated to executable code. This produces a priority queue implemented in terms of a vector, a perfectly adequate implementation. However, we continue with a second refinement which will refine the vector to a list threaded through the next function (i.e., a list of process identifiers or, equivalently, a list of process descriptors).

3.5.3 Refinement Two

In this refinement, the queue elements are now stored in next, a component of PTAB2. In many real-time kernels, the ready queue (which is really the priority queue) is implemented as a small vector of process identifiers or references. The vector implementation saves a few operations and is justified by the fact that only a few processes are usually in the ready queue at any time. The advantages of the current approach are that any number of processes can be in the ready queue and that it occupies no extra space whatsoever;
access and update of the two structures take very roughly the same number of instructions on most contemporary processors.

The state space for this refinement is the following.

```
PRIOQ2
PTAB2
qhd, qlst:GPID
qlen:\mathbb{N}
maxs2: \mathbb{N }
qlen \leqmaxs 2 ^qhd = nullpid \Leftrightarrowqlst = nullpid
qhd = nullpid }\Leftrightarrow\mathrm{ qlen = 0^ qhd }\not=\mathrm{ nullpid }\Leftrightarrow\mathrm{ next (qlst) = nullpid
qhd \not= nullpid \Leftrightarrowqlst \in next* ( {qhd} D\{nullpid}
```

The variables $q h d$ and $q l s t$ represent the head and last elements of the ready queue; the length of the queue is represented by qlen. The maximum length to which the ready queue can grow is determined by maxs 2 . The invariant states that the length of the queue must always be less than maxs $2+1$ and that when the queue is empty, qhd $=q l s t=$ nullpid. There is more that could be included in the invariant but the above is quite adequate for our current needs.

The initialisation schema is defined next. Given the last paragraph, the predicate of PRIOQInit2 should be clear.

PRIOQInit2 \qquad
PRIOQ2'
$m p s$? : \mathbb{N}_{1}
$q h d^{\prime}=q l s t^{\prime}=$ nullpid
$\operatorname{maxs} 2^{\prime}=m p s$?
$q l e n^{\prime}=0$
The operations now follow in the same order as they were presented for PRIOQ1, so nothing will be said about them unless there is a point of interest.

IsEmptyPRIOQ2 \qquad
EPRIOQ2
$q l e n=0$
The approach adopted to the definition of the enqueue operation is the same as in the last subsection.

$$
\begin{aligned}
& \text { PRIOQHd2 } \\
& \text { EPRIOQ2 } \\
& p!: P I D \\
& \hline p!=q h d
\end{aligned}
$$

\qquad

PRIOQLast2 \qquad
EPRIOQ2
$p!$: PID
$p!=q l s t$

CanEnqueuePRIOQ2 \qquad
EPRIOQ2
qlen $<$ maxs 2

PRIOQEnqueueHd2
$\triangle P R I O Q 2$
p ? : PID
$q h d^{\prime}=p$?
next ${ }^{\prime}=$ next $\oplus\{p ? \mapsto q h d\}$
$q l e n^{\prime}=q l e n+1$

PRIOQAddSingleton2

```
\trianglePRIOQ2
p?: PID
qhd'}=p\mathrm{ ?
qlst' = p?
next'}=\mathrm{ next }\oplus{p?\mapsto nullpid 
    qlen' = 1
```

ShouldAddPRIOQHd2 \qquad
EPRIOQ2
p ? : PID
$\operatorname{prio} 2(p ?) \leq \operatorname{prio} 2(q h d)$

ShouldAddPRIOQLast2
$\Xi P R I O Q 2$
p ? : PID
prio2(qlst) $<$ prio2 2 p?

The following is the insertion operation:

PRIOQInsert2 \qquad

```
\trianglePRIOQ2
    p?: PID
    \exists p1, p
    p
```



```
    prio2(p
    prio2(p?)<prio2(p}\mp@subsup{p}{2}{})
    next(p}\mp@subsup{p}{1}{})=\mp@subsup{p}{2}{}
    next'}=next \oplus{\mp@subsup{p}{1}{}\mapstop?,p?\mapsto\mp@subsup{p}{2}{}}
    qlen' = qlen + 1
```

Note how next is updated by the addition of p ?. Also, the update of next is really a sequential composition since two elements are added to it. The two elements have been reduced to one as a notational nicety.

Finally, the enqueue operation proper is defined.
PRIOQEnqueue $2 \widehat{=}$
(CanEnqueuePRIOQ2 \wedge
((IsEmptyPRIOQ2 \wedge PRIOQAddSingleton2)
$\vee($ ShouldAddPRIOQHd $2 \wedge$ PRIOQEnqueueHd 2)
$\vee($ ShouldAddPRIOQLast $2 \wedge$ PRIOQEnqueueLast 2)
\vee PRIOQInsert2) \wedge
SysOk)
\vee PRIOQFull
It expands into
PRIOQEnqueue 2 \qquad

```
\(\triangle\) PRIOQ2
\(p\) ? : PID
    serr! : SYSERR
qlen \(<\) maxs 2
(qlen \(=0 \wedge\)
    \(q h d^{\prime}=p ? \wedge q l s t^{\prime}=p ? \wedge\)
    next \(t^{\prime}=\) next \(\oplus\{p ? \mapsto\) nullpid \(\} \wedge\)
    qlen \({ }^{\prime}=1\) )
\(\vee(\) prio \(2(p ?) \leq \operatorname{prio} 2(q h d) \wedge\)
    \(q h d^{\prime}=p\) ? ^
    next \({ }^{\prime}=n e x t ~ \oplus\{p ? \mapsto q h d\} \wedge\)
    qlen \(\left.{ }^{\prime}=q l e n+1\right)\)
\(\vee(\) prio2 \((q l s t)<\operatorname{prio} 2(p ?) \wedge\)
    \(q l s t^{\prime}=p ? \wedge\)
    next \({ }^{\prime}=\) next \(\oplus\{\) qlst \(\mapsto p ?, p ? \mapsto\) nullpid \(\} \wedge\)
    \(\left.q l e n^{\prime}=q l e n+1\right)\)
```

```
\vee (\exists p , , p2: PID
    p
    p}\mp@code{\in next* ({ {qhd} D\{nullpid} ^
    prio2(p
    prio2(p?)<prio2(p}\mp@subsup{p}{2}{})
    next(p
    next'}=next \oplus{\mp@subsup{p}{1}{}\mapstop?,p?\mapsto\mp@subsup{p}{2}{}}
    qlen' =qlen +1)^
    verr! = sysok)
verr! = schedqfull
```

The predicate of this schema can be simplified to

```
qlen < maxs 2 ^
    [((qlen = 0 ^
            qhd' = p?^qlst' = p?^
            next}\mp@subsup{}{}{\prime}=\mathrm{ next }\oplus{p?\mapsto nullpid }
    \vee ~ ( p r i o 2 ( p ? ) \leq p r i o 2 ( q h d ) ~ \wedge ~
            qhd' = p?^
            next' = next }\oplus{p?\mapstoqhd}
    \vee ( p r i o 2 ( q l s t ) < p r i o 2 ( p ? ) \wedge
            qlst' = p?^
            next}\mp@subsup{}{}{\prime}=next \oplus{qlst \mapstop?,p?\mapsto nullpid }
    \vee (\exists\mp@subsup{p}{1}{},\mp@subsup{p}{2}{}: PID
            p
            p}\mp@subsup{\mp@code{2}}{~}{\prime}\mathrm{ next** {qhd} D\{nullpid} ^
            prio 2( }\mp@subsup{p}{1}{})\leq\operatorname{prio}2(p?)
            prio2(p?)<prio2(p}\mp@subsup{p}{2}{})
            next (p
            next}\mp@subsup{}{}{\prime}=next \oplus{\mp@subsup{p}{1}{}\mapstop?,p?\mapsto\mp@subsup{p}{2}{}})
    \wedgeqlen' = qlen +1
    serr! = sysok]
\vee ~ s e r r ! ~ = ~ s c h e d q f u l l ~
```

It is also clear that the calculation of $\operatorname{prio} 2(p$?) can be turned into a local variable using existential quantification

```
\(\exists p r:\) PPRIO \(\mid p r=p r i o 2(p ?)\)
    qlen \(<\operatorname{maxs} 2 \wedge\)
        \([((q l e n=0 \wedge\)
        \(q h d^{\prime}=p ? \wedge q l s t^{\prime}=p ? \wedge\)
        next \(t^{\prime}=\) next \(\oplus\{p ? \mapsto\) nullpid \(\left.\}\right)\)
    \(\vee(p r \leq p r i o 2(q h d) \wedge\)
        \(q h d^{\prime}=p ? \wedge\)
        \(\left.n e x t^{\prime}=n e x t \oplus\{p ? \mapsto q h d\}\right)\)
```

```
    \(\vee(\) prio2 \((q l s t)<p r \wedge\)
    \(q l s t^{\prime}=p ? \wedge\)
    next \({ }^{\prime}=\) next \(\oplus\{q l s t \mapsto p ?, p ? \mapsto\) nullpid \(\left.\}\right)\)
\(\vee\left(\exists p_{1}, p_{2}: P I D\right.\)
    \(p_{1} \in\) next \(^{*}(\{\) qhd \(\}\) D \(\backslash\{\) nullpid \(\} \wedge\)
    \(p_{2} \in\) next \({ }^{*}(\{q h d\} D \backslash\{\) nullpid \(\} \wedge\)
    prio2 \(\left(p_{1}\right) \leq \operatorname{prio} 2(p ?) \wedge\)
    \(\operatorname{prio} 2(p ?)<\operatorname{prio} 2\left(p_{2}\right) \wedge\)
    \(\operatorname{next}\left(p_{1}\right)=p_{2} \wedge\)
    \(\left.\left.n e x t^{\prime}=n e x t \oplus\left\{p_{1} \mapsto p ?, p ? \mapsto p_{2}\right\}\right)\right)\)
    \(\wedge\) qlen \({ }^{\prime}=\) qlen +1
    \(\wedge\) serr! \(=\) sysok]
\(\vee\) serr \(!=\) schedqfull
```

This is one case in which the re-introduction of quantifiers can lead to better code.

The precondition of PRIOQEnqueue2 is
pre PRIOQEnqueue $2 \widehat{=}$ qlen $<\operatorname{maxs} 2$
As above, the deletion and dequeueing operations are defined next.
PRIOQDelHd 2 \qquad
$\triangle P R I O Q 2$

```
qlen' = qlen - 1
qh\mp@subsup{d}{}{\prime}}=n\operatorname{ext}(qhd
```

By calculation, we obtain
pre $\operatorname{PRIOQDelHd} 2 \widehat{=}$ true
but this is not particularly useful. Instead, the following weaker form is employed:
pre PRIOQDelHd $2 \widehat{=}$ qlen >0
This formula is also employed by the predicate of PRIOQDelHd2.

```
PRIOQDequeue2 \widehat{=}
    (\negIsEmptyPRIOQ2^
        PRIOQHd2 ^
        PRIOQDelHd2 ^
        SysOk)
    \vee PRIOQEmpty
```

This complex definition expands into

PRIOQDequeue 2
$\triangle P R I O Q 2$
$p!: P I D$
serr! : SYSERR
(qlen $\neq 0 \wedge$
$p!=q h d \wedge$
qlen ${ }^{\prime}=q l e n-1 \wedge$
$q h d^{\prime}=\operatorname{next}(q h d) \wedge$
serr $!=$ sysok)
\vee serr $!=$ schedqempty

This operation's precondition is immediately calculated
pre $\operatorname{PRIOQDequeue~} 2 \widehat{=} q l e n \neq 0$
However, since $q l e n \in \mathbb{N}$, this can be re-written as
pre PRIOQDequeue $2 \widehat{=}$ qlen >0
To end the sequence of definitions, the abstraction relation is now defined.

```
AbsPRIOQ2
    PRIOQ1
    PRIOQ2
```

```
maxs 2 = maxs 2
```

maxs 2 = maxs 2
nxtp>1\Leftrightarrowqhd = pq1(1)
nxtp>1\Leftrightarrowqhd = pq1(1)
nxtp>1\Leftrightarrowqlst = pq1(nxtp-1)
nxtp>1\Leftrightarrowqlst = pq1(nxtp-1)
qlen = nxtp-1
qlen = nxtp-1
next(pq1(nxtp - 1)) = nullpid
next(pq1(nxtp - 1)) = nullpid
\foralli:1..nxtp-2•
\foralli:1..nxtp-2•
i=j-1=>
i=j-1=>
next(pq1(i))=pq1(i+1)

```
    next(pq1(i))=pq1(i+1)
```

This is yet another identity, so the proofs of refinement are straightforward.
Theorem 30. $\forall P R I O Q 1 ; ~ P R I O Q 2 ~ \cdot ~ P R I O Q I n i t 2 \wedge A b s P R I O Q 2^{\prime} \Rightarrow$ PRIOQInit1

Proof. By the abstraction relation, $q l e n^{\prime}=n x t p^{\prime}-1$, so we have $1-1=$ $0=q l e n^{\prime}$. In addition, the same realtion states that maxs $2=\operatorname{maxs} 1$.

Theorem 31. $\forall P R I O Q 1 ; ~ P R I O Q 2 ; ~ p ? ~: ~ P I D ~ \cdot ~ p r e P R I O Q E n q u e u e ~ 1 ~ \wedge ~$ AbsPRIOQ2 \Rightarrow pre PRIOQEnqueue 2

Proof. The two preconditions are
pre PRIOQEnqueue $1 \widehat{=} n x t p \leq \operatorname{maxs} 1$
and
pre PRIOQEnqueue $2 \widehat{=}$ qlen $<\operatorname{maxs} 2$
Since $\operatorname{maxs} 1=\operatorname{maxs} 2$, we have
$n x t p \leq \operatorname{maxs} 2$
and
qlen $<\operatorname{maxs} 2$
The abstraction relation, states that qlen $=n x t p-1$, so qlen $+1 \leq$ maxs 2 , which imples that qlen $<\operatorname{maxs} 2$ as required.
Theorem 32.
\forall PRIOQ1; PRIOQ1'; PRIOQ2; PRIOQ2'; p? : PID; serr! : SYSERR • pre PRIOQEnqueue 1
\wedge AbsPRIOQ2
\wedge AbsPRIOQ2'
\wedge PRIOQEnqueue 2
\Rightarrow PRIOQEnqueue 1
Proof. There are four cases.
Case 1. qlen $<\operatorname{maxs} 2$. By the abstraction relation, qlen $=n x t p-1$ and $\operatorname{maxs} 2=$ maxs 1 , so nxtp $-1<\operatorname{maxs} 2$ implies nxtp $-1<\operatorname{maxs} 1$, which implies nxtp \leq maxs 1 . Ad qlen $=0$, again using qlen $=n x t p-1,0=n x t p-1$ implies $n x t p=1$. By the predicate of AbsPRIOQ2 $2^{\prime} q h d^{\prime}=p q 1^{\prime}(1)$ and $q l s t^{\prime}=$ $p q 1^{\prime}\left(n x t p^{\prime}-1\right)$, so $q h d^{\prime}=p$? implies $p q 1 \oplus\{1 \mapsto p ?\}=p q 1^{\prime}$ and $q l s t^{\prime}=p$? implies $p q 1 \oplus\{1 \mapsto p ?\}=p q 1^{\prime}$ since $n x t p=1$. The identity $q l e n^{\prime}=q l e n+1$, implies that $n x t p^{\prime}=n x t p+1=n x t p^{\prime}=2$.
Case 2. prio2(p ?) implies prio1(p ?) by $A b s P T A B 1$; this is justified by the invariant condition that ran $p q \subset$ used. We also have prio2(qhd) $=$ prio $2(p q 1(1))$ $=\operatorname{prio} 1(p q 1(1))$ by the abstraction relation and therefore $p q 1^{\prime}=p q 1 \oplus\{1 \mapsto$ $p ?\}$. By the universal formula in the abstraction relation, next ${ }^{\prime}=n e x t \oplus\{p ? \mapsto$ $q h d\}$ implies next $t^{\prime}=n e x t \oplus\{p ? \mapsto p q 1(1)\}$; this now implies that $p q 1^{\prime}(1)=p ?$, $p q 1^{\prime}(2)=p q 1(1)$ and by induction, we have $p q 1^{\prime}=(p q 1 \oplus\{i+1 \mapsto$ $p q 1(i)\}) \oplus\{1 \mapsto p ?\}$. The increase in $q l e n$ is as in Case 1 above.
Case 3. The abstraction relation permits us to infer that prio2(qlst) = $\operatorname{prio} 2(p q 1(n x t p-1))=\operatorname{prio} 1(p q 1(n x t p-1))$ since $p q 1(n x t p-1)$ is a known process. For p ? to be an element of the queue, p ? must be a defined process, so $\operatorname{prio} 2(p ?)=\operatorname{prio} 1(p ?)$ by $\operatorname{AbsPTAB2}$. We note that $q l s t=p q 1(n x t p-1)$, so that we may continue. Next, we deal with next $=$ next \oplus \{qlst \mapsto $p ?, p ? \mapsto$ nullpid $\}$. First, we note that the map $\{p ? \mapsto$ nullpid $\}$ is required by the invariant of $P R I O Q 2$, thus permitting us to concentrate on the map $\{q l s t \mapsto p$? $\}$, which implies that $\operatorname{exxt}^{\prime}(q l s t)=p$?, so next $(n x t p-1)=p$? so $n \operatorname{ext}^{\prime}(n x t p)=p$? The increment of nxtp and qlen is as in Case 1 above.

Case 4. Since $p_{1}, p_{2} \in n \operatorname{ext}^{*}(\{q h d\} \backslash \backslash\{$ nullpid $\}$, it follows, by the invariant, that $\left\{p_{1}, p_{2}\right\} \subset$ used, so $\operatorname{prio} 2\left(p_{1}\right)=\operatorname{prio} 1\left(p_{1}\right)$ and $\operatorname{prio} 2\left(p_{2}\right)=\operatorname{prio} 1\left(p_{1}\right)$. For p ? to be a valid element of the queue, it must also be a defined process identifier $\left(p ? \in\right.$ used or equivalent). If $\operatorname{next}\left(p_{1}\right)=p_{2}$, it must be true that $\exists i: 1 \ldots n x t p-2 \bullet p_{1}=p q 1(i) \wedge p q 1(i+1)=p_{2}$ (this follows from the abstraction relation). The remainder can be proved by induction.

Theorem 33.

```
\forallPRIOQ1; PRIOQ2 •
    pre PRIOQDequeue 1 ^ AbsPRIOQ2 }=>\mathrm{ pre PRIOQDequeue 2
```

Proof. The two preconditions are:

```
pre PRIOQDequeue1 \widehat{= nxtp > 1}
and
pre PRIOQDequeue2 \widehat{= qlen }\not=0
```

The abstraction relation states that qlen $=n x t p-1$, so nxtp >1 iff qlen $+1>$ 1 , which implies that qlen >0 and it follows that qlen $\neq 0$.

Theorem 34.

\forall PRIOQ1; PRIOQ1'; PRIOQ2; PRIOQ2'; p! : PID; serr! : SYSERR• pre PRIOQDequeue 1
\wedge AbsPRIOQ2
\wedge AbsPRIOQ2 ${ }^{\prime}$
\wedge PRIOQDequeue 2
\Rightarrow PRIOQDequeue 1
Proof. We start with qlen $\neq 0$, because of the definition of qlen's type, this implies that qlen >0. By the abstraction relation, qlen $=n x t p-1$, so qlen $\neq 0$ implies $n x t p-1 \neq 0$ and qlen >0 implies $n x t p-1>0$, so $n x t p>1$, as required.

By the abstraction relation, $p q 1(1)=q h d$ if the queue is not empty; it cannot be empty by the definition of the operation, so this equation holds. It follows that $p!=q h d$ implies $p!=p q 1(1)$.

The queue-length reduction, qlen ${ }^{\prime}=q l e n-1$ requires us to take the predicate of $A b s P R I O Q 2^{\prime}$ into account. By $\operatorname{AbsPRIOQ2,~we~have~qlen~}=n x t p-1$ and, by AbsPRIOQ2', we have $q l e n^{\prime}=n x t p^{\prime}-1$. From this, qlen $-1=n x t p-2$, so qlen' $=n x t p-2$ or $n x t p^{\prime}-1=n x t p-2$, so $n x t p^{\prime}=n x t p-1$.

Finally, since $p q 1(1)=q h d$, and $q h d^{\prime}=\operatorname{next}(q h d)$, then $q h d^{\prime}=n \operatorname{ext}(q h d)$ $=p q 1(2)$. Using the quantified formula in the abstraction relation, it can be inferred that $\forall i: 1 \ldots n x t p-2 \bullet p q 1^{\prime}=p q 1 \oplus\{i \mapsto p q 1(i+1)\}$; this can be verified by a simple induction.

Theorem 35. \forall PRIOQ1; PRIOQ2 • pre PRIOQDelHd1 \wedge AbsPRIOQ2 \Rightarrow pre PRIOQDelHd2

Proof. The precondition of PRIOQDelHd1 is nxtp >1 and that of PRIO$Q D e l H d 2$ is qlen >0. The abstraction relation states that qlen $=n x t p-1$. From the abstraction relation, we have qlen $+1=$ nxtp, and so $q l e n+1>1$, from which it follows that qlen >0.

Theorem 36.

```
\forallPRIOQ1; PRIOQ1'; PRIOQ2; PRIOQ2'\bullet
    pre PRIOQDelHd1
    ^ AbsPRIOQ2
    ^AbsPRIOQ2'
    ^ PRIOQDelHd2
=> PRIOQDelHd1
```

Proof. By the predicate of $A b s P R I O Q 2$, $n x t p=q l e n-1$ and, by that of AbsPRIOQ2 ${ }^{\prime}$, we have $n x t p^{\prime}=q l e n^{\prime}-1$, so $q l e n^{\prime}=n x t p^{\prime}+1$. In the predicate of PRIOQDelHd 2 , qlen ${ }^{\prime}=q l e n-1$, so qlen $-1=n x t p-2$, so $q l e n^{\prime}=n x t p-2$, from which it follows that $n x t p^{\prime}-1=n x t p-2$, or $n x t p^{\prime}=n x t p-1$.

Now, assuming qlen >1, by the predicate of AbsPRIOQ2, qhd $=p q 1(1)$ and $n \operatorname{ext}(q h d)=\operatorname{next}(p q 1(1))=p q 1(2)$. Using the quantified formula, the index of each element of $p q 1$ decreases by 1 .

On the other hand, if qlen $=1$, the next $(q h d)=$ nullpid, so $q h d^{\prime}=q l s t$ which, by the invariant, implies that $q h d^{\prime}=$ nullpid and qlen $=0$, so $n x t p=1$ and the queue is empty.

The schemata from this last refinement have now been shown to be correct. They can be converted directly into executable code.

3.6 The Scheduler

The scheduler is comprised of the priority queue whose refinement has just been undertaken, together with a variable to identify the currently executing process, a variable to identify the process that was executing immediately before the current one; there is also a varible to identify the idle process.

The scheduler undergoes 3 refinements to reach the level at which code can be extracted. Without further ado, we press on, therefore.

3.6.1 Top Level

This section contains the specification of the scheduler.
Before presenting the specification, let us prove the following little theorem. The variable curr denotes the current process; SchedNext is the name of the scheduler routine.

The idle process (sometimes called the "null" process) is just a process that does little or nothing. It can be implemented as a simple loop, such as:

```
while true do
    skip
od
```

The idle process is executed when there is nothing else to do.
As far as this part of the specification is concerned, support for the idle process is required.

It is assumed that the idle process is an element of used. This has the implication that the identifier of the idle process cannot be nullpid.

Here, then, is the definition of the scheduler's state space. The variable curr denotes the currently executing process, prev denotes the previously executed process, iprc is the identifier of the idle process (it is a write-once variable that is set at initialisation time). Finally, $s q$ is the scheduler's queue, an instance of $P R I O Q$. It will be remembered that $P R I O Q$ is a schema, so we have a promotion in this case. This is good for it reduces the amount of work required of us.

SCHED
curr, prev : PID
iprc : PID
$s q: P R I O Q$
iprc \neq nullpid

Theorem 37. If $p q \neq\langle \rangle, \forall p: P I D \bullet p \in \operatorname{ran} p q \Rightarrow p \in$ used.
Proof. By the invariant of PRIOQ, ran $p q \subset$ used. This clearly implies that $\forall p: P I D \bullet p \in \operatorname{ran} p q \Rightarrow p \in$ used. \square It has two corollaries.

Corollary 1. curr \in used \vee state (curr $)=$ psterm.
Proof. There is only one operation that sets state(curr) to psterm. That is TerminateSelf. As part of its operation, it deletes curr from the process table and causes a reschedule via a call to SchedNext. Before the call to SchedNext, TerminateSelf sets the state of the current process as state ${ }^{\prime}=$ state $\oplus\{\operatorname{curr} \mapsto$ psterm $\}$, so state (curr) $=$ psterm.

The other operations updating curr are SchedNext (as noted in the last paragraph) and SuspendMe.

The SuspendMe operation removes the head from the ready queue, $p q$, if there is one and requeues curr. If the ready queue is empty, iprc (the idle process) is selected instead. The old queue head (or iprc) is made curr for execution. The setting of curr is performed by SetNewCurrentProcess[head pq/p?]. If the ready queue, $p q$, is empty, curr is updated by MakeIdleProcessCurrent.

Inspection of SchedNext shows that the same two operations are used to set the state of curr and prev. Their definitions are repeated.

SetNewCurrentProcess \qquad

```
\triangleSCHED
p?: PID
curr' }=p
prev}\mp@subsup{}{}{\prime}=cur
```

MakeIdleProcessCurrent
\triangle SCHED
curr $^{\prime}=i p r c$
prev $^{\prime}=$ curr

It can be seen that neither operator affects used in any way (indeed, used is not mentioned by either schema). It is therefore necessary to determine where p ? and iprc originate.

In SuspendMe and in SchedNext, there is a substitution instance of SetNewCurrentProcess, SetNewCurrentProcess[head $p q / p$?]. This expands to
curr $^{\prime}=$ head $p q$
prev $^{\prime}=$ curr
By Theorem 37, head $p q \in$ used.
The null or idle process is created by CreateNullProcess which is defined in terms of $A d d P D$. The output, $p!$, of $A d d P D$ is then assigned to iprc via SCHEDInit. The initialisation SCHEDInit in the system initialisation has an instance of

SCHEDInit \qquad
SCHED'
p ? : PID
curr $^{\prime}=$ minpid \wedge prev $^{\prime}=$ minpid \wedge iprc $^{\prime}=p$?
$s q^{\prime}=\theta$ PRIQOInit
in a substitution instance [ipid/p?]. Inspection of the definition of CreateNullProcess shows that there are no operations that rebind ipid. Now, AddPD implies that $i p i d \in u s e d$, so iprc $=i p i d$.

It should be noted that it will usually be the case that iprc is bound to minpid. This permits the inference that curr \in used at initialisation time, also.

Corollary 2. prev \in used \vee state $($ prev $)=$ psterm
Proof. As noted in Corollary 1, only TerminateSelf can set the process state to psterm. The TerminateSelf operation is defined in terms of SchedNext
which, at various points, updates prev (prev $^{\prime}=$ curr $)$. The variable prev is always a copy of curr. The critical operation is SetNewCurrentProcess, whose definition is

```
\triangleSCHED
p?: PID
curr' }=p\mathrm{ ?
prev}\mp@subsup{}{}{\prime}=cur
```

So, the value bound prev' is identical to that bound to curr, so must have the same properties. In particular, if curr \in used, prev ${ }^{\prime} \in$ used and if state $($ curr $)=$ psterm, state $\left(\right.$ prev $\left.^{\prime}\right)=$ psterm.

It should be clear that the assignment prev ${ }^{\prime}=$ curr establishes the binding of prev from that point until it is next updated. This permits us to reach the conclusion that prev \in used \vee state $($ prev $)=$ psterm.

Finally, as noted above, iprc is usually bound to minpid, so the statement of this corollary also applies at initialisation time.

Here is the framing or promotion schema.
$\Phi S C H E D$ \qquad
\triangle SCHED
$\triangle P R I O Q$

```
sq=0PRIOQ
sq}\mp@subsup{q}{}{\prime}=0PRIOQ
```

The definition of the initialisation schema is repeated. The definition is comparatively straightforward, as can be seen. The only thing to notice is that $s q^{\prime}=\theta$ PRIOQInit, since $s q$ is of a schema type.

SCHEDInit \qquad
SCHED'
p ? : PID
curr $^{\prime}=$ minpid \wedge prev $^{\prime}=$ minpid \wedge iprc $^{\prime}=p$?
$s q^{\prime}=\theta$ PRIOQInit

Recall that PRIOQ includes $P T A B$ in its state.
The next operation returns the identifier of the idle process.
IDLEPROCESSIdent \qquad
ESCHED
$p!$: PID
$p!=i p r c$

When the identifier of the currently executing process is required to be set, this schema defines the operation that performs it.

SetCurrentProcessId \qquad
$\triangle S C H E D$
p? : PID
curr $^{\prime}=p$?

The names of the next few schemata should be all that is required to interpret them.

MakeCurrentPrevious \qquad
$\Delta S C H E D$

```
prev}\mp@subsup{}{}{\prime}=cur
```

IsCurrentProcess \qquad
ESCHED
p ? : PID
$p ?=c u r r$

CurrentProcessId \qquad
ESCHED
p ! : PID
$p!=c u r r$

```
SetStateToRunning \(\widehat{=}\)
    \(\exists\) st : PSTATE \(\mid\) st \(=\) psrunning •
            SetProcState[st/st?]
or
```

 SetStateToRunning
 \(\triangle P T A B\)
 \(p\) ? : PID
 state \(^{\prime}=\) state \(\oplus\{p ? \mapsto\) psrunning \(\}\)
 SetNewCurrentProcess $\widehat{=}$
(MakeCurrentPrevious \wedge SetCurrentProcessId)
${ }_{9}($ CurrentProcessId $[c / p!] \wedge$ SetStateToRunning $[c / p ?]) \backslash\{c\}$

After simplification, this expands into

```
\triangleSCHED
p?: PID
curr' = p?
prev}\mp@subsup{}{}{\prime}=\mathrm{ curr 
state}\mp@subsup{}{}{\prime}=\mathrm{ state }\oplus{\mp@subsup{\mathrm{ curr' }}{}{\prime}\mapsto\mathrm{ psrunning }
```

IsPreviousProcess
ESCHED
p ? : PID
$p ?=p r e v$

IsCurrentProcessIdle
ESCHED
curr $=$ iprc

This predicate is true iff the previously active process was the idle process.

IsPrevProcessIdle \qquad ESCHED

```
prev = iprc
```

SetProcessStateToReady $\widehat{=}$
\exists st : PSTATE \mid st $=p s r e a d y \bullet$
SetProcState[st/st?]
This expands and simplifies to
SetProcessStateToReady \qquad
$\triangle P T A B$
p ? : PID
state $^{\prime}=$ state $\oplus\{p ? \mapsto$ psready $\}$

The operation that places a process identifier in the scheduler's ready queue is called MakeReady. The main part of MakeReady is defined by the following

MakeReady $_{a} \widehat{=}$
$\exists \triangle P R I O Q$
ФSCHED \wedge PRIOQEnqueue
To make life a little easier and to avoid errors, the following operation is defined. It sets the state of the process being added to the ready queue as well as performing the queue-insertion operation. This operation is used in a lot of places and it is easy to forget to set the state; this is the reason for defining this operation.

MakeReady $\widehat{=}$

(SetProcessStateToReady \wedge MakeReadya)
It expands into the following. It should be noted that the strict expansion of the promoted action should yield a queue whose name is $s q . p q$.

```
MakeReady
    \trianglePRIOQ
    p?: PID
    serr! : SYSERR
    state }\mp@subsup{}{}{\prime}=\mathrm{ state }\oplus{p?\mapsto psready } ^
    (#sq.pq<maxs ^
        ((sq.pq=\langle\rangle^sq.p\mp@subsup{q}{}{\prime}=\langlep?\rangle)\vee
        (prio(p?) \leq prio(head sq.pq)^sq.pq' = \langlep?\rangle`sq.pq)\vee
        (prio(last sq.pq)<prio(p?)\wedgesq.pq'}=sq.pq` \langlep?\rangle)
```



```
            prio(last s}\mp@subsup{s}{1}{})<\operatorname{prio}(p?)
            prio(p?)\leqprio(head s⿱\mp@code{L})\wedge
            sq.pq' = s1^ \p?\rangle` s
        serr! = sysok)
    verr! = schedqfull
```

This schema can be simplified to the following:

```
\trianglePRIOQ
p?: PID
serr! : SYSERR
(#sq.pq< maxs ^
    ((sq.pq=\langle\rangle^sq.p\mp@subsup{q}{}{\prime}=\langlep?\rangle)\vee
            (prio (p?) \leq prio(head sq.pq)\wedge sq.pq' = \langlep?\rangle`sq.pq)\vee
            (prio(last sq.pq)<prio(p?)^sq.pq' = sq.pq^ }\langlep?\rangle)
            (\exists\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}: seq PID | s s \not=\langle\rangle\wedge s2 \not=\langle\rangle\wedge s
                prio(last s⿱1)
                prio(p?)\leqprio(head s2)^
```

```
        \(\left.\left.s q \cdot p q^{\prime}=s_{1} \frown\langle p ?\rangle \frown s_{2}\right)\right) \wedge\)
        state \(^{\prime}=\) state \(\oplus\{p ? \mapsto\) psready \(\} \wedge\)
    serr \(!=\) sysok)
\(\vee\) serr \(!=\) schedqfull
```

The precondition is
pre MakeReady $\widehat{=} \# s q<$ maxs
Note that this precondition can rely upon the lemma proved above (Lemma 1) to ensure that $p ? \in u s e d$, so that the update of state is well defined.

Next, we define a number of operations in terms of promotion. Each definition is accompanied by its simplification; in some cases, a complete step-bystep simplification is given so that the reader can be sure of the derivation, as well as the logical form of these operations.

The test for an empty ready queue in the scheduler is defined by the following

```
IsEmptySCHEDQ \(\widehat{=}\)
    \(\exists \triangle P R I O Q\)
        \(\Phi S C H E D \wedge\) IsEmptyPRIOQ
```

Its predicate expands into (using the same abuse of notation mentioned above)

```
\existspq,p\mp@subsup{q}{}{\prime}: seq PID; maxs, maxs' : N \bullet
    sq=0PRIOQ ^
    sq' = 0PRIOQ ' }
    pq=\langle\rangle
or
```

```
sq=\pq\mapsto pq, maxs \mapstomaxs \^
```

sq=\pq\mapsto pq, maxs \mapstomaxs \^
sq'}=\pq\rightsquigarrowp\mp@subsup{q}{}{\prime},\mathrm{ maxs }\rightsquigarrow maxs'\^
sq'}=\pq\rightsquigarrowp\mp@subsup{q}{}{\prime},\mathrm{ maxs }\rightsquigarrow maxs'\^
pq=\langle\rangle

```
    pq=\langle\rangle
```

which is

```
\(\exists p q, p q^{\prime}:\) seq PID; maxs, maxs \({ }^{\prime}: \mathbb{N} \bullet\)
    \(s q=\ p q \mapsto p q\), maxs \(\mapsto\) maxs \(\backslash \wedge\)
    \(s q^{\prime}=\ p q \rightsquigarrow p q^{\prime}\), maxs \(\mapsto\) maxs \(\left.^{\prime}\right\rangle \wedge\)
    \(p q=\langle \rangle\)
```

or
$s q=s q^{\prime} \wedge$
sq.maxs $=s q$. maxs $^{\prime} \wedge$
$s q \cdot p q=\langle \rangle$

The scheduler's dequeue operation is defined as the following promotion

```
SCHEDQDequeue \(\widehat{=}\)
    \(\exists \triangle\) PRIOQ
        ФSCHED \(\wedge\) PRIOQDequeue
```

It simplifies to
$s q \cdot p q=p q$
sq.maxs $=$ maxs
$((s q \cdot p q \neq\langle \rangle$
$p!=$ head sq.pq
$s q^{\prime} \cdot p q=$ tail $s q \cdot p q$
serr! $=$ sysok $)$
\vee serr! $=$ schedqempty)

An operation that returns the head element of the ready queue is as follows

```
SCHEDQHd \(\widehat{=}\)
    \(\exists \triangle\) PRIOQ
        ФSCHED \(\wedge\) PRIOQHd
```

It expands and simplifies to

```
\(s q=s q^{\prime}\)
sq. maxs \(=s q^{\prime}\).maxs
\(p!=\) head \(s q \cdot p q\)
```

The operation to remove the head of the scheduler's queue is another promotion

```
SCHEDQDelHd \(\widehat{=}\)
    \(\exists \triangle P R I O Q\)
        ФSCHED ^ PRIOQDelHd
```

The predicate expands and simplifies to
$s q \cdot p q=p q$
$s q^{\prime} \cdot$ maxs $=s q$. maxs
$s q^{\prime} \cdot p q=$ tail $s q \cdot p q$
The arbitrary element deletion operation is another promotion.
DelSCHEDQElem $\widehat{=}$
$\exists \triangle P R I O Q \bullet \Phi S C H E D \wedge$ DelPRIOQElem
This expands into

```
\(\exists p q, p q^{\prime}: \operatorname{seq} P I D ;\) maxs, maxs \(^{\prime}: \mathbb{N} \bullet\)
    \(s q=\theta P R I O Q \wedge\)
    \(s q^{\prime}=\theta P R I O Q^{\prime} \wedge\)
    \(p q \neq\langle \rangle \wedge\)
    \(\left(\exists s_{1}, s_{2}:\right.\) seq \(P I D\)
        \(s_{1} \cap\langle p ?\rangle s_{2}=p q \wedge\)
        \(\left.p q^{\prime}=s_{1} \curvearrowleft s_{2}\right)\)
```

Ignoring the intermediate steps, we have

```
sq. maxs \(=s q^{\prime}\). maxs
\(s q . p q \neq\langle \rangle\)
\(\left(\exists s_{1}, s_{2}:\right.\) seq PID •
    \(s_{1} \frown\langle p ?\rangle{ }^{\circ} s_{2}=s q . p q \wedge\)
    \(\left.s q^{\prime} . p q=s_{1} \curvearrowleft s_{2}\right)\)
```

The precondition is not much of a surprise, as the following calculation shows.

```
pre DelSCHEDQElem \widehat{=}
    pre \PhiSCHED ^ pre DelPRIOQElem
    \Leftrightarrow pre DelPRIOQElem
```

This is equivalent to
$p ? \in \operatorname{ran} p q$
or
$\operatorname{ran} p q \neq \varnothing$
When there is nothing else to do, the idle process is executed. The following schema defines the operation that sets the schedulers' local variables ready to switch to the idle process' context.

MakeIdleProcessCurrent
$\triangle S C H E D$

$$
\begin{aligned}
& \text { curr }^{\prime}=i p r c \\
& \text { prev }^{\prime}=\text { curr }
\end{aligned}
$$

Under the right conditions, the current process is continued:
ContinueCurrent \qquad
ESCHED
$c u r r^{\prime}=c u r r$
prev $^{\prime}=$ prev

This is just an identity (which is what is required).
If the current process' state is not psready or psrunning, it can no longer be considered for execution by the scheduler. The next definition is of a predicate that performs this test.

CurrentProcessStateIsReadyOrRunning $\widehat{=}$
(CurrentProcessId $[c / p!] \wedge$
(\exists st : PSTATE \mid st $=$ psready •
ProcState $[c / p ?, s t / s t!]) \wedge$
$(\exists$ st : PSTATE \mid st $=$ psrunning •
ProcState $[c / p ?, s t / s t!])) \backslash\{c\}$
The definition expands into:
CurrentProcessStateIsReadyOrRunning

```
ESCHED
\XiPTAB
\exists c:PID \bullet
    curr = c^
    (\existsst : PSTATE | st = psready \bullet
            state(c) =st)
    \vee (\existsst: PSTATE | st = psrunning
            state(c)=st)
```

It simplifies to:

```
ESCHED
\XiPTAB
    (state (curr ) = psready ) \vee (state (curr ) = psrunning )
```

Note that \neg CurrentProcessStateIsReadyOrRunning is
\neg CurrentProcessStateIsReadyOrRunning
ESCHED
$\Xi P T A B$
state $($ curr $) \neq$ psready \wedge state $($ curr $) \neq$ psrunning
It is easy, when not paying sufficient attention, to forget to change \vee to \wedge when negating.

Before defining SchedNext, we need
QueueHdHasHigherPriority $\widehat{=}$
(CurrentPriority $[c p / p r!] \wedge$
$S C H E D Q H d[h / p!] \wedge$
ProcPrio[h/p?,hpr/pr!] \wedge
$h p r<c p) \backslash\{h, h p r, c p\}$

This expands to
QueueHdHasHigherPriority \qquad

```
\Xi PTAB
\XiSCHED
    \existsh,cp:PID;hpr: PPRIO \bullet
    prio(curr ) = cp^
    head sq.pq=h^
    prio(h) = hpr ^
    hpr<cp
```

The predicate of this schema simplifies to
prio(head sq.pq) < prio(curr)
The schema is
QueueHdHasHigherPriority

```
    \XiPTAB
    ESCHED
    prio(head sq.pq) < prio(curr)
```

Finally, we reach the scheduling function itself. It is a complex operation but should not prove difficult to understand.

SchedNext $\widehat{=}$
(IsCurrentProcessIdle \wedge
((IsEmptySCHEDQ \wedge ContinueCurrent) $\vee(S C H E D Q D e q u e u e[p / p!] \wedge$

SetNewCurrentProcess [p / p ?]
$\left.\left.{ }_{9} C T X T S W\right) \backslash\{p\}\right)$)
$\vee\left(\right.$ IsEmptySCHEDQ \wedge MakeIdleProcessCurrent ${ }_{9}$ CTXTSW)
$\vee((\neg$ CurrentProcessStateIsReadyOrRunning \vee QueueHdHasHigherPriority) \wedge
(SCHEDQHd[hpid/p!] ^ SCHEDQDelHd \wedge SetNewCurrentProcess[hpid/p?] ${ }_{9}$ CTXTSW $\backslash\{$ hpid $\}$)
\checkmark ContinueCurrent
Since CTXTSW does not have any variables that interact with any others in SchedNext, it is possible to reduce the strength of 9 to \wedge.

The definition expands into the following schema. The context-switching operation, CTXTSW, is left unexpanded (its predicate consists solely of intno $^{\prime}=$ context_swictch $)$.

```
\(\triangle S C H E D\)
(curr \(=\) iprc \(\wedge\)
    \(\left(\left(s q \cdot p q=\langle \rangle \wedge c u r r^{\prime}=c u r r \wedge p r e v{ }^{\prime}=p r e v\right)\right.\)
            \(\vee(\exists p: P I D \bullet\)
                \(p=\) head \(p q \wedge\) curr \(^{\prime}=p \wedge\) prev \(^{\prime}=\operatorname{curr} \wedge\)
                state \(^{\prime}=\) state \(\oplus\{\) head sq.pq \(\mapsto\) psrunning \(\left.\left.\left.\} \wedge C T X T S W\right)\right)\right)\)
\(\vee\left(s q \cdot p q=\langle \rangle \wedge p r e v^{\prime}=c u r r \wedge c u r r^{\prime}=\operatorname{iprc} \wedge C T X T S W\right)\)
\(\vee((\) state \((\) curr \() \neq\) psready \(\wedge\) state \((\) curr \() \neq\) psrunning
            \(\vee \operatorname{prio}(\) head sq.pq \()<\operatorname{prio}(\) curr \()) \wedge\)
    ( \(\exists\) hpid : PID•
        head sq.pq \(=\) hpid \(\wedge\)
        \(s q^{\prime} \cdot p q=\) tail \(s q \cdot p q \wedge\)
        curr \(^{\prime}=h\) pid \(\wedge\)
        state \(^{\prime}=\) state \(\oplus\{\) hpid \(\mapsto\) psrunning \(\} \wedge\)
        prev \(^{\prime}=\) curr \(\left.\left.\wedge C T X T S W\right)\right)\)
    \(\vee\left(\right.\) curr \(^{\prime}=c u r r \wedge\) prev \({ }^{\prime}=\) prev \()\)
```

This simplifies to

```
\(\triangle\) SCHED
(curr \(=\) iprc \(\wedge\)
        \(\left(\left(s q \cdot p q=\langle \rangle \wedge\right.\right.\) curr \(^{\prime}=c u r r \wedge\) prev \(^{\prime}=\) prev \()\)
            \(\vee\left(\right.\) curr \(^{\prime}=\) head sq.pq \(\wedge\) prev \({ }^{\prime}=\) curr \(\wedge\)
                    state \({ }^{\prime}=\) state \(\oplus\{\) head sq.pq \(\mapsto\) psrunning \(\} \wedge\) CTXTSW \(\left.)\right)\) )
\(\vee\left(s q . p q=\langle \rangle \wedge\right.\) prev \(^{\prime}=\) curr \(\wedge\) curr \(\left.^{\prime}=\operatorname{iprc} \wedge C T X T S W\right)\)
\(\vee((\) state \((\) curr \() \neq\) psready \(\wedge\) state \((\) curr \() \neq\) psrunning
            \(\vee\) prio(head sq.pq) \(<\) prio(curr)) \(\wedge\)
            \(s q^{\prime} \cdot p q=\) tail \(s q \cdot p q \wedge\)
            curr \(^{\prime}=\) head sq.pq \(\wedge\)
            state \(^{\prime}=\) state \(\oplus\) \{head sq.pq \(\mapsto\) psrunning \(\} \wedge\)
    prev \(\left.{ }^{\prime}=\operatorname{curr} \wedge C T X T S W\right)\)
    \(\vee\left(\right.\) curr \(^{\prime}=\) curr \(\wedge\) prev \(^{\prime}=\) prev \()\)
```

To calculate the precondition of SchedNext, it is first noted that SchedNext takes the form of a disjunction, so it is permitted to decompose the precondition into disjuncts since pre $(P \vee Q) \Leftrightarrow$ pre $P \vee$ pre $Q)$. Therefore, we decompose the SchedNext schema into its components and handle them separately; then we combine the result to form the precondition.

```
pre SchedNext \widehat{=}
    pre[(IsCurrentProcessIdle ^
        ((IsEmptySCHEDQ ^ ContinueCurrent)
        \vee (SCHEDQDequeue[p/p!] ^ SetNewCurrentProcess[p/p?]
        g
\vee (IsEmptySCHEDQ ^ MakeIdleProcessCurrent % CTXTSW)
\checkmark ~ ( ( \neg ~ C u r r e n t P r o c e s s S t a t e I s R e a d y O r R u n n i n g ~
    \vee QueueHdHasHigherPriority) ^
    (SCHEDQHd[hpid/p!]^
    SCHEDQDelHd ^
    SetNewCurrentProcess[hpid/p?]
    g
\checkmark ~ C o n t i n u e C u r r e n t ]
```

The SchedNext operation is composed of disjunctions. Each disjunct can be treated independently, so we have:
pre SchedNext $\widehat{=}$
pre(IsCurrentProcessIdle \wedge
((IsEmptySCHEDQ \wedge ContinueCurrent)
$\vee(S C H E D Q D e q u e u e[p / p!] \wedge$
SetNewCurrentProcess $[p / p$?]
$\left.\left.{ }_{9} C T X T S W\right) \backslash\{p\}\right)$)
$\vee \operatorname{pre}\left(\right.$ IsEmptySCHEDQ \wedge MakeIdleProcessCurrent ${ }_{9}$ CTXTSW)
$\vee \operatorname{pre}((\neg$ CurrentProcessStateIsReadyOrRunning
\vee QueueHdHasHigherPriority) \wedge
(SCHEDQHd[hpid/p!] ^
SCHEDQDelHd \wedge
SetNewCurrentProcess[hpid/p?]
${ }_{9}$ CTXTSW $\backslash\{$ hpid $\}$)
\checkmark pre ContinueCurrent
Taking each disjunct in turn, we obtain, after simplification:

```
pre \(S c h e d N e x t ~ \widehat{=}\)
    curr \(=\) iprc
    \(\vee s q \cdot p q=\langle \rangle\)
    \(\vee(\) state \((\) curr \() \neq\) psready \(\vee\) state \((\) curr \() \neq\) psrunning
    \(\vee\) prio(head sq.pq) < prio(curr))
```

and we note that the precondition of the fourth disjunct simplifies to true.
There are two
Theorem 38. curr \in used \vee curr $=$ minpid .
Proof. By inspection, it can be seen that curr is assigned a value that is head sq.pq. Since ran $s q . p q \subset$ used, curr \in used. The idle process, $i p r c$, as will be seen, is allocated a normal PID, like any other process, so iprc \in used. After the initialisation of the scheduler, curr $^{\prime}=$ minpid.

Corollary 3. prev \in used \vee prev $=$ minpid.
Proof. In all cases, prev obtains is value by assignments prev ${ }^{\prime}=$ curr. Given that curr \in used, it follows immediately prev \in used. The other case holds immediately after the initialisation operation has been applied.

In this kernel, processes can request that they be suspended, This is the operation as far as the scheduler is concerned.

```
SuspendMe \widehat{=}
    ((IsEmptySCHEDQ ^ MakeIdleProcessCurrent)
        \vee ((SCHEDQDequeue[p/p!]9
            (CurrentProcessId[c/p!]^ MakeReady[c/p?])\{c})
        g}\mp@subsup{}{9}{SetNewCurrentProcess[p/p?])\{p})
    g
```

(Note, again, that ${ }_{9} C T X T S W$ can be reduced in strength to $\wedge C T X T S W$.)
The definition of SuspendMe expands and simplifies to the following schema:

```
SuspendMe
    \(\triangle S C H E D\)
    \(\triangle\) PRIOQ
    state \(^{\prime}=\) state \(\oplus\{\) curr \(\mapsto\) psready \(\}\)
    \(\left(\left(p q=\langle \rangle \wedge\right.\right.\) curr \(^{\prime}=\) prev \(\wedge\) prev \(^{\prime}=\) curr \()\)
\(\vee\left(\right.\) curr \(^{\prime}=\) head \(p q \wedge\)
    \((\#(\) tail \(p q)<\operatorname{maxs} \wedge\)
        prev \(^{\prime}=\operatorname{curr} \wedge\)
        \(\left(\left(\right.\right.\) tail \(\left.p q=\langle \rangle \wedge p q^{\prime}=\langle c u r r\rangle\right)\)
            \(\vee\left(\right.\) prio \((\) curr \() \leq \operatorname{prio}(\) head tail \(p q) \wedge p q^{\prime}=\langle\) curr \(\rangle{ }^{\wedge}\) tail \(\left.p q\right)\)
            \(\vee\left(\right.\) prio \((\) last tail \(p q)<p r i o(c u r r) \wedge p q^{\prime}=(\) tail pq \(\left.) \wedge\langle c u r r\rangle\right)\)
            \(\vee\left(\exists s_{1}, s_{2}: \operatorname{seq} P I D \mid s_{1} \neq\langle \rangle \wedge s_{2} \neq\langle \rangle \wedge s_{1} \cap s_{2}=\right.\) tail \(p q\)
                        prio \(\left(\right.\) last \(\left.s_{1}\right)<\operatorname{prio}(\) curr \() \wedge\)
                        prio \((\) curr \() \leq \operatorname{prio}\left(\right.\) head \(\left.s_{2}\right) \wedge\)
                \(p q^{\prime}=s_{1} \frown\langle\) curr \(\left.\rangle \frown s_{2}\right) \wedge\)
            serr \(!=\) sysok \()\) )
        \(\vee\) serr \(!=\) schedqfull) \(\wedge\)
CTXTSW
```

The movement of prev ${ }^{\prime}=$ curr is justified by the combination of Distrib \vee and $p \wedge q \Rightarrow p$; the conjunction of $C T X T S W$ is also a simplification of the orginal statement (the simplification is justified above).

The precondition is
pre SuspendMe $\widehat{=} p q=\langle \rangle \vee \#$ tail $p q<$ maxs
There is an argument that SuspendMe should be defined as follows

```
SuspendMe \(\widehat{=}\)
    ((IsEmptySCHEDQ \(\wedge\) MakeIdleProcessCurrent \(\wedge\)
            (CurrentProcessId \([c / p!] \wedge\)
            MakeReady \([c / p ?]) \backslash c\) )
            \(\vee\left(\left(S C H E D Q D e q u e u e[p / p!]_{9}\right.\right.\)
            (CurrentProcessId \([c / p!] \wedge\) MakeReady \([c / p ?]) \backslash\{c\})\)
            \({ }_{9}\) SetNewCurrentProcess \(\left.[p / p ?]\right) \backslash\{p\}\) )
    \({ }_{9}{ }_{9} C T X T S W\)
```

After expansion and simplification (note that $C T X T S W$ is moved inwards using the Distrib rule for \wedge over \vee), we have

```
SuspendMe
    \triangleSCHED
    \trianglePRIOQ
    state }\mp@subsup{}{}{\prime}=\mathrm{ state }\oplus{\mathrm{ curr }\mapsto\mathrm{ psready }
    ((sq.pq = <\rangle^ curr' = iprc ^ prev ' = curr ^ sq.pq' = <curr \rangle}\wedgeCTXTSW) 
    \vee ~ ( c u r r ' ~ = ~ h e a d ~ s q . p q ~ \wedge ~
        (#(tail sq.pq)< maxs }
            prev}\mp@subsup{}{}{\prime}=\mathrm{ curr }
            ((tail sq.pq = <\rangle^ sq.pq' = <curr }\rangle
            \vee ~ ( p r i o ~ ( c u r r ~ ) ~ \leq ~ p r i o ( h e a d ~ t a i l ~ s q . p q ) ~ \wedge ~
                sq.pq' = <curr }\mp@subsup{\rangle}{}{`}\mathrm{ tail sq.pq)
            \vee \mp@code { ( p r i o ( l a s t ~ t a i l ~ s q . p q ) < p r i o ( c u r r ~ ) ~ ^ }
                sq.pq' = (tail sq.pq)}\frown\langlecurr\rangle)
            \vee \mp@code { ` ~ \exists } s _ { 1 } , s _ { 2 } : \operatorname { s e q } P I D \| s _ { 1 } \neq \langle \rangle \wedge s _ { 2 } \neq \langle \rangle \wedge s _ { 1 } \cap s _ { 2 } = \text { tail sq.pq} \bullet
                    prio(last s1)<prio(curr) ^
                prio(curr) \leqprio(head s2)^
                sq.pq'}=\mp@subsup{s}{1}{`}\\langlecurr\rangle``\mp@subsup{s}{2}{})
            CTXTSW ^
            serr! = sysok))
    verr! = schedqfull)
```

The precondition is the same as in the other version.

3.6.2 Refinement One

There is a number of things that should be said about the refinement of the scheduler. The first thing is that, since the scheduler consists of three simple variables and a promoted schema, the refinement of the three variables will consist of the identity, leaving the refinement of the promoted schema. However, the refinement of a promotion is equivalent to the promotion of a refinement, so there is nothing to do for the reason that the refinement of $P R I O Q$ has already been completed in the last section. For these reasons, all
we need do in this and the next subsection is to write out the definitions of the various schemata using the operations of the current level of refinement． In this subsection，the current level of refinement is 1 ；in the next，it is 2 ．

We have little or nothing to say about these refinements．We have not said all there is to say about them already but believe that what we have not said is inessential ${ }^{1}$ ．

MakeReady $1 \widehat{=}$
SetProcessStateToReady $1 \wedge$
$\exists \triangle P R I O Q 1 \bullet$
ФSCHED \wedge PRIOQEnqueue 1

CurrentProcessStateIsReadyOrRunning $1 \widehat{=}$ （CurrentProcessId $[c / p!] \wedge$
$\left(\exists s t_{1}, s t_{2}:\right.$ PSTATE $\mid s t_{1}=$ psready $\wedge s t_{2}=$ psrunning \bullet ProcState $\left.\left.1\left[c / p ?, s t_{1} / s t!\right] \vee \operatorname{ProcState} 1\left[c / p ?, s t_{2} / s t!\right]\right)\right) \backslash\{c\}$

This expands to
CurrentProcessStateIsReadyOrRunning1

```
\XiPTAB1
\XiSCHED
\existsc:PID \bullet
    c= curr ^
    (\existsst⿱亠⿻⿰丿亅八⿱㇒⿻二丿⿴囗⿱一一卜,
            st 
```

It can be simplified to
CurrentProcessStateIsReadyOrRunning1

```
\XiPTAB1
\XiSCHED
psready = state 1 (curr) \vee psrunning = state 1(curr)
```

QueueHdHasHigherPriority $1 \widehat{=}$
（CurrentPriority［cp／pr！］\wedge
$S C H E D Q H d 1[h / p!] \wedge$
ProcPrio1［ $h / p ?, h p r / p r!] \wedge$

$$
h p r<c p) \backslash\{h, h p r, c p\}
$$

This expands into

[^6]
QueueHdHasHigherPriority1

```
\XiSCHED
\XiPTAB1
```

```
\(\exists h: P I D ; h p r, c p: P P R I O \bullet\)
```

$\exists h: P I D ; h p r, c p: P P R I O \bullet$
prio1(curr) $=c p \wedge$
prio1(curr) $=c p \wedge$
$h=p q 1(1) \wedge$
$h=p q 1(1) \wedge$
$\operatorname{prio1}(h)=h p r \wedge$
$\operatorname{prio1}(h)=h p r \wedge$
$h p r<c p$

```
    \(h p r<c p\)
```

and then to

QueueHdHasHigherPriority1

```
\XiSCHED
\XiPTAB1
    \exists hpr, cp : PPRIO •
    h=pq1(1)^
    prio1(h) = hpr ^
    hpr < prio1(curr)
```

and finally to
QueueHdHasHigherPriority 1
ESCHED
モPTAB1

```
prio1(pq1(1)) < prio1(curr)
```

SchedNext $1 \widehat{=}$
(IsCurrentProcessIdle \wedge
((IsEmptySCHEDQ1 \wedge ContinueCurrent)
$\vee(S C H E D Q D e q u e u e 1[p / p!] \wedge$ SetNewCurrentProcess $[p / p$? $]$ $\left.\left.\left.{ }_{9} C T X T S W\right) \backslash\{p\}\right)\right)$
$\vee\left(\right.$ IsEmptySCHEDQ1 \wedge MakeIdleProcessCurrent ${ }_{9}$ CTXTSW $)$
$\checkmark((\neg$ CurrentProcessStateIsReadyOrRunning 1
\vee QueueHdHasHigherPriority1) \wedge
(SCHEDQHd1[hpid/p!] ^
SCHEDQDelHd1 ^
SetNewCurrentProcess $[h p i d / p ?]{ }_{9}$ CTXTSW $\backslash\{$ hpid $\left.\}\right)$
\checkmark ContinueCurrent
The precondition, when simplified, is

```
pre SchedNext1 \(\widehat{=}\)
    curr \(=\) iprc
    \(\vee n x t p=1\)
    \(\vee(p r i o 1(p q 1(1))<p r i o 1(c u r r)\)
    \(\vee\) psready \(\neq\) state \(1(\) curr \() \vee\) psrunning \(\neq\) state \(1(\) curr \())\)
```

The reader should not be surprised at the similarity between this precondition and that of SchedNext1. This is clearly because the abstraction relation is an identity.

The first refinement of SuspendMe1 is

```
SuspendMe \(1 \widehat{=}\)
    ((IsEmptySCHEDQ1 \(\wedge\) MakeIdleProcessCurrent \(\wedge\)
        (CurrentProcessId \([c / p!] \wedge\)
        MakeReady \(1[c / p ?]) \backslash c\) )
        \(\vee\left(\left(S C H E D Q D e q u e u e 1[p / p!]_{9}\right.\right.\)
            (CurrentProcessId \([c / p!] \wedge\) MakeReady \(1[c / p ?]) \backslash\{c\}\) )
        \({ }_{9}\) SetNewCurrentProcess \(\left.[p / p ?]\right) \backslash\{p\}\) )
    \({ }_{9}\) SwitchContext
```


3.6.3 Refinement Two

These refinements are mostly concerned with the PTAB2 component of scheduler operations. We have already refined the priority queue as far as we require, so all components included from the priority queue are the same as in the previous refinement. The priority queue component is a promoted component, so there are no refinement proofs required. The other immediate components of the scheduler are scalar variables and they cannot be refined for the very reason that they have reached their final level of refinement already. This leaves components of PTAB as candidates for refinement proofs. In each case, there is the requirement that $p ? \in$ used (or equivalent under refinement) and this condition is met by the implicit precondition to PRIOQ that ran $p q \subset$ used. We believe, therefore, that no refinement proofs are required in this subsection. We will, though, include the refinements of the primary schemata plus some auxilliary operations.

CurrentProcessStateIsReadyOrRunning2 $\widehat{=}$ (CurrentProcessId $[c / p!] \wedge$ $\left(\exists\right.$ st $1_{1}, s t_{2}:$ PSTATE \mid st $1_{1}=p s r e a d y ~ \wedge s t_{2}=p s r u n n i n g \bullet$ ProcState $\left.\left.2\left[c / p ?, s t_{1} / s t!\right] \vee \operatorname{ProcState} 2\left[c / p ?, s t_{2} / s t!\right]\right)\right) \backslash\{c\}$
As in the previous cases, this operation refines to
CurrentProcessStateIsReadyOrRunning2
EPTAB1
ESCHED

```
psready = state2(curr) \vee psrunning = state2(curr)
```

```
QueueHdHasHigherPriority \(2 \widehat{=}\)
    (CurrentPriority[ \(c p / p r!] \wedge\)
    SCHEDQHd1[ \(h / p!] \wedge\)
    ProcPrio2[h/p?,hpr/pr!] \(\wedge\)
    \(h p r<c p) \backslash\{h, h p r, c p\}\)
```

As in the previous cases, this expands and simplifies to
QueueHdHasHigherPriority 1

```
\XiSCHED
\XiPTAB1
prio2(pq1(1)) < prio2(curr)
```

SchedNext2 $\widehat{=}$
(IsCurrentProcessIdle \wedge
((IsEmptySCHEDQ1 \wedge ContinueCurrent)
$\vee(S C H E D Q D e q u e u e 1[p / p!] \wedge$ SetNewCurrentProcess $[p / p ?]$
$\left.\left.\left.{ }_{9} C T X T S W\right) \backslash\{p\}\right)\right)$
$\vee\left(\right.$ IsEmptySCHEDQ1 \wedge MakeIdleProcessCurrent ${ }_{9}$ CTXTSW $)$
$\vee((\neg$ CurrentProcessStateIsReadyOrRunning 2
\vee QueueHdHasHigherPriority2) \wedge
(SCHEDQHd1[hpid/p!] \wedge
SCHEDQDelHd1 \wedge
SetNewCurrentProcess $\left.\left.[h p i d / p ?]_{9} C T X T S W\right) \backslash\{h p i d\}\right)$
\checkmark ContinueCurrent

The second refinement of SuspendMe is

```
SuspendMe2 \widehat{=}
    ((IsEmptySCHEDQ2 ^ MakeIdleProcessCurrent ^
        (CurrentProcessId[c/p!]^
        MakeReady2[c/p?])\c)
        \vee ((SCHEDQDequeue 2[p/p!]9
            (CurrentProcessId[c/p!]^ MakeReady 2[c/p?])\{c})
        9}\mp@subsup{}{9}{SetNewCurrentProcess[p/p?])\{p})
    %
```

The schemata from this last refinement have now been shown to be correct. They can be converted directly into executable code.

3.7 Semaphores

The kernel allows processes to synchronise using semaphores. This section contains the definition of the semaphore type.

The kernel only uses semphores. It would be very easy to extend it so that it included, say, condition variables. We refrain from such extensions because of their effect on the length of this book.

Semaphores are defined as a counter and a queue. The queue is the FIFO queue type defined for processes. This is done using promotion. This enables the separate refinement of the queue of waiting processes, waiters (of type PROCESSQUEUE). Since the PROCESSQUEUE type has already been specified and refined, there is no work to do with respect to its use in the current context. The only thing we really have to do is to rename the components of the PROCESSQUEUE and its operations so that they are more appropriate to semaphores.

The definition of the semaphore state space schema is
_SEMAPHORE \qquad

```
scnt:\mathbb{Z}
waiters : PROCESSQUEUE
```

where scnt is the semaphore's counter and waiters is the queue of waiting processes.

3.7.1 Top Level

We will need to prove the following result:
Theorem 39. If waiters $\neq\langle \rangle, \forall p: P I D \bullet p \in$ ran waiters $\Rightarrow p \in$ used
It should be noted that the schema for semaphore has an often ignored interaction with the scheduler. If there is more than one waiter and the current process waits on the same semaphore, if the scheduler's queue is now empty, the semaphore will hang indefinitely because the idle process will run. Consideration of this leads to the inevitable conclusion that this is correct behaviour for the semaphore. If all runnable processes are waiting on the semaphore, there is no process to signal on it, so they must wait indefinitely.

A promotion schema is clearly required so that the relevant operations on PROCESSQUEUE can be promoted to semaphore operations.

```
ISEMAPHORE
\triangleSEMAPHORE
\trianglePROCESSQUEUE
waiters = 0PROCESSQUEUE
waiters' = 0PROCESSQUEUE'
```

The operations to add and remove a waiting process (a "waiter") are defined by promotion as follows:

```
AddWaiter \widehat{=}
        \exists \triangleSEMAWAITERS •
            \PhiSEMAPHORE ^ EnqueuePROCESSQUEUE
RemoveWaiter \widehat{=}
    \exists \triangleSEMAWAITERS \bullet
            \PhiSEMAPHORE ^ DequeuePROCESSQUEUE
```

Semaphores are initialised by clearing their queue of waiters and by setting the counter to some value (here ival?). Appropriate setting of the semaphore gives a binary semaphore and a larger value for ival? will give a general semaphore.

```
SEMAPHOREInit
SEMAPHORE'
ival?:\mathbb{Z}
scnt' = ival?
waiters'}=0\mathrm{ 'PROCESSQUEUEInit
```

The wait and signal operations require the counter to be incremented and decremented, so the following operations are required. Note that they do not depend upon promotion but act on the variables of the SEMAPHORE type.

```
IncSEMACNT
\triangleSEMAPHORE
scnt' = scnt + 1
```

_ DecSEMACNT \qquad \triangle SEMAPHORE

```
scnt' = scnt-1
```

The following schema defines a predicate which is true iff scnt is negative.
_ NegativeSemaCount \qquad
ESEMAPHORE

```
scnt < 0
```

The next schema defines a predicate which is true iff scnt is not positive-i.e., is either 0 or negative.
_ NonpositiveSemaCount \qquad
ESEMAPHORE

```
scnt }\leq
```

A process that is waiting on a semaphore has a state value pswaitsema (reasonably enough!). The following schema on PTAB defines the appropriate action:

SetStateToWaitSema $\widehat{=}$
\exists st : PSTATE \mid st $=$ pswaitsema •
SetProcState[st/st?]
This expands and simplifies to
SetStateTo WaitSema

```
\trianglePTAB
p?: PID
state }\mp@subsup{}{}{\prime}=\mathrm{ state }\oplus{p?\mapsto pswaitsema 
```

The operation that waits on a semaphore is defined as:
WaitSema $\widehat{=}$
DecSEMACNT ${ }_{9}^{\circ}$
((NegativeSemaCount \wedge
SetStateTo WaitSema \wedge
AddWaiter[caller?/p?]9
SchedNext)
\checkmark ContinueCurrent)
The caller, caller?, is always the currently executing process, so caller? $=$ curr, so the WaitSema operation is, more correctly

WaitSema $\widehat{=}$
DecSEMACNT ${ }_{9}$
((NegativeSemaCount \wedge
(CurrentProcessId $[c / p!] \wedge$
SetStateToWaitSema $[c / p ?] \wedge$
AddWaiter $[c / p ?]) \backslash\{c\}$
${ }_{9}$ SchedNext)
\checkmark ContinueCurrent)
Notice that WaitSema can be equivalently expressed as follows
WaitSema $\widehat{=}$
DecSEMACNT ${ }_{9}^{\circ}$
((NegativeSemaCount \wedge
(CurrentProcessId $[c / p!] \wedge$
SetStateToWaitSema $[c / p ?] \wedge$ ($\exists \triangle$ PROCESSQUEUE •

ФSEMAPHORE \wedge
EnqueuePROCESSQUEUE[$c / p ?])) \backslash\{c\} \wedge$
${ }_{9}$ SchedNext)
\checkmark ContinueCurrent)

The full expansion is as follows. The WaitSema schema expands first (after elimination of the existential quantifier by the one-point rule) into

```
WaitSemaa
```

```
\trianglePTAB
\triangleSEMAPHORE
\trianglePROCESSQUEUE
\triangleSCHED
serr! : SYSERR
(scnt' = scnt-1 ^
    (scnt'}<0
        state }\mp@subsup{}{}{\prime}=\mathrm{ state }\oplus{curr \mapsto pswaitsema} ^
        waiters.procs = waiters.procs `}\\langlecurr\rangle.
        SchedNext)
    \vee curr}\mp@subsup{}{}{\prime}=\operatorname{curr}\wedge prev ' = prev ) )
```

Its second expansion is
WaitSema \qquad
$\triangle S C H E D$
$\triangle P T A B$
\triangle SEMAPHORE
\triangle PROCESSQUEUE
serr! : SYSERR

```
\exists state" : PID }->\mathrm{ PSTATE
    (scnt }\mp@subsup{}{}{\prime}=scnt-1
            ((scnt' < 0 ^
            waiters.procs' = waiters.procs ^}\langle\mathrm{ curr }\rangle
            state"}=\mathrm{ state }\oplus{\mathrm{ curr }\mapsto\mathrm{ pswaitsema } ^
    (curr = iprc ^
            ((pq=\langle\rangle^curr' = curr ^ prev}\mp@subsup{}{}{\prime}=prev
            \vee ~ ( c u r r ' ~ = ~ h e a d ~ p q ~ \wedge ~ p r e v ~ ' ~ = ~ c u r r ~ \wedge ~
                    state'}=\mathrm{ state }\oplus{\mathrm{ head pq}\mapsto\mathrm{ psrunning }
                    ^ CTXTSW)))
    \vee (pq=\langle\rangle^ prev
    \vee ~ \ ( s t a t e ~ ' ~ ( c u r r ~ ) ~ = ~ p s r e a d y ~ \ ~ s t a t e ~ ' ~ ( c u r r ~ ) ~ \neq ~ p s r u n n i n g ~
            \vee prio(head pq) < prio(curr)) ^
            pq' = tail pq^
            curr' = head pq^
            state' = state }\oplus{\mathrm{ head pq}\mapsto\mathrm{ psrunning } ^
            prev' = curr ^
            CTXTSW)
    \vee curr}\mp@subsup{}{}{\prime}=\mathrm{ curr }\wedge\mp@subsup{\mathrm{ prev }}{}{\prime}=\mathrm{ prev }
    \vee curr}\mp@subsup{}{}{\prime}=\operatorname{curr}\wedge prev ' = prev )
```

In the call to SchedNext, the state of curr is clearly pswaitsema, this can be used as an additional fact in simplifying the predicate.

WaitSema \qquad
\triangle SCHED
$\triangle P T A B$
\triangle SEMAPHORE
\triangle PROCESSQUEUE
serr! : SYSERR
(scnt $\leq 0 \wedge$
waiters.procs ${ }^{\prime}=$ waiters.procs ${ }^{\wedge}\langle$ curr $\rangle \wedge$
state $^{\prime}=$ state $\oplus\{$ curr \mapsto pswaitsema $\} \wedge$
$\left(\left(p q=\langle \rangle \wedge p r e v^{\prime}=\operatorname{curr} \wedge c u r r^{\prime}=i p r c\right)\right.$
$\vee(p q=$ tail $p q \wedge$
curr $^{\prime}=$ head $p q \wedge$
state $^{\prime}=$ state $\oplus\{$ head $p q \mapsto$ psrunning $\} \wedge$
prev' $=$ curr)))
$\vee\left(\right.$ curr $^{\prime}=\operatorname{curr} \wedge$ prev $^{\prime}=$ prev $\left.)\right)$
and its precondition is
pre WaitSema $\widehat{=}$ scnt ≤ 0
Note that the SignalSema operation can be performed by any piece of code, not just the current process. This implies that it can be called by, for example, a device interface.

Finally, it should be noted that curr $^{\prime}=$ curr \wedge prev $^{\prime}=$ prev is just skip when implemented. Next we have the signal operation (the V operation in the original):

SignalSema $\widehat{=}$

IncSEMACNT;

(NonPositiveSemaCount \wedge
($\exists p: P I D$
RemoveWaiter $[p / p!] \wedge$
MakeReady[p / p ?])) \wedge
ContinueCurrent)
Schema SignalSema expands into:

```
SignalSema
``` \(\qquad\)
```

    \triangleSEMAPHORE
    \trianglePROCESSQUEUE
    serr! : SYSERR
    scnt'}=scnt+1
    (scnt'}\leq0
        waiters.procs'}=\mathrm{ tail waiters.procs }
    ```
```

        MakeReady[head waiters.procs/p?]) ^
    (curr' }=\mathrm{ curr ^ prev ' = prev)

```

Note how this specification is much simpler than in [4]. This is because we are interested only in the refinement not in a (relatively) complete micro model of the operation of the semaphore.

The SignalSema operation expands next into the following schema:
```

SignalSema

```
\(\qquad\)
```

\trianglePRIOQ
\triangleSEMAPHORE
\trianglePROCESSQUEUE
serr!:SYSERR
(scnt<0^
waiters.procs' }= tail waiters.procs ^
((\#sq.pq< maxs ^
((sq.pq = <\rangle^ sq.pq' = <head waiters.procs\rangle)
\vee ~ ( p r i o ( h e a d ~ w a i t e r s . p r o c s ) ~ \leq ~ p r i o ( h e a d ~ s q . p q ) ~ \wedge ~
sq.pq'}=\langlehead waiters.procs\rangle`sq.pq
\vee ~ ( p r i o ( l a s t ~ s q . p q ) < ~ p r i o ( h e a d ~ w a i t e r s . p r o c s ) ~ \wedge ~
sq.pq' = sq.pq``\langlehead waiters.procs\rangle)
\vee (\exists\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}:\operatorname{seq}PID |
s}\not=\langle\rangle\rangle\wedge\mp@subsup{s}{2}{}\not=\langle\rangle\wedge\mp@subsup{s}{1}{}\frown\mp@subsup{s}{2}{}=sq.p
prio(last s}\mp@subsup{s}{1}{})<\mathrm{ prio(head waiters.procs) ^
prio(head waiters.procs) \leq prio(head s2)}
sq'
state' = state }\oplus{\mathrm{ head waiters }\mapsto\mathrm{ psready} ^
serr! = sysok)
\vee serr! = schedqfull))
\wedge curr}'=curr ^ prev ' = prev )

```

The final conjunct (curr \({ }^{\prime}=\) curr \(\wedge\) prev \(^{\prime}=\) prev \()\) reduces to skip because it is just the identity applied to the scheduler's state. It could, therefore, be omitted; it will be left as a reminder when translating the schema.

There is not a great deal that can be done with this schema! Let us, instead, calculate the precondition.
```

pre SignalSema \widehat{=}
scnt + 1\leq0^\#sq.pq< maxs \wedge waiters.procs }\not=\langle

```
or:
scnt \(<0 \wedge \# s q . p q<\operatorname{maxs} \wedge\) waiters.procs \(\neq\langle \rangle\)

\subsection*{3.7.2 Refinement}

Because of the use of promotion in the definition of SEMAPHORE, there is very little to do as far as refinement is concerned. The refinement of scnt is just scnt itself (it is just a scalar variable), while the refinement of the queue type has already been completed. The only slight complication is the alteration of the state variable in \(P T A B\); two refinements of \(P T A B\) should be taken into account.

The production of refinement schemata consists only of substituting new names into those presented above. There is no need to engage in any correctness proofs because they have already been done.

The substitution of the apporpriate promoted schemata into the schemata defining WaitSema and SignalSema produces schemata that are suitable for translation into code.

The schemata derived in this section can be implemented directly as executable code. In the current case, the semaphore construct is composed of already refined constructs, its implementation is less obvious in the schemata.

\subsection*{3.8 Semaphore Table}

Now that we have semaphores, a table to hold them can be defined. This table will be maintained by the kernel, so a measure of control can be exerted on the number of semaphores in the system.

The table has the usual operations.
Following our convention, the error schemata are defined first. There are two error schemata: NotAllocSema for when an attempt has been made to perform an operation on a semaphore that has not been allocated and NoFreeSemas which reports that the semaphore table is full.

NotAllocSema \(\qquad\)
serr! : SYSERR
serr \(!=\) notallocsema
_ NoFreeSemas

serr! : SYSERR
serr \(!=\) nofreesemas

\subsection*{3.8.1 Top Level}

This subsection contains the specification of the semaphore table. The table supports the following operations:
- Initialisation.
- Allocate a new semaphore.
- Free a semaphore.

Since semaphores were specified and refined to near code in the last section, the semaphore table can be specified using promotion.

An indentifier type for semaphores must first be defined. This is an atomic type. Its elements are semaphore identifiers.
[SID]
This type will be refined.
The semaphore table is defined as follows:
SEMATBL
semas: SID \(\rightarrow\) SEMAPHORE
semasinuse \(: \mathbb{F}\) SID
semasinused \(=\) dom semas

The variable semas is the table, a partial mapping from semaphore identifiers to semaphores; semasinuse contains the identifiers of those semaphores that are currently in use. The semasinuse variable is used to determine whether it is possible to allocate another semaphore, whether a semaphore is in use, and so on.

The initialisation schema is defined as:
SEMATBLInit \(\qquad\) SEMATBL'
```

semasinuse}\mp@subsup{}{}{\prime}=

```

This is very much as would be expected. By making semasinuse \({ }^{\prime}=\varnothing\), the domain of semas is also made empty.

The promotion schema is a textbook case:
```

    \PhiSEMATBL
    \triangleSEMATBL
    \triangleSEMAPHORE
    s?: SID
    s?\in semasinuse
    semas(s?) = 0SEMAPHORE
    semas'}=\mathrm{ semas }\oplus{s?\mapsto0SEMAPHORE'
    ```

The following schema defines the operation to free a semaphore. Freeing a semaphore consists of removing the semaphore's identifier from semasinuse.

\section*{FreeSema}
\(\qquad\)
\(\triangle\) SEMATBL
\(s ?:\) SID
```

semasinuse' = semasinuse \{s?}

```

The following schema defines the allocation operation for semaphore identifiers. A semaphore can be allocated only when an identifier has been allocated, so this schema amounts to the first stage in allocating a semaphore.
```

AllocSID
\triangleSEMATBL
s! : SID
s! \& semasinuse
semasinuse}\mp@subsup{}{}{\prime}=\mathrm{ semasinuse }\cup{p!

```

The operation is nondeterministic. The identifier to be returned, \(s!\), is chosen nondeterministically so that it does not occur in semasinuse (the operation must be used only when it is known that semasinuse \(\neq \varnothing\)). The newly allocated identifier is added to semasinuse in the last conjunct.

The next schema defines a predicate which is satisfied when there are some elements of SID that are not elements of semasinuse.

FreeSIDs \(\qquad\)
ESEMATBL
semasinuse \(\subset\) SID

The following defines the initialisation of a semaphore, once allocated. Given a semaphore identifier, \(s\) ?, the associated semaphore is initialised using \(\theta\) SEMAPHOREInit. There is no magic here; the value used to initialise the semaphore is merely implicitly declared in the signature of the InitSema schema).

InitSema \(\qquad\)
\(\triangle S E M A T B L\)
\(s\) ? : SID
semas \(^{\prime}=\) semas \(\cup\{s ? \mapsto \theta\) SEMAPHOREInit \(\}\)

The operation to allocate semaphores is
AllocSema \(\widehat{=}\)
\((\) AllocSID \(\wedge\) InitSema \(\wedge\) SysOk)
\(\checkmark\) NoFreeSemas

It expands into:
```

AllocSema
\triangleSEMATBL
s! : SID
serr! : SYSERR
(s? \& semasinuse ^
semasinuse}\mp@subsup{}{}{\prime}=\mathrm{ semasinuse }\cup{s!}
semas' = semas \cup{s?\mapsto0SEMAPHOREInit }}
serr! = sysok)
\vee serr! = nofreesemas

```

The precondition is
pre AllocSema \(\widehat{=} \exists s: S I D \bullet s \in\) semasinuse
To free a semaphore, the ReleaseSema operation is used. This operation is defined as follows.
```

ReleaseSema 人
(SemaInUse ^ FreeSema ^ SysOk)
\checkmark ~ N o t A l l o c S e m a ~

```

This definition expands into the following schema:
```

    ReleaseSema
    \triangleSEMATBL
    s? : SID
    serr! : SYSERR
    (s? \in semasinuse ^
semasinuse}\mp@subsup{}{}{\prime}=\mathrm{ semasinuse \{s?}^
serr! = sysok)
\vee serr! = notallocsema

```

The ReleaseSema schema's precondition is given by the following schema.
pre ReleaseSema \(\widehat{=} s ? \in\) semasinuse
The semaphore operations can be promoted to operations on the table. The definitions are quite standard and are as follows:
```

STWaitSema \widehat{=}
\exists \triangleSEMAPHORE \bullet
\PhiSEMATBL ^ WaitSema

```
and
```

STSignalSema \widehat{=}
\exists \triangleSEMAPHORE \bullet
\PhiSEMATBL ^ SignalSema

```

There is no refinement necessary for these operations.

\subsection*{3.8.2 Refinement One}

The first object of concern is the type SID. This was an atomic type when initially defined. For this refinement, it is itself refined to:

SID \(==\) minsid \(\ldots\) maxsid
In addition, it is necessary to define:
\begin{tabular}{l}
minsid, maxsid \(: \mathbb{N}_{1}\) \\
\hline minsid \(<\) maxsid
\end{tabular}
Good values for minsid are zero or one.
The semaphore table type can now be defined as the following schema
ST1
semas 1: SID \(\rightarrow\) SEMAPHORE
sinuse : SID \(\rightarrow\{0,1\}\)
Here, the set, semasinuse, is replaced by a function. The evaluation of the function for an arbitrary value of \(s\) is \(\operatorname{sinuse}(s)=1\) iff \(s \in \operatorname{semasinuse}\), \(\operatorname{sinuse}(s)=0\) otherwise. In other words, sinuse is the characteristic function of semasinuse. The other component, semas 1 , is now a total function but its domain and codomain are identical. Moreover, it is intended that the value of \(\operatorname{semas} 1(s)\) is defined at \(s\) iff \(\operatorname{sinuse}(s)=1\).

The initialisation schema is very much as one might expect:
ST1Init
\(S T 1^{\prime}\)
\(\forall s: S I D \bullet\)
\(\operatorname{sinuse}^{\prime}(s)=0\)
The operation to allocate a semaphore is, again, nondeterministic.
_ AllocST1 \(\qquad\)
\(\Delta S T 1\)
\(s!: S I D\)
\(\exists s: S I D \bullet\)
\[
\begin{aligned}
& \operatorname{sinuse}(s)=0 \wedge \\
& \operatorname{sinuse} e^{\prime}=\operatorname{sinuse} \oplus\{s \mapsto 1\} \wedge \\
& s!=s
\end{aligned}
\]

Here, the nondeterminism is located in the choice of \(s\), not \(s\) !, as was the case in the last subsection. The predicate of this schema is equivalent to
sinuse \((s!)=0\)
sinuse \({ }^{\prime}=\) sinuse \(\oplus\{s!\mapsto 1\}\)
which, we believe, makes the nondeterminism harder to detect. Nonetheless, the two definitions of the operation are perfectly adequate for our needs; we do not care which particular identifier is chosen, as long as one is. The identifier should not be in current use; once chosen, it should be marked as being in use. This is what the operation states, so it is adequate.

FreeSID1 \(\qquad\)
\(\Delta S T 1\)
\(s\) ? : SID
sinuse \(^{\prime}=\) sinuse \(\oplus\{s ? \mapsto 0\}\)

The operation to free a semaphore identifier is just an update of the sinuse function. This is obvious given the relationship between semasinuse and sinuse.

The semaphore initialisation operation is next.
InitSema 1 \(\qquad\)
\(\Delta S T 1\)
\(s ?:\) SID
semas \(1^{\prime}=\operatorname{semas} 1 \oplus\{s ? \mapsto \theta\) SEMAPHOREInit \(\}\)

The next schema defines a predicate that is satisfied when \(s ?\) is in use.
_SemaInUse 1 \(\qquad\)
EST1
\(s\) ? : SID
\(\operatorname{sinuse}(s ?)=1\)

The allocation operation should cause no problems. It is defined as
```

AllocSema 1 \widehat{=}
(AllocSID1 ^ InitSema![s!/s?]^ SysOk)
v NoFreeSema

```
and expands into:
```

AllocSema 1

```
\(\qquad\)
```

$\Delta S T 1$
$s$ ! : SID
serr! : SYSERR
( $\exists \mathrm{g}: \operatorname{SID} \bullet$
sinuse $(s)=0 \wedge$
sinuse ${ }^{\prime}=$ sinuse $\oplus\{s \mapsto 1\} \wedge$
$s!=s) \wedge$
semas $1^{\prime}=\operatorname{semas} 1 \oplus\{s!\mapsto \theta$ SEMAPHOREInit $\} \wedge$
serr! $=$ sysok)
$\vee$ serr $!=$ nofreesema

```

The precondition of AllocSema1 is easily calculated. It is
pre AllocSema \(1 \widehat{=}\)
\(\exists s: S I D\)
sinuse \((s)=0\)
The operation to free a semaphore is the following:
ReleaseSema \(1 \widehat{=}\)
(SemaInUse \(1 \wedge\) FreeSID \(1 \wedge\) SysOk)
\(\vee\) NotAllocSema
It expands into the next schema:
ReleaseSema
\(\Delta S T 1\)
\(s ?:\) SID
```

(sinuse(s?) = 1 ^
sinuse}\mp@subsup{}{}{\prime}=\mathrm{ sinuse }\oplus{s?\mapsto0}
serr! = sysok)
\vee serr! = notallocsema

```

An abstraction relation is needed so that this level of representation can be related to the top-level specification. The abstraction relation is the obvious one.

AbsST1 \(\qquad\)
```

ST

```

ST1
```

\foralls:SID
sinuse(s)}\Leftrightarrows\in\mathrm{ semasinuse
\foralls:SID
s\in semasinuse }=>\mathrm{ semas 1(s) = semas(s)

```

\subsection*{3.8.3 Refinement One-Again}

The first refinement of SEMATBL refines the partial function to what amounts to an array indexed by \(S I D\). The other component of \(S T 1\), sinuse, is a mapping between semaphore identifiers and the set \(\{0,1\}\), which is used to represent semasinuse. The object of this refinement is to find a more compact representation for semasinuse or sinuse. The aim is to refine sinuse to a bitmap.

First, the number of bits per machine word must be defined.
\(\mid \quad b p w: \mathbb{N}_{1}\)
Next, it is necessary to define how many words are required to represent the elements of \(S I D\), one element per bit.
\begin{tabular}{|l}
msize \(: \mathbb{N}_{1}\) \\
\hline msize \(=\left\lceil\frac{\text { maxsid-minsid }}{\text { bpw }}\right\rceil\)
\end{tabular}
Clearly, if minsid \(=0\), this simplifies to
\[
\left\lceil\frac{m a x s i d}{b p w}\right\rceil
\]

One machine word can represent values in the range \(0 \ldots 2^{\text {bpw }}-1\). This can also be written as \(\{0 \ldots b p w-1\}\) if \(\log _{2} s, s \in S I D\) is used. Therefore, the type
\(M W O R D==\{0 . . b p w-1\}\)
is defined.
The first definition of the bitmap is:
BMASK \(==0 .\). msize \(-1 \rightarrow\) MWORD
This can be interpreted as a vector of msize elements each of which is a set of bits. It can be verified that the union of the domain elements of BMASK covers all elements of SID.

An encoding is required for elements of SID. It is fairly obvious and that integer division and mod are appropriate. Integer division will be written \(\div\).

Let \(b m: B M A S K\), so
\(s \in\) semasinuse \(\Leftrightarrow(s \bmod b p w) \in b m(s \div b p w)\)
\(\Rightarrow\{(s \bmod b p w)\} \subseteq b m(s \div b p w)\)
semasinuse \(\cup\{s\} \Leftrightarrow\{(s \bmod b p w)\} \cup b m(s \div b p w)\)
semasinuse \(\backslash\{s\} \Leftrightarrow b m(s \div b p w) \backslash\{(s \bmod b p w)\}\)
These equivalents are straightforward to verify. For example, the implication on line two can be proved from the biconditional on line one using the fact that \(x \in X \subseteq Y \Rightarrow x \in Y\).

We have defined \(M W O R D\) as \(\{0 \ldots b p w-1\}\). This can be improved upon with relative ease. First, consider the effect of redefining MWORD as \(0 .\). \(b p w-1\) and define a new type, \(B M\), as:
\(B M: 0 \ldots b p w-1 \rightarrow\{0,1\}\)
This is the characteristic function of the membership function defined for SID. In particular, if \(f \in B M(f: B M)\), define \(x \in \operatorname{dom} f \Leftrightarrow f(x)=1\) and \(x \notin \operatorname{dom} f \Leftrightarrow f(x)=0\).

The following operations can be defined. Note that \(B M\) has a fixed finite domain, so it is possible to iterate over it.
```

$\&: B M \times B M \rightarrow B M$
$\forall f_{1}, f_{2}: B M \bullet$
$\exists_{1} f_{r}: B M \mid f_{r}=f_{1} \& f_{2} \bullet$
$\forall i: 0 . . b p w-1 \bullet$
$f_{1}(i)=1 \wedge f_{2}(i)=1 \Rightarrow f_{r}(i)=1 \wedge$
$f_{1}(i) \neq 1 \vee f_{2}(i) \neq 1 \Rightarrow f_{r}(i)=0$

```
\begin{tabular}{|l}
\(\mid: B M \times B M \rightarrow B M\) \\
\hline\(\forall f_{1}, f_{2}: B M\left|f_{r}=f_{1}\right| f_{2} \bullet\) \\
\(\exists_{1} f_{r}: B M \bullet\) \\
\(\forall i: 0 \ldots b p w-1 \bullet\) \\
\(f_{1}(i)=1 \vee f_{2}(i)=1 \Rightarrow f_{r}(i)=1 \wedge\) \\
\(f_{1}(i)=0 \wedge f_{2}(i)=0 \Rightarrow f_{r}(i)=0\)
\end{tabular}
\begin{tabular}{r}
\(\sim: B M \rightarrow B M\) \\
\hline\(\forall f_{1}: B M \bullet\) \\
\(\exists_{1} f_{r}: B M \mid f_{r}=\sim f_{1} \bullet\) \\
\(\forall i: 0 \ldots b p w-1 \bullet\) \\
\(f_{1}(i)=1 \Rightarrow f_{r}(i)=0 \wedge\) \\
\(f_{1}(i)=0 \Rightarrow f_{r}(i)=1\)
\end{tabular}
\begin{tabular}{l}
\(\uparrow: B M \times B M \rightarrow B M\) \\
\hline\(\forall f_{1}, f_{2}: B M \bullet\) \\
\(\exists_{1} f_{r}: B M \mid f_{r}=f_{1} \uparrow f_{2} \bullet\) \\
\(\forall i: 0 \ldots b p w-1 \bullet\) \\
\(f_{1}(i)=f_{2}(i) \Rightarrow f_{r}(i)=0 \wedge\) \\
\(f_{1}(i) \neq f_{2}(i) \Rightarrow f_{r}(i)=1\)
\end{tabular}

In particular, it should be noted that \(x \in X\) can be written as \((\{x\} \cap X) \neq \varnothing\). This is the memebership test for bit maps, as a moment's thought reveals.

Lemma 2. \& represents set intersection. It is bitwise"and."
Proof. Actually, quite easy given the definitions. If \(f_{1}\) and \(f_{2}\) are interpreted as the characteristic function of \(\in\), the definition of \(\cap\) is readily retrieved. Given two sets, \(X\) and \(Y, x \in X \cap Y \Leftrightarrow x \in X \wedge x \in Y\).

Lemma 3. | represents set union. It is bitwise"or."
Proof. Again, taking \(f_{1}\) and \(f_{2}\) to be the characteristic function of \(\in\), the function is immediately seen to define \(\cup\) : given two sets, \(X\) and \(Y, x \in\) \(X \cup Y \Leftrightarrow(x \in X) \vee(x \in Y)\); if \(x \notin X \wedge x \notin Y\), it is not in \(X \cup Y\). This is equivalent to an expansion of the definition of \(\mid\).
Lemma 4. \(\sim\) rerpesents set complementation. It is bitwise complement.
Proof. This is, again, easy to deduce. If \(x \in X, x \notin \sim X\); if \(x \notin \sim X, x \in X\).

Lemma 5. \(\uparrow\) represents a form of set difference, specifically symmetric set difference.
Proof. The easiest way to view this is with a Venn diagram from which it can be deduced that \(X \uparrow Y=(X \cup Y) \backslash(X \cap Y)\), or \(X \uparrow Y=(X \backslash Y) \cup(Y \backslash X)\). This is the symmetric set difference operator; it is also an exclusive-or operation.

These operations correspond to bit operations provided by languages like C, \(\mathrm{C}++\) and Ada.

Note that the above construction can easily be generalised. The domain SID upon which this construction is based can be replaced by any arbitrary set, \(X\), subject to the restrictions that (a) \(X\) is discrete, (b) \(X\) is bounded above and below.

With these operations in place, a bit map type can be defined for the semaphore table type.

Now let us define a new type:
BITMAP \(\widehat{=} 0 \ldots\) msize \(-1 \rightarrow B M\)
or, in expanded form:
BITMAP \(\widehat{=} 0 .\). msize \(=1 \rightarrow(0 \ldots b p w-1 \rightarrow\{0,1\})\)
Let \(s\) be an arbitrary element of \(S I D\) and let
\(w=s \div b p w\)
\(b=\{s \bmod b p w \mapsto 1\} \oplus(\lambda i: 0 \ldots b p w-1 \bullet 0)\)
In the identity expression defining \(b\), the \(\lambda\) expression defines a function whose domain is \(0 . . b p w-1\) and whose value is uniformly zero (i.e., if \(f\) is the function, \(\forall x: 0 . . b p w-1 \bullet((\lambda i: 0 . . b p w-1 \bullet 0) x)=0)\). The maplet \(\{s \bmod b p w \mapsto 1\}\) clearly has the value at \(s \bmod b p w:\) viz., \(\{s \bmod b p w \mapsto 1\}(s \bmod b p w)=1\).

Therefore, the composition of these two functions has the following behaviour. Let the function \(\{s \bmod b p w \mapsto 1\} \oplus(\lambda i: 0 \ldots b p w-1 \bullet 0)\) be called \(f\), then:
\(f(x)=\left\{\begin{array}{l}1, x=s \bmod b p w \\ 0, \text { otherwise }\end{array}\right.\)
Now assume:
sinuse : BITMAP
We can write the following identities. Each identity is justified by one or more of the lemmata above.
```

s\in semasinuse \Leftrightarrow sinuse(w)|b
semasinuse \cup{s}\Leftrightarrow\operatorname{sinuse}(w)|b
semasinuse \{s}\Leftrightarrow(~\operatorname{sinuse}(w)\uparrowb

```

The appropriate updates are as follows:
```

semasinuse' }=\mathrm{ semasinuse }\cup{s}
sinuse = sinuse }\oplus{w\mapsto\operatorname{sinuse}(w)\&b
semasinuse}\mp@subsup{}{}{\prime}=\mathrm{ semasinuse \{s}}
sinuse = sinuse }\oplus{w\mapsto(~\operatorname{sinuse}(w))\uparrowb

```

Using this new structure, it is possible to define new schemata for the semaphore table. These schemata will be given a \({ }_{a}\) subscript for now (and the state schema will be similarly annotated).
```

SemaInUsea

```
```

EST1a
s?: SID
sinuse (s? \divbpw) \& ((\lambdai:0..bpw - 1\bullet0) }\oplus{s? mod bpw\mapsto1}
\not=((\lambdai:0..bpw - 1\bullet0)\oplus{s? mod bpw\mapsto1})

```
```

FreeSIDa
\DeltaST1 a
s?: SID
\existsw:0..bpw-1; b:0..bpw-1->{0,1}\bullet
w=s?\divbpw^
b=(\lambdai:0..bpw - 1\bullet0)\oplus{s? mod bpw\mapsto1}^
sinuse}\mp@subsup{}{}{\prime}=\operatorname{sinuse}\oplus{w\mapsto((~\operatorname{sinuse}(w))\uparrowb)

```

Using the one-point rule twice, the predicate becomes
```

sinuse}\mp@subsup{}{}{\prime}
sinuse }\oplus{(s?\divbpw)
((~ sinuse (s? }\divbpw)
\uparrow(\lambdai:0..bpw - 1\bullet0)\oplus{s? mod bpw\mapsto1})}

```
AllocST1 \({ }_{a}\)
 \(\Delta S T 1_{a}\)
\(s!\) : SID
\(\exists s: S I D\)
 \((\exists w: 0 \ldots b p w-1 ; b: 0 \ldots b p w-1 \rightarrow\{0,1\} \bullet\)
 \(w=s \div b p w \wedge\)
 \(b=(\lambda i: 0 . . b p w-1 \bullet 0) \oplus\{s \bmod b p w \mapsto 1\} \wedge\)
 \((\operatorname{sinuse}(w) \& b) \neq b \wedge\)
 sinuse \(^{\prime}=\) sinuse \(\oplus\{w \mapsto(\operatorname{sinuse}(w) \mid b)\} \wedge\)
 \(s!=s)\)
```

$\exists w: 0 . . b p w-1 ; b, b_{v}: 0 \ldots b p w-1 \rightarrow\{0,1\}$
$w=s!\div b p w \wedge$
$b_{v}=\{s!\bmod b p w \mapsto 1\} \wedge$
$b=(\lambda i: 0 \ldots b p w-1 \bullet 0) \oplus b_{v} \wedge$
$(\operatorname{sinuse}(w) \& b) \neq b \wedge$
sinuse ${ }^{\prime}=$ sinuse $\oplus\{w \mapsto($ sinuse $(w) \mid b)\} \wedge$
$s!=w+b_{v}$

```
where + is integer addition. The last line is jutified by the observation that if \(b=s \bmod b p w\) and \(w=s \div b p w\) then \(w \times b=s\). This predicate can be further simplified:
```

sinuse $(s ? \div b p w) \&(\lambda i: 0 \ldots b p w-1 \bullet 0) \oplus\{s ? \bmod b p w \mapsto 1\}$
$\neq(\lambda i: 0 . . b p w-1 \bullet 0) \oplus\{s ? \bmod b p w \mapsto 1\}$
sinuse $^{\prime}=$
sinuse $\oplus\{(s ? \div b p w) \mapsto$ sinuse $(s ? \div b p w) \mid$
$(\lambda i: 0 . . b p w-1 \bullet 0) \oplus\{s ? \bmod b p w \mapsto 1\}$
$s!=(s ? \div b p w) \times(s ? \bmod b p w)$

```

The argument preceding the definition of these schemata amounts to their refinement proof.

The specification at this level can therefore be completed as follows.
SID \(==\) minsid.. maxsid
\begin{tabular}{|l}
minsid, maxsid \(: \mathbb{N}_{1}\) \\
\hline minsid \(<\) maxsid
\end{tabular}
```

msize : \mathbb{N}

```
\(b p w: \mathbb{N}_{1}\)
The semaphore table is now defined by the following schema:
\(S T 1\) \(\qquad\)
semas1:SID \(\rightarrow\) SEMAPHORE
sinuse : BITMAP

The initialisation operation is given by the next schema.
ST1 Init \(\qquad\)
\(S T 1^{\prime}\)
\[
\begin{aligned}
& \forall w: 0 \ldots \text { msize }-1 \bullet \\
& \forall b: 0 \ldots b p w-1 \rightarrow\{0,1\} \\
& \quad \operatorname{sinuse}^{\prime}(w)(b)=0
\end{aligned}
\]

The next schema defines the operation to initialise a semaphore once its identifier, \(s\) ?, has been allocated.
```

    InitSema1
    \DeltaST1
    s?:SID
    semas 1' = semas 1 }\oplus{s?\mapsto0SEMAPHOREInit 
    ```
\(\qquad\)

The deallocation operation is given by
FreeSID 1 = FreeSID \({ }_{a}\)
and the allocation operation by
AllocSID \(1 \widehat{=}\) AllocST \(1_{a}\)
The operation to allocate a new semaphore identifier and to initialise the semaphore is defined as

AllocSema \(\widehat{=}\)
\((\) AllocSID \(1 \wedge\) InitSema \([s!/ s ?] \wedge\) SysOk \()\)
\(\vee\) NoFreeSema
The operation that performs the required checks when freeing a semaphore is the following

ReleaseSema \(1 \widehat{=}\)
\((\) SemaInUse \(1 \wedge\) FreeSID \(1 \wedge\) SysOk \() \vee\) NotAllocSema

We now define the abstraction relation
```

AbsST1
SEMATBL
ST1
\foralls:SID \bullet
s\insemasinuse \Leftrightarrow semas(s)=semas1(s)
\forall : SID \bullet
s}\in\mathrm{ semasinuse }
(\existsw:0..msize - 1; b:0..bpw - 1 }->{0,1
sinuse(w)(b)=1)

```

Theorem 40. \(\forall S E M A T B L^{\prime} ; S T 1^{\prime} \bullet S E M A T B L I n i t \wedge A b s S T 1 \Rightarrow S T 1\) Init
Proof. The predicate of SEMATBLInit is semasinuse \({ }^{\prime}=\varnothing\). By the abstraction relation,
\(\forall s: S I D \bullet\)
\(s \notin\) semasinuse \(\Leftrightarrow\)
\[
\begin{aligned}
& \ell \exists w: 0 \ldots \operatorname{msize}-1 ; b: 0 \ldots b p w-1 \rightarrow\{0,1\} \bullet \\
& \quad \operatorname{sinuse}(w)(b)=1)
\end{aligned}
\]

The predicate of ST1Init is
\(\forall w: 0 . . m s i z e-1 ; b: 0 \ldots b p w-1 \rightarrow\{0,1\} \bullet\) \(\operatorname{sinuse}(w)(b)=0\)

By predicate calculus \((\neg \exists x \bullet P(x) \Leftrightarrow \neg \neg \forall x \bullet \neg P(x) \Leftrightarrow \forall x \bullet \neg P(x))\) the two are equivalent.

\section*{Theorem 41.}
\(\forall\) SEMATBL; ST1•
pre AllocSema \(\wedge\) AbsST \(1 \Rightarrow\) pre AllocSema 1
Proof. The two preconditions are
pre AllocSema \(\widehat{=} s \notin\) semasinuse
and
pre AllocSema \(1 \widehat{=} \operatorname{sinuse}(s \div b p w)(s \bmod b p w)=0\)
First note that
\(((\lambda i: 0 \ldots b p w-1 \bullet 0) \oplus\{s \bmod b p w \mapsto 1\})(x)=\left\{\begin{array}{l}1, x=s \\ 0, \text { otherwise }\end{array}\right.\)

By the definition of \(\&\), it is evident that
\[
\begin{aligned}
& \operatorname{sinuse}(s \div b p w) \&(\lambda i: 0 \ldots b p w-1 \bullet 0) \oplus\{s \bmod b p w \mapsto 1\} \\
& \quad \neq(\lambda i: 0 \ldots b p w-1 \bullet 0) \oplus\{s \bmod b p w \mapsto 1\}
\end{aligned}
\]
when sinuse \((s \div b p w)(b \bmod b p w)=0\). By the above defintiions, this is equivalent to \(s \notin\) semasinuse.

\section*{Theorem 42.}
```

\forallSEMATBL; SEMATBL'; ST1; ST1'; s! : SID \bullet
pre AllocSema ^
AbsST1^
AbsST1' ^
AllocSema1
=> AllocSema

```

Proof. The important part of predicate of AllocSema 1 is
```

sinuse $^{\prime}=$ sinuse $\oplus\{w \mapsto(\operatorname{sinuse}(w) \mid b)\}$

```
where \(w=s \div b p w\) and \(b=s \bmod b p w\). Expanding the right-hand side, the following is obtained
```

sinuse'
= sinuse}
{w\mapsto (sinuse(s \divbpw)
|(\lambdai:0..bpw - 1\bullet0)\oplus{s mod bpw\mapsto1})

```

It should be noted that \(((\lambda i: 0 \ldots b p w-1 \bullet 0) \oplus\{s \bmod b p w \mapsto 1\}))(x)=1\) if \(x=s \bmod b p w\), so \(\operatorname{sinuse}(w)(b)=1\) iff \(s=w+b\). From this, it can be inferred that \(\operatorname{sinuse}^{\prime}(w)(b)=1\), i.e., \(s ? \in\) semasinuse \({ }^{\prime}\) by the abstraction relation.

Theorem 43. \(\forall S E M A T B L ; S T 1 ; ~ s ?: S I D \bullet\) pre ReleaseSema \(\wedge\) AbsST1 \(\Rightarrow\) pre ReleaseSema1.
Proof. In this case, we have
```

sinuse (s? }\divbpw)\&(\lambdai:0..bpw-1\bullet0)\oplus{s?\operatorname{mod}bpw\mapsto1
=(\lambdai:0..bpw - 1\bullet0)\oplus{s?mod bpw\mapsto1}

```

For this to be true, \(\operatorname{sinuse}(s ? \div b p w)(s ? \bmod b p w)=1\), so \(s \in\) semasinuse by the abstraction relation.

\section*{Theorem 44.}
```

\forall SEMATBL; SEMATBL'; ST1; ST1'; s? : SID; serr! : SYSERR \bullet
pre ReleaseSema ^
AbsST1^
AbsST1' ^
ReleaseSema1

# ReleaseSema

```

Proof. This is the dual of AllocSema.
Let \(w=s ? \div b p w\) and \(v=s ? \bmod b p w\).
The interesting part is \(w \mapsto(\sim \operatorname{sinusew}(w)) \uparrow b\). By the definition of \(\sim\), and thinking pointwise,
\(\sim \operatorname{sinuse}(w)(v)=\left\{\begin{array}{l}0, \operatorname{sinuse}(w)(v)=1, \\ 1, \text { otherwise }\end{array}\right.\)
That is, \(\sim\) complements sinuse \((w)\) 's elements.
Now, let \(b=(\lambda i: 0 \ldots b p w-1 \bullet 0) \oplus\{s \bmod b p w \mapsto 1\}\), noting that \(((\lambda i: 0 \ldots b p w-1 \bullet 0) \oplus\{s \bmod b p w \mapsto 1\})(s \bmod b p w)=1)\), it should be clear that
```

~ sinuse(w) \uparrow(\lambdai:0..bpw - 1\bullet0)\oplus{s mod bpw\mapsto \mapsto }
={ l 0, if ~ Sinuse (w)(s mod bpw)=1

```

Therefore, if \(\operatorname{sinuse}(w)(v)=1\), \(\operatorname{sinuse}^{\prime}(w)(v)=0\) for the important part of the predicate of ReleaseSema 1 is
```

sinuse}\mp@subsup{}{}{\prime}=\mathrm{ sinuse }\oplus{w\mapsto((~\operatorname{sinuse}(w)\uparrowb)

```

Writing out the interesting part, we have
\[
\begin{aligned}
& \sim \operatorname{sinuse}(w) \uparrow(\lambda i: 0 \ldots b p w-1 \bullet 0) \oplus\{s \bmod b p w \mapsto 1\} \\
& \quad=\left\{\begin{array}{l}
0, \text { if } \sim \operatorname{sinuse}(w)(s \bmod b p w)=1 \\
1, \text { otherwise }
\end{array}\right.
\end{aligned}
\]

By AbsST1',
```

$\forall s: S I D \bullet$
$s \in$ semasinuse $^{\prime} \Leftrightarrow$
$(\exists w: 0 \ldots m$ size $-1 ; b: 0 \ldots b p w-1 \rightarrow\{0,1\}$
$\left.\operatorname{sinuse}^{\prime}(w)(b)=1\right)$

```
it can be seen that the above expression is equivalent to semasinuse \(\backslash\{s ?\}\) which is equivalent, by FreeSID \({ }_{a}\) 's predicate, to semasinuse'.

The schemata derived in this subsection can now be translated into executable code. The code will employ a bitmask to represent those slots in the table that are in use.

\subsection*{3.9 Synchronous Messages}

This section is concerned with the specification and refinement of the synchronous message-passing subsystem in the kernel. Message passing is used as the primary means for processes to exchange information while using semaphores as a synchronisation mechanism.

\subsection*{3.9.1 Preliminaries}

First, a few definitions are required. In particular, it is necessary to define a type to represent the data held by messages. The type representing messages, \(M S G\), was defined at the start of this chapter, as was the constant nullmsg.
[MDATA]
Using this new type, the type of messages, \(M S G\), can be defined.
\(M S G \widehat{=} P I D \times P I D \times M D A T A\)
In addition, a constructor function is useful, so one is defined
\begin{tabular}{|l}
\(\quad m k m s g: P I D \times P I D \times M D A T A\) \\
\\
\(\forall s, t: P I D ; d: M D A T A \bullet\) \\
\(m k m s g(s, t, d)=(s,(t, d))\)
\end{tabular}

Furthermore, some functions to access the components of a message are needed. In particular, functions to access the sender's and destination's identifiers is required; a function to return the data held in a message is required.
```

msgsrc, msgdest: MSG ->PID
msgdata :MSG }->\mathrm{ MDATA
\forallm:MSG
msgsrc}(m)=fst
msgdest (m) = fst(snd m)
msgdata(m)= snd }\mp@subsup{}{}{2}

```

Just to make schema definition and manipulation a little easier, the following schema is defined. It just creates a new message and returns it as \(m\).

MakeMessage \(\qquad\)
sndr?, dest? : PID
payload?: MDATA
\(m: M S G\)
\(m=m k m s g(s n d r ?\), dest?, payload?)

The error schemata now follow. The names for these schemata are intended to be suggestive as to their functions.
_ AlreadyHasMsg
serr! : SYSERR
serr \(!=\) procalreadyhasmsg

DestinationNotReceiving
serr! : SYSERR
serr \(!=\) destinationnotrcving

BadDestination \(\qquad\) serr! : SYSERR
serr \(!=\) badmsgdestination

NullMsgValue \(\qquad\)
serr! : SYSERR
serr! \(=\) nomsg

The two following operations are added to \(P T A B\) :
SourceExists \(\qquad\)
\(\Xi P T A B\)
src? : PID
src \(? \in\) used
and
DestinationExists
\(\Xi P T A B\)
dest? : PID
dest? \(\in\) used

\subsection*{3.9.2 Top Level}

The top-level specification can now be started.
The process table, \(P T A B\), is also extended by the addition of a new state variable:

The mapping, smsg, maps process identifiers to messages, including, of course, the nullmsg. Each process maps to exactly one message. The idea is that each process should have at most one message available to it at any one time.

The initialisation schema is implicit and can be inferred from that of PTAB.

GotSynchMsg
\(\Xi P T A B\)
\(p\) ? : PID
\(\operatorname{smsg}(p ?) \neq\) nullmsg

A sending process can send a message (attach it to the \(s m s g\) slot) only when the destination has no message in \(s m s g\). In other words, if \(d\) is the destination, then a sender, \(s\), can tell that \(d\) can be passed a message when \(\operatorname{smsg}(d)=\) nullmsg. This justifies the definition

CanSendSynchMsg \(\widehat{=} \neg\) GotSynchMsg
which expands into:
```

\XiPTAB
p?: PID
smsg(p?) = nullmsg

```

The actual operation of sending a synchronous message is considered to be assigning the destination's smsg to the message. In symbols:
```

    SendSynchMsg
    ```
 \(\triangle P T A B\)
 dest? : PID
 \(m\) ? : \(M S G\)
 \(s m s g^{\prime}=s m s g \oplus\{\) dest \(? \mapsto m ?\}\)

When a process receives a message, it should copy the contents of the message to some place and to set \(s m s g\) to nullmsg.

ClrSynchMsgSlot \(\qquad\)
\(\triangle P T A B\)
\(p\) ? : PID
\(s m s g^{\prime}=s m s g \oplus\{p ? \mapsto\) nullmsg \(\}\)

Receiving proper is considered to be the act of removing the latest message from \(s m s g\). The next schema puts this into symbols.

ReceiveSMsg
\[
\begin{aligned}
& \Xi P T A B \\
& p ?: P I D \\
& m!: M S G \\
& m!=\operatorname{smsg}(p ?)
\end{aligned}
\]

Ideally, when one process is to send a message to another, it should check the state that the destination is in. If the destination is in the psreceiving state, the message can be sent. This is captured by the following definition.

IsDestinationReceiving \(\widehat{=}\)
\(\exists\) st : PSTATE \(\mid\) st \(=\) psreceiving •
ProcState[st/st!]
This definition expands into:
\[
\begin{aligned}
& \text { IsDestinationReceiving } \\
& \Xi P T A B_{S} \\
& p ?: P I D \\
& \text { state }(p ?)=\text { psreceiving }
\end{aligned}
\]

Conversely, when a process wants to receive a message, it should enter the psreceiving state. The following defines this operation.
```

MakeReceiver \widehat{=}
\exists st : PSTATE | st = psreceiving \bullet
SetProcState[st/st?]

```

The schema that results by expansion is the following.
MakeReceiver \(\qquad\)
```

\trianglePTABS
p?: PID
state}\mp@subsup{}{}{\prime}=\mathrm{ state }\oplus{p?\mapsto psreceiving

```

Similarly, if a process wants to send a message, it should enter the pssending state. It might have to wait in this state before it can actually send the message.
```

MakeSender $\widehat{=}$
$\exists$ st : PSTATE $\mid$ st $=$ pssending •
SetProcState[st/st?]

```

This definition expands to form the following schema:
```

MakeSender
\trianglePTAB
p?: PID
state}\mp@subsup{}{}{\prime}=\mathrm{ state }\oplus{p?\mapstopssending

```

The complete operation to send a synchronous message is defined thus:
```

SendASynchMsg $\widehat{=}$
(DestinationExists $\wedge$
((IsDestinationReceiver[dest? $/ p ?] \wedge$
( $\neg$ GotSynchMsg[dest? $/ p ?] \wedge$
SendSynchMsg ^
MakeSender
${ }_{9}\left(\right.$ MakeReady $\left[\right.$ dest $? / p$ ? ${ }_{9}{ }_{9}$ SchedNext $) \wedge$
SysOk)
$\checkmark$ AlreadyHasMsg))
$\checkmark$ DestinationNotReceiving))
$\checkmark$ BadDestination

```

The basic idea is that the destination must be a process that is currently in the system and must be in the receiving state but not have a message assigned to it by \(s m s g\). If this is the case, the sender places the message in \(s m s g\) and sets its state to pssending. It then places the destination on the scheduler's ready queue and calls SchedNext so that a reschedule is performed. The remainder of the operations just set serr! appropriately, depending upon the condition being reported.

This operation contains a reschedule at is core. This will lead to an interesting argument when simplifying this definition.

We now need to expand and simplify this definition. This will be done in pieces.

The composition (MakeReady[dest?/p?] \({ }_{9}\) SchedNext) must be calculated and simplified.

SchedNext \(\widehat{=}\)
```

(IsCurrentProcessIdle $\wedge$
((IsEmptySCHEDQ $\wedge$ ContinueCurrent)
$\vee(S C H E D Q D e q u e u e[p / p!] \wedge$ SetNewCurrentProcess $[p / p ?]$
$\left.\left.\left.{ }_{9} C T X T S W\right) \backslash\{p\}\right)\right)$
$\vee\left(\right.$ IsEmptySCHEDQ $\wedge$ MakeIdleProcessCurrent ${ }_{9}$ CTXTSW)
$\vee((\neg$ CurrentProcessStateIsReadyOrRunning
$\vee$ QueueHdHasHigherPriority) $\wedge$
(SCHEDQHd[hpid/p!] ^
SCHEDQDelHd $\wedge$
SetNewCurrentProcess $[h p i d / p ?]_{\rho}$ CTXTSW $\backslash\{$ hpid $\left.\}\right)$
$\checkmark$ ContinueCurrent

```

We know a priori that the current process is not idle (for otherwise, how could this call have been made?), the first disjunct can be omitted. Equally, we know that the ready queue \((p q)\) cannot be empty if the first component of the composition MakeReady[dest?/p?] \({ }_{9}\) SchedNext succeeds. This permits us to remove the disjunct IsEmptySCHEDQ \(\wedge\) MakeIdleProcessCurrent. We are left, therefore, with
```

\vee ~ ( ( \neg ~ C u r r e n t P r o c e s s S t a t e I s R e a d y O r R u n n i n g ~
\vee QueueHdHasHigherPriority) ^
(SCHEDQHd[hpid/p!]^
SCHEDQDelHd ^
SetNewCurrentProcess[hpid/p?] g CTXTSW)\{hpid})
\checkmark ~ C o n t i n u e C u r r e n t

```

The state of curr is pssending when SchedNext is executed, so it is obvious that \(\neg\) CurrentProcessStateIsReadyOrRunning is satisfied. To see this, consider
\(\neg\) CurrentProcessStateIsReadyOrRunning
\(\Leftrightarrow\) state \((\) curr \() \neq\) psready \(\wedge\) state \((\) curr \() \neq\) psrunning
We have state \((\) curr \()=\) pssending, so, given the last equivalence, we have state \((\) curr \() \neq p\) sready \(\wedge\) state \((\) curr \() \neq\) psrunning \(\wedge\) state \((\) curr \()=\) pssending which is true, so the disjunction
\(\neg\) CurrentProcessStateIsReadyOrRunning \(\vee\) QueueHdHasHigherPriority)
is satisfied; this permits MakeReady[dest?/p?] \({ }_{9}\) SchedNext to be simplified to
MakeReady[dest?/p?]
\({ }_{9}^{\circ}(S C H E D Q H d[h p i d / p!] \wedge\)
SCHEDQDelHd \(\wedge\) SetNewCurrentProcess \([\text { hpid } / p ?]_{9}{ }_{9}\) CTXTSW \() \backslash\{h p i d\}\)
Noting that \({ }_{9} C T X T S W\) can be simplified to \(\wedge C T X T S W\) because it does not affect any variables that occur in the rest of the schema, this composition now expands into

\section*{MakeReady}
\({ }_{9}^{\circ}\)
(\(\exists\) hpid : PID •
hpid \(=\) head sq.pq" \({ }^{\prime \prime} \wedge\)
sq.pq' \(=\) tail sq. \(\cdot q^{\prime \prime} \wedge\)
\(c u r r^{\prime}=h\) pid \(\wedge\) prev \(^{\prime}=c u r r \wedge\)
CTXTSW)
and the existential simplifies to
MakeReady
\({ }_{9}^{9}\)
\[
\left(c^{\prime} r^{\prime}=\text { head sq.pq" } \wedge \text { prev }{ }^{\prime}=\operatorname{curr} \wedge s q \cdot p q^{\prime}=\text { tail sq. } \cdot q^{\prime \prime} \wedge C T X T S W\right)
\]

This composition simplifies to the following predicate:
```

(\#sq.pq< maxs ^
((sq.pq=\langle\rangle^
curr}\mp@subsup{}{}{\prime}=\mathrm{ dest? }<br>wedge prev ' = curr' ' ^sq.pq' = <\rangle^CTXTSW ) \vee
(prio(dest?) \leq prio(head sq.pq)}
curr'}=\mathrm{ dest? }\wedge prev' = curr ^CTXTSW) \vee
(prio(last sq.pq) < prio(dest?)
^urr' = head sq.pq' }\mp@subsup{}{}{\prime\prime}\wedgeprev' = curr ^
sq.pq' = (tail sq.pq) ^ \langledest?\rangle}\ CTXTSW) \vee

```

```

        prio(last s1)<prio(dest?)}
        prio(dest?) \leq prio(head s2)^
        sq.pq'}=(\mathrm{ tail s s )}^\langle\mathrm{ dest? }\rangle^\mp@subsup{s}{2}{}))
    state }\mp@subsup{}{}{\prime}=\mathrm{ state }\oplus{\mathrm{ dest }}\mapsto\mathrm{ psready }}
    curr' = head s 1 ^ prev ' = curr ^
    CTXTSW ^
    serr! = sysok)
    \vee serr! = schedqfull

```

The complete expansion of SendASynchMsg is
```

    SendASynchMsg
    ```
 \(\triangle P T A B\)
 \(\triangle S C H E D\)
 dest? : PID
 \(m\) ? : MSG
 serr! : SYSERR
 \(\exists\) state \({ }^{\prime \prime}:\) PID \(\rightarrow\) PSTATE
 (dest? \(\in\) used \(\wedge\)
 \(((\) state \((\) dest \(?)=p\) sreceiving \(\wedge\)
 \(((s m s g(\) dest \(?)=\) nullmsg \(\wedge\)
 \(s m s g^{\prime}=s m s g \oplus\{\) dest \(? \mapsto m ?\} \wedge\)
```

        state }\mp@subsup{}{}{\prime\prime}=\mathrm{ state }\oplus{p?\mapsto\mathrm{ pssending }}
        (#sq.pq< maxs ^
            ((sq.pq = <\rangle^
    ```

```

                        ^CTXTSW)\vee
                (prio(dest?) \leq prio(head sq.pq) ^
    ```

```

                (prio(last sq.pq)< prio(dest?)
                        curr}\mp@subsup{}{}{\prime}=\mathrm{ head sq.pq" }^\mp@subsup{prev}{}{\prime}=\operatorname{curr}
                        sq.pq' = (tail sq.pq)}\frown\langle\mathrm{ dest? }\rangle\wedgeCTXTSW
            \vee (\exists\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}: seq PID |
                s
            prio}(\mathrm{ last s1 ) < prio(dest?) }
                prio(dest?) \leqprio(head s2) ^
                sq.pq'}=(\mathrm{ tail s1)}\frown\langle\mathrm{ dest? }\rangle\frown\mp@subsup{s}{2}{}))
            state}\mp@subsup{}{}{\prime}=\mathrm{ state }\oplus{\mathrm{ dest? }\mapsto\mathrm{ psready }}
            curr'}=\mathrm{ head s 1 ^ prev' = curr ^
            CTXTSW ^
            serr! = sysok)
            verr! = schedqfull
            serr! = sysok)
            serr! = procalreadyhasmsg))
    serr! = destinationnotrcving))
    \vee serr! = badmsgdestination

```

It is easy to see how this can be re-arranged as follows SendASynchMsg
```

\trianglePTAB
\triangleSCHED
dest?: PID
m? : MSG
serr! : SYSERR
(dest? ) used }
((state (dest?) = psreceiving ^
((smsg(dest?) = nullmsg ^
((sq.pq = <\rangle^curr' = dest? }
state}\mp@subsup{}{}{\prime}=\mathrm{ state }\oplus{p?\mapstopssending,dest?\mapsto psrunning}
\vee ((\#sq.pq < maxs ^
\vee ~ ( p r i o ~ ( d e s t ? ) ~ \leq ~ p r i o ( h e a d ~ s q . p q ) ~ \ ~ c u r r ' ~ = ~ d e s t ? ~ \ ~ \ ~
state}\mp@subsup{}{}{\prime}=\mathrm{ state }\oplus{p?\mapstopssending,dest? \mapsto psrunning }

```
```

                \vee ( \text { prio(last sq.pq)< prio(dest?)} \wedge
            curr' = head sq.pq ^
            sq.pq' = (tail sq.pq)}\mp@subsup{)}{}{\}\langle\mathrm{ dest?}\rangle\wedge
            state}\mp@subsup{}{}{\prime}=\mathrm{ state }\oplus{p?\mapstopssending, dest? \mapsto psready }
    ```

```

            prio(last s1)<prio(dest?)}
            prio(dest?) \leq prio(head s2)}
    ```

```

            curr' = head s1)^
            prev}\mp@subsup{}{}{\prime}=\mathrm{ curr }
            CTXTSW ^
                    serr! = sysok)
            \vee serr! = schedqfull))
        verr! = procalreadyhasmsg))
    \vee serr! = destinationnotrcving))
    \vee ser! = badmsgdestination)

```

The precondition can now be seen to be
pre SendASynchMsg \(\widehat{=}\)
dest \(? \in\) used \(\wedge\)
state \((\) dest \(?)=\) psreceiving
However, dest? \(\in\) used is an implicit precondition provided by PTAB's invariant. It can, if required, be omitted.

We now turn our attention to the top-level message reception operation.
First, we define a simple operation that actually receives a message.
RcvSynchMsg \(\widehat{=}\)
\((\) GotSynchMsg \(\wedge\) ReceiveMsg \(\wedge\) ClrSynchMsgSlot \(\wedge\) SysOk \()\)
\(\checkmark\) NullMsg Value
The definition expands into
RcvSynchMsg
\(\triangle P T A B\)
\(p\) ? : PID
\(m!: M S G\)
```

$(\operatorname{smsg}(p ?) \neq$ nullmsg $\wedge$
$m!=\operatorname{smsg}(p ?) \wedge$
$s m s g^{\prime}=s m s g \oplus\{p ? \mapsto$ nullmsg $\} \wedge$
serr $!=$ sysok)
$\vee m!=$ nullmsg

```

Next, the full top-level operation is defined. This operation, like the sendmessage operation, includes a reschedule. The presence of the reschedule (i.e., the SchedNext schema) complicates the expansion of the operation, just as it did for the send-message operation.
```

ReceiveSynchMsg $\widehat{=}$
MakeReceiver
${ }_{9}$ SchedNext
${ }_{9}($ RcvSynchMsg $\wedge$
( (IsSysOk $\wedge$
$(\exists s: \operatorname{PID} \mid s=\operatorname{msgsrc}(m!) \bullet$
MakeReady $[s / p ?]) \wedge$
SysOk)
$\checkmark$ NullMsgValue)

```

The definition expands into
ReceiveSynchMsg
\(\triangle\) SCHED
\(\triangle P T A B\)
\(m\) ! : MSG
serr! : SYSERR
\(\exists\) state \(^{\prime \prime}: P I D \longrightarrow\) PSTATE; sq.pq" \({ }^{\prime \prime}: \operatorname{seq}\) PID
state \(^{\prime \prime}=\) state \(\oplus\{p ? \mapsto\) psreceiving \(\}\)
9
(curr \(=\) iprc \(\wedge\)
\(\left(\left(s q \cdot p q^{\prime \prime}=\langle \rangle \wedge\right.\right.\) curr \(^{\prime}=\) curr \(\wedge\) prev \(^{\prime}=\) prev \()\)
\(\vee\left(\right.\) curr \(^{\prime}=\) head sq.pq \(\wedge\) prev \(^{\prime}=\) curr \(_{9}\) CTXTSW \(\left.)\right)\))
\(\vee\left(s q \cdot p q=\langle \rangle \wedge\right.\) prev \(^{\prime}=\) curr \(\wedge\) curr \(^{\prime}=\) iprc \(_{9}\) CTXTS \(\left.W\right)\)
\(\vee((\) state \((\) curr \() \neq\) psready \(\wedge\) state \((\) curr \() \neq\) psrunning
\(\vee\) prio(head sq.pq) < prio(curr)) \(\wedge\)
\(s q . p q^{\prime \prime}=\) tail \(s q \cdot p q \wedge\)
curr \(^{\prime}=\) head sq.pq \(\wedge\)
prev \({ }^{\prime}=\) curr
\({ }_{9}\) CTXTSW)
\(\vee\left(\text { curr }^{\prime}=\operatorname{curr} \wedge \text { prev }^{\prime}=p r e v\right)_{9}^{9}\)
\(((\operatorname{smsg}(p ?) \neq\) nullmsg \(\wedge\)
\(m!=\operatorname{smsg}(p ?) \wedge\)
\(s m s g^{\prime}=s m s g \oplus\{p ? \mapsto\) nullmsg \(\} \wedge\)
serr! \(=\) sysok \()\)
\(\vee(m!=\) nullmsg \(\wedge \operatorname{serr}!=\) nomsg \())\)
```

$\wedge$ serr! $=$ sysok
$\wedge \exists s: P I D \mid s=m \operatorname{sgsrc}(m!) \bullet$
state $^{\prime}=$ state $^{\prime \prime} \oplus\{s \mapsto$ psready $\} \wedge$
(\#sq.pq < maxs $\wedge$
$\left(\left(s q \cdot p q^{\prime \prime}=\langle \rangle \wedge s q \cdot p q^{\prime}=\langle s\rangle\right) \vee\right.$
$\left(\right.$ prio $(s) \leq$ prio $($ head sq.pq" $\left.) \wedge s q \cdot p q^{\prime}=\langle s\rangle \frown s q \cdot p q^{\prime \prime}\right) \vee$
(prio (last sq.pq") $\left.\operatorname{prio}^{\prime \prime}(s) \wedge s q \cdot p q^{\prime}=s q \cdot p q^{\prime \prime} \frown\langle s\rangle\right) \vee$
$\left(\exists s_{1}, s_{2}:\right.$ seq PID $\mid s_{1} \neq\langle \rangle \wedge s_{2} \neq\langle \rangle \wedge s_{1} \cap s_{2}=s q \cdot p q^{\prime \prime} \bullet$
prio $\left(\right.$ last $\left.s_{1}\right)<\operatorname{prio}(s) \wedge$
$\operatorname{prio}(s) \leq \operatorname{prio}\left(\right.$ head $\left.s_{2}\right) \wedge$
$\left.\left.s q \cdot p q^{\prime}=s_{1} \frown\langle s\rangle \frown s_{2}\right)\right) \wedge$
serr $!=$ sysok $)$
$\vee$ serr $!=$ schedqfull
$\wedge$ serr $!=$ sysok $\vee$ serr $!=$ nomsg

```

We now turn to the simplification of this schema.
It should be clear that the caller, \(p\) ?, is always the current process, curr, so curr \(=p\) ?. It is also clear that state \((\) curr \()=\) psrunning. However, it is not known a priori whether the scheduler's ready queue is empty or not. Given that the predicate can be written as
```

state $^{\prime \prime}=$ state $\oplus\{p ? \mapsto$ psreceiving $\}$
${ }_{9}$ SchedNext
${ }_{9}(((\operatorname{smsg}(p ?) \neq$ nullmsg $\wedge$
$m!=\operatorname{smsg}(p ?) \wedge$
smsg ${ }^{\prime}=s m s g \oplus\{p ? \mapsto$ nullmsg $\} \wedge$
serr! $=$ sysok)
$\vee$ serr $!=$ nomsg $\wedge m!=$ nullmsg $)$
$\wedge(($ serr $!=$ sysok $\wedge$
$(\exists s: \operatorname{PID} \mid s=\operatorname{msgsrc}(p ?) \bullet$ MakeReady $[s / p ?]) \wedge$
serr! $=$ sysok)
$\vee$ serr $!=n o m s g)$

```

Since it is known that the current process is not the idle process, the first disjunct of SchedNext can be omitted, leaving
(IsEmptySCHEDQ \(\wedge\) MakeIdleProcessCurrent \({ }_{9}\) CTXTSW)
\(\vee((\neg\) CurrentProcessStateIsReadyOrRunning
\(\vee\) QueueHdHasHigherPriority) \(\wedge\)
(SCHEDQHd[hpid/p!] ^
SCHEDQDelHd \(\wedge\)
SetNewCurrentProcess[hpid/p?]
\(\left.\left.{ }_{9}{ }_{9} C T X T S W\right) \backslash\{h p i d\}\right)\)
\(\checkmark\) ContinueCurrent

When the message-receiving operation is called, the state of curr must be psrunning and CurrentProcessStateIsReadyOrRunning is defined as
state \((\) curr \()=\) psready \(\vee\) state \((\) curr \()=\) psrunning
so \(\neg\) CurrentProcessStateIsReadyOrRunning is
state \((\) curr \() \neq\) psready \(\wedge\) state \((\) curr \() \neq\) psrunning
so the current process' state satisfies this condition, so the remaining guard need not be attempted.

The predicate of SchedNext can now be simplified to
```

(IsEmptySCHEDQ ^ MakeIdleProcessCurrent g CTXTSW)
\vee (SCHEDQHd[hpid/p!]^
SCHEDQDelHd ^
SetNewCurrentProcess[hpid/p?] g}\mp@subsup{}{9}{CTXTSW)\{hpid}

```

It can be further simplified: the update of prev can be factored out using \((p \wedge q) \vee(r \wedge q) \Rightarrow(p \vee r) \wedge q\) to yield
```

(((sq.pq = <\rangle^curr' = iprc)
\vee ( s q . p q ^ { \prime \prime } = tail sq.pq^
curr'" = head pq)) ^
prev"}=\mp@subsup{c}{}{\prime\prime
CTXTSW)

```

The sequential composition of \(C T X T S W\) can be reduced to conjunction, as noted many times above, and can also be moved to the end. The movement can be justified by the same theorem as above. Note that this predicate is part of a sequential composition, so its after-state must be doubly primed.

The existential \(\exists s: P I D \mid s=m s g s r c(m!) \bullet\) MakeReady \([s / p\) ?] simplifies as follows. First, the existential formula expands into the following. (It must be remembered that the before state of this schema is the intermediate state of a sequential composition.)
```

MakeReady[s/p?]
\trianglePRIOQ
p?: PID
serr! : SYSERR
state }\mp@subsup{}{}{\prime}=\mathrm{ state }\oplus{s\mapstopsready
(\#sq.pq" < maxs ^
((sq.p\mp@subsup{q}{}{\prime\prime}=\langle\rangle\wedgesq.p\mp@subsup{q}{}{\prime}=\langles\rangle)\vee
(prio(s)\leqprio(head sq.pq")})\wedgesq.p\mp@subsup{q}{}{\prime}=\langles\rangle^sq.p\mp@subsup{q}{}{\prime\prime})
(prio(last sq.pq')})<\mathrm{ prio(s)^sq.pq' = sq.pq"'^}<br>langles\rangle)
(\exists\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}:\operatorname{seq}PID|}\mp@subsup{s}{1}{}\not=\langle\rangle\wedge\mp@subsup{s}{2}{}\not=\langle\rangle\wedge\mp@subsup{s}{1}{}\cap\mp@subsup{s}{2}{}=sq\cdotp\mp@subsup{q}{}{\prime\prime}
prio(last s1)<prio(s)^
prio(s)\leqprio(head s2)}

```
```

    \(\left.\left.s q \cdot p q^{\prime}=s_{1} \frown\langle s\rangle \smile s_{2}\right)\right) \wedge\)
    serr! \(=\) sysok)
    $\vee$ serr $!=$ schedqfull

```

Using the one-point rule to substitute \(m s g s r c(m!)\) for \(s\), the predicate becomes
```

state}\mp@subsup{}{}{\prime}=\mathrm{ state }\oplus{\operatorname{msgsrc}(m!)\mapstopsready
(\#sq.pq" < maxs ^

```
```

    \(\left(\left(s q \cdot p q^{\prime \prime}=\langle \rangle \wedge s q \cdot p q^{\prime}=\langle\operatorname{msgsrc}(m!)\rangle\right) \vee\right.\)
    ```
 \(\left(\left(s q \cdot p q^{\prime \prime}=\langle \rangle \wedge s q \cdot p q^{\prime}=\langle\operatorname{msgsrc}(m!)\rangle\right) \vee\right.\)
 \((\operatorname{prio}(m s g s r c(m!)) \leq \operatorname{prio}(\) head sq.pq" \() \wedge\)
 \((\operatorname{prio}(m s g s r c(m!)) \leq \operatorname{prio}(\) head sq.pq" \() \wedge\)
 \(\left.s q \cdot p q^{\prime}=\langle m s g s r c(m!)\rangle \frown s q \cdot p q^{\prime \prime}\right) \vee\)
 \(\left.s q \cdot p q^{\prime}=\langle m s g s r c(m!)\rangle \frown s q \cdot p q^{\prime \prime}\right) \vee\)
 \((\) prio \((\) last sq.pq" \()<\operatorname{prio}(\operatorname{msgsrc}(m!)) \wedge\)
 \((\) prio \((\) last sq.pq" \()<\operatorname{prio}(\operatorname{msgsrc}(m!)) \wedge\)
 \(\left.s q \cdot p q^{\prime}=s q \cdot p q^{\prime \prime} \frown\langle\operatorname{msgsrc}(m!)\rangle\right)\)
 \(\left.s q \cdot p q^{\prime}=s q \cdot p q^{\prime \prime} \frown\langle\operatorname{msgsrc}(m!)\rangle\right)\)
 \(\vee\left(\exists s_{1}, s_{2}\right.\) : seq PID \(\mid s_{1} \neq\langle \rangle \wedge s_{2} \neq\langle \rangle \wedge s_{1} \frown s_{2}=s q \cdot p q^{\prime \prime} \bullet\)
 \(\vee\left(\exists s_{1}, s_{2}\right.\) : seq PID \(\mid s_{1} \neq\langle \rangle \wedge s_{2} \neq\langle \rangle \wedge s_{1} \frown s_{2}=s q \cdot p q^{\prime \prime} \bullet\)
 prio \(\left(\right.\) last \(\left.s_{1}\right)<\operatorname{prio}(\operatorname{msgsrc}(m!)) \wedge\)
 prio \(\left(\right.\) last \(\left.s_{1}\right)<\operatorname{prio}(\operatorname{msgsrc}(m!)) \wedge\)
 \(\operatorname{prio}(\operatorname{msgsrc}(m!)) \leq \operatorname{prio}\left(\right.\) head \(\left.s_{2}\right) \wedge\)
 \(\operatorname{prio}(\operatorname{msgsrc}(m!)) \leq \operatorname{prio}\left(\right.\) head \(\left.s_{2}\right) \wedge\)
 \(\left.\left.s q . p q^{\prime}=s_{1} \frown\langle\operatorname{msgsrc}(m!)\rangle{ }^{\wedge} 2\right)\right) \wedge\)
 \(\left.\left.s q . p q^{\prime}=s_{1} \frown\langle\operatorname{msgsrc}(m!)\rangle{ }^{\wedge} 2\right)\right) \wedge\)
 serr \(!=\) sysok)
 serr \(!=\) sysok)
\(\vee\) serr! \(=\) schedqfull
```

$\vee$ serr! $=$ schedqfull

```

The ReceiveSynchMsg operation can now be considerably simplified. This yields the following schema:

ReceiveSynchMsg \(\qquad\)
\(\triangle S C H E D\)
\(\triangle P T A B\)
\(m\) ! : MSG
serr! : SYSERR
```

((smsg (curr) $\neq$ nullmsg $\wedge$
$m!=\operatorname{smsg}(c u r r) \wedge$
smsg ${ }^{\prime}=s m s g \oplus\{$ curr $\mapsto$ nullmsg $\} \wedge$
state $^{\prime}=($ state $\oplus\{$ curr $\mapsto$ psreceiving $\}) \oplus\{$ msgsrc $(m!) \mapsto p s r e a d y\} \wedge$
$\left(\left(s q . p q=\langle \rangle \wedge c u r r^{\prime}=i p r c \wedge s q . p q^{\prime}=\langle\operatorname{msgsrc}(m!)\rangle \wedge C T X T S W\right)\right.$
$\vee[(\# s q . p q \leq$ maxs $\wedge$
(curr ${ }^{\prime}=$ head sq.pq $\wedge$
prev $^{\prime}=$ curr $\wedge$
$(($ prio $(\operatorname{msgsrc}(m!)) \leq \operatorname{prio}($ head tail sq.pq $) \wedge$
$s q \cdot p q^{\prime}=\langle\operatorname{msgsrc}(m!)\rangle{ }^{\text {tail sq.pq })}$
$\vee($ prio(last sq.pq) $<\operatorname{prio}(\operatorname{msgsrc}(m!)) \wedge$
$s q \cdot p q^{\prime}=$ tail sq.pq $\left.\cap\langle\operatorname{msgsrc}(m!)\rangle\right)$
$\vee\left(\exists s_{1}, s_{2}: \operatorname{seq} P I D \mid s_{1} \neq\langle \rangle \wedge s_{2} \neq\langle \rangle \wedge s_{1} \frown s_{2}=s q . p q \bullet\right.$
prio $\left(\right.$ last $\left.s_{1}\right)<\operatorname{prio}(\operatorname{msgsrc}(m!)) \wedge$
$\operatorname{prio}(\operatorname{msgsrc}(m!)) \leq \operatorname{prio}\left(\right.$ head $\left.s_{2}\right) \wedge$
$\left.\left.s_{1} \frown\langle\operatorname{mgsgrc}(m!)\rangle \frown s_{2}=s q . p q^{\prime}\right)\right) \wedge$

```
```

        CTXTSW ^
        serr! = sysok))
    \vee serr! = schedqfull]))
\vee serr! = nomsg

```

The precondition is immediately
```

pre ReceiveSynchMsg \widehat{=}

```
 \(\operatorname{smsg}(p ?) \neq\) nullmsg

To justify this, it is noted that the first disjunct simplifies to \(\operatorname{smsg}(\operatorname{curr}) \neq\) nullmsg. Similarly, sq.sq.pq \(=\langle \rangle \wedge\) curr \(r^{\prime}=\) iprc \(\wedge s q \cdot p q^{\prime}=\langle\operatorname{msgsrc}(m!)\rangle \wedge\) CTXTSW simplifies to sq.sq.pq \(=\langle \rangle \wedge\) true \(\wedge\) true \(\wedge\) intno \(^{\prime}=\) context_switch, so it finally reduces to sq.sq.pq \(=\langle \rangle\). Given this, the remainder of the simplification is as follows:
```

$\operatorname{smsg}(p ?) \neq$ nullmsg $\wedge s q \cdot p q=\langle \rangle$
$\vee(\# s q \cdot p q \leq \operatorname{maxs} \wedge$
$($ prio $(\operatorname{msgsrc}(m!)) \leq \operatorname{prio}($ head tail sq.pq $)$
$\vee \operatorname{prio}(l a s t ~ s q . p q)<\operatorname{prio}(\operatorname{msgsrc}(m!))$
$\vee\left(\exists s_{1}, s_{2}: \operatorname{seq} P I D \mid s_{1} \neq\langle \rangle \wedge s_{2} \neq\langle \rangle \wedge s_{1} \frown s_{2}=s q \cdot p q \bullet\right.$
$\operatorname{prio}\left(\right.$ last $\left.s_{1}\right)<\operatorname{prio}(\operatorname{msgsrc}(m!)) \wedge$
$\operatorname{prio}(\operatorname{msgsrc}(m!)) \leq \operatorname{prio}\left(\right.$ head $\left.\left.\left.\left.s_{2}\right)\right)\right)\right)$

```

Now, from
\[
\begin{aligned}
& (\text { prio }(\text { msgsrc }(m!)) \leq \text { prio }(\text { head tail sq.pq }) \\
& \vee(\text { prio }(\text { last sq.pq })<\text { prio }(\text { msgsrc }(m!))) \\
& \vee\left(\exists s_{1}, s_{2}: \text { seq PID } \mid s_{1} \neq\langle \rangle \wedge s_{2} \neq\langle \rangle \wedge s_{1} \curvearrowright s_{2}=s q . p q \bullet\right. \\
& \quad \text { prio }\left(\text { last } s_{1}\right)<\text { prio }(\text { msgsrc }(m!)) \wedge \\
& \quad \text { prio }(\text { msgsrc }(m!)) \leq \text { prio }\left(\text { head } s_{2}\right)
\end{aligned}
\]
it can be inferred that \(\operatorname{prio}(\operatorname{msgsrc}(m!)) \in P P R I O\). This is true, so all that remains is
\[
\operatorname{smsg}(p ?) \neq \text { nullmsg } \wedge s q \cdot p q=\langle \rangle \vee \# s q \cdot p q \leq \operatorname{maxs}
\]

The disjunction \(s q \cdot p q=\langle \rangle \wedge \# s q \cdot p q \leq\) maxs imply \(s q \cdot p q=\langle \rangle \vee s q \cdot p q \neq\langle \rangle\), so we are left with \(\operatorname{smsg}(p ?) \neq\) nullmsg, which is our precondition.

\subsection*{3.9.3 Refinement One}

This is the first of two refinments. It is concerned with the refinement of the scheduler's structures and the process table. The second refinement concerns the refinement of \(P T A B 1\) to \(P T A B 2\).

In a sense, all refinements are trivial because, once more, the abstration relation is a set of identities. Furthermore, the operations in this section are defined in terms of promotions that are embedded in operations over PTAB. However, we present the refinement (making use of promotion and of the existing refinements of \(P T A B\)) just to convince ourselves that the refinement really does work and in an attempt to convince the reader of the correctness of the development.

The contents of this subsection mirror that of the last. For this reason, we will not comment as much.
```

DestinationExists1
\XiPTAB1
dest?: PID
dest? \& dom freech

```
\(\qquad\)
```

MakeReceiver $1 \widehat{=}$
$\exists s t: P S T A T E \mid s t=p s r e c e i v i n g \bullet$
SetProcState1[st/st?]
MakeSender $1 \widehat{=}$
$\exists$ st : PSTATE $\mid$ st $=$ pssending •
SetProcState1[st/st?]

```
 IsDestinationReceiving1
 \(\Xi P T A B 1\)
 \(p\) ? : PID
 state \(1(p ?)=\) psreceiving
GotSynchMsg1
\(\Xi\) ITAB1
\(p\) ? : PID
\(\operatorname{smsg} 1(p ?) \neq\) nullmsg

ClrSynchMsgSlot1 \(\qquad\)
\(\triangle P T A B 1\)
\(p\) ? : PID
 smsg1 \(1^{\prime}=\operatorname{smgs} 1 \oplus\{p ? \mapsto\) nullmsg \(\}\)

Partly out of interest and partly to see whether any simplifications can be performed (which they can), the major operations are fully expanded (and simplified). However, as noted above, there is little that can usefully be done in the refinement process for reasons given above.
```

SendASynchMsg1 \widehat{=}
(DestinationExists 1 ^
((IsDestinationReceiver1[dest?/p?] ^
((\negGotSynchMsg1[dest?/p?] ^
SendSynchMsg1 ^
MakeSender1
%(MakeReady[dest?/p?] % SchedNext) ^
SysOk)
\vee AlreadyHasMsg))
\vee DestinationNotReceiving))
\checkmark ~ B a d D e s t i n a t i o n ~

```

Immediately, we are in a position to prove the following theorems. The proofs are quite straightforward but are omitted because of their length.

\section*{Theorem 45.}
```

\forallPTAB; PTAB1; SCHED; dest? : PID; m?:MSG \bullet
pre SendASynchMsg ^ AbsPTAB1 => pre SendASynchMsg1

```

Proof. Omitted.
Theorem 46.
```

\forall PTAB; PTAB'; PTAB1; PTAB1'; SCHED;
dest?: PID; m?:MSG; serr! : SYSERR\bullet
pre SendASynchMsg
\wedge AbsPTAB1
^AbsPRIOQ1
\wedge SendASynchMsg1
=> SendASyncMsg1

```

Proof. Omitted.
The first-level refinement of the receive operation is defined as:
ReceiveSynchMsg \(\widehat{=}\)
MakeReceiver 1
\({ }_{9}\) SchedNext
\({ }_{9}(\) RcvSynchMsg \(1 \wedge\)
((IsSysOk \(\wedge\)
\((\exists s: P I D \mid s=m s g s r c(m!) \bullet\)
MakeReady[s/p?]) ^
SysOk)
\(\checkmark\) NullMsgValue)

\subsection*{3.9.4 Refinement Two}

The second-level refinements can be derived with ease.
```

SendASynchMsg2 $\widehat{=}$
(DestinationExists $2 \wedge$
((IsDestinationReceiver $2[$ dest? $/ p$ ?] $\wedge$
( $\neg$ GotSynchMsg1[dest? $/ p ?] \wedge$
SendSynchMsg1 $\wedge$
MakeSender2
${ }_{9}\left(\right.$ MakeReady $\left[\right.$ dest? $/ p$ ? ${ }_{9}$ SchedNext) $\wedge$
SysOk)
$\checkmark$ AlreadyHasMsg))
$\checkmark$ DestinationNotReceiving))
$\checkmark$ BadDestination

```
and
ReceiveSynchMsg2 \(\widehat{=}\)
 MakeReceiver 2
 \({ }_{9}\) SchedNext
 \({ }_{9}(\) RcvSynchMsg \(2 \wedge\)
 ((IsSysOk \(\wedge\)
 \((\exists s: P I D \mid s=m s g s r c(m!) \bullet\)
 MakeReady[s/p?]) \(\wedge\)
 SysOk)
 \(\vee\) NullMsgValue)

Although it is not entirely clear from the schemata in this section, the constructs derived here can now be translated directly into executable code. The reason that matters are not clear is that the operations are defined in terms of a mixture of existing schemata (e.g., the scheduler and the process table) and new ones. However, the claim that an implementation is the next step can be readily verified.

\subsection*{3.10 The Clock}

This section contains the specification of the real-time clock. The clock is used by processes to determine the current time. It is also used to determine how long processes have slept and when to wake them.

The time between clock ticks is denoted by the following constant
```

ticklength: TIME

```

On some machines, this will be 100 ms , on others it will be another value.

The error schema is the following. It denotes the fact that a process is requesting a 0 sleep time.

Sleep TooShort
err! : SYSERR
err \(!=\) sleeptimetooshort
This is the basic clock. It just contains the time since the system was booted in multiples of ticklength seconds.

TIMESINCEBOOT \(\qquad\)
tnow : TIME

Clearly, when the system starts, the time is 0 .
TIMESINCEBOOTInit \(\qquad\)
TIMESINCEBOOT \({ }^{\prime}\)
tnow \(^{\prime}=0\)
The clock is updated every time the hardware clock interrupts the processor. The hardware clock interrupts every ticklength seconds, so on every interrupt, the software clock is updated as follows.

UpdateTIMESINCEBOOT \(\qquad\)
\(\triangle\) TIMESINCEBOOT
tnow \({ }^{\prime}=\) tnow + ticklength

To find out what the current time is, the following schema is used:
TimeNow \(\qquad\)
ETIMESINCEBOOT
tn! : TIME
\(t n!=t n o w\)
| tickspersec: \(\mathbb{N}\)
Unfortunately, people want the time in seconds, minutes and hours. The following schema defines the variables used to record the time in humanoriented units.
```

CLOCKTIME
secs, mins, hrs : TIME
$0 \leq$ secs $<60$
$0 \leq$ mins $<60$

```
\(\qquad\)

Note that the invariant merely states the moduli for seconds and minutes. We consider it unnecessary to include days; they could be added, should the reader wish.

The clock time is initialised in the obvious manner.
CLOCKTIMEInit \(\qquad\)
CLOCKTIME'
\(\operatorname{secs}{ }^{\prime}=0\)
mins \(^{\prime}=0\)
\(h r s^{\prime}=0\)

On every hardware interrupt, the time since boot is incremented. At the same time, the human-readable time is also updated when there have been enough interrupts since the last one. This is the purpose of tickspersec-after tickspersec interrupts, the seconds counter is incremented by one, possibly causing the other counters to be updated.

UpdateClockTime \(\qquad\)
\(\triangle\) CLOCKTIME
t? : TIME
```

$((t ? \bmod$ tickspersec $=0) \wedge$
( $($ secs $+1 \bmod 60=0 \wedge$
secs ${ }^{\prime}=0 \wedge$
$((\operatorname{mins}+1 \bmod 60=0 \wedge$
mins $^{\prime}=0 \wedge$
$\left.h r s^{\prime}=h r s+1\right)$
$\vee$ mins $\left.\left.^{\prime}=\operatorname{mins}+1\right)\right)$
$\left.\left.\vee \operatorname{secs}^{\prime}=\operatorname{secs}+1\right)\right)$

```

To find out what the human-readable time is since boot, use the following operation:
```

ClocktimeNow
\Xi CLOCKTIME
s!,m!,h!:TIME
s! = secs
m! = mins
h!=hrs

```

It is now necessary to consider the operations required by the sleep timer.
When a process requests a period of sleep, it also specifies the period through which it will sleep. The period is specified in seconds and is added to the current time to produce the time at which the process is to be awakened. This is what the following schema does. The variable \(t n\) ? denotes the time
now, stm? is the length to time the process wants to remain asleep and cst! is the computed sleep time - i.e., the time at which the process should be returned to the ready queue. The time is expressed in seconds since boot.

CorrectWakeTime \(\qquad\)
tn? TIME
stm? : TIME
cst! : TIME
\(s t m ?+t n ?=c s t!\)
The above operation requires the current time (in units since boot time) and the following composition defines the required operation:

ComputeWakeTime \(\widehat{=}\)
\((\) TimeNow \([t n / t n!] \wedge\) CorrectWakeTime \([t n / t n ?]) \backslash\{t n\}\)
This expands and simplifies into:
Compute WakeTime
ETIMESINCEBOOT
stm? : TIME
cst! : TIME
\(s t m ?+\) tnow \(=c s t!\)

The schemata defined in this section can be translated directly into executable code. In the present case, there is no refinement because the state schema contains only simple variables.

\subsection*{3.11 Sleepers}

We need a conception of time. For the purposes of this specification, the following suffices:

\section*{TIME \(\widehat{=} \mathbb{N}\)}
(It was defined at the start of this chapter.)
We also need an extension of \(P T A B\) :
PTAB \(\qquad\)
PTAB
!
wakingtime : PID \(\rightarrow\) TIME
\(\vdots\)
```

:
dom wakingtime = dom prio
\vdots

```

The reader is reminded of the convention that a process without a waking time has a zero as the value of wakingtime. That is, if \(p\) is a process that is not sleeping, waketime \((p)=0\).

The wakingtime function must be refined along with the remainder of \(P T A B\), it should be noted. This refinement can be omitted for the reason that wakingtime has exactly the same form as prio.

The following \(P T A B\) schemata are also required.
SetWaitingTime \(\qquad\)
\(\triangle P T A B\)
\(p\) ? : PID
t? : TIME
wakingtime \(^{\prime}=\) wakingtime \(\oplus\{p ? \mapsto t ?\}\)

In order to arrive at a valid waiting time, the actual time, \(t_{a}\), is added to the time \(t_{r}\), requested by process, \(p\) ?. When defining the ISR, this will be taken into account. Furthermore, a value of \(t_{r}=0\) will be considered invalid.

WaitingTime \(\qquad\)
\(\Xi P T A B\)
\(p\) ? : PID
t! : TIME
\(t!=\) wakingtime \((p ?)\)

The waiting (waking) time must be cleared when a process is awakened (i.e., returned to the scheduler's ready queue). The following schema defines this operation:
_ ClearWaitingTime \(\qquad\)
\(\triangle P T A B\)
\(p\) ? : PID
\(\exists t:\) TIME \(\mid t=0 \bullet\) wakingtime \({ }^{\prime}=\) wakingtime \(\oplus\{p ? \mapsto t\}\)

The predicate of this schema simplifies to wakingtime \({ }^{\prime}=\) wakingtime \(\oplus\{p ? \mapsto\) \(0\}\).

We need a way to determine whether a process is sleeping. This will be used when determining whether a sleep request can be honoured.

IsProcessSleeping
\(\Xi P T A B\)
\(p\) ? : PID
wakingtime \((p\) ? \()>0\)

The relevant error schemata are as follows.
TooManySleepers \(\qquad\)
serr! : SYSERR
serr \(!=\) toomanysleepers

There are too many processes in the system that are asleep.
AlreadyAsleep
serr! : SYSERR
serr! = alreadyasleep

The process requesting a sleep period is already recorded as being asleep. (Has someone hacked in?)

\subsection*{3.11.1 Top Level}

We can proceed to the top-level specification of the sleep module. The specification is contained in this subsection.

This is another case in which we require \(P T A B\) to be included in a the state schema.

SLEEPERS \(\qquad\)
PTAB
slps \(: \mathbb{F}\) PID
maxslps : \(\mathbb{N}_{1}\)
```

slps \subset used
\forallp:PID \bullet
p\in slps }=>\mathrm{ state ( }p)=\mathrm{ pssleeping
\forallp:PID \bullet
p\in slps }=>\mathrm{ wakingtime (p)>0
\forallp:PID \bullet

```


The correctness of the final universal can be seen when it is considered that not all processes in used are asleep at any given time but all processes that are asleep are in used. We will need to prove the following.

Theorem 47. If \(p \in \operatorname{slps}\), then \(p \in\) used.
The initialisation operation is the obvious one:
SLEEPERSInit \(\qquad\)
SLEEPERS'
smax?: \(\mathbb{N}_{1}\)
\(s l p s^{\prime}=\varnothing\)
maxslps \({ }^{\prime}=s m a x\) ?

The following is a predicate that is true iff there are currently processes that are asleep.

GotSleepers
ESLEEPERS
\(s l p s \neq \varnothing\)

The following is a predicate that is true iff the process \(p\) ? is currently asleep (i.e., an element of slps).
```

    IsAsleep
    ESLEEPERS
    p?: PID
    p?\in slps
    ```

The variable maxslps is the maximum number of process identifiers that can be in slps-i.e., it is the maximum cardinality for slps. A sleeper can be added if \#slps is strictly less than the maximum size which it can attain.

CanAddSleeper \(\qquad\)
ESLEEPERS
\#slps < maxslps

The operation to add a sleeper, \(p\) ?, to the sleepers set, \(s l p s\), is specified by the following schema. It is the obvious operation, given the definitions.

AddSleeperProc \(\qquad\)
\(\triangle\) SLEEPERS
\(p\) ? : PID
\(s l p s^{\prime}=s l p s \cup\{p ?\}\)

To define the first main operation, it is necessary to define two new operations on PTAB.

SetWaitingTime
```

\trianglePTAB
p?: PID
t?: TIME
wakingtime'}=\mathrm{ wakingtime }\oplus{p?\mapstot?

```

SetStateToSleeping
\(\triangle P T A B\)
\(p\) ? : PID
state \(^{\prime}=\) state \(\oplus\{p ? \mapsto\) pssleeping \(\}\)

The operation to add a sleeper process is defined by
```

AddSleeper \widehat{=}
(IsAsleep ^ AlreadyAsleep)
\checkmark ~ ( C a n A d d S l e e p e r ~ \wedge ~
AddSleeperProc ^
SetWaitingTime ^
SysOk)
\checkmark ~ T o o M a n y S l e e p e r s ~

```
(Note that the operation represented by this schema requires a reschedule after use.) The definition expands into the following schema:

AddSleeper \(\qquad\)
\(\Delta\) SLEEPERS
\(\triangle S C H E D\)
p? : PID
t? : TIME
serr! : SYSERR
\((p ? \in \operatorname{slps} \wedge\) serr \(!=\) alreadyasleep \()\)
\(\vee(\#\) slps \(<\) maxslps \(\wedge\)
\(s l p s^{\prime}=s l p s \cup\{p ?\} \wedge\)
wakingtime \({ }^{\prime}=\) wakingtime \(\oplus\{p ? \mapsto t ?\} \wedge\)
serr \(!=\) sysok)
\(\vee\) serr \(!=\) toomanysleepers

Since AddSleeper is a major operation, we need to calculate its precondition. The calculation is simple and the precondition obvious.
pre AddSleeper \(\widehat{=}\)
\(p ? \in\) slps \(\vee \#\) slps < maxslps

When a process' sleep time expires, it must be removed from the set of sleeping processes. The following schema defines this operation-it is, again, obvious.

RemoveSleeper \(\qquad\)
\(\triangle\) SLEEPERS
p? : PID
\(s l p s^{\prime}=s l p s \backslash\{p ?\}\)
If the time a process, \(p\), requires to wake is \(t\), and \(0<t \leq n o w, p\) should wake up now. This is expressed by the following schema:
```

ShouldWakeUp

```
t?: TIME
now? : TIME
\(0<t\) ?
\(t\) ? \(\leq\) now?

A process should wake if the following condition is met:
ShouldWake \(\widehat{=}\)
\((\) WakingTime \([t / t!] \wedge\) ShouldWakeUp \([t / t ?]) \backslash\{t\}\)
This condition can be expanded into the following schema. It turns out to be an important operation in deciding which processes to wake when such a decision is required.

ShouldWake \(\qquad\)
EPTAB
\(p\) ? : PID
now? : TIME
\(\exists t:\) TIME
\(t=\) waitingtime \((p ?) \wedge\)
\(0<t \wedge t \leq\) now?

After simplification, it becomes:
ShouldWake \(\qquad\)
\(\Xi P T A B\)
\(p\) ? : PID
now? : TIME
\(0<\) waitingtime \((p ?) \leq\) now?

Next, we define the FindAndWake operation.
```

FindAndWake $\widehat{=}$
GotSleepers $\wedge$
( $\forall p$ : PID
IsAsleep $[p / p$ ?] $\wedge$
ShouldWake $[p / p ?] \Rightarrow$
RemoveSleeper $[p / p$ ?] $\wedge$
ClearWaitingTime $[p / p ?] \wedge$
MakeReady[p/p?]

```

It expands into
```

FindAndWake

```
\(\triangle\) SLEEPERS
\(\Xi P T A B\)
\(\triangle\) SCHED
now? : TIME
slps \(\neq \varnothing\)
\(\forall p: P I D \bullet\)
 \(p \in \operatorname{slps} \wedge\)
 \(0<\) waitingtime \((p) \leq\) now \(? \Rightarrow\)
 waitingtime \({ }^{\prime}=\) waitingtime \(\oplus\{p \mapsto 0\} \wedge\)
 slps \({ }^{\prime}=s l p s \backslash\{p\} \wedge\)
 state \(^{\prime}=\) state \(\oplus\{p \mapsto\) psready \(\} \wedge\)
 (\#sq.pq < maxs \(\wedge\)
\(\left(\left(s q \cdot p q=\langle \rangle \wedge s q \cdot p q^{\prime}=\langle p\rangle\right) \vee\right.\)
\(\left(p r i o(p) \leq\right.\) prio \((\) head sq.pq \(\left.) \wedge s q \cdot p q^{\prime}=\langle p\rangle{ }^{\wedge} s q \cdot p q\right) \vee\)
(prio(last sq.pq) < prio \(\left.(p) \wedge s q \cdot p q^{\prime}=s q . p q \curvearrowleft\langle p\rangle\right) \vee\)
\(\left(\exists s_{1}, s_{2}:\right.\) seq PID \(\mid s_{1} \neq\langle \rangle \wedge s_{2} \neq\langle \rangle \wedge s_{1} \frown s_{2}=s q . p q \bullet\)
 prio (last \(\left.s_{1}\right)<\operatorname{prio}(p) \wedge\)
 \(\operatorname{prio}(p) \leq \operatorname{prio}\left(\right.\) head \(\left.s_{2}\right) \wedge\)
 \(\left.\left.s q \cdot p q^{\prime}=s_{1} \frown\langle p\rangle 乞 s_{2}\right)\right) \wedge\)
 state \(^{\prime}=\) state \(\oplus\{p \mapsto p\) sready \(\} \wedge\)
 serr \(!=\) sysok \()\)
\(\vee\) serr \(!=\) schedquull

Note that sequential composition is not required between ClearWaitingTIme and MakeReady because the components of PTAB they update are distinct.

The FindAndWake operation is important, so its precondition must be calculated. The precondition is
pre FindAndWake \(\widehat{=}\)
slps \(\neq \varnothing \wedge \forall p: P I D \bullet p \in \operatorname{slps} \wedge 0<\operatorname{waitingtime}(p) \leq\) now \(? \wedge \# s q<\operatorname{maxs}\)
or, after simplification, it becomes
```

pre FindAndWake $\widehat{=}$
slps $\neq \varnothing \wedge$
$\{p: P I D \mid p \in \operatorname{slps} \wedge 0<$ waitingtime $(p) \leq$ now $?\} \subseteq$ slps $\wedge$
$\# s q+\#\{p: P I D \mid p \in \operatorname{slps} \wedge 0<\operatorname{waitingtime}(p) \leq n o w ?\}<\operatorname{maxs}$

```

When a process is sleeping, its state value should be pssleeping. Setting state to pssleeping is performed by the following operation:

SetStateToSleeping \(\widehat{=}\)
\(\exists\) st : PSTATE \(\mid\) st \(=\) pssleeping •
SetProcState[st/st?]
The operation expands and simplifies to:
SetStateToSleeping
\(\triangle P T A B\)
p?: PID
state \(^{\prime}=\) state \(\oplus\{p ? \mapsto p\) ssleeping \(\}\)
The following is a predicate. It is used to determine when a process is trying to sleep for a period of 0 seconds - any longer period is valid.

BadSleep Time \(\qquad\)
t? : TIME
\(t ?=0\)

An operation, called SendMeToSleep is required. It is defined by
SendMeToSleep \(\widehat{=}\)
(BadSleep Time \(\wedge\) Sleep TooShort)
\(\vee(\) ComputeWakeTime \([t ? /\) stm? \(?\), cst \(/ c s t!] \wedge\) AddSleeper \([c s t / t ?] \wedge\)
SetStateToSleeping \() \backslash\{c s t\}\)
Again this operation requires a reschedule after use.
Expansion of this definition yields the following schema:
SendMeToSleep \(\qquad\)
\(\triangle\) SLEEPERS
ITIMESINCEBOOT
\(\triangle P T A B\)
\(p\) ? : PID
t? : TIME
tnow? : TIME
serr! : SYSERR
(\(t ?=0 \wedge\) serr \(!=\) sleeptimetooshort \()\)
\(\vee(\exists\) cst : TIME \(\mid c s t=t ?+\) tnow \(\bullet\) (\(p ? \in \operatorname{slps} \wedge\) serr \(!=\) alreadyasleep \()\)
```

\vee (\#slps < maxslps ^
slps'}=slps\cup{p?}
wakingtime'}=\mathrm{ wakingtime }\oplus{p?\mapstot?+\mathrm{ tnow?} }
serr! = sysok)
\vee ~ s e r r ! ~ = ~ t o o m a n y s l e e p e r s ~ \wedge ~
serr! = sysok))
verr! = toomanysleepers)
^state}\mp@subsup{}{}{\prime}=\mathrm{ state }\oplus{p?\mapsto\mathrm{ pssleeping }

```

We can immediately simplify this schema to the following:
```

Е TIMESINCEBOOT
$\triangle S L E E P E R S$
$\triangle P T A B$
$p ?: P I D$
$t ?:$ TIME
tnow? : TIME
serr! : SYSERR
$(t ?=0 \wedge$ serr $!=$ sleeptimetooshort $)$
$(p ? \in \operatorname{slps} \wedge$ serr $!=$ alreadyasleep $)$
$\vee(\#$ slps $<$ maxslps $\wedge$
slps ${ }^{\prime}=\operatorname{slps} \cup\{p ?\} \wedge$
wakingtime ${ }^{\prime}=$ wakingtime $\oplus\{p ? \mapsto t ?+$ tnow? $\} \wedge$
serr $!=$ sysok)
$\vee$ serr $!=$ toomanysleepers $\wedge$
serr $!=$ sysok) $)$
$\vee$ serr $!=$ toomanysleepers)
$\wedge$ state $^{\prime}=$ state $\oplus\{p ? \mapsto$ pssleeping $\}$

```

By repeated application of Distrib \(-\vee\) and \(p \wedge q \vdash p\), the predicate can be transformed into
```

$(t ?=0 \wedge$ serr $!=$ sleeptimetooshort $)$
$\vee(p ? \in \operatorname{slps} \wedge$ serr $!=$ alreadyasleep $)$
$\vee(\#$ slps $<$ maxslps $\wedge$
slps ${ }^{\prime}=s l p s \cup\{p ?\} \wedge$
wakingtime ${ }^{\prime}=$ wakingtime $\oplus\{p ? \mapsto t ?+$ tnow $?\} \wedge$
state $^{\prime}=$ state $\oplus\{p ? \mapsto$ pssleeping $\} \wedge$
serr! = sysok)
$\vee$ serr $!=$ toomanysleepers $\wedge$
serr $!=$ sysok $)$ )
$\vee$ serr! = toomanysleepers)

```

The precondition of this important operation is easy to calculate.
```

pre SendMeToSleep \widehat{=}
t? = 0\vee p? \in slps \vee \#slps < maxslps

```

\subsection*{3.11.2 Refinement One}

Having defined the sleeper set and the operations required to maintain it, it is time to engage in the first refinement. The strategy is to refine the set to a singly linked list of process identifiers in the next mapping in PTAB. By implementing the sleeper set this way, space is saved; the list is, in any case, limited in length.

The first step of the refinement is to find a representation for the sleeper set. The identifier set slps is replaced by \(s l p s 1\) but now \(s l p s 1\) is a partial (finite) injection from process identifiers to GPIDs (process identifiers plus nullpid). The idea is that slps 1 contains the elements of slps in some order. The first element is denoted by \(h d s\) and the last by ends-we can talk of "first" and "last" because of the temporal ordering on the insertion of identifiers into slps. The number of elements in slps 1 is recorded in slcnt 1 , so slcnt \(1=\#\) slps. The limit on the size of slps 1 is maxslps 1 (which is intended to be equal to maxslps). The refinement state space is given by the following schema:
```

SLEEPERS1
slps1: PID }->\mathrm{ GPID
hds, ends : GPID
slcnt1:\mathbb{N}
maxslps1: \mathbb{N }

```
```

hds = nullpid }\Leftrightarrow\mathrm{ ends = nullpid

```
hds = nullpid }\Leftrightarrow\mathrm{ ends = nullpid
hds = nullpid }\Leftrightarrow\mathrm{ dom slps 1=
hds = nullpid }\Leftrightarrow\mathrm{ dom slps 1=
hds = nullpid }\Leftrightarrow\mathrm{ maxslps 1 = 0
hds = nullpid }\Leftrightarrow\mathrm{ maxslps 1 = 0
slcnt1 = # dom slps1
slcnt1 = # dom slps1
hds \not= nullpid }
hds \not= nullpid }
 slps1(ends) = nullpid }
 slps1(ends) = nullpid }
 hds\in\operatorname{dom}\operatorname{slps1^}
 hds\in\operatorname{dom}\operatorname{slps1^}
 ends \in dom slps 1 ^
 ends \in dom slps 1 ^
 # dom slps1>0
```

    # dom slps1>0
    ```
\(\qquad\)

SLEEPERSInit 1
SLEEPERS1'
smax?: \(\mathbb{N}_{1}\)
```

maxslps1' = smax?
hds' = ends' = nullpid
slcnt1' = 0

```

IsAsleep 1
ESLEEPERS1
\(p\) ? : PID
\(p ? \in \operatorname{dom} \operatorname{slps} 1\)
(We can, and will, do better than this.)
CanAddSleeper 1
ESLEEPERS1
slcnt \(1<\) maxslps 1

AddSleeperProc 1
\(\triangle\) SLEEPERS 1
\(p\) ? : PID
(hds = nullpid \(\wedge\)
\(h d s^{\prime}=p ? \wedge\)
ends \({ }^{\prime}=p ? \wedge\)
slps \(1^{\prime}=s l p s 1 \oplus\{p ? \mapsto\) nullpid \(\left.\}\right)\)
\(\vee\left(e n d s^{\prime}=p ? \wedge\right.\)
slps \(1^{\prime}=\operatorname{slps} 1 \oplus\{\) ends \(\mapsto p ?, p ? \mapsto\) nullpid \(\left.\}\right)\)
\(\wedge\) slcnt \(1^{\prime}=\) slcnt \(1+1\)

AddSleeper \(1 \widehat{=}\)
(IsAsleep \(\wedge\) AlreadyAsleep)
\(\vee(\) CanAddSleeper \(\wedge\) AddSleeperProc \(\wedge\) SetWaitingTime \(\wedge\) SysOk \()\)
\(\checkmark\) TooManySleepers
This expands to:
```

\triangleSLEEPERS1
\trianglePTAB1
p?: PID
t?: TIME
serr! : SYSERR
(p?\in\operatorname{dom slps 1 ^ serr! = alreadyasleep )}
\vee (p?\not\in\operatorname{dom slps 1 ^}
(slcnt 1 < maxslps 1 ^
((hds = nullpid ^
hds' = ends' = p?^

```
```

        slps \(1^{\prime}=s l p s 1 \oplus\{p ? \mapsto\) nullpid \(\left.\}\right)\)
        \(\vee\left(\right.\) ends \({ }^{\prime}=p ? \wedge\) slps \(1^{\prime}=\) slps \(1 \oplus\{\) ends \(\mapsto p ?, p ? \mapsto\) nullpid \(\left.\left.\}\right)\right) \wedge\)
        slcnt \(1^{\prime}=\) slcnt \(1+1 \wedge\)
        wakingtime \({ }^{\prime}=\) wakingtime \(\oplus\{p ? \mapsto t ?\} \wedge\)
        serr! \(=\) sysok))
    $\vee$ serr! $=$ toomanysleepers

```

DelSleeperProc1 \(\qquad\)
\(\triangle\) SLEEPERS 1
\(p\) ? : PID
\((h d s=p ? \wedge\)
slps \(1^{\prime}=s l p s 1 \triangleleft\{p ?\} \wedge\)
\(\left.h d s^{\prime}=s \operatorname{lps} 1(h d s)\right)\)
\(\vee\left(\exists p_{1}: P I D \mid p ?=\operatorname{slps} 1\left(p_{1}\right)\right.\)
(\(\exists\) slps1" : PID \(\leftrightarrows\) GPID •
\(\left.\operatorname{slps} 1^{\prime \prime}=\operatorname{slps} 1 \oplus\left\{p_{1} \mapsto \operatorname{slps} 1(p ?)\right\}\right) \wedge\)
\(\left.s l p s 1^{\prime}=s l p s 1 \notin\{p ?\}\right)\)
slcnt \(1^{\prime}=\) slcnt \(1-1\)

This simplifies to:
```

$\triangle$ SLEEPERS 1
p?: PID
$\left(h d s=p ? \wedge \operatorname{slp} 1^{\prime}=s l p s 1 \notin\{p ?\} \wedge\right.$
$\left.h d s^{\prime}=\operatorname{slps} 1(p ?)\right)$
$\vee\left(\exists p_{1}: P I D \mid p ?=\operatorname{slps} 1\left(p_{1}\right) \bullet\right.$
$\left.\operatorname{slps} 1^{\prime}=(\operatorname{slps} 1 \triangleleft\{p ?\}) \oplus\left\{p_{1} \mapsto \operatorname{slps} 1(p ?)\right\}\right)$
slcnt $1^{\prime}=$ slcnt $1-1$

```

The test whether there are any processes in the list of sleepers is now refined to a test of the counter, slcnt1. The counter is incremented by one when a process is added to the list and decremented by one when a process is removed.

GotSleepers 1 \(\qquad\)
ESLEEPERS 1
slcnt \(1 \neq 0\)

The removal of a process from the list of sleeping processes is refined to the following schema. If the process to be removed, \(p\) ?, is the head of the list, the head, \(h d s\), is updated and \(p\) ? removed from \(s l p s 1\). Otherwise, \(p\) ? is just
removed from slps 1 . In both cases, slcnt 1 is decremented by one, as stated above.

RemoveSleeper 1 \(\qquad\)
\(\triangle\) SLEEPERS 1
p? : PID
(\((p ?=h d s \wedge\)
\(h d s^{\prime}=\operatorname{slps} 1(h d s) \wedge\)
slps \(\left.1^{\prime}=s l p s 1 \notin\{p ?\}\right)\)
\(\left.\vee \operatorname{slps} 1^{\prime}=\operatorname{slps} 1 \notin\{p ?\}\right)\)
slcnt \(1^{\prime}=\) slcnt \(1-1\)

The following is the refinement of the ShouldWakeUp predicate. The condition is the same as in the specification.

ShouldWakeUp 1 \(\qquad\)
```

t?, now?: TIME
0<t?
t?}\leqnow

```

The ShouldWake predicate is refined to the following:
ShouldWake \(1 \widehat{=}\)
\((\) WakingTime \(1[t / t!] \wedge\) ShouldWakeUp \(1[t / t ?]) \backslash\{t\}\)
The definition expands into the following schema:
```

ShouldWake1

```
 \(\Xi P T A B\)
 \(p\) ? : PID
 now? : TIME
 \(\exists t\) :TIME
 \(t=\) waitingtime \(1(p ?) \wedge\)
 \(0<t \wedge t \leq\) now?
which can be simplified using the one-point rule to
ShouldWake1
\(\Xi P T A B\)
\(p\) ? : PID
now? : TIME
\(0<\) waitingtime \(1(p ?) \leq\) now?

The form of the refinement of FindAndWake is identical to the specification (only identifiers are altered).
```

FindAndWake1 =
GotSleepers 1^
(}\forallp:PI
IsAsleep 1[p/p?] ^
ShouldWake1[p/p?] =>
RemoveSleeper 1[p/p?]^
ClearWaitingTime1[p/p?]}
MakeReady1[p/p?]

```

In order to work with the definition, it must be expanded. The expansion is as follows:
```

FindAndWake1
$\triangle$ SLEEPERS 1
$\triangle S C H E D 1$
now? : TIME
slcnt $1 \neq 0$
$\forall p: P I D \bullet$
$p \in \operatorname{dom} \operatorname{slps} 1 \wedge$
$0<$ waitingtime $1(p) \leq$ now $? \Rightarrow$
slps $1^{\prime}=s l p s 1 \triangleleft\{p\} \quad((p=h d s \wedge$
$h d s^{\prime}=\operatorname{slps} 1(h d s) \wedge$
slps1 $\left.1^{\prime}=\operatorname{slps} 1 \notin\{p ?\}\right)$
$\left.\vee \operatorname{slps} 1^{\prime}=s \operatorname{lps} 1 \notin\{p ?\}\right) \wedge$
slcnt $1^{\prime}=$ slcnt $1-1 \wedge$
waitingtime $1^{\prime}=$ waitingtime $1 \oplus\{p \mapsto 0\} \wedge$
state $1^{\prime}=$ state $1 \oplus\{p \mapsto$ psready $\} \wedge$
(nxtp $\leq$ maxs $1 \wedge$
$\left(\left(n x t p=1 \wedge s q . p q 1^{\prime}=\{1 \mapsto p\} \wedge n x t p^{\prime}=2\right) \vee\right.$
$(p r i o 1(p) \leq \operatorname{prio} 1(s q . p q 1(1)) \wedge$
( $\forall i: 1 \ldots n x t p-1 \bullet$
$\left.s q . p q 1^{\prime}=(s q . p q 1 \oplus\{i+1 \mapsto s q . p q 1(i)\}) \oplus\{1 \mapsto p\}\right) \wedge$
$\left.n x t p^{\prime}=n x t p+1\right) \vee$
$(\operatorname{prio} 1(s q . p q 1(n x t p-1))<\operatorname{prio} 1(p) \wedge$
$s q \cdot p q 1^{\prime}=s q \cdot p q 1 \oplus\{n x t p \mapsto p\} \wedge$
$\left.n x t p^{\prime}=n x t p+1\right) \vee$
( $\exists i: 1 \ldots n x t p-2 \bullet$
prio1(sq.pq1(i)) <prio1 $(p) \wedge$
$\operatorname{prio} 1(p) \leq p r i o 1(s q . p q 1(i+1))$
$\vee(\forall j: i+1 \ldots n x t p-1$
$s q \cdot p q 1^{\prime}=(s q \cdot p q 1 \oplus\{j+1 \mapsto s q \cdot p q 1(j)\}) \oplus\{i+1 \mapsto p\}$
$\left.\left.\wedge n x t p^{\prime}=n x t p+1\right)\right) \wedge$

```
```

    serr! = sysok)
    \vee ~ s e r r ! ~ = ~ s c h e d q f u l l ~

```

The precondition of FindAndWake1 must be calculated. The calculation yields the following predicate:
pre FindAndWake \(1 \widehat{=}\)
slcnt \(1 \neq 0\)
\(n x t p+\#\{p: P I D \mid p \in \operatorname{dom} \operatorname{slps} 1 \wedge 0<\operatorname{waitingtime} 1(p) \leq\) now? \(\}<\operatorname{maxs} 1\)
\(\{p: P I D \mid p \in \operatorname{dom} \operatorname{slps} 1 \wedge 0<\) waitingtime \(1(p) \leq\) now \(?\} \subseteq\) dom slps 1
The composite operation that places processes in a sleeping state refines to the following definition (it is similar to the specification):

SendMeToSleep \(1 \widehat{=}\)
(BadSleep Time \(\wedge\) Sleep TooShort)
\(\vee(\) ComputeWakeTime \([t ? /\) stm? , cst \(/\) cst \(!] \wedge\) AddSleeper \(1[c s t / t ?] \wedge\)
SetStateToSleeping1) \\{cst\} }
Its expansion is the following schema:
SendMeToSleep 1 \(\qquad\)
\(\triangle P T A B 1\)
\(\triangle S L E E P E R S 1\)
p? : PID
t?, now? : TIME
serr! : SYSERR
\((t ?=0 \wedge\) serr \(!=\) sleeptimetooshort \()\)
\(\vee(\exists\) cst : TIME
\((c s t=t ?+\) now \(? \wedge\)
(\(p ? \in \operatorname{dom}\) slps \(1 \wedge\) serr \(!=\) alreadyasleep \()\)
\(\vee(p ? \notin \operatorname{dom} \operatorname{slps} 1 \wedge\)
(slcnt \(1<\operatorname{maxslps} 1 \wedge\)
(\((h d s=\) nullpid \(\wedge\)
\(h d s^{\prime}=e n d s^{\prime}=p ? \wedge\)
slps \(1^{\prime}=s l p s 1 \oplus\{p ? \mapsto\) nullpid \(\left.\}\right)\)
\(\vee\left(\right.\) ends \(s^{\prime}=p ? \wedge \operatorname{slps} 1^{\prime}=\operatorname{slps} 1 \oplus\{\) ends \(\mapsto p ?, p ? \mapsto\) nullpid \(\left.\left.\}\right)\right) \wedge\)
slcnt \(1^{\prime}=\) slcnt \(1+1 \wedge\)
wakingtime \({ }^{\prime}=\) wakingtime \(\oplus\{p ? \mapsto t ?\} \wedge\)
serr! \(=\) sysok))
\(\vee\) serr! = toomanysleepers)
\(\wedge\) state \(1^{\prime}=\) state \(\oplus\{p ? \mapsto\) pssleeping \(\left.\}\right)\)

This schema can be simplified in a fairly obvious way. After simplification, the following is obtained:
```

$\triangle P T A B 1$
$\triangle$ SLEEPERS 1
p?: PID
t?, now? : TIME
serr! : SYSERR
( $t$ ? $=0 \wedge$ serr $!=$ sleeptimetooshort $)$
$\vee(p ? \in \operatorname{dom} \operatorname{slps} 1 \wedge \operatorname{serr}!=$ alreadyasleep $)$
$\vee(p ? \notin \operatorname{dom} \operatorname{slps} 1 \wedge$
(slcnt $1<\operatorname{maxslps} 1 \wedge$
( $(h d s=$ nullpid $\wedge$
$h d s^{\prime}=e n d s^{\prime}=p ? \wedge$
slps $1^{\prime}=s l p s 1 \oplus\{p ? \mapsto$ nullpid $\left.\}\right)$
$\vee\left(\right.$ ends ${ }^{\prime}=p ? \wedge \operatorname{slps} 1^{\prime}=s l p s 1 \oplus\{$ ends $\mapsto p ?, p ? \mapsto$ nullpid $\left.\left.\}\right)\right) \wedge$
slcnt $1^{\prime}=$ slcnt $1+1 \wedge$
$\wedge$ state $1^{\prime}=$ state $\oplus\{p ? \mapsto$ pssleeping $\left.\}\right)$
wakingtime ${ }^{\prime}=$ wakingtime $\oplus\{p ? \mapsto t ?+$ now $?\} \wedge$
serr $!=$ sysok $)$ )
$\vee$ serr $!=$ toomanysleepers $)$

```

Since this is an important operation, its precondition must be calculated. It is easy to see that the precondition is
pre SendMeToSleep \(1 \widehat{=}\)
\(t ?=0 \vee p ? \in \operatorname{dom} \operatorname{slps} 1 \vee\) slcnt \(1<\) maxslps 1
Finally, we have the abstraction relation. It is an extremely simple relation and is given as the predicate of the following schema.

AbsSLEEPERS 1
SLEEPERS
SLEEPERS 1
maxslps \(1=\) maxslps
dom \(\operatorname{slps} 1=s l p s\)
slcnt \(1=\# s l p s\)

\section*{Theorem 48.}
\(\forall S L E E P E R S^{\prime} ; ~ S L E E P E R S 1^{\prime} \bullet\)
SLEEPERSInit \(\wedge\) AbsSLEEPERS \(1^{\prime} \Rightarrow\) SLEEPERSInit 1
Proof. By the abstraction relation, maxslps \(1^{\prime}=\operatorname{maxslps}{ }^{\prime}=\operatorname{smax}\) ?. Also by the invariant of SLEEPERRS1 \({ }^{\prime}, h d s^{\prime}=\) ends \(s^{\prime}=\) nullpid \(\Rightarrow \operatorname{dom}\) slps \(1^{\prime}=\) \(\varnothing=s l p s^{\prime}\) by the one-point rule. Finally, \(\# s l p s^{\prime}=s l c n t 1^{\prime}\) and \(s l p s^{\prime}=\varnothing\), so \(\# s l p s^{\prime}=0\), from which we are entitled to conclude that slcnt \(1^{\prime}=0\).

\section*{Theorem 49.}
```

\forall SLEEPERS; SLEEPERS1; now? : TIME \bullet
pre FindAndWake ^ AbsSLEEPERS1 => pre FindAndWake1
Proof. The preconditions are
pre FindAndWake \widehat{=}
slps \not=\varnothing^
{p:PID | p slps ^ 0<waitingtime ( }p)\leq\mathrm{ now? } }\subseteq\mathrm{ slps }
\#sq.pq+\#{p:PID | p < slps ^0<waitingtime (p)\leqnow?}<maxs }

```
and
pre FindAndWake \(1 \widehat{=}\)
 slcnt \(1 \neq 0\)
 \(n x t p+\#\{p: P I D \mid p \in \operatorname{dom} \operatorname{slps} 1 \wedge 0<\operatorname{waitingtime} 1(p) \leq\) now \(?\}<\operatorname{maxs} 1\)
 \(\{p: P I D \mid p \in \operatorname{dom} \operatorname{slps} 1 \wedge 0<\) waitingtime \(1(p) \leq\) now \(?\} \subseteq\) dom slps 1

The abstraction relation, AbsSLEEPERS1 gives the relevant identities. The predicate of AbsSLEEPERS1 states that \(p \in \operatorname{dom} \operatorname{slps} 1 \Leftrightarrow p \in \operatorname{slps}\) and slps \(\subset\) used, so the refinement of waitingtime is correct. The remainder of the proof is immediate.

\section*{Theorem 50.}
```

\forallSLEEPERS; SLEEPERS'; SLEEPERS1; SLEEPERS1';
now? : TIME; serr! : SYSERR \bullet
pre FindAndWake ^
AbsSLEEPERS1^
AbsSLEEPERS1' ^
FindAndWake1
=> FindAndWake1

```

Proof. The predicate of AbsSLEEPERS1 states that slcnt \(1=\#\) slps, so slcnt \(1 \neq 0\) implies slps \(\neq \varnothing\). Next, \(p \in \operatorname{dom}\) slps 1 , by the predicate of AbsSLEEPERS1, implies \(p \in \operatorname{slps}\), since dom slps \(1=\) slps. The invariant of SLEEPERS states that slps \(\subset\) used and this guarantees that \(p \in\) dom waitingtime; from this, it may be inferred first that waitingtime \((p)=\) waitingtime \(1(p)\) and consequently that \(0<\operatorname{waitingtime} 1(p) \leq\) now? implies that \(0<\) waitingtime \((p) \leq\) now? .

As far as the update of slps 1 is concerned, the important conjunct is slps \(1^{\prime}=\operatorname{slps} 1 \triangleleft\{p\}\). The predicate of AbsSLEEPERS \(1^{\prime}\) states that \(s l p s^{\prime}=\) dom slps1. This fact permits the following inference slps \(1^{\prime}=\operatorname{slps} 1 \triangleleft\{p\}\) implies that
```

dom slps1'
=(dom slps)\{p}
=slps\{p}
=slps'

```
as required.
By AbsSLEEPERS1, slcnt \(1=\#\) slps and by AbsSLEEPERS1', slcnt \(1=\) \(\# s l p s^{\prime}\), so slcnt \(1^{\prime}=s l c n t-1=\# s l p s-1=s l p s^{\prime}\).

The update of waitingtime 1 is justified as follows. It is known, for reasons that have already been given, that \(p \in \operatorname{used}\), so waitingtime \(1(p)=\) waitingtime \((p)\) for all \(p \in \operatorname{slps}\). It also follows that waitingtime \(1^{\prime}(p)=\) waitingtime \({ }^{\prime}(p)\) for all \(p \in u s e d\), so
```

waitingtime1'
=waitingtime 1}\oplus{p\mapsto0
= waitingtime }\oplus{p\mapsto0
= waitingtime}\mp@subsup{}{}{\prime

```

The update of state 1 and its equivalence to state also follows the same line of reasoning
```

state 1'
=state 1 }\oplus{p\mapstopsready
= state }\oplus{p\mapstopsready
= state }\mp@subsup{}{}{\prime

```

The refinement of MakeReady has already been taken into account above. As noted there, MakeReady is defined in terms of promotion.

\section*{Theorem 51.}
```

\forallSLEEPERS; SLEEPERS1; p?: PID; t?:TIME; now?: TIME
pre SendMeToSleep ^ AbsSLEEPERS1 \# preSendMeToSleep 1

```

Proof. We have:
pre SendMeToSleep \(\widehat{=} \#\) slps \(<\) maxslps \(\vee t ?=0 \vee p ? \notin\) slps
pre SendMeToSleep \(1 \widehat{=} t ?=0 \vee\) slcnt \(1<\operatorname{maxslps} 1 \vee p ? \notin \operatorname{dom} \operatorname{slps} 1\)
Clearly \(t ?=0\) is the same in both cases and the result can be deduced using \(\checkmark\)-introduction.

For the second case, the abstraction relation states that slcnt \(1=\#\) slps and maxslps \(=\) maxslps 1 , so substituting into \(\#\) slps \(<\) maxslps, slcnt \(1<\) maxslps 1 is obtained. Again, a step of \(\vee\)-introduction permits the conclusion to be reached, viz. \(t ?=0 \vee\) slcnt \(1<\) maxslps 1 .

Finally, \(p ? \notin \operatorname{dom} \operatorname{slps} 1\) and, by the abstraction relation, \(\operatorname{dom} \operatorname{slps} 1=s l p s\), so \(p ? \notin\) slps is equivalent to \(p ? \notin \operatorname{dom} \operatorname{slps} 1\).

\section*{Theorem 52.}
```

\forallSLEEPERS; SLEEPERS'; SLEEPERS1; SLEEPERS1';
p?: PID; t?, now?: TIME; serr! : SYSERR \bullet
pre SendMeToSleep ^
AbsSLEEPERS1^
AbsSLEEPERS1'^
SendMeToSleep1
=> SendMeToSleep

```

Proof. We can safely ignore the first disjunct,
\(t ?=0 \wedge\) serr \(!=\) sleeptimetooshort
It is the same in both cases and contributes only \(t ?=0\) to the precondition.
Everything is relatively straightforward; the interesting part is the update of \(\operatorname{slps} 1\). We start with \(\operatorname{slps} 1=\operatorname{slps} 1 \oplus\{p ? \mapsto\) nullpid \(\}\). By AbsSLEEPERS 1 , \(\operatorname{dom} \operatorname{slps} 1=\operatorname{slps}\), so taking domains, we have
```

dom slps1'
= dom(slps1\oplus{p?\mapsto nullpid}
= dom(slps 1\cup{p?\mapsto nullpid}), p?\not\in\operatorname{dom slps 1}
=(dom slps1)\cup(dom{p?\mapsto nullpid})
=(dom slps1)\cup{p?}
=slps}\cup{p?
= slps'

```
where the last step is justified by AbsSLEEPERS1' (dom slps \(\left.1^{\prime}=s l p s^{\prime}\right)\).
Similarly, for \(\operatorname{slps} 1^{\prime}=\operatorname{slps} 1 \oplus\{p ? \mapsto h d s\}\), for the same reason, we again take domains
```

dom slps $1^{\prime}$
$=\operatorname{dom}(\operatorname{slps} 1 \oplus\{$ send $\mapsto p ?, p ? \mapsto$ nullpid $\})$
$=\operatorname{dom}(\operatorname{slps} 1 \cup\{$ send $\mapsto p ?, p ? \mapsto$ nullpid $\}), \quad \quad p ? \notin \operatorname{dom}$ slps 1
$=\operatorname{dom} \operatorname{slps} 1 \cup(\operatorname{dom}\{p ? \mapsto$ nullpid $\})$
$=\operatorname{dom} \operatorname{slps} 1 \cup\{p ?\}$
$=s l p s \cup\{p ?\}$
$=s l p s^{\prime}$

```
again, the final step is justified by \(A b s S L E E P E R S 1^{\prime}\left(\operatorname{dom} \operatorname{slps} 1^{\prime}=s l p s^{\prime}\right)\).
Finally, since \(p\) ? \(\in\) used and slps \(\subset\) used and \(\forall p: P I D \bullet p \in\) used \(\Rightarrow\) wakingtime \((p)=\) wakingtime \(1(p)\) in AbsPTAB1, and \(\forall p: P I D \bullet p \in\) used \(^{\prime} \Rightarrow\) wakingtime \({ }^{\prime}(p)=\) wakingtime \(1^{\prime}(p)\), we can infer that
wakingtime \(1^{\prime}\)
```

$=$ wakingtime $1 \oplus\{p ? \mapsto t ?+$ now $?\}$
$=$ wakingtime $\oplus\{p ? \mapsto t ?+$ now $?\}$
$=$ wakingtime $^{\prime}$

```

The correspondence between state and state 1 is proved in a similar fashion.

\subsection*{3.11.3 Refiment Two}

SLEEPERS 2
PTAB1
slcnt \(2: \mathbb{N}\)
maxslprs \(2: \mathbb{N}\)
shd, send : GPID
shd \(=\) nullpid \(\Leftrightarrow\) send \(=\) nullpid
shd \(\neq\) nullpid \(\Leftrightarrow\) slcnt \(2>0\)
shd \(\neq\) nullpid \(\Leftrightarrow\)
next* \((\{\) shd \(\} \backslash \backslash\) nullpid \(\} \neq \varnothing\) shd \(\neq\) nullpid \(\Leftrightarrow\)
next \((\) send \()=\) nullpid
shd \(\neq\) nullpid \(\Leftrightarrow\)
\(\forall p: P I D \bullet\)
\(p \in\) next \(^{*}(\mid\{\) shd \(\}) \backslash\{\) nullpid \(\} \Rightarrow\)
\(\exists k: \mathbb{N} \bullet k \geq 0 \wedge k \leq\) maxslprs \(2 \wedge \operatorname{next}^{k}(\operatorname{shd})=p\)

SLEEPERSInit2
SLEEPERS2
\(\operatorname{smax} ?: \mathbb{N}_{1}\)
maxslprs \(2^{\prime}=\operatorname{smax} ?\)
shd \({ }^{\prime}=\) nullpid
slcnt \(2^{\prime}=0\)

IsAsleep 2
```

\XiSLEEPERS2
p?: PID
shd = p?\vee
send = p?\vee
p?\in next }\mp@subsup{}{}{+}{{\mathrm{ shd } <br>{nullpid }

```

CanAddSleeper 2
\(\Xi S L E E P E R S 2\)
slcnt \(2<\) maxslprs 2
```

AddSleeperProc2
\DeltaSLEEPERS2
p?: PID
slcnt 2' = slcnt 2 + 1
(shd = nullpid ^
shd' = p?^
send'}=p?
next'}=next \oplus{p?\mapsto nullpid }
\vee (send}\mp@subsup{}{}{\prime}=p?
next'}=\mathrm{ next }\oplus{\mathrm{ send }\mapstop?,p?\mapsto nullpid}

```

DelSleeperProc2
\(\triangle\) SLEEPERS2
```

p?: PID
slcnt 2' = slcnt 2-1
((shd = p?^shd' = next(shd))
\vee (\exists\mp@subsup{p}{1}{}:PID | p? = next (p
next}\mp@subsup{}{}{\prime}=next \oplus{\mp@subsup{p}{1}{}\mapsto\operatorname{next}(p?)}

```
```

AddSleeper 2 \widehat{}
(IsAsleep 2 A AlreadyAsleep)
\vee ~ ( C a n A d d S l e e p e r ~ 2 ~ \wedge ~
(\negIsAsleep 2 ^
AddSleeperProc2 ^
SetWaitingTime 2 ^
SysOk))
\checkmark ~ T o o M a n y S l e e p e r s

```
 AddSleeper 2
 \(\Delta S L E E P E R S 2\)
 p? : PID
 serr! : SYSERR
 t?: TIME
 \(\left(\right.\) shd \(=p ? \vee p ? \in \operatorname{next}^{+}(\{\)shd \(\} \backslash \backslash\{\) nullpid \(\} \wedge\)
 serr \(!=\) alreadyasleep \()\)
 \(\vee(\) shd \(\neq p\) ? ^
 \(\vee(\) slcnt \(2<\) maxslprs \(2 \wedge\)
 \(p ? \notin\) next \(^{+}(\{\)shd \(\} \backslash \backslash\{\) nullpid \(\} \wedge\)
 wakingtime \(2^{\prime}=\) wakingtime \(2 \oplus\{p ? \mapsto t ?\} \wedge\)
 slcnt \(2^{\prime}=\) slcnt \(2+1 \wedge\)
```

        \(((\) shd \(=\) nullpid \(\wedge\)
        shd \(d^{\prime}=p ? \wedge\)
        send \({ }^{\prime}=p ? \wedge\)
        next \(t^{\prime}=\) next \(\oplus\{p ? \mapsto\) nullpid \(\left.\}\right)\)
    \(\vee\left(\right.\) send \(^{\prime}=p ? \wedge\)
        next \({ }^{\prime}=\) next \(\oplus\{\) send \(\mapsto p ?, p ? \mapsto\) nullpid \(\left.\}\right)\)
    \(\wedge\) serr! \(=\) sysok \()\) )
    $\vee$ serr $!=$ toomanysleepers

```

Note that
```

p?\not= shd ^
p?\not\in next+}\mp@subsup{}{}{+}{\mathrm{ {shd} <br>{nullpid}

```
can be rewritten as
```

p?\not= shd ^
\neg \existsk:\mathbb{N}\bullet
0<k\wedgek\leq\#next* ({shd} D \{nullpid} ^
next }\mp@subsup{}{}{k}(\mathrm{ shd )}\not=p\mathrm{ ?

```
 GotSleepers 2
 ESLEEPERS1
 slcnt \(2 \neq 0\)
RemoveSleeper 2
 \(\Delta S L E E P E R S 2\)
```

p? : PID
( $p$ ? = shd $\wedge$
shd $\left.{ }^{\prime}=n \operatorname{ext}(h d s)\right)$
$\vee$ next ${ }^{\prime}=$ next $\oplus\{p ? \mapsto$ nullpid $\}$
slcnt $2^{\prime}=$ slcnt $2-1$

```

ShouldWakeUp 2
```

p?: PID
t?, now?: TIME
0<t?
t?}\leqnow

```

\section*{ShouldWake 2 气}
\((\) WakingTime \(2[t / t!] \wedge\) ShouldWakeUp \(2[t / t ?]) \backslash\{t\}\)
This expands into
ShouldWake2
```

    \XiPTAB
    ```
 p?: PID
 now? : TIME
 \(\exists t:\) TIME
 \(t=\) waitingtime \(2(p ?) \wedge\)
 \(0<t \wedge t \leq\) now?
or
ShouldWake 2
\(\Xi P T A B\)
\(p\) ? : PID
now? : TIME
\(0<\) waitingtime \(2(p ?) \leq\) now?

FindAndWake \(2 \widehat{=}\)
GotSleepers \(2 \wedge\)
(\(\forall p\) : PID
IsAsleep \(2[p / p\) ? \(] \wedge\) ShouldWake \(2[p / p\) ? \(] \Rightarrow\)
RemoveSleeper \(2[p / p\) ?] \(\wedge\) ClearWaitingTime \(2[p / p\) ?] \(\wedge\) MakeReady \(1[p / p ?]\)
This expands into
FindAndWake 2 \(\qquad\)
\(\triangle S L E E P E R S 2\)
\(\triangle\) SCHED
\(\triangle P T A B 2\)
now? : TIME
slcnt \(2 \neq 0\)
\(\forall p: P I D \bullet\)
\[
\begin{aligned}
& p \in \operatorname{next}^{*} \backslash\{\operatorname{shd}\} D \backslash\{\text { nullpid }\} \wedge 0<\text { waitingtime } 2(p) \leq \text { now } ? \Rightarrow \\
& \quad\left(\left(p=\operatorname{shd} \wedge \operatorname{shd} d^{\prime}=\operatorname{next}(h d s)\right)\right.
\end{aligned}
\]
```

$\vee$ next ${ }^{\prime}=$ next $\oplus\{p \mapsto$ nullpid $\left.\}\right) \wedge$
slcnt $2^{\prime}=$ slcnt $2-1 \wedge$
waitingtime $2^{\prime}=$ waitingtime $2 \oplus\{p \mapsto 0\} \wedge$
MakeReady $1[p / p$ ?]

```
```

pre FindAndWake 2 스
slcnt $2 \neq 0 \wedge$
nextp $+\#\{p: P I D \mid 0<$ waitingtime $2(p) \leq$ now? $\wedge$
next* $(\{$ shd $\} \backslash \backslash$ nullpid $\}\}-1<\operatorname{maxs} 1 \wedge$
$\{p: P I D \mid 0<$ waitingtime $2(p) \leq$ now? $\wedge$
$p \in \operatorname{next}^{*}(\mid\{$ shd $\} \mid \backslash\{$ nullpid $\}\}$
$\subseteq$ next $^{*}(\mid\{$ shd $\} \mid) \backslash\{$ nullpid $\}$

```
SendMeToSleep \(2 \widehat{=}\)
 (BadSleepTime \(\wedge\) SleepTooShort)
 \(\vee\) (Compute WakeTime[t?/stm?, cst/cst!] ^
 AddSleeper \(2[c s t / t ?] \wedge\)
 SetStateToSleeping2) \(\backslash\{c s t\}\)

This expands into and simplifies to
```

SendMeToSleep2

```
\(\Delta S L E E P E R S 2\)
\(\triangle P T A B 2\)
t?, now? : TIME
\(p\) ? : PID
serr! : SYSERR
(\(t\) ? \(=0 \wedge\) serr \(!=\) sleeptimetooshort \()\)
 \(\vee(\) slcnt \(2<\) maxslps \(2 \wedge\)
 \((s h d=p ? \vee\)
 \((\exists k: \mathbb{N} \bullet\)
 \(0<k \wedge k \leq \#\) next \(^{+}(\{\)shd \(\}\)) \(\backslash\{\) nullpid \(\} \wedge\)
 \(\left.\left.n e x t^{k}(s h d)=p\right)\right) \wedge\)
 serr \(!=\) alreadyasleep \()\)
 \(\vee\left(\right.\) shd \(\neq p ? \wedge p ? \notin\) next \(^{+}(\{\{s h d\}) \backslash\{\) nullpid \(\} \wedge\)
 wakingtime \(2^{\prime}=\) wakingtime \(2 \oplus\{p ? \mapsto t ?+\) now \(?\} \wedge\)
 slcnt \(2^{\prime}=\) slcnt \(2+1 \wedge\)
 \(\left(\left(\right.\right.\) shd \(=\) nullpid \(\wedge\) shd \(^{\prime}=p ? \wedge\) send \(^{\prime}=p ? \wedge\)
 next \({ }^{\prime}=\) next \(\oplus\{p ? \mapsto\) nullpid \(\left.\}\right)\)
 \(\left.\vee\left(s h d^{\prime}=p ? \wedge n e x t^{\prime}=n e x t ~ \oplus\{p ? \mapsto s h d\}\right)\right)\)
 \(\wedge\) state \(2^{\prime}=\) state \(2 \oplus\{p ? \mapsto\) pssleeping \(\}\)
 \(\wedge\) serr! \(=\) sysok \()\))
 \(\vee\) serr \(!=\) toomanysleepers)

This is interesting because shd \(=p ? \vee p ? \in \operatorname{exxt}^{+}((\{s h d\} \mid) \backslash\{\) nullpid \(\}\) is equivalent to \(p ? \in\) next* \((\{\) shd \(\}) \backslash\{\) nullpid \(\}\).
```

pre SendMeToSleep $2 \widehat{=}$
$t ?=0$
$\vee(s h d=p ? \vee$
$(\exists k: \mathbb{N} \bullet$
$0<k \wedge k \leq \#$ next $^{+} \bigcirc\{$ shd $\} \backslash \backslash\{$ nullpid $\} \wedge$
$\left.\left.n e x t^{k}(\operatorname{shd})=p\right)\right)$
$\vee$ slcnt $2<$ maxslps 2

```
AbsSLEEPERS2
SLEEPERS 1
SLEEPERS2
maxslprs \(2=\) maxslprs 1
dom \(\operatorname{slps} 1 \subseteq\) dom next
ran \(\operatorname{slps} 1 \subseteq\) ran next
slscnt \(2=\) slscnt 1
dom slps \(1=\) next \((\{\) shd \(\} ~ D \backslash\{\) nullpid \(\}\)
\(\forall p: P I D \bullet\)
 \(p \in \operatorname{dom} \operatorname{slps} 1 \Rightarrow\)
 \(\operatorname{slps} 1(p)=\operatorname{next}(p)\)
\(s h d=h d s\)
send \(=\) ends

\section*{Theorem 53.}

\section*{\(\forall S L E E P E R S 1^{\prime} ; ~ S L E E P E R S 2^{\prime} \bullet\)}

SLEEPERSInit \(2 \wedge\) AbsSLEEPERS2 \(2^{\prime} \Rightarrow\) SLEEPERSInit 1
Proof. By the abstraction relation, maxslprs2 \(2^{\prime}=\operatorname{maxslps} 1^{\prime}\), and since \(\operatorname{maxslprs} 2^{\prime}=s \max ?\), we may infer maxslps \(1^{\prime}=\operatorname{smax}\) ? .

Again, by the abstraction relation, slcnt \(2^{\prime}=\operatorname{slcnt} 1^{\prime}\), and since slcnt \(2^{\prime}=0\), we are entitled to infer that slcnt \(1^{\prime}=0\).

We deal with \(h d s\) and ends as follows. The abstraction relation states that \(h d s^{\prime}=s h d\) and \(s h d^{\prime}=\) nullpid, so \(h d s^{\prime}=\) nullpid by the transitivity of identity. Given that shd \(=\) nullpid \(\Rightarrow\) send \({ }^{\prime}=\) nullpid and, by the abstraction relation, send \({ }^{\prime}=e n d s^{\prime}\), Modus Ponens allows us to infer that ends \({ }^{\prime}=\) nullpid. By transitivity of identity, we have the desired \(s h d^{\prime}=e n d s^{\prime}=\) nullpid.

\section*{Theorem 54.}
\(\forall\) SLEEPERS1; SLEEPERS2; now? : TIME •
pre FindAndWake \(1 \wedge\) AbsSLEEPERS \(2 \Rightarrow\) pre FindAndWake 2

Proof.
```

pre FindAndWake $1 \widehat{=}$
slcnt $1 \neq 0$
$n x t p+\#\{p: P I D \mid p \in \operatorname{dom} \operatorname{slps} 1 \wedge 0<$ waitingtime $1(p) \leq$ now? $\}<\operatorname{maxs} 1$
$\{p:$ PID $\mid p \in \operatorname{dom} \operatorname{slps} 1 \wedge 0<$ waitingtime $1(p) \leq$ now $?\} \subseteq$ dom slps 1

```
```

pre FindAndWake $2 \widehat{=}$

```
pre FindAndWake \(2 \widehat{=}\)
slcnt \(2 \neq 0 \wedge\)
slcnt \(2 \neq 0 \wedge\)
nextp \(+\#\{p:\) PID \(\mid 0<\) waitingtime \(2(p) \leq\) now? \(\wedge\)
nextp \(+\#\{p:\) PID \(\mid 0<\) waitingtime \(2(p) \leq\) now? \(\wedge\)
 next \({ }^{*}(\{\) shd \(\} \mid\) \ \(\{\) nullpid \(\}\}-1<\operatorname{maxs} 1 \wedge\)
 next \({ }^{*}(\{\) shd \(\} \mid\) \ \(\{\) nullpid \(\}\}-1<\operatorname{maxs} 1 \wedge\)
\(\{p: P I D \mid 0<\) waitingtime \(2(p) \leq\) now? \(\wedge\)
\(\{p: P I D \mid 0<\) waitingtime \(2(p) \leq\) now? \(\wedge\)
 \(p \in \operatorname{next}^{*}(\{\) shd \(\}\)) \\{nullpid } \} \}
 \(p \in \operatorname{next}^{*}(\{\) shd \(\}\)) \\{nullpid } \} \}
 \(\subseteq\) next \(^{*}(\{\) shd \(\} \backslash \backslash\) nullpid \(\}\)
```

        \(\subseteq\) next \(^{*}(\{\) shd \(\} \backslash \backslash\) nullpid \(\}\)
    ```

The abstraction relation, AbsSLEEPERS2 gives the relevant identities. By a previous result, we have it that \(p \in \operatorname{dom} \operatorname{slps} 1 \Leftrightarrow p \in \operatorname{slps}\) and \(\operatorname{slps} \subset\) used and nxtp\#next* \((\{\) shd \(\} \backslash\{\) nullpid \(\}=\operatorname{dom}\) slps1, so the refinement of waitingtime 1 is correct. The remainder of the proof is immediate.

\section*{Theorem 55.}
\(\forall S L E E P E R S 1\); SLEEPERS1'; SLEEPERS2; SLEEPERS2';
now? : TIME; serr! : SYSERR •
pre FindAndWake \(1 \wedge\)
AbsSLEEPERS \(2 \wedge\)
AbsSLEEPERS2 \(2^{\wedge} \wedge\)
FindAndWake2
\(\Rightarrow\) FindAndWake 1
Proof. By the predicate of \(A b s S L E E P E R 2\), slcnt \(2=\) slcnt 1 , so slcnt \(2 \neq 0\) implies slcnt \(1 \neq 0\). By that same predicate, next* \(\{\{\) shd \(\} \backslash\{\) nullpid \(\}=\) dom slps 1 , so \(p \in \operatorname{next}^{*}(\{\) shd \(\} \backslash\{\) nullpid \(\}\) implies that \(p \in \operatorname{dom} \operatorname{slps} 1\).

Next, it is clear that next* \((\mid\{\) freehd \(\}) \backslash\{\) nullpid \(\}=\) dom slps 1 by the predicate of the abstraction relation AbsSLEEPERS 2 and that dom slps \(1=\) slps by AbsSLEEPERS 1 and slps \(\subset\) used, \(p \in\) next* \((\{\) freehd \(\}) \backslash\{\) nullpid \(\}\) \((*)\) implies that \(0<\) waitingtime \(2(p) \leq\) now? implies \(0<\) waitingtime \(1(p) \leq\) now?

The removal of \(p\) from the list of sleepers is given, in FindAndWake2, as
```

$\left(p=s h d \wedge s h d^{\prime}=\operatorname{next}(s h d)\right)$
$\vee\left(\exists p_{1}: P I D \bullet\right.$
$\operatorname{next}\left(p_{1}\right)=p \wedge$
$n e x t^{\prime}=n e x t ~ \oplus\left\{p_{1} \mapsto \operatorname{next}(p)\right\}$

```

It is clear that each should be taken separately (and an appeal to \(V-I\) would be made if one wanted a fully formal proof).

By the predicate of the schema \(A b s S L E E P E R S 2, h d s=s h d\) and by the predicates of both AbsSLEEPERS2 and AbsSLEEPERS2', shd \({ }^{\prime}=n e x t(s h d)\) \(=\operatorname{slps} 1(h d s)=h d s^{\prime}\). The identity next \((s h d)=s l p s 1(h d s)\) is justified by the observation that
\(h d s \in \operatorname{next}^{*}(\{h d s\} \backslash\{\) nullpid \(\}=\operatorname{dom} \operatorname{slps} 1\)
Next, the existential contains next \({ }^{\prime}=n e x t \oplus\left\{p_{1} \mapsto n e x t(p)\right\}\). This implies that \(p \notin \operatorname{dom} n e x t^{\prime}\) and, by \(A b s S L E E P E R S 2^{\prime}, \operatorname{next}^{\prime}(p)=\operatorname{slps} 1^{\prime}(p)\), for all \(p \in\) dom slps1' (or equivalently, \(p \in n e x t^{*}(\mid\{s h d\} \backslash \backslash\) nullpid \(\}\)). For \(p \notin \operatorname{dom} \operatorname{slps} 1^{\prime}\) and \(p \in \operatorname{dom} \operatorname{slps} 1\) both to be true, it must be the case that dom \(\operatorname{slps} 1^{\prime}=\) (dom slps 1) \(\backslash\{p\}\) which is equivalent to \(\operatorname{slps} 1 \backslash\{p\}\) and \(\operatorname{slps} 1 \backslash\{p\}=s l p s 1^{\prime}\).

By the abstraction relations, slcnt \(2=\) slcnt 1 and slcnt \(2^{\prime}=\) slcnt \(1^{\prime}\), so slcnt \(2^{\prime}=\) slcnt \(2-1=\) slcnt \(1-1=\) slcnt \(1^{\prime}\).

The update of waitingtime 2 and state 2 can be handled in a simple way. The chain of equivalences \(*\) above is required.

Finally, MakeReady1, as observed elsewhere is defined in terms of promotion and its refinement has already been undertaken.

\section*{Theorem 56.}
\(\forall S L E E P E R S 1 ; S L E E P E R S 2 ; p ?: P I D ; t ?\), now? : TIME • pre SendMeToSleep \(1 \wedge\) AbsSLEEPERS \(1 \Rightarrow\) pre SendMeToSleep 2

Proof. We have
```

pre SendMeToSleep 1 \widehat{= t?=0}
\vee slcnt 1 < maxslps 1
\vee p?\not\indom slps1
pre SendMeToSleep 2 人
t?=0\vee slcnt 2< maxslps 2 \vee
p?\not\innext*}|{shd}|\{nullpid

```

The abstraction relation states that slcnt \(1=\) slcnt 2 and that maxslps \(1=\) maxslps 2 . Furthermore, next* \((\{\) shd \(\}) \backslash\{\) nullpid \(\}=\operatorname{dom}\) slps 1 .

\section*{Theorem 57.}
```

\forallSLEEPERS1; SLEEPERS1'; SLEEPERS2; SLEEPERS2';
p?: PID; t?, now? : TIME; serr! : SYSERR \bullet
pre SendMeToSleep1^
AbsSLEEPERS2^
AbsSLEEPERS2' ^
SendMeToSleep2
=> SendMeToSleep1

```

Proof. We can ignore with impunity the first conjunct \((t ?=0 \wedge \operatorname{serr}!=\) sleeptimetooshort).

By the predicate of \(A b s S L E E P E R S 2\), we have slcnt \(2=\) slcnt 1 and maxslps \(1=\) maxslps 2 , so slcnt \(2<\) maxslps \(2 \Leftrightarrow\) slcnt \(1<\) maxslps 1 .

The guard

implies
\(p ? \in \operatorname{next}^{*}(\{\) shd \(\}\) D \(\backslash\) nullpid \(\}\)
which, in turn, by the predicate of AbsSLEEPERS2, implies that \(p\) ? \(\in\) dom slps 1 .

If shd \(=\) nullpid, next \(^{*}(\{\) shd \(\} \backslash\) nullpid \(\}=\varnothing\), which implies that \(\operatorname{dom} \operatorname{slps} 1=\varnothing\). We now reason as follows.
```

next ${ }^{\prime}$
$=$ next $\oplus\{p ? \mapsto$ nullpid $\}$
$=\operatorname{slps} 1 \oplus\{p ? \mapsto$ nullpid $\}, \quad$ since $\operatorname{dom} \operatorname{slps} 1=\varnothing$
$=\operatorname{slp} s 1^{\prime}$

```

The last step is justified by \(A b s S L E E P E R S 2^{\prime}\).
In addition, we have
next \({ }^{\prime}\)
\[
\begin{aligned}
& =\text { next } \oplus\{\text { send } \mapsto p ?, p ? \mapsto \text { nullpid }\} \\
& =\text { slps } 1 \oplus\{\text { endss } \mapsto p ?, p ? \mapsto \text { nullpid }\}, \quad \text { since send }=\text { ends } \\
& =\text { slps } 1^{\prime}
\end{aligned}
\]

The last step is, once more, justified by \(A b s S L E E P E R S 2^{\prime}\).
Since \(p\) ? is not an element of the free chain, the proof of wakingtime \(2^{\prime}=\) wakingtime \(1^{\prime}\) and state \(2^{\prime}=\) state \(1^{\prime}\) is straightforward.

In the final section, it will become clear that we are justified in assuming that \(p\) ? is not on the free chain.

The operations and data structures derived in this section can now be translated directly into execuable code.

\subsection*{3.12 User Interface}

Here, the interface operations are defined. These are the operations that constitute the system as far as user processes are seen.

\subsection*{3.12.1 System Initialisation}

This consists of
- Creation and initialisation of process table \((P T A B)\);
- Creation of idle (null) process
- Initialisation of scheduler
- Initialisation of semaphore table
- Initialisation of sleeper list

This operation creates the idle process (variously called "null process" or "idle process").
```

CreateNullProcess \widehat{=}
\exists st : PSTATE; pr: PPRIO \bullet
st = psready ^
pr=minprio ^
AddPD[st/st?,pr/pr?]^
InitProcessStack

```

It expands into
CreateNullProcess
```

\trianglePTAB
p!:PID
serr! : SYSERR
((used \subset PID ^
p!\not\inused ^
used'}=\mathrm{ used }\cup{p!}
p!\inused}\mp@subsup{}{}{\prime}
prio}\mp@subsup{}{}{\prime}=prio\cup{p!\mapstopr}
state }\mp@subsup{}{}{\prime}=\mathrm{ state }\cup{p!\mapstost}
smsg' = smsg \cup{p?\mapsto nullmsg}^
wakingtime' = wakingtime \cup{p!\mapsto0}^
InitProcessStack ^
serr! = sysok)
\vee serr! = pdinuse)
\vee serr! = ptabful

```

The update of state by the addition of \(p\) ! satisfies the update condition for prio (etc.) as already noted. This is because the \(A d d P D\) operation is a sequential composition and what would be the intermediate state, used \({ }^{\prime \prime}\), is identical to the after state, used', because it is not further updated.

The InitProcessStack operation is defined below when discussing the creation of new processes in general.

The definition of CreateNullProcess is just a substitution instance of \(A d d P D\). The refinement of this operation is just the refinement of \(A d d P D\) suitably instantitated.
```

SystemInit $\widehat{=}$
PTABInit
@(TIMESINCEBOOTInit $\wedge$ CLOCKTIMEInit)
${ }_{9}$ (CreateNullProcess [ipid/p!, err/serr!] $\wedge$
$(($ IsSysOk $\wedge$ SCHEDInit $[$ ipid $/ p ?] \wedge$ SEMATBLInit $)$
$\vee$ ReturnSysErr[err/terr?])) <br>{ipid, err } \}
${ }_{9}$ ExitCritical

```

After re-arrangement, the predicate simplifies to
```

tnow $^{\prime}=0$
secs ${ }^{\prime}=0$
mins ${ }^{\prime}=0$
$h r s^{\prime}=0$
curr $^{\prime}=$ minpid
prev ${ }^{\prime}=$ minpid
$i p r c^{\prime}=i p i d$
$s q^{\prime} \cdot p q=\langle \rangle$
semasinuse ${ }^{\prime}=\varnothing$
used $^{\prime}=\{$ ipid $\}$
prio ${ }^{\prime}=\{$ ipid $\mapsto$ pr? $\}$
state $^{\prime}=\{$ ipid $\mapsto s t ?\}$
smsg ${ }^{\prime}=\{$ ipid $\mapsto$ nullmsg $\}$
wakingtime $^{\prime}=\{$ ipid $\mapsto 0\}$

```

The assignment to prio \(^{\prime}\), state \({ }^{\prime}\), smsg \({ }^{\prime}\) and wakingtime \({ }^{\prime}\) are justified by the fact that dom prio' \(=\operatorname{dom}\) state \(^{\prime}=\operatorname{dom}{s m s g^{\prime}}^{\prime}=\operatorname{dom}\) wakingtime \({ }^{\prime}=\) used \(^{\prime}\) and \(u s e d^{\prime}=\{\) ipid \(\}\). The initialisation of the scheduler is obtained by expanding \(\theta\) PRIOQInit to \(s q^{\prime} \cdot p q=\langle \rangle\).

Some of the components of the definition of SystemInit do not refine. Removing them, the following is revealed
```

PTABInit
9}\mathrm{ CreateNullProcess
9SEMATABInit

```

This forms the core of the refinement. (For verification purposes, the invariant components can be added and checked that the result satisfies the refinement homomorphism)

The initial process is the one that is started first. More important, it is the root process and is responsible for the creation of all processes in the system.

CreateInitialProcess \(\widehat{=}\)
NewProcess
\({ }_{9}\) SchedNext

Since SchedNext is defined in terms of a promotion, the refinement of NewProcess is the central aspect. The refinement of this operation is discussed in the next subsection.

\subsection*{3.12.2 Process Creation}

Process creation involves:
- Adding a descriptor to the process table
- Insertion of process reference in scheduler queue (MakeReady)

With the exception of the null (idle) and initial processes, each process is created by some other process. The other process, the parent, must be the currently executing process, of course, when the operation is performed. This has the consequence that the NewProcess operation can handle errors in any way it sees fit. It also means that there is no need to obtain the identifier of the current process before doing anything else.

It should be noted that the entire operation is wrapped in an EnterCritical, LeaveCritical pair. These operations disable and enable interrupts, respectively.
```

NewProcess $\widehat{=}$
EnterCritical
( $\exists$ st : PSTATE $\mid$ st $=$ psready •
(AddPD[mypid! $/ p!$, err $/$ serr $!] \wedge$
InitProcessStack
${ }_{9}(($ IsSysOk $[$ err $/$ serr $!] \wedge$ MakeReady $[$ mypid $!/ p ?$, err $/$ serr $!] \wedge$ SysOk $)$
$\vee$ ReturnSysErr $[$ err $/$ terr? $])) \backslash\{$ err $\})$

```
 \({ }_{9}\) ExitCritical

As far as the refinement process is concerned, this operation is the reason for our making the assumption \(p ? \in\) used above; every process must be created by the above operation and it ensures that \(p \in\) used holds, for all newly allocated \(p\). Below, we are able to discharge the assumption.

The last definition expands and simplifies to
```

$(($ used $\subset P I D \wedge$
(mypid! $\notin$ used $\wedge$
used $^{\prime}=$ used $\cup\{$ mypid $!\} \wedge$
prio ${ }^{\prime}=$ prio $\oplus\{$ mypid $!\mapsto$ pr $?\} \wedge$
${s t a s g^{\prime}}^{=}$smsg $\oplus\{$ mypid $!\mapsto$ nullmsg $\} \wedge$
wakingtime ${ }^{\prime}=$ wakingtime $\oplus\{$ mypid $!\mapsto 0\} \wedge$
InitProcessStack $\wedge$
state $^{\prime}=($ state $\oplus\{$ mypid $\mapsto$ st? $\}) \oplus\{$ mypid $!\mapsto$ psready $\} \wedge$
$\left(\left(p q=\langle \rangle \wedge p q^{\prime}=\langle p ?\rangle \wedge\right.\right.$ serr $!=$ sysok $)$

```
```

$\vee(((\# p q<$ maxs $\wedge$
$\left(\left(\right.\right.$ prio $(p ?) \leq$ prio $($ head $\left.p q) \wedge p q^{\prime}=\langle p ?\rangle \wedge p q\right)$
$\vee\left(\right.$ prio $($ last $\left.p q)<\operatorname{prio}(p ?) \wedge p q^{\prime}=p q \wedge\langle p ?\rangle\right)$
$\vee\left(\exists s_{1}, s_{2}: \operatorname{seq} P I D \mid s_{1} \neq\langle \rangle \wedge s_{2} \neq\langle \rangle \wedge s_{1} \frown s_{2}=p q\right.$
prio $\left(\right.$ last $\left.s_{1}\right)<\operatorname{prio}(p ?) \wedge$
$\operatorname{prio}(p ?) \leq \operatorname{prio}\left(\right.$ head $\left.s_{2}\right) \wedge$
$\left.\left.p q^{\prime}=s_{1} \frown\langle p ?\rangle s_{2}\right)\right) \wedge$
serr $!=$ sysok $)$ )
$\vee$ serr $!=$ schedqfull))
$\vee$ serr $!=$ pdinuse))
$\vee$ serr! $=$ ptabful)

```

The NewProcess operation is called by the initial process to create processes. The precondition is
pre NewProcess \(\widehat{=}\) used \(\neq P I D \wedge \# p q<\operatorname{maxs}\)
The first conjunct is derived from used \(\subset P I D\), note.
Again, some of the components do not refine. This implies that the refinement process should be in terms of

AddPD \({ }_{9}\) MakeReady
This expands into
```

AddPD.
SetStateToReady ^
\exists \trianglePRIOQ
\PhiSCHED ^ MakeReady

```

This is a refinement and the refinement of MakeReady has already been undertaken. Furthermore, the refinement of MakeReady in this context involves the substitution of a value (\(p\) ?) whose priority is not affected by that operation. It appears logical, therefore, to concentrate on the composition

AddPD \({ }_{9}\) SetStateToReady
It should be noted that mypid \(!\in\) used, so SetStateToReady is valid in this case.

The InitProcessStack is a low-level operation that is hardware-specific. On the Intel IA32 processor, for example, this operation would first simulate a procedure call (so that any parameters can be passed to the new process); next, it would push a dummy flags register (set to denote interrupted code), followed by a word containing the offset of the code segement in a table (the TSS), then the entry point of the process; the eight 0s (one per register) are then pushed onto the stack and the operation is ready. On other machines, this operation would be different, hence the reason for merely stating its specification in English. (But note that we could specify it formally -all of the concepts are readily amenable to formalisation.)

\subsection*{3.12.3 Process Management}

Here, we deal with
- Self-suspension
- Sleep
- Termination

All process-management operations are performed by the currently executing process. This has the consequence that any errors must be handled either by the process itself or just left for something else to pick them up. In addition, the operations must be wrapped inside the operations that disable and then enable interrupts. The reason for this is that the operation must be atomic as far as other processes are concerned.

As will be seen, a useful property of both EnterCritical and ExitCritical is that they can be omitted when calculating preconditions. The reason for this is that they only affect the after state. Here, again, is the definition of EnterCritical, by way of example:

EnterCritical \(\qquad\) \(\Delta H W\)
\({ }^{i n t f l g}{ }^{\prime}=o n\)

The predicate of this schema reduces to true when existentially quantified and then simplified.

The SuspendSelf operation suspends its caller. It is the SuspendMe operation wrapped in the interrupt disable/enable operations.
```

SuspendSelf \widehat{=}
EnterCritical
9}\mp@subsup{}{9}{SuspendMe
9}\mp@subsup{}{9}{ExitCritical

```

Given the property of the interrupt-flag manipulation operations, we can express the precondition immediately
pre SuspendSelf \(\widehat{=}\) pre SuspendMe
The critical-section operations do not refine (or, more correctly, refine to themselves), so SuspendSelf refines to SuspendMe. The SuspendMe operation, however, is defined as the composition of SCHED operations (which refine to themselves) and \(S C H E D\) operations defined in terms of promotion. This implies that the refinement of the PRIOQ operations has already been performed, so there is nothing left to be done here.

The SendSelfToSleep operation puts the caller to sleep for a period determined by a parameter to the operation.
```

SendSelfToSleep $\widehat{=}$
EnterCritical
${ }_{9}(($ CurrentProcessId $[c / p!] \wedge$
TimeNow[t/tn!] $\wedge$
SendMeToSleep $[c / p ?, t /$ tnow? $]) \backslash\{c, t\}$
${ }_{9}$ SchedNext)
${ }_{9}$ ExitCritical

```

The precondition is given by the next definition
pre SendSelfToSleep \(\widehat{=}\) pre SendMeToSleep \(\wedge\) pre SchedNext
The precondition can be written thus because its components contain disjoint sets of variables.

The definition again involves components that do not refine, so refinement should concentrate on
```

(CurrentProcessId[c/p!]^
TimeNow[t/tn!] ^
SendMeToSleep[c/p?,t/tnow?])\{c,t}

```
 \({ }_{9}\) SchedNext

Since TimeNow does not refine any further, this can be simplified to
```

(CurrentProcessId[c/p!]^ SendMeToSleep[c/p?,tnow/tnow?])\{c}
9}\mp@subsup{}{9}{SchedNext

```
where the substitution (not strictly Z) [tnow/tnow?] merely substitutes the current value of the clock from the global variable. (The precondition of TimeNow is true, in any case.)

We begin with
(CurrentProcessId \([c / p!] \wedge\) SendMeToSleep \([c / p ?\), tnow \(/\) tnow? \(]) \backslash\{c\}\)
but this is just a substitution instance of SendMeToSleep and this operation has already been refined.

When a process is terminated by some external agency (but not an errorthis kernel is too simple) or by calling TerminateSelf, its state has to be set to psterm.
```

SetProcessStateToTerminated \widehat{=}
\existsst: PSTATE | st = psterm \bullet
SetProcState[st/st?]

```

This expands into
SetProcessStateToTerminated \(\qquad\)
```

\trianglePTAB
p?: PID
state ' }=\mathrm{ state }\oplus{p?\mapstopsterm

```

The termination operation is now defined. Clearly, it is only called by the currently executing process. In this system, it is not possible for one process directly to terminate another. Each process is responsible for freeing the resources it holds.
```

TerminateSelf \widehat{=}
EnterCritical
g((CurrentProcessId[c/p!]^
SetProcessStateToTerminated [c/p?])
g}\mp@subsup{}{9}{}\operatorname{DelPD[c/p?])\{c}
gSchedNext

```

This is
TerminateSelf
ESCHED
\(\triangle P T A B\)
serr! : SYSERR
```

$\exists c: P I D: P T A B$
curr $=c \wedge$
(state ${ }^{\prime \prime}=$ state $\oplus\{c \mapsto$ psterm $\} \wedge$
$c \in$ used $\wedge$
used ${ }^{\prime}=$ used $\backslash\{c\} \wedge$
serr! $=$ sysok)
$\vee$ serr! $=$ unusedpd
${ }_{9}$ SchedNext

```

This is equivalent to
\(\exists\) PTAB
```

    state \(^{\prime \prime}=\) state \(\oplus\{\) curr \(\mapsto\) psterm \(\} \wedge\)
    (curr \(\in\) used \(\wedge\)
        used \(^{\prime}=\) used \(\backslash\{\) curr \(\} \wedge\)
        serr! \(=\) sysok)
    \(\vee\) serr \(!=\) unusedpd
    ${ }_{9}^{\circ}$ SchedNext

```
and to
TerminateSelf \(\qquad\)
\(\triangle P T A B\)
serr! : SYSERR
```

((state}\mp@subsup{}{}{\prime}=\mathrm{ state }\oplus{\mathrm{ curr }\mapsto\mathrm{ psterm }}\wedge\mathrm{ curr }\in\mathrm{ used }\wedge\mathrm{ used' = used \ {curr } ^
serr! = sysok)
\vee serr! = unusedpd)
9}\mp@subsup{}{9}{SchedNext

```

The precondition can be written as
```

pre TerminateSelf \widehat{=curr }\in\mathrm{ used }\wedge pre SchedNext
or as
pre TerminateSelf \widehat{=}
curr \in used ^
curr = iprc
\vee sq.pq=\langle\rangle
\vee ( state (curr) \neq psready \vee state (curr) \neq psrunning
\vee prio(head sq.pq)< prio(curr))

```

The operation refines as follows. It can be seen that the definition involves components that can not be further refined. This suggests that the refinement be of

SetProcessStateTo Terminated[curr/p?]
\({ }_{9} \operatorname{DelPD}[c u r r / p\) ?]
The refinement of SchedNext is that of a promotion, so it can be removed from the process.

First, the following operation is required.
SetProcessStateToTerminated 1 \(\qquad\)
\(\triangle P T A B\)
\(p ?: P I D\)
```

    state }\mp@subsup{1}{}{\prime}=\mathrm{ state }1\oplus{p?\mapstopsterm 
    ```

TerminateSelf \(1 \hat{=}\)
EnterCritical
9((CurrentProcessId \([c / p!] \wedge\)
SetProcessStateToTerminated \(1[c / p ?])\)
\(\left.{ }_{9}{ }_{9} F r e e P I D 1[c / p ?]\right) \backslash\{c\}\)
\({ }_{9}\) SchedNext 1
The inner composition expands into, after use of the one-point rule, is
```

state1' = state }\oplus{curr \mapsto psterm } ^
((dom freech = \varnothing ^
freech'}=\mathrm{ freech }\cup{\mathrm{ curr }\mapsto\mathrm{ nullpid } ^
endfree' = curr ^
hdfree' = curr ^
serr! = sysok)
\vee (curr }\not\in\operatorname{dom}\mathrm{ freech }
freech'}=(\mathrm{ freech }\oplus{\mathrm{ endfree }\mapsto\mathrm{ curr } ) }\cup{\mathrm{ curr }\mapsto\mathrm{ nullpid } }
endfree' = curr ^
serr! = sysok))
verr! = usedpd

```

In this kernel, process can change their priority. The following is the definition of this operation.
```

ChangeMyPriority \widehat{=}
EnterCritical
9(CurrentProcessId [c/p!]^ SetProcPrio[c/p?])\{c}
9}\mathrm{ ExitCritical

```

This definition expands into the following schema:
```

ChangeMyPriority
\triangleHARDWARE
\trianglePTAB
pr?: PPRIO
EnterCritical
@(\existsc: PID \bullet
c= curr ^
prio'}=\mathrm{ prio }\oplus{c\mapstopr?}
gExitCritical

```
which simplifies, using the one-point rule, to
```

ChangeMyPriority
\triangleHARDWARE
\trianglePTAB
pr?: PPRIO
EnterCritical
\mp@subsup{}{9}{\mathrm{ prio' }}=\mathrm{ prio }\oplus{\mathrm{ curr }\mapsto\mathrm{ pr?}}}
g}\mp@subsup{}{9}{}\mathrm{ ExitCritical

```

The refinement of this operation has already been undertaken. It is the refinement of SetProcPrio (with the substitution of curr for \(p\) ?).

Its first refinement is
ChangeMyPriority 1 \(\qquad\)
\(\triangle H A R D W A R E\)
\(\triangle P T A B 1\)
pr? : PPRIO
EnterCritical
\({ }_{9}{ }^{\text {prio1 }}{ }^{\prime}=\) prio \(1 \oplus\{\) curr \(\mapsto\) pr? \(\}\)
\({ }_{9}\) ExitCritical

The second refinement of ChangeMyPriority is
```

ChangeMyPriority2
\triangleHARDWARE
\trianglePTAB2
pr?: PPRIO
EnterCritical
g}\mp@subsup{}{9}{\prime2rio2'}\mp@subsup{}{}{\prime}=\mathrm{ prio 2 }\oplus{curr \mapsto pr?
9}\mp@subsup{}{9}{}\mathrm{ ExitCritical

```

One way for a process to obtain is identifier is by calling the following operation:
```

MyProcessId \widehat{=}
EnterCritical
9}\mathrm{ CurrentProcessId
g}\mp@subsup{}{9}{ExitCritical

```

This expands into
```

MyProcessId
\triangleHARDWARE
\XiSCHED
p! : PID
EnterCritical
p! = curr
g}\mp@subsup{}{9}{ExitCritical

```

This schema does not refine. The reason for this is that SCHED does not refine (although its component priority queue does).

\subsection*{3.12.4 Inter-process Communication and Synchronisation}

This consists of semaphore operations:
- Allocate and intialise semaphores in semaphore table
- Wait
- Signal
- Deallocate semaphore

As noted above, it is always the current process that calls these operations. The use of curr is already handled in the semaphore operations WaitSema and SignalSema but not in the operations to allocate and deallocate semaphores in the semaphore table.
```

AllocateSemaphore \widehat{=}
EnterCritical
gAllocSema
gExitCritical

```

Apart from being wrapped in the interrupt flag operations, this operation is just AllocSema. It refines to AllocSema1 and its precondition is
```

pre AllocateSemaphore \widehat{= pre AllocSema}

```

DeallocateSemaphore \(\widehat{=}\)
EnterCritical
\({ }_{9}\) ReleaseSema
\({ }_{9}\) ExitCritical
This refines to ReleaseSema1 for reasons similar to that mentioned above. The precondition is, trivially,
pre DeallocateSemaphore \(\widehat{=}\) pre ReleaseSema
The wait and signal operations on semaphores are, here, those defined in terms of the semaphore table. As will be remembered, wait and signal are provided by the semaphore table as promoted operations. There is no need to refine these operations because the semaphore table's refinement already takes care of them in the sense that the refinement of the table is independent of the refinement of the semaphore operations proper.
```

SemaphoreWait \widehat{=}
EnterCritical
gSTWaitSema
9}\mp@subsup{}{9}{ExitCritical

```

The precondition is unaffected by the locking operations
pre SemaphoreWait \(\widehat{=}\) pre SemaWait
```

SemaphoreSignal \widehat{=}
EnterCritical
9}\mathrm{ STSignalSema
9\mp@code{ExitCritial}

```
pre SemaphoreSignal \(\widehat{=}\) pre SemaSignal
 The message operations
- Send synchronous message
- Receive synchronous message
are supported.
First, the send operation.

SendSMsg \(\widehat{=}\)
```

EnterCritical
${ }_{9}$ (CurrentProcessId $[c / p!] \wedge$
MakeMessage $[c / s n d r ?] \wedge$ SendASynchMsg $[c / p ?, m / m ?]) \backslash\{c, m\}$

```
\({ }_{9}\) ExitCritical
Ignoring the critical-section operations (they refine to themselves, in any case), this partially expands into
```

SendSMsg
\triangleHARDWARE
\triangleSCHED
dest?: PID
payload?: MDATA
\existsc:PID; m:MSG | c = curr ^m=mkmsg(curr,dest?, payload?)
SendASynchMsg[c/p?,m/m?]

```

This particular schema expands into
```

SendSMsg
\trianglePTAB
\triangleSCHED
dest?: PID
payload?: MDATA
serr! : SYSERR
(dest? \& used ^
((state (dest?) = psreceiving ^
((smsgs(dest?) = nullmsg ^
smsgs'}=\mathrm{ smsgs }\oplus{dest?\mapstomkmsg(curr, dest?, payload?)} \
state'}=\mathrm{ state }\oplus{\mathrm{ curr }\mapsto\mathrm{ pssending, dest? }\mapsto\mathrm{ psready } ^
((pq=\langle\rangle\wedge curr' = dest?)
\vee ((\#pq< maxs ^
(prio (dest?) \leq prio(head pq) ^curr' = dest?)
\vee (((prio(last pq)< prio(dest?) ^
pq' = (tail pq) }~\langledest?\rangle

```

```

                                    prio(last s1)< prio(dest?)}
                                    prio(dest?) \leq prio(head s2)}
    ```

```

                                    curr'}=\mathrm{ head pq)^
                prev}\mp@subsup{}{}{\prime}=\operatorname{curr}\wedge serr! = sysok
                verr! = schedqfull)))
            verr! = procalreadyhasmsg))
    ```
```

    \veeserr! = destinationnotrcving))
    verr! = badmsgdestination

```

This is merely a substitution instance of the predicate of SendASynchMsg, so the refinement is identical to that of SendASynchMsg.
pre SendSMsg \(\widehat{=}\) SendASynchMsg
Next, the receive operation.
```

RcvSMsg $\widehat{=}$
EnterCritical
${ }_{9}($ CurrentProcessId $[c / p!] \wedge$ ReceiveSynchMsg $[c / p ?]) \backslash\{c\}$
${ }_{9}$ ExitCritical

```

The RcvSMsg schema is a substition instance of ReceiveSynchMsg, so it has already been refined.
pre RcvSMsg \(\widehat{=}\) ReceiveSynchMsg
Finally, an operation that first puts the calling process to sleep for a specified time and then tries to receive a message.

\subsection*{3.12.5 Clock Operations and the Clock ISR}

In this section, we include the operations of the clock and the system operation FindAndWake an operation that is invoked on every clock tick.

The clock is intended as an interrupt-service routine that is executed whenever there is a clock interrupt. On activation, the time-denoting variables are updated and the list of waiting processes is searched to determine whether there are any processes to activate. These operations are performed when interrupts are disabled, so there is no need to put them in a critical section.
```

SystemClockOps \widehat{=}
UpdateTIMESINCEBOOT
g(TimeNow[now/tn!] ^ UpdateClockTime[now/t?] ^
FindAndWake[now/now?])\{now}

```

If an interrupt-service routine is required, here it is:
CLOCKISR \(\widehat{=}\) SystemClockOps
The expansion of the definition of SystemClockOps is the following schema. This is again a case in which promotion does much of the work; the rest is handled by the fact that simple variables refine to themselves.

SystemClockOps
```

$\triangle$ TIMESINCEBOOT
$\triangle$ CLOCKTIME
$\triangle$ SLEEPERS
$\triangle$ SCHED
tnow ${ }^{\prime}=$ tnow + ticklength
$\exists$ now : TIME $\mid$ now $=$ tnow ${ }^{\prime} \wedge$
$(($ now mod tickspersec $=0) \wedge$
$(($ secs $+1 \bmod 60=0 \wedge$
secs ${ }^{\prime}=0 \wedge$
$((\operatorname{mins}+1 \bmod 60=0 \wedge$
mins $^{\prime}=0 \wedge$
$\left.h r s^{\prime}=h r s+1\right)$
$\vee$ mins $^{\prime}=$ mins +1$)$ )
$\vee$ secs $^{\prime}=$ secs +1$\left.)\right) \wedge$
slps $\neq \varnothing \wedge$
$(\forall p: P I D \mid p \in \operatorname{slps} \wedge 0<$ waitingtime $(p) \leq$ now
slps ${ }^{\prime}=s l p s \backslash\{p\} \wedge$
waitingtime ${ }^{\prime}=$ waitingtime $\oplus\{p \mapsto 0\} \wedge$
MakeReady[ $p / p ?]$ )

```

This simplifies to
```

$(($ tnow + ticklength mod tickspersec $=0) \wedge$
$\left(\left(\right.\right.$ secs $+1 \bmod 60=0 \wedge$ secs $^{\prime}=0 \wedge$
$\left(\left(\right.\right.$ mins $+1 \bmod 60=0 \wedge$ mins $\left.^{\prime}=0 \wedge h r s^{\prime}=h r s+1\right)$
$\vee$ mins $^{\prime}=$ mins +1$)$ )
$\vee$ secs $\left.\left.^{\prime}=\operatorname{secs}+1\right)\right) \wedge$
slps $\neq \varnothing \wedge$
$(\forall p: P I D \mid p \in$ slps $\wedge 0<$ waitingtime $(p) \leq$ tnow + ticklength $\bullet$
slps $s^{\prime}=s l p s \backslash\{p\} \wedge$
waitingtime $^{\prime}=$ waitingtime $\oplus\{p \mapsto 0\} \wedge$
MakeReady[p/p?])

```

\subsection*{3.12.6 Final Remarks}

Some operations defined in this section cannot be further refined (e.g., the stack initialisation operation) but others can and their refinement has been outlined in this section. It is now an easy step to translate the resulting schemata results into executable code. We have, with this, concluded the refinement of the first kernel.

\section*{The Separation Kernel}

The next refinement is of a Separation Kernel. The Separation Kernel is an architecture introduced by John Rushby as an architecture of cryptographic and other secure applications [11].

The purpose of this chapter is to describe the architecture and to outline its refinement.

\subsection*{4.1 Basic Architecture}

The architecture of the Separation Kernel is simple. It is a single-processor model of a distributed system in which all user processes are separated in time and space from each other. In a distributed system, the execution of each process takes place in a manner independent of any other. Processes can wait for data inputs, particularly inputs from communications channels. For the remainder of the time, the component processes execute at rates independent of all others. There is, in a distributed system, temporal separation between the execution of one process and all other processes. Separation in space means that the processes constituting a distributed system each have their own disjoint address spaces. If two address spaces are disjoint, it is not possible for one process directly to write to the address space of any other process.

The Separation Kernel is based on these two fundamental observations. Separation in time results from the fact that no two processes can be active at exactly the same time. Furthermore, if processes communicate using asynchronous channels, no synchronisation points are required, so processes can proceed at their own rate. Separation in space results from the fact that processes are allocated their own disjoint address spaces.

Temporal separation can be enforced by the system's scheduler and by a message-passing system. On a uni-processor system, the scheduler ensures that only one process executes at any time and executions are interleaved in time. The length of time during which any process will be executing (be
active) depends upon the scheduling algorithm and, as will be seen, the algorithm proposed by Rushby is particularly simple. In addition, the use of asynchronous messages means that processes do not synchronise during the exchange of messages, although they are permitted to wait for responses or results to be returned. Even in the case of waiting for a response, the waiting state depends upon the algorithms used to implement processes, not upon the underlying system.

Spatial separation can be enforced by segmentation. Most processors supporting segmented address spaces also have mechanisms for detecting and reacting to attempts by one process to access the segments of another. On the Intel IA32 and IA64 machines, for example, attempts to cross segment boundaries causes a hardware exception; a handler can be provided to handle the exception by, for example, killing the offending process. Each process is, therefore, allocated one or more segments. Should a process, either by error or through malice, attempt to address a location in another process' segments, the hardware should cause an exception to be raised. This permits the kernel to detect such illegal accesses and to perform some action.

The original proposal for the Separation Kernel was included the stipulation that a round-robin scheduler would be adequate. The round-robin scheme can be used in real-time applications because of its simplicity; it can also be used to simulate distributed systems because processes only enter the queue when they are ready to execute. Temporal separation is supported by the fact that, under pure round-robin, there is no a priori limit to the length of the period during which a process can execute. In many systems, timeslicing is used to share the processor between processes; each process is permitted to execute for a defined period of time and, when this period is exhausted, the process is suspended and another continues its execution. The property that round-robin scheduling allows processes to execute for indefinite periods must be qualified. Processes execute until such time as they are no longer able to continue and at such a time, they must relinquish the processor. Processes relinquish the processor either on a purely voluntary basis by executing a voluntary suspension operation or by executing some other operation whose definition includes the an operator that suspends the caller. The primitive that sends messages might suspend the caller, for example.

It should be clear that the kernel must reside in an address space that is disjoint from all user address spaces. This ensures that the kernel is protected against malicious processes. Furthermore, it is also separated in time because, by definition, it executes only when processes do not. In order to enforce the spatio-temporal separation of the kernel, it is essential to define a clean interface between it and user processes.

\subsection*{4.2 Extending the Architecture}

The Separation Kernel defines a basic and simple set of mechanisms for managing secure applications. It makes a distinction between trusted software (the kernel) and untrusted software (applications in user processes). The architecture requires some extension in order to include devices such as communications lines, printers and so on.

The US National Security Agency has produced an extension to the Separation Kernel architecture [10] so that device handling can be included. This introduces the concept of "trusted" code into the system. The context in which trusted code is introduced is the following. The document [10] assumes that the kernel proper is formally specified and that its properties are therefore well understood. Because it is formally specified, it is completely trusted. User processes are completely untrusted; this is because they are not under the control of the developers of the kernel and are assumed not to have been formally constructed. There is no control, it is assumed, over the content of user processes. Device processes (drivers and associated support code) require greater access to kernel facilities and might have to do such things as allocating their own storage, directly accessing the scheduler queues, and so on. This has the implication that devices should only be introduced into a secure system if they are trusted to a much greater extent than user code. The production of device-related code must be carefully controlled. Ideally, this code would be constructed using formal methods. One reason for assuming that it is not so constructed is the range of possible hardware that any implementation of the Separation Kernel can control (this is quite reasonable - it is a constraint adopted for the work in reported in this book and was also adopted in our [4]). A second reason is that the NSA probably do not believe that devicehandling code can be constructed formally-our opinion is at variance with theirs (and we have unpublished cases that tend to support our position). No matter what the reason, it is important that device-handling code should be trusted.

It is important, then, to support device-handling code. This kind of code needs to be fast and it needs access to low-level facilties. One way to support device-handling is to make the kernel open. This subverts the whole project. Instead, it is better to define and formally construct an interface to the kernel for use by device-handling code. The interface should only give device code access to a miminal set of services. In particular, it should define operations that
- Pass parameters from and to requesting user processes.
- Allow device-handling processes to suspend themselves.
- Cause device-handling processes to become active (i.e., to enter the scheduler's queue of processes ready to execute).

In addition, it should be possible to determine whether the services requested by user processes correspond to what is possible.

Fig. 4.1. Devices and interfaces in the Separation Kernel.

This is the approach adopted in this book. A set of operations is defined that provide exactly those capabilities listed above. In addition, devices are represented by "device numbers" as far as user processes are concerned. The kernel maps device numbers to actual devices, thus decoupling device (service) naming from the devices themselves (it also allows for some flexibility in the kernel). Some might object that device numbers are a low-level representation. The reply is that user processes use library calls to request such services; the bottom level of such libraries will use device numbers, not the higher levels and not user code.

\subsection*{4.3 Summary}

The Separation Kernel can be summarised as follows
- A segmented main store that is supported by the processor hardware.
- A round-robin scheduling régime.
- Natural-break scheduling by user and device processes.
- A well-defined set of interfaces for device-handling processes.
- A well-defined interface for user processes (see Figure 4.2).

The internal organisation of our Separation Kernel can be seen in Figure 4.2.

Fig. 4.2. The internal organisation of our Separation Kernel.

\subsection*{4.4 An Overview of the Formal Specification}

The purpose of this section is to describe in outline the formal specification of the Separation Kernel that is included in this book. In particular, it outlines the structures included in the kernel and attempts to make clear the assumptions upon which the major decisions were made.

The first thing to note is that a number of components are the same in the Separation Kernel and in the simple kernel that precedes it in this book. Firstly, the process table's general format is identical in both cases; the two tables contain slightly different information but the representations are the same in both cases. Second, the primary data structure used by the Separation Kernel's scheduler is a pair of FIFO queues. The round-robin scheduling régime only requires a simple FIFO for its implementation. Processes enter the queue at the end and progressively move to the head; when a process reaches the head of the queue, it is ready to execute. The Separation Kernel requires two FIFOs in its scheduler: one for user processes and one for device processes (device-handling processes, that is). The reason for this is that device processes run at a higher priority than user processes. This specification uses a synchronous I/O model. For present purposes, it is assumed that device processes are concerned with input and output operations, so the model seems appropriate. This choice has the consequence that device
processes can be scheduled in a strictly FIFO manner. Further consequences of these decisions are:
- The process table's refinement can proceed by analogy with that in the first kernel's refinement. We include the full refinement, however.
- The refinement of the FIFO can be taken directly from that in the earlier kernel.

This makes the refinement of the Separation Kernel a little simpler.
The operations required by the scheduler differ from those in the first kernel. However, the refinement relations are identities, so the necessary proofs are straightforward.

The major problem is the asynchronous message-passing component. One issue is preventing processes from evesdropping. For this reason, it was decided that messages would be handed to the kernel and the kernel would then copy them to kernel space. Copying is not usually a good idea because it requires space and time to perform. However, there seemed to be no alternative. This decision requires that the kernel allocates a buffer area for messages. It has the consequence that the message queues owned by user processes can contain pointers to messages stored in the kernel's buffer area. This poses no problems from the specification viewpoint but it does require some form of pointerdereference operation is required when handing the message to the destination when it is to be read. It is also necessary to have a mechanism for deleting the store occupied by a message when it is no longer required. It is clear that such deletion cannot be left to user processes (for one thing, it provides an appealing way to crash the system).

The low-level message operations are implemented using a type that represents the buffer space itself (essentially a vector of storage elements, say bytes) together with storage-management operations. The latter is provided by the same mechanisms that is used to allocate the large chunks of store that hold processes and their data and stack areas. The difference between the two is some renaming and the scales upon which the two instances act. This is another case in which we were able to re-use specifications and refinements in the development of a new specification.

In both cases, the storage manager uses tables that are separate from the store that is managed. Some might object to this. The two could be conflated to form a single module. This would require a number of typetransfer functions, as well as other very low-level operations. There is much detail in this work \({ }^{1}\) that does not add much to the overall presentation. There is another reason. In the case of the main store allocator, the aim is to have separate segments that are allocated from a pool that, in essence, belongs to no-one. We do not want anything to reside in the main store that could be used by a malicious process. The separation of store from its description
\({ }^{1}\) This statement is based on experience. We have attempted this very conflation in other, unpublished, work.
achieves this, even at a cost. All the pointers and size annotations in the scheme adopted here are in a space that is formally specified and under the control of formally specified operations; there is no data in places where other processes can manipulate them.

The design of the Separation Kernel should ensure security. As stated, user processes cannot be trusted, while device processes can. Trust can be maintained by ensuring that certain development methods be followed and that development is done by trusted persons under appropriate supervision. However, as far as the specification and its refinement are concerned, this has a number of consequences. First, an interface must be defined to support device processes. A device process is a device driver and requires access to a set of kernel functions and to fixed chunks of main store that it and its associated ISR use to hold data during transfer.

The kernel operations are mostly those supporting processes but a security "feature" of this specification is that device processes are known by a device number, a small numeric code that denotes a device process (and associated device); device numbers are allocated when the system is configured. Furthermore, device processes do not have external identifiers; instead, their device number serves as their identifier. Message passing between device processes is not permitted, but there is the requirement that user processes be able to send data to and receive data from device processes; this impacts upon the interface presented by device processes.

The specification contains a separate module that implements the interface required by device processes. The aim of this module is to provide the minimum set of operations required by device processes in order to do their job. This set of operations is also required to isolate the kernel from device processes so that the latter are required
1. To know as little possible about the kernel and its operations, and
2. To make the task of interfacing device processes as simple as possible.

It is assumed that there is some way to map main store in the kernel segment so that shared memory can be allocated; if this is not possible, it is relatively easy to introduce another storage manager, one distinct from the others employed in this system (for security reasons).

As is the case with the other kernel, there are low-level operations that require the direct use of machine-level operations. As before, there are the context-switch and interrupt-related operations to be specified. There are also ISRs to be specified. The approach adopted here is different from that in the other kernel. In particular, it is assumed that the Separation Kernel will execute on the Intel IA32/64 range of processors. This permits us to exploit the task-management instructions provided by them. Furthermore, there a problems with the management of a segmented store. The hardware instructions solve these problems for \(\mathrm{us}^{2}\).

\footnotetext{
\({ }^{2}\) In the current case, we have not examined the implications of porting it to another hardware architecture such as the MIPS or ARM.
}

\section*{5}

\section*{A Separation Kernel}

This chapter is concerned with the specification and refinement of a Separation Kernel. This, as described in the last chapter, is a type of kernel that was specifically designed for cryptographic and other secure applications.

The specification and refinement in this chapter relies to a certain extent on the existence of components that were specified and refined in the chapter on the simple kernel (Chapter 3). In particular, the queue types used to define the Separation Kernel's round-robin scheduler were specified in full in Chapter 3. The process representation employed in this chapter is related to that used for the earlier exercise.

The abstraction relations in this refinement are all identities (which is not at all unusual). This allows the refinement process to be shortened somewhat, for, once the abstraction relation has been identified, it is possible immediately to write out the refinements of the various operations. Furthermore, since the relationship between specification and refinement is that of identity, there is, strictly speaking, no need to engage in a proof. Below, we do present proofs, mainly for new state spaces or for state spaces that are markedly different from those in the previous refinement; we believe that these proofs are worth doing and recording as a safety check (they are, in any case, almost entirely straightforward). We are therefore permitted to reduce the length of the current chapter by the omission of much immediately derivable material.

\subsection*{5.1 Basic Types}

We need to define the main types to be used by the Separation Kernel. The reader will find the majority of the types familiar from Chapter 3.

First, a type that will take the place of explicit truth values:
\[
\text { YESNO ::= yes } \mid \text { no }
\]

The type for process identifiers is very much as in the previous exercise.
```

PID \widehat{= minpid . . maxpid}
GPID =}{\mathrm{ nullpid }}\cupPI

```

In this specification, the nullpid, null process value is also required.
nullpid : \(\mathbb{N}\)
```

$\forall p: P I D \bullet$
nullpid $<p$

```

This last definition might need a bit of a tweak.
Since this is a secure kernel, it is necessary to have a naming scheme for user processes. These names are intended to be unrelated to process identifiers. The simplest form of user identifier is to use a natural number to denote each process. It is assumed that the supply of natural numbers is large enough to suit the needs of the user.
\(U P I D \widehat{=} \mathbb{N}\)
We need to distinguish between user and device processes for scheduling purposes.

PTYPE ::= uproc | dproc
The reason for this is that the scheduler maintains two queues: one for user processes and one for device processes. Device processes are always at a higher priority than user processes.

Device processes are assumed to be trusted code that controls peripheral devices. They reside within the kernel's address space and are independent of user processes.

Devices are identified by a unique number (the "device" or "service" number).
mindev, maxdev : \(\mathbb{N}\)
mindev < maxdev
These two values determine the type \(D E V N O\) :
\(D E V N O==\) mindev \(\ldots\) maxdev
All Separation Kernel processes are in a unique state at any time. The Separation Kernel has fewer types than the one in Chapter 3.

PSTATE ::= psterm
psrunning
psready
psdevwait
pswtgdev

The last value of PSTATE denotes the state in which a device process is waiting for a request from a user process or when it is waiting for a device to return data to it.

The \(A D D R\) type defines addresses. Addresses must be between 0 and the maximum address supported by the particular processor being used (or some other a priori limit).
\(A D D R==\) nulladdr.. maxaddr
nulladdr \(: \mathbb{N}\)
maxaddr : \(\mathbb{N}\)
nulladd \(r=0\)
nulladdr \(<\) maxaddr
The following type

\section*{[PSU]}
denotes the Primary Storage Unit. On some machines, this is 8 bits, while on others it is 16 -, 32 - or 64 -bits. It is the unit by which main store is addressed and is used in the specification of storage mechanisms.
[MSG]
[MSGDATA]
nullmsg : MSG
Although there is no use put to the following, it is still useful to include it as a reminder that messages containing no data are also possible.
nullmsgdata : MSGDATA
User processes communicate with the Separation Kernel using structures that look rather like messages (even though they are not handled like messages-a somewhat more direct method is used). Each "message" has a single opcode to denote its function. The type to which opcodes belong is SYSOPCODE:
\begin{tabular}{rl}
SYSOPCODE \(::=\) newuproc \\
& \(|\)\begin{tabular}{l}
suspself \\
termself \\
sndmsg \\
gotmsgs \\
gotmsgfromsrc \\
nextmsg \\
nextmsgfromsrc \\
devrequest
\end{tabular}
\end{tabular}

Finally, we still need the error type. Here it is:
SYSERR \(::==\) sysok \begin{tabular}{|l}
unusedpd \\
pdinuse \\
ptabfull \\
emptyqueue \\
nospaceinstore \\
blocklocerror \\
badblockaddr \\
msgqfull \\
emptymsgq \\
nomsgsfrom \\
calleridentmismatch \\
mainstorefull \\
badmsgdest?? \\
nodevreply \\
baddevnum \\
badcallerid
\end{tabular}

In this kernel, the latest error is stored in a global variable. The variable is the state component of the following schema:

ERRV \(\qquad\)
serr : SYSERR

This variable is updated by various kernel operations and could be inspected by user processes. At present, the user-level operation required to inspect serr is not provided; its inclusion is a simple matter, though.

The error variable is initially set to \(o k\) :
ERRVInit
ERRV \({ }^{\prime}\)
\(s e r r^{\prime}=s y s o k\)

The error variable is set by the following operation
SetSysErr \(\qquad\)
\(\Delta E R R V\)
\(e\) ? : SYSERR
\(s e r r^{\prime}=e\) ?
and is read by the next one

SysErr
\(\Xi E R R V\)
\(e!: S Y S E R R\)
\(e!=s e r r\)

We define an abbreviation for recording the fact that an operation has gone according to plan.

Sys \(O k \widehat{=}(\exists e: S Y S E R R \mid e=\operatorname{sysok} \bullet \operatorname{SetSysErr}[e / e ?])\)

\subsection*{5.2 Hardware Issues}

In the case of the Separation Kernel, we are aiming our specification mostly at the Intel IA32/64 architectures in uni-processor versions only (we could run on a multi-core by executing on one processor only but this will still complicate our assumptions and require some additional machinery).

The IA32 architecture supports tasking by providing appropriate instructions and data formats. In particular, it has a structure called a TSS (Task Structure Segment) which contains all the registers of a process (including its segment registers).

Since we are aiming at an IA32 implementation, it will be necessary to refer to TSSs from within this specification, it is necessary to define a type

A few functions need to be defined:
```

tss_stacktop : TSS }->\mathrm{ ADDR
tss_stackseg:TSS }->\mathrm{ ADDR

```

The first returns a pointer to the top of the current stack (often the ESP registers on the Intel IA32), the second returns the start address (the base) of the segment in which the stack resides.

The TSS must be pointed to by the process descriptor. It is necessary to define the TSS table, together with allocation and deallocation operations. We sketch them only.
```

HW
\vdots
tsstab : seq TSS
\vdots

```
\(\qquad\)

We assume an operation AllocateTSS that allocates the TSS table in main store; we also assume that AllocateIDT is defined-this is the operation to allocate the IDT (interrupt vector) in main store.

The AllocateProcTSS operation allocates a TSS when a new process is allocated.

When a process terminates, its TSS must be returned to the pool. This is the outline of the deallocation operation that returns a process' TSS to the free pool.

DeallocateTSS \(\qquad\)
\(\Delta H W\)
\(p\) ? : PID
tss? : TSS:
\(\vdots\)
The process table must refer to TSS:
PTAB \(\qquad\)
:
tss : PID \(\rightarrow T S S:\)
\(\operatorname{dom} t s s=u s e d\)
\(\forall p: P I D \bullet\)
\(p \in \operatorname{dom}\) tss \(\Leftrightarrow\) ptype \((p)=\) uproc
(We assume that device processes have a TSS.)
The context switch proper now handled by a single instruction and can be defined as

ContextSwitch
\(\triangle H A R D W A R E\)
outproc? : PID
jmp tss(outproc?)
This will automatically switch between the currently running process and outproc?. The IA32/64 processor records the identity of the suspended process (however, it will be recorded by software).

The IA32 makes the combination of interrupts and context switches natural. Therefore, the context-switching mechanism will be specified as interrupt driven. To do this, an interrupt number is allocated for the context switch operation and an ISR that acutally performs the context switch (by calling the ContextSwitch operation, in particular), must be defined. Inside the kernel, an operation to cause an interrupt must be defined.

First, we define the interrupt type. As far as we are concerned, interrupts are just small positive integers:
minint, maxint : \(\mathbb{N}\)
minint \(<\) maxint
\(I N T N O==\) minint. . maxint
The operation of causing a software interrupt is performed by the following operation:

RaiseInterrupt
\(\Delta H W\)
ino? : INTNO
intno \(^{\prime}=\) ino? \(^{\prime}\)

The number of the interrupt that causes system termination is (partially) defined as
killintno : INTNO
The operation to cause killintno is
RaiseKillInterrupt \(\widehat{=}\) \(\exists\) ino : INTNO \(\mid\) ino \(=\) killintno •

RaiseInterrupt[ino/ino?]
Below, more will be said on the content of the ISR that must service this interrupt.

Finally, we define the number of the interrupt that will cause the context switch
ctxtswintno : INTNO
The operation that causes this interrupt is the following
```

CTXTSW \widehat{=}
\existsino:INTNO | ino = ctxtswintno -
RaiseInterrupt[ino/ino?]

```

There is very little else to say about context switches because the IA32 handles the rest. It switches registers between TSSs when context switches occur. This is very pleasant for IA32 users; for users of other processors, more work will have to be done.

\subsection*{5.3 Security Exits and Return Values}

In this kernel design, the information returned to users is deliberately minimal. This is so that malicious users can infer as little as possible about what has happened.

In some cases of error, the kernel halts and all processes are killed. This can occur, for example, if an attempt is made to create more processes than there are slots in the process table or if a segmentation fault occurs. The kernel kill prints a message stating "Kernel halted. Security violation?". This requires the types
\[
\begin{aligned}
& C H A R=={ }^{\prime} a^{\prime} . .{ }^{\prime} z^{\prime} \text {, } \\
& \text { ' } A^{\prime} \text {. . ' } Z^{\prime} \text {, } \\
& \text { ' } 0 \text { ' . . ' } 9 \text { ', } \\
& \ddots^{\prime}, \ddots^{\prime}, \backslash n^{\prime},{ }^{\prime} ?^{\prime}
\end{aligned}
\]
(where ' \(\backslash \mathrm{n}\) ' is the newline character, as in C; other characters can be assumed as required) and

STRING \(==\operatorname{seq}\) CHAR
The printing is effected by the following operation
PrintKMsg \(\qquad\)
km? : STRING
kprint(\(k m\) ?)

It is assumed that there is some mechanism outside of the kernel that can print a string on some screen or send it elsewhere. The kprint operation is not further specified. It is hardware dependent.

Next, we define a mechanism which will halt the processor and kill all current processes. It should do this when a fatal error occurs. The operation is to be called from an ISR that is executed as a result of some piece of code raising the killintno interrupt. This interrupt is raised to signal the fatal error.

The kernel kill operation requires the DeleteAllProcesses operation defined over the process table \((P T A B)\). It also sets the current process to the idle process.
```

KillKernel \
(IDLEPROCESSIdent[ip/p!]^
UpdateCurrentProcess[ip/p?])\{ip}
9DeleteAllProcesses
@(\existsmsg : STRING | msg = "Kernel halted. Security violation?" \bullet
PrintKMsg[msg/km?])

```

This definition expands into the following schema.
```

KillKernel
$\triangle P T A B$
$\exists i p: P I D$
$i p=i p i d \wedge$
curr $^{\prime}=i p \wedge$
prev $^{\prime}=\operatorname{curr} \wedge$
$u_{\text {sed }}{ }^{\prime}=\varnothing \wedge$
$(\exists \mathrm{msg}:$ STRING $\mid$ msg $=$ "Kernel halted. Security violation?" •
kprint(msg))

```

The KillKernel schema can then be simplified and we obtain (using the onepoint rule):

KillKernel \(\qquad\)
\(\triangle P T A B\)
curr \(^{\prime}=\) ipid
prev \(^{\prime}=\) curr \(^{\prime}\)
used \(^{\prime}=\varnothing\)
kprint("Kernel halted. Security violation?")

The KillKernel operation is intended to constitute a generic ISR. This ISR is executed whenever a lethal (or in the present case, any) error is encountered. For simplicity, as well as to demonstrate the paranoia principle, this specification and its refinement treats all errors as possible indications that something untoward has happened, so the KillKernel operation is invoked for every error.

\subsection*{5.4 The Process Table}

The process table is very similar to that used by the first system.
First, the error schemata are defined.
UnusedPD \(\widehat{=}\)
\((\exists e: S Y S E R R \mid e=\) unusedpd \(\bullet\)
\(\quad\) SetSysErr \([e / e ?]) \wedge\)
RaiseKillInterrupt
When it is detected that a process identifier has already been allocated, the error is raised by the following schema:

PDInUse \(\widehat{=}\)
\((\exists e: S Y S E R R \mid e=\) pdinuse \(\bullet\)
SetSysErr \([e / e ?]) \wedge\)
RaiseKillInterrupt

If an attempt to allocate more process identifiers than there are slots in the process table, the following schema is used to report the error.
```

PTABFull $\widehat{=}$
$(\exists e: S Y S E R R \mid e=$ ptabfull $\bullet$
SetSysErr $[e / e ?]) \wedge$
RaiseKillInterrupt

```

\subsection*{5.4.1 Top Level}

This specification organises the process table as a collection of arrays. At the top level, the arrays are modelled as partial functions whose domain is almost always PID, the type of process identifiers. The reader will see that the process table, again called \(P T A B\), is somewhat more complex than the one used in Chapter 3. In particular, the need to provide user-oriented identifiers for user processes introduces the nextupid, extpid and pidext variables. The variables devmap, devrqs and devrpy are used to support device processes. The remainder of the variables are common to user and device processes.
```

PTAB
nextupid: UPID
extpid: UPID $\rightarrow$ PID
pidext : PID $\rightarrow$ UPID
used $: \mathbb{F}$ PID
tss : PID $\rightarrow$ TSS
devmap: DEVNO $\rightarrow P I D$
state : PID $\rightarrow$ PSTATE
ptype: PID $\rightarrow$ PTYPE
$m s g q: P I D \rightarrow M S G Q$
devrqs : PID $\rightarrow M S G$
devmsg : PID $\rightarrow(G P I D \times M S G)$
deurpy: PID $\rightarrow M S G$
cdseg : PID $\rightarrow$ SDESC
dsseg : PID $\rightarrow$ SDESC
$\exists$ devs, uprocs : $\mathbb{F}$ PID $\mid$
devs $=\{p: P I D \mid p \in \operatorname{used} \wedge \operatorname{ptype}(p)=d p r o c\} \wedge$
uprocs $=\{p: P I D \mid p \in$ used $\wedge \operatorname{ptype}(p) \neq d p r o c\} \bullet$
used $=\operatorname{dom}$ state $\wedge$
used $=\operatorname{dom}$ ptype $\wedge$
uprocs $=\operatorname{dom}$ cdseg $\wedge$
uprocs $=\operatorname{dom}$ dsseg $\wedge$
used $=\operatorname{dom}$ tss $\wedge$
ran devmap $=$ dprocs $\wedge$
uprocs $=\operatorname{dom} m s g q \wedge$

```
```

    dprocs = dom devrqs ^
    dprocs = dom devmsg }
    dprocs = dom devrpy
    ran extpid = uprocs
dom pidext = uprocs
pidext = extpid}\mp@subsup{}{}{-1
\foralld:DEVNO
d}\in\mathrm{ dom devmap }
\exists
p=devmap(d)

```

The invariant of this schema is somewhat more complex than in the corresponding one in Chapter 3. This is because some components relate only to device processes. For example, device processes have device numbers, which are stored in the devmap variable, while the identifiers user processes are given to identify themselves and other processes are stored in pidext and extpid. Note that these two functions are mutually inverse. The pidext map translates internal process identifiers to external ones, while extpid performs the inverse operation. We decided to have two functions to make the operations more explicit.

The various components will be explained in more detail when the relevant operations are defined.

We can define free as:
\(P I D \backslash\) used \(=\) free
This is the same as in Chapter 3, so proofs involving used and free identifiers will be the same here as they were there.

The initialisation operation for this version of \(P T A B\) is scarcely more complex than the other one. The difference is that the external process identifier source, nextupid, must be initialised to 1 .

PTABInit \(\qquad\)
PTAB'
used \({ }^{\prime}=\varnothing\)
nextupid \({ }^{\prime}=1\)

The following is a schema that is true when the internal process identifier, \(p\) ?, is an element of used.

UsedPID \(\qquad\)
\(\Xi P T A B\)
\(p\) ? : PID
```

p?\in used

```

The next schema defines a predicate. The interpretation and justification for this schema is the same in this case as in the previous one.

GotFreePIDs \(\qquad\)
\(\Xi P T A B\)
used \(\subset P I D\)

In this kernel, process identifiers are allocated by a non-deterministic operation, called AllocPID. This operation is the same as in the previous specification.
\[
\begin{aligned}
& \text { AllocPID } \\
& \triangle P T A B \\
& p!: P I D \\
& p!\notin \text { used } \\
& \text { used }^{\prime}=\text { used } \cup\{p!\}
\end{aligned}
\]

In this kernel, however, we do not want user processes to have any knowledge of the workings of the kernel. One aspect of this is that we do not want user processes to know what their process identifier (an element of PID) is. This is achieved by allocating another identifier, an element of UPID, which can be used by user processes. This requires translation between PID and UPID at various points in the kernel but this is a small price for privacy. The operation to allocate an element of UPID is defined by the following schema.
```

AllocUPID
\trianglePTAB
u! : UPID
u! = nextupid
nextupid' = nextupid +1

```
\(\qquad\)

The operation is, itself, quite simple. The current value of nextupid is used as the external process identifier. The counter, nextupid, is then incremented by one.

The following schema defines an operation that adds an external identifier to the extpid external identifier mapping table.
```

AddProcUPID
\trianglePTAB
p?: PID
u?: UPID
extpid'}=\mathrm{ extpid }\oplus{u?\mapstop?

```

When a user process is created, the following operation is used to generate the two identifiers associated with it.
```

NewUPIDForProcess $\widehat{=}$
AllocPID ^
AllocUPID $\wedge$
AddProcUPID [p!/p?, u!/u?]

```

The definition of NewUPIDForProcess expands into the following schema:
NewUPIDForProcess
\(\triangle P T A B\)
\(u!\) : UPID
\(p!\notin\) used
\(u^{\text {sed }}{ }^{\prime}=\) used \(\cup\{p!\}\)
\(u!=\) nextupid
nextupid \({ }^{\prime}=\) nextupid +1
extpid \({ }^{\prime}=\) extpid \(\oplus\{u!\mapsto p!\}\)

The kernel allows two kinds of process to be created: user and device processes. The type PTYPE has two elements, one denoting user processes, the other denoting device processes. The type of each process is stored in ptype. The operation to add the type of a new process is defined thus:

SetProcType
\(\triangle P T A B\)
\(p\) ? : PID
\(p t ?\) : PTYPE
```

ptype'}=ptype \cup{p?\mapstopt?

```

The operation to allocate user-process identifiers (if there are any free), an external identifier and record the type of the new process (if it can be created) is defined by the following formula. The operation has the same name as the similar operation in the first specification, namely \(A d d P D\).
```

AddPD \widehat{=}
((GotFreePIDs ^
NewUPIDForProcess[uu!/u!] ^
SetProcType[p!/p?]^
SysOk)
\vee PTABFull

```

The \(A d d P D\) operation expands into:
AddPD
\(\triangle P T A B\)
\(\Delta H W\)
\(\Delta E R R V\)
```

$p!: P I D$
$u!: U P I D$
$p t ?: P T Y P E$
(used $\subset P I D \wedge$
$p!\notin$ used $\wedge$
$u s e d^{\prime}=$ used $\cup\{p!\} \wedge$
$u!=$ nextupid $\wedge$
nextupid ${ }^{\prime}=$ nextupid $+1 \wedge$
extpid ${ }^{\prime}=$ extpid $\oplus\{u!\mapsto p!\} \wedge$
ptype $^{\prime}=$ ptype $\cup\{p!\mapsto p t ?\} \wedge$
serr $^{\prime}=$ sysok)
$\vee\left(\right.$ serr $^{\prime}=$ ptabfull $\wedge$ intno $^{\prime}=$ killintno $)$

```

The \(A d d P D\) operation is very important, so its precondition has to be calculated. It is:
pre \(A d d P D \widehat{=}\)
used \(\subset P I D \wedge\)
\(p!\notin\) used
This formula implies
pre \(A d d P D \widehat{=}\) used \(\subset P I D\)
We can prove a useful result at this stage.
Theorem 58. \(A d d P D \Rightarrow p!\notin\) free \(^{\prime}\). In other words, \(p!\) is not a free process identifier in the after state of \(\operatorname{AddPD}\).

Proof. The predicate contains the conjunct used \(=\) used \(\cup\{p!\}\). By the definition of used, free \(=P I D \backslash u s e d\), so if \(p!\in u s e d^{\prime}, p!\notin\) free \(^{\prime}\) for the equation implies free \(\backslash\{p!\}=P I D \backslash(\) used \(\cup\{p!\})\) since the set of all identifiers is fixed.

We need to define an operation that sets the initial values for process attributes. This operation will be used when a process is created.

AddPDESC
\(\triangle P T A B\)
p?: PID
st? : PSTATE
state \(^{\prime}=\) state \(\cup\{p ? \mapsto s t ?\}\)

An operation is required to create the idle process. This process does not have a UID since it cannot be accessed outside the kernel. Even though it
resides in the kernel, the idle process is still regarded as a user process (this is really just a matter of choice - it could equally be a device process).
```

AddIdleProcess $\widehat{=}$
$\exists p t:$ PTYPE; st : PSTATE $\mid p t=$ uproc $\wedge s t=p s r e a d y$
AllocPID[ip!/p!] ^
AddPDESC[ip!/p?, st/st?]
SetProcType[ip!/p?, pt/pt?]

```

This definition expands to:
```

    AddIdleProcess
    ```
```

    \trianglePTAB
    p!: PID
    \exists pt:PTYPE; st : PSTATE | pt =dproc ^ st = psready \bullet
    ip! \not\in used ^
    used'}=\mp@code{used}\cup{ip!}
    state}\mp@subsup{}{}{\prime}=\mathrm{ state }\cup{ip!\mapstost}
    ptype}\mp@subsup{}{}{\prime}=ptype\cup{ip!\mapstopt
    ```

Removing the existential quantifier using the one-point rule, the following is obtained:
```

    AddIdleProcess
    ```
 \(\triangle P T A B\)
 \(i p!\) : PID
 \(i p!\notin\) used
 \(u s e d^{\prime}=\) used \(\cup\{i p!\}\)
 state \(^{\prime}=\) state \(\cup\{i p!\mapsto p\) sready \(\}\)
 ptype \({ }^{\prime}=\) ptrype \(\cup\{i p!\mapsto d p r o c\}\)

The next schema defines the operation that translates an external user process identifier, an element of \(U P I D\), and translates it into an element of PID.
```

PIDforUPID
\XiPTAB
u?:UPID
p! : PID
p! = extpid(u?)

```

The following is the definition of the operation that deallocates a process identifier. It is similar to the one in the earlier specification and its justification is also similar.
```

    FreePID
    \trianglePTAB
    p?: PID
    used'}=used \{p?
    ```

On termination, the external identifier of a process must be cancelled. This schema defines the operation.

DelProcUPID \(\qquad\)
\(\triangle P T A B\)
\(p\) ? : PID
extpid \({ }^{\prime}=\) extpid \(\triangleleft\{p ?\}\)

We need an operation to remove a process' external identifier when it is terminated. This schema defines that operation.

DelExtPD \(\qquad\)
\(\triangle P T A B\)
\(p\) ? : PID
extpid \({ }^{\prime}=\) extpid \(\triangleleft\{p ?\}\)
To delete a user process, the following is required:
```

DelUserPD \widehat{= DelExtPD ^ FreePID}

```

This operation expands into
```

\trianglePTAB
p?: PID
extpid'}=\mathrm{ extpid }\&{p?
used}\mp@subsup{}{}{\prime}=\mathrm{ used \{p?}

```

By calculation, the precondition of this operation is just true. This does not seem adequate, so we define
pre DelUserPD \(\widehat{=} p ? \in\) used
Sometimes, it is necessary to terminate all processes and to do it as quickly as possible. The following operation deletes all the information about processes.

DeleteAllProcesses \(\qquad\) \(\triangle P T A B\)
```

used}\mp@subsup{}{}{\prime}=

```

This operation is used (gleefully!) by the ISR that responds to lethal errors.
Operations to access and set various process attributes are defined in the next few schemata. The structure of these schemata is relatively simple and their interpretation should be immediate.
```

ProcType
\XiPTAB
p?: PID
pt!: PTYPE
pt! = ptype(p?)

```
ProcState
\(\Xi P T A B\)
\(p\) ? : PID
st! : PSTATE
\(s t!=\operatorname{state}(p ?)\)

SetProcState
\(\triangle P T A B\)
\(p\) ? : PID
st? : PSTATE
state \(^{\prime}=\) state \(\oplus\{p ? \mapsto s t ?\}\)
pre SetProcState \(\widehat{=} p ? \in\) used
Note that this is implied by the invariant.
SetStateToReady \(\widehat{=}\)
\(\exists\) st : PSTATE \(\mid\) st \(=\) psready
SetProcState[st/st?]

SetStateToRunning \(\widehat{=}\)
\(\exists\) st : PSTATE \(\mid\) st \(=\) psrunning •
SetProcState[st/st?]

SetStateToTerminated \(\widehat{=}\)
\(\exists\) st : PSTATE \(\mid\) st \(=\) psterm
SetProcState[st/st?]
Because all of the SetState operations are similar, only SetStateToReady is expanded here.

SetStateToReady
\(\triangle P T A B\)
\(p\) ? : PID
state \(^{\prime}=\) state \(\oplus\{p ? \mapsto\) psready \(\}\)
(The remainder can be obtained by an obvious substitution.)
The reader is warned that a significant number of operations, those dealing with device processes, are not included in this subsection. The missing class of operation is defined in the section dealing with device processes. The refinement of the device-process operations is directly analogous to the process whose documentation now begins.

\subsection*{5.4.2 Refinement One}

Having defined the process table and the general operations that act upon it, the refinement can begin. The first step is to define the refined process table and its initialisation schema; then the abstraction relation is defined.

This first refinement corresponds closely to that of the \(P T A B\) in the first specification. The strategy is exactly the same as in that case, namely that the set of free process table entries (denoted by process identifiers) should be implemented as a chain through a vector, called next, that maps process identifiers to process identifiers. As a first step, used is replaced by a free chain mapping. In addition, we require that all the partial functions that initially specified the various attributes of processes should be refined to functions whose domains are PID and whose codomains are the sets defining each attribute type (e.g., for state, we want a function PID \(\rightarrow\) PSTATE). This second goal is achieved at this stage in the refinement. The first goal is only partially reached; it will require a second step to refine to the representation in which next is used.

Now, it should be clear that this refinement strategy is identical to that used in the refinement documented in Chapter 3 of this book. The representation of the process tables in this and in the other case are extremely close (sets and partial functions). For this reason and for reasons given after the abstraction relation has been stated, most of the refinement proofs that would normally be associated with refinement steps are omitted from this chapter.
```

PTAB1

```
hdfree, endfree : GPID
freech: PID \(\rightarrow\) GPID
nextupid1: UPID
extpid \(1: U P I D \rightarrow P I D\)
pidext 1: PID \(\rightarrow\) UPID
devmap \(1:\) DEVNO \(\rightarrow\) PID
tss 1: PID \(\rightarrow\) TSS
state 1: PID \(\rightarrow\) PSTATE
```

ptype1: PID }->\mathrm{ PTYPE
msgq1: PID }->MSG
devrqs 1: PID }->\mathrm{ MSG
devmsg1:PID }->(GPID\timesMSG
devrpy 1: PID }->MS
cdseg1: PID }->\mathrm{ SDESC
dsseg1: PID }->\mathrm{ SDESC
hdfree = nullpid }\Leftrightarrow\mathrm{ endfree = nullpid
hdfree = nullpid \Leftrightarrowdom freech =\varnothing
(hdfree }\not=\mathrm{ nullpid }
dom freech }\not=\varnothing
hdfree \in dom freech }
endfree \in dom freech ^
freech(endfree) = nullpid )

```

The initialisation schema is much as one would expect.
PTAB1Init \(\qquad\)
PTAB1 \({ }^{\prime}\)
\(h d\) free \(^{\prime}=\) minpid
endfree \({ }^{\prime}=\) maxpid
\(\forall p: P I D \bullet\)
\(\left(p=\right.\) maxpid \(\Rightarrow\) freech \(^{\prime}(p)=\) nullpid \() \wedge\)
\(\left(p<\right.\) maxpid \(\Rightarrow\) freech \(\left.^{\prime}(p)=p+1\right)\)
nextupid \(1^{\prime}=0\)

UsedPID1
\(\Xi P T A B 1\)
\(p\) ? : PID
\(p ? \in \operatorname{dom}\) freech

GotFreePIDs 1
\(\Xi P T A B 1\)
hdfree \(\neq\) nullpid
```

AllocPID1
\trianglePTAB1
p!: PID
p! = hdfree
freech'}=\mathrm{ freech }\triangleleft{p!
hdfree}\mp@subsup{}{}{\prime}=next(hdfree

```
AllocUPID1
\(\qquad\)
\(\triangle P T A B 1\)
 \(u!: U P I D\)
```

u! = nextupid 1
nextupid 1 ' = nextupid 1 +1

```
 AddProcUPID1
\(\qquad\)
 \(\triangle P T A B 1\)
 \(p ?: P I D\)
 \(u ?: U P I D\)
 extpid \(1^{\prime}=\) extpid \(1 \oplus\{u ? \mapsto p ?\}\)

\section*{NewUPIDForProcess \(1 \widehat{=}\)}

AllocPID \(1 \wedge\)
\[
\begin{aligned}
& \text { AllocUPID } 1 \wedge \\
& \text { AddProcUPID } 1[p!/ p ?, u!/ u ?]
\end{aligned}
\]

The definition of NewUPIDForProcess1 expands into the following schema:
```

    NewUPIDForProcess1
    \trianglePTAB1
    p!: PID
    u! : UPID
    p!=hdfree
    freech'}=\mathrm{ freech }\triangleleft{p!
    hdfree' = next(freech)
    u! = nextupid 1
    nextupid1' = nextupid 1 +1
    extpid1' = extpid 1 }\oplus{u!\mapstop!
    ```

SetProcType 1 \(\qquad\)
```

\trianglePTAB1
p?: PID
pt?: PTYPE
ptype1' = ptype 1}\oplus{p?\mapstopt?

```
\(\operatorname{AddPD} \widehat{=}\)
((GotFreePIDs \(1 \wedge\)
NewUPIDForProcess \(1[u u!/ u!] \wedge\)
SetProcType \(1[p!/ p ?] \wedge\)
SysOk)
\(\checkmark\) PTABFull
The \(A d d P D 1\) operation expands into:
AddPD1 \(\qquad\)
```

$\triangle P T A B 1$

```
\(\Delta E R R V\)
\(\Delta H W\)
\(p!: P I D\)
\(u\) ! : UPID
\(p t ?\) : PTYPE
(hdfree \(\neq\) nullpid \(\wedge\)
\(p!=h d f r e e \wedge\)
freech \({ }^{\prime}=\) freech \(\leftrightarrow\{p!\} \wedge\)
\(h d f r e e^{\prime}=\operatorname{next}(\) freech \() \wedge\)
\(u!=\) nextupid \(1 \wedge\)
nextupid \(1^{\prime}=\) nextupid \(1+1 \wedge\)
extpid \(1^{\prime}=\) extpid \(1 \oplus\{u!\mapsto p!\} \wedge\)
ptype \(1^{\prime}=\) ptype \(1 \oplus\{p!\mapsto p t ?\} \wedge\)
\(s^{s e r r^{\prime}}=\) sysok)
\(\vee\left(\right.\) serr \(^{\prime}=\) ptabfull \(\wedge\) intno \(^{\prime}=\) killintno \()\)
The \(A d d P D 1\) operation is very important, so its precondition has to be calculated. It is:
pre \(\operatorname{AddPD} 1 \widehat{=}\)
hdfree \(\neq\) nullpid
This formula implies
pre \(A d d P D 1 \widehat{=}\) used \(\subset P I D\)
We need to refine the operation that sets the initial values for process attributes. It is as follows:
```

    AddPDESC1
    \trianglePTAB
    p?: PID
    st?: PSTATE
    state }\mp@subsup{1}{}{\prime}=\mathrm{ state }1\oplus{p?\mapstost?
    ```
```

AddIdleProcess1 \widehat{=}
\exists pt:PTYPE; st : PSTATE | pt = uproc ^ st = psready
AllocPID1[ip!/p!]^
AddPDESC1[ip!/p?, st/st?]
SetProcType1[ip!/p?,pt/pt?]

```
 PIDforUPID1
 EPTAB1
 \(u\) ? : UPID
 \(p!: P I D\)
 \(p!=\operatorname{extpid} 1(u ?)\)

The following schemata define operations on the free chain. They are identical to those in the previous refinement.

EmptyFreeChain1 \(\qquad\)
\(\Xi P T A B 1\)
dom freech \(=\varnothing\)

The AddNewLastFreechain schema defines an operation that adds an element to the end of the free chain.

AddNewLastFreechain \(\qquad\)
\(\triangle P T A B 1\)
\(p\) ? : PID
freech \({ }^{\prime}=\) freech \(\oplus\{\) endfree \(\mapsto p ?\}\)

The AddFreechainLast schema defines an operation that maps the last element of the free chain to nullpid.

AddFreechainLast \(\qquad\)
\(\triangle P T A B 1\)
\(p\) ? : PID
freech \(^{\prime}=\) freech \(\cup\{p ? \mapsto\) nullpid \(\}\)

The SetFCHead operation sets the value of hdfree.
SetFCHead \(\qquad\)
\(\triangle\) PTAB1
\(p\) ? : PID
\(h d\) free \(^{\prime}=p\) ?

Analogously, SetFCLast sets the value of endfree.
```

    SetFCLast
    \trianglePTAB1
    p?: PID
    endfree}\mp@subsup{}{}{\prime}=p\mathrm{ ?
    ```

The following is the definition of the operation that deallocates a process identifier. It is similar to the one in the earlier specification and its justification is also similar.
```

FreePID1 \widehat{=}
(((EmptyFreeChain1 ^
AddFreechainLast ^ SetFCLast }\wedge\mathrm{ SetFCHead)
\vee UsedPID 1 ^
(AddNewLastFreechain % AddFreechainLast) ^ SetFCLast)) ^
SysOk)
\vee UnusedPID

```

This can be transformed by distribution of SysOk. The transformation is justified by the propositional calculus theorem \((p \vee q) \wedge r \Leftrightarrow(p \wedge r) \vee(q \wedge\) \(r\)). The use of this theorem occurs frequently and can be used both to expand a schema by producing copies of conjuncts and to contract them by reducing multiple occurrences of a conjunct to a single one.
```

FreePID1 \widehat{=}
((EmptyFreeChain1 ^
AddFreechainLast ^ SetFCLast ^ SetFCHead ^ SysOk)
\vee (UsedPID1 ^
(AddNewLastFreechain % AddFreechainLast) ^ SetFCLast ^ SysOk))
\vee UnusedPID1

```

This definition can then be expanded into the schema that follows. A small amount of simplification has been performed on the schema, it should be noted. Very often, when expanding definitions into schemata, we will take the opportunity to engage in some simplification; we will, though, outline the transformations employed unless they are obvious.

FreePID1 \(\qquad\)
```

$\triangle P T A B 1$
$\Delta E R R V$
$\Delta H W$
$p ?: P I D$
((dom freech $=\varnothing \wedge$
freech ${ }^{\prime}=$ freech $\cup\{p ? \mapsto$ nullpid $\} \wedge$
endfree $^{\prime}=p ? \wedge$
hdfree ${ }^{\prime}=p ? \wedge$
$s e r r^{\prime}=$ sysok $)$
$\vee(p ? \notin \operatorname{dom}$ freech $\wedge$
freech $^{\prime}=($ freech $\oplus\{$ endfree $\mapsto p ?\}) \cup\{p ? \mapsto$ nullpid $\} \wedge$
endfree $^{\prime}=p ? \wedge$
serr $^{\prime}=$ sysok $)$ )
$\vee\left(\right.$ serr $^{\prime}=u s e d p d \wedge$ intno $^{\prime}=$ killintno $)$

```

On termination, the external identifier of a process must be cancelled. This schema defines the operation.

DelProcUPID1 \(\qquad\)
\(\triangle P T A B 1\)
\(p\) ? : PID
extpid \(1^{\prime}=\) extpid \(1 \notin\{p ?\}\)

We need an operation to remove a process' external identifier when it is terminated. This schema defines that operation.

DelExtPD1 \(\qquad\)
\(\triangle P T A B 1\)
\(p\) ? : PID
extpid \(1^{\prime}=\) extpid \(1 \triangleleft\{p ?\}\)

To delete a user process, the following is required:
DelUserPD1 \(\widehat{=}\) DelExtPD1 ^FreePID1
This operation expands into
```

\trianglePTAB1
\triangleERRV
\DeltaHW
p?: PID
extpid1' = extpid 1 }\triangleleft{p?

```
```

((dom freech $=\varnothing \wedge$
freech $h^{\prime}=$ freech $\cup\{p ? \mapsto$ nullpid $\} \wedge$
endfree ${ }^{\prime}=p ? \wedge$
$h d f r e e^{\prime}=p ? \wedge$
serr $^{\prime}=$ sysok $)$
$\vee(p ? \notin \operatorname{dom}$ freech $\wedge$
freech ${ }^{\prime}=($ freech $\oplus\{$ endfree $\mapsto p ?\}) \cup\{p ? \mapsto$ nullpid $\} \wedge$
endfree ${ }^{\prime}=p$ ? ^
serr ${ }^{\prime}=$ sysok $)$ )
$\vee\left(\right.$ serr $^{\prime}=$ usedpd $\wedge$ intno $^{\prime}=$ killintno $)$

```

By calculation, the precondition of this operation is just true. This does not seem adequate, so we define
pre DelUserPD1 \(\widehat{=} p ? \notin\) freech
Sometimes, it is necessary to terminate all processes and to do it as quickly as possible. The following operation deletes all the information about processes.

DeleteAllProcesses 1 \(\qquad\)
\(\triangle P T A B 1\)
hdfree \({ }^{\prime}=\) nullpid
\(\operatorname{dom}\) freech \(h^{\prime}=\varnothing\)

This operation is used by the ISR that responds to lethal errors. Its precondition is true, so it can be applied at any time!

ProcType 1 \(\qquad\)
\(\Xi P T A B 1\)
p?: PID
\(p t!\) : PTYPE
\(p t!=p t y p e(p ?)\)

ProcState 1
\(\Xi P T A B 1\)
\(p\) ? : PID
st! : PSTATE
\(s t!=\operatorname{state}(p ?)\)

SetProcState 1 \(\qquad\)
```

\trianglePTAB1
p?: PID
st? : PSTATE
state}\mp@subsup{}{}{\prime}=\mathrm{ state }\oplus{p?\mapstost?

```
pre SetProcState \(1 \widehat{=} p ?\) used
Note that this is implied by the invariant.
SetStateToReady \(1 \widehat{=}\)
\(\exists\) st : PSTATE \(\mid\) st \(=\) psready
SetProcState1[st/st?]

SetStateToRunning 1 =
\(\exists\) st: PSTATE \(\mid\) st \(=\) psrunning
SetProcState1[st/st?]

SetStateToTerminated \(1 \widehat{=}\)
\(\exists\) st : PSTATE \(\mid\) st \(=\) psterm
SetProcState1 [st/st?]
Because all of the SetState1 operations are similar, only SetStateToReady1 is expanded here.

SetStateToReady 1 \(\qquad\)
\(\triangle P T A B 1\)
p?: PID
state \(1^{\prime}=\) state \(1 \oplus\{p ? \mapsto p\) sready \(\}\)
We now give the abstraction schema. The difference between the schema as presented here and the one in the previous refinement is that the current one has more process attributes to relate. The "structural" components (those dealing with the existence of processes) are the same in both cases.

AbsPTAB1 \(\qquad\)
PTAB
PTAB1
```

dom freech $=P I D \backslash$ used
dom freech $\cap$ used $=\varnothing$
nextupid $1=$ nextupid
$\forall p: P I D \bullet p \in$ used $\Leftrightarrow \operatorname{pidext}(p)=\operatorname{pidext} 1(p)$
$\forall p: P I D \bullet p \in \operatorname{used} \Leftrightarrow \operatorname{extpid}(\operatorname{pidext}(p))=\operatorname{extpid} 1(\operatorname{pidext} 1(p))$
$\forall p: P I D \bullet p \in \operatorname{used} \Leftrightarrow \operatorname{state}(p)=\operatorname{state} 1(p)$

```
```

$\forall p: P I D \bullet p \in$ used $\Leftrightarrow \operatorname{ptype}(p)=\operatorname{ptype} 1(p)$
$\forall p: P I D \bullet p \in u s e d \Leftrightarrow \operatorname{msgq}(p)=\operatorname{msgq} 1(p)$
$\forall p: P I D \bullet p \in$ used $\Leftrightarrow \operatorname{pidext}(p)=\operatorname{pidext} 1(p)$
$\forall p: P I D \bullet p \in$ used $\wedge \operatorname{ptype}(p) \neq d p r o c \Leftrightarrow \operatorname{cdseg}(p)=\operatorname{cdseq} 1(p)$
$\forall p: P I D \bullet p \in$ used $\wedge \operatorname{ptype}(p) \neq d p r o c \Leftrightarrow d s \operatorname{seg}(p)=d \operatorname{sseg} 1(p)$
$\forall p: P I D \bullet p \in \operatorname{used} \wedge \operatorname{ptype}(p)=\operatorname{dproc} \Leftrightarrow \operatorname{devrqs}(p)=\operatorname{devrqs} 1(p)$
$\forall p: P I D \bullet p \in \operatorname{used} \wedge \operatorname{ptype}(p)=\operatorname{dproc} \Leftrightarrow \operatorname{devrpy}(p)=\operatorname{devrpy} 1(p)$
$\forall p: P I D \bullet p \in \operatorname{used} \wedge \operatorname{ptype}(p)=\operatorname{dproc} \Leftrightarrow \operatorname{devmsg}(p)=\operatorname{devmsg} 1(p)$
$\forall d: \operatorname{DEVNO} \bullet \operatorname{devmap}(d) \in \operatorname{used} \Leftrightarrow \operatorname{devmap} 1(d)=\operatorname{devmap}(d)$

```

This schema is yet another identity (and this is usual). This implies that we can compute the operations we require for \(P T A B 1\), using those defined for \(P T A B\). It also implies that the refinement proofs must be straightforward. We give the initialisation theorem as an example proof.

Next, we state and prove the initialisation theorem for PTAB1. This is the only proof in this section. It is included to demonstrate to the reader that the abstraction relation is sensible. The other proofs could be included but they are all relatively straightforward. (The interested reader might like to compare this abstraction relation with the parallel one in Chapter 3 and thus gain an idea of what the proofs are like.)

Theorem 59. \(\forall P T A B^{\prime} ; P T A B 1^{\prime} \bullet P T A B 1\) Init \(\wedge\) AbsPTAB1 \(\Rightarrow\) PTABInit
Proof. The universal implies that dom freech \({ }^{\prime}=P I D\) since \(P I D \backslash u^{\prime} e^{\prime}=\) freech \({ }^{\prime}\). We have PID \(\backslash\) used \(=P I D\), so used \(=\varnothing\), dom freech \(\neq \varnothing\) for hdfree \(\neq\) endfree \(\neq\) nullpid.

By \(A b s P T A B 1^{\prime}\), nextupid \({ }^{\prime}=\) nextupid \(1^{\prime}=1\).

\subsection*{5.4.3 Refinement Two}

The second refinement of \(P T A B\) is the subject of this subsection. The new \(P T A B 2\) schema is given immediately.

PTAB2
freehd, freelst: GPID
next : PID \(\rightarrow\) GPID
nextupid2 : UPID
extpid2 : UPID \(\rightarrow\) PID
pidext 2: PID \(\rightarrow\) UPID
devmap \(2:\) DEVNO \(\rightarrow\) PID
state \(2:\) PID \(\rightarrow\) PSTATE
tss \(2:\) PID \(\rightarrow\) TSS
ptype 2: PID \(\rightarrow\) PTYPE
\(m s g q 2: P I D \rightarrow M S G Q\)
devrqs \(2:\) PID \(\rightarrow M S G\)
```

devmsg2: PID $\rightarrow(G P I D \times M S G)$
devrpy $2: P I D \rightarrow M S G$
cdseg2: PID $\rightarrow$ SDESC
dsseg 2: PID $\rightarrow$ SDESC
freehd $=$ nullpid $\Leftrightarrow$ freelst $=$ nullpid
freehd $=$ nullpid $\Rightarrow$ next $t^{*}(\{$ freehd $\})=\varnothing$
freehd $\neq$ nullpid $\Leftrightarrow$
$\forall p: P I D \bullet$
$p=$ freehd $\Rightarrow$ nullpid $\in$ next $^{+}(\{$freehd $\})$
freehd $\neq$ nullpid $\Leftrightarrow$
$\forall p: P I D \bullet$
$p=$ freelst $\Rightarrow$ next $($ freelst $)=$ nullpid
freehd $\neq$ nullpid $\Rightarrow \exists_{1} k: \mathbb{N} \bullet$ next $^{k}($ freehd $)=$ nullpid

```

The reader should compare this with the corresponding schema in the refinement of the other kernel in this book. It will be seen that the two are quite similar. We make use of the similarity in the remainder of this subsection.

We immediately present the abstraction schema.
```

AbsPTAB2

```
\(\qquad\)
```

PTAB1
PTAB2
freehd = hdfree
freelst = endfree
freehd }\not=\mathrm{ nullpid }
next* ({ {freehd} D \{nullpid} = dom freech
dom freech =\varnothing\Leftrightarrow freehd = freelst }\wedge\mathrm{ freehd = nullpid
freehd }\not=\mathrm{ nullpid }\Leftrightarrow\forallp:PID\bulletp\in\operatorname{dom}\mathrm{ freech }=>\mathrm{ next ( }p)=\operatorname{freech}(p
dom freech \subseteq dom next
ran freech \subseteq ran next
\forall : PID \bullet
p\in\operatorname{dom}\mathrm{ freech }\Leftrightarrow\mathrm{ next (p) = freech(p)}

```

Again, this is similar to the corresponding schema in Chapter 3. With the exception of the relationships between the domain and codomain of freech and next, the other conjuncts are identities. We can treat the predicate of this schema as if it were an identity. This has what, by now, should be familiar consequences for the conduct of the refinement.

We state the initialisation schema (it is quite obvious):
```

    PTAB2Init
    PTAB2'
    freehd' = minpid
    freelst ' = maxpid
    \forallp:PID \bullet
    p=maxpid => next '}(p)=\mathrm{ nullpid }
    p<maxpid }=>\mp@subsup{\operatorname{next}}{}{\prime}(p)=p+
    ```

The schemata defined at this level can be translated with ease into a programming language, so there is no more to be done here.

\subsection*{5.5 Process Queues}

This section contains the refinement of the FIFO queue type used to implement the process queues manipulated by the Separation Kernel's scheduler. The type is identical to that defined in Chapter 3. This means that we can import all refinements and proofs intact from that earlier exercise and use them in the current context. This clearly saves us a little work; it also serves to shorten this book a little.

We will state the single error schema required by the process queue type. It is

ProcessQueueEmpty \(\widehat{=}\)
\((\exists e: S Y S E R R \mid e=\) emptyqueue •
SetSysErr \([e / e ?]) \wedge\)
RaiseKillInterrupt

\subsection*{5.5.1 Top Level}

This is a relatively straightforward specification of a FIFO queue. It uses a sequence as its basic container structure.

The state schema is the following.

PROCESSQUEUE \(\qquad\)
procs : seq PID

As was the case with the previous example, it is possible to include \(P T A B\) in the PROCESSQUEUE schema, thus making used a visible component. This would permit the invariant to include ran procs \(\subseteq\) used. Equally, the sequence type could be declared as being an injective sequence. This would imply that elements can appear only once. In this case, as in the last, we prefer not to take these measures. We can prove that only elements of used can be in procs since only elements of used can execute on the processor.

Furthermore, it is not necessary to use an injective sequence. The reason for this is that when a process is in the scheduler's queue, it cannot be executed and cannot, therefore, be placed on the scheduler's queue; necessarily, each process identifier occurs in procs exactly once.

The initialisation operation is the obvious one.
PROCESSQUEUEInit \(\qquad\)
PROCESSQUEUE'
procs \(^{\prime}=\langle \rangle\)

The test for queue emptiness is equally obvious.
IsEmptyPROCESSQUEUE \(\qquad\)
EPROCESSQUEUE
procs \(=\langle \rangle\)

New elements are enqueued at the back of the queue (it is a FIFO queue). This is captured by the following schema.

EnqueuePROCESSQUEUE \(\qquad\)
\(\triangle P R O C E S S Q U E U E\)
p? : PID
procs \(^{\prime}=\) procs \(^{\curvearrowleft}\langle p ?\rangle\)

The head of the queue is the first element or head procs, since head procs \(=\) procs(1) iff procs \(\neq\langle \rangle\). The next schema defines the basic operation; the condition on the queue will be imposed at a later time.

TheHeadOfPROCESSQUEUE \(\qquad\)
EPROCESSQUEUE
\(p!\) : PID
\(p!=\) head procs

The above operation is not useful. It must test for the empty queue. This extension is made in the following definition.

HeadOfPROCESSQUEUE \(\widehat{=}\)
(IsNonEmptyPROCESSQUEUE \(\wedge\) TheHeadOfPROCESSQUEUE \(\wedge\) SysOk)
\(\checkmark\) ProcessQueueEmpty
The definition expands into:

HeadOfPROCESSQUEUE \(\qquad\)
```

EPROCESSQUEUE
\triangleERRV
\DeltaHW
p!: PID
(procs }=\langle\rangle
p! = head procs }
serr' = sysok)
\vee (serr'}=\mathrm{ emptyqueue }\wedge\mp@subsup{\mathrm{ intno }}{}{\prime}=\mathrm{ killintno)

```

When a process is removed from the queue, it is removed from the head. The following schema defines this operation. It is the obvious specification, taking the tail of the queue and assigning it to the after state of the queue (procs \(^{\prime}\)):

DelHeadOfPROCESSQUEUE \(\qquad\)
\(\triangle\) PROCESSQUEUE
```

procs' }=\mathrm{ tail procs

```

A dequeue can only take place when the queue is not empty. The operation to perform the dequeue is totalised by the addition of checks. It is

DequeuePROCESSQUEUE \(\widehat{=}\)
(IsNotEmptyPROCESSQUEUE \(\wedge\)
HeadOfPROCESSQUEUEU \(\wedge\)
DelHeadOfPROCESSQUEUE \(\wedge\)
SysOk)
\(\checkmark\) ProcessQueueEmpty
This compound operation expands into:
DequeuePROCESSQUEUE \(\qquad\)
\(\triangle\) PROCESSQUEUE
\(\triangle E R R V\)
\(\Delta H W\)
\(p!: P I D\)
(procs \(\neq\langle \rangle \wedge\)
\(p!=\) head procs \(\wedge\)
procs \({ }^{\prime}=\) tail procs \(\wedge\)
\(s e r r^{\prime}=\) sysok)
\(\vee\left(\right.\) serr \(^{\prime}=\) emptyqueue \(\wedge\) intno \(^{\prime}=\) killintno \()\)
This is all there is to the queue type used by the scheduler. The round robin scheduling algorithm requires a strict FIFO queue. This is what has been presented.

\subsection*{5.5.2 Refinement}

The refinement of this type follows that in the PROCESSQUEUE section of the first kernel. The proofs are not repeated here.

It should be noted that the \(D E V P R O C Q U E U E\) type is defined in the next section. Type \(D E V P R O C Q U E U E\) is another FIFO queue type whose elements are elements of PID. The DEVPROCQUEUE type is defined in terms of renaming components of PROCESSQUEUE. The refinement proofs for DEVPROCQUEUE are identical to those for PROCESSQUEUE, so they may safely be omitted.

\subsection*{5.6 The Scheduler}

The separation kernel is intended to model a distributed sytem. This implies that the scheduler can be very simple.

The original paper on Separation Kernels, [10], specifies the round-robin scheduling algorithm. A problem can arise when high-priority devices need to be included in the system. To solve this, the scheduler is specified as two queues. One queue is used to schedule user-level processes. The second queue is used to schedule device processes. The device process queue has higher priority than the one for scheduling user processes.

It is necessary to begin by defining a separate queue type for device processes. This is required so that the names of device and process queue components and operations do not clash. We continue by defining new queue types and operations by renaming those defined for FIFO queues. Note that name substitutions must be performed in order to ensure that the new queue type does not contain names that clash with any existing (or to be defined) types.
```

DEVPROCQUEUE $\widehat{=}$ PROCESSQUEUE[devs/procs]
DEVPROCQUEUEInit $\widehat{=}$ PROCESSQUEUEInit[devs/procs]
IsEmptyDEVPROCQUEUE $\widehat{=}$ IsEmptyPROCESSQUEUE[devs/procs]
EnqueueDEVPROCQUEUE $\widehat{=}$
EnqueuePROCESSQUEUE[devs/procs, devs'/procs' ${ }^{\prime}$,dp?/p?]
DequeueDEVPROCQUEUE $\widehat{=}$
DequeuePROCESSQUEUE[devs/procs, devs $/$ /procs $\left.{ }^{\prime}, d p!/ p!\right]$

```

To assure the reader that this is proper, the above operations are now expanded so that their full definition can be seen.

First, there is the queue type schema:
_ DEVPROCQUEUE \(\qquad\)
devs : seq PID
The device queue is initialised by the following operation:

DEVPROCQUEUEInit \(\qquad\)
DEVPROCQUEUE'
devs \(^{\prime}=\langle \rangle\)
The emptiness of the device queue is tested by the following operation:
IsEmptyDEVPROCQUEUE \(\qquad\)
EDEVPROCQUEUE
devs \(=\langle \rangle\)
The enqueue operation for device processes is defined by the following schema:

EnqueueDEVPROCQUEUE \(\qquad\)
\(\triangle D E V P R O C Q U E U E\)
\(d p ?: P I D\)
\(d e v s^{\prime}=d e v s^{\curvearrowleft}\langle d p ?\rangle\)
The dequeue operation expands to the following:
DequeueDEVPROCQUEUE \(\qquad\)
\(\triangle D E V P R O C Q U E U E\)
\(\triangle E R R V\)
\(\Delta H W\)
\(d p\) ! : PID
\((\) devs \(\neq\langle \rangle \wedge\)
\(d p!=\) head devs \(\wedge\)
devs \({ }^{\prime}=\) tail devs \(\wedge\)
\(s e r r^{\prime}=\) sysok \()\)
\(\vee\left(\right.\) serr \(^{\prime}=\) emptyqueue \(\wedge\) intno \(^{\prime}=\) killintno \()\)
Finally, the scheduler schema can be defined. This schema contains variables to represent the currently executing process, the previously executed process, the identifier of the idle process and two FIFO queues, one each for user and device processes. The schema is:

> SKSCHED
\(\qquad\)
curr, prev : PID
ipid: PID
devq : DEVPROCQUEUE
procq : PROCESSQUEUE

It should be noted that the user-process queue is just an unmodified copy of PROCESSQUEUE.

Upon seeing this definition, it should be clear that promotion is to be used in the definition of the scheduler, just as it was in the case of the previous one. This is a natural method for the specification of the scheduler (it also cuts down the work to be done in refining it to executable code).

The associated initialisation schema is the next one to be defined.
```

SKSCHEDInit
SKSCHED'
p?: PID
curr' = minpid
prev}\mp@subsup{}{}{\prime}=\mathrm{ minpid
ipid' = p?
devq}\mp@subsup{}{}{\prime}=0DEVPROCQUEUEIni
procq}\mp@subsup{}{}{\prime}=0\mathrm{ AROCESSQUEUEInit

```

Note that the initialisation of the two FIFO queues, devq and procq uses the \(\theta\) notation.

The component ipid is the identifier of the idle process (sometimes called the "null" process). This is just a process that does nothing; it is there to absorb processor time in when there is nothing else to do. It can be implemented as a simple loop, such as:
```

while true do
skip
od

```

The next few schemata define operations that manipulate the scalar variables in the scheduler's schema. Their names are chosen so that they indicate function. The names of the variables are identical to those in the previous specification, so the reader can refer to the previous scheduler for explanation, should it be required.

IDLEPROCESSIdent \(\qquad\)
ЕSKSCHED
\(p!: P I D\)
\(p!=i p i d\)

RunningProcess \(\qquad\)
ЕSKSCHED
\(p!: P I D\)
\[
p!=c u r r
\]

SetRunningProcess \(\qquad\)
\(\triangle\) SKSCHED
\(p\) ? : PID
curr \(^{\prime}=p\) ?

PreviouslyRunningProcess
ESKSCHED
\(p\) ! : PID
\(p!=p r e v\)

SetPreviousProcess
\(\triangle\) SKSCHED
\(p\) ? : PID
prev \({ }^{\prime}=p\) ?
The final operation in this set is a little more complex. It is defined as the composition of other schemata:
UpdateCurrentProcess \(\widehat{=}\)
SetRunningProcess \(\wedge\)
(RunningProcess \([p / p!] \wedge\) SetPreviousProcess \([p / p ?]) \backslash\{p\}\)
It expands into a simple schema that can be simplified to give the following schema:
```

\triangleSKSCHED
p?: PID
curr}\mp@subsup{}{}{\prime}=p\mathrm{ ?
prev' = curr

```

The scheduler, SKSCHED, is defined in terms of promotion. The promoted components are the user- and device-process queues. The promotion schema is defined in the obvious fashion as follows.
```

\PhiSKSCHED
\triangleSKSCHED
\triangleDEVPROCQUEUE
\trianglePROCESSQUEUE
devq=0DEVPROCQUEUE
devq'}=0DEVPROCQUEUE'
procq = 0PROCESSQUEUEInit
procq}\mp@subsup{}{}{\prime}=0\mathrm{ PROCESSQUEUEInit}\mp@subsup{}{}{\prime

```

We can now define the promoted operations. Again, names are chosen to indicate function. We have little to say about these definitions. The operations correspond to those defined for device queues and are defined in a fashion similar to them.

IsEmptyUSERPROCESSQUEUE \(\widehat{=}\) \(\exists \triangle P R O C E S S Q U E U E ~-~\)

ФSKSCHED ^ IsEmptyPROCESSQUEUE
```

EnqueueUSERPROCESSQUEUE \widehat{=}
\exists \trianglePROCESSQUEUE
\PhiSKSCHED ^ EnqueuePROCESSQUEUE

```
DequeueUSERPROCESSQUEUE \(\widehat{=}\)
 \(\exists \triangle\) PROCESSQUEUE •
 ФSKSCHED ^ DequeuePROCESSQUEUE
IsEmptyDEVICEQUEUE \(\widehat{=}\)
 \(\exists \triangle D E V P R O C Q U E U E\)
 ФSKSCHED ^ IsEmptyDEVPROCQUEUE
EnqueueDEVICEPROCESS \(\widehat{=}\)
 \(\exists \triangle D E V P R O C Q U E U E \bullet\)
 ФSKSCHED ^ EnqueueDEVPROCQUEUE
DequeueDEVICEQUEUE \(\widehat{=}\)
 \(\exists \triangle D E V P R O C Q U E U E\)
 ФSKSCHED ^ DequeueDEVPROCQUEUE

The operation that enqueues a user process in the user process ready queue is defined as follows:

MakeReady \(\widehat{=}\)
SetStateToReady ^ EnqueueUSERPROCQUEUE
It is possible to strengthen this definition, making it more secure. The definition of MakeReady would look something like:
```

MakeReady $\widehat{=}$
(KnownPID $\wedge$
(IsUserPID $\wedge$
SetStateToReady $\wedge$
EnqueueUSERPROCQUEUE ^
SysOk)
$\checkmark$ NotUserPID)
$\checkmark$ UnknownPID

```

This would be a much more secure operation. However, it would require additional checks, KnownPID and IsUserPID, whose execution might incur unacceptable amounts of additional time (KnownPID must search the free chain in \(P T A B\)). The use of this operation (which requires the definition of additional schemata) remains an option but it is one with which we do not continue.

Next, the operation to place a device process on the ready devices queue, devq, is defined:

ReadyDeviceProcess \(\widehat{=}\)
SetStateToReady \(\wedge\) EnqueueDEVPROCQUEUE
This expands and simplifies to:
```

\trianglePTAB
\triangleSKSCHED
\trianglePROCESSQUEUE

```


The operation is now defined that executes the idle process at times when the scheduler determines that there is nothing else to do.
```

RunIdleProcess \widehat{=}
(IDLEPROCESSIdent [i/p]^
SetStateToRunning[i/p?] ^
UpdateCurrentProcess[i/p?])\{i}

```

This expands and simplifies to:
```

\trianglePTAB
\triangleSKSCHED
\trianglePROCESSQUEUE
state' }=\mathrm{ state }\oplus{ip\mapsto\mathrm{ psrunning }
curr' = ip
prev}\mp@subsup{}{}{\prime}=cur

```

It is sometimes necessary for a process to be removed from the scheduler queue in which it currently resides. When this happens, the process is said to be unreadied. Unreadying can occur when, for example, the current process makes a request for an I/O operation. I/O operations require time to complete and a device process must be scheduled, data transferred and the requesting process must be notified and then put back into the scheduler's queue. This is the most common case of unreadying and is, probably the only case relevant to the Separation Kernel. In other cases, a process that is not currently running is identified and removed from the queue. It is considered that, in the configuration of the Separation Kernel defined in this chapter, that this will not be a frequent operation; the case is included in the schema defining the unready operation, however.

In the operations specified here, an unready operation will not be used. Instead, use will be made of the fact that it is the current process that is performing the operation that requires the current process to be suspended. Nevertheless, the provision of the operation is useful because it provides a clean operation that can be employed by device processes (which are not specified in detail in this book).

It is also expected that device processes will never be unreadied. Therefore, the following definition is of the operation to remove user-level processes from the scheduler. If the process is the currently executing one, another process must be selected to execute. If the process to be unreadied is not yet executing (and is, therefore, in the user-process queue), it is merely removed from the queue and the current process continued.

SKMakeUnready \(\widehat{=}\)
(RunningProcess \([r / p!] \wedge\)
(IsEmptyUSERPROCESSQUEUE \(\wedge\) RunIdleProcess \({ }_{9}^{\circ}\) CTXTSW) \(\vee(\) DequeueUSERPROCESSQUEUE \([n / p!] \wedge\)

SetStateToRunning[\(n / p\) ?] \(\wedge\)
UpdateCurrentProcess \([n / p ?]_{9}\) CTXTSW \(\backslash\{\{n\}) \backslash\{r\}\)
The main scheduling operation is the following:
```

SKSchedNext \widehat{=}
(IsEmptyDEVICEQUEUE ^
(IsEmptyUSERPROCESSQUEUE ^ RunIdleProcess % CTXTSW)
\vee (DequeueUSERPROCESSQUEUE[n/p!]^
SetStateToRunning[n/p?]^
UpdateCurrentProcess[i/p?] g CTXTSW)\{n})
\vee (DequeueDEVICEQUEUE[d/p!]^
SetStateToRunning[d/p?] ^
UpdateCurrentProcess[d/p?] % CTXTSW)\{d}

```

Notice that SKSchedNext always stores in prev the identifier of the process that was current in its before state. After simplification, this operation can be written as
```

$\triangle$ SKSCHED
$(\operatorname{devq}=\langle \rangle \wedge$
(procq $=\langle \rangle \wedge$
curr $^{\prime}=i p \wedge$ prev ${ }^{\prime}=c u r r \wedge$
state $^{\prime}=$ state $\oplus\{i p \mapsto$ psrunning $\}{ }_{9}$ CTXTSW)
$\vee\left(\right.$ state $^{\prime}=$ state $\oplus\{$ head procq $\mapsto$ psrunning $\} \wedge$
procq ${ }^{\prime}=$ tail procq $\wedge$
curr $^{\prime}=$ head procq $\wedge$ prev $^{\prime}=$ prev $_{9}$ CTXTSW $\left.^{\prime}\right)$ )
$\vee\left(\right.$ devq ${ }^{\prime}=$ tail devq $\wedge$
state $^{\prime}=$ state $\oplus\{$ head devq $\mapsto$ psrunning $\} \wedge$
curr $^{\prime}=$ head devq $\wedge$ prev $^{\prime}=$ curr $_{9}{ }_{9}$ CTXTSW $)$

```

Since this is such an important operation, its precondition must be calculated.
pre SKSchedNext \(\widehat{=}\) true
The requeue operation just puts an unreadied process back onto the appropriate queue in the scheduler. Requeueing occurs, for example, when a user process has received data from a device request (e.g., received a data buffer from an input device). There are two versions of this operation, one each for user and device processes. Here, initially, is the requeue operation for user processes.
```

RequeueUserProcess \widehat{=}
(SKSchedNext g MakeReady)

```

This definition expands into
```

RequeueUserProcess

```
\(\qquad\)
```

\triangleSCHED
p?: PID
\exists procq" : seq PID; curr'",prev '' : PID; state' ' : PID }->\mathrm{ PSTATE •
((devq = <\rangle^
(procq = <\rangle^
curr' = ip ^ prev}= = curr ^
state"}=\mathrm{ state }\oplus{ip\mapsto\mathrm{ psrunning } % CTXTSW)
\vee ~ ( s t a t e ^ { \prime } = state \oplus \{ head procq \mapsto psrunning \} ^
procq" = tail procq ^
curr'}=\mathrm{ head procq ^ prev' = curr % CTXTSW))
\vee ( d _ { e v q } { } ^ { \prime } = t a i l ~ d e v q ~ \wedge ~
state" }=\mathrm{ state }\oplus{\mathrm{ head devq }\mapsto\mathrm{ psrunning } ^
curr'}\mp@subsup{}{}{\prime}=\mathrm{ head devq }\wedge \mp@subsup{\mathrm{ prev }}{}{\prime}=\mp@subsup{curr %}{9}{C}CTXTSW)
^ procq' }=\mp@subsup{p}{\mathrm{ procq" }}{}<br>\langlep?
^state' = state" }\oplus{p?\mapstopsready

```

The operation deals only with user processes, so only that part of SKSchedNext is affected by simplification (this is also the reason for the omission of devq in the enclosing existential quantifier). The simplified operation is

RequeueUserProcess \(\qquad\)
\(\triangle\) SCHED
\(p\) ? : PID
```

$(\operatorname{devq}=\langle \rangle \wedge$
$\left(\right.$ procq $=\langle \rangle \wedge$ curr $^{\prime}=i p \wedge$ prev $^{\prime}=\operatorname{curr} \wedge$
state $^{\prime}=$ state $\oplus\{$ ip $\mapsto$ psrunning,$p ? \mapsto$ psready $\} \wedge$
procq ${ }^{\prime}=\langle p ?\rangle$
${ }_{9}$ CTXTSW)
$\vee\left(\right.$ state $^{\prime}=$ state $\oplus\{$ head procq $\mapsto$ psrunning, $p ? \mapsto$ psready $\} \wedge$
procq $^{\prime}=(\text { tail procq })^{\wedge}\langle p ?\rangle \wedge$
curr $^{\prime}=$ head procq $\wedge$ prev $^{\prime}=$ curr
${ }_{9}$ CTXTSW))
$\vee\left(\right.$ devq ${ }^{\prime}=$ tail devq $\wedge$
state $^{\prime}=$ state $\oplus$ \{head devq $\mapsto$ psrunning $\} \wedge$
curr $^{\prime}=$ head devq $\wedge$ prev $^{\prime}=$ curr
${ }_{9}{ }^{\text {CTXTSW }}$

```

This is another important operation, so its precondition is calculated.
pre RequeueUserProcess \(\widehat{=}\) true
The requeue operation for device processes is now defined. Uses of this operation will be seen when the device-process interface is defined. The devicerequeue operation is analogous to that for user processes, as can be seen from its definition.
```

RequeueDeviceProcess $\widehat{=}$
(SKSchedNext ${ }_{9}$ ReadyDeviceProcess)

```

The reader will undoubtedly notice the considerable similarity between the definiton of this operation and the corresponding one for user processes. The definition of RequeueDeviceProcess expands to
```

RequeueDeviceProcess

```
\(\qquad\)
```

\triangleSKSCHED
p?: PID
\exists devq" ' seqPID; curr'", prev"' : PID; state" : PID }->\mathrm{ PSTATE •
( devq = <\rangle^
(procq = <>^
curr' = ip ^ prev}\mp@subsup{}{}{\prime}=curr ^
state"}=\mathrm{ state }\oplus{ip\mapstopsrunning } % CTXTSW
\vee ~ ( s t a t e " ~ = ~ s t a t e ~ \oplus ~ \{ h e a d ~ p r o c q ~ \mapsto ~ p s r u n n i n g ~ \} ~ \wedge ~
procq}\mp@subsup{}{}{\prime}=\mathrm{ tail procq }

```
```

        curr'}=\mathrm{ head procq ^ prev ' = curr % CTXTSW))
    \vee ( \operatorname { d e v q } { } ^ { \prime \prime } = t a i l ~ d e v q ~ \wedge ~
state" = state }\oplus{\mathrm{ {head devq }\mapsto\mathrm{ psrunning } ^
curr' = head devq ^ prev ' = curr % © CTXTSW)
9

```

```

    state }\mp@subsup{}{}{\prime}=\mp@subsup{\mathrm{ state }}{}{\prime\prime}\oplus{p?\mapstopsready
    ```

Simplification of the above schema yields the following:
```

RequeueDeviceProcess

```
\(\qquad\)
```

$\triangle$ SKSCHED
p? : PID
$(\operatorname{devq}=\langle \rangle \wedge$
devq $=\langle p ?\rangle \wedge$
$($ procq $=\langle \rangle \wedge$
curr $^{\prime}=i p \wedge p r e v^{\prime}=\operatorname{curr} \wedge$
state $^{\prime}=$ state $\oplus\{i p \mapsto$ psrunning,$p$ ? $\mapsto$ psready $\}$
${ }_{9}$ CTXTSW)
$\vee\left(\right.$ state $^{\prime}=$ state $\oplus\{$ head procq $\mapsto$ psrunning,$p ? \mapsto$ psready $\} \wedge$
procq ${ }^{\prime}=$ tail procq $\wedge$
curr $^{\prime}=$ head procq $\wedge$ prev $^{\prime}=$ curr
${ }_{9}$ CTXTSW))
$\vee\left(\operatorname{devq}{ }^{\prime}=(\text { tail devq })^{\wedge}\langle p ?\rangle \wedge\right.$
state $^{\prime}=$ state $\oplus\{$ head devq $\mapsto$ psrunning, $p$ ? $\mapsto$ psready $\} \wedge$
curr $^{\prime}=$ head devq $\wedge$ prev $^{\prime}=$ currr $_{9}^{\circ}$ CTXTSW)

```

Again, the precondition is required and is, therefore, calculated:
pre RequeueDeviceProcess \(\widehat{=}\) true

\subsection*{5.7 Storage Pools}

The Separation Kernel requires storage allocation to be performed in a number of places:
- In main store when processes are allocated. This operation consists of allocating the store and partitioning it into the required number of segments (2 in the current scheme).
- Inside the kernel, to allocate buffer space for inter-process messages.

The same operations can be used to implement storage allocation in both contexts. Although this might not be ideal, due to the fact that the allocator
was originally specified for the allocation and deallocation of small buffers and might not be optimal when operating on larger chunks of store, it shows how one specification can be employed in a number of contexts.

The error schemata are defined before the operations, as is our convention. There are 3 schemata.

The NoSpace operation sets the error varible when all the space in the pool has been allocated (this is probably going to be a rarely used operation).
```

NoSpace $\widehat{=}$
$(\exists e: S Y S E R R \mid e=$ nospaceinstore
SetSysErr [e/e?]) ^
RaiseKillInterrupt

```

\subsection*{5.7.1 Top Level}

The top-level specification now follows. The specification introduces a state space (called STOREPOOL), its initialistion schema and the following operations:
- An allocation operation.
- A deallocation operation.
- A scavenge operation that is called periodically to merge any isolated free blocks.

The storage-freeing operation specified in this section is relatively naive. The basic idea behind it is that it merges blocks whenever possible. However, due to the fact that the order in which deallocation requests occur is unrelated to that in which blocks were allocated, it is possible for isolated blocks to be left in the pool. These isolated blocks count as storage leaks and must be collected and merged with other blocks. For this reason, the scavenge operation is included.

Before defining the operations, it is necessary to define a type.
The \(M D\) type is the Memory Descriptor type. It consists of the address of the start of a block of storage and the size of the block in bytes. An element of \(M D\) represents a block of storage.
\(M D=A D D R \times \mathbb{N}_{1}\)
It is necessary to define three operations: one to construct elements of \(M D\) (\(m k m d\)), one to access the address of the block (\(m d a d d r\)) and one to access the block's size (\(m d s z\)). The definitions are simple and are as follows:
```

mkmd:ADDR }\times\mp@subsup{\mathbb{N}}{1}{}->M
mdaddr :MD ->ADDR
mdsz:MD }->\mp@subsup{\mathbb{N}}{1}{

```
```

\foralla:ADDR;sz: N

```
\foralla:ADDR;sz: N
 mkmd(a,sz)=(a,sz)
 mkmd(a,sz)=(a,sz)
\forallm : MD \bullet
\forallm : MD \bullet
 mdaddr (m)= fst m
 mdaddr (m)= fst m
 mdsz(m)= snd m
```

    mdsz(m)= snd m
    ```

Next, the definition of the storage pool schema is given; it is called STOREPOOL:

STOREPOOL
freebs : seq MD
maxfree : \(\mathbb{N}_{1}\)
alloc : \(\mathbb{N}\)
psize : \(\mathbb{N}_{1}\)
scavthresh: \(\mathbb{N}\)
scavcnt: \(\mathbb{N}\)
\((\) freebs \(=\langle \rangle \wedge\) alloc \(=\) psize \()\)
\(\vee(\) freebs \(\neq\langle \rangle \wedge\)
\(\sum_{i=1}^{i=\# \text { freebs }} \operatorname{mdsz}(\) freebs \((i))+\) alloc \(\left.=p s i z e\right)\)
The schema is composed of the following components:
- freebs: A sequence of memory descriptors. The descriptors point into the area of storage that is to be operated upon. Elements of this sequence denote the free blocks in the storage area; initially, there is just one descriptor in the sequence.
- maxfree: The maximum number of free blocks permitted in the storage pool.
- alloc: The number of bytes currently allocated in the storage pool.
- psize: The size of the storage area in bytes.
- scavthresh: The scavenge threshold (see below).
- scavcnt: The scavenge count (see below).

The initialisation operation is as follows:
STOREPOOLInit \(\qquad\)
STOREPOOL'
\(m f ?: \mathbb{N}_{1}\)
\(b a\) ? : \(A D D R\)
\(p s ?: \mathbb{N}_{1}\)
```

    scthrsh?: \(\mathbb{N}\)
    maxfree \(^{\prime}=m f ?\)
    psize \({ }^{\prime}=p s\) ?
    alloc \(^{\prime}=0\)
    freebs \(^{\prime}=\langle m k m d(b a ?, p s ?)\rangle\)
    scavthresh \({ }^{\prime}=\) scthrsh?
    scavcnt \({ }^{\prime}=0\)
    ```

The amount allocated is set to \(0\left(a_{l l o c}{ }^{\prime}=0\right)\) and the various sizes are also set by input variables. The scavenger-related variables are set (see below).

The interesting part is the assignment to freebs' . A single element of type \(M D\) is assigned to the sequence. The \(M D\) element is composed of the start address of the storage pool (i.e., a pointer to the start of the pool), \(b a\) ?, and the size of the pool in bytes, \(p s\) ?. Initially, the storage pool is completely unallocated, so this memory descriptor correctly describes the initial situation.

The following operation checks that there is sufficient space left in the buffer pool and there are sufficient blocks remaining, it also tests that there is a block whose size is at least that requested.

CanAllocateBlock \(\qquad\)
ESTOREPOOL
\(r q s z ?: \mathbb{N}_{1}\)
alloc + rqsz \(? \leq\) psize
\#freebs < maxfree
\(\exists i: 1 \ldots \#\) freebs \(\bullet\)
\(m d s z(\) freebs \((i)) \geq r q s z ?\)

The basic block allocation operation is now given.
```

AllocBlk

```
\(\qquad\)
```

\triangleSTOREPOOL
rqsz?: \mathbb{N }
a!:ADDR
\existsi:1..\#freebs
(mdsz(freebs(i)) = rqsz?^
freebs'}=\mathrm{ freebs }\otimes{\mathrm{ freebs (i)}^
alloc' = alloc + rqsz? ^
a! = mdaddr(freebs(i)))
\vee (mdsz(freebs(i)) > rqsz? ^
freebs' =
freebs }\oplus{i
mkmd(mdaddr(freebs(i))
+rqsz?, mdsz(freebs(i)) - rqsz?)} ^

```
```

alloc = alloc + rqsz? ^
a! = mdaddr(freebs(i)))

```

The operation works by iterating over the free blocks in freebs. If there is a block of identical size, it is returned; if there is a block of size greater than that requested, it is split into two.

The AllocBlk operation is important, so its precondition is calculated.
```

pre AllocBlk \widehat{=}
\existsi:1..\#freebs \bullet
mdsz(freebs(i)) \geqrqsz?

```

The block-freeing operation is as follows. It works by iterating over the free blocks, looking for a block that starts immediately after or immediately before the one being freed. If there is no such block in the storage pool, the one being freed is added to the end of the \(M D\) list in freebs.
```

FreeBlk

```
\(\qquad\)
\(\triangle\) STOREPOOL
```

a? : ADDR

```
\(s z ?: \mathbb{N}_{1}\)
(\(\exists i: 1 \ldots\) freebs •
 \((\operatorname{mdaddr}(f r e e b s(i))=a ?+s z ? \wedge\)
 alloc \(^{\prime}=\) alloc \(-s z ? \wedge\)
 freebs \(^{\prime}=\) freebs \(\oplus\{i \mapsto \operatorname{mkmd}(a ?, m d s z(\) freebs \(\left.(i))+s z ?)\}\right)\)
 \(\vee(\operatorname{mdaddr}(\) freebs \((i))+\operatorname{mdsz}(\) freebs \((i))=a ? \wedge\)
 alloc \(^{\prime}=\) alloc \(-s z ? \wedge\)
 freebs \(^{\prime}=\)
 freebs \(\oplus\{i \mapsto \operatorname{mkmd}(\operatorname{mdaddr}(\) freebs \((i)), \operatorname{mdsz}(\) freebs \((i))+s z ?)\})\)
 \(\vee\left(\right.\) freebs \(^{\prime}=\) freebs \(\frown\langle\operatorname{mkmd}(a ?, s z ?)\rangle \wedge\)
 alloc \({ }^{\prime}=\) alloc \(\left.-s z ?\right)\)

This operation's precondition is also required.
pre FreeBlk \(\widehat{=}\) true
Finally, a block-scavenging operation is defined. This reduces the store as far as possible to a single block. This requires the following function
\(\quad\) mergemds \(: M D \times M D \rightarrow M D\)
\(\forall m_{1}, m_{2}: M D \bullet\)
\(\quad \operatorname{mergemds}\left(m_{1}, m_{2}\right)=\operatorname{mkmd}\left(\operatorname{mdaddr}\left(m_{1}\right), \operatorname{mdsz}\left(m_{1}\right)+m d s z\left(m_{2}\right)\right)\)

The block scavenger operation is applied on a periodic basis. It iterates over the storage pool and tries to merge blocks wherever possible.
```

    BlockScavenge
    \triangleSTOREPOOL
    \foralli:1..#freebs \bullet
    \forallj:1..#freebs | i\not=j \bullet
        [mdaddr (freebs (i)) +mdsz (freebs (i)) = mdaddr (freebs (j)) ^
            freebs" : seq MD
                freebs" = freebs }\otimes{\mathrm{ freebs (j)} ^
            freebs' = freebs" }\oplus{i\mapsto mergemds(freebs(i), freebs(j))}
            \vee [ m d a d d r ( f r e e b s ( j ) ) + m d s z ( f r e e b s ( j ) ) = m d a d d r ~ ( f r e e b s ~ ( i ) ) \wedge
                \exists freebs" : seq MD
                    freebs"'= freebs}\otimes{\mathrm{ freebs(i)}^
                    freebs'= freebs }\oplus{j\mapsto\operatorname{mergemds(freebs(j), freebs(i))]
    ```

The BlockScavenge operation's precondition must be calculated. It is:
```

pre BlockScavenge \widehat{=}
\foralli:1..\#freebs \bullet
\forall:1..\#freebs | i\not=j
mdaddr(freebs(i)) +mdsz(freebs(i)) = mdaddr(freebs(j))
\veemdaddr (freebs(j)) +mdsz(freebs(j)) = mdaddr(freebs(i))

```

The scavenger is triggered by a "scavenge counter". This counter is incremented when a deallocation is performed. It is:

IncFreeCnt \(\qquad\)
\(\triangle\) STOREVEC
```

scavcnt' = scavcnt + 1

```

After a block scavenge operation is performed, the counter should be cleared. The following operation defines it:

ClearFreeCnt \(\qquad\)
\(\triangle\) STOREVEC
scavcnt \({ }^{\prime}=0\)

When the scavenge counter reaches the threshold, the next operation, a predicate, is true.

ShouldScavenge \(\qquad\)
\(\triangle S T O R E V E C\)
scavcnt \(=\) scavthresh

The specification is now complete and the refinement can start.

\subsection*{5.7.2 Refinement One}

This is the first level of refinement.
Initially, a nullmd must be defined. It is clear that it should be the following unique definition:
nullmd : MD
nullmd \(=\operatorname{mkmd}(0,0)\)

The first refinement of the STOREPOOL schema is the following:
STOREPOOL1 \(\qquad\)
```

freebs 1:1.. maxfblocks }->\mathrm{ MD
maxfblocks:}\mp@subsup{\mathbb{N}}{1}{
nextm : N
alloc1:\mathbb{N}
psize 1:\mathbb{N}
scavthresh1:\mathbb{N}
scavcnt1:\mathbb{N}
(nextm = 1 ^alloc1 = psize1)
\vee \mp@code { ( n e x t m } > 0 \wedge ~ \sum _ { i = 1 } ^ { i = n e x t m - 1 } m d s z ( f r e e b s ~ 1 ~ ( i ) ) + alloc 1 = psize 1)

```

The biggest difference between this schema and the one in the specification is that freebs is to be related to freebs 1 , whose type is \(1 \ldots\) maxfblocks \(\rightarrow M D\), not seq \(M D\).

Note that the variable nextm has been introduced. This variable is used to indicate the next element of freebs 1 into which an \(M D\) can be stored. The nextm variable is used only when deallocating variables.
```

STOREPOOLInit1
STOREPOOL1'
mf?: N\mathbb{N}
ba?: ADDR
ps?: \mathbb{N }
scthrsh?:\mathbb{N}
maxfblocks' = mf?
psize\mp@subsup{1}{}{\prime}=ps?
alloc1' = 0
nextm' = 2
freebs1'(1) = mkmd(ba?, ps?)
scavthresh1' = scthrsh?
scavcnt1' = 0

```
\(\qquad\)

The initialisation schema is as one would expect. The principle behind it is identical.

The next schema corresponds directly to the one in the specification.
EnoughSpace 1 \(\qquad\)
ESTOREPOOL
rqsz?: \(\mathbb{N}_{1}\)
alloc \(1+\) rqsz? \(\leq p s i z e 1\)

The following schema also corresponds directly to CanAllocateBlock:
CanAllocateBlock 1 \(\qquad\)
ESTOREPOOL1
\(r q s z ?: \mathbb{N}_{1}\)
alloc \(1+\) rqsz? \(\leq\) psize 1
nextm \(\leq\) maxfblocks
\(\exists i: 1 . . n e x t m-1\)
\(m d s z(\) freebs \(1(i)) \geq r q s z ?\)

The allocation operation is now defined. It is also very close to the original specification, the differences being due to the different representation of the free block list.

AllocBlk 1 \(\qquad\)
\(\triangle\) STOREPOOL1
\(r q s z ?: \mathbb{N}_{1}\)
\(a!: A D D R\)
```

$\exists i: 1 . . n e x t m-1$ •
$(m d s z(f r e e b s 1(i))=r q s z ? \wedge$
alloc $1^{\prime}=$ alloc $1+$ rqsz? $\wedge$
$a!=m d a d d r(f r e e b s 1(i)) \wedge$
nextm ${ }^{\prime}=$ nextm $-1 \wedge$
$\forall j: i . . n e x t m-2 \bullet$
freebs $1^{\prime}=$ freebs $1 \oplus\{j \mapsto$ freebs $\left.1(j+1)\}\right)$
$\vee(m d s z($ freebs $1(i))>$ rqsz? $\wedge$
alloc $1^{\prime}=$ alloc $1+r q s z ? \wedge$
$a!=\operatorname{mdaddr}($ freebs $1(i)) \wedge$
freebs $1^{\prime}=$
freebs $1 \oplus\{i \mapsto$
$\operatorname{mkmd}($ mdaddr $($ freebs $1(i))+r q s z ?$,
$m d s z($ freebs $1(i))-r q s z ?)\})$

```

The deallocation operation's schema refines to the following schema:

FreeBlk 1 \(\qquad\)
\(\triangle\) STOREPOOL1
a? : ADDR
\(s z ?: \mathbb{N}_{1}\)
(\(\exists i: 1 \ldots\) nextm \(-1 \bullet\)
\((\operatorname{mdaddr}(\) freebs \(1(i))=a ?+s z ? \wedge\)
alloc \(1^{\prime}=\) alloc \(1-s z ? \wedge\)
freebs \(1^{\prime}=\) freebs 1
\(\oplus\{i \mapsto \operatorname{mkmd}(a ?, \operatorname{mdsz}(\) freebs \(1(i))+s z ?)\})\)
\(\vee(\operatorname{mdaddr}(\) freebs \(1(i))+\operatorname{mdsz}(\) freebs \(1(i))=a ? \wedge\)
alloc \(1^{\prime}=\) alloc \(1-s z ? \wedge\)
freebs \(1^{\prime}=\)
freebs \(1 \oplus\)
\(\{i \mapsto \operatorname{mkmd}(\operatorname{mdaddr}(\) freebs \(1(i)), m d s z(\) freebs \(1(i))+s z ?)\})\)
\(\vee\left(\right.\) freebs \(1^{\prime}=\) freebs \(1 \oplus\{\) nextm \(\mapsto \operatorname{mkmd}(a ?, s z ?)\} \wedge\)
nextm \({ }^{\prime}=\) nextm \(+1 \wedge\)
alloc \(1^{\prime}=\) alloc \(1-s z ?\))

The different representation of the free list is quite clear from a comparison of this schema with the original specification.

Finally, the block scavenger's first refinement now follows:
_BlockScavenge 1 \(\qquad\)
\(\triangle\) STOREPOOL
\(\forall i: 1 \ldots\) nextm -1
\(\forall j: 1 \ldots\) nextm \(-1 \mid i \neq j \bullet\)
\([\operatorname{mdaddr}(\) freebs \(1(i))+\operatorname{mdsz}(\) freebs \(1(i))=\operatorname{mdaddr}(\) freebs \(1(j)) \wedge\)
nextm \({ }^{\prime}=\) nextm \(-1 \wedge\)
\(\exists\) freebs \(1^{\prime \prime}: 1 \ldots\) maxfblocks \(\rightarrow M D\)
freebs \(1^{\prime \prime}=\) freebs \(1 \otimes\{\) freebs \(1(j)\} \wedge\)
freebs \(1^{\prime}=\) freebs \(1^{\prime \prime} \oplus\{i \mapsto \operatorname{mergemds}(\) freebs \(1(i)\), freebs \(\left.1(j))\}\right]\)
\(\vee[\operatorname{mdaddr}(\) freebs \(1(j))+m d s z(\) freebs \(1(j))=\operatorname{mdaddr}(\) freebs \(1(i)) \wedge\)
nextm \({ }^{\prime}=\) nextm \(-1 \wedge\)
\(\exists\) freebs \(1^{\prime \prime}: 1 \ldots\) maxfblocks \(\rightarrow M D \bullet\)
freebs \(1^{\prime \prime}=\) freebs \(1 \triangleright\{\) freebs \(1(i)\} \wedge\)
freebs \(1^{\prime}=\) freebs \(1 \oplus\{j \mapsto\) mergemds \((\) freebs \(1(j)\), freebs \(1(i))]\)
pre BlockScavenge \(\widehat{=}\)
\(\forall i: 1 \ldots n e x t m-1\) •
\(\forall j: 1 \ldots\) nextm \(-1 \mid i \neq j \bullet\)
\(\operatorname{mdaddr}(\) freebs \(1(i))+\operatorname{mdsz}(\) freebs \(1(i))=\operatorname{mdaddr}(\) freebs \(1(j))\)
\(\vee \operatorname{mdaddr}(\) freebs \(1(j))+\operatorname{mdsz}(\) freebs \(1(j))=\operatorname{mdaddr}(\) freebs \(1(i))\)

The refined scavenge count operations are now given.
First, the operation to increment the scavenge count.
IncFreeCnt1 \(\qquad\)
\(\triangle\) STOREVEC1
```

scavcnt 1' = scavcnt 1 + 1

```

It is identical to the original specification, as is the schema to clear the scavenge count.

ClearFreeCnt1
\(\triangle\) STOREVEC 1
scavcnt \(1^{\prime}=0\)

The schema defining the operation that determines whether a block scavenge should occur is also identical to the specification:

ShouldScavenge 1
\(\triangle\) STOREVEC 1
scavcnt \(1=\) scavthresh 1

That these 3 operations are identical to the specification should not come as too much of a surprise, for all 3 schemata perform simple operations on scalar variables. In each case, the variable name is different but operation is the same. This suggests how the abstraction relation will be defined. It is to this relation that we now turn.

The abstraction relation is defined by the following schema.
```

    AbsSTOREPOOL1
    STOREPOOL
    STOREPOOL1
    alloc1 = alloc
    psize 1 = psize
    maxfblocks = maxfree
    #freebs = nextm - 1
    \foralli:1..#freebs
    freebs 1(i)= freebs(i)
    scavcnt1 = scavcnt
    scavthresh1 = scavthresh
    ```

The abstraction relation is an identity. The scalar variables are just renamed and so their refinement is not terribly interesting. The most interesting conjunct (if there is anything interesting about this relation, it is so straightforward) are:
```

$\#$ freebs $=$ nextm $-1 \forall i: 1 \ldots \#$ freebs •
freebs $1(i)=$ freebs $(i)$

```

Here, the relationship between the index of the next free element of freebs 1 and the length of freebs is defined. The nextm variable always points to the next element of freebs 1 that can be used to store an \(M D\); this corresponds to the next element after the end of freebs, so must be equal to nextm -1 .

The other conjunct relates the two free block lists. It states that all descriptors in the two representations of the list are identical.

\section*{Theorem 60.}
```

\forallSTOREPOOL'; STOREPOOL1' \bullet
STOREPOOLInit1 ^ AbsSTOREPOOL1' }=>\mathrm{ STOREPOOLInit

```

Proof. It is immediate from the abstraction relation that maxfblocks \({ }^{\prime}=\) maxfree \(=m f ?\), alloc \(1^{\prime}=\) alloc \({ }^{\prime}=0\) and psize \({ }^{\prime}=p s i z e 1^{\prime}=p s ?\).

The abstraction relation states that nextm \({ }^{\prime}=\#\) freebs \(^{\prime}+1\), so nextm \({ }^{\prime}=\) 2 implies that \#freebs \(=1\), which, in turn, implies that freebs \({ }^{\prime}=1\). The predicate of the abstraction relation requires that freebs \(1^{\prime}(i)=\) freebs \(^{\prime}(i)\) for all \(i \in 1 \ldots \#\) freebs \(^{\prime}\) (or, equivalently \(i \in 1 \ldots\) nextm \({ }^{\prime}-1\). Since nextm \({ }^{\prime}=2\), nextm \({ }^{\prime}-1=1\) and freebs \(1^{\prime}(1)=\) freebs \({ }^{\prime}(1)\left(=\right.\) head freebs \(\left.{ }^{\prime}\right)\) and freebs \(1^{\prime}(1)=\) \(\operatorname{mkmd}(b a ?, p s ?)=\) freebs \(^{\prime}(1)\).

Finally, since scavcnt \(1=\) scavcnt and scavthresh \(1=\) scavthresh, the proof is done.

Theorem 61. \(\forall\) STOREPOOL; STOREPOOL1; rqsz? : \(\mathbb{N}_{1} \bullet\) pre AllocBlk \(\wedge\) AbsSTOREPOOL1 \(\Rightarrow\) pre AllocBlk1

Proof. The precondition of AllocBlk is
\(\exists i: 1 . . \#\) freebs • \(\operatorname{mdsz}(\) freebs \((i)) \geq r q s z\) ?
and that of AllocBlk 1 is
\(\exists i: 1 \ldots n e x t m-1 \bullet m d s z(\) freebs \(1(i)) \geq r q s z\) ?
By the predicate of AbsSTOREPOOL1, nextm \(=\#\) freebs +1 , so \#freebs \(=\) nextm -1 . Since \(1 \leq i \leq \#\) freebs (or, equivalently, \(1 \leq i \leq n e x t m-1\)), by the abstraction relation, \(\operatorname{freebs}(i)=\) freebs \(1(i)\). The remainder is immediate.

\section*{Theorem 62.}
```

\forallSTOREPOOL; STOREPOOL'; STOREPOOL1; STOREPOOL1';
rqsz?:}\mp@subsup{\mathbb{N}}{1}{\prime}; s!:ADDR
pre AllocBlk ^
AbsSTOREPOOL1 ^
AbsSTOREPOOL1' ^
AllocBlk1
A AllocBlk

```

Proof. First, that the ranges of the quantifiers are identical can be seen from the following. By the predicate of AbsSTOREPOOL1, nextm \(=\#\) freebs +1 , so \#freebs \(=\) nextm -1 . Next, by the same predicate, alloc \(=\) alloc 1 , so alloc \(1+\) rqsz? \(=\) alloc + rqsz?, while the predicate of AbsSTOREPOOL1' requires that alloc \({ }^{\prime}=\) alloc \(1^{\prime}\), so alloc \(1+\) rqsz \(?=\) alloc + rqsz \(?=\) alloc \(1^{\prime}=\) alloc'.

For the reason that \(1 \leq i \leq n e x t m-1\), or equivalently that \(1 \leq i \leq\) \(\# f r e e b s\), freebs \(1(i)=\) freebs \((i)\) and freebs \(^{\prime}(i)=\) freebs \(^{\prime}(i)\) by the predicates of the two abstraction schemata. From this, it can be inferred that \(m d s z(\) freebs \(1(i))=r q s z ?=m d s z(\) freebs \((i)), \operatorname{mdsz}(\) freebs \(1(i))>r q s z ? ~ i m-\) plies \(\operatorname{mdsz}(\) freebs \((i))>r q s z ?\) and \(\operatorname{mdaddr}(\) freebs \(1(i))=\operatorname{mdaddr}(\) freebs \((i))\). A consequence of the last is that \(a!=\operatorname{mdaddr}(\operatorname{freebs} 1(i))=\operatorname{mdaddr}(\operatorname{freebs}(i))\).

All that remains is the equivalence of \(\forall j: i \ldots\) nextm \(-2 \bullet\) freebs \(1^{\prime}=\) freebs \(1 \oplus\{j \mapsto\) freebs \(1(j+1)\}\) and freebs \({ }^{\prime}=\) freebs \(\triangleright\{\) freebs \((i)\}\) (the update in the second disjunct is a simple consequence of the abstraction relations and the range condition, \(1 \leq i \leq \#\) freebs \()\). It should be clear that freebs \(1^{\prime}(i)=\) freebs \(1(i+1)\); that is, freebs \(1^{\prime}=\) freebs \(1 \triangleright\{\) freebs \(1(i)\}\) and the abstraction relations permit the proof to be completed.

\section*{Theorem 63.}
\(\forall S T O R E P O O L ; S T O R E P O O L 1 ; ~ a: A D D R ; s z ?: \mathbb{N}_{1} \bullet\) pre FreeBlk \(\wedge\) AbsSTOREPOOL1 \(\Rightarrow\) pre FreeBlk 1

Proof. Trivial.

\section*{Theorem 64.}
\(\forall\) STOREPOOL; STOREPOOL'; STOREPOOL1; STOREPOOL1';
\(a: A D D R ; s z ?: \mathbb{N}_{1}\)
pre FreeBlk \(\wedge\)
AbsSTOREPOOL1 ^
AbsSTOREPOOL1' ^
FreeBlk 1
\(\Rightarrow\) FreeBlk
Proof. The quantifier range \(1 \ldots\) nextm -1 is equivalent, by the predicate of AbsSTOREPOOL1, to \(1 \ldots \#\) freebs since nextm \(=\#\) freebs +1 .

The rest of the proof divides into three cases. However, in all cases, the equation alloc \(1^{\prime}=\) alloc \(1-s z\) ? occurs. By the predicate of the abstraction relation, AbsSTOREPOOL1, alloc \(1=\) alloc and by the predicate of AbsSTOREPOOL1', alloc \(1^{\prime}=\) alloc \({ }^{\prime}\), so alloc \(1^{\prime}=\) alloc \(1-s z ?=\) alloc \(-s z ?=\) alloc \({ }^{\prime}\).

It should be noted that in all three cases, \(1 \leq i \leq n e x t m-1\), by the predicate of the abstraction relation AbsSTOREPOOL1, is equivalent to \(1 \leq\) \(i \leq \# f r e e b s\), so \(i\) is always in range. This has the implication, by the predicates
of the two abstraction relations, that \(\operatorname{freebs}(i)=\operatorname{freebs} 1(i)\) and freebs \(^{\prime}(i)=\) freebs \(1^{\prime}(i)\).
Case 1. \(\operatorname{mdaddr}(\operatorname{freebs} 1(i))=a ?+s z ?\). By the above remarks, this is clearly equivalent to \(\operatorname{mdaddr}(\operatorname{freebs}(i))=a ?+s z ?\). The update of freebs 1 follows (RHS) from the fact that \(i\) is in the range \(1 \ldots\) nextm -1 or, equivalently, to \(1 . . \#\) freebs and (LHS) from the fact that freebs1 \({ }^{\prime}(i)=\operatorname{freebs}^{\prime}(i), 1 \leq i \leq\) nextm - 1 .
Case 2. Similar to Case 1.
Case 3. First, it is clear that nextm \(-1=\) nextm \(^{\prime}=\#\) freebs \({ }^{\prime}=\#\) freebs -1 , since, by AbsSTOREPOOL1, nextm \(=\#\) freebs +1 and, by AbsSTOREPOOL1, nextm \({ }^{\prime}=\#\) freebs \(^{\prime}+1\) Finally, letting \(m\) denote \(\operatorname{mkmd}(a ?, s z ?)\),
```

freebs $1^{\prime}$
$=$ freebs $1 \oplus\{$ nextm $\mapsto m\}$
$=$ freebs $\oplus\{$ nextm $\mapsto m\}$
$=$ freebs $\oplus\{\#$ freebs $+1 \mapsto m\}$
$=$ freebs $\cup\{\#$ freebs $+1 \mapsto m\}$
$=$ freebs ${ }^{\wedge}\langle m\rangle$
$=$ freebs $^{\prime}$

```
where, nextm \(=\#\) freebs +1 . The equivalence of the first and last lines is a consequence of \(\operatorname{AbsSTOREPOOL1}{ }^{\prime}\). The fourth to sixth lines are justified by the fact that nextm \(=\#\) freebs +1 and \(\#\) freebs \(+1 \notin \operatorname{dom}\) freebs, so freebs \(\oplus\{\#\) freebs \(+1 \mapsto m\}=\) freebs \(\cup\{\#\) freebs \(+1 \mapsto m\}\); it is also the case that \((\) freebs \(\cup\{\#\) freebs \(+1 \mapsto m\})(\#\) freebs \()=\) last freebs, while \((\) freebs \(\cup\{\#\) freebs \(\mapsto\) \(m\})(\#\) freebs +1\()=m\) or last freebs \({ }^{\prime}=m\); therefore, freebs \({ }^{\prime}=\) freebs \({ }^{\curvearrowleft}\langle m\rangle\).

\section*{Theorem 65.}
\(\forall S T O R E P O O L ; ~ S T O R E P O O L 1 \bullet\)
pre BlockScavenge \(\wedge\) AbsSTOREPOOL1 \(\Rightarrow\) pre BlockScavenge 1
Proof. Since, by the abstraction relation, \(1 \leq i, j \leq\) next -1 iff \(1 \leq i, j \leq\) \(\#\) freebs, freebs \((i)=\) freebs \(1(i)\) and freebs \((j)=\) freebs \(1(j)\). The remainder is trivial.

\section*{Theorem 66.}
\(\forall S T O R E P O O L ; S T O R E P O O L ' ; ~ S T O R E P O O L 1 ; ~ S T O R E P O O L 1 ' ~ \cdot ~\)
pre BlockScavenge \(\wedge\)
AbsSTOREPOOL1 \(\wedge\)
AbsSTOREPOOL1' ^
BlockScavenge 1
\(\Rightarrow\) BlockScavenge

Proof. By the predicates of AbsSTOREPOOL1 and AbsSTOREPOOL1' and by the fact that, given AbsSTOREPOOL1, \(1 \leq i, j \leq n e x t-1\) iff \(1 \leq i, j \leq\) \(\#\) freebs, freebs \((i)=\) freebs \(1(i)\) and freebs \((j)=\) freebs \(1(j)\) and, furthermore, freebs \(^{\prime}(i)=\) freebs \(1^{\prime}(i)\) and freebs \({ }^{\prime}(j)=\) freebs \(1^{\prime}(j)\). The result then follows using the definition of mergemds.

The rest of the refined operations are trivially related to the top-level specification and the associated proofs are also trivial (simple identities), so they are omitted.

\subsection*{5.8 Raw Storage}

The last section dealt with a storage allocator. The current section deals with the storage itself. The specification is quite obvious.

First, the necessary error schema is defined. It sets the error variable whenever an attempt to address a block fails.

BlockLocError \(\widehat{=}\)
\[
\begin{aligned}
& (\exists e: \text { SYSERR } \mid e=\text { blocklocerror } \bullet \\
& \text { SetSysErr }[e / e ?]) \wedge \\
& \text { RaiseKillInterrupt }
\end{aligned}
\]

The specification requires the definition of a new type, \(P S U\) :
[PSU]
This is the Primary Storage Unit. On some machines it is a byte and on others it is a \(16-, 32\) - or 64 -bit word.

\subsection*{5.8.1 Top level}

The schema representing raw storage is as follows:
STOREVEC
```

sv:1.. svsize }->\mathrm{ PSU
svsize : N
startaddr : ADDR
scavcnt:\mathbb{N}
scavthresh:}\mp@subsup{\mathbb{N}}{1}{

```

The store proper is represented by \(s v\). The size of the store (in terms of PSU) is given by svsize. The store starts at address startaddr. The remaining two variables are used for storage management.

This schema can be directly implemented as code, as, indeed, can the operations defined over it. There is no refinement required in the case of STOREVEC and its associated operations.

The initialisation operation is given by the schema:
STOREVECInit \(\qquad\) STOREVEC \({ }^{\prime}\)
ps? : \(\mathbb{N}_{1}\)
sa?: \(A D D R\)
svsize \(^{\prime}=p s\) ?
startaddr \({ }^{\prime}=s a\) ?

The following schema defines a predicate that is true when the address, \(l o c ?\), plus the block size, \(s z ?\), is within the storage area being modelled.

CanStoreBlock \(\qquad\)
ESTOREVEC
loc? : ADDR
\(s z ?: \mathbb{N}_{1}\)
startaddr \(\leq l o c\) ?
\(l o c ?+s z ? \leq\) startaddr + svsize

The next schema defines an operation that copies a block of store from one location to another.

CopyBlock \(\qquad\)
\(\triangle\) STOREVEC
```

$v ?: 1 \ldots s z ? \rightarrow P S U$
loc? : ADDR
$s z ?: \mathbb{N}_{1}$
$\exists a: 1 .$. svsize $\mid a=$ startaddr $-l o c ? ~ \bullet ~$
$\forall i: 1 . . s z ?$
$s v^{\prime}=s v \oplus\{a+(i-1) \mapsto v ?(i)$

```

The entire block is passed as \(v\) ? and the destination address is passed as loc? and its size is passed as \(s z\) ?.

The CopyBlock operation is unsafe in the sense that it performs no checks that the address and size passed to it are correct in the sense that the start and end of the block are inside the storage area to which the block is to be copied.
```

StoreBlock $\widehat{=}$
(CanStoreBlock $\wedge$ CopyBlock $\wedge$ SysOk)
$\vee$ BlockLocError

```

The definition expands into
```

StoreBlock
\triangleSTOREVEC
\DeltaERRV
\DeltaHW
v?:1..sz?->PSU
loc?: ADDR
sz?: \mathbb{N}
(startaddr \leqloc? ^
loc? + sz? \leq startaddr + svsize ^
(\existsa:1 .. svsize | a = startaddr - loc? \bullet
\foralli:1..sz?\bullet
sv'}=sv\oplus{a+(i-1)\mapstov?(i))
serr'}=\mathrm{ sysok)
\vee (serr'}\mp@subsup{}{}{\prime}=\mathrm{ blocklocerror }\wedge \mp@subsup{intno}{}{\prime}=\mathrm{ killintno )

```

The following operation is a checking operation. It returns a block of storage that has been stored in the vector. The returned block is bound to \(v!\) and its size is \(s z ?\); the address at which the block starts in the storage vector is \(a d d r\) ?.

StoredBlock
```

\XiSTOREVEC
\DeltaERRV
\DeltaHW
addr?: ADDR
sz?:\mathbb{N}
v!:1..sz?->PSU
(startaddr \leqaddr? ^
addr? + sz? \leq startaddr + svsize }
(\existsv:1..sz?->PSU\bullet
(\foralli:1..sz?
v(i)=sv(addr?+i))^
v!=v)^
serr'}\mp@subsup{}{}{\prime}=sysok
\vee (serr}\mp@subsup{}{}{\prime}=\mathrm{ badblockaddr }\wedge intno' = killintno )

```

The simplification is omitted because it will be used in the expansion and simplification of the next schema.

\subsection*{5.8.2 Message Buffering}

This subsection contains the definitions required to turn the storage vector just defined into an area of store that can be used to represent a buffer pool suitable
for use by a message-passing system. The basic definitions are performed by renaming existing components.

First, we define the storage area for messages. This is done in terms of renaming, using the STOREVEC state schema and its associated operations. Note that renaming, in effect, provides us with a new copy of STOREVEC.

It is necessary for the reader to remember that the definitions that follow are of the storage area only. The storage-management operations will be defined at this subsection.
```

MSGSTORE $\widehat{=}$ STOREVEC[mv/sv, mvsize/svsize, mstartaddr/startaddr,
mscavcnt/scavcnt, mscavthresh/scavthresh]

```
MSGSTOREInit \(\widehat{=}\) STOREVECInit
 [MSGSTORE'/STOREVEC', mps?/ps?, msa?/sa?]
CanStoreMsg \(\widehat{=}\) CanStoreBlock[MSGSTORE/STOREVEC]
StoreMsg \(\widehat{=}\) StoreBlock[MSGSTORE /STOREVEC]

StoredMsg \(\widehat{=}\) StoredBlock[MSGSTORE/STOREVEC]
In these definitions, as in the ones that occur at the end of this subsection, it is assumed that the substitution of the name of the new state schema (MSGSTORE) for the basic one (STOREVEC) also substitutes the appropriate state variables, thus renaming the variables. This convention applies to CanStoreMsg, StoreMsg and StoredMsg.

The operation to delete stored messages must perform checking. It is defined as:

DeleteStoredMsg \(\widehat{=}\)
\((\exists s z: \mathbb{N} \mid s z=m s g s z(m s g a t(a ?))\)
(StoredMsg[a?/addr?, \(m / v!, s z / s z ?] \wedge\) FreeMsg))
¢ (IncMsgFreeCnt \(\wedge\)
((ShouldScavengeMsgs \(\wedge\) MsgScavenge) \({ }_{9}\) ClearMsgFreeCnt) \()\)
After expansion and simplification, this operation can be transformed into
```

DeleteStoredMsg
$\Delta M S G S T O R E$
$\triangle S T O R E P O O L$
$\Delta E R R V$
$\Delta H W$
$a ?: A D D R$
(startaddr $\leq a ? \wedge$
$a ?+\operatorname{msgsz}(\operatorname{msgat}(a ?)) \leq \operatorname{startaddr}+\operatorname{svsize} \wedge$
$(\forall i: 1 \ldots \operatorname{msgsz}(\operatorname{msgat}(a ?))$
$v!(i)=s v(a ?+i)) \wedge$
FreeMsg
$9($ scavcnt $=$ scavthresh $-1 \wedge$
MsgScavenge $\wedge$
scavcnt $\left.^{\prime}=0\right)$
$s e r r^{\prime}=$ sysok $)$
$\vee\left(\right.$ serr $^{\prime}=$ badblockaddr $\wedge$ intno $^{\prime}=$ killintno $)$

```

Since it is known that FreeBlk 1 is a proper refinement of FreeBlk and that BlockScavenge 1 properly refines BlockScavenge, and noting that STOREVEC does not refine any further, the above can immediately be refined to

DeleteStoredMsg
\(\triangle M S G S T O R E\)
\(\triangle\) STOREPOOL1
\(\Delta E R R V\)
\(\Delta H W\)
\(a\) ? : ADDR
(startaddr \(\leq a ? \wedge\)
\(a ?+\operatorname{msgsz}(\operatorname{msgat}(a ?)) \leq \operatorname{startaddr}+\operatorname{svsize} \wedge\)
\((\forall i: 1 \ldots \operatorname{msgsz}(\operatorname{msgat}(a ?))\)
\(v!(i)=s v(a ?+i)) \wedge\)
FreeMsg 1
\({ }_{9}(\) scavcnt \(=\) scavthresh \(-1 \wedge\)
MsgScavenge \(1 \wedge\)
scavcnt \({ }^{\prime}=0\))
\(s e r r^{\prime}=\) sysok \()\)
\(\vee\left(\right.\) serr \(^{\prime}=\) badblockaddr \(\wedge\) intno \(^{\prime}=\) killintno \()\)

The remaining storage-area operations are defined as follows. In these and the next set of definitions, the renaming convention we described above is assumed.

IncMsgFreeCnt \(\widehat{=}\) IncFreeCnt[MSGSTORE/STOREVEC]
ShouldScavengeMsgs \(\widehat{=}\) ShouldScavenge[MSGSTORE/STOREVEC]
ClearMsgFreeCnt \(\widehat{=}\) ClearFreeCnt[MSGSTORE/STOREVEC]

The next set of operations deal with storage management. The state space is called MSGPOOL and corresponds to STOREPOOL. The same renaming convention is assumed here as for MSGSTORE.
```

MSGPOOL $\widehat{=}$ STOREPOOL[msgbs/freebs, mgfree/maxfree,
msgalloc/alloc, mpsize/psize,
mscavthresh/scavthresh, mscavcnt/scavcnt]
MSGPOOLInit $\widehat{=}$ STOREPOOLInit[MSGPOOL/STOREPOOL,
mmf?/mf?, mba?/ba?, mps?/ps?, mscthrsh?/scthrsh?]
CanAllocateMsg $\widehat{=}$ CanAllocateBlock[MSGPOOL/STOREPOOL]
AllocMsg $\widehat{=}$ AllocBlk[MSGPOOL/STOREPOOL]
FreeMsg $\widehat{=}$ FreeBlk[MSGPOOL/STOREPOOL]
MsgScavenge $\widehat{=}$ BlockScavenge[MSGPOOL/STOREPOOL]

```

\subsection*{5.9 Message Queues}

The separation kernel is intended as a simulation of a distributed system. In distributed systems, asynchronous message passing is the norm.

The specification begins, as usual, with the error schemata.
Each process has a message queue. If the queue becomes full and an attempt is made to enqueue another message, the following schema is used.

MessageQueueFull \(\widehat{=}\)
(\(\exists\) e : SYSERR \(\mid e=\) msgqfull \(\bullet\)
SetSysErr \([e / e ?]) \wedge\)
RaiseKillInterrupt
If an attempt is made to dequeue a message from an empty message queue, the following operation is used to signal the error.
```

EmptyMessageQueue $\widehat{=}$
$(\exists e: S Y S E R R \mid e=$ emptymsgq
SetSysErr $[e / e ?]) \wedge$
RaiseKillInterrupt

```

This message-passing system allows processes to ask for messages from a designated source. The following schema sets the error variable when there are no messages from the designated source.

NoMessagesFrom \(\widehat{=}\)
\((\exists e: S Y S E R R \mid e=\) nomsgsfrom •
SetSysErr \([e / e\) ?]) \(\wedge\)
RaiseKillInterrupt

\subsection*{5.9.1 Top Level}

The specification can now be undertaken. Basically, the requirement is that a FIFO queue of message structures is to be specified. The specification that follows differs from many others in an important aspect. Instead of operating on message-representing structures, this specification consists of schemata defining operations over message pointers. The queue is, here, a queue of pointers to messages and the dequeue operation returns a pointer to a message; clearly, the enqueue operation adds a pointer to a message to the queue. This has the implication that we must, at some stage, specify the way in which messages are stored.

The following function creates a message. It requires the source and destination process identifiers and some data.
```

mkmsg: $P I D \times(P I D \times M S G D A T A)$
$\forall s r c$, dest : PID; data : MSGDATA •
$m k m s g(s r c$, dest, data $)=(s r c,($ dest, data $))$

```

The length of message payloads (the data component) is given by the first of the following two functions. The second function returns the length of the message header; for any system, this function should be a constant.
```

msgpayloadlen:MSG}->\mathbb{N
msghdrlen:MSG}->\mp@subsup{\mathbb{N}}{1}{

```

The message header is composed of the source and destination slots (it might also contain the length of the payload). The header imposes a fixed overhead on messages and will always be the same.

These two functions are not further specified.
Given the structure of a message as a product, it is possible to give definitions for the functions that return the source, destination and data components of a message:
```

msgsrc : MSG ->PID
msgdest: MSG }->\mathrm{ PID
msgdata :MSG }->\mathrm{ MSGDATA
\forallm:MSG\bullet
msgsrc(m)=fst m
msgdest (m)=fst(snd m)
msgdata}(m)=\operatorname{snd}(\mathrm{ snd m)

```

The address of a message structure is given by the following (partiallydefined) function:
```

msgaddr:MSG }->\mathrm{ ADDR

```

The total size of the message is the size of the payload plus the size of the header. It is computed by the following function.
```

msgsz:MSG->\mp@subsup{\mathbb{N}}{1}{}

```

Below, the MPTR type is defined. It is the type of message pointers. The msgat function takes a message pointer and returns the message that is located at that address; if the pointer is null, msgat returns the null message. Other than that, the function is not further defined.
```

msgat : MPTR $\rightarrow$ MSG
$\forall m p: M P T R \bullet$
msgat $($ nullmptr $)=$ nullmsg

```
 \(m s g T o P S U: M S G \rightarrow \operatorname{seq} P S U\)
 PSUsToMsg: seq PSU \(\rightarrow M S G\)

These two functions are just type-changing functions or casts.
```

    \(m s z: M S G \rightarrow \mathbb{N}\)
    \(\forall m: M S G \bullet\)
    \(m s z(m)= \begin{cases}0, & \text { if } m=\text { nullmsg } \\ \operatorname{msgsz}(m), & \text { otherwise }\end{cases}\)
    ```

We need to get down to the byte level in this specification and its refinement.
\(B Y T E==0 . .255\)
msgtobytes : MSG \(\rightarrow\) seq BYTE
This is used by the copy operation.
The message pointer type is a subset of \(A D D R\) :
\(M P T R \subset A D D R\)
The null message pointer:
nullmptr : MPTR
Message queues are implemented by a slot in the \(P T A B\). The definition at the top level is the following.
```

    PTAB
    msgq:PID }->MSG
    ..
    dom msgq=used
    ```
\(\qquad\)

The usual constraint is imposed upon the domain of msgq.
In the following, the subscript, \(M\), is used. In the schema, all components of \(P T A B\) that do not relate to \(m s g q\) are assumed constant. This differentiates this schema from all others.
```

ФРТАВ
\trianglePTAB
\triangleMSGQ
p?: PID
0MSGQ = msgq(p?)
msgq}\mp@subsup{}{}{\prime}=msgq\oplus{p?\mapsto0MSGQ'

```

The message queue proper is defined by the following schema. Note that there is a limit to the size of the queue. The queue obeys the FIFO discipline and there can be duplicates; a simple sequence is the obvious representation.
```

MSGQ
mq : seq MPTR
maxms:}\mp@subsup{\mathbb{N}}{1}{
\#mq}\leq\mathrm{ maxms

```

The initialisation schema is defined in the obvious manner.
```

MSGQInit
MSGQ'
mm?: \mathbb{N}
maxms' = mm?
mq}\mp@subsup{}{}{\prime}=\langle

```

The schema that follows defines the operation that answers the question: is there enough space in the queue for a new message?

CanEnqueueMsg \(\qquad\) \(\Xi M S G Q\)
```

\#mq< maxms

```

The enqueue operation simply adds a new message to the end of the queue:
```

EnqueueMsg
\triangleMSGQ
mp?:MPTR
mq'}=m\mp@subsup{q}{}{`}\langlemp?

```

As with process queues, the dequeue operation is decomposed into obtaining the queue head and removing it. The complete operation is given by the following schema:

DelMSGQHd \(\qquad\)
\(\triangle M S G Q\)
\(m p\) ! : MPTR
\(m p!=\) head \(m q\)
\(m q^{\prime}=\) tail \(m q\)

GotMsgs
\(\Xi M S G Q\)
\(m q \neq\langle \rangle\)
This is a predicate which is true if there are any messages left in the queue.
GotMsgsFromSrc \(\qquad\)
\(\Xi M S G Q\)
src? : PID
\(\exists i: 1 \ldots \# m q \bullet\)
\(\operatorname{msgsrc}(\operatorname{msgat}(m q(i)))=s r c\) ?
This is a predicate which is true when the message queue is not empty and there is at least one message from process src?. This is the first point where the fact that the entries of the \(m q\) FIFO are message pointers becomes important.

In addition to GotMsgsFromSrc, there is the NextMsgFromSrc operation. It is used when there are messages and at least one is from the destination specified by \(s r c\) ?. The message is returned as \(m p\) !.

NextMsgFromSrc \(\qquad\)
\(\triangle M S G Q\)
src? : PID
\(m p\) ! : MPTR
\(\exists i: 1 \ldots \# m q ; q_{1}, q_{2}: \operatorname{seq} M P T R \bullet\)
\(\exists m: M P T R \mid m=m q(i)\)
\(q_{1} \frown\langle m\rangle \wedge q_{2}=m q \wedge\)
```

$q_{1} \frown q_{2}=m q^{\prime} \wedge$
$\operatorname{msgsrc}(\operatorname{msgat}(m q(i)))=s r c ? \wedge$
$m p!=m \wedge$
$(\forall j: 1 \ldots i-1$
$\operatorname{msgsrc}(\operatorname{msgat}(m q(j))) \neq \operatorname{src} ?)$

```

The precondition is clearly
```

pre NextMsgFromSrc \widehat{=}
mq\not=\langle\rangle^
\existsm:MSG|m\in\operatorname{ran mq}
msgsrc}(msgat(m))=src

```

The operation to add a message to the queue is defined as follows:
```

AddMsg $\widehat{=}$
$\exists s z: \mathbb{N} \mid s z=m s g s z(m ?)$
(CanAllocateBlock[sz/rqsz?] ^
((CanEnqueueMsg $\wedge$
AllocMsg[sz/rqsz?, $m / a!] \wedge$
$\left(\exists v: 1 \ldots \mathbb{N}_{1} \rightarrow P S U ; s z: \mathbb{N}_{1}\right.$
$\mid v=m s g T o P S U(m ?) \wedge s z=m s g s z(m ?)$
StoreMsg[v/v?, m/loc?, sz/sz?]) ^
EnqueueMsg[m/mp!] $\wedge$
SysOk)
$\checkmark$ MessageQueueFull)) $\backslash\{m\}$
$\vee$ NoSpace

```

The operation checks whether a buffer can be allocated (if not, the operation aborts-why continue when the store cannot be allocated?); if it can, the operation tests that there is space left in the destination process' message queue. Next, the message is allocated a buffer and stored; it is then enqueued.

The schema for the operation expands and simplifies to:
```

AddMsg
\triangleMSGQ
\DeltaERRV
\DeltaHW
m?:MSG
(alloc + msgsz(m?) \leq psize ^ \#freebs < maxfree ^
(\#mq<maxms ^
((\existsi:1..\# \#reebs
msgsz(freebs(i))\geqmsgsz(m?) ^
(mdsz(freebs(i)) = msgsz(m?) ^
freebs'}=\mathrm{ freebs \&{freebs (i)}^

```
```

    alloc'}=\mathrm{ alloc +msgsz (m?)^
    mq'}=mq`\langlemdaddr(freebs(i))\rangle
    startaddr \leq mdaddr (freebs(i)) ^
    mdaddr(freebs(i))+msgsz(m?) \leq startaddr + svsize ^
    \forallj:1..msgsz(m?)
        sv'}=sv\oplus{(startaddr - mdaddr(freebs(i)))+(j-1
        \mapstomsgToPSU(m?)(j)})
        \vee (mdsz (freebs (i))> msgsz (m?) ^
        freebs'}=\mathrm{ freebs }\oplus{i
        mkmd(mdaddr(freebs(i))+msgsz(m?),
                mdsz(freebs(i)) - msgsz(m?))} ^
            alloc}\mp@subsup{}{}{\prime}=\mathrm{ alloc }+msgsz(m?)
            mq}\mp@subsup{}{}{\prime}=mq`\langlemdaddr(freebs(i))\rangle
            startaddr \leqmdaddr (freebs(i)) ^
            mdaddr(freebs(i))+msgsz(m?) \leq startaddr + svsize ^
            \forallj:1..msgsz(m?)
            sv'}=sv\oplus{(startaddr - mdaddr (freebs(i)))+(j-1
                \mapstomsgToPSU(m?)(j)})) ^
            serr}\mp@subsup{}{}{\prime}=\mathrm{ sysok)
    \vee (serr}\mp@subsup{}{}{\prime}=msgqfull ^ intno' = killintno) 
    \vee (serr}\mp@subsup{}{}{\prime}=\mathrm{ nospaceinstore }\wedge\mp@subsup{\mathrm{ intno }}{}{\prime}=\mathrm{ killintno )}

```

The precondition must be calculated. It is:
```

pre AddMsg \widehat{=}
alloc + msgsz (m?)< psize ^\#mq<maxms }
(\existsi:1..\#freebs \bullet msgsz(freebs(i))\geqmsgsz(m?))^
startaddr \leqmdaddr(freebs(i)) ^
mdaddr(freebs(i))+msgsz(m?) \leqstartaddr + svsize

```

The NextMsg operation is, basically, a dequeue operation. It tests that there are messages in the queue and returns the head. If there are no messages, EmptyMessageQueue is used).
```

NextMsg $\widehat{=}$
$($ GotMsgs $\wedge$ DelMSGQHd $\wedge$ SysOk $) \vee$ EmptyMessageQueue

```

The operation expands into
```

    NextMsg
    \triangleMSGQ
    \DeltaERRV
    \DeltaHW
    mp!:MPTR
    (mq\not=\langle\rangle\wedgemp! = head mq\wedge mq' = tail mq\wedge serr' = sysok )
    \vee ( s e r r ^ { \prime } = \text { emptymsgq } \wedge \text { intno' } = \text { killintno)}
    ```

The precondition is
pre NextMsg \(\widehat{=} m q \neq\langle \rangle\)
The following is similar to NextMsg but, instead of returning just the head, it returns the first element of the queue that is from the designated source. The operation performs the relevant checks.

\section*{NextMessageFromSource \(\widehat{=}\)}
\(((\) GotMsgsFromSrc \(\wedge\) NextMsgFromSrc \(\wedge\) SysOk \() \vee\) NoMessagesFrom
The definition expands into
NextMessageFromSource \(\qquad\)
\(\triangle M S G Q\)
\(\triangle E R R V\)
\(\Delta H W\)
src? : PID
\(m p\) ! : MPTR
(\(\exists i: 1 \ldots \# m q \bullet\)
\(\operatorname{msgsrc}(\operatorname{msgat}(m q(i)))=s r c ?) \wedge\)
\(\left(\exists i: 1 \ldots \# m q ; q_{1}, q_{2}: \operatorname{seq} M P T R\right.\)
\(\exists m: M P T R \mid m=m q(i) \bullet\)
\(q_{1} \frown\langle m\rangle \wedge q_{2}=m q \wedge\)
\(q_{1} \frown q_{2}=m q^{\prime} \wedge\)
\(\operatorname{msgsrc}(\operatorname{msgat}(m q(i)))=\operatorname{src} ? \wedge\)
\(m p!=m \wedge\)
\((\forall j: 1 \ldots i-1\)
\(\operatorname{msgsrc}(\operatorname{msgat}(m q(j))) \neq \operatorname{src} ?)\)
This can be simplified as follows. First, the two outer quantifiers have the same range and matrix, so they can be merged. Next, the one-point rule can be applied to remove \(m p\) !.

NextMessageFromSource \(\qquad\)
\(\triangle M S G Q\)
\(\Delta E R R V\)
\(\Delta H W\)
src? : PID
\(m p\) ! : MPTR
serr! : SYSERR
\(\left(\exists i: 1 \ldots \# m q ; q_{1}, q_{2}: \operatorname{seq} M P T R \bullet\right.\)
\(q_{1} \frown\langle m p!\rangle \wedge q_{2}=m q \wedge\)
\(q_{1} \frown q_{2}=m q^{\prime} \wedge\)
\(\operatorname{msgsrc}(\operatorname{msgat}(m p!))=s r c ? \wedge\)
(\(\forall j: 1 \ldots i-1 \bullet\) \(\operatorname{msgsrc}(\operatorname{msgat}(m q(j))) \neq \operatorname{src} ?)\)

The precondition must be calculated for this important operation.
```

pre NextMessageFromSource \widehat{=}
\existsi:1.. \#mq\bullet
msgsrc}(msgat(mq(i)))=src?
\neg (\existsj:1..i-1\bullet
msgsrc}(msgat(mq(j)))=src?

```

This concludes the specification. We now turn to its refinement.

\subsection*{5.9.2 Refinement One}

We immediately state the refined version of the message queue type. Note that, by use of promotion, we are separating the development of the queue type from that of the process table.
```

    MSGQ1
    mq1:1..maxmsgs }->\mathrm{ MPTR
    maxmsgs:}\mp@subsup{\mathbb{N}}{1}{
    mnxt: \mathbb{N}
    mnxt \leqmaxmsgs + 1
    ```

The refined message queue type differs from the original in that the former uses a function to represent the queue; the original used a sequence. The domain of the function is an subrange of the naturals, so the function represents a vector. The variable, \(m n x t\), is the index of the next free element of the vector, \(m q 1\).

The initialisation schema is exactly as one might expect.
```

MSGQInit1
MSGQ1'
mm?: \mathbb{N}
maxmsgs' = mm?
mnxt' = 1

```

The predicate determining whether there are free elements of \(m q 1\), the message queue, is now defined in terms of indices:

CanEnqueueMsg1 \(\qquad\)
EMSGQ1
```

mnxt \leqmaxmsgs

```

Equally, the predicate determining whether there are messages in the queue is definded in terms of the mnxt index.

GotMsgs 1
\(\Xi M S G Q 1\)
\(m n x t>1\)

The enqueueing operation consists of assigning a message (pointer) to the next free element of \(m q 1\) and then incrementing \(m n x t\), the end pointer, by one.

EnqueueMsg1 \(\qquad\)
\(\triangle M S G Q 1\)
\(m p\) ? : MPTR
\(m q 1^{\prime}=m q 1 \oplus\{m n x t \mapsto m p ?\}\)
\(m n x t^{\prime}=m n x t+1\)

Removal of a message consists of copying the first element, then copying the vector down one element; finally, the insertion point is moved down one position.
```

DelMSGQHd1
\triangleMSGQ1
mp!:MPTR
mp!=mq1(1)
\foralli:1..mnxt-2\bulletmq\mp@subsup{1}{}{\prime}=mq1\oplus{i\mapstomq1(i+1)}

```

The next operation is the refinment of GotMsgsFromSrc. At any time, there are only \(m n x t-1\) elements in \(m q 1\) (when there are no elements, \(m n x t=1\)).

GotMsgsFromSrc1 \(\qquad\)
EMSGQ1
src? : PID
\(\exists i: 1 \ldots m n x t-1 \bullet m s g s r c(\operatorname{msgat}(m q 1(i)))=s r c ?\)

The following operation corresponds to NextMsgFromSrc. The two universals can be accounted for as follows. The second moves all elements from the one selected for output down one position (so that the hole produced by selecting a message is healed). The first is part of the condition: the selected message is the first in the queue from the source specified by src?.
```

NextMsgFromSrc1

```
\(\qquad\)
```

\triangleMSGQ1
src?: PID
mp!:MPTR
\existsi:1..mnxt - 1; m:MPTR | m=mq1(i)\bullet
msgsrc}(\operatorname{msgat}(m))=src? ^
(\forallj:1..i-1 \bullet msgsrc(msgat(mq1(j))) \not= src?) ^
(\forallj:i+1..mnxt-1\bulletmq1'=mq1\oplus{j-1\mapstomq1(j)})^
mp!=m

```

This schema easily simplifies to:
```

NextMsgFromSrc1
\triangleMSGQ1
src?: PID
mp! : MPOTR
\existsi:1..mnxt-1
mp!=mq(i)^
msgsrc}(msgat(mp!))=src?
(}\forallj:1..i-
msgsrc}(msgat(mq1(j)))\not= src?)
(\forallj:i+1..mnxt - 1\bullet
mq1' = mq1\oplus{j-1\mapstomq1(j)})

```
\(\qquad\)

The \(A d d M s g 1\) operation corresponds to \(A d d M s g\) :
```

AddMsg1 $\widehat{=}$
$\exists s z: \mathbb{N} \mid s z=m s g s z(m ?) \bullet$
(CanAllocateBlock[sz/rqsz?] ^
( CanEnqueueMsg1 ^
AllocMsg1[sz/rqsz?, $m / a!] \wedge$
$\left(\exists v: 1 \ldots \mathbb{N}_{1} \rightarrow P S U ; s z: \mathbb{N}_{1}\right.$
$\mid v=m s g T o P S U(m ?) \wedge s z=m s g s z(m ?)$
StoreMsg[v/v?,m/loc?, sz/sz?]) ^
EnqueueMsg1[m/mp!] ^
Sys $O k$ )
$\checkmark$ MessageQueueFull)) $\backslash\{m\}$
$\checkmark$ NoSpace

```

After expansion and simplification, it is

AddMsg 1 \(\qquad\)
\(\triangle M S G Q\)
\(\Delta E R R V\)
\(\Delta H W\)
\(m\) ? : \(M S G\)
\((\) alloc \(1+\operatorname{msgsz}(m ?) \leq p s i z e 1 \wedge\) nextm \(\leq\) maxfblocks \(\wedge\)
(mnxt \(\leq\) maxmsgs \(\wedge\)
(\((\exists i: 1 \ldots\) nextm \(-1 \bullet\)
\[
\operatorname{msgsz}(\text { freebs } 1(i)) \geq \operatorname{msgsz}(m ?) \wedge
\] \((m d s z(\) freebs \(1(i))=m s g s z(m ?) \wedge\)
(\(\forall j: i . . n e x t m-1\)
freebs \(1^{\prime}=\) freebs \(\left.1 \oplus\{j \mapsto \operatorname{freebs} 1(j+1)\}\right) \wedge\)
alloc \(1^{\prime}=\operatorname{alloc} 1+\operatorname{msgsz}(m ?) \wedge\)
\(m q 1^{\prime}=m q 1 \oplus\{\) nextm \(\mapsto\) mdaddr \((\) freebs \(1(i))\} \wedge\)
nextm \({ }^{\prime}=\) nextm \(+1 \wedge\)
startaddr \(\leq \operatorname{mdaddr}(\) freebs \(1(i)) \wedge\)
\(\operatorname{mdaddr}(\) freebs \(1(i))+\operatorname{msgsz}(m ?) \leq \operatorname{startaddr}+\operatorname{svsize} \wedge\) \(\forall j: 1 . . \operatorname{msgsz}(m\) ? \()\)
\(s v^{\prime}=s v \oplus\{(\) startaddr \(-\operatorname{mdaddr}(\) freebs \(1(i)))+(j-1)\)
\(\mapsto m s g T o P S U(m ?)(j)\})\)
\(\vee(m d s z(\) freebs \(1(i))>\operatorname{msgsz}(m ?) \wedge\)
freebs \(1^{\prime}=\) freebs \(1 \oplus\)
\(\{i \mapsto\)
\(\operatorname{mkmd}(\operatorname{mdaddr}(f r e e b s 1(i))+\operatorname{msgsz}(m ?)\),
\(m d s z(f r e e b s 1(i))-\operatorname{msgsz}(m ?))\} \wedge\)
alloc \(1^{\prime}=\operatorname{alloc} 1+\operatorname{msgsz}(m ?) \wedge\)
\(m q 1^{\prime}=m q 1 \oplus\{\) nextm \(\mapsto\) mdaddr \((\) freebs \(1(i))\} \wedge\)
- \(\quad\) nextm \({ }^{\prime}=\) nextm \(+1 \wedge\)
startaddr \(\leq \operatorname{mdaddr}(\) freebs \((i)) \wedge\)
\(\operatorname{mdaddr}(\) freebs \(1(i))+\operatorname{msgsz}(m ?) \leq \operatorname{startaddr}+\operatorname{svsize} \wedge\)
\(\forall j: 1 . . \operatorname{msgsz}(m ?)\)
\(s v^{\prime}=s v \oplus\{(\) startaddr \(-\operatorname{mdaddr}(\) freebs \(1(i)))+(j-1)\)
\(\mapsto m s g T o P S U(m ?)(j)\})) \wedge\)
serr \(^{\prime}=\) sysok \()\)
\(\vee\left(\right.\) serr \(^{\prime}=\) msgqfull \(\wedge\) intno \(^{\prime}=\) killintno \(\left.)\right)\)
\(\vee\left(\right.\) serr \(^{\prime}=\) nospaceinstore \(\wedge\) intno \(^{\prime}=\) killintno \(\left.)\right)\)
The precondition is calculated:
pre \(\operatorname{AddMsg} 1 \widehat{=}\)
alloc \(1+\operatorname{msgsz}(m ?)<\operatorname{psize} 1 \wedge\)
mnxt \(<\) maxmsgs \(\wedge\)
\((\exists i: 1 \ldots n e x t m-1 \bullet \operatorname{msgsz}(f r e e b s 1(i)) \geq \operatorname{msgsz}(m ?)) \wedge\)
startaddr \(\leq \operatorname{mdaddr}(\) freebs \(1(i)) \wedge\)
\(m \operatorname{daddr}(\) freebs \(1(i))+\operatorname{msgsz}(m ?) \leq \operatorname{startaddr}+\operatorname{svsize}\)

Operation NextMsg1 corresponds to NextMsg:
NextMsg1 \(\widehat{=}\)
\((\) GotMsgs \(1 \wedge\) DelMSGQHd1 \(\wedge\) SysOk)
\(\checkmark\) EmptyMessageQueue
This definition expands into:
NextMsg1
\(\triangle M S G Q 1\)
\(\Delta E R R V\)
\(\Delta H W\)
\(m p\) ! : MPTR
(mnxt \(>1 \wedge\)
\(m p!=m q 1(1) \wedge\)
\(\left(\forall i: 1 \ldots m n x t-2 \bullet m q 1^{\prime}=m q 1 \oplus\{i \mapsto m q 1(i+1)\}\right) \wedge\)
serr \(^{\prime}=\) sysok \() \vee\left(\right.\) serr \(^{\prime}=\) emptymsgq \(\wedge\) intno \(^{\prime}=\) killintno \()\)
The precondition of this operation is
pre NextMsg \(1 \widehat{=}\) mnxt \(>1\)
The NextMessageFromSrc1 operation corresponds to NextMessageFromSrc. The definition is

\section*{NextMessageFromSrc \(1 \widehat{=}\)}
((GotMsgsFromSrc \(1 \wedge\)
NextMsgFromSrc \(1 \wedge\) SysOk)
\(\checkmark\) NoMessagesFrom
The definition expands to
NextMessageFromSrc1 \(\qquad\)
\(\triangle M S G Q 1\)
\(\Delta E R R V\)
\(\Delta H W\)
src? : PID
\(m p!\) : MPOTR
(\((\exists i: 1 \ldots m n x-1 \bullet\)
\(\operatorname{msgsrc}(\operatorname{msgat}(m q 1(i)))=\operatorname{src} ?) \wedge\)
(\(\exists i: 1 . . m n x t-1 ; m: M P T R\) \(m=m q(i) \wedge m p!=m \wedge\) \(m \operatorname{sgsrc}(\operatorname{msgat}(m p!))=s r c ? \wedge\) (\(\forall j: 1 \ldots i-1\)
\(\operatorname{msgsrc}(\operatorname{msgat}(m q 1(j))) \neq \operatorname{src} ?) \wedge\)
\((\forall j: i+1 \ldots m n x t-1 \bullet\)
\(\left.\left.m q 1^{\prime}=m q 1 \oplus\{j-1 \mapsto m q 1(j)\}\right)\right) \wedge\) \(m n x t^{\prime}=m n x t-1 \wedge\)
```

    \(s e r r^{\prime}=\) sysok \()\)
    $\vee\left(\right.$ serr $^{\prime}=$ nomsgsfrom $\wedge$ intno $^{\prime}=$ killintno $)$

```

This schema can be simplified to produce
NextMessageFromSrc1 \(\qquad\)
\(\triangle M S G Q 1\)
\(\triangle E R R V\)
\(\Delta H W\)
src? : PID
\(m p!: M P O T R\)
(\(\exists i: 1 \ldots m n x t-1 \bullet\)
\(m p!=m q 1(i) \wedge\)
\(m \operatorname{sgsrc}(\operatorname{msgat}(m p!))=s r c ? \wedge\)
(\(\forall j: 1 \ldots i-1\) •
\(\operatorname{msgsrc}(\operatorname{msgat}(\operatorname{mq1} 1(j))) \neq \operatorname{src} ?) \wedge\)
\((\forall j: i+1 \ldots m n x t-1 \bullet\) \(\left.\left.m q 1^{\prime}=m q 1 \oplus\{j-1 \mapsto m q 1(j)\}\right)\right) \wedge\)
\(m n x t^{\prime}=m n x t-1 \wedge\)
\(s e r r^{\prime}=\) sysok)
\(\vee\left(\right.\) serr \(^{\prime}=\) nomsgsfrom \(\wedge\) intno \(^{\prime}=\) killintno \()\)
The precondition is
pre NextMessageFromSrc \(1 \widehat{=}\)
\(\exists i: 1 \ldots m n x-1 \bullet\)
\[
\begin{aligned}
& \operatorname{msgsrc}(\operatorname{msgat}(\operatorname{mq} 1(i)))=\operatorname{src} ? \wedge \\
& \neg(\exists j: 1 . i-1 \bullet \\
& \quad \operatorname{msgsrc}(\operatorname{msgat}(\operatorname{mq} 1(i)))=\operatorname{src} ?)
\end{aligned}
\]

Finally, the abstraction relation is defined.
```

AbsMSGQ1
MSGQ
MSGQ1
maxmsgs = maxms
mnxt=\#mq+1
\foralli:1..\#mq}
mq(i)=mq1(i)

```

There should be no surprises here!

\section*{Theorem 67.}
\(\forall M S G Q^{\prime} ; M S G Q 1^{\prime}\) •
MSGQ1Init \(\wedge\) AbsMSGQ1 \(\Rightarrow\) MSGQInit

Proof. By the abstraction relation, maxmsgs \({ }^{\prime}=\) maxms \(^{\prime}\), so \(m m\) ? \(=\) maxmsgs \(^{\prime}=\) maxms \(^{\prime}\). The abstraction relation also states that mnxt \(=\) \(\# m q+1\), so \(m n x t^{\prime}=1=\# m q+1=0+1\), from which it follows that \(m q^{\prime}=\langle \rangle\).

\section*{Theorem 68.}
```

\forallMSGQ;MSGQ1; m?:MSG
pre AddMsg ^ AbsMSGQ1 ^ AbsSTOREPOOL1 \# pre AddMsg1

```

Proof. The preconditions are:
```

pre $\operatorname{AddMsg} \widehat{=}$
alloc $+\operatorname{msgsz}(m ?)<$ psize $\wedge$
$\# m q<$ maxms $\wedge$
$(\exists i: 1 . . \#$ freebs $\bullet \operatorname{msgsz}(f r e e b s(i)) \geq \operatorname{msgsz}(m ?)) \wedge$
startaddr $\leq$ mdaddr $($ freebs $(i)) \wedge$
$m d a d d r($ freebs $(i))+\operatorname{msgsz}(m ?) \leq \operatorname{startaddr}+\operatorname{svsize}$

```
and
```

pre $\operatorname{AddMsg} 1 \widehat{=}$
alloc $1+\operatorname{msgsz}(m ?)<$ psize $1 \wedge$
mnxt $\leq$ maxmsgs $\wedge$
$(\exists i: 1 \ldots n e x t m-1 \bullet \operatorname{msgsz}(f r e e b s 1(i)) \geq \operatorname{msgsz}(m ?)) \wedge$
startaddr $\leq$ mdaddr $($ freebs $1(i)) \wedge$
$m d a d d r($ freebs $1(i))+\operatorname{msgsz}(m ?) \leq \operatorname{startaddr}+\operatorname{svsize}$

```

It should be noted that the STOREVEC component cannot be subjected to refinement. Therefore, there is an identity relation between the components of STOREVEC in the two preconditons.

The abstraction relation states that psize \(=\) psize 1 , alloc \(=\) alloc 1 and that maxmsgs \(=\) maxms. It also states that mnxt \(=\# m q+1\). This permits the inferences that alloc \(+m \operatorname{sgsz}(m ?)<p \operatorname{size} \Leftrightarrow \operatorname{alloc} 1+\operatorname{msgsz}(m ?)<p s i z e 1\) and \(\# m q<\) maxms \(\Leftrightarrow\) mnxt \(\leq\) maxmsgs.

The range of the quantifier is \(1 . . \#\) freebs and by the abstraction relation for STOREPOOL, \#freebs \(=\) nextm -1 , and that abstraction relation also states that \(\forall i: 1 \ldots \#\) freebs \(\bullet\) freebs \((i)=\) freebs \(1(i) \mathrm{x}\), so it follows that
```

msgsz(freebs(i)) \geqmsgsz(m?)
\Leftrightarrowmsgsz(freebs1(i)) \geqmsgsz(m?)

```
\(\operatorname{mdaddr}(\operatorname{freebs}(i))=\operatorname{mdaddr}(\) freebs \(1(i))\) and, finally, that
\(m d a d d r(f r e e b s(i))+\operatorname{msgsz}(m ?) \leq \operatorname{startaddr}+\operatorname{svsize}\)
\(\Leftrightarrow \operatorname{mdaddr}(\) freebs \(1(i))+\operatorname{msgsz}(m ?) \leq \operatorname{startaddr}+\operatorname{svsize}\)

\section*{Theorem 69.}
```

\forallMSGQ;MSGQ'; MSGQ1;MSGQ1'; m?:MSG \bullet
pre AddMsg ^
AbsMSGQ1 ^
AbsMSGQ1' ^
AbsSTOREPOOL1 ^
AbsSTOREPOOL1' ^
AddMsg1
=> AddMsg

```

Proof. The abstraction relations states that alloc \(=\) alloc1, maxfree \(=\) maxfblocks and \#freebs \(=\) nextm -1 . This permits the inference that alloc \(+\operatorname{msgsz}(m ?)=\) alloc \(1+m s g s z(m ?)\) and \(\#\) freebs \(<\) maxfree implies that nextm \(\leq m a x f b l o c k s\). The relation also states that \(\# m q=m n x t-1\), so mnxt \(\leq\) maxmsgs implies \(\# m q<m a x m s\). The same relation permits the inference that nextm \(-1=\#\) freebs, so the bound variable of the outer existential quantifier is in range and it can be inferred that freebs \((i)=\) freebs \(1(i)\) (for the reason that \(\forall i: 1 \ldots \#\) freebs \(\bullet\) freebs \((i)=\) freebs \(1(i) \Rightarrow \exists i: 1 \ldots \#\) freebs • freebs \((i)=\) freebs \(1(i))\). This permits the inference that \(m d s z(\) freebs \((i))=\) \(m d s z(\) freebs \(1(i))\) and \(m d a d d r(f r e e b s(i))=m d a d d r(f r e e b s 1(i))\). Most of the remainder of the proof follows immediately.

The only point of note is
```

$\forall j: i . . n e x t m-1 \bullet$
freebs $1^{\prime}=$ freebs $1 \oplus\{j \mapsto \operatorname{freebs} 1(j+1)\}$

```

This clearly removes freebs \(1(i)\) from freebs 1 and corresponds directly to freebs \(^{\prime}=\) freebs \(\triangleright\{\) freebs \((i)\}\). In support of this claim, the following reasoning is offered. The above formula implies that freebs \(1^{\prime}(i)=\) freebs \(1(i+1)\), so freebs \(1(i)\) is no longer an element of freebs \(1^{\prime}\). By the equivalence of freebs \({ }^{\prime}\) and freebs \(1^{\prime}\) required by AbsSTOREPOOL1', freebs \((i)\) cannot be an element of freebs \(^{\prime}(i)\), so freebs \({ }^{\prime}=\) freebs \(\triangleright\{\) freebs \((i)\}\).

\section*{Theorem 70.}
```

\forallMSGQ;MSGQ1 •
pre NextMsg ^ AbsMSGQ1 => pre NextMsg1

```

Proof. The preconditions are as follows:
```

pre NextMsg \widehat{= mq}\not=\langle\rangle

```
and
pre NextMsg1 \(\widehat{=}\) mnxt \(>1\)
By the abstraction relation, \(m n x t=\# m q+1\), so if \(m q=\langle \rangle, m n x t=1\) since \(\#\rangle=0\). If \(m q \neq\langle \rangle, \# m q>0\), so \(m n x t>1\).

\section*{Theorem 71.}
```

\forallMSGQ;MSGQ'; MSGQ1;MSGQ1'; mp!:MPTR;
pre NextMsg ^
AbsMSGQ1 ^
AbsMSGQ1' ^
NextMsg1
=> NextMsg

```

Proof. By the previous result, \(m n x t>1\) implies \(m q \neq\langle \rangle\). Since 1 is in range as an index of \(m q 1\), the predicate of \(A b s M S G Q 1\) permits the inference that \(m q 1(1)=m q(1)\) and \(m q(1)=\) head \(m q\) by the definition of head; so, \(m p!=m q 1(1)=\) head \(m q\).

The quantified formula \(\forall i: 1 \ldots m n x t \bullet m q 1^{\prime}=m q 1 \oplus\{i \mapsto m q 1(i+1)\}\) translates \(m q 1\) one position downwards with the result that \(m q 1^{\prime}(1)=m q 1(2)\) and so on. This is the removal of the first element of \(m q 1\) which, as noted in the last paragraph is equivalent to head \(m q\). The removal of the head of a sequence is the result of the tail operation and it is clear that the universally quantified formula is equivalent to \(m q^{\prime}=\) tail \(m q\).

\section*{Theorem 72.}
\(\forall M S G Q ; M S G Q 1 ; s r c ?: ~ P I D\)
pre NextMessageFromSource \(\wedge\) AbsMSGQ1 \(\Rightarrow\) pre NextMessageFromSource 1
Proof. The preconditions are:
```

pre NextMessageFromSource \widehat{=}
\existsi:1.. \#mq\bullet
msgsrc}(msgat(mq(i))=src?^
\neg (\existsj:1..j-1
msgsrc}(msgat(mq(j)))=src?

```
and
```

pre NextMessageFromSource1 \widehat{=}
\exists1..mnxt - 1\bullet
msgsrc}(msgat(mq1(i)))=src? ^
\neg (\existsj:1..i-1\bullet
msgsrc}(msgat(mq1(i)))=src?

```

By the abstractin relation, \(m n x t=\# m q-1\), so \(\# m q=m n x t-1\). From this, the equivalence of ranges of the outer quantifiers can be inferred. This equivalence also permits us to infer that \(\forall i: 1 . . \# m q \bullet m q(i)=m q 1(i))\) and, then, that \(\operatorname{msgsrc}(\operatorname{msgat}(m q(i)))=m \operatorname{sgsrc}(\operatorname{msgat}(m q 1(i)))\) for \(1 \leq i \leq \# m q\).

\section*{Theorem 73.}
```

\forallMSGQ;MSGQ'; MSGQ1;MSGQ1'; src?:PID; mp!:MPTR \bullet
pre NextMessageFromSource ^
AbsMSGQ1 ^
AbsMSGQ1' ^
NextMessageFromSource1
=> NextMessageFromSource

```

Proof. First of all, it is necessary to observe that \(m n x t-1=\# m q\) is a simple consequence of \(A b s M S G Q 1\), so it can be inferred that the outermost quantifier ranges are equivalent. This also permits the inference that \(\forall i: 1 \ldots \# m q \bullet\) \(m q(i)=m q 1(i)\) and that \(\operatorname{msgsrc}(\operatorname{msgat}(m q(i)))=\operatorname{msgsrc}(\operatorname{msgat}(m q 1(i)))\) for \(1 \leq i \leq \# m q\); in particular, if \(1 \leq i \leq \# m q\) and \(j<i\), this identity also holds. It also permits the inference that
```

$\forall j: i+1 . . m n x t-1 \bullet$
$m q 1^{\prime}$
$=m q 1 \oplus\{j-1 \mapsto m q 1(j)\}$
$=m q \oplus\{j-1 \mapsto m q 1(j)\}$
$=m q \oplus\{j-1 \mapsto m q(j)\}$
$=m q^{\prime}$

```

The equivalence of \(m q 1^{\prime}\) and \(m q^{\prime}\) is assured by the condition in \(A b s M S G Q 1^{\prime}\) that \(\forall i: 1 . . \# m q^{\prime} \bullet m q^{\prime}(i)=m q 1^{\prime}(i)\); the remainder of the steps are justified by the equivalence noted above.

Finally, it can be seen that if \(\operatorname{msgsrc}(\operatorname{msgat}(m q 1(i)))=s r c ?, m q 1\) is divided into three segments: an initial segment \((1 \leq j<i)\), the segment consisiting only of \(m q 1(i)\) and a final segment whose indices are in the range \(i+1 \leq j \leq m n x t-1\). The last range, in \(m q\), is \(i+1 \leq j \leq \# m q\). Since \(m q\) and \(m q 1\) coincide by the \(A b s M S G Q 1\), it is possible to write \(m q\) as \(q_{1}{ }^{\wedge}\langle m q(i)\rangle{ }^{\wedge} q_{2}\), where \(q_{1}(j)=m q(j)\) for \(1 \leq j<i\), and \(q_{2}(j)=m q(j)\) for \(i+1 \leq j \leq \# m q\). The quantifier \(\forall j: i+1 \ldots m n x t-1 \bullet m q 1^{\prime}=m q 1 \oplus\{j-1 \mapsto m q 1(j)\) clearly removes \(m q 1(i)\) from \(m q 1\). From this, it can be concluded that \(m q^{\prime}=q_{1} \cap q_{2}\). To verify this, \(m q 1^{\prime}(i)=m q 1(i+1)\) and \(m q^{\prime}(i)=m q(i+1)=h e a d q_{2}\); by the abstraction relation, head \(q_{2}=m q 1(i+1)\).

This module is now at a level where implementation is possible.

\subsection*{5.10 Kernel Interface - User Processes}

\subsection*{5.10.1 Auxilliary Operations}

VerifyCallerIdent \(\widehat{=}\)
(RunningProcess \([c / p!] \wedge \operatorname{PIDforUPID}[c / p!]) \backslash\{c\}\)
or
VerifyCallerIdent \(\qquad\)
\(\Xi P T A B\)
\(u\) ? : UPID
\(\operatorname{curr}=\operatorname{extpid}(u ?)\)
```

InsufficientMainStore $\widehat{=}$
( $\exists$ e : SYSERR $\mid e=$ mainstorefull $\bullet$
SetSysErr $[e / e ?]) \wedge$
RaiseKillInterrupt

```
```

SEGMENTS $\widehat{=}$
STOREPOOL[frees/freebs, maxsgs/maxfree,
allocs/alloc, spsize/psize, spaddr / paddr]
SEGMENTSInit $\widehat{=}$ STOREPOOLInit[frees/freebs, maxsgs/maxfree,
allocs / alloc, spsize/psize, spaddr / paddr]
AllocateSegment $\widehat{=}$ AllocBlk $[$ frees $/$ freebs, maxsgs/maxfree, allocs /alloc]
FreeSegment $\widehat{=}$ FreeBlk[frees/freebs, maxsgs/maxfree, allocs/alloc]
CanAllocateSegment $\widehat{=}$ CanAllocateBlock[allocs/alloc,frees/freebs]

```

The following is just a convenience
SegmentTableInit \(\widehat{=}\) SEGMENTSInit
For present purposes, it is assumed that segmentation is aimed at the output of the GNU C compiler, which requires two segments. One segment is the code segment (also called the "text" segment and is assumed to be read-only), the other is the combined stack and data segment. In the latter segment, the stack is assumed to grow downwards from the top, while data is allocated upwards from the bottom.

The size of the code segment is codesz and that of the combined stack and data segment is dssize. The descriptors returned are \(s d\) ! for the stack segment and \(d s\) ! for the other segment.

The descriptors are \(s d\) ? for the stack segment and \(d s\) ? for the combined segments.

It is also necessary to declare some store to be used as a message pool. This entails the allocation of a STOREVEC and a STROREPOOL; the STOREPOOL, however, must be distinct from the segment table just described.

\subsection*{5.10.2 Initialisation}

This subsection deals with system initialisation for non-device processes.
The first task is to define the operations on segments in main store. To do this, it is necessary to define the type for segment descriptors. Segment descriptors are composed of an address (the start of the segment) and a size (the size of the segment in some units-bytes seem the most appropriate).
\(S D E S C==A D D R \times \mathbb{N}\)
The size (the second component) must admit zero so that the null process can be represented.

Given this type definition, it is useful to have a constructor function for segment descriptors, just as we had for storage descriptors (type MD).
```

mksdesc : ADDR $\times \mathbb{N} \rightarrow$ SDESC
$\forall a: A D D R ; s: \mathbb{N} \bullet$
$\operatorname{mksdesc}(a, s)=(a, s)$

```

The constructor function just creates pairs.
It is also useful to have accessor functions, one for each component.
```

segaddr : SDESC }->ADD
segsize : SDESC }->\mathbb{N
\foralls:SDESC \bullet
segaddrs(s)=fst s
segsize(s)=snd s

```

The first accessor returns the segment's start address, while the second returns the size.

The process table is expanded by two components: one to record code segment information and one to record data and stack segment information. The code segment information is stored in cdseg and that for the combined data and stack segement is stored in dsseg. Clearly there must be one segment of each type for every process (the idle, or null, process must have zero segments, recall for the reason that it does not have any data, does not consume a stack, nor does it have a code segment - the code for the idle process is a part of the kernel).
```

PTAB

```
!
cdseg: PID \(\rightarrow\) SDESC
dsseg : PID \(\rightarrow\) SDESC

The segment usage of the GNU C compiler is assumed (it uses two segments, one for code and one for data and the stack - the stack resides at the top of the data segment and grows downwards towards the area in which data is stored). The invariant for cdseg (the code segment) and that for the combined stack and data segment, dsseg, is the same.

The operation to set the code segment information for a process is defined by the following schema:

SetCodeSegInfo \(\qquad\)
\(\triangle P T A B\)
\(p\) ? : PID
\(a\) ? : \(A D D R\)
\(s z ?: \mathbb{N}\)
\(c d s e g^{\prime}=c d s e g \cup\{p ? \mapsto \operatorname{mksdesc}(a ?, s z ?)\}\)

Segments are allocated only once, so any data that is set remains in the process table until its owning process is deleted.

In a similar fashion, the combined stack and data segment information for a new process is set by the following schema:

SetStackDataSegInfo \(\qquad\)
\(\triangle P T A B\)
\(p\) ? : PID
\(a\) ? : \(A D D R\)
\(s z ?: \mathbb{N}\)
\(d s s e g^{\prime}=d s s e g \cup\{p ? \mapsto \operatorname{mksdesc}(a ?, s z ?)\}\)

The next two schemata use the accessor functions defined for segment descriptors and apply them to the segments of a process. This first schema returns the descriptor for the code segment.

CodeSegAddr \(\qquad\)
\(\Xi P T A B\)
\(p\) ? : PID
\(a\) ! : ADDR
\(a!=\operatorname{segaddr}(\operatorname{cdseg}(p ?))\)
The second schema returns the combined segment for the named process.

StackDataSegAddr
\[
\begin{aligned}
& \Xi P T A B \\
& p ?: P I D \\
& a!: A D D R \\
& a!=\operatorname{segaddr}(\operatorname{dsseg}(p ?))
\end{aligned}
\]

The following operation sets the registers up ready for the context switch to the intial process. The most important part of this consists of setting the registers to default or dummy values so that they can be switched into the processor's registers. The entry point of the initial process must be specified as the address at which to start the execution of the initial process when swapped onto the processor.
```

SwitchToFirstProcess \widehat{=}
CreateDummyRegs
9...

```

The idle process must be created. The kernel contains the code that implements this process. The code has to be made into a process. First, a process identifier (PID) must be created using AddIdleProcess. Next, the segments must be created. As noted above, each segment has a zero start address (represented by nulladdr and has a size of 0 . The segment information must be stored in the process table.
```

CreateIdleProcess \widehat{=}
AddIdleProcess ^
AllocateProcTSS ^
^(\existsna:ADDR;nsz:\mathbb{N | na=nulladdr ^ nsz = 0 \bullet}
SetCodeSegInfo[ip!/p?,na/a?,nsz/sz?]
gSetStackDataSegInfo[ip!/p?, na/a?,nsz/sz?])

```

The CreateIdleProcess operation is required so that the scheduler can be initialised. It is now possible to define the SKInitSys operation, the operation that represents the initialisation of the system proper.
```

SKInitSys \widehat{=}
AllocateGDT ^ AllocateIDT ^ AllocateTSSs ^
InitDevNums ^
PTABInit ^
SegmentTableInit ^
MSGSTOREInit ^
MSGPOOLInit ^
((SKCreateNullProcess[ip/ip!]^ SKSCHEDInit[ip/p?])\{ip}
gSKCreateAndRunInitialProcess)

```

First, the process table is initialised to empty and the segment table is also initialised to empty. The storage area for messages is allocated and initialised,
as is the descriptor space. Next the idle (null) process is created and its data stored in the process table. The scheduler is then initialised and the identifier of the idle process is stored in the variable in the scheduler. Finally, the initial process is created and its data stored in the process table. The intial process is then executed.

\subsection*{5.10.3 Process Management}

The process management operations must be defined. These operations handle such matters as segment allocation and process creation. The operations in this section deal with user processes only.

The segment allocation operation is defined as follows:
```

AllocateSegments $\widehat{=}$
$\exists$ totsize $: \mathbb{N}_{1} \mid$ totsize $=c d s s i z e ?+$ stkdsize $?$
(CanAllocateSegment[totsize/rqsz?] ^
AllocateSegment[totsize/rqsz?, csaddr!/c!] ^
stkaddr $!=c s a d d r!+c d s s i z e ? ~ \wedge$
SysOk)
$\checkmark$ InsufficientMainStore

```

The definition expands into:
```

AllocateSegments
\triangleSTOREPOOL
\DeltaERRV
\DeltaHW
cdssize?, stkdsize?:\mathbb{N}
csaddr!, stkdaddr! : ADDR

```

```

    (totsize + alloc \leq psize ^
            (#frees < maxsgs ^
            ( }\existsi:1...#frees \bullet mdsz (frees (i)) \geqtotsize) ^
            AllocateSegment[totsize/rqsz?, csaddr!/a!] ^
            stkaddr! = csaddr! + cdssize? ^
            serr' = sysok)
    \vee (serr}\mp@subsup{}{}{\prime}=\mathrm{ mainstorefull }\wedge\mathrm{ intno' = killintno)
    ```

The primitive for creating new processes is as follows:
```

SKNewProcess $\widehat{=}$
(AllocSegments[totsize?/rqsz?, csaddr/csaddr!, stkdaddr/stkdaddr] ^
$(\exists \mathrm{pt}:$ PTYPE $\mid p t=u p r o c \bullet A d d P D)$
${ }_{9}$ SetCodeSegInfo[cdssize?/sz?, csaddr/a?]
${ }_{9}$ SetSetDataSegInfo [stkdsize?/sq?, stkdaddr/a?]))
${ }_{9}$ AllocateProcTSS $\wedge$ AddPD
${ }_{9}$ InitDevReply
${ }_{9}$ ClearMsgQ
${ }_{9}$ Clear $\quad{ }_{9}$ MakeReady $[p!/ p$ ?]
$\wedge$ SysOk $\backslash\{$ csaddr, stkdaddr $\}$

```

First, the segments for the new process are allocated. The segment information is then stored in \(P T A B\) and the process is made ready (added to the scheduler's ready queue).

The UPID for each process is returned to the newly created process, while the \(P I D\) is retained by the kernel and never revealed to an untrusted process.

The expansion of SKNewProcess is quite long and can be transformed by the use of the distributive rule for \(\wedge\) over \(\vee\).

Register values need to be set before the process can run. All the information is, though, present.

When a request to create a new process is made, it must be made by some process or other. In the basic model, it should be the initial process but it is possible to arrange for other processes to have the ability to create child processes. Whatever approach is adopted, the identity of the creating process must be verified. If verification succeeds, SKNewProcess is called to create the process in PTAB and add it to the ready queue. The operation is defined as follows:
```

USKNewProcess \widehat{=}
(VerifyCallerIdent }
SKNewProcess[p/p!]\{p})
\vee BadCallerIdent

```

Creating a processes is only half the story. It is necessary to create and execute an initial process just so that there is something to which a half context switch can be made. The initial process can be put to many uses, one of which is as the ancestor of all processes in the system. For present purposes, the initial process in this specification just serves as a place to which context can be switched.
```

CreateAndRunInitialProcess \widehat{=}
(SKNewProcess[fp/p!] g RunFirstProcess[fp/p?])\{fp}

```

The RunFirstProcess operation assumes that no other processes are executing. It must be executed during the low-level initialisation operation. If this condition is violated, process switches will fail. The operation basically sets up the stack with registers that can be popped when the first context switch
occurs; in order for the first context switch not to fail, the stack have the contents the hardware expects. Since we are not using the process stack for intermediate register storage, the stack need only to be initialised to the entry point of the initial process and the flags register (F register on the IA32).

The operation can be approximated by the following:
```

    SetupFirstProcess
    p?: PID
ep?:ADDR
flgs?:WORD
push_stack(p?, ep?)
push_stack(p?, flgs?)

```

SetHWTSS
\(\Delta H W\)
\(\Xi P T A B\)
\(p\) ? : PID
\(h w t s s^{\prime}=t s s(p ?) ;\)

RunFirstProcess \(\widehat{=}\)
(SetupFirstProcess \({ }_{9}\) SetHWTSS) \({ }_{9}\) ContextSwithc
Processes must be able to suspend themselves. The basic idea adopted for the Separation Kernel is that natural-break scheduling should be employed. This has the implication that each process, by and large, determines for itself when it should be suspended. The self-suspending operation is defined by the next schema:

SKSuspendSelf \(\widehat{=}\) (RequeueUserProcess \({ }_{9}^{\circ}\) SwitchContext)
This operation is then wrapped inside a check on the identity of the requesting process, as follows:
```

USKSuspendSelf \widehat{=}
(VerifyCallerIdent }\wedge\mathrm{ SKSuspendSelf)
\checkmark ~ B a d C a l l e r I d e n t ~

```

The last action a process takes is to terminate itself. The following schema defines this operation.

SKTerminateSelf \(\widehat{=}\)
((RunningProcess \([c / p!] \wedge\)
SetStateToTerminated \([c / p ?] \wedge\)
FreeCodeSegment \([c / p ?] \wedge\)
FreeSDSegment \([c / p ?] \wedge\)
(DelProcUPID \({ }_{9} \operatorname{DelPD[c/p?])\backslash \{ c\})~}\)
\({ }_{9}\) SKSchedNext)

For security, it must be wrapped inside an identity test.
USKTerminateSelf \(\widehat{=}\)
(VerifyCallerIdent \(\wedge\) SKTerminateSelf)
\(\vee\) BadCallerIdent

\subsection*{5.10.4 Message Passing}

The operations in this subsection are mostly those defined above. The main difference is that what is defined here is part of the system call's handling code.

In the definition of message-passing operations at the interface between the kernel and user processes, promotion is extensively employed. The reader will remember that in the section in which the message-passing primitives were defined, the \(\Phi P T A B_{M}\) schema was defined but not used; it is in the definition of the following operations that this schema finds its use. It is necessary to recall that promotion has the useful property that the refinement of the contained and containing state spaces can proceed independently. Because of this, the refinement of the operations in this section requires little or no extra work here.

When sending a message, the user process (or libary routine) has the following interface

UsrSendMsgI \(\qquad\)
\(\vdots\)
dest? : UPID
data? : MSGDATA
```

\vdots

```

At the interface to the message-passing subsystem, user processes only communicate identifiers as elements of UPID, not as elements of PID. The interface operation for sending a message can be defined as
```

\vdots
dest?: UPID
data?:MSGDATA
result!: YESNO
\vdots

```

Inside the module handling message passing, a translation scheme will need to be employed. Note first that the above schema does not actually construct
a message object, while the message-queueing operations do. This provides an opportunity, as follows.

First, assume that the following is called after the verification of the caller (or src?, that is).

TranslateMessageAddrs
\(\Xi P T A B\)
src?, dest? : UPID
data? : MSGDATA
\(m\) ! : MSG
```

\exists srcpid, destpid: PID \bullet
PIDforUPID[src?/u?, srcpid/p!]^
PIDforUPID[dest?/u?, destpid/p!] ^
\existsm:MSG\bullet
msgsrc}(m)=\operatorname{srcpid}
msgdest (m)=destpid }
msgdata(m)=data? ^
m!=m

```

This operation could be implemented as a pair of assignments if the number of bits required to store elements of \(P I D \leq\) the number of bits required to store elements of UPID.

On the output side, there is the need to translate a message structure into a form that can be understood by a user process.

MSGToUserData
```

\XiPTAB
src! : UPID
dest! : UPID
data!: MSGDATA
m?:MSG
src! = pidext(msgsrc(m?))
dest! = pidext (msgdest (m?))
data! = msgdata (m?)

```

In order for this operation to work properly, it is essential that the outputs are placed on the user-process stack.

Using this approach, it is possible to define the remaining user-level operations.

When a message is sent, the user interface passes objects of type UPID as well as the message payload (the message data, an object of type MSGDATA). It is necessary to translate the \(U P I D\) objects to objects of type \(P I D\) and to create an object of type \(M S G\).
```

TranslateMsgAddrs
\XiPTAB
src?,dest?: UPID
data?:MSGDATA
m!:MSG
\existssrcpid, destpid : PID
PIDforUPID[src?/u?, srcpid/p!]^
PIDforUPID[dest?/u?, destpid/p!] ^
\existsm:MSG
msgsrc}(m)=\operatorname{srcpid}
msgdest (m) = destpid ^
msgdata}(m)=data?
m! = m

```

This schema simplifies to:
```

\XiPTAB
src?, dest?: UPID
data?:MSGDATA
m! : MSG
msgsrc(m!) = extpid(src?)
msgdest (m!) = extpid(dest?)
msgdata(m!) = data}\mathrm{ ?

```

The object, \(m\) !, will have to be stored using \(A d d M s g\); meanwhile, it remains on the stack. This causes no problems because \(A d d M s g\) allocates dynamic storage for the message and only requires that the message take the form of a record or structure.

Promotion is used to define the basic operations, as observed when defining the message queue type. The SendToProcess operation adds a message to the destination process/

SendToProcess \(\widehat{=}\)
\(\exists \triangle M S G Q \bullet \Phi P T A B_{M} \wedge\) AddMsg
The full send-message primitive is defined as:
USKSendMsg \(\widehat{=}\) (VerifyCallerId \(\wedge\) \(\left(\exists m_{u}: M S G ; s z: \mathbb{N}_{1} ; d: P I D \mid s z=\operatorname{msgsz}\left(m_{u}\right) \bullet\right.\) PIDforUPID[dest? \(/ u ?, d / p!] \wedge\) TranslateMsgAddrs[u?/src?, \(\left.m_{u} / m!\right] \wedge\) SendToProcess[d, \(\left.m_{u} / m ?, s z / r q s z ?\right] \wedge\) SysOk)) \(\checkmark\) BadCallerIdent

This is the interface operation. It verifies the caller's identity.
The data in a message has to be extracted so that it can be handed to the destination process. the following operation does this.

MSGToUserData \(\qquad\)
\(\Xi P T A B\)
src! : UPID
dest! : UPID
data! : MSGDATA
datalen! : \(\mathbb{N}\)
\(m\) ?: MPTR
\(\operatorname{src}!=\operatorname{pidext}(\operatorname{msgsrc}(\operatorname{msgat}(m ?)))\)
dest \(!=\operatorname{pidext}(\operatorname{msgdest}(\operatorname{msgat}(m ?)))\)
data \(!=\operatorname{msgdata}(\operatorname{msgat}(m ?))\)
datalen \(!=\operatorname{msgpayload}(\operatorname{msgat}(m ?))\)

This operation is a surrogate boolean. It is used to return a value to user processes attempting to determine whether they have messages (or messages from a stated source) in their message queue.
_ UReturn Yes \(\qquad\)
resp! : YESNO
resp \(!=\) yes

UReturnNo
resp! : YESNO
\(r e s p!=n o\)

The operation that tests for the presence of messages in its message queue is now defined. This is a promoted operation.

ProcessHasMsgs \(\widehat{=}\)
\(\exists \triangle M S G Q \bullet \Phi P T A B_{M} \wedge G o t M s g s\)
The interface primitive for the GotMsgs predicate is the following:
```

USKGotMsgs \widehat{=}
(VerifyCallerIdent ^
(PIDforUPID [p/p!]^
((ProcessHasMsgs[p/p?]^ UReturn Yes ) \vee UReturnNo)\{p}
SysOk)
\checkmark ~ B a d C a l l e r I d e n t

```

This operation can be called from a user process.
The operation to return the next message in the queue is now defined by promotion.

NextMsgForProcess \(\widehat{=}\)
\(\exists \triangle M S G Q \bullet \Phi P T A B_{M} \wedge\) NextMsg
The user-interface level operation for getting the next message is defined as
```

SKNextMsg $\widehat{=}$
(VerifyCallerIdent $\wedge$
(PIDforUPID $[p / p!] \wedge$
( $\exists m p: M P T R \bullet$
((NextMsgForProcess[mp/mp!] ^MSGToUserData[mp/m?])
${ }_{9}$ DeleteStoredMsg[mp/addr?])
$\wedge$ SysOk))
$\checkmark$ BadCallerIdent

```

As can be seen from the definition of the message queue type, processes can determine whether there are any messages from a given source in its input message queue.

ProcessHasMsgsFromSrc \(\widehat{=}\)
\(\exists \triangle M S G Q \bullet\)
ФPTAB \(B_{M} \wedge\) GotMsgsFromSrc
The operation that can be invoked from a user interface is the following:
SKProcessHasMsgsFromSrc \(\widehat{=}\)
(VerifyCallerIdent \(\wedge\)
(PIDforUPID[src?/u?, srcpid \(/ p!] \wedge\)
PIDforUPID[destpid/p!] \(\wedge\)
(ProcessHasMsgsFromSrc [destpid/p?, srcpid/src?] \(\wedge\) UReturnYes)
\(\checkmark\) UReturnNo)) \\{srcpid, destpid } \}
\(\checkmark\) BadCallerIdent
Promotion is used to define the actual operation.
NextMsgForProcessFromSrc \(\widehat{=}\)
\(\exists \triangle M S G Q \bullet\)
\(\Phi P T A B_{M} \wedge\) NextMsgFrom
The operation actually to get the next message is defined below.
```

SKNextMsgFrom $\widehat{=}$
(VerifyCallerIdent $\wedge$
(PIDforUPID[src?/u?, srcpid/p!]^
PIDforUPID[destpid $/ p!] \wedge$
( $\exists m p$ : MPTR •
SKNextMsgFromSrc[destpid/p?, srcpid/src?, mp/mp!] ^
MSGToUserData $[m p / m ?)$ )
${ }_{9}$ DeleteStoredMsg) $\backslash\{$ srcpid, destpid $\}$ )
$\checkmark$ BadCallerIdent

```

\subsection*{5.11 Devices-Trusted Code}

Devices are trusted processes. In this design, trust only goes so far. Devices are not permitted full access to the kernel and have to respect a well-defined interface.

It would be extremely expensive to have each device process occupy its own set of segments. It is more convenient to have them reside in the same address space as the kernel. It would be preferable for each device not to have a stack but, inevitably, many will.

Device processes are expected never to terminate. For simplicity, it is assumed that, should it be necessary to replace a driver, the system must be shut down and rebooted with the new driver configured.

There are two main parts:
1. activation as a result of a user-process request, and
2. activation as a result of the device becoming ready or having data ready to read.

The links between device processes, the devices they control and the processes that require their services must be provided. The relationship between the device process and the physical device is a matter of addressing; each physical device has its own set of reserved addresses, so this is not an issue. This alone requires device processes either to be constructed of
- a component that operates on the physical device, and
- a component that handles requests from user processes and that passes data back to user processes (when required).

This separation of concerns is attractive.
Clearly, there must be an ISR to handle interrupts generated by the physical device's interface. The ISR can cause a component of the device process to execute. One way to do this is to use a semaphore. A second way is for the ISR to send a message. The message need not be anything involved because it merely denotes the availability of the device for writing or the availability of data for reading.

On the other side, user processes must make a request to the device process. The user process might then wait for the request to be serviced (e.g., when it is a request for data) or might continue (e.g., when the request is to write data). Synchronous protocols for writing might also be employed in which the servicing entity returns a sucess code to the user process. A synchronous interface can be implemented using the standard message-passing operations.

For the time being, it is assumed that the low-level device interface consists of an ISR and a set of addresses plus a piece of code that interfaces to the command bits in that address set. It is assumed that the code can be directly accessed by the device process.

A simple solution at the bottom level for reads is that the ISR hands a pointer to the newly input buffer to the device process, then places the device process on the device ready queue and causes a reschedule.

The device process, on the other hand, has made the device request and has passed any parameters to the device. Immediately thereafter, the device process suspends. Upon resumption, the device process reads the contents of the buffer passed to it by the ISR and passes the associated data or result code to the requesting user process.

This assumes that requests can be serviced in a simple FIFO manner and that the ISR knows the identifier of the device process. It also assumes that the device interface can be directly addressed by the device process. The second assumption suggests that:
- The device process resides in the same address space as the devicemanipulating code. This implies that the device process resides in the kernel's address space.
- There must be some kind of buffer space inside the kernel to hold the data passed to and from devices.
- The interface to device processes can be effected via a mapping table. This has the implication that all devices are configured before the system is started. This scheme also permits the user-process interface to be extended to include a (polymorphic) DeviceCall operation. Furthermore, this scheme is in line with the general approach adopted here that user processes access the kernel and its services only by means of a well-defined and relatively small set of operations.

Storing device processes in the kernel's address space is just a convenience to avoid an expensive segment swap; it is also necessary for most processors allow only a limited number of physical segments. In this specification, only physical segmentation is assumed for the reason that it does not involve any secondary storage. Swapping between main and secondary storage could provide a security hole for the malicious; the assumption also has speed advantages.

Placing device processes in the kernel address space does not imply that they have complete access to the kernel. Even for device processes, all kernel operations are in terms of a small, well-defined set of processes. There is the chance that a device process could write to kernel data structures but this is an
inevitable risk that the design implies. However, an assumption is that device processes are trusted not to operate in malicious ways. It would be far better to avoid this but, as noted above, it would require each device process to reside in its own, totally separate, address space. This, in turn, would require an address-space swap when entering the kernel, an operation that is somewhat costly on most machines (inter alia, it involves saving the entire context of the calling process). The introduction of virtual store appears to solve some of the problems. Again, as noted above, swapping processes between main store and some form of backing store is attractive but is costly and also opens up the possibility of attack.

The current scheme also appears to keep the design as simple as possible. It is our belief, based upon experience with similar and other software, that the simpler the software the easier it is to maintain and the easier it is to protect.

Some processors (e.g., Intel IA32) have instructions to support context switches. On the IA32, a jump or call instruction can be used to switch between address spaces. It is attractive to employ instructions such as these whenever possible on the grounds of potential speed improvement (although the IA32 switching times are about the same for all methods). By placing device processes in the same address space, the address-space switch is no longer required; this might require an additional piece of code to switch device contexts.

There is another issue that must be discussed. By permitting device processes to reside in the kernel's address space, the possibility of concurrency within that address space is opened up. This is particularly the case when prioritised interrupts are supported by the hardware. For simplicity, it will be assumed that all devices have the same interrupt priority (this is not uncommon and is assumed in many portable operating systems). Higher priority interrupts (hardware and software error conditions except segmentation violations) can be handled in the normal way and are orthogonal. Under this assumption, there is no contention between device processes and between device processes and ordinary ones. The scheduler's organisation only permits either a device or a user process to execute at any time.

It is first necessary to define a collection of operations that deal directly with the data structures relating to device processes. We will begin with a state-setting operation.
```

SetDevProcStateToWaiting \widehat{=}
\exists st : PSTATE | st = pswtgdev \bullet
SetProcState[st/st?]

```

This sets the state of a device process to pswtgdev when it is waiting for a request or for data from a device (the two states can be separately identifier, if so wished).

The following operation is a predicate that is true if the process identifier bound to \(p\) ? is that of a device process.

IsDeviceProcess \(\qquad\)
\(\Xi P T A B\)
\(p ?: P I D\)
\(\operatorname{ptype}(p ?)=d\) proc

When a device process is created, its device-message slot is initialised to the null message.

InitDeviceMsg
\(\triangle P T A B\)
\(d ?:\) PID
devmsg \({ }^{\prime}=\) devmsg \(\cup\{d ? \mapsto(\) nullpid, nullmsg \()\}\)

After a device process has serviced a request, it clears its device-message slot in \(P T A B\) by setting it to a null message.

ClearDevMsg \(\qquad\)
\(\triangle P T A B\)
\(d ?:\) PID
```

devmsg ${ }^{\prime}=$ devmsg $\oplus\{d ? \mapsto($ nullpid, nullmsg $)\}$

```

When a user process makes a request to a device process, it performs an action akin to sending a message. This "device message' is stored in the devmsg slot corresponding to the device process.
```

SetDevMsg

```
\(\qquad\)
\(\triangle P T A B\)
\(d ?: P I D\)
\(p\) ? : PID
\(m\) ? : MSG
devmsg \(^{\prime}=\) devmsg \(\oplus\{d ? \mapsto(p ?, m ?)\}\)

The following is the operation performed by a device process when it reads a request message.

GetDevMsg \(\qquad\)
\(\Xi P T A B\)
\(d ?\) : PID
\(m\) ! : MSG
\(m!=\operatorname{snd} \operatorname{devmsg}(d ?)\)
The next two schemata define operations on device-process requests. The first returns the identifier of the requesting process (which can never be a device process)

DevRequesterId \(\qquad\)
```

    \XiPTAB
    d?: PID
    p! : PID
    p! = fst devmsg(d?)
    ```

The next schema defines a predicate that is true when the device message for the device, \(d\) ?, is not null.

GotDevMSg
\(\Xi P T A B\)
\(d ?:\) PID
\(\operatorname{devmsg}(d ?) \neq(\) nullpid, \(n u l l m s g)\)

The following is just another name for the same operation.
NonNullDevRq \(\widehat{=}\) GotDevMsg
Device requests cannot be made by the null process, the idle process or another device process:

ValidDevRqProcessId \(\qquad\)
\(\Xi P T A B\)
rqid? : GPID
iprc? : PID
rqid \(? \neq\) nullpid
rqid? \(\neq\) iprc?
ptype \((\) rqid? \() \neq d p r o c\)

ISRs use this operation to pass data to the associated device process.
```

PassDataToDeviceProcess \widehat{=}
SetDevMsg
9}\mp@subsup{}{9}{ReadyDeviceProcess

```

PassDataToDeviceProcess \(\qquad\)
\(\triangle P T A B\)
\(\triangle\) SKSCHED
\(\triangle\) PROCESSQUEUE
\(d ?:\) PID
\(p\) ? : PID
```

m? : MSG
devmsg' = devmsg}\oplus{d?\mapsto(p?,m?)
state }\mp@subsup{}{}{\prime}=\mathrm{ state }\oplus{d?\mapsto psready
devq'}=\operatorname{devq}\mp@subsup{}{}{\frown}\langled?

```

The precondition is (notionally) required for the refinement process, so we calculated it.
pre PassDataToDeviceProcess \(\widehat{=}\) true

\subsection*{5.11.1 Device replies}

When a device process has completed its operation, it sends a reply message to the requesting user process. In the case of write-only devices, the reply will consist of a return code denoting the success of the operation (it might also contain some other date, say confirmation of the number of bytes written). These device replies are stored in PTAB and each process has a devrpy entry.

The following schema defines the operation to initialise the device reply entry for a newly created process.

InitDevReply \(\qquad\)
\(\triangle P T A B\)
\(p\) ? : PTAB
devrpy \(y^{\prime}=\) devrpy \(\cup\{p ? \mapsto\) nullmsg \(\}\)

When a process has received a reply from a device process, it should copy the data to its own address space and then clear the reply entry. This schema defines the operation:

ClearDevReply
\(\triangle P T A B\)
\(p\) ? : PID
devrpy \({ }^{\prime}=\) devrpy \(\oplus\{p ? \mapsto\) nullmsg \(\}\)
When a device process has completed its task, it reports the result to the requesting user process by setting a "message" in the devrpy table within \(P T A B\). This is achieved by the operation defined by the following schema:

SetDevReply
\(\triangle P T A B\)
\(p\) ? : PID
\(m\) ? : \(M S G\)
devrpy \(^{\prime}=\) devrpy \(\oplus\{p ? \mapsto m ?\}\)

The user process obtains device replies by means of the operation defined by the following schema:

ReplyFromDeviceProc \(\qquad\)
\(\Xi P T A B\)
\(p\) ? : PID
\(m!: M S G\)
```

m! = devrpy(p?)

```

Should a process be unsure about the result of a device request, the following predicate is defined.

GotReplyFromDeviceProc \(\qquad\)
EPTAB
\(p\) ? : PID
\(\operatorname{devrpy}(p ?) \neq\) nullmsg
If a process does not receive a device reply when it should, it can use the following schema to notify the system of this eventuality.

NoDeviceReply \(\widehat{=}\)
\((\exists e: S Y S E R R \mid e=\) nodevreply \(\bullet\)
SetSysErr \([e / e ?]) \wedge\)
RaiseKillInterrupt
The operation employed by a device process to reply to a user process request is defined as:
```

DevReplyToUserProc $\widehat{=}$
(GotReplyFromDeviceProc $\wedge$
(ReplyFromDeviceProc ${ }_{9}$ ClearDevReply) $\wedge$
SysOk)
$\checkmark$ NoDeviceReply

```
The condition NoDeviceReply should never happen!

The expansion of DevReplyToUserProc is
DevReplyToUserProc \(\qquad\)
\(\triangle P T A B\)
\(\triangle E R R V\)
\(\Delta H W\)
\(p\) ? : PID
\(m\) ! : MSG
\((\operatorname{devrpy}(p ?) \neq\) nullmsg \(\wedge\)
\(m!=\operatorname{devrpy}(p ?) \wedge\)
devrpy \({ }^{\prime}=\) devrpy \(\oplus\{p ? \mapsto\) nullmsg \(\} \wedge\)
```

    \(s^{s e r r}{ }^{\prime}=\) sysok \()\)
    $\vee\left(\right.$ serr $^{\prime}=$ nodevreply $\wedge$ intno $^{\prime}=$ killintno $)$

```
```

pre DevReplyToUserProc \widehat{=}
p?\in\operatorname{dom devrpy }\wedge\operatorname{devrpy (p?)}\not=\mathrm{ nullmsg}

```

\subsection*{5.11.2 Device numbers}

The following is an error-reporting schema:
BadDeviceNumber \(\widehat{=}\)
```

$(\exists e: S Y S E R R \mid e=$ baddevnum
SetSysErr $[e / e ?]) \wedge$
RaiseKillInterrupt

```

This schema is used when it is detected that a process is requesting a service from a device whose number is unknown to the system. Devices are known internally to the system by process identifiers (elements of PID); outside the kernel, user processes know them only by device numbers (or service numbers). When a device process is created, it is allocated a PID and a \(D E V N O\) (device number). The following operation sets the device number in the devmap table in \(P T A B\) when a device process is created.
```

InitDeviceNum
\trianglePTAB
dno?: DEVNO
d? : PID
devmap}\mp@subsup{}{}{\prime}=\mathrm{ devmap }\cup{dno?\mapstod?

```

The precondition is simply
pre InitDeviceNum \(\widehat{=}\) true
Checking that a device number exists is done by the operation defined by the following schema:

IsKnownDeviceNumber \(\qquad\)
\(\Xi P T A B\)
dno? : DEVNO
dno? \(\in\) dom devmap

Device numbers are allocated by the person who configures the system, not by the system proper. This way, the implementers of user processes as well as the system can know the device numbers that are in use.

Given a device number, dno?, what is the corresponding process identifier? The following schema defines this operation. The result is returned in \(d!\). The operation can only be applied when it is known that dno? is an element of devmap's domain (is a defined device number, that is).
```

DeviceProcessId
\XiPTAB
dno?: DEVNO
d! : PID
d! = devmap(dno?)

```
\(\qquad\)

Device suspension. Devices are responsible for suspending themselves.
```

SuspendDeviceProcess \widehat{=}
RequeueDeviceProcess[d?/p?]

```

This operation was defined when specifying the scheduler.

\subsection*{5.11.3 Device process creation}

Device processes must be created, usually at boot time. Unlike user processes, it is expected that device processes will not terminate until the system as a whole is shut down.

There is no need to create a user-level identifier, so the following new composition is adequate.
```

    SetPDState
    ```
\(\qquad\)
\(\triangle P T A B\)
\(p\) ? : PID
st? : PSTATE
```

state }\mp@subsup{}{}{\prime}=\mathrm{ state }\cup{p!\mapstost?
ptype}\mp@subsup{}{}{\prime}=ptype \cup{p!\mapstodproc

```

The fact that device processes do not have external identifiers means that the operation to enter their basic details into the process table is a little different from the one used for user processes. The operation for device processes is:
```

AddDevPD $\widehat{=}$
( (GotFreePIDs $\wedge$ AllocPID)
${ }_{9} \operatorname{SetPDState}[p!/ p ?] \wedge$
SysOk)
$\vee$ PTABFull

```

This definition expands, after slight simplification, into

AddDevPD \(\qquad\)
```

\trianglePTAB
\DeltaERRV
\DeltaHW
p!: PID
st?: PSTATE
(used }\subsetPID
p!\&used ^
used}\mp@subsup{}{}{\prime}=\mathrm{ used }\cup{p!}
state}\mp@subsup{}{}{\prime}=\mathrm{ state }\cup{p!\mapstost?}
ptype }\mp@subsup{}{}{\prime}=ptype\cup{p!\mapstodproc}
serr}\mp@subsup{}{}{\prime}=\mathrm{ sysok)
\vee (serr}\mp@subsup{}{}{\prime}=\mathrm{ ptabfull }\wedge\mp@subsup{\mathrm{ intno }}{}{\prime}=killintno)

```

The simplification is to identify state with state \({ }^{\prime \prime}\) and ptype \({ }^{\prime}\) with ptype \({ }^{\prime \prime}\). This is permitted because they are only updated in the second component of the sequential composition.
pre \(A d d D e v P D \widehat{=}\) used \(\subset P I D\)
The primitive that creates a new device process is specified ass
```

NewDeviceProcess \widehat{=}
(IsKnownDeviceNumber ^ BadDeviceNumber)
\vee (AddDevPD[d!/p!] % InitDeviceNum[d!/d?] g InitDeviceMsg[d!/d?]}\mp@subsup{}{9}{
InitDeviceRq[d!/d?] g InitDevReply[d!/p?]g
SetDevProcStateToWaiting)

```

After merging the existentials, this definition expands into the following schema:

NewDeviceProcess \(\qquad\)
\(\triangle P T A B\)
\(\triangle E R R V\)
\(\Delta H W\)
\(d!: P I D\)
dno? : DEVNO
```

$\exists$ devmsg $^{\prime \prime}: P I D \rightarrow M S G ;$ devrqs ${ }^{\prime \prime}: P I D \rightarrow M S G ;$
devrpy $: ~ P I D \rightarrow M S G \bullet$
$\left(\right.$ dno $? \in \operatorname{dom}$ devmap $\wedge$ serr $^{\prime}=$ baddevnum $\wedge$ intno $^{\prime}=$ killintno $)$
$\vee($ used $\subset$ PID $\wedge$
$d!\notin$ used $\wedge$ used $^{\prime}=$ used $\cup\{d!\} \wedge$
state ${ }^{\prime}=$ state $\cup\{d!\mapsto$ st? $\} \wedge$ ptype ${ }^{\prime}=p$ type $\cup\{d!\mapsto d p r o c\} \wedge$
serr ${ }^{\prime}=$ sysok)
$\vee\left(\right.$ serr $^{\prime}=$ ptabfull $\wedge$ intno $^{\prime}=$ killintno $)$

```
```

`devmap}\mp@subsup{}{}{\prime}=\mp@subsup{\mathrm{ devmap }}{}{\prime\prime}\cup{d!\mapstodno?
gdevmsg' = devmsg'\prime}\cup{d!\mapsto nullmsg
@devrqs' = devrqs" }\cup{d!\mapsto nullmsg
@}\mp@subsup{}{9}{\prime2vrpy}\mp@subsup{}{}{\prime}=\mp@subsup{\mathrm{ devrpy }}{}{\prime\prime}\cup{d!\mapsto nullmsg

```

Note that the double-primed variables are only affected once and in their respective composition elements. This permits the following simplification.
```

NewDeviceProcess

```
\(\qquad\)
```

\trianglePTAB
\DeltaERRV
\DeltaHW
d!: PID
dno?: DEVNO
(dno? \& dom devmap }\wedge\mp@subsup{\mathrm{ serr' }}{}{\prime}=\mathrm{ baddevnum }\wedge\mp@subsup{\mathrm{ intno }}{}{\prime}=\mathrm{ killintno)
\vee ((used \subset PID ^d! \& used }\wedge\mp@subsup{used}{}{\prime}=\mathrm{ used }\cup{d!}
state }\mp@subsup{}{}{\prime}=\mathrm{ state }\cup{d!\mapsto st?}\wedge ptype' = ptype \cup{d!\mapstodproc} ^
gdevmap ' = devmap" }\cup{d!\mapstodno?
devmsg' = devmsg'' }\cup{d!\mapsto nullmsg}
devrqs' }=\mp@subsup{\mathrm{ devrqs }}{}{\prime\prime}\cup{d!\mapsto nullmsg} ^
deurpy'}=\mp@subsup{\mathrm{ devrpy '' }}{\prime}{{}{d!\mapsto\mathrm{ nullmsg }}
serr' = sysok)
\vee ( s e r r ~ ' ~ = ~ p t a b f u l l ~ \wedge ~ i n t n o ~ ' ~ = ~ k i l l i n t n o ~ ) ~ ) ~

```

The precondition of NewDeviceProcess is given by:
pre NewDeviceProcess \(\widehat{=}\)
dno \(? \in \operatorname{dom}\) devmap \(\vee\) used \(\neq P I D\)
There is only one thing left. Some device processes will need to initialise their hardware as soon as the system boots. This has to be included as an option. Therefore, the following is added.

NewDeviceProcessPossInitHW \(\widehat{=}\)
NewDeviceProcess \({ }_{9}^{\circ}(\) runatboot \(?=\) yes \(\wedge\) ReadyDeviceProcess[d!/dp?])
After a little obvious transformation and expansion, this schema expands into
_ NewDeviceProcessPossInitHW \(\qquad\)
\(\triangle P T A B\)
\(d!: P I D\)
dno? : DEVNO
runatboot? : YESNO
(dno? \(\in \operatorname{dom}\) devmap \(\wedge\) serr \(!=\) baddevnum \()\)
\(\vee((\) used \(\subset P I D \wedge\)
```

$d!\notin$ used $\wedge$ used $^{\prime}=$ used $\cup\{d!\} \wedge$
state $^{\prime}=$ state $\cup\{d!\mapsto$ st $?\} \wedge$ ptype ${ }^{\prime}=p t y p e \cup\{d!\mapsto d p r o c\} \wedge$
devmsg $^{\prime}=$ devmsg ${ }^{\prime \prime} \cup\{d ? \mapsto$ nullmsg $\} \wedge$
devrqs $^{\prime}=$ devrqs ${ }^{\prime \prime} \cup\{d ? \mapsto$ nullmsg $\} \wedge$
devrpy $^{\prime}=$ devrpy $^{\prime \prime} \cup\{d ? \mapsto$ nullmsg $\} \wedge$
(runatboot? $=$ yes $\wedge$
ReadyDeviceProcess[d!/dp?])
$\wedge s e r r^{\prime}=$ sysok $)$
$\vee\left(\right.$ serr $^{\prime}=$ ptabfull $\wedge$ intno $^{\prime}=$ killintno $)$

```

The precondition is:
```

pre NewDeviceProcessPossInitHW \widehat{=}
dno? \in dom devmap
\vee ~ u s e d ~ \neq ~ P I D ~

```

It is now necessary to account for three things:
1. Communicating parameters to the device process;
2. Readying a device process when its associated ISR has completed;
3. Returning values to the user process that initially made the request.

It must be pointed out that a synchronous I/O model is assumed in this specification. The reason for this is that it is simple to specify and to implement.

It is assumed that user processes communicate with device processes via an interrupt. The ISR associated with this interrupt decodes the request and passes appropriate parameters to the device process. Until the device process has completed its operations and has returned at least a return code to the caller, the caller is suspended in a waiting state (pswaitdev). When the device process has completed, it must ready the requesting user process - this implies that the device process stores the identifier of the requesting process.

SetStateToDevWait \(\widehat{=}\)
\(\exists\) st : PSTATE \(\mid\) st \(=\) psdevwait \(\bullet\)
SetProcState[st/st?]
It must be emphasised that this operation is intended for use by user processes only. Device processes have their own waiting state and setter operation.

When a device request is made, the requesting process' \(P I D\) and device number are checked. Should either fail, an error value is returned in serr. The device data is passed to the device process, together with the requesting process' PID.

The parameters passed by the requesting process take the form of a message. The message is passed to the device process using PassDataToDeviceProcess. The requesting process then waits until the device process posts a
message to its devrpy slot using DevReplyToUserProc and then readies the requesting process using MakeReadyUserProcess. The identifier of the requesting process must be checked to see that it is valid (not the null or idle process and not another device process).

The following operation is part of the handler code that activates device processes. If device requests are handled by an interrupt, the following operation will be used by the associated ISR.
```

BadCallerIdent \widehat{=}
(\existse:SYSERR| e= badcallerid
SetSysErr[e/e?])^
RaiseKillInterrupt

```

When a request is made to a device process, it must be verified and the device process activated. Verification, here, consists of verifying that there is a device process corresponding to the specified device number and that the requesting process is genuine. If the tests have been passed, the request is passed to the device process and the requesting user process' state is set to "waiting on device" (psdevwait). The operation is defined as follows:
```

VerifyAndActivateDevProc \widehat{=}
(VerifyCallerIdent }\wedge\mathrm{ PIDforUPID[caller / p!] ^
IDLEPROCESSIdent[iprc/p!]^
(ValidDevRqProcessId[caller/rqid?, iprc/iprc?] ^
(IsKnownDevideNumber ^
(DeviceProcessId[dp/d!] ^
((PassDataToDeviceProcess[dp/d?, caller/p?]
@SetStateToDevWait[caller/p?]) ^
SysOk
g}\mp@subsup{}{9}{SKSchedNext))\{dp})
\checkmark ~ B a d D e v i c e N u m b e r ) ) \ \{ c a l l e r , i p r c \}
\vee BadCallerIdent

```

For safety, this operation is expanded.
```

    VerifyAndActivateDevProc
    ```
 \(\triangle\) SCHED
 \(\triangle P R I O Q\)
 \(\Delta H W\)
 \(\Delta E R R V\)
 \(\Xi P T A B\)
 u? : UPID
 dno? : DEVNO
 \(m\) ?: MSG
 \(\exists\) caller, iprc : PID
 \((\) curr \(=\operatorname{extpid}(u ?) \wedge\) caller \(=\operatorname{extpid}(u ?) \wedge i p r c=i p i d \wedge\)
 \(((\) caller \(\neq\) nullpid \(\wedge\) caller \(\neq\) iprc \(\wedge\) ptype \((\) caller \() \neq\) dproc \(\wedge\)
\((\exists d p: P I D \bullet\)
\(d n o ? \in \operatorname{dom}\) devmap \(\wedge d p=\operatorname{devmap}(\) dno? \() \wedge\)
(\(\exists\) devq : seq PID •
(\(\exists\) state \({ }^{\prime \prime}:\) PID \(\rightarrow\) PSTATE •
devmsg \({ }^{\prime}=\) devmsg \(\oplus\{d p \mapsto(\) caller,\(m ?)\} \wedge\)
state \(^{\prime \prime}=\) state \(\oplus\{d p \mapsto\) psready \(\} \wedge\)
\(\operatorname{devq} q^{\prime \prime}=\operatorname{devq}{ }^{\wedge}\langle d p\rangle \wedge\)
state \(=\) state \(^{\prime \prime} \oplus\{\) caller \(\mapsto\) psdevwait \(\left.\}\right) \wedge\)
serr \(^{\prime}=\) sysok
\(\wedge\) SKSchedNext)))
\(\vee\left(\right.\) serr \(^{\prime}=\) baddevnum \(\wedge\) intno \(^{\prime}=\) killintno \(\left.)\right)\)
\(\vee\left(\right.\) serr \(^{\prime}=\) badcallerident \(\wedge\) intno \(^{\prime}=\) killintno \(\left.)\right)\)

The expansion of this operation shows that a request to a device causes the device process to be readied on the scheduler's ready device queue (\(\operatorname{devq}\)) and the requesting process is suspended. The operation also causes a reschedule.

This definition exemplifies our use of the reschedule operation instead of the MakeUnready. It is known that when the above is exceuted, the current process is the one that needs to be removed from the scheduling queue.

Note that device requests are a case where the currently executing process is unreadied. The requesting user process remains in a waiting state until the device process whose services it has requested has completed and placed a reply message in the requesting process' reply slot in PTAB.

The method by which the device process communicates with the hardware device under its control is not further specified here. Some shared memory will probably be employed for data buffering. Since this specification is not machine specific, it is impossible to decide here which methods should be used.

When the device process has obtained a reply from the hardware, it uses the following operation to return the data to the requesting user process. It then suspends itself ready for the next request.

DevReturnDataAndSuspend \(\widehat{=}\)
\(((\) DevRequesterId \([r q i d / p!] \wedge\)
DevReplyToUserProc[rqid \(/ p\) ?] \(\wedge\)
MakeReadyUserProcess[rqid/p?]) \\{rqid\} }
\({ }_{9}\) SKSchedNext) \({ }_{9}\) SetDevProcStateTo Waiting
This partially expands into:
DevReturnDataAndSuspend \(\qquad\)
\(\triangle P T A B\)
\(\triangle\) SKSCHED
\(\triangle E R R V\)
\(\Delta H W\)
\(d ?: P I D\)
```

m!:MSG
( }\exists\mathrm{ rqid :PID | rqid = fst devmsg(d?)
((devrpy (rqid) }=\mathrm{ nullmsg }
m! = devrpy (rqid)^
devrpy'}=\mathrm{ devrpy }\oplus{rqid\mapsto nullmsg} ^
serr' = sysok)
\vee serr}\mp@subsup{}{}{\prime}=\mathrm{ nodevreply }\wedge\mathrm{ intno }\mp@subsup{}{}{\prime}=\mathrm{ killintno ) }
MakeReadyUserProcess[rqid/p?])
\mp@subsup{}{9}{SKSchedNext g SetDevProcStateToWaiting}

```

This operation can be used to return status information as well as requested data. In the case of output devices, a completion code could be returned in the message passed to the requesting user process.
```

SetDeviceProcessData $\widehat{=}$
(DevRequestId[rqid/p!] $\wedge$ SetDevReply[rqid/p?])

```

It is now necessary to specify how the reply from the device process is handed to the requesting process. This is, basically, an architecture-specific issue but a general solution is to return the data as a message on the requesting process' stack.

In this model, when a device process makes a request to its associated hardware, it must suspend itself until the device has completed the requested operation (generally, it is assumed that the operation returns a value). When the ISR or device interface has completed, it must ready the device process so that it can perform its next operation. If the device process deals with hardware that does not require it to wait, it should immediately suspend ready for the next user request. The suspension of a device process is achieved by action of SKSchedNext9 SwitchContext) because this operation unconditionally schedules a new process and switches the context to it.

Because device processes are trusted, a suspension operation can be defined that does not engage in all the checking required for user processes. It is

SelfSuspendDeviceProcess \(\widehat{=}\) SKSchedNext
The ISR needs, however, to obtain the device process' identifier; this might change between boots. However, the device number does not, so the ISR can call DeviceProcessId to obtain the device number.

AwakenDeviceProcessFromISR \(\widehat{=}\)
\((\) DeviceProcessId \([d / d!] \wedge\) ReadyDeviceProcess \([d / d p ?]) \backslash\{d\}\)

\subsection*{5.12 Process Interface to the Kernel}

It is assumed that user processes, when performing a system call, place the input parameters on their stack. They will also retrieve results from the kernel
from their stack. This requires that user-process stacks be accessible from within the kernel even though user-process stacks reside in segments other than the one in which the kernel resides.

Finally, device processes are trusted code and are programmed by systems programmers. It seems permissible, therefore, to provide direct access to all of the operations defined above. Moreover, there are no problems with crossing segment boundaries when device processes are active. The only issue is how a user process can activate a device process. This operation will be included in this section.

The first calls that are considered are those performing message-passing functions. They are directly called from user processes and are relatively complex to specify.

It should be noted that the above operations deal mostly with pointers to messages, not to message structures proper. In particular, this leads to two problems:
1. How to pass a message structure to the destination process. (This involves crossing address space boundaries.)
2. Deletion of the message structure after the destination has read the message.
In addition, there is the question of reclaiming all storage in the message pool. As noted above, the FreeBlk algorithm does not collect and merge all possible blocks but, if a block cannot be connected immediately to an existing free block, the algorithm just adds the newly freed block to the end of the free block chain. This leads to space leaks and is the reason for the definition of the block scavenging operation. The block scavenging operation is relatively expensive, so should not be called very frequently.

Of the process control operations, those that suspend and terminate their caller are intended to be called directly by a user-level process. The process creation operation is intended to be called from a library routine; the library routine will be called by the initial or some other process.

As an intermediate solution to the above problems, the following operation is defined. This operation is intended to be called from the ISR that is activated when a user process performs a system call; system calls consist of a number of operations on the user stack (essentially a conventional procedure call) followed by the raising of a dedicated interrupt. The top of the user stack is the opcode, rqop? (requested operation-an element of SYSOPCODE) which determines the operation to be performed by the system. Immediately underneath the opocde are the parameters to the system call. The decode routine performs the operation and returns values on the user's stack. All that is missing from the DecodeSysCall specification is the mechanism for accessing the user-process stack.
```

DecodeSysCall
rqop?: SYSOPCODE
(rqop? = newuproc ^ USKNewProcess)
\vee ( r q o p ? ~ = ~ s u s p s e l f ~ \wedge ~ U S K S u s p e n d S e l f ~ ) ~
\vee ( r q o p ? = ~ t e r m s e l f ~ \wedge ~ U S K T e r m i n a t e S e l f ~ ) ~
\vee ( r q o p ? ~ = ~ s n d m s g ~ \wedge ~ U S K S e n d M s g ) ~
\vee ( r q o p ? = ~ g o t m s g s ~ \wedge ~ U S K G o t M s g s )
\vee ( r q o p ? = ~ g o t m s g f r o m s r c ~ \wedge ~ S K P r o c e s s H a s M s g s F r o m S r c ) ~ )
\vee ( r q o p ? = ~ n e x t m s g ~ \wedge ~ U S K N e x t M s g )
\vee (rqop? = nextmsgfromsrc ^SKNextMsgFrom)
\vee ( r q o p ? = d e v r e q u e s t ~ \wedge ~ V e r i f y A n d A c t i v a t e D e v P r o c )

```

We have ignored the issue of obtaining parameters from the user process. The actual answer, of course, depends upon the processor being used. On the IA32, the parameters are on the user's stack. On interrupt, the user's stack is pointed to by the current hardware TSS register; the stack pointer is stored in the TSS; when an interrupt occurs, the stack regiser can be retrieved from the TSS. This is not the entire story because the IA32 is a segmented architecture, so a segment register has to be set up to point to the stack segment (combined stack and data segment in the present case) so that the user's stack can be addressed. When an interrupt occurs, the IA32 pushes two double words (two 32 -bit quantities, i.e.) on the current stack - one is the flags (F) register, the other is the PC. Underneath these comes the parameter area that can be accessed to obtain parameter values. Once extracted, the stack can be adjusted ready to return results. Other architectures will arrange matters in a different way, it must be stressed.

When this operation has completed, the ISR returns. The reason for this is that any context switches are performed by component operations as their last operation (context switches also perform a Return From Interrupt operation as standard). For this reason, the DecodeSysCall operation does not assign a value to the standard error-return variable, serr.

As far as the user stack is concerned, the following must be emphasised:
- Input values are taken from the user-process stack. This resides in the user process stack segment, not in the kernel's address space.
- Output values are placed on the user-process stack, not the kernel stack.

When taking inputs and returning outputs, access to the user stack is required. This is a low-level operation programmed in assembly code. The complexity of this operation is dependent upon the architecture of the processor upon which the separation kernel runs.

The problem is not in principle difficult. Within the structure representing each process' state (in its process table), there is a slot each for its segments. The stack pointer is also stored there. Depending upon the architecture and compiler, there might also be a pointer to the user process' zcurrent stack
frame. This last pointer allows the kernel direct access to the top of the user's stack, albeit at the cost of a number of accesses to the process table and other structures.

\subsection*{5.13 Final Thoughts}

The NSA documents [10] frequently refer to threads inside each Separation Kernel process. The specification that is refined in this chapter makes no mention of threads. The explicit inclusion of threads would increase the length of the chapter somewhat.

There is, however, no real need to include threads in this chapter because they can be included by simple modifications to the specification, in particular the mechanisms of the simple kernel specified and refined in Chapter 3 can be included in the Separation Kernel. The inclusion requires, among others, a few changes to the Separation Kernel's process table (\(P T A B\)). To see that this works, it is necessary to consider that the simple kernel operates in a single address space. The processes that the simple kernel supports do not require address-space manipulation when context switches occur; indeed, they resemble threads quite closely.

This is the other reason for combining the simple kernel and the Separation Kernel in this book.

\section*{6}

\section*{Closing Thoughts}

In this last chapter, we will try to collect some threads and review the content of this book.

First, the book contains the specification and refinement of two micro kernels. The first is suitable for use in embedded systems and the other is specifically a kernel for cryptographic systems. Each specification is relatively complete and the refinements reach the level at which executable code in a language such as C or Ada can be read off from the Z schemata.

The refinements are based on the standard Z technique as it is described in the literature (e.g., [12, 13]). The refined state schema was defined and then the abstraction relation was defined. Thereafter, the operation schemata were defined. The initialisation theorem was used as a test of the adequacy of the abstraction relation.

It was found that the abstraction relations were
- Functions;
- Identities.

These properties, in principle, permitted the calculation of all operations in the refinement and obviated all the associated proofs. We included all proofs in the first refinement so that the reader could see that they were possible (actually, quite simple). In the second refinement (that of the Separation Kernel), we included all the bottom-level proofs but had to omit those for the more complex operations (this had also to be done in a few cases in the first refinement); this was done to reduce the length of an already over-long book and so as not further to bore the reader with straightforward proofs.

The fact that we included proofs in both refinements is an indication of our position on formal methods. We consider that, even though they are strictly unnecessary, the inclusion of explicit and complete proofs is an essential part of the refinement to code. Proofs require us to examine our definitions and to reason about them. By engaging in proof, we have a guarantee that our definitions (state schemata) and relationships between them (operation schemata) are correct according to the axioms of the various theories we use. Without
proof, we might as well not bother for there is no guarantee of anything-it is like sleepwalking through a formal notation, much as we sleepwalk from an informal specification to a piece of (one hopes) working code. The production of proofs forces us to think carefully and in detail about things; this is, we believe, essential.

That the abstraction relations are all identities is not a surprise to us. As we have already noted, the vast majority of the abstraction relations we have found over a very long period have been identities.

The specification of hardware poses a slight problem for us. This was because we did not want, in the case of this book, to specify any particular piece of hardware for the kernel of Chapters 2 and 3; the Separation Kernel is aimed at the Intel IA32 and 64 processors, so we could be a little more definite. In the case of the Separation Kernel, we specified the IA32/64 hardware operations at a level of detail that we felt adequate for the production of the tiny amounts of assembly code required to complete the kernel. In the case of the kernel of Chapters 2 and 3, the register-save operation was specified as operations on the process' stack; the operations correspond exactly to two IA32 instructions. In both cases, context switches are caused by a software interrupt (which is specified).

Turning to the refinement process itself, there are some points that can be made.

First, there is the fact that a specification is a conjunction of wffs. This implies that they lack structure. The lack of structure can be exploited by the distributive rules for \(\wedge\) and \(\vee\). However, it poses problems if one expects that what one considers to be a routine should be represented in a modular fashion; after all, standard software engineering requires us to consider routines as abstractions that are referred to by name.

This lack of structure is clear when a complex definition (i.e., a definition involving more than one operation schema) is expanded for simplification or for the calculation of a precondition. It would be highly desirable if each operation schema could be represented by a precondition (and, possibly, by a postcondition). This is not always possible because preconditions are represented by existentially quantified wffs in Z. In some cases, it is possible to separate operation schemata from the surrounding conjuncts in some cases (and we have encountered them in this book) but they must first be investigated in order to determine that such treatment is valid. The organisation of a specification as a conjunct is rarely mentioned in the literature. It has a further implication: as a specification grows in size, so do the conjunctions that result from the composition of operations.

As can be seen from the calculations in this book, it is sometimes possible to exploit substitutions as a way to handle complexity in expanded operations.

The definition of complex operations has implications other than visibility. It is to these that we now turn.

We have used simplification extensively above. In some cases, it was the simplification of simple operations; in others, it was the simplification of
complex operations; in still others, it was the simplification of preconditions. We need to ask what the purpose of simplification is. In the case of the simplification of simple operations (those composed of a single schema), we have a form of optimisation. The simplified operation can be used directly in refinement or the production of code. In the case of preconditions, we are interested in the logical form of the operation; this is what simplification gives us, for a simplified precondition is at least implied by the unsimplified version (at best, it is materially equivalent). It is the case of complex operations, operations composed of more than one operation schema, that is interesting. Clearly, it is possible to view the simplification as an optimisation. In this case, the simplified version can be employed in refinement or the production of code. However, the simplification of a complex operation violates the modularity of its components (this, again, is the problem that specifications are large conjunctions).

If a simple (or less complex) operation is included in more than one complex one, and the more complex operations are simplified, it is more than possible that the boundaries of the included operations will not be respected in the formula that results from simplification. This might not appear problematic but an example shows that it poses problems.

Consider the case of a storage-allocation operation. In a complex system (such as an operating system or a virtual machine for a programming language), the allocation operation might be included in a number of complex operations. The storage-allocation operation will, almost certainly, be a complex operation defined in terms of a number of suboperations. When the storage-allocation operations is included in more complex operations, it becomes a candidate for simplification. When simplified, the storage-allocation operation's abstraction boundary will probably not be respected. While we are dealing with a mathematical abstraction, this is not a problem (it might be when manipulating the resulting wffs but that is another matter). It can become a problem when the production of code is concerned. If the simplified operations are considered the basis for refinement or code production, it is clear that we have the following to consider:
- Parts of the code that would comprise the storage-allocation operation appear in various other, more complex operations. It is possible (indeed, probable) that the entire operation never appears intact.
- It is possible (probable) that there will be replication of code because the simplifications will not necessarily remove the same conjuncts of the original operation.

It can be argued that the first of these two cases is not much of a problem and that it is, on the contrary, a benefit. The process of producing the final simplified operation is clearly documented and the result proved to be correct. The second case is more of a problem. In traditional software engineering, we are taught to define abstractions and to avoid destroying them; simplification is a clear case in which abstraction boundaries are broken. Furthermore, we
are used, using traditional methods, not to expand code without good reason (object-oriented progamming is another case in which this principle is violated, often for what appears not to be a very good reason and could be solved if compilation and linking were more selective).

We do not agree with the position that storage chips are becoming cheaper all the time, so we can be profligate with code and data structures. This position is, in our opinion, an attempt to justify sloppy thinking. We need more thought in Computer Science and Software Engineering, not less!

Next, we have to comment on the use of deferred assumptions and implicit preconditions. In some parts of the specification, particularly those parts specifying some simpler operations over the process table, we could have guarded each operation with a test that the process identifier bound to the input variable was an element of used. This was something we did not do. Instead, we assumed that this was true and continued with the refinement. At the final stage, it was clear that the current process was always bound to the input variable \(p\) ? and, by other reasoning, it can be shown that \(p\) ? \(\in\) used. The alternative would have been to include a check that became increasingly costly as the refinement progressed (this is something we observed in Chapter 4). We consider that waiting to discharge assumptions is a reasonable option, at least on logical grounds, even though it is, in human terms, a bit risky (one has to remember to discharge the assumption). It is part of our refinement plan to make the assumption that \(p ? \in\) used early on and then to discharge the assumption later on. In a case such as this, the process is harmless for the reason that we had to discharge the assumption later on (and the assumption was, in any case, quite harmless). There will be cases where the logical position should not be adopted for pragmatic reasons.

We also used an implicit precondition (a precondition that derives from the invariant) in order to show that the ready queue was valid. This is logically valid and appears to us to be a technique that should be adopted. The use of implicit preconditions makes the invariant more central. The refinement method, as presented in the literature, centres on the abstraction relation. However, it is essential that the invariant of the specification and that of the refinement be related by the abstraction relation for the reason that it is the invariant that determines the integrity (correctness) of an operation's effects in the sense that it defines the set of legal states (the invariant plays a much greater part in refinement in the B Method [1]). The use of the invariant does not appear to be as prominent as it might be (a proof that the invariants are so related should appear as part of the refinement process). Strictly speaking, when defining each operation schema, there should be a proof that the operation's predicate preserves the invariant; this is important for possibly interacting operations (e.g., operations defined by the composition of simpler ones).

Of course, it can be argued that the invariant is always implicitly present in all proofs because they universally. Our points are that this is not prominent
enough and that the refinement relations should, ideally, be established between invariants in specification and refinement. quantify over state schemata.

In the construction of some proofs, we referred to invariants or to results at a higher level in the refinement process. This is, we believe, to be quite valid; it is justified by the following reasoning. The abstraction realtion should be a pair of homomorphisms: one transforming the specification into the refinement, the other performing the opposite transformation (they should be mutually inverse). The composition of homomorphisms is also be a homomorphism. If we have a specification, \(S\), and two refinements of this specifiction, \(R_{1}\) and \(R_{2}\), such that \(R_{1}\) is a refinement of \(S\) and \(R_{2}\) is a refinement of \(R_{1}\), and if \(h_{1}: S \rightarrow R_{1}\) and \(h_{2}: R_{1} \rightarrow R_{2}\), there exists a \(h_{1,2}: S \rightarrow R_{2}\). In the particular case of the refinements in this book, \(h_{1}\) and \(h_{2}\) are both identities, so \(h_{1,2}=h_{2} \circ h_{1}\left(\right.\) with \(h_{2} \circ h_{1}=h_{2}\left(h_{1}(S)\right)\)) definitely exists and is well defined.

In our second refinement, we reused components from the first and relied upon existing proofs as our guarantees of correctness. Reuse of this kind is natural in formal specification and is, we believe, superior to the reuse of executable code. One reason for this claim is that the reuse of specifications makes the assumptions about components explicit.

Is formal refinement worth the effort? If one is used to informal methods (or no methods), particuarly when one does not engage in extensive documentation, formal methods will cost more in time and effort. A resistence to documentation is something that we have often encountered in so-called "real-world" contexts-it is often "justified" on cost grounds (but consider the costs of having to justify undocumented software as part of a court case). We believe that the amount of work required to produce a formal specification and its refinement is about the same as producing informal documents. Furthermore, formal methods yield connections between decisions made at one level with those as a lower level. In addition, there is the matter of testing. In our case, we have engaged in testing. This is just so we can check that the resulting code is a correct transcription (i.e., contains no transcription errors); it also serves to increase our confidence that the result is correct. In the case of the first kernel, we engaged in quite exhaustive testing just to assure ourselves that the code is correct. However, this testing is not only a way to increase confidence; it provides additional evidence that the code is correct. Fairly extensive testing appears useful in cases such as kernels where we want to be as sure as we can be that the code behaves correctly; in other cases, we might want to be assured that the code contains no transcription errors. It would, in any case, be far better to have a mechanical method for checking the result, for the process is fairly mechanical. We found, of course, that the code performs exactly as it should in all cases. (We have also to admit that we tested somewhat more thoroughly than usual when dealing with formally derived code so that we could state that it behaved correctly. We have previous experience of the correct functioning of code derived from formally refined specifications.)

To conclude this chapter and this book, one last issue must be raised: automation. We did all of the work in this book by hand (or by mouth because much of the text was dictated). It is clear that a good deal of automation should be possible. The construction of schema compositions can be mechanised with ease and would be most welcome as a way of helping with document management. The complete automation of simplification and proof does not appear within reach at the moment but it is clear that there are ways in which it can be supported. By this, we do not mean using current-generation proof assistants which can be rather hard to use and have a long learning curve, requiring the user to learn new names for methods and new notations. Of course, some of us find the production of proofs to be one of the more interesting and enjoyable aspects of formal specification - complete automation would deprive us of that pleasure. The checking that code conforms to the bottom level of refinement is also a case in which automation could assist, for example in generating verification conditions that can be related to the final stage of refinement. A moderate amount of carefully designed automation would help considerably.

We hope that this book has served to indicate that there are interesting issues raised by refinement in the large and that these issues have not been discussed much in the published literature. We hope that we have also demonstrated that the formal specification of operating system kernels is viable; in addition to the refinements in this book, our experience with our collection of components has been extremely positive.

\section*{References}
1. Abrial, J.-R., The B Book: Assigning Programs to Meanings, CUP, 1996.
2. Bivot, Daniel C. and Cesati, Marco, Understanding the LINUX Kernel, O'Reilly \& Associates, Sebastapol, CA, 2001.
3. Craig, I. D., Formal Specification of Advanced AI Architectures, Ellis Horwood, Chichester, England, 1991?
4. Craig, I. D., Formal Models of Operating System Kernels, Springer-Verlag, London, England, 2006.
5. Derrick, J. and Boiten, E., Refinement in Z and Object-Z, Springer-Verlag, London, 2001.
6. Dijkstra, E. J., A Discipline of Programming, Prentice-Hall, Englewood Cliffs, NJ, 1976.
7. Jones, C. B., Systematic Software Development Using VDM, Prentice-Hall, Englewood Cliffs, NJ, 1986.
8. Labrosse, Jean J., MicroC/OS-II, The Real-Time Kernel, Miller Freeman, Inc., Lawrence, KS, 1999.
9. Morgan, C. C., Programming from Specifications, 2nd edn., Prentice-Hall, Hemel Hempstead, England, 1994.
10. National Security Agency, Separation Kernel Documents, e.g., SSE-100-1; many others on line at www:nsa.gov.
11. Rushby, John, Design and Verification of Secure Systems, ACM Operating Systems Review, Vol. 15, No. 5, pp. 12-21, 1981.
12. Spivey, J. M., The Z Notation: A Reference Manual, 2nd edn., Prentice-Hall, Hemel Hempstead, 1992.
13. Woodcock, J. and Davies, J., Using Z: Specification, Refinement and Proof, Prentice-Hall, Hemel Hempstead, 1996.

\section*{List of Definitions}

Type:
ADDR 213
ADDR 21
BITMAP 135
BM 134
BMASK 133
BYTE 271
CHAR 218
DEVNO 212
GPID 19
GPID 211
INTNO 217
INTRPTNO 23
MD 252
MDATA 142
MPTR 271
MSG 142
MSG 213
MSG 21
MSGDATA 213
MWORD 133
ONOFF 23
PID 19
PID 211
PPRIO 20
PSTATE 20
PSTATE 212
PSU 264
PTYPE 212
SDESC 288

SID 127
SID 130
SID 137
STRING 218
SYSERR 214
SYSERR 21
SYSOPCODE 213
TIME 161
TIME 21
TSS 215
UPID 212
WORD 21
YESNO 211
Constant:
bpw 133
ctxtswintno 217
killintno 217
maxaddr 21, 213
maxdev 212
maxint 217
maxintno 23
maxprio 20
maxsid 130
mindev 212
minint 217
minintno 23
minprio 20
minsid 130
msize 133
nulladdr 21, 213
nullmd 257
nullmsg 21, 213
nullmsgdata 213
nullpid 20, 212
ticklength 158
tickspersec 159
Function:
PSUsToMsg 271
\& 134
| 134
\(\uparrow 134\)
~ 134
mdaddr 252
\(m d s z 252\)
mergemds 255
mkmd 252
mkmsg 270
mksdesc 288
msgToPSU 271
msgaddr 270
msgat 271
msgdata 142, 270
msgdest 21, 142, 270
msgpayloadlen 270
msgsize 21
msgsrc 21, 142, 270
msgsz 271
msgtobytes 271
msz 271
segaddr 288
segsize 288
tss_stackseg 215
tss_stacktop 215
Precondition:
AddDevPD 308
AddMsg 275
AddMsg 1280
AddPD 31, 224
AddPD1 231
AddPD1 36
AddPD2 50
AddSleeper 165
AllocBlk 255

AllocSema 129
AllocSema 132
AllocateSemaphore 199
BlockScavenge 1259
ContextSwitch 25
DeallocateSemaphore 199
DelPD 32
DelPRIOQElem 76
DelSCHEDQElem 109
DequeuePQ2 67
DequeuePROCESSQUEUE 59
EnqueuePQ1 61
EnqueuePQ2 66
EnqueuePROCESSQUEUE 57
FindAndWake 167
FindAndWake1 175
FindAndWake2 184
FreeBlk 255
FreePID1 39
FreePID2 53
HeadOfPROCESSQUEUE 58
NewDeviceProcess 309
NewDeviceProcessPossInitHW 310
NewProcess 192
NextMessageFromSource 277
NextMessageFromSrc 1282
NextMsg 276
NextMsg1 281
PRIOQDelHd1 85
PRIOQDequeue 77
PRIOQDequeue 186
PRIOQEnqueue 74
PRIOQEnqueue 183
PRIOQEnqueue 296
RcvSMsg 201
ReceiveSynchMsg 155
ReleaseSema 129
RequeueDeviceProcess 251
RequeueUserProcess 250
SKSchedNext 249
SchedNext 112
SemaphoreSignal 199
SemaphoreWait 199
SendASynchMsg 150
SendMeToSleep 169

SendMeToSleep 1176
SendMeToSleep 2185
SendSMsg 201
SendSelfToSleep 194
SetProcState 227
SetProcState 1236
SignalSema 125
SuspendMe 114
SuspendSelf 193
TerminateSelf 196
Schema:
AbsMSGQ1 282
AbsPQ1 59
AbsPQ2 68
AbsPRIOQ1 87
AbsPRIOQ2 97
AbsPTAB1 40, 236
AbsPTAB2 45, 238
AbsSLEEPERS1 176
AbsSLEEPERS2 185
AbsST1 132
AbsSTOREPOOL1 260
AddDevPD 307
AddFreechainLast 37, 48, 232
AddIdleProcess 225
AddMsg 274
AddMsg1 279
AddNewLastFreechain 37, 48, 232
AddPD 30, 223
AddPD1 36, 231
AddPD2 48
AddPDESC 30, 224
AddPDESC1 35, 231
AddPDESC2 47
AddProcUPID 222
AddProcUPID 1230
AddSleeper 165
AddSleeper 171
AddSleeper 2181
AddSleeperProc 164
AddSleeperProc 171
AddSleeperProc2 180
AddWaiter 120
AllocBlk 254

AllocBlk 1258
AllocMsg 269
AllocPID 30, 222
AllocPID1 35, 229
AllocPID2 47
AllocSID 128
AllocSID1 138
AllocST1 130
AllocST1 \({ }_{a} 137\)
AllocSema 128
AllocSema 1 131, 138
AllocUPID 222
AllocUPID1 230
AllocateProcTSS 216
AllocateSegment 287
AllocateSegments 291
AllocateSemaphore 198
AlreadyAsleep 163
AlreadyHasMsg 142
AwakenDeviceProcessFromISR 313
BadCallerIdent 311
BadDestination 143
BadDeviceNumber 306
BlockLocError 264
BlockScavenge 255
BlockScavenge 1259
CLOCKISR 201
CLOCKTIME 159
CLOCKTIMEInit 160
CTXTSW 26, 217
CTXTSWISR 27
CanAddSleeper 164
CanAddSleeper 1171
CanAddSleeper 2180
CanAllocateBlock 254
CanAllocateBlock 1258
CanAllocateMsg 269
CanAllocateSegment 287
CanEnqueueMsg 272
CanEnqueueMsg1 277
CanEnqueuePRIOQ1 79
CanEnqueuePRIOQ2 93
CanSendSynchMsg 144
CanStoreBlock 265
CanStoreMsg 267

ChangeMyPriority 197
ChangeMyPriority1 197
ChangeMyPriority2 197
ClearDevMsg 302
ClearDevReply 304
ClearFreeCnt 256
ClearFreeCnt1 260
ClearMsgFreeCnt 268
ClearWaitingTime 162
ClocktimeNow 160
ClrSynchMsgSlot 145
ClrSynchMsgSlot 1156
Compute WakeTime 161
ContextSwitch 25, 216
ContinueCurrent 109
CopyBlock 265
CreateAndRunInitialProcess 292
CreateIdleProcess 290
CreateInitialProcess 190
CreateNullProcess 189
CurrentProcessId 104
CurrentProcessStateIsReadyOrRunning 110
DEVPROCQUEUE 242
DEVPROCQUEUEInit 242
DeallocateSemaphore 199
DeallocateTSS 216
DecSEMACNT 121
DecodeSysCall 314
DelExtPD 226
DelExtPD1 234
DelHeadOfPQ1 62
DelHeadOfPQ2 67
DelHeadOf -
PROCESSQUEUE 58, 241
DelMSGQHd 273
DelMSGQHd1 278
DelPD 31
DelPD1 40
DelPRIOQElem 75
DelProcUPID 226
DelProcUPID1 234
DelSCHEDQElem 108
DelSleeperProc1 172
DelSleeperProc2 181

DeleteAllProcesses 226
DeleteAllProcesses 1235
DeleteStoredMsg 267
DequeueDEVICEQUEUE 246
DequeueDEVPROCQUEUE 242
DequeuePQ1 62
DequeuePQ2 67
DequeuePROCESSQUEUE 58, 241
DequeueUSERPROCESSQUEUE 246
DestinationExists 143
DestinationExists 1156
DestinationNotReceiving 143
DevReplyToUserProc 305
DevRequesterId 302
DevReturnDataAndSuspend 312
DeviceProcessId 307
DisableInts 24
ERRV 214
ERRVInit 214
EmptyFreeChain 1 37, 232
EmptyFreeChain2 52
EmptyMessageQueue 269
EnableInts 24
EnoughSpace 1258
EnqueueDEVICEPROCESS 246
EnqueueDEVPROCQUEUE 242
EnqueueMsg 273
EnqueueMsg1 278
EnqueuePQ1 60
EnqueuePQ2 66
EnqueuePROCESSQUEUE 57, 240
Enqueue-
USERPROCESSQUEUE 246
EnterCritical 193
FindAndWake 166
FindAndWake1 174
FindAndWake2 183
FreeBlk 255
FreeBlk1 258
FreeMsg 269
FreePID 30, 225
FreePID1 38, 233
FreePID2 52
FreeSID1 131, 138

FreeSID \(_{a} 136\)
FreeSIDs 128
FreeSegment 287
FreeSema 127
GetDevMsg 302
GotDevMSg 303
GotFreePIDs 222
GotFreePIDs 29
GotFreePIDs 1 35, 229
GotFreePIDs2 47
GotMsgs 273
GotMsgs 1277
GotMsgsFromSrc 273
GotMsgsFromSrc 1278
GotReplyFromDeviceProc 305
GotSleepers 164
GotSleepers 1172
GotSleepers 2182
GotSynchMsg 144
GotSynchMsg1 156
HARDWARE 23
HW 215
HalfContextSwitch 25
HeadOfPQ1 62
HeadOfPQ2 67
HeadOfPROCESSQUEUE 57, 240
IDLEPROCESSIdent 103, 244
IncFreeCnt 256
IncFreeCnt 1260
IncMsgFreeCnt 268
IncSEMACNT 121
InitDevReply 304
InitDeviceMsg 302
InitDeviceNum 306
InitSema 128
InitSema1 131
InitSema1 138
InsufficientMainStore 287
IsAsleep 164
IsAsleep 170
IsAsleep 2180
IsCurrentProcess 104
IsCurrentProcessIdle 105
IsDestinationReceiving 145
IsDestinationReceiving1 156

IsDeviceProcess 301
IsEmptyDEVICEQUEUE 246
IsEmptyDEVPROCQUEUE 242
IsEmptyPRIOQ 71
IsEmptyPRIOQ1 78
IsEmptyPRIOQ2 92
IsEmptyPROCESSQUEUE 240
IsEmptySCHEDQ 107
IsEmpty-
USERPROCESSQUEUE 246
IsKnownDeviceNumber 306
IsNonEmptyPQ1 60
IsNonEmptyPQ2 66
IsNotEmptyPROCESSQUEUE 56
IsPrevProcessIdle 105
IsPreviousProcess 105
IsProcessSleeping 162
IsSysOk 23
KillKernel 218
MSGPOOL 269
MSGPOOLInit 269
MSGQ 272
MSGQ1 277
MSGQInit 272
MSGQInit1 277
MSGSTORE 267
MSGSTOREInit 267
MSGToUserData 295
MakeCurrentPrevious 104
MakeIdleProcessCurrent 102
MakeMessage 142
MakeReady 106, 246
MakeReady 1116
MakeReadya 105
MakeReceiver 145
MakeReceiver 1156
MakeSender 146
MakeSender 1156
MessageQueueFull 269
MovePRIOQUp1 79
MsgScavenge 269
MyProcessId 198
NegativeSemaCount 121
NewDeviceProcess 308
NewDeviceProcessPossInitHW 309

NewProcess 191
NewUPIDForProcess 222
NewUPIDForProcess 1230
NextMessageFromSource 276
NextMessageFromSrc 1281
NextMsg 275
NextMsg1 281
NextMsgForProcess 298
NextMsgForProcessFromSrc 298
NextMsgFromSrc 273
NextMsgFromSrc 1278
NoDeviceReply 305
NoFreeSemas 126
NoMessagesFrom 269
NoSpace 252
NonNullDevRq 303
NonpositiveSemaCount 121
NotAllocSema 126
NullMsg Value 143
PDInUse 28, 219
PIDforUPID 225
PQ1 59
\(P Q 1\) Init 60
PQ2 65
PQ2Init 65
PRIOQ 70
PRIOQ1 78
PRIOQ2 92
PRIOQAddSingleton 72
PRIOQAddSingleton 180
PRIOQAddSingleton2 93
PRIOQDelHd 76
PRIOQDelHd1 85
PRIOQDelHd2 96
PRIOQDequeue 76
PRIOQDequeue 186
PRIOQDequeue 296
PRIOQEmpty 70
PRIOQEnqueue 73
PRIOQEnqueue 182
PRIOQEnqueue2 94
PRIOQEnqueueHd 71
PRIOQEnqueueHd1 79
PRIOQEnqueueHd2 93
PRIOQEnqueueLast 72

PRIOQEnqueueLast1 79
PRIOQFull 70
PRIOQHd 71
PRIOQHd1 79
PRIOQHd2 92
PRIOQInit 71
PRIOQInit1 78
PRIOQInit2 92
PRIOQInsert 72
PRIOQInsert1 81
PRIOQInsert2 93
PRIOQInsertMidPoss181
PRIOQLast 71
PRIOQLast 179
PRIOQLast2 93
PRIOQMoveUpFrom 80
PRIOQRemove 75
PRIOQRemove 185
PRIOQSetIthSucc 80
PROCESSQUEUE 56, 239
PROCESSQUEUEInit 56, 240
PTAB 25, 143, 161, 216, 220, 271, 288
PTAB1 34, 228
PTAB1Init 34, 229
PTAB2 44, 237
PTAB2Init 45, 238
PTABFull 28, 220
PTABInit 29, 221
PassDataToDeviceProcess 303
PreviouslyRunningProcess 245
PrintKMsg 218
ProcPrio 32
ProcState 33, 227
ProcState 1235
ProcType 227
ProcType 1235
ProcessHasMsgs 297
ProcessHasMsgsFromSrc 298
ProcessQueueEmpty 56, 239
QueueHdHasHigherPriority 110
QueueHdHasHigherPriority1 116
QueueHdHasHigherPriority2 119
RaiseInterrupt 26, 217
RaiseKillInterrupt 217
RcvSMsg 201

RcvSynchMsg 150
ReadyDeviceProcess 247
ReceiveSMsg 145
ReceiveSynchMsg 151
ReceiveSynchMsg1 157
ReceiveSynchMsg2 158
ReleaseSema 129, 132
ReleaseSema1 138
RemoveSleeper 166
RemoveSleeper 1173
RemoveSleeper 2182
RemoveWaiter 120
ReplyFromDeviceProc 305
RequeueDeviceProcess 250
RequeueUserProcess 249
ReturnFromInterrupt 24
ReturnSysError 23
RunFirstProcess 293
RunIdleProcess 247
RunningProcess 244
SCHED 101
SCHEDInit 102
SCHEDInit 103
SCHEDQDelHd 108
SCHEDQDequeue 108
SCHEDQHd 108
SEGMENTS 287
SEGMENTSInit 287
SEMAPHORE 120
SEMAPHOREInit 121
SEMATBL 127
SEMATBLInit 127
SKInitSys 290
SKMakeUnready 248
SKNewProcess 291
SKNextMsg 298
SKNextMsgFrom 298
SKProcessHasMsgsFromSrc 298
SKSCHED 243
SKSCHEDInit 244
SKSchedNext 248
SKSuspendSelf 293
SKTerminateSelf 293
SLEEPERS 163
SLEEPERS1 170

SLEEPERS2 180
SLEEPERSInit 164
SLEEPERSInit 170
SLEEPERSInit2 180
ST1 130
ST1Init 130
ST1Init 138
STOREPOOL 253
STOREPOOLInit 253
STOREPOOLInit1 257
STOREVEC 264
STOREVECInit 265
SchedNext 111
SchedNext1 117
SchedNext 2119
SegmentTableInit 287
SelfSuspendDeviceProcess 313
SemaInUse 1131
SemaInUse 136
SemaphoreSignal 199
SemaphoreWait 199
SendASynchMsg 146
SendASynchMsg1 157
SendASynchMsg2 158
SendMeToSleep 168
SendMeToSleep 1175
SendMeToSleep 2184
SendSMsg 199
SendSelfToSleep 193
SendSynchMsg 144
SendToProcess 296
SetCodeSegInfo 289
SetCurrentProcessId 104
SetDevMsg 302
SetDevReply 304
SetDeviceProcessData 313
SetFCHead 38, 233
SetFCHead 248
SetFCLast 38, 233
SetFCLast2 48
SetHWTSS 293
SetNewCurrentProcess 101
SetPDState 307
SetPreviousProcess 245
SetProcPrio 32

SetProcState 33, 227
SetProcState 1 40, 235
SetProcType 223
SetProcType 1230
SetProcessStateToReady 105
SetProcessStateToReady 33
SetProcessStateToTerminated 194
SetProcessStateToTerminated 196
SetRunningProcess 244
SetStackDataSegInfo 289
SetStateToDevWait 310
SetStateToReady 227
SetStateToReady 1236
SetStateToRunning 104, 227
SetStateToRunning1 236
SetStateToSleeping 165
SetStateToTerminated 227
SetStateTo WaitSema 122
SetSysErr 214
SetWaitingTime 33, 162
SetupFirstProcess 293
ShouldAddPRIOQHd 72
ShouldAddPRIOQHd1 81
ShouldAddPRIOQHd2 93
ShouldAddPRIOQLast 72
ShouldAddPRIOQLast1 81
ShouldAddPRIOQLast2 93
ShouldScavenge 256
ShouldScavenge 1260
ShouldScavengeMsgs 268
ShouldWake 173
ShouldWake2 182
ShouldWakeUp 166
ShouldWakeUp1 173
ShouldWakeUp2 182
SignalSema 124
SleepTooShort 159
SourceExists 143
StackDataSegAddr 289
StoreBlock 265
StoreMsg 267
StoredBlock 266
StoredMsg 267
SuspendDeviceProcess 307
SuspendMe 114

SuspendMe1 118
SuspendMe 2119
SuspendSelf 193
SwitchToFirstProcess 290
SysErr 214
SysOk 23, 215
SystemClockOps 201
SystemInit 189
TIMESINCEBOOT 159
TIMESINCEBOOTInit 159
TerminateSelf 195
TerminateSelf 1196
TheHeadOfPQ1 61
TheHeadOfPQ2 67
TheHeadOf-
PROCESSQUEUE 57, 240
TimeNow 159
TooManySleepers 163
TranslateMessageAddrs 295
TranslateMsgAddrs 295
UReturnNo 297
UReturnYes 297
USKGotMsgs 297
USKNewProcess 292
USKSendMsg 296
USKSuspendSelf 293
USKTerminateSelf 294
UnusedPD 28, 219
UpdateClockTime 160
UpdateCurrentProcess 245
UpdateTIMESINCEBOOT 159
UsedPID 29, 221
UsedPID1 35
UsedPID2 47
UsrSendMsgI 294
ValidDevRqProcessId 303
VerifyAndActivateDevProc 311
VerifyCallerIdent 286
WaitSema 122
WaitingTime 33, 162
\(\Phi P T A B_{M} 272\)
ФSCHED 103
ФSEMAPHORE 120
ФSEMATBL 127
ФSKSCHED 245```

[^0]: ${ }^{1}$ We write this as if assembly language were some kind of toxic material. There is no a priori reason why one cannot formally specify assembly-language programs, even though it is rarely done.

[^1]: ${ }^{2}$ A reviewer of a paper we wrote on this kernel strongly objected to the use of the adjective (they said "term") "real-time" in connection with this model. They claimed that the model could not be of a "real-time" system because it does not contain any temporal operators. There is a number of replies to this: (i) C and Ada are "real-time" programming languages but they do not contain temporal operators (and their formal semantics do not required them); (ii) there is a considerable number of small kernels similar to ours, $\mu \mathrm{C} / \mathrm{OS}$ being one example, that are used in the development of "real-time" systems. We have read the descriptions, specifications and code of quite a few of these systems and have failed to locate a single temporal operator.

[^2]: ${ }^{3}$ The MIPS has also been considered and would have been used. However, we found problems with the GNU C compiler for the simulated MIPS that we intended to use.

[^3]: ${ }^{4}$ This is something that we have found in almost every refinement we have done over the last twenty-odd years.

[^4]: ${ }^{1}$ No check on ownership is performed, so freeing someone else's semaphore is a neat way to cause trouble! In a more secure version, recording the ownership of resources would be a good idea.
 ${ }^{2}$ In other work, we have also attempted the specification of the kinds of operations required, for example, in controlling hardware devices. Device controllers typically require bits to be set and unset by controlling software; they are often cited as a problem for the formal approach. After a little thought, we found that there is no such problem-provided, that is, one thinks clearly about it.

[^5]: ${ }^{3}$ We did this as an exercise in refining to a RISC machine to determine what the problems, if any, might be; as with the IA32/64, we were pleased to find that it was straightforward. Unfortunately, we do not have a MIPS or other RISC available so that we can run the result-perhaps, one day!

[^6]: ${ }^{1}$ We hope！

