

 i

Using the FreeRTOS™
Real Time Kernel

ARM Cortex-M3 Edition

Richard Barry

ii

Version 1.3.2.

All text, source code and diagrams are the exclusive property of Real Time Engineers Ltd.

Distribution or publication in any form is strictly prohibited without prior written authority from

Real Time Engineers Ltd.

© Real Time Engineers Ltd. 2010. All rights reserved.

FreeRTOS™, FreeRTOS.org™ and the FreeRTOS logo are trademarks of Real Time

Engineers Ltd.

OPENRTOS™, SAFERTOS™, and the OPENRTOS and SAFERTOS logos are trademarks of

WITTENSTEIN Aerospace and Simulation Ltd.

ARM™ and Cortex™ are trademarks of ARM Limited. All other brands or product names are

the property of their respective holders.

http://www.freertos.org

 iii

This document was supplied to jmclurkin@rice.edu

iv

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 i

Contents

List of Figures .. vi

List of Code Listings ... viii

List of Tables ... xi

List of Notation ... xii

Preface FreeRTOS and the Cortex-M3 .. 1

Multitasking on a Cortex-M3 Microcontroller ... 2

An Introduction to Multitasking in Small Embedded Systems ... 2

A Note About Terminology ... 2

Why Use a Real-time Kernel? .. 3

The Cortex-M3 Port of FreeRTOS ... 4

Resources Used By FreeRTOS ... 5

The FreeRTOS, OpenRTOS, and SafeRTOS Family ... 6

Using the Examples that Accompany this Book.. 8

Required Tools and Hardware ... 8

Chapter 1 Task Management ... 9

1.1 Chapter Introduction and Scope .. 10

Scope .. 10

1.2 Task Functions .. 11

1.3 Top Level Task States .. 12

1.4 Creating Tasks .. 13

The xTaskCreate() API Function .. 13

Example 1. Creating tasks ... 16

Example 2. Using the task parameter .. 19

1.5 Task Priorities ... 22

Example 3. Experimenting with priorities .. 23

1.6 Expanding the ‘Not Running’ State .. 26

The Blocked State .. 26

The Suspended State .. 27

The Ready State .. 27

Completing the State Transition Diagram ... 27

Example 4. Using the Blocked state to create a delay .. 28

The vTaskDelayUntil() API Function .. 31

Example 5. Converting the example tasks to use vTaskDelayUntil() 33

Example 6. Combining blocking and non-blocking tasks .. 34

1.7 The Idle Task and the Idle Task Hook ... 37

Idle Task Hook Functions ... 37

Limitations on the Implementation of Idle Task Hook Functions 38

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

ii

Example 7. Defining an idle task hook function .. 38

1.8 Changing the Priority of a Task ... 40

The vTaskPrioritySet() API Function .. 40

The uxTaskPriorityGet() API Function .. 40

Example 8. Changing task priorities ... 41

1.9 Deleting a Task ... 46

The vTaskDelete() API Function .. 46

Example 9. Deleting tasks .. 47

1.10 The Scheduling Algorithm—A Summary ... 50

Prioritized Pre-emptive Scheduling ... 50

Selecting Task Priorities ... 52

Co-operative Scheduling .. 52

Chapter 2 Queue Management .. 55

2.1 Chapter Introduction and Scope .. 56

Scope ... 56

2.2 Characteristics of a Queue .. 57

Data Storage .. 57

Access by Multiple Tasks ... 57

Blocking on Queue Reads .. 57

Blocking on Queue Writes .. 58

2.3 Using a Queue .. 60

The xQueueCreate() API Function ... 60

The xQueueSendToBack() and xQueueSendToFront() API Functions 61

The xQueueReceive() and xQueuePeek() API Functions ... 63

The uxQueueMessagesWaiting() API Function .. 66

Example 10. Blocking when receiving from a queue .. 67

Using Queues to Transfer Compound Types ... 71

Example 11. Blocking when sending to a queue or sending structures on a queue 73

2.4 Working with Large Data ... 79

Chapter 3 Interrupt Management.. 81

3.1 Chapter Introduction and Scope .. 82

Events .. 82

Scope ... 82

3.2 Deferred Interrupt Processing .. 84

Binary Semaphores Used for Synchronization ... 84

Writing FreeRTOS Interrupt Handlers .. 85

The vSemaphoreCreateBinary() API Function.. 85

The xSemaphoreTake() API Function .. 88

The xSemaphoreGiveFromISR() API Function ... 89

Example 12. Using a binary semaphore to synchronize a task with an interrupt 91

3.3 Counting Semaphores ... 96

The xSemaphoreCreateCounting() API Function ... 99

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 iii

Example 13. Using a counting semaphore to synchronize a task with an interrupt 101

3.4 Using Queues within an Interrupt Service Routine .. 103

The xQueueSendToFrontFromISR() and xQueueSendToBackFromISR() API
Functions .. 103

Efficient Queue Usage ... 105

Example 14. Sending and receiving on a queue from within an interrupt 105

3.5 Interrupt Nesting ... 110

Chapter 4 Resource Management ... 115

4.1 Chapter Introduction and Scope .. 116

Mutual Exclusion .. 118

Scope .. 119

4.2 Critical Sections and Suspending the Scheduler ... 120

Basic Critical Sections ... 120

Suspending (or Locking) the Scheduler ... 121

The vTaskSuspendAll() API Function ... 122

The xTaskResumeAll() API Function ... 122

4.3 Mutexes (and Binary Semaphores) ... 124

The xSemaphoreCreateMutex() API Function .. 126

Example 15. Rewriting vPrintString() to use a semaphore ... 126

Priority Inversion .. 129

Priority Inheritance ... 130

Deadlock (or Deadly Embrace) .. 131

4.4 Gatekeeper Tasks ... 133

Example 16. Re-writing vPrintString() to use a gatekeeper task 133

Chapter 5 Memory Management .. 139

5.1 Chapter Introduction and Scope .. 140

Scope .. 141

5.2 Example Memory Allocation Schemes .. 142

Heap_1.c ... 142

Heap_2.c ... 143

Heap_3.c ... 145

The xPortGetFreeHeapSize() API Function ... 145

Chapter 6 Trouble Shooting ... 147

6.1 Chapter Introduction and Scope .. 148

printf-stdarg.c ... 148

6.2 Stack Overflow .. 149

The uxTaskGetStackHighWaterMark() API Function ... 149

Run Time Stack Checking—Overview ... 150

Run Time Stack Checking—Method 1 ... 150

Run Time Stack Checking—Method 2 ... 151

6.3 Other Common Sources of Error ... 152

Symptom: Adding a simple task to a demo causes the demo to crash 152

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

iv

Symptom: Using an API function within an interrupt causes the application to crash 152

Symptom: Sometimes the application crashes within an interrupt service routine 152

Symptom: Critical sections do not nest correctly .. 153

Symptom: The application crashes even before the scheduler is started...................... 153

Symptom: Calling API functions while the scheduler is suspended causes the
application to crash ... 153

Symptom: The prototype for pxPortInitialiseStack() causes compilation to fail............. 153

Chapter 7 FreeRTOS-MPU .. 155

7.1 Chapter Introduction and Scope .. 156

Scope ... 156

7.2 Access Permissions .. 157

User Mode and Privileged Mode .. 157

Access Permission Attributes ... 157

7.3 Defining an MPU Region ... 159

Overlapping Regions .. 159

Predefined Regions and Task Definable Regions .. 159

Region Start Address and Size Constraints .. 160

7.4 The FreeRTOS-MPU API .. 162

The xTaskCreateRestricted() API Function .. 162

Using xTaskCreate() with FreeRTOS-MPU .. 167

The vTaskAllocateMPURegions() API Function ... 168

The portSWITCH_TO_USER_MODE() API Macro ... 170

7.5 Linker Configuration .. 171

7.6 Practical Usage Tips ... 174

Accessing Data from a User Mode Task .. 174

Intertask Communication from User Mode ... 175

FreeRTOS-MPU Demo Projects .. 175

Chapter 8 The FreeRTOS Download ... 177

8.1 Chapter Introduction and Scope .. 178

Scope ... 178

8.2 Files and Directories .. 179

Removing Unused Source Files ... 180

8.3 Demo Applications .. 181

Removing Unused Demo Files ... 182

8.4 Creating a FreeRTOS Project.. 183

Adapting One of the Supplied Demo Projects .. 183

Creating a New Project from Scratch ... 184

Header Files ... 185

8.5 Data Types and Coding Style Guide.. 186

Data Types ... 186

Variable Names .. 187

Function Names ... 187

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 v

Formatting.. 187

Macro Names .. 187

Rationale for Excessive Type Casting .. 188

Appendix 1: Licensing Information ... 189

Open Source License Details ... 190

GPL Exception Text ... 191

INDEX .. 193

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

vi

List of Figures

Figure 1. Top level task states and transitions.. 12

Figure 2. The output produced when Example 1 is executed ... 17

Figure 3. The execution pattern of the two Example 1 tasks .. 18

Figure 4. The execution sequence expanded to show the tick interrupt executing 23

Figure 5. Running both test tasks at different priorities ... 24

Figure 6. The execution pattern when one task has a higher priority than the other 25

Figure 7. Full task state machine ... 28

Figure 8. The output produced when Example 4 is executed ... 30

Figure 9. The execution sequence when the tasks use vTaskDelay() in place of the
NULL loop .. 30

Figure 10. Bold lines indicate the state transitions performed by the tasks in Example 4 31

Figure 11. The output produced when Example 6 is executed ... 35

Figure 12. The execution pattern of Example 6 .. 36

Figure 13. The output produced when Example 7 is executed ... 39

Figure 14. The sequence of task execution when running Example 8 44

Figure 15. The output produced when Example 8 is executed ... 45

Figure 16. The output produced when Example 9 is executed ... 48

Figure 17. The execution sequence for Example 9 .. 49

Figure 18. Execution pattern with pre-emption points highlighted ... 51

Figure 19. An example sequence of writes and reads to and from a queue 59

Figure 20. The output produced when Example 10 is executed ... 71

Figure 21. The sequence of execution produced by Example 10 ... 71

Figure 22. An example scenario where structures are sent on a queue 72

Figure 23. The output produced by Example 11 ... 76

Figure 24. The sequence of execution produced by Example 11 ... 77

Figure 25. The interrupt interrupts one task but returns to another ... 84

Figure 26. Using a binary semaphore to synchronize a task with an interrupt 87

Figure 27. The output produced when Example 12 is executed ... 94

Figure 28. The sequence of execution when Example 12 is executed 95

Figure 29. A binary semaphore can latch at most one event .. 97

Figure 30. Using a counting semaphore to ‘count’ events .. 98

Figure 31. The output produced when Example 13 is executed ... 102

Figure 32. The output produced when Example 14 is executed ... 109

Figure 33. The sequence of execution produced by Example 14 ... 109

Figure 34. Constants affecting interrupt nesting behavior – this illustration assumes the
microcontroller being used implements at least five interrupt priority bits 112

Figure 35. Mutual exclusion implemented using a mutex ... 125

Figure 36. The output produced when Example 15 is executed ... 129

Figure 37. A possible sequence of execution for Example 15 .. 129

Figure 38. A worst case priority inversion scenario .. 130

Figure 39. Priority inheritance minimizing the effect of priority inversion 131

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 vii

Figure 40. The output produced when Example 16 is executed ... 137

Figure 41. RAM being allocated within the array each time a task is created 142

Figure 42. RAM being allocated from the array as tasks are created and deleted 144

Figure 43. The top-level directories—Source and Demo .. 179

Figure 44. The three core files that implement the FreeRTOS kernel 180

Figure 45. The source directories required to build a Cortex-M3 microcontroller demo
application ... 180

Figure 46. The demo directories required to build a demo application 182

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

viii

List of Code Listings

Listing 1. The task function prototype ... 11

Listing 2. The structure of a typical task function .. 11

Listing 3. The xTaskCreate() API function prototype .. 13

Listing 4. Implementation of the first task used in Example 1 ... 16

Listing 5. Implementation of the second task used in Example 1 .. 16

Listing 6. Starting the Example 1 tasks .. 17

Listing 7. Creating a task from within another task after the scheduler has started 19

Listing 8. The single task function used to create two tasks in Example 2 20

Listing 9. The main() function for Example 2 .. 21

Listing 10. Creating two tasks at different priorities .. 24

Listing 11. The vTaskDelay() API function prototype .. 29

Listing 12. The source code for the example task after the null loop delay has been
replaced by a call to vTaskDelay() ... 29

Listing 13. vTaskDelayUntil() API function prototype .. 32

Listing 14. The implementation of the example task using vTaskDelayUntil() 33

Listing 15. The continuous processing task used in Example 6 .. 34

Listing 16. The periodic task used in Example 6 ... 35

Listing 17. The idle task hook function name and prototype. .. 38

Listing 18. A very simple Idle hook function .. 38

Listing 19. The source code for the example task prints out the ulIdleCycleCount value 39

Listing 20. The vTaskPrioritySet() API function prototype ... 40

Listing 21. The uxTaskPriorityGet() API function prototype .. 40

Listing 22. The implementation of Task 1 in Example 8 .. 42

Listing 23. The implementation of Task 2 in Example 8 .. 43

Listing 24. The implementation of main() for Example 8 ... 44

Listing 25. The vTaskDelete() API function prototype ... 46

Listing 26. The implementation of main() for Example 9 ... 47

Listing 27. The implementation of Task 1 for Example 9 .. 48

Listing 28. The implementation of Task 2 for Example 9 .. 48

Listing 29. The xQueueCreate() API function prototype ... 60

Listing 30. The xQueueSendToFront() API function prototype ... 61

Listing 31. The xQueueSendToBack() API function prototype .. 61

Listing 32. The xQueueReceive() API function prototype ... 64

Listing 33. The xQueuePeek() API function prototype .. 64

Listing 34. The uxQueueMessagesWaiting() API function prototype 66

Listing 35. Implementation of the sending task used in Example 10 68

Listing 36. Implementation of the receiver task for Example 10 .. 69

Listing 37. The implementation of main() for Example 10 ... 70

Listing 38. The definition of the structure that is to be passed on a queue, plus the
declaration of two variables for use by the example ... 73

Listing 39. The implementation of the sending task for Example 11. 74

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 ix

Listing 40. The definition of the receiving task for Example 11 ... 75

Listing 41. The implementation of main() for Example 11 ... 76

Listing 42. The vSemaphoreCreateBinary() API function prototype 86

Listing 43. The xSemaphoreTake() API function prototype .. 88

Listing 44. The xSemaphoreGiveFromISR() API function prototype 89

Listing 45. Implementation of the task that periodically generates a software interrupt in
Example 12 .. 91

Listing 46. The implementation of the handler task (the task that synchronizes with the
interrupt) in Example 12 ... 92

Listing 47. The software interrupt handler used in Example 12 .. 93

Listing 48. The implementation of main() for Example 12 ... 94

Listing 49. The xSemaphoreCreateCounting() API function prototype 99

Listing 50. Using xSemaphoreCreateCounting() to create a counting semaphore 101

Listing 51. The implementation of the interrupt service routine used by Example 13 101

Listing 52. The xQueueSendToFrontFromISR() API function prototype 103

Listing 53. The xQueueSendToBackFromISR() API function prototype 103

Listing 54. The implementation of the task that writes to the queue in Example 14 106

Listing 55. The implementation of the interrupt service routine used by Example 14 107

Listing 56. The task that prints out the strings received from the interrupt service routine
in Example 14 .. 108

Listing 57. The main() function for Example 14 .. 108

Listing 58. Using a CMSIS function to set an interrupt priority .. 111

Listing 59. An example read, modify, write sequence .. 116

Listing 60. An example of a reentrant function ... 118

Listing 61. An example of a function that is not reentrant ... 118

Listing 62. Using a critical section to guard access to a variable .. 120

Listing 63. A possible implementation of vPrintString()... 120

Listing 64. The vTaskSuspendAll() API function prototype ... 122

Listing 65. The xTaskResumeAll() API function prototype .. 122

Listing 66. The implementation of vPrintString() ... 123

Listing 67. The xSemaphoreCreateMutex() API function prototype 126

Listing 68. The implementation of prvNewPrintString()... 127

Listing 69. The implementation of prvPrintTask() for Example 15 .. 127

Listing 70. The implementation of main() for Example 15 ... 128

Listing 71. The name and prototype for a tick hook function .. 134

Listing 72. The gatekeeper task ... 134

Listing 73. The print task implementation for Example 16 .. 135

Listing 74. The tick hook implementation ... 135

Listing 75. The implementation of main() for Example 16 ... 136

Listing 76. The heap_3.c implementation ... 145

Listing 77. The xPortGetFreeHeapSize() API function prototype .. 145

Listing 78. The uxTaskGetStackHighWaterMark() API function prototype 149

Listing 79. The stack overflow hook function prototype .. 150

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

x

Listing 80. Syntax required by GCC, IAR, and Keil compilers to force a variable onto a
particular byte alignment (1024-byte alignment in this example) 160

Listing 81. Defining two arrays that may be placed in adjacent memory 160

Listing 82. The xTaskCreateRestricted() API function prototype .. 162

Listing 83. Definition of the structures required by the xTaskCreateRestricted() API
function .. 163

Listing 84. Using the xTaskParameters structure ... 166

Listing 85. Using xTaskCreate() to create both User mode and Privileged mode task
with FreeRTOS-MPU ... 168

Listing 86. The vTaskAllocateMPURegions() API function prototype 168

Listing 87. Using vTaskAllocateMPURegions() to redefine the MPU regions associated
with a task .. 169

Listing 88. Defining the memory map and linker variables using GNU LD syntax 172

Listing 89. Defining the privileged_functions named section using GNU LD syntax 173

Listing 90. Copying data into a stack variable before setting the task into User mode 174

Listing 91. Copying the value of a global variable into a stack variable using the task
parameter .. 175

Listing 92. The template for a new main() function ... 184

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 xi

List of Tables

Table 1. Comparing the FreeRTOS license with the OpenRTOS license 7

Table 2. xTaskCreate() parameters and return value ... 13

Table 3. vTaskDelay() parameters ... 29

Table 4. vTaskDelayUntil() parameters .. 32

Table 5. vTaskPrioritySet() parameters .. 40

Table 6. uxTaskPriorityGet() parameters and return value ... 41

Table 7. vTaskDelete() parameters .. 46

Table 8, xQueueCreate() parameters and return value .. 60

Table 9. xQueueSendToFront() and xQueueSendToBack() function parameters and
return value .. 61

Table 10. xQueueReceive() and xQueuePeek() function parameters and return values 64

Table 11. uxQueueMessagesWaiting() function parameters and return value 67

Table 12. Key to Figure 24 ... 77

Table 13. vSemaphoreCreateBinary() parameters ... 86

Table 14. xSemaphoreTake() parameters and return value ... 88

Table 15. xSemaphoreGiveFromISR() parameters and return value 90

Table 16. xSemaphoreCreateCounting() parameters and return value 100

Table 17. xQueueSendToFrontFromISR() and xQueueSendToBackFromISR()
parameters and return values .. 103

Table 18. Constants that affect interrupt nesting .. 111

Table 19. xTaskResumeAll() return value .. 122

Table 20. xSemaphoreCreateMutex() return value .. 126

Table 21. xPortGetFreeHeapSize() return value .. 146

Table 22. uxTaskGetStackHighWaterMark() parameters and return value 149

Table 23. MPU region access permissions .. 158

Table 24. xMemoryRegion structure members .. 163

Table 25. xTaskParameters structure members... 164

Table 26. vTaskAllocateMPURegions() parameters ... 169

Table 27. Named linker sections required by FreeRTOS-MPU .. 171

Table 28. Linker variables required by FreeRTOS-MPU .. 171

Table 29. FreeRTOS source files to include in the project ... 185

Table 30. Special data types used by FreeRTOS .. 186

Table 31. Macro prefixes ... 188

Table 32. Common macro definitions ... 188

Table 33. Comparing the open source license with the commercial license 190

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

xii

List of Notation

API Application Programming Interface

CMSIS Cortex Microcontroller Software Interface Standard

FAQ Frequently Asked Question

FIFO First In First Out

HMI Human Machine Interface

IDE Integrated Development Environment

IRQ Interrupt Request

ISR Interrupt Service Routine

LCD Liquid Crystal Display

MCU Microcontroller

MPU Memory Protection Unit

RMS Rate Monotonic Scheduling

RTOS Real-time Operating System

SIL Safety Integrity Level

TCB Task Control Block

UART Universal Asynchronous Receiver/Transmitter

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 1

Preface

FreeRTOS and the Cortex-M3

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

2

Multitasking on a Cortex-M3 Microcontroller

An Introduction to Multitasking in Small Embedded S ystems

Microcontrollers (MCUs) that contain an ARM Cortex-M3 core are available from many

manufacturers and are ideally suited to deeply embedded real-time applications. Typically,

applications of this type include a mix of both hard and soft real-time requirements.

Soft real-time requirements are those that state a time deadline—but breaching the deadline

would not render the system useless. For example, responding to keystrokes too slowly may

make a system seem annoyingly unresponsive without actually making it unusable.

Hard real-time requirements are those that state a time deadline—and breaching the deadline

would result in absolute failure of the system. For example, a driver’s airbag would be useless

if it responded to crash sensor inputs too slowly.

FreeRTOS is a real-time kernel (or real-time scheduler) on top of which Cortex-M3

microcontroller applications can be built to meet their hard real-time requirements. It allows

Cortex-M3 microcontroller applications to be organized as a collection of independent threads

of execution. As most Cortex-M3 microcontroller have only one core, in reality only a single

thread can be executing at any one time. The kernel decides which thread should be

executing by examining the priority assigned to each thread by the application designer. In the

simplest case, the application designer could assign higher priorities to threads that implement

hard real-time requirements, and lower priorities to threads that implement soft real-time

requirements. This would ensure that hard real-time threads are always executed ahead of

soft real-time threads, but priority assignment decisions are not always that simplistic.

Do not be concerned if you do not fully understand the concepts in the previous paragraph yet.

The following chapters provide a detailed explanation, with many examples, to help you

understand how to use a real-time kernel, and how to use FreeRTOS in particular.

A Note About Terminology

In FreeRTOS, each thread of execution is called a ‘task’. There is no consensus on

terminology within the embedded community, but I prefer ‘task’ to ‘thread’ as ‘thread’ can have

a more specific meaning in some fields of application.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 3

Why Use a Real-time Kernel?

There are many well established techniques for writing good embedded software without the

use of a kernel, and, if the system being developed is simple, then these techniques might

provide the most appropriate solution. In more complex cases, it is likely that using a kernel

would be preferable, but where the crossover point occurs will always be subjective.

As already described, task prioritization can help ensure an application meets its processing

deadlines, but a kernel can bring other less obvious benefits, too. Some of these are listed

very briefly below:

• Abstracting away timing information

The kernel is responsible for execution timing and provides a time-related API to the

application. This allows the structure of the application code to be simpler and the overall

code size to be smaller.

• Maintainability/Extensibility

Abstracting away timing details results in fewer interdependencies between modules and

allows the software to evolve in a controlled and predictable way. Also, the kernel is

responsible for timing, so application performance is less susceptible to changes in the

underlying hardware.

• Modularity

Tasks are independent modules, each of which should have a well-defined purpose.

• Team development

Tasks should also have well-defined interfaces, allowing easier development by teams.

• Easier testing

If tasks are well-defined independent modules with clean interfaces, they can be tested in

isolation.

• Code reuse

Greater modularity and fewer interdependencies can result in code that can be re-used with

less effort.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

4

• Improved efficiency

Using a kernel allows software to be completely event-driven, so no processing time is

wasted by polling for events that have not occurred. Code executes only when there is

something that must be done.

Counter to the efficiency saving is the need to process the RTOS tick interrupt and to switch

execution from one task to another.

• Idle time

The Idle task is created automatically when the kernel is started. It executes whenever

there are no application tasks wishing to execute. The idle task can be used to measure

spare processing capacity, to perform background checks, or simply to place the processor

into a low-power mode.

• Flexible interrupt handling

Interrupt handlers can be kept very short by deferring most of the required processing to

handler tasks. Section 3.2 demonstrates this technique.

• Mixed processing requirements

Simple design patterns can achieve a mix of periodic, continuous, and event-driven

processing within an application. In addition, hard and soft real-time requirements can be

met by selecting appropriate task and interrupt priorities.

• Easier control over peripherals

Gatekeeper tasks can be used to serialize access to peripherals.

The Cortex-M3 Port of FreeRTOS

The Cortex-M3 port includes all the standard FreeRTOS features:

• Pre-emptive or co-operative operation

• Very flexible task priority assignment

• Queues

• Binary semaphores

• Counting semaphores

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 5

• Recursive semaphores

• Mutexes

• Tick hook functions

• Idle hook functions

• Stack overflow checking

• Trace hook macros

• Optional commercial licensing and support

FreeRTOS also manages interrupt nesting, and allows interrupts above a user-definable

priority level to remain unaffected by the activity of the kernel. Using FreeRTOS will not

introduce any additional timing jitter or latency for these interrupts.

There are two separate FreeRTOS ports for the Cortex-M3:

1. FreeRTOS-MPU

FreeRTOS-MPU includes full Memory Protection Unit (MPU) support. In this version, tasks

can execute in either User mode or Privileged mode. Also, access to Flash, RAM, and

peripheral memory regions can be tightly controlled, on a task-by-task basis.

Not all Cortex-M3 microcontrollers include MPU hardware.

2. FreeRTOS (the original port)

This does not include any MPU support. All tasks execute in the Privileged mode and can

access the entire memory map.

The examples that accompany this text use the original FreeRTOS version without MPU

support, but a chapter describing FreeRTOS-MPU is included for completeness (see Chapter

7).

Resources Used By FreeRTOS

FreeRTOS makes use of the Cortex-M3 SysTick, PendSV, and SVC interrupts. These

interrupts are not available for use by the application.

FreeRTOS has a very small footprint. A typical kernel build will consume approximately 6K

bytes of Flash space and a few hundred bytes of RAM. Each task also requires RAM to be

allocated for use as the task stack.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

6

The FreeRTOS, OpenRTOS, and SafeRTOS Family

FreeRTOS uses a modified GPL license. The modification is included to ensure:

1. FreeRTOS can be used in commercial applications.

2. FreeRTOS itself remains open source.

3. FreeRTOS users retain ownership of their intellectual property.

When you link FreeRTOS into an application, you are obliged to open source only the kernel,

including any additions or modifications you may have made. Components that merely use

FreeRTOS through its published API can remain closed source and proprietary. Appendix 1:

contains the modification text.

OpenRTOS shares the same code base as FreeRTOS, but is provided under standard

commercial license terms. The commercial license removes the requirement to open source

any code at all and provides IP infringement protection.

OpenRTOS can be purchased with a professional support contract and a selection of other

useful components such as TCP/IP stacks and drivers, USB stacks and drivers, and various

different file systems. Evaluation versions can be downloaded from

http://www.OpenRTOS.com.

Table 1 provides an overview of the differences between the FreeRTOS and OpenRTOS

license models.

SafeRTOS has been developed in accordance with the practices, procedures, and processes

necessary to claim compliance with various internationally recognized safety related

standards.

IEC 61508 is an international standard covering the development and use of electrical,

electronic, and programmable electronic safety-related systems. The standard defines the

analysis, design, implementation, production, and test requirements for safety-related

systems, in accordance with the Safety Integrity Level (SIL) assigned to the system. The SIL

is assigned according to the risks associated with the use of the system under development,

with a maximum SIL of 4 being assigned to systems with the highest perceived risk. The

SafeRTOS development process has been independently certified by TÜV SÜD as being in

compliance with that required by IEC 61508 for SIL 3 applications. SafeRTOS is supplied with

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 7

complete lifecycle compliance evidence and has itself been certified for use in IEC 61508, IEC

62304 and FDA 510(K) applications.

SafeRTOS was originally derived from FreeRTOS and retains a similar usage model. Visit

http://www.SafeRTOS.com for additional information.

Table 1. Comparing the FreeRTOS license with the O penRTOS license

 FreeRTOS License OpenRTOS License

Is it Free? Yes No

Can I use it in a commercial

application?

Yes Yes

Is it royalty free? Yes Yes

Do I have to open source my

application code that makes use of

FreeRTOS services?

No, as long as the code

provides functionality that

is distinct from that

provided by FreeRTOS

No

Do I have to open source my

changes to the kernel?

Yes No

Do I have to document that my

product uses FreeRTOS?

Yes No

Do I have to offer to provide the

FreeRTOS code to users of my

application?

Yes No

Can I buy an annual support

contract?

No Yes

Is a warranty provided? No Yes

Is legal protection provided? No Yes, IP infringement

protection is provided

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

8

Using the Examples that Accompany this Book

Required Tools and Hardware

The examples described in this book are included in an accompanying .zip file. You can

download the .zip file from http://www.FreeRTOS.org/Documentation/code if you did not

receive a copy with the book.

.zip files are provided for Cortex-M3 microcontrollers from several different manufacturers and

using several different compilers. Each .zip file also contains the appropriate build

instructions.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 9

Chapter 1

Task Management

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

10

1.1 Chapter Introduction and Scope

Scope

This chapter aims to give readers a good understanding of:

• How FreeRTOS allocates processing time to each task within an application.

• How FreeRTOS chooses which task should execute at any given time.

• How the relative priority of each task affects system behavior.

• The states that a task can exist in.

Readers should also gain a good understanding of:

• How to implement tasks.

• How to create one or more instances of a task.

• How to use the task parameter.

• How to change the priority of a task that has already been created.

• How to delete a task.

• How to implement periodic processing.

• When the idle task will execute and how it can be used.

The concepts presented in this chapter are fundamental to understanding how to use

FreeRTOS and how FreeRTOS applications behave. This is, therefore, the most detailed

chapter in the book.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 11

1.2 Task Functions

Tasks are implemented as C functions. The only thing special about them is their prototype,

which must return void and take a void pointer parameter. The prototype is demonstrated by

Listing 1.

void ATaskFunction(void *pvParameters);

Listing 1. The task function prototype

Each task is a small program in its own right. It has an entry point, will normally run forever

within an infinite loop, and will not exit. The structure of a typical task is shown in Listing 2.

FreeRTOS tasks must not be allowed to return from their implementing function in any way—

they must not contain a ‘return’ statement and must not be allowed to execute past the end of

the function. If a task is no longer required, it should instead be explicitly deleted. This is also

demonstrated in Listing 2.

A single task function definition can be used to create any number of tasks—each created task

being a separate execution instance with its own stack and its own copy of any automatic

(stack) variables defined within the task itself.

void ATaskFunction(void *pvParameters)
{
/* Variables can be declared just as per a normal f unction. Each instance
of a task created using this function will have its own copy of the
iVariableExample variable. This would not be true if the variable was
declared static – in which case only one copy of th e variable would exist
and this copy would be shared by each created insta nce of the task. */
int iVariableExample = 0;

 /* A task will normally be implemented as an infin ite loop. */
 for(;;)
 {
 /* The code to implement the task functionality wil l go here. */
 }

 /* Should the task implementation ever break ou t of the above loop
 then the task must be deleted before reaching t he end of this function.
 The NULL parameter passed to the vTaskDelete() function indicates that
 the task to be deleted is the calling (this) ta sk. */
 vTaskDelete(NULL);
}

Listing 2. The structure of a typical task functio n

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

12

1.3 Top Level Task States

An application can consist of many tasks. If the microcontroller running the application

contains a single core, then only one task can be executing at any given time. This implies

that a task can exist in one of two states, Running and Not Running. We will consider this

simplistic model first—but keep in mind that this is an over-simplification as later we will see

that the Not Running state actually contains a number of sub-states.

When a task is in the Running state, the processor is executing its code. When a task is in the

Not Running state, the task is dormant, its status having been saved ready for it to resume

execution the next time the scheduler decides it should enter the Running state. When a task

resumes execution, it does so from the instruction it was about to execute before it last left the

Running state.

Figure 1. Top level task states and transitions

A task transitioned from the Not Running state to the Running state is said to have been

‘switched in‘ or ‘swapped in‘. Conversely, a task transitioned from the Running state to the Not

Running state is said to have been ‘switched out‘ or ‘swapped out‘. The FreeRTOS scheduler

is the only entity that can switch a task in and out.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 13

1.4 Creating Tasks

The xTaskCreate() API Function

Tasks are created using the FreeRTOS xTaskCreate() API function. This is probably the most

complex of all the API functions, so it is unfortunate that it is the first encountered, but tasks

must be mastered first as they are the most fundamental component of a multitasking system.

All the examples that accompany this book make use of the xTaskCreate() function, so there

are plenty of examples to reference.

Section 8.5 describes the data types and naming conventions used.

portBASE_TYPE xTaskCreate(pdTASK_CODE pvTaskCode,
 const signed char * cons t pcName,
 unsigned short usStackDe pth,
 void *pvParameters,
 unsigned portBASE_TYPE u xPriority,
 xTaskHandle *pxCreatedTa sk
);

Listing 3. The xTaskCreate() API function prototyp e

Table 2. xTaskCreate() parameters and return value

Parameter Name/
Returned Value Description

pvTaskCode Tasks are simply C functions that never exit and, as such, are normally

implemented as an infinite loop. The pvTaskCode parameter is simply a

pointer to the function (in effect, just the function name) that implements

the task.

pcName A descriptive name for the task. This is not used by FreeRTOS in any

way. It is included purely as a debugging aid. Identifying a task by a

human readable name is much simpler than attempting to identify it by

its handle.

The application-defined constant configMAX_TASK_NAME_LEN

defines the maximum length a task name can take—including the NULL

terminator. Supplying a string longer than this maximum will result in

the string being silently truncated.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

14

Table 2. xTaskCreate() parameters and return value

Parameter Name/
Returned Value Description

usStackDepth Each task has its own unique stack that is allocated by the kernel to the

task when the task is created. The usStackDepth value tells the kernel

how large to make the stack.

The value specifies the number of words the stack can hold, not the

number of bytes. For example, the Cortex-M3 stack is 32 bits wide so, if

usStackDepth is passed in as 100, then 400 bytes of stack space will be

allocated (100 * 4 bytes). The stack depth multiplied by the stack width

must not exceed the maximum value that can be contained in a variable

of type size_t.

The size of the stack used by the idle task is defined by the application-

defined constant configMINIMAL_STACK_SIZE . The value assigned to

this constant in the standard FreeRTOS Cortex-M3 demo applications is

the minimum recommended for any task. If your task uses a lot of stack

space, then you must assign a larger value.

There is no easy way to determine the stack space required by a task.

It is possible to calculate, but most users will simply assign what they

think is a reasonable value, then use the features provided by

FreeRTOS to ensure that the space allocated is indeed adequate, and

that RAM is not being wasted unnecessarily. Chapter 6 contains

information on how to query the stack space being used by a task.

pvParameters Task functions accept a parameter of type pointer to void (void*). The

value assigned to pvParameters will be the value passed into the task.

Some examples in this document demonstrate how the parameter can

be used.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 15

Table 2. xTaskCreate() parameters and return value

Parameter Name/
Returned Value Description

uxPriority Defines the priority at which the task will execute. Priorities can be

assigned from 0, which is the lowest priority, to

(configMAX_PRIORITIES – 1), which is the highest priority.

configMAX_PRIORITIES is a user defined constant. There is no upper

limit to the number of priorities that can be available (other than the limit

of the data types used and the RAM available in your microcontroller),

but you should use the lowest number of priorities required, to avoid

wasting RAM.

Passing a uxPriority value above (configMAX_PRIORITIES – 1) will

result in the priority assigned to the task being capped silently to the

maximum legitimate value.

pxCreatedTask pxCreatedTask can be used to pass out a handle to the task being

created. This handle can then be used to reference the task in API calls

that, for example, change the task priority or delete the task.

If your application has no use for the task handle, then pxCreatedTask

can be set to NULL.

Returned value There are two possible return values:

1. pdTRUE

This indicates that the task has been created successfully.

2. errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY

This indicates that the task has not been created because there is

insufficient heap memory available for FreeRTOS to allocate enough

RAM to hold the task data structures and stack.

Chapter 5 provides more information on memory management.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

16

Example 1. Creating tasks

This example demonstrates the steps needed to create two simple tasks then start the tasks

executing. The tasks simply print out a string periodically, using a crude null loop to create the

period delay. Both tasks are created at the same priority and are identical except for the string

they print out—see Listing 4 and Listing 5 for their respective implementations.

void vTask1(void *pvParameters)
{
const char *pcTaskName = "Task 1 is running\n";
volatile unsigned long ul;

 /* As per most tasks, this task is implemented in a n infinite loop. */
 for(;;)
 {
 /* Print out the name of this task. */
 vPrintString(pcTaskName);

 /* Delay for a period. */
 for(ul = 0; ul < mainDELAY_LOOP_COUNT; ul+ +)
 {
 /* This loop is just a very crude delay implementation. There is
 nothing to do in here. Later examples will replace this crude
 loop with a proper delay/sleep function . */
 }
 }
}

Listing 4. Implementation of the first task used i n Example 1

void vTask2(void *pvParameters)
{
const char *pcTaskName = "Task 2 is running\n";
volatile unsigned long ul;

 /* As per most tasks, this task is implemented in an infinite loop. */
 for(;;)
 {
 /* Print out the name of this task. */
 vPrintString(pcTaskName);

 /* Delay for a period. */
 for(ul = 0; ul < mainDELAY_LOOP_COUNT; ul+ +)
 {
 /* This loop is just a very crude delay implementation. There is
 nothing to do in here. Later examples will replace this crude
 loop with a proper delay/sleep function . */
 }
 }
}

Listing 5. Implementation of the second task used in Example 1

The main() function creates the tasks before starting the scheduler—see Listing 6 for its

implementation.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 17

int main(void)
{
 /* Create one of the two tasks. Note that a real a pplication should check
 the return value of the xTaskCreate() call to e nsure the task was created
 successfully. */
 xTaskCreate(vTask1, /* Pointer to the function that implements the task . */
 "Task 1" ,/* Text name for the task. This is to facilitate
 debugging only. */
 240, /* Stack depth in words. */
 NULL, /* We are not using the task parameter. */
 1, /* This task will run at priority 1. */
 NULL); /* We are not going to use the task handle. */

 /* Create the other task in exactly the same way an d at the same priority. */
 xTaskCreate(vTask2, "Task 2", 240, NULL, 1, NU LL);

 /* Start the scheduler so the tasks start execu ting. */
 vTaskStartScheduler();

 /* If all is well then main() will never reach here as the scheduler will
 now be running the tasks. If main() does reach here then it is likely that
 there was insufficient heap memory available fo r the idle task to be created.
 Chapter 5 provides more information on memory management. */
 for(;;);
}

Listing 6. Starting the Example 1 tasks

The output generated by vPrintString() is displayed in the chosen IDE. Executing this example

produces the output shown in Figure 2, which is a screen shot from the Red Suite IDE.

Figure 2. The output produced when Example 1 is ex ecuted

Figure 2 shows the two tasks appearing to execute simultaneously; however, as both tasks

are executing on the same processor, this cannot be the case. In reality, both tasks are

rapidly entering and exiting the Running state. Both tasks are running at the same priority,

and so share time on the single processor. Their actual execution pattern is shown in Figure

3.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

18

The arrow along the bottom of Figure 3 shows the passing of time from time t1 onwards. The

colored lines show which task is executing at each point in time—for example, Task 1 is

executing between time t1 and time t2.

Only one task can exist in the Running state at any one time. So, as one task enters the

Running state (the task is switched in), the other enters the Not Running state (the task is

switched out).

Figure 3. The execution pattern of the two Example 1 tasks

Example 1 created both tasks from within main(), prior to starting the scheduler. It is also

possible to create a task from within another task. We could have created Task 1 from main(),

and then created Task 2 from within Task 1. Were we to do this, our Task 1 function would

change as shown by Listing 7. Task 2 would not get created until after the scheduler had

been started, but the output produced by the example would be the same.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 19

void vTask1(void *pvParameters)
{
const char *pcTaskName = "Task 1 is running\n";
volatile unsigned long ul;

 /* If this task code is executing then the sche duler must already have
 been started. Create the other task before we enter the infinite loop. */
 xTaskCreate(vTask2, "Task 2", 240, NULL, 1, NU LL);

 for(;;)
 {
 /* Print out the name of this task. */
 vPrintString(pcTaskName);

 /* Delay for a period. */
 for(ul = 0; ul < mainDELAY_LOOP_COUNT; ul+ +)
 {
 /* This loop is just a very crude delay implementation. There is
 nothing to do in here. Later examples will replace this crude
 loop with a proper delay/sleep function . */
 }
 }
}

Listing 7. Creating a task from within another tas k after the scheduler has started

Example 2. Using the task parameter

The two tasks created in Example 1 are almost identical, the only difference between them

being the text string they print out. This duplication can be removed by, instead, creating two

instances of a single task implementation. The task parameter can then be used to pass into

each task the string that it should print out.

Listing 8 contains the code of the single task function (vTaskFunction) used by Example 2.

This single function replaces the two task functions (vTask1 and vTask2) used in Example 1.

Note how the task parameter is cast to a char * to obtain the string the task should print out.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

20

void vTaskFunction(void *pvParameters)
{
char *pcTaskName;
volatile unsigned long ul;

 /* The string to print out is passed in via the par ameter. Cast this to a
 character pointer. */
 pcTaskName = (char *) pvParameters;

 /* As per most tasks, this task is implemented in an infinite loop. */
 for(;;)
 {
 /* Print out the name of this task. */
 vPrintString(pcTaskName);

 /* Delay for a period. */
 for(ul = 0; ul < mainDELAY_LOOP_COUNT; ul+ +)
 {
 /* This loop is just a very crude delay implementat ion. There is
 nothing to do in here. Later exercises will replace this crude
 loop with a proper delay/sleep function . */
 }
 }
}

Listing 8. The single task function used to create two tasks in Example 2

Even though there is now only one task implementation (vTaskFunction), more than one

instance of the defined task can be created. Each created instance will execute independently

under the control of the FreeRTOS scheduler.

The pvParameters parameter to the xTaskCreate() function is used to pass in the text string as

shown in Listing 9.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 21

/* Define the strings that will be passed in as the task parameters. These are
defined const and not on the stack to ensure they r emain valid when the tasks are
executing. */
static const char *pcTextForTask1 = "Task 1 is runn ing\n";
static const char *pcTextForTask2 = "Task 2 is runn ing\n";

int main(void)
{
 /* Create one of the two tasks. */
 xTaskCreate(vTaskFunction, /* Pointer to the function that
 impleme nts the task. */
 "Task 1", /* Text name for the task. This is to
 facilit ate debugging only. */
 240, /* Stack depth in words */
 (void*)pcTextForTask1, /* Pass the text to be printed into the
 task us ing the task parameter. */
 1, /* This task will run at priority 1. */
 NULL); /* We are not using the task handle. */

 /* Create the other task in exactly the same wa y. Note this time that multiple
 tasks are being created from the SAME task impl ementation (vTaskFunction). Only
 the value passed in the parameter is different. Two instances of the same
 task are being created. */
 xTaskCreate(vTaskFunction, "Task 2", 240, (voi d*)pcTextForTask2, 1, NULL);

 /* Start the scheduler so our tasks start executing . */
 vTaskStartScheduler();

 /* If all is well then main() will never reach here as the scheduler will
 now be running the tasks. If main() does reach here then it is likely that
 there was insufficient heap memory available fo r the idle task to be created.
 Chapter 5 provides more information on memory management. */
 for(;;);
}

Listing 9. The main() function for Example 2

The output from Example 2 is exactly as per that shown for Example 1 in Figure 2.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

22

1.5 Task Priorities

The uxPriority parameter of the xTaskCreate() API function assigns an initial priority to the task

being created. The priority can be changed after the scheduler has been started by using the

vTaskPrioritySet() API function.

The maximum number of priorities available is set by the application-defined

configMAX_PRIORITIES compile time configuration constant within FreeRTOSConfig.h.

FreeRTOS itself does not limit the maximum value this constant can take, but the higher the

configMAX_PRIORITIES value the more RAM the kernel will consume, so it is always

advisable to keep the value set at the minimum necessary.

FreeRTOS imposes no restrictions on how priorities can be assigned to tasks. Any number of

tasks can share the same priority—ensuring maximum design flexibility. You can assign a

unique priority to every task, if desired (as required by some schedule-ability algorithms), but

this restriction is not enforced in any way.

Low numeric priority values denote low-priority tasks, with priority 0 being the lowest priority

possible. Therefore, the range of available priorities is 0 to (configMAX_PRIORITIES – 1).

The scheduler will always ensure that the highest priority task that is able to run is the task

selected to enter the Running state. Where more than one task of the same priority is able to

run, the scheduler will transition each task into and out of the Running state, in turn. This is

the behavior observed in the examples so far, where both test tasks are created at the same

priority and both are always able to run. Each such task executes for a ‘time slice‘; it enters

the Running state at the start of the time slice and exits the Running state at the end of the

time slice. In Figure 3, the time between t1 and t2 equals a single time slice.

To be able to select the next task to run, the scheduler itself must execute at the end of each

time slice. A periodic interrupt, called the tick interrupt, is used for this purpose. The length of

the time slice is effectively set by the tick interrupt frequency, which is configured by the

configTICK_RATE_HZ compile time configuration constant in FreeRTOSConfig.h. For

example, if configTICK_RATE_HZ is set to 100 (Hz), then the time slice will be 10

milliseconds. Figure 3 can be expanded to show the execution of the scheduler itself in the

sequence of execution. This is shown in Figure 4.

Note that FreeRTOS API calls always specify time in tick interrupts (commonly referred to as

‘ticks’). The portTICK_RATE_MS constant is provided to allow time delays to be converted

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 23

from the number of tick interrupts into milliseconds. The resolution available depends on the

tick frequency.

The ‘tick count’ value is the total number of tick interrupts that have occurred since the

scheduler was started; assuming the tick count has not overflowed. User applications do not

have to consider overflows when specifying delay periods, as time consistency is managed

internally by the kernel.

Figure 4. The execution sequence expanded to show the tick interrupt executing

In Figure 4, the short top lines show when the kernel itself is running. The arrows show the

sequence of execution from task to interrupt, then from interrupt back to a different task.

Example 3. Experimenting with priorities

The scheduler will always ensure that the highest priority task that is able to run is the task

selected to enter the Running state. In our examples so far, two tasks have been created at

the same priority, so both entered and exited the Running state in turn. This example looks at

what happens when we change the priority of one of the two tasks created in Example 2. This

time, the first task will be created at priority 1, and the second at priority 2. The code to create

the tasks is shown in Listing 10. The single function that implements both tasks has not

changed; it still simply prints out a string periodically, using a null loop to create a delay.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

24

/* Define the strings that will be passed in as the task parameters. These are
defined const and not on the stack to ensure they r emain valid when the tasks are
executing. */
static const char *pcTextForTask1 = "Task 1 is runn ing\n";
static const char *pcTextForTask2 = "Task 2 is runn ing\n";

int main(void)
{
 /* Create the first task at priority 1. The pr iority is the second to last
 parameter. */
 xTaskCreate(vTaskFunction, "Task 1", 240, (voi d*)pcTextForTask1, 1, NULL);

 /* Create the second task at priority 2. */
 xTaskCreate(vTaskFunction, "Task 2", 240, (voi d*)pcTextForTask2, 2, NULL);

 /* Start the scheduler so the tasks start execu ting. */
 vTaskStartScheduler();

 /* If all is well we will never reach here as t he scheduler will now be
 running. If we do reach here then it is likely that there was insufficient
 heap available for the idle task to be created. */
 for(;;);
}

Listing 10. Creating two tasks at different priori ties

The output produced by Example 3 is shown in Figure 5.

The scheduler will always select the highest priority task that is able to run. Task 2 has a

higher priority than Task 1 and is always able to run; therefore Task 2 is the only task to ever

enter the Running state. As Task 1 never enters the Running state, it never prints out its

string. Task 1 is said to be ‘starved’ of processing time by Task 2.

Figure 5. Running both test tasks at different pri orities

Task 2 is always able to run because it never has to wait for anything—it is either cycling

around a null loop or printing to the terminal.

Figure 6 shows the execution sequence for Example 3.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 25

Figure 6. The execution pattern when one task has a higher priority than the other

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

26

1.6 Expanding the ‘Not Running’ State

So far, the created tasks have always had processing to perform and have never had to wait

for anything—as they never have to wait for anything they are always able to enter the

Running state. This type of ‘continuous processing’ task has limited usefulness because they

can only be created at the very lowest priority. If they run at any other priority they will prevent

tasks of lower priority ever running at all.

To make our tasks useful, we need a way to allow them to be event-driven. An event-driven

task has work (processing) to perform only after the occurrence of the event that triggers it,

and is not able to enter the Running state before that event has occurred. The scheduler

always selects the highest priority task that is able to run. High priority tasks not being able to

run means that the scheduler cannot select them and must, instead, select a lower priority task

that is able to run. Therefore, using event-driven tasks means that tasks can be created at

different priorities without the highest priority tasks starving all the lower priority tasks of

processing time.

The Blocked State

A task that is waiting for an event is said to be in the ‘Blocked’ state, which is a sub-state of the

Not Running state.

Tasks can enter the Blocked state to wait for two different types of event:

1. Temporal (time-related) events—the event being either a delay period expiring, or an

absolute time being reached. For example, a task may enter the Blocked state to wait

for 10 milliseconds to pass.

2. Synchronization events—where the events originate from another task or interrupt. For

example, a task may enter the Blocked state to wait for data to arrive on a queue.

Synchronization events cover a broad range of event types.

FreeRTOS queues, binary semaphores, counting semaphores, recursive semaphores, and

mutexes can all be used to create synchronization events. Chapter 2 and Chapter 3 cover

these in more detail.

It is possible for a task to block on a synchronization event with a timeout, effectively blocking

on both types of event simultaneously. For example, a task may choose to wait for a

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 27

maximum of 10 milliseconds for data to arrive on a queue. The task will leave the Blocked

state if either data arrives within 10 milliseconds, or 10 milliseconds pass with no data arriving.

The Suspended State

‘Suspended’ is also a sub-state of Not Running. Tasks in the Suspended state are not

available to the scheduler. The only way into the Suspended state is through a call to the

vTaskSuspend() API function, the only way out being through a call to the vTaskResume() or

xTaskResumeFromISR() API functions. Most applications do not use the Suspended state.

The Ready State

Tasks that are in the Not Running state but are not Blocked or Suspended are said to be in the

Ready state. They are able to run, and therefore ‘ready’ to run, but are not currently in the

Running state.

Completing the State Transition Diagram

Figure 7 expands on the previous over-simplified state diagram to include all the Not Running

sub-states described in this section. The tasks created in the examples so far have not used

the Blocked or Suspended states; they have only transitioned between the Ready state and

the Running state—highlighted by the bold lines in Figure 7.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

28

Figure 7. Full task state machine

Example 4. Using the Blocked state to create a dela y

All the tasks created in the examples presented so far have been ‘periodic’—they have

delayed for a period and printed out their string, before delaying once more, and so on. The

delay has been generated very crudely using a null loop—the task effectively polled an

incrementing loop counter until it reached a fixed value. Example 3 clearly demonstrated the

disadvantage of this method. While executing the null loop, the task remained in the Ready

state, ‘starving’ the other task of any processing time.

There are several other disadvantages to any form of polling, not least of which is its

inefficiency. During polling, the task does not really have any work to do, but it still uses

maximum processing time and so wastes processor cycles. Example 4 corrects this behavior

by replacing the polling null loop with a call to the vTaskDelay() API function, the prototype for

which is shown in Listing 11. The new task definition is shown in Listing 12. Note that the

vTaskDelay() API function is available only when INCLUDE_vTaskDelay is set to 1 in

FreeRTOSConfig.h.

vTaskDelay() places the calling task into the Blocked state for a fixed number of tick interrupts.

While in the Blocked state the task does not use any processing time, so processing time is

consumed only when there is work to be done.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 29

void vTaskDelay(portTickType xTicksToDelay);

Listing 11. The vTaskDelay() API function prototyp e

Table 3. vTaskDelay() parameters

Parameter
Name Description

xTicksToDelay The number of tick interrupts that the calling task should remain in the

Blocked state before being transitioned back into the Ready state.

For example, if a task called vTaskDelay(100) while the tick count was

10,000, then it would immediately enter the Blocked state and remain there

until the tick count reached 10,100.

The constant portTICK_RATE_MS can be used to convert milliseconds into

ticks.

void vTaskFunction(void *pvParameters)
{
char *pcTaskName;

 /* The string to print out is passed in via the parameter. Cast this to a
 character pointer. */
 pcTaskName = (char *) pvParameters;

 /* As per most tasks, this task is implemented in an infinite loop. */
 for(;;)
 {
 /* Print out the name of this task. */
 vPrintString(pcTaskName);

 /* Delay for a period. This time a call to vTaskDelay() is used which
 places the task into the Blocked state unti l the delay period has expired.
 The delay period is specified in 'ticks', b ut the constant
 portTICK_RATE_MS can be used to convert thi s to a more user friendly value
 in milliseconds. In this case a period of 250 milliseconds is being
 specified. */
 vTaskDelay(250 / portTICK_RATE_MS);
 }
}

Listing 12. The source code for the example task a fter the null loop delay has been
replaced by a call to vTaskDelay()

Even though the two tasks are still being created at different priorities, both will now run. The

output of Example 4 shown in Figure 8 confirms the expected behavior.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

30

Figure 8. The output produced when Example 4 is ex ecuted

The execution sequence shown in Figure 9 explains why both tasks run, even though they are

created at different priorities. The execution of the kernel itself is omitted for simplicity.

The idle task is created automatically when the scheduler is started, to ensure there is always

at least one task that is able to run (at least one task in the Ready state). Section 1.7

describes the Idle task in more detail.

Figure 9. The execution sequence when the tasks us e vTaskDelay() in place of the

NULL loop

Only the implementation of our two tasks has changed, not their functionality. Comparing

Figure 9 with Figure 4 demonstrates clearly that this functionality is being achieved in a much

more efficient manner.

Figure 4 shows the execution pattern when the tasks use a null loop to create a delay—so are

always able to run and use a lot of processor time as a result. Figure 9 shows the execution

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 31

pattern when the tasks enter the Blocked state for the entirety of their delay period, so use

processor time only when they actually have work that needs to be performed (in this case

simply a message to be printed out).

In the Figure 9 scenario, each time the tasks leave the Blocked state they execute for a

fraction of a tick period before re-entering the Blocked state. Most of the time there are no

application tasks that are able to run (no application tasks in the Ready state) and, therefore,

no application tasks that can be selected to enter the Running state. While this is the case,

the idle task will run. The amount of processing time the idle task gets is a measure of the

spare processing capacity in the system.

The bold lines in Figure 10 show the transitions performed by the tasks in Example 4, with

each now transitioning through the Blocked state before being returned to the Ready state.

Figure 10. Bold lines indicate the state transitio ns performed

 by the tasks in Example 4

The vTaskDelayUntil() API Function

vTaskDelayUntil() is similar to vTaskDelay(). As just demonstrated, the vTaskDelay()

parameter specifies the number of tick interrupts that should occur between a task calling

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

32

vTaskDelay() and the same task once again transitioning out of the Blocked state. The length

of time the task remains in the blocked state is specified by the vTaskDelay() parameter, but

the actual time at which the task leaves the blocked state is relative to the time at which

vTaskDelay() was called.

The parameters to vTaskDelayUntil() specify, instead, the exact tick count value at which the

calling task should be moved from the Blocked state into the Ready state. vTaskDelayUntil()

is the API function that should be used when a fixed execution period is required (where you

want your task to execute periodically with a fixed frequency), as the time at which the calling

task is unblocked is absolute, rather than relative to when the function was called (as is the

case with vTaskDelay()).

Note that the vTaskDelayUntil() API function is available only when

INCLUDE_vTaskDelayUntil is set to 1 in FreeRTOSConfig.h.

void vTaskDelayUntil(portTickType * pxPreviousWake Time, portTickType xTimeIncrement);

Listing 13. vTaskDelayUntil() API function prototy pe

Table 4. vTaskDelayUntil() parameters

Parameter Name Description

pxPreviousWakeTime This parameter is named on the assumption that vTaskDelayUntil()

is being used to implement a task that executes periodically and

with a fixed frequency. In this case pxPreviousWakeTime holds the

time at which the task last left the Blocked state (was ‘woken’ up).

This time is used as a reference point to calculate the time at which

the task should next leave the Blocked state.

The variable pointed to by pxPreviousWakeTime is updated

automatically within the vTaskDelayUntil() function; it would not

normally be modified by the application code, other than when the

variable is first initialized. Listing 14 demonstrates how the

initialization is performed.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 33

Table 4. vTaskDelayUntil() parameters

Parameter Name Description

xTimeIncrement This parameter is also named on the assumption that

vTaskDelayUntil() is being used to implement a task that executes

periodically and with a fixed frequency—the frequency being set by

the xTimeIncrement value.

xTimeIncrement is specified in ‘ticks’. The constant

portTICK_RATE_MS can be used to convert milliseconds to ticks.

Example 5. Converting the example tasks to use vTas kDelayUntil()

The two tasks created in Example 4 are periodic tasks, but using vTaskDelay() does not

guarantee that the frequency at which they run is fixed, as the time at which the tasks leave

the Blocked state is relative to when they call vTaskDelay(). Converting the tasks to use

vTaskDelayUntil() instead of vTaskDelay() solves this potential problem.

void vTaskFunction(void *pvParameters)
{
char *pcTaskName;
portTickType xLastWakeTime;

 /* The string to print out is passed in via the parameter. Cast this to a
 character pointer. */
 pcTaskName = (char *) pvParameters;

 /* The xLastWakeTime variable needs to be initi alized with the current tick
 count. Note that this is the only time the var iable is written to explicitly.
 After this xLastWakeTime is updated automatical ly internally within
 vTaskDelayUntil(). */
 xLastWakeTime = xTaskGetTickCount();

 /* As per most tasks, this task is implemented in an infinite loop. */
 for(;;)
 {
 /* Print out the name of this task. */
 vPrintString(pcTaskName);

 /* This task should execute exactly every 2 50 milliseconds. As per
 the vTaskDelay() function, time is measured in ticks, and the
 portTICK_RATE_MS constant is used to conver t milliseconds into ticks.
 xLastWakeTime is automatically updated with in vTaskDelayUntil() so is not
 explicitly updated by the task. */
 vTaskDelayUntil(&xLastWakeTime, (250 / po rtTICK_RATE_MS));
 }
}

Listing 14. The implementation of the example task using vTaskDelayUntil()

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

34

The output produced by Example 5 is exactly as per that shown in Figure 8 for Example 4.

Example 6. Combining blocking and non-blocking task s

Previous examples have examined the behavior of both polling and blocking tasks in isolation.

This example re-enforces the stated expected system behavior by demonstrating an execution

sequence when the two schemes are combined, as follows,

1. Two tasks are created at priority 1. These do nothing other than continuously print out

a string.

These tasks never make any API function calls that could cause them to enter the

Blocked state, so are always in either the Ready or the Running state. Tasks of this

nature are called ‘continuous processing’ tasks as they always have work to do (albeit

rather trivial work, in this case). The source for the continuous processing tasks is

shown in Listing 15.

2. A third task is then created at priority 2; that is, above the priority of the other two tasks.

The third task also just prints out a string, but this time periodically, so uses the

vTaskDelayUntil() API function to place itself into the Blocked state between each print

iteration.

The source for the periodic task is shown in Listing 16.

void vContinuousProcessingTask(void *pvParameters)
{
char *pcTaskName;

 /* The string to print out is passed in via the parameter. Cast this to a
 character pointer. */
 pcTaskName = (char *) pvParameters;

 /* As per most tasks, this task is implemented in an infinite loop. */
 for(;;)
 {
 /* Print out the name of this task. This t ask just does this repeatedly
 without ever blocking or delaying. */
 vPrintString(pcTaskName);
 }
}

Listing 15. The continuous processing task used in Example 6

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 35

void vPeriodicTask(void *pvParameters)
{
portTickType xLastWakeTime;

 /* The xLastWakeTime variable needs to be initi alized with the current tick
 count. Note that this is the only time the var iable is explicitly written to.
 After this xLastWakeTime is managed automatical ly by the vTaskDelayUntil()
 API function. */
 xLastWakeTime = xTaskGetTickCount();

 /* As per most tasks, this task is implemented in an infinite loop. */
 for(;;)
 {
 /* Print out the name of this task. */
 vPrintString("Periodic task is running………. \n");

 /* The task should execute every 10 millise conds exactly. */
 vTaskDelayUntil(&xLastWakeTime, (10 / por tTICK_RATE_MS));
 }
}

Listing 16. The periodic task used in Example 6

Figure 11 shows the output produced by Example 6, with an explanation of the observed

behavior given by the execution sequence shown in Figure 12.

Figure 11. The output produced when Example 6 is e xecuted

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

36

Time

Continuous 2

Idle

t1 t2

1 - Continuous task 1 runs for a

complete tick period (time slice

between times t1 and t2) - during

which time it could print out its

string many times.

t3

2 - The tick interrupt occurs during which the

scheduler selects a new task to run. As both

Continuous tasks have the same priority and

both are always able to run the scheduler

shares processing time between the two - so

Continuous 2 enters the Running state where it

remains for the entire tick period - during which

time it could print out its string many times.

Continuous 1

Periodic

3 - At time t3 the tick interrupt

runs again, causing a switch back

to Continuous 1, and so it goes

on.

t5

4 - At time t5 the tick interrupt finds that the Periodic task block

period has expired so moved the Periodic task into the Ready

state. The Periodic task is the highest priority task so

immediately then enters the Running state where it prints out its

string exactly once before calling vTaskDelayUntil() to return to

the Blocked state.

The Idle task never enters the

Running state as there are

always higher priority task that

are able to do so.

5 - The Periodic task entering the

Blocked state means the scheduler has

again to choose a task to enter the

Running state - in this case Continuous

1 is chosen and it runs up to the next tick

interrupt - during which time it could print

out its string many times.

Figure 12. The execution pattern of Example 6

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 37

1.7 The Idle Task and the Idle Task Hook

The tasks created in Example 4 spend most of their time in the Blocked state. While in this

state, they are not able to run and cannot be selected by the scheduler.

The processor always needs something to execute—there must always be at least one task

that can enter the Running state. To ensure this is the case, an Idle task is automatically

created by the scheduler when vTaskStartScheduler() is called. The idle task does very little

more than sit in a loop—so, like the tasks in the original examples, it is always able to run.

The idle task has the lowest possible priority (priority zero), to ensure it never prevents a

higher priority application task from entering the Running state—although there is nothing to

prevent application designers creating tasks at, and therefore sharing, the idle task priority, if

desired.

Running at the lowest priority ensures that the Idle task is transitioned immediately out of the

Running state as soon as a higher priority task enters the Ready state. This can be seen at

time tn in Figure 9, where the Idle task is immediately swapped out to allow Task 2 to execute

at the instant Task 2 leaves the Blocked state. Task 2 is said to have pre-empted the idle

task. Pre-emption occurs automatically, and without the knowledge of the task being pre-

empted.

Idle Task Hook Functions

It is possible to add application specific functionality directly into the idle task through the use

of an idle hook (or idle callback) function—a function that is called automatically by the idle

task once per iteration of the idle task loop.

Common uses for the Idle task hook include:

• Executing low priority, background, or continuous processing.

• Measuring the amount of spare processing capacity. (The idle task will run only when all

other tasks have no work to perform; so measuring the amount of processing time

allocated to the idle task provides a clear indication of how much processing time is

spare.)

• Placing the processor into a low power mode, providing an automatic method of saving

power whenever there is no application processing to be performed.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

38

Limitations on the Implementation of Idle Task Hook Functions

Idle task hook functions must adhere to the following rules:

1. An idle task hook function must never attempt to block or suspend. The Idle task will

execute only when no other tasks are able to do so (unless application tasks are

sharing the idle priority).

Note: Blocking the idle task in any way could cause a scenario where no tasks are

available to enter the Running state.

2. If the application makes use of the vTaskDelete() API function then the Idle task hook

must always return to its caller within a reasonable time period. This is because the

Idle task is responsible for cleaning up kernel resources after a task has been deleted.

If the idle task remains permanently in the Idle hook function, then this clean-up cannot

occur.

Idle task hook functions must have the name and prototype shown in Listing 17.

void vApplicationIdleHook(void);

Listing 17. The idle task hook function name and p rototype.

Example 7. Defining an idle task hook function

The use of blocking vTaskDelay() API calls in Example 4 creates a lot of idle time—time when

the Idle task is executing because both application tasks are in the Blocked state. Example 7

makes use of this idle time through the addition of an Idle hook function, the source for which

is shown in Listing 18.

/* Declare a variable that will be incremented by t he hook function. */
unsigned long ulIdleCycleCount = 0UL;

/* Idle hook functions MUST be called vApplicationI dleHook(), take no parameters,
and return void. */
void vApplicationIdleHook(void)
{
 /* This hook function does nothing but incremen t a counter. */
 ulIdleCycleCount++;
}

Listing 18. A very simple Idle hook function

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 39

configUSE_IDLE_HOOK must be set to 1 within FreeRTOSConfig.h for the idle hook function

to get called.

The function that implements the created tasks is modified slightly to print out the

ulIdleCycleCount value, as shown in Listing 19.

void vTaskFunction(void *pvParameters)
{
char *pcTaskName;

 /* The string to print out is passed in via the parameter. Cast this to a
 character pointer. */
 pcTaskName = (char *) pvParameters;

 /* As per most tasks, this task is implemented in an infinite loop. */
 for(;;)
 {
 /* Print out the name of this task AND the number of times ulIdleCycleCount
 has been incremented. */
 vPrintStringAndNumber(pcTaskName, ulIdleCy cleCount);

 /* Delay for a period of 250 milliseconds. */
 vTaskDelay(250 / portTICK_RATE_MS);
 }
}

Listing 19. The source code for the example task p rints out the ulIdleCycleCount
value

The output produced by Example 7 is shown in Figure 13 and shows that the idle task hook

function is called approximately 830000 times between each iteration of the application tasks.

Figure 13. The output produced when Example 7 is e xecuted

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

40

1.8 Changing the Priority of a Task

The vTaskPrioritySet() API Function

The vTaskPrioritySet() API function can be used to change the priority of any task after the

scheduler has been started. Note that the vTaskPrioritySet() API function is available only

when INCLUDE_vTaskPrioritySet is set to 1 in FreeRTOSConfig.h.

void vTaskPrioritySet(xTaskHandle pxTask, unsigned portBASE_TYPE uxNewPriority);

Listing 20. The vTaskPrioritySet() API function pr ototype

Table 5. vTaskPrioritySet() parameters

Parameter
Name Description

pxTask The handle of the task whose priority is being modified (the subject task)—

see the pxCreatedTask parameter of the xTaskCreate() API function for

information on obtaining handles to tasks.

A task can change its own priority by passing NULL in place of a valid task

handle.

uxNewPriority The priority to which the subject task is to be set. This is capped

automatically to the maximum available priority of

(configMAX_PRIORITIES – 1), where configMAX_PRIORITIES is a

compile time option set in the FreeRTOSConfig.h header file.

The uxTaskPriorityGet() API Function

The uxTaskPriorityGet() API function can be used to query the priority of a task. Note that the

vTaskPriorityGet() API function is available only when INCLUDE_vTaskPriorityGet is set to 1

in FreeRTOSConfig.h.

unsigned portBASE_TYPE uxTaskPriorityGet(xTaskHand le pxTask);

Listing 21. The uxTaskPriorityGet() API function p rototype

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 41

Table 6. uxTaskPriorityGet() parameters and return value

Parameter Name/
Return Value Description

pxTask The handle of the task whose priority is being queried (the subject

task)—see the pxCreatedTask parameter of the xTaskCreate() API

function for information on obtaining handles to tasks.

A task can query its own priority by passing NULL in place of a valid

task handle.

Returned value The priority currently assigned to the task being queried.

Example 8. Changing task priorities

The scheduler will always select the highest Ready state task as the task to enter the Running

state. Example 8 demonstrates this by using the vTaskPrioritySet() API function to change the

priority of two tasks relative to each other.

Two tasks are created at two different priorities. Neither task makes any API function calls that

could cause it to enter the Blocked state, so both are always in either the Ready state or the

Running state—as such, the task with the highest relative priority will always be the task

selected by the scheduler to be in the Running state.

Example 8 behaves as follows:

1. Task 1 (Listing 22) is created with the highest priority, so is guaranteed to run first.

Task 1 prints out a couple of strings before raising the priority of Task 2 (Listing 23) to

above its own priority.

2. Task 2 starts to run (enters the Running state) as soon as it has the highest relative

priority. Only one task can be in the Running state at any one time; so, when Task 2 is

in the Running state, Task 1 is in the Ready state.

3. Task 2 prints out a message before setting its own priority back to below that of Task 1.

4. Task 2 setting its priority back down means Task 1 is once again the highest priority

task, so Task 1 re-enters the Running state, forcing Task 2 back into the Ready state.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

42

void vTask1(void *pvParameters)
{
unsigned portBASE_TYPE uxPriority;

 /* This task will always run before Task 2 as i t is created with the higher
 priority. Neither Task 1 nor Task 2 ever block so both will always be in either
 the Running or the Ready state.

 Query the priority at which this task is runnin g - passing in NULL means
 "return my priority". */
 uxPriority = uxTaskPriorityGet(NULL);

 for(;;)
 {
 /* Print out the name of this task. */
 vPrintString("Task 1 is running\n");

 /* Setting the Task 2 priority above the Ta sk 1 priority will cause
 Task 2 to immediately start running (as the n Task 2 will have the higher
 priority of the two created tasks). Note t he use of the handle to task
 2 (xTask2Handle) in the call to vTaskPriori tySet(). Listing 24 shows how
 the handle was obtained. */
 vPrintString("About to raise the Task 2 pr iority\n");
 vTaskPrioritySet(xTask2Handle, (uxPriorit y + 1));

 /* Task 1 will only run when it has a prior ity higher than Task 2.
 Therefore, for this task to reach this poin t Task 2 must already have
 executed and set its priority back down to below the priority of this
 task. */
 }
}

Listing 22. The implementation of Task 1 in Exampl e 8

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 43

void vTask2(void *pvParameters)
{
unsigned portBASE_TYPE uxPriority;

 /* Task 1 will always run before this task as T ask 1 is created with the
 higher priority. Neither Task 1 nor Task 2 eve r block so will always be
 in either the Running or the Ready state.

 Query the priority at which this task is runnin g - passing in NULL means
 "return my priority". */
 uxPriority = uxTaskPriorityGet(NULL);

 for(;;)
 {
 /* For this task to reach this point Task 1 must have already run and
 set the priority of this task higher than i ts own.

 Print out the name of this task. */
 vPrintString("Task2 is running\n");

 /* Set our priority back down to its origin al value. Passing in NULL
 as the task handle means "change my priorit y". Setting the
 priority below that of Task 1 will cause Ta sk 1 to immediately start
 running again – pre-empting this task. */
 vPrintString("About to lower the Task 2 pr iority\n");
 vTaskPrioritySet(NULL, (uxPriority - 2));
 }
}

Listing 23. The implementation of Task 2 in Exampl e 8

Each task can both query and set its own priority, without the use of a valid task handle, by

simply using NULL, instead. A task handle is required only when a task wishes to reference a

task other than itself, such as when Task 1 changes the priority of Task 2. To allow Task 1 to

do this, the Task 2 handle is obtained and saved when Task 2 is created, as highlighted in the

comments in Listing 24.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

44

/* Declare a variable that is used to hold the hand le of Task 2. */
xTaskHandle xTask2Handle;

int main(void)
{
 /* Create the first task at priority 2. The ta sk parameter is not used
 and set to NULL. The task handle is also not u sed so is also set to NULL. */
 xTaskCreate(vTask1, "Task 1", 240, NULL, 2, NU LL);
 /* The task is created at priority 2 _____^. */

 /* Create the second task at priority 1 - which is lower than the priority
 given to Task 1. Again the task parameter is n ot used so is set to NULL -
 BUT this time the task handle is required so th e address of xTask2Handle
 is passed in the last parameter. */
 xTaskCreate(vTask2, "Task 2", 240, NULL, 1, &x Task2Handle);
 /* The task handle is the last parameter ____^^ ^^^^^^^^^^^ */

 /* Start the scheduler so the tasks start execu ting. */
 vTaskStartScheduler();

 /* If all is well then main() will never reach here as the scheduler will
 now be running the tasks. If main() does reach here then it is likely that
 there was insufficient heap memory available fo r the idle task to be created.
 Chapter 5 provides more information on memory management. */
 for(;;);
}

Listing 24. The implementation of main() for Examp le 8

Figure 14 demonstrates the sequence in which the Example 8 tasks execute, with the

resultant output shown in Figure 15.

Figure 14. The sequence of task execution when run ning Example 8

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 45

Figure 15. The output produced when Example 8 is e xecuted

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

46

1.9 Deleting a Task

The vTaskDelete() API Function

A task can use the vTaskDelete() API function to delete itself or any other task. Note that the

vTaskDelete() API function is available only when INCLUDE_vTaskDelete is set to 1 in

FreeRTOSConfig.h.

Deleted tasks no longer exist and cannot enter the Running state again.

It is the responsibility of the idle task to free memory allocated to tasks that have since been

deleted. Therefore, it is important that applications using the vTaskDelete() API function do

not completely starve the idle task of all processing time.

Note that only memory allocated to a task by the kernel itself will be freed automatically when

the task is deleted. Any memory or other resource that the implementation of the task

allocates itself must be freed explicitly.

void vTaskDelete(xTaskHandle pxTaskToDelete);

Listing 25. The vTaskDelete() API function prototy pe

Table 7. vTaskDelete() parameters

Parameter Name/
Return Value Description

pxTaskToDelete The handle of the task that is to be deleted (the subject task)—see the

pxCreatedTask parameter of the xTaskCreate() API function for

information on obtaining handles to tasks.

A task can delete itself by passing NULL in place of a valid task handle.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 47

Example 9. Deleting tasks

This is a very simple example that behaves as follows.

1. Task 1 is created by main() with priority 1. When it runs, it creates Task 2 at priority 2.

Task 2 is now the highest priority task, so it starts to execute immediately. The source

for main() is shown in Listing 26, and for Task 1 in Listing 27.

2. Task 2 does nothing but delete itself. It could delete itself by passing NULL to

vTaskDelete() but instead, for demonstration purposes, it uses its own task handle.

The source for Task 2 is shown in Listing 28.

3. When Task 2 has been deleted, Task 1 is again the highest priority task, so continues

executing—at which point it calls vTaskDelay() to block for a short period.

4. The Idle task executes while Task 1 is in the blocked state and frees the memory that

was allocated to the now deleted Task 2.

5. When Task 1 leaves the blocked state it again becomes the highest priority Ready

state task and so pre-empts the Idle task. When it enters the Running state it creates

Task 2 again, and so it goes on.

int main(void)
{
 /* Create the first task at priority 1. The task p arameter is not used
 so is set to NULL. The task handle is also not used so likewise is set
 to NULL. */
 xTaskCreate(vTask1, "Task 1", 240, NULL, 1, NU LL);
 /* The task is created at priority 1 _____^. */

 /* Start the scheduler so the task starts executing . */
 vTaskStartScheduler();

 /* main() should never reach here as the scheduler has been started. */
 for(;;);
}

Listing 26. The implementation of main() for Examp le 9

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

48

void vTask1(void *pvParameters)
{
const portTickType xDelay100ms = 100 / portTICK_RAT E_MS;

 for(;;)
 {
 /* Print out the name of this task. */
 vPrintString("Task 1 is running\n");

 /* Create task 2 at a higher priority. Again the t ask parameter is not
 used so is set to NULL - BUT this time the task handle is required so
 the address of xTask2Handle is passed as th e last parameter. */
 xTaskCreate(vTask2, "Task 2", 240, NULL, 2 , &xTask2Handle);
 /* The task handle is the last parameter ____^^^^^^ ^^^^^^^ */

 /* Task 2 has/had the higher priority, so for Task 1 to reach here Task 2
 must have already executed and deleted itse lf. Delay for 100
 milliseconds. */
 vTaskDelay(xDelay100ms);
 }
}

Listing 27. The implementation of Task 1 for Examp le 9

void vTask2(void *pvParameters)
{
 /* Task 2 does nothing but delete itself. To do th is it could call vTaskDelete()
 using NULL as the parameter, but instead and pu rely for demonstration purposes it
 instead calls vTaskDelete() passing its own tas k handle. */
 vPrintString("Task2 is running and about to de lete itself\n");
 vTaskDelete(xTask2Handle);
}

Listing 28. The implementation of Task 2 for Examp le 9

Figure 16. The output produced when Example 9 is e xecuted

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 49

Figure 17. The execution sequence for Example 9

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

50

1.10 The Scheduling Algorithm—A Summary

Prioritized Pre-emptive Scheduling

The examples in this chapter illustrate how and when FreeRTOS selects which task should be

in the Running state.

• Each task is assigned a priority.

• Each task can exist in one of several states.

• Only one task can exist in the Running state at any one time.

• The scheduler always selects the highest priority Ready state task to enter the Running

state.

This type of scheme is called ‘Fixed Priority Pre-emptive Scheduling’—‘Fixed Priority’ because

each task is assigned a priority that is not altered by the kernel itself (only tasks can change

priorities); ‘Pre-emptive’ because a task entering the Ready state or having its priority altered

will always pre-empt the Running state task, if the Running state task has a lower priority.

Tasks can wait in the Blocked state for an event and are automatically moved back to the

Ready state when the event occurs. Temporal events occur at a particular time—for example,

when a block time expires. They are generally used to implement periodic or timeout

behavior. Synchronization events occur when a task or interrupt service routine sends

information to a queue or to one of the many types of semaphore. They are generally used to

signal asynchronous activity, such as data arriving at a peripheral.

Figure 18 demonstrates all this behavior by illustrating the execution pattern of a hypothetical

application.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 51

Figure 18. Execution pattern with pre-emption poin ts highlighted

Referring to Figure 18:

1. Idle Task

The idle task is running at the lowest priority, so gets pre-empted every time a higher

priority task enters the Ready state—for example, at times t3, t5 and t9.

2. Task 3

Task 3 is an event-driven task that executes with a relatively low priority, but above the Idle

task priority. It spends most of its time in the Blocked state waiting for the event of interest,

transitioning from the Blocked state to the Ready state each time the event occurs. All

FreeRTOS inter-task communication mechanisms (queues, semaphores, etc.) can be used

to signal events and unblock tasks in this way.

Events occur at times t3 and t5, and also somewhere between t9 and t12. The events

occurring at times t3 and t5 are processed immediately as, at these times, Task 3 is the

highest priority task that is able to run. The event that occurs somewhere between times t9

and t12 is not processed until t12 because until then the higher priority tasks Task 1 and

Task 2 are still executing. It is only at time t12 that both Task 1 and Task 2 are in the

Blocked state, making Task 3 the highest priority Ready state task.

3. Task 2

Task 2 is a periodic task that executes at a priority above the priority of Task 3, but below

the priority of Task 1. The period interval means Task 2 wants to execute at times t1, t6,

and t9.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

52

At time t6, Task 3 is in the Running state, but Task 2 has the higher relative priority so pre-

empts Task 3 and starts executing immediately. Task 2 completes its processing and re-

enters the Blocked state at time t7, at which point Task 3 can re-enter the Running state to

complete its processing. Task 3 itself Blocks at time t8.

4. Task 1

Task 1 is also an event-driven task. It executes with the highest priority of all, so can pre-

empt any other task in the system. The only Task 1 event shown occurs at time t10, at

which time Task 1 pre-empts Task 2. Task 2 can complete its processing only after Task 1

has re-entered the Blocked at time t11.

Selecting Task Priorities

Figure 18 shows the fundamental importance of priority assignment to the way an application

behaves.

As a general rule, tasks that implement hard real-time functions are assigned priorities above

those that implement soft real-time functions. However, other characteristics, such as

execution times and processor utilization, must also be taken into account to ensure the entire

application will never miss a hard real-time deadline.

Rate Monotonic Scheduling (RMS) is a common priority assignment technique which dictates

that a unique priority be assigned to each task in accordance with the tasks periodic execution

rate. The highest priority is assigned to the task that has the highest frequency of periodic

execution. The lowest priority is assigned to the task with the lowest frequency of periodic

execution. Assigning priorities in this way has been shown to maximize the ‘schedulability’ of

the entire application, but run time variations, and the fact that not all tasks are in any way

periodic, make absolute calculations a complex process.

Co-operative Scheduling

This book focuses on pre-emptive scheduling. FreeRTOS can also optionally use co-

operative scheduling.

When a pure co-operative scheduler is used, a context switch will occur only when either the

Running state task enters the Blocked state or the Running state task explicitly calls

taskYIELD(). Tasks will never be pre-empted and tasks of equal priority will not automatically

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 53

share processing time. Co-operative scheduling in this manner is simpler but can potentially

result in a less responsive system.

A hybrid scheme, where interrupt service routines are used to explicitly cause a context switch,

is also possible. This allows synchronization events to cause pre-emption, but not temporal

events. The result is a pre-emptive system without time slicing. This can be desirable

because of its efficiency gains and is a common scheduler configuration.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

54

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 55

Chapter 2

Queue Management

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

56

2.1 Chapter Introduction and Scope

Applications that use FreeRTOS are structured as a set of independent tasks—each task is

effectively a mini program in its own right. It is likely that these autonomous tasks will have to

communicate with each other so that, collectively, they can provide useful system functionality.

The ‘queue’ is the underlying primitive used by all FreeRTOS communication and

synchronization mechanisms.

Scope

This chapter aims to give readers a good understanding of:

• How to create a queue.

• How a queue manages the data it contains.

• How to send data to a queue.

• How to receive data from a queue.

• What it means to block on a queue.

• The effect of task priorities when writing to and reading from a queue.

Only task-to-task communication is covered in this chapter. Task-to-interrupt and interrupt-to-

task communication is covered in Chapter 3.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 57

2.2 Characteristics of a Queue

Data Storage

A queue can hold a finite number of fixed size data items. The maximum number of items a

queue can hold is called its ‘length’. Both the length and the size of each data item are set

when the queue is created.

Normally, queues are used as First In First Out (FIFO) buffers where data is written to the end

(tail) of the queue and removed from the front (head) of the queue. It is also possible to write

to the front of a queue.

Writing data to a queue causes a byte-for-byte copy of the data to be stored in the queue itself.

Reading data from a queue causes the copy of the data to be removed from the queue.

Figure 19 demonstrates data being written to and read from a queue, and the effect of each

operation on the data stored in the queue.

Access by Multiple Tasks

Queues are objects in their own right that are not owned by or assigned to any particular task.

Any number of tasks can write to the same queue and any number of tasks can read from the

same queue. A queue having multiple writers is very common, whereas a queue having

multiple readers is quite rare.

Blocking on Queue Reads

When a task attempts to read from a queue it can optionally specify a ‘block’ time. This is the

time the task should be kept in the Blocked state to wait for data to be available from the

queue should the queue already be empty. A task that is in the Blocked state, waiting for data

to become available from a queue, is automatically moved to the Ready state when another

task or interrupt places data into the queue. The task will also be moved automatically from

the Blocked state to the Ready state if the specified block time expires before data becomes

available.

Queues can have multiple readers so it is possible for a single queue to have more than one

task blocked on it waiting for data. When this is the case, only one task will be unblocked

when data becomes available. The task that is unblocked will always be the highest priority

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

58

task that is waiting for data. If the blocked tasks have equal priority, then the task that has

been waiting for data the longest will be unblocked.

Blocking on Queue Writes

Just as when reading from a queue, a task can optionally specify a block time when writing to

a queue. In this case, the block time is the maximum time the task should be held in the

Blocked state to wait for space to become available on the queue, should the queue already

be full.

Queues can have multiple writers, so it is possible for a full queue to have more than one task

blocked on it waiting to complete a send operation. When this is the case, only one task will

be unblocked when space on the queue becomes available. The task that is unblocked will

always be the highest priority task that is waiting for space. If the blocked tasks have equal

priority, then the task that has been waiting for space the longest will be unblocked.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 59

Queue
Task A

int x;

Task B

int y;

A queue is created to allow Task A and Task B to communicate. The queue can hold a maximum of 5

integers. When the queue is created it does not contain any values so is empty.

Queue

10

Task A

int x;

x = 10;

Task B

int y;

Task A writes (sends) the value of a local variable to the back of the queue. As the queue was previously

empty the value written is now the only item in the queue, and is therefore both the value at the back of the

queue and the value at the front of the queue.

Queue

20 10

Task A

int x;

x = 20;

Task B

int y;

Task A changes the value of its local variable before writing it to the queue again. The queue now

contains copies of both values written to the queue. The first value written remains at the front of the

queue, the new value is inserted at the end of the queue. The queue has three empty spaces remaining.

Queue

20 10

Task A

int x;

x = 20;

Task B

int y;

// y now equals 10

Task B reads (receives) from the queue into a different variable. The value received by Task B is the

value from the head of the queue, which is the first value Task A wrote to the queue (10 in this illustration).

Send

Send

Receive

Queue

20

Task A

int x;

x = 20;

Task B

int y;

// y now equals 10

Task B has removed one item, leaving only the second value written by Task A remaining in the queue.

This is the value Task B would receive next if it read from the queue again. The queue now has four

empty spaces remaining.

Figure 19. An example sequence of writes and reads to and from a queue

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

60

2.3 Using a Queue

The xQueueCreate() API Function

A queue must be explicitly created before it can be used.

Queues are referenced using variables of type xQueueHandle. xQueueCreate() is used to

create a queue and returns an xQueueHandle to reference the queue it creates.

FreeRTOS allocates RAM from the FreeRTOS heap when a queue is created. The RAM is

used to hold both the queue data structures and the items that are contained in the queue.

xQueueCreate() will return NULL if there is insufficient heap RAM available for the queue to be

created. Chapter 5 provides more information on heap memory management.

xQueueHandle xQueueCreate(unsigned portBASE_TYPE u xQueueLength,
 unsigned portBASE_TYPE u xItemSize
);

Listing 29. The xQueueCreate() API function protot ype

Table 8, xQueueCreate() parameters and return valu e

Parameter
Name Description

uxQueueLength The maximum number of items that the queue being created can hold at

any one time.

uxItemSize The size in bytes of each data item that can be stored in the queue.

Return Value If NULL is returned, then the queue cannot be created because there is

insufficient heap memory available for FreeRTOS to allocate the queue

data structures and storage area.

A non-NULL value being returned indicates that the queue has been

created successfully. The returned value should be stored as the handle

to the created queue.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 61

The xQueueSendToBack() and xQueueSendToFront() API Functions

As might be expected, xQueueSendToBack() is used to send data to the back (tail) of a

queue, and xQueueSendToFront() is used to send data to the front (head) of a queue.

xQueueSend() is equivalent to and exactly the same as xQueueSendToBack().

Note: Never call xQueueSendToFront() or xQueueSendToBack() from an interrupt service

routine. The interrupt-safe versions xQueueSendToFrontFromISR() and

xQueueSendToBackFromISR() should be used in their place. These are described in Chapter

3.

portBASE_TYPE xQueueSendToFront(xQueueHandle xQu eue,
 const void * pvI temToQueue,
 portTickType xTi cksToWait
);

Listing 30. The xQueueSendToFront() API function p rototype

portBASE_TYPE xQueueSendToBack(xQueueHandle xQu eue,
 const void * pvI temToQueue,
 portTickType xTi cksToWait
);

Listing 31. The xQueueSendToBack() API function pr ototype

Table 9. xQueueSendToFront() and xQueueSendToBack() function parameters
and return value

Parameter Name/
Returned Value Description

xQueue The handle of the queue to which the data is being sent (written).

The queue handle will have been returned from the call to

xQueueCreate() used to create the queue.

pvItemToQueue A pointer to the data to be copied into the queue.

The size of each item that the queue can hold is set when the

queue is created, so this many bytes will be copied from

pvItemToQueue into the queue storage area.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

62

Table 9. xQueueSendToFront() and xQueueSendToBack() function parameters
and return value

Parameter Name/
Returned Value Description

xTicksToWait The maximum amount of time the task should remain in the

Blocked state to wait for space to become available on the queue,

should the queue already be full.

Both xQueueSendToFront() and xQueueSendToBack() will return

immediately if xTicksToWait is zero and the queue is already full.

The block time is specified in tick periods, so the absolute time it

represents is dependent on the tick frequency. The constant

portTICK_RATE_MS can be used to convert a time specified in

milliseconds to a time specified in ticks.

Setting xTicksToWait to portMAX_DELAY will cause the task to

wait indefinitely (without timing out), provided

INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 63

Table 9. xQueueSendToFront() and xQueueSendToBack() function parameters
and return value

Parameter Name/
Returned Value Description

Returned value There are two possible return values:

1. pdPASS

pdPASS will be returned only if data was successfully sent to

the queue.

If a block time was specified (xTicksToWait was not zero), then

it is possible that the calling task was placed in the Blocked

state, to wait for space to become available in the queue before

the function returned, but data was successfully written to the

queue before the block time expired.

2. errQUEUE_FULL

errQUEUE_FULL will be returned if data could not be written to

the queue because the queue was already full.

If a block time was specified (xTicksToWait was not zero) then

the calling task will have been placed into the Blocked state to

wait for another task or interrupt to make room in the queue, but

the specified block time expired before this happened.

The xQueueReceive() and xQueuePeek() API Functions

xQueueReceive() is used to receive (read) an item from a queue. The item that is received is

removed from the queue.

xQueuePeek() is used to receive an item from a queue without the item being removed from

the queue. xQueuePeek() receives the item from the head of the queue, without modifying the

data that is stored in the queue, or the order in which data is stored in the queue.

Note: Never call xQueueReceive() or xQueuePeek() from an interrupt service routine. The

interrupt-safe xQueueReceiveFromISR() API function is described in Chapter 3.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

64

portBASE_TYPE xQueueReceive(
 xQueueHandle xQueue,
 const void * pvBuffe r,
 portTickType xTicksT oWait
);

Listing 32. The xQueueReceive() API function proto type

portBASE_TYPE xQueuePeek(
 xQueueHandle xQueue,
 const void * pvBuffe r,
 portTickType xTicksT oWait
);

Listing 33. The xQueuePeek() API function prototyp e

Table 10. xQueueReceive() and xQueuePeek() functio n parameters and return
values

Parameter Name/
Returned value Description

xQueue The handle of the queue from which the data is being received (read).

The queue handle will have been returned from the call to

xQueueCreate() used to create the queue.

pvBuffer A pointer to the memory into which the received data will be copied.

The size of each data item that the queue holds is set when the queue

is created. The memory pointed to by pvBuffer must be at least large

enough to hold that many bytes.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 65

Table 10. xQueueReceive() and xQueuePeek() functio n parameters and return
values

Parameter Name/
Returned value Description

xTicksToWait The maximum amount of time the task should remain in the Blocked

state to wait for data to become available on the queue, should the

queue already be empty.

If xTicksToWait is zero, then both xQueueReceive() and

xQueuePeek() will return immediately if the queue is already empty.

The block time is specified in tick periods, so the absolute time it

represents is dependent on the tick frequency. The constant

portTICK_RATE_MS can be used to convert a time specified in

milliseconds to a time specified in ticks.

Setting xTicksToWait to portMAX_DELAY will cause the task to wait

indefinitely (without timing out) provided INCLUDE_vTaskSuspend is

set to 1 in FreeRTOSConfig.h.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

66

Table 10. xQueueReceive() and xQueuePeek() functio n parameters and return
values

Parameter Name/
Returned value Description

Returned value There are two possible return values:

1. pdPASS

pdPASS will be returned only if data was successfully read from

the queue.

If a block time was specified (xTicksToWait was not zero), then it is

possible that the calling task was placed in the Blocked state, to

wait for data to become available on the queue, but data was

successfully read from the queue before the block time expired.

2. errQUEUE_EMPTY

errQUEUE_EMPTY will be returned if data cannot be read from

the queue because the queue is already empty.

If a block time was specified (xTicksToWait was not zero) then the

calling task will have been placed into the Blocked state to wait for

another task or interrupt to send data to the queue, but the block

time expired before this happened.

The uxQueueMessagesWaiting() API Function

uxQueueMessagesWaiting() is used to query the number of items that are currently in a

queue.

Note: Never call uxQueueMessagesWaiting() from an interrupt service routine. The interrupt-

safe uxQueueMessagesWaitingFromISR() should be used in its place.

unsigned portBASE_TYPE uxQueueMessagesWaiting(xQue ueHandle xQueue);

Listing 34. The uxQueueMessagesWaiting() API funct ion prototype

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 67

Table 11. uxQueueMessagesWaiting() function parame ters and return value

Parameter Name/
Returned Value Description

xQueue The handle of the queue being queried. The queue handle will have

been returned from the call to xQueueCreate() used to create the

queue.

Returned value The number of items that the queue being queried is currently holding.

If zero is returned, then the queue is empty.

Example 10. Blocking when receiving from a queue

This example demonstrates a queue being created, data being sent to the queue from multiple

tasks, and data being received from the queue. The queue is created to hold data items of

type long. The tasks that send to the queue do not specify a block time, whereas the task that

receives from the queue does.

The priority of the tasks that send to the queue is lower than the priority of the task that

receives from the queue. This means that the queue should never contain more than one item

because, as soon as data is sent to the queue the receiving task will unblock, pre-empt the

sending task, and remove the data—leaving the queue empty once again.

Listing 35 shows the implementation of the task that writes to the queue. Two instances of this

task are created, one that writes continuously the value 100 to the queue, and another that

writes continuously the value 200 to the same queue. The task parameter is used to pass

these values into each task instance.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

68

static void vSenderTask(void *pvParameters)
{
long lValueToSend;
portBASE_TYPE xStatus;

 /* Two instances of this task are created so th e value that is sent to the
 queue is passed in via the task parameter - thi s way each instance can use
 a different value. The queue was created to ho ld values of type long,
 so cast the parameter to the required type. */
 lValueToSend = (long) pvParameters;

 /* As per most tasks, this task is implemented within an infinite loop. */
 for(;;)
 {
 /* Send the value to the queue.

 The first parameter is the queue to which d ata is being sent. The
 queue was created before the scheduler was started, so before this task
 started to execute.

 The second parameter is the address of the data to be sent, in this case
 the address of lValueToSend.

 The third parameter is the Block time – the time the task should be kept
 in the Blocked state to wait for space to b ecome available on the queue
 should the queue already be full. In this case a block time is not
 specified because the queue should never co ntain more than one item and
 therefore never be full. */
 xStatus = xQueueSendToBack(xQueue, &lValue ToSend, 0);

 if(xStatus != pdPASS)
 {
 /* The send operation could not complet e because the queue was full -
 this must be an error as the queue shou ld never contain more than
 one item! */
 vPrintString("Could not send to the qu eue.\n");
 }

 /* Allow the other sender task to execute. taskYIELD() informs the
 scheduler that a switch to another task sho uld occur now rather than
 keeping this task in the Running state unti l the end of the current time
 slice. */
 taskYIELD();
 }
}

Listing 35. Implementation of the sending task use d in Example 10

Listing 36 shows the implementation of the task that receives data from the queue. The

receiving task specifies a block time of 100 milliseconds, so will enter the Blocked state to wait

for data to become available. It will leave the Blocked state when either data is available on

the queue or 100 milliseconds passes without data becoming available. In this example, the

100 milliseconds timeout should never expire, as there are two tasks writing continuously to

the queue.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 69

static void vReceiverTask(void *pvParameters)
{
/* Declare the variable that will hold the values r eceived from the queue. */
long lReceivedValue;
portBASE_TYPE xStatus;
const portTickType xTicksToWait = 100 / portTICK_RA TE_MS;

 /* This task is also defined within an infinite loo p. */
 for(;;)
 {
 /* This call should always find the queue empty bec ause this task will
 immediately remove any data that is written to the queue. */
 if(uxQueueMessagesWaiting(xQueue) != 0)
 {
 vPrintString("Queue should have been e mpty!\n");
 }

 /* Receive data from the queue.

 The first parameter is the queue from which data is to be received. The
 queue is created before the scheduler is st arted, and therefore before this
 task runs for the first time.

 The second parameter is the buffer into whi ch the received data will be
 placed. In this case the buffer is simply the address of a variable that
 has the required size to hold the received data.

 The last parameter is the block time – the maximum amount of time that the
 task should remain in the Blocked state to wait for data to be available
 should the queue already be empty. In this case the constant
 portTICK_RATE_MS is used to convert 100 mil liseconds to a time specified in
 ticks. */
 xStatus = xQueueReceive(xQueue, &lReceived Value, xTicksToWait);

 if(xStatus == pdPASS)
 {
 /* Data was successfully received from the queue, p rint out the received
 value. */
 vPrintStringAndNumber("Received = ", l ReceivedValue);
 }
 else
 {
 /* Data was not received from the queue even after waiting for 100ms.
 This must be an error as the sending ta sks are free running and will be
 continuously writing to the queue. */
 vPrintString("Could not receive from t he queue.\n");
 }
 }
}

Listing 36. Implementation of the receiver task fo r Example 10

Listing 37 contains the definition of the main() function. This simply creates the queue and the

three tasks before starting the scheduler. The queue is created to hold a maximum of five

long values, even though the priorities of the tasks are set such that the queue will never

contain more than one item at a time.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

70

/* Declare a variable of type xQueueHandle. This i s used to store the handle
to the queue that is accessed by all three tasks. * /
xQueueHandle xQueue;

int main(void)
{
 /* The queue is created to hold a maximum of 5 values, each of which is
 large enough to hold a variable of type long. * /
 xQueue = xQueueCreate(5, sizeof(long));

 if(xQueue != NULL)
 {
 /* Create two instances of the task that wi ll send to the queue. The task
 parameter is used to pass the value that th e task will write to the queue,
 so one task will continuously write 100 to the queue while the other task
 will continuously write 200 to the queue. Both tasks are created at
 priority 1. */
 xTaskCreate(vSenderTask, "Sender1", 240, (void *) 100, 1, NULL);
 xTaskCreate(vSenderTask, "Sender2", 240, (void *) 200, 1, NULL);

 /* Create the task that will read from the queue. The task is created with
 priority 2, so above the priority of the se nder tasks. */
 xTaskCreate(vReceiverTask, "Receiver", 240 , NULL, 2, NULL);

 /* Start the scheduler so the created tasks start executing. */
 vTaskStartScheduler();
 }
 else
 {
 /* The queue could not be created. */
 }

 /* If all is well then main() will never reach here as the scheduler will
 now be running the tasks. If main() does reach here then it is likely that
 there was insufficient heap memory available fo r the idle task to be created.
 Chapter 5 provides more information on memory management. */
 for(;;);
}

Listing 37. The implementation of main() for Examp le 10

The tasks that send to the queue call taskYIELD() on each iteration of their infinite loop.

taskYIELD() informs the scheduler that a switch to another task should occur now, rather than

keeping the executing task in the Running state until the end of the current time slice. A task

that calls taskYIELD() is in effect volunteering to be removed from the Running state. As both

tasks that send to the queue have an identical priority, each time one calls taskYIELD() the

other starts executing—the task that calls taskYIELD() is moved to the Ready state as the

other sending task is moved to the Running state. This causes the two sending tasks to send

data to the queue in turn. The output produced by Example 10 is shown in Figure 20.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 71

Figure 20. The output produced when Example 10 is executed

Figure 21 demonstrates the sequence of execution.

Figure 21. The sequence of execution produced by E xample 10

Using Queues to Transfer Compound Types

It is common for a task to receive data from multiple sources on a single queue. Often, the

receiver of the data needs to know where the data came from, to allow it to determine how the

data should be processed. A simple way to achieve this is to use the queue to transfer

structures where both the value of the data and the source of the data are contained in the

structure fields. This scheme is demonstrated in Figure 22.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

72

Figure 22. An example scenario where structures ar e sent on a queue

Referring to Figure 22:

• A queue is created that holds structures of type xData. The structure members allow

both a data value and a code indicating what the data means to be sent to the queue in

one message.

• A central Controller task is used to perform the primary system function. This has to

react to inputs and changes to the system state communicated to it on the queue.

• A CAN bus task is used to encapsulate the CAN bus interfacing functionality. When the

CAN bus task has received and decoded a message, it sends the already decoded

message to the Controller task in an xData structure. The iMeaning member of the

transferred structure is used to let the Controller task know what the data is—in the

depicted case it is a motor speed value. The iValue member of the transferred structure

is used to let the Controller task know the actual motor speed value.

• A Human Machine Interface (HMI) task is used to encapsulate all the HMI functionality.

The machine operator can probably input commands and query values in a number of

ways that have to be detected and interpreted within the HMI task. When a new

command is input, the HMI task sends the command to the Controller task in an xData

structure. The iMeaning member of the transferred structure is used to let the Controller

task know what the data is—in the depicted case it is a new set point value. The iValue

member of the transferred structure is used to let the Controller task know the actual set

point value.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 73

Example 11. Blocking when sending to a queue or sen ding structures on a
queue

Example 11 is similar to Example 10, but the task priorities are reversed so the receiving task

has a lower priority than the sending tasks. Also the queue is used to pass structures, rather

than simple long integers, between the tasks.

Listing 38 shows the definition of the structure used by Example 11.

/* Define the structure type that will be passed on the queue. */
typedef struct
{
 unsigned char ucValue;
 unsigned char ucSource;
} xData;

/* Declare two variables of type xData that will be passed on the queue. */
static const xData xStructsToSend[2] =
{
 { 100, mainSENDER_1 }, /* Used by Sender1. */
 { 200, mainSENDER_2 } /* Used by Sender2. */
};

Listing 38. The definition of the structure that i s to be passed on a queue, plus the
declaration of two variables for use by the example

In Example 10, the receiving task has the highest priority, so the queue never contains more

than one item. This is caused by the receiving task pre-empting the sending tasks as soon as

data is placed into the queue. In Example 11, the sending tasks have the higher priority, so

the queue will normally be full. This occurs because, as soon as the receiving task removes

an item from the queue, it is pre-empted by one of the sending tasks which then immediately

re-fills the queue. The sending task then re-enters the Blocked state to wait for space to

become available on the queue again.

Listing 39 shows the implementation of the sending task. The sending task specifies a block

time of 100 milliseconds, so it enters the Blocked state to wait for space to become available

each time the queue becomes full. It leaves the Blocked state when either space is available

on the queue or 100 milliseconds passes without space becoming available. In this example,

the 100 milliseconds timeout should never expire, as the receiving task is continuously making

space by removing items from the queue.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

74

static void vSenderTask(void *pvParameters)
{
portBASE_TYPE xStatus;
const portTickType xTicksToWait = 100 / portTICK_RA TE_MS;

 /* As per most tasks, this task is implemented within an infinite loop. */
 for(;;)
 {
 /* Send to the queue.

 The second parameter is the address of the structure being sent. The
 address is passed in as the task parameter so pvParameters is used
 directly.

 The third parameter is the Block time - the time the task should be kept
 in the Blocked state to wait for space to b ecome available on the queue
 if the queue is already full. A block time is specified because the
 sending tasks have a higher priority than t he receiving task so the queue
 is expected to become full. The receiving task will remove items from
 the queue when both sending tasks are in th e Blocked state. */
 xStatus = xQueueSendToBack(xQueue, pvParam eters, xTicksToWait);

 if(xStatus != pdPASS)
 {
 /* The send operation could not complet e, even after waiting for 100ms.
 This must be an error as the receiving task should make space in the
 queue as soon as both sending tasks are in the Blocked state. */
 vPrintString("Could not send to the qu eue.\n");
 }

 /* Allow the other sender task to execute. */
 taskYIELD();
 }
}

Listing 39. The implementation of the sending task for Example 11.

The receiving task has the lowest priority, so it will run only when both sending tasks are in the

Blocked state. The sending tasks will enter the Blocked state only when the queue is full, so

the receiving task will execute only when the queue is already full. Therefore, it always

expects to receive data even without having to specify a block time.

The implementation of the receiving task is shown in Listing 40.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 75

static void vReceiverTask(void *pvParameters)
{
/* Declare the structure that will hold the values received from the queue. */
xData xReceivedStructure;
portBASE_TYPE xStatus;

 /* This task is also defined within an infinite loo p. */
 for(;;)
 {
 /* Because it has the lowest priority this task wil l only run when the
 sending tasks are in the Blocked state. Th e sending tasks will only enter
 the Blocked state when the queue is full so this task always expects the
 number of items in the queue to be equal to the queue length – 3 in this
 case. */
 if(uxQueueMessagesWaiting(xQueue) != 3)
 {
 vPrintString("Queue should have been f ull!\n");
 }

 /* Receive from the queue.

 The second parameter is the buffer into whi ch the received data will be
 placed. In this case the buffer is simply the address of a variable that
 has the required size to hold the received structure.

 The last parameter is the block time - the maximum amount of time that the
 task will remain in the Blocked state to wa it for data to be available
 if the queue is already empty. In this cas e a block time is not necessary
 because this task will only run when the qu eue is full. */
 xStatus = xQueueReceive(xQueue, &xReceived Structure, 0);

 if(xStatus == pdPASS)
 {
 /* Data was successfully received from the queue, p rint out the received
 value and the source of the value. */
 if(xReceivedStructure.ucSource == main SENDER_1)
 {
 vPrintStringAndNumber("From Sender 1 = ", xReceivedStructure.ucValue);
 }
 else
 {
 vPrintStringAndNumber("From Sender 2 = ", xReceivedStructure.ucValue);
 }
 }
 else
 {
 /* Nothing was received from the queue. This must be an error
 as this task should only run when the q ueue is full. */
 vPrintString("Could not receive from t he queue.\n");
 }
 }
}

Listing 40. The definition of the receiving task f or Example 11

main() changes only slightly from the previous example. The queue is created to hold three

xData structures, and the priorities of the sending and receiving tasks are reversed. The

implementation of main() is shown in Listing 41.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

76

int main(void)
{
 /* The queue is created to hold a maximum of 3 structures of type xData. */
 xQueue = xQueueCreate(3, sizeof(xData));

 if(xQueue != NULL)
 {
 /* Create two instances of the task that wi ll write to the queue. The
 parameter is used to pass the structure tha t the task will write to the
 queue, so one task will continuously send x StructsToSend[0] to the queue
 while the other task will continuously send xStructsToSend[1]. Both tasks
 are created at priority 2 which is above th e priority of the receiver. */
 xTaskCreate(vSenderTask, "Sender1", 240, & (xStructsToSend[0]), 2, NULL);
 xTaskCreate(vSenderTask, "Sender2", 240, & (xStructsToSend[1]), 2, NULL);

 /* Create the task that will read from the queue. The task is created with
 priority 1, so below the priority of the se nder tasks. */
 xTaskCreate(vReceiverTask, "Receiver", 240 , NULL, 1, NULL);

 /* Start the scheduler so the created tasks start executing. */
 vTaskStartScheduler();
 }
 else
 {
 /* The queue could not be created. */
 }

 /* If all is well then main() will never reach here as the scheduler will
 now be running the tasks. If main() does reach here then it is likely that
 there was insufficient heap memory available fo r the idle task to be created.
 Chapter 5 provides more information on memory management. */
 for(;;);
}

Listing 41. The implementation of main() for Examp le 11

As in Example 10, the tasks that send to the queue yield on each iteration of their infinite loop,

so take it in turns to send data to the queue. The output produced by Example 11 is shown in

Figure 23.

Figure 23. The output produced by Example 11

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 77

Figure 24 demonstrates the sequence of execution that results from having the priority of the

sending tasks above that of the receiving task. Further explanation of Figure 24 is provided in

Table 13.

Figure 24. The sequence of execution produced by E xample 11

Table 12. Key to Figure 24

Time Description

t1 Task Sender 1 executes and sends data to the queue.

t2 Sender 1 yields to Sender 2. Sender 2 writes data to the queue.

t3 Sender 2 yields back to Sender 1. Sender 1 writes data to the queue, making the

queue full.

t4 Sender 1 yields to Sender 2.

t5 Sender 2 attempts to write data to the queue. Because the queue is already full,

Sender 2 enters the Blocked state to wait for space to become available, allowing

Sender 1 to execute once more.

t6 Sender 1 attempts to write data to the queue. Because the queue is already full,

Sender 1 also enters the Blocked state to wait for space to become available. Now

both Sender 1 and Sender 2 are in the Blocked state, so the lower priority Receiver

task can execute.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

78

Table 12. Key to Figure 24

Time Description

t7 The receiver task removes an item from the queue. As soon as there is space on

the queue, Sender 2 leaves the Blocked state and, as the higher priority task, pre-

empts the Receiver task. Sender 2 writes to the queue, filling the space just created

by the Receiver task. The queue is now full again. Sender 2 calls taskYIELD() but

Sender 1 is still in the Blocked state, so Sender 2 is reselected as the Running state

task and continues to execute.

t8 Sender 2 attempts to write to the queue. The queue is already full, so Sender 2

enters the Blocked state. Once again, both Sender 1 and Sender 2 are in the

Blocked state, so the Receiver task can execute.

t9 The Receiver task removes an item from the queue. As soon as there is space on

the queue, Sender 1 leaves the Blocked state and, as the higher priority task, pre-

empts the Receiver task. Sender 1 writes to the queue, filling the space just created

by the Receiver task. The queue is now full again. Sender 1 calls taskYIELD() but

Sender 2 is still in the Blocked state, so Sender 1 is reselected as the Running state

task and continues to execute. Sender 1 attempts to write to the queue but the

queue is full, so Sender 1 enters the Blocked state.

Both Sender 1 and Sender 2 are again in the Blocked state, allowing the lower

priority Receiver task to execute.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 79

2.4 Working with Large Data

If the size of the data being stored in the queue is large, then it is preferable to use the queue

to transfer pointers to the data, rather than copy the data itself into and out of the queue byte

by byte. Transferring pointers is more efficient in both processing time and the amount of

RAM required to create the queue. However, when queuing pointers, extreme care must be

taken to ensure that:

1. The owner of the RAM being pointed to is clearly defined.

When sharing memory between tasks via a pointer, it is essential to ensure that both

tasks do not modify the memory contents simultaneously, or take any other action that

could cause the memory contents to be invalid or inconsistent. Ideally, only the

sending task should be permitted to access the memory until a pointer to the memory

has been queued, and only the receiving task should be permitted to access the

memory after the pointer has been received from the queue.

2. The RAM being pointed to remains valid.

If the memory being pointed to was allocated dynamically, then exactly one task should

be responsible for freeing the memory. No task should attempt to access the memory

after it has been freed.

A pointer should never be used to access data that has been allocated on a task stack.

The data will not be valid after the stack frame has changed.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

80

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 81

Chapter 3

Interrupt Management

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

82

3.1 Chapter Introduction and Scope

Events

Embedded real-time systems have to take actions in response to events that originate from

the environment. For example, a packet arriving on an Ethernet peripheral (the event) might

require passing to a TCP/IP stack for processing (the action). Non-trivial systems will have to

service events that originate from multiple sources, all of which will have different processing

overhead and response time requirements. In each case, a judgment has to be made as to

the best event processing implementation strategy:

1. How should the event be detected? Interrupts are normally used, but inputs can also

be polled.

2. When interrupts are used, how much processing should be performed inside the

interrupt service routine (ISR), and how much outside? It is normally desirable to keep

each ISR as short as possible.

3. How can events be communicated to the main (non-ISR) code, and how can this code

be structured to best accommodate processing of potentially asynchronous

occurrences?

FreeRTOS does not impose any specific event processing strategy on the application

designer, but does provide features that allow the chosen strategy to be implemented in a

simple and maintainable way.

Note that only API functions and macros ending in ‘FromISR’ or ‘FROM_ISR’ should be used

within an interrupt service routine.

Scope

This chapter aims to give readers a good understanding of:

• Which FreeRTOS API functions can be used from within an interrupt service routine.

• How a deferred interrupt scheme can be implemented.

• How to create and use binary semaphores and counting semaphores.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 83

• The differences between binary and counting semaphores.

• How to use a queue to pass data into and out of an interrupt service routine.

• The interrupt nesting model of the Cortex-M3 FreeRTOS port.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

84

3.2 Deferred Interrupt Processing

Binary Semaphores Used for Synchronization

A Binary Semaphore can be used to unblock a task each time a particular interrupt occurs,

effectively synchronizing the task with the interrupt. This allows the majority of the interrupt

event processing to be implemented within the synchronized task, with only a very fast and

short portion remaining directly in the ISR. The interrupt processing is said to have been

‘deferred’ to a ‘handler’ task.

If the interrupt processing is particularly time critical, then the handler task priority can be set to

ensure that the handler task always pre-empts the other tasks in the system. The ISR can

then be implemented to include a context switch to ensure that the ISR returns directly to the

handler task when the ISR itself has completed executing. This has the effect of ensuring that

the entire event processing executes contiguously in time, just as if it had all been

implemented within the ISR itself. This scheme is demonstrated in Figure 25.

ISR

‘Handler’

Task

Task1

t1 t3t2 t4

1 - Task1 is Running when an

interrupt occurs.

2 - The ISR executes. The

ISR implementation uses a

semaphore to unblock the

‘Handler Task’.

3 - Because the handler task has the

highest priority, and the ISR performs a

context switch, the ISR returns directly

to the hander task leaving Task1 in the

Ready state for now.

4 - The Handler Task

blocks on the semaphore

to wait for the next event,

allowing the lower priority

Task1 to run once again.

Figure 25. The interrupt interrupts one task but r eturns to another

The handler task uses a blocking ‘take’ call to a semaphore as a means of entering the

Blocked state to wait for the event to occur. When the event occurs, the ISR uses a ‘give’

operation on the same semaphore to unblock the task so that the required event processing

can proceed.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 85

‘Taking a semaphore’ and ‘giving a semaphore’ are concepts that have different meanings

depending on their usage scenario. In classic semaphore terminology, ‘taking a semaphore’ is

equivalent to a P() operation, and ‘giving a semaphore’ is equivalent to a V() operation.

In this interrupt synchronization scenario, the binary semaphore can be considered

conceptually as a queue with a length of one. The queue can contain a maximum of one item

at any time, so is always either empty or full (hence, binary). By calling xSemaphoreTake(),

the handler task effectively attempts to read from the queue with a block time, causing the task

to enter the Blocked state if the queue is empty. When the event occurs, the ISR uses the

xSemaphoreGiveFromISR() function to place a token (the semaphore) into the queue, making

the queue full. This causes the handler task to exit the Blocked state and remove the token,

leaving the queue empty once more. When the handler task has completed its processing, it

once more attempts to read from the queue and, finding the queue empty, re-enters the

Blocked state to wait for the next event. This sequence is demonstrated in Figure 26.

Figure 26 shows the interrupt ‘giving’ the semaphore even though it has not first ‘taken’ it, and

the task ‘taking’ the semaphore but never giving it back. This is why the scenario is described

as being conceptually similar to writing to and reading from a queue. It often causes confusion

as it does not follow the same rules as other semaphore usage scenarios, where a task that

takes a semaphore must always give it back—such as the scenario described in Chapter 4.

Writing FreeRTOS Interrupt Handlers

The Cortex-M3 architecture and FreeRTOS port both permit ISRs to be written entirely in C,

even when the ISR wants to cause a context switch. The following examples demonstrate ISR

implementation.

The vSemaphoreCreateBinary() API Function

Handles to all the various types of FreeRTOS semaphore are stored in a variable of type

xSemaphoreHandle.

Before a semaphore can be used, it must be created. To create a binary semaphore, use the

vSemaphoreCreateBinary() API function1.

1 The Semaphore API is actually implemented as a set of macros, not functions. For simplicity, they
are referred to as functions throughout this book.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

86

void vSemaphoreCreateBinary(xSemaphoreHandle xSema phore);

Listing 42. The vSemaphoreCreateBinary() API funct ion prototype

Table 13. vSemaphoreCreateBinary() parameters

Parameter Name Description

xSemaphore The semaphore being created.

Note that vSemaphoreCreateBinary() is actually implemented as a

macro, so the semaphore variable should be passed in directly, rather

than by reference. The examples in this chapter include calls to

vSemaphoreCreateBinary() that can be used as a reference and copied.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 87

Figure 26. Using a binary semaphore to synchronize a task with an interrupt

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

88

The xSemaphoreTake() API Function

‘Taking’ a semaphore means to ‘obtain’ or ‘receive’ the semaphore. The semaphore can be

taken only if it is available. In classic semaphore terminology, xSemaphoreTake() is

equivalent to a P() operation.

All the various types of FreeRTOS semaphore, except recursive semaphores, can be ‘taken’

using the xSemaphoreTake() function.

xSemaphoreTake() must not be used from an interrupt service routine.

portBASE_TYPE xSemaphoreTake(xSemaphoreHandle xSem aphore, portTickType xTicksToWait);

Listing 43. The xSemaphoreTake() API function prot otype

Table 14. xSemaphoreTake() parameters and return v alue

Parameter Name/
Returned Value Description

xSemaphore The semaphore being ‘taken’.

A semaphore is referenced by a variable of type xSemaphoreHandle. It

must be explicitly created before it can be used.

xTicksToWait The maximum amount of time the task should remain in the Blocked

state to wait for the semaphore, if it is not already available.

If xTicksToWait is zero, then xSemaphoreTake() will return immediately,

if the semaphore is not available.

The block time is specified in tick periods, so the absolute time it

represents is dependent on the tick frequency. The constant

portTICK_RATE_MS can be used to convert a time specified in

milliseconds to a time specified in ticks.

Setting xTicksToWait to portMAX_DELAY will cause the task to wait

indefinitely (without a timeout) if INCLUDE_vTaskSuspend is set to 1 in

FreeRTOSConfig.h.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 89

Table 14. xSemaphoreTake() parameters and return v alue

Parameter Name/
Returned Value Description

Returned value There are two possible return values:

1. pdPASS

pdPASS is returned only if the call to xSemaphoreTake() was

successful in obtaining the semaphore.

If a block time was specified (xTicksToWait was not zero), then it is

possible that the calling task was placed in the Blocked state to wait

for the semaphore if it was not immediately available, but the

semaphore became available before the block time expired.

2. pdFALSE

The semaphore is not available.

If a block time was specified (xTicksToWait was not zero), then the

calling task will have been placed into the Blocked state to wait for

the semaphore to become available, but the block time expired

before this happened.

The xSemaphoreGiveFromISR() API Function

All the various types of FreeRTOS semaphore, except recursive semaphores, can be ‘given’

using the xSemaphoreGiveFromISR() function.

xSemaphoreGiveFromISR() is a special form of xSemaphoreGive() that is specifically for use

within an interrupt service routine.

portBASE_TYPE xSemaphoreGiveFromISR(xSemaphoreHand le xSemaphore,
 portBASE_TYPE *pxHigherPriorityTaskWoken
);

Listing 44. The xSemaphoreGiveFromISR() API functi on prototype

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

90

Table 15. xSemaphoreGiveFromISR() parameters and r eturn value

Parameter Name/
Returned Value Description

xSemaphore The semaphore being ‘given’.

A semaphore is referenced by a variable of type

xSemaphoreHandle and must be explicitly created before

being used.

pxHigherPriorityTaskWoken It is possible that a single semaphore will have one or more

tasks blocked on it waiting for the semaphore to become

available. Calling xSemaphoreGiveFromISR() can make the

semaphore available, and so cause such a task to leave the

Blocked state. If calling xSemaphoreGiveFromISR() causes

a task to leave the Blocked state, and the unblocked task

has a priority higher than or equal to the currently executing

task (the task that was interrupted), then, internally,

xSemaphoreGiveFromISR() will set

*pxHigherPriorityTaskWoken to pdTRUE.

If xSemaphoreGiveFromISR() sets this value to pdTRUE,

then a context switch should be performed before the

interrupt is exited. This will ensure that the interrupt returns

directly to the highest priority Ready state task.

Returned value There are two possible return values:

1. pdPASS

pdPASS will be returned only if the call to

xSemaphoreGiveFromISR() is successful.

2. pdFAIL

If a semaphore is already available, it cannot be given,

and xSemaphoreGiveFromISR() will return pdFAIL.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 91

Example 12. Using a binary semaphore to synchronize a task with an interrupt

This example uses a binary semaphore to unblock a task from within an interrupt service

routine—effectively synchronizing the task with the interrupt.

A simple periodic task is used to generate an interrupt every 500 milliseconds. In this case, a

software generated interrupt is used because it allows the time at which the interrupt occurs to

be controlled, which in turn allows the sequence of execution to be observed more easily.

Listing 45 shows the implementation of the periodic task. mainTRIGGER_INTERRUPT()

simply sets a bit in the interrupt controller’s Set Pending register.

static void vPeriodicTask(void *pvParameters)
{
 /* As per most tasks, this task is implemented within an infinite loop. */
 for(;;)
 {
 /* This task is just used to 'simulate' an interrupt. This is done by
 periodically generating a software interrup t. */
 vTaskDelay(500 / portTICK_RATE_MS);

 /* Generate the interrupt, printing a messa ge both before hand and
 afterwards so the sequence of execution is evident from the output. */
 vPrintString("Periodic task - About to gen erate an interrupt.\n");
 mainTRIGGER_INTERRUPT();
 vPrintString("Periodic task - Interrupt ge nerated.\n\n");
 }
}

Listing 45. Implementation of the task that period ically generates a software
interrupt in Example 12

Listing 46 shows the implementation of the handler task—the task that is synchronized with

the software interrupt through the use of a binary semaphore. A message is printed out on

each iteration of the task, so the sequence in which the task and the interrupt execute is

evident from the output produced when the example is executed.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

92

static void vHandlerTask(void *pvParameters)
{
 /* As per most tasks, this task is implemented within an infinite loop.

 Take the semaphore once to start with so the se maphore is empty before the
 infinite loop is entered. The semaphore was cr eated before the scheduler
 was started so before this task ran for the fir st time.*/
 xSemaphoreTake(xBinarySemaphore, 0);

 for(;;)
 {
 /* Use the semaphore to wait for the event. The task blocks
 indefinitely meaning this function call wil l only return once the
 semaphore has been successfully obtained - so there is no need to check
 the returned value. */
 xSemaphoreTake(xBinarySemaphore, portMAX_D ELAY);

 /* To get here the event must have occurred . Process the event (in this
 case we just print out a message). */
 vPrintString("Handler task - Processing ev ent.\n");
 }
}

Listing 46. The implementation of the handler task (the task that synchronizes with
the interrupt) in Example 12

Listing 47 shows the interrupt service routine, which is simply a standard C function. It does

very little other than clear the interrupt and ‘give’ the semaphore to unblock the handler task.

The macro portEND_SWITCHING_ISR() is part of the FreeRTOS Cortex-M3 port and is the

ISR safe equivalent of taskYIELD(). It will force a context switch only if its parameter is not

zero (not equal to pdFALSE).

Note how xHigherPriorityTaskWoken is used. It is initialized to pdFALSE before being passed

by reference into xSemaphoreGiveFromISR(), where it will get set to pdTRUE only if

xSemaphoreGiveFromISR() causes a task of equal or higher priority than the currently

executing task to leave the blocked state. portEND_SWITCHING_ISR() then performs a

context switch only if xHigherPriorityTaskWoken equals pdTRUE. In all other cases, a context

switch is not necessary, because the task that was executing before the interrupt occurs will

still be the highest priority task that is able to run.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 93

void vSoftwareInterruptHandler(void)
{
portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;

 /* 'Give' the semaphore to unblock the task. */
 xSemaphoreGiveFromISR(xBinarySemaphore, &xHigh erPriorityTaskWoken);

 /* Clear the software interrupt bit using the i nterrupt controllers
 Clear Pending register. */
 mainCLEAR_INTERRUPT();

 /* Giving the semaphore may have unblocked a ta sk - if it did and the
 unblocked task has a priority equal to or above the currently executing
 task then xHigherPriorityTaskWoken will have be en set to pdTRUE and
 portEND_SWITCHING_ISR() will force a context sw itch to the newly unblocked
 higher priority task.

 NOTE: The syntax for forcing a context switch w ithin an ISR varies between
 FreeRTOS ports. The portEND_SWITCHING_ISR() ma cro is provided as part of
 the Corte M3 port layer for this purpose. task YIELD() must never be called
 from an ISR! */
 portEND_SWITCHING_ISR(xHigherPriorityTaskWoken);
}

Listing 47. The software interrupt handler used in Example 12

The main() function creates the binary semaphore and the tasks, configures the software

interrupt, and starts the scheduler. The implementation is shown in Listing 48.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

94

int main(void)
{
 /* Configure both the hardware and the debug in terface. */
 vSetupEnvironment();

 /* Before a semaphore is used it must be explic itly created. In this example
 a binary semaphore is created. */
 vSemaphoreCreateBinary(xBinarySemaphore);

 /* Check the semaphore was created successfully . */
 if(xBinarySemaphore != NULL)
 {
 /* Enable the software interrupt and set it s priority. */
 prvSetupSoftwareInterrupt();

 /* Create the 'handler' task. This is the task that will be synchronized
 with the interrupt. The handler task is cr eated with a high priority to
 ensure it runs immediately after the interr upt exits. In this case a
 priority of 3 is chosen. */
 xTaskCreate(vHandlerTask, "Handler", 240, NULL, 3, NULL);

 /* Create the task that will periodically g enerate a software interrupt.
 This is created with a priority below the h andler task to ensure it will
 get preempted each time the handler task ex its the Blocked state. */
 xTaskCreate(vPeriodicTask, "Periodic", 240 , NULL, 1, NULL);

 /* Start the scheduler so the created tasks start executing. */
 vTaskStartScheduler();
 }

 /* If all is well we will never reach here as t he scheduler will now be
 running the tasks. If we do reach here then it is likely that there was
 insufficient heap memory available for a resour ce to be created. */
 for(;;);
}

Listing 48. The implementation of main() for Examp le 12

Example 12 produces the output shown in Figure 27. As expected, the handler task executes

as soon as the interrupt is generated, so the output from the handler task splits the output

produced by the periodic task. Further explanation is provided in Figure 28.

Figure 27. The output produced when Example 12 is executed

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 95

Figure 28. The sequence of execution when Example 12 is executed

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

96

3.3 Counting Semaphores

Example 12 demonstrates a binary semaphore being used to synchronize a task with an

interrupt. The execution sequence is as follows.

1. An interrupt occurs.

2. The interrupt service routine executes, ‘giving’ the semaphore to unblock the Handler

task.

3. The Handler task executes as soon as the interrupt completes. The first thing the

Handler task does is ‘take’ the semaphore.

4. The Handler task processes the event before attempting to ‘take’ the semaphore

again—entering the Blocked state if the semaphore is not immediately available.

This sequence is perfectly adequate if interrupts can occur only at a relatively low frequency.

If another interrupt occurs before the Handler task has completed its processing of the first

interrupt, then the binary semaphore will effectively latch the event, allowing the Handler task

to process the new event immediately after it has completed processing the original event.

The handler task will not enter the Blocked state between processing the two events, as the

latched semaphore would be available immediately, when xSemaphoreTake() is called. This

scenario is shown in Figure 29.

Figure 29 demonstrates that a binary semaphore can latch, at most, one interrupt event. Any

subsequent events, occurring before the latched event has been processed, will be lost. This

scenario can be avoided by using a counting semaphore in place of the binary semaphore.

Just as binary semaphores can be thought of as queues having a length of one, so counting

semaphores can be thought of as queues having a length of more than one. Tasks are not

interested in the data that is stored in the queue—just whether the queue is empty or not.

Each time a counting semaphore is ‘given’, another space in its queue is used. The number of

items in the queue is the semaphore’s ‘count’ value.

configUSE_COUNTING_SEMAPHORES must be set to 1 in FreeRTOSConfig.h for counting

semaphores to be available.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 97

Figure 29. A binary semaphore can latch at most on e event

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

98

Figure 30. Using a counting semaphore to ‘count’ e vents

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 99

Counting semaphores are typically used for two things:

1. Counting events.

In this scenario, an event handler will 'give' a semaphore each time an event occurs—

causing the semaphore’s count value to be incremented on each ‘give’. A handler task will

'take' a semaphore each time it processes an event—causing the semaphore’s count value

to be decremented on each take. The count value is the difference between the number of

events that have occurred and the number that have been processed. This mechanism is

shown in Figure 30.

Counting semaphores that are used to count events are created with an initial count value

of zero.

2. Resource management.

In this usage scenario, the count value indicates the number of resources available. To

obtain control of a resource a task must first obtain a semaphore—decrementing the

semaphore’s count value. When the count value reaches zero, there are no free resources.

When a task finishes with the resource, it 'gives' the semaphore back—incrementing the

semaphore’s count value.

Counting semaphores that are used to manage resources are created so that their initial

count value equals the number of resources that are available. Chapter 4 covers using

semaphores to manage resources.

The xSemaphoreCreateCounting() API Function

Handles to all the various types of FreeRTOS semaphore are stored in a variable of type

xSemaphoreHandle.

Before a semaphore can be used, it must be created. To create a counting semaphore, use

the xSemaphoreCreateCounting() API function.

xSemaphoreHandle xSemaphoreCreateCounting(unsigned portBASE_TYPE uxMaxCount,
 unsigned portBASE_TYPE uxInitialCount);

Listing 49. The xSemaphoreCreateCounting() API fun ction prototype

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

100

Table 16. xSemaphoreCreateCounting() parameters an d return value

Parameter Name/
Returned Value Description

uxMaxCount The maximum value the semaphore will count to. To continue the queue

analogy, the uxMaxCount value is effectively the length of the queue.

When the semaphore is to be used to count or latch events, uxMaxCount

is the maximum number of events that can be latched.

When the semaphore is to be used to manage access to a collection of

resources, uxMaxCount should be set to the total number of resources

that are available.

uxInitialCount The initial count value of the semaphore after it has been created.

When the semaphore is to be used to count or latch events,

uxInitialCount should be set to zero—as, presumably, when the

semaphore is created, no events have yet occurred.

When the semaphore is to be used to manage access to a collection of

resources, uxInitialCount should be set to equal uxMaxCount—as,

presumably, when the semaphore is created, all the resources are

available.

Returned value If NULL is returned, the semaphore cannot be created because there is

insufficient heap memory available for FreeRTOS to allocate the

semaphore data structures. Chapter 5 provides more information on

memory management.

A non-NULL value being returned indicates that the semaphore has been

created successfully. The returned value should be stored as the handle

to the created semaphore.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 101

Example 13. Using a counting semaphore to synchroni ze a task with an interrupt

Example 13 improves on the Example 12 implementation by using a counting semaphore in

place of the binary semaphore. main() is changed to include a call to

xSemaphoreCreateCounting() in place of the call to vSemaphoreCreateBinary(). The new API

call is shown in Listing 50.

 /* Before a semaphore is used it must be explicitly created. In this example
 a counting semaphore is created. The semaphore is created to have a maximum
 count value of 10, and an initial count value o f 0. */
 xCountingSemaphore = xSemaphoreCreateCounting(10, 0);

Listing 50. Using xSemaphoreCreateCounting() to cr eate a counting semaphore

To simulate multiple events occurring at high frequency, the interrupt service routine is

changed to ‘give’ the semaphore more than once per interrupt. Each event is latched in the

semaphore’s count value. The interrupt service routine is shown in Listing 51.

void vSoftwareInterruptHandler(void)
{
portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;

 /* 'Give' the semaphore multiple times. The fi rst will unblock the handler
 task, the following 'gives' are to demonstrate that the semaphore latches
 the events to allow the handler task to process them in turn without any
 events getting lost. This simulates multiple i nterrupts being taken by the
 processor, even though in this case the events are simulated within a single
 interrupt occurrence.*/
 xSemaphoreGiveFromISR(xCountingSemaphore, &xHi gherPriorityTaskWoken);
 xSemaphoreGiveFromISR(xCountingSemaphore, &xHi gherPriorityTaskWoken);
 xSemaphoreGiveFromISR(xCountingSemaphore, &xHi gherPriorityTaskWoken);

 /* Clear the software interrupt bit using the i nterrupt controllers Clear
 Pending register. */
 mainCLEAR_INTERRUPT();

 /* Giving the semaphore may have unblocked a ta sk - if it did and the
 unblocked task has a priority equal to or above the currently executing
 task then xHigherPriorityTaskWoken will have be en set to pdTRUE and
 portEND_SWITCHING_ISR() will force a context sw itch to the newly unblocked
 higher priority task.

 NOTE: The syntax for forcing a context switch w ithin an ISR varies between
 FreeRTOS ports. The portEND_SWITCHING_ISR() ma cro is provided as part of
 the Cortex-M3 port layer for this purpose. tas kYIELD() must never be called
 from an ISR! */
 portEND_SWITCHING_ISR(xHigherPriorityTaskWoken);
}

Listing 51. The implementation of the interrupt se rvice routine used by Example 13

All the other functions remain unmodified from those used in Example 12.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

102

The output produced when Example 13 is executed is shown in Figure 31. As can be seen,

the Handler task processes all three [simulated] events each time an interrupt is generated.

The events are latched into the count value of the semaphore, allowing the Handler task to

process them in turn.

Figure 31. The output produced when Example 13 is executed

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 103

3.4 Using Queues within an Interrupt Service Routin e

xQueueSendToFrontFromISR(), xQueueSendToBackFromISR() and

xQueueReceiveFromISR() are versions of xQueueSendToFront(), xQueueSendToBack() and

xQueueReceive(), respectively, that are safe to use within an interrupt service routine.

Semaphores are used to communicate events. Queues are used to communicate events and

to transfer data.

The xQueueSendToFrontFromISR() and xQueueSendToBack FromISR() API
Functions

xQueueSendFromISR() is equivalent to and exactly the same as

xQueueSendToBackFromISR().

portBASE_TYPE xQueueSendToFrontFromISR(xQueueHandl e xQueue,
 void *pvIte mToQueue
 portBASE_TY PE *pxHigherPriorityTaskWoken
);

Listing 52. The xQueueSendToFrontFromISR() API fun ction prototype

portBASE_TYPE xQueueSendToBackFromISR(xQueueHandle xQueue,
 void *pvItem ToQueue
 portBASE_TYP E *pxHigherPriorityTaskWoken
);

Listing 53. The xQueueSendToBackFromISR() API func tion prototype

Table 17. xQueueSendToFrontFromISR() and xQueueSen dToBackFromISR()
parameters and return values

Parameter Name/
Returned Value Description

xQueue The handle of the queue to which the data is being sent

(written). The queue handle will have been returned from the

call to xQueueCreate() used to create the queue.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

104

Table 17. xQueueSendToFrontFromISR() and xQueueSen dToBackFromISR()
parameters and return values

Parameter Name/
Returned Value Description

pvItemToQueue A pointer to the data to be copied into the queue.

The size of each item that the queue can hold is set when the

queue is created, so this number of bytes will be copied from

pvItemToQueue into the queue storage area.

pxHigherPriorityTaskWoken It is possible that a single queue will have one or more tasks

blocked on it waiting for data to become available. Calling

xQueueSendToFrontFromISR() or

xQueueSendToBackFromISR() can make data available, and

so cause such a task to leave the Blocked state. If calling the

API function causes a task to leave the Blocked state, and the

unblocked task has a priority equal to or higher than the

currently executing task (the task that was interrupted), then,

internally, the API function will set

*pxHigherPriorityTaskWoken to pdTRUE.

If xQueueSendToFrontFromISR() or

xQueueSendToBackFromISR() sets this value to pdTRUE,

then a context switch should be performed before the interrupt

is exited. This will ensure that the interrupt returns directly to

the highest priority Ready state task.

Returned value There are two possible return values:

1. pdPASS

pdPASS is returned only if data has been sent successfully

to the queue.

2. errQUEUE_FULL

errQUEUE_FULL is returned if data cannot be sent to the

queue because the queue is already full.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 105

Efficient Queue Usage

Most of the demo applications in the FreeRTOS download include a simple UART driver that

uses queues to pass characters into the transmit interrupt handler and out of the receive

interrupt handler. Every character that is transmitted or received gets passed individually

through a queue. The UART drivers are implemented in this manner purely as a convenient

way of demonstrating queues being used from within interrupts. Passing individual characters

through a queue is extremely inefficient (especially at high baud rates) and is not

recommended for production code. More efficient techniques include:

• Placing each received character in a simple RAM buffer, then using a semaphore to

unblock a task to process the buffer, after a complete message has been received, or a

break in transmission has been detected.

• Interpreting the received characters directly within the interrupt service routine, then

using a queue to send the interpreted and decoded commands to a task for processing

(in a similar manner to that shown in Figure 22). This technique is suitable only if

interpreting the data stream is quick enough to be performed entirely from within an

interrupt.

Example 14. Sending and receiving on a queue from w ithin an interrupt

This example demonstrates xQueueSendToBackFromISR() and xQueueReceiveFromISR()

being used within the same interrupt. As before, a software interrupt is used for convenience.

A periodic task is created that sends five numbers to a queue every 200 milliseconds. It

generates a software interrupt only after all five values have been sent. The task

implementation is shown in Listing 54.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

106

static void vIntegerGenerator(void *pvParameters)
{
portTickType xLastExecutionTime;
unsigned long ulValueToSend = 0;
int i;

 /* Initialize the variable used by the call to vTaskDelayUntil(). */
 xLastExecutionTime = xTaskGetTickCount();

 for(;;)
 {
 /* This is a periodic task. Block until it is time to run again.
 The task will execute every 200ms. */
 vTaskDelayUntil(&xLastExecutionTime, 200 / portTICK_RATE_MS);

 /* Send an incrementing number to the queue five times. The values will
 be read from the queue by the interrupt ser vice routine. The interrupt
 service routine always empties the queue so this task is guaranteed to be
 able to write all five values, so a block t ime is not required. */
 for(i = 0; i < 5; i++)
 {
 xQueueSendToBack(xIntegerQueue, &ulVal ueToSend, 0);
 ulValueToSend++;
 }

 /* Force an interrupt so the interrupt serv ice routine can read the
 values from the queue. */
 vPrintString("Generator task - About to ge nerate an interrupt.\n");
 mainTRIGGER_INTERRUPT();
 vPrintString("Generator task - Interrupt g enerated.\n\n");
 }
}

Listing 54. The implementation of the task that wr ites to the queue in Example 14

The interrupt service routine calls xQueueReceiveFromISR() repeatedly, until all the values

written to the queue by the periodic task have been removed, and the queue is left empty.

The last two bits of each received value are used as an index into an array of strings, with a

pointer to the string at the corresponding index position being sent to a different queue using a

call to xQueueSendFromISR(). The implementation of the interrupt service routine is shown in

Listing 55.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 107

void vSoftwareInterruptHandler(void)
{
portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;
static unsigned long ulReceivedNumber;

/* The strings are declared static const to ensure they are not allocated to the
interrupt service routine stack, and exist even whe n the interrupt service routine
is not executing. */
static const char *pcStrings[] =
{
 "String 0\n",
 "String 1\n",
 "String 2\n",
 "String 3\n"
};

 /* Loop until the queue is empty. */
 while(xQueueReceiveFromISR(xIntegerQueue,
 &ulReceivedNumber,
 &xHigherPriorityTa skWoken) != errQUEUE_EMPTY)
 {
 /* Truncate the received value to the last two bits (values 0 to 3 inc.),
 then send the string that corresponds to th e truncated value to the other
 queue. */
 ulReceivedNumber &= 0x03;
 xQueueSendToBackFromISR(xStringQueue,
 &pcStrings[ulRece ivedNumber],
 &xHigherPriorityTa skWoken);
 }

 /* Clear the software interrupt bit using the i nterrupt controllers Clear
 Pending register. */
 mainCLEAR_INTERRUPT();

 /* xHigherPriorityTaskWoken was initialised to pdFALSE. It will have then
 been set to pdTRUE only if reading from or writ ing to a queue caused a task
 of equal or greater priority than the currently executing task to leave the
 Blocked state. When this is the case a context switch should be performed.
 In all other cases a context switch is not nece ssary.

 NOTE: The syntax for forcing a context switch w ithin an ISR varies between
 FreeRTOS ports. The portEND_SWITCHING_ISR() ma cro is provided as part of
 the Cortex-M3 port layer for this purpose. tas kYIELD() must never be called
 from an ISR! */
 portEND_SWITCHING_ISR(xHigherPriorityTaskWoken);
}

Listing 55. The implementation of the interrupt se rvice routine used by Example 14

The task that receives the character pointers from the interrupt service routine blocks on the

queue until a message arrives, printing out each string as it is received. Its implementation is

shown in Listing 56.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

108

static void vStringPrinter(void *pvParameters)
{
char *pcString;

 for(;;)
 {
 /* Block on the queue to wait for data to a rrive. */
 xQueueReceive(xStringQueue, &pcString, por tMAX_DELAY);

 /* Print out the string received. */
 vPrintString(pcString);
 }
}

Listing 56. The task that prints out the strings r eceived from the interrupt service
routine in Example 14

As normal, main() creates the required queues and tasks before starting the scheduler. Its

implementation is shown in Listing 57.

int main(void)
{
 /* Before a queue can be used it must first be created. Create both queues
 used by this example. One queue can hold varia bles of type unsigned long,
 the other queue can hold variables of type char *. Both queues can hold a
 maximum of 10 items. A real application should check the return values to
 ensure the queues have been successfully create d. */
 xIntegerQueue = xQueueCreate(10, sizeof(unsig ned long));
 xStringQueue = xQueueCreate(10, sizeof(char *));

 /* Enable the software interrupt and set its pr iority. */
 prvSetupSoftwareInterrupt();

 /* Create the task that uses a queue to pass in tegers to the interrupt service
 routine. The task is created at priority 1. */
 xTaskCreate(vIntegerGenerator, "IntGen", 240, NULL, 1, NULL);

 /* Create the task that prints out the strings sent to it from the interrupt
 service routine. This task is created at the h igher priority of 2. */
 xTaskCreate(vStringPrinter, "String", 240, NUL L, 2, NULL);

 /* Start the scheduler so the created tasks sta rt executing. */
 vTaskStartScheduler();

 /* If all is well then main() will never reach here as the scheduler will
 now be running the tasks. If main() does reach here then it is likely that
 there was insufficient heap memory available fo r the idle task to be created.
 Chapter 5 provides more information on memory management. */
 for(;;);
}

Listing 57. The main() function for Example 14

The output produced when Example 14 is executed is shown in Figure 32. As can be seen,

the interrupt receives all five integers and produces five strings in response. More explanation

is given in Figure 33.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 109

Figure 32. The output produced when Example 14 is executed

Interrupt

StringPrinter

t1

IntegerGenerator

Idle

Time

1 - The Idle task runs most

of the time. Every 200ms it

gets preempted by the

IntegerGenerator task.

2 - The IntegerGenerator writes 5 values

to a queue, then forces an interrupt.

3 - The interrupt service routine both reads from a queue and writes to a queue, writing a

string to one queue for every integer received from another. Writing strings to a queue

unblocks the StringPrinter task.

4 - The StringPrinter task is the highest priority task

so runs immediately after the interrupt service

routine. It prints out each string it receives on a

queue - when the queue is empty it enters the

Blocked state, allowing the lower priority

IntegerGenerator task to run again.

5 - The IntegerGenerator task is a periodic task so

blocks to wait for the next time period - once again

the idle task is the only task able to run. 200ms after

it last started to execute the whole sequence repeats.

Figure 33. The sequence of execution produced by E xample 14

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

110

3.5 Interrupt Nesting

Interrupt nesting behavior is defined by the configuration constants documented in Table 18.

Both constants are defined in FreeRTOSConfig.h.

The Cortex-M3 core can use up to eight bits to specify an interrupt priority—allowing a

maximum of 256 different priorities. It is essential to note that high numeric values denote low

interrupt priorities. Therefore, if all eight bits are used, the lowest possible interrupt priority is

255 and the highest interrupt priority is zero. However, most Cortex-M3 implementations do

not use all eight bits. To confuse matters further, for reasons of forward compatibility it is the

most significant bits that are used. Therefore, if five bits are used then the lowest possible

interrupt priority is 248, or 11111000 in binary, and the highest is zero. If three bits are used

then the lowest possible interrupt priority is 224, or 11100000 in binary, and the highest is

zero.

There are two ways to simplify the specification of interrupt priority values:

1. Think of the priorities as if the implemented bits are the least significant bits instead of

the most significant bits. Then shift the priority left by the number of unimplemented

priority bits before writing to the priority registers in the interrupt controller.

For example, if five priority bits are used the lowest priority is 31, or 00011111 in binary.

The highest priority is zero. If you assign an interrupt a priority of 29, the value written

to the interrupt controller is (29 << 3). The priority value is shifted by three because

there are five implemented priority bits so three unimplemented priority bits.

As another example, if three priority bits are used the lowest priority is 7, or 00000111

in binary. The highest priority is zero. If you assign an interrupt a priority of 4, the

value written to the interrupt controller is (4 << 5). The priority value is shifted by five

because there are three implemented priority bits so five unimplemented priority bits.

2. Use the functions provided by the Cortex Microcontroller Software Interface Standard

(CMSIS) to access the interrupt controller. CMSIS functions allow priorities to be

specified as if they are implemented using the least significant bits but without having to

perform the shift by three. For example, the watchdog interrupt priority can be set to 5

using the CMSIS call shown in Listing 58.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 111

 /* Using the CMSIS NVIC_SetPriority() function to set the watchdog timer
 interrupt priority. WDT_IRQn is defined in the CMSIS header file. */
 NVIC_SetPriority(WDT_IRQn, 5);

Listing 58. Using a CMSIS function to set an inter rupt priority

Cortex-M3 microcontroller vendors will often provide vendor specific functions that are
equivalent to the CMSIS NVIC_SetPriority() function. Extra care must be taken when using a
vendor specific function as some expect their input parameters to use the most significant bit
positions, while others expect their input parameters to use the least significant bit positions.

Table 18. Constants that affect interrupt nesting

Constant Description

configKERNEL_INTERRUPT_PRIORITY Sets the priority of interrupts used by the

kernel itself—namely the timer interrupt used

to generate the tick and the PendSV (Pend

Service Call) interrupt used within the API.

configKERNEL_INTERRUPT_PRIORITY will

almost always be set to the lowest possible

interrupt priority.

configMAX_SYSCALL_INTERRUPT_PRIORITY Defines the highest interrupt priority from

which FreeRTOS API functions can be

called. Only API functions that end in

‘FromISR’ can be called from within an

interrupt.

Full interrupt nesting functionality is achieved by setting

configMAX_SYSCALL_INTERRUPT_PRIORITY to a higher interrupt priority (meaning a lower

numeric priority value) than configKERNEL_INTERRUPT_PRIORITY. This is demonstrated in

Figure 34, which shows a scenario where configKERNEL_INTERRUPT_PRIORITY has been

set to 31 and configMAX_SYSCALL_INTERRUPT_PRIORITY has been set to 292. For

simplicity, these priority values have been written in the range expected by the CMSIS

functions, so 31 is the lowest possible interrupt priority and 29 is two priorities above the

2 The number 31 and 29 assume the microcontroller being used implements at least five interrupt
priority bits. These numbers would be invalid on a microcontroller that implements three priority bits.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

112

lowest. The definitions of configKERNEL_INTERRUPT_PRIORITY and

configMAX_SYSCALL_INTERRUPT_PRIORITY within FreeRTOSConfig.h actually require the

real values, so (31 << 3) and (29 << 3) in this example.

The default priority for all interrupts is zero—the highest possible priority value. If an interrupt

uses a FreeRTOS API function, then its priority must never be left uninitialized, unless

configMAX_SYSCALL_INTERRUPT_PRIORITY is also set to zero.

It is common for confusion to arise between task priorities and interrupt priorities. Figure 34

shows interrupt priorities, as defined by the microcontroller architecture. These are the

hardware controlled priorities at which interrupt service routines execute relative to each other.

Tasks do not run in interrupt service routines, so the software priority assigned to a task is in

no way related to the hardware priority assigned to an interrupt source.

Figure 34. Constants affecting interrupt nesting b ehavior – this illustration assumes

the microcontroller being used implements at least five interrupt priority bits

Referring to Figure 34:

• Interrupts that use priorities 31 to 29, inclusive, are prevented from executing while the

kernel or the application is inside a critical section. They can, however, make use of

any API function ending in ‘FromISR’.

• Interrupts that use priorities 28 to 0 are not affected by critical sections, so nothing the

kernel does will prevent these interrupts from executing immediately—within the

limitations of the microcontroller itself. Functionality that requires very strict timing

accuracy (motor control, for example) would use a priority above

configMAX_SYSCALL_INTERRUPT_PRIORITY to ensure that the scheduler does not

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 113

introduce jitter into the interrupt response times. Interrupts at these priority levels

cannot use any FreeRTOS API functions.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

114

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 115

Chapter 4

Resource Management

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

116

4.1 Chapter Introduction and Scope

In a multitasking system, there is potential for conflict if one task starts to access a resource,

but does not complete its access before being transitioned out of the Running state. If the task

leaves the resource in an inconsistent state, then access to the same resource by any other

task or interrupt could result in data corruption or other similar error.

Following are some examples:

1. Accessing Peripherals

Consider the following scenario where two tasks attempt to write to an LCD.

1. Task A executes and starts to write the string “Hello world” to the LCD.

2. Task A is pre-empted by Task B after outputting just the beginning of the string—

“Hello w”.

3. Task B writes “Abort, Retry, Fail?” to the LCD before entering the Blocked state.

4. Task A continues from the point at which it was pre-empted and completes outputting

the remaining characters—“orld”.

The LCD now displays the corrupted string “Hello wAbort, Retry, Fail?orld”.

2. Read, Modify, Write Operations

Listing 59 shows a line of C code and its resultant assembly output. It can be seen that the

value of GlobalVar is first read from memory into a register, modified within the register, and

then written back to memory. This is called a read, modify, write operation.

 /* The C code being compiled. */
 GlobalVar |= 0x01;

 /* The assembly code produced. */
 LDR r4,[pc,#284]
 LDR r0,[r4,#0x08] /* Load the value of GlobalVar into r0. */
 ORR r0,r0,#0x01 /* Set bit 0 of r0. */
 STR r0,[r4,#0x08] /* Write the new r0 value back to GlobalVar. */

Listing 59. An example read, modify, write sequenc e

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 117

This is a ‘non-atomic’ operation because it takes more than one instruction to complete and

can be interrupted. Consider the following scenario where two tasks attempt to update a

variable called GlobalVar:

1. Task A loads the value of GlobalVar into a register—the read portion of the

operation.

2. Task A is pre-empted by Task B before it completes the modify and write portions of

the same operation.

3. Task B updates the value of GlobalVar, then enters the Blocked state.

4. Task A continues from the point at which it was pre-empted. It modifies the copy of

the GlobalVar value that it already holds in a register before writing the updated

value back to GlobalVar.

In this scenario, Task A updates and writes back an out-of-date value for GlobalVar. Task

B modifies GlobalVar after Task A takes a copy of the GlobalVar value and before Task A

writes its modified value back to the GlobalVar variable. When Task A writes to GlobalVar,

it overwrites the modification that has already been performed by Task B, effectively

corrupting the GlobalVar variable value.

3. Non-atomic Access to Variables

Updating multiple members of a structure, or updating a variable that is larger than the

natural word size of the architecture (for example, updating a 64-bit variable on a 32-bit

machine), are examples of non-atomic operations. If they are interrupted, they can result in

data loss or corruption.

4. Function Reentrancy

A function is reentrant if it is safe to call the function from more than one task, or from both

tasks and interrupts.

Each task maintains its own stack and its own set of core register values. If a function does

not access any data other than data stored on the stack or held in a register, then the

function is reentrant. Listing 60 is an example of a reentrant function. Listing 61 is an

example of a function that is not reentrant.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

118

/* A parameter is passed into the function. This w ill either be
passed on the stack or in a CPU register. Either w ay is safe as
each task maintains its own stack and its own set o f register
values. */
long lAddOneHundered(long lVar1)
{
/* This function scope variable will also be alloca ted to the stack
or a register, depending on the compiler and optimi zation level. Each
task or interrupt that calls this function will hav e its own copy
of lVar2. */
long lVar2;

 lVar2 = lVar1 + 100;

 /* Most likely the return value will be placed in a CPU register,
 although it too could be placed on the stack. * /
 return lVar2;
}

Listing 60. An example of a reentrant function

/* In this case lVar1 is a global variable so every task that calls
the function will be accessing the same single copy of the variable. */
long lVar1;

long lNonsenseFunction(void)
{
/* This variable is static so is not allocated on t he stack. Each task
that calls the function will be accessing the same single copy of the
variable. */
static long lState = 0;
long lReturn;

 switch(lState)
 {
 case 0 : lReturn = lVar1 + 10;
 lState = 1;
 break;

 case 1 : lReturn = lVar1 + 20;
 lState = 0;
 break;
 }
}

Listing 61. An example of a function that is not r eentrant

Mutual Exclusion

Access to a resource that is shared between tasks, or between tasks and interrupts, must be

managed using a ‘mutual exclusion’ technique, to ensure that data consistency is maintained

at all times. The goal is to ensure that, once a task starts to access a shared resource, the

same task has exclusive access until the resource has been returned to a consistent state.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 119

FreeRTOS provides several features that can be used to implement mutual exclusion, but the

best mutual exclusion method is to (whenever possible) design the application in such a way

that resources are not shared and each resource is accessed only from a single task.

Scope

This chapter aims to give readers a good understanding of:

• When and why resource management and control is necessary.

• What a critical section is.

• What mutual exclusion means.

• What it means to suspend the scheduler.

• How to use a mutex.

• How to create and use a gatekeeper task.

• What priority inversion is, and how priority inheritance can reduce (but not remove) its

impact.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

120

4.2 Critical Sections and Suspending the Scheduler

Basic Critical Sections

Basic critical sections are regions of code that are surrounded by calls to the macros

taskENTER_CRITICAL() and taskEXIT_CRITICAL(), respectively, as demonstrated in Listing

62. Critical sections are also known as critical regions.

 /* Ensure access to the GlobalVar variable cann ot be interrupted by
 placing it within a critical section. Enter th e critical section. */
 taskENTER_CRITICAL();

 /* A switch to another task cannot occur betwee n the call to
 taskENTER_CRITICAL() and the call to taskEXIT_C RITICAL(). Interrupts
 may still execute, but only interrupts whose pr iority is above the
 value assigned to the configMAX_SYSCALL_INTERRU PT_PRIORITY constant
 – and those interrupts are not permitted to cal l FreeRTOS API
 functions. */
 GlobalVar |= 0x01;

 /* Access to GlobalVar is complete so the criti cal section can be exited. */
 taskEXIT_CRITICAL();

Listing 62. Using a critical section to guard acce ss to a variable

The example projects that accompany this book use a function called vPrintString() to write

strings to standard out. vPrintString() is called from many different tasks; so, in theory, its

implementation could protect access to standard out using a critical section, as shown in

Listing 63.

void vPrintString(const char *pcString)
{
static char cBuffer[ioMAX_MSG_LEN];

 /* Write the string to stdout, using a critical section as a crude method
 of mutual exclusion. */
 taskENTER_CRITICAL();
 {
 sprintf(cBuffer, "%s", pcString);
 consoleprint(cBuffer);
 }
 taskEXIT_CRITICAL();
}

Listing 63. A possible implementation of vPrintStr ing()

Critical sections implemented in this way are a very crude method of providing mutual

exclusion. They work by disabling interrupts up to the interrupt priority set by

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 121

configMAX_SYSCALL_INTERRUPT_PRIORITY. Pre-emptive context switches can occur

only from within an interrupt, so, as long as interrupts remain disabled, the task that called

taskENTER_CRITICAL() is guaranteed to remain in the Running state until the critical section

is exited.

Critical sections must be kept very short; otherwise, they will adversely affect interrupt

response times. Every call to taskENTER_CRITICAL() must be closely paired with a call to

taskEXIT_CRITICAL(). For this reason, standard out (stdout, or the stream where a computer

writes its output data) should not be protected using a critical section (as shown in Listing 63),

because writing to the terminal can be a relatively long operation. The examples in this

chapter explore alternative solutions.

It is safe for critical sections to become nested, because the kernel keeps a count of the

nesting depth. The critical section will be exited only when the nesting depth returns to zero—

which is when one call to taskEXIT_CRITICAL() has been executed for every preceding call to

taskENTER_CRITICAL().

Suspending (or Locking) the Scheduler

Critical sections can also be created by suspending the scheduler. Suspending the scheduler

is sometimes also known as ‘locking’ the scheduler.

Basic critical sections protect a region of code from access by other tasks and by interrupts. A

critical section implemented by suspending the scheduler protects a region of code only from

access by other tasks because interrupts remain enabled.

A critical section that is too long to be implemented by simply disabling interrupts can, instead,

be implemented by suspending the scheduler, However, resuming (or ‘un-suspending’) the

scheduler can be a relatively long operation, so consideration must be given to which is the

best method to use in each case.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

122

The vTaskSuspendAll() API Function

void vTaskSuspendAll(void);

Listing 64. The vTaskSuspendAll() API function pro totype

The scheduler is suspended by calling vTaskSuspendAll(). Suspending the scheduler

prevents a context switch from occurring but leaves interrupts enabled. If an interrupt requests

a context switch while the scheduler is suspended, then the request is held pending and is

performed only when the scheduler is resumed (un-suspended).

FreeRTOS API functions should not be called while the scheduler is suspended.

The xTaskResumeAll() API Function

portBASE_TYPE xTaskResumeAll(void);

Listing 65. The xTaskResumeAll() API function prot otype

The scheduler is resumed (un-suspended) by calling xTaskResumeAll().

Table 19. xTaskResumeAll() return value

Returned Value Description

Returned value Context switches that are requested while the scheduler is suspended

are held pending and performed only as the scheduler is being resumed.

A previously pending context switch being performed before

xTaskResumeAll() returns results in the function returning pdTRUE. In

all other cases, xTaskResumeAll() returns pdFALSE.

It is safe for calls to vTaskSuspendAll() and xTaskResumeAll() to become nested, because the

kernel keeps a count of the nesting depth. The scheduler will be resumed only when the

nesting depth returns to zero—which is when one call to xTaskResumeAll() has been

executed for every preceding call to vTaskSuspendAll().

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 123

Listing 66 shows the actual implementation of vPrintString(), which suspends the scheduler to

protect access to the terminal output.

void vPrintString(const char *pcString)
{
static char cBuffer[ioMAX_MSG_LEN];

 /* Write the string to stdout, suspending the s cheduler as a method
 of mutual exclusion. */
 vTaskSuspendScheduler();
 {
 sprintf(cBuffer, "%s", pcString);
 consoleprint(cBuffer);
 }
 xTaskResumeScheduler();
}

Listing 66. The implementation of vPrintString()

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

124

4.3 Mutexes (and Binary Semaphores)

A Mutex is a special type of binary semaphore that is used to control access to a resource that

is shared between two or more tasks. The word MUTEX originates from ‘MUTual EXclusion’.

When used in a mutual exclusion scenario, the mutex can be thought of as a token that is

associated with the resource being shared. For a task to access the resource legitimately, it

must first successfully ‘take’ the token (be the token holder). When the token holder has

finished with the resource, it must ‘give’ the token back. Only when the token has been

returned can another task successfully take the token and then safely access the same shared

resource. A task is not permitted to access the shared resource unless it holds the token.

This mechanism is shown in Figure 35.

Even though mutexes and binary semaphores share many characteristics, the scenario shown

in Figure 35 (where a mutex is used for mutual exclusion) is completely different to that shown

in Figure 29 (where a binary semaphore is used for synchronization). The primary difference

is what happens to the semaphore after it has been obtained:

• A semaphore that is used for mutual exclusion must always be returned.

• A semaphore that is used for synchronization is normally discarded and not returned.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 125

Figure 35. Mutual exclusion implemented using a mu tex

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

126

The mechanism works purely through the discipline of the application writer. There is no

reason why a task cannot access the resource at any time, but each task ‘agrees’ not to do so,

unless it is able to become the mutex holder.

The xSemaphoreCreateMutex() API Function

A mutex is a type of semaphore. Handles to all the various types of FreeRTOS semaphore

are stored in a variable of type xSemaphoreHandle.

Before a mutex can be used, it must be created. To create a mutex type semaphore, use the

xSemaphoreCreateMutex() API function.

xSemaphoreHandle xSemaphoreCreateMutex(void);

Listing 67. The xSemaphoreCreateMutex() API functi on prototype

Table 20. xSemaphoreCreateMutex() return value

Parameter Name/
Returned Value Description

Returned value If NULL is returned, then the mutex could not be created because there

is insufficient heap memory available for FreeRTOS to allocate the

mutex data structures. Chapter 5 provides more information on memory

management.

A non-NULL return value indicates that the mutex has been created

successfully. The returned value should be stored as the handle to the

created mutex.

Example 15. Rewriting vPrintString() to use a sema phore

This example creates a new version of vPrintString() called prvNewPrintString(), then calls the

new function from multiple tasks. prvNewPrintString() is functionally identical to vPrintString(),

but uses a mutex to control access to standard out in place of the basic critical section. The

implementation of prvNewPrintString() is shown in Listing 68.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 127

static void prvNewPrintString(const char *pcString)
{
static char cBuffer[mainMAX_MSG_LEN];

 /* The mutex is created before the scheduler is sta rted so already
 exists by the time this task first executes.

 Attempt to take the mutex, blocking indefinitel y to wait for the mutex if
 it is not available straight away. The call to xSemaphoreTake() will only
 return when the mutex has been successfully obt ained so there is no need to
 check the function return value. If any other delay period was used then
 the code must check that xSemaphoreTake() retur ns pdTRUE before accessing
 the shared resource (which in this case is stan dard out). */
 xSemaphoreTake(xMutex, portMAX_DELAY);
 {
 /* The following line will only execute once the mu tex has been
 successfully obtained. Standard out can be accessed freely now as
 only one task can have the mutex at any one time. */
 sprintf(cBuffer, "%s", pcString);
 consoleprint(cBuffer);

 /* The mutex MUST be given back! */
 }
 xSemaphoreGive(xMutex);
}

Listing 68. The implementation of prvNewPrintStrin g()

prvNewPrintString() is called repeatedly by two instances of a task implemented by

prvPrintTask(). A random delay time is used between each call. The task parameter is used

to pass a unique string into each instance of the task. The implementation of prvPrintTask() is

shown in Listing 69.

static void prvPrintTask(void *pvParameters)
{
char *pcStringToPrint;

 /* Two instances of this task are created so th e string the task will send
 to prvNewPrintString() is passed into the task using the task parameter.
 Cast this to the required type. */
 pcStringToPrint = (char *) pvParameters;

 for(;;)
 {
 /* Print out the string using the newly def ined function. */
 prvNewPrintString(pcStringToPrint);

 /* Wait a pseudo random time. Note that rand() is not necessarily
 reentrant, but in this case it does not rea lly matter as the code does
 not care what value is returned. In a more secure application a version
 of rand() that is known to be reentrant sho uld be used - or calls to
 rand() should be protected using a critical section. */
 vTaskDelay((rand() & 0x1FF));
 }
}

Listing 69. The implementation of prvPrintTask() f or Example 15

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

128

As normal, main() creates the mutex, creates the tasks, then starts the scheduler. The

implementation is shown in Listing 70.

The two instances of prvPrintTask() are created at different priorities, so the lower priority task

will sometimes be pre-empted by the higher priority task. As a mutex is used to ensure each

task gets mutually exclusive access to the terminal, even when pre-emption occurs, the strings

that are displayed will be correct and in no way corrupted. The frequency of pre-emption can

be increased by reducing the maximum time the tasks spend in the Blocked state, which is

defaulted to 0x1ff ticks.

int main(void)
{
 /* Before a semaphore is used it must be explicitly created. In this example
 a mutex type semaphore is created. */
 xMutex = xSemaphoreCreateMutex();

 /* The tasks are going to use a pseudo random delay , seed the random number
 generator. */
 srand(567);

 /* Only create the tasks if the semaphore was creat ed successfully. */
 if(xMutex != NULL)
 {
 /* Create two instances of the tasks that w rite to stdout. The string
 they write is passed in as the task paramet er. The tasks are created
 at different priorities so some pre-emption will occur. */
 xTaskCreate(prvPrintTask, "Print1", 240,
 "Task 1 *********************** *******************\n", 1, NULL);

 xTaskCreate(prvPrintTask, "Print2", 240,
 "Task 2 ----------------------- -------------------\n", 2, NULL);

 /* Start the scheduler so the created tasks start e xecuting. */
 vTaskStartScheduler();
 }

 /* If all is well then main() will never reach here as the scheduler will
 now be running the tasks. If main() does reach here then it is likely that
 there was insufficient heap memory available fo r the idle task to be created.
 Chapter 5 provides more information on memory management. */
 for(;;);
}

Listing 70. The implementation of main() for Examp le 15

The output produced when Example 15 is executed is shown in Figure 36. A possible

execution sequence is described in Figure 37.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 129

Figure 36. The output produced when Example 15 is executed

Figure 36 shows that, as expected, there is no corruption in the strings that are displayed in

the terminal. The random ordering is a result of the random delay periods used by the tasks.

Figure 37. A possible sequence of execution for Ex ample 15

Priority Inversion

Figure 37 demonstrates one of the potential pitfalls of using a mutex to provide mutual

exclusion. The possible sequence of execution depicted shows the higher priority Task 2

having to wait for the lower priority Task 1 to give up control of the mutex. A higher priority

task being delayed by a lower priority task in this manner is called ‘priority inversion’. This

undesirable behavior would be exaggerated further if a medium priority task started to execute

while the high priority task was waiting for the semaphore—the result would be a high priority

task waiting for a low priority task without the low priority task even being able to execute. This

worst case scenario is shown in Figure 38.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

130

Figure 38. A worst case priority inversion scenari o

Priority inversion can be a significant problem, but in small embedded systems it can often be

avoided at system design time, by considering how resources are accessed.

Priority Inheritance

FreeRTOS mutexes and binary semaphores are very similar—the difference being that

mutexes include a basic ‘priority inheritance’ mechanism, whereas binary semaphores do not.

Priority inheritance is a scheme that minimizes the negative effects of priority inversion. It

does not ‘fix’ priority inversion; it merely lessens its impact by ensuring that the inversion is

always time bounded. However, priority inheritance complicates system timing analysis; it is

not good practice to rely on it for correct system operation.

Priority inheritance works by temporarily raising the priority of the mutex holder to that of the

highest priority task that is attempting to obtain the same mutex. The low priority task that

holds the mutex ‘inherits’ the priority of the task waiting for the mutex. This is demonstrated by

Figure 39. The priority of the mutex holder is reset automatically to its original value when it

gives the mutex back.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 131

Figure 39. Priority inheritance minimizing the eff ect of priority inversion

Because the preference is to avoid priority inversion in the first place, and because FreeRTOS

is targeted at memory-constrained microcontrollers, the priority inheritance mechanism

implemented by mutexes is only a basic form that assumes a task will hold only a single mutex

at any one time.

Deadlock (or Deadly Embrace)

‘Deadlock’ is another potential pitfall that can occur when using mutexes for mutual exclusion.

Deadlock is sometimes also known by the more dramatic name ‘deadly embrace’.

Deadlock occurs when two tasks cannot proceed because they are both waiting for a resource

that is held by the other. Consider the following scenario where Task A and Task B both need

to acquire mutex X and mutex Y in order to perform an action:

1. Task A executes and successfully takes mutex X.

2. Task A is pre-empted by Task B.

3. Task B successfully takes mutex Y before attempting to also take mutex X—but mutex

X is held by Task A, so is not available to Task B. Task B opts to enter the Blocked

state to wait for mutex X to be released.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

132

4. Task A continues executing. It attempts to take mutex Y—but mutex Y is held by Task

B, so is not available to Task A. Task A opts to enter the Blocked state to wait for

mutex Y to be released.

At the end of this scenario, Task A is waiting for a mutex held by Task B, and Task B is waiting

for a mutex held by Task A. Deadlock has occurred because neither task can proceed.

As with priority inversion, the best method of avoiding deadlock is to consider its potential at

design time, and design the system to ensure that deadlock cannot occur. In practice,

deadlock is not a big problem in small embedded systems, because the system designer can

have a good understanding of the entire application, and so can identify and remove the areas

where it could occur.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 133

4.4 Gatekeeper Tasks

Gatekeeper tasks provide a clean method of implementing mutual exclusion without the risk of

priority inversion or deadlock.

A gatekeeper task is a task that has sole ownership of a resource. Only the gatekeeper task is

allowed to access the resource directly—any other task requiring access to the resource can

do so only indirectly by using the services of the gatekeeper.

Example 16. Re-writing vPrintString() to use a gate keeper task

Example 16 provides an alternative implementation for vPrintString(). This time, a gatekeeper

task is used to manage access to standard out. When a task wants to write a message to the

terminal, it does not call a print function directly but, instead, sends the message to the

gatekeeper.

The gatekeeper task uses a FreeRTOS queue to serialize access to the terminal. The internal

implementation of the task does not have to consider mutual exclusion because it is the only

task permitted to access the terminal directly.

The gatekeeper task spends most of its time in the Blocked state, waiting for messages to

arrive on the queue. When a message arrives, the gatekeeper writes the message to

standard out, before returning to the Blocked state to wait for the next message. The

implementation of the gatekeeper task is shown by Listing 72.

Interrupts can send to queues, so interrupt service routines can also safely use the services of

the gatekeeper to write messages to the terminal. In this example, a tick hook function is used

to write out a message every 200 ticks.

A tick hook (or tick callback) is a function that is called by the kernel during each tick interrupt.

To use a tick hook function:

1. Set configUSE_TICK_HOOK to 1 in FreeRTOSConfig.h.

2. Provide the implementation of the hook function, using the exact function name and

prototype shown in Listing 71.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

134

 void vApplicationTickHook(void);

Listing 71. The name and prototype for a tick hook function

Tick hook functions execute within the context of the tick interrupt, and so must be kept very

short, must use only a moderate amount of stack space, and must not call any FreeRTOS API

function whose name does not end with ‘FromISR()’.

static void prvStdioGatekeeperTask(void *pvParamet ers)
{
char *pcMessageToPrint;
static char cBuffer[mainMAX_MSG_LEN];

 /* This is the only task that is allowed to wri te to the terminal output.
 Any other task wanting to write a string to the output does not access the
 terminal directly, but instead sends the string to this task. As only this
 task accesses standard out there are no mutual exclusion or serialization
 issues to consider within the implementation of the task itself. */
 for(;;)
 {
 /* Wait for a message to arrive. An indefi nite block time is specified
 so there is no need to check the return val ue – the function will only
 return when a message has been successfully received. */
 xQueueReceive(xPrintQueue, &pcMessageToPri nt, portMAX_DELAY);

 /* Output the received string. */
 sprintf(cBuffer, "%s", pcMessageToPrint);
 consoleprint(cBuffer);

 /* Now go back to wait for the next message . */
 }
}

Listing 72. The gatekeeper task

The task that prints out the message is similar to that used in Example 15, except that, here,

the string is sent on the queue to the gatekeeper task, rather than written out directly. The

implementation is shown in Listing 73. As before, two separate instances of the task are

created, each of which prints out a unique string passed to it via the task parameter.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 135

static void prvPrintTask(void *pvParameters)
{
int iIndexToString;

 /* Two instances of this task are created. The task parameter is used to pass an
 index into an array of strings into the task. C ast this to the required type. */
 iIndexToString = (int) pvParameters;

 for(;;)
 {
 /* Print out the string, not directly but i nstead by passing a pointer to
 the string to the gatekeeper task via a que ue. The queue is created before
 the scheduler is started so will already ex ist by the time this task executes
 for the first time. A block time is not sp ecified because there should
 always be space in the queue. */
 xQueueSendToBack(xPrintQueue, &(pcStrings ToPrint[iIndexToString]), 0);

 /* Wait a pseudo random time. Note that ra nd() is not necessarily
 reentrant, but in this case it does not rea lly matter as the code does
 not care what value is returned. In a more secure application a version
 of rand() that is known to be reentrant sho uld be used - or calls to
 rand() should be protected using a critical section. */
 vTaskDelay((rand() & 0x1FF));
 }
}

Listing 73. The print task implementation for Exam ple 16

The tick hook function counts the number of times it is called, sending its message to the

gatekeeper task each time the count reaches 200. For demonstration purposes only, the tick

hook writes to the front of the queue, and the print tasks write to the back of the queue. The

tick hook implementation is shown in Listing 74.

void vApplicationTickHook(void)
{
static int iCount = 0;
portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;

 /* Print out a message every 200 ticks. The me ssage is not written out
 directly, but sent to the gatekeeper task. */
 iCount++;
 if(iCount >= 200)
 {
 /* In this case the last parameter (xHigher PriorityTaskWoken) is not
 actually used but must still be supplied. * /
 xQueueSendToFrontFromISR(xPrintQueue,
 &(pcStringsToPri nt[2]),
 &xHigherPriorityT askWoken);

 /* Reset the count ready to print out the s tring again in 200 ticks
 time. */
 iCount = 0;
 }
}

Listing 74. The tick hook implementation

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

136

As normal, main() creates the queues and tasks necessary to run the example, then starts the

scheduler. The implementation of main() is shown in Listing 75.

/* Define the strings that the tasks and interrupt will print out via the
gatekeeper. */
static char *pcStringsToPrint[] =
{
 "Task 1 *************************************** *************\n",
 "Task 2 --------------------------------------- -------------\n",
 "Message printed from the tick hook interrupt # #############\n"
};

/*--- ----------*/

/* Declare a variable of type xQueueHandle. This i s used to send messages from
the print tasks and the tick interrupt to the gatek eeper task. */
xQueueHandle xPrintQueue;

/*--- ----------*/

int main(void)
{
 /* Before a queue is used it must be explicitly created. The queue is created
 to hold a maximum of 5 character pointers. */
 xPrintQueue = xQueueCreate(5, sizeof(char *));

 /* The tasks are going to use a pseudo random d elay, seed the random number
 generator. */
 srand(567);

 /* Check the queue was created successfully. */
 if(xPrintQueue != NULL)
 {
 /* Create two instances of the tasks that s end messages to the gatekeeper.
 The index to the string the task uses is pa ssed to the task via the task
 parameter (the 4th parameter to xTaskCreate ()). The tasks are created at
 different priorities so the higher priority task will occasionally preempt
 the lower priority task. */
 xTaskCreate(prvPrintTask, "Print1", 240, (void *) 0, 1, NULL);
 xTaskCreate(prvPrintTask, "Print2", 240, (void *) 1, 2, NULL);

 /* Create the gatekeeper task. This is the only task that is permitted
 to directly access standard out. */
 xTaskCreate(prvStdioGatekeeperTask, "Gatek eeper", 240, NULL, 0, NULL);

 /* Start the scheduler so the created tasks start executing. */
 vTaskStartScheduler();
 }

 /* If all is well then main() will never reach here as the scheduler will
 now be running the tasks. If main() does reach here then it is likely that
 there was insufficient heap memory available fo r the idle task to be created.
 Chapter 5 provides more information on memory management. */
 for(;;);
}

Listing 75. The implementation of main() for Examp le 16

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 137

The output produced when Example 16 is executed is shown in Figure 40. As can be seen,

the strings originating from the tasks and the strings originating from the interrupt all print out

correctly with no corruption.

Figure 40. The output produced when Example 16 is executed

The gatekeeper task is assigned a lower priority than the print tasks—so messages sent to the

gatekeeper remain in the queue until both print tasks are in the Blocked state. In some

situations, it would be appropriate to assign the gatekeeper a higher priority, so that messages

get processed sooner—but doing so would be at the cost of the gatekeeper delaying lower

priority tasks, until it had completed accessing the protected resource.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

138

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 139

Chapter 5

Memory Management

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

140

5.1 Chapter Introduction and Scope

The kernel has to allocate RAM dynamically each time a task, queue, or semaphore is

created. The standard malloc() and free() library functions can be used, but they may not be

suitable or appropriate for one or more of the following reasons:

• They are not always available on small embedded systems.

• Their implementation can be relatively large, taking up valuable code space.

• They are rarely thread-safe.

• They are not deterministic; the amount of time taken to execute the functions will differ

from call to call.

• They can suffer from memory fragmentation.

• They can complicate the linker configuration.

Different embedded systems have varying RAM allocation and timing requirements, so a

single RAM allocation algorithm will only ever be appropriate for a subset of applications.

Therefore, FreeRTOS treats memory allocation as part of the portable layer (as opposed to

part of the core code base). This enables individual applications to provide their own specific

implementations, when appropriate.

When the kernel requires RAM, instead of calling malloc() directly it calls pvPortMalloc().

When RAM is being freed, instead of calling free() directly, the kernel calls vPortFree().

pvPortMalloc() has the same prototype as malloc(), and vPortFree() has the same prototype

as free().

FreeRTOS comes with three example implementations of both pvPortMalloc() and vPortFree();

these examples are all documented in this chapter. Users of FreeRTOS can use one of the

example implementations, or provide their own.

The three examples are defined in the files heap_1.c, heap_2.c, and heap_3.c—all of which

are located in the FreeRTOS\Source\portable\MemMang directory. The original memory pool

and block allocation scheme used by very early versions of FreeRTOS have been removed

because of the effort and understanding required to dimension the blocks and pools.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 141

It is common for small embedded systems only to create tasks, queues, and semaphores

before the scheduler has been started. When this is the case, memory only gets dynamically

allocated by the kernel before the application starts to perform any real-time functionality, and

the memory remains allocated for the lifetime of the application. This means that the chosen

allocation scheme does not have to consider any of the more complex issues such as

determinism and fragmentation, and can instead consider only attributes such as code size

and simplicity.

Scope

This chapter aims to give readers a good understanding of:

• When FreeRTOS allocates RAM.

• The three example memory allocation schemes supplied with FreeRTOS.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

142

5.2 Example Memory Allocation Schemes

Heap_1.c

Heap_1.c implements a very basic version of pvPortMalloc() and does not implement

vPortFree(). Applications that never delete a task, queue, or semaphore have the potential to

use heap_1. Heap_1 is always deterministic.

The allocation scheme subdivides a simple array into smaller blocks as calls to pvPortMalloc()

are made. The array is the FreeRTOS heap.

The total size (in bytes) of the array is set by the definition configTOTAL_HEAP_SIZE within

FreeRTOSConfig.h. Defining a large array in this manner can make the application appear to

consume a lot of RAM—even before any of the array has been assigned.

Each created task requires a task control block (TCB) and a stack to be allocated from the

heap. Figure 41 demonstrates how heap_1 subdivides the simple array as tasks are created.

Referring to Figure 41:

• A shows the array before any tasks have been created—the entire array is free.

• B shows the array after one task has been created.

• C shows the array after three tasks have been created.

Figure 41. RAM being allocated within the array ea ch time a task is created

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 143

Heap_2.c

Heap_2.c also uses a simple array dimensioned by configTOTAL_HEAP_SIZE. It uses a best

fit algorithm to allocate memory and, unlike heap_1, it does allow memory to be freed. Again,

the array is declared statically, so will make the application appear to consume a lot of RAM,

even before any of the array has been assigned.

The best fit algorithm ensures that pvPortMalloc() uses the free block of memory that is closest

in size to the number of bytes requested. For example, consider the scenario where:

• The heap contains three blocks of free memory that are 5 bytes, 25 bytes, and 100

bytes, respectively.

• pvPortMalloc() is called to request 20 bytes of RAM.

The smallest free block of RAM into which the requested number of bytes will fit is the 25-byte

block, so pvPortMalloc() splits the 25-byte block into one block of 20 bytes and one block of 5

bytes3, before returning a pointer to the 20-byte block. The new 5-byte block remains

available to future calls to pvPortMalloc().

Heap_2.c does not combine adjacent free blocks into a single larger block, so it can suffer

from fragmentation. However, fragmentation is not an issue if the blocks being allocated and

subsequently freed are always the same size. Heap_2.c is suitable for an application that

creates and deletes tasks repeatedly, provided the size of the stack allocated to the created

tasks does not change.

3 This is an oversimplification, because heap_2 stores information on the block sizes within the heap
area, so the sum of the two split blocks will actually be less than 25.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

144

Figure 42. RAM being allocated from the array as t asks are created and deleted

Figure 42 demonstrates how the best fit algorithm works when a task is created, deleted, and

then created again. Referring to Figure 42:

1. A shows the array after three tasks have been created. A large free block remains at

the top of the array.

2. B shows the array after one of the tasks has been deleted. The large free block at the

top of the array remains. There are now also two smaller free blocks that were

previously allocated to the TCB and stack of the deleted task.

3. C shows the situation after another task has been created. Creating the task has

resulted in two calls to pvPortMalloc(), one to allocate a new TCB and one to allocate

the task stack. (The calls to pvPortMalloc() occur internally within the xTaskCreate()

API function.)

Every TCB is exactly the same size, so the best fit algorithm ensures that the block of

RAM previously allocated to the TCB of the deleted task is reused to allocate the TCB

of the new task.

The size of the stack allocated to the newly created task is identical to that allocated to

the previously deleted task, so the best fit algorithm ensures that the block of RAM

previously allocated to the stack of the deleted task is reused to allocate the stack of

the new task.

The larger unallocated block at the top of the array remains untouched.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 145

Heap_2.c is not deterministic but is more efficient than most standard library implementations

of malloc() and free().

Heap_3.c

Heap_3.c uses the standard library malloc() and free() function but makes the calls thread-

safe by temporarily suspending the scheduler. The implementation is shown in Listing 76.

The size of the heap is not affected by configTOTAL_HEAP_SIZE; instead, it is defined by the

linker configuration.

void *pvPortMalloc(size_t xWantedSize)
{
void *pvReturn;

 vTaskSuspendAll();
 {
 pvReturn = malloc(xWantedSize);
 }
 xTaskResumeAll();

 return pvReturn;
}

void vPortFree(void *pv)
{
 if(pv != NULL)
 {
 vTaskSuspendAll();
 {
 free(pv);
 }
 xTaskResumeAll();
 }
}

Listing 76. The heap_3.c implementation

The xPortGetFreeHeapSize() API Function

xPortGetFreeHeapSize() is available only when heap_1.c or heap_2.c is being used. It

provides a simple method of optimizing the heap size by returning the current number of

unallocated bytes. For example, if xPortGetFreeHeapSize() returns 2000 after all the required

tasks, queues, and semaphores have been created, then configTOTAL_HEAP_SIZE can be

reduced by 2000.

size_t xPortGetFreeHeapSize(void);

Listing 77. The xPortGetFreeHeapSize() API functio n prototype

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

146

Table 21. xPortGetFreeHeapSize() return value

Parameter Name/
Returned Value Description

Returned value The number of bytes that remain unallocated in the heap.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 147

Chapter 6

Trouble Shooting

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

148

6.1 Chapter Introduction and Scope

This chapter aims to highlight the most common issues encountered by users who are new to

FreeRTOS. It focuses mainly on stack overflow and stack overflow detection, because stack

issues have proven to be the most frequent source of support requests over the years. It then

briefly, and in an FAQ style, touches on other common errors, their possible cause, and their

solutions.

printf-stdarg.c

Stack usage can get particularly high when standard C library functions are used, especially

IO and string handling functions such as sprintf(). The FreeRTOS download includes a file

called printf-stdarg.c that contains a minimal and stack-efficient version of sprintf(), which can

be used in place of the standard library version. In most cases, this will permit a much smaller

stack to be allocated to each task that calls sprintf() and related functions.

Printf-stdarg.c is open source but is owned by a third party. Therefore, it is licensed separately

from FreeRTOS. The license terms are contained at the top of the source file.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 149

6.2 Stack Overflow

FreeRTOS provides several features to assist trapping and debugging stack related issues.

The uxTaskGetStackHighWaterMark() API Function

Each task maintains its own stack, the total size of which is specified when the task is created.

uxTaskGetStackHighWaterMark() is used to query how close a task has come to overflowing

the stack space allocated to it. This value is called the stack 'high water mark'.

 unsigned portBASE_TYPE uxTaskGetStackHighWaterM ark(xTaskHandle xTask);

Listing 78. The uxTaskGetStackHighWaterMark() API function prototype

Table 22. uxTaskGetStackHighWaterMark() parameters and return value

Parameter Name/
Returned Value Description

xTask The handle of the task whose stack high water mark is being queried

(the subject task)—see the pxCreatedTask parameter of the

xTaskCreate() API function for information on obtaining handles to tasks.

A task can query its own stack high water mark by passing NULL in

place of a valid task handle.

Returned value The amount of stack used by the task grows and shrinks as the task

executes and interrupts are processed.

uxTaskGetStackHighWaterMark() returns the minimum amount of

remaining stack space that has been available since the task started

executing. This is the amount of stack that remains unused when stack

usage is at its greatest (or deepest) value. The closer the high water

mark is to zero, the closer the task has come to overflowing its stack.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

150

Run Time Stack Checking—Overview

FreeRTOS includes two optional run time stack checking mechanisms. These are controlled

by the configCHECK_FOR_STACK_OVERFLOW compile time configuration constant within

FreeRTOSConfig.h. Both methods increase the time it takes to perform a context switch.

The stack overflow hook (or stack overflow callback) is a function that is called by the kernel

when it detects a stack overflow. To use a stack overflow hook function:

1. Set configCHECK_FOR_STACK_OVERFLOW to either 1 or 2 in FreeRTOSConfig.h.

2. Provide the implementation of the hook function, using the exact function name and

prototype shown in Listing 79.

void vApplicationStackOverflowHook(xTaskHandle *px Task, signed char *pcTaskName);

Listing 79. The stack overflow hook function proto type

The stack overflow hook is provided to make trapping and debugging stack errors easier, but

there is no real way to recover from a stack overflow when it occurs. The parameters pass the

handle and name of the task (that has overflowed its stack) into the hook function; however, it

is possible that the overflow has corrupted the task name.

The stack overflow hook can get called from the context of an interrupt.

Run Time Stack Checking—Method 1

Method 1 is selected when configCHECK_FOR_STACK_OVERFLOW is set to 1.

A task’s entire execution context is saved onto its stack each time it gets swapped out. It is

likely that this will be the time at which stack usage reaches its peak. When

configCHECK_FOR_STACK_OVERFLOW is set to 1, the kernel checks that the stack pointer

remains within the valid stack space after the context has been saved. The stack overflow

hook is called if the stack pointer is found to be outside its valid range.

Method 1 is quick to execute but can miss stack overflows that occur between context saves.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 151

Run Time Stack Checking—Method 2

Method 2 performs additional checks to those already described for method 1. It is selected

when configCHECK_FOR_STACK_OVERFLOW is set to 2.

When a task is created its stack is filled with a known pattern. Method 2 tests the last valid 20

bytes of the task stack space to verify that this pattern has not been overwritten. The stack

overflow hook function is called if any of the 20 bytes have changed from their expected

values.

Method 2 is not as quick to execute as method 1 but is still relatively fast, as only 20 bytes are

tested. Most likely, it will catch all stack overflows; however, it is possible (but highly

improbable) that some overflows will be missed.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

152

6.3 Other Common Sources of Error

Symptom: Adding a simple task to a demo causes the demo to crash

Creating a task requires memory to be obtained from the heap. Many of the demo application

projects dimension the heap to be exactly big enough to create the demo tasks—so, after the

tasks are created, there will be insufficient heap remaining for any further tasks, queues, or

semaphores to be added.

The idle task is created automatically when vTaskStartScheduler() is called.

vTaskStartScheduler() will return only if there is not enough heap memory remaining for the

idle task to be created. Including a null loop [for(;;);] after the call to vTaskStartScheduler()

can make this error easier to debug.

To be able to add more tasks, either increase the heap size or remove some of the existing

demo tasks.

Symptom: Using an API function within an interrupt causes the application to crash

Do not use API functions within interrupt service routines, unless the name of the API function

ends with ‘...FromISR()’. In particular, do not attempt to create a critical section within an

interrupt.

Do not use any API functions from an interrupt that has been assigned an interrupt priority

above configMAX_SYSCALL_INTERRUPT_PRIORITY. Remember that interrupt priorities

above configMAX_SYSCALL_INTERRUPT_PRIORITY are those that have a numeric value

lower than configMAX_SYSCALL_INTERRUPT_PRIORITY. This can seem counter-intuitive

and is a very common source of errors.

Symptom: Sometimes the application crashes within a n interrupt service routine

The first thing to check is that the interrupt is not causing a stack overflow.

The way interrupts are defined and used differs between ports and between compilers.

Therefore, the second thing to check is that the syntax, macros, and calling conventions used

in the interrupt service routine are exactly as described on the documentation page for the

demo, and exactly as demonstrated by other interrupt service routines in the demo.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 153

Do not use any API functions from an interrupt that has been assigned an interrupt priority

above configMAX_SYSCALL_INTERRUPT_PRIORITY. Remember that interrupt priorities

above configMAX_SYSCALL_INTERRUPT_PRIORITY are those that have a numeric value

lower than configMAX_SYSCALL_INTERRUPT_PRIORITY. This can seem counter-intuitive

and is a very common source of errors.

Symptom: Critical sections do not nest correctly

Do not alter the microcontroller interrupt enable bits or priority flags using any method other

than calls to taskENTER_CRITICAL() and taskEXIT_CRITICAL(). These macros keep a count

of the call nesting depth to ensure interrupts become enabled again only when the call nesting

has unwound completely to zero.

Symptom: The application crashes even before the sc heduler is started

An interrupt service routine that could potentially cause a context switch must not be permitted

to execute before the scheduler has been started. The same applies to any interrupt service

routine that attempts to send to or receive from a queue or semaphore. A context switch

cannot occur until after the scheduler has started.

Many API functions cannot be called prior to the scheduler being started. It is best to restrict

API usage to the creation of tasks, queues, and semaphores until after vTaskStartScheduler()

has been called.

Symptom: Calling API functions while the scheduler is suspended causes the
application to crash

The scheduler is suspended by calling vTaskSuspendAll() and resumed (unsuspended) by

calling xTaskResumeAll().

Do not call API functions while the scheduler is suspended.

Symptom: The prototype for pxPortInitialiseStack() causes compilation to fail

Check the project options to ensure that either the pre-processor macro required to include the

correct portmacro.h file within portable.h is defined, or the include search path includes the

path to the correct portmacro.h file.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

154

Base new applications on the provided demo project associated with the port being used. This

will ensure that the correct files are included and the correct compiler options are set.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 155

Chapter 7

FreeRTOS-MPU

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

156

7.1 Chapter Introduction and Scope

Most Cortex-M3 microcontrollers include a Memory Protection Unit (MPU). This allows the

entire memory map (including Flash, RAM, and peripherals) to be sub-divided into a number of

regions, and access permissions to be assigned to each region, individually. A region is an

address range consisting of a start address and a size.

FreeRTOS-MPU is a FreeRTOS Cortex-M3 port that includes integrated MPU support. It

permits additional functionality and includes a slightly extended API, but is otherwise backward

compatible with the standard Cortex-M3 port.

Using FreeRTOS-MPU will always:

• Protect the kernel from invalid execution by tasks.

• Protect the data used by the kernel from invalid access by tasks.

• Protect the configuration of Cortex-M3 core resources, such as the SysTick timer.

• Guarantee that all task stack overflows are detected as soon as they occur.

Also, at the application level, it is possible to ensure that tasks are isolated in their own

memory space and that peripherals are protected from unintended modification.

FreeRTOS-MPU provides a simple interface to the MPU by hiding the register level MPU

configuration from the user. However, writing an application for an environment that does not

permit free access to all data can be challenging.

Scope

This chapter aims to give readers a good understanding of:

• The constraints the MPU hardware places on how memory regions can be defined.

• The access permissions that can be assigned to each memory region.

• The difference between User Mode tasks and Privileged Mode tasks.

• The FreeRTOS-MPU specific API.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 157

7.2 Access Permissions

User Mode and Privileged Mode

The Cortex-M3 can execute code in either Privileged mode or User (unprivileged) mode. The

standard FreeRTOS Cortex-M3 port executes all tasks in Privileged mode. FreeRTOS-MPU

can execute tasks in either Privileged mode or User mode. The processor switches

automatically to Privileged mode before executing an interrupt service routine. The kernel

always switches to Privileged mode whenever a FreeRTOS-MPU API function is called,

returning to its previous mode when the API function completes.

Tasks that execute in Privileged mode are not prevented from accessing any part of the

Cortex-M3 core or from executing any of the Cortex-M3 instructions. MPU region access

permissions can be used to prevent a Privileged mode task from making certain memory

accesses—for example, writes to a region that is configured as read-only.

Tasks that execute in User mode are prevented from accessing certain Cortex-M3 resources

and from executing certain Cortex-M3 instructions. For example, a User mode task cannot

access the interrupt controller or execute CPS (Change Processor State) instructions4. MPU

regions can be configured to prevent User mode access, while still permitting Privileged mode

access.

Access Permission Attributes

Table 23 lists the access permission related definitions available in FreeRTOS-MPU.

Examples of their use are provided later in this chapter.

4 For complete details on User mode restrictions, refer to the ’ARM V7-M Architecture Application Level
Reference Manual’, and the ‘Cortex-M3 Technical Reference Manual’, both of which are available
directly from ARM.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

158

Table 23. MPU region access permissions

FreeRTOS-MPU definition
Access for

Privileged mode
tasks

Access for User
mode tasks

portMPU_REGION_READ_WRITE Full Access Full Access

portMPU_REGION_PRIVILEGED_READ_ONLY Read Only No Access

portMPU_REGION_READ_ONLY Read Only Read Only

portMPU_REGION_PRIVILEGED_READ_WRITE Full Access No Access

portMPU_REGION_EXECUTE_NEVER Region cannot contain executable code.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 159

7.3 Defining an MPU Region

Overlapping Regions

A region is an address range to which access permissions can be applied. A maximum of

eight regions can be defined at any one time. Regions are numbered from zero to seven.

If multiple regions define overlapping memory ranges, then the access permissions of the

highest of the overlapping region numbers will be applied.5 For example, if region two

configures an address range for both read-and-write access at the same time as region three

configures the same address range for read-only access, then the memory region will be

configured for read-only access.

Predefined Regions and Task Definable Regions

Regions zero to four are used by the kernel to pre-configure a usable run time environment

where:

• The Running state task has access to its own stack, but all other RAM is accessible

only when the Cortex-M3 microcontroller is running in Privileged mode.

• The area of Flash memory in which the kernel is located and the system peripherals are

accessible only when the Cortex-M3 microcontroller is running in Privileged mode.

• The Flash memory, other than that in which the kernel is located, and all non system

peripherals (for example, UARTS and analog inputs) can be accessed by both

Privileged and User mode tasks.

The kernel reconfigures the MPU during each context switch, so the remaining three regions

can be defined differently by each task. The task-defined regions use the highest region

numbers, so can be used to override the kernel-defined regions, although there are few

circumstances in which that would be desirable.

5 This applies to any range of memory that appears within more than one region definition—whether the
two regions are completely coincident, or only partially overlapping.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

160

Region Start Address and Size Constraints

The MPU hardware imposes two rules that region start address and size definitions must

comply with:

1. The region size must be a binary power of two between 32 bytes and 64 gigabytes,

inclusive. For example, 32 bytes, 64 bytes, 128 bytes, 256 bytes, and so on are all

valid region sizes.

2. The start address must be a multiple of the region size. For example, a region that is

configured to be 65536 bytes long must start on an address that is exactly divisible by

65536.

Most cross compilers include language extensions that can be used to force a variable to be

placed on a specified address alignment. Listing 80 shows the syntax used for this purpose by

the GCC, IAR, and Keil compilers.

/* Define and align an array using GCC syntax. */
char cAnArray[1024] __attribute__((aligned(1024)));

/* Define and align an array using IAR syntax. */
#pragma data_alignment=1024
char cAnArray[1024];

/* Define and align an array using Keil syntax. No te this will only work for global
variables. Keil also has a GCC compatibility mode where __attribute__ can be used.
*/
__align(1024) char cAnArray[1024];

Listing 80. Syntax required by GCC, IAR, and Keil compilers to force a variable onto
a particular byte alignment (1024-byte alignment in this example)

/* Define two arrays, access to each of which will be controlled by separate MPU
Regions (GCC syntax is shown). */
char cFirstArray[1024] __attribute__((aligned(102 4)));
char cSecondArray[256] __attribute__((aligned(256)))

Listing 81. Defining two arrays that may be placed in adjacent memory

It is necessary to consider also how variables are placed in relation to each other. For

example, consider the case shown in Listing 81. cFirstArray starts and ends on a 1024-byte

boundary. cSecondArray starts and ends on a 256-byte boundary. As 1024 is divisible by

256, it is likely that the linker will place cSecondArray directly after and adjacent to cFirstArray.

If a task has configured one MPU region to provide write access to cFirstArray, and another

MPU region to provide write access to cSecond array, then the MPU will not prevent a write off

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 161

the end of cFirstArray, as might be the intent. A write outside the boundary of the first MPU

region would not result in a memory protection fault but would result, instead, in a valid write

into the second MPU. This situation can be avoided by making the size of cFirstArray 1025

bytes and the size of cSecondArray 257 bytes. The alignment requirements then prevent the

linker from placing the arrays directly adjacent to each other. The actual alignment of the

arrays, and the size of the MPU regions that control access to the arrays, do not change.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

162

7.4 The FreeRTOS-MPU API

All the API functions available in the standard FreeRTOS Cortex-M3 port are also available in

FreeRTOS-MPU. This section highlights some minor differences in the way xTaskCreate() is

used, and introduces the API extensions that are specific to the MPU enabled kernel.

The xTaskCreateRestricted() API Function

xTaskCreateRestricted() is an extended version of xTaskCreate() that is used to create tasks

with restricted execution privileges and restricted memory access rights.

xTaskCreateRestricted() requires all the parameters used by xTaskCreate(), plus four

additional parameters that define the three task-specific MPU regions and a stack buffer.

Attempting to use this number of parameters in a normal function parameter list would be

cumbersome and could, potentially, make heavy use of stack space. Instead, FreeRTOS-

MPU defines a structure called xTaskParameters that contains a member for each required

parameter. xTaskParameters structures can be declared const and therefore remain in Flash.

xTaskCreateRestricted() takes a pointer to an xTaskParameters structure as one of its two

parameters. The second parameter is used to pass out a handle to the task being created—

exactly as with the xTaskCreate() parameter of the same name. pxCreatedTask can be set to

NULL if a handle to the task is not required.

portBASE_TYPE xTaskCreateRestricted(xTaskParameter s *pxTaskDefinition,
 xTaskHandle *p xCreatedTask);

Listing 82. The xTaskCreateRestricted() API functi on prototype

Listing 83 contains the xTaskParameters structure definition, and the definition of the

xMemoryRegion structure that xTaskParameters contains. The structure members are

described in Table 24 and Table 25. Listing 82 shows how the structures are used.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 163

/*
 * Defines a single MPU region.
 */
typedef struct xMEMORY_REGION
{
 void *pvBaseAddress;
 unsigned long ulLengthInBytes;
 unsigned long ulParameters;
} xMemoryRegion;

/*
 * Contains a member for each parameter required to create a restricted task.
 */
typedef struct xTASK_PARAMTERS
{
 pdTASK_CODE pvTaskCode;
 const signed char * const pcName;
 unsigned short usStackDepth;
 void *pvParameters;
 unsigned portBASE_TYPE uxPriority;
 portSTACK_TYPE *puxStackBuffer;
 xMemoryRegion xRegions[portNUM_CONFIGURABLE_RE GIONS];
} xTaskParameters;

Listing 83. Definition of the structures required by the xTaskCreateRestricted() API
function

Table 24. xMemoryRegion structure members

Structure Member Description

pvBaseAddress The region start address. This must be a multiple of the region size as

defined by the ulLengthInBytes value.

ulLengthInBytes The region size in bytes. This must be a binary power of two having a

value between 32 bytes and 4 gigabytes, inclusive.

ulParameters The access permissions for the region, defined as the bitwise OR of the

definitions contained in Table 23.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

164

Table 25. xTaskParameters structure members

Structure Member Description

pvTaskCode,

pcName,

usStackDepth,

pvParameters

These parameters are the same as their xTaskCreate() equivalents.

See Table 2.

uxPriority In xTaskCreate(), uxPriority is used just to set the priority at which the

task is initially created. In xTaskCreateRestricted(), it is also used to

set the task to either Privileged mode or User mode.

To create a User mode task, set uxPriority to the desired task priority.

To create a Privileged mode task, bitwise OR the required task priority

with portPRIVILEGE_BIT. For example, to create a User mode task at

priority three, set uxPriority to 3. To create a Privileged mode task at

priority three, set uxPriority to (3 | portPRIVILEGE_BIT). Source

code examples are provided later in this chapter.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 165

Table 25. xTaskParameters structure members

Structure Member Description

puxStackBuffer FreeRTOS-MPU uses an MPU region to ensure that the currently

executing task can access its own stack, and that writes outside the

valid stack space result in a memory protection fault. This means that

the task stack start address and size must comply with the MPU region

constraints already discussed—the size must be a binary power of two

between 32 and 4 gigabytes, and the start address must be a multiple

of the size.

There are two ways to ensure compliance with the byte alignment

requirements:

1. Provide an implementation of pvPortMallocAligned() that will

allocate RAM from the heap with the specified byte alignment.

The implementation is likely to be complex and potentially

wasteful, so nothing further is mentioned in this book about this

option. By default, pvPortMallocAligned() is not defined, and

the standard pvPortMalloc() is used in its place. If

pvPortMallocAligned() is implemented, then puxStackBuffer can

be set to NULL.

2. Statically allocate a buffer (array) for use as a stack by the task

being created, and use the compiler extensions to ensure that

the buffer is correctly aligned. puxStackBuffer should then

point to the start of the buffer. This is the method demonstrated

later in this chapter.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

166

Table 25. xTaskParameters structure members

Structure Member Description

xRegions An array of xMemoryRegion structures that define up to a maximum of

three MPU regions (portNUM_CONFIGURABLE_REGIONS equals

three). The kernel will automatically configure the MPU to use these

regions each time the task being created enters the Running state.

The regions can later be redefined using the

vTaskAllocateMPURegions() API function.

All three region definitions must be present in the xRegions array,

even if only one or two are going to be used. To prevent a region

definition being used, set all the members of its defining

xMemoryRegion structure to zero.

Listing 84 shows an example of an xTaskParameters structure configured to define a User

mode task. Changing the uxPriority value from 1 to (1 | portPRIVILEGE_BIT) would cause

the structure to define a Privileged mode task, instead.

/* A User task is to be created that requires read only access to an array. First
define the array to comply with the size and alignm ent rules. This example uses GCC
syntax. */
char cArray[128] __attribute__((aligned(128)));

/* Next define the xTaskParameters structure that i ncludes an MPU definition giving
the task the required array access. Only one of th e possible three MPU regions are
being used, but all three have to be defined. */
static const xTaskParameters xCheckTaskParameters =
{
 vDemoTask, /* pvTaskCode - the function that implements the ta sk. */
 "Demo", /* pcName */
 400, /* usStackDepth - defined in words, not bytes. */
 NULL, /* pvParameters - not being used in this case. */
 1, /* uxPriority - User mode priority 1. */
 cTaskStack, /* puxStackBuffer - the array to use as the task st ack. */

 /* xRegions - In this case the xRegions array is us ed to create a single MPU
 region to provide read only access to just one array. The parameters for
 the two unused regions are just set to 0 to pre vent them having any effect. */
 {
 /* Base address Length Parameters */
 { cArray, 128, portMPU_REG ION_READ_ONLY },
 { 0, 0, 0 },
 { 0, 0, 0 }
 }
};

Listing 84. Using the xTaskParameters structure

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 167

Listing 84 shows the simple case where the MPU is being used to control access to a single

variable (in this case an array), but the same technique can be used to control access to a set

of variables by grouping the variables into a single structure. If this is not practical, then

compiler extensions can be used to place the variables manually into a correctly sized and

aligned memory area or section defined within the linker script.

Using xTaskCreate() with FreeRTOS-MPU

xTaskCreate() can be used to create both User mode and Privileged mode tasks, but cannot

be used to allocate MPU regions to the tasks at the point of their creation. Instead, Privileged

mode tasks will have access to the entire memory map, whereas User mode tasks will have

access to any Flash and RAM memory that is not configured for Privileged-only access.

As with xTaskCreateRestricted(), set uxPriority to the desired task priority to create a User

mode task, or bitwise OR the required task priority with portPRIVILEGE_BIT to create a

Privileged mode task. This is demonstrated by Listing 85.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

168

int main(void)
{
 /* Create a User mode task using xTaskCreate(). */
 xTaskCreate
 (
 vOldStyleUserModeTask, /* The function that implements the task. */
 "Task1", /* Text name for the task. */
 100, /* Stack depth in words. */
 NULL, /* Task parameters. */
 3, /* Priority and mode (User in this case). */
 NULL /* Handle. */
);

 /* Create a Privileged mode task using xTaskCre ate(). Note the use of
 portPRIVILEGE_BIT where the task priority is sp ecified. */
 xTaskCreate
 (
 vOldStylePrivilegedModeTask, /* The function that implements the task. */
 (signed char *) "Task2", /* Text name for the task. */
 100, /* Stack depth in words. */
 NULL, /* Task parameters. */
 (3 | portPRIVILEGE_BIT), /* Priority and mode (Privileged in this
 case). */
 NULL /* Handle. */
);

 /* Start the scheduler. */
 vTaskStartScheduler();

 /* If all is well then main() will never reach here as the scheduler will
 now be running the tasks. If main() does reach here then it is likely that
 there was insufficient heap memory available fo r the idle task to be created.
 Chapter 5 provides more information on memory m anagement. */
 for(;;);
}

Listing 85. Using xTaskCreate() to create both Use r mode and Privileged mode task
with FreeRTOS-MPU

The vTaskAllocateMPURegions() API Function

Up to three MPU region definitions can be assigned to a task as the task is created. The

regions can then be redefined using the vTaskAllocateMPURegions() API function.

void vTaskAllocateMPURegions(xTaskHandle xTask, co nst xMemoryRegion * const pxRegions);

Listing 86. The vTaskAllocateMPURegions() API func tion prototype

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 169

Table 26. vTaskAllocateMPURegions() parameters

Parameter Name/
Returned Value Description

xTask The handle of the task whose MPU region definitions are being modified

(the subject task)—see the pxCreatedTask parameter of the

xTaskCreate()/xTaskCreateRestricted() API function for information on

obtaining handles to tasks.

A task can modify the MPU regions assigned to it by passing NULL in

place of a valid task handle.

pxRegions An array of exactly three xMemoryRegion structures. To prevent a

region definition from being used, set all members of its defining

xMemoryRegion structure to zero.

The kernel will automatically configure the MPU to use these definitions

each time the task being modified enters the Running state.

void vAFunction(xTaskHandle xTask)
{
/* Define an xMemoryRegion array that defines an 8K block from address 0 to
be read only, and a 2K block from address 0x1000400 0 to be accessible only from
privileged mode. The array defines only two of the possible three MPU regions,
but must contain all three entries. The members of the unused entry are just set
to zero so it has no effect. */
static const xMemoryRegion xRegions[3] =
{
 /* Base address Length Access parameters */
 { 0x00, 8096, portMPU_REGION_READ_ONL Y },
 { 0x10004000, 2048, portMPU_REGION_PRIVILEG ED_READ_WRITE },
 { 0, 0, 0 } /* The third entry is not used so is just set to
 zero. */
}

 /* Change the MPU regions of the task reference d by xTask to those defined by
 xRegions. */
 vTaskAllocateMPURegions(xTask, xRegions);

 /* Also change the MPU regions used by this tas k to those defined by xRegions. */
 vTaskAllocateMPURegions(NULL, xRegions);
}

Listing 87. Using vTaskAllocateMPURegions() to red efine the MPU regions
associated with a task

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

170

The portSWITCH_TO_USER_MODE() API Macro

A Privileged mode task can call portSWITCH_TO_USER_MODE() to lower its own privilege to

User mode. There is no way for a User mode task to raise its privilege to Privileged mode.

portSWITCH_TO_USER_MODE() does not take any parameters.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 171

7.5 Linker Configuration

FreeRTOS-MPU requires the linker script to define two named sections as described by Table

27, and eight linker variables as described by Table 28.

The syntax used to define the required sections and variable depends on the tool chain being

used. Listing 88 and Listing 89 provide an example that uses GNU LD syntax. LD is the linker

that is distributed with GCC. The easiest way to generate a suitable linker script is to start with

a pre-configured example from a FreeRTOS-MPU demo application.

Table 27. Named linker sections required by FreeRT OS-MPU

Section name Description

privileged_functions The section into which the kernel executable image is to be placed.

privileged_functions should incorporate the vector table, starting at

address zero, with the kernel image starting immediately after the

vector table. An MPU region is used to protect access to the

privileged_functions section, so its size must be a binary power of two

to comply with the MPU region definition rules.

privileged_data The section into which the kernel data is to be placed. As the section

is protected by an MPU region, its start address and size must comply

with the MPU region definition rules.

Table 28. Linker variables required by FreeRTOS-MP U

Variable name Variable value

__FLASH_segment_start__ The start address of the microcontroller Flash memory.

__FLASH_segment_end__ The end address of the microcontroller Flash memory.

__privileged_functions_end__ The end address of the privileged_functions named section.

__SRAM_segment_start__ The start address of the microcontroller SRAM memory.

__SRAM_segment_end__ The end address of the microcontroller SRAM memory.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

172

Table 28. Linker variables required by FreeRTOS-MP U

Variable name Variable value

__privileged_data_start__ The start address of the privileged_data named section.

__privileged_data_end__ The end address of the privileged_data named section.

/* Given the memory map…. */
MEMORY
{
 FLASH (rx) : ORIGIN = 0x0, LENGTH = 0x80 000
 SRAM (rwx) : ORIGIN = 0x10000000, LENGTH = 0x80 00
 AHBRAM0 : ORIGIN = 0x2007c000, LENGTH = 0x40 00
 AHBRAM1 : ORIGIN = 0x20080000, LENGTH = 0x40 00
}

/* ….define the variables required by FreeRTOS-MPU. First ensure the section sizes
are a binary power of two to comply with the MPU re gion size rules. */
_Privileged_Functions_Region_Size = 16K;
_Privileged_Data_Region_Size = 256;

/* Then define the variables themselves. */
__FLASH_segment_start__ = ORIGIN(FLASH);
__FLASH_segment_end__ = __FLASH_segment_st art__ + LENGTH(FLASH);
__privileged_functions_start__ = ORIGIN(FLASH);
__privileged_functions_end__ = __privileged_funct ions_start__ +
 _Privileged_Functi ons_Region_Size;
__SRAM_segment_start__ = ORIGIN(SRAM);
__SRAM_segment_end__ = __SRAM_segment_sta rt__ + LENGTH(SRAM);
__privileged_data_start__ = ORIGIN(SRAM);
__privileged_data_end__ = ORIGIN(SRAM) + _ Privileged_Data_Region_Size;

Listing 88. Defining the memory map and linker var iables using GNU LD syntax

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 173

/* Defining privileged_functions at the start of th e Flash memory, but after the
vector table. */
SECTIONS
{
 /* Privileged section at the start of the flash - vectors must be first
 whatever. */
 privileged_functions :
 {
 KEEP(*(.isr_vector))
 *(privileged_functions)
 } > FLASH

 .text :
 {
 /* Non privileged code kept out of the firs t 16K of flash. */
 = __privileged_functions_start__ + _Privil eged_Functions_Region_Size;

 (.text)
 (.rodata)

 } > FLASH

 /* Rest of section definitions go here – inc luding the privileged_data
 definition. */
}

Listing 89. Defining the privileged_functions name d section using GNU LD syntax

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

174

7.6 Practical Usage Tips

Accessing Data from a User Mode Task

A User mode task cannot access RAM that is outside its own stack space, unless the address

falls within the range of one of the task’s MPU region definitions. If, for example, a User mode

task needs the value of a globally declared queue handle, then, to be accessible, the value

must first be copied into a variable that is on the task stack. There are several ways to

achieve this, including:

• Initially, create the task in Privileged mode, and then copy the global variable value into

a stack variable, before switching the task into the required User mode. This method is

demonstrated in Listing 90.

• Pass the value of the global variable into the task using the task parameter. This

method is demonstrated in Listing 91.

/* The handle to a queue is stored in a global (or file scope) variable. */
xQueueHandle xGlobalQueue;

void vATask(void *pvParameters)
{
xQueueHandle xStackQueue;

 /* This task was created in Privileged mode so can access the global variable.
 Copy the value of the global variable into a st ack variable while the task is
 still in Privileged mode. */
 xStackQueue = xGlobalQueue;

 /* Now set the task into User mode. From this poin t on the task can no longer
 access the value of the global variable, but ca n access its local stack copy. */
 portSWITCH_TO_USER_MODE();

 for(;;)
 {
 /* The main task functionality is performed in User mode. Data can be sent
 to or from the queue using xStackQueue as t he handle. */
 }
}

Listing 90. Copying data into a stack variable bef ore setting the task into
User mode

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 175

/* The handle to a queue is stored in a global (or file scope) variable. */
xQueueHandle xGlobalQueue;

void vATask(void *pvParameters)
{
xQueueHandle xStackQueue;

 /* This task was created in User mode so cannot access the global variable. It
 can access variables stored on its own stack an d the task parameter. The value
 of xGlobalQueue is passed into this task using the task parameter and then copied
 into the local stack variable, casting to the a ppropriate type. */
 xStackQueue = (xQueueHandle) pvParameters;

 for(;;)
 {
 /* The main task functionality is done here . Data can be sent to or from the
 queue using xStackQueue as the handle. */
 }
}

Listing 91. Copying the value of a global variable into a stack variable using the
task parameter

Intertask Communication from User Mode

Code executing in User mode cannot access RAM outside its own stack and the MPU regions

that are configured for it. This does not prevent User mode tasks from using queues or

semaphores to communicate with other tasks or interrupts.

The RAM used by queues and semaphores is owned and controlled by the kernel and can be

accessed only when the processor is executing in Privileged mode. Calling an API function

such as xQueueSend() causes the processor to switch temporarily into Privileged mode, from

where the data being queued can be copied from the User mode task into the kernel controlled

queue storage area. Similarly, calling an API function such as xQueueReceive() causes the

processor to switch temporarily into Privileged mode, from where the data being received can

be copied from the kernel controlled queue storage area into the User mode task.

FreeRTOS-MPU Demo Projects

FreeRTOS-MPU is included in the main FreeRTOS download. Some heavily commented

FreeRTOS-MPU demo applications are located in sub-directories with names that start

‘Cortex-MPU’ within the FreeRTOS\Demo directory.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

176

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 177

Chapter 8

The FreeRTOS Download

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

178

8.1 Chapter Introduction and Scope

FreeRTOS is distributed as a single .zip file archive containing all the official FreeRTOS ports

and a large number of pre-configured demo applications. The large number of files can seem

overwhelming, but only a subset will actually be required.

Scope

This chapter aims to help users orientate themselves with the FreeRTOS files and directories

by:

• Providing a top level view of the FreeRTOS directory structure.

• Describing which files are actually required by Cortex-M3 microcontroller projects.

• Introducing the demo applications.

• Providing information on how a new project can be created.

The description here relates only to the main FreeRTOS .zip file distribution. The examples

that come with this book use a slightly different organization.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 179

8.2 Files and Directories

The official FreeRTOS distribution contains:

• The core FreeRTOS source code. This is the code that is common to all ports.

• A port layer for each supported microcontroller and compiler combination.

• A project file or makefile to build a demo application for each supported microcontroller

and compiler combination.

• A set of common demo tasks. These are simple tasks that are used by most of the

demo applications.

The .zip file has two top-level directories, one called Source and the other called Demo. The

Source directory tree contains the entire FreeRTOS kernel implementation, both the common

components and the port specific components. The Demo directory tree contains only the

demo application project files and the source files that define the demo tasks.

FreeRTOS
 ¦
 +-Demo Contains the demo application source and projects.
 ¦
 +-Source Contains the implementation of the real time kernel .

Figure 43. The top-level directories—Source and De mo

The core FreeRTOS source code is contained in just three C files that are common to all the

microcontroller ports. These are called queue.c, tasks.c, and list.c and are located directly

under the Source directory. The port specific files are located within the ‘portable’ directory

tree, which is also located directly within the Source directory. This arrangement is shown in

Figure 44.

An optional fourth source file called croutine.c implements the FreeRTOS co-routine

functionality. It need only be included in the build if co-routines are actually going to be used.

Co-routines are intended for use on very small microcontrollers, so it is unlikely that they will

be used in a Cortex-M3 microcontroller project.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

180

FreeRTOS
 ¦
 +-Demo Contains the demo application source and projects.
 ¦
 +-Source Contains the implementation of the real time kernel .
 |
 +- tasks.c One of the three core kernel files.
 +- queue.c One of the three core kernel files.
 +- list.c One of the three core kernel files.
 +-portable The sub-directory that contains all the port specif ic files.

Figure 44. The three core files that implement the FreeRTOS kernel

Removing Unused Source Files

The ‘portable layer’ is the code that tailors the FreeRTOS kernel to a particular compiler and

microcontroller combination. The portable layer source files for the Cortex-M3 are located in

the FreeRTOS\Source\portable\[compiler]\ARM_CM3 directories, where [compiler] must be

substituted with RVDS, IAR, or GCC to locate the port files for the RVDS/Keil, IAR, and GCC

compilers, respectively.

When using the Cortex-M3 port:

• All the sub-directories under FreeRTOS\Source\portable can be deleted, except

FreeRTOS\Source\portable\[compiler] and FreeRTOS\Source\portable\MemMang.

• All the sub-directories under FreeRTOS\Source\portable\[compiler] can be deleted,

except FreeRTOS\Source\portable\[compiler]\ARM_CM3.

The FreeRTOS\Source directories that must remain are shown in Figure 45.

FreeRTOS
 |
 +-Source Contains the implementation of the real time kernel .
 |
 +-portable Contains all the port specific files.
 |
 +-MemMang Contains the example memory management implementati ons.
 +-[compiler] [Compiler] can be RVDS, IAR or GCC.
 |
 +-ARM_CM3 Contains the Cortex-M3 port files specific to
 [compiler].

Figure 45. The source directories required to buil d a Cortex-M3 microcontroller
demo application

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 181

8.3 Demo Applications

Each official FreeRTOS port comes with a demo application that should build with no errors or

warnings being generated6. The demo application has several purposes:

• To provide an example of a working and pre-configured project with the correct files

included and the correct compiler options set.

• To allow ‘out of the box’ experimentation with minimal setup or prior knowledge.

• As a demonstration of how the FreeRTOS API can be used.

• As a base from which real applications can be created.

Each demo project is located in a unique sub-directory under the Demo directory. The sub-

directory name indicates the port to which the demo project relates. Several demo

applications are provided for various Cortex-M3 based microcontroller families—each

contained in a unique sub-directory that starts ‘CORTEX_….’.

Every demo application also has its own documentation page on the FreeRTOS.org website.

The documentation page includes information on:

• How to locate the project file or makefile for the demo within the FreeRTOS directory

structure.

• Which hardware the project is configured to use.

• How to set up the hardware for running the demo.

• How to build the demo.

• How the demo is expected to behave.

All the demo projects create a subset of the common demo tasks, the implementations of

which are contained in the FreeRTOS\Demo\Common\Minimal directory. The common demo

tasks exist purely to demonstrate how the FreeRTOS API can be used—they do not

implement any particular useful functionality.

6 This is the ideal scenario, and is normally the case, but is dependent on the version of the compiler
used to build the demo. Upgraded compilers can sometimes generate warnings where their
predecessors did not.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

182

A file called main.c is included in each project. This contains the main() function, from where

all the demo application tasks are created. See the comments within the individual main.c files

for more information on what a specific demo application does.

Removing Unused Demo Files

When using a provided demo application:

• All the sub-directories under FreeRTOS\Demo can be deleted, except the directory

containing the demo being used and FreeRTOS\Demo\Common.

• FreeRTOS\Demo\Common contains many more files than are referenced from any one

demo application, so this directory can be trimmed down, if desired. Inspect the demo

application makefile or project file to identify files that can be deleted. In general,

FreeRTOS\Demo\Common\Minimal should not be deleted.

The FreeRTOS\Demo directories that must remain are shown in Figure 46.

FreeRTOS
 |
 +-Demo Contains all the demo application source and projec ts.
 |
 +-[Demo] Contains the makefile or project for the demo being built.
 |
 +-Common Contains files common to all demo applications.

Figure 46. The demo directories required to build a demo application

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 183

8.4 Creating a FreeRTOS Project

Adapting One of the Supplied Demo Projects

Every official FreeRTOS port comes with at least one pre-configured demo application that

should build with no errors or warnings. It is recommended that new projects are created by

adapting one of these existing projects; this will allow the project to have the correct files

included and the correct compiler options set.

To start a new application from an existing demo project:

1. Open the supplied demo project and ensure that it builds and executes as expected.

2. Remove the source files that define the demo tasks. Any file that is located within the

Demo\Common directory tree can be removed.

3. Delete all the functions within main.c, except prvSetupHardware().

4. Ensure that the following constants are all set to 0 within FreeRTOSConfig.h. This will

prevent the linker from looking for any hook functions. Hook functions can be added

later, if required.

• configUSE_IDLE_HOOK

• configUSE_TICK_HOOK

• configUSE_MALLOC_FAILED_HOOK

• configCHECK_FOR_STACK_OVERFLOW

5. Create a new main() function from the template shown in Listing 92.

6. Check that the project still builds.

Following these steps will create a project that includes the correct FreeRTOS source files but

does not define any functionality.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

184

int main(void)
{
 /* Perform any hardware setup necessary. */
 prvSetupHardware();

 /* --- APPLICATION TASKS CAN BE CREATED HERE -- - */

 /* Start the created tasks running. */
 vTaskStartScheduler();

 /* Execution will only reach here if there was insufficient heap to
 start the scheduler. */
 for(;;);
 return 0;
}

Listing 92. The template for a new main() function

Creating a New Project from Scratch

As already mentioned, it is recommended that new projects are created from an existing demo

project. If this is not desirable, then a new project can be created using the following

procedure:

1. Create a new empty project file or makefile using your chosen tool chain.

2. Add the files detailed in Table 29 to the newly created project or makefile.

3. Copy an existing FreeRTOSConfig.h file into the project directory.

4. Add the following directories to the path the project will search to locate header files:

• FreeRTOS\Source\include

• FreeRTOS\Source\portable\[compiler]\ARM_CM3 (where [compiler] is RVDS,

IAR, or GCC)

5. Copy the compiler settings from the relevant demo project or makefile.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 185

Table 29. FreeRTOS source files to include in the project

File Location

tasks.c FreeRTOS\Source

queue.c FreeRTOS\Source

list.c FreeRTOS\Source

port.c FreeRTOS\Source\portable\[compiler]\ARM_CM3

port_asm.s FreeRTOS\Source\portable\[compiler]\ARM_CM3. An assembly file is not

required when using GCC.

heap_n.c FreeRTOS\Source\portable\MemMang, where n is either 1, 2 or 3

Header Files

A source file that uses the FreeRTOS API must include ‘FreeRTOS.h’, followed by the header

file that contains the prototype for the API function being used—either ‘task.h’, ‘queue.h’, or

‘semphr.h’.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

186

8.5 Data Types and Coding Style Guide

Data Types

Each port of FreeRTOS has a unique portmacro.h header file that contains (amongst other

things) definitions for two special data types, portTickType and portBASE_TYPE. These data

types are described in Table 30.

Table 30. Special data types used by FreeRTOS

Macro or typedef
used Actual type

portTickType This is used to store the tick count value and to specify block times.

portTickType can be either an unsigned 16-bit type or an unsigned 32-bit

type, depending on the setting of configUSE_16_BIT_TICKS within

FreeRTOSConfig.h.

Using a 16-bit type can greatly improve efficiency on 8-bit and 16-bit

architectures, but severely limits the maximum block period that can be

specified. There is no reason to use a 16-bit type on a 32-bit

architecture, so configUSE_16_BIT_TICKS should be set to 0.

portBASE_TYPE This is always defined as the most efficient data type for the architecture.

Typically, this is a 32-bit type on a 32-bit architecture, a 16-bit type on a

16-bit architecture, and an 8-bit type on an 8-bit architecture.

portBASE_TYPE is generally used for return types that can take only a

very limited range of values, and for Booleans. Cortex-M3 ports define

portBASE_TYPE as type ‘long’.

Some compilers make all unqualified char variables unsigned, while others make them signed.

For this reason, the FreeRTOS source code explicitly qualifies every use of char with either

‘signed’ or ‘unsigned’.

Plain int types are never used—only long and short.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 187

Variable Names

Variables are prefixed with their type: ‘c’ for char, ‘s’ for short, ‘l’ for long, and ‘x’ for

portBASE_TYPE and any other type (structures, task handles, queue handles, etc.).

If a variable is unsigned, it is also prefixed with a ‘u’. If a variable is a pointer, it is also prefixed

with a ‘p’. Therefore, a variable of type unsigned char will be prefixed with ‘uc’, and a variable

of type pointer to char will be prefixed with ‘pc’.

Function Names

Functions are prefixed with both the type they return and the file they are defined within. For

example:

• vTaskPrioritySet() returns a void and is defined within task.c.

• xQueueReceive() returns a variable of type portBASE_TYPE and is defined within

queue.c.

• vSemaphoreCreateBinary() returns a void and is defined within semphr.h.

File scope (private) functions are prefixed with ‘prv’.

Formatting

One tab is always set to equal four spaces.

Macro Names

Most macros are written in upper case and prefixed with lower case letters that indicate where

the macro is defined. Table 31 provides a list of prefixes.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

188

Table 31. Macro prefixes

Prefix Location of macro definition

port (for example, portMAX_DELAY) portable.h

task (for example, taskENTER_CRITICAL()) task.h

pd (for example, pdTRUE) projdefs.h

config (for example, configUSE_PREEMPTION) FreeRTOSConfig.h

err (for example, errQUEUE_FULL) projdefs.h

Note that the semaphore API is written almost entirely as a set of macros, but follows the

function naming convention, rather than the macro naming convention.

The macros defined in Table 32 are used throughout the FreeRTOS source code.

Table 32. Common macro definitions

Macro Value

pdTRUE 1

pdFALSE 0

pdPASS 1

pdFAIL 0

Rationale for Excessive Type Casting

The FreeRTOS source code can be compiled with many different compilers, all of which differ

in how and when they generate warnings. In particular, different compilers want casting to be

used in different ways. As a result, the FreeRTOS source code contains more type casting

than would normally be warranted.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 189

Appendix 1: Licensing Information

FreeRTOS is licensed under a modified version of the GNU General Public License (GPL) and

can be used in commercial applications under that license. An alternative and optional

commercial license is also available if:

• You cannot fulfill the requirements stated in the ’Open source modified GPL license’

column of Table 33.

• You wish to receive direct technical support.

• You wish to have assistance with your development.

• You require guarantees and indemnification.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

190

Table 33. Comparing the open source license with t he commercial license

 Open source modified
GPL license

Commercial
license

Is it free? Yes No

Can I use it in a commercial application? Yes Yes

Is it royalty free? Yes Yes

Do I have to open source my application code? No No

Do I have to open source my changes to the

FreeRTOS kernel?

Yes No

Do I have to document that my product uses

FreeRTOS.

Yes No

Do I have to offer to provide the FreeRTOS

source code to users of my application?

Yes (a WEB link to the

FreeRTOS.org site is

normally sufficient)

No

Can I receive support on a commercial basis? No Yes

Are any legal guarantees provided? No Yes

Open Source License Details

The FreeRTOS source code is licensed under version 2 of the GNU General Public License

(GPL) with an exception.

The full text of the GPL is available at http://www.freertos.org/license.txt. The text of the

exception is provided below.

The exception permits the source code of applications that use FreeRTOS solely through the

API published on the FreeRTOS.org website to remain closed source, thus permitting the use

of FreeRTOS in commercial applications without necessitating that the entire application be

open sourced. The exception can be used only if you wish to combine FreeRTOS with a

proprietary product and you comply with the terms stated in the exception itself.

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 191

GPL Exception Text

Note that the exception text is subject to change. Consult the FreeRTOS.org website for the

most recent version.

Clause 1

Linking FreeRTOS statically or dynamically with other modules is making a combined work based on FreeRTOS.
Thus, the terms and conditions of the GNU General Public License cover the whole combination.

As a special exception, the copyright holder of FreeRTOS gives you permission to link FreeRTOS with independent
modules that communicate with FreeRTOS solely through the FreeRTOS API interface, regardless of the license
terms of these independent modules, and to copy and distribute the resulting combined work under terms of your
choice, provided that:

1. Every copy of the combined work is accompanied by a written statement that details to the recipient the version
of FreeRTOS used and an offer by yourself to provide the FreeRTOS source code (including any modifications
you may have made) should the recipient request it.

2. The combined work is not itself an RTOS, scheduler, kernel or related product.

3. The independent modules add significant and primary functionality to FreeRTOS and do not merely extend the
existing functionality already present in FreeRTOS.

An independent module is a module which is not derived from or based on FreeRTOS.

Clause 2

FreeRTOS may not be used for any competitive or comparative purpose, including the publication of any form of
run time or compile time metric, without the express permission of Real Time Engineers ltd. (this is the norm within
the industry and is intended to ensure information accuracy).

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

192

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 193

INDEX

A

Access Permissions, 157
atomic, 117

B

background
background processing, 37

best fit, 143
Binary Semaphore, 84
Blocked State, 26
Blocking on Queue Reads, 57
Blocking on Queue Writes, 58

C

C library functions, 148
CMSIS, 110
configCHECK_FOR_STACK_OVERFLOW, 150
configKERNEL_INTERRUPT_PRIORITY, 111
configMAX_PRIORITIES, 15, 22
configMAX_SYSCALL_INTERRUPT_PRIORITY, 111
configMINIMAL_STACK_DEPTH, 14
configTICK_RATE_HZ, 22
configTOTAL_HEAP_SIZE, 142
configUSE_IDLE_HOOK, 39
continuous processing, 34

continuous processing task, 26
co-operative scheduling, 52
Counting Semaphores, 96
Creating Tasks, 13
critical regions, 120
critical section, 112
Critical sections, 120

D

Data Types, 186
Deadlock, 131
Deadly Embrace, 131
deferred interrupts, 84
Deleting a Task, 46

E

errQUEUE_FULL, 63
event driven, 26
events, 82
Events, 82

F

FDA 510(K), 7
fixed execution period, 32
Fixed Priority Pre-emptive Scheduling, 50
Formatting, 187

free(), 140
FreeRTOS-MPU, 156
FromISR, 82
Function Names, 187
Function Reentrancy, 117

G

Gatekeeper tasks, 133

H

handler tasks, 84
Hard real time, 2
Heap_1, 142
Heap_2, 143
Heap_3, 145
high water mark, 149
highest priority, 15

I
Idle Task, 37
Idle Task Hook, 37
IEC 61508, 6
IEC 62304, 7
Interrupt Nesting, 110
interrupt priority, 110

L

locking the scheduler, 121
low power mode, 37
lowest priority, 15, 22

M

Macro Names, 187
malloc(), 140
Measuring the amount of spare processing capacity, 37
Memory Protection Unit, 156
MPU, 156
Mutex, 124
mutual exclusion, 118

N

non-atomic, 117
Not Running state, 12

O

OpenRTOS, 6
Overlapping Regions, 159

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

194

P

periodic
periodic tasks, 28

periodic interrupt, 22
portable layer, 180
portBASE_TYPE, 186
portEND_SWITCHING_ISR(), 92
portMAX_DELAY, 62, 65
portSWITCH_TO_USER_MODE(), 170
portTICK_RATE_MS, 22, 29
portTickType, 186
pre-empted

pre-emption, 37
Pre-emptive

Pre-emptive scheduling, 50
Prioritized Pre-emptive Scheduling, 50
priority, 15, 22
priority inheritance, 130
priority inversion, 129
Privileged Mode, 157
pvParameters, 14
pvPortMalloc(), 140

Q

queue access by Multiple Tasks, 57
queue block time, 57
queue item size, 57
queue length, 57
Queues, 55

R

RAM allocation, 140
Read, Modify, Write Operations, 116
Ready state, 27
reentrant, 117
Removing Unused Files, 180, 182
Run Time Stack Checking, 150
Running state, 12, 26

S

SafeRTOS, 6
Soft real time, 2
spare processing capacity

measuring spare processing capacity, 31
sprintf(), 148
Stack Overflow, 149
stack overflow hook, 150
starvation, 24
starving

starvation, 26
state diagram, 27
Suspended State, 27
suspending the scheduler, 121
swapped in, 12
swapped out, 12
switched in, 12
switched out, 12
Synchronization, 84
Synchronization events, 26

T

tabs, 187
task, 2
Task Functions, 11
task handle, 15, 43
Task Parameter, 19
Task Priorities, 22
taskYIELD(), 52, 70
Temporal

temporal events, 26
the xSemaphoreCreateMutex(), 126
thread, 2
tick count, 23
tick hook function, 133
tick interrupt, 22
ticks, 22
time slice, 22
Type Casting, 188

U

User Mode, 157
uxQueueMessagesWaiting(), 66
uxTaskGetStackHighWaterMark(), 149
uxTaskPriorityGet(), 40

V

vApplicationStackOverflowHook, 150
Variable Names, 187
vPortFree(), 140
vSemaphoreCreateBinary(), 85, 99
vTaskAllocateMPURegions(), 168
vTaskDelay(), 28
vTaskDelayUntil(), 31
vTaskDelete(), 46
vTaskPrioritySet(), 40
vTaskResume(), 27
vTaskSuspend(), 27
vTaskSuspendAll(), 122

X

xMemoryRegion, 162
xPortGetFreeHeapSize(), 145
xQueueCreate(), 60
xQueueHandle, 60
xQueuePeek(), 63
xQueueReceive(), 63
xQueueReceiveFromISR(), 103
xQueueSend(), 61
xQueueSendFromISR(), 103
xQueueSendToBack(), 61
xQueueSendToBackFromISR(), 103
xQueueSendToFront(), 61
xQueueSendToFrontFromISR(), 103
xSemaphoreCreateCounting(), 99
xSemaphoreGiveFromISR(), 89
xSemaphoreHandle, 85, 99, 126
xSemaphoreTake(), 88
xTaskCreate(), 13
xTaskCreateRestricted(), 162
xTaskGetTickCount(), 33
xTaskParameters, 162

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

 195

xTaskResumeAll(), 122
xTaskResumeFromISR(), 27

Z

zip file, 178

www.FreeRTOS.org This document was supplied to jmclurkin@rice.edu

196

