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Multitasking on a Cortex-M3 Microcontroller 

An Introduction to Multitasking in Small Embedded S ystems 

Microcontrollers (MCUs) that contain an ARM Cortex-M3 core are available from many 

manufacturers and are ideally suited to deeply embedded real-time applications.  Typically, 

applications of this type include a mix of both hard and soft real-time requirements.   

Soft real-time requirements are those that state a time deadline—but breaching the deadline 

would not render the system useless.  For example, responding to keystrokes too slowly may 

make a system seem annoyingly unresponsive without actually making it unusable. 

Hard real-time requirements are those that state a time deadline—and breaching the deadline 

would result in absolute failure of the system.  For example, a driver’s airbag would be useless 

if it responded to crash sensor inputs too slowly. 

FreeRTOS is a real-time kernel (or real-time scheduler) on top of which Cortex-M3 

microcontroller applications can be built to meet their hard real-time requirements.  It allows 

Cortex-M3 microcontroller applications to be organized as a collection of independent threads 

of execution.  As most Cortex-M3 microcontroller have only one core, in reality only a single 

thread can be executing at any one time.  The kernel decides which thread should be 

executing by examining the priority assigned to each thread by the application designer.  In the 

simplest case, the application designer could assign higher priorities to threads that implement 

hard real-time requirements, and lower priorities to threads that implement soft real-time 

requirements.  This would ensure that hard real-time threads are always executed ahead of 

soft real-time threads, but priority assignment decisions are not always that simplistic. 

Do not be concerned if you do not fully understand the concepts in the previous paragraph yet.  

The following chapters provide a detailed explanation, with many examples, to help you 

understand how to use a real-time kernel, and how to use FreeRTOS in particular.  

A Note About Terminology 

In FreeRTOS, each thread of execution is called a ‘task’.  There is no consensus on 

terminology within the embedded community, but I prefer ‘task’ to ‘thread’ as ‘thread’ can have 

a more specific meaning in some fields of application. 
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Why Use a Real-time Kernel? 

There are many well established techniques for writing good embedded software without the 

use of a kernel, and, if the system being developed is simple, then these techniques might 

provide the most appropriate solution.  In more complex cases, it is likely that using a kernel 

would be preferable, but where the crossover point occurs will always be subjective.   

As already described, task prioritization can help ensure an application meets its processing 

deadlines, but a kernel can bring other less obvious benefits, too.  Some of these are listed 

very briefly below: 

• Abstracting away timing information 

The kernel is responsible for execution timing and provides a time-related API to the 

application.  This allows the structure of the application code to be simpler and the overall 

code size to be smaller. 

• Maintainability/Extensibility 

Abstracting away timing details results in fewer interdependencies between modules and 

allows the software to evolve in a controlled and predictable way.  Also, the kernel is 

responsible for timing, so application performance is less susceptible to changes in the 

underlying hardware. 

• Modularity 

Tasks are independent modules, each of which should have a well-defined purpose.   

• Team development 

Tasks should also have well-defined interfaces, allowing easier development by teams. 

• Easier testing 

If tasks are well-defined independent modules with clean interfaces, they can be tested in 

isolation.  

• Code reuse 

Greater modularity and fewer interdependencies can result in code that can be re-used with 

less effort.   
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• Improved efficiency 

Using a kernel allows software to be completely event-driven, so no processing time is 

wasted by polling for events that have not occurred.  Code executes only when there is 

something that must be done. 

Counter to the efficiency saving is the need to process the RTOS tick interrupt and to switch 

execution from one task to another.  

• Idle time 

The Idle task is created automatically when the kernel is started.  It executes whenever 

there are no application tasks wishing to execute.  The idle task can be used to measure 

spare processing capacity, to perform background checks, or simply to place the processor 

into a low-power mode. 

• Flexible interrupt handling 

Interrupt handlers can be kept very short by deferring most of the required processing to 

handler tasks.  Section 3.2 demonstrates this technique. 

• Mixed processing requirements 

Simple design patterns can achieve a mix of periodic, continuous, and event-driven 

processing within an application.  In addition, hard and soft real-time requirements can be 

met by selecting appropriate task and interrupt priorities. 

• Easier control over peripherals 

Gatekeeper tasks can be used to serialize access to peripherals. 

The Cortex-M3 Port of FreeRTOS 

The Cortex-M3 port includes all the standard FreeRTOS features: 

• Pre-emptive or co-operative operation 

• Very flexible task priority assignment 

• Queues  

• Binary semaphores 

• Counting semaphores  



www.FreeRTOS.org  This document was supplied to jmclurkin@rice.edu 
 

 
 5 

 

 

• Recursive semaphores 

• Mutexes 

• Tick hook functions  

• Idle hook functions  

• Stack overflow checking 

• Trace hook macros 

• Optional commercial licensing and support 

FreeRTOS also manages interrupt nesting, and allows interrupts above a user-definable 

priority level to remain unaffected by the activity of the kernel.  Using FreeRTOS will not 

introduce any additional timing jitter or latency for these interrupts. 

There are two separate FreeRTOS ports for the Cortex-M3: 

1. FreeRTOS-MPU 

FreeRTOS-MPU includes full Memory Protection Unit (MPU) support.  In this version, tasks 

can execute in either User mode or Privileged mode.  Also, access to Flash, RAM, and 

peripheral memory regions can be tightly controlled, on a task-by-task basis. 

Not all Cortex-M3 microcontrollers include MPU hardware. 

2. FreeRTOS (the original port) 

This does not include any MPU support.  All tasks execute in the Privileged mode and can 

access the entire memory map.   

The examples that accompany this text use the original FreeRTOS version without MPU 

support, but a chapter describing FreeRTOS-MPU is included for completeness (see Chapter 

7). 

Resources Used By FreeRTOS 

FreeRTOS makes use of the Cortex-M3 SysTick, PendSV, and SVC interrupts.  These 

interrupts are not available for use by the application. 

FreeRTOS has a very small footprint.  A typical kernel build will consume approximately 6K 

bytes of Flash space and a few hundred bytes of RAM.  Each task also requires RAM to be 

allocated for use as the task stack. 
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The FreeRTOS, OpenRTOS, and SafeRTOS Family 

FreeRTOS uses a modified GPL license.  The modification is included to ensure: 

1. FreeRTOS can be used in commercial applications. 

2. FreeRTOS itself remains open source. 

3. FreeRTOS users retain ownership of their intellectual property. 

When you link FreeRTOS into an application, you are obliged to open source only the kernel, 

including any additions or modifications you may have made.  Components that merely use 

FreeRTOS through its published API can remain closed source and proprietary.  Appendix 1: 

contains the modification text. 

OpenRTOS  shares the same code base as FreeRTOS, but is provided under standard 

commercial license terms.  The commercial license removes the requirement to open source 

any code at all and provides IP infringement protection.   

OpenRTOS can be purchased with a professional support contract and a selection of other 

useful components such as TCP/IP stacks and drivers, USB stacks and drivers, and various 

different file systems.  Evaluation versions can be downloaded from 

http://www.OpenRTOS.com.   

Table 1 provides an overview of the differences between the FreeRTOS and OpenRTOS 

license models. 

SafeRTOS has been developed in accordance with the practices, procedures, and processes 

necessary to claim compliance with various internationally recognized safety related 

standards. 

IEC 61508 is an international standard covering the development and use of electrical, 

electronic, and programmable electronic safety-related systems.  The standard defines the 

analysis, design, implementation, production, and test requirements for safety-related 

systems, in accordance with the Safety Integrity Level (SIL) assigned to the system.  The SIL 

is assigned according to the risks associated with the use of the system under development, 

with a maximum SIL of 4 being assigned to systems with the highest perceived risk.  The 

SafeRTOS development process has been independently certified by TÜV SÜD as being in 

compliance with that required by IEC 61508 for SIL 3 applications.  SafeRTOS is supplied with 
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complete lifecycle compliance evidence and has itself been certified for use in IEC 61508, IEC 

62304 and FDA 510(K) applications.   

SafeRTOS was originally derived from FreeRTOS and retains a similar usage model.  Visit 

http://www.SafeRTOS.com for additional information. 

 

Table 1.  Comparing the FreeRTOS license with the O penRTOS license 

 FreeRTOS License OpenRTOS License 

Is it Free? Yes No 

Can I use it in a commercial 

application? 

Yes Yes 

Is it royalty free? Yes Yes 

Do I have to open source my 

application code that makes use of 

FreeRTOS services? 

No, as long as the code 

provides functionality that 

is distinct from that 

provided by FreeRTOS 

No 

Do I have to open source my 

changes to the kernel? 

Yes No 

Do I have to document that my 

product uses FreeRTOS? 

Yes No 

Do I have to offer to provide the 

FreeRTOS code to users of my 

application? 

Yes No 

Can I buy an annual support 

contract? 

No Yes 

Is a warranty provided? No Yes 

Is legal protection provided? No Yes, IP infringement 

protection is provided 
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Using the Examples that Accompany this Book 

Required Tools and Hardware 

The examples described in this book are included in an accompanying .zip file.  You can 

download the .zip file from http://www.FreeRTOS.org/Documentation/code if you did not 

receive a copy with the book. 

.zip files are provided for Cortex-M3 microcontrollers from several different manufacturers and 

using several different compilers.  Each .zip file also contains the appropriate build 

instructions. 
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Chapter 1  

 

Task Management 
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1.1 Chapter Introduction and Scope 

Scope 

This chapter aims to give readers a good understanding of: 

• How FreeRTOS allocates processing time to each task within an application. 

• How FreeRTOS chooses which task should execute at any given time. 

• How the relative priority of each task affects system behavior. 

• The states that a task can exist in. 

Readers should also gain a good understanding of: 

• How to implement tasks. 

• How to create one or more instances of a task. 

• How to use the task parameter. 

• How to change the priority of a task that has already been created. 

• How to delete a task. 

• How to implement periodic processing. 

• When the idle task will execute and how it can be used. 

The concepts presented in this chapter are fundamental to understanding how to use 

FreeRTOS and how FreeRTOS applications behave.  This is, therefore, the most detailed 

chapter in the book. 
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1.2 Task Functions 

Tasks are implemented as C functions.  The only thing special about them is their prototype, 

which must return void and take a void pointer parameter.  The prototype is demonstrated by 

Listing 1. 

 
void ATaskFunction( void *pvParameters ); 
 

Listing 1.  The task function prototype 

Each task is a small program in its own right.  It has an entry point, will normally run forever 

within an infinite loop, and will not exit.  The structure of a typical task is shown in Listing 2. 

FreeRTOS tasks must not  be allowed to return from their implementing function in any way—

they must not contain a ‘return’ statement and must not be allowed to execute past the end of 

the function.  If a task is no longer required, it should instead be explicitly deleted.  This is also 

demonstrated in Listing 2. 

A single task function definition can be used to create any number of tasks—each created task 

being a separate execution instance with its own stack and its own copy of any automatic 

(stack) variables defined within the task itself. 

 
void ATaskFunction( void *pvParameters ) 
{ 
/* Variables can be declared just as per a normal f unction.  Each instance 
of a task created using this function will have its  own copy of the 
iVariableExample variable.  This would not be true if the variable was 
declared static – in which case only one copy of th e variable would exist 
and this copy would be shared by each created insta nce of the task. */ 
int iVariableExample = 0; 
 
    /* A task will normally be implemented as an infin ite loop. */ 
    for( ;; ) 
    { 
        /* The code to implement the task functionality wil l go here. */ 
    } 
 
    /* Should the task implementation ever break ou t of the above loop 
    then the task must be deleted before reaching t he end of this function. 
    The NULL parameter passed to the vTaskDelete() function indicates that 
    the task to be deleted is the calling (this) ta sk. */  
    vTaskDelete( NULL ); 
} 
 

Listing 2.  The structure of a typical task functio n 
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1.3 Top Level Task States 

An application can consist of many tasks.  If the microcontroller running the application 

contains a single core, then only one task can be executing at any given time.  This implies 

that a task can exist in one of two states, Running and Not Running.  We will consider this 

simplistic model first—but keep in mind that this is an over-simplification as later we will see 

that the Not Running state actually contains a number of sub-states. 

When a task is in the Running state, the processor is executing its code.  When a task is in the 

Not Running state, the task is dormant, its status having been saved ready for it to resume 

execution the next time the scheduler decides it should enter the Running state.  When a task 

resumes execution, it does so from the instruction it was about to execute before it last left the 

Running state. 

 
Figure 1.  Top level task states and transitions 

A task transitioned from the Not Running state to the Running state is said to have been 

‘switched in‘ or ‘swapped in‘.  Conversely, a task transitioned from the Running state to the Not 

Running state is said to have been ‘switched out‘ or ‘swapped out‘.  The FreeRTOS scheduler 

is the only entity that can switch a task in and out.  
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1.4 Creating Tasks 

The xTaskCreate() API Function 

Tasks are created using the FreeRTOS xTaskCreate() API function.  This is probably the most 

complex of all the API functions, so it is unfortunate that it is the first encountered, but tasks 

must be mastered first as they are the most fundamental component of a multitasking system.  

All the examples that accompany this book make use of the xTaskCreate() function, so there 

are plenty of examples to reference. 

Section 8.5 describes the data types and naming conventions used. 

 
portBASE_TYPE xTaskCreate( pdTASK_CODE pvTaskCode,  
                           const signed char * cons t pcName,  
                           unsigned short usStackDe pth,  
                           void *pvParameters,  
                           unsigned portBASE_TYPE u xPriority,  
                           xTaskHandle *pxCreatedTa sk  
                         ); 
 

Listing 3.  The xTaskCreate() API function prototyp e 

 

Table 2.  xTaskCreate() parameters and return value  

Parameter Name/  
Returned Value Description 

pvTaskCode Tasks are simply C functions that never exit and, as such, are normally 

implemented as an infinite loop.  The pvTaskCode parameter is simply a 

pointer to the function (in effect, just the function name) that implements 

the task. 

pcName A descriptive name for the task.  This is not used by FreeRTOS in any 

way.  It is included purely as a debugging aid.  Identifying a task by a 

human readable name is much simpler than attempting to identify it by 

its handle. 

The application-defined constant configMAX_TASK_NAME_LEN 

defines the maximum length a task name can take—including the NULL 

terminator.  Supplying a string longer than this maximum will result in 

the string being silently truncated. 
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Table 2.  xTaskCreate() parameters and return value  

Parameter Name/  
Returned Value Description 

usStackDepth Each task has its own unique stack that is allocated by the kernel to the 

task when the task is created.  The usStackDepth value tells the kernel 

how large to make the stack.   

The value specifies the number of words the stack can hold, not the 

number of bytes.  For example, the Cortex-M3 stack is 32 bits wide so, if 

usStackDepth is passed in as 100, then 400 bytes of stack space will be 

allocated (100 * 4 bytes).  The stack depth multiplied by the stack width 

must not exceed the maximum value that can be contained in a variable 

of type size_t. 

The size of the stack used by the idle task is defined by the application-

defined constant configMINIMAL_STACK_SIZE .  The value assigned to 

this constant in the standard FreeRTOS Cortex-M3 demo applications is 

the minimum recommended for any task.  If your task uses a lot of stack 

space, then you must assign a larger value. 

There is no easy way to determine the stack space required by a task.  

It is possible to calculate, but most users will simply assign what they 

think is a reasonable value, then use the features provided by 

FreeRTOS to ensure that the space allocated is indeed adequate, and 

that RAM is not being wasted unnecessarily.  Chapter 6 contains 

information on how to query the stack space being used by a task. 

pvParameters Task functions accept a parameter of type pointer to void ( void* ).  The 

value assigned to pvParameters will be the value passed into the task.  

Some examples in this document demonstrate how the parameter can 

be used. 
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Table 2.  xTaskCreate() parameters and return value  

Parameter Name/  
Returned Value Description 

uxPriority Defines the priority at which the task will execute.  Priorities can be 

assigned from 0, which is the lowest priority, to 

(configMAX_PRIORITIES – 1), which is the highest priority.   

configMAX_PRIORITIES is a user defined constant.  There is no upper 

limit to the number of priorities that can be available (other than the limit 

of the data types used and the RAM available in your microcontroller), 

but you should use the lowest number of priorities required, to avoid 

wasting RAM.   

Passing a uxPriority value above (configMAX_PRIORITIES – 1) will 

result in the priority assigned to the task being capped silently to the 

maximum legitimate value. 

pxCreatedTask pxCreatedTask can be used to pass out a handle to the task being 

created.  This handle can then be used to reference the task in API calls 

that, for example, change the task priority or delete the task. 

If your application has no use for the task handle, then pxCreatedTask 

can be set to NULL. 

Returned value There are two possible return values: 

1. pdTRUE  

This indicates that the task has been created successfully. 

2. errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY 

This indicates that the task has not been created because there is 

insufficient heap memory available for FreeRTOS to allocate enough 

RAM to hold the task data structures and stack. 

Chapter 5 provides more information on memory management. 
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Example 1. Creating tasks 

This example demonstrates the steps needed to create two simple tasks then start the tasks 

executing.  The tasks simply print out a string periodically, using a crude null loop to create the 

period delay.  Both tasks are created at the same priority and are identical except for the string 

they print out—see Listing 4 and Listing 5 for their respective implementations. 

 
void vTask1( void *pvParameters ) 
{ 
const char *pcTaskName = "Task 1 is running\n"; 
volatile unsigned long ul; 
 
    /* As per most tasks, this task is implemented in a n infinite loop. */ 
    for( ;; ) 
    { 
        /* Print out the name of this task. */ 
        vPrintString( pcTaskName ); 
 
        /* Delay for a period. */ 
        for( ul = 0; ul < mainDELAY_LOOP_COUNT; ul+ + ) 
        { 
            /* This loop is just a very crude delay  implementation.  There is 
            nothing to do in here.  Later examples will replace this crude 
            loop with a proper delay/sleep function . */ 
        } 
    } 
} 
 

Listing 4.  Implementation of the first task used i n Example 1 

 
void vTask2( void *pvParameters ) 
{ 
const char *pcTaskName = "Task 2 is running\n"; 
volatile unsigned long ul; 
 
    /* As per most tasks, this task is implemented in an infinite loop. */ 
    for( ;; ) 
    { 
        /* Print out the name of this task. */ 
        vPrintString( pcTaskName ); 
 
        /* Delay for a period. */ 
        for( ul = 0; ul < mainDELAY_LOOP_COUNT; ul+ + ) 
        { 
            /* This loop is just a very crude delay  implementation.  There is 
            nothing to do in here.  Later examples will replace this crude 
            loop with a proper delay/sleep function . */ 
        } 
    } 
} 
 

Listing 5.  Implementation of the second task used in Example 1  

The main() function creates the tasks before starting the scheduler—see Listing 6 for its 

implementation. 
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int main( void ) 
{ 
    /* Create one of the two tasks.  Note that a real a pplication should check 
    the return value of the xTaskCreate() call to e nsure the task was created 
    successfully. */ 
    xTaskCreate(    vTask1,   /* Pointer to the function that implements the task . */  
                    "Task 1" ,/* Text name for the task.  This is to facilitate 
                             debugging only. */  
                    240,      /* Stack depth in words. */  
                    NULL,    /* We are not using the task parameter. */  
                    1,        /* This task will run at priority 1. */  
                    NULL );   /* We are not going to use the task handle. */  
 
    /* Create the other task in exactly the same way an d at the same priority. */ 
    xTaskCreate( vTask2, "Task 2", 240, NULL, 1, NU LL ); 
 
    /* Start the scheduler so the tasks start execu ting. */ 
    vTaskStartScheduler();     
     
    /* If all is well then main() will never reach here  as the scheduler will  
    now be running the tasks.  If main() does reach  here then it is likely that  
    there was insufficient heap memory available fo r the idle task to be created.  
    Chapter 5 provides more information on memory management. */  
    for( ;; ); 
} 
 

Listing 6.  Starting the Example 1 tasks 

The output generated by vPrintString() is displayed in the chosen IDE.  Executing this example 

produces the output shown in Figure 2, which is a screen shot from the Red Suite IDE. 

 
Figure 2.  The output produced when Example 1 is ex ecuted 

Figure 2 shows the two tasks appearing to execute simultaneously; however, as both tasks 

are executing on the same processor, this cannot be the case.  In reality, both tasks are 

rapidly entering and exiting the Running state.  Both tasks are running at the same priority, 

and so share time on the single processor.  Their actual execution pattern is shown in Figure 

3.   
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The arrow along the bottom of Figure 3 shows the passing of time from time t1 onwards.  The 

colored lines show which task is executing at each point in time—for example, Task 1 is 

executing between time t1 and time t2. 

Only one task can exist in the Running state at any one time.  So, as one task enters the 

Running state (the task is switched in), the other enters the Not Running state (the task is 

switched out). 

 
Figure 3.  The execution pattern of the two Example  1 tasks 

Example 1 created both tasks from within main(), prior to starting the scheduler.  It is also 

possible to create a task from within another task.  We could have created Task 1 from main(), 

and then created Task 2 from within Task 1.  Were we to do this, our Task 1 function would 

change as shown by Listing 7.  Task 2 would not get created until after the scheduler had 

been started, but the output produced by the example would be the same.  
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void vTask1( void *pvParameters ) 
{ 
const char *pcTaskName = "Task 1 is running\n"; 
volatile unsigned long ul; 
 
    /* If this task code is executing then the sche duler must already have 
    been started.  Create the other task before we enter the infinite loop. */ 
    xTaskCreate( vTask2, "Task 2", 240, NULL, 1, NU LL ); 
 
    for( ;; ) 
    { 
        /* Print out the name of this task. */ 
        vPrintString( pcTaskName ); 
 
        /* Delay for a period. */  
        for( ul = 0; ul < mainDELAY_LOOP_COUNT; ul+ + ) 
        { 
            /* This loop is just a very crude delay  implementation.  There is 
            nothing to do in here.  Later examples will replace this crude 
            loop with a proper delay/sleep function . */ 
        } 
    } 
} 
 

Listing 7.  Creating a task from within another tas k after the scheduler has started 

Example 2. Using the task parameter 

The two tasks created in Example 1 are almost identical, the only difference between them 

being the text string they print out.  This duplication can be removed by, instead, creating two 

instances of a single task implementation.  The task parameter can then be used to pass into 

each task the string that it should print out.   

Listing 8 contains the code of the single task function (vTaskFunction) used by Example 2.  

This single function replaces the two task functions (vTask1 and vTask2) used in Example 1.  

Note how the task parameter is cast to a char * to obtain the string the task should print out. 
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void vTaskFunction( void *pvParameters ) 
{ 
char *pcTaskName; 
volatile unsigned long ul; 
 
    /* The string to print out is passed in via the par ameter.  Cast this to a 
    character pointer. */ 
    pcTaskName = ( char * ) pvParameters; 
 
    /* As per most tasks, this task is implemented in an infinite loop. */  
    for( ;; ) 
    { 
        /* Print out the name of this task. */  
        vPrintString( pcTaskName ); 
 
        /*  Delay for a period. */  
        for( ul = 0; ul < mainDELAY_LOOP_COUNT; ul+ + ) 
        { 
            /* This loop is just a very crude delay implementat ion.  There is 
            nothing to do in here.  Later exercises  will replace this crude 
            loop with a proper delay/sleep function . */ 
        } 
    } 
} 
 

Listing 8.  The single task function used to create  two tasks in Example 2 

Even though there is now only one task implementation (vTaskFunction), more than one 

instance of the defined task can be created.  Each created instance will execute independently 

under the control of the FreeRTOS scheduler. 

The pvParameters parameter to the xTaskCreate() function is used to pass in the text string as 

shown in Listing 9. 
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/* Define the strings that will be passed in as the  task parameters.  These are 
defined const and not on the stack to ensure they r emain valid when the tasks are 
executing. */ 
static const char *pcTextForTask1 = "Task 1 is runn ing\n"; 
static const char *pcTextForTask2 = "Task 2 is runn ing\n"; 
 
int main( void ) 
{ 
    /* Create one of the two tasks. */ 
    xTaskCreate(    vTaskFunction,           /* Pointer to the function that  
                                            impleme nts the task. */  
                    "Task 1",                /* Text name for the task.  This is to  
                                            facilit ate debugging only. */  
                    240,                     /* Stack depth in words */  
                    (void*)pcTextForTask1,   /* Pass the text to be printed into the 
                                            task us ing the task parameter. */  
                    1,                       /* This task will run at priority 1. */ 
                    NULL );                  /* We are not using the task handle. */  
 
    /* Create the other task in exactly the same wa y.  Note this time that multiple 
    tasks are being created from the SAME task impl ementation (vTaskFunction).  Only  
    the value passed in the parameter is different.   Two instances of the same  
    task are being created. */ 
    xTaskCreate( vTaskFunction, "Task 2", 240, (voi d*)pcTextForTask2, 1, NULL ); 
 
    /* Start the scheduler so our tasks start executing . */ 
    vTaskStartScheduler();     
     
    /* If all is well then main() will never reach here  as the scheduler will  
    now be running the tasks.  If main() does reach  here then it is likely that  
    there was insufficient heap memory available fo r the idle task to be created.  
    Chapter 5 provides more information on memory management. */  
    for( ;; ); 
} 
 

Listing 9.  The main() function for Example 2 

The output from Example 2 is exactly as per that shown for Example 1 in Figure 2. 
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1.5 Task Priorities 

The uxPriority parameter of the xTaskCreate() API function assigns an initial priority to the task 

being created.  The priority can be changed after the scheduler has been started by using the 

vTaskPrioritySet() API function. 

The maximum number of priorities available is set by the application-defined 

configMAX_PRIORITIES compile time configuration constant within FreeRTOSConfig.h.  

FreeRTOS itself does not limit the maximum value this constant can take, but the higher the 

configMAX_PRIORITIES value the more RAM the kernel will consume, so it is always 

advisable to keep the value set at the minimum necessary. 

FreeRTOS imposes no restrictions on how priorities can be assigned to tasks.  Any number of 

tasks can share the same priority—ensuring maximum design flexibility.  You can assign a 

unique priority to every task, if desired (as required by some schedule-ability algorithms), but 

this restriction is not enforced in any way. 

Low numeric priority values denote low-priority tasks, with priority 0 being the lowest priority 

possible.  Therefore, the range of available priorities is 0 to (configMAX_PRIORITIES – 1). 

The scheduler will always ensure that the highest priority task that is able to run is the task 

selected to enter the Running state.  Where more than one task of the same priority is able to 

run, the scheduler will transition each task into and out of the Running state, in turn.  This is 

the behavior observed in the examples so far, where both test tasks are created at the same 

priority and both are always able to run.  Each such task executes for a ‘time slice‘; it enters 

the Running state at the start of the time slice and exits the Running state at the end of the 

time slice.  In Figure 3, the time between t1 and t2 equals a single time slice. 

To be able to select the next task to run, the scheduler itself must execute at the end of each 

time slice.  A periodic interrupt, called the tick interrupt, is used for this purpose.  The length of 

the time slice is effectively set by the tick interrupt frequency, which is configured by the 

configTICK_RATE_HZ compile time configuration constant in FreeRTOSConfig.h.  For 

example, if configTICK_RATE_HZ is set to 100 (Hz), then the time slice will be 10 

milliseconds.  Figure 3 can be expanded to show the execution of the scheduler itself in the 

sequence of execution.  This is shown in Figure 4. 

Note that FreeRTOS API calls always specify time in tick interrupts (commonly referred to as 

‘ticks’).  The portTICK_RATE_MS constant is provided to allow time delays to be converted 



www.FreeRTOS.org  This document was supplied to jmclurkin@rice.edu 
 

 
 23 

 

 

from the number of tick interrupts into milliseconds.  The resolution available depends on the 

tick frequency. 

The ‘tick count’ value is the total number of tick interrupts that have occurred since the 

scheduler was started; assuming the tick count has not overflowed.  User applications do not 

have to consider overflows when specifying delay periods, as time consistency is managed 

internally by the kernel. 

 
Figure 4.  The execution sequence expanded to show the tick interrupt executing 

In Figure 4, the short top lines show when the kernel itself is running.  The arrows show the 

sequence of execution from task to interrupt, then from interrupt back to a different task. 

Example 3. Experimenting with priorities 

The scheduler will always ensure that the highest priority task that is able to run is the task 

selected to enter the Running state.  In our examples so far, two tasks have been created at 

the same priority, so both entered and exited the Running state in turn.  This example looks at 

what happens when we change the priority of one of the two tasks created in Example 2.  This 

time, the first task will be created at priority 1, and the second at priority 2.  The code to create 

the tasks is shown in Listing 10.  The single function that implements both tasks has not 

changed; it still simply prints out a string periodically, using a null loop to create a delay. 
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/* Define the strings that will be passed in as the  task parameters.  These are 
defined const and not on the stack to ensure they r emain valid when the tasks are 
executing. */ 
static const char *pcTextForTask1 = "Task 1 is runn ing\n"; 
static const char *pcTextForTask2 = "Task 2 is runn ing\n"; 
 
int main( void ) 
{ 
    /* Create the first task at priority 1.  The pr iority is the second to last  
    parameter. */ 
    xTaskCreate( vTaskFunction, "Task 1", 240, (voi d*)pcTextForTask1, 1, NULL ); 
 
    /* Create the second task at priority 2. */ 
    xTaskCreate( vTaskFunction, "Task 2", 240, (voi d*)pcTextForTask2, 2, NULL ); 
 
    /* Start the scheduler so the tasks start execu ting. */ 
    vTaskStartScheduler();     
     
    /* If all is well we will never reach here as t he scheduler will now be 
    running.  If we do reach here then it is likely  that there was insufficient 
    heap available for the idle task to be created.  */ 
    for( ;; ); 
} 
 

Listing 10.  Creating two tasks at different priori ties 

The output produced by Example 3 is shown in Figure 5.   

The scheduler will always select the highest priority task that is able to run.  Task 2 has a 

higher priority than Task 1 and is always able to run; therefore Task 2 is the only task to ever 

enter the Running state.  As Task 1 never enters the Running state, it never prints out its 

string.  Task 1 is said to be ‘starved’ of processing time by Task 2.   

 
Figure 5.  Running both test tasks at different pri orities 

Task 2 is always able to run because it never has to wait for anything—it is either cycling 

around a null loop or printing to the terminal.   

Figure 6 shows the execution sequence for Example 3. 
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Figure 6.  The execution pattern when one task has a higher priority than the other 



www.FreeRTOS.org  This document was supplied to jmclurkin@rice.edu 
 

 
26  
 

1.6 Expanding the ‘Not Running’ State 

So far, the created tasks have always had processing to perform and have never had to wait 

for anything—as they never have to wait for anything they are always able to enter the 

Running state.  This type of ‘continuous processing’ task has limited usefulness because they 

can only be created at the very lowest priority.  If they run at any other priority they will prevent 

tasks of lower priority ever running at all.   

To make our tasks useful, we need a way to allow them to be event-driven.  An event-driven 

task has work (processing) to perform only after the occurrence of the event that triggers it, 

and is not able to enter the Running state before that event has occurred.  The scheduler 

always selects the highest priority task that is able to run.  High priority tasks not being able to 

run means that the scheduler cannot select them and must, instead, select a lower priority task 

that is able to run.  Therefore, using event-driven tasks means that tasks can be created at 

different priorities without the highest priority tasks starving all the lower priority tasks of 

processing time. 

The Blocked State 

A task that is waiting for an event is said to be in the ‘Blocked’ state, which is a sub-state of the 

Not Running state.   

Tasks can enter the Blocked state to wait for two different types of event: 

1. Temporal (time-related) events—the event being either a delay period expiring, or an 

absolute time being reached.  For example, a task may enter the Blocked state to wait 

for 10 milliseconds to pass. 

2. Synchronization events—where the events originate from another task or interrupt.  For 

example, a task may enter the Blocked state to wait for data to arrive on a queue.  

Synchronization events cover a broad range of event types. 

FreeRTOS queues, binary semaphores, counting semaphores, recursive semaphores, and 

mutexes can all be used to create synchronization events.  Chapter 2 and Chapter 3 cover 

these in more detail. 

It is possible for a task to block on a synchronization event with a timeout, effectively blocking 

on both types of event simultaneously.  For example, a task may choose to wait for a 
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maximum of 10 milliseconds for data to arrive on a queue.  The task will leave the Blocked 

state if either data arrives within 10 milliseconds, or 10 milliseconds pass with no data arriving. 

The Suspended State 

‘Suspended’ is also a sub-state of Not Running.  Tasks in the Suspended state are not 

available to the scheduler.  The only way into the Suspended state is through a call to the 

vTaskSuspend() API function, the only way out being through a call to the vTaskResume() or 

xTaskResumeFromISR() API functions.  Most applications do not use the Suspended state. 

The Ready State 

Tasks that are in the Not Running state but are not Blocked or Suspended are said to be in the 

Ready state.  They are able to run, and therefore ‘ready’ to run, but are not currently in the 

Running state. 

Completing the State Transition Diagram 

Figure 7 expands on the previous over-simplified state diagram to include all the Not Running 

sub-states described in this section.  The tasks created in the examples so far have not used 

the Blocked or Suspended states; they have only transitioned between the Ready state and 

the Running state—highlighted by the bold lines in Figure 7. 
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Figure 7.  Full task state machine 

Example 4. Using the Blocked state to create a dela y 

All the tasks created in the examples presented so far have been ‘periodic’—they have 

delayed for a period and printed out their string, before delaying once more, and so on.  The 

delay has been generated very crudely using a null loop—the task effectively polled an 

incrementing loop counter until it reached a fixed value.  Example 3 clearly demonstrated the 

disadvantage of this method.  While executing the null loop, the task remained in the Ready 

state, ‘starving’ the other task of any processing time.   

There are several other disadvantages to any form of polling, not least of which is its 

inefficiency.  During polling, the task does not really have any work to do, but it still uses 

maximum processing time and so wastes processor cycles.  Example 4 corrects this behavior 

by replacing the polling null loop with a call to the vTaskDelay() API function, the prototype for 

which is shown in Listing 11.  The new task definition is shown in Listing 12.  Note that the 

vTaskDelay() API function is available only when INCLUDE_vTaskDelay is set to 1 in 

FreeRTOSConfig.h.  

vTaskDelay() places the calling task into the Blocked state for a fixed number of tick interrupts.  

While in the Blocked state the task does not use any processing time, so processing time is 

consumed only when there is work to be done. 
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void vTaskDelay( portTickType xTicksToDelay ); 
 

Listing 11.  The vTaskDelay() API function prototyp e 

 

Table 3.  vTaskDelay() parameters 

Parameter 
Name Description 

xTicksToDelay The number of tick interrupts that the calling task should remain in the 

Blocked state before being transitioned back into the Ready state. 

For example, if a task called vTaskDelay( 100 ) while the tick count was 

10,000, then it would immediately enter the Blocked state and remain there 

until the tick count reached 10,100. 

The constant portTICK_RATE_MS can be used to convert milliseconds into 

ticks. 

 
 
void vTaskFunction( void *pvParameters ) 
{ 
char *pcTaskName; 
 
    /* The string to print out is passed in via the  parameter.  Cast this to a 
    character pointer. */ 
    pcTaskName = ( char * ) pvParameters; 
 
    /* As per most tasks, this task is implemented in an infinite loop. */ 
    for( ;; ) 
    { 
        /* Print out the name of this task. */ 
        vPrintString( pcTaskName ); 
 
        /* Delay for a period.  This time a call to  vTaskDelay() is used which 
        places the task into the Blocked state unti l the delay period has expired. 
        The delay period is specified in 'ticks', b ut the constant  
        portTICK_RATE_MS can be used to convert thi s to a more user friendly value 
        in milliseconds.  In this case a period of 250 milliseconds is being 
        specified. */ 
        vTaskDelay( 250 / portTICK_RATE_MS ); 
    } 
} 
 

Listing 12.  The source code for the example task a fter the null loop delay has been 
replaced by a call to vTaskDelay() 

Even though the two tasks are still being created at different priorities, both will now run.  The 

output of Example 4 shown in Figure 8 confirms the expected behavior. 



www.FreeRTOS.org  This document was supplied to jmclurkin@rice.edu 
 

 
30  
 

 
Figure 8.  The output produced when Example 4 is ex ecuted 

The execution sequence shown in Figure 9 explains why both tasks run, even though they are 

created at different priorities.  The execution of the kernel itself is omitted for simplicity.   

The idle task is created automatically when the scheduler is started, to ensure there is always 

at least one task that is able to run (at least one task in the Ready state).  Section 1.7 

describes the Idle task in more detail. 

 
Figure 9.  The execution sequence when the tasks us e vTaskDelay() in place of the 

NULL loop 

Only the implementation of our two tasks has changed, not their functionality.  Comparing 

Figure 9 with Figure 4 demonstrates clearly that this functionality is being achieved in a much 

more efficient manner. 

Figure 4 shows the execution pattern when the tasks use a null loop to create a delay—so are 

always able to run and use a lot of processor time as a result.  Figure 9 shows the execution 
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pattern when the tasks enter the Blocked state for the entirety of their delay period, so use 

processor time only when they actually have work that needs to be performed (in this case 

simply a message to be printed out). 

In the Figure 9 scenario, each time the tasks leave the Blocked state they execute for a 

fraction of a tick period before re-entering the Blocked state.  Most of the time there are no 

application tasks that are able to run (no application tasks in the Ready state) and, therefore, 

no application tasks that can be selected to enter the Running state.  While this is the case, 

the idle task will run.  The amount of processing time the idle task gets is a measure of the 

spare processing capacity in the system. 

The bold lines in Figure 10 show the transitions performed by the tasks in Example 4, with 

each now transitioning through the Blocked state before being returned to the Ready state. 

 
Figure 10.  Bold lines indicate the state transitio ns performed 

 by the tasks in Example 4 

The vTaskDelayUntil() API Function 

vTaskDelayUntil() is similar to vTaskDelay().  As just demonstrated, the vTaskDelay() 

parameter specifies the number of tick interrupts that should occur between a task calling 



www.FreeRTOS.org  This document was supplied to jmclurkin@rice.edu 
 

 
32  
 

vTaskDelay() and the same task once again transitioning out of the Blocked state.  The length 

of time the task remains in the blocked state is specified by the vTaskDelay() parameter, but 

the actual time at which the task leaves the blocked state is relative to the time at which 

vTaskDelay() was called.  

The parameters to vTaskDelayUntil() specify, instead, the exact tick count value at which the 

calling task should be moved from the Blocked state into the Ready state.  vTaskDelayUntil() 

is the API function that should be used when a fixed execution period is required (where you 

want your task to execute periodically with a fixed frequency), as the time at which the calling 

task is unblocked is absolute, rather than relative to when the function was called (as is the 

case with vTaskDelay()). 

Note that the vTaskDelayUntil() API function is available only when 

INCLUDE_vTaskDelayUntil is set to 1 in FreeRTOSConfig.h. 

 
 
void vTaskDelayUntil( portTickType * pxPreviousWake Time, portTickType xTimeIncrement ); 
 

Listing 13.  vTaskDelayUntil() API function prototy pe 

Table 4.  vTaskDelayUntil() parameters 

Parameter Name Description 

pxPreviousWakeTime This parameter is named on the assumption that vTaskDelayUntil() 

is being used to implement a task that executes periodically and 

with a fixed frequency.  In this case pxPreviousWakeTime holds the 

time at which the task last left the Blocked state (was ‘woken’ up).  

This time is used as a reference point to calculate the time at which 

the task should next leave the Blocked state. 

The variable pointed to by pxPreviousWakeTime is updated 

automatically within the vTaskDelayUntil() function; it would not 

normally be modified by the application code, other than when the 

variable is first initialized.  Listing 14 demonstrates how the 

initialization is performed. 
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Table 4.  vTaskDelayUntil() parameters 

Parameter Name Description 

xTimeIncrement This parameter is also named on the assumption that 

vTaskDelayUntil() is being used to implement a task that executes 

periodically and with a fixed frequency—the frequency being set by 

the xTimeIncrement value. 

xTimeIncrement is specified in ‘ticks’.  The constant 

portTICK_RATE_MS can be used to convert milliseconds to ticks. 

Example 5. Converting the example tasks to use vTas kDelayUntil() 

The two tasks created in Example 4 are periodic tasks, but using vTaskDelay() does not 

guarantee that the frequency at which they run is fixed, as the time at which the tasks leave 

the Blocked state is relative to when they call vTaskDelay().  Converting the tasks to use 

vTaskDelayUntil() instead of vTaskDelay() solves this potential problem. 

 
void vTaskFunction( void *pvParameters ) 
{ 
char *pcTaskName; 
portTickType xLastWakeTime; 
 
    /* The string to print out is passed in via the  parameter.  Cast this to a 
    character pointer. */ 
    pcTaskName = ( char * ) pvParameters; 
 
    /* The xLastWakeTime variable needs to be initi alized with the current tick 
    count.  Note that this is the only time the var iable is written to explicitly. 
    After this xLastWakeTime is updated automatical ly internally within 
    vTaskDelayUntil(). */ 
    xLastWakeTime = xTaskGetTickCount(); 
 
    /* As per most tasks, this task is implemented in an infinite loop. */ 
    for( ;; ) 
    { 
        /* Print out the name of this task. */ 
        vPrintString( pcTaskName ); 
 
        /* This task should execute exactly every 2 50 milliseconds.  As per 
        the vTaskDelay() function, time is measured  in ticks, and the 
        portTICK_RATE_MS constant is used to conver t milliseconds into ticks. 
        xLastWakeTime is automatically updated with in vTaskDelayUntil() so is not 
        explicitly updated by the task. */ 
        vTaskDelayUntil( &xLastWakeTime, ( 250 / po rtTICK_RATE_MS ) ); 
    } 
} 
 

Listing 14.  The implementation of the example task  using vTaskDelayUntil() 
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The output produced by Example 5 is exactly as per that shown in Figure 8 for Example 4. 

Example 6. Combining blocking and non-blocking task s 

Previous examples have examined the behavior of both polling and blocking tasks in isolation.  

This example re-enforces the stated expected system behavior by demonstrating an execution 

sequence when the two schemes are combined, as follows, 

1. Two tasks are created at priority 1.  These do nothing other than continuously print out 

a string.   

These tasks never make any API function calls that could cause them to enter the 

Blocked state, so are always in either the Ready or the Running state.  Tasks of this 

nature are called ‘continuous processing’ tasks as they always have work to do (albeit 

rather trivial work, in this case).  The source for the continuous processing tasks is 

shown in Listing 15. 

2. A third task is then created at priority 2; that is, above the priority of the other two tasks.  

The third task also just prints out a string, but this time periodically, so uses the 

vTaskDelayUntil() API function to place itself into the Blocked state between each print 

iteration. 

The source for the periodic task is shown in Listing 16. 

 
void vContinuousProcessingTask( void *pvParameters ) 
{ 
char *pcTaskName; 
 
    /* The string to print out is passed in via the  parameter.  Cast this to a 
    character pointer. */ 
    pcTaskName = ( char * ) pvParameters; 
 
    /* As per most tasks, this task is implemented in an infinite loop. */ 
    for( ;; ) 
    { 
        /* Print out the name of this task.  This t ask just does this repeatedly 
        without ever blocking or delaying. */ 
        vPrintString( pcTaskName ); 
    } 
} 
 

Listing 15.  The continuous processing task used in  Example 6 
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void vPeriodicTask( void *pvParameters ) 
{ 
portTickType xLastWakeTime; 
 
    /* The xLastWakeTime variable needs to be initi alized with the current tick 
    count.  Note that this is the only time the var iable is explicitly written to. 
    After this xLastWakeTime is managed automatical ly by the vTaskDelayUntil() 
    API function. */ 
    xLastWakeTime = xTaskGetTickCount(); 
 
    /* As per most tasks, this task is implemented in an infinite loop. */ 
    for( ;; ) 
    { 
        /* Print out the name of this task. */ 
        vPrintString( "Periodic task is running………. \n" ); 
 
        /* The task should execute every 10 millise conds exactly. */ 
        vTaskDelayUntil( &xLastWakeTime, ( 10 / por tTICK_RATE_MS ) ); 
    } 
} 
 

Listing 16.  The periodic task used in Example 6 

Figure 11 shows the output produced by Example 6, with an explanation of the observed 

behavior given by the execution sequence shown in Figure 12. 

 
Figure 11.  The output produced when Example 6 is e xecuted 
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Time

Continuous 2

Idle

t1 t2

1 - Continuous task 1 runs for a

complete tick period (time slice

between times t1 and t2) - during

which time it could print out its

string many times.

t3

2 - The tick interrupt occurs during which the

scheduler selects a new task to run.  As both

Continuous tasks have the same priority and

both are always able to run the scheduler

shares processing time between the two - so

Continuous 2 enters the Running state where it

remains for the entire tick period - during which

time it could print out its string many times.

Continuous 1

Periodic

3 - At time t3 the tick interrupt

runs again, causing a switch back

to Continuous 1, and so it goes

on.

t5

4 - At time t5 the tick interrupt finds that the Periodic task block

period has expired so moved the Periodic task into the Ready

state.  The Periodic task is the highest priority task so

immediately then enters the Running state where it prints out its

string exactly once before calling vTaskDelayUntil() to return to

the Blocked state.

The Idle task never enters the

Running state as there are

always higher priority task that

are able to do so.

5 - The Periodic task entering the

Blocked state means the scheduler has

again to choose a task to enter the

Running state - in this case Continuous

1 is chosen and it runs up to the next tick

interrupt - during which time it could print

out its string many times.

 
Figure 12.  The execution pattern of Example 6  
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1.7 The Idle Task and the Idle Task Hook 

The tasks created in Example 4 spend most of their time in the Blocked state.  While in this 

state, they are not able to run and cannot be selected by the scheduler. 

The processor always needs something to execute—there must always be at least one task 

that can enter the Running state.  To ensure this is the case, an Idle task is automatically 

created by the scheduler when vTaskStartScheduler() is called.  The idle task does very little 

more than sit in a loop—so, like the tasks in the original examples, it is always able to run.   

The idle task has the lowest possible priority (priority zero), to ensure it never prevents a 

higher priority application task from entering the Running state—although there is nothing to 

prevent application designers creating tasks at, and therefore sharing, the idle task priority, if 

desired.   

Running at the lowest priority ensures that the Idle task is transitioned immediately out of the 

Running state as soon as a higher priority task enters the Ready state.  This can be seen at 

time tn in Figure 9, where the Idle task is immediately swapped out to allow Task 2 to execute 

at the instant Task 2 leaves the Blocked state.  Task 2 is said to have pre-empted the idle 

task.  Pre-emption occurs automatically, and without the knowledge of the task being pre-

empted. 

Idle Task Hook Functions 

It is possible to add application specific functionality directly into the idle task through the use 

of an idle hook (or idle callback) function—a function that is called automatically by the idle 

task once per iteration of the idle task loop.   

Common uses for the Idle task hook include: 

• Executing low priority, background, or continuous processing. 

• Measuring the amount of spare processing capacity. (The idle task will run only when all 

other tasks have no work to perform; so measuring the amount of processing time 

allocated to the idle task provides a clear indication of how much processing time is 

spare.) 

• Placing the processor into a low power mode, providing an automatic method of saving 

power whenever there is no application processing to be performed. 
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Limitations on the Implementation of Idle Task Hook  Functions 

Idle task hook functions must adhere to the following rules: 

1. An idle task hook function must never attempt to block or suspend.  The Idle task will 

execute only when no other tasks are able to do so (unless application tasks are 

sharing the idle priority).   

Note: Blocking the idle task in any way could cause a scenario where no tasks are 

available to enter the Running state. 

2. If the application makes use of the vTaskDelete() API function then the Idle task hook 

must always return to its caller within a reasonable time period.  This is because the 

Idle task is responsible for cleaning up kernel resources after a task has been deleted.  

If the idle task remains permanently in the Idle hook function, then this clean-up cannot 

occur. 

Idle task hook functions must have the name and prototype shown in Listing 17. 

 
void vApplicationIdleHook( void ); 
 

Listing 17.  The idle task hook function name and p rototype.  

Example 7. Defining an idle task hook function 

The use of blocking vTaskDelay() API calls in Example 4 creates a lot of idle time—time when 

the Idle task is executing because both application tasks are in the Blocked state.  Example 7 

makes use of this idle time through the addition of an Idle hook function, the source for which 

is shown in Listing 18. 

 
/* Declare a variable that will be incremented by t he hook function. */ 
unsigned long ulIdleCycleCount = 0UL; 
 
/* Idle hook functions MUST be called vApplicationI dleHook(), take no parameters, 
and return void. */ 
void vApplicationIdleHook( void ) 
{ 
    /* This hook function does nothing but incremen t a counter. */ 
    ulIdleCycleCount++; 
} 
 

Listing 18.  A very simple Idle hook function 
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configUSE_IDLE_HOOK must be set to 1 within FreeRTOSConfig.h for the idle hook function 

to get called. 

The function that implements the created tasks is modified slightly to print out the 

ulIdleCycleCount value, as shown in Listing 19. 

 
void vTaskFunction( void *pvParameters ) 
{ 
char *pcTaskName; 
 
    /* The string to print out is passed in via the  parameter.  Cast this to a 
    character pointer. */ 
    pcTaskName = ( char * ) pvParameters; 
 
    /* As per most tasks, this task is implemented in an infinite loop. */ 
    for( ;; ) 
    { 
        /* Print out the name of this task AND the number of times ulIdleCycleCount 
        has been incremented. */ 
        vPrintStringAndNumber( pcTaskName, ulIdleCy cleCount ); 
 
        /* Delay for a period of 250 milliseconds. */ 
        vTaskDelay( 250 / portTICK_RATE_MS ); 
    } 
} 
 

Listing 19.  The source code for the example task p rints out the ulIdleCycleCount 
value 

The output produced by Example 7 is shown in Figure 13 and shows that the idle task hook 

function is called approximately 830000 times between each iteration of the application tasks. 

 
Figure 13.  The output produced when Example 7 is e xecuted 
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1.8 Changing the Priority of a Task 

The vTaskPrioritySet() API Function 

The vTaskPrioritySet() API function can be used to change the priority of any task after the 

scheduler has been started.  Note that the vTaskPrioritySet() API function is available only 

when INCLUDE_vTaskPrioritySet is set to 1 in FreeRTOSConfig.h. 

 
void vTaskPrioritySet( xTaskHandle pxTask, unsigned  portBASE_TYPE uxNewPriority ); 
 

Listing 20.  The vTaskPrioritySet() API function pr ototype 

 

Table 5.  vTaskPrioritySet() parameters 

Parameter 
Name Description 

pxTask The handle of the task whose priority is being modified (the subject task)—

see the pxCreatedTask parameter of the xTaskCreate() API function for 

information on obtaining handles to tasks. 

A task can change its own priority by passing NULL in place of a valid task 

handle. 

uxNewPriority The priority to which the subject task is to be set.  This is capped 

automatically to the maximum available priority of 

(configMAX_PRIORITIES – 1), where configMAX_PRIORITIES is a 

compile time option set in the FreeRTOSConfig.h header file. 

The uxTaskPriorityGet() API Function 

The uxTaskPriorityGet() API function can be used to query the priority of a task.  Note that the 

vTaskPriorityGet() API function is available only when INCLUDE_vTaskPriorityGet is set to 1 

in FreeRTOSConfig.h. 

 
unsigned portBASE_TYPE uxTaskPriorityGet( xTaskHand le pxTask ); 
 

Listing 21.  The uxTaskPriorityGet() API function p rototype 
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Table 6.  uxTaskPriorityGet() parameters and return  value 

Parameter Name/  
Return Value Description 

pxTask The handle of the task whose priority is being queried (the subject 

task)—see the pxCreatedTask parameter of the xTaskCreate() API 

function for information on obtaining handles to tasks. 

A task can query its own priority by passing NULL in place of a valid 

task handle. 

Returned value The priority currently assigned to the task being queried. 

Example 8. Changing task priorities 

The scheduler will always select the highest Ready state task as the task to enter the Running 

state.  Example 8 demonstrates this by using the vTaskPrioritySet() API function to change the 

priority of two tasks relative to each other. 

Two tasks are created at two different priorities.  Neither task makes any API function calls that 

could cause it to enter the Blocked state, so both are always in either the Ready state or the 

Running state—as such, the task with the highest relative priority will always be the task 

selected by the scheduler to be in the Running state. 

Example 8 behaves as follows: 

1. Task 1 (Listing 22) is created with the highest priority, so is guaranteed to run first.  

Task 1 prints out a couple of strings before raising the priority of Task 2 (Listing 23) to 

above its own priority.   

2. Task 2 starts to run (enters the Running state) as soon as it has the highest relative 

priority.  Only one task can be in the Running state at any one time; so, when Task 2 is 

in the Running state, Task 1 is in the Ready state. 

3. Task 2 prints out a message before setting its own priority back to below that of Task 1. 

4. Task 2 setting its priority back down means Task 1 is once again the highest priority 

task, so Task 1 re-enters the Running state, forcing Task 2 back into the Ready state. 
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void vTask1( void *pvParameters ) 
{ 
unsigned portBASE_TYPE uxPriority; 
 
    /* This task will always run before Task 2 as i t is created with the higher  
    priority.  Neither Task 1 nor Task 2 ever block  so both will always be in either  
    the Running or the Ready state. 
 
    Query the priority at which this task is runnin g - passing in NULL means 
    "return my priority". */ 
    uxPriority = uxTaskPriorityGet( NULL ); 
 
    for( ;; ) 
    { 
        /* Print out the name of this task. */ 
        vPrintString( "Task 1 is running\n" ); 
 
        /* Setting the Task 2 priority above the Ta sk 1 priority will cause 
        Task 2 to immediately start running (as the n Task 2 will have the higher  
        priority of the two created tasks).  Note t he use of the handle to task 
        2 (xTask2Handle) in the call to vTaskPriori tySet().  Listing 24 shows how 
        the handle was obtained. */ 
        vPrintString( "About to raise the Task 2 pr iority\n" ); 
        vTaskPrioritySet( xTask2Handle, ( uxPriorit y + 1 ) ); 
 
        /* Task 1 will only run when it has a prior ity higher than Task 2. 
        Therefore, for this task to reach this poin t Task 2 must already have 
        executed and set its priority back down to below the priority of this 
        task. */ 
    } 
} 
 

Listing 22.  The implementation of Task 1 in Exampl e 8 
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void vTask2( void *pvParameters ) 
{ 
unsigned portBASE_TYPE uxPriority; 
 
    /* Task 1 will always run before this task as T ask 1 is created with the 
    higher priority.  Neither Task 1 nor Task 2 eve r block so will always be  
    in either the Running or the Ready state. 
 
    Query the priority at which this task is runnin g - passing in NULL means 
    "return my priority". */ 
    uxPriority = uxTaskPriorityGet( NULL ); 
     
    for( ;; ) 
    { 
        /* For this task to reach this point Task 1  must have already run and 
        set the priority of this task higher than i ts own. 
 
        Print out the name of this task. */ 
        vPrintString( "Task2 is running\n" ); 
 
        /* Set our priority back down to its origin al value.  Passing in NULL 
        as the task handle means "change my priorit y".  Setting the 
        priority below that of Task 1 will cause Ta sk 1 to immediately start 
        running again – pre-empting this task. */ 
        vPrintString( "About to lower the Task 2 pr iority\n" ); 
        vTaskPrioritySet( NULL, ( uxPriority - 2 ) ); 
    } 
} 
 

Listing 23.  The implementation of Task 2 in Exampl e 8 

Each task can both query and set its own priority, without the use of a valid task handle, by 

simply using NULL, instead.  A task handle is required only when a task wishes to reference a 

task other than itself, such as when Task 1 changes the priority of Task 2.  To allow Task 1 to 

do this, the Task 2 handle is obtained and saved when Task 2 is created, as highlighted in the 

comments in Listing 24. 
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/* Declare a variable that is used to hold the hand le of Task 2. */ 
xTaskHandle xTask2Handle; 
 
int main( void ) 
{ 
    /* Create the first task at priority 2.  The ta sk parameter is not used  
    and set to NULL.  The task handle is also not u sed so is also set to NULL. */ 
    xTaskCreate( vTask1, "Task 1", 240, NULL, 2, NU LL ); 
    /* The task is created at priority 2 _____^. */  
 
    /* Create the second task at priority 1 - which  is lower than the priority 
    given to Task 1.  Again the task parameter is n ot used so is set to NULL - 
    BUT this time the task handle is required so th e address of xTask2Handle 
    is passed in the last parameter. */ 
    xTaskCreate( vTask2, "Task 2", 240, NULL, 1, &x Task2Handle ); 
    /* The task handle is the last parameter ____^^ ^^^^^^^^^^^ */ 
 
    /* Start the scheduler so the tasks start execu ting. */ 
    vTaskStartScheduler();     
     
    /* If all is well then main() will never reach here as the scheduler will  
    now be running the tasks.  If main() does reach  here then it is likely that  
    there was insufficient heap memory available fo r the idle task to be created.  
    Chapter 5 provides more information on memory management. */  
    for( ;; ); 
} 
 

Listing 24.  The implementation of main() for Examp le 8 

Figure 14 demonstrates the sequence in which the Example 8 tasks execute, with the 

resultant output shown in Figure 15. 

 
Figure 14.  The sequence of task execution when run ning Example 8 

 



www.FreeRTOS.org  This document was supplied to jmclurkin@rice.edu 
 

 
 45 

 

 

 
Figure 15.  The output produced when Example 8 is e xecuted 
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1.9 Deleting a Task 

The vTaskDelete() API Function 

A task can use the vTaskDelete() API function to delete itself or any other task.  Note that the 

vTaskDelete() API function is available only when INCLUDE_vTaskDelete is set to 1 in 

FreeRTOSConfig.h.   

Deleted tasks no longer exist and cannot enter the Running state again. 

It is the responsibility of the idle task to free memory allocated to tasks that have since been 

deleted.  Therefore, it is important that applications using the vTaskDelete() API function do 

not completely starve the idle task of all processing time. 

Note that only memory allocated to a task by the kernel itself will be freed automatically when 

the task is deleted.  Any memory or other resource that the implementation of the task 

allocates itself must be freed explicitly. 

 
void vTaskDelete( xTaskHandle pxTaskToDelete ); 
 

Listing 25.  The vTaskDelete() API function prototy pe 

 

Table 7.  vTaskDelete() parameters 

Parameter Name/  
Return Value Description 

pxTaskToDelete The handle of the task that is to be deleted (the subject task)—see the 

pxCreatedTask parameter of the xTaskCreate() API function for 

information on obtaining handles to tasks. 

A task can delete itself by passing NULL in place of a valid task handle. 
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Example 9. Deleting tasks 

This is a very simple example that behaves as follows. 

1. Task 1 is created by main() with priority 1.  When it runs, it creates Task 2 at priority 2.  

Task 2 is now the highest priority task, so it starts to execute immediately.  The source 

for main() is shown in Listing 26, and for Task 1 in Listing 27. 

2. Task 2 does nothing but delete itself.  It could delete itself by passing NULL to 

vTaskDelete() but instead, for demonstration purposes, it uses its own task handle.  

The source for Task 2 is shown in Listing 28. 

3. When Task 2 has been deleted, Task 1 is again the highest priority task, so continues 

executing—at which point it calls vTaskDelay() to block for a short period. 

4. The Idle task executes while Task 1 is in the blocked state and frees the memory that 

was allocated to the now deleted Task 2. 

5. When Task 1 leaves the blocked state it again becomes the highest priority Ready 

state task and so pre-empts the Idle task.  When it enters the Running state it creates 

Task 2 again, and so it goes on. 

 
 
int main( void ) 
{ 
    /* Create the first task at priority 1.  The task p arameter is not used  
    so is set to NULL.  The task handle is also not  used so likewise is set  
    to NULL. */ 
    xTaskCreate( vTask1, "Task 1", 240, NULL, 1, NU LL ); 
    /* The task is created at priority 1 _____^. */  
 
    /* Start the scheduler so the task starts executing . */  
    vTaskStartScheduler();     
     
    /* main() should never reach here as the scheduler has been started. */  
    for( ;; ); 
} 
 

Listing 26.  The implementation of main() for Examp le 9  

 



www.FreeRTOS.org  This document was supplied to jmclurkin@rice.edu 
 

 
48  
 

 
void vTask1( void *pvParameters ) 
{ 
const portTickType xDelay100ms = 100 / portTICK_RAT E_MS; 
 
    for( ;; ) 
    { 
        /* Print out the name of this task. */  
        vPrintString( "Task 1 is running\n" ); 
 
        /* Create task 2 at a higher priority.  Again the t ask parameter is not  
        used so is set to NULL - BUT this time the task handle is required so 
        the address of xTask2Handle is passed as th e last parameter. */ 
        xTaskCreate( vTask2, "Task 2", 240, NULL, 2 , &xTask2Handle ); 
        /* The task handle is the last parameter ____^^^^^^ ^^^^^^^ */  
 
        /* Task 2 has/had the higher priority, so for Task 1 to reach here Task 2 
        must have already executed and deleted itse lf.  Delay for 100  
        milliseconds. */  
        vTaskDelay( xDelay100ms ); 
    } 
} 
 

Listing 27.  The implementation of Task 1 for Examp le 9 

 
void vTask2( void *pvParameters ) 
{ 
    /* Task 2 does nothing but delete itself.  To do th is it could call vTaskDelete() 
    using NULL as the parameter, but instead and pu rely for demonstration purposes it 
    instead calls vTaskDelete() passing its own tas k handle. */ 
    vPrintString( "Task2 is running and about to de lete itself\n" ); 
    vTaskDelete( xTask2Handle ); 
} 
 

Listing 28.  The implementation of Task 2 for Examp le 9 

 
Figure 16.  The output produced when Example 9 is e xecuted 

 



www.FreeRTOS.org  This document was supplied to jmclurkin@rice.edu 
 

 
 49 

 

 

 
Figure 17.  The execution sequence for Example 9 
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1.10 The Scheduling Algorithm—A Summary 

Prioritized Pre-emptive Scheduling 

The examples in this chapter illustrate how and when FreeRTOS selects which task should be 

in the Running state. 

• Each task is assigned a priority. 

• Each task can exist in one of several states. 

• Only one task can exist in the Running state at any one time. 

• The scheduler always selects the highest priority Ready state task to enter the Running 

state. 

This type of scheme is called ‘Fixed Priority Pre-emptive Scheduling’—‘Fixed Priority’ because 

each task is assigned a priority that is not altered by the kernel itself (only tasks can change 

priorities); ‘Pre-emptive’ because a task entering the Ready state or having its priority altered 

will always pre-empt the Running state task, if the Running state task has a lower priority.     

Tasks can wait in the Blocked state for an event and are automatically moved back to the 

Ready state when the event occurs.  Temporal events occur at a particular time—for example, 

when a block time expires.  They are generally used to implement periodic or timeout 

behavior.  Synchronization events occur when a task or interrupt service routine sends 

information to a queue or to one of the many types of semaphore.  They are generally used to 

signal asynchronous activity, such as data arriving at a peripheral. 

Figure 18 demonstrates all this behavior by illustrating the execution pattern of a hypothetical 

application. 
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Figure 18.  Execution pattern with pre-emption poin ts highlighted 

Referring to Figure 18: 

1. Idle Task 

The idle task is running at the lowest priority, so gets pre-empted every time a higher 

priority task enters the Ready state—for example, at times t3, t5 and t9. 

2. Task 3 

Task 3 is an event-driven task that executes with a relatively low priority, but above the Idle 

task priority.  It spends most of its time in the Blocked state waiting for the event of interest, 

transitioning from the Blocked state to the Ready state each time the event occurs.  All 

FreeRTOS inter-task communication mechanisms (queues, semaphores, etc.) can be used 

to signal events and unblock tasks in this way.   

Events occur at times t3 and t5, and also somewhere between t9 and t12.  The events 

occurring at times t3 and t5 are processed immediately as, at these times, Task 3 is the 

highest priority task that is able to run.  The event that occurs somewhere between times t9 

and t12 is not processed until t12 because until then the higher priority tasks Task 1 and 

Task 2 are still executing.  It is only at time t12 that both Task 1 and Task 2 are in the 

Blocked state, making Task 3 the highest priority Ready state task. 

3. Task 2  

Task 2 is a periodic task that executes at a priority above the priority of Task 3, but below 

the priority of Task 1.  The period interval means Task 2 wants to execute at times t1, t6, 

and t9. 



www.FreeRTOS.org  This document was supplied to jmclurkin@rice.edu 
 

 
52  
 

At time t6, Task 3 is in the Running state, but Task 2 has the higher relative priority so pre-

empts Task 3 and starts executing immediately.  Task 2 completes its processing and re-

enters the Blocked state at time t7, at which point Task 3 can re-enter the Running state to 

complete its processing.  Task 3 itself Blocks at time t8. 

4. Task 1 

Task 1 is also an event-driven task.  It executes with the highest priority of all, so can pre-

empt any other task in the system.  The only Task 1 event shown occurs at time t10, at 

which time Task 1 pre-empts Task 2.  Task 2 can complete its processing only after Task 1 

has re-entered the Blocked at time t11. 

Selecting Task Priorities 

Figure 18 shows the fundamental importance of priority assignment to the way an application 

behaves.   

As a general rule, tasks that implement hard real-time functions are assigned priorities above 

those that implement soft real-time functions.  However, other characteristics, such as 

execution times and processor utilization, must also be taken into account to ensure the entire 

application will never miss a hard real-time deadline. 

Rate Monotonic Scheduling (RMS) is a common priority assignment technique which dictates 

that a unique priority be assigned to each task in accordance with the tasks periodic execution 

rate.  The highest priority is assigned to the task that has the highest frequency of periodic 

execution.  The lowest priority is assigned to the task with the lowest frequency of periodic 

execution.  Assigning priorities in this way has been shown to maximize the ‘schedulability’ of 

the entire application, but run time variations, and the fact that not all tasks are in any way 

periodic, make absolute calculations a complex process.    

Co-operative Scheduling 

This book focuses on pre-emptive scheduling.  FreeRTOS can also optionally use co-

operative scheduling.   

When a pure co-operative scheduler is used, a context switch will occur only when either the 

Running state task enters the Blocked state or the Running state task explicitly calls 

taskYIELD().  Tasks will never be pre-empted and tasks of equal priority will not automatically 
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share processing time.  Co-operative scheduling in this manner is simpler but can potentially 

result in a less responsive system. 

A hybrid scheme, where interrupt service routines are used to explicitly cause a context switch, 

is also possible.  This allows synchronization events to cause pre-emption, but not temporal 

events.  The result is a pre-emptive system without time slicing.  This can be desirable 

because of its efficiency gains and is a common scheduler configuration. 
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Chapter 2  

 

Queue Management 
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2.1 Chapter Introduction and Scope 

Applications that use FreeRTOS are structured as a set of independent tasks—each task is 

effectively a mini program in its own right.  It is likely that these autonomous tasks will have to 

communicate with each other so that, collectively, they can provide useful system functionality.  

The ‘queue’ is the underlying primitive used by all FreeRTOS communication and 

synchronization mechanisms. 

Scope 

This chapter aims to give readers a good understanding of: 

• How to create a queue. 

• How a queue manages the data it contains. 

• How to send data to a queue. 

• How to receive data from a queue. 

• What it means to block on a queue. 

• The effect of task priorities when writing to and reading from a queue. 

Only task-to-task communication is covered in this chapter.  Task-to-interrupt and interrupt-to-

task communication is covered in Chapter 3. 
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2.2 Characteristics of a Queue 

Data Storage 

A queue can hold a finite number of fixed size data items.  The maximum number of items a 

queue can hold is called its ‘length’.  Both the length and the size of each data item are set 

when the queue is created. 

Normally, queues are used as First In First Out (FIFO) buffers where data is written to the end 

(tail) of the queue and removed from the front (head) of the queue.  It is also possible to write 

to the front of a queue. 

Writing data to a queue causes a byte-for-byte copy of the data to be stored in the queue itself.  

Reading data from a queue causes the copy of the data to be removed from the queue.  

Figure 19 demonstrates data being written to and read from a queue, and the effect of each 

operation on the data stored in the queue.   

Access by Multiple Tasks 

Queues are objects in their own right that are not owned by or assigned to any particular task.  

Any number of tasks can write to the same queue and any number of tasks can read from the 

same queue.  A queue having multiple writers is very common, whereas a queue having 

multiple readers is quite rare. 

Blocking on Queue Reads 

When a task attempts to read from a queue it can optionally specify a ‘block’ time.  This is the 

time the task should be kept in the Blocked state to wait for data to be available from the 

queue should the queue already be empty.  A task that is in the Blocked state, waiting for data 

to become available from a queue, is automatically moved to the Ready state when another 

task or interrupt places data into the queue.  The task will also be moved automatically from 

the Blocked state to the Ready state if the specified block time expires before data becomes 

available.   

Queues can have multiple readers so it is possible for a single queue to have more than one 

task blocked on it waiting for data.  When this is the case, only one task will be unblocked 

when data becomes available.  The task that is unblocked will always be the highest priority 
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task that is waiting for data.  If the blocked tasks have equal priority, then the task that has 

been waiting for data the longest will be unblocked. 

Blocking on Queue Writes 

Just as when reading from a queue, a task can optionally specify a block time when writing to 

a queue.  In this case, the block time is the maximum time the task should be held in the 

Blocked state to wait for space to become available on the queue, should the queue already 

be full. 

Queues can have multiple writers, so it is possible for a full queue to have more than one task 

blocked on it waiting to complete a send operation.  When this is the case, only one task will 

be unblocked when space on the queue becomes available.  The task that is unblocked will 

always be the highest priority task that is waiting for space.  If the blocked tasks have equal 

priority, then the task that has been waiting for space the longest will be unblocked. 
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Queue
Task A

int x;

Task B

int y;

A queue is created to allow Task A and Task B to communicate.  The queue can hold a maximum of 5

integers.  When the queue is created it does not contain any values so is empty.

Queue

10

Task A

int x;

x = 10;

Task B

int y;

Task A writes (sends) the value of a local variable to the back of the queue.  As the queue was previously

empty the value written is now the only item in the queue, and is therefore both the value at the back of the

queue and the value at the front of the queue.

Queue

20 10

Task A

int x;

x = 20;

Task B

int y;

Task A changes the value of its local variable before writing it to the queue again.  The queue now

contains copies of both values written to the queue.  The first value written remains at the front of the

queue, the new value is inserted at the end of the queue.  The queue has three empty spaces remaining.

Queue

20 10

Task A

int x;

x = 20;

Task B

int y;

// y now equals 10

Task B reads (receives) from the queue into a different variable.  The value received by Task B is the

value from the head of the queue, which is the first value Task A wrote to the queue (10 in this illustration).

Send

Send

Receive

Queue

20

Task A

int x;

x = 20;

Task B

int y;

// y now equals 10

Task B has removed one item, leaving only the second value written by Task A remaining in the queue.

This is the value Task B would receive next if it read from the queue again.  The queue now has four

empty spaces remaining.
 

Figure 19.  An example sequence of writes and reads  to and from a queue 
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2.3 Using a Queue 

The xQueueCreate() API Function 

A queue must be explicitly created before it can be used.  

Queues are referenced using variables of type xQueueHandle.  xQueueCreate() is used to 

create a queue and returns an xQueueHandle to reference the queue it creates.   

FreeRTOS allocates RAM from the FreeRTOS heap when a queue is created.  The RAM is 

used to hold both the queue data structures and the items that are contained in the queue.   

xQueueCreate() will return NULL if there is insufficient heap RAM available for the queue to be 

created.  Chapter 5 provides more information on heap memory management. 

 
xQueueHandle xQueueCreate( unsigned portBASE_TYPE u xQueueLength,  
                           unsigned portBASE_TYPE u xItemSize  
                         ); 
 

Listing 29.  The xQueueCreate() API function protot ype 

 

Table 8,  xQueueCreate() parameters and return valu e 

Parameter 
Name Description 

uxQueueLength The maximum number of items that the queue being created can hold at 

any one time. 

uxItemSize The size in bytes of each data item that can be stored in the queue. 

Return Value If NULL is returned, then the queue cannot be created because there is 

insufficient heap memory available for FreeRTOS to allocate the queue 

data structures and storage area. 

A non-NULL value being returned indicates that the queue has been 

created successfully.  The returned value should be stored as the handle 

to the created queue. 



www.FreeRTOS.org  This document was supplied to jmclurkin@rice.edu 
 

 
 61 

 

 

The xQueueSendToBack() and xQueueSendToFront() API Functions 

As might be expected, xQueueSendToBack() is used to send data to the back (tail) of a 

queue, and xQueueSendToFront() is used to send data to the front (head) of a queue. 

xQueueSend() is equivalent to and exactly the same as xQueueSendToBack(). 

Note: Never call xQueueSendToFront() or xQueueSendToBack() from an interrupt service 

routine.  The interrupt-safe versions xQueueSendToFrontFromISR() and 

xQueueSendToBackFromISR() should be used in their place.  These are described in Chapter 

3. 

 
 
portBASE_TYPE xQueueSendToFront(   xQueueHandle xQu eue, 
                                   const void * pvI temToQueue, 
                                   portTickType xTi cksToWait 
                                 ); 
 

Listing 30.  The xQueueSendToFront() API function p rototype 

 
 
portBASE_TYPE xQueueSendToBack(    xQueueHandle xQu eue, 
                                   const void * pvI temToQueue, 
                                   portTickType xTi cksToWait 
                                 ); 
 

Listing 31.  The xQueueSendToBack() API function pr ototype 

 

Table 9.  xQueueSendToFront() and xQueueSendToBack( ) function parameters 
and return value 

Parameter Name/ 
Returned Value Description 

xQueue The handle of the queue to which the data is being sent (written).  

The queue handle will have been returned from the call to 

xQueueCreate() used to create the queue. 

pvItemToQueue A pointer to the data to be copied into the queue. 

The size of each item that the queue can hold is set when the 

queue is created, so this many bytes will be copied from 

pvItemToQueue into the queue storage area. 
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Table 9.  xQueueSendToFront() and xQueueSendToBack( ) function parameters 
and return value 

Parameter Name/ 
Returned Value Description 

xTicksToWait The maximum amount of time the task should remain in the 

Blocked state to wait for space to become available on the queue, 

should the queue already be full. 

Both xQueueSendToFront() and xQueueSendToBack() will return 

immediately if xTicksToWait is zero and the queue is already full. 

The block time is specified in tick periods, so the absolute time it 

represents is dependent on the tick frequency.  The constant 

portTICK_RATE_MS can be used to convert a time specified in 

milliseconds to a time specified in ticks. 

Setting xTicksToWait to portMAX_DELAY will cause the task to 

wait indefinitely (without timing out), provided 

INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h. 
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Table 9.  xQueueSendToFront() and xQueueSendToBack( ) function parameters 
and return value 

Parameter Name/ 
Returned Value Description 

Returned value There are two possible return values: 

1. pdPASS 

pdPASS will be returned only if data was successfully sent to 

the queue.   

If a block time was specified (xTicksToWait was not zero), then 

it is possible that the calling task was placed in the Blocked 

state, to wait for space to become available in the queue before 

the function returned, but data was successfully written to the 

queue before the block time expired. 

2. errQUEUE_FULL 

errQUEUE_FULL will be returned if data could not be written to 

the queue because the queue was already full.   

If a block time was specified (xTicksToWait was not zero) then 

the calling task will have been placed into the Blocked state to 

wait for another task or interrupt to make room in the queue, but 

the specified block time expired before this happened. 

The xQueueReceive() and xQueuePeek() API Functions 

xQueueReceive() is used to receive (read) an item from a queue.  The item that is received is 

removed from the queue. 

xQueuePeek() is used to receive an item from a queue without the item being removed from 

the queue.  xQueuePeek() receives the item from the head of the queue, without modifying the 

data that is stored in the queue, or the order in which data is stored in the queue. 

Note: Never call xQueueReceive() or xQueuePeek() from an interrupt service routine.  The 

interrupt-safe xQueueReceiveFromISR() API function is described in Chapter 3. 
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portBASE_TYPE xQueueReceive( 
                               xQueueHandle xQueue,  
                               const void * pvBuffe r, 
                               portTickType xTicksT oWait 
                           ); 
 

Listing 32.  The xQueueReceive() API function proto type 

 
 
portBASE_TYPE xQueuePeek( 
                               xQueueHandle xQueue,  
                               const void * pvBuffe r, 
                               portTickType xTicksT oWait 
                         ); 
 

Listing 33.  The xQueuePeek() API function prototyp e 

 

Table 10.  xQueueReceive() and xQueuePeek() functio n parameters and return 
values 

Parameter Name/ 
Returned value Description 

xQueue The handle of the queue from which the data is being received (read).  

The queue handle will have been returned from the call to 

xQueueCreate() used to create the queue. 

pvBuffer A pointer to the memory into which the received data will be copied. 

The size of each data item that the queue holds is set when the queue 

is created.  The memory pointed to by pvBuffer must be at least large 

enough to hold that many bytes. 
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Table 10.  xQueueReceive() and xQueuePeek() functio n parameters and return 
values 

Parameter Name/ 
Returned value Description 

xTicksToWait The maximum amount of time the task should remain in the Blocked 

state to wait for data to become available on the queue, should the 

queue already be empty. 

If xTicksToWait is zero, then both xQueueReceive() and 

xQueuePeek() will return immediately if the queue is already empty. 

The block time is specified in tick periods, so the absolute time it 

represents is dependent on the tick frequency.  The constant 

portTICK_RATE_MS can be used to convert a time specified in 

milliseconds to a time specified in ticks. 

Setting xTicksToWait to portMAX_DELAY will cause the task to wait 

indefinitely (without timing out) provided INCLUDE_vTaskSuspend is 

set to 1 in FreeRTOSConfig.h. 



www.FreeRTOS.org  This document was supplied to jmclurkin@rice.edu 
 

 
66  
 

Table 10.  xQueueReceive() and xQueuePeek() functio n parameters and return 
values 

Parameter Name/ 
Returned value Description 

Returned value There are two possible return values: 

1. pdPASS 

pdPASS will be returned only if data was successfully read from 

the queue.   

If a block time was specified (xTicksToWait was not zero), then it is 

possible that the calling task was placed in the Blocked state, to 

wait for data to become available on the queue, but data was 

successfully read from the queue before the block time expired. 

2. errQUEUE_EMPTY 

errQUEUE_EMPTY will be returned if data cannot be read from 

the queue because the queue is already empty.   

If a block time was specified (xTicksToWait was not zero) then the 

calling task will have been placed into the Blocked state to wait for 

another task or interrupt to send data to the queue, but the block 

time expired before this happened. 

The uxQueueMessagesWaiting() API Function 

uxQueueMessagesWaiting() is used to query the number of items that are currently in a 

queue. 

Note: Never call uxQueueMessagesWaiting() from an interrupt service routine.  The interrupt-

safe uxQueueMessagesWaitingFromISR() should be used in its place. 

 
 
unsigned portBASE_TYPE uxQueueMessagesWaiting( xQue ueHandle xQueue ); 
 

Listing 34.  The uxQueueMessagesWaiting() API funct ion prototype 
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Table 11.  uxQueueMessagesWaiting() function parame ters and return value 

Parameter Name/  
Returned Value Description 

xQueue The handle of the queue being queried.  The queue handle will have 

been returned from the call to xQueueCreate() used to create the 

queue. 

Returned value The number of items that the queue being queried is currently holding.  

If zero is returned, then the queue is empty. 

 

Example 10. Blocking when receiving from a queue 

This example demonstrates a queue being created, data being sent to the queue from multiple 

tasks, and data being received from the queue.  The queue is created to hold data items of 

type long.  The tasks that send to the queue do not specify a block time, whereas the task that 

receives from the queue does. 

The priority of the tasks that send to the queue is lower than the priority of the task that 

receives from the queue.  This means that the queue should never contain more than one item 

because, as soon as data is sent to the queue the receiving task will unblock, pre-empt the 

sending task, and remove the data—leaving the queue empty once again. 

Listing 35 shows the implementation of the task that writes to the queue.  Two instances of this 

task are created, one that writes continuously the value 100 to the queue, and another that 

writes continuously the value 200 to the same queue.  The task parameter is used to pass 

these values into each task instance. 
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static void vSenderTask( void *pvParameters ) 
{ 
long lValueToSend; 
portBASE_TYPE xStatus; 
 
    /* Two instances of this task are created so th e value that is sent to the 
    queue is passed in via the task parameter - thi s way each instance can use  
    a different value.  The queue was created to ho ld values of type long,  
    so cast the parameter to the required type. */ 
    lValueToSend = ( long ) pvParameters; 
 
    /* As per most tasks, this task is implemented within an infinite loop. */ 
    for( ;; ) 
    { 
        /* Send the value to the queue. 
 
        The first parameter is the queue to which d ata is being sent.  The  
        queue was created before the scheduler was started, so before this task 
        started to execute. 
 
        The second parameter is the address of the data to be sent, in this case 
        the address of lValueToSend. 
 
        The third parameter is the Block time – the  time the task should be kept 
        in the Blocked state to wait for space to b ecome available on the queue 
        should the queue already be full.  In this case a block time is not  
        specified because the queue should never co ntain more than one item and 
        therefore never be full. */ 
        xStatus = xQueueSendToBack( xQueue, &lValue ToSend, 0 ); 
 
        if( xStatus != pdPASS ) 
        { 
            /* The send operation could not complet e because the queue was full - 
            this must be an error as the queue shou ld never contain more than  
            one item! */ 
            vPrintString( "Could not send to the qu eue.\n" ); 
        } 
 
        /* Allow the other sender task to execute.  taskYIELD() informs the 
        scheduler that a switch to another task sho uld occur now rather than 
        keeping this task in the Running state unti l the end of the current time 
        slice. */ 
        taskYIELD(); 
    } 
}  
 

Listing 35.  Implementation of the sending task use d in Example 10 

Listing 36 shows the implementation of the task that receives data from the queue.  The 

receiving task specifies a block time of 100 milliseconds, so will enter the Blocked state to wait 

for data to become available.  It will leave the Blocked state when either data is available on 

the queue or 100 milliseconds passes without data becoming available.  In this example, the 

100 milliseconds timeout should never expire, as there are two tasks writing continuously to 

the queue. 
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static void vReceiverTask( void *pvParameters ) 
{ 
/* Declare the variable that will hold the values r eceived from the queue. */ 
long lReceivedValue; 
portBASE_TYPE xStatus; 
const portTickType xTicksToWait = 100 / portTICK_RA TE_MS; 
 
    /* This task is also defined within an infinite loo p. */ 
    for( ;; ) 
    { 
        /* This call should always find the queue empty bec ause this task will 
        immediately remove any data that is written  to the queue. */ 
        if( uxQueueMessagesWaiting( xQueue ) != 0 )  
        { 
            vPrintString( "Queue should have been e mpty!\n" ); 
        } 
 
        /* Receive data from the queue. 
 
        The first parameter is the queue from which  data is to be received.  The 
        queue is created before the scheduler is st arted, and therefore before this 
        task runs for the first time. 
 
        The second parameter is the buffer into whi ch the received data will be 
        placed.  In this case the buffer is simply the address of a variable that 
        has the required size to hold the received data.  
 
        The last parameter is the block time – the maximum amount of time that the 
        task should remain in the Blocked state to wait for data to be available  
        should the queue already be empty.  In this  case the constant  
        portTICK_RATE_MS is used to convert 100 mil liseconds to a time specified in 
        ticks. */  
        xStatus = xQueueReceive( xQueue, &lReceived Value, xTicksToWait ); 
 
        if( xStatus == pdPASS ) 
        { 
            /* Data was successfully received from the queue, p rint out the received 
            value. */ 
            vPrintStringAndNumber( "Received = ", l ReceivedValue ); 
        } 
        else 
        { 
            /* Data was not received from the queue even after waiting for 100ms. 
            This must be an error as the sending ta sks are free running and will be 
            continuously writing to the queue. */  
            vPrintString( "Could not receive from t he queue.\n" ); 
        } 
    } 
} 
 

Listing 36.  Implementation of the receiver task fo r Example 10 

Listing 37 contains the definition of the main() function.  This simply creates the queue and the 

three tasks before starting the scheduler.  The queue is created to hold a maximum of five 

long values, even though the priorities of the tasks are set such that the queue will never 

contain more than one item at a time. 
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/* Declare a variable of type xQueueHandle.  This i s used to store the handle 
to the queue that is accessed by all three tasks. * / 
xQueueHandle xQueue; 
 
 
int main( void ) 
{ 
    /* The queue is created to hold a maximum of 5 values, each of which is 
    large enough to hold a variable of type long. * / 
    xQueue = xQueueCreate( 5, sizeof( long ) ); 
 
    if( xQueue != NULL ) 
    { 
        /* Create two instances of the task that wi ll send to the queue.  The task 
        parameter is used to pass the value that th e task will write to the queue, 
        so one task will continuously write 100 to the queue while the other task  
        will continuously write 200 to the queue.  Both tasks are created at 
        priority 1. */ 
        xTaskCreate( vSenderTask, "Sender1", 240, (  void * ) 100, 1, NULL ); 
        xTaskCreate( vSenderTask, "Sender2", 240, (  void * ) 200, 1, NULL ); 
 
        /* Create the task that will read from the queue.  The task is created with 
        priority 2, so above the priority of the se nder tasks. */ 
        xTaskCreate( vReceiverTask, "Receiver", 240 , NULL, 2, NULL ); 
 
        /* Start the scheduler so the created tasks  start executing. */ 
        vTaskStartScheduler(); 
    } 
    else 
    { 
        /* The queue could not be created. */ 
    } 
         
    /* If all is well then main() will never reach here as the scheduler will  
    now be running the tasks.  If main() does reach  here then it is likely that  
    there was insufficient heap memory available fo r the idle task to be created.  
    Chapter 5 provides more information on memory management. */  
    for( ;; ); 
} 
 

Listing 37.  The implementation of main() for Examp le 10 

The tasks that send to the queue call taskYIELD() on each iteration of their infinite loop.  

taskYIELD() informs the scheduler that a switch to another task should occur now, rather than 

keeping the executing task in the Running state until the end of the current time slice.  A task 

that calls taskYIELD() is in effect volunteering to be removed from the Running state.  As both 

tasks that send to the queue have an identical priority, each time one calls taskYIELD() the 

other starts executing—the task that calls taskYIELD() is moved to the Ready state as the 

other sending task is moved to the Running state.  This causes the two sending tasks to send 

data to the queue in turn.  The output produced by Example 10 is shown in Figure 20. 
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Figure 20.  The output produced when Example 10 is executed 

Figure 21 demonstrates the sequence of execution. 

 
Figure 21.  The sequence of execution produced by E xample 10 

Using Queues to Transfer Compound Types 

It is common for a task to receive data from multiple sources on a single queue.  Often, the 

receiver of the data needs to know where the data came from, to allow it to determine how the 

data should be processed.  A simple way to achieve this is to use the queue to transfer 

structures where both the value of the data and the source of the data are contained in the 

structure fields.  This scheme is demonstrated in Figure 22. 
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Figure 22.  An example scenario where structures ar e sent on a queue 

Referring to Figure 22: 

• A queue is created that holds structures of type xData.  The structure members allow 

both a data value and a code indicating what the data means to be sent to the queue in 

one message. 

• A central Controller task is used to perform the primary system function.  This has to 

react to inputs and changes to the system state communicated to it on the queue. 

• A CAN bus task is used to encapsulate the CAN bus interfacing functionality.  When the 

CAN bus task has received and decoded a message, it sends the already decoded 

message to the Controller task in an xData structure.  The iMeaning member of the 

transferred structure is used to let the Controller task know what the data is—in the 

depicted case it is a motor speed value.  The iValue member of the transferred structure 

is used to let the Controller task know the actual motor speed value. 

• A Human Machine Interface (HMI) task is used to encapsulate all the HMI functionality.  

The machine operator can probably input commands and query values in a number of 

ways that have to be detected and interpreted within the HMI task.  When a new 

command is input, the HMI task sends the command to the Controller task in an xData 

structure.  The iMeaning member of the transferred structure is used to let the Controller 

task know what the data is—in the depicted case it is a new set point value.  The iValue 

member of the transferred structure is used to let the Controller task know the actual set 

point value. 
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Example 11. Blocking when sending to a queue or sen ding structures on a 
queue 

Example 11 is similar to Example 10, but the task priorities are reversed so the receiving task 

has a lower priority than the sending tasks.  Also the queue is used to pass structures, rather 

than simple long integers, between the tasks.   

Listing 38 shows the definition of the structure used by Example 11. 

 
/* Define the structure type that will be passed on  the queue. */ 
typedef struct 
{ 
    unsigned char ucValue; 
    unsigned char ucSource; 
} xData; 
 
/* Declare two variables of type xData that will be  passed on the queue. */ 
static const xData xStructsToSend[ 2 ] = 
{ 
    { 100, mainSENDER_1 }, /* Used by Sender1. */  
    { 200, mainSENDER_2 }  /* Used by Sender2. */  
}; 

Listing 38.  The definition of the structure that i s to be passed on a queue, plus the 
declaration of two variables for use by the example  

In Example 10, the receiving task has the highest priority, so the queue never contains more 

than one item.  This is caused by the receiving task pre-empting the sending tasks as soon as 

data is placed into the queue.  In Example 11, the sending tasks have the higher priority, so 

the queue will normally be full.  This occurs because, as soon as the receiving task removes 

an item from the queue, it is pre-empted by one of the sending tasks which then immediately 

re-fills the queue.  The sending task then re-enters the Blocked state to wait for space to 

become available on the queue again.   

Listing 39 shows the implementation of the sending task.  The sending task specifies a block 

time of 100 milliseconds, so it enters the Blocked state to wait for space to become available 

each time the queue becomes full.  It leaves the Blocked state when either space is available 

on the queue or 100 milliseconds passes without space becoming available.  In this example, 

the 100 milliseconds timeout should never expire, as the receiving task is continuously making 

space by removing items from the queue. 
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static void vSenderTask( void *pvParameters ) 
{ 
portBASE_TYPE xStatus; 
const portTickType xTicksToWait = 100 / portTICK_RA TE_MS; 
 
    /* As per most tasks, this task is implemented within an infinite loop. */ 
    for( ;; ) 
    { 
        /* Send to the queue. 
 
        The second parameter is the address of the structure being sent.  The 
        address is passed in as the task parameter so pvParameters is used  
        directly. 
 
        The third parameter is the Block time - the  time the task should be kept 
        in the Blocked state to wait for space to b ecome available on the queue 
        if the queue is already full.  A block time  is specified because the 
        sending tasks have a higher priority than t he receiving task so the queue 
        is expected to become full.  The receiving task will remove items from  
        the queue when both sending tasks are in th e Blocked state. */ 
        xStatus = xQueueSendToBack( xQueue, pvParam eters, xTicksToWait ); 
 
        if( xStatus != pdPASS ) 
        { 
            /* The send operation could not complet e, even after waiting for 100ms. 
            This must be an error as the receiving task should make space in the  
            queue as soon as both sending tasks are  in the Blocked state. */ 
            vPrintString( "Could not send to the qu eue.\n" ); 
        } 
 
        /* Allow the other sender task to execute. */ 
        taskYIELD(); 
    } 
} 

Listing 39.  The implementation of the sending task  for Example 11. 

The receiving task has the lowest priority, so it will run only when both sending tasks are in the 

Blocked state.  The sending tasks will enter the Blocked state only when the queue is full, so 

the receiving task will execute only when the queue is already full.  Therefore, it always 

expects to receive data even without having to specify a block time.   

The implementation of the receiving task is shown in Listing 40. 
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static void vReceiverTask( void *pvParameters ) 
{ 
/* Declare the structure that will hold the values received from the queue. */ 
xData xReceivedStructure; 
portBASE_TYPE xStatus; 
 
    /* This task is also defined within an infinite loo p. */  
    for( ;; ) 
    { 
        /* Because it has the lowest priority this task wil l only run when the 
        sending tasks are in the Blocked state.  Th e sending tasks will only enter 
        the Blocked state when the queue is full so  this task always expects the 
        number of items in the queue to be equal to  the queue length – 3 in this 
        case. */ 
        if( uxQueueMessagesWaiting( xQueue ) != 3 )  
        { 
            vPrintString( "Queue should have been f ull!\n" ); 
        } 
 
        /* Receive from the queue. 
 
        The second parameter is the buffer into whi ch the received data will be 
        placed.  In this case the buffer is simply the address of a variable that 
        has the required size to hold the received structure.  
 
        The last parameter is the block time - the maximum amount of time that the 
        task will remain in the Blocked state to wa it for data to be available  
        if the queue is already empty.  In this cas e a block time is not necessary  
        because this task will only run when the qu eue is full. */ 
        xStatus = xQueueReceive( xQueue, &xReceived Structure, 0 ); 
 
        if( xStatus == pdPASS ) 
        { 
            /* Data was successfully received from the queue, p rint out the received 
            value and the source of the value. */ 
            if( xReceivedStructure.ucSource == main SENDER_1 ) 
            { 
             vPrintStringAndNumber( "From Sender 1 = ", xReceivedStructure.ucValue ); 
            } 
            else 
            { 
             vPrintStringAndNumber( "From Sender 2 = ", xReceivedStructure.ucValue ); 
            } 
        } 
        else 
        { 
            /* Nothing was received from the queue.  This must be an error  
            as this task should only run when the q ueue is full. */  
            vPrintString( "Could not receive from t he queue.\n" ); 
        } 
    } 
} 

Listing 40.  The definition of the receiving task f or Example 11 

main() changes only slightly from the previous example.  The queue is created to hold three 

xData structures, and the priorities of the sending and receiving tasks are reversed.  The 

implementation of main() is shown in Listing 41. 
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int main( void ) 
{ 
    /* The queue is created to hold a maximum of 3 structures of type xData. */ 
    xQueue = xQueueCreate( 3, sizeof( xData ) ); 
 
    if( xQueue != NULL ) 
    { 
        /* Create two instances of the task that wi ll write to the queue.  The 
        parameter is used to pass the structure tha t the task will write to the  
        queue, so one task will continuously send x StructsToSend[ 0 ] to the queue 
        while the other task will continuously send  xStructsToSend[ 1 ].  Both  tasks 
        are created at priority 2 which is above th e priority of the receiver. */ 
        xTaskCreate( vSenderTask, "Sender1", 240, & ( xStructsToSend[ 0 ] ), 2, NULL ); 
        xTaskCreate( vSenderTask, "Sender2", 240, & ( xStructsToSend[ 1 ] ), 2, NULL ); 
 
        /* Create the task that will read from the queue.  The task is created with 
        priority 1, so below the priority of the se nder tasks. */ 
        xTaskCreate( vReceiverTask, "Receiver", 240 , NULL, 1, NULL ); 
 
        /* Start the scheduler so the created tasks  start executing. */ 
        vTaskStartScheduler(); 
    } 
    else 
    { 
        /* The queue could not be created. */ 
    } 
         
    /* If all is well then main() will never reach here as the scheduler will  
    now be running the tasks.  If main() does reach  here then it is likely that  
    there was insufficient heap memory available fo r the idle task to be created.  
    Chapter 5 provides more information on memory management. */  
    for( ;; ); 
} 
 

Listing 41.  The implementation of main() for Examp le 11 

As in Example 10, the tasks that send to the queue yield on each iteration of their infinite loop, 

so take it in turns to send data to the queue.  The output produced by Example 11 is shown in 

Figure 23. 

 
Figure 23.  The output produced by Example 11 
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Figure 24 demonstrates the sequence of execution that results from having the priority of the 

sending tasks above that of the receiving task.  Further explanation of Figure 24 is provided in 

Table 13. 

 
Figure 24.  The sequence of execution produced by E xample 11 

 

Table 12.  Key to Figure 24 

Time Description 

t1 Task Sender 1 executes and sends data to the queue. 

t2 Sender 1 yields to Sender 2.  Sender 2 writes data to the queue. 

t3 Sender 2 yields back to Sender 1.  Sender 1 writes data to the queue, making the 

queue full. 

t4 Sender 1 yields to Sender 2.   

t5 Sender 2 attempts to write data to the queue.  Because the queue is already full, 

Sender 2 enters the Blocked state to wait for space to become available, allowing 

Sender 1 to execute once more. 

t6 Sender 1 attempts to write data to the queue.  Because the queue is already full, 

Sender 1 also enters the Blocked state to wait for space to become available.  Now 

both Sender 1 and Sender 2 are in the Blocked state, so the lower priority Receiver 

task can execute. 
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Table 12.  Key to Figure 24 

Time Description 

t7 The receiver task removes an item from the queue.  As soon as there is space on 

the queue, Sender 2 leaves the Blocked state and, as the higher priority task, pre-

empts the Receiver task.  Sender 2 writes to the queue, filling the space just created 

by the Receiver task.  The queue is now full again.  Sender 2 calls taskYIELD() but 

Sender 1 is still in the Blocked state, so Sender 2 is reselected as the Running state 

task and continues to execute. 

t8 Sender 2 attempts to write to the queue.  The queue is already full, so Sender 2 

enters the Blocked state.  Once again, both Sender 1 and Sender 2 are in the 

Blocked state, so the Receiver task can execute. 

t9 The Receiver task removes an item from the queue.  As soon as there is space on 

the queue, Sender 1 leaves the Blocked state and, as the higher priority task, pre-

empts the Receiver task.  Sender 1 writes to the queue, filling the space just created 

by the Receiver task.  The queue is now full again.  Sender 1 calls taskYIELD() but 

Sender 2 is still in the Blocked state, so Sender 1 is reselected as the Running state 

task and continues to execute.  Sender 1 attempts to write to the queue but the 

queue is full, so Sender 1 enters the Blocked state. 

Both Sender 1 and Sender 2 are again in the Blocked state, allowing the lower 

priority Receiver task to execute. 
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2.4 Working with Large Data 

If the size of the data being stored in the queue is large, then it is preferable to use the queue 

to transfer pointers to the data, rather than copy the data itself into and out of the queue byte 

by byte.  Transferring pointers is more efficient in both processing time and the amount of 

RAM required to create the queue.  However, when queuing pointers, extreme care must be 

taken to ensure that: 

1. The owner of the RAM being pointed to is clearly defined. 

When sharing memory between tasks via a pointer, it is essential to ensure that both 

tasks do not modify the memory contents simultaneously, or take any other action that 

could cause the memory contents to be invalid or inconsistent.  Ideally, only the 

sending task should be permitted to access the memory until a pointer to the memory 

has been queued, and only the receiving task should be permitted to access the 

memory after the pointer has been received from the queue.   

2. The RAM being pointed to remains valid. 

If the memory being pointed to was allocated dynamically, then exactly one task should 

be responsible for freeing the memory.  No task should attempt to access the memory 

after it has been freed. 

A pointer should never be used to access data that has been allocated on a task stack.  

The data will not be valid after the stack frame has changed. 
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Chapter 3  

 

Interrupt Management 
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3.1 Chapter Introduction and Scope 

Events 

Embedded real-time systems have to take actions in response to events that originate from 

the environment.  For example, a packet arriving on an Ethernet peripheral (the event) might 

require passing to a TCP/IP stack for processing (the action).  Non-trivial systems will have to 

service events that originate from multiple sources, all of which will have different processing 

overhead and response time requirements.  In each case, a judgment has to be made as to 

the best event processing implementation strategy: 

1. How should the event be detected?  Interrupts are normally used, but inputs can also 

be polled. 

2. When interrupts are used, how much processing should be performed inside the 

interrupt service routine (ISR), and how much outside?  It is normally desirable to keep 

each ISR as short as possible. 

3. How can events be communicated to the main (non-ISR) code, and how can this code 

be structured to best accommodate processing of potentially asynchronous 

occurrences? 

FreeRTOS does not impose any specific event processing strategy on the application 

designer, but does provide features that allow the chosen strategy to be implemented in a 

simple and maintainable way. 

Note that only API functions and macros ending in ‘FromISR’ or ‘FROM_ISR’ should be used 

within an interrupt service routine. 

Scope 

This chapter aims to give readers a good understanding of: 

• Which FreeRTOS API functions can be used from within an interrupt service routine. 

• How a deferred interrupt scheme can be implemented. 

• How to create and use binary semaphores and counting semaphores. 



www.FreeRTOS.org  This document was supplied to jmclurkin@rice.edu 
 

 
 83 

 

 

• The differences between binary and counting semaphores. 

• How to use a queue to pass data into and out of an interrupt service routine. 

• The interrupt nesting model of the Cortex-M3 FreeRTOS port. 
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3.2 Deferred Interrupt Processing 

Binary Semaphores Used for Synchronization 

A Binary Semaphore can be used to unblock a task each time a particular interrupt occurs, 

effectively synchronizing the task with the interrupt.  This allows the majority of the interrupt 

event processing to be implemented within the synchronized task, with only a very fast and 

short portion remaining directly in the ISR.  The interrupt processing is said to have been 

‘deferred’ to a ‘handler’ task. 

If the interrupt processing is particularly time critical, then the handler task priority can be set to 

ensure that the handler task always pre-empts the other tasks in the system.  The ISR can 

then be implemented to include a context switch to ensure that the ISR returns directly to the 

handler task when the ISR itself has completed executing.  This has the effect of ensuring that 

the entire event processing executes contiguously in time, just as if it had all been 

implemented within the ISR itself.  This scheme is demonstrated in Figure 25. 

ISR

‘Handler’

Task

Task1

t1 t3t2 t4

1 - Task1 is Running when an

interrupt occurs.

2 - The ISR executes.  The

ISR implementation uses a

semaphore to unblock the

‘Handler Task’.

3 - Because the handler task has the

highest priority, and the ISR performs a

context switch, the ISR returns directly

to the hander task leaving Task1 in the

Ready state for now.

4 - The Handler Task

blocks on the semaphore

to wait for the next event,

allowing the lower priority

Task1 to run once again.

 
Figure 25.  The interrupt interrupts one task but r eturns to another 

The handler task uses a blocking ‘take’ call to a semaphore as a means of entering the 

Blocked state to wait for the event to occur.  When the event occurs, the ISR uses a ‘give’ 

operation on the same semaphore to unblock the task so that the required event processing 

can proceed.   
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‘Taking a semaphore’ and ‘giving a semaphore’ are concepts that have different meanings 

depending on their usage scenario.  In classic semaphore terminology, ‘taking a semaphore’ is 

equivalent to a P() operation, and ‘giving a semaphore’ is equivalent to a V() operation. 

In this interrupt synchronization scenario, the binary semaphore can be considered 

conceptually as a queue with a length of one.  The queue can contain a maximum of one item 

at any time, so is always either empty or full (hence, binary).  By calling xSemaphoreTake(), 

the handler task effectively attempts to read from the queue with a block time, causing the task 

to enter the Blocked state if the queue is empty.  When the event occurs, the ISR uses the 

xSemaphoreGiveFromISR() function to place a token (the semaphore) into the queue, making 

the queue full.  This causes the handler task to exit the Blocked state and remove the token, 

leaving the queue empty once more.  When the handler task has completed its processing, it 

once more attempts to read from the queue and, finding the queue empty, re-enters the 

Blocked state to wait for the next event.  This sequence is demonstrated in Figure 26. 

Figure 26 shows the interrupt ‘giving’ the semaphore even though it has not first ‘taken’ it, and 

the task ‘taking’ the semaphore but never giving it back.  This is why the scenario is described 

as being conceptually similar to writing to and reading from a queue.  It often causes confusion 

as it does not follow the same rules as other semaphore usage scenarios, where a task that 

takes a semaphore must always give it back—such as the scenario described in Chapter 4.  

Writing FreeRTOS Interrupt Handlers 

The Cortex-M3 architecture and FreeRTOS port both permit ISRs to be written entirely in C, 

even when the ISR wants to cause a context switch.  The following examples demonstrate ISR 

implementation. 

The vSemaphoreCreateBinary() API Function 

Handles to all the various types of FreeRTOS semaphore are stored in a variable of type 

xSemaphoreHandle.   

Before a semaphore can be used, it must be created.  To create a binary semaphore, use the 

vSemaphoreCreateBinary() API function1. 

 
                                                

1 The Semaphore API is actually implemented as a set of macros, not functions.  For simplicity,  they 
are referred to as functions throughout this book. 
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void vSemaphoreCreateBinary( xSemaphoreHandle xSema phore ); 
 

Listing 42.  The vSemaphoreCreateBinary() API funct ion prototype 

 

Table 13.  vSemaphoreCreateBinary() parameters 

Parameter Name Description 

xSemaphore The semaphore being created. 

Note that vSemaphoreCreateBinary() is actually implemented as a 

macro, so the semaphore variable should be passed in directly, rather 

than by reference.  The examples in this chapter include calls to 

vSemaphoreCreateBinary() that can be used as a reference and copied. 
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Figure 26.  Using a binary semaphore to synchronize  a task with an interrupt 
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The xSemaphoreTake() API Function 

‘Taking’ a semaphore means to ‘obtain’ or ‘receive’ the semaphore.  The semaphore can be 

taken only if it is available.  In classic semaphore terminology, xSemaphoreTake() is 

equivalent to a P() operation. 

All the various types of FreeRTOS semaphore, except recursive semaphores, can be ‘taken’ 

using the xSemaphoreTake() function.   

xSemaphoreTake() must not be used from an interrupt service routine. 

 
portBASE_TYPE xSemaphoreTake( xSemaphoreHandle xSem aphore, portTickType xTicksToWait ); 
 

Listing 43.  The xSemaphoreTake() API function prot otype 

 

Table 14.  xSemaphoreTake() parameters and return v alue 

Parameter Name/ 
Returned Value Description 

xSemaphore The semaphore being ‘taken’.   

A semaphore is referenced by a variable of type xSemaphoreHandle.  It 

must be explicitly created before it can be used. 

xTicksToWait The maximum amount of time the task should remain in the Blocked 

state to wait for the semaphore, if it is not already available. 

If xTicksToWait is zero, then xSemaphoreTake() will return immediately, 

if the semaphore is not available. 

The block time is specified in tick periods, so the absolute time it 

represents is dependent on the tick frequency.  The constant 

portTICK_RATE_MS can be used to convert a time specified in 

milliseconds to a time specified in ticks. 

Setting xTicksToWait to portMAX_DELAY will cause the task to wait 

indefinitely (without a timeout) if INCLUDE_vTaskSuspend is set to 1 in 

FreeRTOSConfig.h. 
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Table 14.  xSemaphoreTake() parameters and return v alue 

Parameter Name/ 
Returned Value Description 

Returned value There are two possible return values: 

1. pdPASS 

pdPASS is returned only if the call to xSemaphoreTake() was 

successful in obtaining the semaphore.   

If a block time was specified (xTicksToWait was not zero), then it is 

possible that the calling task was placed in the Blocked state to wait 

for the semaphore if it was not immediately available, but the 

semaphore became available before the block time expired. 

2. pdFALSE 

The semaphore is not available.   

If a block time was specified (xTicksToWait was not zero), then the 

calling task will have been placed into the Blocked state to wait for 

the semaphore to become available, but the block time expired 

before this happened. 

 

The xSemaphoreGiveFromISR() API Function 

All the various types of FreeRTOS semaphore, except recursive semaphores, can be ‘given’ 

using the xSemaphoreGiveFromISR() function.   

xSemaphoreGiveFromISR() is a special form of xSemaphoreGive() that is specifically for use 

within an interrupt service routine. 

 
portBASE_TYPE xSemaphoreGiveFromISR( xSemaphoreHand le xSemaphore,  
                                     portBASE_TYPE *pxHigherPriorityTaskWoken  
                                    ); 
 

Listing 44.  The xSemaphoreGiveFromISR() API functi on prototype 



www.FreeRTOS.org  This document was supplied to jmclurkin@rice.edu 
 

 
90  
 

 

Table 15.  xSemaphoreGiveFromISR() parameters and r eturn value 

Parameter Name/ 
Returned Value Description 

xSemaphore The semaphore being ‘given’. 

A semaphore is referenced by a variable of type 

xSemaphoreHandle and must be explicitly created before 

being used. 

pxHigherPriorityTaskWoken It is possible that a single semaphore will have one or more 

tasks blocked on it waiting for the semaphore to become 

available.  Calling xSemaphoreGiveFromISR() can make the 

semaphore available, and so cause such a task to leave the 

Blocked state.  If calling xSemaphoreGiveFromISR() causes 

a task to leave the Blocked state, and the unblocked task 

has a priority higher than or equal to the currently executing 

task (the task that was interrupted), then, internally, 

xSemaphoreGiveFromISR() will set 

*pxHigherPriorityTaskWoken to pdTRUE. 

If xSemaphoreGiveFromISR() sets this value to pdTRUE, 

then a context switch should be performed before the 

interrupt is exited.  This will ensure that the interrupt returns 

directly to the highest priority Ready state task. 

Returned value There are two possible return values: 

1. pdPASS 

pdPASS will be returned only if the call to 

xSemaphoreGiveFromISR() is successful.   

2. pdFAIL 

If a semaphore is already available, it cannot be given, 

and xSemaphoreGiveFromISR() will return pdFAIL. 
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Example 12. Using a binary semaphore to synchronize  a task with an interrupt 

This example uses a binary semaphore to unblock a task from within an interrupt service 

routine—effectively synchronizing the task with the interrupt.   

A simple periodic task is used to generate an interrupt every 500 milliseconds.  In this case, a 

software generated interrupt is used because it allows the time at which the interrupt occurs to 

be controlled, which in turn allows the sequence of execution to be observed more easily.  

Listing 45 shows the implementation of the periodic task.  mainTRIGGER_INTERRUPT() 

simply sets a bit in the interrupt controller’s Set Pending register. 

 
static void vPeriodicTask( void *pvParameters ) 
{ 
    /* As per most tasks, this task is implemented within an infinite loop. */ 
    for( ;; ) 
    { 
        /* This task is just used to 'simulate' an interrupt.  This is done by 
        periodically generating a software interrup t. */ 
        vTaskDelay( 500 / portTICK_RATE_MS ); 
 
        /* Generate the interrupt, printing a messa ge both before hand and  
        afterwards so the sequence of execution is evident from the output. */ 
        vPrintString( "Periodic task - About to gen erate an interrupt.\n" ); 
        mainTRIGGER_INTERRUPT();  
        vPrintString( "Periodic task - Interrupt ge nerated.\n\n" ); 
    } 
}  

Listing 45.  Implementation of the task that period ically generates a software 
interrupt in Example 12 

Listing 46 shows the implementation of the handler task—the task that is synchronized with 

the software interrupt through the use of a binary semaphore.  A message is printed out on 

each iteration of the task, so the sequence in which the task and the interrupt execute is 

evident from the output produced when the example is executed. 
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static void vHandlerTask( void *pvParameters ) 
{ 
    /* As per most tasks, this task is implemented within an infinite loop. 
     
    Take the semaphore once to start with so the se maphore is empty before the 
    infinite loop is entered.  The semaphore was cr eated before the scheduler  
    was started so before this task ran for the fir st time.*/ 
    xSemaphoreTake( xBinarySemaphore, 0 ); 
     
    for( ;; ) 
    { 
        /* Use the semaphore to wait for the event.   The task blocks  
        indefinitely meaning this function call wil l only return once the  
        semaphore has been successfully obtained - so there is no need to check 
        the returned value. */ 
        xSemaphoreTake( xBinarySemaphore, portMAX_D ELAY ); 
 
        /* To get here the event must have occurred .  Process the event (in this 
        case we just print out a message). */ 
        vPrintString( "Handler task - Processing ev ent.\n" ); 
    } 
} 

Listing 46.  The implementation of the handler task  (the task that synchronizes with 
the interrupt) in Example 12 

Listing 47 shows the interrupt service routine, which is simply a standard C function.  It does 

very little other than clear the interrupt and ‘give’ the semaphore to unblock the handler task. 

The macro portEND_SWITCHING_ISR() is part of the FreeRTOS Cortex-M3 port and is the 

ISR safe equivalent of taskYIELD().  It will force a context switch only if its parameter is not 

zero (not equal to pdFALSE). 

Note how xHigherPriorityTaskWoken is used.  It is initialized to pdFALSE before being passed 

by reference into xSemaphoreGiveFromISR(), where it will get set to pdTRUE only if 

xSemaphoreGiveFromISR() causes a task of equal or higher priority than the currently 

executing task to leave the blocked state.  portEND_SWITCHING_ISR() then performs a 

context switch only if xHigherPriorityTaskWoken equals pdTRUE.  In all other cases, a context 

switch is not necessary, because the task that was executing before the interrupt occurs will 

still be the highest priority task that is able to run.  
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void vSoftwareInterruptHandler( void ) 
{ 
portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE; 
 
    /* 'Give' the semaphore to unblock the task. */  
    xSemaphoreGiveFromISR( xBinarySemaphore, &xHigh erPriorityTaskWoken ); 
 
    /* Clear the software interrupt bit using the i nterrupt controllers 
    Clear Pending register. */  
    mainCLEAR_INTERRUPT(); 
 
    /* Giving the semaphore may have unblocked a ta sk - if it did and the  
    unblocked task has a priority equal to or above  the currently executing  
    task then xHigherPriorityTaskWoken will have be en set to pdTRUE and 
    portEND_SWITCHING_ISR() will force a context sw itch to the newly unblocked 
    higher priority task. 
     
    NOTE: The syntax for forcing a context switch w ithin an ISR varies between  
    FreeRTOS ports.  The portEND_SWITCHING_ISR() ma cro is provided as part of 
    the Corte M3 port layer for this purpose.  task YIELD() must never be called  
    from an ISR! */ 
    portEND_SWITCHING_ISR( xHigherPriorityTaskWoken  ); 
} 

Listing 47.  The software interrupt handler used in  Example 12 

The main() function creates the binary semaphore and the tasks, configures the software 

interrupt, and starts the scheduler.  The implementation is shown in Listing 48. 
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int main( void ) 
{ 
    /* Configure both the hardware and the debug in terface. */ 
    vSetupEnvironment(); 
 
    /* Before a semaphore is used it must be explic itly created.  In this example 
    a binary semaphore is created. */ 
    vSemaphoreCreateBinary( xBinarySemaphore ); 
 
    /* Check the semaphore was created successfully . */ 
    if( xBinarySemaphore != NULL ) 
    { 
        /* Enable the software interrupt and set it s priority. */ 
        prvSetupSoftwareInterrupt(); 
 
        /* Create the 'handler' task.  This is the task that will be synchronized 
        with the interrupt.  The handler task is cr eated with a high priority to 
        ensure it runs immediately after the interr upt exits.  In this case a  
        priority of 3 is chosen. */ 
        xTaskCreate( vHandlerTask, "Handler", 240, NULL, 3, NULL ); 
 
        /* Create the task that will periodically g enerate a software interrupt.  
        This is created with a priority below the h andler task to ensure it will 
        get preempted each time the handler task ex its the Blocked state. */ 
        xTaskCreate( vPeriodicTask, "Periodic", 240 , NULL, 1, NULL ); 
 
        /* Start the scheduler so the created tasks  start executing. */ 
        vTaskStartScheduler(); 
    } 
         
    /* If all is well we will never reach here as t he scheduler will now be 
    running the tasks.  If we do reach here then it  is likely that there was  
    insufficient heap memory available for a resour ce to be created. */ 
    for( ;; ); 
} 
 

Listing 48.  The implementation of main() for Examp le 12  

Example 12 produces the output shown in Figure 27.  As expected, the handler task executes 

as soon as the interrupt is generated, so the output from the handler task splits the output 

produced by the periodic task.  Further explanation is provided in Figure 28. 

 
Figure 27.  The output produced when Example 12 is executed 
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Figure 28.  The sequence of execution when Example 12 is executed 
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3.3 Counting Semaphores 

Example 12 demonstrates a binary semaphore being used to synchronize a task with an 

interrupt.  The execution sequence is as follows. 

1. An interrupt occurs. 

2. The interrupt service routine executes, ‘giving’ the semaphore to unblock the Handler 

task. 

3. The Handler task executes as soon as the interrupt completes.  The first thing the 

Handler task does is ‘take’ the semaphore. 

4. The Handler task processes the event before attempting to ‘take’ the semaphore 

again—entering the Blocked state if the semaphore is not immediately available. 

This sequence is perfectly adequate if interrupts can occur only at a relatively low frequency.  

If another interrupt occurs before the Handler task has completed its processing of the first 

interrupt, then the binary semaphore will effectively latch the event, allowing the Handler task 

to process the new event immediately after it has completed processing the original event.  

The handler task will not enter the Blocked state between processing the two events, as the 

latched semaphore would be available immediately, when xSemaphoreTake() is called.  This 

scenario is shown in Figure 29.   

Figure 29 demonstrates that a binary semaphore can latch, at most, one interrupt event.  Any 

subsequent events, occurring before the latched event has been processed, will be lost.  This 

scenario can be avoided by using a counting semaphore in place of the binary semaphore. 

Just as binary semaphores can be thought of as queues having a length of one, so counting 

semaphores can be thought of as queues having a length of more than one.  Tasks are not 

interested in the data that is stored in the queue—just whether the queue is empty or not. 

Each time a counting semaphore is ‘given’, another space in its queue is used.  The number of 

items in the queue is the semaphore’s ‘count’ value.  

configUSE_COUNTING_SEMAPHORES must be set to 1 in FreeRTOSConfig.h for counting 

semaphores to be available. 
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Figure 29.  A binary semaphore can latch at most on e event 
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Figure 30.  Using a counting semaphore to ‘count’ e vents 
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Counting semaphores are typically used for two things:  

1. Counting events. 

In this scenario, an event handler will 'give' a semaphore each time an event occurs—

causing the semaphore’s count value to be incremented on each ‘give’.  A handler task will 

'take' a semaphore each time it processes an event—causing the semaphore’s count value 

to be decremented on each take.  The count value is the difference between the number of 

events that have occurred and the number that have been processed.  This mechanism is 

shown in Figure 30.  

Counting semaphores that are used to count events are created with an initial count value 

of zero. 

2. Resource management. 

In this usage scenario, the count value indicates the number of resources available.  To 

obtain control of a resource a task must first obtain a semaphore—decrementing the 

semaphore’s count value.  When the count value reaches zero, there are no free resources.  

When a task finishes with the resource, it 'gives' the semaphore back—incrementing the 

semaphore’s count value.   

Counting semaphores that are used to manage resources are created so that their initial 

count value equals the number of resources that are available.  Chapter 4 covers using 

semaphores to manage resources. 

The xSemaphoreCreateCounting() API Function 

Handles to all the various types of FreeRTOS semaphore are stored in a variable of type 

xSemaphoreHandle.   

Before a semaphore can be used, it must be created.  To create a counting semaphore, use 

the xSemaphoreCreateCounting() API function. 

 
xSemaphoreHandle xSemaphoreCreateCounting( unsigned  portBASE_TYPE uxMaxCount, 
                                           unsigned  portBASE_TYPE uxInitialCount ); 
 

Listing 49.  The xSemaphoreCreateCounting() API fun ction prototype 
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Table 16.  xSemaphoreCreateCounting() parameters an d return value 

Parameter Name/  
Returned Value Description 

uxMaxCount The maximum value the semaphore will count to.  To continue the queue 

analogy, the uxMaxCount value is effectively the length of the queue. 

When the semaphore is to be used to count or latch events, uxMaxCount 

is the maximum number of events that can be latched. 

When the semaphore is to be used to manage access to a collection of 

resources, uxMaxCount should be set to the total number of resources 

that are available. 

uxInitialCount The initial count value of the semaphore after it has been created. 

When the semaphore is to be used to count or latch events, 

uxInitialCount should be set to zero—as, presumably, when the 

semaphore is created, no events have yet occurred. 

When the semaphore is to be used to manage access to a collection of 

resources, uxInitialCount should be set to equal uxMaxCount—as, 

presumably, when the semaphore is created, all the resources are 

available.   

Returned value If NULL is returned, the semaphore cannot be created because there is 

insufficient heap memory available for FreeRTOS to allocate the 

semaphore data structures.  Chapter 5 provides more information on 

memory management. 

A non-NULL value being returned indicates that the semaphore has been 

created successfully.  The returned value should be stored as the handle 

to the created semaphore. 
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Example 13. Using a counting semaphore to synchroni ze a task with an interrupt 

Example 13 improves on the Example 12 implementation by using a counting semaphore in 

place of the binary semaphore.  main() is changed to include a call to 

xSemaphoreCreateCounting() in place of the call to vSemaphoreCreateBinary().  The new API 

call is shown in Listing 50. 

 
    /* Before a semaphore is used it must be explicitly  created.  In this example 
    a counting semaphore is created.  The semaphore  is created to have a maximum 
    count value of 10, and an initial count value o f 0. */ 
    xCountingSemaphore = xSemaphoreCreateCounting( 10, 0 ); 
 

Listing 50.  Using xSemaphoreCreateCounting() to cr eate a counting semaphore 

To simulate multiple events occurring at high frequency, the interrupt service routine is 

changed to ‘give’ the semaphore more than once per interrupt.  Each event is latched in the 

semaphore’s count value.  The interrupt service routine is shown in Listing 51. 

 
void vSoftwareInterruptHandler( void ) 
{ 
portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE; 
 
    /* 'Give' the semaphore multiple times.  The fi rst will unblock the handler 
    task, the following 'gives' are to demonstrate that the semaphore latches 
    the events to allow the handler task to process  them in turn without any  
    events getting lost.  This simulates multiple i nterrupts being taken by the 
    processor, even though in this case the events are simulated within a single 
    interrupt occurrence.*/ 
    xSemaphoreGiveFromISR( xCountingSemaphore, &xHi gherPriorityTaskWoken ); 
    xSemaphoreGiveFromISR( xCountingSemaphore, &xHi gherPriorityTaskWoken ); 
    xSemaphoreGiveFromISR( xCountingSemaphore, &xHi gherPriorityTaskWoken ); 
 
    /* Clear the software interrupt bit using the i nterrupt controllers Clear 
    Pending register. */ 
    mainCLEAR_INTERRUPT(); 
 
    /* Giving the semaphore may have unblocked a ta sk - if it did and the  
    unblocked task has a priority equal to or above  the currently executing  
    task then xHigherPriorityTaskWoken will have be en set to pdTRUE and 
    portEND_SWITCHING_ISR() will force a context sw itch to the newly unblocked 
    higher priority task. 
     
    NOTE: The syntax for forcing a context switch w ithin an ISR varies between  
    FreeRTOS ports.  The portEND_SWITCHING_ISR() ma cro is provided as part of 
    the Cortex-M3 port layer for this purpose.  tas kYIELD() must never be called  
    from an ISR! */ 
    portEND_SWITCHING_ISR( xHigherPriorityTaskWoken  ); 
}  
 

Listing 51.  The implementation of the interrupt se rvice routine used by Example 13 

All the other functions remain unmodified from those used in Example 12. 
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The output produced when Example 13 is executed is shown in Figure 31.  As can be seen, 

the Handler task processes all three [simulated] events each time an interrupt is generated.  

The events are latched into the count value of the semaphore, allowing the Handler task to 

process them in turn. 

 
Figure 31.  The output produced when Example 13 is executed 
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3.4 Using Queues within an Interrupt Service Routin e 

xQueueSendToFrontFromISR(), xQueueSendToBackFromISR() and 

xQueueReceiveFromISR() are versions of xQueueSendToFront(), xQueueSendToBack() and 

xQueueReceive(), respectively, that are safe to use within an interrupt service routine.   

Semaphores are used to communicate events.  Queues are used to communicate events and 

to transfer data. 

The xQueueSendToFrontFromISR() and xQueueSendToBack FromISR() API 
Functions 

xQueueSendFromISR() is equivalent to and exactly the same as 

xQueueSendToBackFromISR(). 

 
portBASE_TYPE xQueueSendToFrontFromISR( xQueueHandl e xQueue,  
                                        void *pvIte mToQueue 
                                        portBASE_TY PE *pxHigherPriorityTaskWoken  
                                      ); 
 

Listing 52.  The xQueueSendToFrontFromISR() API fun ction prototype 

 
portBASE_TYPE xQueueSendToBackFromISR( xQueueHandle  xQueue,  
                                       void *pvItem ToQueue 
                                       portBASE_TYP E *pxHigherPriorityTaskWoken  
                                     ); 
 

Listing 53.  The xQueueSendToBackFromISR() API func tion prototype 

 

Table 17.  xQueueSendToFrontFromISR() and xQueueSen dToBackFromISR() 
parameters and return values 

Parameter Name/ 
Returned Value Description 

xQueue The handle of the queue to which the data is being sent 

(written).  The queue handle will have been returned from the 

call to xQueueCreate() used to create the queue. 
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Table 17.  xQueueSendToFrontFromISR() and xQueueSen dToBackFromISR() 
parameters and return values 

Parameter Name/ 
Returned Value Description 

pvItemToQueue A pointer to the data to be copied into the queue. 

The size of each item that the queue can hold is set when the 

queue is created, so this number of bytes will be copied from 

pvItemToQueue into the queue storage area. 

pxHigherPriorityTaskWoken It is possible that a single queue will have one or more tasks 

blocked on it waiting for data to become available.  Calling 

xQueueSendToFrontFromISR() or 

xQueueSendToBackFromISR() can make data available, and 

so cause such a task to leave the Blocked state.  If calling the 

API function causes a task to leave the Blocked state, and the 

unblocked task has a priority equal to or higher than the 

currently executing task (the task that was interrupted), then, 

internally, the API function will set 

*pxHigherPriorityTaskWoken to pdTRUE.  

If xQueueSendToFrontFromISR() or 

xQueueSendToBackFromISR() sets this value to pdTRUE, 

then a context switch should be performed before the interrupt 

is exited.  This will ensure that the interrupt returns directly to 

the highest priority Ready state task. 

Returned value There are two possible return values: 

1. pdPASS 

pdPASS is returned only if data has been sent successfully 

to the queue.   

2. errQUEUE_FULL 

errQUEUE_FULL is returned if data cannot be sent to the 

queue because the queue is already full. 
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Efficient Queue Usage 

Most of the demo applications in the FreeRTOS download include a simple UART driver that 

uses queues to pass characters into the transmit interrupt handler and out of the receive 

interrupt handler.  Every character that is transmitted or received gets passed individually 

through a queue.  The UART drivers are implemented in this manner purely as a convenient 

way of demonstrating queues being used from within interrupts.  Passing individual characters 

through a queue is extremely inefficient (especially at high baud rates) and is not 

recommended for production code.  More efficient techniques include:   

• Placing each received character in a simple RAM buffer, then using a semaphore to 

unblock a task to process the buffer, after a complete message has been received, or a 

break in transmission has been detected. 

• Interpreting the received characters directly within the interrupt service routine, then 

using a queue to send the interpreted and decoded commands to a task for processing 

(in a similar manner to that shown in Figure 22).  This technique is suitable only if 

interpreting the data stream is quick enough to be performed entirely from within an 

interrupt. 

Example 14. Sending and receiving on a queue from w ithin an interrupt 

This example demonstrates xQueueSendToBackFromISR() and xQueueReceiveFromISR() 

being used within the same interrupt.  As before, a software interrupt is used for convenience. 

A periodic task is created that sends five numbers to a queue every 200 milliseconds.  It 

generates a software interrupt only after all five values have been sent.  The task 

implementation is shown in Listing 54. 
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static void vIntegerGenerator( void *pvParameters )  
{ 
portTickType xLastExecutionTime; 
unsigned long ulValueToSend = 0; 
int i; 
 
    /* Initialize the variable used by the call to vTaskDelayUntil(). */ 
    xLastExecutionTime = xTaskGetTickCount(); 
 
    for( ;; ) 
    { 
        /* This is a periodic task.  Block until it is time  to run again. 
        The task will execute every 200ms. */ 
        vTaskDelayUntil( &xLastExecutionTime, 200 /  portTICK_RATE_MS ); 
 
        /* Send an incrementing number to the queue  five times.  The values will  
        be read from the queue by the interrupt ser vice routine.  The interrupt 
        service routine always empties the queue so  this task is guaranteed to be 
        able to write all five values, so a block t ime is not required. */ 
        for( i = 0; i < 5; i++ ) 
        { 
            xQueueSendToBack( xIntegerQueue, &ulVal ueToSend, 0 ); 
            ulValueToSend++; 
        } 
 
        /* Force an interrupt so the interrupt serv ice routine can read the 
        values from the queue. */ 
        vPrintString( "Generator task - About to ge nerate an interrupt.\n" ); 
        mainTRIGGER_INTERRUPT(); 
        vPrintString( "Generator task - Interrupt g enerated.\n\n" ); 
    } 
}  
 

Listing 54.  The implementation of the task that wr ites to the queue in Example 14 

The interrupt service routine calls xQueueReceiveFromISR() repeatedly, until all the values 

written to the queue by the periodic task have been removed, and the queue is left empty.  

The last two bits of each received value are used as an index into an array of strings, with a 

pointer to the string at the corresponding index position being sent to a different queue using a 

call to xQueueSendFromISR().  The implementation of the interrupt service routine is shown in 

Listing 55.   
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void vSoftwareInterruptHandler( void ) 
{ 
portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE; 
static unsigned long ulReceivedNumber; 
 
/* The strings are declared static const to ensure they are not allocated to the 
interrupt service routine stack, and exist even whe n the interrupt service routine 
is not executing. */ 
static const char *pcStrings[] = 
{ 
    "String 0\n", 
    "String 1\n", 
    "String 2\n", 
    "String 3\n" 
}; 
 
    /* Loop until the queue is empty. */ 
    while( xQueueReceiveFromISR( xIntegerQueue,  
                                 &ulReceivedNumber,   
                                 &xHigherPriorityTa skWoken ) != errQUEUE_EMPTY ) 
    { 
        /* Truncate the received value to the last two bits (values 0 to 3 inc.),  
        then send the string that corresponds to th e truncated value to the other 
        queue. */ 
        ulReceivedNumber &= 0x03; 
        xQueueSendToBackFromISR( xStringQueue,  
                                 &pcStrings[ ulRece ivedNumber ],  
                                 &xHigherPriorityTa skWoken ); 
    } 
 
    /* Clear the software interrupt bit using the i nterrupt controllers Clear 
    Pending register. */ 
    mainCLEAR_INTERRUPT(); 
     
    /* xHigherPriorityTaskWoken was initialised to pdFALSE.  It will have then 
    been set to pdTRUE only if reading from or writ ing to a queue caused a task 
    of equal or greater priority than the currently  executing task to leave the 
    Blocked state.  When this is the case a context  switch should be performed. 
    In all other cases a context switch is not nece ssary. 
     
    NOTE: The syntax for forcing a context switch w ithin an ISR varies between  
    FreeRTOS ports.  The portEND_SWITCHING_ISR() ma cro is provided as part of 
    the Cortex-M3 port layer for this purpose.  tas kYIELD() must never be called  
    from an ISR! */ 
    portEND_SWITCHING_ISR( xHigherPriorityTaskWoken  ); 
} 
 

Listing 55.  The implementation of the interrupt se rvice routine used by Example 14 

The task that receives the character pointers from the interrupt service routine blocks on the 

queue until a message arrives, printing out each string as it is received.  Its implementation is 

shown in Listing 56. 
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static void vStringPrinter( void *pvParameters ) 
{ 
char *pcString; 
 
    for( ;; ) 
    { 
        /* Block on the queue to wait for data to a rrive. */ 
        xQueueReceive( xStringQueue, &pcString, por tMAX_DELAY ); 
 
        /* Print out the string received. */ 
        vPrintString( pcString ); 
    } 
} 
 

Listing 56.  The task that prints out the strings r eceived from the interrupt service 
routine in Example 14 

As normal, main() creates the required queues and tasks before starting the scheduler.  Its 

implementation is shown in Listing 57. 

 
int main( void ) 
{ 
    /* Before a queue can be used it must first be created.  Create both queues 
    used by this example.  One queue can hold varia bles of type unsigned long,  
    the other queue can hold variables of type char *.  Both queues can hold a  
    maximum of 10 items.  A real application should  check the return values to  
    ensure the queues have been successfully create d. */  
    xIntegerQueue = xQueueCreate( 10, sizeof( unsig ned long ) ); 
    xStringQueue = xQueueCreate( 10, sizeof( char *  ) ); 
 
    /* Enable the software interrupt and set its pr iority. */ 
    prvSetupSoftwareInterrupt(); 
 
    /* Create the task that uses a queue to pass in tegers to the interrupt service 
    routine.  The task is created at priority 1. */  
    xTaskCreate( vIntegerGenerator, "IntGen", 240, NULL, 1, NULL ); 
 
    /* Create the task that prints out the strings sent to it from the interrupt 
    service routine.  This task is created at the h igher priority of 2. */ 
    xTaskCreate( vStringPrinter, "String", 240, NUL L, 2, NULL ); 
 
    /* Start the scheduler so the created tasks sta rt executing. */ 
    vTaskStartScheduler(); 
         
    /* If all is well then main() will never reach here  as the scheduler will  
    now be running the tasks.  If main() does reach  here then it is likely that  
    there was insufficient heap memory available fo r the idle task to be created.  
    Chapter 5 provides more information on memory management. */  
    for( ;; ); 
} 
 

Listing 57.  The main() function for Example 14 

The output produced when Example 14 is executed is shown in Figure 32.  As can be seen, 

the interrupt receives all five integers and produces five strings in response.  More explanation 

is given in Figure 33. 
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Figure 32.  The output produced when Example 14 is executed 

Interrupt

StringPrinter

t1

IntegerGenerator

Idle

Time

1 - The Idle task runs most

of the time.  Every 200ms it

gets preempted by the

IntegerGenerator task.

2 - The IntegerGenerator writes 5 values

to a queue, then forces an interrupt.

3 - The interrupt service routine both reads from a queue and writes to a queue, writing a

string to one queue for every integer received from another.  Writing strings to a queue

unblocks the StringPrinter task.

4 - The StringPrinter task is the highest priority task

so runs immediately after the interrupt service

routine.  It prints out each string it receives on a

queue - when the queue is empty it enters the

Blocked state, allowing the lower priority

IntegerGenerator task to run again.

5 - The IntegerGenerator task is a periodic task so

blocks to wait for the next time period - once again

the idle task is the only task able to run.  200ms after

it last started to execute the whole sequence repeats.

 

Figure 33.  The sequence of execution produced by E xample 14 
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3.5 Interrupt Nesting 

Interrupt nesting behavior is defined by the configuration constants documented in Table 18.  

Both constants are defined in FreeRTOSConfig.h. 

The Cortex-M3 core can use up to eight bits to specify an interrupt priority—allowing a 

maximum of 256 different priorities.  It is essential to note that high numeric values denote low 

interrupt priorities.  Therefore, if all eight bits are used, the lowest possible interrupt priority is 

255 and the highest interrupt priority is zero.  However, most Cortex-M3 implementations do 

not use all eight bits.  To confuse matters further, for reasons of forward compatibility it is the 

most significant bits that are used.  Therefore, if five bits are used then the lowest possible 

interrupt priority is 248, or 11111000 in binary, and the highest is zero.  If three bits are used 

then the lowest possible interrupt priority is 224, or 11100000 in binary, and the highest is 

zero. 

There are two ways to simplify the specification of interrupt priority values: 

1. Think of the priorities as if the implemented bits are the least significant bits instead of 

the most significant bits.  Then shift the priority left by the number of unimplemented 

priority bits before writing to the priority registers in the interrupt controller. 

For example, if five priority bits are used the lowest priority is 31, or 00011111 in binary.  

The highest priority is zero.  If you assign an interrupt a priority of 29, the value written 

to the interrupt controller is ( 29 << 3 ).  The priority value is shifted by three because 

there are five implemented priority bits so three unimplemented priority bits. 

As another example, if three priority bits are used the lowest priority is 7, or 00000111 

in binary.  The highest priority is zero.  If you assign an interrupt a priority of 4, the 

value written to the interrupt controller is ( 4 << 5 ).  The priority value is shifted by five 

because there are three implemented priority bits so five unimplemented priority bits. 

2. Use the functions provided by the Cortex Microcontroller Software Interface Standard 

(CMSIS) to access the interrupt controller.  CMSIS functions allow priorities to be 

specified as if they are implemented using the least significant bits but without having to 

perform the shift by three.  For example, the watchdog interrupt priority can be set to 5 

using the CMSIS call shown in Listing 58. 
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    /* Using the CMSIS NVIC_SetPriority() function to set the watchdog timer  
    interrupt priority.  WDT_IRQn is defined in the  CMSIS header file. */ 
    NVIC_SetPriority( WDT_IRQn, 5 ); 
 

Listing 58.  Using a CMSIS function to set an inter rupt priority 

Cortex-M3 microcontroller vendors will often provide vendor specific functions that are 
equivalent to the CMSIS NVIC_SetPriority() function.  Extra care must be taken when using a 
vendor specific function as some expect their input parameters to use the most significant bit 
positions, while others expect their input parameters to use the least significant bit positions. 

 

Table 18.  Constants that affect interrupt nesting 

Constant Description 

configKERNEL_INTERRUPT_PRIORITY Sets the priority of interrupts used by the 

kernel itself—namely the timer interrupt used 

to generate the tick and the PendSV (Pend 

Service Call) interrupt used within the API.  

configKERNEL_INTERRUPT_PRIORITY will 

almost always be set to the lowest possible 

interrupt priority. 

configMAX_SYSCALL_INTERRUPT_PRIORITY Defines the highest interrupt priority from 

which FreeRTOS API functions can be 

called.  Only API functions that end in 

‘FromISR’ can be called from within an 

interrupt. 

 

Full interrupt nesting functionality is achieved by setting 

configMAX_SYSCALL_INTERRUPT_PRIORITY to a higher interrupt priority (meaning a lower 

numeric priority value) than configKERNEL_INTERRUPT_PRIORITY.  This is demonstrated in 

Figure 34, which shows a scenario where configKERNEL_INTERRUPT_PRIORITY has been 

set to 31 and configMAX_SYSCALL_INTERRUPT_PRIORITY has been set to 292.  For 

simplicity, these priority values have been written in the range expected by the CMSIS 

functions, so 31 is the lowest possible interrupt priority and 29 is two priorities above the 
                                                

2 The number 31 and 29 assume the microcontroller being used implements at least five interrupt 
priority bits.  These numbers would be invalid on a microcontroller that implements three priority bits. 
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lowest.  The definitions of configKERNEL_INTERRUPT_PRIORITY and 

configMAX_SYSCALL_INTERRUPT_PRIORITY within FreeRTOSConfig.h actually require the 

real values, so ( 31 << 3 ) and ( 29 << 3 ) in this example. 

The default priority for all interrupts is zero—the highest possible priority value.  If an interrupt 

uses a FreeRTOS API function, then its priority must never be left uninitialized, unless 

configMAX_SYSCALL_INTERRUPT_PRIORITY is also set to zero. 

It is common for confusion to arise between task priorities and interrupt priorities.  Figure 34 

shows interrupt priorities, as defined by the microcontroller architecture.  These are the 

hardware controlled priorities at which interrupt service routines execute relative to each other.  

Tasks do not run in interrupt service routines, so the software priority assigned to a task is in 

no way related to the hardware priority assigned to an interrupt source. 

 
Figure 34.  Constants affecting interrupt nesting b ehavior – this illustration assumes 

the microcontroller being used implements at least five interrupt priority bits 

Referring to Figure 34:   

• Interrupts that use priorities 31 to 29, inclusive, are prevented from executing while the 

kernel or the application is inside a critical section.  They can, however, make use of 

any API function ending in ‘FromISR’. 

• Interrupts that use priorities 28 to 0 are not affected by critical sections, so nothing the 

kernel does will prevent these interrupts from executing immediately—within the 

limitations of the microcontroller itself.  Functionality that requires very strict timing 

accuracy (motor control, for example) would use a priority above 

configMAX_SYSCALL_INTERRUPT_PRIORITY to ensure that the scheduler does not 
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introduce jitter into the interrupt response times.  Interrupts at these priority levels 

cannot use any FreeRTOS API functions. 
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Chapter 4  

 

Resource Management 
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4.1 Chapter Introduction and Scope 

In a multitasking system, there is potential for conflict if one task starts to access a resource, 

but does not complete its access before being transitioned out of the Running state.  If the task 

leaves the resource in an inconsistent state, then access to the same resource by any other 

task or interrupt could result in data corruption or other similar error. 

Following are some examples: 

1. Accessing Peripherals 

Consider the following scenario where two tasks attempt to write to an LCD. 

1. Task A executes and starts to write the string “Hello world” to the LCD. 

2. Task A is pre-empted by Task B after outputting just the beginning of the string—

“Hello w”. 

3. Task B writes “Abort, Retry, Fail?” to the LCD before entering the Blocked state. 

4. Task A continues from the point at which it was pre-empted and completes outputting 

the remaining characters—“orld”. 

The LCD now displays the corrupted string “Hello wAbort, Retry, Fail?orld”. 

2. Read, Modify, Write Operations 

Listing 59 shows a line of C code and its resultant assembly output.  It can be seen that the 

value of GlobalVar is first read from memory into a register, modified within the register, and 

then written back to memory.  This is called a read, modify, write operation.     

 
    /* The C code being compiled. */ 
    GlobalVar |= 0x01;                    
 
    /* The assembly code produced. */ 
    LDR      r4,[pc,#284] 
    LDR      r0,[r4,#0x08] /* Load the value of GlobalVar into r0. */  
    ORR      r0,r0,#0x01   /* Set bit 0 of r0. */  
    STR      r0,[r4,#0x08] /* Write the new r0 value back to GlobalVar. */  
 

Listing 59.  An example read, modify, write sequenc e 
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This is a ‘non-atomic’ operation because it takes more than one instruction to complete and 

can be interrupted.  Consider the following scenario where two tasks attempt to update a 

variable called GlobalVar: 

1. Task A loads the value of GlobalVar into a register—the read portion of the 

operation. 

2. Task A is pre-empted by Task B before it completes the modify and write portions of 

the same operation. 

3. Task B updates the value of GlobalVar, then enters the Blocked state. 

4. Task A continues from the point at which it was pre-empted.  It modifies the copy of 

the GlobalVar value that it already holds in a register before writing the updated 

value back to GlobalVar. 

In this scenario, Task A updates and writes back an out-of-date value for GlobalVar.  Task 

B modifies GlobalVar after Task A takes a copy of the GlobalVar value and before Task A 

writes its modified value back to the GlobalVar variable.  When Task A writes to GlobalVar, 

it overwrites the modification that has already been performed by Task B, effectively 

corrupting the GlobalVar variable value. 

3. Non-atomic Access to Variables 

Updating multiple members of a structure, or updating a variable that is larger than the 

natural word size of the architecture (for example, updating a 64-bit variable on a 32-bit 

machine), are examples of non-atomic operations.  If they are interrupted, they can result in 

data loss or corruption. 

4. Function Reentrancy 

A function is reentrant if it is safe to call the function from more than one task, or from both 

tasks and interrupts.   

Each task maintains its own stack and its own set of core register values.  If a function does 

not access any data other than data stored on the stack or held in a register, then the 

function is reentrant.  Listing 60 is an example of a reentrant function.  Listing 61 is an 

example of a function that is not reentrant. 
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/* A parameter is passed into the function.  This w ill either be 
passed on the stack or in a CPU register.  Either w ay is safe as 
each task maintains its own stack and its own set o f register 
values. */  
long lAddOneHundered( long lVar1 ) 
{ 
/* This function scope variable will also be alloca ted to the stack 
or a register, depending on the compiler and optimi zation level.  Each 
task or interrupt that calls this function will hav e its own copy 
of lVar2. */  
long lVar2; 
 
    lVar2 = lVar1 + 100; 
 
    /* Most likely the return value will be placed in a  CPU register, 
    although it too could be placed on the stack. * / 
    return lVar2; 
} 
 

Listing 60.  An example of a reentrant function  

 
/* In this case lVar1 is a global variable so every  task that calls 
the function will be accessing the same single copy  of the variable. */ 
long lVar1; 
 
long lNonsenseFunction( void ) 
{ 
/* This variable is static so is not allocated on t he stack.  Each task 
that calls the function will be accessing the same single copy of the 
variable. */ 
static long lState = 0; 
long lReturn; 
 
    switch( lState ) 
    { 
        case 0 : lReturn = lVar1 + 10; 
                 lState = 1; 
                 break; 
 
        case 1 : lReturn = lVar1 + 20; 
                 lState = 0; 
                 break; 
    } 
} 
 

Listing 61.  An example of a function that is not r eentrant 

Mutual Exclusion 

Access to a resource that is shared between tasks, or between tasks and interrupts, must be 

managed using a ‘mutual exclusion’ technique, to ensure that data consistency is maintained 

at all times.  The goal is to ensure that, once a task starts to access a shared resource, the 

same task has exclusive access until the resource has been returned to a consistent state. 
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FreeRTOS provides several features that can be used to implement mutual exclusion, but the 

best mutual exclusion method is to (whenever possible) design the application in such a way 

that resources are not shared and each resource is accessed only from a single task.   

Scope 

This chapter aims to give readers a good understanding of: 

• When and why resource management and control is necessary. 

• What a critical section is. 

• What mutual exclusion means. 

• What it means to suspend the scheduler. 

• How to use a mutex. 

• How to create and use a gatekeeper task. 

• What priority inversion is, and how priority inheritance can reduce (but not remove) its 

impact. 
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4.2 Critical Sections and Suspending the Scheduler 

Basic Critical Sections 

Basic critical sections are regions of code that are surrounded by calls to the macros 

taskENTER_CRITICAL() and taskEXIT_CRITICAL(), respectively, as demonstrated in Listing 

62.  Critical sections are also known as critical regions. 

 
    /* Ensure access to the GlobalVar variable cann ot be interrupted by 
    placing it within a critical section.  Enter th e critical section. */ 
    taskENTER_CRITICAL(); 
 
    /* A switch to another task cannot occur betwee n the call to  
    taskENTER_CRITICAL() and the call to taskEXIT_C RITICAL().  Interrupts 
    may still execute, but only interrupts whose pr iority is above the  
    value assigned to the configMAX_SYSCALL_INTERRU PT_PRIORITY constant  
    – and those interrupts are not permitted to cal l FreeRTOS API  
    functions. */  
    GlobalVar |= 0x01; 
 
    /* Access to GlobalVar is complete so the criti cal section can be exited. */ 
    taskEXIT_CRITICAL(); 
 

Listing 62.  Using a critical section to guard acce ss to a variable 

The example projects that accompany this book use a function called vPrintString() to write 

strings to standard out.  vPrintString() is called from many different tasks; so, in theory, its 

implementation could protect access to standard out using a critical section, as shown in  

Listing 63.   

 
void vPrintString( const char *pcString ) 
{ 
static char cBuffer[ ioMAX_MSG_LEN ]; 
 
    /* Write the string to stdout, using a critical  section as a crude method  
    of mutual exclusion. */ 
    taskENTER_CRITICAL(); 
    { 
        sprintf( cBuffer, "%s", pcString ); 
        consoleprint( cBuffer ); 
    } 
    taskEXIT_CRITICAL(); 
} 
 

Listing 63.  A possible implementation of vPrintStr ing() 

Critical sections implemented in this way are a very crude method of providing mutual 

exclusion.  They work by disabling interrupts up to the interrupt priority set by 
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configMAX_SYSCALL_INTERRUPT_PRIORITY.  Pre-emptive context switches can occur 

only from within an interrupt, so, as long as interrupts remain disabled, the task that called 

taskENTER_CRITICAL() is guaranteed to remain in the Running state until the critical section 

is exited. 

Critical sections must be kept very short; otherwise, they will adversely affect interrupt 

response times.  Every call to taskENTER_CRITICAL() must be closely paired with a call to 

taskEXIT_CRITICAL().  For this reason, standard out (stdout, or the stream where a computer 

writes its output data) should not be protected using a critical section (as shown in Listing 63), 

because writing to the terminal can be a relatively long operation.  The examples in this 

chapter explore alternative solutions. 

It is safe for critical sections to become nested, because the kernel keeps a count of the 

nesting depth.  The critical section will be exited only when the nesting depth returns to zero—

which is when one call to taskEXIT_CRITICAL() has been executed for every preceding call to 

taskENTER_CRITICAL().  

Suspending (or Locking) the Scheduler 

Critical sections can also be created by suspending the scheduler.  Suspending the scheduler 

is sometimes also known as ‘locking’ the scheduler. 

Basic critical sections protect a region of code from access by other tasks and by interrupts.  A 

critical section implemented by suspending the scheduler protects a region of code only from 

access by other tasks because interrupts remain enabled. 

A critical section that is too long to be implemented by simply disabling interrupts can, instead, 

be implemented by suspending the scheduler, However, resuming (or ‘un-suspending’) the 

scheduler can be a relatively long operation, so consideration must be given to which is the 

best method to use in each case. 
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The vTaskSuspendAll() API Function 

 
 
void vTaskSuspendAll( void ); 
 

Listing 64.  The vTaskSuspendAll() API function pro totype 

The scheduler is suspended by calling vTaskSuspendAll().  Suspending the scheduler 

prevents a context switch from occurring but leaves interrupts enabled.  If an interrupt requests 

a context switch while the scheduler is suspended, then the request is held pending and is 

performed only when the scheduler is resumed (un-suspended).   

FreeRTOS API functions should not be called while the scheduler is suspended. 

The xTaskResumeAll() API Function 

 
 
portBASE_TYPE xTaskResumeAll( void ); 
 

Listing 65.  The xTaskResumeAll() API function prot otype 

The scheduler is resumed (un-suspended) by calling xTaskResumeAll().   

 

Table 19.  xTaskResumeAll() return value 

Returned Value Description 

Returned value Context switches that are requested while the scheduler is suspended 

are held pending and performed only as the scheduler is being resumed.  

A previously pending context switch being performed before 

xTaskResumeAll() returns results in the function returning pdTRUE.  In 

all other cases, xTaskResumeAll() returns pdFALSE. 

 

It is safe for calls to vTaskSuspendAll() and xTaskResumeAll() to become nested, because the 

kernel keeps a count of the nesting depth.  The scheduler will be resumed only when the 

nesting depth returns to zero—which is when one call to xTaskResumeAll() has been 

executed for every preceding call to vTaskSuspendAll().   
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Listing 66 shows the actual implementation of vPrintString(), which suspends the scheduler to 

protect access to the terminal output. 

 
void vPrintString( const char *pcString ) 
{ 
static char cBuffer[ ioMAX_MSG_LEN ]; 
 
    /* Write the string to stdout, suspending the s cheduler as a method  
    of mutual exclusion. */ 
    vTaskSuspendScheduler(); 
    { 
        sprintf( cBuffer, "%s", pcString ); 
        consoleprint( cBuffer ); 
    } 
    xTaskResumeScheduler(); 
}  
 

Listing 66.  The implementation of vPrintString() 
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4.3 Mutexes (and Binary Semaphores) 

A Mutex is a special type of binary semaphore that is used to control access to a resource that 

is shared between two or more tasks.  The word MUTEX originates from ‘MUTual EXclusion’. 

When used in a mutual exclusion scenario, the mutex can be thought of as a token that is 

associated with the resource being shared.  For a task to access the resource legitimately, it 

must first successfully ‘take’ the token (be the token holder).  When the token holder has 

finished with the resource, it must ‘give’ the token back.  Only when the token has been 

returned can another task successfully take the token and then safely access the same shared 

resource.  A task is not permitted to access the shared resource unless it holds the token.  

This mechanism is shown in Figure 35. 

Even though mutexes and binary semaphores share many characteristics, the scenario shown 

in Figure 35 (where a mutex is used for mutual exclusion) is completely different to that shown 

in Figure 29 (where a binary semaphore is used for synchronization).  The primary difference 

is what happens to the semaphore after it has been obtained: 

• A semaphore that is used for mutual exclusion must always be returned. 

• A semaphore that is used for synchronization is normally discarded and not returned. 
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Figure 35.  Mutual exclusion implemented using a mu tex 
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The mechanism works purely through the discipline of the application writer.  There is no 

reason why a task cannot access the resource at any time, but each task ‘agrees’ not to do so, 

unless it is able to become the mutex holder. 

The xSemaphoreCreateMutex() API Function 

A mutex is a type of semaphore.  Handles to all the various types of FreeRTOS semaphore 

are stored in a variable of type xSemaphoreHandle.   

Before a mutex can be used, it must be created.  To create a mutex type semaphore, use the 

xSemaphoreCreateMutex() API function. 

 
xSemaphoreHandle xSemaphoreCreateMutex( void ); 
 

Listing 67.  The xSemaphoreCreateMutex() API functi on prototype 

Table 20.  xSemaphoreCreateMutex() return value 

Parameter Name/  
Returned Value Description 

Returned value If NULL is returned, then the mutex could not be created because there 

is insufficient heap memory available for FreeRTOS to allocate the 

mutex data structures.  Chapter 5 provides more information on memory 

management. 

A non-NULL return value indicates that the mutex has been created 

successfully.  The returned value should be stored as the handle to the 

created mutex. 

Example 15.  Rewriting vPrintString() to use a sema phore 

This example creates a new version of vPrintString() called prvNewPrintString(), then calls the 

new function from multiple tasks.  prvNewPrintString() is functionally identical to vPrintString(), 

but uses a mutex to control access to standard out in place of the basic critical section.  The 

implementation of prvNewPrintString() is shown in Listing 68. 
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static void prvNewPrintString( const char *pcString  ) 
{ 
static char cBuffer[ mainMAX_MSG_LEN ]; 
 
    /* The mutex is created before the scheduler is sta rted so already 
    exists by the time this task first executes. 
     
    Attempt to take the mutex, blocking indefinitel y to wait for the mutex if 
    it is not available straight away.  The call to  xSemaphoreTake() will only  
    return when the mutex has been successfully obt ained so there is no need to  
    check the function return value.  If any other delay period was used then  
    the code must check that xSemaphoreTake() retur ns pdTRUE before accessing  
    the shared resource (which in this case is stan dard out). */ 
    xSemaphoreTake( xMutex, portMAX_DELAY ); 
    { 
        /* The following line will only execute once the mu tex has been 
        successfully obtained.  Standard out can be  accessed freely now as 
        only one task can have the mutex at any one  time. */ 
        sprintf( cBuffer, "%s", pcString ); 
        consoleprint( cBuffer ); 
 
        /* The mutex MUST be given back! */  
    } 
    xSemaphoreGive( xMutex ); 
} 
 

Listing 68.  The implementation of prvNewPrintStrin g() 

prvNewPrintString() is called repeatedly by two instances of a task implemented by 

prvPrintTask().  A random delay time is used between each call.  The task parameter is used 

to pass a unique string into each instance of the task.  The implementation of prvPrintTask() is 

shown in Listing 69. 

 
static void prvPrintTask( void *pvParameters ) 
{ 
char *pcStringToPrint; 
 
    /* Two instances of this task are created so th e string the task will send 
    to prvNewPrintString() is passed into the task using the task parameter.   
    Cast this to the required type. */ 
    pcStringToPrint = ( char * ) pvParameters; 
 
    for( ;; ) 
    { 
        /* Print out the string using the newly def ined function. */ 
        prvNewPrintString( pcStringToPrint ); 
 
        /* Wait a pseudo random time.  Note that rand() is not necessarily  
        reentrant, but in this case it does not rea lly matter as the code does 
        not care what value is returned.  In a more  secure application a version 
        of rand() that is known to be reentrant sho uld be used - or calls to 
        rand() should be protected using a critical  section. */ 
        vTaskDelay( ( rand() & 0x1FF ) ); 
    } 
} 
 

Listing 69.  The implementation of prvPrintTask() f or Example 15 
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As normal, main() creates the mutex, creates the tasks, then starts the scheduler.  The 

implementation is shown in Listing 70. 

The two instances of prvPrintTask() are created at different priorities, so the lower priority task 

will sometimes be pre-empted by the higher priority task.  As a mutex is used to ensure each 

task gets mutually exclusive access to the terminal, even when pre-emption occurs, the strings 

that are displayed will be correct and in no way corrupted.  The frequency of pre-emption can 

be increased by reducing the maximum time the tasks spend in the Blocked state, which is 

defaulted to 0x1ff ticks. 

 
 
int main( void ) 
{ 
    /* Before a semaphore is used it must be explicitly  created.  In this example 
    a mutex type semaphore is created. */ 
    xMutex = xSemaphoreCreateMutex(); 
 
    /* The tasks are going to use a pseudo random delay , seed the random number 
    generator. */ 
    srand( 567 ); 
 
    /* Only create the tasks if the semaphore was creat ed successfully. */ 
    if( xMutex != NULL ) 
    { 
        /* Create two instances of the tasks that w rite to stdout.  The string  
        they write is passed in as the task paramet er.  The tasks are created  
        at different priorities so some pre-emption  will occur. */ 
        xTaskCreate( prvPrintTask, "Print1", 240,  
                    "Task 1 *********************** *******************\n", 1, NULL ); 
 
        xTaskCreate( prvPrintTask, "Print2", 240,  
                    "Task 2 ----------------------- -------------------\n", 2, NULL ); 
 
        /* Start the scheduler so the created tasks start e xecuting. */ 
        vTaskStartScheduler(); 
    } 
         
    /* If all is well then main() will never reach here  as the scheduler will  
    now be running the tasks.  If main() does reach  here then it is likely that  
    there was insufficient heap memory available fo r the idle task to be created.  
    Chapter 5 provides more information on memory management. */  
    for( ;; ); 
} 
 

Listing 70.  The implementation of main() for Examp le 15 

The output produced when Example 15 is executed is shown in Figure 36.  A possible 

execution sequence is described in Figure 37. 
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Figure 36.  The output produced when Example 15 is executed 

Figure 36 shows that, as expected, there is no corruption in the strings that are displayed in 

the terminal.  The random ordering is a result of the random delay periods used by the tasks. 

 
Figure 37.  A possible sequence of execution for Ex ample 15 

Priority Inversion 

Figure 37 demonstrates one of the potential pitfalls of using a mutex to provide mutual 

exclusion.  The possible sequence of execution depicted shows the higher priority Task 2 

having to wait for the lower priority Task 1 to give up control of the mutex.  A higher priority 

task being delayed by a lower priority task in this manner is called ‘priority inversion’.  This 

undesirable behavior would be exaggerated further if a medium priority task started to execute 

while the high priority task was waiting for the semaphore—the result would be a high priority 

task waiting for a low priority task without the low priority task even being able to execute.  This 

worst case scenario is shown in Figure 38. 
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Figure 38.  A worst case priority inversion scenari o 

Priority inversion can be a significant problem, but in small embedded systems it can often be 

avoided at system design time, by considering how resources are accessed.   

Priority Inheritance 

FreeRTOS mutexes and binary semaphores are very similar—the difference being that 

mutexes include a basic ‘priority inheritance’ mechanism, whereas binary semaphores do not.  

Priority inheritance is a scheme that minimizes the negative effects of priority inversion.  It 

does not ‘fix’ priority inversion; it merely lessens its impact by ensuring that the inversion is 

always time bounded.  However, priority inheritance complicates system timing analysis; it is 

not good practice to rely on it for correct system operation. 

Priority inheritance works by temporarily raising the priority of the mutex holder to that of the 

highest priority task that is attempting to obtain the same mutex.  The low priority task that 

holds the mutex ‘inherits’ the priority of the task waiting for the mutex.  This is demonstrated by 

Figure 39.  The priority of the mutex holder is reset automatically to its original value when it 

gives the mutex back. 
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Figure 39.  Priority inheritance minimizing the eff ect of priority inversion 

Because the preference is to avoid priority inversion in the first place, and because FreeRTOS 

is targeted at memory-constrained microcontrollers, the priority inheritance mechanism 

implemented by mutexes is only a basic form that assumes a task will hold only a single mutex 

at any one time. 

Deadlock (or Deadly Embrace) 

‘Deadlock’ is another potential pitfall that can occur when using mutexes for mutual exclusion.  

Deadlock is sometimes also known by the more dramatic name ‘deadly embrace’. 

Deadlock occurs when two tasks cannot proceed because they are both waiting for a resource 

that is held by the other.  Consider the following scenario where Task A and Task B both need 

to acquire mutex X and mutex Y in order to perform an action: 

1. Task A executes and successfully takes mutex X. 

2. Task A is pre-empted by Task B. 

3. Task B successfully takes mutex Y before attempting to also take mutex X—but mutex 

X is held by Task A, so is not available to Task B.  Task B opts to enter the Blocked 

state to wait for mutex X to be released. 
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4. Task A continues executing.  It attempts to take mutex Y—but mutex Y is held by Task 

B, so is not available to Task A.  Task A opts to enter the Blocked state to wait for 

mutex Y to be released. 

At the end of this scenario, Task A is waiting for a mutex held by Task B, and Task B is waiting 

for a mutex held by Task A.  Deadlock has occurred because neither task can proceed. 

As with priority inversion, the best method of avoiding deadlock is to consider its potential at 

design time, and design the system to ensure that deadlock cannot occur.  In practice, 

deadlock is not a big problem in small embedded systems, because the system designer can 

have a good understanding of the entire application, and so can identify and remove the areas 

where it could occur. 
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4.4 Gatekeeper Tasks 

Gatekeeper tasks provide a clean method of implementing mutual exclusion without the risk of 

priority inversion or deadlock. 

A gatekeeper task is a task that has sole ownership of a resource.  Only the gatekeeper task is 

allowed to access the resource directly—any other task requiring access to the resource can 

do so only indirectly by using the services of the gatekeeper. 

Example 16. Re-writing vPrintString() to use a gate keeper task 

Example 16 provides an alternative implementation for vPrintString().  This time, a gatekeeper 

task is used to manage access to standard out.  When a task wants to write a message to the 

terminal, it does not call a print function directly but, instead, sends the message to the 

gatekeeper.   

The gatekeeper task uses a FreeRTOS queue to serialize access to the terminal.  The internal 

implementation of the task does not have to consider mutual exclusion because it is the only 

task permitted to access the terminal directly. 

The gatekeeper task spends most of its time in the Blocked state, waiting for messages to 

arrive on the queue.  When a message arrives, the gatekeeper writes the message to 

standard out, before returning to the Blocked state to wait for the next message.  The 

implementation of the gatekeeper task is shown by Listing 72. 

Interrupts can send to queues, so interrupt service routines can also safely use the services of 

the gatekeeper to write messages to the terminal.  In this example, a tick hook function is used 

to write out a message every 200 ticks. 

A tick hook (or tick callback) is a function that is called by the kernel during each tick interrupt.  

To use a tick hook function: 

1. Set configUSE_TICK_HOOK to 1 in FreeRTOSConfig.h. 

2. Provide the implementation of the hook function, using the exact function name and 

prototype shown in Listing 71. 



www.FreeRTOS.org  This document was supplied to jmclurkin@rice.edu 
 

 
134  
 

 
    void vApplicationTickHook( void ); 
 

Listing 71.  The name and prototype for a tick hook  function 

Tick hook functions execute within the context of the tick interrupt, and so must be kept very 

short, must use only a moderate amount of stack space, and must not call any FreeRTOS API 

function whose name does not end with ‘FromISR()’.     

 
static void prvStdioGatekeeperTask( void *pvParamet ers ) 
{ 
char *pcMessageToPrint; 
static char cBuffer[ mainMAX_MSG_LEN ]; 
 
    /* This is the only task that is allowed to wri te to the terminal output. 
    Any other task wanting to write a string to the  output does not access the  
    terminal directly, but instead sends the string  to this task.  As only this  
    task accesses standard out there are no mutual exclusion or serialization  
    issues to consider within the implementation of  the task itself. */ 
    for( ;; ) 
    { 
        /* Wait for a message to arrive.  An indefi nite block time is specified  
        so there is no need to check the return val ue – the function will only  
        return when a message has been successfully  received. */ 
        xQueueReceive( xPrintQueue, &pcMessageToPri nt, portMAX_DELAY ); 
 
        /* Output the received string. */ 
        sprintf( cBuffer, "%s", pcMessageToPrint );  
        consoleprint( cBuffer ); 
 
        /* Now go back to wait for the next message . */ 
    } 
} 
 

Listing 72.  The gatekeeper task 

The task that prints out the message is similar to that used in Example 15, except that, here, 

the string is sent on the queue to the gatekeeper task, rather than written out directly.  The 

implementation is shown in Listing 73.  As before, two separate instances of the task are 

created, each of which prints out a unique string passed to it via the task parameter. 



www.FreeRTOS.org  This document was supplied to jmclurkin@rice.edu 
 

 
 135 

 

 

 
static void prvPrintTask( void *pvParameters ) 
{ 
int iIndexToString; 
 
    /* Two instances of this task are created.  The  task parameter is used to pass an 
    index into an array of strings into the task. C ast this to the required type. */ 
    iIndexToString = ( int ) pvParameters; 
 
    for( ;; ) 
    { 
        /* Print out the string, not directly but i nstead by passing a pointer to 
        the string to the gatekeeper task via a que ue.  The queue is created before  
        the scheduler is started so will already ex ist by the time this task executes 
        for the first time.  A block time is not sp ecified because there should  
        always be space in the queue. */ 
        xQueueSendToBack( xPrintQueue, &( pcStrings ToPrint[ iIndexToString ] ), 0 ); 
 
        /* Wait a pseudo random time.  Note that ra nd() is not necessarily  
        reentrant, but in this case it does not rea lly matter as the code does 
        not care what value is returned.  In a more  secure application a version 
        of rand() that is known to be reentrant sho uld be used - or calls to 
        rand() should be protected using a critical  section. */ 
        vTaskDelay( ( rand() & 0x1FF ) ); 
    } 
} 
 

Listing 73.  The print task implementation for Exam ple 16 

The tick hook function counts the number of times it is called, sending its message to the 

gatekeeper task each time the count reaches 200.  For demonstration purposes only, the tick 

hook writes to the front of the queue, and the print tasks write to the back of the queue.  The 

tick hook implementation is shown in Listing 74. 

 
void vApplicationTickHook( void ) 
{ 
static int iCount = 0; 
portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE; 
 
    /* Print out a message every 200 ticks.  The me ssage is not written out 
    directly, but sent to the gatekeeper task. */ 
    iCount++; 
    if( iCount >= 200 ) 
    { 
        /* In this case the last parameter (xHigher PriorityTaskWoken) is not 
        actually used but must still be supplied. * / 
        xQueueSendToFrontFromISR( xPrintQueue,  
                                  &( pcStringsToPri nt[ 2 ] ),  
                                  &xHigherPriorityT askWoken ); 
         
        /* Reset the count ready to print out the s tring again in 200 ticks  
        time. */ 
        iCount = 0; 
    } 
}  
 

Listing 74.  The tick hook implementation 
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As normal, main() creates the queues and tasks necessary to run the example, then starts the 

scheduler.  The implementation of main() is shown in Listing 75. 

 
/* Define the strings that the tasks and interrupt will print out via the  
gatekeeper. */ 
static char *pcStringsToPrint[] = 
{ 
    "Task 1 *************************************** *************\n", 
    "Task 2 --------------------------------------- -------------\n", 
    "Message printed from the tick hook interrupt # #############\n" 
}; 
 
/*------------------------------------------------- ----------*/ 
 
/* Declare a variable of type xQueueHandle.  This i s used to send messages from 
the print tasks and the tick interrupt to the gatek eeper task. */ 
xQueueHandle xPrintQueue; 
 
/*------------------------------------------------- ----------*/ 
 
int main( void ) 
{ 
    /* Before a queue is used it must be explicitly  created.  The queue is created 
    to hold a maximum of 5 character pointers. */ 
    xPrintQueue = xQueueCreate( 5, sizeof( char * )  ); 
 
    /* The tasks are going to use a pseudo random d elay, seed the random number 
    generator. */ 
    srand( 567 ); 
 
    /* Check the queue was created successfully. */ 
    if( xPrintQueue != NULL ) 
    { 
        /* Create two instances of the tasks that s end messages to the gatekeeper. 
        The index to the string the task uses is pa ssed to the task via the task 
        parameter (the 4th parameter to xTaskCreate ()).  The tasks are created at  
        different priorities so the higher priority  task will occasionally preempt 
        the lower priority task. */ 
        xTaskCreate( prvPrintTask, "Print1", 240, (  void * ) 0, 1, NULL ); 
        xTaskCreate( prvPrintTask, "Print2", 240, (  void * ) 1, 2, NULL ); 
 
        /* Create the gatekeeper task.  This is the  only task that is permitted 
        to directly access standard out. */ 
        xTaskCreate( prvStdioGatekeeperTask, "Gatek eeper", 240, NULL, 0, NULL ); 
         
        /* Start the scheduler so the created tasks  start executing. */ 
        vTaskStartScheduler(); 
    } 
         
    /* If all is well then main() will never reach here  as the scheduler will  
    now be running the tasks.  If main() does reach  here then it is likely that  
    there was insufficient heap memory available fo r the idle task to be created.  
    Chapter 5 provides more information on memory management. */  
    for( ;; ); 
} 
 

Listing 75.  The implementation of main() for Examp le 16 
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The output produced when Example 16 is executed is shown in Figure 40.  As can be seen, 

the strings originating from the tasks and the strings originating from the interrupt all print out 

correctly with no corruption. 

 
Figure 40.  The output produced when Example 16 is executed 

The gatekeeper task is assigned a lower priority than the print tasks—so messages sent to the 

gatekeeper remain in the queue until both print tasks are in the Blocked state.  In some 

situations, it would be appropriate to assign the gatekeeper a higher priority, so that messages 

get processed sooner—but doing so would be at the cost of the gatekeeper delaying lower 

priority tasks, until it had completed accessing the protected resource. 
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Chapter 5  

 

Memory Management 
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5.1 Chapter Introduction and Scope 

The kernel has to allocate RAM dynamically each time a task, queue, or semaphore is 

created.  The standard malloc() and free() library functions can be used, but they may not be 

suitable or appropriate for one or more of the following reasons: 

• They are not always available on small embedded systems. 

• Their implementation can be relatively large, taking up valuable code space. 

• They are rarely thread-safe. 

• They are not deterministic; the amount of time taken to execute the functions will differ 

from call to call. 

• They can suffer from memory fragmentation. 

• They can complicate the linker configuration. 

Different embedded systems have varying RAM allocation and timing requirements, so a 

single RAM allocation algorithm will only ever be appropriate for a subset of applications.  

Therefore, FreeRTOS treats memory allocation as part of the portable layer (as opposed to 

part of the core code base).  This enables individual applications to provide their own specific 

implementations, when appropriate. 

When the kernel requires RAM, instead of calling malloc() directly it calls pvPortMalloc().  

When RAM is being freed, instead of calling free() directly, the kernel calls vPortFree().  

pvPortMalloc() has the same prototype as malloc(), and vPortFree() has the same prototype 

as free(). 

FreeRTOS comes with three example implementations of both pvPortMalloc() and vPortFree(); 

these examples are all documented in this chapter.  Users of FreeRTOS can use one of the 

example implementations, or provide their own.   

The three examples are defined in the files heap_1.c, heap_2.c, and heap_3.c—all of which 

are located in the FreeRTOS\Source\portable\MemMang directory.  The original memory pool 

and block allocation scheme used by very early versions of FreeRTOS have been removed 

because of the effort and understanding required to dimension the blocks and pools. 
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It is common for small embedded systems only to create tasks, queues, and semaphores 

before the scheduler has been started.  When this is the case, memory only gets dynamically 

allocated by the kernel before the application starts to perform any real-time functionality, and 

the memory remains allocated for the lifetime of the application.  This means that the chosen 

allocation scheme does not have to consider any of the more complex issues such as 

determinism and fragmentation, and can instead consider only attributes such as code size 

and simplicity. 

Scope 

This chapter aims to give readers a good understanding of: 

• When FreeRTOS allocates RAM. 

• The three example memory allocation schemes supplied with FreeRTOS. 
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5.2 Example Memory Allocation Schemes 

Heap_1.c 

Heap_1.c implements a very basic version of pvPortMalloc() and does not implement 

vPortFree().  Applications that never delete a task, queue, or semaphore have the potential to 

use heap_1.  Heap_1 is always deterministic. 

The allocation scheme subdivides a simple array into smaller blocks as calls to pvPortMalloc() 

are made.  The array is the FreeRTOS heap.   

The total size (in bytes) of the array is set by the definition configTOTAL_HEAP_SIZE within 

FreeRTOSConfig.h.  Defining a large array in this manner can make the application appear to 

consume a lot of RAM—even before any of the array has been assigned. 

Each created task requires a task control block (TCB) and a stack to be allocated from the 

heap.  Figure 41 demonstrates how heap_1 subdivides the simple array as tasks are created.  

Referring to Figure 41: 

• A shows the array before any tasks have been created—the entire array is free.   

• B shows the array after one task has been created.   

• C shows the array after three tasks have been created.   

 
Figure 41.  RAM being allocated within the array ea ch time a task is created 
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Heap_2.c 

Heap_2.c also uses a simple array dimensioned by configTOTAL_HEAP_SIZE.  It uses a best 

fit algorithm to allocate memory and, unlike heap_1, it does allow memory to be freed.  Again, 

the array is declared statically, so will make the application appear to consume a lot of RAM, 

even before any of the array has been assigned. 

The best fit algorithm ensures that pvPortMalloc() uses the free block of memory that is closest 

in size to the number of bytes requested.  For example, consider the scenario where: 

• The heap contains three blocks of free memory that are 5 bytes, 25 bytes, and 100 

bytes, respectively. 

• pvPortMalloc() is called to request 20 bytes of RAM. 

The smallest free block of RAM into which the requested number of bytes will fit is the 25-byte 

block, so pvPortMalloc() splits the 25-byte block into one block of 20 bytes and one block of 5 

bytes3, before returning a pointer to the 20-byte block.  The new 5-byte block remains 

available to future calls to pvPortMalloc(). 

Heap_2.c does not combine adjacent free blocks into a single larger block, so it can suffer 

from fragmentation.  However, fragmentation is not an issue if the blocks being allocated and 

subsequently freed are always the same size.  Heap_2.c is suitable for an application that 

creates and deletes tasks repeatedly, provided the size of the stack allocated to the created 

tasks does not change. 

                                                

3 This is an oversimplification, because heap_2 stores information on the block sizes within the heap 
area, so the sum of the two split blocks will actually be less than 25. 
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Figure 42.  RAM being allocated from the array as t asks are created and deleted 

Figure 42 demonstrates how the best fit algorithm works when a task is created, deleted, and 

then created again.  Referring to Figure 42: 

1. A shows the array after three tasks have been created.  A large free block remains at 

the top of the array. 

2. B shows the array after one of the tasks has been deleted.  The large free block at the 

top of the array remains.  There are now also two smaller free blocks that were 

previously allocated to the TCB and stack of the deleted task. 

3. C shows the situation after another task has been created.  Creating the task has 

resulted in two calls to pvPortMalloc(), one to allocate a new TCB and one to allocate 

the task stack.  (The calls to pvPortMalloc() occur internally within the xTaskCreate() 

API function.) 

Every TCB is exactly the same size, so the best fit algorithm ensures that the block of 

RAM previously allocated to the TCB of the deleted task is reused to allocate the TCB 

of the new task. 

The size of the stack allocated to the newly created task is identical to that allocated to 

the previously deleted task, so the best fit algorithm ensures that the block of RAM 

previously allocated to the stack of the deleted task is reused to allocate the stack of 

the new task. 

The larger unallocated block at the top of the array remains untouched. 
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Heap_2.c is not deterministic but is more efficient than most standard library implementations 

of malloc() and free(). 

Heap_3.c 

Heap_3.c uses the standard library malloc() and free() function but makes the calls thread-

safe by temporarily suspending the scheduler.  The implementation is shown in Listing 76. 

The size of the heap is not affected by configTOTAL_HEAP_SIZE; instead, it is defined by the 

linker configuration. 

 
void *pvPortMalloc( size_t xWantedSize ) 
{ 
void *pvReturn; 
 
    vTaskSuspendAll(); 
    { 
        pvReturn = malloc( xWantedSize ); 
    } 
    xTaskResumeAll(); 
 
    return pvReturn; 
} 
 
void vPortFree( void *pv ) 
{ 
    if( pv != NULL ) 
    { 
        vTaskSuspendAll(); 
        { 
            free( pv ); 
        } 
        xTaskResumeAll(); 
    } 
} 
 

Listing 76.  The heap_3.c implementation 

The xPortGetFreeHeapSize() API Function 

xPortGetFreeHeapSize() is available only when heap_1.c or heap_2.c is being used.  It 

provides a simple method of optimizing the heap size by returning the current number of 

unallocated bytes.  For example, if xPortGetFreeHeapSize() returns 2000 after all the required 

tasks, queues, and semaphores have been created, then configTOTAL_HEAP_SIZE can be 

reduced by 2000. 

 
size_t xPortGetFreeHeapSize( void ); 
 

Listing 77.  The xPortGetFreeHeapSize() API functio n prototype 
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Table 21.  xPortGetFreeHeapSize() return value 

Parameter Name/ 
Returned Value Description 

Returned value The number of bytes that remain unallocated in the heap. 
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Chapter 6  

 

Trouble Shooting  
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6.1 Chapter Introduction and Scope 

This chapter aims to highlight the most common issues encountered by users who are new to 

FreeRTOS.  It focuses mainly on stack overflow and stack overflow detection, because stack 

issues have proven to be the most frequent source of support requests over the years.  It then 

briefly, and in an FAQ style, touches on other common errors, their possible cause, and their 

solutions. 

printf-stdarg.c 

Stack usage can get particularly high when standard C library functions are used, especially 

IO and string handling functions such as sprintf().  The FreeRTOS download includes a file 

called printf-stdarg.c that contains a minimal and stack-efficient version of sprintf(), which can 

be used in place of the standard library version.  In most cases, this will permit a much smaller 

stack to be allocated to each task that calls sprintf() and related functions. 

Printf-stdarg.c is open source but is owned by a third party.  Therefore, it is licensed separately 

from FreeRTOS.  The license terms are contained at the top of the source file. 
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6.2 Stack Overflow 

FreeRTOS provides several features to assist trapping and debugging stack related issues. 

The uxTaskGetStackHighWaterMark() API Function 

Each task maintains its own stack, the total size of which is specified when the task is created.  

uxTaskGetStackHighWaterMark() is used to query how close a task has come to overflowing 

the stack space allocated to it.  This value is called the stack 'high water mark'. 

 
    unsigned portBASE_TYPE uxTaskGetStackHighWaterM ark( xTaskHandle xTask ); 
 

Listing 78.  The uxTaskGetStackHighWaterMark() API function prototype 

 

Table 22.  uxTaskGetStackHighWaterMark() parameters  and return value 

Parameter Name/  
Returned Value Description 

xTask The handle of the task whose stack high water mark is being queried 

(the subject task)—see the pxCreatedTask parameter of the 

xTaskCreate() API function for information on obtaining handles to tasks. 

A task can query its own stack high water mark by passing NULL in 

place of a valid task handle. 

Returned value The amount of stack used by the task grows and shrinks as the task 

executes and interrupts are processed.  

uxTaskGetStackHighWaterMark() returns the minimum amount of 

remaining stack space that has been available since the task started 

executing.  This is the amount of stack that remains unused when stack 

usage is at its greatest (or deepest) value.  The closer the high water 

mark is to zero, the closer the task has come to overflowing its stack. 
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Run Time Stack Checking—Overview 

FreeRTOS includes two optional run time stack checking mechanisms.  These are controlled 

by the configCHECK_FOR_STACK_OVERFLOW compile time configuration constant within 

FreeRTOSConfig.h.  Both methods increase the time it takes to perform a context switch.  

The stack overflow hook (or stack overflow callback) is a function that is called by the kernel 

when it detects a stack overflow.  To use a stack overflow hook function: 

1. Set configCHECK_FOR_STACK_OVERFLOW to either 1 or 2 in FreeRTOSConfig.h. 

2. Provide the implementation of the hook function, using the exact function name and 

prototype shown in Listing 79. 

 
 
void vApplicationStackOverflowHook( xTaskHandle *px Task, signed char *pcTaskName ); 
 

Listing 79.  The stack overflow hook function proto type 

The stack overflow hook is provided to make trapping and debugging stack errors easier, but 

there is no real way to recover from a stack overflow when it occurs.  The parameters pass the 

handle and name of the task (that has overflowed its stack) into the hook function; however, it 

is possible that the overflow has corrupted the task name. 

The stack overflow hook can get called from the context of an interrupt. 

Run Time Stack Checking—Method 1 

Method 1 is selected when configCHECK_FOR_STACK_OVERFLOW is set to 1. 

A task’s entire execution context is saved onto its stack each time it gets swapped out.  It is 

likely that this will be the time at which stack usage reaches its peak.  When 

configCHECK_FOR_STACK_OVERFLOW is set to 1, the kernel checks that the stack pointer 

remains within the valid stack space after the context has been saved.  The stack overflow 

hook is called if the stack pointer is found to be outside its valid range. 

Method 1 is quick to execute but can miss stack overflows that occur between context saves. 
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Run Time Stack Checking—Method 2 

Method 2 performs additional checks to those already described for method 1.  It is selected 

when configCHECK_FOR_STACK_OVERFLOW is set to 2.   

When a task is created its stack is filled with a known pattern.  Method 2 tests the last valid 20 

bytes of the task stack space to verify that this pattern has not been overwritten.  The stack 

overflow hook function is called if any of the 20 bytes have changed from their expected 

values. 

Method 2 is not as quick to execute as method 1 but is still relatively fast, as only 20 bytes are 

tested.  Most likely, it will catch all stack overflows; however, it is possible (but highly 

improbable) that some overflows will be missed. 
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6.3 Other Common Sources of Error 

Symptom: Adding a simple task to a demo causes the demo to crash 

Creating a task requires memory to be obtained from the heap.  Many of the demo application 

projects dimension the heap to be exactly big enough to create the demo tasks—so, after the 

tasks are created, there will be insufficient heap remaining for any further tasks, queues, or 

semaphores to be added.   

The idle task is created automatically when vTaskStartScheduler() is called.  

vTaskStartScheduler() will return only if there is not enough heap memory remaining for the 

idle task to be created.  Including a null loop [ for(;;); ] after the call to vTaskStartScheduler() 

can make this error easier to debug. 

To be able to add more tasks, either increase the heap size or remove some of the existing 

demo tasks. 

Symptom: Using an API function within an interrupt causes the application to crash 

Do not use API functions within interrupt service routines, unless the name of the API function 

ends with ‘...FromISR()’.  In particular, do not attempt to create a critical section within an 

interrupt. 

Do not use any API functions from an interrupt that has been assigned an interrupt priority 

above configMAX_SYSCALL_INTERRUPT_PRIORITY.  Remember that interrupt priorities 

above configMAX_SYSCALL_INTERRUPT_PRIORITY are those that have a numeric value 

lower than configMAX_SYSCALL_INTERRUPT_PRIORITY.  This can seem counter-intuitive 

and is a very common source of errors. 

Symptom: Sometimes the application crashes within a n interrupt service routine 

The first thing to check is that the interrupt is not causing a stack overflow. 

The way interrupts are defined and used differs between ports and between compilers.  

Therefore, the second thing to check is that the syntax, macros, and calling conventions used 

in the interrupt service routine are exactly as described on the documentation page for the 

demo, and exactly as demonstrated by other interrupt service routines in the demo.   
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Do not use any API functions from an interrupt that has been assigned an interrupt priority 

above configMAX_SYSCALL_INTERRUPT_PRIORITY.  Remember that interrupt priorities 

above configMAX_SYSCALL_INTERRUPT_PRIORITY are those that have a numeric value 

lower than configMAX_SYSCALL_INTERRUPT_PRIORITY.  This can seem counter-intuitive 

and is a very common source of errors. 

Symptom: Critical sections do not nest correctly 

Do not alter the microcontroller interrupt enable bits or priority flags using any method other 

than calls to taskENTER_CRITICAL() and taskEXIT_CRITICAL().  These macros keep a count 

of the call nesting depth to ensure interrupts become enabled again only when the call nesting 

has unwound completely to zero. 

Symptom: The application crashes even before the sc heduler is started 

An interrupt service routine that could potentially cause a context switch must not be permitted 

to execute before the scheduler has been started.  The same applies to any interrupt service 

routine that attempts to send to or receive from a queue or semaphore.  A context switch 

cannot occur until after the scheduler has started.   

Many API functions cannot be called prior to the scheduler being started.  It is best to restrict 

API usage to the creation of tasks, queues, and semaphores until after vTaskStartScheduler() 

has been called. 

Symptom: Calling API functions while the scheduler is suspended causes the 
application to crash 

The scheduler is suspended by calling vTaskSuspendAll() and resumed (unsuspended) by 

calling xTaskResumeAll().   

Do not call API functions while the scheduler is suspended.   

Symptom:  The prototype for pxPortInitialiseStack()  causes compilation to fail 

Check the project options to ensure that either the pre-processor macro required to include the 

correct portmacro.h file within portable.h is defined, or the include search path includes the 

path to the correct portmacro.h file. 
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Base new applications on the provided demo project associated with the port being used.  This 

will ensure that the correct files are included and the correct compiler options are set. 
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Chapter 7  

 

FreeRTOS-MPU 
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7.1 Chapter Introduction and Scope 

Most Cortex-M3 microcontrollers include a Memory Protection Unit (MPU).  This allows the 

entire memory map (including Flash, RAM, and peripherals) to be sub-divided into a number of 

regions, and access permissions to be assigned to each region, individually.  A region is an 

address range consisting of a start address and a size.   

FreeRTOS-MPU is a FreeRTOS Cortex-M3 port that includes integrated MPU support.  It 

permits additional functionality and includes a slightly extended API, but is otherwise backward 

compatible with the standard Cortex-M3 port. 

Using FreeRTOS-MPU will always: 

• Protect the kernel from invalid execution by tasks. 

• Protect the data used by the kernel from invalid access by tasks. 

• Protect the configuration of Cortex-M3 core resources, such as the SysTick timer. 

• Guarantee that all task stack overflows are detected as soon as they occur. 

Also, at the application level, it is possible to ensure that tasks are isolated in their own 

memory space and that peripherals are protected from unintended modification. 

FreeRTOS-MPU provides a simple interface to the MPU by hiding the register level MPU 

configuration from the user.  However, writing an application for an environment that does not 

permit free access to all data can be challenging. 

Scope 

This chapter aims to give readers a good understanding of: 

• The constraints the MPU hardware places on how memory regions can be defined. 

• The access permissions that can be assigned to each memory region. 

• The difference between User Mode tasks and Privileged Mode tasks. 

• The FreeRTOS-MPU specific API. 
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7.2 Access Permissions 

User Mode and Privileged Mode 

The Cortex-M3 can execute code in either Privileged mode or User (unprivileged) mode.  The 

standard FreeRTOS Cortex-M3 port executes all tasks in Privileged mode.  FreeRTOS-MPU 

can execute tasks in either Privileged mode or User mode.  The processor switches 

automatically to Privileged mode before executing an interrupt service routine.  The kernel 

always switches to Privileged mode whenever a FreeRTOS-MPU API function is called, 

returning to its previous mode when the API function completes.   

Tasks that execute in Privileged mode are not prevented from accessing any part of the 

Cortex-M3 core or from executing any of the Cortex-M3 instructions.  MPU region access 

permissions can be used to prevent a Privileged mode task from making certain memory 

accesses—for example, writes to a region that is configured as read-only. 

Tasks that execute in User mode are prevented from accessing certain Cortex-M3 resources 

and from executing certain Cortex-M3 instructions.  For example, a User mode task cannot 

access the interrupt controller or execute CPS (Change Processor State) instructions4.  MPU 

regions can be configured to prevent User mode access, while still permitting Privileged mode 

access. 

Access Permission Attributes 

Table 23 lists the access permission related definitions available in FreeRTOS-MPU.  

Examples of their use are provided later in this chapter. 

 

                                                

4 For complete details on User mode restrictions, refer to the ’ARM V7-M Architecture Application Level 
Reference Manual’, and the ‘Cortex-M3 Technical Reference Manual’, both of which are available 
directly from ARM. 
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Table 23.  MPU region access permissions 

FreeRTOS-MPU definition 
Access for 

Privileged mode 
tasks 

Access for User 
mode tasks 

portMPU_REGION_READ_WRITE Full Access Full Access 

portMPU_REGION_PRIVILEGED_READ_ONLY Read Only No Access 

portMPU_REGION_READ_ONLY Read Only Read Only 

portMPU_REGION_PRIVILEGED_READ_WRITE Full Access No Access 

portMPU_REGION_EXECUTE_NEVER Region cannot contain executable code. 
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7.3 Defining an MPU Region 

Overlapping Regions 

A region is an address range to which access permissions can be applied.  A maximum of 

eight regions can be defined at any one time.  Regions are numbered from zero to seven.   

If multiple regions define overlapping memory ranges, then the access permissions of the 

highest of the overlapping region numbers will be applied.5  For example, if region two 

configures an address range for both read-and-write access at the same time as region three 

configures the same address range for read-only access, then the memory region will be 

configured for read-only access. 

Predefined Regions and Task Definable Regions 

Regions zero to four are used by the kernel to pre-configure a usable run time environment 

where: 

• The Running state task has access to its own stack, but all other RAM is accessible 

only when the Cortex-M3 microcontroller is running in Privileged mode. 

• The area of Flash memory in which the kernel is located and the system peripherals are 

accessible only when the Cortex-M3 microcontroller is running in Privileged mode. 

• The Flash memory, other than that in which the kernel is located, and all non system 

peripherals (for example, UARTS and analog inputs) can be accessed by both 

Privileged and User mode tasks. 

The kernel reconfigures the MPU during each context switch, so the remaining three regions 

can be defined differently by each task.  The task-defined regions use the highest region 

numbers, so can be used to override the kernel-defined regions, although there are few 

circumstances in which that would be desirable. 

 

                                                

5 This applies to any range of memory that appears within more than one region definition—whether the 
two regions are completely coincident, or only partially overlapping. 
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Region Start Address and Size Constraints 

The MPU hardware imposes two rules that region start address and size definitions must 

comply with: 

1. The region size must be a binary power of two between 32 bytes and 64 gigabytes, 

inclusive.  For example, 32 bytes, 64 bytes, 128 bytes, 256 bytes, and so on are all 

valid region sizes.   

2. The start address must be a multiple of the region size.  For example, a region that is 

configured to be 65536 bytes long must start on an address that is exactly divisible by 

65536. 

Most cross compilers include language extensions that can be used to force a variable to be 

placed on a specified address alignment.  Listing 80 shows the syntax used for this purpose by 

the GCC, IAR, and Keil compilers. 

 
/* Define and align an array using GCC syntax. */ 
char cAnArray[ 1024 ] __attribute__((aligned(1024)) ); 
 
/* Define and align an array using IAR syntax. */ 
#pragma data_alignment=1024 
char cAnArray[ 1024 ]; 
 
/* Define and align an array using Keil syntax.  No te this will only work for global 
variables.  Keil also has a GCC compatibility mode where __attribute__ can be used. 
*/ 
__align( 1024 ) char cAnArray[ 1024 ]; 
 

Listing 80.  Syntax required by GCC, IAR, and Keil compilers to force a variable onto 
a particular byte alignment (1024-byte alignment in  this example) 

 
/* Define two arrays, access to each of which will be controlled by separate MPU  
Regions (GCC syntax is shown). */ 
char cFirstArray[ 1024 ] __attribute__((aligned(102 4))); 
char cSecondArray[ 256 ] __attribute__((aligned(256 ))) 
 

Listing 81.  Defining two arrays that may be placed  in adjacent memory 

It is necessary to consider also how variables are placed in relation to each other.  For 

example, consider the case shown in Listing 81.  cFirstArray starts and ends on a 1024-byte 

boundary.  cSecondArray starts and ends on a 256-byte boundary.  As 1024 is divisible by 

256, it is likely that the linker will place cSecondArray directly after and adjacent to cFirstArray.  

If a task has configured one MPU region to provide write access to cFirstArray, and another 

MPU region to provide write access to cSecond array, then the MPU will not prevent a write off 
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the end of cFirstArray, as might be the intent.  A write outside the boundary of the first MPU 

region would not result in a memory protection fault but would result, instead, in a valid write 

into the second MPU.  This situation can be avoided by making the size of cFirstArray 1025 

bytes and the size of cSecondArray 257 bytes.  The alignment requirements then prevent the 

linker from placing the arrays directly adjacent to each other.  The actual alignment of the 

arrays, and the size of the MPU regions that control access to the arrays, do not change. 
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7.4 The FreeRTOS-MPU API  

All the API functions available in the standard FreeRTOS Cortex-M3 port are also available in 

FreeRTOS-MPU.  This section highlights some minor differences in the way xTaskCreate() is 

used, and introduces the API extensions that are specific to the MPU enabled kernel. 

The xTaskCreateRestricted() API Function 

xTaskCreateRestricted() is an extended version of xTaskCreate() that is used to create tasks 

with restricted execution privileges and restricted memory access rights. 

xTaskCreateRestricted() requires all the parameters used by xTaskCreate(), plus four 

additional parameters that define the three task-specific MPU regions and a stack buffer.  

Attempting to use this number of parameters in a normal function parameter list would be 

cumbersome and could, potentially, make heavy use of stack space.  Instead, FreeRTOS-

MPU defines a structure called xTaskParameters that contains a member for each required 

parameter.  xTaskParameters structures can be declared const and therefore remain in Flash.  

xTaskCreateRestricted() takes a pointer to an xTaskParameters structure as one of its two 

parameters.  The second parameter is used to pass out a handle to the task being created—

exactly as with the xTaskCreate() parameter of the same name.  pxCreatedTask can be set to 

NULL if a handle to the task is not required. 

 
portBASE_TYPE xTaskCreateRestricted( xTaskParameter s *pxTaskDefinition,  
                                     xTaskHandle *p xCreatedTask ); 
 

Listing 82.  The xTaskCreateRestricted() API functi on prototype 

Listing 83 contains the xTaskParameters structure definition, and the definition of the 

xMemoryRegion structure that xTaskParameters contains.  The structure members are 

described in Table 24 and Table 25.  Listing 82 shows how the structures are used. 
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/* 
 * Defines a single MPU region. 
 */ 
typedef struct xMEMORY_REGION 
{ 
    void *pvBaseAddress; 
    unsigned long ulLengthInBytes; 
    unsigned long ulParameters; 
} xMemoryRegion; 
 
/* 
 * Contains a member for each parameter required to  create a restricted task. 
 */ 
typedef struct xTASK_PARAMTERS 
{ 
    pdTASK_CODE pvTaskCode; 
    const signed char * const pcName; 
    unsigned short usStackDepth; 
    void *pvParameters; 
    unsigned portBASE_TYPE uxPriority; 
    portSTACK_TYPE *puxStackBuffer; 
    xMemoryRegion xRegions[ portNUM_CONFIGURABLE_RE GIONS ]; 
} xTaskParameters; 
 

Listing 83.  Definition of the structures required by the xTaskCreateRestricted() API 
function 

Table 24.  xMemoryRegion structure members 

Structure Member Description 

pvBaseAddress The region start address.  This must be a multiple of the region size as 

defined by the ulLengthInBytes value. 

ulLengthInBytes The region size in bytes.  This must be a binary power of two having a 

value between 32 bytes and 4 gigabytes, inclusive. 

ulParameters The access permissions for the region, defined as the bitwise OR of the 

definitions contained in Table 23. 
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Table 25.  xTaskParameters structure members 

Structure Member Description 

pvTaskCode, 

pcName, 

usStackDepth, 

pvParameters 

These parameters are the same as their xTaskCreate() equivalents.  

See Table 2. 

uxPriority In xTaskCreate(), uxPriority is used just to set the priority at which the 

task is initially created.  In xTaskCreateRestricted(), it is also used to 

set the task to either Privileged mode or User mode. 

To create a User mode task, set uxPriority to the desired task priority.  

To create a Privileged mode task, bitwise OR the required task priority 

with portPRIVILEGE_BIT.  For example, to create a User mode task at 

priority three, set uxPriority to 3.  To create a Privileged mode task at 

priority three, set uxPriority to ( 3 | portPRIVILEGE_BIT ).  Source 

code examples are provided later in this chapter. 
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Table 25.  xTaskParameters structure members 

Structure Member Description 

puxStackBuffer FreeRTOS-MPU uses an MPU region to ensure that the currently 

executing task can access its own stack, and that writes outside the 

valid stack space result in a memory protection fault.  This means that 

the task stack start address and size must comply with the MPU region 

constraints already discussed—the size must be a binary power of two 

between 32 and 4 gigabytes, and the start address must be a multiple 

of the size. 

There are two ways to ensure compliance with the byte alignment 

requirements: 

1. Provide an implementation of pvPortMallocAligned() that will 

allocate RAM from the heap with the specified byte alignment.  

The implementation is likely to be complex and potentially 

wasteful, so nothing further is mentioned in this book about this 

option.  By default,  pvPortMallocAligned() is not defined, and 

the standard pvPortMalloc() is used in its place.  If 

pvPortMallocAligned() is implemented, then puxStackBuffer can 

be set to NULL. 

2. Statically allocate a buffer (array) for use as a stack by the task 

being created, and use the compiler extensions to ensure that 

the buffer is correctly aligned.  puxStackBuffer should then 

point to the start of the buffer.  This is the method demonstrated 

later in this chapter. 
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Table 25.  xTaskParameters structure members 

Structure Member Description 

xRegions An array of xMemoryRegion structures that define up to a maximum of 

three MPU regions (portNUM_CONFIGURABLE_REGIONS equals 

three).  The kernel will automatically configure the MPU to use these 

regions each time the task being created enters the Running state.  

The regions can later be redefined using the 

vTaskAllocateMPURegions() API function. 

All three region definitions must be present in the xRegions array, 

even if only one or two are going to be used.  To prevent a region 

definition being used, set all the members of its defining 

xMemoryRegion structure to zero. 

Listing 84 shows an example of an xTaskParameters structure configured to define a User 

mode task.  Changing the uxPriority value from 1 to ( 1 | portPRIVILEGE_BIT ) would cause 

the structure to define a Privileged mode task, instead. 

 
/* A User task is to be created that requires read only access to an array.  First  
define the array to comply with the size and alignm ent rules.  This example uses GCC 
syntax. */ 
char cArray[ 128 ] __attribute__((aligned(128))); 
 
/* Next define the xTaskParameters structure that i ncludes an MPU definition giving 
the task the required array access.  Only one of th e possible three MPU regions are 
being used, but all three have to be defined. */ 
static const xTaskParameters xCheckTaskParameters =  
{ 
    vDemoTask,   /* pvTaskCode - the function that implements the ta sk. */  
    "Demo",      /* pcName            */ 
    400,         /* usStackDepth - defined in words, not bytes. */  
    NULL,        /* pvParameters - not being used in this case. */  
    1,           /* uxPriority - User mode priority 1. */  
    cTaskStack,  /* puxStackBuffer - the array to use as the task st ack. */  
 
    /* xRegions - In this case the xRegions array is us ed to create a single MPU  
    region to provide read only access to just one array.  The parameters for  
    the two unused regions are just set to 0 to pre vent them having any effect. */ 
    {                                             
        /* Base address     Length      Parameters */  
        { cArray,           128,        portMPU_REG ION_READ_ONLY }, 
        { 0,                0,          0 }, 
        { 0,                0,          0 } 
    } 
}; 
 

Listing 84.  Using the xTaskParameters structure 
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Listing 84 shows the simple case where the MPU is being used to control access to a single 

variable (in this case an array), but the same technique can be used to control access to a set 

of variables by grouping the variables into a single structure.  If this is not practical, then 

compiler extensions can be used to place the variables manually into a correctly sized and 

aligned memory area or section defined within the linker script. 

Using xTaskCreate() with FreeRTOS-MPU 

xTaskCreate() can be used to create both User mode and Privileged mode tasks, but cannot 

be used to allocate MPU regions to the tasks at the point of their creation.  Instead, Privileged 

mode tasks will have access to the entire memory map, whereas User mode tasks will have 

access to any Flash and RAM memory that is not configured for Privileged-only access. 

As with xTaskCreateRestricted(), set uxPriority to the desired task priority to create a User 

mode task, or bitwise OR the required task priority with portPRIVILEGE_BIT to create a 

Privileged mode task.  This is demonstrated by Listing 85. 
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int main( void ) 
{ 
    /* Create a User mode task using xTaskCreate().  */ 
    xTaskCreate 
       (  
            vOldStyleUserModeTask,       /* The function that implements the task. */  
            "Task1",                     /* Text name for the task. */  
            100,                         /* Stack depth in words. */  
            NULL,                        /* Task parameters. */  
            3,                           /* Priority and mode (User in this case). */  
            NULL                         /* Handle. */ 
       ); 
 
    /* Create a Privileged mode task using xTaskCre ate().  Note the use of 
    portPRIVILEGE_BIT where the task priority is sp ecified. */ 
    xTaskCreate 
       (  
            vOldStylePrivilegedModeTask, /* The function that implements the task. */  
            ( signed char * ) "Task2",   /* Text name for the task. */  
            100,                         /* Stack depth in words. */  
            NULL,                        /* Task parameters. */  
            ( 3 | portPRIVILEGE_BIT ),   /* Priority and mode (Privileged in this 
                                         case). */  
            NULL                         /* Handle. */  
       ); 
 
    /* Start the scheduler. */ 
    vTaskStartScheduler(); 
 
    /* If all is well then main() will never reach here as the scheduler will  
    now be running the tasks.  If main() does reach  here then it is likely that  
    there was insufficient heap memory available fo r the idle task to be created.  
    Chapter 5 provides more information on memory m anagement. */ 
    for( ;; ); 
} 
 

Listing 85.  Using xTaskCreate() to create both Use r mode and Privileged mode task 
with FreeRTOS-MPU 

The vTaskAllocateMPURegions() API Function   

Up to three MPU region definitions can be assigned to a task as the task is created.  The 

regions can then be redefined using the vTaskAllocateMPURegions() API function. 

 
void vTaskAllocateMPURegions( xTaskHandle xTask, co nst xMemoryRegion * const pxRegions ); 
 

Listing 86.  The vTaskAllocateMPURegions() API func tion prototype 
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Table 26.  vTaskAllocateMPURegions() parameters 

Parameter Name/  
Returned Value Description 

xTask The handle of the task whose MPU region definitions are being modified 

(the subject task)—see the pxCreatedTask parameter of the 

xTaskCreate()/xTaskCreateRestricted() API function for information on 

obtaining handles to tasks. 

A task can modify the MPU regions assigned to it by passing NULL in 

place of a valid task handle. 

pxRegions An array of exactly three xMemoryRegion structures.  To prevent a 

region definition from being used, set all members of its defining 

xMemoryRegion structure to zero. 

The kernel will automatically configure the MPU to use these definitions 

each time the task being modified enters the Running state. 

 
 
void vAFunction( xTaskHandle xTask ) 
{ 
/* Define an xMemoryRegion array that defines an 8K  block from address 0 to  
be read only, and a 2K block from address 0x1000400 0 to be accessible only from  
privileged mode. The array defines only two of the possible three MPU regions,  
but must contain all three entries.  The members of  the unused entry are just set  
to zero so it has no effect. */ 
static const xMemoryRegion xRegions[ 3 ] =  
{                                             
    /* Base address Length  Access parameters */ 
    { 0x00,         8096,   portMPU_REGION_READ_ONL Y },  
    { 0x10004000,   2048,   portMPU_REGION_PRIVILEG ED_READ_WRITE }, 
    { 0,            0,      0 } /* The third entry is not used so is just set to 
                                zero. */ 
} 
 
    /* Change the MPU regions of the task reference d by xTask to those defined by  
    xRegions. */ 
    vTaskAllocateMPURegions( xTask, xRegions ); 
 
    /* Also change the MPU regions used by this tas k to those defined by xRegions. */ 
    vTaskAllocateMPURegions( NULL, xRegions ); 
} 
 

Listing 87.  Using vTaskAllocateMPURegions() to red efine the MPU regions 
associated with a task 
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The portSWITCH_TO_USER_MODE() API Macro 

A Privileged mode task can call portSWITCH_TO_USER_MODE() to lower its own privilege to 

User mode.  There is no way for a User mode task to raise its privilege to Privileged mode. 

portSWITCH_TO_USER_MODE() does not take any parameters. 
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7.5 Linker Configuration 

FreeRTOS-MPU requires the linker script to define two named sections as described by Table 

27, and eight linker variables as described by Table 28.  

The syntax used to define the required sections and variable depends on the tool chain being 

used.  Listing 88 and Listing 89 provide an example that uses GNU LD syntax.  LD is the linker 

that is distributed with GCC.  The easiest way to generate a suitable linker script is to start with 

a pre-configured example from a FreeRTOS-MPU demo application. 

Table 27.  Named linker sections required by FreeRT OS-MPU 

Section name Description 

privileged_functions The section into which the kernel executable image is to be placed.  

privileged_functions should incorporate the vector table, starting at 

address zero, with the kernel image starting immediately after the 

vector table.  An MPU region is used to protect access to the 

privileged_functions section, so its size must be a binary power of two 

to comply with the MPU region definition rules. 

privileged_data The section into which the kernel data is to be placed.  As the section 

is protected by an MPU region, its start address and size must comply 

with the MPU region definition rules. 

 

Table 28.  Linker variables required by FreeRTOS-MP U 

Variable name Variable value 

__FLASH_segment_start__ The start address of the microcontroller Flash memory. 

__FLASH_segment_end__ The end address of the microcontroller Flash memory. 

__privileged_functions_end__ The end address of the privileged_functions named section. 

__SRAM_segment_start__ The start address of the microcontroller SRAM memory. 

__SRAM_segment_end__ The end address of the microcontroller SRAM memory. 
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Table 28.  Linker variables required by FreeRTOS-MP U 

Variable name Variable value 

__privileged_data_start__ The start address of the privileged_data named section. 

__privileged_data_end__ The end address of the privileged_data named section. 

 
 
/* Given the memory map…. */ 
MEMORY 
{ 
    FLASH (rx) : ORIGIN = 0x0,        LENGTH = 0x80 000 
    SRAM (rwx) : ORIGIN = 0x10000000, LENGTH = 0x80 00 
    AHBRAM0    : ORIGIN = 0x2007c000, LENGTH = 0x40 00 
    AHBRAM1    : ORIGIN = 0x20080000, LENGTH = 0x40 00 
} 
 
/* ….define the variables required by FreeRTOS-MPU.   First ensure the section sizes 
are a binary power of two to comply with the MPU re gion size rules. */ 
_Privileged_Functions_Region_Size = 16K; 
_Privileged_Data_Region_Size = 256; 
 
/* Then define the variables themselves. */ 
__FLASH_segment_start__        = ORIGIN( FLASH ); 
__FLASH_segment_end__          = __FLASH_segment_st art__ + LENGTH( FLASH ); 
__privileged_functions_start__ = ORIGIN( FLASH ); 
__privileged_functions_end__   = __privileged_funct ions_start__ + 
                                 _Privileged_Functi ons_Region_Size; 
__SRAM_segment_start__         = ORIGIN( SRAM ); 
__SRAM_segment_end__           = __SRAM_segment_sta rt__ + LENGTH( SRAM ); 
__privileged_data_start__      = ORIGIN( SRAM ); 
__privileged_data_end__        = ORIGIN( SRAM ) + _ Privileged_Data_Region_Size;  
 

Listing 88.  Defining the memory map and linker var iables using GNU LD syntax 
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/* Defining privileged_functions at the start of th e Flash memory, but after the 
vector table. */ 
SECTIONS 
{ 
    /* Privileged section at the start of the flash  - vectors must be first 
    whatever. */ 
    privileged_functions : 
    { 
        KEEP(*(.isr_vector)) 
        *(privileged_functions) 
    } > FLASH 
     
    .text : 
    { 
        /* Non privileged code kept out of the firs t 16K of flash. */ 
         = __privileged_functions_start__ + _Privil eged_Functions_Region_Size; 
     
        *(.text*) 
        *(.rodata*) 
 
    } > FLASH 
 
       /* Rest of section definitions go here – inc luding the privileged_data 
       definition. */ 
} 
 

Listing 89.  Defining the privileged_functions name d section using GNU LD syntax 
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7.6 Practical Usage Tips 

Accessing Data from a User Mode Task 

A User mode task cannot access RAM that is outside its own stack space, unless the address 

falls within the range of one of the task’s MPU region definitions.  If, for example, a User mode 

task needs the value of a globally declared queue handle, then, to be accessible, the value 

must first be copied into a variable that is on the task stack.  There are several ways to 

achieve this, including: 

• Initially, create the task in Privileged mode, and then copy the global variable value into 

a stack variable, before switching the task into the required User mode.  This method is 

demonstrated in Listing 90. 

• Pass the value of the global variable into the task using the task parameter.  This 

method is demonstrated in Listing 91. 

 
 
/* The handle to a queue is stored in a global (or file scope) variable. */ 
xQueueHandle xGlobalQueue; 
 
void vATask( void *pvParameters ) 
{ 
xQueueHandle xStackQueue; 
 
    /* This task was created in Privileged mode so can access the global variable. 
    Copy the value of the global variable into a st ack variable while the task is  
    still in Privileged mode. */ 
    xStackQueue = xGlobalQueue; 
 
    /* Now set the task into User mode.  From this poin t on the task can no longer 
    access the value of the global variable, but ca n access its local stack copy. */ 
    portSWITCH_TO_USER_MODE(); 
 
    for( ;; ) 
    { 
        /* The main task functionality is performed  in User mode. Data can be sent 
        to or from the queue using xStackQueue as t he handle. */ 
    } 
} 
 

Listing 90.  Copying data into a stack variable bef ore setting the task into  
User mode 

 



www.FreeRTOS.org  This document was supplied to jmclurkin@rice.edu 
 

 
 175 

 

 

 
/* The handle to a queue is stored in a global (or file scope) variable. */ 
xQueueHandle xGlobalQueue; 
 
void vATask( void *pvParameters ) 
{ 
xQueueHandle xStackQueue; 
 
    /* This task was created in User mode so cannot  access the global variable.  It  
    can access variables stored on its own stack an d the task parameter.  The value  
    of xGlobalQueue is passed into this task using the task parameter and then copied 
    into the local stack variable, casting to the a ppropriate type. */ 
    xStackQueue = ( xQueueHandle ) pvParameters; 
 
    for( ;; ) 
    { 
        /* The main task functionality is done here .  Data can be sent to or from the  
        queue using xStackQueue as the handle. */ 
    } 
} 
 

Listing 91.  Copying the value of a global variable  into a stack variable using the 
task parameter 

Intertask Communication from User Mode 

Code executing in User mode cannot access RAM outside its own stack and the MPU regions 

that are configured for it.  This does not prevent User mode tasks from using queues or 

semaphores to communicate with other tasks or interrupts. 

The RAM used by queues and semaphores is owned and controlled by the kernel and can be 

accessed only when the processor is executing in Privileged mode.  Calling an API function 

such as xQueueSend() causes the processor to switch temporarily into Privileged mode, from 

where the data being queued can be copied from the User mode task into the kernel controlled 

queue storage area.  Similarly, calling an API function such as xQueueReceive() causes the 

processor to switch temporarily into Privileged mode, from where the data being received can 

be copied from the kernel controlled queue storage area into the User mode task. 

FreeRTOS-MPU Demo Projects 

FreeRTOS-MPU is included in the main FreeRTOS download.  Some heavily commented 

FreeRTOS-MPU demo applications are located in sub-directories with names that start 

‘Cortex-MPU’ within the FreeRTOS\Demo directory. 
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Chapter 8  

 

The FreeRTOS Download 
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8.1 Chapter Introduction and Scope 

FreeRTOS is distributed as a single .zip file archive containing all the official FreeRTOS ports 

and a large number of pre-configured demo applications.  The large number of files can seem 

overwhelming, but only a subset will actually be required.   

Scope 

This chapter aims to help users orientate themselves with the FreeRTOS files and directories 

by: 

• Providing a top level view of the FreeRTOS directory structure. 

• Describing which files are actually required by Cortex-M3 microcontroller projects. 

• Introducing the demo applications. 

• Providing information on how a new project can be created. 

The description here relates only to the main FreeRTOS .zip file distribution.  The examples 

that come with this book use a slightly different organization. 
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8.2 Files and Directories 

The official FreeRTOS distribution contains: 

• The core FreeRTOS source code.  This is the code that is common to all ports. 

• A port layer for each supported microcontroller and compiler combination. 

• A project file or makefile to build a demo application for each supported microcontroller 

and compiler combination. 

• A set of common demo tasks.  These are simple tasks that are used by most of the 

demo applications. 

The .zip file has two top-level directories, one called Source and the other called Demo.  The 

Source directory tree contains the entire FreeRTOS kernel implementation, both the common 

components and the port specific components.  The Demo directory tree contains only the 

demo application project files and the source files that define the demo tasks. 

 
 
FreeRTOS  
    ¦ 
    +-Demo      Contains the demo application source and projects.  
    ¦ 
    +-Source     Contains the implementation of the real time kernel .  
 

Figure 43.  The top-level directories—Source and De mo 

The core FreeRTOS source code is contained in just three C files that are common to all the 

microcontroller ports.  These are called queue.c, tasks.c, and list.c and are located directly 

under the Source directory.  The port specific files are located within the ‘portable’ directory 

tree, which is also located directly within the Source directory.  This arrangement is shown in 

Figure 44. 

An optional fourth source file called croutine.c implements the FreeRTOS co-routine 

functionality.  It need only be included in the build if co-routines are actually going to be used.  

Co-routines are intended for use on very small microcontrollers, so it is unlikely that they will 

be used in a Cortex-M3 microcontroller project. 

 



www.FreeRTOS.org  This document was supplied to jmclurkin@rice.edu 
 

 
180  
 

 
 
FreeRTOS  
    ¦ 
    +-Demo         Contains the demo application source and projects.  
    ¦ 
    +-Source        Contains the implementation of the real time kernel . 
        | 
        +- tasks.c  One of the three core kernel files.  
        +- queue.c  One of the three core kernel files. 
        +- list.c   One of the three core kernel files. 
        +-portable The sub-directory that contains all the port specif ic files. 
     

Figure 44.  The three core files that implement the  FreeRTOS kernel 

Removing Unused Source Files 

The ‘portable layer’ is the code that tailors the FreeRTOS kernel to a particular compiler and 

microcontroller combination.  The portable layer source files for the Cortex-M3 are located in 

the FreeRTOS\Source\portable\[compiler]\ARM_CM3 directories, where [compiler] must be 

substituted with RVDS, IAR, or GCC to locate the port files for the RVDS/Keil, IAR, and GCC 

compilers, respectively. 

When using the Cortex-M3 port: 

• All the sub-directories under FreeRTOS\Source\portable can be deleted, except 

FreeRTOS\Source\portable\[compiler] and FreeRTOS\Source\portable\MemMang. 

• All the sub-directories under FreeRTOS\Source\portable\[compiler] can be deleted, 

except FreeRTOS\Source\portable\[compiler]\ARM_CM3. 

The FreeRTOS\Source directories that must remain are shown in Figure 45. 

 
 
FreeRTOS  
    | 
    +-Source                Contains the implementation of the real time kernel . 
        | 
        +-portable         Contains all the port specific files. 
            |    
            +-MemMang      Contains the example memory management implementati ons.  
            +-[compiler]   [Compiler] can be RVDS, IAR or GCC.  
                |    
                +-ARM_CM3  Contains the Cortex-M3 port files specific to 
                           [compiler]. 
     

Figure 45.  The source directories required to buil d a Cortex-M3 microcontroller 
demo application 
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8.3 Demo Applications 

Each official FreeRTOS port comes with a demo application that should build with no errors or 

warnings being generated6.  The demo application has several purposes: 

• To provide an example of a working and pre-configured project with the correct files 

included and the correct compiler options set. 

• To allow ‘out of the box’ experimentation with minimal setup or prior knowledge. 

• As a demonstration of how the FreeRTOS API can be used. 

• As a base from which real applications can be created. 

Each demo project is located in a unique sub-directory under the Demo directory.  The sub-

directory name indicates the port to which the demo project relates.  Several demo 

applications are provided for various Cortex-M3 based microcontroller families—each 

contained in a unique sub-directory that starts ‘CORTEX_….’. 

Every demo application also has its own documentation page on the FreeRTOS.org website.  

The documentation page includes information on: 

• How to locate the project file or makefile for the demo within the FreeRTOS directory 

structure. 

• Which hardware the project is configured to use. 

• How to set up the hardware for running the demo. 

• How to build the demo. 

• How the demo is expected to behave. 

All the demo projects create a subset of the common demo tasks, the implementations of 

which are contained in the FreeRTOS\Demo\Common\Minimal directory.  The common demo 

tasks exist purely to demonstrate how the FreeRTOS API can be used—they do not 

implement any particular useful functionality. 

                                                

6 This is the ideal scenario, and is normally the case, but is dependent on the version of the compiler 
used to build the demo.  Upgraded compilers can sometimes generate warnings where their 
predecessors did not. 
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A file called main.c is included in each project.  This contains the main() function, from where 

all the demo application tasks are created.  See the comments within the individual main.c files 

for more information on what a specific demo application does. 

Removing Unused Demo Files 

When using a provided demo application: 

• All the sub-directories under FreeRTOS\Demo can be deleted, except the directory 

containing the demo being used and FreeRTOS\Demo\Common. 

• FreeRTOS\Demo\Common contains many more files than are referenced from any one 

demo application, so this directory can be trimmed down, if desired.  Inspect the demo 

application makefile or project file to identify files that can be deleted.  In general, 

FreeRTOS\Demo\Common\Minimal should not be deleted. 

The FreeRTOS\Demo directories that must remain are shown in Figure 46. 

 
 
FreeRTOS  
    | 
    +-Demo            Contains all the demo application source and projec ts. 
       | 
       +-[Demo]       Contains the makefile or project for the demo being  built. 
       | 
       +-Common       Contains files common to all demo applications.  
     
     

Figure 46.  The demo directories required to build a demo application 
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8.4 Creating a FreeRTOS Project 

Adapting One of the Supplied Demo Projects 

Every official FreeRTOS port comes with at least one pre-configured demo application that 

should build with no errors or warnings.  It is recommended that new projects are created by 

adapting one of these existing projects; this will allow the project to have the correct files 

included and the correct compiler options set. 

To start a new application from an existing demo project: 

1. Open the supplied demo project and ensure that it builds and executes as expected.   

2. Remove the source files that define the demo tasks.  Any file that is located within the 

Demo\Common directory tree can be removed. 

3. Delete all the functions within main.c, except prvSetupHardware(). 

4. Ensure that the following constants are all set to 0 within FreeRTOSConfig.h.  This will 

prevent the linker from looking for any hook functions.  Hook functions can be added 

later, if required. 

• configUSE_IDLE_HOOK 

• configUSE_TICK_HOOK 

• configUSE_MALLOC_FAILED_HOOK 

• configCHECK_FOR_STACK_OVERFLOW 
 

5. Create a new main() function from the template shown in Listing 92. 

6. Check that  the project still builds. 

Following these steps will create a project that includes the correct FreeRTOS source files but 

does not define any functionality. 
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int main( void ) 
{ 
    /* Perform any hardware setup necessary. */ 
    prvSetupHardware(); 
 
    /* --- APPLICATION TASKS CAN BE CREATED HERE -- - */ 
     
    /* Start the created tasks running. */ 
    vTaskStartScheduler(); 
     
    /* Execution will only reach here if there was insufficient heap to 
    start the scheduler. */ 
    for( ;; ); 
    return 0; 
} 
 

Listing 92.  The template for a new main() function  

Creating a New Project from Scratch 

As already mentioned, it is recommended that new projects are created from an existing demo 

project.  If this is not desirable, then a new project can be created using the following 

procedure: 

1. Create a new empty project file or makefile using your chosen tool chain.   

2. Add the files detailed in Table 29 to the newly created project or makefile. 

3. Copy an existing FreeRTOSConfig.h file into the project directory. 

4. Add the following directories to the path the project will search to locate header files: 

• FreeRTOS\Source\include  

• FreeRTOS\Source\portable\[compiler]\ARM_CM3 (where [compiler] is RVDS, 

IAR, or GCC) 

5. Copy the compiler settings from the relevant demo project or makefile.   
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Table 29.  FreeRTOS source files to include in the project 

File Location 

tasks.c FreeRTOS\Source 

queue.c FreeRTOS\Source 

list.c FreeRTOS\Source 

port.c FreeRTOS\Source\portable\[compiler]\ARM_CM3 

port_asm.s FreeRTOS\Source\portable\[compiler]\ARM_CM3.  An assembly file is not 

required when using GCC.   

heap_n.c FreeRTOS\Source\portable\MemMang, where n is either 1, 2 or 3 

Header Files 

A source file that uses the FreeRTOS API must include ‘FreeRTOS.h’, followed by the header 

file that contains the prototype for the API function being used—either ‘task.h’, ‘queue.h’, or 

‘semphr.h’. 
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8.5 Data Types and Coding Style Guide 

Data Types 

Each port of FreeRTOS has a unique portmacro.h header file that contains (amongst other 

things) definitions for two special data types, portTickType and portBASE_TYPE.  These data 

types are described in Table 30. 

 

Table 30.  Special data types used by FreeRTOS 

Macro or typedef 
used Actual type 

portTickType This is used to store the tick count value and to specify block times.   

portTickType can be either an unsigned 16-bit type or an unsigned 32-bit 

type, depending on the setting of configUSE_16_BIT_TICKS within 

FreeRTOSConfig.h.   

Using a 16-bit type can greatly improve efficiency on 8-bit and 16-bit 

architectures, but severely limits the maximum block period that can be 

specified.  There is no reason to use a 16-bit type on a 32-bit 

architecture, so configUSE_16_BIT_TICKS should be set to 0. 

portBASE_TYPE This is always defined as the most efficient data type for the architecture.  

Typically, this is a 32-bit type on a 32-bit architecture, a 16-bit type on a 

16-bit architecture, and an 8-bit type on an 8-bit architecture.   

portBASE_TYPE is generally used for return types that can take only a 

very limited range of values, and for Booleans.  Cortex-M3 ports define 

portBASE_TYPE as type ‘long’. 

Some compilers make all unqualified char variables unsigned, while others make them signed.  

For this reason, the FreeRTOS source code explicitly qualifies every use of char with either 

‘signed’ or ‘unsigned’. 

Plain int types are never used—only long and short. 
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Variable Names 

Variables are prefixed with their type:  ‘c’ for char, ‘s’ for short, ‘l’ for long, and ‘x’ for 

portBASE_TYPE and any other type (structures, task handles, queue handles, etc.). 

If a variable is unsigned, it is also prefixed with a ‘u’.  If a variable is a pointer, it is also prefixed 

with a ‘p’.  Therefore, a variable of type unsigned char will be prefixed with ‘uc’, and a variable 

of type pointer to char will be prefixed with ‘pc’.   

Function Names 

Functions are prefixed with both the type they return and the file they are defined within.  For 

example: 

• vTaskPrioritySet() returns a void and is defined within task.c. 

• xQueueReceive() returns a variable of type portBASE_TYPE and is defined within 

queue.c. 

• vSemaphoreCreateBinary() returns a void and is defined within semphr.h. 

File scope (private) functions are prefixed with ‘prv’. 

Formatting 

One tab is always set to equal four spaces. 

Macro Names 

Most macros are written in upper case and prefixed with lower case letters that indicate where 

the macro is defined.  Table 31 provides a list of prefixes. 
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Table 31.  Macro prefixes 

Prefix Location of macro definition 

port (for example, portMAX_DELAY) portable.h 

task (for example, taskENTER_CRITICAL()) task.h 

pd (for example, pdTRUE) projdefs.h 

config (for example, configUSE_PREEMPTION) FreeRTOSConfig.h 

err (for example, errQUEUE_FULL) projdefs.h 

 

Note that the semaphore API is written almost entirely as a set of macros, but follows the 

function naming convention, rather than the macro naming convention. 

The macros defined in Table 32 are used throughout the FreeRTOS source code. 

 

Table 32.  Common macro definitions 

Macro Value 

pdTRUE 1 

pdFALSE 0 

pdPASS 1 

pdFAIL 0 

Rationale for Excessive Type Casting 

The FreeRTOS source code can be compiled with many different compilers, all of which differ 

in how and when they generate warnings.  In particular, different compilers want casting to be 

used in different ways.  As a result, the FreeRTOS source code contains more type casting 

than would normally be warranted. 
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Appendix 1:  Licensing Information 

FreeRTOS is licensed under a modified version of the GNU General Public License (GPL) and 

can be used in commercial applications under that license.  An alternative and optional 

commercial license is also available if: 

• You cannot fulfill the requirements stated in the ’Open source modified GPL license’ 

column of Table 33. 

• You wish to receive direct technical support. 

• You wish to have assistance with your development. 

• You require guarantees and indemnification. 
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Table 33.  Comparing the open source license with t he commercial license  

 Open source modified 
GPL license 

Commercial 
license 

Is it free? Yes No 

Can I use it in a commercial application? Yes Yes 

Is it royalty free? Yes Yes 

Do I have to open source my application code? No No 

Do I have to open source my changes to the 

FreeRTOS kernel? 

Yes No 

Do I have to document that my product uses 

FreeRTOS. 

Yes No 

Do I have to offer to provide the FreeRTOS 

source code to users of my application? 

Yes (a WEB link to the 

FreeRTOS.org site is 

normally sufficient) 

No 

Can I receive support on a commercial basis? No Yes 

Are any legal guarantees provided? No Yes 

Open Source License Details 

The FreeRTOS source code is licensed under version 2 of the GNU General Public License 

(GPL) with an exception.   

The full text of the GPL is available at http://www.freertos.org/license.txt.  The text of the 

exception is provided below.   

The exception permits the source code of applications that use FreeRTOS solely through the 

API published on the FreeRTOS.org website to remain closed source, thus permitting the use 

of FreeRTOS in commercial applications without necessitating that the entire application be 

open sourced.  The exception can be used only if you wish to combine FreeRTOS with a 

proprietary product and you comply with the terms stated in the exception itself. 
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GPL Exception Text 

Note that the exception text is subject to change.  Consult the FreeRTOS.org website for the 

most recent version. 

Clause 1  

Linking FreeRTOS statically or dynamically with other modules is making a combined work based on FreeRTOS.  
Thus, the terms and conditions of the GNU General Public License cover the whole combination. 

As a special exception, the copyright holder of FreeRTOS gives you permission to link FreeRTOS with independent 
modules that communicate with FreeRTOS solely through the FreeRTOS API interface, regardless of the license 
terms of these independent modules, and to copy and distribute the resulting combined work under terms of your 
choice, provided that: 

1. Every copy of the combined work is accompanied by a written statement that details to the recipient the version 
of FreeRTOS used and an offer by yourself to provide the FreeRTOS source code (including any modifications 
you may have made) should the recipient request it. 

2. The combined work is not itself an RTOS, scheduler, kernel or related product. 

3. The independent modules add significant and primary functionality to FreeRTOS and do not merely extend the 
existing functionality already present in FreeRTOS. 

An independent module is a module which is not derived from or based on FreeRTOS. 

 

Clause 2  

FreeRTOS may not be used for any competitive or comparative purpose, including the publication of any form of 
run time or compile time metric, without the express permission of Real Time Engineers ltd. (this is the norm within 
the industry and is intended to ensure information accuracy). 
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