A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif: Table of Contents

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Preface
Acknowledgments

Chapter 1—Introduction

1.1. A Brief History of X

1.2. The X Window System Architecture
1.2.1. Client-Server
1.2.2. X Server Responsibilities
1.2.3. Window M anagement
1.2.4. X Protocol

1.3. The X Programming I nterface — Xlib

1.4. Reasonsfor Using Xt Over Xlib

1.5. Why a Practical Guide?

Chapter 2—Fundamentals: A Helpful Review for
Under standing Xt

2.1. Review of Structuresand Pointers
2.2. Window System Basics

2.3. Event-Driven Programming

2.4. Object-Oriented Programming

Chapter 3—Xt Basics: An Introduction to Xt-based Widgets
3.1. What Isa Widget, Really?
3.2. Classes of Widgets
3.3. The Components of a Widget
3.3.1. TheClass Part of a Widget
3.4. A Windowless Object: The OSF/Motif Gadget

Chapter 4—Basic X Graphics. Text, Fonts, Bitmaps, and
Colors

file://[H:/ledonkey/docs/programming/1/2/ewtoc.html (1 of 6) [13/12/02 18:08:26]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif: Table of Contents

4.1. Text and X

4.2. Graphics Context

4.3. Handling GCs

4.4. Muulti-Font Text

4.5. Fonts
4.5.1. Font Metrics
4.5.2. Font Naming Conventions
4.5.3. Wildcardsin Font Names
4.5.4. L oading Fonts

4.6. Bitmapsfor | cons

4.7. Foreground and Background

Chapter 5—Building Applications. Developing with Xt
5.1. Conventions
5.2. Application Structure
5.3. Providing Application Resour ces
5.3.1. Where Does Xt Get the Resour ces?
5.3.2. Setting Up Resour cesin the Resour ce Files
5.3.3. Getting Application-Specific Resour ces
5.3.4. Building a Command-Line Options Table
5.4. Handling Events
5.4.1. A Brief Overview of Events
5.4.2. Keyboard Events
5.4.3. Focus Events
5.4.4. Pointer (Sprite) Events
5.4.5. Enter/L eave Events
5.4.6. Exposur e Events
5.4.7. Communication, State, and Color map Events
5.4.8. Event Handlers
5.4.9. Trandations, Actions, and Callbacks
5.4.9.1. Callbacks
5.4.9.2. Trandations and Actions
5.4.10. Alternative Procedures
5.4.10.1. Timeout Procedures
5.4.10.2. Background Work Procedures
5.4.10.3. Alternative I nput Procedures

file:///H:/ledonkey/docs/programming/1/2/ewtoc.html (2 of 6) [13/12/02 18:08:26]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif: Table of Contents

5.4.11. Miscellaneous Stuff

Chapter 6—Building Widgets: Primitive Widgets
6.1. Structure of a Primitive Widget
6.2. Inheritancein Xt
6.3. Requirementsfor the FieldEdWidget
6.4. Constructing the Widget
6.4.1. The Public Header File
6.4.2. The Private Header File
6.4.3. The Implementation File
6.4.3.1. Utilities
6.4.3.2. Including Header Filesfor the Widget
6.4.3.3. Setting Up Helpful Macros
6.4.3.4. Forward Declarations
6.4.3.5. Setting Up the Widget Resour ces
6.4.3.6. Setting Up Action Tablesfor a Widget
6.4.3.7. Using L ook-up Tablesin Widgets
6.4.3.8. Filling in the Class Record
6.4.3.9. Creating a Type Converter
6.4.3.10. The Class initialize Method
6.4.3.11. TheInitialize M ethod
6.4.3.11.1. Thelnitialize hook M ethod
6.4.3.12. The Set values M ethod
6.4.3.13. The Get values M ethod
6.4.3.14. The Destroy Method
6.4.4. Support Functionsfor the Widget: The Flavor of the

Widget

6.4.4.1. Portability Concerns
6.4.4.2. Managing the I nsertion Position
6.4.4.3. Redisplay M echanism
6.4.4.4. Using Notifiersto M anage Procedures
6.4.4.5. Default Procedures
6.4.4.6. Internal Editors
6.4.4.7. Default Translations

6.5. Summing Up

Chapter 7—Building Widgets: Container Widgets

file:///H:/ledonkey/docs/programming/1/2/ewtoc.html (3 of 6) [13/12/02 18:08:26]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif: Table of Contents

7.1. Composite Widget

7.2. Structur e of a Composite Widget
7.3. Structure of a Constraint Widget
7.4. Summing Up

Chapter 8—Sample Application: A Character-Oriented

Client

8.1. Designing an Xt Application
8.2. Standardizing the I nterface
8.3. Selecting From the Widget Sets
8.3.1. Our Selection
8.3.1.1. OverrideWidgetClass
8.3.1.2. FormWidgetClass
8.3.1.3. BoxWidgetCiass
8.3.14. ListWidgetCiass
8.3.1.5. CommandWidgetClass
8.3.1.6. LabelWidgetClass
8.3.1.7. FiedldEdWidgetClass
8.3.1.8. AsciiDiskWidgetClass
8.3.2. Client Requirements
8.4. Building the Application
8.4.1. Application Resour ce Setting
8.4.2. Creating the Menu Bar
8.4.3. Creating a Pop-up Menu
8.4.4. Creating Pop-up Help
8.4.5. Creating a Pop-up Option List
8.4.6. Creating an Entry Form
8.4.6.1. Moving Without the Mouse
8.4.7. Miscellaneous
8.5. Summing Up

Chapter 9—A Look at OSF/M otif
9.1. Motif Environment
9.2. Motif Window M anager
9.2.1. Customizing Using Resour ces
9.2.2. Customizing Using.mwmrc

file:///H:/ledonkey/docs/programming/1/2/ewtoc.html (4 of 6) [13/12/02 18:08:26]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif: Table of Contents

9.2.2.1. Menu Format of .mwmrc
9.2.2.2. Bindingsin .mwmrc
9.3. The Motif Widgets
9.3.1. Motif Widget Resour ces
9.3.2. Motif Display Widgets
9.3.3. Moatif Display Gadgets
9.3.4. Motif Container Widgets
9.3.5. Motif Dialogs
9.3.6. Motif Menu Widgets
9.3.7. Motif Traversal M echanism
9.3.8. Motif Compound String
9.3.9. Matif Clipboard
9.4. Sample Motif Clients
9.4.1. Changing alarm to malarm
9.4.2. Changing xawlist to mlist
9.4.3. Mixing Athena and Motif Widgets

Chapter 10—A Sample Application: Motif Version
10.1. Client Components
10.2. Building the Client
10.2.1. Creating a Menu Bar
10.2.2. Creating an Entry Form
10.2.2.1. Creating Field-L evel Help
10.2.2.2. Creating an Option List
10.2.3. Scrolled Text: MainHelp
10.2.4. Supporting Functions
10.3. Summing Up

Chapter 11—Application Development:. Advanced Topics
11.1. Inter-Client Communication
11.1.1. What’san Atom?
11.1.2. What’s a Property?
11.1.3. Handling Properties. Changing, Getting, and Deleting
11.1.4. Talking to Other Clientswith Properties
11.1.5. Communicating with Client Events
11.1.6. Cutting and Pasting: The Xt Selection M echanism

file:///H:/ledonkey/docs/programming/1/2/ewtoc.html (5 of 6) [13/12/02 18:08:26]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif: Table of Contents

11.2. Using Multiple Displays
11.3. Summing Up

Bibliography
Appendix A
Appendix B
Appendix C
Index

Copyright © CRC Press LLC

file://[H:/ledonkey/docs/programming/1/2/ewtoc.html (6 of 6) [13/12/02 18:08:26]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Preface

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Table of Contents

Preface

Application development isthe art of filling erratic requests for unusual system
requirementsin a“need it yesterday” mode from end users. Many who “... choose to
accept thismission” are confronted with rapid technological changes that must be kept up
with (if not for technological curiosity, then ssmply because “that’ s the way to go”). For
many, the X Window System has become “the way to go.”

When X was first introduced, the documentation was limited to manuals and “ overview”
documents. For those of us who started with X early on these were a blessing, but learning
how to create X clients was not easy or straightforward. There were few examples and
hardly any books that could explain the details of X Window programming. Thislack of a
text spawned the ideato create a book that would cover the details, with sufficient practical
examples so that the army of application writers who wanted to develop applications could
do so without too much pain.

To start, this book is not an Xlib book. Xlib is much too low-level for application writers.
Instead, this book addresses the layer of development referred to asthe Xt Intrinsics. This
iIsahigher level of interaction with the X Window System than Xlib. It isbased on a
notion called object-oriented programming, and can greatly increase your productivity as
you develop X Window clients. This book is a practical guide to Xt, and can be used asa
source for application examples. It covers topics that are useful to the many application
programmers who need education in developing with the Intrinsics.

The audience for this book is anyone who wants to develop Xt-based X Window clients. It
Iswritten with the end-user application writer in mind, so the styleis straightforward and
direct. No complicated, technically confusing, “beat around the bush” verbage! The
assumption is that the reader is not creating four-dimensional cyberspace artifical-reality
applications. Instead, the reader devel ops applications that are based on end-user requests

file:///H:/ledonkey/docs/programming/1/2/about.html (1 of 3) [13/12/02 18:08:27]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Preface

(those erratic “need it yesterday” specifications). These people have little time to discuss
“byte splitting” or the challenges involved in piping instructions to UNIX utilities. They
need answers now.

Asapractical guide, this book continually builds on knowledge as it is acquired. Chapter 1
begins with the history of X, so that you have an ideawhere it all started. Chapter 2 isa
fundamental s section that covers some important pointsin the C language that you need to
be comfortable with before starting Xt programming. This chapter also includes Window
System basics, event-driven programming, and object-oriented programming concepts.

Chapter 3 isabasic introduction to Xt and the notion of widgets. Chapter 4 discusses
severa Xlib details that Xt application writers should be aware of, including graphic
contexts, font handling and naming, color allocation, and textual display. Chapter 5 isthe
core part of the book. It uses several examples to discuss all of the major components of
the Xt Intrinsics (resource gathering, command-line parsing, event handling, trandations,
etc.).

Chapter 6 isadetailed look at primitive widgets. Thisis accomplished through the
construction of auseful “field editor” widget. Thiswidget isintegrated into a character-
oriented application later in the book.

Chapter 7 isabasic overview of container widgets.

Chapter 8 looks into the details of designing Xt applications. It demonstrates the use of
several widgets for constructing interface components including pop-up menus, pop-up
option lists, command buttons, entry fields (using the widget from Chapter 6), and help
facilities. There are also sections that cover keyboard traversal and ways to streamline
devel opment.

Chapter 9 introduces the commercial application environment called Motif provided by the
Open Software Foundation (OSF). The chapter explores, at a high level, the various
widgets and how to work with or customize the Motif Window Manager (mwm). Some
clients are devel oped to demonstrate the use of the Motif widgets, including a client that
demonstrates the mixing of widget sets (Athena and Motif).

Chapter 10 shows how to port the application developed in Chapter 8, making it a Motif-
compliant application. This chapter demonstrates pop-up help, pull-down menus, push
buttons, text widget, field editing, keyboard traversal, and two kinds of help mechanisms.

Finally, Chapter 11 discusses some of the advanced topicsin the Intrinsics. These topics

file:///H:/edonkey/docs/programming/1/2/about.html (2 of 3) [13/12/02 18:08:27]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Preface

include interclient communication, selection mechanismsin Xt, and controlling multiple
displays with the same client.

Technical books for the most part are not much fun. The style is often esoteric, dry, and
sometimes boring. From the beginning, | intended this project to be different. | think the
reader should enjoy the time spent reading. After all, you' re taking the time out of a busy
schedule to read this book. Why not enjoy yourself and learn at the same time? If I’ ve done
my job right, you'll have afew laughs and learn quite a bit.

Table of Contents

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/about.html (3 of 3) [13/12/02 18:08:27]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif: Acknowledgments

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Table of Contents

Acknowledgments

Aswe go through life, we seldom get a chance to publicly acknowledge those who have
had some influence on what we do. This book could not have been possibleif it weren't

for afew individuals whose actions in one way or another made the dream of writing into a
reality.

Vincent G. Alonzi has been afriend and colleague for quite some time. As afriend, he has
made many a day very entertaining (I believe you still owe me two dozen bagels?), and asa
colleague, every new job an adventure (Who could forget Trevose, PA?). It was his “Psst,
gottajob for you at ...” that triggered the idea for this book. His thoughtful review and
suggestions have greatly helped mein this effort. (Can you actually believe it’s done?)

Bennie Larrier has helped me in ways neither he nor | can understand. | don’t know many
who would put themselves on the line to get someone an opportunity like he did for me.

Paul Kavanaugh acted as the “network node” that brought this book to areal publisher. His
“It'sgood. ... A hit too folksy for a Brit” made merealize that | actually did hit the mark.

Alan Rose is the man behind the scenes. He gave me a chance, bought me some lunch, got
me the loaned computer, and gave me all the time | needed. Alan, thanks!

Ha Remish made the IBM PS/2 Model 70 (the development platform for al clientsin this
book) available. I’ m sure when he gave it to me he thought it would be back shortly.
Thanks, Hal, for understanding the delays.

Thanks to all the folks who had anything to do with creating and maintaining the X
Window System. If it weren’t for their hard work and dedication to bringing their dreams
to realities, mine would not exist. The world needs more of you.

file:///H:/ledonkey/docs/programming/1/2/about_author.html (1 of 2) [13/12/02 18:08:30]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif: Acknowledgments

Lastly, Kimberly A. Lanning provided me with my inspiration. From the day | met her |
knew she was someone special. Her patience and understanding during this long process
has made me realize just how special shereally is, and how lucky | am to have her in my
life. Thanks, Honey. | love you.

Brian J. Keller

Dedication

Oncein alifetime a person comes along and really makes a difference in another person’s
life. This book is dedicated to the person who made that difference in mine.

To Kim

Table of Contents

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/about_author.html (2 of 2) [13/12/02 18:08:30]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Moatif:Introduction

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller
CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents | Next

Chapter 1
Introduction

This chapter provides you with a brief history of the X Window System (also called just
X), its architecture, adiscussion of Xlib, and reasons why Xt is better suited than Xlib for
most application development.

1.1. A Brief History of X

X started as aresearch project driven by the need to create a hardware-independent display
mechanism for Project Athena. Project Athenais amajor research project being conducted
at the Massachusetts I nstitute of Technology (MIT) to advance the state of technology for
distributed systems. This project is heavily financed by International Business Machines
(IBM) and the Digital Equipment Corporation (DEC).

The original system was designed by Robert Scheifler, Ron Newman, and Jim Getty. It
borrowed some design ideas from awindow system created at Stanford University called
W. The current release, X11, has been worked on by thousands, and is still being improved
aswe al start to useit.

X was developed to provide a distributed mechanism to run applications (referred to as
clients) across a network on avariety of hardware platforms. The devel opers focused on
providing highly portable code, so that the system could be implemented on micros (IBM
PCs), minis (MicroVaxes), workstations (IBM Risc System 6000, Sun Sparc), and
supercomputers (Cray). The system had to be able to run under several operating
environments and provide high performance. And, in keeping with open systems concepts,
X had to be free from user interface policy.

file:/l//H:/edonkey/docs/programming/1/2/ch01/001-004.html (1 of 5) [13/12/02 18:08:32]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Moatif:Introduction

The ability of X to run on and across different platforms makes it perhaps one of the most
innovative technologies to be developed in computing in recent years. And for thisvery
reason, major vendors (IBM, AT& T, DEC, HP, and Sun) have embraced X as their display
standard for advanced workstations.

1.2. The X Window System Architecture
1.2.1. Client-Server

The X architecture is based on a client-server relationship. The server (called the X server)
iIsresponsible for the display. A display is considered an X station (a computer that runs
the X server) with one or more CRT, keyboard, and mouse (or other pointing device). A
single instance of an X server is called adisplay; therefore, adisplay (CRT) may have
multiple displays by running multiple X servers, as shown in Figure 1-1.

file:///H:/edonkey/docs/programming/1/2/ch01/001-004.html (2 of 5) [13/12/02 18:08:32]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Moatif:Introduction

IBM PS/2 Model 70 Cray
Data Collection | Analytical |
Client i Chient
o | SE
Xlib Xlib
Server Queue | Server Queue

=

IBM RS/6000 320

Fortfolio

| Xlib |
| Server Queue

Keyboard CRT/Display Input Device

Figure 1-1 Client-server model.

X isanetwork windowing system that allows a client to run on either the server host or
any other host on the network. The server sends and receives display information (i.e.,
screen-writing commands, keyboard hits, or mouse movements). This capability implies
that asingle display station could have numerous clients from all over the network sending
messages to it. An IBM PS/2 could have a client running on a Cray, another running on an
IBM Risc System 6000, and still another locally. Thisistruly adistributed processing
capability.

1.2.2. X Server Responsibilities

file:///H:/edonkey/docs/programming/1/2/ch01/001-004.html (3 of 5) [13/12/02 18:08:32]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Moatif:Introduction

The server isresponsible for five tasks:

Providing multi-client access.

Recelving and understanding client messages.

Sending user responses in the form of messages to the clients.
Performing all drawing.

. Storing and maintaining data structures for limited resources (color maps,
cursors, fonts, and graphic information known as “ graphics context”).

NSNS

Aswe mentioned before, the X server can handle client requests over a network. This
provides for the distributed nature of network computing. It is now feasible to connect
severa processor classes in your network to handle specific applications. What this really
means is that additional computing power can be added incrementally, allowing for a more
controlled increase in a site€' s computing power.

When clients make requests to the server, the server must be able to decipher what is being
requested. The X server acts like a dispatcher directing traffic in a city, who receivesa
request and must determine what the request is for. Based on the requirements of the
request, he must decide which type of vehicleto use: acab, avan, or abus? The X server
actsin asimilar fashion. It must figure out what drawing or action it should take based on
the request received, and then take action accordingly.

One of the primary tasks that the X server providesis the control of input and output
functions. Whenever akey is pressed, the server must determine which client should be
informed of it, if any. Similarly, when the mouse is moved the server must inform one or
more clients.

Asaway of improving performance, the X server has the responsibility of performing all
drawing that the clients request. So, when a client intends to draw aline or a character of
text, it makes arequest to the server, and the server performs all the necessary steps for
generating the graphics. This greatly improves performance since the client need not be
concerned about the “how” of drawing. Additionally, the X server maintains the resources
required for generating the graphics.

Fonts, colors, window coordinates, and other graphical pieces of information are the kinds
of resources stored by the server. These data items are given identification codes by the
server so that clients may refer to them. This makes more sense than sending an entire
graphics structure with large amounts of information over a network. By doing it this way,
X reduces the network traffic and leaves bandwidth for other messages.

file:///H:/edonkey/docs/programming/1/2/ch01/001-004.html (4 of 5) [13/12/02 18:08:32]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Moatif:Introduction

Previous | Table of Contents |Next

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch01/001-004.html (5 of 5) [13/12/02 18:08:32]

file:///reference/crc00001.html

file:///H:/edonkey/docs/programming/1/2/ch01/004-007.html

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents | Next

1.2.3. Window Management

X was developed as a generic mechanism for providing display capabilitiesin a network
environment. MIT did not enforce a particular style for user presentation; rather, they
provided away of creating such display policies. One inclusion that is different from other
window systems s the separation of window management (i.e., moving, iconifying,
resizing) from the client.

The window manager isthe “ruler” of the screen (see Figure 1-2). It isresponsible for
informing its windows about policy. The X Window System does not commit to any
particular window manager. It was felt that the vendors who supported X would provide
their own. Thisis demonstrated by the inclusion of a window manager for OSF/Motif as
well as AT& T XWIN (Open Look) interface kits.

file:/l//H:/edonkey/docs/programming/1/2/ch01/004-007.html (1 of 6) [13/12/02 18:08:34]

file:///H:/edonkey/docs/programming/1/2/ch01/004-007.html

Root Window

— e T I R T e e e e — — e i —— i S B mmTERT

Client

i e " s S St AR~ S - "B M- S

SEEE
|
|

=
3
I

Client

S S s LS L EERE i S . e — —

Figure 1-2 Window manager in X.

The window manager has the right to enforce anything it wants with respect to screen
layout, overriding any and all client requests for space. It might elect to move windows to
make room for others, or it might inform the client that it can only be afraction of the size
requested.

The notion that a requested window size may not be granted is significant to application
writers. Take great care in designing applications so asto eliminate any dependency on a
particular window manager’s style. Y our applications must be able to cooperate with any
window manager, and aso without one. Noting this early will save you alot of timein the
future.

file:///H:/edonkey/docs/programming/1/2/ch01/004-007.html (2 of 6) [13/12/02 18:08:34]

file:///H:/edonkey/docs/programming/1/2/ch01/004-007.html

1.2.4. X Protocol

| stated earlier that X hasits own protocol. A protocol is nothing more than an agreed-
upon form of communication. In the X world, thisis accomplished via network packets
(chunks of information). There are four kinds of packets that exist in X: events, replies,
requests, and errors.

Events are things like a keyboard press, a mouse movement, or a screen update. Just likein
the real world, events can happen at any time. Clients must be ready and able to cope with
this. The client will never be able to know for sureif it has to respond to a keystroke or to
repaint itself. In order to accommodeate this, the client must inform the server of the events
it cares about, and then provide processing for when the event is reported. (Thisis
discussed in greater detail in alater section of this book.)

Requests are generated by alibrary function (Xlib) and sent to the server. A request packet
might contain drawing information, or perhaps a question about a specific window. When

the request isfor locally stored information, it quite obviously does not have to go through
the server. Otherwise, the request is passed to the server whereit is acted on and areply is
sent.

Replies emanate from the server to Xlib only when a previous Xlib request was for server-
based information. This situation is considered a round-trip, and as might be inferred, is
quite costly. After al, the client pays the price for the request and must also pay for the
reply. Considering the network framework, this could be quite substantial if the client
makes many requests.

Errors are also sent by the server to Xlib. Xlib has two kinds of error-handlers. recoverable
and fatal. The error is not sent to the client until the client-server connection is flushed
(typically when an event is read). The reason for thislatency in error reporting isdueto a
design consideration. Since X is network based, and it is more efficient to send chunks of
data across a network, the designers chose to have the server queue up events and errors
while the client queues up requests. The server gives the server queue to the client when
the client initiates the transaction. At that time the client gives the server its queue.

1.3. The X Programming Interface — Xlib

All clients eventually will use Xlib. Thisistrue if you write using straight Xlib or a higher
level library like Xt. As stated earlier, Xlib trand ates the request into a network packet to
be sent to the server.

file:///H:/edonkey/docs/programming/1/2/ch01/004-007.html (3 of 6) [13/12/02 18:08:34]

file:///H:/edonkey/docs/programming/1/2/ch01/004-007.html

Asshown in Figure 1-3, Xlib is the lowest level that an application writer can use for
creating X-based clients. The functions that make up Xlib perform everything that any
client could possibly need. This includes things such as opening and closing the display,
getting a particular font or color, drawing aline, drawing text, creating and destroying a
window, getting user defaults, and parsing the command line.

Thelibrary isrich with functions and is currently being expanded to include extensions for
3-D drawing as well as Display PostScript. In any event, the technique for creating an X-
based client is the same in all cases, and the process can be rather lengthy.

APPLICATION
CODE

Other Tools

Toolkit

Xt Intrinsics

Xlib

X Protocol

Operating System

file:///H:/edonkey/docs/programming/1/2/ch01/004-007.html (4 of 6) [13/12/02 18:08:34]

file:///H:/edonkey/docs/programming/1/2/ch01/004-007.html

Figure 1-3 X programming layers.
1.4. Reasons for Using Xt Over Xlib

As any developer knows, a set of routines that perform the same task and are gathered into
alibrary isinvaluable. After all, who wants to write the same tired code all the time? If you
were an Xlib developer, you would have to rewrite window-creation and resource-
gathering routines for every client. Also, event-handling is not asintuitivein Xlib asitisin
Xt. Lastly, the number of lines of code in an Xt client can be far less than the same one
written using Xlib.

When X was first introduced, a basic toolkit was provided. It was a collection of routines
that created display elements like scroll bars, command buttons, and text editing
mechanisms. The writer ssmply had to invoke these convenience routines to create a
window and add the functionality for a scroll bar. At thislevel, an application writer would
find it easier to develop interfaces, and this would be the level most application writers
prefer.

When the protocol changed from X 10 to X11, the developers of X took the opportunity to
re-create the toolkit. They did this by providing an objective approach to building interface
components. Thisincluded the Intrinsics as mechanisms for using interface components
and Athena widgets as samples of how to write them.

Xt isnot aset of widgets, rather it isastyle of programming. It defines how awidget must
be written and how applications must use them, but it does not in itself provide a particular
widget set. The Athena widget set (Xaw) has been provided as amodel for application
writers to get afeel for developing with and creating new widgets. Most vendors provide
these widgets as samples, and for that reason they are used in many of the examples found
in this book.

So why bother with widgets if you can create clients with Xlib? The reason is quite simple:
widgets are easy to use (if documented correctly), and can eliminate many redundant steps
that al X clients must perform. Also, Xt-based clients are easier to write, especially when
the interface becomes complex. Lastly, the code savings is tremendous. Thisis due to the
objective mechanisms that Xt employs (you' Il see why as you read on).

Previous | Table of Contents | Next

file:///H:/edonkey/docs/programming/1/2/ch01/004-007.html (5 of 6) [13/12/02 18:08:34]

file:///H:/edonkey/docs/programming/1/2/ch01/004-007.html

Copyright © CRC Press LLC

file:/l//H:/edonkey/docs/programming/1/2/ch01/004-007.html (6 of 6) [13/12/02 18:08:34]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Moatif:Introduction

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents |Next

1.5. Why a Practical Guide?

Anyone who has attempted to write applications without samplesis a true pioneer, and
deserves atip of the cap. For the rest of us, an example goes along way in aiding
understanding. Most everyone | have ever developed with found that source code was the
key to their success as developers. | must point out, though, that while having examplesis
great, they are ssmply a possible solution, not the only one. Y ou are encouraged to use the
techniques in this book, but you should also search for new and perhaps more efficient
ways of doing things.

This book demonstrates the majority of topics that application writers need to address when
they begin to write their own interfaces. Sure, you could do what | did to learn Xt. You
would spend alot of hours reading the pages of the Xt Intrinsics code along with the source
from the widget sets (Athenaand HP). Y ou would attempt to use the MIT documents and
search for examples over the network. Y ou would go to lunch with one of the creators of
the X11 Xt Intrinsics (Joel McCormack) and discuss the philosophy of the design of Xt.
Finally, you would attend the X Technical Conference, purchase some Xlib books, and start
to bang out code. In the end, you would finally be clear on how to write Xt-based clients.

| would recommend you save yourself some time and use this book. Believe me, you will
get more out of this book than you realize. Enjoy!

Previous | Table of Contents |Next

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/ch01/007-008.html [13/12/02 18:08:35]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications wit...sics and OSF/Motif:Fundamentals: A Helpful Review for Understanding Xt

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents | Next

Chapter 2
Fundamentals: A Helpful Review for
Understanding Xt

In order to get afoundation from which to build a better understanding of Xt, itis
important to discuss afew concepts prior to diving in. This chapter isintended to get
everyone on the same playing field.

2.1. Review of Structures and Pointers

If you haven't figured it out yet, let me tell you: C isthe language used to program with
Xt. For many an application programer this might cause awince. After all, C can be a bit
of apain to deal with. It gives great flexibility to get at the low levels of the machine, but
with that comes the ability to crash the system. (Has anybody ever crashed a system with a
C program? Let’ s see a show of hands.)

Perhaps the most problematic part of the C language for many are these things called
pointers. So, in an attempt to set you straight, let’ s discuss them for a bit.

A pointer isvariable in the C language. Its sole purpose in lifeisto look at a place in the
computer’s memory. The thing a pointer holdsis called an address. An addressissimply a
place in the computer’s memory. You'll find the operating system, data, and programs
loaded there.

In C there are a variety of datatypes. The usual are int (short and long), float, double, and
char. Each of these can have an associated pointer type: int*, float*, double*, char*. For
example, if you saw the following definition in a C program:

file:/l//H:/edonkey/docs/programming/1/2/ch02/009-013.html (1 of 6) [13/12/02 18:08:37]

A Practical Guide to X Window Programming: Developing Applications wit...sics and OSF/Motif:Fundamentals: A Helpful Review for Understanding Xt

Int X, *Xp;

it would read “x is of typeint and xp is of type pointer-to-int.” This means that xp can
contain the memory address of another variable that is of type int. The same holds true for
float, double, and char.

To get apointer to point at something, you must assign it the thing’s memory address (see
Figure 2-1). Recalling the earlier definition, you could have xp point to x by doing the

following:
Pointer-to-Value
int ival,"ip;
ival = 12;
Ip = &ival:

0x2000 storage location Ox1000

0x1000 value at location 12
Pointer-to-Pointer-to-Value

char cv,’cp1,"cp2;

v ="A;

cpl = &cv;

cpl = ¢p2; /° pointers are already addresses */

0x2018 storage location 0x2016 0x2010

0x2016 wvalue at location 0x2010 A

file:///H:/edonkey/docs/programming/1/2/ch02/009-013.html (2 of 6) [13/12/02 18:08:37]

A Practical Guide to X Window Programming: Developing Applications wit...sics and OSF/Motif:Fundamentals: A Helpful Review for Understanding Xt

Figure 2-1 Pointer.
Xp = &X;
Thisreads “assign the address of x to xp.” Since xp is apointer type, xp now looks at x.

Suppose you wanted to get the value that a pointer was looking at. How could you do that?
It is pretty ssmple, actually. The C language provides the asterisk “*” as an operator for
getting the value (not to be confused with multiplication or the definition of the pointer).

For example, suppose the code looked like the following:

int X = 2,*Xp;
I nt Q;
Xp = &X;

and you wanted to assign the value in x to q. It would be easy to assign the value of x to q
by ssimply saying

q = x

but you are using pointers and would rather see how to do this using them. Therefore, to
assign the value of x to g using the pointer xp, you write the following:

q = *xp;

This says “assign the value that xp is pointing at to g,” so now q hasthe value 2. This
really isn’'t so bad. Now that you think you feel good about pointers, just remember:

A Pointer islike 220 volts of eectricity. If you don’t ground it well, you could lose your
life!

That is, pointers are fantastic when used with care, and very dangerous when they are not.
Since they truly are memory addresses, you could be pointing to an areathat isin the data
space of another program — or anywhere else, for that matter. If you're not careful,
eventually things will break and you'll either get that useful message, “ Segmentation
violation” (the OS cop is out to get you), or worse, your machine will start to reboot itself
(the old pointer gremlinisat it again).

file:///H:/edonkey/docs/programming/1/2/ch02/009-013.html (3 of 6) [13/12/02 18:08:37]

A Practical Guide to X Window Programming: Developing Applications wit...sics and OSF/Motif:Fundamentals: A Helpful Review for Understanding Xt

Now that you understand pointers better, let’s look at another useful tool in C's arsenal: the
structure. Just like the name implies, a structure gives you away of placing datain anice,
neat, orderly manner.

If you have ever done database programming, you’ ve come across structures when you
defined records for the database. As an example, suppose you are interested in defining a
structure for atrade (exchange of stocks or bonds) record. Y ou know that the members
would include security, trader id, buy/sell flag, quantity, and price. In C, this could look
like the following:

struct {
char *security;
char *traderl d;
char buy or _sell;
I nt gquantity;
f 1 oat price;

} tradeRecor d;

Another powerful feature of the C language isits ability to create new datatypes. Thisis
accomplished using a typedef statement. Essentially, you can create a shorthand notation
for anew storage class of your own. By far the most common use of the typedef statement
iIswith a structure. For example, if you wanted to use the tradeRecord in other placesin
your program, you could create a typedef like this:

typedef struct _TradeRecord {

char *security;
char *traderl d;
char buy or_sell;
I nt quantity;

fl oat price;

} TradeRecord,;

Y ou now have a new type called TradeRecord. With the new TradeRecord type you can go
about defining some structuresin your program.

TradeRecord Equity =
{"IBM',"BJK",’ B, 1000, 100.25};

TradeRecord *PtrTolt;
PtrTolt = &Equity;

file:///H:/edonkey/docs/programming/1/2/ch02/009-013.html (4 of 6) [13/12/02 18:08:37]

A Practical Guide to X Window Programming: Developing Applications wit...sics and OSF/Motif:Fundamentals: A Helpful Review for Understanding Xt

Now let’ s access some of the members;

printf("% % %l shares of % at $ % \n",
Equity.trader, Equi ty. buy or_sel |,
Equity. quantity, Equity.security, EQuity. price);

Thiswould print the following:
BJK B 1000 shares of IBMat $ 100.25

Notice that you used the “.” (dot) operator to access the members. Thisisthe way C getsto
the members of structures when the structure variable is not a pointer type. Now let’s use
the pointer type PtrTolt to get the values:

printf("% % % shares of % at $ %\n",
PtrTolt->trader, PtrTolt->buy or_sell,
PtrTolt->quantity, PtrTolt->security,PtrTolt->price);

Thiswould print the following:
BJK B 1000 shares of IBMat $ 100. 25

Notice that you used the “->" (arrow) operator to access the members. Thisistheway C
gets to the members of structures when the structure variable is a pointer type.

Since you are by now an expert at this, let’'s cover one last detail that is used heavily in Xt.
Thisisthe opague pointer type. The opague pointer type used in the Xt is“caddr_t”
(changed to XtPointer in X11R4) and is defined as either “char*” or “void*” depending on
the C compiler being used. The opague pointer is alowed to assume the role of a pointer to
int, pointer to float, or pointer to whatever, asin the following code fragment:

caddr _t chanel eon;

I nt X = 2;

chanel eon = &x;
printf("%\n",*chanel eon);

If this brief review of pointers and structures isn’t enough, refer to one of the zillion books
written on the C language. Or use the “default” book by Kerninghan and Richie (the
second edition is quite good).

file:///H:/edonkey/docs/programming/1/2/ch02/009-013.html (5 of 6) [13/12/02 18:08:37]

A Practical Guide to X Window Programming: Developing Applications wit...sics and OSF/Motif:Fundamentals: A Helpful Review for Understanding Xt

Previous | Table of Contents |Next

Copyright © CRC Press LLC

file:/l//H:/edonkey/docs/programming/1/2/ch02/009-013.html (6 of 6) [13/12/02 18:08:37]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications wit...sics and OSF/Motif:Fundamentals: A Helpful Review for Understanding Xt

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous |Table of Contents |INext

2.2. Window System Basics

In order to write applications for X, you should get afeel for some of the basic relationships
that exist. X isbuilt using a hierarchical window system termed a window tree. There will
always be one root window. The root window always covers the entire display area, and all
other windows are its descendants. Additionally, windows on the same level in the tree are

called siblings while the parent of achild is called an ancestor to the child. Thisis shownin
Figure 2-2.

file:/l//H:/ledonkey/docs/programming/1/2/ch02/013-018.html (1 of 7) [13/12/02 18:08:40]

A Practical Guide to X Window Programming: Developing Applications wit...sics and OSF/Motif:Fundamentals: A Helpful Review for Understanding Xt

Root Window ®

WindowA.tH e - Windan

5 2 (P)

1 Window B ® ’
Window A1 4 1 Window C1

2

Window B1 2 Window B2

T o L s Gme e d A m e rar s mamamameas

1. Child Relationship
2. Sibling
(P) Parent Relationship

Figure 2-2 Parent/child/sibling.

An X window can be viewed as a “roundtangle”—usually, but not quite always, arectangle.
The reason for the new name isthat for most of X’slife all that programmers could get were
rectangles. However, with X11R4, the folks at MIT incorporated a “ shapes’ extension, so
windows need not be rectangular.

The upper-left corner of an X window is considered to be its origin (see Figure 2-3). The x-
axisincreases as you go left while the y-axis increases as you go down. All coordinatesin X
arerelative, that is, from the window’ s point of view all things start at 0,0. If awindow is
created and is offset from the root window at 100,100 the root window’ s perspective of the
child’ soriginis 100,100 while the child views it as 0,0.

file:///H:/edonkey/docs/programming/1/2/ch02/013-018.html (2 of 7) [13/12/02 18:08:40]

A Practical Guide to X Window Programming: Developing Applications wit...sics and OSF/Motif:Fundamentals: A Helpful Review for Understanding Xt

The X server iswhere all windows live. Whenever awindow is created, the application must
ask the X server to do it. The server adds the newly created window to the window tree
when the request is made. Once added, the client may request to be mapped and hence
viewable by the user.

There are times when windows are mapped yet are not viewable. These situations occur for
three reasons:

1. One of the ancestorsis not mapped.
2. One window completely obscures another (asin window C of Figure 2-4).
3. When an ancestor completely clips awindow.

X =X

+¥ = +y

y ofisat

% offsat

width

+X -X

file:///H:/edonkey/docs/programming/1/2/ch02/013-018.html (3 of 7) [13/12/02 18:08:40]

A Practical Guide to X Window Programming: Developing Applications wit...sics and OSF/Motif:Fundamentals: A Helpful Review for Understanding Xt

—

+X X

Figure 2-3 Window geometry.

Rootl Window

Figure 2-4 Window stacking/clipping.

If the ancestor isn’t there, the child may be mapped, yet won’t be visible. Only when all of
its ancestors are mapped will the child have the chance to be visible.

When alarger window overshadows another, it makes sense that the user won’t see the
smaller one. This can be rectified by placing the smaller one higher in the stacking order.
The stacking order issimply the way X viewsits windows. In this way, the little one gets
recognized as being on top of the larger one, therefore obscuring a part of the larger
(window B in Figure 2-4). You could view it as a deck of cards. If you wanted the card on

file:///H:/edonkey/docs/programming/1/2/ch02/013-018.html (4 of 7) [13/12/02 18:08:40]

A Practical Guide to X Window Programming: Developing Applications wit...sics and OSF/Motif:Fundamentals: A Helpful Review for Understanding Xt

the bottom of the deck, you would take it and move it to the top. The card that was on the
top is now obscured (probably) by the one just placed on top.

If achild lies outside of its parents' boundaries, it will not be seen. As soon as the child
comes back to the parents' boundaries, it will be viewable provided neither of the other two
situations listed occurs.

2.3. Event-Driven Programming

X is an asynchronous system. This means that clients do not wait around for an answer from
the server. Instead, the server and the client maintain queues of events that will be
exchanged at various times (usually when the client “flushes’ the queue).

This styleis very different from earlier notions on developing applications. In the past, we
would wait around for an activity to be complete (I can remember lots of 1oops waiting on
keyboard entry). Not anymore! An application must be ready to address any event that its
users care about. In order for the mouse to move, akeypressto register, or the window to be
redrawn, the client must have asked and watched for any one or al of those events.

The mechanism we are talking about here is termed event driven andisa“don’'t call me, I’ll
call you” style of programming. Namely, you tell the server what you care about, and it will
call you back when that thing you care about happens. In X, the clients tend to wait until the
events they care about occur, then do something about them, then wait again. Y ou will see
this more when you start coding some examples.

2.4. Object-Oriented Programming

Xt isbased on the notion of object-oriented programming (OOP). In the OOP world, there
exist objects which are nothing more than data and ways of handling the data (called
methods). These things called objects are self-contained. That meansthat if | had an editor
object, it would contain all of the data needed to pull all of the editing, aswell asall of the
processing needed to deal with the data.

file:///H:/edonkey/docs/programming/1/2/ch02/013-018.html (5 of 7) [13/12/02 18:08:40]

A Practical Guide to X Window Programming: Developing Applications wit...sics and OSF/Motif:Fundamentals: A Helpful Review for Understanding Xt

/" FILE: sampleXt.c
* PURPOSE: A very simple Xt base client.
2

#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
main(arge,argv)

int argc; char **argv;
{

Arg arg[5]; int cnt;

Widget top = .
Xtinitialize(argv[0],"ThisClient",NULL,0,&argc,argv),

cnt = 0;
XtSetArg(arg[cnt], XtNlabel,"My Label"); cnt++;
XtCreateWidget("label",labelWidgetClass,top,arg,cnt);

XtRealizeWidget(top);
XtMainLoop();

}

Figure2-5 Sample Xt client.

Objects are arranged in classes (types of objects). Classing allows objects to inherit things
from superclasses. If you looked at it in a hierarchy, the superclassis the parent of the
object. Asthe parent, it allows the child access to everything it owns (house, car). This
leaves the child to concentrate on those things that the child cares about (going to school,
listening to music). Thisimplies that the child doesn’t need to worry about too much

(typical).

The idea behind OOP isto make life easier. By using objects, software is reusable, so you
won't have to rewrite the same things over and over. The folksat MIT employed this
concept with the introduction of X11 and called it Xt.

Xt implements the OOP style on top of X. It doesthis by using a C structure that contains

file:/l//H:/edonkey/docs/programming/1/2/ch02/013-018.html (6 of 7) [13/12/02 18:08:40]

A Practical Guide to X Window Programming: Developing Applications wit...sics and OSF/Motif:Fundamentals: A Helpful Review for Understanding Xt

both data and pointers to functions that operate on the data. Additionally, it provides for
inheritance by having a class portion and defining procedures for dealing with the
connections between structures (the Intrinsics). Aswe will shortly explore, the OOP stylein
Xt makes application development for X quite easy.

Previous Table of Contents Next

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch02/013-018.html (7 of 7) [13/12/02 18:08:40]

file:///reference/crc00001.html

A Practical Guideto X Window Programming: Developing Applications with ... Intrinsics and OSF/Motif:Xt Basics: An Introduction to Xt-based Widgets

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents | Next

Chapter 3
Xt Basics: An Introduction to Xt-based
Widgets

This chapter covers the fundamental s of widgets based on the Xt Intrinsics. It discusses
what awidget is, what makes up awidget, the basic widgets in the Xt Intrinsics, and a new
concept called the windowless object (the OSF/Motif Gadget is an example of this).

3.1. What Is a Widget, Really?

For most of us, the term “widget” has been used to mean just about anything. In most
college business textbooks you would find a case study on how many “widgets’ the
ACME Workstation Corporation could produce in one year in its Taiwan facility. And of
course we all know what a “thing-ama-widget” is. In X, the phrase “widget” identifiesa
user-interface abstraction. Namely, awidget is a customizable X window that contains
window attributes, operations, and window state data. Essentially, a widget encompasses
all those things needed to create an X window of a specific type (such as a push button or
scroll bar).

Asyou are probably aware, writing the same old code over and over again can get very
tedious and quite boring. After all, we are application writers, and we should write
application code. Well, widgets were created to rid you of that tedium and let you get to
the business of developing applications.

Before we get into the structure of awidget, it is useful to point out the two types of
programmers that exist in the Xt Intrinsic Domain: widget writers (WW) and client writers
(CW). A widget writer cares how the widgets are structured. He or she is quite concerned

file:///H:/edonkey/docs/programming/1/2/ch03/019-021.html (1 of 4) [13/12/02 18:08:42]

A Practical Guideto X Window Programming: Developing Applications with ... Intrinsics and OSF/Motif:Xt Basics: An Introduction to Xt-based Widgets

about changes to the core elements of the widget. Client writers (in the ideal world)
shouldn’t really care about how awidget is written, they simply want to know how it
behaves. This distinction is the way we would like to see things go, but Xt isyet to be an
“ideal world,” soitisfairly important for all Xt programmers to understand how widgets
work.

If you're aclient writer looking to skip to the next pages, stop for amoment. If you really
want to write good clients, you should be very familiar with the way widgets are written.
Case in point: When Xt first hit the street, it was “university grade.” Some vendors
snatched up the source for the Athena widgets and made “minor” changes. Those
programmers who tried to write portable code would often find problems moving from
machine to machine — especially when they had written new widgets that were subclasses
of existing widgets.

3.2. Classes of Widgets

Xt is an object-oriented mechanism for creating X window clients. The architecture
organizes its components (widgets) into classes as shown in Figure 3-1. Classes are
nothing more than data and procedures (methods) that provide access to and enable you to
operate on the data.

The fundamental or meta-classes defined by Xt are Core, Composite, and Constraint.
Additionally, there exists a Shell class that has four public classes (Transient, Override,
TopLevel, and Application). All widgets are subclasses of the CoreWidget.

file:///H:/edonkey/docs/programming/1/2/ch03/019-021.html (2 of 4) [13/12/02 18:08:42]

A Practical Guideto X Window Programming: Developing Applications with ... Intrinsics and OSF/Motif:Xt Basics: An Introduction to Xt-based Widgets

Object
| —— —— - Core
RectObj |
Composite Toolkit Primative
Constraint Shell
L : — TransientShell
Toolkit Manager

. TopLevelShell
____ OverrideShell

___ ApplicationShell
Figure 3-1 Xt widget classing.

This collection of widgets dictates the mechanism for the construction of subsequent
widgets. Examples of widget sets that adhere to this protocol are the Athena, OSF/Moatif,
and AT&T XWIN (Open Look) widget sets. This book relies heavily on the Athena set
because the source code is readily available. Additionally, the OSF/Motif set is used
because it contains arich set of widgets for devel oping applications.

Definitions of the protocol widgets are found in the three C header files CoreP.h,
CompositeP.h, and ContraintP.h. They are explored in great detail later in this book.

3.3. The Components of a Widget

file:///H:/edonkey/docs/programming/1/2/ch03/019-021.html (3 of 4) [13/12/02 18:08:42]

A Practical Guideto X Window Programming: Developing Applications with ... Intrinsics and OSF/Motif:Xt Basics: An Introduction to Xt-based Widgets

There are two partsto all widgets created using the Xt mechanism: the instance and the
class. Each of these parts plays an important role in pulling off the magic of the Intrinsics.
The class part defines those things that all widgets that are members of that class will use.
Exposure handling, initialization, resizing, and resource setting are a few examples of
methods or procedures that belong to the class part. In the instance part you find data
specific to a particular widget’ s instance. The window id, the x and y offsets, and the
border color are examples of instance resources.

Previous | Table of Contents |Next

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/ch03/019-021.html (4 of 4) [13/12/02 18:08:42]

file:///reference/crc00001.html

A Practical Guideto X Window Programming: Developing Applications with ... Intrinsics and OSF/Motif:Xt Basics: An Introduction to Xt-based Widgets

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents INext

3.3.1. The Class Part of a Widget

The class (ClassPart) is the thing that binds the mechanism together. It allows for inheritance of
superclass methods and data via a pointer to the superclass's class record. Through this pointer,
new widgets may use the superclass s code asif it were their own. This notion is quite powerful.
It implies that writing new widgets can be simply a matter of adding a few things rather than
rewriting the entire code.

In Chapter 2 you reviewed how pointers and structures work — a pointer is nothing more than a
place in memory, an address. With this address you can peer into the actual locations to get and
update the information stored there. Since a structure is nothing more than an organization of
members in a contiguous block, if you have a pointer to a structure and the structure’ s definition,
you can access each member. Thisis exactly what happens in the inheritance mechanism. The
source of the Intrinsics and the well-defined approach insure that things work.

All widgets have at least the members in the ClassPart. If additional classinformation is
required, the widget may add new fields by defining a“newWidgetClassPart” and chaining it to
the end of the CoreClassPart (thisis discussed in greater detail in Chapter 6). Note that there will
be only one instance of the ClassPart for any number of created widgets. That is, if you had two
buttons in your client that were of the same widget class, you would find a single occurrence
(instance) of the class record, and multiple occurrences of the instance record. The reason is
simple: the ClassPart is shared by all members of the class, while the instance record is specific
to that occurrence of the widget. The following C code shows how the core ClassPart is defined.
(Read on, it gets better.)

typedef struct _Cored assPart {

W dget O ass super cl ass;

String cl ass_nane;

Car di nal w dget _si ze;

Xt Proc class-initialize;

Xt W dget C assProc class part initialize;

Bool ean class_inited; /* XtEnumin X11R4 */

file:///H:/ledonkey/docs/programming/1/2/ch03/021-024.html (1 of 4) [13/12/02 18:08:43]

A Practical Guideto X Window Programming: Developing Applications with ... Intrinsics and OSF/Motif:Xt Basics: An Introduction to Xt-based Widgets

XtlnitProc initialize;

Xt Ar gsProc initialize hook;

Xt Real i zeProc realize;

Xt Acti onLi st actions;

Car di nal num acti ons;

Xt Resour celLi st resour ces;

Car di nal num r esour ces;

XrnCl ass xrm cl ass;

Bool ean conpress_noti on;

Bool ean conpress_exposure; /* XtEnumin X11R4 */
Bool ean conpress_enterl eave;

Bool ean vi si bl e_interest;

Xt W dget Pr oc destroy;

Xt W dget Proc resize;

Xt ExposePr oc expose,;

Xt Set Val uesFunc set val ues;

Xt Ar gsFunc set _val ues_hook;

Xt Al nost Pr oc set _val ues_al nost ;

Xt Ar gsProc get val ues_hook;

Xt W dget Pr oc accept _focus; /* XtAccept FocusProc */
Xt Ver si onType ver si on;

Xt O fsetList *cal | back _private; /* XtPointer */
String tmtabl e;

Xt Geonret r yHandl er query_geonetry;

Xt StringProc di spl ay_accel erat or;

caddr _t extension; /* XtPointer in X11R4 */

} Cored assPart;

The second part of the widget isits instance record. For every occurrence of awidget there will
be an instance record. Its structure contains information that is specific to this particular
occurrence. Items such as the x,y coordinate or the window id is stored in this record. All
widgets will have at |east every member of the CorePart.

The instance record is the thread of the inheritance mechanism. This means that the record points
to the widget’ s class record, which points to the superclass. Asyou can see, it’skind of like
weaving. If the superclass had a superclass, its CorePart would point to it, and so on. The “how”
of widgetsis discussed in Chapter 6; for now, examine the following instance record:

typedef struct _CorePart ({

W dget sel f;

W dget Cl ass wi dget cl ass;
W dget par ent ;

Xr mName Xrm nane,

file:///H:/edonkey/docs/programming/1/2/ch03/021-024.html (2 of 4) [13/12/02 18:08:43]

A Practical Guideto X Window Programming: Developing Applications with ... Intrinsics and OSF/Motif:Xt Basics: An Introduction to Xt-based Widgets

Bool ean bei ng_destroyed;

Xt Cal | backLi st destroy_cal | backs;

caddr _t constraints; /* XtPointer in X11R4 */

Position X, V;

Di nensi on wi dt h, hei ght;

Di mensi on bor der _w dt h;

Bool ean managed;

Bool ean sensitive;

Bool ean ancestor _sensitive;

Xt Event Tabl e event tabl e;

Xt TMRec tm

Xt Transl ati ons accel erat ors;

Pi xel bor der pi xel ;

Pi xmap bor der _pi xmap;

W dget Li st popup_|i st;

Car di nal num popups;

String name;

Screen *Screen;

Col or map col or map;

W ndow wi ndow;

Car di nal dept h;

Pi xel backgr ound_pi xel

Pi xmap backgr ound_pi xmap;

Bool ean vi si bl e;

Bool ean mapped_when_nanaged,;
} CorePart;

3.4. A Windowless Object: The OSF/Motif Gadget

As of X11R4, the Core widget has been split into two components. Object and RectObj. Object
contains the absolute minimum set of things that interface components would need (i.e.,
destruction methods). RectObj contains those things that all rectangular components would need
(i.e., x,y coordinates and height). Thereisalso athird part often referred to as WindowObyj,
which is used by many widget sets, although it is not defined by the X11R4 Intrinsics.

This separation of function is very important. In the OOP style that Xt offers, this separation
allows for the creation of abstractions that do not need windows. In fact, the Motif Gadget is one
such example. A windowless object is like awidget except it does not have event handlers,
translations, pop-up children, or awindow. Since it lacks awindow id, it must rely on its parent
to be informed of events.

From an application programmer’s perspective, windowless objects should improve the
performance of the client over the widget version by reducing the X protocol needed to inform

file:///H:/edonkey/docs/programming/1/2/ch03/021-024.html (3 of 4) [13/12/02 18:08:43]

A Practical Guideto X Window Programming: Developing Applications with ... Intrinsics and OSF/Motif:Xt Basics: An Introduction to Xt-based Widgets

windowed objects of what is going on. From the server’ s point of view, the demand on memory
Is decreased, since there is no window so the server need not store any information that it does

for windowed things. These two arguments are the reasons that these new abstractions were
created.

In the Motif widget set the following gadget classes are defined: XmL abel-Gadget,
XmSeparatorGadget, XmArrowButtonGadget, X mPushButtonGadget, XmToggleButtonGadget,
and XmCascadeButtonGadget. (Rumor has it that an XmTextEditGadget is in the works for
Motif V1.1.) These are fairly simple, and are often used. They are the kind of components that
fall into the realm of “probably good uses’ for awindowless object. Some might say the work of
OSF and AT& T influenced this change to the Intrinsics.

Previous | Table of Contents [INext

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/ch03/021-024.html (4 of 4) [13/12/02 18:08:43]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with ...rinsics and OSF/Matif:Basic X Graphics: Text, Fonts, Bitmaps, and Colors

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller
CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous (Table of Contents [Next

Chapter 4
Basic X Graphics: Text, Fonts, Bitmaps, and
Colors

Though most of the details of graphic operations are hidden from the application writer when
using widget sets, it isimportant to have a general understanding of some of the basic topics. This
chapter introduces you to how X handles text, fonts, bitmaps, and colors.

4.1. Text and X

X paints text to the display through bitmaps, which represent characters. A collection of
bitmapped charactersis called afont. The actual character bounded by arectangleiscalled a
glyph. The painting operation is performed using Xlib primitives that perform a graphic operation
called filling using afont. Two such routines for drawing strings are:

XDrawsSt ri ng(dpy, drawable, gc, x, y, str, len)

and

XDr awl mageStri ng(dpy, drawable, gc, x, y, str, len)

The two routines differ in that the second one fills in the background region for each character.

The argument “dpy” isthe display where the text is to be painted, “drawable’ is either a window
id or a pixmap (off-screen memory), “gc” refersto the graphics context to be used for the
operation, “x,y” are the pixel offsetsin the drawable, “str” isthe string to be painted, and “len” is
how long the string is.

A pixmap is created by the client to store images for later copying to the screen. They may be used
for quick paints of screensto yield a smoother scrolling look. They are also used for creating icons

file:///H:/edonkey/docs/programming/1/2/ch04/025-028.html (1 of 4) [13/12/02 18:08:44]

A Practical Guide to X Window Programming: Developing Applications with ...rinsics and OSF/Matif:Basic X Graphics: Text, Fonts, Bitmaps, and Colors

(discussed later in this chapter).

4.2. Graphics Context

Graphics context refers to the information that Xlib primitives use to know how to perform a
painting operation. Things such as foreground and background colors, line width, line style, fill
style, font, and graphics function are afew items used in graphic operations.

The argument “gc” in the two routines X DrawString() and XDrawlmageString() is of type GC. It
is created using either the Xlib primitive (XCreateGC()) or Xt (XtGetGC()). The Xt version
creates a GC that is shareable and cannot be altered. The Xlib routine creates a GC that is
alterable. It should be noted that GCs are stored by the server, and as such are alimited resource.
Where possible, limit the number of GCs you create by using the Xt version when static

(shareable) GCs are okay.

The routines for creating Xlib and Xt GCs are

XCreat eGC(dpy, drawabl e, mask, &val ues)

and

Xt Get GC(wi dget, nmask, &val ues)

The structure for “values’ is of type XGCVaue and is defined as follows:

Structure Definition

t ypedef struct {
int function;
unsi gned | ong pl ane_nask;
unsi gned | ong foreground;
unsi gned | ong background;

int Iine-w dth;

int line_style;

i nt cap_style;

int join_style;

infill _style;

int fill-rule;

i nt arc_node;

Pixmap tile;

Pi xmap stippl e;

int ts_x origin;

int ts_y origin;

Default Val ues

GXCopy (we care)
Al l

0O (we care)
1 (we care)
0

Li neSol i d
CapBut t
JoinMter
FillSolid
EvenCGddRul e
ArcPi eSlice
For egr ound
1

0

0

file:///H:/edonkey/docs/programming/1/2/ch04/025-028.html (2 of 4) [13/12/02 18:08:44]

A Practical Guide to X Window Programming: Developing Applications with ...rinsics and OSF/Matif:Basic X Graphics: Text, Fonts, Bitmaps, and Colors

Font font; | npl enent ati on (we care)
i nt subwi ndow_node; CipByChildren
Bool graphi cs_exposures; True
in clip_x_origin; 0
inclip_y_origihn; 0
Pi xmap clip_mask; None
I nt dash_offset; 0
char dashes; 4
} XCGCval ues;

It isarather long structure, however, we need mostly be concerned about foreground, background,
and font when discussing text. Function is aso important, but it is often set to GXCopy.

4.3. Handling GCs

There are at |east two ways of handling GCs. Thefirst isto create one without passing any values
(Xlib only), then set the elements using some Xlib primitives (such as X SetForeground(),
XSetFont()) or pass the values when it is created, as shown here:

XGCVal ue val ues;
GC gc;

unsi gned | ong val uenask;

val ues. f or egr ound 2; /* Pixel value 2 will be sonme color */

val ues. backgr ound 4, [* Ditto */
val uemask = GCForeground | GCBackground,

gc = XCreat eGC(Xt Di spl ay(w dget), Xt D spl ay(w dget),
val uemask, &val ues);

or

gc Xt Get GC(wi dget, val uemask, &val ues);
When you are finished with a GC and would like to free it, you should use one of the following:
XFreeGC(Xt Di spl ay(w dget),gc); /* Xlib */

or

file:/l//H:/edonkey/docs/programming/1/2/ch04/025-028.html (3 of 4) [13/12/02 18:08:44]

A Practical Guide to X Window Programming: Developing Applications with ...rinsics and OSF/Matif:Basic X Graphics: Text, Fonts, Bitmaps, and Colors

Xt Rel easeGC(wi dget , gc) ;
4.4, Multi-Font Text

Another interesting function provided by Xlib is XDrawText(). This function draws strings of text
using multiple fonts in a single operation. Its use is shown here:

XDr awText (dpy, drawable, gc, x, y, itenms, num.itens);

In this example, “items’ is of type X Textltem and “num_items’ is the number of items. The
XTextltem structure is defined as follows:

t ypedef struct {

char *chars;
i nt nchars;
I nt delta;
Font font;

} XTextltem

(The OSF/Matif Toolkit also provides a compound string notion. Thistopic is discussed in
Chapter 9.) The discussion in this section was provided to yield some insight for application
programmers to the workings of graphic contexts. Refer to the MIT documentation or any of the
published works on Xlib if you need a more detailed discussion in this area.

Previous (Table of Contents [Next

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/ch04/025-028.html (4 of 4) [13/12/02 18:08:44]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with ...rinsics and OSF/Matif:Basic X Graphics: Text, Fonts, Bitmaps, and Colors

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents | Next

4.5. Fonts

45.1. Font Metrics

Figure 4-1 displays the characteristics of afont. The two structures that are most important
for fonts are X CharStruct and XFontStruct. The XFontStruct contains several members.
The ones we care most about are fid, direction, min_bounds, max_bounds, ascent, descent,
and per_char. The “fid” isthe font id used to refer to the font, “direction” indicates which
way the characters are defined, “mill_bounds’ is the bounding box of the smallest
character, “max_bounds’ is the bounding box of the largest character, “ascent” tells how
far above the baseline the font is, “descent” tells how far below the baseline the font is, and
“per_char” isthe array of XCharStruct structures for each character in the font. The
XCharStruct is so if you wanted the maximum height for afont, you would use the font
structure, go into the max_bounds member, and write the following:

font - >max_bounds. ascent + font->max_bounds. descent

t ypedef {
short | beari ng;
short r beari ng;
short wi dt h;
short ascent ;
short descent ;

unsi gned short attri butes;
XChar Struct ;

file:/l//H:/edonkey/docs/programming/1/2/ch04/028-031.html (1 of 5) [13/12/02 18:08:46]

A Practical Guide to X Window Programming: Developing Applications with ...rinsics and OSF/Matif:Basic X Graphics: Text, Fonts, Bitmaps, and Colors

1. Font Height 6. Font Width
2. Font Ascent 7. Origin

3. Font Descent 8. Ibearing

4. Character Ascent 9. rbearing
5. Character Descent 10. Basaline

Figure4-1 Font metrics.

Y ou will find support for both monospace (constant width) and proportionally spaced fonts
in X. The next section talks about the XLFD (X Logical Font Description) conventions.

4.5.2. Font Naming Conventions
If thereis onething that X has, it'saslew of fonts. It seems asif everyone and his brother

has “donated” fontsto MIT for incorporation with the rel ease tapes. These names can be
rather long. The following name, for instance, is one of several:

file:/l//H:/edonkey/docs/programming/1/2/ch04/028-031.html (2 of 5) [13/12/02 18:08:46]

A Practical Guide to X Window Programming: Developing Applications with ...rinsics and OSF/Matif:Basic X Graphics: Text, Fonts, Bitmaps, and Colors

- adobe-couri er-nmedi umi-normal - - 18- 180- 75- 75- p- 104- i s08859- 1

Fortunately, a naming convention has arisen and is supported by the Xlib font functions. It
goes asfollows:

1-2-3-4-5-6-7-8-9-10-11-12-13-14-15

1 registry X register name

2 foundry adobe, dec, ibm, etc.
3 family courier, helvetica, etc.
4 weight normal, medium, bold
5 dant r, o, 1, ri, ro, ot

6 setwidth normal, condensed, etc.
7 style serif, sans serif, etc.
8 pixelsize 10, 14, 18, etc.

9 pointsize (in 10ths) 100, 140, 180, etc.

10 Xres 75, etc.

11 yres 75, €tc.

12 spacing m, p, C

13 avgwidth 98, etc.

14 charsetregistry 1508859, etc.

15 charsetencoding 1, etc.

Theregistry isan X registered name that tells you who owns the remaining part of the
syntax and semantics that make up the remainder of the name; the foundry tells who
provided it; family is the typeface; weight is the appearance; slant is either r (upright), o
(oblique), i (italic), ri (reverseitalic), ro (reverse oblique), or ot (other); pointsize tells how
bigitis, spacing is either m (mono), p (proportional), or ¢ (charcell); avgwidth tells the
average width of the characters; and charsetregistry tells what body the font is registered
with. (You gotta love these standards.) Y ou will find a complete discussion on font
conventions in the X Consortium document, “X Logical Font Description Conventions’
(available on the X11R4 tape).

4.5.3. Wildcards in Font Names

The new naming convention can be quite tedious, not to mention areal pain. Once again,
though, the MIT folks did not forget you. Instead of having to type in 15 fields of font

file:///H:/edonkey/docs/programming/1/2/ch04/028-031.html (3 of 5) [13/12/02 18:08:46]

A Practical Guide to X Window Programming: Developing Applications with ...rinsics and OSF/Matif:Basic X Graphics: Text, Fonts, Bitmaps, and Colors

information, you can insert wildcards to allow for matching. This gets the first font in the
font directory that matches; however, if you really care about a particular font, then you
would still have to (ugh!) hardcode it.

Thefollowing is an example of these wildcards:
--courier-bold-r-*-*-*-140-*-*-*-*-1508859-1

This says “match a courier, bold, non-oblique, 14 point, latin-1 font.” If you wanted the
first 14 point latin-1 font available, you would use

-140--1s08859- 1.
4.5.4. Loading Fonts

Most of the Xt Intrinsics hide the details of many of the graphic elements, either through
the resource management or viathe built-in converters (see Chapter 6). Though these
conveniences are nice, you should be aware of some of the routines for loading and
unloading fonts.

To load afont, use one of the following:
XLoadFont (dpy, nane) ;

or

XLoadQuer yFont (dpy, nane) ;

XLoadFont()returns afont id to be used. It will ook for the font and have it loaded.
XLoadQueryFont() does the same thing except that it will return an XFontStruct. The
“name” argument is of the form described in the previous section.

To unload afont, use this:

XUnl oadFont (dpy, font)

file:///H:/edonkey/docs/programming/1/2/ch04/028-031.html (4 of 5) [13/12/02 18:08:46]

A Practical Guideto X Window Programming: Developing Applications with ...rinsics and OSF/Motif:Basic X Graphics: Text, Fonts, Bitmaps, and Colors

Previous | Table of Contents |Next

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch04/028-031.html (5 of 5) [13/12/02 18:08:46]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with ...rinsics and OSF/Matif:Basic X Graphics: Text, Fonts, Bitmaps, and Colors

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller
CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents INext

4.6. Bitmaps for Icons

It is often nice to provide a useful icon for when the application is dormant (or iconic). To do this
you need to create a bitmap. A bitmap is a pixmap with a depth of one. The depth refers to the
number of bits available to represent a color.

Y ou can create a bitmap using the tool available on the MIT tape called “bitmap.”
Thistool will create afile that looks like this:

#define xit_width 30

#define xit_height 30

#define xit_x hot -1

#define xit_y hot -1

static char xit_bits[] ={

0x00, 0x00, 0x00, O0x00, 0x00, 0x00, 0x00, 0Ox00, 0Ox00, 0Ox00, 0xo00,
0x00, 0x00, O0x00, O0x00, 0x00, 0x00, 0x00, 0x00, Ox00, Ox07, 0x80,
0x00, 0x00, Oxle, OxcO, 0x00, 0x00, Ox3c, 0x60, 0x00, 0Ox00, 0x78,
0x30, 0x00, 0x00, 0x78, 0x18, 0x00, 0x00, OxfO, 0x08, 0x00, 0x00,
Oxe0, O0x0d, Oxee, O0x3f, 0xc0O, 0x07, Oxee, 0x3f, 0x80, 0x03, O0xOe,
0x07, 0x80, 0x03, Ox0e, 0x07, OxcO, 0x07, OxOe, 0x07, 0x60, OxOf,
Ox0e, 0x07, 0x30, OxOf, Ox0e, 0x07, 0x10, Oxle, Ox0Oe, O0x07, 0x18,
0x3c, O0x0e, 0x07, Ox0Oc, 0x78, 0x0e, 0x07, 0x06, O0xfO, Ox0Oe, 0x07,
0x03, 0OxeO, O0Ox0e, Ox07, 0x00, 0Ox00, Ox00, 0x00, Ox00, 0Ox00, o0xo00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0Ox00, Ox00, 0xo00,
0x00, 0x00, Ox00, 0Ox00, Ox00, 0x00, Ox00, 0x00, 0Ox00, 0x00};

To make it usable as an icon, you use the Xlib primitive:
XCr eat ePi xmapFr onDat a(dpy, wdw, bi ts, wi dt h, hei ght) ;

This makes it a pixmap that can be installed as an icon (see Chapter 5).

file:///H:/edonkey/docs/programming/1/2/ch04/031-032.html (1 of 2) [13/12/02 18:08:47]

A Practical Guide to X Window Programming: Developing Applications with ...rinsics and OSF/Matif:Basic X Graphics: Text, Fonts, Bitmaps, and Colors

4.7. Foreground and Background

X was designed to allow clients to use a multitude of colors. The client issues arequest to the
server to alocate the colors it needs. If another client has already requested the same color, the
server will give back a pointer to the color. Otherwise, the color isloaded and the pointer is
returned.

The “palette’ isacolormap. Think of acolormap as an array of colors (kind of like alook-up
table). Some interesting things happen with colormaps and window managers. Clients can install
their own colormaps that may be different than other clients’, so when the client has the focus,
the window manager installs the colormap. But, since it differs from the one being used by other
clients, and the colormap indices do not change when new colormaps are installed, the other
clients might not appear in their true colors.

There are severa Xlib primitives for creating, installing, and removing colormaps. Thisareais
beyond the scope of this book. Most application writers can rely on the Xt Intrinsics to provide a
good colormap (although there is some disagreement with this statement).

Additionally, there are several routines for getting, allocating, and storing colors. Since the
Intrinsics has internal converters, you need not be too concerned with doing this. One useful
routine to be aware of, however, is:

XAl | ocNanedCol or (dpy, cmap, nane, &col or, &exact);

This routine returns an XColor type that is suitable for using with the resource setting needs of
applications (see Chapter 5).

Whenever you need a color for painting, you must first allocate it. In Xt programming, however,
the toolkit and widgets tend to hide these details and do most of the work for you. The next
chapter provides a client that demonstrates these areas, as well as the others addressed in this
book.

Previous | Table of Contents [INext

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/ch04/031-032.html (2 of 2) [13/12/02 18:08:47]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents | Next

Chapter 5
Building Applications: Developing with Xt

With the knowledge acquired up to now, you can begin to explore the Xt Intrinsics. This
chapter covers most of the topics that you will encounter when you start to develop your
own Xt-based clients.

5.1. Conventions

Asin most programming environments, Xt hasits own set of conventions that client and
widget writers should adhere to. With X11RS3, the Xt Intrinsics have become an X
Consortium Standard with defined programming conventions. These conventions are as
follows:

1. Record components (members of structures) should use an underscore () to
indicate compound words. Additionally, they should be written in all lowercase:

struct record {
I nt conponent _one;
I nt conponent _t wo;

}i

2. Names of types and procedures start with uppercase letters and use upper-case
and lowercase for compound words:

Xt Set Arg (procedur e/ macr o)
XrmOpt i onDescRec (type)

file:///H:/edonkey/docs/programming/1/2/ch05/033-036.html (1 of 5) [13/12/02 18:08:51]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

3. Resource name fields are identical in spelling to the field name they refer to,
with exception of compound words which use uppercase and lowercase. Each
resource name should have a macro (#define) that starts with XtN (Motif uses
XmN):

Xt Nwi dt h “Wwi dt h"
Xm\wi dth (Motif) “width"

4. Resource class strings begin with XtC, and are written exactly like resource
names with the exception of the first character, which should be capitalized:

Xt Nf or egr ound "f oreground” (resource)
Xt CFor egr ound " For egr ound” (class string)

5. Resource representations are written exactly like resource class strings except
for their prefix, which is XtR:

FwPr oc "FwProc" (type)
Xt RFwProc "FwProc"(representation string)

6. Use acapital letter as the first character of a new widget class and for compound
strings:

Fi el dEDW dget Cl ass

7. Action procedures should follow the same convention as procedures (start with
uppercase and use uppercase and lowercase for compound words):

Movel nsert

These conventions are fairly easy to live with, and go along way in enabling future users
of your code to understand exactly what you have done.

5.2. Application Structure

One of the first things to notice when you begin coding with Xt is that ailmost every client
looks the same on the inside. That is, application structure is fairly well defined, and each
client shares the same basic foundation.

file:///H:/edonkey/docs/programming/1/2/ch05/033-036.html (2 of 5) [13/12/02 18:08:51]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

Asinall C programs, you start by including those header files necessary for the
application. In Xt you always include the following:

#i ncl ude <X11/Intrinsic. h>
#i ncl ude <X11/ Stri ngDefs. h>.

The Intrinsic.h header file holds the definitions of all the functions (XtCreateWidget()) and
all the macros (XtWindow()) that are used by Xt-based clients. The StringDefs.h header
file has standard resource names (XtN), resource class names (XtC), and representation
type names (XtR) that are used in the Intrinsics.

In addition to those two headers, there are two additional header files that often are used in
Xt applications:

#i ncl ude <X11/ Xat om h>
#i ncl ude <X11/ Shell . h>

Xatom.h contains the predefined X atoms used for inter-client communication and
selections (discussed in the last chapter of the book). Shell.h contains those definitions for
application shells, which are the outer windows that all clients have.

After the X headers, add the “public” headers for the widgets that are used in the client.

Theterm “public” refersto the header that client writers™ use. For instance, the following
header:

*Widgets are supposed to be written such that the client writer will use standard Xt
mechanisms to get and set data in the widget, or use “convenience” functions provided by
the widget writer. Sometimes widget writers leave out things that client writers need. In
thisinstance a client writer might use the “private” header of the widget. Warning: If
you do this, you accept responsibility for keeping track of changes to the widget so your
client won't break. In this book we create a set of utilities for the Athena TextWidget
(TextUtil.h, TextUtil.c) to overcome some of the X11R3 shortcomings. In there you will
see the use of TextP.h which is the private header of the TextWidget.

#i ncl ude <X11/ Xaw Command. h>

would get the X11R4 Athena CommandWidget. For Motif, the following header would get
the OSF/Motif version of a command button:

file:///H:/ledonkey/docs/programming/1/2/ch05/033-036.html (3 of 5) [13/12/02 18:08:51]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

#i ncl ude <X11/ Xml PushB. h>

The next section of the C program isfor forward declarations, global variables, and any
static definitions that are needed. The use of forward declarations is consistent with the
ANSI standard. Global variables help pass information to subordinate functions. Static
definitions provide useful mechanisms for your code (i.e., look-up tables).

Now you are ready for the main program. Figure 5-1 shows its structure. The steps for
writing it are as follows:

1. Initialize thetoolkit (XtInitialize()/XtApplnitiaize()).

2. Create the widgets (XtCreateWidget()/XtCreateM anagedWidget()).
3. Realize the widgets (XtRealizeWidget()).

4. Wait on events (XtMainLoop()).

#include <stdio.h>
#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>

#include "WidgetsUsed.h"
Forward Declarations
Global Variables

static definitions
- fallback resources (R4)
- XrmQOptionDescRec
- New Action Procs
- New Translation Tables

main(argc,argv)

file:/l//H:/edonkey/docs/programming/1/2/ch05/033-036.html (4 of 5) [13/12/02 18:08:51]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

O CRge W W WO Rl T N 0 R R W e P Nt gl

main(argc,argv)

Initialize Toolkit
- Xtinitialize
- XtApplnitialize

Build Interface
- XtCreateWidget/XtCreateManagedWidget

XtRealizeWidget

XtManageChildren/XtManageChild
XtMainLoop/XtAppMainLoop

Figure 5-1 Application structure.

Previous | Table of Contents |Next

Copyright © CRC Press LLC

file:/l//H:/edonkey/docs/programming/1/2/ch05/033-036.html (5 of 5) [13/12/02 18:08:51]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous [Table of Contents |[Next

To demonstrate these components, you will build the ever-so-popular “Thisis NOT ‘Hello
World'!” client. The first thing to do is create your own "utility" header file. Thiswill be used for
every client created in the book. It contains the standard Xt headers that you need as well as some
handy macros. Hereis its code:

/* FILE: XbkUtil.h

* PURPCOSE: Provide header for the utilities devel oped for the book
* applicati ons.

*/

/* This is a “trick” that wll insure that this include file is

* included only once. If you | ook through the X header files you
* Will see this nmechani sm conmonly used.

*/

#i fndef _XbkUtil _h
#define XbkUtil h

#i ncl ude <stdi o. h>
#i ncl ude <ctype. h>

[* Xt header files that we wll need */

#i ncl ude <X11/IntrinsicP.h

/* Some may shudder at the inclusion of the private Intrinsic
* header file, however, since we need sone information out of the
* structures and they are defined in the private, not the public
* header, we have no choi ce.
*/

#i ncl ude <X11/ Stri ngDefs. h>

#1 ncl ude <X11/ Xatom h>

#i ncl ude <X11/ Shel | . h>

/* This is a synbolic constant that we will use when we define
* our Arg array.
*/

file:///H:/edonkey/docs/programming/1/2/ch05/036-039.html (1 of 4) [13/12/02 18:08:51]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

#defi ne MAXARGS 30

[* Whenever we need to use the bell to alert the user, we
* will use BEEP. BEEP is a way of passing the w dget
* id and using the Xlib primtive XBell.

*/
#defi ne BEEP(w) XBel | (Xt Di spl ay(w), 50)
/* Sometinmes we will need the default values for things such as

* the black pixel value or the white pixel value. Since

* Bl ackPi xel O Screen is an Xlib nmacro, we want to provide an
* Xt interface. That's why we have created these nacros.

*/

#def i ne BP(w) Bl ackPi xel OF Screen(Xt Screen(w))

#define WP(w) WhitePixel O Screen(Xt Screen(w))

/* when we work with G aphic Contexts, we will often need the
* colormap that is installed. Since every w dget has the
* colormap stored as a nenber in the Core structure, we can get
* the colormap fromthe structure. W create a macro that
* "hides" the details and nmake it |look |ike a function.

*/

#defi ne XbkGet Col or map(w) ((w)->core. col or map)

/* When we work with text, we often need the height of the font
* that we are working with. Since we know that the max_bounds
* menber of an XFont Struct has the information, we create a nacro
* that will do the work for us.

*/

#defi ne XbkFont Hei ght (f)\

(f->max_bounds. ascent + f->max_bounds. descent)

#endi f
Now you can write the program:

/[* FIlLE: not hw. ¢
* [

#i ncl ude " XbkUtil . h"

/* Wdget headers to be used in this client */
#i ncl ude <X11/ Label . h>

In thisclient you simply create alabel to display some text. In the Athena Widget Set, the
LabelWidget is used to do this, so you need to include its public header.

file:///H:/edonkey/docs/programming/1/2/ch05/036-039.html (2 of 4) [13/12/02 18:08:51]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

The next two macros provide some names to give to the initialization mechanism of the Intrinsics.

Y ou will often find argv[0] being used as the name of the application shell, but | have chosen to use
a#definein its place. You are free to use argv[0] and your own class name. Y ou should, however,
use the X conventions for class names. The codeis asfollows:

#defi ne XbkShel | Nane " not hw'
#defi ne XbkAppl C ass " Not hw"
mai n(ar gc, ar gv)
I nt argc;
char **argv;
{
W dget top,tag; /* Wdgets in this client */
Ar g[MAXARGS] ; /* args to pass to Wdget objects */
int cnt; /* counter for message setting
method 1 */
top = Xtlnitialize(XbkShel |l Nane, XokAppl C ass,
NULL, O, &rgc, argv);
/*

* Tell the w dget sonme val ues we want st ored.
* Then create it.

*/

cnt = 0;

Xt Set Arg(arg[cnt], Xt Nx, 0); cnt ++;

Xt Set Arg(arg[cnt], Xt Ny, 0); cnt ++;

tag = Xt Creat eManagedW dget ("tag", | abel Wdgetd ass,

top, arg, cnt);

/*
* Now realize the top widget which will nanage the child tag.
*/
Xt Real i zeW dget (t op) ;
/*
* Now just sit around waiting and doi ng things about events.
*/

Xt Mai nLoop();
}

Thefirst thing Xt clients do isinitialize. In this example, you are using an initialization procedure
that isleft over from the X11R2 days. It is supported in both X11R3 and X11R4. This procedure
essentially starts the Intrinsics environment. It has the job of invoking the toolkit initialization
procedure, opening a connection with the server, creating an application context (we'll discuss this
soon), and creating atop-level shell. The R4 version of this, XtApplnitialize, performs essentially
the same things with the exception of using explicit application contexts (discussed in Chapter 11).

file:///H:/edonkey/docs/programming/1/2/ch05/036-039.html (3 of 4) [13/12/02 18:08:51]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

There are six arguments for Xtlnitialize():

1. Application shell name, which is given to the window manager and used by the resource
manager.

2. Application class hame, used by the resource manager.

3. Application command-line parsing description, used to inform the command line parser
of how to read and interpret the command line.

4. The number of records in the description.

5. The Address of argc.

6. argv.

In this client you do not add any parsing rules. Therefore, argument 3 isnull and argument 4 is 0.

After initialization comes widget creation. Y ou have two creation choices: managed or unmanaged.
A managed widget lets the parent do the work of window mapping for it, and informs the parent of
its geometry. An unmanaged widget is one that will eventually ask to be managed. Asan
unmanaged widget, the parent does not know what geometry the widget wants to be. Thisis
important, since widgets negotiate geometry with parents, and it can be a rather time-consuming
process.

Previous [Table of Contents INext

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch05/036-039.html (4 of 4) [13/12/02 18:08:51]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller
CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents [Next

When you create several widgets with one parent, it is often more efficient to create them as
unmanaged, then manage them as a set. In thisway, the parent conducts geometry negotiations with
all of the children at one time instead of doing it for each separately. The functions for widget
creation are

wi dget = Xt Creat eW dget (" nane", wi dget Cl ass, parent, arg, numArgs) ;
wi dget Xt Cr eat eManagedW dget (" nane, wi dget C ass, parent,
ar g, nunmAr gs) ;

The five arguments are

Instance name.

Widget class.

Parent widget.

Argument list.

Number of argumentsin the list.

agrwdE

The instance name is used for getting resources from the resource database. An example of an
instance nameis“tag.” In the resource database, you could set resources for this widget using “tag”
in the specification. The widget class refers to the widget that is being created. For instance, the
Athena Label widget’s class is defined as |label WidgetClass and the Motif Form widget’'sclassis
xmFormWidgetClass. The parent isthe “container” that this widget will belong to. The argument list
isalist of resources, and the values desired for those resources. Lastly, the number of argumentstells
the creation mechanism how many argumentsin the list to worry about.

Arguments can be set for widgets by either resource specificationsin the resource database
(discussed in the next section) or through argument passing. There are afew argument-passing
mechanisms that are commonly used in Xt. Thefirst is shown here:

Arg arg[MAXARGS] ;i nt cnt;

cnt = 0O,

Xt Set Arg(arg[cnt], Xt Nresour ce, val ue); cnt ++;

Xt Cr eat eManagedW dget (w dget, wi dget O ass, parent, arg, cnt);

file:/l//H:/ledonkey/docs/programming/1/2/ch05/040-042.html (1 of 3) [13/12/02 18:08:52]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

Thisisthe preferred development method because you can count the arguments after each setting,
then provide the variable as an argument to the Create function. This minimizes the things that can go
wrong. For instance, suppose you add a resource, then recompile your code. If the “number of
argumentsin list” argument is not incremented to take your new resource into account, the creation
mechanism will not useit. Y ou could spend significant time tracking down this bug. The other
mechanisms force you to do the increment, but this way lets the computer do it.

The second argument-setting method is as follows:

Arg arg[] = {
{ Xt Nresource, NULL},
}

arg[0] .val ue = sonet hi ng;
Xt Cr eat eManagedW dget (w dget, wi dget d ass, parent, arg, Xt Nunber (arg));

Thisisthe preferred production way as opposed to the previous method in which the computer does
the work, meaning that CPU cycles are consumed just to add one to a counter. With this second
approach, the work is done at compile time, not run time, thus saving CPU cycles.

Comparing the two methods, it is evident that you save an instruction for each argument set. It is not
hard to see that thiswill add up to quite a savings, especially if there are many widgets created.

The last common method is shown here:

Arg arg[MAXARG ;
Xt Set Arg(arg[0], Xt N\resour ce, sonet hi ng) ;
Xt Cr eat eManagedW dget (w dget , w dget C ass, parent,arg, 1);

Asyou can seg, thisis extremely manual and can lead to some interesting bugs. Notice, too, that it is
not as slow as the first technique and not as fast as the second one. Even so, you will see this method
used.

When you have unmanaged widgets, you need to manage them using one of two routines:
XtManageChild() or XtManageChildren(). XtManageChild(widget) accepts the widget you want
managed as the argument and informs the parent that you want it to be managed.
XtManageChildren(list,numinList) accepts alist of widgets that represent the children to be
managed, and the number of childrenin that list.

Once all the widgets are created, you must “realize” them. Essentially, thisinstructs each of the
widgets (by invoking their realize method) that they should map their windows and do anything else
they might want to do before being displayed. The function to useis

Xt Real i zeW dget (node)

file:///H:/edonkey/docs/programming/1/2/ch05/040-042.html (2 of 3) [13/12/02 18:08:52]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

where node is the top of awidget tree to be managed. If all widgets are children of the top shell and
are all managed, then invoking XtRealizeWidget(top) will cause all widgets to be realized. If one or
more widgets is not managed, then you would have to realize them manually.

The last step in the event-driven style of programming isto “hang out” and wait for things to happen
(XtMainLoop). This occursin XtMainLoop(), a convenience routine that calls XtNextEvent() to get
the event off of the queue, and then calls XtDispatchEvent() to tell the widgets about the event.
XtMainLoop() lookslike this:

for(;;) {
Xt Next Event (&event) ;
Xt D spat chEvent (&event);

b

Previous | Table of Contents [Next

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/ch05/040-042.html (3 of 3) [13/12/02 18:08:52]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller
CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents | Next

5.3. Providing Application Resources

One of the most powerful features of Xt isthe resource manager, a collection of
mechanisms for getting resources from a variety of places and converting a resource to the
correct representation for the client. For example, if you would like to set the font for the
Athena Label widget, you simply need to set a resource (XtNfont) for the widget (Label),
and the resource manager will perform some magic that makes the string representation of
afont become the actual font structure. Thisin itself isagood reason to use Xt. In fact,
many Xlib programmers like this so much that they “fudge” and make hybrid clients just
to set application resources. (Y ou will soon explore the magic that goes on with the
resource manager.)

5.3.1. Where Does Xt Get the Resources?

The client shown in Figure 5-2 (“nothw”) doesn 't look like it would do much. In fact, a
label widget has been created without alabel! Looking at the picture of this client, notice
thetext “ThisisNOT ‘Hello World'!” in the window. Where did it come from? The
answer is the resource manager.

When you initialize the toolkit with XtInitialize(), you invoke the resource manager. This
Isfollowed by a search through the file system and the command line for resource settings.
There are nine possible places for resources:

1. Jusr/lib/X11/$L ANGapp-defaults/class, which isthe “application” class defaults.

In this case the class would be NothwCmd.
2. If step 1 resulted in a problem, then Xt uses /ust/lib/X 11/app-defaults/class.

file:///H:/edonkey/docs/programming/1/2/ch05/042-043.html (1 of 3) [13/12/02 18:08:54]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

| 1_

This is NOT ’Hello Wnrl P

Figure 5-2 The nothw client.

3. Next it loads the file $X APPRESLANGPATH(Cclass.

4. If Step 3falils, it goes after $XAPPRESDIRclass.

5. Now it loads the resources specified in the server’s RESOURCE_MANAGER
property.

6. If that wasn't there, then it goes after SHOME/. X defaults.

7. Now load the stuff in $XENVIRONMENT.

8. Guesswhat? If Step 7 didn’t work, it tries SHOME/. X defaults-host (“host” isthe
machine name).

9. And last but not least, it uses the command line.

This procedure might seem like alot of work, but it isn't that bad. Y ou will find that most
people stuff everything in their SHOME/. X defaultsfile. Thisisn't such a great idea. For
one thing, it makes Xdefaults pretty large, and for another, it makes things unorganized.

Y ou will usually have something in /usr/lib/X 11/app-defaults/class and additional
resources in your own Xdefaults.

Another important point to note is that each step overrides the previousone. That is, if you
have some nice defaults established in /usr/lib/X 11/app-defaults’Y our-Class, the user may
override them in their SHOME/. X defaults. For example, if you know the application writer
set up the background to be magenta, yet it displays pink, it probably is not the color
monitor. It's most likely the user’s SHOME/. X defaults. Remember: When in doubt, check
the SHOME/. X defaults.

5.3.2. Setting Up Resources in the Resource Files

Now that you know where to get the resources, how are they set? We made a point of
talking about conventions in Chapter 3. During that brief discussion, items called
resources, resource classes, and representation strings were pointed out. Well, the
resources and resources classes are used in the resource databases, and the representation
strings are for “kicking in” the converters.

In nothw, you have the application shell name, the application class name, and the widget

file:///H:/edonkey/docs/programming/1/2/ch05/042-043.html (2 of 3) [13/12/02 18:08:54]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

Instance name. Additionally, hiding in the label widget are resource names for the various
resources that it uses. A quick look at the Athena Widget manual or a stroll through the
code uncovers the resource name “ XtNlabel,” which has an actual string representation as
“label” (thisisfound in StringDefs.h).

Suppose you would like to have “nothw” display the string “ Thisis not ‘ Hello World'.”
How do you do that? First, note the application shell name “nothw,” then the widget’'s
Instance name “tag.” With these two, you can set the “ XtNlabel” resource as follows.

not hw. t ag. | abel : This is not "Hello World'

Previous | Table of Contents |Next

Copyright © CRC Press LLC

file:/l//H:/edonkey/docs/programming/1/2/ch05/042-043.html (3 of 3) [13/12/02 18:08:54]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents | Next

This says “set the application whose name is “nothw,” that has a widget instance “tag”
with aresource “label” to “Thisis not ‘Hello World'.”

Y ou could have caused the same result afew other ways, such as the seven shown here:

6. not hw* Label : Thi
7.not hw* Label . Label : Thi

not ‘Hello Worl d’
not ‘Hello Worl d’

1.Not hhw* | abel : This is not ‘“Hello World’
2. Not hw* Label *l abel : This is not ‘Hello Worl d’
3. not hw*| abel : This is not ‘Hello World’
4. not hw*t ag*| abel : This is not ‘Hello World
5.not hw*t ag. | abel : This is not ‘Hello World
S is
S is

Had enough? Before you scratch your head, let me explain. Thefirst line saysall clientsin
the Nothw class (you know thisis aclass by convention, since all class names start with
uppercase and use upper/lowercase for compound words) that have a resource with the
name “label” should have it set to the value. Line 2 says all clientsin the Nothw class, with
any Label widget in the client, set itslabel to the value. Thiswould make a client with 10
labels say the same thing. Line 3 says the client whose name is nothw should have al label
resources set to the value. This would cause any widgetsin nothw (if they existed) that
have a resource using the name “label” to have the value stored init. Line 4 singles out
those widgets that are children of “tag” and have “label” as a string to set the value. Line 5
saysjust set tag' s label to the values. In line 6, all widget resources that have a resource
classname of “Label” are set to the values. And line 7 says only the Label widgets should
have their |abels set to the value.

Asyou can seethereisagreat degree of flexibility. There is aso the chance for confusion.
To keep things straight, you need to know how the resource manager handles conflicts. It

file:/l//H:/edonkey/docs/programming/1/2/ch05/043-045.html (1 of 3) [13/12/02 18:08:54]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

does it using the following rules:

1. The class name or resource name of every component in the specification must
match the requested item in the database. So, the resource specification that is
created for the label in our client is asfollows:

not hw. t ag. | abel
Not hw. Label . Label

Therefore the first line below matches, while the second does not:

not hw. t ag. | abel : "Hel l o Worl d"

not hw. t ag. stri ng: "Hel l o Worl d"

2. Those entrieswith the“.” (dot) are more specific than those with the “*”
(asterisk). The asterisk is more for shorthand, so the first line below loses to the

second:
not hw. t ag*| abel : "Hell o Worl d"
not hw. t ag. | abel : "Not Hello World"

3. Resource names always overrule class names, so the second line overrules the

first:
Not hw. t ag. | abel : "Hell o Worl d"
not hw. t ag. | abel : "I won !'!I'"

4. Resource names and class names will overrule an asterisk, so thefirst line below
overrules the second:

Not hw* Label *| abel : "I Wn"
Not hw* | abel : "I |ost"

5. The specifications are scanned | eft to right, so the first entries below overruling

the third:

Not hw* | abel : "I wn"
Not hw*wi dt h: 100

Not hw* | abel : "I | ose"

file:///H:/edonkey/docs/programming/1/2/ch05/043-045.html (2 of 3) [13/12/02 18:08:54]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

Now that you are comfortable with resource setting, it is easy to see how the client
“nothw” can assume different appearances. At one time the label resource could be set
“Thisisnot ‘Hello World'” while at another time it could be set to “Hello World,” as
shown in Figure 5-3. As you might imagine, thisclient is very simple, yet it demonstrates
how you can change client behavior without recompiling — that’s not such a bad thing.

Previous | Table of Contents | Next

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch05/043-045.html (3 of 3) [13/12/02 18:08:54]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents | Next

5.3.3. Getting Application-Specific Resources

Now that you know about widgets and resources, how about the client? After all, it might
be necessary to provide some command line options that get resources, and it would be
useful to use the resource manager to do this.

The first thing you need to do is create a structure to warehouse your application-specific
resources. Once that is done, an XtResource table is defined to inform the resource
manager how to fill in our application resources.

Hello World !

Figure 5-3 Nothw with “Hello World.”
The XtResource table has seven members, which are defined as follows:

Resource name (usually XtN).

Resource class name (usually XtC).

Representation type for the result.

Sizeof for the size of the type.

Address of the variable for the result.

Representation type you are coming from.

Any default value, in caseit isn’t found in the database.

NoakrwpdNhE

file:/l//H:/edonkey/docs/programming/1/2/ch05/045-047.html (1 of 3) [13/12/02 18:08:56]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

The resource manager uses the resource name and resource class name for matching in the
resource database. The representation type tells the resource manager what type the
resource needs to be. When using the resource databases, the resource manager uses
XtRwhatever to search alist of “from-to” representation strings that has an associated
converter connected with it. So, if you wanted the resource to be of typeint, you would
specify XtRInt as the representation type. The resource manager would convert the string it
reads from the database to an integer using one of the severa converters that are supplied
with the Intrinsics. It would place the result at the address specified for the result. The
converters use the sizeof type to assist in the conversion. (Converters are discussed in
greater detail in an example in Chapter 6.) If the resource did not exist in the database, then
the default value would be used with the “from” representation string, which starts the
correct converter and then fillsin the address.

Thefirst of the following two tables lists the representation types that are predefined in Xt.
The second table lists the associated “to-from” converters.

Table 5-1Predefined Representation Types (From X11R4 StringDefs.h)

XtRAcceleratorTable XtRAtom XtRBitmap
XtRBool XtRBoolean XtRCallback
XtRCallProc XtRCardinal XtRColor
XtRColormap XtRCursor XtRDimension
XtRDisplay XtREditMode XtREnum
XtRFile XtRFloat XtRFont
XtRFontStruct XtRFunction XtRGeometry
XtRImmediate XtRInitial State XtRInt
XtRJustify XtRLongBoolean XtRObject
XtROrientation XtRPixel XtRPixmap
XtRPointer XtRPosition XtRScreen
XtRShort XtRString XtRStringArray
XtRStringTable XtRUnsignedChar XtRTrandationTable
XtRVisual XtRWidget XtRWidgetClass
XtRWidgetList XtRWindow

Table 5-2Predefined Converters
To Type From

file:///H:/edonkey/docs/programming/1/2/ch05/045-047.html (2 of 3) [13/12/02 18:08:56]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

XtRAcceleratorTable (XtAccellerators) XtRString
XtRBoolean (Boolean) XtRString, XtRInt
XtRBool (Bool) XtRString, XtRInt
XtRCallback (XtCallbackList) XtRFunction
XtRColor (XColor) XtRInt
XtRCursor (Cursor) XtRString
XtRDimension (Dimension) XtRString, XtRInt
XtRDisplay (Display *) XtRString
XtRFile (FILE *) XtRString
XtRFloat (float) XtRString
XtRFont (Font) XtRString, XtRInt
XtRFontStruct (XFontStruct *) XtRString
XtRFunction ((*)0)

XtRInt (int) XtRString,XtRImmediate
XtRImmediate (caddr 1)

XtRPixel (Pixel) XtRString, XtRInt, XtRColor
XtRPixmap (Pixmap) XtRInt
XtRPointer (caddr 1)

XtRPosition (Position) XtRString, XtRInt
XtRShort (short) XtRString, XtRInt
XtRString (char *) XtRString
XtRTrandationTable (XtTrandations) XtRString
XtRUnsignedChar (unsigned char) XtRString, XtRInt
XtRWidget (Widget)

XtRWindow (Window)

Previous | Table of Contents Next

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/ch05/045-047.html (3 of 3) [13/12/02 18:08:56]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous |Table of Contents |[Next

The “to-from” table reads: “the representation in the ‘to’ column is of the type in the ‘type’ column,
and may be converted using the representationsin the ‘from’ column.” Therefore, an XtRDimension
may be converted using XtRString or XtRInt as follows:

static Xt Resource MyAppResOpts[] = {

{Xt Nx, XtCX, XtRD nension, sizeof(D nmension), & val, XtRString, "1"},
{ Xt Nx, XtCX, XtRD nension, sizeof (D nmension), & val, XtRint, 1},

1

Now you can create a client to get your own application-specific resources. This new client, called
“nothwCmd” builds upon the previous client “nothw”:

/* FILE: not hwCnd. h
* [

[* Qur utility header file */
#i ncl ude "XbkUtil.h"

/* Wdget headers to be used in this client */
#i ncl ude <X11/ Box. h>
#i ncl ude <X11/ Label . h>

#def i ne XbkShel | Narmre " not hwCnd"
#defi ne XbkAppl A ass " Not hhwCmd"

/* W set up a structure that will have this applications default.
*/
struct _nyAppRes {
i nt num.| abel s;

} nyAppRes;
/* Now, to pull off the resource manager "nmagic," we set up a
* resource option table. It will informthe resource manager of

* the informati on needed for where to put the info, what formto
* put it in, and sone default value for a fallback.

file:///H:/ledonkey/docs/programming/1/2/ch05/047-050.html (1 of 4) [13/12/02 18:08:57]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

*/

#define OFFSET(field) XtOfset(struct _nyAppRes*, field)
static XtResource nyAppResOpts[] = {
{" nunLabel s", "NunLabel s", XtRInt, sizeof(int),
OFFSET(num | abel s), Xt Rl nmedi ate, (caddr _t) NULL,
b
#undef OFFSET

#defi ne LIMT 10
mai n(argc, ar gv)

I nt argc;

char **argyv;

{
W dget top,container,tag[LIMT];
Arg ar g[MAXARGS) ;
int cnt;
top = XtInitialize(XbkShell Nane, XokAppl d ass,
NULL, O, &ar gv, argc) ;
/~k
* This function call invokes the resource nmanager using

* the application resource table, and the structure that houses
* the results.

*/
Xt Get Appl i cati onResources(top, &yAppRes, nmyAppResOpts,
Xt Nunmber (myAppResOpt s), NULL, 0);
if (nmyAppRes.num | abels > LIMT) {
printf("Sorry . . . limt exceeded !!\n");
exit(-1);
}

/* To avoid having to establish offsets for each w dget created, we
* may choose to use a container widget. The Athena set has the
* BoxW dget and the FormA dget.
*/
contai ner = Xt Creat eManagedW dget (" cont ai ner", boxW dget O ass,
t op, NULL, 0);

/* Now instead of being a child of the top, we are children of the
* container. In this way the container can nanage our | ayout.
*/
for(cnt = 0; cnt = nyAppRes. num | abel s; cnt ++)
tag[cnt] = XtCreateWdget ("tag", |abel Wdgetd ass,
container, arg, O0);
/* W manage all the children at once.

file:///H:/edonkey/docs/programming/1/2/ch05/047-050.html (2 of 4) [13/12/02 18:08:57]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

*/
Xt ManageChi | dren(tag, cnt);
Xt Real i zeW dget (top);
Xt Mai nLoop() ;

}

Three new items have been added in this client: the resource gathering mechanism (XtGetA pplication
Resources()), a container widget (boxWidgetClass), and the use of XtManageChildren().

The function XtGetApplication Resources() has the following arguments:

Widget.

Base for results.

Resources looking for.
Number of resources.
Argument list.

Number of argumentsin list.

O, wWNE

The widget is used to instruct the resource manager of the resource databases to use. It is not used for
searching for resources for that widget; rather, it is for the overall application. The base is the address
of the application resource structure (myAppRes in this case). The resources argument is the list of
resources being requested. The number of resourcesis the total number of resources in the resource
list. The argument list is for overriding resources extracted from the database.

The boxWidgetClass is one of the “container” widgets provided in the Athena Widget Set, and is of the
“composite’ class (these are discussed in Chapter 7). It is responsible for managing the layout of its
children. Thiswidget places the children in a column format.

All widget setsinclude afew container widgets which assist in laying out children. The followingisa
table of the Athena and OSF/Motif container widgets:

Table 5-3Athenaand OSF/Motif Container Widgets

Athena OSF/Motif Similar
boxWidgetClass xmBulletinBoardWidgetClass yes
formWidgetClass xmFormWidgetClass yes
panedWidgetClass xmPanedWindowWidgetClass yes
viewPortWidgetClass xmScrolledWindowWidgetClass yes
xmRowColumnWidgetClass no

XtManageChildren()is used to manage a gang of kids after they have all been created. As stated earlier,
doing this after all children have been created saves time when the manager (container) has to perform
the geometry-negotiation process.

file:///H:/edonkey/docs/programming/1/2/ch05/047-050.html (3 of 4) [13/12/02 18:08:57]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

To set the application resource you add a specification into the application’s class resource file. The
resource file looks like this:

I Application Defaults for nothwCnd

*geonetry: +0+0

*NunmlLabel s: 1

*cont ai ner. tag. | abel : This could be "Hello Wrld !
*container.tag. font: *-helvetica-*-r-*-180-*

The exclamation mark is used for commenting in your resource files. The result of thisfileis shownin
Figure 5-4.

I l:lt hl,.l!., l-nj

This could be 'Hello World ¥’

Figure 5-4 NothwCmd.

Previous | Table of Contents |[Next

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch05/047-050.html (4 of 4) [13/12/02 18:08:57]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous |Table of Contents |Next

5.3.4. Building a Command-Line Options Table

A fina level of option setting can be done through the command line. To do this, you simply create an
XrmOptionDescRec table. Thistells the command-line parser how to get things from the command
line (argv). Next, the command-line options and the number of XrmOptionDescRecs are passed to the
XtInitialize()procedure. There are four fields for XrmOptionDescRec:

1. Command line option to look for.
2. Resource specifier to use when creating the filling in the resource denoted by the option.
3. The option style, which is one of the following:

Xrmopt i onNoAr g means use the value in field 4.

Xrnmoptionl sArg means use the value in field 1.

Xrmopti ohSti ckyArg means no white space after option.

Xr mopt i onSepAr g nmeans use the next argv val ue.

Xrmopt i onResAr g nmeans use the resource and value fromthe
next argv.

Xrmopt i onSki pAr g means ignore nme and the next one.

Xrmopt i onSki pLi ne nmeans stop now, don't go any further.

Xrmopt i onNar g means skip "n" args fromthis arg

4. The value when 3 is XrmOptionNoArg.

To demonstrate the use of thistable, let’s add the command-line parsing mechanism to the previous
client (“nothwCmd”). First, you must define the option that you are looking for. In this case, you
would like to have the number of labels to create passed on the command line. Therefore, the
XrmOptionDescRec table |ooks as follows:

XrmOpti onDescRec nyCmdOpts[] = {
{ "-nuniabel s", "*nunlLabel s", XrnoptionSepArg, NULL,
}

Itis“fed” into XtInitialize():

file:///H:/edonkey/docs/programming/1/2/ch05/051-054.html (1 of 5) [13/12/02 18:09:01]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

top = XtInitialize(XbkShel |l Name, XbkAppl C ass,
myCndOpt s, Xt Nunber (myCndOpt s) ,
&argc, argv);

Now, specify the command line as follows:

not hwCnd - nunLabel s 10

Thisresultsin ten labels being displayed, as shown in Figure 5-5.

riat el md

This could be 'Hello World ¥’

This could be 'Hello World ¥’
This could be ’'Hello World ¥’
This could be 'Hello World ¥’
This could be 'Hello World ¥

This could be 'Hello World ¥
This could be 'Hello World ¥’
This could be 'Hello Worid ¥’
This could be 'Hello World
This could be 'Hello World ¥

Figure5-5 Ten labels.

5.4. Handling Events

file:///H:/edonkey/docs/programming/1/2/ch05/051-054.html (2 of 5) [13/12/02 18:09:01]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

Asyou know, X is an event-driven mechanism. Clients | et the server know what events they want to
be informed of, and the server lets the client know when those events occur. It isimportant to
remember that the client hasto tell the server of the eventsthat it wants to be informed of. Otherwise,
the client will not receive notification that anything has happened. There are 33 events that clients can
be informed of. The following table lists the events and the masks used for each one.

Event Type
ButtonPress
ButtonRelease
MotionNotify
MapNotify
EnterNotify
LeaveNotify
Focusin
FocusOut
Expose
GraphicsExpose
NoExpose
VisiblityNotify
KeyPress
KeyRelease
DestroyNotify
UnmapNotify
MapRequest
ReparentNotify
ResizeRequest
ConfigureNotify
GravityNotify
CirculateNotify
CirculateRequest
PropertyNotify
SelectionClear
Sel ectionRequest
SelectionNotify
KeymapNotify
ColormapNotify

Table 5-4X Event Types and Masks

Event Mask(s)

ButtonPressM ask

ButtonRel easeM ask

Button MotionMask,Button[1,2,3,4,5]M ask
StructureNotifyMask, SubstructureNotifyMask
EnterWindowMask

L eaveWindowM ask

FocusChangedM ask

FocusChangedMask

ExposureM ask

GCGraphicsExposureM ask
GCGraphicsExposureMask
VisibilityChangeMask

KeyPressMask

KeyReleaseM ask

StructureNotifyMask, SubstructureNotifyMask
StructureNotifyMask, SubstructureNotifyMask
SubstructureRedirectM ask
StructureNotifyMask,SubstructureNotifyM ask
ResizeRequestM ask

StructureNotifyMask, SubstructureNotifyMask
StructureNotifyMask, SubstructureNotifyMask
StructureNotifyMask, SubstructureNotifyMask
SubstructureRedirectM ask
PropertyChangeMask

Not Applicable

Not Applicable

Not Applicable

KeymapStateM ask

ColormapChangeM ask

file:///H:/edonkey/docs/programming/1/2/ch05/051-054.html (3 of 5) [13/12/02 18:09:01]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

ClientMessage NoEventMask

MappingNotify Not Applicable

Configure Request SubstructureRedirectMask

CreateNotify StructureNotifyMask, SubstructureNotifyMask
None Applicable OwnerGrabButtonM ask

None Applicable PointerM otionHintM ask

5.4.1. A Brief Overview of Events

Events emanate from the server. For each of the 33 events, there is a corresponding structure that the
server fillsin. The structure has members that constitute the details of the specific event. Every event
structure starts with the following five core fields:

agrODNDE

type — the event type (found in the table).

display — the server the event occurred on.

window — the window the event occurred in.

serial — atag used by the server for sequencing.

send event — aflag that is set to “false’ if the server sent the event, or “true” if aclient did.

To define an event structure in code, you write the following:

XEvent

event;

To access the members you write this:

event . type

So, if you wanted to check the event type of any event, you would do the following:

Xt Next Event (&event); [/* this takes an event off the

queue */

i f (event.send _event)
printf("Aclient told us that . . .);

el se

printf("The server told us that . . .);
switch(event.type) {
case KeyPress:

printf("A key was pressed !!!'\n"); break;
case KeyRel ease:

printf("A key was released !!!'\n"); break;

}

Thisisall well and good, but with 33 events, which ones do you really care about? The answer

file:///H:/edonkey/docs/programming/1/2/ch05/051-054.html (4 of 5) [13/12/02 18:09:01]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

depends on the client you are writing, but the next few sections explore how some common events are
reported.

Previous |Table of Contents |Next

Copyright © CRC Press LLC

file:/l//H:/edonkey/docs/programming/1/2/ch05/051-054.html (5 of 5) [13/12/02 18:09:01]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents | Next

5.4.2. Keyboard Events

The server uses the XKeyEvent structure to report KeyPress and KeyRelease events to
clients that register for them. Events may be registered for by using the Xlib primitive
XSelectlnput() or through one of the Intrinsic mechanisms (discussed in a moment). The
additional members of the XKeyEvent structure are as follows:

W ndow r oot ;

W ndow subwi ndow;

Ti me tinme;

I nt X,Y,X_root,y root;
unsi gned st at e, keycode;

Bool sane_screen;

The most important members of this structure (for many applications) are state and
keycode. The “state” member indicatesif one of the modifier keys (Ctrl, Alt, or Shift) are
pressed. “Keycode’ isthe actual keyboard key that was pressed. To find out the symbol
(referred to as a keysym) of the keycode, you need to use an Xlib primitive called
XLookupString(). Thisis done as follows:

char keySynbol [80] ; /* buffer to hold string */
KeySym *r et KeySym /* X key synbol */
XConposeSt atus conpStatus; /* results */

XLookupStri ng(&vent , keySynbol , 80, & et KeySym &conpsSt at us) ;

where

» event isthe XKeyStruct.
» keySymbol will have the string contents for the key stored.

file:/l//H:/ledonkey/docs/programming/1/2/ch05/054-057.html (1 of 3) [13/12/02 18:09:02]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

* retKeySymisthe X key symbol (see keysymdef.h), i.e., XK_F9, XK_a.
» compStatus holds some state information (you won't use this).

5.4.3. Focus Events

Key events are sent to the window that currently has the “focus.” In most cases,
application writers can rely on manager widgets (such as the OSF/Motif variety) to handle
focus management. These events can be rather complex, especially when widgets
(windows) are not accepting the focus. Chapter 9 provides an example of setting the input
focus.

5.4.4. Pointer (Sprite) Events

The most commonly used device is the mouse. You might say X was created with the
mouse in mind. Thisis one of the reasons that “traversing” with the keyboard is so
complex.

Pointer events occur when either of the mouse buttons are pressed or released, or when the
critter moves. The report of pointer events goes to the window that currently has the sprite
(another name for the pointer) or to the window that has “grabbed” the pointer. Grabbing
refersto telling the server, “I own the pointer and | want to know everything it does, so tell
me.” Thisis not necessarily the same as telling the place where the pointer (or sprite) is.
Pop-ups are good examples of using grabs, since you want the user to deal with the pop-up
before continuing to anything else. (You'll seethisin Chapter 9.)

5.4.5. Enter/Leave Events

Whenever the sprite moves into awindow, an EnterNotify event is generated. When the
sprite leaves awindow, a LeaveNotify event is generated. The top-level shells of most
clients like to adjust their borders when such events occur. Some widgets can grab or lose
the focus using these events.

Enter and leave events are termed crossing events and could be quite tricky if you were an
Xlib client writer. To see why, suppose you were setting your top-level window’ s border
on and off with enter and |eave events, and you had some children. Well, if you blindly do
the setting of the border, you would inadvertently set it off when the sprite moved to a
child, because you are informed that the sprite has left your window when it goes to the
child. There is some information in the details of the X CrossingEvent structure that are
helpful to Xt client writers, but the “Intrinsics’ manage this stuff for you. Another fine
reason for using the Toolkit!

file:///H:/edonkey/docs/programming/1/2/ch05/054-057.html (2 of 3) [13/12/02 18:09:02]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

5.4.6. Exposure Events

There are three varieties of exposures. Expose (the most common), Graphics-Expose, and
NoExpose. Expose occurs whenever part of awindow (aregion) is destroyed. This can
happen if your window was overlapped by another and you are brought to the top. The
GraphicsExpose event is sent by the server whenever the client uses X CopyArea().
NoExpose occurs when the client uses X CopyArea() and no region was exposed as a result
of it.

The XExposeEvent structure contains the x,y location relative to the upper-left corner of
the window (refer to Chapter 2), the height and width of the exposed region, and a count of
the remaining Expose events. Widgets may instruct the Intrinsics to compress the Expose
events into one prior to reporting an event. In this way, the Expose method in the widget
deals with the single event rather than with each one separately.

5.4.7. Communication, State, and Colormap Events

Communication events are provided as a means of sharing information between
applications. Clients cannot turn this off. The server will always write the event to the
client’ s queue, but the client has to be looking for such events. Thiskind of an event is
called nonmaskabl e because you cannot block it. (Interclient communication is discussed
in Chapter 11.)

State events are generated whenever something regarding your configuration occurs.
Things like GravityNotify, MapNotify, ReparentNotify, UnmapNotify, VisibilityNotify,
ConfigureNotify, CreateNotify, and CirculateNotify are state events.

Asdiscussed in Chapter 4, colormaps are your application’s palette of colors to use. If you
need to, you can be informed when the colormap changes. As aresult of a change, you
might choose to be “nasty” and quickly reinstall your previous colormap, or simply change
your colors to some safe values.

Previous | Table of Contents /Next

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch05/054-057.html (3 of 3) [13/12/02 18:09:02]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and
OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous |Table of Contents |Next

5.4.8. Event Handlers

Now that you have a better understanding of what events are, where they come from, and the several that occur,
you should see how to handle them. The Intrinsics provides two mechanisms for this: the event handler and
tranglation management.

To understand the use of an event handler, let’s examine asimple client that demonstratesit. This client uses an
Expose event to draw text to the screen using various graphics contexts, set with different colors and fonts. This
client also demonstrates the handling of GCs introduced in Chapter 4.

The EventHandler mechanism is alow-level mechanism for event handling. It is closely related to the Xlib
primitive, X SelectInput(), because they share common event mask names. Essentially, clients register an event
handler with the Xt EventDispatch mechanism (XtDispatchEvent()) informing it of which event(s) the client is
interested in by using the appropriate event masks. Thisis done as follows:

Xt AddEvent Handl er (dr awi ng_ar ea, Exposur eMask,
FALSE, Expose_Handl er, NULL) ;

This says “install the event handler named ‘ Expose_Handler’ for the widget ‘drawing_area’ and call it when an
‘Expose’ event type occurs on the widget (actually the widget’s window) and don’'t pass it anything.” The
arguments are:

Widget.

Event mask(s).
Call-on-nonmaskable-events flag.
Event handler.

Datafor the handler.

aprwWDNPRE

The “widget” corresponds to the widget with which the event handler is to be associated. “ Event mask(s)” are the
events you are interested in. Y ou may provide more than one by “ORing” two masks together, using the format
ExposureMask | KeyPressMask. The third argument indicates whether the event handler should be called when
nonmaskabl e events are received. Nonmaskable events are things like ClientM essages (discussed in Chapter 11)
or MappingNotify (when another client changes the keyboard mapping). The fourth argument is the name of the
event handler to invoke. The final argument is the data the Intrinsics should give to the handler.

Event handlers are written as defined by the Xt Intrinsics manual. Each Intrinsic-specific function hasits own
mechanics for writing it that you must adhere to. Whenever you see a new routine introduced, assume that the Xt
Intrinsics manual has defined the way it is to be written unless you are told otherwise.

file:///H:/edonkey/docs/programming/1/2/ch05/057-061.html (1 of 5) [13/12/02 18:09:04]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

The following isthe client “XtandGC,” which demonstrates the event handler. This client includes the standard
Xt stuff in the Utilities header. Asyou go along, you will learn to add additional goodies that make your
programming life easier. The results of this client are shown in Figure 5-6. The codeis as follows:

/* FILE: XtandGCC. c
*
#i ncl ude " XbkUtil.h"

This text pain using an XtGC
This text painted using Xlib .. style 1

Xlib sivie 2 setting here |

Changed the font on an Xlib GC

lews font, foredgraund 0] Badkgram

XDrawText usedtofont changes on the same line

Figure5-6 XtandGC.

/* Wdget headers to be used in this client */
#i ncl ude <X11/ Si npl e. h>

#def i ne XbkShel | Nane " xt andGC"
#def i ne XbkAppl C ass " Xt andGC'

/* We set up some text for use in XDrawString, XDraw mageString,
* and XDrawText. We also will get sonme fonts and colors to use.

*/
static char *sonme_text[]={
"This text painted using an Xt GC',
"This text painted using Xlib . . style 1",

"Xlib style 2 setting here !'",
"Changed the font on an Xlib GC',
"New font, foreground, and background"};
static char *some_strings[] = {"XDrawText ","used for",
"font changes on the sane line"};
/~k

* Here are sonme fonts. Notice the nam ng convention and
* use of wildcards (refer to Chapter 4)

*/

static char *sone_fonts[] = {

file:///H:/edonkey/docs/programming/1/2/ch05/057-061.html (2 of 5) [13/12/02 18:09:04]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

"*-pitstreamcharter-bol d-i-*-240-*",
"*-hel vetica-nmediumr-*-120-*",
"*-times-medi umi-*-180-*"};
/*
* Some colors to allocate.
*/
static char *sone_colors[] = {"red","white", "blue","green"};
/~k
* These are variables required for the Xlib primtives.
*/
Col ormap cMap;
XGCVal ues gcVval s;
GC xt GC,
xI'1 bGC_styl el,
xl'i bGC _styl e2;
XFont St ruct *fonts[3];
XCol or goodCol or s[4] , not Needed,;
i nt val Mask;
XTextltemtxtltns[3];
Position Xx,YvY;
D mensi on wt h, daW h;
/*
* Here are sone forward declarations
*/
Xt Event Handl er Expose_Handl er ();
/~k
* Trust ne on the callback for now W wll discuss
* these things very soon. For now, this will get
* called when the widget it is associated with is
* destroyed.

*/
Xt Cal | backProc DestroyCB();
/*
* This is a utility routine needed in the client.
*/
voi d pai nt _text();

mai n(argc, ar gv)
int argc; char **argy;

{

W dget top, draw ng_area,;

i nt cnt;

top = Xtlnitialize(XbkShell Nane, XbkAppl d ass,

NULL, O, &ar gc, argv) ;
/~k
* \WW can use the Athena SinpleWdget to get just a w ndow.
* Sinmple is supposed to be a Meta wi dget (Non-instanciated);
* however, it has all of the basic functions we need froma
* Wi ndow, so we use it.
*/

drawi ng_area = Xt Creat eManagedW dget ("draw ngArea",

file:/l//H:/edonkey/docs/programming/1/2/ch05/057-061.html (3 of 5) [13/12/02 18:09:04]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

si npl ewi dt get d ass, top, NULL, 0);
Xt AddCal | back(draw ng_ar ea, Xt Ndest r oyCal | back, Destr oyCB, NULL) ;
/*
* Now install an event handler on drawi ng_area for exposures
*/
Xt AddEvent Handl er (dr awi ng_ar ea, Exposur eMask,
FALSE, Expose_Handl er, NULL) ;
Xt Real i zeW dget (t op) ;
/* Now we can |load the fonts and colors so we may use them */
for (cnt = 0; cnt < XtNunber(sone_fonts) ; cnt++)
fonts[cnt] =
XLoadQuer yFont (Xt Di spl ay(top), some_fonts[cnt]);
cMap = XbkGet Col or map(draw ng_area);
for (cnt = 0; cnt < XtNunber(sone_colors) ; cnt++)
XAl | ocNanedCol or (Xt Di spl ay(top), cMap,
some_col ors[cnt], &oodCol or s[cnt], & ot Needed) ;

/~k
* Notice one style of getting gcs.
*/
gcVal s. foreground = goodCol ors[1]. pi xel ;
gcVal s. background = goodCol or s[2] . pi xel ;
gcVal s. font = fonts[O]-fid;
val Mask = GCForeground | GCBackground | GCFont;
/*
* This is an Xt gc. It is not alterable !
*/
xt GC = Xt Get GC(drawi ng_area, val Mask, &gcVals);
Xt Mai nLoop() ;
}
/*
* \When we die, give back the resources we took
*/
Xt Cal | backPr oc DestroyCB(w, cal | Dat a, cl i ent Dat a)
W dget w,
caddr t call Data, clientDat a;
{
Xt Rel easeGC(xt GO) ;
XFreeGC(x| i bGC stylel);
XFreeGC(xl i bGC _styl e2);
/*
* Take the event handl er away
*/

Xt RenmoveEvent Handl er (W Exposur eMask,
FALSE, Expose_Handl er, NULL) ;
}
/*
* Now, the event handler for Exposure Events
*/
Xt Event Handl er Expose_Handl er (w, cl i ent Dat a, event)

file:/l//H:/ledonkey/docs/programming/1/2/ch05/057-061.html (4 of 5) [13/12/02 18:09:04]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

W dget W,
caddr _t client Dat a;
XEvent *event;
{
pai nt _text(w);
}

Previous [Table of Contents [Next

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/ch05/057-061.html (5 of 5) [13/12/02 18:09:04]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller
CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous (Table of Contents [Next

Thisreally isn’t such abad client. The event handler in this case simply calls the support routine
paint_text(). Thisiswhere al of the GC and different text-drawing things occur. In this function,
you are introduced to another mechanism called XtGetVaues(). Thisisthe way you get things out
of widgets.

Warning: The widget must cooperate with you. If it isn't written to give you the resource, you
won't get it. Thisis discussed in more detail in Chapter 6.

To get the value from a widget, you write the following lines:

n = 0,
Xt Set Arg(arg[n], Xt N\wi dt h, & dth); n ++;
Xt Get Val ues(w, arg, n);

Y ou tell the widget in the XtSetArg where to put the result. Notice that you need the address of the
spot where you want things. If you had just said “width,” you would have provided the value in
“width,” not the address (refer to Chapter 2).

The widget will have its get_values method invoked and the result will wind up in width:

voi d pai nt _text(w)
W dget w;
{
Arg ar g[MAXARGS] ;
int cnt;
/[* W need to re-initialize the Xlib GCs each time since we
* mess around with themlater on. Since this is the

* "expose" procedure we need to do it every tinme. Notice
* that the xtGC is done in the "main." The reason is

* that that gc never changes so there is no need to

* re-do it.

file:///H:/ledonkey/docs/programming/1/2/ch05/061-064.html (1 of 4) [13/12/02 18:09:05]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

*/

gcVal s. f or egr ound
gcVal s. background
gcVal s. font

val Mask

xl'i bGC _styl el

goodCol ors[1] . pi xel ;
goodCol or s[2] . pi xel ;
fonts[O0]-fid;
GCFor eground | GCBackground | GCFont;
XCreat eGC(Xt Di spl ay(w),
Xt W ndow(w) ,
val Mask, &gcVval s);

xI'i bGC _styl e2 XCreat eGC(Xt Di spl ay(w),
Xt W ndow(w) ,
0,0);
XSet For egr ound(Xt Di spl ay(w),
xI'i bGC _styl e2, goodCol ors[3] . pi xel);
XSet Backgr ound(Xt Di spl ay(w),
xl'i bGC_styl e2, goodCol ors[2] . pi xel) ;
XSet Font (Xt Di spl ay(w), xli bGC style2,fonts[1]-fid);

/* Get the widgets width so we can center our text in the area */
Xt Set Arg(arg[0], Xt N\wi dt h, &aW h) ;
Xt Get Val ues(w, arg, (Cardinal)1);

/* Draw the first string using xtGC */
wh = XText Wdt h(fonts[0], sone_text[O0],strlen(sonme_text[0]));
X = (daWh - wth)/2;

y = 20;
XDrawl mageStri ng(Xt Di spl ay(w), Xt W ndow(w) ,
xt GC, X, Y,

sone_text[0],strlen(sone_text[0]));
/* Ofset y by the previous font height using our tool, center
* the text, draw the string using the xlibGC stylel.
*/
y + XbkFont Hei ght (fonts[0]);
= XText Wdth(fonts[0], some_text[1],strlen(sonme_text[1]));
= (daWh - wth)/2;
XDr awl mageStri ng(Xt Di spl ay(w), Xt W ndow(w) ,
xI'i bGC stylel, x, vy,
sone_text[1l],strlen(sone_text[1]));

I =l

y
wt
X

/| * Repeat sanme except use xlibGC style2. */
y =y + XbkFont Hei ght (fonts[0]);
wth = XText Wdt h(fonts[1], sone_text[2],strlen(sonme_text[2]));
X = (daWh - wth)/2;
XDr awl mageStri ng(Xt Di spl ay(w), Xt W ndow(w) ,

file:///H:/edonkey/docs/programming/1/2/ch05/061-064.html (2 of 4) [13/12/02 18:09:05]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

xl'i bGC styl e2, x, vy,
sonme_text[2],strlen(some_text[2]));

/* Do the offset, now change the font. Notice, we can only do it
* to the Xlib-created GC.
*/

y =y + XbkFont Hei ght (fonts[1]);
XSet Font (Xt Di spl ay(w),
xI'1 bGC_style2, fonts[2]-fid),;
wth = XText Wdt h(fonts[2],sone_text[3],strlen(sonme_text[3]));
X = (daWh - wth)/2;
XDrawl mageStri ng(Xt Di spl ay(w), Xt W ndow(w) ,
xl'i bGC styl e2, x, vy,
sone_text[3],strlen(sone_text[3]));

/* Now change the foreground and the background using the Xlib
* functions provided to do that.
*/
y =y + XbkFont Hei ght (fonts[2]);
XSet For egr ound(Xt Di spl ay(w),
xl'i bGC _styl el, goodCol ors[0] . pi xel);
XSet Backgr ound(Xt Di spl ay(w),
xl'i bGC _styl el, goodCol ors[1] . pi xel);
XSet Font (Xt Di spl ay(w),
xl'i bGC stylel,fonts[1]-fid);
wh = XText Wdt h(fonts[1], sone_text[4],strlen(sonme_text[4]));
X = (daWh - wth)/2;
XDr aw mageSt ri ng(Xt Di spl ay(w), Xt Wndow(w) ,
xl'i bGC stylel,Xx,Yy,
sone_text[4],strlen(sone_text[4]));

/* Finally, set up the "conpound" text, center it, then drawit.

XSet For egr ound(Xt Di spl ay(w),
xl'i bGC _styl el, goodCol ors[1] . pi xel);

y =y + XbkFont Hei ght (fonts[0]);

wth = 0;

for(cnt = 0;cnt < XtNunber(sone_strings); cnt++) {
txtltns[cnt].chars = sone_strings[cnt];
txtltnms[cnt].nchars = strlen(sone_strings[cnt]);
txtltns[cnt].delta = O;
txtltms[cnt].font = fonts[cnt]->fid;
wh = wh + XText Wdt h(fonts[cnt],

sone_strings[cnt],strlen(sonme_strings[cnt]));

file:///H:/edonkey/docs/programming/1/2/ch05/061-064.html (3 of 4) [13/12/02 18:09:05]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

}
X = (daWwh - wth)/2;
XDr awText (Xt Di spl ay(w) , Xt W ndow(w) ,
xI'i bGC_stylel, x,y,txtltnms, Xt Nunber (sone_strings));
}

That was rather long, but it killed several birds with one stone. For the most part, the use of GCs
will be taken care of by the widgets you are using. If you are like most application writers, you've
just learned more about GCs than you probably need to know.

Note that the resource manager could have been used to avoid using the Xlib primitives for
loading the fonts and colors. If you want some practice, rewrite this client using the resource
manager in place of the primitives.

Previous (Table of Contents [Next

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch05/061-064.html (4 of 4) [13/12/02 18:09:05]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller
CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous [Table of Contents |[Next

5.4.9. Translations, Actions, and Callbacks

Using event handlers hasits place. In the preceding example, it wasn't such abad ideato use an
event handler for dealing with exposures, but the Intrinsics were created to give application writers
quite a bit of flexibility, and event handlers are not very flexible.

Fortunately, there is another way of handling events. This mechanism uses three components:
callbacks, action procedures, and the trans ation manager.

5.4.9.1. Callbacks

Every widget has defined at |east two sets of callback lists: standard (XtNcallback) and destroy
(XtNdestroyCallback). | say at least these two, because some widgets add more. The OSF/Motif set
iIsagood example. It uses callbacks for several kinds of activities, such asfocus-in and -out events.
Consider the phrase “callback list.” It isjust that, alist of proceduresto call back. In many cases,
the callback list contains a single procedure, but there could be several. One thing to be aware of is
that the Intrinsics do not guarantee the sequence in which the procedures in the list are called, so
don't rely onit.

In the “XtandGC” client, you installed a destroy callback on one of the widgets. Thisinstalled a
procedure for the Intrinsics to invoke when the widget was being destroyed. Destroy Callbacks are
used mainly to do some clean-up chores such as freeing GCs or releasing dynamically allocated
memory. The callback isinstalled as follows:

Xt AddCal | back(draw ng_ar ea, Xt Ndest royCal | back, Dest r oyCB, NULL) ;
The four arguments are

1. Widget.

2. Callback list.

3. Calback procedure name.
4. Datato give to the callback.

file:///H:/edonkey/docs/programming/1/2/ch05/064-068.html (1 of 6) [13/12/02 18:09:07]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

The “widget” represents the one whose callback list is to have the callback procedure installed on it.
“Callback list” isthe resource name of the list that will be added to. “Callback procedure name” is
the Intrinsics-specific callback procedure. The last argument is the data that you want to give to the
callback when it isinvoked.

To demonstrate the use of the standard callback (XtNcallback), let’s create a client that uses this
mechanism. This client displays alist of items, and when you click the mouse button on an item, a
callback will be invoked and the selected item displayed in alabel. The client is shown in Figure 5-
7. The codefor it isasfollows:

/* FI LE: xaw i st.c
*/
#i ncl ude "XbkUtil.h"
#defi ne XbkShel | Name "xaw i st "
#defi ne xbkAppl C ass “Xawl i st”

/* W will use three widgets: the Athena Form w dget as a
* container, the list widget, and the | abel w dget.

*/

#1 ncl ude <X11/ Form h>

file:///H:/edonkey/docs/programming/1/2/ch05/064-068.html (2 of 6) [13/12/02 18:09:07]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

Figure5-7 Xawlist.

#i ncl ude <X11/List.h>

#i ncl ude <X11/ Label . h>

/*
* This is the forward decl arati on of our call back
* [

file:///H:/edonkey/docs/programming/1/2/ch05/064-068.html (3 of 6) [13/12/02 18:09:07]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

static void selection_callback();

/*

* W use a static initialization for our |list elenments.
*/

static String str[] = {

" Appl e", " AT&T", "Bul | ", " Cal Conp", " CDC",
"Data General ", "DEC', "Kodak", "Fujitsu",
"HP", "I BM,"NEC',"NCR',"Prime","Ri ch",
"Sequent ", " Si enens","Silicon G aphics",
"Sony", "Sun", " Tecktronix","TlI","Unisys",
"Wang", " Xer ox"};
W dget | Dbl; /* W need to nmake it global so the callback can
* use it. */
mai n(ar gc, argv)
int argc; char *argv[];

{
W dget t op, cont ai ner, 1st;
int i;
Arg args[?2];
top =

Xtinitialize(XbkSheli Nanme, XokAppl d ass, NULL, O, &ar gc, argv) ;
/* We introduce the FormiWdget. It is a nenber of the constraint
* class. Essentially, it provides additional |ayout itens

* for each of its children and then nmanages the children with
* those itens (constraints).

*/

cont ai ner = Xt Creat eManagedW dget (" cont ai ner",
f or MV dget d ass, t op, NULL, (Cardi nal) 0) ;

Xt Set Arg(args[0], Xt Nl'i st,str);
Xt Set Arg(args[1], Xt Nnunber Stri ngs, XtNunber(str));
1st = Xt Creat eManagedW dget ("list",
| i st Wdget d ass, cont ai ner, args, (Cardi nal) 2);

To install a callback you sinply can wait until the wi dget is
created and then add the call back proc to the list using

Xt AddCal | back()

If you prefer, you could create a callback list, then pass it as
an argunent to the creation nmechanism In nost instances we

wi |l have a single callback proc installed so the post-creation
net hod i s accept abl e.

L S S I D

Xt AddCal | back(1st, Xt Ncal | back, sel ecti on_cal | back, NULL);

~~
*

file:/l//H:/edonkey/docs/programming/1/2/ch05/064-068.html (4 of 6) [13/12/02 18:09:07]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

* % * X X

/

*

*

Cal | backs do not get called automatically. Sonething needs to
I nvoke themusing XtCall Cal |l backs(). W will discuss the nmagic
in the next client we wite. For now assune the Intrinsics

"W zard" does the trick.

/* This argunent is one of those constraints that the FormN dget
has given us. | want the I bl w dget to be placed bel ow the
first wdget. To do that, | sinply attach the constraint

*

*/

L I . S R R N N N TR N N S S S

/

Xt NfronmVert to | bl and the FormW dget does the rest.

Xt Set Arg(args[0], Xt NfromVert, 1st);
Xt Set Arg(args[1], Xt Nl abel , "No sel ection yet !!");
| bl = Xt Creat eManagedW dget ("1 bl ",
| abel W dget d ass, cont ai ner, args, (Cardi nal) 2);
Xt Real i zeW dget (t op) ;
Xt Mai nLoop() ;

This is our callback procedure. Al callbacks are witten the
sane exact way. That is, there are three argunents:

w - the widget that invoked the call back

client_data - an address of where to put data that
the call back will give to the client.

call _data - an address of where the client put data

for the call back.

Both client _data and call data are "opaque" pointers. Recalling
fromthe review in Chapter 2, the opaque pointer can assune the
role of several things. In the case of the callback for the

Li st Wdget, the widget witer has defined call _data as a
pointer to XtListReturnStruct.

When the magi ¢ i nvokes the call back, it
pl aces sone information into the nenbers of the structure, then
passes it to the call back

static void selection_callback(w client_data, call_data)

S~

*

*

W dget w;

caddr t *client data;
XtLi st ReturnStruct *call _dat a;

We want the callback to fill in the "Ibl' w dget with the

file:///H:/edonkey/docs/programming/1/2/ch05/064-068.html (5 of 6) [13/12/02 18:09:07]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

* information in the selection. Notice that 'Ibl' is a gl obal
* vari abl e.
*/

Arg args[1];
Xt Set Arg(args[0], Xt Nl abel , (Xt ArgVal)cal | _data-string);
Xt Set Val ues(| bl , args, (Cardinal)1);

}

The important pointsin this client are the installation of the callback, the writing of the callback (an
Intrinsics-specific procedure), the use of the formWidgetClass, and the use of XtSetVaues().

Whenever you need to update resources in awidget, you use the Intrinsics mechanism
XtSetVaues(). It isvery easy to use; you simply set up an argument list just like the one for
XtGetVaues(), except you provide the value of the resource as opposed to the address of the
resource. After filling out your list, you ssmply passit to XtSetValues() and the Intrinsics do the
rest.

Warning: Just as XtGetValues() had a“gotcha’ so too does XtSetValues(). It's the same one: The
widget must be written to allow you to set the resources. Well then, how will you know if you can
or can't set resources? Hopefully, the widget writer gave you an accurate facts sheet, or better till,
the source code (Athenais free, OSF/Motif costs alittle money). In Chapter 6, you will see how a
widget handles the XtSetValues()/XtGetValues() requests.

Previous |Table of Contents INext

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch05/064-068.html (6 of 6) [13/12/02 18:09:07]

file:///reference/crc00001.html

file:///H:/edonkey/docs/programming/1/2/ch05/068-073.html

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous [Table of Contents |[Next

5.4.9.2. Translations and Actions

This use of callbacksisfairly nice stuff, but it would be nice to know how the Intrinsics “wizard”
pulls off these tricks. Y ou know XtCallCallbacks() is used, but who callsit? Y ou can see for sure
that it isn't the client. Or isit?

The answer is“No.” The widget does the calling. How is this done? To demonstrate, you will add a
keyboard interface to the “xawlist” client. That is, you would like to move around the list using the
Up and Down arrow keys, then make the selection using the Return key. This client isshown in
Figure 5-8. Its code is as follows:

/* FILE: xaw i st TM ¢
*/
#i ncl ude " XbkUtil . h"
#def i ne XbkShel | Nane "xaw i st TM'
#defi ne XbkAppl C ass "Xaw i st TM'

#i ncl ude <X11/ Form h>

file:/l//H:/edonkey/docs/programming/1/2/ch05/068-073.html (1 of 6) [13/12/02 18:09:10]

file:///H:/edonkey/docs/programming/1/2/ch05/068-073.html

wawlist

Figure5-8aand b XawlistTM.

#i ncl ude <X11/List.h>

#i ncl ude <X11/ Label . h>

/*
* This is the forward decl aration of our call back
*/

static void selection_call back;

/* In xawist.c we introduced the concept of the call back procedure
* and hinted at sone magi ¢ going on behind the scenes. In this

file:///H:/edonkey/docs/programming/1/2/ch05/068-073.html (2 of 6) [13/12/02 18:09:10]

file:///H:/edonkey/docs/programming/1/2/ch05/068-073.html

* client we introduce the translation nechani smfor getting things
* done.

*

*/ Transl ations are ways of perform ng actions based on sone

* events. We sinply define the action to watch for and the
action(s) to take when the event occurs. This is much easier
than witing the | arge nessy event-handling swtch statenent
that you see in Xl ib-based clients.

In the |istWdgetC ass you woul d see a translation table that

ki cks off an ActionProc (the type of function that is invoked by
the transl ati on manager) called Notify when the nobuse button is
pressed. Notify then invokes the XtCall Call backs on the w dget.
That is the nmagi c behind the scenes that causes the call backs
regi stered to be invoked.

As in the case of the call back procedures, we nust first
forward-decl are the functions. Notice we are sticking with the
safe way of declaring this kind of function by using

Xt Acti onProc.

/

Xt Acti onProc Nextltem(), KeyNotify();

/* The next thing we will have to do is set up an action table.

* Essentially, we need to map a string representation of a

* function to the real thing. So we provide the string used in

* the translation table, dropping the paranmeter part and the

* function the translation nmanager will invoke.

*/

Xt ActionsRec listAxns[] = {

{"Nextlten, Nextlten},

{"KeyNotify", KeyNotify},

{NULL, NULL},

3

/* The next step is to define a translation table. It is a static
* string with a defined format. The first part is the event you
want to watch. You then place a sem col on between the event and
the list of action procedures that will be called (in our case
we call Nextltem passing a paraneter) then separate each entry
with a\n. The '"\' after the \n is used to instruct the
conpiler that we are continuing the |ine.

/

static String list_actions =

"#override \

<Key>Up: Nextlten(Up) \n\

<Key>Down: Next |t em Down)\ n\

L T . R S T T R T S N T S

L I S R

file:///H:/edonkey/docs/programming/1/2/ch05/068-073.html (3 of 6) [13/12/02 18:09:10]

file:///H:/edonkey/docs/programming/1/2/ch05/068-073.html

<Key>Ret urn: KeyNotify()";

/* Finally, we need to define a variable that wll contain the
* parsed translations.
*/
Xt Tr ansl ati ons [i stTrans;
static String strr[] = {
"Appl e, "AT&T", "Bull", "Cal Conp", "CDC'
"Data Ceneral", "DEC', "Kodak", "Fujitsu",
"HP', "IBM, "MEC', "NCR', "Prinme", "Rich",
"Sequent", "Sienens", "Silicon G aphics",
"Sony", "Sun", "Tecktronix", "TI", "Unisys",
"Wang", "Xerox"};
W dget |Dbl; /* Need to nmake it global so the call back can
* use it.
*/

mai n(ar gc, ar gv)
int argc; char *argv[];

{
W dget t op, cont ai ner, 1st;
I nt [
Arg argst|[3];
top = Xtlnitialize(XbkShel |l Narme, XbkAppl d ass,
NULL, O, &ar gc, argv) ;
/*
* Install our new actions and conpile the |ist.
*/
Xt AddActi ons(li st Axns, Xt Nunber (| i st Axns));
| i st Trans = Xt ParseTransl ati onTabl e(li st _actions);
cont ai ner = Xt Cr eat eManagedW dget (" cont ai ner",
f ornM dget d ass, top, NULL, (Cardi nal)0);
Xt Set Arg(args[0], XtNl'i st,str);
Xt Set Arg(args[1], Xt Nnunber Stri ngs, Xt Nunber(str));
1st = Xt Creat eManagedWdget ("list",|istWdgetd ass,
cont ai ner, args, (Cardi nal) 2);
Xt AddCal | back(1st, Xt Ncal | back, sel ecti on_cal | back, NULL);
/*
* Now i nstall the new translations overriding any that nay be
* defi ned.
*/

Xt OverrideTransl ati ons(1st, i stTrans);
Xt Set Arg(args[0], Xt NfromVert, 1st);

file:///H:/ledonkey/docs/programming/1/2/ch05/068-073.html (4 of 6) [13/12/02 18:09:10]

file:///H:/edonkey/docs/programming/1/2/ch05/068-073.html

Xt Set Arg(args[1], Xt Nl abel , "No sel ection yet !'!");
| bl = Xt Creat eManagedW dget ("1 bl ",
| abel wi dget d ass, cont ai ner, args, (Cardi nal) 2);
Xt Real i zeW dget (t op) ;
Xt Mai nLoop();

}

/*
* These are the Action Procs. These are Intrinsic-specific
* functions and as such have predefined nmechani sns for witing
* them
*/
Xt Acti onProc KeyNotify(w, event, param num par ans)
W dget w,
XEvent *event;
String *param
Car di nal num _par ans;

Xt Li st ReturnStruct *now = Xt Li st ShowCurrent (w);
Xt Cal | Cal | backs(w, Xt Ncal | back, now);
}
typedef enum{Up = 'U ,Down ='"D } Axn;
Xt Acti onProc Nextltem(w, event. param num par ans)
W dget w;
XEvent *event;
String *param
Car di nal num par ans;

AXn action;
Arg arg[2];
Xt Li st ReturnStruct *now,
int nstr,idx;
action = (Axn)paran{0][0];
/* By using the C enumtype it is easy to determne the action to

* be taken. You will notice that the paraneters passed are
* strings. In our case we pass either Up or Down.
*/

if (islower((char)action))
action = (Axn)toupper((char)action);
/* Now we can check on the action and set highlight the next I|ist

* item
*/

now = Xt Li st ShowCurrent (w);

I dX = now >i ndex;

Xt Set Arg(arg[0], Xt Nnunber Strings, &str);

file:///H:/edonkey/docs/programming/1/2/ch05/068-073.html (5 of 6) [13/12/02 18:09:10]

file:///H:/edonkey/docs/programming/1/2/ch05/068-073.html

Xt Get Val ues(w, arg, 1) ;
swi tch(action) {

case Up:
XtListH ghlight(w, (idx == 0) ? --nstr : --idx);
br eak;
case Down:
XtListH ghlight(w, (idx == --nstr) ? 0 : ++idx);
br eak;
}
}
static void selection_callback(w, client_data, call _data)
W dget w;
caddr _t *client _data;
XtLi st ReturnStruct *call _dat a;
{
Arg args[1];
Xt Set Arg(args[0], Xt Nl abel , (Xt Argval)cal | _data->string);
Xt Set Val ues(| bl , args, (Cardi nal)1);
}

The important pointsin this client are the translation table definitions, the installation of new
actions, the parsing of the translation table, the installation of the new translations, and the action
procedures.

Previous [Table of Contents INext

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch05/068-073.html (6 of 6) [13/12/02 18:09:10]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents | Next

Every widget has provisions for one trandation table. The translation table may be
provided either in the source (asin “xawlistTM”) or through the resource database
(discussed in Chapter 9). The Xt Intrinsics manual describes the syntax of the trandation
tablein detail, but you need to remember afew things:

1. : <Key> arefersto the lowercase a.

2. <Key> arefersto either lowercase or uppercase a.

3. If you want to define a key, simply use the definition of the keysym in
keysymdef.h and remove the “XK _.” XK _a becomesaand XK t i | de becomes
tilde.

4. A tilda(~) means “not this.” So if you saw ~Al t <Key>f : Actionit reads“do
the Action when any key is pressed with the ‘f’ key except Alt.”

5. More specific entries must comefirst in the list.

6. You may use shorthand for repeated events. For example, <Bt nl Down>,

<Bt nl Down>, <Btnl Down>: Muilti dick() could bereplaced by
<Bt nl Down>(3): Multidick() .

7. The caret (™) means Ctrl, the dollar sign ($) means Meta, and the backslash (\) is
used to indicate a quote.

Table 5-5Key and Button Abbreviations

Abbreviation What It Means

Ctrl KeyPress and Ctrl modifier

Meta KeyPress and Meta modifier

Shift KeyPress and Shift modifier

Alt KeyPress and Alt modifier
Btn[1,2,3,4,5]Down ButtonPress with detail specified
Btn[1,2,3,4,5]Up ButtonRelease with detail specified
Btn[1,2,3,4,5]Motion MotionNotify with button modifier

file:/l//H:/edonkey/docs/programming/1/2/ch05/073-075.html (1 of 3) [13/12/02 18:09:11]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

BtnMotion MotionNotify with any button

Table 5-6Event Types for Trandation Tables

Usein Table Event Corresponding to Entry
Key KeyPress
KeyDown KeyPress
KeyUp KeyRelease
BtnDown ButtonPress
BtnUp ButtonRelease
Motion MotionNotify
PtrMoved MotionNotify
MouseMoved MotionNotify
Enter EnterNotify
EnterWindow EnterNotify

L eave LeaveNotify

L eaveWindow L eaveNotify
Focusin FocusIn
FocusOut FocusOut
Keymap KeymapNotify
Expose Expose
GrExpose GraphicsExpose
NoExp NoExpose
Visible VishilityNotify
Create CreateNotify
Destroy DestroyNotify
Unmap UnmapNotify
Map MapNotify
MapReq MapRequest
Reparent ReparentNotify
Configure ConfigureNotify
ConfigureReq ConfigureRequest
Grav GravityNotify
ResReq ResizeRequest

file:///H:/edonkey/docs/programming/1/2/ch05/073-075.html (2 of 3) [13/12/02 18:09:11]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

Circ CirculateNotify
CircReq CirculateRequest
Prop PropertyNotify
SelClr SelectionClear
SelReqg Sel ectionRequest
Select SelectionNotify
Clrmap ColormapNotify
Message ClientMessage
Mapping MappingNotify

Place the less-than and greater-than signs around the event that you are watching for. So, if
you were interested in the ColormapNotify event, you would have the following table
entry:

<C r map>: DoSonet hi ngAbout Col or map()
5.4.10. Alternative Procedures

Now that you are an expert at setting and dealing with events, you need to explore three
additional units of work that can be done using the Intrinsics. the timeout procedure, the
alternative input procedure, and the background work procedure.

Previous | Table of Contents Next

Copyright © CRC Press LLC

file:/l//H:/edonkey/docs/programming/1/2/ch05/073-075.html (3 of 3) [13/12/02 18:09:11]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents |Next

5.4.10.1. Timeout Procedures

There are times in applications when you would like to have a reminder to do something. For instance,
suppose you wanted to reread a database every five minutes. This could be a separate process running

that would sleep for that time, then wake up and perform the job. In Xt this job could be performed by
XtTimeoutProc.

To demonstrate this, let’s create a client that uses this function. The client is called “alarm” and will use
several of the mechanisms you have already used in previous clients. One neat feature is added to this
client: the ability to display aclock. Thisisvery easy to do since the Athena Widget Set has a
clockWidgetClass (if you' ve seen xclock, you’ ve seen thiswidget in action). This client smply lets the
user set an alarm to ring at a specific time.

To add atimeout procedure use
I d = Xt AddTi neCut (del ay, proc, dat a)

where delay is the number of milliseconds to wait before timing out, proc refers to the Intrinsics-specific
timeout procedure, and data is information to give to the procedure. To remove this procedure, use

Xt RenmoveTi neQut (i d)

whereid refersto an id returned from a previous XtAddTimeOut() call. Thisclient is shown in Figure 5-
9. The code is given here:

/[* FILE: alarmc
*/
[* Qur utility header file */
#1 ncl ude " XbkUtil . h"
/* Wdget headers to be used in this client */
#i ncl ude <X11/ Form h>
#1 ncl ude <X11/ Box. h>
#1 ncl ude <X11/d ock. h>

#i ncl ude <X11/ Command. h>

file:/l//H:/ledonkey/docs/programming/1/2/ch05/075-083.html (1 of 9) [13/12/02 18:09:14]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

#i ncl ude <X11/ Label . h>

#defi ne XbkShel | Nane "al ar nf
#defi ne XbkAppl d ass " Al ar nf

/* W set up a structure that will have this applications default.
*/
struct _nyAppRes {

Bool ean vi ewCl ock;

} nyAppRes;

XrnmOpti onDescRec nyCndQpts|[] = {
{ "-viewd ock", "*viewd ock", XrnoptionNoArg, "TRUE" },
1

#define OFFSET(field) XtOfset(struct _myAppRes*, field)
static Xt Resource nyAppResOpts[| = {

{"viewd ock", "Viewd ock", XtRBool ean, sizeof(Bool ean),

OFFSET(vi ewd ock), Xt RStri ng, "Fal se"},

3
#undef OFFSET
/* Here are a bunch of call backs */
Xt Cal | backPr oc set_hour(),set_mnute(),set_anmpm),set_alarm);

5:23 PM

file:///H:/edonkey/docs/programming/1/2/ch05/075-083.html (2 of 9) [13/12/02 18:09:14]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

Figure5-9 Alarm.

/* This is a forward declare for the time out proc */

Xt Ti mer Cal | backPr oc Tel | Them();
#defi ne ALARVRANG "Alarm Rang !'!"
#defi ne DI SABLE "Alarmis Of"
#defi ne AM 0
#defi ne PM 1
/* Set up the globals for use in the callback routines.
*/
struct tmtm *localtinme();
| ong tv;
char scratch[10];
/* We need to keep around sone 'state' data. */
struct {
Bool ean al ar net ;
i nt hour ;
i nt mn;
i nt anO pm
Xtlntervalld id;
} al arnDat a;

W dget setLbl;

mai n(ar gc, ar gv)
i nt argc;
char **argv;

W dget top, container, cl k,
button_cont ai ner, hr, m n, am pm set;

char scrat ch[10];
Arg ar g[MAXARGS] ;
int n;

top = XtInitialize(XbkShel | Nanme, XokAppl C ass,

my CndOpt s, Xt Nunber (nyCndQOpt s) ,
&argc, argv);

/* We've used this before */

Xt Get Appl i cati onResources(top, &wyAppRes, nyAppResOpt s,
Xt Nunmber (myAppResOpt s), NULL, 0);
/* Now if the user wants the clock, then create a container to
* hold the clock and the button box. OQtherw se, just create the
* button box.
*/

file:///H:/edonkey/docs/programming/1/2/ch05/075-083.html (3 of 9) [13/12/02 18:09:14]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

i f (myAppRes. vi ewd ock) {

cont ai ner =
Xt Cr eat eManagedW dget (" cont ai ner", boxW dget C ass,
t op, NULL, 0) ;
/* Can you believe this is all we had to do to get an anal og
cl ock? */
cl k = Xt Creat eManagedW dget ("cl k", cl ockW dget C ass,
cont ai ner, NULL, 0);
button_cont ai ner =
Xt Cr eat eManagedW dget (" butt on_cont ai ner ",
f or MW dget Cl ass, cont ai ner, NULL, 0) ;
} else {
button_contai ner =
Xt Cr eat eManagedW dget (" butt on_cont ai ner ",
f or MW dget Cl ass, t op, NULL, 0) ;
}

(void) time(&tv);
tm= *localtinme(&v);
/*
* Set the alarmdata
*/
al ar nDat a. al ar nSet = Fal se;
al arnDat a. hour = (tmtm_hour > 12) ? tmtmhour - 12 :
tmtm hour;
alarmData.min = tmtmmn;
alarnData. anOrpm = (tmtm_hour > 12) ? PM: AM

nenset (scratch,'\0', si zeof (scratch));
if (al arnDat a. hour <= 9)

sprintf(scratch, "0%d", al ar nDat a. hour) ;
el se

sprintf(scratch,"%2d", al arnDat a. hour) ;
n = 0,
Xt Set Arg(arg[n], Xt Nl eft, Xt Chai nLeft); n++;
Xt Set Arg(arg[n], Xt Nl abel , scratch); n++;
hr = Xt Creat eManagedW dget (" hour", commandW dget d ass,

button_contai ner, arg, n);

Xt AddCal | back(hr, Xt Ncal | back, set _hour, NULL) ;

nmenset (scratch,'\0', si zeof (scratch));
if (alarnData. mn <= 9)

sprintf(scratch, "0%d", al arnData. m n);
el se

sprintf(scratch,"%2d", al arnData. mn);
n = 0;
Xt Set Arg(arg[n], Xt NfronmHori z, hr); n++;

file:///H:/edonkey/docs/programming/1/2/ch05/075-083.html (4 of 9) [13/12/02 18:09:14]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

Xt Set Arg(arg[n], Xt Nl abel , scratch); n++;

m n=Xt Cr eat eManagedW dget (" m nut e", conmandW dget C ass,
button_contai ner, arg, n);

Xt AddCal | back(m n, Xt Ncal | back, set _m nut e, NULL) ;

menset (scratch, '\ 0", si zeof (scratch));

sprintf(scratch, (al arnbData. anOrpm==PM ? "PM : "AM);

n = 0;

Xt Set Arg(arg[n], Xt NfromHori z, mi n); n++;

Xt Set Arg(arg[n], Xt Nl abel , scratch); n++;

am pm = Xt Cr eat eManagedW dget ("am pni', commandW dget d ass,
butt on_cont ai ner, arg, n);

Xt AddCal | back(am pm Xt Ncal | back, set _anmpm NULL) ;

n = 0,

Xt Set Arg(arg[n], Xt NfromVert, hr); n++;

set = Xt Creat eManagedW dget ("set", commandW dget Cl ass,

butt on_cont ai ner, arg, n);

Xt AddCal | back(set, Xt Ncal | back, set _al arm NULL) ;

n = 0,

Xt Set Arg(arg[n], Xt NfronHori z, set); n++;

Xt Set Arg(arg[n], Xt NfronVert, am pm); n++;

Xt Set Arg(arg[n], Xt Nl abel , DI SABLE) ; n++;
setLbl = Xt Creat eManagedW dget (" set Label ", | abel W dget d ass,
button_contai ner, arg, n);

Xt Real i zeW dget (t op);

Xt Mai nLoop();
}
/| * These are the call backs that increnent the nunber and toggle
* AM PM
*/
Xt Cal | backProc set hour(w, call _data,client_data)

Wdget w;, caddr_t call _data,client_data,;
{

Arg arg[1];

al arnDat a. hour = (al arnData. hour == 12) ? 1 : al arnDat a. hour
+ 1;

menset (scratch, '\ 0", si zeof (scratch));

i f (al arnDat a. hour 9)

sprintf(scratch, "0%d", al ar nDat a. hour) ;
el se
sprintf(scratch,"%2d", al ar nDat a. hour) ;

Xt Set Arg(arg[0], Xt Nl abel , scratch);

Xt Set Val ues(w, arg, (Cardi nal) 1);
}
Xt Cal | backProc set_m nute(w, call _data,client_data)

W dget w, caddr_t call _data,client_data;

{

file:///H:/edonkey/docs/programming/1/2/ch05/075-083.html (5 of 9) [13/12/02 18:09:14]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

Arg arg[1];
alarnmData.min = (alarnData.mn == 59) ? 0 : alarnData.mn + 1;
menset (scratch, '\ 0", si zeof (scratch));
if (alarnmbData. mn <= 9)
sprintf(scratch,"0%ld", al arnData. m n) ;
el se
sprintf(scratch, "9%2d", al arnDat a. m n);
Xt Set Arg(arg[0], Xt Nl abel , scratch);
Xt Set Val ues(w, arg, (Cardi nal)1);
}
Xt Cal | backProc set _anpm(w, call data, client_data)
Wdget w, caddr_t call _data,client_data,;
{

Arg arg[1];
swi tch(al arnDat a. anO pm) {
case PM
menset (scratch,'\0', si zeof (scratch));
sprintf(scratch,"AM");
Xt Set Arg(arg[0], Xt Nl abel , scratch);
Xt Set Val ues(w, arg, (Cardi nal) 1);
al ar nDat a. anOr pm = AM
br eak;
defaul t:
nmenset (scratch,'\0', si zeof (scratch));
sprintf(scratch,"PM);
Xt Set Arg(arg[0], Xt Nl abel , scratch);
Xt Set Val ues(w, arg, (Cardi nal) 1);
al ar nDat a. amOr pm = PM

br eak:

}
/~k
* This is where we use the tinmeout. If the alarmwas previously
* set we renove the tineout, if not we add it.
*/
Xt Cal | backProc set _alarm(w, cal |l _data, client_data)
W dget w, caddr_t call _data,client _data;
{
Arg arg[1];
unsi gned | ong del ay, hr_del ay;
| ong m n_del ay;
if (al arnbData. al arnet) {
Xt RenoveTi neCut (al arnDat a. i d);
al ar nDat a. al arnSet = Fal se;
nmenset (scratch, '\ 0", si zeof (scratch));
sprintf(scratch, " %", Dl SABLE) ;

file:///H:/edonkey/docs/programming/1/2/ch05/075-083.html (6 of 9) [13/12/02 18:09:14]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

Xt Set Arg(arg[0], Xt Nl abel , scratch);
Xt Set Val ues(setLbl,arg, (Cardinal)l);
} else {
(void) tinme(&tv);
tm= *localtinme(&v);
swi tch(al arnDat a. anOr pm {
case PM
/* This says, if the current tine is greater than the al armrequest
* time then set the del ay.
*/
If ((tmtmhour > 12) &&
((tmtm hour == al arnData. hour+12) &&
(tmtmmn < alarnData.mn)) ||
(tmtm_hour < alarnData. hour+12)){
hr _del ay = (unsigned | ong)
(tmtm hour- (al arnDat a. hour +12)) *60;
m n_delay =
(tmtmmn - alarnData. mn);
delay = hr_delay +
(mn_delay < 0 ? mn_delay*-1 :
m n_del ay) ;
al ar nDat a. al arnSet = True;
/* Here it is! We install the timeout to ring at sone del ay
* found by that nasty |ogic above. Since the tinmeout proc

* requires mlliseconds we need to do the nultiplication
* to instruct the Intrinsics.
*/

alarnData.id =
Xt AddTi meCut (del ay*60* 1000,
Tel | Them NULL) ;
menset (scratch, '\ 0", si zeof (scratch));
if (alarnData. mn <= 9)
sprintf(scratch, "%d: 0%dd PM,
al ar nDat a. hour, al arnDat a. m n) ;
el se
sprintf(scratch, "%2d: 9%2d PM',
al ar nDat a. hour, al arnDat a. mi n) ;
Xt Set Arg(arg[0], Xt Nl abel , scratch);
Xt Set Val ues(setLbl,arg, (Cardinal)1);

} else {
BEEP(W) ;
BEEP(W) ;
return;
}
br eak;
case AM

file:///H:/edonkey/docs/programming/1/2/ch05/075-083.html (7 of 9) [13/12/02 18:09:14]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

if ((tmtmhour < 12) &&

((tmtm hour == al arnDat a. hour +12) &&
(tmtmmn < alarnData.mn)) ||
(tmtm _hour < al arnData. hour +12)) {

hr _delay = (unsigned | ong)

(tm tm hour-(al armDat a. hour +12)) *60;
mn_delay = (tmtmmn - alarnData.mn);
delay = hr_delay +

(mn_delay < 0 ? mn_delay*-1 :
m n_del ay) ;
al arnDat a. al ar nSet = Tr ue;
alarnData.id =
Xt AddTi neCut (del ay*60* 1000,
Tel | Them NULL) ;
menset (scratch, '\ 0", sizeof (scratch));
sprintf(scratch, "%2d: 9%2d AM',
al ar nDat a. hour, al ar nDat a. m n) ;
Xt Set Arg(arg[0], Xt Nl abel , scratch);
Xt Set Val ues(setLbl,arg, (Cardinal)1l);
} else {

BEEP(W) ;

BEEP(W) ;

return;

}
br eak;
}/ *endof swi t ch*/
}/ *endofif*/

}
/*

* And here is the actual code! Notice, it is very

* trivial. In our case, we issue a beep and change the | abel
* to ALARVMRANG.

*/

Xt Ti mer Cal | backProc Tel |l Them(cal | _data, i d)
caddr _t call data; Xtlntervalld id;

{
Arg arg[1];
al arnDat a. al ar nSet = Fal se;
menset (scratch,'\0', si zeof (scratch));
sprintf(scratch, "%", ALARMRANG ;
Xt Set Arg(arg[0], Xt Nl abel , scratch);
Xt Set Val ues(setLbl,arg, (Cardinal)1);
BEEP(set Lbl) ;
}

file:///H:/ledonkey/docs/programming/1/2/ch05/075-083.html (8 of 9) [13/12/02 18:09:14]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

The three most important aspects of this client are the easy addition of a*“fancy” display by smply

creating an instance of its widget (clockWidgetClass), the installation of the timeout, and the removal of
the timeout.

Y ou used XtAddTimeOut(delay,proc,data) to install the timeout and return itsid. Notice that delay isin
milliseconds, proc is XtTimeoutCallbackProc, and datais for passing any information to the proc. To
remove atimeout, use XtRemoveTimeOut(id), where id is returned from a previous XtAddTimeOut()
call. Figure 5-10 shows the results at three different stages.

9:05 PM

Figure 5-10a, b, and ¢ Alarm clocks.

Previous | Table of Contents |Next

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch05/075-083.html (9 of 9) [13/12/02 18:09:14]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller
CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents INext

5.4.10.2. Background Work Procedures

There are times when you need to have some additional work performed while you wait for
events. After all, you could wait around for quite some time before the next event arrives. If you
needed to do some work and still handle events, you could run into some serious problems
because you didn’t give either enough time.

This problem of giving work to both event processing and application processing is partly
addressed by the Intrinsics background work procedure. Essentially, you install awork procedure
similarly to the way you did it for the timeout procedure.

To demonstrate, let’s create aclient called “calcit.” This client displays alist of securities
(stocks). When you click on the issue, you will kick off a background work procedure that reads
afile, calculates the average high, low, and closing price, and then displays the results. While the

work is being performed, you set the list to be insensitive, effectively disabling it by using the
XtSetSensitive() function.

The work procedure in this client is re-entrant or state-driven. It isimportant to write your work
procedures this way since you do not want to do too much work before you check the event
queue.

To add awork procedure, use the following:
Id = Xt AddWwor kProc(proc, data);

where “proc” isthe Intrinsics-specific work procedure name, and “data’ is information to give to
the work proc. To remove a procedure, use this:

Xt RenoveWor kProc(id);

where “id” refersto theid returned from a previous XtAddWorkProc() call. The client is shown
in Figure 5-11. The code is asfollows:

file:///H:/edonkey/docs/programming/1/2/ch05/084-089.html (1 of 7) [13/12/02 18:09:16]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

/* FILE: calcit.c
*/

/[* Qur utility header file */
#i ncl ude "XbkUtil.h"

—_— e s e ——

| caleit

B DEC APPL SUNW HP

Reading File ...

Figure5-11 Cacit.

/* Wdget headers to be used in this client */
#i ncl ude <X11/ Form h>
#i ncl ude <X11/List. h>
#i ncl ude <X11/ Label . h

#defi ne XbkShel | Nane "Calcit"
#def i ne XbkAppl C ass “Calcit"

/** These are the states used for nmanagi ng the WorkProcs
*/

#defi ne NOSTATE 0

#def i ne READFI LE 1

#define CALCIT 2

#defi ne RESULT 3

/* Sonme nessages we want to display */
#defi ne NOTHI NG " "
#define READ "Reading File . . ."
#define CALC "Calculating . . . "
#defi ne DONE "Done !! "
#define ERROR "No Data File !! "

static char *list[] = {"IBW, "DEC', "APPL", "SUNW, "HP"};

/* A structure for reading in the data file (recall Chapter 2) */
typedef struct _TRADEREC

file:///H:/edonkey/docs/programming/1/2/ch05/084-089.html (2 of 7) [13/12/02 18:09:16]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

fl oat hi gh;

fl oat | ow;

fl oat cl ose;
} TRADEREC;

/* W initialize this "table" that corresponds to the |i st
* defined above. In this way we may refer to the information
* through the list index that is returned when we nmake
* the selection.

*/

struct {
I nt st ate; /[* state data */
char *file; [* file to read */
Xt Wor kProcl d wp_i d; /* the workproc's id */
f | oat hi gh;
fl oat | ow,
fl oat cl ose;
I nt num r ecs;

} choice data]] = {
{ NOSTATE, "ibmdat", 0, 0.00, 0.00, 0.00, 0},
{ NOSTATE, "dec.dat", 0O, 0.00, 0.00, 0.00, 0},
{ NOSTATE, "apple.dat", 0, 0.00, 0.00, 0.00, 0},
{ NOSTATE, "sun.dat", 0, 0.00, 0.00, 0.00, 0},
{ NOSTATE, "hp.dat", 0, 0.00, 0.00, 0.00, 0}

3

Xt Cal | backProc sel ection_cal | back();

Bool ean calcit();

W dget 1st, 1 bl ,result;

char rslt[40];

/* These are sone handy macros to perform sone cl ean-up work
*/

#define CLEAN(it) menset (it," ',sizeof(it))

#define INIT(it) menset (it,"'\0',sizeof(it))

#define CLRRSLT(it) {Arg arg[l]; CLEAN(it);\
Xt Set Arg(arg[0], Xt Nl abel ,it); \
Xt Set Val ues(result,arg, (Cardinal)1);}
mai n(argc, ar gv)
I nt argc;
char **argv;

W dget top, contai ner;

file:///H:/edonkey/docs/programming/1/2/ch05/084-089.html (3 of 7) [13/12/02 18:09:16]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

}

Arg ar gs[MAXARGS] ;
int n;
top = Xtlnitialize(XbkShell Nane, XbkAppl d ass,

NULL, O, &argc, argv);
cont ai ner = Xt Cr eat eManagedW dget (" cont ai ner",

for MW dget d ass, t op, NULL, 0);
n = 0;
Xt Set Arg(args[n],XtNlist,list); n++;
Xt Set Arg(args[n], Xt Nnunber Strings, XtNunber(list)); n++;
1st = Xt Creat eManagedW dget ("list",

| i st Wdget d ass, cont ai ner, args, (Cardi nal)n);

Xt AddCal | back(1st, Xt Ncal | back, sel ecti on_cal | back, NULL);

n = 0;
Xt Set Arg(args[n], Xt NfronVert, 1st); n++;
Xt Set Arg(args[n], Xt Nl abel , NOTH NG ; n++;
| bl = Xt Creat eManagedW dget (" st at us",
| abel W dget d ass, cont ai ner, args, (Cardi nal) n);

INIT(rslt);
CLEAN(rslt);
n = 0;

Xt Set Arg(args[n], Xt Nfromvert, | bl); n++;
Xt Set Arg(args[n], Xt Nl abel ,rslt); n++;
result = Xt CreateManagedW dget ("result",
| abel W dget Cl ass, cont ai ner, args, (Cardi nal) n);
Xt Real i zeW dget (t op) ;
Xt Mai nLoop();

Xt Cal | backProc sel ection_call back(w, client_data, call _data)

W dget w;
caddr _t *client data;
XtListReturnStruct *call data;

Arg args[1];

CLRRSLT(rslt);

I f (choice_data[call _data->index].wp_id == NULL) {
choi ce _data[cal | _data->i ndex].state = READFI LE;
choice dataJcall data->index].w id =

Xt Addwor kProc(cal cit, cal | _dat a->i ndex) ;
Xt Set Arg(args[0], Xt Nl abel , READ) ;
Xt Set Val ues(I bl , args, (Cardinal)1);
Xt Set Arg(args[0], Xt Nsensitive, Fal se);
Xt Set Val ues(w, args, (Cardinal)1);

file:///H:/edonkey/docs/programming/1/2/ch05/084-089.html (4 of 7) [13/12/02 18:09:16]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

} else {
BEEP(w); BEEP(W);
}
}
Bool ean cal cit (i dx)
I nt idx;
{
Arg args[1];
FI LE *fp;
TRADEREC rec;
char rslt[40];

switch(choice data[idx].state) {
/* The first state is to read and store the information from
* the data file for the list entry sel ected.
*/

case READFI LE:
CLRRSLT(rslt);
choice data[idx].numrecs = 0O;
choi ce_datalidx].high = choice-dataidx].low =
choi ce_datalidx].close = (float)O0.00;
sleep(5); /* thisis sinply to slow it down */
If ((fp = fopen(choice_data[idx].file,"r")) == NULL) {
choi ce_data[i dx].state = NOSTATE;
choice data[idx].wp id = NULL;
Xt Set Arg(args[0], Xt Nl abel , ERROR) ;
Xt Set Val ues(| bl , args, (Cardinal)l);
Xt Set Arg(args[0], Xt Nsensitive, True);
Xt Set Val ues(1st, args, (Cardinal)1);
Xt Li st Hi ghl i ght (1st, i dx);
return TRUE
} else {
while((fscanf(fp,"% % %",
&rec. high, &ec.low & ec.close)) !'= EOF){
choi ce_dat a[i dx] . num recs++;
choi ce_data[idx].high =
choi ce _dataf[idx].high + rec. high;
choi ce_datalidx].low =
choi ce_dataidx].low + rec. | ow,
choi ce_data[idx].close =
choice datafidx].close + rec.close;

}
fclose(fp);

file:///H:/edonkey/docs/programming/1/2/ch05/084-089.html (5 of 7) [13/12/02 18:09:16]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

choi ce_data[idx].state = CALCIT;
Xt Set Arg(args[0], Xt Nl abel , CALC) ;
Xt Set Val ues(1 bl , args, (Cardi nal)1);

/* By returning FALSE we tell the Intrinsics to call us again
* |f we return TRUE, the Intrinsics renoves us.

*/
return FALSE
}
br eak;
/* The next state is to performthe averages .
*/
case CALCIT:

sl eep(5); /* Just to slow us down */
choi ce dataidx].high =
choi ce_dat a[i dx] . hi gh/ choi ce_dat a[i dx] . num recs;
choi ce_data[idx].low =
choice data[idx].|ow choice data[idx].numrecs;
choi ce datalidx].close =
choi ce_data[i dx].cl ose/ choice_datalidx].numrecs;
choi ce _data[idx].state = RESULT;
return FALSE
br eak;
case RESULT:

/* The last state is to display the results.

*/
Xt Set Arg(args[0], Xt Nl abel , DONE)
Xt Set Val ues(| bl , args, (Cardi nal)1);
choi ce_data[i dx].state = NOSTATE;
choice data[idx].wp id = NULL;
CLEAN(rslt);
sprintf(rslt,"% H gh %3f Low % 3f Cl ose % 3f",
list[idx],choice datalidx].high,
choi ce datafidx].|ow choice data[idx].close);
Xt Set Arg(args[0], Xt Nl abel , rslt);
Xt Set Val ues(result, args, (Cardinal)l);
/* We instruct the widget to becone sensitive again !! W coul d
* have used Xt SetSensitive(1lst, True) i nstead.
*/

Xt Set Arg(args[0], Xt Nsensitive, True);
Xt Set Val ues(1st, args, (Cardinal)1);

file:///H:/edonkey/docs/programming/1/2/ch05/084-089.html (6 of 7) [13/12/02 18:09:16]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

Xt Li st Hi ghli ght (1st,idx);

/* Now we are done so informthe Intrinsics of it so we won't be
* cal |l ed agai n.
* [
return TRUE
br eak:

}

Thisclient isfairly ssmple, yet it introduces an area that you, as an application writer, will no
doubt want to exploit. The important points are: Do not stay in the work proc for long periods of
time; if you want to re-enter the work proc, return false; and if you need to remove the work
procedure, use XtRemoveWorkProc(id) whereid isthe id returned from a previous
XtAddWorkProc(). Figure 5-12 shows the client at two stages of work.

Previous | Table of Contents |Next

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch05/084-089.html (7 of 7) [13/12/02 18:09:16]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous [Table of Contents |[Next

5.4.10.3. Alternative Input Procedures

The last of the three additional units of work is using alternative input devices. This corresponds to
using files or pipesto be informed of information. Y ou may watch the pipe/file for four different
things:

1. XtinputNoneMask, an OS-dependent condition.
2. XtInputReadMask when thereisinfo to read.

P N S e el S Al Ml il

caleit
Hd DEC APPL SUNW HP
Calculating ...

[ZZl DEC APPL SUNW HP

Done !!

IBH High 104.313 Low 97.500 Close 100.25

Figure5-12aand b Calcit.

3. XtinputWriteMask when it is available to write.
4. XtlnputExceptMask when an OS exception occurs.

To get set up to watch, you use the following:

file:///H:/edonkey/docs/programming/1/2/ch05/089-094.html (1 of 6) [13/12/02 18:09:20]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

Id = Xt Addl nput (src, condi tion, proc, data);

where “srs” isa UNIX file descriptor, “condition” is one of the four just listed, “proc” isthe
Intrinsics-specific name, and “data’ is the data to provide the proc. To remove this procedure, use
the following:

Xt Renmovel nput (i d);
where “id” refersto an id obtained from a previous XtAddlnput() call.

To demonstrate this, you will create aclient called “watch.” This client will ssimply “keep an eye
out” for datain afile. The Athena Ascii Text widget is employed in this client to display the
information. The AsciiText Widget isavery useful widget that provides quite a bit of text support.
The client is shown in Figure 5-13. The code is shown here:

/* FILE: wat ch. c
*/
#i ncl ude " XbkUtil . h"

/* Wdget Headers to be used in this client */

file:///H:/edonkey/docs/programming/1/2/ch05/089-094.html (2 of 6) [13/12/02 18:09:20]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

. : |_J._-.__- R SR P

.ﬂmal-:r HCIcu:I; . _'I'

= watch .|

disp[-::_r it .. in d:sctnding order
we artd wwatch will get it and ...
Yﬂu caan Hﬂd gome fexi bo ...

e e .
e e e

B

" watch -filenane watch.filk

[1] 1482

4 echo You can send some text to ... *=watch.fil
echo ... and watch will get it and ... >=satch.fil
echo ... display it .. in descending order >»watch.fil

Figure 5-13 Watch.

#i ncl ude <X11/ Form h>
#i ncl ude <X11/AsCi i Text. h>
#i ncl ude <X11/ Command. h>

#def i ne XbkShel | Nane "wat ch"

#defi ne XbkAppl C ass "Wt ch"

#def i ne BUFFER- SI ZE 2000

#defi ne NO _FI LE "File given was not found !!!"

W dget fileQutput; /[* This wdget wll display the file
* out put
*/

i nt watch file(); /* forward declaration */

Xt Cal | backProc Xit();
struct _nyAppRes {

String filenaneg;
} nyAppRes;

file:///H:/edonkey/docs/programming/1/2/ch05/089-094.html (3 of 6) [13/12/02 18:09:20]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

XrmOpti onDescRec nmyCmdOpts[| = {
{ "-filename", "*fileNane", XrnoptionSepArg, NULL },
3

#define OFFSET(field) XtOfset(struct _nyAppRes*, field)
static XtResource nyAppResOQpts[] = {
("fileNanme", "FileNanme", XtRString, sizeof(String),
OFFSET(fil enanme), XtRString, "watch.txt"),
3
#undef OFFSET

mai n(argc, argv)
I nt argc; char **argyv;

{

W dget top, container, exit;

FI LE *fd;

Arg args[MAXARGS] ;

int n;

top = Xtlnitialize(XbkShel |l Narme, XbkAppl d ass,
myCndOpt s, Xt Nunber (nyCndOpt s) , &ar gc,

argv) ;

Xt Get Appl i cati onResour ces(top, &myAppRes, nyAppResOpt s,
Xt Nunmber (nyAppResOpt s), NULL, 0);

/* Set up a manager for the display and exit button */

contai ner = Xt Creat eManagedW dget (" contai ner"”, f or MW dget d ass,
t op, NULL, 0) ;

Set up a place for the file to be read to. W are using
the ascii StringWdgetCd ass and inform ng the w dget that we
want a scrollbar and would like the user to be able to edit it.
Warning: There is sone logic in the source (the part used
to get data) that says not to deal with updates to the string
if we are not editable. Since we will be adding data to the

di splay, we need to allow for changes and hence the editable
nat ur e.

*/

L T S

n = 0;

Xt Set Arg(args[n], Xt Nl engt h, 4000); n++;

Xt Set Arg(args[n], Xt Nedi t Type, Xttext Edi t); n++;

Xt Set Arg(args[n], Xt Nt ext Opti ons, scrol | Vertical | editable); n++

fileQutput =

file:/l//H:/edonkey/docs/programming/1/2/ch05/089-094.html (4 of 6) [13/12/02 18:09:20]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

Xt Cr eat eManagedW dget ("fil eQut put™, ascii Stri ngW dget d ass,
cont ai ner, args, n);

/* Let's have an exit button */
n = 0;

Xt Set Arg(args[n], Xt NfronVert, fil eQutput); n++;
exit = Xt Creat eManagedW dget (" Xit", commandW dget C ass,
cont ai ner, args, n);

Xt AddCal | back(exit, XtNCallback, Xit, top);
If ((fd = fopen(nyAppRes. filenane, "r")) == NULL) {
Xt xuTextInsertString(NO FILE)'

}
/*
* Now set up a proc to watch the file
*/
Xt Addl nput (fil eno(fd), XtlnputReadMask, watch_file, NULL);
Xt Real i zeW dget (t op) ;
Xt Mai nLoop();
}
Xt Cal | backProc Xit(w, call _data,client _data)
W dget w;
caddr _t call data, client-data;
{
Xt UnmapW dget (W) ;
Xt C oseDi spl ay(Xt D spl ay(w)) ;
exit(0);
}
/* This is our alternative input procedure. You will notice that
* 1t is quite sinple.
*/

int watch_file(client_data, fid, id)
caddr _t client data;
int *fid;
Xtlnputld *id;
{
char buf[BUFSI Z] ;
I nt nbytes;
/* Notice that the file id is gotten as an argument. */

file:///H:/edonkey/docs/programming/1/2/ch05/089-094.html (5 of 6) [13/12/02 18:09:20]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

i f ((nbytes = read(*fid, buf, BUFSIZ)) == -1)
perror("read_watched file");

/* If we read the data sinply "slap" it to the screen using our
* text utilities.
*/
I f (nbytes) XtxuTextlnsertString(buf);

}

Thisisavery ssimple program, and watching afileisn’t really that hard. Y ou might have seen this
technigque used for taking data from “pipes’ and providing front ends to some of the UNIX utilities.
That isal well and good, but application writers need practical uses of alternative input
mechanisms. The “watch” client could be used with the client in Chapter 8 (the “trade” client) to
record transactions, etc.

If you are wondering what XtxuTextlnsertString() does, read on to the next chapter. | discuss those
toolswhen | talk about widget crafting.

Previous |Table of Contents INext

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch05/089-094.html (6 of 6) [13/12/02 18:09:20]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

A Practical Guide to X Window Programming: Developing Applications with the
XT Intrinsics and OSF/Motif
R

by Brian J. Keller
. CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

e

Previous [Table of Contents |Next

5.4.11. Miscellaneous Stuff

This has been quite a chapter. We' ve touched on just about everything you will run into when
you start to code your own Xt clients. Before you get into building widgets and developing
more compl ete clients, you should look at two interesting items. The first demonstrates how to
install an icon so that the window manager can give your client some meaning. The second
creates ascrolling list.

Chapter 4 discussed things called bitmaps and pixmaps. It was mentioned that bitmaps could be
used for installing icons on top-level windows. To make it easy, let’s create a macro for
XbkULtil.h that will do thisfor you:

#define | NSTALLI CON(w, bits, w dt h, hei ght) {
Arg marg;
Xt Set Arg(mar g, Xt Ni conPi xmap,
XCr eat eBi t mapFr onDat a(Xt Di spl ay(w),
Xt Screen(w) -root,
bits,w dth, height));
Xt Set Val ues(w, &rarg, 1) ;

_— e

}

Notice that you pass down the widget (w), the bits, width, and height of the bitmap to use. You
then use an Xlib primitive that creates the bitmap from that information and setsit asa
resource. Lastly, you invoke the set_values method of the widget to install the icon.

Toinstall anicon, you create a bitmap either by hand or using the X client bitmap. Include the
filethat iswritten in your client, and pass the appropriate elements to the macro. A sample of
the file generated and used is given below, with the result shown in Figure 5-14:

#define iconic_wdth 16
#define iconic_height 16

file:///H:/ledonkey/docs/programming/1/2/ch05/094-098.html (1 of 5) [13/12/02 18:09:22]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

static char iconic bits[] = {
Oxff, Oxff, Ox03, OxcO, Oxfd, Oxbf, O0x05, OxaO, 0x05,
Oxa0, O0x05, 0Oxa0O, 0x05, Oxa0, Ox05, Oxa0O, 0x05, O0Oxa0,
0x05, Oxa0O, 0x05, Oxa0O, O0x05, Oxa0, 0x05, Oxa0O, O0Oxfd,
Oxbf, 0x03, OxcO, Oxff, Oxff);

L L L A A L A L L)

[xe
! otk

I NS T Clex s e sl ik e ey mrsll
FEiEddadEddFeEEr i s dadRa RN EES

dFNESELNASEenddRddaEEdrnnRES
-
L] L]

hothwlcon:

Figure5-14 lcon.

The last thing to discussis how to make alist into ascrolled list. In the OSF/Motif set, you will
find a nice convenience function called XmCreateScrolledList() to do that. However, in the
Athena Widget Set, no such “niceness’ exists. That’s okay, sinceitisn’t such abad ideato
understand how these things are created anyway. To make alist ascrolled list, you simply
make it a child of aviewportWidgetClass.

What' s a viewport? Well, aviewport is a container widget that allows its children to scroll
around. By setting up the resource correctly, you can make the list into a scrolled list. Figure 5-
15 shows an example of ascrolled list.

The following client “xawlistScr” demonstrates how to produce this list:

[/ * FI LE: xawl i st Scr. c
*

#i ncl ude " XbkUil . h"

file:///H:/ledonkey/docs/programming/1/2/ch05/094-098.html (2 of 5) [13/12/02 18:09:22]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

[T ST TGt &
DEC

Kodak
Fujitsu

HP

‘NEC

IBM

Figure5-15 Scrolled list.

#def i ne XbkShel | Nanme "xaw i st Scr "
#def i ne XbkAppl d ass "Xawl i st Scr "

#1 ncl ude <X11/ Form h>
#1 ncl ude <X11/List. h>
#1 ncl ude <X11/ Label . h>
#i ncl ude <X11/Viewport.h> /* Athena Scrolling Wndow */

/*
* This is the forward decl arati on of our call back
*

static void sel ection_callback();

static String str[] = {
"Appl e, "AT&T", "Bull", "Cal Conp", "CDC',
"Data General", "DEC', "Kodak", "Fujitsu",
"HP", "IBM', "NEC', "NCR', "Prine", "Rich",
"Sequent", "Sienens", "Silicon G aphics",
"Sony", "Sun", "Tecktronix", "TI", "Unisys",
"Wang", " Xerox");

W dget | Dbl; /* Need to make it gl obal so the callback can
* use it. */

mai n(argc, argv)

I nt argc; char *argv[];

{
W dget t op, cont ai ner, scrolllt, 1st;
int i;
Arg args|3];

file:/l//H:/edonkey/docs/programming/1/2/ch05/094-098.html (3 of 5) [13/12/02 18:09:22]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

int wth,iwth; [* holders for widths */

top = Xtlnitialize(XbkShell Name, XbkAppl C ass,
NULL, O, &ar gc, argv) ;

cont ai ner = Xt Cr eat eManagedW dget (" cont ai ner",
f or MW dget d ass, t op, NULL, (Cardi nal) 0) ;

/*
* Create a viewport, which is a wdget that wll scroll its
* children.
*/
scroll It = XtCreateManagedW dget ("scrolllt",
vi ewpor t Wdget d ass, cont ai ner, NULL, (Cardi nal) 0);
/*
* Create the list as a child of the viewport.
*/
Xt Set Arg(args[0], XtNl'ist,str);
Xt Set Arg(args[1], Xt Nnunber Stri ngs, XtNunber(str));
Xt Set Arg(args[2], Xt N\vertical List, True);
1st = XtCreateWdget("list",|istWdgetd ass,
scrolllt,args, (Cardinal)3);
Xt AddCal | back(1st, Xt Ncal | back, sel ecti on_cal | back, NULL);
/*

* Set the width of the list wdget to be the width of the
* longest itemplus the internal Wdth in the list. This w |
* give us a nice vertical list to start off wth.
*/
Xt Set Arg(args[0], Xt Nl ongest, &t h) ;
Xt Set Arg(args[1], XtNi nternal Wdth, & wt h);
Xt Get Val ues(1st, args Cardinal)2);
Xt Set Arg(args[0], Xt Nwi dt h, wt h+i wt h) ;
Xt Set Val ues(1st, args, (Cardinal)1);

/*

* Since we created the |ist as Unnmanaged the geonetry

* negotiation between it and the parent has yet to occur. This
* gave us the chance to get a better width to set the w dget

* with.

*/

Xt ManageChi | d(1st);
Xt Set Arg(args[0], Xt NfronVert, scrolllt);
Xt Set Arg(args[1], Xt Nl abel ,"No sel ection yet !'!");
| bl = Xt Creat eManagedW dget ("I bl ",
| abel W dget O ass, cont ai ner, args, (Cardi nal) 2);

file:///H:/edonkey/docs/programming/1/2/ch05/094-098.html (4 of 5) [13/12/02 18:09:22]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Applications: Developing with Xt

Xt Real i zeW dget (t op) ;
Xt Mai nLoop();

}
static void sel ection_callback(w, client_data, call _data)
W dget w;
caddr t *client data;
XtLi stReturnStruct *call data;
{
Arg args[1];
Xt Set Arg(args[0], Xt Nl abel , (Xt ArgVval)cal | _data-string);
Xt Set Val ues(| bl ,args, (Cardinal)1);
}

The application defaults are as follows:

I Xawl i st Scr
*font: *-hel vetica-*-100-*
*scrolllt.all owert: True

*scrolllt.useRi ght: True
*scrolllt. height: 120
*| bl . borderWdth: 2

*| bl . borderCol or: white

These basically instruct the Viewport to use the scrollbar and place it on the right side. So as
you can see, creating scrolled anythings are fairly smple. OSF/Motif provides asimilar
mechanism called xmScrolledWindow.

Previous [Table of Contents | Next

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch05/094-098.html (5 of 5) [13/12/02 18:09:22]

file:///reference/crc00001.html

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

A Practical Guide to X Window Programming: Developing Applications with the
XT Intrinsics and OSF/Motif
R

by Brian J. Keller
. CRC Press, CRC Press LLC
ISBN: 0849374065 Pub Date: 12/01/90

e

Previous [Table of Contents |Next

Chapter 6
Building Widgets: Primitive Widgets

Thefirst five chapters of this book have laid the foundation for the remainder. Y ou have been
introduced to most of those mechanisms that application writers need to know about. This was
done by creating clients that demonstrated resource setting, resource gathering, translation
management, actions, callbacks, timeouts, event handlers, background work procedures, and
alternative input mechanisms. In each case, you were lucky enough to have a widget that could
do the job. What would you have done if none of the widgets suited your needs? The answer is
to craft your own.

In this chapter you will construct a“field editor” by using the inheritance mechanism of the
Intrinsics. You will learn the structure of all primitive widgets, the requirements for this widget,
and how to construct such awidget.

6.1. Structure of a Primitive Widget

Aswe discussed in Chapter 3, all widgets are subclasses of the Core widget. Recall from that
chapter that a widget has two components, the class part and the instance part. The class part
contains those things that all widgets in the class share, while the instance part has information
specific to the occurrence of awidget. Recall also that there is a single instance of the class part
per application, while there will be n number of instance records for each widget of the class
created.

The class part structure of the Core widget is as follows:

t ypedef struct _CoreCd assPart {

W dget O ass super cl ass; (dat a)
String cl ass_nane; (dat a)
Car di nal w dget _si ze; (dat a)

file:///H:/edonkey/docs/programming/1/2/ch06/099-102.html (1 of 4) [13/12/02 18:09:23]

Xt Proc class initialize; (met hod)
Xtw dget Cl assProc class part _initialize; (met hod)
Xt Enum cl ass_inited; (dat a)
XtlnitProc initialize; (et hod)
Xt Ar gsProc initialize hook; (met hod)
Xt Real i zePr oc realize; (met hod)
Xt Act i onLi st actions; (dat a/ et hod)
Car di nal num acti ons; (dat a)
Xt Resour celi st resour ces; (dat a)
Car di nal num r esour ces; (dat a)
XrnCl ass xrm cl ass; (dat a)
Bool ean conpress_noti on; (dat a)
Xt Enum conpr ess_exposur e; (dat a)
Bool ean conpress_enterl eave; (dat a)
Bool ean visible _interest; (dat a)
Xt W dget Proc destroy; (met hod)
Xt W dget Proc resize; (met hod)
Xt ExposePr oc expose; (met hod)
Xt Set Val uesFunc set _val ues; (et hod)
Xt Ar gsFunc set _val ues_hook; (met hod)
Xt Al nost Proc set val ues_al nost; (met hod)
Xt Ar gsProc get val ues_hook; (met hod)
Xt Accept FocusProc accept focus; (met hod)
Xt Ver si onType ver si on; (dat a)

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

Xt Poi nt er cal | back_pri vat e; (dat a/ net hod)
String tm tabl e; (dat a/ net hod)
Xt GeonetryHandl er query_geonetry; (met hod)
Xt StringProc di spl ay_accel erator; (met hod)

Xt Poi nt er

ext ensi on;

(dat a/ net hod)

} Cored assPart;

Asyou can see, the CoreClassPart structure contains both data and methods. The methods are
actually pointersto C functions that are invoked by the Intrinsics. Let’ s take a moment to
understand each of the members.

Table 6-1CoreClassPart Members and Descriptions

Member
superclass

Description

A pointer to the class record of the class that the widget belongs
to. In the case of Core, you cannot go any higher; therefore, this
isnull.

file:///H:/edonkey/docs/programming/1/2/ch06/099-102.html (2 of 4) [13/12/02 18:09:23]

class name
widget_size

class initiaize

class part_initialize

class inited
initialize
initialize_hook
realize

actions

num_actions
resources

numM_resources
Xrm_class

compress_motion
COompress_exposure
compress_enterleave
visible interest

destroy

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

The string representation for the class. Thisis used by the
resource manager for matching resource specifications.

This informs the world how many bytes this widget’ s instance
record is.

Thisisamethod that isinvoked at widget creation time. It has the
responsibility of adding anything that could not be done at
compiletime. Most often it installs any type converters the
widget requires.

After the class initialize method is through, this method is
invoked. It is used by widgets that have added fields for their
class.

Thisisaflag that informs the Intrinsics of whether the class has
been intialized or not.

Thismethod is called for the creation of awidget instance. Itsjob
isto fill in the instance part.

Another method that may be used at initialize time.

A method used to bring the widget to life.

Thisis both data and methods. It is actually alist of actions that
this widget adds.

The number of actions.

Provides instructions to the resource manager in how to fill the
widget structure.

The number of resources.

Aninternal representation of the class used by the resource
manager.

A flag to instruct the Intrinsics to compress motion eventsinto a
single motion event.

A flag to instruct the Intrinsics to compress exposure events into
asingle exposure event.

A flag to instruct the Intrinsics to compress crossing events (pairs
of enter/leave events).

A flag to instruct the Intrinsics to inform the widget when it has
become visible.

A method invoked when the widget is being destroyed
(removed). It has the responsibility of giving back any
dynamically allocated memory, graphics contexts, or file handles

the widget is using. Y ou can consider this awidget clean-up
routine.

file:///H:/edonkey/docs/programming/1/2/ch06/099-102.html (3 of 4) [13/12/02 18:09:23]

resize

expose
set_values

set_values _hook
set values almost

get_values hook

accept_focus
version

callback_private

tm_table
query_geometry
display accelerator

extension

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

A method to adjust the widget’ s configuration due to aresize
request.

A method that handles the display needs of the widget.

A method that allows for setting of widget resources. Invoked by
XtSetValues().

A method to add additional value-setting processing.

A method used to adjust values during geometry negotiations
with a parent.

A method to return widget resources. It isinvoked by
XtGetVaues().

A method for accepting the input focus.

Datainforming the Intrinsics of what version the widget was built
using.

The callback list for the widget. It contains alist of procedures to
invoke.

The translation table for this widget.
A method for assisting parent widgets in geometry negotiations.

A method to display the representation of the currently installed
accelerators.

Used to add to the widget without changing the other elements.

Previous [Table of Contents | Next

Copyright © CRC Press LLC

file:/l//H:/edonkey/docs/programming/1/2/ch06/099-102.html (4 of 4) [13/12/02 18:09:23]

file:///reference/crc00001.html

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents | Next

Y ou will find that many of the methods in the ClassPart are inherited by the widgets. In the
case of the CoreWidget, it must provide some of the functionality:

t ypedef struct Wdget Cl assRec {
CoreC assPart core_cl ass;
} Wdget O assRec, Cored assRec;

The ClassPart of each widget is “tacked on” to the end of the CoreClassPart. So, if you had
your own widget called “OurWidgetClass,” you would create the widget’ s class record by
doing the following:

t ypedef struct OurWdget O assRec {
CoreCl assPart core_cl ass;
Qur d assPart our _cl ass;

} Qur W dget d assRec;

The second part of awidget is the instance part (record). The CoreWidget'sis defined as
follows:

t ypedef struct CorePart {

W dget sel f;

W dget O ass w dget cl ass;

W dget par ent ;

Xr mNanme Xrm namne;

Bool ean bei ng_dest royed;
Xt Cal | backLi st destroy_ cal | backs;
Xt Poi nt er constraints;

Posi tion X, V;

Di mensi on wi dt h, hei ght;

file:///H:/edonkey/docs/programming/1/2/ch06/102-106.html (1 of 6) [13/12/02 18:09:25]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

D nensi on
Bool ean
Bool ean
Bool ean

Xt Event Tabl e

Xt TMRec

Xt Transl ati ons

Pi xel

Pi xmap

W dget Li st
Car di nal
String
Screen
Col or map
W ndow
Car di nal
Pi xel

Pi xmap
Bool ean
Bool ean

} CorePart;

border w dth;
managed;

sensitive;

ancest or_sensitive;
event tabl e;

tm

accel erators;

bor der pi xel ;

bor der _pi xmap;
popup_Iist;

num _popups;

nane;

*screen;

col or map;

w ndow;

dept h;

backgr ound_pi xel ;
backgr ound_pi xmap;
vi si bl e;
mapped_when_nanaged;

This structure provides the instance-specific data. When you look at the membersin the
structure, you can see it makes alot of sense. For instance, you would not want to share the
window id with all widgets of the class. It makes sense to have an expose method
shareable, since all widgets of the class are defined exactly the same, but when it comes to
resources, no chance. Let’s examine each of the members of the CorePart structure in the
following table.

Member

self

widget class

parent
Xrm_name

Table 6-2CorePart Members and Descriptions

Description
A pointer to thisinstance record.

A pointer to thiswidget’s class record. This givesthe
connection to the expose, realize, and other shareable
methods.

A pointer to the parent’ s widget id.

The internal resource manager’s version of the widget’s
Instance name.

file:///H:/edonkey/docs/programming/1/2/ch06/102-106.html (2 of 6) [13/12/02 18:09:25]

being_destroyed
destroy_callbacks

constraints

X,y

width,height
border_width
managed
sensitive

ancestor_sensitive

event_table
tm
accelerators
border_pixel
border_pixmap
popup_list
nUM_popups
name

screen
colormap
window

depth
background_pixel

background_pixmap

visible

mapped_when_managed

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

A flag informing the Intrinsics that you are in the destruction
process.

Provisions for the application writer to add additional clean-up
activities.

A pointer to constraint records placed in the widget by a
container widget.

Pixel offsets for the position of the window that the widget
owns.

Dimensions for the window.
The width, in pixels, of the window’ s border.
A flag to inform the Intrinsics if this widget is managed or not.

A flag to inform the Intrinsics if thiswidget isto be informed
of events. Expose and some other events are processed.

A flag telling the Intrinsics if the widget’s parent is sensitive
or not. If the parent isinsensitive, the child isinsensitive.

The event mask and handlers for this widget.
The compiled trand ations.

Accelerators installed on this widget.

The color of the border.

The kind of representation for the border.
Pop-up children associated with this widget.
Number of pop-ups placed on this widget.

A string representation of the instance name for this widget. It
Is used by the resource manager to obtain resource settings for
this widget.

A pointer to the screen thiswidget is on.

The colormap that is being used by the widget.

The window id of the window associated with this widget.
The depth of the screen being used.

The background color.

The background pixmap.

A flag used to tell if the widget is visible or not.

A flag to instruct the Intrinsics if the widget should be mapped
when it is managed.

file:///H:/edonkey/docs/programming/1/2/ch06/102-106.html (3 of 6) [13/12/02 18:09:25]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

A widget'srecord is created as follows:

t ypedef struct WdgetRec {
Cor ePar t core;
} Wdget Rec, CoreRec;

Just as you did for the ClassPart, the CorePart (instance) is “tacked on” to the end of the
CorePart. So, if you had your own widget called “OurWidget,” you would create the
widget’ sinstance record by doing the following:

typedef struct _QOurWdget Rec {
CorePart core;
Qur Part our;

} Qur Wdget Rec;

6.2. Inheritance in Xt

The Xt Intrinsics provide for a powerful notion termed inheritance. Thisisaway of
creating anew class of widget that has similar features to another class. In fact, all of the
data and methods of the superclass are available to the subclass, asillustrated in Figure 6-
1.

The mechanics for inheritance involve five steps, as follows:

1. Define anew ClassPart. If there aren’t any classfields to add, you simply create
an empty one. Thisis needed by the Intrinsics.

t ypedef struct ({

Int enpty;
} Exanpl ed assPart;

file:///H:/edonkey/docs/programming/1/2/ch06/102-106.html (4 of 6) [13/12/02 18:09:25]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

Widget A

Instance Class
WIdget Class g SUperclass
Widget A is a Meta-Class

Widget B

Instance Class
WIdGEl_Class e SuUperclass
Widget B is a subclass of A
Widget C
Instance Class
widget_class — SUPETClass

Widget C is a subclass of Widget B

Widget D

Instance Class

WIOQe!_Class emmmmp Superclass
Widget D is a subclass of Widget C

Figure 6-1 How widgets connect.

2. Tack it on to the back of the ClassPart of the superclass:

typedef struct {

Cor e assPar t core_cl ass;
Si mpl ed assPart si npl e_cl ass;
Exanpl e assPart exanpl e_cl ass;

} MyW dget C assRec;

3. Definethe class pointer:

file:///H:/edonkey/docs/programming/1/2/ch06/102-106.html (5 of 6) [13/12/02 18:09:25]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

Exanpl eW dget C ass exanpl eW dget C ass;
4. Define anew instance part:

t ypedef struct {

I nt new dat a;

I nt nore_new dat a;
} Exanpl ePart;

5. Tack it on to the back of the instance part of the superclass:

t ypedef struct {
Cor ePar t cor e,
Si npl ePart si npl e;
Exanpl ePar t exanpl e;
} Exanpl eRec, *Exanpl eW dget;

Later in this chapter, you will build a new widget that demonstrates the inheritance
mechanism.

Previous | Table of Contents |Next

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch06/102-106.html (6 of 6) [13/12/02 18:09:25]

file:///reference/crc00001.html

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous |Table of Contents |[Next

6.3. Requirements for the FieldEdWidget

If you look in the Athena or OSF/Motif widget sets, you find many useful widgets. Y et they are
lacking in one key area: field editing. Field editing refers to the ability to define afield of acertain
type, and then have all the editing actions performed for that field. For instance, if you had afield that
was to contain alphabetic characters only, it would be useful to instruct the widget to look for just
those characters. Additionally, we would like to have afield action routine so that you could provide
enhanced edit checking.

Since this “dream” widget does not exist, you have to craft it yourself. To start, let’s define the
requirements:

1. It must be fully extensible. That is, if the client writer does not like the internal editing
routines for the various field types, a client-provided procedure may be installed.

2. It must provide afield action procedure.

3. It must alow focusin, focus out, and enter window event procedures to be installed by the
client writer.

4. 1t must allow intra-field movement. That is, it must have control sequences for moving the
cursor within the field.

5. It must provide a clear field mechanism.

6. It must alow the client writer to obtain the widget resources through “ standard” Xt
mechanisms (XtGetValues()) as opposed to “convenience” routines.

Since there is awidget that handles most of the editing activities such as figuring out text width,
height, offsets in the window, colors for the text, fonts, clearing out text in a source, and so on, you
should employ the power of inheritance to construct your widget.

6.4. Constructing the Widget
All widgets are constructed using at least threefiles:

1. Public header file.
2. Private header file.
3. Implementation file.

file:///H:/ledonkey/docs/programming/1/2/ch06/106-111.html (1 of 5) [13/12/02 18:09:28]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

The public header file isintended for client writers, the private header is intended for this widget
writer, and those widget writers who will subclass this widget (see Figure 6-2). The implementation
file has all the standard methods and widget-specific procedures needed to support the widget.

6.4.1. The Public Header File

Thefirst file to be created when you build your own widget is the private header file. Thisiswhere
both the new ClassPart and the widget’ s instance part will be defined:

/* FILE: FieldEdP.h
* PURPCSE: Private header file for the Fiel dEd Wdget.
*/

#i f ndef _ Fi el dEdP_h
#define_ Fi el dEdP_h

Public Header
(Widget.h)

Private Header

(WidgetP.h)
Other Widget Writers
Implementation File IR
Widget.c =
{ g :]' ,-\. -

file:///H:/edonkey/docs/programming/1/2/ch06/106-111.html (2 of 5) [13/12/02 18:09:28]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

nipeIenauOn File. —— \NEE
I‘I"i.i‘“:‘: e
I
(Widget.c) z

P i

This Widget Writer
Figure 6-2 Who uses what part of awidget’s code?

/* W will always include our public header file so we can get the
* definitions for the resources, etc. Additionally, we wll need

* our superclass's private header for definitions of the structure
* that nmakes it up.

*/

#i ncl ude "Fi el dEd. h"

/~k

* | f you haven't seen this before, this is a C conpile directive.
* When conpiling | pass a synbolic to determ ne which part of

* the code to consider. You do it using -DX11R3 on the conpile

* |1 ne.

*/

#i fdef X11R3

#i ncl ude <X11/ Text P. h>

#el se

#i ncl ude <X11/ Xaw/ Text P. h>

#endi f

/* If we were adding additional fields to the class, this is the
* time to doit. In our case, we are not; therefore, we sinply

* enter a dummy field ("nothing"). This keeps the conpiler happy
* and allows the daisy chaining to continue correctly.

*/

/* Step One . . . Define the new class part
*/

typedef struct {int nothing;} FieldEdd assPart;

/* W define the class part as the "chain" of core, sinple (has the
* w ndow type operations), text (our superclass), and finally
* field editor_class (us). */

/* Step Two ... Tack it to the back of the superclass's O assPart
*/

typedef struct _Fiel dEdC assRec {
Cor ed assPart core_cl ass;
Si npl eCl assPart si npl e_cl ass;
Text C assPart text cl ass;

file:///H:/edonkey/docs/programming/1/2/ch06/106-111.html (3 of 5) [13/12/02 18:09:28]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

Fi el dEdCl assPart field editor_class;
} Fi el dEdd assRec;
/* Notice the use of conventions here! As you can see, the nenbers
* of the structure use | owercase and conpound words use the
* underline as the separator
*/

/* Step Three ... Define the Cass Pointer
*/

extern Fiel dBEdC assRec fi el dEdCl assRec;

/* Now we define the instance-specific fields for this w dget.
Notice we have five FwProcs avail able. W provide Focusln,

FocusQut, Enter Wndow, editor, and Fi el dAxn.

Focusl n is for setting the field active via highlighting,
i nversing, etc.
FocusQut woul d reset the field.

EnterWndow is simlar to Focusln except it supports pointer
traversal and could set the focus to itself.

The editor proc has the job of handling four cases of editing:

case Del et eFwdChar
Based on the kind of editor you are and where you
are in the string, delete the character where the cursor
is.

case Del et ePrvChar:
Based on the kind of editor you are and where you
are in the string, delete the character just behind the
cursor.

case Del et eFi el d:
Clear the field.

case InsertChar
The "real" editor. Decide if entry is valid and insert
it into the string using the correct format.

And lastly, there is a FieldAxn proc. This proc is invoked when
the Return Key is pressed. This allows for edit checking, next
field traversal, etc.

The procs are invoked using a Notifier. A Notifier is an action
proc that will invoke (notify) functions (callbacks or internal
procs). This w dget requires only one, and depends on the
paranmeters passed to it for finding out which proc to call

L T R T N N N N N N N N N S S R R . . N N N S N SN N N

~

file:///H:/ledonkey/docs/programming/1/2/ch06/106-111.html (4 of 5) [13/12/02 18:09:28]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

/* Step Four Define the instance specific record
*/

t ypedef struct {
FwPr oc focusl n_proc; /* Focus in event proc */
FwPr oc f ocusQut _proc; /* Focus out event proc */
FwPr oc ent er W ndow_pr oc; [* Enter Wndow event proc */
FwPr oc edi tor _proc; [* Editor for the w dget */
FwPr oc field_axn_proc; /* After return key has

been pressed */

char *str; /* string val ue */
i nt editor _type; /* Type of editor */
Pi xel active_col or; /* Pixel for highlight */
Pi xel i nactive_col or; /* Original BorderCol or */
caddr t edi t or _ext ensi on; /* For use by editor procs

*/
} FieldEdPart;

/* Create the wi dget structure by dai sy chaining the needed
* conponents. Core (because you nust), Sinple (because Text did),
* Text (because we want to use a lot of its source), and finally
* Field ('cause that's us).

*/
/* Step Five ... Tack the new instance part to the back of the
* supercl ass's.
*/
typedef struct _Fiel dEdRec {
Cor ePar t core;
Si npl ePart si npl e;
Text Part t ext;
Fi el dEdPart field editor;
} Fiel dEdRec;

#endi f _Fi el dEJP_h

Previous | Table of Contents |[Next

Copyright © CRC Press LLC

file:/l//H:/edonkey/docs/programming/1/2/ch06/106-111.html (5 of 5) [13/12/02 18:09:28]

file:///reference/crc00001.html

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller
CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents [Next

6.4.2. The Private Header File

Now that you have the private header file defined, your next step isto create the public header. This
isthe header that will be used by client writers who want to employ this widget. The resources
names, resource class names, and any new representation types are defined in thisfile:

/* FILE: FieldEd. h
* PURPCSE: Public Header file for the Fi el dEd Wdget.
*/

/* This first part of the public header is a little trick used so
* that if this header is included many tinmes only one copy wl|
* show up in your source.

*/

#i fndef _FieldEd_h

#define _FieldEd_h

/* we need to include the superclass's public header so that we can
* inherit all of its public stuff.
*/

#i fdef X11R3

#i ncl ude <X11/ Text. h>

#el se

#i ncl ude <X11/ Xaw Text . h>

#endif /* W are a subclass of Text */

/* These are the editing options that the editor procedure
* recogni zes. Since, client witers nmay add their own editor
* procedures we need to | et them have access to these internal
* representations.

*/
#def i ne Del et eFwdChar (int)-1
#defi ne Del et ePrvChar (int)-2
#define Del eteField (int)-3

file:///H:/ledonkey/docs/programming/1/2/ch06/111-114.html (1 of 3) [13/12/02 18:09:29]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

#defi ne | nsert Char
/* These are constants for the editor types. W have provided for
* application-added editors and internal ones. |If this w dget
* grew to include a basic set of
* to the |ist.

*/

#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne

FE_APPL
FE_ALPHA
FE_ALPHANUMERI C
FE_I NT

FE_FLOAT

NP OPR

3

(int)1

/*
/*
/*
/*
/*

/* Wdgets can provide additiona
* Intrinsics "call back” nechanismor supply their own notion.

* W have chosen to create our

internal editors, we would add

Tells us the client provided it
Use the al pha editor

Use the al phanuneric editor

Use the int editor

Use the float editor

C function invocation via the

own function call nechani sm

* So to be consistent with inplenentati ons we provide our own
* procedure type.

*/

t ypedef void (*FwProc)();

/

* % % * X

/*

* XN ...

*/
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
/*

* XtC ...

*/
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne

Xt Nstring

Xt Nedi t or Proc

Xt Nedi t or Type

Xt Ni nt Val

Xt Nf | oat Val

Xt Nstri ngVval

Xt Nf ocusl| nPr oc
Xt Nf ocusCQut Pr oc
Xt Nent er W ndowPr oc
Xt Nf i el dAXnPr oc
Xt Nact i veCol or
Xt Ni nAct i veCol or

XtCString

/*

Qur own procedure type */

These #defines are the resource, class, and representation
strings that the resource nmanager will need. They hel p
elimnate spelling mstakes and give the programer a hand in
not caring about what this stuff really neans.

is for the instance resource

"string"

"edi torProc"
"editor Type"
"intVval"
"fl oat Val "
"stringVal"
"focusl nProc"
"focusCut Proc"
"ent er W ndowPr oc"
"fiel dAxnProc"
"activeCol or"
"inActi veCol or"

is for the class resource.

"String"

file:///H:/edonkey/docs/programming/1/2/ch06/111-114.html (2 of 3) [13/12/02 18:09:29]

*/
*/
*/
*/
*/

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

#defi ne Xt CEdi tor Proc "Edi t or Proc"

#def i ne Xt CEditor Type "Edi t or Type"

#def i ne Xt CFocusl nProc "Focusl nProc"

#defi ne Xt CFocusQut Proc "FocusQut Proc"

#def i ne Xt CEnt er W ndowPr oc " Ent er W ndowPr oc"

#def i ne Xt CFi el dAxnProc "Fi el dAxnPr oc"

#def i ne Xt Cl nt Val "I ntVal"

#def i ne Xt CFl oat Val "Fl oat Val "

#define Xt CStringVal "StringVval"

#defi ne Xt CActi veCol or "ActiveCol or"

#defi ne Xt Cl nActi veCol or "I nActi veCol or™

/*
* XtR ... is a representation type. This is used for converting
* resources. The resource manager will match the
* to and fromtypes with the correct resource converter.
*

In Fielded.c you will find an exanple of a resource
* converter.
*/
#defi ne Xt RFwPr oc " FwPr oc"
/*
* Now we create the definitions that will be used for the instance
* and cl ass records.
*/
t ypedef struct _FieldC assRec *Fi el dEAW dget Cl ass;
t ypedef struct _Fiel dEdRec *Fi el dEDW dget ;

extern Wdget d ass fi el dEdW dget C ass;

#endif _FieldEd_h /* Do not, repeat do not add after this point
*/

6.4.3. The Implementation File

Now that you have the data set down, you can begin your implementation. The first thing to point out
isthat you are a subclass of the TextWidget. As such, the X11R3 version (the one used lot
developing this widget) fails to provide accessto all of the handy features internal to the widget. To
overcome this, you can create a set of utilitiesto help out.

Previous | Table of Contents [Next

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch06/111-114.html (3 of 3) [13/12/02 18:09:29]

file:///reference/crc00001.html

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents |Next

6.4.3.1. Utilities

Asis often the case with software provided by other individuals or companies, there are times when the
software developer left out some functions that would be useful. Thisis the case with the Athena Text
widget (R3) which has prompted the need for some software to supplement that code. The following is
the source code for afew utilities used to assist in implementing the Athena Text widget:

/| * FI LE: TextUtils.h

* PURPQOSE: Header for TextUtils.c source.
*

*/

#i fndef _TextUtil _h

#define _TextUtil _h

/* We need the private headers so we can get access to the
* structure nenbers. Since public headers are intended to
* mask the progranmer fromthose details, we have no other
* recourse.

*/

#i ncl ude <X11/IntrinsicP. h>

#i ncl ude <X11/ Text P. h>

#i ncl ude <X11/ Ascii Text. h>

/[* This is alittle trick that nakes code mai ntenance nuch easier.
* In the code that actually defines the functions we add:
*
* #defi ne DEFSOURCE
*
* prior to including this header file. By doing that, the
* synmbol EXT is defined to "dead space."” In the source that
* uses this header for support, they wouldn't use the #define,
* thus maki ng EXT equal to extern.
*/
#i f def DEFSOURCE
#define EXT
#el se

file:///H:/ledonkey/docs/programming/1/2/ch06/114-119.html (1 of 5) [13/12/02 18:09:30]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

#defi ne EXT extern
#endi f

/* Export the functions from TextUtil.c
*/

EXT Xt Text Position XtxuText Get Last Pos();

EXT void XtxulnstalllnsertCursor();

EXT voi d Xt xuBl ankCursor();

EXT char *XtxuText GetString();

EXT char *XtxuTextGetPart O String();

EXt Text Posi ti on Xt xuText Scan();

EXT int XtxuText Get MaxHei ght () ;

EXT void XtxuTextO earAll ();

EXT voi d Xt xuText d ear Pos();

EXT int Xt xuTextInsertString();

#endi f

And now for the implementation file. Essentially, you want to provide a higher level interface to the text
widget, so that when you port the “FieldEd” widget you need only concern yourself with these utilities
rather than the entire source of the widget. Here isthefile:

/* FILE: TextUils.c

* PURPCSE: Various utilities for the Athena Text W dget(R3&R4).
*

*/

#defi ne DEFSOURCE yes
#i nclude "TextUtils.h"

extern _XtTextGet Text();

#i fdef X11R3

#defi ne REPLACE(w, spos, epos, tb) Xt Text Repl ace(w, spos, epos, thb)
#def i ne Text Bl ock Xt Text Bl ock

#define TextPosition Xt Text Posi ti on

#el se

#defi ne REPLACE(w, spos, epos, tb) XawText Repl ace(w, spos, epos, th)
#def i ne Text Bl ock XawText Bl ock

#define TextPosition XawText Posi tion

#endi f

/* Handy tool to insert text. This allows us to forget about
* maki ng sure we have the correct setup for doing this.

*/

I nt XtxuTextlnsertString(w, str)
W dget w;
char *str;

file:///H:/edonkey/docs/programming/1/2/ch06/114-119.html (2 of 5) [13/12/02 18:09:30]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

{
Text Bl ock tb;
tb.firstPos = 0O;
tb.length = strlen(str);
th. ptr = str;
REPLACE(w, 0O, O, & b) ;

{

char *XtxuText Get Stri ng(w)
W dget w,

{

/~k

* CGet the string fromthe w dget. W shoul d probably use the
* conveni ence routine provided by Xaw.

*/
Text Position | ast Pos = Xt xuText Get Last Pos(w);
return (char *) Xt Text Get Text (w, (Position)O0,l astPos);
}
char *XtxuTextGetPartOF String(w, spos, epos)
W dget w,
Text Posi tion spos, epos;

{
/*

* Just get a part of the string.

*/

return (char *) Xt Text Get Text (w, spos, epos) ;

}
Text Posi tion XtxuText Scan(w, pos, sType, dir, count, i ncl ude)

W dget w;

Text Posi ti on pos;

Xt Text ScanType sType;

Xt Text ScanDi rection dir;
i nt count ;
Bool ean i ncl ude;

{
/~k

* It would have been nice for Xaw to export an interface to al
* of the parts of the wi dget. However, that wasn't the case.

* Therefore, we have to do it oursel ves.

*/
Xt Text Source source = ((Text Wdget)w) ->text.source;
return (source->Scan) (((Text Wdget)w)->text.source, pos, sType,
dir, count, include);
}

I nt Xt xuText Get MaxHei ght (w, hgt)
Wdget w, int hgt;

file:/l//H:/edonkey/docs/programming/1/2/ch06/114-119.html (3 of 5) [13/12/02 18:09:30]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

{
Xt Text Si nk sink = ((Text Wdget)w)->text. sink;
return (int)(sink-MaxHei ght)(w, hgt);
}
Text Posi tion XtxuText Get Last Pos(w) Wdget w,
{
Xt Text Sour ce source = ((Text Wdget)w) ->text. source;
return (source-Scan)(source, 0, XtstAll, XtsdrR ght, 1, TRUE);
}
voi d Xt xuText Cl ear Pos(w, spos, epos)
W dget w;
Position spos, epos;
{
/*
* Clear the area specified by the position.
*/
Text Bl ock tb;
tb.length = tb.firstPos = 0;
REPLACE(w, spos, epos, &t b);
}
voi d Xt xuText Cl ear Al |l (w)
W dget w;
{
Text Bl ock tb;
Text Position | ast Pos = XtxuText Scan(w, (Xt TextPosition)O
XtstAl'l, XtsdRight, 1, TRUE);
tb.length = tbh.firstPos = O
REPLACE(w, O, | ast Pos, &t b) ;
}

6.4.3.2. Including Header Files for the Widget

With these handy tools, you are ready to craft the widget. The first thing to do in constructing any
widget isto include the header files that you will need for itsimplementation. The following are used for
this widget:

#i ncl ude <X11/IntrinsicP. h>
#i ncl ude <X11/ Stri ngDefs. h>
#i ncl ude <X11/ keysym h>

/* W will need our private header. Note we will also get our
* public since the private gets the public. Additionally, we
* will get our superclass's information.

*/

#i ncl ude "Fi el dEdP. h"

file:///H:/ledonkey/docs/programming/1/2/ch06/114-119.html (4 of 5) [13/12/02 18:09:30]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

#i nclude "TextUtils. h" /* here are utilities */
6.4.3.3. Setting Up Helpful Macros
The next thing to do is set up any useful macros that you might need:

#defi ne BEEP(w) XBel |l (Xt Di spl ay(w), 50)
/* We set up sone hel pful macros for our editing functions. These
* are based on the LATINL definition. Note: W nake sone
* assunptions that the keysynms will have the "correct” ASCI
* values. This is not conpletely accurate since things can be
* changed, but the design choice is tolive with it.
*/
#defi ne | sUpper Al phaKey(keysym) \
(((unsigned) (keysyn) >= XK A) && ((unsigned) (keysym <= XK Z))

#define | sLower Al phaKey(keysym \
(((unsigned) (keysym) >= XK a) && ((unsigned) (keysym <= XK z))

#define | sNuneri cKey(keysym \
((((unsi gned) (keysym >= XK 0) && ((unsigned)(keysym <= XK 9))]||
\
(((unsigned) (keysyn) >= XK KP_0) && ((unsigned)(keysym <= XK KP_9)))
#defi ne | sDeci nmal Key(keysym \
(((unsigned) (keysym == XK period) || \
((unsi gned) (keysym == XK _KP_Deci nmal))

#define | sAl phaKey(keysym \
(I sUpper Al phaKey(keysym || |sLower Al phaKey(keysym)

Previous | Table of Contents |Next

Copyright © CRC Press LLC

file:/l//H:/ledonkey/docs/programming/1/2/ch06/114-119.html (5 of 5) [13/12/02 18:09:30]

file:///reference/crc00001.html

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous [Table of Contents |[Next

6.4.3.4. Forward Declarations

Next, you would need all of the forward declarations for any function that will be used in the
widget. Forward declarations are part of the ANSI standard and are generally good programming
practice. The forward declarations are given here:

/* Define any forward reference we care about.
*/

extern char FieldedTrans[]; /* fwd reference */
#i fdef X11R3

extern void ForceBuil dLi neTabl e();

#endi f

/
This is our added converter. Converters are regi stered and
installed by widgets that need them |If the Intrinsics have
t he kind of conversion you need, then it makes little sense to
create your own. This converter is very sinple and is nore for
denonstration of howto do it.

/

voi d FwCvt Functi onToFwPr oc();

* 0% %k % X X *

/*

* These procedures are our built-in editors and event routines.

* OFten wdgets provide a "base" functionality for applications

* or other w dgets who subclass off of them

*/

FwPr oc Al phaEd(), Al phaNunid(), I nt Ed(), Fl oat Ed(), Def FI Proc(),
Def FOPr oc() , Def EWPr oc() ;

/* The nice thing about forward declarations is that they indicate
* the programmer's intentions. In wdgets this nmakes |ife easy.
* If we see that only two of the several class nethods are
* forward declared, we can see right away that the witer is

file:///H:/ledonkey/docs/programming/1/2/ch06/119-121.html (1 of 4) [13/12/02 18:09:31]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

* using (inheriting) many things fromthe superclass.
*/
static void FieldEdd asslnitialize(),
FieldEdInitialize(),
Fi el dEdCr eat eSour ceSi nk(),
Fi el dEdGet Val uesHook(),
Fi el dEdDestroy();
stati c Bool ean Fi el dEdSet Val ues();

Xt Acti onProc Movel nsert (), NotifyEditor (), RedrawbDi spl ay(),
Not i f yProcs();

6.4.3.5. Setting Up the Widget Resources

The next part of the implementation file is the resource table. Setting resources for widgetsis done
exactly the same way as it was done in Chapter 5 for applications. (If any of thisisunclear, refer to
the previous chapter.) Here is the implementation file:

/*

* These variables will be used in the resource table. They
* are defaults.

*/

static int def Type = FE_ALPHA;

FwProc def EdProc = Al phaEd;

FwProc def FI Proc = Def FI Proc;

FwProc def FOProc Def FOPr oc;

FwPr oc def EWPr oc Def EWPr oc;

/
One of the nost powerful things in the toolkit is the notion of
resource managenment. Wdgets set up their "defaults" in the

I nstance file so that there are sonme known val ues.

Addi tionally, when the resource manager needs to find the
correct converter to use when getting the information fromthe
resource databases, it will use this table.

The resource record (XtResource) has six conmponents:

The resource nane (XtN)

The resource class nane (XtC)

The representation we would like to get to

The pl ace where the value should go

The representation we are com ng from

A default value if neither XtN or XtC are found
i n the databases.

oukwnheE

L . R S S T R N N R N N S S

file:///H:/ledonkey/docs/programming/1/2/ch06/119-121.html (2 of 4) [13/12/02 18:09:31]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

XtNis a string representation (follow ng X conventions) of
the resource. This is defined in the public header file or
shares one in StringDefs. h.

XtCis the class nane and follows the X conventi ons.

XtRinthe third field is part of the resource manager's | ook-up
mechani sm Coupled with the fifth field, the resource manager
can search an internal table of converters to get the address

of the correct one. It wll then provide the appropriate
argunents with the result landing in the fourth field.

/

L I N S T I R S S

#define INSET(fld) XtOfset(Fi el dEdWdget, fld)
static XtResource fieldEdRes[] = {
{XtNstring, XtCString, XtRString, sizeof(String),
I NSET(field editor.str), XtRString, NULL},
{ Xt Nedi t or Type, Xt CEdi t or Type, Xt Rl nt, si zeof (i nt),
I NSET(field editor.editor_type), XtRint,(caddr_t) &dlefType},
{ Xt Nf ocus| nProc, Xt CFocusl nProc, Xt RFuncti on, si zeof (caddr _t),
| NSET(field editor.focusln _proc),
Xt RFuncti on, (caddr _t) &lef FI Proc},
{ Xt Nf ocusQut Pr oc, Xt CFocusQut Pr oc, Xt RFuncti on, si zeof (caddr _t),
| NSET(field editor.focusQut proc),
Xt RFuncti on, (caddr _t) &ef FOProc},
{ Xt Nent er W ndowPr oc, Xt CEnt er W ndowPr oc, Xt RFuncti on, si zeof (caddr _t),
| NSET(field editor.enter Wndow proc),
Xt RFuncti on, (caddr _t) &lef EWPr oc},
{Xt Nf i el dAXxnPr oc, Xt CFi el dAxnPr oc, Xt RFwPr oc, si zeof (caddr _t),
I NSET(field editor.field axn_proc), XtRFunction, (caddr _t)NULL},
{ Xt Nedi t or Proc, Xt CEdi t or Proc, Xt RFwWPr oc, si zeof (caddr _t),
| NSET(field editor.editor_proc),
Xt RFuncti on, (caddr _t) &ef EdProc},
{ Xt Nact i veCol or, Xt CActi veCol or, Xt RPi xel , si zeof (Pi xel),
| NSET(field_editor.active_color), XtRString,
Xt Def aul t For egr ound},
1
#undef | NSET

6.4.3.6. Setting Up Action Tables for a Widget

Recalling the discussion in the previous chapter on action tables, you can apply the same technique
for creating an action table for the widget. Unlike the actions for the application, widget actions live
with the widget. That is, these actions are necessary for the widget implementation, while the ones

file:///H:/edonkey/docs/programming/1/2/ch06/119-121.html (3 of 4) [13/12/02 18:09:31]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

for the application are necessary for the application. The action table follows:

/*

* One of the fields in the class record is for the actions that
* the widget needs to get its work done. The actions coupled with
* the translation table give the widget its behavior for

* gspecific events (i.e., how do we want to | ook when Enter W ndow
* events are received).

*/
Xt Acti onsRec Fi el dEdAXnTbl[] = {

{" Movel nsert", Movel nsert},

{" Redr awbDi spl ay", Redr awDi spl ay},

{"NotifyProcs", Noti fyProcs},

{"NotifyEditor", Noti fyEdi tor},
3

Previous [Table of Contents INext

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/ch06/119-121.html (4 of 4) [13/12/02 18:09:31]

file:///reference/crc00001.html

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous [Table of Contents |[Next

6.4.3.7. Using Look-up Tables in Widgets

When reading the Intrinsics code (the actual Xtl), you wilt find the use of look-up tables. This
concept is very useful, and one that is employed in this widget. The table helps your NotifyEditor
action procedure in informing the editor_proc of the correct action. You' |l see thisin more detail
when you get to that part of the code. The tableis defined here:

typedef struct _LookupRec {
char *cnd;
i nt val:
} LookupRec;
static LookupRec editorCnds[] = {
{"DC", Del eteFwdChar},
{"DP", DeletePrvChar},
{"DF", DeleteField},
{"IN', InsertChar},
{NULL, NULL},

6.4.3.8. Filling in the Class Record

The classrecord is the next item to be completed. Recall from the discussion earlier that it contains
the shareable elements of the widget. This includes the exposure handling method and initialization
method. The class record is aso the place to connect with any superclasses. In this case, it was
decided to be a subclass of the Athena Text widget because this widget provided afair amount of
the code needed for the basic editing of text data. What it lacked was the notion of fields and the
things needed for field editing. With that, thisis a perfect example of using the inheritance
mechanisms of the Intrinsics, as shown here;

/* W always need to fill out the CassRecord in our inplenentation
* file. You will notice that we do not have the sanme nechanics

* for the instance part, because the creation

* process fills in the data at run tine.

file:/l//H:/ledonkey/docs/programming/1/2/ch06/122-125.html (1 of 3) [13/12/02 18:09:32]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

*/

Fi el dEdCl assRec fi el dEdCl assRec

{ /* core fields */
/| * supercl ass
/* class nane
/* wi dget _size
/* class initialize
[* class part_init
[* class inited
/[* initialize
/[* initialize hook
/* realize
/* actions
/* num actions
/* resources
/* num_resource
/* xrmcl ass
/* conpress_notion
/* conpress_exposure
/* conpress_enterl eave
/* visible interest
/* destroy
/* resize
/* expose
/* set val ues
/* set val ues hook
/* set val ues al nost
/* get _val ues_hook
/* accept _focus
/* version
/* call back_private
/[* tmtable
/* query _geonetry
}
{ /* text fields */
/[* enmpty */
}

{ /* fielded fields */

/[* enmpty */
}
b

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

(Wdget Cl ass) &t ext d assRec,
"Fi el dEd",

si zeof (Fi el dEdRec),

Fi el dEdd asslnitiali ze,
NULL,

FALSE

FieldEdlnitialize,

Fi el dEdCr eat eSour ceSi nk,
Xt I nheritReali ze,

Fi el dEAAXNTbl ,

Xt Nunber (Fi el dEAAXNTbl),
fi el dEdRes,

Xt Nunber (fi el dEdRes) ,
NUL L QUARK,

TRUE,

FALSE

TRUE,

FALSE

Fi el dEdDest r oy,

Xt I nheritResi ze,

Xt I nheri t Expose,

Fi el dEdSet Val ues,

NULL,

Xt | nherit Set Val uesAl nost,
Fi el dEdCGet Val uesHook,

Xt | nherit Accept Focus,

Xt Ver si on,

NULL,

Fi el dEdTr ans,

Xtl nheritQueryGeonetry

Wdget C ass fiel dEdW dget d ass = (W dget d ass) & i el dEdC assRec;

6.4.3.9. Creating a Type Converter

file:///H:/ledonkey/docs/programming/1/2/ch06/122-125.html (2 of 3) [13/12/02 18:09:32]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

The Intrinsics provides many type converters that are used by the resource manager when it needs

to convert avalue provided for awidget resource to the type that the resource is expecting to bein.
For many cases the internal Intrinsic converterswill be sufficient, but it wouldn’t be prudent not to
show at least an example of one.

This converter takes what is provided in the “from” argument and assigns it to the “to” argument.
Nothing special needs to happen since you are providing the pointer to a function and the resource
IS expecting a pointer:

voi d FwCvt Functi onToFwPr oc(ar gs, num args, fronval , t oval)
XrnVal ue *args; Cardinal *num args;
Xrnval ue *fronval , *toVval ;

fronval - >si ze;
f ronval - >addr ;

toVal - >si ze
t oVal - >addr

6.4.3.10. The Class_initialize Method

This method is responsible for setting up anything that the class will require. Thisincludes
initializing any data that is required and installing any converters that the class needs. In this
example, the widget needs a converter installed:

static void FieldEdd asslnitialize()

{
Xt AddConverter (Xt RFuncti on, Xt RFwProc,

FwCvt Funct i onToFwPr oc, NULL, 0);

Previous [Table of Contents INext

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/ch06/122-125.html (3 of 3) [13/12/02 18:09:32]

file:///reference/crc00001.html

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous |Table of Contents |[Next

6.4.3.11. The Initialize Method

The initialize method is responsible for setting up any data that the widget instance needs. All initialize
methods should make sure that the width and height of the widget are nonzero values. The reason for
doing thisisthat the Intrinsics just doesn’t like widgets that have no width or height. Thisfunctionis
invoked by the XtCreateWidget() or XtCreateM anagedWidget() functions. The codeis as follows:

static void FieldEdlInitialize(request, new)
W dget request, new,

{

/* W use the casting nechanismin Cto get the correct

* information. Wdget is an opaque pointer, thus we can have it

* assune several roles (Chapter 2 covered this).

*/
Fi el dEDW dget fwr
Fi el dEDW dget fwn
FwProc useProc;
Xrnval ue to;

(Fi el dEDW dget) r equest ;
(Fi el dEdW dget) new;

/* The initialize nmethod of the superclass wll not have known the
* source or sink we are using. Therefore we need to establish the
* default height.

*/
I f (fw->core. hei ght == DEFAULT_TEXT_HEI GHT)
fwn->cor e. hei ght = DEFAULT_TEXT_ HEI GHT;

/* W will set the inactive color to the desired border color.

* This can then be used to informthe user of an unfocused field.
* This resource is not setable. If the user changes the border

* color after creation, the inactive_color will not be changed.

fwn->field_editor.inactive_color = fw->core. border_pi xel ;
[* Now we check for the kind of editor the client witer wants.

*/

file:///H:/ledonkey/docs/programming/1/2/ch06/125-127.html (1 of 4) [13/12/02 18:09:33]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

switch(fw->field editor.editor_type) {
case FE ALPHA:
useProc = Al phaEd;
br eak;
case FE ALPHANUVERI C
useProc = Al phaNuntd;
br eak;
case FE_I NT:
useProc = I nt Ed;
br eak;
case FE FLOAT:
useProc = Fl oat Ed;
br eak;
case FE_APPL:
/* If they want to install their own, they'd better! Oherw se,
*we kill the client.
*/
if (fw->field editor.editor_proc == NULL)
Xt Error("FATAL!'! You must supply your own \

editor proc !'!'");
exit(-1);
useProc = NULL;
br eak;
defaul t:

fw->field editor.editor_type = FE ALPHA;

useProc = Al phaEd;

Xt Warni ng("FieldEd Init..Unknown editor_ type defaulting \
to FE ALPHA 'I'1");

br eak;

}
/* Set up the field editor type */

fwn->field editor.editor _type = fw->field editor.editor_type;
fwn->field editor.editor_proc = useProc;

}

6.4.3.11.1. The Initialize_hook Method

As an additional start-up method, the initialize_hook can be used to finish any part of the job that the
initialize method did not. In this example, the R3 Text widget does not create a sink or source when it
is created, so any widget or application must do so itself. To avoid this, use theinitialize_hook method
to create asink and source. The sink is the part of the text object that provides display capabilities,
while the source is used for the data part of the widget. The code is asfollows:

static void Fi el dEdCr eat eSour ceSi nk(w dget, args, num args)
W dget w dget;

file:/l//H:/ledonkey/docs/programming/1/2/ch06/125-127.html (2 of 4) [13/12/02 18:09:33]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

ArgLi st args;
Cardi nal *num args;

{
#i fdef X11R3
Fi el dEdW dget w = (Fi el dEDW dget) wi dget ;
W >t ext.source = Xt StringSourceCreate(w dget, args, *num.args);
w >text.sink = XtAsciiSinkCreate(w dget, args, *num.args);
w >t ext . | ast Pos = Xt xuText Get Last Pos(w dget) ;
For ceBui | dLi neTabl e((Text W dget)w);
#endi f
/* Now we can readjust the height since the sink wall et us know
* the information regardi ng the height.
*/

I f (w>core. hei ght == DEFAULT_TEXT_HEI GHT)
w->core. height = (2*yMargin) + 2
+ Xt xuText Get MaxHei ght (w dget, 1) ;

6.4.3.12. The Set_values Method

Asyou saw in the previous chapter, widgets provide a mechanism for altering their resources. The

set values method has that responsibility. Whenever the XtSetVaues() function isinvoked, the
Intrinsics will call the set_values method. Most widgets do not tell the client writer that the resources
requested to be set are not setable. As a client writer, this can be annoying. The widget shown here will
inform the client writers by warning them:

static Bool ean Fi el dEdSet Val ues(current, request, new)
W dget current, request, new,

{
Fi el dEdW dget fwc = (Fi el dEdW dget) current;
Fi el dEdW dget fw = (Fi el dEdW dget) r equest;
Fi el dEdW dget fwn = (Fi el dEDW dget) new;,
/* W will not allow changes to the procs that have been set up.
*/

if ((fwe->field editor.focusln proc !=
fw->field editor.focusln_proc) |
(fwe->field editor.focusQut_proc !=
fw->field editor.focusQut_proc) |]
(fwe->field_editor.enterWndow proc !=
fw->field _editor.enter Wndowproc) []
(fwec->field editor.editor_proc !=
fw->field editor.editor_proc) |]
(fwec->field editor.str !=
fw->field editor.str) |
(fwec->field editor.editor_type !

file:/l//H:/ledonkey/docs/programming/1/2/ch06/125-127.html (3 of 4) [13/12/02 18:09:33]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

fw->field editor.editor _type)){
Xt War ni ng(" Cannot alter FieldEdPart Val ues");

}
/~k
* The only setable FieldEdParts is the "active" color.
*/
If (fwe->field editor.active color !=
fw->field editor.active_col or)
fwn->field editor.active color =
fw-field editor.active_col or;
return True;
}

Previous |Table of Contents |[Next

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/ch06/125-127.html (4 of 4) [13/12/02 18:09:33]

file:///reference/crc00001.html

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous (Table of Contents [Next

6.4.3.13. The Get_values Method

The counterpart to set_valuesis get_values. This method should give back those widget resources
that the widget writer caresto give back to the client writer. Client writers cannot assume that just
because they follow the rules for an XtGetVaues() request, the values requested will be returned.
The reason is that the widget might not provide a get_values method, or the get_values method
provided might not return the request.

Looking at the following function, you can see that there are resources that this widget will not
return. They are the addresses of the “proc” pointers. The point here for client writersis: Don't
assume anything with respect to widgets. Make sure that the widget writer has carefully

documented the code, or better still, gives you a copy of the source. The function is as follows:

static void Fiel dedGet Val uesHook(wdg, args, num args)
W dget wdg;
ArgLi st args;
Cardi nal *num_ ar gs;

Fi el dEDW dget fw = (Fi el dEDW dget) wdg;
int i = 0;
int ival;float fval;

/* We |l ook through the |list of argunents to find the requests.
* Based on the request we will return the value. Notice that
* the field is a string representation, therefore we need to
* convert to the one the client desires.

*/

while(i< *num.args) {
if (strcnp(args[i].nanme, XtNintVal) == 0) {
fw>field editor.str = XtxuTextGetString(wdg);
if (strlen(fw>field editor.str)) {
sscanf (fw>field_editor.str,"%l", & val);
*((int *)args[i].value) = ival;

file:///H:/ledonkey/docs/programming/1/2/ch06/127-131.html (1 of 5) [13/12/02 18:09:34]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

} else {
*((int *)args[i].value) = (int)O;
}
} else if (strcnp(args[i].name, XtNfloatVal) == 0) {

fw>field editor.str = XtxuText GetString(wdg);

i f (strlen(fw>field editor.str)) {
sscanf(fw>field editor.str,"%", & val);
*((float *)args[i].value) = fval;

} else {
*((float *)args[i].value) = (int)O0;

}

} else if (strcnp(args[i].nanme, XtNstringVal) == 0) {
fw>field editor.str = XtxuTextGetString(wdg);
if (strlen(fw>field editor.str)) {

*((char **)args[i].value) =
fw>field editor.str;
} else {
*((char **)args[i].value) ="";
}

} else if (strcnp(args[i].nane, XtNheight) == 0) {
args[i].value = fw >core, hei ght;

} else if (strcnp(args[i].nanme, XtNw dth) == 0) {
args[i].value = fw>core.w dth;

} else if (strcnp(args[i].nane, XtNactiveColor) == 0) {
args[i].value = fw>field editor.active_col or;

} else if (strcnp(args[i].nane, XtN nActiveColor) == 0)
{
args[i].value = fw>field editor.inactive_col or;
} else if (strcnp(args[i].nane, XtNeditorType) == 0) {
args[i].value = fw>field editor.editor_type;
J
| ++
}
}

6.4.3.14. The Destroy Method

The purpose of the destroy method is to give back any system-related resources that it has taken.
This includes freeing dynamically alocated memory or file handles. In this example, you need to
free up the sink and the source since each has “malloced” some space:

/* \When a wdget is told to kill itself, its destroy nethod is
* invoked. This nethod has the responsibility of cleaning up
* any dynamc things it took. In our case, we will free the

file:///H:/edonkey/docs/programming/1/2/ch06/127-131.html (2 of 5) [13/12/02 18:09:34]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

* sink and the source.
*/
static void Fi el dEdDestroy(w)
W dget w;
{
Xt StringSourceDestroy(((Fi el dEdW dget) w) - >t ext. source);
Xt Asci i Si nkDestroy(((Fi el dEdW dget)w) - >t ext. si nk);

}

6.4.4. Support Functions for the Widget: The Flavor of the Widget

The basic implementation of the widget consists of defining all those elements in the widget. That
involves including any header files needed, defining helpful macros, defining action and
tranglation tables, filling out the class record, and creating all the methods to support the widget.
The last part isto add the “flavor” of the widget by writing the action procedures, callbacks,
internal routines, or whatever is needed to pull off the widget magic. This section contains all of
the source code for the functional part of the widget.

6.4.4.1. Portability Concerns

To make the widget as adaptable as possible to change and minimize the effect on the code
created, #define is employed to handle “generic” things. This should make the migration from
X11R3to X11R4 and to OSF/Matif fairly painless:

#i f def X11R3
#defi ne SETI NSERTI ONPO NT(w, | oc) Xt Text Set I nserti onPoi nt (w, | oc)
#defi ne GETI NSERTI ONPO NT(w) Xt Text Get | nserti onPoi nt (w)

#defi ne GETLASTPOS(w) Xt xuText Get Last Pos(w)

#define DI SPLAY(Ww) Xt Text Di spl ay(w)

#defi ne REPLACE(w, spos, epos,th) Xt Text Repl ace(w, spos, epos, th)

#el se

#defi ne SETI NSERTI ONPO NT(w, | oc) XawText Set | nserti onPoi nt (w, | oc)
#defi ne GETI NSERTI ONPO NT(w) XawText Get | nserti onPoi nt (w)

#defi ne GETLASTPOS(w) XawText Get Last Pos(w)

#define DI SPLAY(W) XawText Di spl ay(w)

#defi ne REPLACE(w, spos, epos, tbh) XawText Repl ace(w, spos, epos, th)
#endi f

6.4.4.2. Managing the Insertion Position

The Text widget has the notion of an insert position. The action procedure in this sectionisa
higher-level version of the Text widget’s. It moves the insertion position for four cases, FW
(forward one character), BK (backward one character), BG (beginning of the field), and ED (end

file:/l//H:/edonkey/docs/programming/1/2/ch06/127-131.html (3 of 5) [13/12/02 18:09:34]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

of thefield). The codeisasfollows:

/* Movelnsert is responsible for managi ng the insert position.
* |t takes as a paraneter the kind of novenent that is desired,
* then figures out howto do it.
*/
Xt ActionProc Movel nsert(w, event, parans, num _par ans)
W dget w;
XEvent *event;
String *parans;
Cardi nal num par ans;

{
int |astPos = GETLASTPOS(W) ;
int insertPos = GETI NSERTI ONPO NT(w) ;
/* Forward Movenent */
if (strcecnmp("FW, parans[0]) == 0) {
i f (insertPos == | ast Pos)
BEEP(W) ;
el se
SETI NSERTI ONPO NT(w, ++i nsert Pos) ;
/ * Backward Movenent */
} else if (strcnp("BK", parans[0]) == 0) {
if (insertPos == 0)
BEEP(W) ;
el se
SETI NSERTI ONPO NT(w, - -1 nsert Pos) ;
/* Go to the beginning of the string */
} else if (strcnp("BG', parans[0]) == 0) {
SETI NSERTI ONPOl NT(w, 0) ;
/* Go to the end of the string */
} else if (strcnp("ED', parans[0]) == 0) {
SETI NSERTI ONPOI NT(w, | ast Pos) ;
} else {
Xt War ni ng(" Movel nsert of Fiel dEdWdget .. bad param!");
BEEP(W) ;
}
}

6.4.4.3. Redisplay Mechanism
If the field needs to be redisplayed, this action procedure will perform the necessary task:

/* Provide a nmechanismfor cleaning up the screen. */

file:///H:/edonkey/docs/programming/1/2/ch06/127-131.html (4 of 5) [13/12/02 18:09:34]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

Xt Acti onProc RedrawDi splay(w, event, parans, num paramns)
W dget w;
XEvent *event;
String *parans;
Car di nal num par ans;

{
DI SPLAY(W) ;

Previous (Table of Contents [Next

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/ch06/127-131.html (5 of 5) [13/12/02 18:09:34]

file:///reference/crc00001.html

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents INext

6.4.4.4. Using Notifiers to Manage Procedures

This widget borrows a concept from the Athena Command widget called the notifier. A notifier
isafunction (action proc) that manages the calling of subordinate functions. In the case of the
“FieldEditor” widget there are two notifiers, one for handling editing functionality, and the other
for event handling.

The NotifyEditor() procedure uses a look-up table to match the parameter passed as an argument
by the translation manager. This parameter corresponds to the kind of editing that is to be
performed. Editing takes the form of deletion or insertion.

The NotifyProcs() procedure simply uses the parameter passed to call one of the installed
functions for the widget. Recall that there are four event procedures that are installed by the
client: enter window, focusin, focus out, and field action (activated by a Return keypress). Here
isthe code for the notifiers:

/* This notifier is constructed to pass to the editor the correct
* conmand. Recall the definition in FieldEd.h.
*/
Xt ActionProc NotifyEditor(w, event, parans, num parans)
W dget w;
XEvent *event;
String *parans;
Cardi nal num par ans;
{
Fi el dEDW dget fw = (Fi el dEDW dget) w;
int i,cnt = XtNunmher (editorCns);

I f (num parans !'= 0) {
for (i =0; 1 cnt; i++) {
if (strcnp(editorCrds[i].cnd, parans[0]) == 0) {
(*fw>field editor.editor _proc) (fw,

file:/l//H:/ledonkey/docs/programming/1/2/ch06/131-138.html (1 of 9) [13/12/02 18:09:35]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

event, editorCnds[i].val);
return

}
}
XtWarni ng("Bad paramto NotifyEditor in FieldeEdWdget !!");
}
/* This notifier manages which FwProc to i nvoke. */
Xt ActionProc NotifyProcs (w, event, paramnms, num paramns)
W dget w;
XEvent *event;
String *parans;
Car di nal num par ans;

{
Fi el dEDW dget fw = (Fi el dEdW dget) w;
I f (strcnp(parans[0],"FI") == 0) {
I f (fw>field_editor.focusln_proc != NULL)
(*fw>field editor.focusln_proc)(w;
} else if (strcnp(parans[0],"FO') == 0) {
I f (fw>field_editor.focusQut_proc != NULL)
(*fw>field editor.focusQut_proc)(w;
} else if (strcnp(parans[0],"EW) == 0) {
I f (fw>field_editor.enterWndow proc != NULL)
(*fw>field_editor.enterw ndow proc)(w);
} else if (strcnp(parans[0],"FA") == 0) {
If (fw>field editor.field axn_proc != NULL)
(*fw>field editor.field axn_proc)(w;
} else {
Xt War ni ng("Bad paramto NotifyProcs \
in Fiel dEdWdget !I'!'");
}
}

6.4.4.5. Default Procedures

All widgets should supply some default level that will exist if the application writer does not add
anything new. The following functions provide the base functionality for all of the procedures
that are installable:

/* These are sonme default procedures for Focuslin (Fl), FocusCQut
* (FO, and Enter Wndow (EW.

*/

FwPr oc Def FI Proc(w)

file:/l//H:/edonkey/docs/programming/1/2/ch06/131-138.html (2 of 9) [13/12/02 18:09:35]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

W dget w;
Arg arg[1];

Xt Set Arg(ar g[0] , Xt Nbor der Col or, Wi t ePi xel O Screen(Xt Screen(w)));
Xt Set Val ues(w, arg, (Cardi nal) 1);

}

FwProc Def FOProc(w)
W dget w;

{
Arg arg[1];

Xt Set Arg(arg[0], Xt Nbor der Col or, Bl ackPi xel O Screen(Xt Screen(w)));
Xt Set Val ues(w, arg, (Cardi nal) 1);

}

FwPr oc Def EWPr oc(w)
W dget w;

{

/* Get the keyboard focus for the field */
XSet | nput Focus(Xt D spl ay(w), XtW ndow w),
Revert ToPoi nt er Root, CurrentTi ne);

6.4.4.6. Internal Editors

At this point in the source code, the entire widget has been constructed. Y ou will now construct

the internal editorsthat allow the widget to be a useful tool for screen creation. If you are going

to build your own editing procedures to go with this widget, you will need to pay close attention
to these four.

The editors are al identical except for the insertion part of the code. In each case, they check the
value of the key pressed to determine if it is allowed. Recall the macros defined in the header
part of the code; they are used heavily in this part of the code:

#defi ne SBUFSI ZE 100
XConposeSt atus conp_stat = {NULL, 0};

FwProc Al phaEd(w, event, Edi t or Axn)
W dget w;

XEvent *event;
i nt EditorAxn;

Xt Text Position i nsert Pos, nxt Pos;

file:///H:/edonkey/docs/programming/1/2/ch06/131-138.html (3 of 9) [13/12/02 18:09:35]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

Xt Text Bl ock tb;

swi tch(Edi t or Axn) {
case Del et eFwdChar :

case

case

case

/*

* Look up the
* al | owed.

*/

| f

i nsert Pos = GETI NSERTI ONPO NT(w) ;
nxt Pos = Xt xuText Scan(w, i nsert Pos, Xt st Posi ti ons,
XtsdRight, 1, TRUE);
if (insertPos == nxtPos) {
BEEP(w) ;
} else {
tb.length = tbh.firstPos = O;
REPLACE(w, i nsertPos, nxt Pos, &t b);
}
br eak;
Del et ePrvChar:
i nsert Pos = GETI NSERTI ONPO NT(w) ;
nxt Pos = Xt xuText Scan(w, i nsert Pos, Xt st Posi ti ons,
XtsdLeft, 1, TRUE);
if (insertPos == 0) {
BEEP(W) ;
} else {
tb.length = tb.firstPos = 0;
REPLACE(w, nxt Pos, i nsert Pos, &t b) ;
}

br eak;

Del et eFi el d:

tb.length = tb.firstPos = 0;

nxt Pos = Xt xuText Scan(w, (Xt TextPosition)O,
XtstAll, XtsdRi ght, 1, TRUE);

REPLACE(w, (Xt Text Posi ti on) 0, nxt Pos, & b) ;

br eak;

| nsert Char: {

char sbuf [SBUFSI ZE] ;

i nt keysym

"val ue" of the key pressed and check if it is
it is, then insert it. O herw se, do nothing.

tb.length = XLookupString(event, sbuf, SBUFSI ZE,
&keysym &conp_stat) ;
if (tb.length == 0) break;
i f (1sAl phaKey(keysym){
tb.ptr = &sbuf[0];

file:///H:/edonkey/docs/programming/1/2/ch06/131-138.html (4 of 9) [13/12/02 18:09:35]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

tb.firstPos = 0;
i nsert Pos = GETI NSERTI ONPO NT(w) ;
REPLACE(w, i nsert Pos, i nsert Pos, & b) ;

}
br eak;
}
}
}
FwProc Al phaNuned(w, event, Edi t or Axn)
W dget w;
XEvent *event;
i nt EditorAxn;
{

Xt Text Posi tion insert Pos, nxt Pos;
Xt Text Bl ock t b;
swi tch(Edi t or Axn) {
case Del et eFwdChar:
i nsert Pos = GETI NSERTI ONPO NT(w) ;
nxt Pos = Xt xuText Scan(w, i nsert Pos, Xt st Positions,
XtsdRight, 1, TRUE);
if (insertPos == nxtPos) {
BEEP(w) ;
} else {
tb.length = tb.firstPos = 0;
REPLACE(w, i nsert Pos, nxt Pos, &t b);
}
br eak;
case Del et ePrvChar:
i nsert Pos = GETI NSERTI ONPO NT(w) ;
nxt Pos = Xt xuText Scan(w, insertPos, XtstPositions,
XtsdLeft, 1, TRUE);
if (insertPos == 0) {
BEEP(W) ;
} else {
tb.length = tb.firstPos = 0;
REPLACE(w, nxt Pos, i nsert Pos, &t b) ;
}
br eak;
case Del et eFi el d:
tb.length = tb.firstPos = 0;
nxt Pos = Xt xuText Scan(w, (Xt TextPosition)O,
XtstAl |, XtsdRight, 1, TRUE);
REPLACE(w, (Xt Text Posi ti on) 0, nxt Pos, & b) ;

file:///H:/edonkey/docs/programming/1/2/ch06/131-138.html (5 of 9) [13/12/02 18:09:35]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

br eak;
case | nsertChar:
{
char sbuf [SBUFSI ZE] ;
i nt keysym
tb.length = XLookupString(event, sbuf, SBUFSI ZE,
&keysym &conp_stat);
if (tb.length == 0) break;
if (1sAl phaKey(keysym) || |sNunericKey(keysym){
tb.ptr = &sbuf[0];
tb.firstPos = 0;
i nsert Pos = GETI NSERTI ONPO NT(w) ;
REPLACE(w, i nsert Pos, i nsert Pos, &tb);
}
}
br eak;
}
}
FwProc | nt Ed(w, event, Edi t or Axn)
W dget w;
XEvent *event;
I nt Editor Axn;
{

Xt Text Position i nsert Pos, nxt Pos;
Xt Text Bl ock tb:

swi tch(Edi t or Axn) {
case Del et eFwdChar:
i nsert Pos = GETI NSERTI ONPO NT(w) ;
nxt Pos = Xt xuText Scan(w, insertPos, XtstPositions,
XtsdRi ght, 1, TRUE);
if (insertPos == nxtPos) {
BEEP(W) ;
} else {
tb.length = tbh.firstPos = 0;
REPLACE(w, i nsert Pos, nxt Pos, & b);
}
br eak;
case Del et ePrvChar:
i nsert Pos = GETI NSERTI ONPO NT(w) ;
nxt Pos = Xt xuText Scan(w, i nsert Pos, XtstPositions,
XtsdLeft, 1, TRUE);
if (insertPos == 0) {
BEEP(w) ;

file:///H:/edonkey/docs/programming/1/2/ch06/131-138.html (6 of 9) [13/12/02 18:09:35]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

} else {
tb.length = tb.firstPos = 0;
REPLACE(w, nxt Pos, i nsert Pos, &t b) ;
}
br eak;
case Del et eFi el d:
tb.length = tb.firstPos = 0;
nxt Pos = Xt xuText Scan(w, (Xt TextPosition)O,
XtstAl |, XtsdRi ght, 1, TRUE);
REPLACE(w, (Xt Text Posi ti on) 0, nxt Pos, & b) ;
br eak;
case InsertChar:

char sbuf [SBUFSI ZE] ;
int keysym
tb.length = XLookupString(event, sbuf, SBUFSI ZE,
&keysym &conp_stat);
if (tb.length == 0) break;
i f (lIsNumericKey(keysym) {
tb.ptr = &sbuf[0];
tb.firstPos = 0O;
i nsert Pos = GETI NSERTI ONPO NT(w) ;
REPLACE(w, i nsert Pos, i nsert Pos, & b) ;

}

br eak;
}
}
FwProc Fl oat Ed(w, event, Edi t or Axn)
W dget w;

XEvent *event;
i nt EditorAxn;

Xt Text Posi tion insertPos, nxt Pos;
Xt Text Bl ock t b;
Fi el dEdW dget fw = (Fi el dEdW dget) w;
swi tch(Edi t or Axn) {
case Del et eFwdChar:
i nsert Pos = GETI NSERTI ONPO NT(w) ;
nxt Pos = Xt xuText Scan(w, i nsert Pos, Xt st Positions,
XtsdRi ght, 1, TRUE);
if (insertPos == nxtPos) {
BEEP(W) ;

file:///H:/edonkey/docs/programming/1/2/ch06/131-138.html (7 of 9) [13/12/02 18:09:35]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

} else {
tb.length = tb.firstPos = 0;
REPLACE(w, i nsert Pos, nxt Pos, &t b) ;
}
br eak;
case Del et ePrvChar:
i nsert Pos = GETI NSERTI ONPO NT(w) ;
nxt Pos = Xt xuText Scan(w, i nsert Pos, Xt st Posi ti ons,
XtsdLeft, 1, TRUE);
if (insertPos == 0) {
BEEP(W) ;
} else {
tb.length = tb.firstPos = 0;
REPLACE(w, nxt Pos, i nsert Pos, &t b) ;
}
br eak;
case Del et eFi el d:
tb.length = tb.firstPos = 0;
nxt Pos = Xt xuText Scan(w, (Xt Text Position)O,
XtstAll, XtsdRi ght, 1, TRUE);
REPLACE(w, (Xt Text Posi ti on) 0, nxt Pos, & b) ;
br eak;
case InsertChar:

char sbuf [SBUFSI ZE] ;
int keysym
char *sb;
nxt Pos = Xt xuText Scan(w, (Xt Text Position)O,
Xt st EQL, Xt sdRi ght, 1, TRUE);
sb = Xt xuText Get String(w, 0, nxt Pos) ;
tb.l ength = XLookupString(event, sbuf, SBUFSI ZE,
&keysym &conp_stat);
if (tb.length == 0) break;
if (lIsNunericKey(keysym ||
(I sDeci mal Key(keysym &&
(strstr(sb,".")==NULL))){
tbh.ptr = &sbuf[0];
tb.firstPos = 0O;
I nsert Pos = GETI NSERTI ONPO NT(w) ;
REPLACE(w, i nsert Pos, i nsert Pos, & b);

}
Xt Free(sh);

file:///H:/edonkey/docs/programming/1/2/ch06/131-138.html (8 of 9) [13/12/02 18:09:35]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

br eak;

Previous | Table of Contents [Next

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch06/131-138.html (9 of 9) [13/12/02 18:09:35]

file:///reference/crc00001.html

A Practical Guide

by Brian J. Keller

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

to X Window Programming: Developing Applications with the XT

Intrinsics and OSF/Motif

CRC Press, CRC Press LLC
ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents INext

6.4.4.7. Default Translations

The following are the default tranglations set up for the widget:

/* FILE: Fi el dEdTr. c
* PURPCSE: Hold the default translations for the field editor
* w dget cl ass.
* FW- Forward Char
* BK - Backward Char
* DC - Delete Char, DP - Delete Prv Char, DF - Delete Field
* IN- Insert Char, FI - Focus In, FO - FocusQut, EW- Enter
* W ndow
*/

char Fi el dEdTrans[] =

"\

Crl <Key>F: Movel nsert (FW \n\

Ctrl <Key>B: Movel nsert (BK) \n\

Ctrl <Key>D: NotifyEditor (DC) \n\

Ctrl <Key>A: Movel nsert (BG \n\

Ctrl <Key>E: Movel nsert (ED) \n\

Crl <Key>H: Noti fyEditor (DP) \n\

Ctrl <Key>K: NotifyEditor (DF) \n\

Ctrl <Key>L: Redr awDi spl ay() \n\

<Key>Ri ght : Movel nsert (FW \n\

<Key>Left: Movel nsert (BK) \n\

<Key>Del et e: Noti fyEditor (DP) \n\

<Key>Backspace: NotifyEditor (DP) \n\

<Key>Ret ur n: Not i fyProcs(FA)\n\

<Key>: NotifyEditor(IN) \n\

<Focusl n>: NotifyProcs (FlI) \n\

<FocusQut >'
<Ent er W ndow>:

file:///H:/ledonkey/docs/programming/1/2/ch06/138-140.html (1 of 2) [13/12/02 18:09:36]

NotifyProcs (FO \n\
Not i fyProcs(EW";

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Primitive Widgets

6.5. Summing Up

This has been a heavyweight chapter. The widget created here is rather useful (asyou will seein
Chapter 8), and demonstrates the power and ease of creating widgets. Y ou simply define the
class, define the instance things, then provide the procedures to handle the standard mechanics
(realize, expose), and add the action procedures that give your widget character.

If you can find a superclass that has many of the traits that you need, useit! In this case,
TextWidget was perfect. Imagine how complicated things would have gotten if it didn’t exist.

Y ou should take some time and read TextWidget' s source code. It will give you valuable insight
into how widgets work. As of X11R4, it has been given afacelift so you may want to check out
that version.

Previous | Table of Contents |Next

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/ch06/138-140.html (2 of 2) [13/12/02 18:09:36]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Container Widgets

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous [Table of Contents |[Next

Chapter 7
Building Widgets: Container Widgets

In the previous chapter you constructed a primitive widget that was useful for field editing. Y ou did
this by using the Intrinsic inheritance mechanism as subclassed off of the Athena Text widget. As
you can tell, primitive widgets are the “worker” widgets, and as such are the most important ones to
understand how to construct. This chapter discusses the two additional kinds of widgets. composite
and constraint.

7.1. Composite Widget

The composite widget is alayout-manager type of abstraction. Essentially, it provides client writers
with some useful layout mechanisms so that the details of laying out widgets are somewhat
removed. In the Athena Widget Set, the BoxWidgetClass is an example of thiskind of widget. The
client writer simply defines afew resources to instruct the BoxWidget about how spacing should be
handled for the children widgets, and then proceeds to add/del ete children. In the Motif Widget Set,
the MenuShellWidget is an example of this kind of widget.

One thing you may find interesting about composite widgetsis that there aren’t that many written.
Hard to believe, isn't it? Well, to put your mind at ease, take alook in Appendix A of thisbook in
the part that shows the “classing” of both Athena and Motif widgets. How many did you find that
were just composite widgets? Y ou will find several constraint widgets (which just happen to be
subclasses of composite widgets), but few composites.

7.2. Structure of a Composite Widget

The composite widget is one of the protocol widgets found in the Intrinsics. It is much like the
primitive widget in that it too has an instance and class part. The instance part is as follows:

typedef struct _ConpositePart ({
W dget Li st children; [* array of ALL wi dget children */

file:///H:/edonkey/docs/programming/1/2/ch07/141-143.html (1 of 4) [13/12/02 18:09:36]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Container Widgets

Car di nal num children; /* total nunber of w dget children */

Car di nal num sl ot s; [* nunber of slots in children array */

Xt OrderProc insert _position; /* conpute position of new child */
} ConpositePart, *ConpositePtr;

The instance record is defined as follows:

typedef struct _ConpositeRec {
Cor ePar t core;
ConpositePart conposite;

} ConpositeRec;

Notice that thisis very straightforward. The “children” member refersto the list of widgets that are
being managed. The “num_children” member isthe number of childrenin thelist. The “num_dlots’
member indicates the maximum size of the list. The “insert_position” member is a pointer to a
function that informs the widget of the index into the list where the next child will go.

The class part is equally smple, and is given here:

t ypedef struct _ConpositeC assPart {
Xt Geonet ryHandl er geonetry_manager; /* geonetry nmanager */

Xt W dget Proc change_nanaged,; /* change managed state of
child */

Xt W dget Pr oc i nsert _child; /* physically add child to
parent */

Xt W dget Proc del ete_chil d; /* physically renove child */

Xt Poi nt er ext ensi on; /* pointer to extension
record */

} Conposited assPart, *ConpositePartPtr;
The X11R4 definition for the extension record is defined as:

t ypedef struct {
Xt Poi nter next _extension; /* 1st 4 mandated for all extension

records */
XrmQuark record_type; /* NULLQUARK; on ConpositeCd assPart */
| ong versi on; /* must be Xt ConpositeExtensi onVersion*/
Cardi nal record_si ze; /| * si zeof (Conposi t e assExt ensi onRec) */

Bool ean accepts_objects;
} Conposited assExt ensi onRec, *ConpositeC assExtensi on;

and the class record defined as:

file:///H:/edonkey/docs/programming/1/2/ch07/141-143.html (2 of 4) [13/12/02 18:09:36]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Container Widgets

t ypedef struct _ConpositeC assRec {
Cor eCl assPart core_cl ass;
Conposi teC assPart conposite_cl ass;
} Conposited assRec;

The first member of the class structure is a pointer to “geometry _manager.” Thisis amethod that
performs the negotiation between the widget’ s children and itself. If you recall from the previous
chapter, the CoreClassPart contained a member for a method called query_geometry. Thisisthe
method that isinvoked by a composite widget’s geometry _manager when attempting a layout. The
important point here isto have an understanding of how these widgets work, not how to build your
own.

The next members are “change_managed,” “insert_child,” and “delete-child.” These methods worry
about the state of the children under management. The change_managed method is responsible for
redoing the layout whenever the composite widget detects a changein its children. Theinsert_child
and delete_child methods simply provide the capability to add/delete children from the list.

In the actual implementation file of a composite widget you would find the standard “ class” record
to fill out. Typically, the only methods that are required to be created are Initialize(), Resize(), and
QueryGeometry().

The Initialize() method would probably make sure that the widget has nonzero width and height.
(That sounds real tough!) In the Resize() method, you would probably find a call to a function that
performs the layout. This layout function would be coupled with a“sister” function that tries the
layout prior to applying it. Lastly, the QueryGeometry() method would be crafted. All widgets
should provide one of these (though most don’t) so that children are easier to manage, since the
parent will “discuss’ things via the QueryGeometry() method of the child. This routine has the
chore of checking on the intentions of the parent, which entails determining what the parent is
trying to change, and seeing if it can be allowed to happen.

Now then, since Initialize(), Resize(), and QueryGeometry() are done, what next? As you can see,
the composite widget has additional class parts. In the previous chapter, your widget did not have
anything new to add to the class. For composites, however, thisis not the case. They add the four
previously mentioned members. The only one of concern is the GeometryManager() method; the
others are usually inherited. As stated before, this method calls the child’ s QueryGeometry()
method to conduct a negotiation. There is an exchange of dialog between the parent and child that
informs each of the other’ s wishes. Eventually, aresult will be obtained with the parent having the
right to enforce any changes on the child.

Granted, this discussion on composite widgetsis brief, but this book is a practical guide, and in the
real world almost all programmers work with what is available. Therefore, thisdiscussion is
intended purely for “understanding’s’ sake, not to provide comprehensive knowledge.

file:///H:/edonkey/docs/programming/1/2/ch07/141-143.html (3 of 4) [13/12/02 18:09:36]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Container Widgets

Previous [Table of Contents |[Next

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/ch07/141-143.html (4 of 4) [13/12/02 18:09:36]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Container Widgets

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous [Table of Contents |[Next

7.3. Structure of a Constraint Widget

The last of the protocol widgets is the constraint widget. It is a subclass of composite, and is a'so
used for layout. It provides an added degree of layout mechanics through the use of constraints
applied to each of the widgets it manages.

If you recall, the CorePart(instance) has a member that is a pointer to a constraint record. Y ou might
have wondered what that was all about. Where would the widget get these constraints? The answer
isfrom a constraint widget that is managing the child.

The instance and class structures are as follows:

typedef struct _ConstraintPart {
Xt Poi nt er munbl e;
} ConstraintPart;

typedef struct _ConstraintRec {
Cor ePar t cor e;
ConpositePart conposite;
ConstraintPart constraint;

} ConstraintRec, *ConstraintWdget;

The class part isgiven as.

typedef struct _ConstraintC assPart {

Xt Resour ceLi st resources; /* constraint resource |ist */

Car di nal num resources; [/* nunber of constraints in [ist */
Car di nal constraint_size; /* size of constraint record */
XtInitProc initialize; /* constraint initialization */
Xt W dget Proc destroy; /* constraint destroy proc */

Xt Set Val uesFunc set val ues; /* constraint set _val ues proc */

Xt Poi nt er extension; /* pointer to extension record */

} ConstraintC assPart;

file:///H:/ledonkey/docs/programming/1/2/ch07/144-146.html (1 of 3) [13/12/02 18:09:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Container Widgets

The extension definition is given as:

typedef struct {
Xt Poi nter next_extension; /*1st 4 nmandated for all extension */

XrmQuark record_type; /* NULLQUARK; on ConstraintC assPart */
| ong version; /* nust be XtConstraintExtensionVersion */
Cardi nal record_si ze; /| * sizeof (Constrai nt Cl assExt ensi onRec) */

Xt ArgsProc get val ues_hook;
} Constraint C assExt ensi onRec, *Constrai nt O assExt ensi on;

The classrecord isgiven as:

typedef struct _ConstraintCd assRec {
Cor eCl assPart core_cl ass;
Conposi teC assPart conposite _cl ass;
Constrai ntCl assPart constraint_cl ass;
} Constraintd assRec;

The class members should be familiar to you: “resources’ and “num_resources’ are used by the
resource manager (see Chapter 5 and Chapter 6), and “constraint_size” tells the Intrinsics how many
bytes long the constraint record is. The remainder are methods: initialize, destroy, and set-values.
These behave just like those in Chapter 6, namely, “initialize” sets up the constraint values,
“destroy” cleansup, and “set_values’ assigns values to constraint resources.

Y ou should notice the extension record. This creature is acommon piece of equipment now, with
X11R4 defining the protocol for how to lay it out. The reason for extensions (and standards for their
use), isthat they eliminate core Intrinsics changes.

It is easy to see that the structures of the protocol widgets are quite lengthy. Now that you are
familiar with the Intrinsics, you can also see that there are fairly well-defined mechanisms for
interaction with Xt. If that is true, then imagine what a change would do to the Intrinsic code, if the
members of the structures were toyed with.

Remember that the constraint widget is a subclass of the composite, making it a manager type.
Therefore, the things that occur when using a composite widget will hold true for a constraint
widget. Additionally, the constraint widget adds more layout information which it must consider
during its layout management.

7.4. Summing Up

Container widgets are confusing, hard to write, and something most application writers will not
have to do. Fortunately, most of the widget sets provide a good base of layout managers

file:///H:/edonkey/docs/programming/1/2/ch07/144-146.html (2 of 3) [13/12/02 18:09:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Building Widgets: Container Widgets

(containers) that application writers may employ. The key points to remember are as follows:

1. Composite and constraint widgets manage children.

2. Geometry management can be lengthy.

3. If you will be creating several children of a manager at onetime, it iswise to create them
as unmanaged and then manage all of them at one time.

If you have the desire to explore this topic further, the Athena BoxWidget and FormWidget are
useful examplesin the “how” of writing container widgets.

Previous [Table of Contents |[Next

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch07/144-146.html (3 of 3) [13/12/02 18:09:37]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents | Next

Chapter 8
Sample Application: A Character-Oriented
Client

In Chapter 5 you wrote severa clients, each an application in its own right. However, none
had al of the features that most applications tend to have. In this chapter, you will
construct a complete application, with field entry, pop-up help, pop-up menu, pop-up
option list, and field traversal without the mouse.

8.1. Designing an Xt Application

Since X clients are event-driven, the way you think about application design must change.
For instance, in the “old” style of programming, it was fairly easy to write an editing
screen. Each field would be entered in sequence, with the program “watching” the
keystrokes so that the user added the right information. In some cases, afield action
routine would “fire” after a Return keypress, with some editing feedback given. In other
cases, the entire form would be filled in, and then a*“form action” routine would validate
each field. These techniques were tried and true and fairly straightforward. Those were the
days of keyboards.

When graphical user interfaces (GUIs) came along, so did the use of a mouse. The mouse
(not to be confused with a hairy little animal) took the old model of programming and put
akink init. Those days of smply watching a keyboard are gone. No longer can you
assume that the entire from will be filled in, nor can you assume a sequence of field
traversal. Of course, programs can be written to force the user to comply with the
applications-defined policy, but that goes against the grain of “productivity.” So, how do
you keep the users happy? With a great deal of pain, sometimes.

file:/l//H:/ledonkey/docs/programming/1/2/ch08/147-150.html (1 of 6) [13/12/02 18:09:40]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

Designing an Xt client encompasses three things: application flow, layout policy, and
construction tools. The first step in your design is to understand the application flows and
decide what components are needed (such as a menu, or acommand button). Next, you
must determine the interface policy that the application warrants. Isit like Presentation
Manager? Does the user department have a policy? The next decision is on the widget set.
Athena? Motif? XWIN? Or ahybrid of several? Once you know the policy, widget set, and
application flows, you can construct the application.

8.2. Standardizing the Interface

The idea behind standardizing the user interface is not new. Many companies have devoted
many hours researching this subject and have their own versions. On top of X we have
OSF/Moatif (Presentation Manager-like), AT& T/XWIN (Open Look), and Sun/XView
(another Open Look), with perhaps more to follow. Interface policies have become such a
concern that corporations are suing other corporations over “look and feel!”

In Figure 8-1 you can see one type of interface. The top-left corner contains the application
title. Next to it, there is an exit button, followed by a min/max button. Below the
application title is an options area with the first item being help, followed by system
options (i.e., kill, restart, etc.), and finished by any application-specific options. In the
window are dotted lines that represent pop-ups. Pop-up menus will always pop up next to
the options area, while other pop ups will center in the backdrop.

file:///H:/edonkey/docs/programming/1/2/ch08/147-150.html (2 of 6) [13/12/02 18:09:40]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

Application Title Xit | Max
Help @ ————77
| Popup Menus
{ <+
System | | |
: |
I :
Options | t
| e |
| g |
L |
| |
| |
|
IO Area |'
r
|

Popup Converstation Boxes

User Message Area

Figure8-1 Onekind of GUI.

file:///H:/ledonkey/docs/programming/1/2/ch08/147-150.html (3 of 6) [13/12/02 18:09:40]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

e System Menu

e _ _____________ -
I_- System | Application Name leon | Max

| _;. - : Help

| N\

|

I

I

ik

+— Option Menu

Popup Container

T
|
_|
I

|

|
Application Options I
|

|

|

|

|

|

|

I

|

I

|

I

|
N

Figure 8-2 Another kind of GUI.

Figure 8-2 demonstrates the OSF/Motif style of interface. Asyou can see, the resize
borders are on the outermost frame of the window (they are placed there by the OSF/Motif
window manager, “mwm”). In the upper-left corner is a button for the system menu,
followed by the application title, followed by an icon button, and lastly, a min/max button.
Below this “system bar” is the application-specific “menu bar.” When a menu item from

file:///H:/ledonkey/docs/programming/1/2/ch08/147-150.html (4 of 6) [13/12/02 18:09:40]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

the menu bar is selected, a menu will pull down beneath it (the same is true for the system
menu off of the system button). The “workspace” will hold additional pop-up windows or
perhaps static display windows.

To show you how to create your own interface policies, independent of any policy body,
we will adopt the style in Figure 8-3. It has a*“ menu/system bar” with the system button in
the upper-left corner. Proceeding from that is an exit button so that the user can quickly
kill the client. The exit functionality will also be available in system menu. The backdrop
will contain containers (entry and display) along with any pop-ups that may occur.

Standardizing the user interface has many advantages. It provides consistent program
structure, minimizes user re-education, and streamlines program devel opment.

Sys Application Title Max | Xit

Display Container

e mmmm— o m—

System Menu

Entry Container

= ——— e s = e e e e e e S D T e . T e — e ey S s s TE—

Popup Boxes

Backdrop

file:/l//H:/edonkey/docs/programming/1/2/ch08/147-150.html (5 of 6) [13/12/02 18:09:40]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

Backdrop

Application Message Center

Figure 8-3 Our standard GUI.

Consistent program structure is obtained through the use of common construction tools.
Additionally, application writers need not deal with the issues of interface style; they
simply adapt whatever is the current policy and use the available tools to abide by it.

With a consistent user interface for applications, the re-education process for usersis
reduced. Users can spend more time using the application rather than trying to figure out
all of the new interface guidelines.

Program development is streamlined due to the reuse of interface “routines’ or “objects’
that would be created for easing the building of the interface. Additionally, re-creation of
Interface componentsis eliminated. An example of thisisfound in the OSF/Motif Widget
Set in the form of the convenience routine CreateM ainWindow() (discusses and used in
Chapter 11) which creates a standard main window that adheres to the OSF/Motif Style
Guide.

Previous | Table of Contents Next

Copyright © CRC Press LLC

file:/l//H:/ledonkey/docs/programming/1/2/ch08/147-150.html (6 of 6) [13/12/02 18:09:40]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents | Next

8.3. Selecting From the Widget Sets

When developing applications, it is very important to have libraries of routines that
provide the functionality you need. Often, software departments will create libraries of
routines specific to their needs. These might include standard data calculations,
mathematical calculation routines, or database access routines. These libraries go along
way in easing development, and this same notion can be applied to widget set selection.

Each widget set contains the core components to create user interfaces. The Athena Widget
Set was the first to arrive. It was developed by the X folks when the Toolkit was created.
The intention was to show other people how to construct interface components. The
original set contained components such as the scrollbar, command button, label, and text
editing. In addition, afew layout assistants were available: box, form, viewport, and
vpaned. Soon after this set was created, vendors stepped in to provide their versions of a
scrollbar, command button, and the rest. Looking at Athena, Motif, XWIN, or whatever,
you can see that each set has a standard collection of useful interface components. Given
this, it almost doesn't matter very much which kit you select so long as most of your needs
are met.

The important point to make is to select the widget set that works for you. If 3D visuals
turn you on, or if “pushpins’ and “dliders’ are your fancy, go for it. Just remember, when
you select a set, you are kind of stuck with it. For the most part, you cannot swap widgets
from other sets. There are exceptions (in Chapter 9 we see the Athena Clock widget used
with Motif widgets), especialy if the widget is adirect class of the Core.

Most widget sets provide a“union” widget. This widget has the special features (such as

keyboard traversal) that the widget set uses. If the widget you would like to useis adirect
class of Core, that union widget is not in the way, thus the widget is completely usable. If,
however, the widget is a subclass of a union widget, the union must be brought over. This

file:///H:/ledonkey/docs/programming/1/2/ch08/150-153.html (1 of 4) [13/12/02 18:09:41]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

may not be possible due to conflicts.
8.3.1. Our Selection

In this client, the Athena Widget Set is used. As has been pointed out earlier, thisset is
free, and the source code iswidely available.

While you develop the code, you should become familiar with the components being used.
In this client you will use the following:

OverrideShellWidgetClass (for pop-ups).

FormWidgetClass (for layout management).

BoxWidgetClass (for layout management).

ListWidgetClass (for the pop-up option selection list).
CommandWidgetClass (for buttons and menu panes).

L abel WidgetClass (for the menu titles, message area, and field labels).
FieldEdWidgetClass (for field entry).

AsciiDiskWidgetClass (for help).

NG A~®DE

8.3.1.1. OverrideWidgetClass

Thiswidget is amember of the ShellWidgetClass. It is one of the built-in widgets provided
by the Intrinsics. Itsrole isto override window managers. Asyou have seenin all of your
previous clients, the window manager places “adornments’ (such as resize bars) around
the top-level windows. The OverrideShellWidgetClassis used to get around this. It is used
most often for creating pop-ups.

8.3.1.2. FormWidgetClass
Thiswidget is amember of the ConstraintWidgetClasso Essentidly, it contains layout
policies that are useful for assembling interfaces. In this case, it will be used for controlling

the placement of widgets with respect to other widgets, and controlling resizing of the
children.

8.3.1.3. BoxWidgetCiass

Thiswidget is a member of the CompositeWidgetClass. Itsjob isto assist in the layout of
children. Thiswidget places no constraints on its children. It lays them out by filling in the
row first, then continuing down. Thisisthe ideal widget for a button box or a menu.

file:///H:/edonkey/docs/programming/1/2/ch08/150-153.html (2 of 4) [13/12/02 18:09:41]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

8.3.1.4. ListWidgetCiass

Thiswidget isamember of the SimpleWidgetClass. Itsroleisto provide alist of items and
a callback mechanism for when an item is selected.

8.3.1.5. CommandWidgetClass

Thiswidget isamember of the LabelWidgetClass. Itsroleisto provide a callback
mechanism to the LabelWidgetClass. Thisis a*“button-like” widget. Y ou should not
confuse this widget with the command widget from the Motif Set. In Motif, the command
widget actually allows for entry and buffering of commands, not button behavior.

8.3.1.6. LabelWidgetClass

Thiswidget is amember of the SimpleWidgetClass. It provides atextual label (justified)
or apixmap in awindow. Its main use isto provide a message to the user. It isused in the
menu, the message area, and for field labels.

8.3.1.7. FieldEdWidgetClass

Thiswidget isamember of the TextWidgetClass. It provides the necessary mechanisms
for field editing. Y ou constructed this widget in Chapter 6.

8.3.1.8. AsciiDiskWidgetClass

Thiswidget is amember of the TextWidgetClass. It can be used to provide editing or
display of text files. It isemployed hereit in its display mode, as a help screen.

8.3.2. Client Requirements

The client requires that the application must have an application bar (which should be
optional) containing a system menu button, application title, and exit button. The system
menu button will pop down (pull down) a menu that contains an entry for help, exit, and to
unpop the menu. When the user clicks a mouse button in the title area, that application
should rise to the top. Clicking in the exit button area should kill the client.

There should be five entry fields with labels for editing: Security (alphabetic only), Trader

(alphanumeric), Buy/Sell indication (alphabetic field allowing only b, B, s, or S), Quantity
(whole number only), and Price (float). The user should be able to move among the fields

file:///H:/edonkey/docs/programming/1/2/ch08/150-153.html (3 of 4) [13/12/02 18:09:41]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

with or without the mouse. There should be a selection list off of the Security field.
Clicking on a selection in the list should fill in the Security field with the selection. Lastly,
there should be Commit and Clear buttons. Commit will write the information in the fields
to afile. Clear will clean the fields out. Additionally, the user must be able to perform the
Commit operation from any of the fields.

Previous | Table of Contents | Next

Copyright © CRC Press LLC

file:/l//H:/edonkey/docs/programming/1/2/ch08/150-153.html (4 of 4) [13/12/02 18:09:41]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous (Table of Contents [Next

8.4. Building the Application

Asyou can see, it's a complete application. To start, you should break the program down into
several pieces. You will need to look at building the application resource-gathering mechanism;
laying out the menu bar; building a pop-up menu; creating pop-up help, an entry form, an option
list, and a button box; and installing accelerators.

In this client most of the widgets have been declared globally. This makes passing to functions
easier, but the practice of declaring global variables can make the code hard to read and
unmanageable; therefore, use them with care.

The client screen with no menus popped up is shown in Figure 8-4. The main program of the
client “trade” is asfollows (most of these areas have been explored in one form or another in
Chapter 5):

file:/l//H:/ledonkey/docs/programming/1/2/ch08/153-157.html (1 of 6) [13/12/02 18:09:43]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

cNF S

"Tﬁuﬁ}.

Trade Entry Screen eXample

Security |IBM
Buy/Sell B
Trader Id BJK
Quantity 25000

RERS 110.25,

Commit|| Clear

Example Using FieldEdWidgetcClass

Figure 8-4 Trade with nothing popped.

#i ncl ude " XbkUtil . h"

/* Wdget headers to be used in this client */

#i ncl ude <X11/ Shel |l . h>

#1 ncl ude <X11/ Form h>

#1 ncl ude <X11/ Box. h>

#1 ncl ude <X11/ Conmand. h>

#1 ncl ude <X11/List. h>

#i ncl ude <X11/AsciiText.h> /* This is actually brought in
* by Fiel dEd. h. However, to |et
* readers understand the code
* thisis left in. */

/* Add in the header for the fielded w dget */
#i ncl ude "Fi el dEd. h"

#i ncl ude "TextUils. h"

/* Some hel pful synbols ..

*/

#defi ne TRADESTRSI ZE 80

#def i ne SECURI TY Sl ZE 8

#defi ne TRADER Sl ZE 5

/* Qur macros for the application shell and class nanes
*/

file:///H:/ledonkey/docs/programming/1/2/ch08/153-157.html (2 of 6) [13/12/02 18:09:43]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

#defi ne XbkShel | Nane "trade"
#defi ne XbkAppl C ass "Tr ade"
/*

* Forward Decl arati ons.

*/

int Poplt();

Xt Cal | backProc Chow(), Title(),
PopMenu(), Popl t Down(), PopHel p(), Done(),
Commit(), Cancel (), selection_call back();

Xt ActionProc PopList (), MakePrvFl dActive(),
MakeNxt FI dActi ve(), Toggl e();

/* Define the Translations strings...
* newAxns (for border setting), stdFldAxns (for keyboard
* traversal, and popListAxns (for triggering a pop-up)
*/

static String newAxns =
" <Ent er W ndow>: Toggl e(On) \n\
<LeaveW ndow>: Toggle(OFf)";
static String stdFl dAxns =
" Shi ft <Key>Tab: MakePrvFl dActive() \n\
<Key>Tab: MakeNxt Fl dActive() ";

static String popListAxns = "<Key>F1: PopList()";

/*

* Action table for the new actions that we wll build.
*

Xt Acti onsRec appAxnsThbl []

{

{" MakePrvFl dActi ve", MakePrvFl dActi ve},
{" MakeNxt Fl dActive", MakeNxtFl dActi ve},
{" PopList", PopList},
{" Toggl e", Toggl e},
{ NULL, NULL},
3
/*
* The conpiled translation table holders for each of
* the strings.
*/
Xt Transl ati ons st dFl dTr ans, popLi st Trans, newAxnsTr ans;

file:///H:/ledonkey/docs/programming/1/2/ch08/153-157.html (3 of 6) [13/12/02 18:09:43]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

/*
* Define the widgets to be used in the client.
*/
W dget top; /* Top-level shell */
W dget backdr op; /* Application container */
/~k
* Buttons for the nmenu bar.
*/
W dget nenu_bar; /* Menu bar container */
W dget sys_btn; /[* Button to trigger pop-up */
W dget exit_btn; /* To kill the client */
Wdget title btn; /* To raise the w ndow */
/*
* Wdgets to create a pop-up nenu.
*/
W dget popup_hol der; /* Pop-up hol der */
W dget popup_container; [* Actual container for nenu */
W dget popup_title; /* Label to contain the nane */
/~k
* Help
*/
W dget hel pShel | ; /* Pop-up shell */
W dget hel pCont ai ner; /* Container to manage children */
wi dget hel pText; /* AsciiD skWdget */
wi dget hel pDone; /* ConmmandW dget for unpopping */
/*
* Wdgets to create an entry form
*/
W dget entry_contai ner; /* Container for fields */
wi dget bt nBox; /* Container for commt/cancel */
W dget comm t_bin; /* To accept field entries */
W dget cancel btn; /* To clear the screen */
/*
* List wdget stuff...
*/
W dget i st Shell; /* Shell for the pop-up */
W dget list; /* List */
/*
* A "nessage" | abel.
*/
W dget | abel ;

mai n(ar gc, ar gv)

file:///H:/ledonkey/docs/programming/1/2/ch08/153-157.html (4 of 6) [13/12/02 18:09:43]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

i nt argc; char **argv;

{
int i;
top = XtInitialize(XbkShell Name, XokAppl d ass,
myCndOpt s, Xt Nunber (mnyCndOpt s), &argc, argv);
/~k
* Since our application resources may not have cone fromthe
* command |ine we need to get themfromthe database (if we |et
* the user set themin . Xdefaults etc.).
*/
Xt Get Appl i cati onResour ces(top, &mwAppRes, nmyAppResOpts,
Xt Nunber (myAppResOpt s), NULL, O0);
/*

* Make sure we have a file to wite our trades to. |If not,
* don't start the client.

*/
I f ((fout = fopen(nyAppRes.filenane, "w+")) == NULL) {
printf("ERROR Could not open file !'l'l'");
Xt G oseDi spl ay(Xt Di spl ay(top));
exit(-1);
}
/*
* Since we have some new actions to add, we do that now.
*/
Xt AddAct i ons(appAxnsTbl, Xt Nunmber (appAxnsTbl));
/*
* Now we need to parse the translation table. This wll give us

* a "conpiled table.” The next step would be to set the
* translations into a wdget. Here we set it to the shell.
*/
newAxnsTrans = Xt ParseTransl| ati onTabl e(newAxns) ;
Xt Overri deTransl ati ons(top, newAxnsTr ans) ;
/*
* W are al so adding actions for fields. This is our prv/nxt
* field handling nechanism W do the same as above, but

*we will set the table to the widgets when they are created.
* (Refer to later in the code)
*/

stdFl dTrans = Xt ParseTransl ati onTabl e(st dFl dAxns) ;
popLi st Trans = Xt ParseTransl| ati onTabl e(popLi st Axns) ;
/*

file:///H:/edonkey/docs/programming/1/2/ch08/153-157.html (5 of 6) [13/12/02 18:09:43]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

* Set a manager to nanage the various containers to be in the
* form(i.e., MenuBar, EntryContainer, BtnBox, or Message).
*/

backdrop = Xt Creat eManagedW dget (" backdr op”,
for MmN dget G ass, top, NULL, 0);
/*

* |f the menu bar is in use then create it along with the pop-ups
* that correspond to its use (i.e. help and nenu).
*/
i f (myAppRes. useMenuBar) {
create_the nmenubar();
create_the _popup("Si nple Menu");
create_hel p();

}
create_list(); /* Create the option list */
create_the_entry _container(); /* Create the entry form?*/
create the |abel (); /* Create the nessage area */
Xt Real i zeW dget (t op); [* "Map" the w dgets */
i f (nyAppRes. useMenuBar) {

adj ust _nenu_bar () ; /* Adjust the nenu bar size */
}
Xt Mai nLoop(): [* Wait around for events */

Previous Table of Contents INext

Copyright © CRC Press LLC

file:/l//H:/ledonkey/docs/programming/1/2/ch08/153-157.html (6 of 6) [13/12/02 18:09:43]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents [Next

8.4.1. Application Resource Setting

Application resource setting is discussed in Chapter 5. However, as areview, the mechanism involves
three steps:

1. Create a structure to hold the application resources.
2. Define the XtResource table.
3. Define the XrmOptionDescRec.

In this application you will need aflag to indicate if the menu bar is wanted, afilename for the trade
entry results, and the help filename:

struct _myAppRes {
Bool ean useMenuBar ;

String filename;
String hel pFi |l e;
} nyAppRes;

#define OFFSET(field) XtOfset(struct _myAppRes*, field)
static XtResource nmyAppResOpts[] = {
{"useMenuBar", "UseMenuBar", XtRBool ean, si zeof (Bool ean),
OFFSET(useMenuBar), XtRString, "False"},
{"fileNane", "FileNanme", XtRString, sizeof(String),
OFFSET(fil ename), XtRString, "trade.dat"},
{"helpFile", "HelpFile", XtRString, sizeof(String),
OFFSET(hel pFile), XtRString, "trade.hlp"},
}
#under OFFSET

XrmOpt i onDescRec nyCnmdOpts[] = {
{ "-useMenuBar", "*useMenuBar", XrnoptionNoArg, "TRUE" },

{ "-filename", "*fileNane", XrnoptionSepArg, NULL},
{ "-helpFile" , "*fileName", XrnoptionSepArg, NULL},
}.

file:///H:/ledonkey/docs/programming/1/2/ch08/158-162.html (1 of 5) [13/12/02 18:09:44]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

8.4.2. Creating the Menu Bar

The menu bar is composed of three command buttons: the system button, the title button, and the exit
button. Use the Form widget as the container for the buttons. In this way, you can control the layout
and make sure that each button will stay in the correct place relative to the other buttons. The codeis
asfollows:

int create_the_nenubar ()
{
Arg ar g[MAXARGS] ;
int cnt = 0;

Xt Set Arg(arg[cnt], Xt Nresi zabl e, FALSE) ; cnt ++;
menu_bar = Xt Creat eManagedW dget (" nmenuBar", fornW dget d ass,
backdrop, arg, cnt);
/* Tell the sys button to attach to the left and top of the form

*/
cnt = 0;
Xt Set Arg(arg[cnt], Xt Nx, 0); cnt ++,;
Xt Set Arg(arg[cnt], Xt Ny, 0); cnt ++;
Xt Set Arg(arg[cnt], Xt Nl eft, Xt Chai nLeft); cnt ++;
Xt Set Arg(arg[cnt], Xt Nt op, Xt Chai nTop) ; cnt ++;
Xt Set Arg(arg[cnt], Xt Nresi zabl e, FALSE) ; cnt ++;

sys_btn = Xt Cr eat eManagedW dget ("sysBt n", commandW dget Cl ass,
menu_bar, arg, cnt);
/* Add the nmenu pop-up call back to the button.
*/
Xt AddCal | back(sys_bt n, Xt Ncal | back, PopMenu, NULL) ;

/[* W will use the sys button height to set the others.
*/
Xt Set Arg(arg[0], Xt Nnei ght, &ei ght);
Xt Get Val ues(sys_btn,arg, 1);

/* Tell this button to be next to the sys btn and chain to the top.

*/
cnt = 0O,
Xt Set Arg(arg[cnt], Xt NfronHori z, sys_btn); cnt ++;
Xt Set Arg(arg[cnt], Xt Nnei ght, hei ght); cnt ++;
Xt Set Arg(arg[cnt], Xt Nt op, Xt Chai nTop) ; cnt ++;
Xt Setarg(arg[cnt], Xt Nresi zabl e, FALSE) ; cnt ++;

title_btn = Xt CreateManagedW dget ("titl eBtn",
commandW dget Cl ass, nenu_bar, arg, cnt);
/* Add the "raise" call back.
*/

file:///H:/edonkey/docs/programming/1/2/ch08/158-162.html (2 of 5) [13/12/02 18:09:44]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

Xt AddCal | back(title_btn, Xt Ncal | back, Title, NULL);

/* Tell this button to be next to title_btn and chain to the top.

*/
cnt = 0;
XtSet Arg(arg[cnt], Xt NfronHori z,title_btn); cnt ++;
Xt Set Arg(arg[cnt], Xt Nhei ght, hei ght); cnt ++;
Xt Set Arg(arg[cnt], Xt Nri ght, Xt Chai nRi ght) ; cnt ++;
Xt Set Arg(arg[cnt], Xt Nt op, Xt Chai nTop) ; cnt ++;
Xt Set Arg(arg[cnt], Xt Nresi zabl e, FALSE) ; cnt ++;

exit _btn = Xt CreateManagedWdget ("Xit", commandW dget d ass,
menu_bar, arg, cnt);
/[* Add the "exit" callback to it.

*/
Xt AddCal | back(exit_btn, Xt Ncal | back, Chow, NULL);
/* This will force the nenu bar to have the height we want it to
have.
*/

Xt Set Arg(ar g[0], Xt Nhei ght, hei ght) ;
Xt Set Val ues(nenu_bar, arg, 1) ;

The callbacks we will use are PopMenu() (to bring up the menu), Chow() (to exit), and Title() (to
raise the window) and are as follows:

Xt Cal | backProc PopMenu(whoCal | edMe, dat aFronCl i ent, dat aToG ved i ent)
W dget whoCal | edMe;
caddr _t dataFronCient;
caddr _t dataToG ved ient;

Arg ar g[MAXARGS] ;
i nt height = 0;

int x =y = 0;
int rx,ry;
int cnt;

[* To pop up under the place fromwhich we are popped requires
getting

* the height of the parent. To do this we ask the w dget using the
* CGETVALUES net hod.

*/

Xt Set Arg(arg[0], Xt Nhei ght, &ei ght) ;
Xt Get Val ues(whoCal | edMe, arg, 1) ;

file:/l//H:/edonkey/docs/programming/1/2/ch08/158-162.html (3 of 5) [13/12/02 18:09:44]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

/* W want to find out where the pop-up's parent is relative to the
* root wwndow. This will give us a pretty good spot to pop up.
*/
Xt Tr ansl at eCoor ds(whoCal | edMe, 0, 0, &rx, &ry);

ry = ry + height;

/* I f the pop-up shell is not realized, then setting values on it
* does no good. Therefore, if it is not realized we will realize
* it so that setting the values on it wll work. Note: after it
* has been realized it wll stay that way. If we cal
* XtRealizeWdget again it would sinply return since it would
* detect that the widget is already realized.

*/

if (!XtlsRealized(popup_hol der))
Xt Real i zeW dget (popup_hol der);
/* Tell the pop-up shell where the x,y is.

*/
cnt = 0;
Xt Set Arg(arg[cnt], Xt Nx, rx); cnt ++;
Xt Set Arg(arg[cnt], Xt Ny, ry); cnt ++;

Xt Set Val ues(popup_hol der, arg, cnt);

/* Pop it up and take an exclusive grab. The excl usive grab
* makes sure the user deals with the pop-up prior to doing
* anyt hing el se.

*/
Xt Popup(popup_hol der, Xt G abExcl usi ve);

}

Xt Cal | backProc Titl e(whoCal | edMe, dat aFronCl i ent, dat aToG veC i ent)
W dget whoCal | edMe;
caddr _t dataFronCient;
caddr _t dataToG ved ient;

{
/[* Sinply invoke the Xlib primtive to make the w ndow rai se.
*/
XRai seW ndow(Xt Di spl ay(top), Xt Wndow(top));
}

Xt Cal | backProc Chow(whoCal | edMe, dat aFronCl i ent, dat aToG ved i ent)
W dget whoCal | edMe;
caddr _t dataFronCient;
caddr t dataToG ved ient;

Xt UnmapW dget (t op) ; [* This yields a "clean" kill |ook */
Xt Dest r oyW dget (t op) ; /* kick off destroy call backs */

file:/l//H:/edonkey/docs/programming/1/2/ch08/158-162.html (4 of 5) [13/12/02 18:09:44]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

Xt C oseDi splay(Xt Di splay(top)); /* Tell the server you're

gone */
fclose(fout); /* Close the open file */
exi t(0); /* exit without error */

}

After therest of the form is created we will make sure that the menu bar is the size of the form. We
do this using the following function:

i nt adj ust_nenu_bar ()

{
Arg arg[1];
XtSet Arg (arg[0], Xt N\wi dt h, &w dth);
Xt Get Val ues(top, arg, 1);
Xt Set Arg (arg[0], Xt N\wi dt h, wi dt h) ;
Xt Set Val ues(nenu_bar, arg, 1);

}

Previous | Table of Contents |[Next

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch08/158-162.html (5 of 5) [13/12/02 18:09:44]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents INext

8.4.3. Creating a Pop-up Menu

Thefirst item you need whenever you create any pop-up isashell. This shell is of the
overrideWidgetClass, and will not be subject to the window manager's policy. Pop-ups will only
allow one child as a direct descendent, so in most cases, you should add one of the container type
widgets and then add children to the container. To get the pop-up shell that will hold the pop-up
menu shown in Figure 8-5, do the following:

Shell XtCreatePopupSheli()
(OverrideShell) I
I__ Container XtCreateManagedWidget()
(Form,Box) |
Title XtCreateWidget()
(Label) ’
' Panes XtCreateWidget()
(Command)

XtManageChildren()

Figure 8-5 Pop-up menu.

file:///H:/edonkey/docs/programming/1/2/ch08/162-166.html (1 of 5) [13/12/02 18:09:46]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

popup_hol der = Xt Creat ePopupShel | (" PopupShel | ",
overri deShel | Wdget d ass, top, NULL, O0);

Notice that you did not use the XtCreateWidget() function. The reason for thisisthat each
widget contains a part that identifies the pop-up children associated with the widget. Using
XtCreateWidget() would not fill in that part of the structure. Therefore, the Intrinsics provides
XtCreatePopupShell ().

The next item is the menu. A menu is composed of a container (to hold the panes), atitle, and the
panes. Each pane needs alabel for some kind of callback that performs an action. The menuin
this exampl e uses the Athena boxWidgetClass as the container, labelWidgetClass for the Title,
and commandWidgetClass for the panes. Asyou can see, the menu isfairly structured and the
creation of the panes would be repetitive. Thisimplies that you can create a structure to collect
the similar information. By doing this, you make the code easier to read and maintain without
any significant overhead.

Given that, let's define a structure for each pane:

t ypedef struct _MENUBODY ({

String | abel ;
Xt Cal | backProc cbProc;
W dget pane;

} MENUBQODY;

A pane would have alabel, callback proc, and the widget to hold the command button. With this,
you can create an intialized array of these MENUBODY types to represent the menu body. Y ou
can then use this array to loop and generate the menu in a nice compact function:

MENUBCDY pnenu [] = {

{"Hel p", PopHel p, 0},
{" UnPop", Popl t Down, 0},
{"Exit", Chow, 0},

b
The routine that creates the menu is:

int create_the popup(tl abel)
char *tl abel ;
{

Arg arg [MAXARGS] ;

i nt cnt;
int i;

file:///H:/edonkey/docs/programming/1/2/ch08/162-166.html (2 of 5) [13/12/02 18:09:46]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

/*

/*

/*

/*

/*

}

Create the shell */

popup_hol der = Xt Cr eat ePopupShel | (" PopupShel | ",
overri deShel | Wdget d ass, t op, NULL, 0) ;

Now t he contai ner */
popup_cont ai ner = Xt Cr eat eManagedW dget (" PopupMenu",
boxW dget C ass, popup_hol der, NULL, 0);
Next, the title */
cnt = 0;
Xt Set Arg(arg[cnt], Xt Nl abel ,t| abel); cnt ++;
popup_title = Xt Creat eManagedW dget (" popMenuLabel ",
| abel W dget ass, popup_contai ner, arg, cnt);
Loop through and make the panes */
for(i=0;i<XtNunber (pnenu);i++) {
cnt = O;
arg[cnt].nanme = Xt N abel ;
arg[cnt].value = (XtArgVal) pnenu[i]. | abel;
cnt ++;
pmenu[i]. pane = Xt Creat eManagedW dget (" pane",
commandW dget Cl ass,
popup_cont ai ner,
arg, cnt);
| f a call back was provided add it */
i f (prenu[i].cbProc !'= NULL)
Xt AddCal | back(pnmenu[i]. pane, Xt Ncal | back,
pmenu[i].cbProc, NULL);
}

Y ou will no doubt notice the three callbacks used in the initialized array, PopHelp(
),PopltDown(), and Chow(). The new callbacks are as follows:

Xt Cal | backProc PopHel p(w, dat aFronCl i ent, dat aToG ved i ent)

W dget w;
caddr t dataFronClient;
caddr t dataToG ved ient;

Poplt(w, hel pShell); /* This is a handy routine for anchoring
* the pop-up shell next to the w dget

file:///H:/edonkey/docs/programming/1/2/ch08/162-166.html (3 of 5) [13/12/02 18:09:46]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

* requesting the pop-up.
* | }

Trade Entry Screen eXample || XIT
Simple Menu
Help || UnPop

Exit

I----I#L'SH
Quantity 200000

Fide 110.50

Commit|| Clear

Example Using FieldEdWidgetcClass

Figure 8-6 Trade with pop-up menu.

The next function is a utility that will be used by another function to place the pop-up in the
correct place. It is very much like the previous PopMenu() function. The only change is that
instead of being placed below the widget, this goes to the left (Figure 8-6 shows the finished pop-
up menu):

int Poplt (w, shell)
W dget w;
wi dget shell;

Arg arg [MAXARGS] ;
int wwdth = 0;
int x = 0;

int y = 0;

int rx,ry;

int cnt;

XtSet Arg (arg[0], XtNw dth, &w dth);

file:///H:/ledonkey/docs/programming/1/2/ch08/162-166.html (4 of 5) [13/12/02 18:09:46]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

Xt Get Val ues (w, arg, 1);

Xt Transl at eCoords(w, 0, 0, &x, &Yy);
rx = rx + wdth;

If (! XtlsRealized(shell))

Xt Real i zeW dget (shel |);

cnt = 0;
Xt Set Arg(arg[cnt], Xt Nx, rx); cnt ++;
Xt Set Arg(arg[cnt], Xt Ny, ry); cnt ++;

Xt Set Val ues(shel |, arg, cnt);

Xt Popup(shel I, Xt G abExcl usi ve) ;
}

Xt Cal | backProc

Popl t Down(whoCal | edMe, dat aFronCl i ent, dat aToG veC i ent)
W dget whoCal | edMe;
caddr _t dataFronClient;
caddr t dataToG ved ient;

Xt Popdown(popup_hol der) ;

Previous | Table of Contents [INext

Copyright © CRC Press LLC

file:/l//H:/edonkey/docs/programming/1/2/ch08/162-166.html (5 of 5) [13/12/02 18:09:46]

file:///reference/crc00001.html

file:///H:/edonkey/docs/programming/1/2/ch08/166-170.html

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous [Table of Contents |[Next

8.4.4. Creating Pop-up Help

There are many ways to present help to users. In this application, you will employ afairly easy one
using the asciiDiskWidget. This widget reads the name of afile given as an argument at creation
time and provides scrolling when the text istoo large to fit the display area. The only thing to add
other than the container is a button to “unpop” the help screen. The help screen shown in Figure 8-7
Is generated from the following:

i nt create_hel p()

{
Arg ar gs[MAXARGS] ;
int n;
hel pShel | = Xt Creat ePopupShel | (" hel pShel | ",
overri deShel | Wdget d ass, top, NULL, 0) ;
hel pCont ai ner = Xt Cr eat eManagedW dget (" hel pCont ai ner",
f or MW dget A ass, hel pShel |, NULL, 0) ;
/* Gve the widget the file nanme and tell it to use a vertical
* scrol | bar.
*/

n = 0;

Xt Set Arg(args[n], Xt Nfil e, nyAppRes. hel pFile); n++;

Xt Set Arg(args[n], Xt Nt ext Options, scroll Vertical); n++;
Xt Set Ar g(ar gs[n], Xt Nhei ght, 320) ; n++;

Xt Set Arg(args[n], Xt N\wi dt h, 500) ; n++;

file:/l//H:/ledonkey/docs/programming/1/2/ch08/166-170.html (1 of 5) [13/12/02 18:09:50]

file:///H:/edonkey/docs/programming/1/2/ch08/166-170.html

mmmmmm

e

4:,. Trade Entry Screen eﬂmwﬁq Xit
[Eﬂ-pla Hanuil

Help| ™ ieple Help Facility
[EEEE: This is a simple help facility that uses
the asciliDiskHidgetClass to read a file.
Quank
Vilde This client “trade’ showcases the following:
Popups
= sysbem manu
- option list
- halp screen
containers
- Form
= Box
Accelerators

- Exit on tha fialds
= Commit on the fields
= Cloar on tha fields

options List
- 0ff of the security fiald

Hidgets Used arae:

a
x i o " o e _..... o cam ,_..ﬁ_’,_ ----- e ,\?_
oA, o 50055 _H:-_l‘;.":i:.‘};\- FF': R“ ‘P:Rl '\f\ﬁ'rrm'\-. vrrrFM '\.rHr -"; EE::' -"":': '-"'? \'-':EE s

Figure 8-7 Trade with help.

hel pText = Xt Cr eat eManagedW dget (" hel pText ",
asci i D skW dget d ass, hel pCont ai ner,
args, (Cardinal)n);
/* Place this wi dget bel ow the text area.
*/
n = 0;
XtSet Arg (args [n], XtNfromVert, hel pText); n++;
hel pDone = Xt Cr eat eManagedW dget (" hel pDone",
commandW dget O ass, hel pContai ner, args, n);
/* Add the "Done" or unpop call back. */
Xt AddCal | back(hel pDone, Xt Ncal | back, Done, hel pShel |) ;

The callback for the “done” button simply calls the Intrinsics routine for “unpopping” a pop-up. The
codeisasfollows:

Xt Cal | backProc Done (whoCal | edMe, dataFronClient, dataToG vedient)
W dget whoCal | edMe;

file:///H:/edonkey/docs/programming/1/2/ch08/166-170.html (2 of 5) [13/12/02 18:09:50]

file:///H:/edonkey/docs/programming/1/2/ch08/166-170.html

caddr t dataFronClient, dataToG ved i ent;

{
Xt Popdown(dat aFronCl i ent) ;
/* dataFronClient will be the Wdget id of the shell */

}

8.4.5. Creating a Pop-up Option List

One of the requirements for this client was to create a pop-up list that would be attached to one of
thefields. Thisisafairly common requirement, and is rather easy to implement. It is done by using
the listWidgetClass and a callback procedure for when the selection is made.

Thefirst thing to do is create the list entries. This can be done by either reading afile or using an
initalized array. In this example, use the intialized array:

/*
* List ... define static list of itens for the pop-up!
*/
static char *security[] = {"IBM","DEC ", " APPL","SUNW , "HP "};
Now you can create the actual list. Notice that it is a pop-up. Therefore, it will need a pop-up shell:

int create_list()

{

Arg ar gs[MAXARGS] ;

int n;

| i st Shell = Xt Creat ePopupShel | ("ListShell™",

overri deShel | Wdget d ass, top, NULL, 0);

n=0;

Xt Set Arg(args[n], Xt Nli st,security); n++;

Xt Set Arg(args[n], Xt Nnunber Stri ngs, XtNunber(security)); n++;

| ist = Xt Creat eManagedW dget ("list",

| i stWdgetd ass, listShell, args, (Cardinal) n);

Xt AddCal | back(li st, Xt Ncal | back, sel ecti on_cal | back, NULL);

}

The ListWidget was constructed so that the client writer could attach a callback to find out the value
selected. The valueis passed in the call_data argument of the callback and is part of a structure. In
Chapter 5 you explored the “magic” of filling in such a structure so you need not concern yourself
with the mechanics. Here is the remaining code to produce the pop-up list in Figure 8-8:

Xt Cal | backProc sel ection_callback (w, client _data, call _data)

file:///H:/edonkey/docs/programming/1/2/ch08/166-170.html (3 of 5) [13/12/02 18:09:50]

file:///H:/edonkey/docs/programming/1/2/ch08/166-170.html

W dget w;
caddr _t *client _data;
XtListReturnStruct *call _data;

{

Arg args[1];
/* Clear the security field then insert the string sel ected.
*[XtxuTextClearAll (Fields [0].fe);

Trade Entry Screen eXampie || XIT

Security [(IBM DEC

Buy/Sell B gFL SUNH

Quantity sp0000

FElcS 110.50

Commit|| Clear

Example Using FieldEdWidgetcClass

Figure 8-8 Trade with list.

Xt xuTextInsertString (Fields [0] . fe, call _data->string);
Xt Popdown(| i st Shel |); /* Pop oursel ves down */

}

8.4.6. Creating an Entry Form

The body of the application is the entry form. This application will employ the widget you crafted
in Chapter 6 to act as the editor, and will use the label WidgetClass to provide a descriptive label for
thefield.

The easiest way to handle formsis to define a structure (as you did for the menu body) that will be
intialized. This provides a nice easy mechanism for creating other forms and lets you change
various attributes without going into a function and hacking around the code. The structure for the

file:///H:/edonkey/docs/programming/1/2/ch08/166-170.html (4 of 5) [13/12/02 18:09:50]

file:///H:/edonkey/docs/programming/1/2/ch08/166-170.html

formisasfollows:

typedef struct _FIELDINIT {

String | abel ; /* String for the | abel */
I nt editor _type; [/* Wat kind of editor */
I nt flen; /* Length to edit */
W dget fe; /* widget id of editor */
W dget fl; /* Wdget id of |abel */
FwPr oc editor; /* Ptr to editor proc */
FwPr oc enter _w ndow, /* Ptr to enterWndow Proc */
FwPr oc focus_out; /* Ptr to focusQut Proc */
FwPr oc focus_in; /* Ptr to focusln Proc */
FwPr oc field axn; [* Ptr to FieldAxn Proc */
} FIELDI N T;
/*
* W can define the formwe are creating by statically
*initializing an array of the FIELDINIT structure. This wll
* make defining new forns easy and we will have only one pl ace
* to go to check for Form definition.
*/

FIELDINIT Fields[] = {
{"Security ", FE_ALPHA, SECURI TY_SI ZE, 0, 0,
NULL, NULL, NULL, NULL, MakeNxt FI dAct i ve},
{"Buy/Sell ",FE_ALPHA, 1,0, 0, NULL, NULL, NULL, NULL, CheckBuySel | },
{"Trader |d", FE_ALPHANUVERI C, TRADER Sl ZE,
0, 0, NULL, NULL, NULL, NULL, MakeNxt FI dAct i ve},
{"Quantity ", FE_INT,7,0,0, NULL, NULL, NULL, NULL, MakeNxt FI dActi ve},

{"Price " FE_FLOAT, 8,0, 0, NULL, NULL,
NULL, NULL, MakeNxt FI dAct i ve},
}s

Previous |Table of Contents INext

Copyright © CRC Press LLC

file:/l//H:/edonkey/docs/programming/1/2/ch08/166-170.html (5 of 5) [13/12/02 18:09:50]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous [Table of Contents |[Next

Now you can create the function that generates the form. This function is very specific to this client;
it wouldn't be such a bad ideato create a more general one so you can use it with more form
definitions. In any event, the function is as follows:

int create the entry container()
{

Arg arg[40],gargs[3], |arg[MAXARGS];

char 1blHol der[20];

I nt hei ght;

int cnt = 0,i = O, marker = 0,lcnt = O, | marker = O;
i nt nunFl ds = Xt Nunber (Fi el ds);

/[* If the nmenu bar is used, then set the container belowit,
* otherwwse we will chain to the top left of the form (backdrop).
*/
i f (myAppRes. useMenuBar) {
Xt Set Arg(arg[cnt], Xt NfronVert, menu_bar) ; cnt ++;
}
entry _contai ner = Xt Creat eManagedW dget ("entry",
f or M\ dget d ass,
backdrop, arg,cnt);

/* Set up the FieldEd args that are constant.

*/
cnt = 0;
Xt Set Arg(arg[cnt], Xt Nedi t Type, XttextEdit); cnt ++;
Xt Set Arg(arg[cnt], Xt Nt ext Opti ons, edi tabl e); cnt ++;
Xt Set Arg(arg[cnt], Xt Ncursor, NULL) ; cnt ++;
mar ker = cnt; /[* W will use the marker to reset */

/* Set up the |abel args for all of the |abels.

*/
Xt Set Arg(larg[lcnt], Xt NoorderWdth, 0); | cnt ++;
lmarker = lcnt; /* W will use the marker to reset */

file:///H:/ledonkey/docs/programming/1/2/ch08/170-174.html (1 of 5) [13/12/02 18:09:51]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

for(i=0;i<nunFlds;i++){
/* Only the first row needs to be attached to the top, all others
* shoul d be bel ow the previous row.

*/
if (i '=0){
XtSetArg(larg[lcnt], Xt NfromVert, Fields[i-1].fl);
| cnt ++;
Xt Set Arg(arg[cnt], Xt NfronVert, Fields[i-1].fe); cnt++;
} else {
Xt Set Arg(larg[lcnt], Xt Nt op, Xt Chai nTop) ; | cnt ++;
Xt Set Arg(arg[cnt], Xt Nt op, Xt Chai nTop); cnt ++;
3
larg[lcnt].nanme = XtN abel;
larg[lcnt].value= (XtArgVal)Fields[i].!|abel;
| cnt ++;
Fields[i].fl = XtCreateManagedW dget ("I bl",
| abel Wdget d ass, entry container,larg,lcnt);
lcnt = | marker;
Xt Set Arg(arg[cnt], Xt NfronmHori z, Fields[i].fl);cnt++;
/* Install the editor-type procs that will be invoked whenever we
* are asking to performcharacter insertion or deletion.
*/

Xt Set Arg(arg[cnt], Xt Neditor Type, Fields[i].editor_type);
cnt ++;
XtSet Arg(arg[cnt], XtNlength, Fields[i].flen);cnt++;
/* Check the remaining procs, if they are provided then set them
*/
if (Fields[i].enter_w ndow !=NULL) {
Xt Set Arg(arg[cnt], Xt Nent er W ndowPr oc,
Fields[i].enter_w ndow); cnt++;
}
if (Fields[i].focus_in !'=NULL) {
Xt Set Arg(arg[cnt], Xt Nf ocusl nProc,
Fields[i].focus_in); cnt++;
}
if (Fields[i].focus_out !=NULL)({
Xt Set Arg(arg[cnt], Xt Nf ocusQut Proc,
Fields[i].focus_out); cnt++;
}
if (Fields[i].field axn !=NULL) {
Xt Set Arg(arg[cnt], Xt Nfi el dAxnPr oc,
Fields[i].field axn); cnt++;
}
Fields[i].fe = Xt Creat eManagedW dget ("fl ds",

file:///H:/ledonkey/docs/programming/1/2/ch08/170-174.html (2 of 5) [13/12/02 18:09:51]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

fi el dEdW dget d ass,
entry_contai ner,
arg, cnt);

/* We must offset the height of the |abel for the way the text
* w dget figures out heights.
*/
Xt Set Arg(gar gs[0], Xt Nnei ght, &ei ght) ;
Xt Cet Val ues(Fields[i].fe,gargs, (Cardinal)l);
Xt Set Ar g(gar gs[0] , Xt Nhei ght, hei ght);
Xt Set Val ues(Fields[i].fl,gargs, (Cardinal)1l);

/* Install our "prv/nxt" field translations.

*/
XtOverrideTransl ations(Fields[i].fe, stdFl dTrans);
cnt = marker; /* Reset the counter so we don't overwite
* our previous settings */
}
/* Install the "poplist” translation on the Security field
(idx = 0)
*/
Xt OverrideTransl ati ons(Fi el ds[0]. fe, popLi st Trans);
/*
* Create a Button Box to hold the Commt/C ear buttons.
*/

cnt = 0;
Xt Set Arg(arg[cnt], Xt NfronVert, entry_contai ner); cnt++;
bt nBox = Xt Cr eat eManagedW dget (" bt nBox"' f or M\ dget C ass,
backdrop, arg,cnt);
/* Create the conmmit button and add its call back */
cnt = 0;
Xt Set Arg(arg[cnt], Xt Nt op, Xt Chai nTop) ; cnt ++;
Xt Set Arg(arg[cnt], Xt Nl eft, Xt Chai nLeft); cnt ++;
commt _btn = Xt Creat eManagedW dget (Comm t",
commandW dget d ass,
bt nBox, arg,cnt);
Xt AddCal | back(comm t _btn, Xt Ncal | back, Comm t, NULL);
/* Add the cancel (clear) button and its callback */
cnt = 0;
Xt Set Arg(arg[cnt], Xt Nt op, Xt Chai nTop) ; cnt ++;
Xt Set Arg(arg[cnt], Xt Nri ght, Xt Chai nRi ght) ; cnt ++;
Xt Set Arg(arg[cnt], Xt NfronHori z, conmit_btn); cnt ++;
cancel btn=
Xt Cr eat eManagedW dget (" Cancel ", commandW dget C ass,
bt nBox, arg,cnt);

file:///H:/ledonkey/docs/programming/1/2/ch08/170-174.html (3 of 5) [13/12/02 18:09:51]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

L I S R I I S N N TN . N S N R S T S T T . S T S i S N

/*
*

*

*/

Xt AddCal | back(cancel _btn, Xt Ncal | back, Cancel , NULL) ;

W would like to allow the user to use the keyboard (for the
nost part) rather than the nouse. The Intrinsics have the
notion of an accelerator. Essentially, it is a way of having a
wi dget's actions invoked froma different w dget.

In this exanple, we wll set the accelerators using the
"resource" database. In this manner, we can adjust the
sequence wi thout reconpiling. Also, since the accelerator is a
menber of the Core it is initialized at "create" tine.
Therefore, it is perfectly okay to use this nethod. If we did
not want to use this nethod we woul d:
1. Create an accelerator table.
static String accel = "<Key>q: notify";
2. Conmpile it by parsing it.
Xt Accel erators accel Conpiled =
Xt Par seAccel er at or Tabl e(accel) ;
3. Then install at PRE create tine.
Xt Set Arg(arg[cnt], Xt Naccel erators, accel Conpi |l ed); cnt++;

A few things to note:
1. Accelerator tables ook just |like the translations table.
2. Accel erator may use #augnent or #overri de.
3. When #augnent is used, the accel erator has a | ower
priority than what was there before.
4. The call to Xtlnstall Accel erators() is:
arg 1 - DESTI NATI ON
arg 2 - SOURCE
Most of us wll assunme arg 1 is SOURCE and arg 2 is
DESTI NATI ON. Car ef ul !

for (cnt =0; cnt <Xt Nunber (Fi el ds) ; cnt ++)
XtInstall Accelerators(Fields[cnt].fe,commt _btn);

If we are using the nmenu bar then let the user exit fromthe
fields

i f (nmyAppRes. useMenuBar)
for(cnt =0; cnt <Xt Nunber (Fi el ds); cnt ++)
XtInstall Accelerators(Fields[cnt].fe,exit _btn);

file:///H:/edonkey/docs/programming/1/2/ch08/170-174.html (4 of 5) [13/12/02 18:09:51]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

Previous [Table of Contents |[Next

Copyright © CRC Press LLC

file:/l//H:/ledonkey/docs/programming/1/2/ch08/170-174.html (5 of 5) [13/12/02 18:09:51]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous (Table of Contents [Next

The support procedures for the form are CheckBuySell(), PopList(), Commit(), and Cancel().
CheckBuySell() isafield action procedure for the Buy/Sell field. It simply makes sure that the
field is correctly filled in. If it is, then it invokes the next field action procedure
(MakeNxtFIdActive()):

FwPr oc CheckBuySel | (w)
W dget w;
{

Arg arg[1];
char *sval, c;

Xt Set Arg(arg[0], Xt Nstri ngVal , &val) ;
Xt Get Val ues(w, arg, (Cardinal)1);
/* If there is no value then just go to the next field */
I f ((sval == NULL) || strlen(sval))
MakeNxt FI dAct i ve(w, NULL, NULL, NULL) ;

/* If the fieldis valid then sinply go to the next, otherw se
* pbeep at the user.

*/
if ((strcnp(sval,"B") == 0) ||
(strcnp(sval,"b") == 0) ||
(strcnp(sval,"s") == 0) ||
(strcnmp(sval ,"S") == 0))
MakeNxt FI dAct i ve(w, NULL, NULL, NULL) ;
el se
XBel | (Xt Di splay(w), 50);
}

The Commit() callback writes the trade to afile provided:

Xt Cal | backProc
Commi t (whoCal | edMe, dat aFronCl i ent, dat aToG veC i ent)

file:///H:/ledonkey/docs/programming/1/2/ch08/174-177.html (1 of 5) [13/12/02 18:09:52]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

W dget whoCal | edMVe;
caddr _t dataFronCient;
caddr t dataToG ved ient;

int ival; float fval; char *sval
Arg arg[1]; int i,nunFlds = XtNunber(Fields);
char out rec[TRADESTRSI ZE] ;

menset (out _rec,'\0', sizeof (out_rec));
sprintf(out_rec+strlen(out_rec), "FromFile: ");

for(i=0;i<nunFlds;i++) {
swtch(Fields[i].editor type) {
case FE_ALPHA:
case FE_ALPHANUMERI C.
case FE_APPL:
/* These conditions dictate a "string" return. Therefore, request

* one.
*/
Xt Set Arg(arg[0], Xt Nstri ngVval , &val) ;
Xt Get Val ues(Fields[i].fe,arg,1);
I f (sval !'= NULL)
sprintf(out_rec+strlen(out_rec),
"% ",sval);
br eak;
case FE_I NT:

Xt Set Arg(arg[0], XtNi ntVval, & val);
Xt Get Val ues(Fields[i].fe,arg, (Cardinal)l);
sprintf(out_rec+strlen(out_rec),
"% ",ival);
br eak;
case FE FLOAT:
Xt Set Arg(arg[0], Xt Nf | oat Val , &fval);
Xt Get Val ues(Fields[i].fe,arg, (Cardinal)l);
sprintf(out _rec+strlen(out _rec),
"% 3f ",fval);
br eak;
}
}
/* Wite the "constructed" record to a file and flush. W need
* to flush so that the data actually gets to the file. If we

* don't we wll not be sure if the data gets to the file due to
* the buffering that is being enpl oyed.
*/

file:///H:/ledonkey/docs/programming/1/2/ch08/174-177.html (2 of 5) [13/12/02 18:09:52]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

fprintf(fout,"%\n", out _rec);
fflush(fout); /* So it gets to the file */
}

The Cancel() callback simply clearsthe fields:

Xt Cal | backProc Cancel (whoCal | edMe, dat aFronCl i ent, dat aToG ved i ent)
W dget whoCal | edMe;
caddr t dataFronC i ent;
caddr t dataToG ved ient;

{
int i,nunFlds = Xt Nunber (Fields);
for(i = 0; i < nunFlds; i++)
Xt xuTextCl earAll (Fields[i] .fe);
}

Pop List() isan action procedure that is used to bring the option list up:

Xt Acti onProc PopLi st (w, event, paranms, num par ans)
W dget w;
XEvent *event;
String *parans;
Cardi nal num par amns;

Poplt (w, listShell);

8.4.6.1. Moving Without the Mouse

One of the things that many users like in applications is keyboard traversal. Thisis the movement
of the input focus without the mouse. To affect this, widgets must cooperate or the application
must be created with some “smarts.” The application in this chapter has the intelligence built in,
but in Chapter 10 you will see how OSF/Motif handles traversal.

In the code, notice that the entry fields are in an array. By doing this you simply need to determine
the current widget to determine which is the next or which was the previous. The functions that
determine this are “action procs’ which are connected to the fields via the translation manager.
They are defined as follows:

Xt Acti onProc MakeNxt FI dActive(w, event, param num par ans)

W dget w;
XEvent *event;

file:///H:/ledonkey/docs/programming/1/2/ch08/174-177.html (3 of 5) [13/12/02 18:09:52]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

String *param
Cardi nal num par ans;

W dget ww;
int i, nunFlds = XtNunber (Fi el ds);

/* The w dget that kicked off the action proc defines the current
* widget. We | ook through the array of fields to find it. Once
* found we sinply determine if it is at the end of the list. If

* it is, you wll set the focus to the "first" w dget,

* set it to the next one in the |ist.

ot herw se,

*/
for(i=0;i<nunFlds;i++) {
if (Fields[i].fe == w{
if (i == (nunFlds - 1))
ww = Fields[O0].fe;
el se
ww = Fields[i+1].fe;
XSet | nput Focus(Xt Di spl ay(ww) , Xt W ndow(ww) ,
Revert ToPoi nter Root, CurrentTine);
br eak;
}
}
}

Xt Acti onProc MakePrvFl dActi ve(w, event, param num par ans)

W dget w;

XEvent *event;
String *param

Cardi nal num par ans;

W dget ww;
int i,nunFlds = Xt Nunber (Fields);

/* This acts in the sanme nmanner except it looks to see if the
* wdget is the top one. If it is then the bottomw dget is the

* previous, otherwse, it is the one "above."
*/
for(i=0;i<nunFlds;i++) {
If (Fields[i].fe == w){
if (i == 0)
ww = Fields[nunFlds - 1].fe;
el se
ww = Fields[i-1].fe;

XSet | nput Focus(Xt Di spl ay(ww) , Xt W ndow(ww) ,
Revert ToPoi nt er Root, CurrentTi ne);

br eak;

file:///H:/ledonkey/docs/programming/1/2/ch08/174-177.html (4 of 5) [13/12/02 18:09:52]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

Previous [Table of Contents |INext

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/ch08/174-177.html (5 of 5) [13/12/02 18:09:52]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

A Practical Guide to X Window Programming: Developing Applications with the
XT Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous [Table of Contents |Next

8.4.7. Miscellaneous

The last two functions are the label-creation function and the Toggle() action procedure. In
the case of the label creation, you want it to be just below the button box (Cancel and
Commit), so it will ssmply be set below using one of the constraints provided by the form
widget. The Toggle() action procedure simply adjusts the border width. Notice that on
window managers that place “special” frames around the client, the toggle effect is not
noticed. The functions are defined as follows:

int create_the |abel ()

{
Arg arg[1];
Xt Set Arg(arg[0] , Xt Nf ronVert, bt nBox) ;
| abel = Xt Creat eManagedW dget (" nessage"”, | abel Wdget d ass,
backdrop, arg, (Cardinal)1l);
}

typedef enum{On = "'N ,Of =F } Axn;
Xt Acti onProc Toggl e(w, event, param num par ans)
w dget w;
XEvent *event;
String *param
Car di nal num par ans;

Axn action;
Arg arg[2];
Pi xel bg, fg;

action = (Axn)paran{O][1];
if (islower((char)action))

action = (Axn)toupper((char)action);
switch(action) {

file:///H:/edonkey/docs/programming/1/2/ch08/178-180.html (1 of 2) [13/12/02 18:09:53]

A Practical Guide to X Window Programming: Developing Applications with ...Intrinsics and OSF/Motif: Sample Application: A Character-Oriented Client

case On:
Xt Set Arg(arg[0], Xt Noor der Wdt h, 3);
Xt Set Val ues(w, arg, 1) ;
br eak;

case O f:
Xt Set Arg(arg[0], Xt Nborder Wdt h, 1);
Xt Set Val ues(w, arg, 1) ;
br eak;

}
8.5. Summing Up
This client demonstrated a few features that are often desirable in an application:

1. Field entry (using the widget from Chapter 6).
2. Pop-up help, lists, and menus.
3. Keyboard traversal.

4. Keyboard accelerators.

5. “Form” and “menu” definitions.

By having awidget that handles field entry and is extensible, you have the basis for many
applicationsto follow. Asyou can see, creating an entry form isfairly simple once the tools
are available. Keyboard traversal is “do-able” given the standard Intrinsics functions, and is
not too hard to handle. Typedefs and structures make coding much easier by “herding” logical
datatogether and allowing for the creation of arrays of this data. This array creation can make
programming extremely easy, especially if generic utilities are created to handle the
structures.

Previous [Table of Contents |Next

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch08/178-180.html (2 of 2) [13/12/02 18:09:53]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller
CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents | Next

Chapter 9
A Look at OSF/Motif

When X was created, there were no enforced display policies. The creators provided the
mechanisms for constructing graphical user interfaces. They really did not care to deal
with defining the appearance or behavior of a particular interface component (and probably
still don’t). Things have changed tremendously since the early days of X. There has been
an interface “war” between OSF and Unix International (Ul). OSF supports Motif and Ul
supports Open Look. Both have merits, but many programmers and users like the 3D
visuals and Presentation Manager-like behavior of Motif. Given that, and the fact that
several vendors bundle it with their presentation software, | have chosen to write about
Motif.

9.1. Motif Environment

The Motif environment is composed of three things: a style guide, a window manager, and
awidget set. The style guide is what the OSF people believe to be a*“good” way to
compose Motif clients. It deals with the behavior of clients and the components that make
up the client.

Though style guides are important, from a practical point of view most programmers create
interfaces that differ from any one style guide. Sure, we adhere to as much of the guide as
possible, but if auser doesn't like the placement of a component, should we tell them, “No
... the style guide says to do it thisway” ? Probably not. Therefore, a study of the Motif
style guide is |eft to you. The next two items, the window manager and the widget set, are
discussed in separate sections of this chapter.

Thereis actually another part to the Motif environment, called UIL (for User Interface

file:///H:/ledonkey/docs/programming/1/2/ch09/181-183.html (1 of 4) [13/12/02 18:09:54]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

Language). Practically speaking, it will be more important to understand the C interface
than UIL. For most application writers the C interface will be much easier to relate to and
comprehend. Additionally, user interface building tools will reduce the need for “new”
languages, such as UIL, for programmers. Personally, | prefer the C interface to client-
writing, therefore UIL is not discussed in this book. If you careto explore thisarea, |
recommend reading the information from OSF.

9.2. Motif Window Manager

The Motif window manager (mwm) often confuses the novice to X into believing that a
client with the 3D adornmentsis a Motif client. Thisisfar from the truth. Asyou are now
aware (from the discussion in Chapter 2), the window manager simply assists the user in
managing a desktop and all X clients should be written to work with any window manager.
So the next time you see a client being managed by mwm, don’t assumeit isaMotif client
unless you have checked the source code first.

One of the nice features of mwm is the ability to customize its many resources. Y ou can
create new menus, change a client’ s appearance, and move among clients without the
mouse. All of these features are fairly easy to do. Changesto aclient’ s appearance would
go in the resource database, the others would be in the window manager’ s resource file
(.mwmrc) for frame appearance.

9.2.1. Customizing Using Resources

A window manager is nothing more than a special X client. As such, it will have its own
resources and a specific class resource file (Mwm). There are several resources associated
with mwm. The following is a table of some of the more useful ones.

Table 9-1Motif Window Manager Resources

Resour ce Name Resour ce Class Description

All Components

background Background Background color
backgroundPixmap BackgroundPixmap Pixmap for inactive state
bottomShadowColor Foreground Color of lower and right bevels
bottomShadowPixmap BottomShadowPixmap Pixmap for lower and right bevels
fontList FontList Font used in decorations
foreground Foreground Foreground color

file:///H:/edonkey/docs/programming/1/2/ch09/181-183.html (2 of 4) [13/12/02 18:09:54]

saveUnder
topShadowColor
topShadowPixmap

activeBackground

activeBackgroundPixmap
activeBottomShadowCol or

SaveUnder
Background
TopShadowPixmap
For Frameand | con
Background
BackgroundPixmap
Foreground

activeBottomShadowPixmap BottomShadowPixmap

activeForeground
activeT opShadowColor

activeT opShadowPixmap

autoK eyFocus
bitmapDirectory
buttonBindings
clientAutoPlace
colormapFocusPolicy
configFile
frameBorderWidth
iconBoxL ayout
iconPlacement
keyBindings
keyboardFocusPolicy
moveThreshold
resizeBorderWidth
usel conBox

clientDecoration

clientFunctions

Foreground
Background
TopShadowPixmap
Specific Appear ance
AutoK eyFocus
BitmapDirectory
ButtonBindings
ClientAutoPlace
ColormapFocusPolicy
ConfigFile
FrameBorderWidth
|conBoxL ayout

| conPlacement
KeyBindings

K eyboardFocusPolicy
MoveThreshold
ResizeBorder\Width
Usel conBox

Client Specific
ClientDecoration

ClientFunctions

file:///H:/edonkey/docs/programming/1/2/ch09/181-183.html (3 of 4) [13/12/02 18:09:54]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

Indicate if saveUnder isactive
Color of upper and left bevels
Pixmap for upper and left bevels

Color for active state

Pixmap for active state

Color of lower and right bevels
Pixmap for lower and right bevels
Color for active state

Color of upper and left bevels
Pixmap for upper and left bevels

Turn auto focus on/off

Search path for bitmaps
Bindings from .mwmrc

Turn auto place on/off

explicit, pointer, keyboard

Path for .mwmrc

Width in pixels of client window
firstfit, screenloc

top, bottom, left, right

Bindings from .mwmrc

explicit, pointer

Number pixelsto drag per motion
Total Frame size

Turn use of box on/off

Turn adornments on/off:

al, border, maximize, minimize,
none, resize, system, title

Turn functions on/off:

al, none, resize, move, minimize,
maximize, close

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

iconlmage Iconlmage Bitmap fileto use asicon
systemMenu SystemMenu Menu from .mwmrc to post
useClientlcon UseClientlcon Set icon supply policy:

true — client wins
false — user wins

Previous | Table of Contents |Next

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/ch09/181-183.html (4 of 4) [13/12/02 18:09:54]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents INext

By editing the mwm class resource file, you can adjust the way your clients appear. For instance,
suppose you would like to use the icon box as shown in Figure 9-1. Thisis accomplished by
editing the resource file and adding this line:

Mmvm usel conBox: True

Figure 9-1 Icon box.

Now, suppose you want to turn off some of the client decorations. Again, edit the resourcefile
and add something like this:

Mawnt Xawl i st TM cl i ent Decor ati ons: +system
Thiswould give al clients of the XawlistTM class only (Figure 9-2) the system button.

If you would like to add additional key settings that were defined in .mwmrc, you would add
them using the “keyBindings’ resource as follows:

Mvm keyBi ndi ngs: NewKeyBi ndi ngs

file:///H:/ledonkey/docs/programming/1/2/ch09/183-187.html (1 of 5) [13/12/02 18:09:56]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

where NewK eyBindings was created in the . mwmrc file.
9.2.2. Customizing Using.mwmrc

When mwm starts up, it looks for afile called . mwmrc. It looks for it in the user’s SHOME path,
the path defined in the configFile resource, or /ust/lib/X 11/app-defaults/system.mwmrc. Thisfile
contains the menu definitions, key bindings, and button bindings that mwm will use.

9.2.2.1. Menu Format of . mwmrc
The format of amenu in . mwmrc is as follows:

Menu MenuNane
{

"l abel™ [mmenonic] [accelerator] function

e ey g e ey e oy 4 e R e e

wawlist Fnd

Figure 9-2 XawlistTM.
Mnemonic and accelerator are optional, and function can be one of those in the following table.

Table 9-2Motif Window Manager Functions

Function Description

f.beep Beep the user

f.circle_down Place top icon/window on bottom of the window stack
f.circle_up Place bottom icon/window on top of the window stack

file:///H:/edonkey/docs/programming/1/2/ch09/183-187.html (2 of 5) [13/12/02 18:09:56]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

f.exec Execute a shell command passed

f.focus color Set colormap focus to window/icon

f.focus key Set keyboard focus to window/icon

f.kill(IW) Kill the client

f.lower(1W) Lower the client to bottom of window stack
f.maximize(IW) Display client with maximum size

f.menu Post the menu given by the name
f.minimize(W) Display client asanicon

f.move(IW) Cause interactive movement

f.next_cmap Install next colormap

f.next_key Set keyboard focus to next icon or window
f.nop Do nothing

f.normalize(IW) Restore client to normal state

f.pack_icons Cause relayout of icons

f.post_wmenu Post the system menu

f.prev_cmap Install the previous colormap

f.prev_key Set keyboard focus to previousicon of window
f.quit_mwm(R) Kill mwm but not X

f.raise(IW) Move client to top of stack

f.rase lower(IW) If obscured raise client to top of stack, otherwise send to bottom
f.refresh Redraw al windows

f.refresh_win(W) Redraw client window

f.resize(W) Interactively resize the client

f.restart(R) Restart mwm

f.send_msg(IW) Send a client message

f.separator Draw a separator in menu

f.set_behavior Restart mwm with behavior style default/custom/switch
f.title Place label astitlein menu

Key: IW — Icon and Window; R — Root; W — Window

Each function is constrained to icon, window, or root unless otherwise indicated. Now then, a
simple menu could be defined as follows:

Menu " Exanpl eMenu” {

" Exanpl e Menu" f.title
no- | abel

file:///H:/edonkey/docs/programming/1/2/ch09/183-187.html (3 of 5) [13/12/02 18:09:56]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

"Kill" _K Met a<Key>F4 f.kill
"Refresh” R Met a<key>F2 f.refresh
“"Directory" D Meta<Key>F10 f.exec "lIs -al"

9.2.2.2. Bindings in .mwmrc

Y ou can also create custom button and key bindings in the .mwmrc file. The format for the
binding specifications for both button and key are the same with the exception of the name:

Button "nanme" {
but t on but t oncont ext functi on

}

where buttoncontext is [system, border, title, frame, app, minimize, maximize, root, icon,
window].

Keys "nane" {
key cont ext function
}
where context is [root, window, icon].
S0, to define new bindings, you do the following:

Butt on "NewButtonSet" {

<Bt n1Down> system f. post _wrenu

<Bt n2Down> r oot f.exec "xsetroot -solid blue"
}
Keys "NewKeySet" {

<Key>F9 wi ndow r oot | i con f.next_key

<Key>F10 wi hdow| r oot | i con f.prev_key

Met a<Key>F1 i con f.normalize
}

Aswindow managers go, mwm israther nice. Y ou can see that customizing it is not very hard,
and thereisagreat deal of flexibility with it. The intent with the coverage in this book isto give
you enough to get started. With that, the best way to get acquainted with mwm isto play around
with the resource settings and see for yourself what the results are.

file:///H:/edonkey/docs/programming/1/2/ch09/183-187.html (4 of 5) [13/12/02 18:09:56]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

Previous | Table of Contents |Next

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch09/183-187.html (5 of 5) [13/12/02 18:09:56]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents | Next

9.3. The Motif Widgets

The purpose of this section is to introduce the Motif widgets. It is not intended to be a
reference manual, but rather an overview of the different components available. For more
specific information, refer to Appendixes A and C of this book or the OSF/Motif
Programmer’ s Reference Guide.

The Motif Widget Set (Xm) contains 28 “creatable” widgets, 2 “meta” widgets, 5 gadgets,
and 1 “meta’ gadget. The following is atable of them.

Table 9-3Motif Widget Names and ClassPointers

ClassName Pointer Type
XmArrowButton xmArrowButtonWidgetClass P
XmArrowButtonGadget xmArrowButtonGadgetClass P
XmBulletinBoard xmBulletinBoardWidgetClass M
XmCascadeButton xmCascadeButtonWidgetClass P
XmCascadeButtonGadget xmCascadeButtonGadgetClass P
XmCommand xmCommandWidgetClass P
XmDialogShell xmDial ogShelIWidgetClass M
XmDrawingArea xmDrawingAreaWidgetClass P
XmDrawnButton xmDrawnButtonWidgetClass P
XmFileSel ectionBox xmFileSelectionWidgetClass X
XmForm xmFormWidget M
XmFrameWidget xmFrameWidget M
XmGadget xmGadget P*

file:///H:/edonkey/docs/programming/1/2/ch09/187-189.html (1 of 4) [13/12/02 18:09:57]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

XmLabel xmL abelWidgetClass P
XmL abel Gadget xmL abel GadgetClass P
XmList xmListWidgetClass P
XmMainWindow xmMainWindowWidgetClass X
XmManager xmM anagerWidgetClass M*
XmMenuShell xmMenuShellWidgetClass M
XmM essageBox xmM essageBoxWidgetClass X
XmPanedWindow xmPanedWindowWidgetClass M
XmPrimitive xmPrimitiveWidgetClass P*
XmPushButton xmPushButtonWidgetClass P
XmRowColumn xmRowColumnWidgetClass M
XmSash xmSashWidgetClass PS
XmScale xmScaleWidgetClass X
XmScrollBar xmScrolIBarWidgetClass XPS
XmScrollWindow xmScrollWindowWidgetClass X
XmSel ectionBox xmSel ectionBoxWidgetClass X
XmSeparator xmSeparatorWidgetClass PS
XmSeparatorGadget xmSeparatorGadgetClass P
XmText xmTextWidgetClass P
XmToggleButton xmToggleButtonWidgetClass P
XmToggleButtonGadget xmToggleButtonGadgetClass P
Key:

P — represents a primitive widget/gadget.

M — represents a manager widget (container).

X — represents a widget composed with other widgets.

PS — represents a primitive widget used to support other widgets.
* — represents a Meta widget.

Asyou can see there are quite afew. Each widget has its own convenience routine for
creating it. Theinvocation is as follows:

XnCreat e[C ass Nane] (parent, "instance nane", argli st, argcnt)

file:///H:/edonkey/docs/programming/1/2/ch09/187-189.html (2 of 4) [13/12/02 18:09:57]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

where [Class Name] is replaced by the class name from the table, dropping the “Xm.”
Therefore, to create xmListWidget you would do the following:

l'ist = XnCreateLi st Wdget (parent,"List",arglist,argcnt);
Xt ManageChi | d(1i st);

Notice that you need to manage the result since the convenience routines do not create
managed widgets. If you prefer to use the Intrinsics mechanism, you would do the
following:

list = XtCreateManagedW dget ("Iist", xnlLi st Wdget d ass,
parent,arglist,argcnt);

The following is atable of the widget creation routines.

Table 9-4Motif Widget Creation Functions

XmCreateArrow Button(); XmCreateArrowButtonGadget();
XmCreateBulletinBoard(); XmCreateBulletinBoardDial og();
XmCreateCascadeButton(); XmCreateCascadeButtonGadget();
XmCreateCommand(); XmCreateDialogShell();
XmCreateDrawingArea(); XmCreateDrawnButton();
XmCreateFileSel ectionBox(); XmCreateFileSelectionDialog();
XmCreateForm(); XmCreateFormDialog();
XmCreateFrame(); XmCreatel abel();

XmCreatel abel Gadget(); XmCreatelist();

XmCreateScrolledList();
XmCreateMenuShell();
XmCreateM essageDia og();
XmCreatel nformationDialog();
XmCreateWarningDia og();
XmCreatePanedWindow();
XmCreatePushButtonGadget();
XmCreateRadioBox();

X mCreatePopupM enu();
XmCreateOptionMenu();

XmCreateMainWindow();
XmCreateM essageBox();
XmCreateErrorDialog();
XmCreateQuestionDialog();
XmCreateWorkingDialog();
XmCreatePushButton();
XmCreatePushButtonGadget();
XmCreateRowColumn();
XmCreatePulldownMenu();
XmCreateM enuBar();

file:///H:/edonkey/docs/programming/1/2/ch09/187-189.html (3 of 4) [13/12/02 18:09:57]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

XmCreateScale(); XmCreateScrollBar();
XmCreateScrolledWindow(); XmCreateSel ectionBox();
XmCreateSelectionDialog(); XmCreatePromptDialog();
XmCreateSeparatorGadget(); XmCreateSeparator();
XmCreateText(); XmCreateScrolledText();
XmCreateT oggleButton(); XmCreateT oggleButtonGadget();

9.3.1. Motif Widget Resources

The next area of Motif that differs dlightly from the Intrinsics mechanism is the setting of
resources. In the Intrinsics, you would set, say, the core resources using resource names
such as:

Xt Nwi dt h, Xt Nnei ght
However, Motif uses the following:
Xm\wi dt h, XIMNhei ght .

Essentialy, the OSF folks took everything from StringDefs.h and changed the “ Xt” to
“Xm,” including the resource classes (XmC) and resource representations (XmR).
Additionally, all new resources used by the Motif widgets use “Xm” as aprefix. Refer to
Appendix C, “Quick Guide to the OSF/Motif Widget Set,” for details on resources and the
widget set.

This change was probably intended to eliminate conflicts between other vendor widget
sets. Notice, though, that if you wanted to mix widget sets, you would have to handle
different resource-naming conventions. Thereis certainly the potential for nasty
administration problems when additional widget sets that “coexist” arrive. In the
meantime, note the difference so you will avoid making typing mistakes.

Previous | Table of Contents |Next

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/ch09/187-189.html (4 of 4) [13/12/02 18:09:57]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller
CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents | Next

9.3.2. Motif Display Widgets

Display widgets are used for input/output mechanisms that are often needed when
developing applications. All display widgets are a subclass of XmPrimitive. Thiswidget is
ametawidget, and is never instanciated by itself. It acts as a provider of common
functionality for all its subclasses. In this case, XmPrimitive provides foreground,
highlighting, traversal, 3D appearance, resolution independence, and help capability.

There are four kinds of buttons available in the widget set: XmArrowButton,
XmDrawnButton, XmPushButton, and XmToggleButton. They each provide a callback
mechanism for when the user “presses’ the button. XmPushButton displays a label and
draws a 3D effect when selected. XmArrowButton behaves just like the XmPushButton
except it displays an arrow. XmDrawnArea behaves just like XmPushButton except it
provides application created graphics. XmToggleButton displays alabel and a “toggle”

graphic.

XmLabel displays single- or multi-line text strings or pixmaps. It has justification
semantics for handling the display of its contents.

XmList displays alist of items and provides two selection policies (single- or multi-
selection). When items are selected, the widget invokes callbacks depending on the
selection style.

XmScrollBar is used with a*“scroller” widget. It provides avisual interaction with the user.
Application writers will probably never directly create a scrollbar.

XmSeparator displays avisual separation between widgets. It is most often used in menus,
but may be used in other situations.

file:///H:/ledonkey/docs/programming/1/2/ch09/189-192.html (1 of 5) [13/12/02 18:09:58]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

XmText provides multi-line text editing or display.
9.3.3. Motif Display Gadgets

The following are the gadgets defined in the Motif Set: XmGadget,
XmArrowButtonGadget, X mL abel Gadget, X mSeparatorGadget, XmToggleButtonGadget.
XmGadget is similar to XmPrimitive in that it is ameta class, and provides the same
resources. Each of the gadgets behaves just like the widget version.

9.3.4. Motif Container Widgets

The Motif set isrich with layout widgets (containers). All container widgets are subclasses
of XmManager. XmManager is a meta class, and provides resources similar to those
provided by XmPrimitive. It provides the 3D visuals, traversal mechanisms, and help. Itis
created from Core, Composite, and Constraint.

XmBulletinBoard provides simple geometry management for its managed children. Unlike
other containers, it will not force positions on the children.

XmDrawingAreais an adaptable widget, in that it is an empty widget and can be used to
create application-specific displays. It provides callback mechanisms for various events
such as expose, resize, keyboard, and button.

XmForm isastrict layout manager that provides several constraints for its children. Unlike
XmBulletinBoard, XmForm forces positions on its children.

XmFrame is used to provide 3D appearance for widgets that do not have such capabilities
(thisis demonstrated in the next section).

XmMainWindow is acomplex widget that is actually constructed from several other
widgets. It provides a standard layout, including menu bar, command region, and
scrollbars. Y ou will use thisin Chapter 10.

XmRowColumn supports severa layout policies. It may function as awork area, menu
bar, pull-down menu, pop-up menu, or an option menu. It is commonly used in the widget
set to construct special-case layouts.

XmRadioBox is a special case of the XmRowColumn widget. Its main purposeisto
manage a collection of XmToggleButtons.

file:///H:/edonkey/docs/programming/1/2/ch09/189-192.html (2 of 5) [13/12/02 18:09:58]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

XmScrolledWindow provides management for its children by allowing them to scroll in
both vertical and horizontal directions. It is responsible for displaying scrollbars and
moving the children when necessary.

XmScrolledList is acomplex widget composed of XmScrolledWindow and XmList. It
allows an arbitrary list to be managed in a scrolled region and takes care of setting
scrollbars and adjusting the list position.

XmScrolledText is acomplex widget composed of XmScrolledWindow and XmText. It
provides scrolling capabilities to the XmText widget.

XmV Paned manages its children in avertically tiled manner. It contains a support widget
called XmSash which enables the user to resize the pane.

9.3.5. Motif Dialogs

The OSF folks provided a set of useful interaction constructs referred to as dialogs. There
are afew creation routines for some of the more common types of dialogs. The following
Isatable of these functions:

Table 9-5Moatif Dialog Creation Functions

XmCreateBulletinBoardDialog(); XmCreateDialogShell();
XmCreateFileSelectionDialog(); XmCreateFormDialog();
XmCreateM essageDialog(); XmCreateErrorDialog();
XmCreatel nformationDialog(); XmCreateQuestionDialog();
XmCreateWarningDia og(); XmCreateWorkingDialog();
XmCreateSelectionDialog(); XmCreatePromptDialog();

Diaogs are created using afew select widgets. XmCommand provides a command input
region and a history buffer. XmFileSelectionBox obtains files and provides alist of them
along with an entry region, enter, apply, cancel, and help buttons. XmM essageBox
provides a symbol and text along with enter, cancel, and help buttons. XmSel ectionBox
provides alist of aternatives, entry region, enter, apply, cancel, and help buttons.
XmDialogShellWidget is a subclass of the Intrinsics transientShelIWidgetClass and is used
to create al dialog constructs. It provides ICCM* compliance.

*ICCCM refersto the Inter-Client Communication Conventions Manual. This manual

file:///H:/edonkey/docs/programming/1/2/ch09/189-192.html (3 of 5) [13/12/02 18:09:58]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

defines the mechanisms that are acceptable practice for communication among X clients.
The OSF/Motif set providesits own shells so that it ensures compliance with ICCCM.

With the various widgets discussed in the preceding sections, Motif provides several
predefined dialog components that are useful for application development.

BulletinBoardDial og is provided to allow application writers the ability to craft their own
dialog.

ErrorDialog is used to warn users of errors made. It provides an error symbol, text
message, enter, cancel, and help buttons.

FileSelectionDial og creates an XmFileSelectionBox widget under adialog shell.

FormDialog is provided to allow application writers the ability to craft their own dialog.
Children will be subject to the XmForm widget layout policies.

InformationDialog is used to provide information to the user. It provides an information
symbol, message text, enter, cancel, and help buttons.

MessageDial og creates an XmMessageWidget under a dialogShell.

PromptDialog is used to prompt the user for input. It provides a prompt, edit region, enter,
cancel, and help buttons.

QuestionDialog is used to get an answer from a user. It provides a question symbol,
message text, enter, cancel, and help buttons.

SelectionDialog creates an XmSel ectionWidget under a dialogShell.

WarningDialog is used to inform the user of a problem. It provides awarning symbol,
message text, enter, cancel, and help buttons.

WorkingDialog is used to inform the user that atask is being performed. It provides a
working symbol, message text, enter, cancel, and help buttons.

file:///H:/edonkey/docs/programming/1/2/ch09/189-192.html (4 of 5) [13/12/02 18:09:58]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

Previous | Table of Contents |Next

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch09/189-192.html (5 of 5) [13/12/02 18:09:58]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller
CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous | Table of Contents | Next

9.3.6. Motif Menu Widgets

Motif supports the Presentation Manager menu interaction. This includes pull-down, pop-
up, and option menus which are constructed using several widgets.

The XmMenuShell widget is a subclass of the Intrinsics overrideShel IWidgetClass. It
provides ICCM compliance and is used to construct all menusin Matif.

XmCascadeButton is used heavily in the menu system, because it is the only widget that
allows a pull-down menu to be attached to it. It can display alabel with a cascading
symbol, and provides callback mechanisms for when the button is pressed and it is just
prior to a menu being mapped.

The XmRowColumn widget is used as the container for the different types of panes
(cascade and push-button). Menu creation using the Motif set is discussed in the next
chapter.

9.3.7. Motif Traversal Mechanism

In Chapter 6 you saw atype of keyboard traversal. Essentially, the application was
intelligent in that it knew the widgets that would get the focus. Thisis exactly how Motif
handles traversing with the keyboard. The only widgets that can accept the focus are the
display widgets (and gadgets), because these are the only type with which the user
interacts. In the Motif set, the XmManager contains the intelligence for traversing among
its children. Just as you had alist of widgetsto “look in,” so does XmManager. With this
list, the manager can move the focus to the previous or next widget in the list.

The only other issue with traversal is how to get from one traversing area to another. A
traversing area is a container of traversable widgets. This would be some kind of form such

file:///H:/ledonkey/docs/programming/1/2/ch09/192-194.html (1 of 3) [13/12/02 18:09:59]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

asthe one found in the “trade” client. If you had severa entry regions in the same client,
you would need to get to them so you could fill out those fields. Motif defines these areas
astab groups. All you need to do is specify the container widget that is managing the
traversable children as a tab group to employ this mechanism. The function call isas
follows:

XmAddTabG oup(gr oup) ;

Now to get to “group” the user presses the Tab key which sends focus management to the
next tab group. XmText widgets must also be added to be traversed to.

9.3.8. Motif Compound String

Motif widgets use a notion of text called a compound string. A compound string isa
special encoding that allows widgets to handle text with different graphics contexts and of
various character sets. Recall the client “ XtandGC,” which demonstrated how to draw lines
of text with several fonts. Y ou could make the same analogy to the Motif Widget Set’'s
handling of text. There is an added level of complexity to the compound string, which is
direction. The direction is the way the string will be painted out. The reason for doing this
isto allow Motif clients to be written in international languages that require text to be
written in different directions.

Appendix C contains atable of the several compound string functions that exist in the
widget set. You will need to make “normal” text into a compound string before using it in
most of the Motif widgets (the only exception is the XmText widget).

9.3.9. Motif Clipboard

The Motif set has added a higher level of datatransfer than the Xlib and Xt mechanisms. It
isreferred to as aclipboard, which is essentially off-screen memory. It isused to allow
clients the ability to exchange data back and forth. The Motif clipboard contains severa
functions for dealing with things such as locking, starting retrieval, stopping retrieval, and
copying data to the clipboard. For the most part your applications will probably not require
the clipboard, therefore this subject is left to a book specifically on Maotif.

9.4. Sample Motif Clients

To demonstrate how easy it isto go from the Athena reference frame to Motif and
maintain the Intrinsics creation mechanisms, let’s “port” (Sounds sexy!) two clients that

file:///H:/edonkey/docs/programming/1/2/ch09/192-194.html (2 of 3) [13/12/02 18:09:59]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

have been previously written, namely, “alarm” and “xawlist.”

Previous | Table of Contents | Next

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch09/192-194.html (3 of 3) [13/12/02 18:09:59]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous [Table of Contents |[Next

9.4.1. Changing alarm to malarm

The new client is shown in Figure 9-3. The code for the new client is as follows (pay attention to the
comments, they tell you what is needed):

/* FILE: mal arm c
*/

#i ncl ude " XbkUtil . h"
#i ncl ude <Xl |/ Xos. h>

/* Notice we need to use the Mitif headers for their w dgets
*/

#i ncl ude <Xm Xm h>

#i ncl ude <Xnf For m h>

#i ncl ude <Xnif PushB. h>

#i ncl ude <Xnl Label . h>

TR
[
]|

11:35 PM

Figure 9-3 Malarm.
/*

* Notice we took out the O ockWdget fromthis alarm
*/

file:///H:/ledonkey/docs/programming/1/2/ch09/194-199.html (1 of 6) [13/12/02 18:10:00]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

#defi ne XbkShel | Nanme “mal ar nf
#defi ne XbkAppl C ass " Mal ar nf
/*

* Not hi ng new here ..

*/
Xt Cal | backPr oc set _hour(),set_mnute(),set_anpn(),set _alarn();
Xt Ti mer Cal | backProc Tel | Them() ;

#defi ne ALARMRANG "Al ar m Rang"

#defi ne DI SABLE "Alarmis Of"

#defi ne AM 0

#defi ne PM 1

#defi ne M LLI 1000

#def i ne SECI NHR 3600

#define SECINM N 60

/* Set up the globals for use in the call back routines.

*/

struct tmtm *localtine();
| ong tv;

char scrat ch[10];

struct {
Bool ean al ar nSet ;

i nt hour ;

i nt m n;

i nt anO pm

Xtintervalld i d;
} al arnDat a;

W dget setLbl;

/*
* Somet hi ng new! We need to define a conpound string variable so
* when we transforma "normal" string we have a place to put it.
*/

XnGtring *cstr; /* for building Conpound String */

mai n(ar gc, ar gv)
i nt argc;
char **argv;

W dget top, button_container, hr,mn,ampmset;
char scratch[10];

Arg ar g[MAXARGS] ;

int n;

top = Xtlnitialize(XbkShell Name, XokAppl C ass,

file:///H:/edonkey/docs/programming/1/2/ch09/194-199.html (2 of 6) [13/12/02 18:10:00]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

NULL, O, &argc, argv);

We are using the Motif Formw dget as a container. It provides
a nice assortnment of |ayout options that you can make. My
feeling is that this Formw dget is a bit nicer then the Athena
ver si on.

W coul d easily have used the RowCol um w dget since we are
dealing with a layout that is grid-like. The reason for using
the Formis to denonstrate how "portable” the client is.

E B S S T I N

button_contai ner = Xt Creat eManagedW dget (" button_cont ai ner",
xmFor mW dget Cl ass, t op, NULL, 0);
(void) time(&tv);
tm= *localtinme(&tv);
/*

* Set the alarm data

*/
al arnDat a. al arnSet = Fal se;
al ar nDat a. hour = (tmtmhour > 12) ? tmtmhour - 12 :

tmtm hour;

al arnDat a. m n tmtmmn;
alarmData. anOrpm = (tmtm_hour > 12) ? PM: AM

nenset (scratch,'\0', si zeof (scratch));
i f (alarnData. hour <= 9)
sprintf(scratch,"0%d", al ar nDat a. hour) ;
el se
sprintf(scratch,"%d", al arnDat a. hour) ;

This is perhaps the greatest change we had to nmake. Motif
wi dgets use a "conpound string" notion. So whenever you feed
text to the Motif widgets it nust be in conmpound string form
To do that you can use one of the nechanisns provided to do
that. We use:

XnGtri ngCreate(str, XnSTRI NG_DEFAULT _CHARSET)

L S S R I R

cstr = XnStringCreate(scratch, XnSTRI NG_DEFAULT_CHARSET) ;

Notice the new resource nanes. There are a few changes: the
first, we use XnN not XtN, and the second, the Mdtif w dgets
define their own resources and we cannot assune that they woul d
have sel ected the sane nanes that were in the Athena set.

L . N T

file:///H:/edonkey/docs/programming/1/2/ch09/194-199.html (3 of 6) [13/12/02 18:10:00]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

n = 0;

Xt Set Arg(arg[n], XmNl eft Att achnment , XMATTACH _FORM) ; n++;

Xt Set Arg(arg[n], XmNl abel String, cstr); n++;

hr = Xt Creat eManagedW dget (" hour ", xnPushBut t onW dget C ass,
but t on_cont ai ner, arg, n);

Xt AddCal | back(hr, XmNacti vat eCal | back, set _hour, NULL) ;

Xt Free(cstr);

You'll first notice that the Athena Command w dget is replaced
by the Motif PushB. The Motif Command wi dget is for actually
entering in commands while the Athena Command wi dget is a
but t on.

The next thing to notice is that the callback is placed on the
XmNact i vat eCal | back list, not XtNcallback. You will find that
many of the Motif w dgets have a variety of call backs that are
I nvoked by particular actions. This one happens when the npuse
button is pressed. Recalling the discussion in Chapter 5 we
know exactly what is going on. Essentially, an action proc is
ki cking off the callback. As in the case of the Athena Li st

wi dget, the action proc could be filling in sone data to pass
to the call back.

The last thing to notice is the "freeing" of the cstr. The
reason we do that is because the XnCreateString() function gives
Xt Mal | oc() sone space, so since we are good clients we give back
t he resource.

L . . T S S R . S . N N S N SN N N . N S

menset (scratch, '\ 0', si zeof (scratch));
if (alarnData. mn <= 9)
sprintf(scratch,"0%d", al arnData. m n);
el se
sprintf(scratch,"%d", al arnDat a. m n) ;
cstr = XnStringCreate(scratch, XnSTRI NG_DEFAULT _CHARSET) ;
n = 0;
Xt Set Arg(arg[n], XmNl eft Wdget, hr); n++;
Xt Set Arg(arg[n], XmNl eft Att achnment , XMATTACH W DGET) ; n++;
Xt Set Arg(arg[n], XmNl abel String, cstr); n++;
m n= Xt Cr eat eManagedw dget (" m nut e", xmPushBut t onW dget d ass,
butt on_cont ai ner, arg, n);
Xt AddCal | back(m n, XmNact i vat eCal | back, set _m nut e, NULL) ;
Xt Free(cstr);

nmenset (scratch, '\ 0", si zeof (scratch));
sprintf(scratch, (alarnData. anOrpm==PM? "PM : "AM);

file:///H:/edonkey/docs/programming/1/2/ch09/194-199.html (4 of 6) [13/12/02 18:10:00]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

cstr = XntStringCreate(scratch, XnSTRI NG DEFAULT_CHARSET) ;
n = 0;
Xt Set Arg(arg[n], XmNl eft Wdget, m n); n++;
Xt Set Arg(arg[n], XnNl abel String, cstr); n++;
Xt Set Arg(arg[n], XmNl ef t Att achnment , XMATTACH W DGET) ; n++;
am pm = Xt Cr eat eManagedW dget ("am pni', xnPushBut t onwi dget d ass,
butt on_cont ai ner, arg, n);
Xt AddCal | back(am pm XmNact i vat eCal | back, set _anpm NULL) ;
Xt Free(cstr);

n = 0;

Xt Set Arg(arg[n], XmNt opW dget, hr); n++;

Xt Set Arg(ar g[n] , XmNt opAtt achnment , XmATTACH W DGET) ; n++;

Xt Set Arg(ar g[n], XmN\bot t omAt t achnent , XmATTACH FORM ; n++;

set = Xt Creat eManagedW dget ("set", xmPushBut t onW dget d ass,
butt on- cont ai ner, arg, n);

Xt AddCal | back(set, XmNact i vat eCal | back, set _al arm NULL) ;

n = 0;
cstr = XnStringCreat e(Dl SABLE, XnSTRI NG_DEFAULT_CHARSET) ;
Xt Set Arg(arg[n], XmNl abel String, cstr); n++;
Xt Set Arg(arg[n], XmNl eft Wdget, set); n++;
Xt Set Arg(arg[n], XmNl eft Att achment , XmMATTACH W DGET) ; n++;
Xt Set Arg(arg[n], XnNbot t omAt t achnent , XMATTACH FORM) ; n++;
set Lbl = Xt Creat eManagedW dget ("set Label ", xnlLabel W dget d ass,
button_contai ner, arg, n);
Xt Free(cstr);

Xt Real i zeW dget (t op) ;

Xt Mai nLoop() ;
}

The remaining source code stays practically the same. The only change is to create compound
strings prior to giving the labels any information. The process would be as follows:

cstr = XnStringCreate(scratch, XnSTRI NG DEFAULT _CHARSET) ;
Xt Set Arg(arg[0], XnNl abel String, cstr);

Xt Set Val ues(w, arg, (Cardi nal)1);

Xt Free(cstr);

Y ou should take the time and make the changes yourself, it will be good practice.

The thing to notice about this client is that almost nothing major happened! Thisis extremely nice

file:///H:/edonkey/docs/programming/1/2/ch09/194-199.html (5 of 6) [13/12/02 18:10:00]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

to see.

Previous [Table of Contents |[Next

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch09/194-199.html (6 of 6) [13/12/02 18:10:00]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous [Table of Contents |[Next

9.4.2. Changing xawlist to mlist

The next client isthe “xawlist.” If you recall, thiswidget contained alist and alabel managed by a
form. If you thought “alarm” was easy, take alook at this one (shown in Figure 9-4):

| —

—|motiflisti + | _
Apple
AT&T
Bull
alComp

DC

Data General
;|
odak
ujitsu

[N

.;

Prime
Rich
Sequent
oiemens
Gilicon Graphics

=

ecktronix
I
niEHS
ang
Merox

]

file:/l//H:/ledonkey/docs/programming/1/2/ch09/199-202.html (1 of 4) [13/12/02 18:10:03]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

Figure 9-4 Mlist.

/* FI LE: mist.c
*/
#i ncl ude "XbkUtils. h"
#def i ne XbkShel | Nane "mist"
#defi ne XbkAppl C ass "Mist"

#1 ncl ude <Xn’ Xm h>

#i ncl ude <Xm Form h>
#1 ncl ude <Xn1 Li st. h>
#1 ncl ude <Xnt Label . h>

static void selection_callback();

static char *str[] = {
" Appl e", "AT&T","Bul I ", " Cal Conmp", " CDC",
"Data Ceneral","DEC', "Kodak", "Fujitsu",
"HP", "I BM,"NEC',"NCR',"Prime","Ri ch",
"Sequent ", " Si enens","Silicon Gaphics",
"Sony", " Sun", " Tecktroni x","TlI","Uni sys",
"Wang", " Xer ox"};

W dget |Dbl; /* Need to nmake it gl obal so the callback can
* use it.
*/

mai n(ar gc, argv)
int argc; char *argv[];
{
W dget t op, contai ner, | st;
int i,n;
Arg args[10];
XnString *Istr, *cstr;

top =
XtInitialize(XbkShel |l Nanme, XbkAppl C ass, NULL, O, &ar gc, argv) ;

cont ai ner = Xt Creat eManagedW dget (" cont ai ner",
xmFor MW dget C ass, t op, NULL, (Cardi nal) 0);

/* Find out the nunber of itens. W need to make the text a

* conpound string for the Mdtif wi dgets. If you don't, things

file:///H:/ledonkey/docs/programming/1/2/ch09/199-202.html (2 of 4) [13/12/02 18:10:03]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

* don't work just right. If you don't believe ne, try for
* yoursel f!
*/
cstr = (XnBtring *) XtMlloc(sizeof (XnString) * XtNunber(str));
for (i=0;i < XtNunmber(str); i++)
cstr[i] = XnBtringCreate(str[i], XnSTRI NG DEFAULT_CHARSET) ;

/* Now set the list to the w dget.
* Notice the different resource nanes.

*/
n = 0;
Xt Set Arg(args[n], XnNi tens, cstr); n++;
Xt Set Arg(args[n], XmNi t emCount, Xt Nunber(str)); n++;
Xt Set Arg(args[n], Xm\t opAt t achnment , XMATTACH FORM) ; n++;
Xt Set Arg(args[n], Xm\vi si bl el tenCount, XtNunber(str)); n++;
| st = Xt Creat eManagedw dget ("list",
xmLi st W dget ass, cont ai ner, args, (Cardi nal) n);
Xt AddCal | back(| st, XmN\br owseSel ecti onCal | back,
sel ection-cal | back, NULL);
/*
* In this case our call back goes on the XnbrowseSel ecti onCal | back
* list. As we pointed out before, Mdtif w dgets tend to use
* cal |l backs quite heavily and often have a few connected to the
* wi dget.
*/
| str = XnStringCreate("No selection yet !'!'",
XSTRI NG_DEFAULT_CHARSET) ;
Xt Set Arg(args[n], XmNl abel String,lstr); n++;
Xt Set Arg(args[n], Xm\t opW dget, | st); n++;
Xt Set Arg(args[n], Xnm\t opAt t achnment , XMATTACH W DGET) ; n++;
I bl = Xt Creat eManagedW dget ("I bl ",
xmLabel W dget O ass, cont ai ner, ar gs, (Cardi nal) n);
Xt Real i zeW dget (t op) ;
Xt Mai nLoop();
}
static void selection_callback(w, client _data, call _data)
W dget w,
caddr _t *client data;
XmLi st Cal | backStruct *cal | _dat a;
{
/*
* The only change here was different typedef for the call _data.
*/

Arg args[1];

file:///H:/edonkey/docs/programming/1/2/ch09/199-202.html (3 of 4) [13/12/02 18:10:03]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

Xt Set Arg(args[0], XnNl abel String,call _data->iten);
Xt Set Val ues(| bl ,args, (Cardinal)l);

Could it be any easier? These two clients demonstrate that Motif is truly an Intrinsics-based
mechanism. Y ou can use the standard Intrinsics mechanisms for creating the components without
resorting to the convenience functions. This could give us the chance to perhaps move to another
widget set should Motif not make the grade in the long haul, although | doubt this will be the case.

9.4.3. Mixing Athena and Motif Widgets

Many people believe that we can ssimply mix widgets from different sets. If they didn’t like the
Motif scrollbar, they think they would be able to use the Athena one. Or perhaps they decide the
XWIN PushPin is neat, so they think they’ Il take it. Before you go off mixing and matching, let me
sound awarning right here: For the most part, widgets cannot be mixed from set to set.

The reason for thisinability to mix issimple: an Open Look slider has a set of superclasses that it
needs to conduct its business, and these superclasses are not in the Motif set. If you wanted the
dlider, you would have to bring over the superclasses. Next, suppose you wanted to place the Open
Look slider in the Motif scrolled window. (Talk about weird!) Could you do it? The MIT books say
that if you write widgets according to specifications, they should work without a problem. Let me
tell you now: they may work with the Intrinsics, but they won't interact with the other Motif
widgets. Why? Well, to start, the Motif widgets probably do not have a clue what resources the
Open Look widgets use. Next, most complex widgets “toy” with the instance structure directly.
Now then, if thisis the case, the Motif scrolled window might try something on the Open Look
dider that the slider wouldn't like. In fact, the slider may get mad enough to kill the client, or
perhaps crash the machine. (The old pointer gremlin again!).

When can you take widgets from other sets and use them with yours. The answer iswhen they are
direct descendants of the Core class, or when they can be used so that they require no widget
interaction, only application interaction. To demonstrate this “grafting,” let’s create an application
that displays the Athena ClockWidget in a Motif client (see Figure 9-5). To give the clock a 3D
visual appearance, it will be inserted into an XmFrame.

Previous [Table of Contents |[Next

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/ch09/199-202.html (4 of 4) [13/12/02 18:10:03]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous [Table of Contents |[Next

This client was created as aresult of afriend’s (Vincent Alonzi) desire to have international clocks
displayed on the foreign exchange traders workstations. The result is shown in Figure 9-6. The
entire source is as follows:

/* FILE ntlk.c

*/

/* Most of the XrmOptionDescRec was borrowed from xcl ock. c
*/

#i nclude <XlI'I/StringDefs. h>
#1 ncl ude <Xm Xm h>
#i ncl ude <Xn1 RowCol utm. h>

file:/l//H:/ledonkey/docs/programming/1/2/ch09/202-208.html (1 of 6) [13/12/02 18:10:05]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

Application Shell

RowColumnWidget (RCW)

RCW

FrameWidget

Label

Used for 3D "Look"

Figure 9-5 Adding Motif 3D.

Figure 9-6 Mclk client.

file:///H:/ledonkey/docs/programming/1/2/ch09/202-208.html (2 of 6) [13/12/02 18:10:05]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

/* This is really the Athena Cock widget. | nmade a small change

* to add the capability of having a tinme zone.
*/

#i ncl ude "1d ock. h"

#i ncl ude <Xni Frane. h>

#i ncl ude <Xni Label . h>

extern void exit();

/* Conmand |ine options table. Only resources are entered here.

There is a pass * over the renmaining options after XtParseCommand

is let |oose. */

static XrnOptionDescRec options[] = {

{"-chime", "*chi ne", Xr mopt i onNoAr g, "TRUE"},
{"-hd", "*hands", Xrmopt i onSepAr g, NULL},
{"-hands", "*hands", Xr nmopt i onSepAr g, NULL},
{"-hl", “*highlight", XrnoptionSepArg, NULL},
{"-highlight", "*hi ghlight", XrnoptionSepArg, NULL},
{"-update", "*updat e", Xr nmopt i onSepAr g, NULL},
{"-padding”, "*padding", Xr nmopt i onSepAr g, NULL},

{"-d", "*anal og", Xr mopt i onNoAr g, "FALSE"},
{"-digital", "*anal og", Xr mopt i onNoAr g, "FALSE"},
{"-anal og", "*anal og", Xr mopt i onNoAr g, "TRUE" },
{"-cl kHgt ", "*cl kHgt ", Xr nmopt i onSepAr g, NULL},
{"-cl kKW h", "*cl kKW h", Xr mopt i onSepAr g, NULL},
{"-nunCl ocks", "*nunC ocks", Xr nopt i onSepAr g, NULL},
{" - nunOnRow", "*nunOnRow" Xr mopt i onSepAr g, NULL},

1

struct _nyAppRes {
i nt num cl ocks;

int hgt;

int wh;

i nt num.on_row,
{ nyAppRes;
#define OFFSET(field) XtOfset(struct _myAppRes*, field)
int myDef = 1;

static XtResource nyAppResOpts[] = {
{"nunCl ocks", "NunCl ocks", XtRInt, sizeof(int),
OFFSET(num cl ocks), XtRString, "1"},
{"clkHgt", "ClkHgt", XtRint, sizeof(int),
OFFSET(hgt), XtRString, "50"},
{"clkWh", "AkWh", XtRint, sizeof(int),

file:///H:/edonkey/docs/programming/1/2/ch09/202-208.html (3 of 6) [13/12/02 18:10:05]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

OFFSET(wW h), XtRString, "50"},
}i
#undef OFFSET
/*
*W wll Iimt the nunber of clocks to six.
*

#defi ne NUMCLKS 6
/*
* This macro will help create a class nanme in our | oop.
*/
#defi ne SET_CLASS NAME(nane, hol der,incr)\
{menset (hol der, "\ 0", si zeof (hol der));\
sprintf(hol der,"%%", nane, i ncr);}
void mai n(argc, argv)
i nt argc;
char **argv;

{
W dget topl evel, contai ner, cl kBox[NUMCLKS] ,
cl kLbl [NUMCLKS] , cl k[NUMCLKS] , cl kFr ame[NUMCLKS] ;
char cnane[6] ;
int n,j;
Arg args|[20];
toplevel = Xtlnitialize("nclks", "MJks", options,
Xt Nunber (options), &argc, argv);
Xt Get Appl i cati onResour ces(topl evel, &myAppRes, nyAppResOpts,
Xt Nunmber (nyAppResOpt s), NULL, 0);
I f (nmyAppRes. num cl ocks > NUMCLKS) {
printf("Sorry too many clocks !!'!\n");
Xt C oseDi spl ay(Xt D spl ay(topl evel));
exit(-1);
}
/* We enploy the RowCol unmm Container fromthe Mtif set.
*/
cont ai ner =

Xt Cr eat eManagedW dget (" cont ai ner ",
xmRowCol umW dget Cl ass, toplevel, NULL, 0);
/* Notice the use of XtN resource settings. The reason for doing
* this is, we are now creating an Athena w dget, and those w dgets
* know about XtN, not Xm\.
*/

file:///H:/edonkey/docs/programming/1/2/ch09/202-208.html (4 of 6) [13/12/02 18:10:05]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

n = 0;

Xt Set Arg(args[n], Xt N\wi dt h, myAppRes. wt h) ; n++;
Xt Set Arg(args[n], Xt Nhei ght, nyAppRes. hgt); n++;
Xt Set Arg(args[n], Xt NoorderWdth, 0); n++;

for(j=0;)<nyAppRes. num cl ocks;j++) {

/*
* This will keep the clock and | abel together no matter how the
* resizing occurs. We could have used the XnForm and given a few
* constraints. | thought that would be harder to do and this
* seens to be straightforward.
*/

SET_CLASS_NAME("cl kBox", cnane, j);

cl kBox[j] = Xt CreateW dget (cnane, xmRowCol umW dget d ass,

cont ai ner, NULL, 0) ;

/* W make cl k and cl kLbl managed children of cl kBox. W use
* ¢l kBox, since we want the layout to be in a vertical fashion
* and this is easier than using the Form w dget. Al so, the
* children will be resized to the colum w dth.
*/

SET _CLASS NAME("cl kFrni', cnane, j);
/*
* Notice the use of XnfFrane, this gives the Athena w dget a
* 3D | ook.
*/

cl kFrane[j] = XtCreat eManagedW dget (cnane, xnFranmeW dget d ass,
cl kBox[j], NULL, 0);
SET_CLASS _NAME("cl k", cname, j);

/* The Athena Wdget is created */
clk[]j] = XtCreateManagedW dget (cname, cl ockW dget d ass,
cl kFrame[j], args, (Cardinal)n);
SET_CLASS _NAME("cl kLbl ", cnane, j);

/* Now a Motif Label */
cl kLbl[j] = Xt CreateManagedW dget (cnane, xmLabel W dget C ass,
cl kBox[j], NULL, 0);
}
/* This "batching"” gives the nmanager w dget a break and nakes
* creation a bit faster.
*/
Xt ManageChi | dren(cl kBox, nyAppRes. num cl ocks) ;
Xt Real i zeW dget (toplevel);
Xt Mai nLoop() ;

file:///H:/edonkey/docs/programming/1/2/ch09/202-208.html (5 of 6) [13/12/02 18:10:05]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Look at OSF/Motif

}

Now that wasn't so bad at all. Asyou can tell, Athena and Motif were perfect together. Actualy,
this exercise is quite nice because it points out the fact that you can look (with care) to other widget
sets for components that are not currently available in your widget set. In this case, you didn’t have
to re-create aclock since it existed and was very, very easy to integrate with Motif.

Previous |Table of Contents INext

Copyright © CRC Press LLC

file:/l//H:/edonkey/docs/programming/1/2/ch09/202-208.html (6 of 6) [13/12/02 18:10:05]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Sample Application: Motif Version

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous |Table of Contents |[Next

Chapter 10
A Sample Application: Motif Version

In Chapter 8 you created a client that demonstrated quite a few interface components. The focus of that
chapter was to teach how things got done when programming Intrinsics-based clients. This chapter
revisits that program and convertsit to a Motif client so you can see how the same application would
look using Motif.

10.1. Client Components

This“new” client, “mwtrade” (shown in Figure 10-1), showcases the following components from the
Motif Widget Set:

MainWindow

M essageBox
ListWidget
BulletinBoard
PushButtonWidget
CascadeButtonWidget
FormWidget
TextWidget

L abelWidget

In addition, “FieldEdWidget” from Chapter 6 will be subclassed off of the Motif TextWidget.

After reading the source for this client you will know how to create a client based on MainWindow
layout, use the FormWidget, create field-level help, create a pull-down menu, create pop-up scrolled
help, and create a pop-up option list.

10.2. Building the Client

The best way to get a handle on what it takes to construct aMotif client isto dive right into one. With

file:///H:/ledonkey/docs/programming/1/2/ch10/209-216.html (1 of 9) [13/12/02 18:10:07]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Sample Application: Motif Version

that, the source for mwtrade.c is as follows:

Figure 10-1 Mwtrade.

[* FILE: mu r ade. C
*/

/* Use our standard header file */
#i ncl ude "XbkUtil.h"

/* These are needed to check on file status */
#i ncl ude <sys/types. h>

#i ncl ude <sys/stat. h>

/* Include the Motif headers */
#1 ncl ude <Xn1 Xm h>

#1 ncl ude <Xn1 Mai nW h>

#i ncl ude <Xnm MessageB. h>

#1 ncl ude <Xn1 Label . h>

#i ncl ude <Xni Li st. h>

#i ncl ude <Xn1 Bul | eti nB. h>

#i ncl ude <Xn1 PushB. h>

#1 ncl ude <Xm CascadeB. h>

#1 ncl ude <Xm RowCol umm. h>

#1 ncl ude <Xm Form h>

#1 ncl ude <Xm Text. h>

/* Include our Mtif version of the field editor. The nmjor
* changes were, subclass off of the Mdtif Text Wdget and provide

file:///H:/ledonkey/docs/programming/1/2/ch10/209-216.html (2 of 9) [13/12/02 18:10:07]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Sample Application: Motif Version

* our own insert position nmanagenent.
*/

#i ncl ude "Mwmi el dE. h"

#defi ne TRADESTRSI ZE 80
#defi ne SECURI TY_SI ZE 8
#def i ne TRADER_SI ZE

ol

/*
* This macro is used to clear the field...
*/
#def i ne CLEAR_FI ELD(w) \
{char j unk[TRADESTRSI ZE] ; \
XnText Posi tion | ast Pos = Xnirext Get MaxLengt h(w) ;\
nmenset (junk,' ',lastPos);junk[lastPos] = "\0";\
Xnirext Repl ace(w, O, | ast Pos, j unk) ;\
}
/~k
* This is a handy macro for creating a conpound string...
*/
#defi ne XbkString(A)
XnSt ri ngCr eat eLt oR(A, XnSTRI NG_DEFAULT _CHARSET)

#defi ne XbkShel | Nane "mM r ade”
#defi ne XbkAppl C ass " MnTT ade”
/*

* Forward Decl arations...
* Notice, the different nam ng used. These functions use a
* suffix of CB to denote a Cal |l back.
*/
Xt Cal | backProc Comm t CB(), Exi t CB(), C ear CB(), MenuCB(),
Hel pCkayCB(), Fi el dHel pCB(), Hel pCB(), Sel ecti onCB();
Xt ActionProc MakeNxt Fl dActive(), MakePrvFl dActi ve(), PopList();

FwPr oc CheckBuySel | ();
W dget create_the_nenuBar(),create_the_entryFornm(),
create the_mainHel p(),create_the optionList();
/~k
* Action and Transl ation Tables...
*/

static String fldAxns =
" Shi f t <Key>Tab: MakePr vFl dActive() \n\

file:///H:/ledonkey/docs/programming/1/2/ch10/209-216.html (3 of 9) [13/12/02 18:10:07]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Sample Application: Motif Version

<Key>Tab: MakeNxt FI dActive() ";

/* W will use F2 for the pop-up in place of F1. F1 is used to
* trigger help in Mtif.

*/
static String popListAxns = "<Key>F2: PopList()";
Xt Act i onsRec appAxnsTbl[] = {
{" MakePrvFl dActive", MakePrvFl dActive},
{" MakeNxt Fl dActive", MakeNxtFl dActive},
{" PopLi st", PopLi st},
{NULL, NULL},
b
Xt Transl ati ons f1 dTrans, popLi st Tr ans;
/*
* Field/ Formdefinitions...
*/
typedef struct _FIELDINIT {
char *| abel ; /* Label string */
I nt editor _type; /* Kind of editor */
i nt flen;: /* Length of field *
W dget fe; /* Wdget id of editor */
Wdget fl; /* Wdget id of |abel */
FwProc editor; /* Ptr to editor proc */

FwProc enter_w ndow,
FwProc focus_out;
FwProc focus in
FwProc field axn;

W dget hel p; /* Help widget id */
char *hel pt xt ; /* Ptr to help text */
} FIELD NIT;
/* You wll notice that we have added "help" to this structure.

* This gives us field-level help. There are many ways of doing
* this; however, it is a good idea to keep your code organi zed,
* hence, the inclusion here.
*/
FIELDINIT Fields[] = {
{"Security ", FE_ALPHA, SECURI TY_SI ZE,
0, 0, NULL, NULL, NULL, NULL, MakeNxt Fl dActi ve, O,
"Enter the security nanme for the trade. Use ALPHA characters

only \'n\ since the field will reject any other character.
To invoke the \n\ selection list press F2."},
{"Buy/Sell ",FE_ALPHA, 1, 0,0, NULL, NULL, NULL, NULL, CheckBuySel I, O,

file:///H:/edonkey/docs/programming/1/2/ch10/209-216.html (4 of 9) [13/12/02 18:10:07]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Sample Application: Motif Version

"The Buy/Sell Indicator requires the input of
a'B,'b,"'S, or '"s'\n\ any other character will be rejected."},
{"Trader 1d", FE_ALPHANUVERI C, TRADER_SI ZE,

0, 0, NULL, NULL, NULL, NULL, MakeNxt FI dActi ve, O,

"Enter a trader name or id. You nmay use ALPHA
or NUMERI C characters." }, {"Quantity ", FE_INT, 7,

0, 0, NULL, NULL, NULL, NULL, MakeNxt Fl dActi ve, O,
"Enter the quantity of shares being traded.
Field accepts only whol e\n\ nunbers (i.e., 10000)."},
{"Price ", FE_FLOAT, 8,
0, 0, NULL, NULL, NULL, NULL, MakeNxt FI dActi ve, O,
"Enter the price of the shares being traded. "},

1
/*
* Pop-up nenu. ..
*/

#defi ne MENU_HELP 100
#defi ne MENU_UNPOP 101

t ypedef struct _NMENUBODY {

String | abel ;
Xt Cal | backProc cbProc;
i nt cbDat a;

/* This is new. When defining Mdtif Menus, we can add a mmenoni c
* that the user may use when kicking off a nenu item

*/
char nmenoni c;
} MENUBODY;
MENUBCDY pnenu [] = {
{"Hel p", MenuCB, MENU_HELP, ' H },
{" UnPop", MenuCB, MENU_UNPOP, ' U },
{"Exit", Exi t CB, NULL, ' E' },
1
/ *
* Define the application resource gathering parts..
*/

struct _nyAppRes {
Bool ean useMenuBar ;
String filenane;
String helpFile;
String listFile;

} nyAppRes;

file:///H:/edonkey/docs/programming/1/2/ch10/209-216.html (5 of 9) [13/12/02 18:10:07]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Sample Application: Motif Version

/~k

* Rather then "fixing" the list in the code, we will provide a
list

* name and use it to create the pop up.

*/

XrmOpt i onDescRec myCndOpt s[] = {

{ "-useMenuBar", "*useMenuBar", XrnoptionNoArg, "TRUE" },
{"-filenane","*fil eNanme", Xr nopti onSepAr g, NULL},

{"-hel pFile","*hel pFile", Xrnopti onSepAr g, NULL},
{"-listFile","*listFile", Xrnopti onSepArg, NULL},

3

#define OFFSET(field) XtOfset(struct _nyAppRes*, field)
static XtResource nyAppResOpts[] = {
{"useMenuBar", "UseMenuBar", XtRBool ean, sizeof (Bool ean),
OFFSET(useMenuBar), XtRString, "False"},
{"fileNanme", "FileNane", XtRString, sizeof(String),
OFFSET(fil enane), XtRString, "trade.dat"},
{"helpFile", "HelpFile", XtRString, sizeof(String),
OFFSET(hel pFile), XtRString, "trade.hlp"},
{"listFile", "ListFile", XtRString, sizeof(String),
OFFSET(listFile), XtRString, "trade.1lst"},
3
#under OFFSET

/*

* Set up the character set used in the Mdtif functions...

*/

XnStringChar Set charset = (XnStringChar Set) XnSTRI NG DEFAULT_CHARSET;
/*

* Wdgets in the client. ..

*/

/* One thing to notice right away, the nunber of variables for the
* wi dgets has decreased dramatically. In the previous version we
* too could have paid less attention to storing the nanes but we
* didn"t. This client is nore representative of the way you

* would tend to wite a client.

W dget topShell; /* Top |level of application */

W dget mai NW ndow, /* Main W ndow */

W dget nmenuBar; /* Menu Bar */

W dget mai nHel p; /* overall Help */

W dget opti onLi st; /* Popup List for options */

W dget entryForm /* Entry Form */

FI LE *fout; /* file for output of trade record */

file:///H:/ledonkey/docs/programming/1/2/ch10/209-216.html (6 of 9) [13/12/02 18:10:07]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Sample Application: Motif Version

main (int argc, char **argv)

{
Di spl ay *dpy;
Arg arglist[MAXARGS];
int argcnt = O;
/*
* Initialize the Toolkit...
*/
XtTool kitlnitialize();
/*
* Open a connection to the X server..
*/
dpy = Xt QpenDi spl ay(NULL, NULL, XbkShel | Nanme, XbkAppl C ass,
myCndOpt s, Xt Nunber (nyCndQOpt s) , &ar gc, argv) ;
if (!dpy) {
printf("Sorry ... Couldn’'t open display !'\n");
exit(-1);
}
/*
* Create a top level application shell..
*/
topShel | = Xt AppCr eat eShel | (XbkShel | Nane, XbkAppl C ass,
appl i cati onShel | Wdget d ass, dpy, NULL, 0) ;
/~k
* Include the client specific action procedures...
*/
Xt AddAct i ons(appAxnsTbl, Xt Nunber (appAxnsThbl));
f1dTrans = Xt ParseTransl ati onTabl e(fl dAxns);
popLi st Trans = Xt ParseTransl ati onTabl e(popLi st Axns) ;
/*
* Get application resources fromthe databases..
*/
Xt Get Appl i cati onResources(topShel |, &nyAppRes,
my AppResOpt s,
Xt Nunber (myAppResOpt s), NULL, 0);
/~k
* Open the file for output...
*/

if ((fout = fopen(nmyAppRes.filenanme, "w+")) == NULL) {
printf("ERROR Could not open file !'!'l'");

file:///H:/edonkey/docs/programming/1/2/ch10/209-216.html (7 of 9) [13/12/02 18:10:07]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Sample Application: Motif Version

Xt d oseDi spl ay(Xt Di spl ay(topShell));

exit(-1);
}
/~k
* Create a Motif Main W ndow. . .
*/
mai NW ndow = XnCr eat eMai nW ndow (t opShel |, "main",
NULL, 0);
Xt ManageChi | d (nai NW ndow) ;
/*
* Create the Menu Bar for the Main W ndow. ..
*/
nenuBar = create_the nmenuBar (mai nW ndow) ;
Xt ManageChi | d(menuBar) ;
/~k
* Create the Entry Form..
*/

entryForm = create_t he_entryFor n(mai nW ndow) ;
Xt ManageChi | d(entryForm;

/~k
* Create the Main Help...
*/
mai nHel p = create_t he_nmai nHel p(mai nW ndow) ;
/*
* Set the Main Wndow Areas...
*/
Xmvai nW ndowSet Areas (mai nW ndow, nenuBar, NULL, NULL, NULL,
entryForm;
/*
* Realize the Wdgets...
*/
Xt Real i zeW dget (t opShel |) ;
/*
* Process X Events. ..
*/
Xt Mai nLoop() ;
}

Previous | Table of Contents |[Next

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch10/209-216.html (8 of 9) [13/12/02 18:10:07]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Sample Application: Motif Version

file:///H:/edonkey/docs/programming/1/2/ch10/209-216.html (9 of 9) [13/12/02 18:10:07]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Sample Application: Motif Version

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous |Table of Contents [Next

10.2.1. Creating a Menu Bar

Creating amenu bar in Motif is afour-step process:

1. Use XmCreateMenuBar() to set up the correct container.

2. Create the pull-down menus using XmCreatePul| DownMenu().

3. Insert the panes into the menus by using XmCreatePushButton() for regular panes or
XmCreateCascadeButton() for panes with submenus.

4. Connect the filled-in pull-down menu to a cascade button using

XtSet Arg (arglist[argcnt], XmNsubMenuld, nenu_pane);

cascade = XnCreat eCascadeButton (nmenu_bar, "Systent, arglist,
argcnt) ;

Xt ManageChi |l d (cascade);

where menu_pane is the widget returned from the XmCreatePull DownMenu();

The source for the client is as follows:

/~k

*

*/

Functions for MenuBar. ..

W dget create_t he_nenuBar (parent)
W dget parent;

{

/~k

*

*/

W dget menu_bar ; /* RowCol umW dget */
W dget nMenu_pane; /* RowCol umW dget */
W dget cascade;

W dget but t on; /* PushBut t onW dget */
Arg arglist[10];

I nt argent, i ;

XnString strA;

Create the Menu Bar. ..

menu_bar = XnCreateMenuBar (parent, "nmenuBar", NULL, O);

file:/l//H:/ledonkey/docs/programming/1/2/ch10/217-221.html (1 of 5) [13/12/02 18:10:08]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Sample Application: Motif Version

/*

* Create the Pull down Menu...

*/

nmenu_pane = XnCreat ePul | downMenu (nenu_bar, "menuBody",
NULL, O0);

/*

* Create the Panes...

*/

for(i=0; iI<XtNunber (pnenu); i++) {
argcent = 0;
Xt Set Arg(arglist[argcent], XnmN abel String,
XnGtri ngCreat eLt oR(prenu[i]. | abel , charset));
argcnt ++;
Xt Set Arg(arglist[argcnt], XnNmmenonic, pnenu[i].menonic);
argcnt ++;
button = XnCreat ePushButton (menu_pane, pnenu[i]. | abel,
arglist,argcnt);
if (prenul[i].cbProc !'= NULL)
Xt AddCal | back (button, XnmNactivateCall back,
pmenu[i].cbProc, pnenul[i].cbData);
Xt ManageChild (button);

}
/*
* Now add "Pul | Down" to a button...
*

argcent = 0;

XtSet Arg (arglist[argcnt], XmNsubMenuld, menu_pane); argcnt ++;

Xt Set Arg(arglist[argent], XnN abel String,
XnGtringCreat eLt oR(" Systent, charset)); argcnt++;

Xt Set Arg(arglist[argent], XmNmenonic, 'S); argcnt ++;

cascade = XnCreat eCascadeButton (nmenu_bar, "Systent, arglist,

argcnt) ;
Xt ManageChi | d (cascade);

/* Create "Hel p" button.

*/
argcent = 0;
Xt Set Arg(arglist[argcent], XnNmmenonic, 'H); argcnt ++;
cascade = XnCreat eCascadeButton (menu_bar, "Help", arglist,

argcnt) ;
Xt AddCal | back (cascade, XmNacti vateCal |l back, MenuCB,
MVENU_HELP) ;

Xt ManageChi | d (cascade);
argent = 0;

XtSet Arg (arglist[argcnt], XmNnmenuHel pW dget, cascade);
argcnt ++;

file:/l//H:/ledonkey/docs/programming/1/2/ch10/217-221.html (2 of 5) [13/12/02 18:10:08]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Sample Application: Motif Version

Xt Set Val ues (nenu_bar, arglist, argcnt);

return nmenu_bar;

}

10.2.2. Creating an Entry Form

The entry form in this application will have two parts: the field entry area and the action buttons. The
container used for the entire form is none other than XmForm. For the field entry area the
XmRowColumnWidget is used. RowColumn is perfect for the job since you want to have two columns
per field and the remaining laid out below. By setting the RowColumn widget to a horizontal orientation
and setting the number of columns to two, the desired effect is produced.

The last part are the buttons, which are managed by aform. The sourceis asfollows:

/*

* Function for the Entry Form. .
*/

W dget create_the_entryFornmparent)
W dget parent;

{
W dget cont ai ner; /* For M dget */
W dget form /* RowCol uimW dget */
W dget box; /* For MW dget */
W dget but t on; /* PushBut t onW dget */
Arg arglist[10], farg[MAXARGS] ;
i nt argent, i, fcnt, marker;
XnString StrA;
/*
* Create the container...
*/
argent = 0;
cont ai ner = XnCreat eForm(parent, "entryForn', arglist, argcnt);
/*
* Create the entry nanager. ..
*/

argent = 0;
Xt Set Arg(arglist[argcnt], Xm\t opAt t achnment , XmMATTACH_FORM ;

argent ++;

Xt Set Arg(arglist[argcnt], XmNori ent ati on, XmHORI ZONTAL) ;
argcnt ++;

Xt Set Arg(arglist[argcnt], XmNnunCol utms, Xt Nunber (Fi el ds)) ;
argcnt ++;

form = XnCr eat eRowCol unmm(cont ai ner, "entry_forni,
arglist,argcnt);
Xt ManageChi I d(form;

file:/l//H:/ledonkey/docs/programming/1/2/ch10/217-221.html (3 of 5) [13/12/02 18:10:08]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Sample Application: Motif Version

/*
* Create the option list for the field editor. ..
*/
optionhist = create_the_optionList(form;
/*
* Insert the fields...
*/
fcnt= 0;

Xt Set Arg(farg[fcnt], XnNedi t Mode, XnSI NGLE LI NE EDI T); fcnt++;
Xt Set Arg(farg[fcnt], XmNedi t abl e, True); fcnt ++;
mar ker = fcnt;

for (i=0; i< XtNunber(Fields); i++) {
/*
* Create the field | abel...
*/
argent = 0;
strA = XbkString(Fields[i].|abel);
Xt Set Arg(arglist[argcnt], XnmN abel String, strA); argcnt ++;
Fields[i].fl = XtCreateManagedW dget ("field_| abel ",
xnmLabel W dget C ass, formarglist, argcnt);
XnStringFree(strA);
/*
* Create the field editor...
*
* Install the editor-type procs that will be invoked whenever we
* are asking to performcharacter insertion or deletion.
*/
Xt Set Arg(farg[fcnt], XmmMNedi t or Type, Fields[i].editor_type);
fcnt ++;
Xt Set Arg(farg[fcnt], XmNcol umms, Fields[i].flen);fcnt++;
XtSet Arg(farg[fcnt], XmNmaxLengt h, Fiel ds[i].flen);fcnt++;
If (Fields[i].enter_w ndow ! =NULL){
Xt Set Arg(farg[fcnt], XmmNent er W ndowPr oc,
Fields[i].enter_w ndow); fcnt++;
}
if (Fields[i].focus_in !'=NULL) {
Xt Set Arg(farg[fcnt], XmmNf ocusl nPr oc,
Fields[i].focus_in); fcnt++;
}
if (Fields[i].focus out !=NULL){
Xt Set Arg(farg[fcnt], XmMf ocusQut Proc,
Fields[i].focus out); fcnt++;
}
if (Fields[i].field_ axn !=NULL) {
Xt Set Arg(farg[fcnt], Xmm\fi el dAxnPr oc,
Fields[i].field axn); fcnt++;

file:///H:/ledonkey/docs/programming/1/2/ch10/217-221.html (4 of 5) [13/12/02 18:10:08]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Sample Application: Motif Version

}

W will use our "nodified" field editor. The changes needed
were fairly straightforward. They are:
1. subclass off of Xnlext W dget

* % X

* 2. renove the nethod of creating the source and the sink
* 3. replace all Xt wth Xm

* That's it.

*/

Fields[i].fe = Xt CreateManagedW dget ("field editor",
maFi el dEdW dget Ol ass, form farg, fcnt);
Xt OverrideTransl ations(Fields[i].fe,fldTrans);
fecnt = marker;

Previous |Table of Contents |Next

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/ch10/217-221.html (5 of 5) [13/12/02 18:10:08]

file:///reference/crc00001.html

file://H:/edonkey/docs/programming/1/2/ch10/221-225.html

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous (Table of Contents [Next

10.2.2.1. Creating Field-Level Help

To create field-level help (see Figure 10-2), you will use the XmMessageDialog. This component
gives atext string and afew buttons. A few of the buttons will be unmanaged so that one remains.
Off of the remaining button will be a callback that will “unpop” the help dialog. The source
fragment is asfollows:

/*
* Create the field help w dget...
*/
if (Fields[i].helptxt !'= NULL) {
/* Add a help cal | back */
Xt AddCal | back(Fields[i].fe, Xm\hel pCal | back,
Fi el dHel pCB, NULL) ;
argcent = 0O;
Xt Set Arg(arglist[argcnt],
XmNaut oUnmanage, FALSE); ar gcnt ++;
Xt Set Arg(arglist[argcnt], XmNnessageStri ng,
XbkString(Fields[i].helptxt));argcnt++;
Xt Set Arg(arglist[argcnt], XmNokLabel Stri ng,
XbkString("Done")); argcnt++;
Fields[i].help = XnCreat eMessageDi al og(Fields[i].fe,
"Fi el dHel p", arglist,argcnt);
Xt UnmanageChi | d(XmvessageBoxGet Chi | d(Fi el ds[i]. hel p,
XnDI ALOG_CANCEL_BUTTON)) ;
Xt UnmanageChi | d(XmvessageBoxGet Chi | d(Fi el ds[i]. hel p,
XDl ALOG_HELP_BUTTON)) ;
Xt AddCal | back(Fi el ds[i]. hel p, XmNokCal | back,
Hel pOkayCB, NULL) ;

file:/l//H:/ledonkey/docs/programming/1/2/ch10/221-225.html (1 of 5) [13/12/02 18:10:13]

file://H:/edonkey/docs/programming/1/2/ch10/221-225.html

Enter the securily name for the frade. Use ALPHA charclers omly
since the fleld will refect any other character. To invoke the
Security 18 M sefection list press F1.

| Quantity |2000 ' : Fhe!hm’ﬁfﬁfﬂdmfﬂfmquwﬂhemﬂ#ma'ﬂ'b“s or's"
———— | any other character will be rejected.

130.50]
| =

< B T e N A R

£

R e

i o En.*er!hewﬂﬂm;mf.shms being traded. Field accepts only whole |
2| numbers (Le. TOO000). ————

e %fﬁ :
e EﬁE ”-'F*E“Ecch R,
i R

S £ .-.-.-a:l:l-'\l- b :.:n'\.,:-'\-'rm:.:.:ﬁwrrrm:.:.xw 2

Figure 10-2 Helps.

/*
* Add Pop-up List translation...
*/
Xt OverrideTransl ati ons(Fi el ds[0]. fe, popLi st Trans);
/*
* Create the action button box...
*/
argcent = 0O;
Xt Set Arg(arglist[argcnt], Xm\t opAtt achnment,
XmATTACH W DGET) ; ar gcnt ++;
Xt Set Arg(arglist[argcnt], Xm\t opW dget, form; argcnt ++;
box = XnCreat eFornm(cont ai ner, "Bt nBox", arglist,argcnt);
Xt ManageChi | d(box) ;
/*
* Create the commt button...
*/

argcnt = 0O;

file:///H:/edonkey/docs/programming/1/2/ch10/221-225.html (2 of 5) [13/12/02 18:10:13]

file:///H:/edonkey/docs/programming/1/2/ch10/221-225.html

Xt Set Arg(arglist[argcnt], Xm\t opAtt achnent,
XmMATTACH_FORM ; ar gcnt ++;
Xt Set Arg(arglist[argcent], XNl ef t Att achnent,
XmMATTACH_FORM ; ar gcnt ++;
butt on = XnCreat ePushButton(box,"Commit",arglist,argcnt);
Xt AddCal | back(but t on, XmNact i vat eCal | back, Conm t CB, NULL) ;
Xt ManageChi | d(button);
/*

*

nstall the commt button accelerators onto the entry fields...
*/
for(i=0;i<XtNunber(Fields);i++)
Xtlnstall Accel erators(Fields[i].fe, button);
argcnt = 0O;
Xt Set Arg(arglist[argcnt], Xm\t opAtt achnment,
XmMATTACH_FORM ; ar gcnt ++;
Xt Set Arg(arglist[argcent], XNl ef t Att achnent,
XmATTACH W DGET) ; ar gcnt ++;
Xt Set Arg(arglist[argcnt], XnNl ef t Wdget, button); argcnt ++;
button = XnCreat ePushButton(box,"C ear",arglist,argcnt);
Xt AddCal | back(but t on, XnNact i vat eCal | back, C ear CB, NULL) ;
Xt ManageChi | d(button);

return contai ner;

}

10.2.2.2. Creating an Option List

The option list shown in Figure 10-3 isvery easy to do. In this case you read in afile of options.
For each record, you create a compound string as part of an array of items. When you have
finished with thefile, it is closed. Then adialog container is created. Once that is done, you set up
the widget resources and create a scrolled list using the Motif convenience routine:

W dget create_the_optionList(parent)
W dget parent;

{
W dget cont ai ner;
W dget scrol ler;
XnString *cpstr;
char rec| 20];
Arg arg[10];
I nt n,i,status;
FI LE *infile;

if ((infile = fopen(nmyAppRes.listFile,"r")) == NULL) {

file:///H:/edonkey/docs/programming/1/2/ch10/221-225.html (3 of 5) [13/12/02 18:10:13]

file://H:/edonkey/docs/programming/1/2/ch10/221-225.html

Xt War ni ng(" Coul dn't open file !'l'");
return NULL;

}
cpstr = (XnString *) XtMlloc(sizeof(XnString) * 100);
i = 0;
whil e(i < 100) {
nmenset (rec,'\0', sizeof (rec));
status = fscanf(infile,"%",rec);
i f (status == EOF) break;
cpstr[i] = XnBStringCreate(rec,
XSTRI NG_DEFAULT_CHARSET) ;
| ++;
}
fclose(infile);
/*
* Create the container...
*/
n = 0;
cont ai ner = XnCreat eBul | eti nBoar dD al og(par ent,
“optionShel | ", arg,n);
/*
* Create the scrolled list...
*/
n = 0,
Xt Set Arg(arg[n], XmNi tens, cpstr); n++;
Xt Set Arg(arg[n], XmNi tenCount, i - 1); n++;

Xt Set Arg(arg[n], XmM\vi si bl el t enCount, 10); n++;

Xt Set Arg(arg[n], XnNsel ecti onPol i cy, XnSl NGLE_SELECT) ; n++;

scrol l er = XnCreateScrol | edLi st (contai ner, "optionList",arg, n);
Xt AddCal | back(scrol | er, XmNbr owseSel ecti onCal | back,

file:///H:/ledonkey/docs/programming/1/2/ch10/221-225.html (4 of 5) [13/12/02 18:10:13]

file://H:/edonkey/docs/programming/1/2/ch10/221-225.html

Figure 10-3 Mwtrade option list.

Sel ecti onCB, NULL) ;
Xt ManageChi |l d(scrol ler);

return contai ner;

Previous

Table of Contents

Next

Copyright © CRC Press LLC

file:/l//H:/ledonkey/docs/programming/1/2/ch10/221-225.html (5 of 5) [13/12/02 18:10:13]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Sample Application: Motif Version

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous [Table of Contents |[Next

10.2.3. Scrolled Text: MainHelp

In the previous section the MessageDialog was used to provide field-level help. It isapretty good
candidate for that job since the nature of the help isfairly small. For alarger amount of textual help
(asin Figure 10-4), the XmText widget in a scrolled window works wonders:

/*

* Function for the Main Help. ..
*/

W dget create_the nmai nHel p(parent)
W dget parent;

{
W dget cont ai ner}
W dget t ext;
struct star st at buf; /* Information on a file. */
i nt file_length; /* Length of file. */
unsi gned char *file_string; /* Contents of file. */
FI LE *fp = NULL; /* Pointer to open file. */
Arg argl i st [MAXARGS] ;
i nt argcnt;
if ((fp = fopen(nmyAppRes. helpFile, "r")) == NULL) {
Xt Var ni ng("Coul dn't get helpfile ... ");
return NULL;
}

/*

* Create the space for the file, then read it in.

*/

i f (stat(myAppRes. hel pFile, &statbuf) == 0)
file |l ength = statbuf.st_size;
el se
file_length = 1024; /* Assune it is only 1k then */
file string = (unsigned char *)
Xt Mal | oc((unsigned)file_length);
fread(file_string, sizeof(char), file_length, fp);

file:///H:/ledonkey/docs/programming/1/2/ch10/225-232.html (1 of 8) [13/12/02 18:10:17]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Sample Application: Motif Version

/* close up the file */
I f (fclose(fp) !'= NULL)
Xt War ni ng("Problemclosing helpFile I'l'");

MalnWindowWidy

Figure 10-4 Mwtrade main help.

/*
* Create the container...
*
* Since we are creating our own dialog we enploy one of the
* creation nechanisns that allow us to do that. |In this case, we
* use the FornDi al og
*/
argcent = 0O;
Xt Set Arg(arglist[argcnt], XnNdi al ogTitl e, "Main Hel p"); argcnt ++;
cont ai ner = XnCreat eFornDi al og(parent, "hel pShel | ",
arglist,argcent);
/*

* Create the text widget...

file:///H:/edonkey/docs/programming/1/2/ch10/225-232.html (2 of 8) [13/12/02 18:10:17]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Sample Application: Motif Version

*

* W tell Xnifext to be 40 cols by 10 rows, it is not resizable,

* always has a vertical scrollbar, and it is a nulti-Iline

* instance.

*/
argcnt = 0O;
XtSet Arg (arglist[argcnt], XmNrows, 10); argcnt ++;
XtSetArg (arglist[argcnt], XnNcol umms, 40); argcnt ++;
XtSetArg (arglist[argcnt], XnNresizeWdth, False); argcnt++;
XtSet Arg (arglist[argcnt], XmN\resizeHeight, False); argcnt++;
XtSet Arg (arglist[argcent], XmNscroll Vertical, True); argcnt++;
XtSetArg (arglist[argcent], XnNeditMde, XnMULTI _LINE EDIT);

argent ++;
text = XnCreateScrol |l edText (contai ner, " mai nHel p",
arglist,argcnt);
Xnirext Set String(text,file_string);
Xt ManageChi | d(t ext);
return contai ner;
}

10.2.4. Supporting Functions

The remaining part of the source provides all of the supporting functions. The first part isthefield
action routine from the previous client. It is followed by the traversal routines, then the application
callbacks.

The biggest change between trade to mwtrade is that the “pop ups’ are brought to life by managing
them, not popping them. The same is true for bringing them down, except they are unmanaged. The
codeisasfollows:

/*
* Field action routine...
*/
FwProc CheckBuySel | (w)
W dget w;
{

Arg arg[1];
char *sval:

Xt Set Arg(arg[0], Xmm\st ri ngVval , &val) ;
Xt Get Val ues(w, arg, (Cardinal)1);
if (((sval == NULL) || strlen(sval)) &&
(strcnp(sval ,"B") == 0) || (strcnp(sval,"b") == 0) ||

file:///H:/edonkey/docs/programming/1/2/ch10/225-232.html (3 of 8) [13/12/02 18:10:17]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Sample Application: Motif Version

(strcnp(sval,"s") == 0) || (strcnp(sval,"S") == 0))
MakeNxt FI dActive(w, NULL, NULL, NULL) ;

el se
XBel | (Xt Di spl ay(w), 50);
}
/*
* Action Procedures used in the client...
*/

Xt Acti onProc PoplLi st (w, event, param num par ans)
Wdget w; XEvent *event; String *param Cardi nal num paramns;
{
Arg ar g[MAXARGS] ;
int wwdth =0, x =0,y = QO

int rx,ry;
int cnt;
/*
* If no option list created, return
*/
if (optionList == NULL) return;
/*
* Find out where the wi dget that "popped us" is...
*/
Xt Set Arg(arg[0], Xt N\wm dt h, &M dt h) ;
Xt Get Val ues(w, arg, 1) ;
Xt Transl at eCoords(w, 0, 0, &Xx, &vy);
rx = rx + wdth;
/*
* Reset our position so we are next to it...
*/
cnt = 0;
Xt Set Arg(arg[cnt], Xt Nx, rx); cnt ++;
Xt Set Arg(arg[cnt], Xt Ny, ry); cnt ++;
Xt Set Val ues(optionLi st,arg, cnt);
Xt ManageChi | d(opti onLi st);
}

Xt Acti onProc MakeNxt Fl dActi ve(w, event, param num par amns)
W dget w; XEvent *event; String *param Cardi nal num parans;
{
W dget ww;
int i,nunfFlds = Xt Nunber (Fields);
for(i=0;i<nunflds;i++)
if (Fields[i].fe == w{
ww = (i == (nunFlds-1)) ?

file:///H:/edonkey/docs/programming/1/2/ch10/225-232.html (4 of 8) [13/12/02 18:10:17]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Sample Application: Motif Version

Fields[O].fe : Fields[i+1].fe;
XSet | nput Focus(Xt D spl ay(ww), Xt W ndow(ww) ,
Revert ToPoi nt er Root ,
Current Ti nme) ;
br eak;

}
}

Xt Acti onProc MakePrvFl dActi ve(w, event, param num par ans)
W dget w; XEvent *event; String *param Cardi nal num parans;
{
W dget ww;
int i,nunfFlds = Xt Nunber (Fields);
for(i=0;i<nuntlds;i++)
if (Fields[i].fe == w){
w = (i ==0) ?
Fields[nunFlds-1].fe : Fields[i-1].fe;
XSet | nput Focus(Xt D spl ay(ww) , Xt W ndow(ww) ,
Revert ToPoi nt er Root ,
Current Ti nme) ;
br eak;

}

/*
* Cal | backs. ..
*/

Xt Cal | backProc Sel ecti onCB(w, client_data,call_data)
W dget w,
caddr t *client data;
XmLi st Cal | backStruct *cal | _dat a;

{
char *txt;
XnStringGet Lt oR(cal | _dat a- >i t em XnSTRI NG_DEFAULT_CHARSET, &t xt) ;
Xnifext Set String(Fields[0].fe,txt);
Xt Free(txt);
Xt UnmanageChi | d(opti onLi st);
}

Xt Cal | backPr oc

Fi el dHel pCB(whoCal | edMe, dat aFronCl i ent, dat aToG ved i ent)
W dget whoCal | edMe;
caddr t dataFronClient;
caddr _t dataToG veCd ient;

{
int i =0;
/* Find the field asking for help, then manage the help if

file:///H:/ledonkey/docs/programming/1/2/ch10/225-232.html (5 of 8) [13/12/02 18:10:17]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Sample Application: Motif Version

avai |l abl e */
for(i=0;i<XtNunmber (Fields);i++)
if (Fields[i].fe == whoCal |l edMe){
if (Fields[i].help !'= NULL)
Xt ManageChi | d(Fi el ds[i]. hel p);

br eak:
}
}
Xt Cal | backProc Hel pCB(whoCal | edMe, dat aFronCl i ent, dat aToG ved i ent)
W dget whoCal | edMe;

caddr _t dataFronCient;
caddr _t dataToQd ved i ent;

{
/*
* This is for the MinHelp...
*/
Xt ManageChi | d(mai nHel p) ;
}

Xt Cal | backProc Hel pOkayCB(whoCal | edMe, dat aFronCl i ent ,
dat aToG ved i ent)
W dget whoCal | edMe;
caddr _t dataFronCient;
caddr t dataToG ved i ent;

{
/*
* This is for the help dialog's fields
*/
Xt UnmanageChi | d(whoCal | edMe) ;
}

Xt Cal | backProc MenuCB(whoCal | edMe, dat aFronCl i ent, dat aToG veCd i ent)
W dget whoCal | edMe;
caddr _t dataFronCient;
caddr _t dataToG veCd ient;

{
/
Qur nmenu cal | back has two functions: hel p or unpop.

Hel p shoul d manage the Mai nHel p.
/

* %k

swtch((int)dataFronCient){
case MENU _HELP
Xt ManageChi | d(mai nHel p) ;
br eak;
case MENU_UNPOP
br eak;

file:/l//H:/ledonkey/docs/programming/1/2/ch10/225-232.html (6 of 8) [13/12/02 18:10:17]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Sample Application: Motif Version

}

Xt Cal | backProc Conmm t CB(whoCal | edMe, dat aFronCl i ent,
dat aToG veCd i ent)
W dget whoCal | edMe;
caddr t dataFronClient;
caddr t dataToG ved i ent;

int ival; float fval; char *sval
Arg arg[1l]; int i,nunfFlds = XtNunber(Fields);
char out rec[TRADESTRSI ZE] ;
/*
* Wite the trade data to the file
*/
menset (out _rec, '\ 0', sizeof (out _rec));
sprintf(out_rec+strlen(out_rec), "FromFile: ");

for(i=0;i<nunFlds;i++)
swtch(Fields[i].editor _type) {
case FE _ALPHA:
case FE _ALPHANUMERI C:
case FE_APPL:
Xt Set Arg(arg[0], Xmm\stringVal, &val);
Xt Get Val ues(Fields[i].fe,arg,1);
i f (sval !'= NULL)
sprintf(out_rec+strlen(out_rec),
"% ",sval);
br eak;
case FE I NT:
Xt Set Arg(arg[0], XmmNi ntVal , & val);
Xt Get Val ues(Fields[i].fe,arg, (Cardinal)l);
sprintf(out_rec+strlen(out_rec),
"% ",ival);
br eak;
case FE FLOAT:
Xt Set Arg(arg[0], Xmwm\f | oat Val , &fval);
Xt Get Val ues(Fields[i].fe,arg, (Cardinal)l);
sprintf(out _rec+strlen(out_rec),
"% 3f ",fval);
br eak;
}
fprintf(fout,"%\n",out _rec);
fflush(fout); /* So it gets to the file */

file:///H:/edonkey/docs/programming/1/2/ch10/225-232.html (7 of 8) [13/12/02 18:10:17]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:A Sample Application: Motif Version

Xt Cal | backPr oc

Cl ear CB(whoCal | edMe, dat aFronCl i ent, dat aToG veC i ent)
W dget whoCal | edMe;
caddr _t dataFronCient;
caddr _t dataToG ved i ent;

{
int i,nunfFlds = XtNunber (Fields);
for(i = 0; i < nunFlds; i++){
char j unk[TRADESTRSI ZE] ;
XnText Position | ast Pos = Xnmlext Get MaxLengt h(Fi el ds[i].fe);
menset (junk,' ', lastPos);junk[lastPos] = "\0";
Xnirext Repl ace(Fi el ds[i].fe, 0,1 astPos, junk);
Xnirext Set I nsertionPosition(Fields[i].fe, 0);
}
}

Xt Cal | backProc

Exi t CB(whoCal | edMe, dat aFronCl i ent, dat aToG veC i ent)
W dget whoCal | edMe;
caddr _t dataFronCient;
caddr t dataToG ved i ent;

{
Xt UnmapW dget (t opShel |);
Xt Dest royW dget (t opShel I);
Xt C oseDi spl ay(Xt D spl ay(topShel 1)) ;
fclose(fout);
exit(0);
}

10.3. Summing Up

Asyou can see, this client was much easier to create with the Motif set. By employing the
convenience mechanisms for creating the different components, you can reduce the amount of labor
it takesto craft the application. | guess they weren’t kidding when they called those “ convenience”
functions!

Appendix C contains details regarding the routines used in this chapter. If you have further
guestions, you should consult the OSF/Motif documentation.

Previous [Table of Contents INext

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch10/225-232.html (8 of 8) [13/12/02 18:10:17]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif:Application Development: Advanced Topics

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous Table of Contents Next

Chapter 11
Application Development: Advanced Topics

Thefirst part of thisbook has explored several areas related to day-to-day programming
with the Intrinsics. As alast subject, this chapter examines two advanced topics. inter-client
communication (ICC) and managing multiple displays.

11.1. Inter-Client Communication

Inter-client communication refers to the exchange of information between two or more X
clients. Thisinformation could be notification of creation of awindow, the update of shared
data, or perhaps the death of aclient. In the UNIX domain, there exists awhole set of inter-
process communication (IPC) facilities that can accomplish these tasks. These facilities
include semaphores (“event flags’), shared memory segments, message queues, and signals.
In X, the facilities used are properties and client messages.

Perhaps the question, “If | can use UNIX IPC facilities why would | bother using X ICC
facilities?’ has cometo mind. The answer isfairly straightforward. To start, X is a network-
based windowing system, and as such may have clients running on any number of machines
running different operating systems. If that is the case, then the UNIX facilities are no
longer valid.

Additionally, since the clients may be running on different machines, the exchange of datais
much harder using the UNIX facilities (if you could) than X (you will see what | mean).
Another point is that when you are writing X clients, you know that there will be at least one
common denominator: the X server. With that, why not exploit any of the advantages this
common ground gives us?

file:///H:/ledonkey/docs/programming/1/2/ch11/233-235.html (1 of 4) [13/12/02 18:10:18]

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif:Application Development: Advanced Topics

Before going any further, it is worth noting that this area of ICC has been an interesting
subject of conversation. Many people have spent alarge amount of time concerning
themselves with how clients “chat” with each other. This topic has been such a concern that
the X Consortium has adopted a manual that details how this dialog should be done. The
manual istitled Inter-Client Communications Conventions Manual (ICCCM, pronounced |-
triple C-M”) and is available on the release tape distributed by MIT.

This chapter ssmply demonstrates how to perform ICC, and does not pretend to present
policies. If you, as an application writer, really care about such things, then reading the
ICCCM isamust. (Since we are talking about Intrinsics applications, most of the ICCCM
compatibility issues are taken care of by the widget sets. However, topics such as ICCCM
compliance are things you should be aware of .)

11.1.1. What’s an Atom?

Thefirst thing that is needed for client communication is the creation of athing called an
atom. An atom is nothing more than shorthand for identifying a string. By using a unique
number, programs (namely the X server) can get to the information quickly, sinceit isfar
easier and faster to ask if a number equals another number than whether one string
“matches’ another string.

The process of creating or accessing an atom is referred to as interning the atom. The
function for doing thisis as follows:

At om MYATOM = Xl nt er nAt on(dpy, "A STRING' , True);
Thiswill obtain aunique id for the character sequence “A STRING.” The second argument
says, “Give me an atom whether one exists or not.” If one did not, the return value of the

function would be falseand MYATOM would equal “None.”

The lifetime of an atom is quite long. When an atom isinterned, the X server createsit and
never letsit go. The only time an atom can be destroyed is when the server is restarted.

Caution: Since atomsdon’t go away, client writers need to be careful of excessive use.
Simply put, if you find that you need 200 atoms for your client, there is most likely a better
approach to the problem.

11.1.2. What’s a Property?

file:///H:/edonkey/docs/programming/1/2/ch11/233-235.html (2 of 4) [13/12/02 18:10:18]

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif:Application Development: Advanced Topics

Now that you can intern atoms, the second piece of the ICC puzzle is needed. This pieceis
referred to as a property and can be viewed as a collection of named, typed data connected
to awindow. Thisisto say, it isan area of memory that is referenced by name with an
associated type. Clients need to agree on the physical layout of the property and what type it
is.

Y ou can think of properties as shared memory. If you' ve ever used shared memory, you are
well aware of how processes must cooperate in what the segment looks like and what type
the datais. If they don’t, unexpected things may happen. As an example, suppose you had
two clients. One provides real-time data while the other interprets the data. The layout of the
shared data according to the provider is:

struct {
char name_of data[10];
fl oat dat a_val ue;

} provider_version;

where “name_of data’ isatag to be used in displaying the information, and “data value’ is
the actual information. Now the interpreter views the data as

struct {
fl oat dat a_val ue;
char nanme_of data[10];

} interpreter_version;
Asyou can see, provider and interpreter do not agree!

One thing to be aware of when getting involved with ICC mechanismsisthat X has afew
predefined atoms and property names. For instance, the way clients talk with window
managers is through properties. If you have explored the Intrinsics code or have written an
Xlib client, you would have come across a function X Set Standard Properties(). That
function changes properties that the window manager knows about. Those properties are
quite obviously predefined. The point is, just like you need to look up the predefined
resources in String Defs.h (or Xm.h if you are using OSF/Matif), you must look up atoms
and property names. The following is atable of commonly used atoms for property names:

Table 11-1Commonly Used Property Names

XA_CUT BUFFERO XA_CUT BUFFER1 XA_CUT_BUFFER2
XA_CUT BUFFER3 XA_CUT BUFFER4 XA_CUT_BUFFER5

file:///H:/edonkey/docs/programming/1/2/ch11/233-235.html (3 of 4) [13/12/02 18:10:18]

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif:Application Development: Advanced Topics

XA_CUT BUFFER6 XA_CUT BUFFER? XA_RGB_GREEN_MAP
XA_RGB RED MAP XA RGB_BLUE MAP XA_RGB_GRAY_MAP
XA_RGB BEST MAP XA_RGB DEFAULT MAP XA RESOURCE MANAGER
XA_WM_CLASS XA_WM_CLIENT _MACHINE XA_WM_COMMAND
XA_WM_HINTS XA_WM_ICON_NAME XA_WM_ICON_SIZE
XA_WM_NAME XA_WM_NORMAL_HINTS XA_WM_TRANSIENT FOR

XA_WM_ZOOM_HINTS

A property isreally a continuous chunk of bytes. From the server’ s perspective it doesn’'t
matter what the contents of those bytes are. However, from the client’ s perspective, the
sequence of bytes has some meaning. That meaning is derived from the type part of a
property, which also has an atom associated with it. The following is a table of predefined

atoms used for types:
Table 11-2Predefined Atoms
XA _ARC XA _ATOM XA _BITMAP A_CARDINAL
XA COLORMAP XA CURSOR XA DRAWABLE XA FONT
XA _INTEGER XA _PIXMAP XA _POINT XA _RGB _COLOR MAP
XA RECTANGLE XA_STRING XA _VISUALID XA WINDOW

XA_WM_HINTS XA WM_SIZE_HINTS

Previous Table of Contents Next

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch11/233-235.html (4 of 4) [13/12/02 18:10:18]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif:Application Development: Advanced Topics

A Practical Guide to X Window Programming: Developing Applications with the
XT Intrinsics and OSF/Motif
R

by Brian J. Keller
. CRC Press, CRC Press LLC
ISBN: 0849374065 Pub Date: 12/01/90

Previous [Table of Contents |Next

11.1.3. Handling Properties: Changing, Getting, and Deleting
Properties are created and set using the same function call:
XChangePr operty(dpy, wdw, pnane, pt ype, f or mat, node, &lat a, dsi ze)

where “dpy” isthe display that the property ison, “wdw” isthe window id that the property is
associated with, “pname” is the atom associated with the property name, “ptype’ is the atom
associated with the property type, “format” isthe size in bits of the data elements (8, 16, or 32),
“mode” isthe nature of the change (Prop Mode Replace, Prop Mode Prepend, or Prop Mode
Append), “&data” isthe address of the data used in the change, and “dsize” is the number of
“format” -sized elementsin data. If the property does not exist, it is created and the data applied.

The confusing part of the function call isthe “dsize” argument, which needs to be the number
of “format” elementsin “data.” It isthe number of n-bit elementsin data. The n represents the
number of 8-, 16-, or 32-bit elementsin the block of bytes being passed. So, if the datato share
looked like this:

struct {
char nane[10];
i nt val ue;

} data;

The dsize argument would be 11 on a 32-bit machine. The reason is that there are 10 32-bit
elementsin the char array, and one 32-bit element for the int.

When a client receives a property-notify event or is just interested in what (if anything) is
stored in the property, the function for getting the data associated with the property is

XCGet W ndowPr oper t y(dpy, wdw, pnane, of f set, | en, acti on, rtype, &t ype,
&af ormat , &ni tens, &ytes | ef t, &at a)

file:///H:/ledonkey/docs/programming/1/2/ch11/236-237.html (1 of 3) [13/12/02 18:10:19]

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif:Application Development: Advanced Topics

where “dpy” is the display the property ison, “wdw” is the window the property is associated
with, “pname” is the atom associated with the property, “offset” is the place to start the return
in the data, “len” isthe number of elementsto return, “action” informs the server to delete
(True) or leave the data alone (False), “rtype’ is an atom for the data type of the property or the
constant Any Property Type, “atype’ isthe actual type returned (if the property does not exist,
the value would be None), “aformat” is the actual format of the data (the value O if the property
does not exist, otherwise 8, 16, or 32), “nitems’ is the number of atoms returned, “bytes left” is
the number of bytes remaining, and “data’ is the data returned.

Properties, unlike atoms, can be deleted by clients. They live for as long as the window they are
associated with exists or until they are deleted by the client. The function for deleting a
property is

XDel et ePr operty(dpy, wdw, pnane)

where “dpy” isthe display the property ison, “wdw” isthe window id that the property is
associated with, and “pname” is the atom associated with the property.

11.1.4. Talking to Other Clients with Properties

If you recall, Chapter 5 discussed the many events that can be watched by clients. The property-
notify event was one of them. Thisimplies that the only addition to the client is to add some
processing to handle the detection of a property event. Y ou can go about that in many ways,
using trandlation tables, event handlers, or checking the event yourself. (Y ou will do this
shortly.)

Aswas pointed out, properties are associated with awindow id. The nice thing about that is, if
you know the id of awindow, you can check the property list for that window. Additionally,
you can register for property notification events on that window. For most clients, the window
Ids are private and therefore other clients do not have any clue that other clients are running on
the server. Thereis one window that all clients know about: the root window. The root window
Istherefore an ideal candidate for |CC mechanisms of the form of property notification events.

There are some important details to be aware of when attempting this kind of communication.
To start, the Intrinsics will not know about the root window in the client’ s widget tree.
Therefore, you will have to check each event for property-notify on the root window before
giving the event off to the dispatch mechanism. Next, when registering for property notification
on the root window, the client will get every property notification event on the root window.
Thismakes alot of sense, but suppose there are several clients using the same technique for
ICC. That means your clients get to find out about, and have afew CPU cycles devoted to
rejecting, the “spurious’ events. Always think about what is actually going on before running”

file:///H:/edonkey/docs/programming/1/2/ch11/236-237.html (2 of 3) [13/12/02 18:10:19]

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif:Application Development: Advanced Topics

in adirection.
Now, to communicate through the root window, clients need only perform the following steps:

1. Intern atoms.
2. Inform the X server of desire for property notification events on the root window

(use XSelect Input()).
3. Check for the property notification event on the root window and process the
Information.

To demonstrate, the “trade” client from Chapter 8 will have the changing of a property added to

it. To show that the property has been set, the “watch” client of Chapter 5 will have the
necessary processing for getting a value from a property added to it.

Previous | Table of Contents |INext

Copyright © CRC Press LLC

file:/l//H:/ledonkey/docs/programming/1/2/ch11/236-237.html (3 of 3) [13/12/02 18:10:19]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif:Application Development: Advanced Topics

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous [Table of Contents |[Next

The new “trade” client will need a new header file containing the ICC items (i.e., atoms, string
names, data structure), afunction to intern the atoms used, and a function to set the property. The
header file used is asfollows:

/* FILE: Xbkl CC. h

PURPOSE: Set up the shareable information that clients
will be using to do Inter-dient Conmunication.

Since multiple clients will be using a "string" to intern atons
It is a good idea to create a #define for themto use. By doing
this, the chance of errors is greatly reduced since clients wll
* use the #define, not the actual string.

*/

#defi ne XbkAt onir adel nf o “"Trade | nfo"
#defi ne XbkAt omlr adeType "Trade Type"
#def i ne XbkAt onir adeDone "Trade Done"
#defi ne XbkAt om\\at cher “Wat cher "

/*

* Sonme nessages and sizes to be used An the clients.
*/

#defi ne PROPERTY_FAI LED "Coul d not get the property !!"
#def i ne TRADESTRSI ZE 80

#define SECURI TY SI ZE 8

#defi ne TRADER SI ZE 5

/*

* These are the atons that will be used for setting and getting
* properties.

*/
At om TRADE_| NFO, TRADE_TYPE, TRADE_EXI TED, WATCH_W NDOW
/*

* This is the data that will be exchanged.

*/

typedef struct_trade data {

file:///H:/ledonkey/docs/programming/1/2/ch11/238-241.html (1 of 4) [13/12/02 18:10:22]

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif:Application Development: Advanced Topics

char security[SECURI TY_SI ZE] ;
char buyOr Sel |

char t rader [TRADER SI ZE] ;

i nt quantity;

fl oat price;

} trade_dat a;

After including the new header file, afunction to intern the atoms that will be used for property-
handling is created as follows:

/*
* This routine interns the atons for the "shared"” information to
* be placed on the root window. Note, there is no w ndow
* associated with an atom just the "display id" which happens to
* be the server the client is running on.
*/
int init_icc(w
W dget w,
{
TRADE | NFO = Xl nternAtom(Xt Di spl ay(w), XbkAt onilr adel nf o,
FALSE) ;
TRADE_TYPE = Xl nternAtom(Xt Di spl ay(w), XbkAt onilr adeType,
FALSE) ;
}

Lastly, the function for “changing” (setting) the property is.

I nt send_trade(w

W dget w,
{
/*
* This is alittle hackish! We will fill in the trade data
* for each field by using the field index. This is by no neans
* a nice generic way!
*/
trade data *t Dat a;
int ival; float fval; char *sval;
Arg arg[1];
/* Recall that the Fiel dEdWdget GetValues() nmethod will return

*
* astring, int, or float value. Gven that, we use the

* "standard" Intrinsics nechanismfor getting w dget data and | et
* Cet Val ues() handl e the conversion for us.

*/

file:///H:/ledonkey/docs/programming/1/2/ch11/238-241.html (2 of 4) [13/12/02 18:10:22]

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif:Application Development: Advanced Topics

Xt Set Arg(arg[0], Xt NstringVal, &val);

Xt Get Val ues(Fi el ds[0] .fe,arg, 1);

if (sval !'= NULL)
strncpy(tData->security,sval,7);

el se
strncpy(tData->security,"------- "L T7);

Xt Set Arg(arg[0], Xt NstringVal, &val);
Xt Cet Val ues(Fields[1].fe,arg, 1);
if (sval !'= NULL)
t Dat a- >buyOr Sel | = sval [0];
el se
t Dat a- >buyOrSell ="'-";
Xt Set Arg(arg[0], Xt NstringVval, &val);
Xt Get Val ues(Fields[2].fe,arg, 1);
if (sval != NULL)
strncpy(tData->trader, sval,b5);
el se
strncpy(tData->trader,"----- ", 5);
Xt Set Arg(arg[0], Xt Ni nt Val , & val) ;
Xt Get Val ues(Fields[3].fe,arg, 1);
t Data->quantity = ival;

Xt Set Arg(arg[0], Xt Nfl oat Val , & val) ;

Xt Cet Val ues(Fields[4].fe,arg, 1);

t Dat a- >price = fval;
/*
* Wth the data filled in, we can "change" the property on the
* root w ndow, providing it our data.

*/
XChangePr operty(Xt Di spl ay(w), Def aul t Root W ndow Xt Di spl ay(w)),
TRADE_| NFO, TRADE_TYPE,
32, PropModeRepl ace,
(unsi gned char *)tDat a,
SECURITY_SIZE + TRADER SIZE + | + | + 2);
/*
* The line (SECURITY_SIZE + TRADER SIZE + 1 + 1 + 2) tells us how
* many 32 bit itens are in the data. Since we are on a 32 bhit
* machine and int =1 32 bit item char =1 32 bit item and
* float = 2 32 bit itens we can add up all those things in the
* tData structure.
*/
}

To fold these new functions into the original “trade” client requires the following steps:

file:///H:/ledonkey/docs/programming/1/2/ch11/238-241.html (3 of 4) [13/12/02 18:10:22]

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif: Application Devel opment: Advanced Topics

Include XbklCC.h as a header file.
2. Add the call init_icc() in the main program after at least one widget has been created.
3. Add the send_trade() function in the callback that is off of the Commit button.

watchlCC

From Property: SUNW B Nealky 10000 18.500
.J I-’”-""l‘-‘-"‘cﬂfﬂ-' Cammurniction From File: SUNW B Nealy 10000 18.500

Security SUNH
Buy/Sell B

Trader Id Healy
Quantiky 10000

Price lEI.El]‘

| Commit|| Clear| [Exit]

et

e

i .?;l"'zﬂ SR :’“?233

L

N ﬁﬁ.-m:n.-ﬁ

|This client use ICC taclmimmsl

5
_ﬁ;;%; S
i e, ""C-\.-\.-:l:\.'l.-"'""‘\-\.'\:\.-.-:l"‘"-i-i'.' """'C'\':\'.ﬂ:l“'ﬂlt':-\.?:-:l"':l}."i":-\.""" i . B.—
e : R S e
s e e .-_.-:::.-.-n S R s e : e
e e e o ':'i'ﬁ?': ’3;;;?.:*&3}33.-:'-’%3;3?3"{; Fi e
e e ;:5_5___f_c_cP:x_:é:_un;,_c:_(zz_:gﬁnie:_' ; :__'_-E:, S
RS LR W i A L
El-"-'."t‘::kt‘;f.‘:_ﬁ;tﬁ%ﬁggaﬁt e aE e
e S ﬁ’%
R P o :-ﬁ:-.-:lii:::-c:c =
o : R
e R e
-:Eu_.:_:-'-cn:.-:m:-:-n o .‘Eﬂ-\.-\. o,
R e
e e e
He-:;:-::q-:;__-:}~ : SEE
e E ::’”"":- : e e e e
-:'Eﬂ?; SR B -;.:-
o s .'?:-\.-\.-,:.- Caem w.-.-n. o
ﬁ:-:-“-c-:cp:-w“-c-:- i :l""‘"‘L-\.':": :-;"-

e
":

o
i
AL
s
oy

Figure 11-1 Property notify.

Previous |Table of Contents Next|

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/ch11/238-241.html (4 of 4) [13/12/02 18:10:22]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif:Application Development: Advanced Topics

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous (Table of Contents [Next

Now, the additions to the “watch” client include adding XbklCC.h as a header file, the function
init_icc(), arequest for property notification events on the root window (Figure 11-1 shows the
property-notify window), logic for event checking, and a function to process the trade notification.
The header file and init_icc() is the same as above. The following are the changes needed in the
“watch” client:

This code would be in the main programof the Watch client...

To pull off the property notification magic we nust do a

few things. First, we nust tell the server to tell us when
property notifications happen to the root wi ndow. Noti ce,

this is NOT our 'top’ wndow. Rather, it is the root w ndow of
the display we are connected to. You will notice the use of an
Xlib primtive and macro. The primtive is XSelectlnput() which
Is the way all clients informthe server of the events it
cares about. Xt sinply hides the details through the use

of the Xt AddEvent Handl er() and Transl ati on Manager nechani sns.
You should al so notice DefaultRootWndow(). This is a macro
that knows how to get the window id for the root via the

di splay id.

b T B S R N R N S S .

~

XSel ect | nput (Xt Di spl ay(top),
Def aul t Root W ndow(Xt Di spl ay(top)),

Pr opert yChangeMask) ;
/*
* Since we are children of the root, the Xt Di spatch nmechani sm
*wWll not informus of what is happening to the root. The
* reason is, none of the widgets will have the root window id as
*its wwndow id. So, in order to recognize the fact that a
* property notification happened on the root, we need to check
* BEFORE we give the events to the Xt D spatcher.
*

file:///H:/ledonkey/docs/programming/1/2/ch11/241-244.html (1 of 3) [13/12/02 18:10:23]

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif:Application Development: Advanced Topics

* To do this, we break apart XtMui nLoop() and place sone | ogic

*in.
*/
for(;;) {
Xt Next Event (&event); /* get the event fromthe queue */
/*
* Check the event type if it is a PropertyNotify event
* (which maps to the PropertyChangeMask), then check if it was on
* the root window. If it was and the atom of the property that
* changed was TRADE | NFO, then we should process it. O herw se,
* give it to the Dispatcher.
*
* | f the event type was not property-notify, then just give it
* to the Dispatcher.
*/
switch(event.type){
case PropertyNotify:
I f((event. xproperty.w ndow ==
Def aul t Root W ndow(Xt Di spl ay(top)))
&& (event. xproperty.atom == TRADE | NFO))
process trade _notification(fileQutput);
el se
Xt Di spat chEvent (&event);
br eak;
defaul t:
Xt Di spat chEvent (&event) ;
br eak;
}
}

The function to process “trade” is asfollows:

int process _trade notification(displayW dget)
W dget di spl ayW dget;
{
int type, format, nltens, remainder;
trade data *t Dat a;
char dpyStr[TRADESTRSI ZE] ;

i f (XCGet WndowProperty(XtDi splay(di spl ayW dget),
Def aul t Root W ndow(Xt Di spl ay(di spl aywi dget)),
TRADE | NFO, 0, sizeof(trade_data),
FALSE, TRADE_TYPE,
&t ype, & or nat, &l t ens, & enmni nder

file:///H:/edonkey/docs/programming/1/2/ch11/241-244.html (2 of 3) [13/12/02 18:10:23]

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif:Application Development: Advanced Topics

& Data) == Success) {

menset (dpyStr,'\0', si zeof (dpyStr));
sprintf(dpyStr+strlen(dpyStr),

“"From Property: ");
sprintf(dpyStr+strlen(dpyStr),

" ",tData->security);
sprintf(dpyStr+strlen(dpyStr),

"% ",tData->buyOrSell);
sprintf(dpyStr+strlen(dpyStr),

"O ",tData->trader);
sprintf(dpyStr+strlen(dpyStr),

"0 ",tData->quantity);
sprintf(dpyStr+strlen(dpyStr),

"% 3f\ n", t Dat a- >pri ce);
Xt xuText I nsert String(di spl ayW dget, dpyStr);
Xt Text Set I nserti onPoint (fil eQutput, 0);

XFree(tData); /* Don't forget to gave back nmall oc space !

*/
} else {
Xt xuText I nsert String(di spl ayW dget, PROPERTY_FAI LED) ;
Xt Text Set |l nsertionPoi nt(fil eCQutput, 0);
}
}

Previous (Table of Contents [Next

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/ch11/241-244.html (3 of 3) [13/12/02 18:10:23]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif:Application Development: Advanced Topics

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous [Table of Contents |[Next

11.1.5. Communicating with Client Events

Up to now, it has been assumed that events ssimply occurred due to some situation taking place (i.e.,
the visibility of awindow, a keypress, a mouse movement). There is, however, a mechanism for
clients to exchange events. Essentially, aclient could redirect an event that it received to another
client. Thisis accomplished through the use of the id of the window to be sent the event. The
function for sending an event is as follows:

XSendEvent (dpy, wdw, pr opagat e, mask, &vent)

where “dpy” isthe display the client to receive the event, “wdw” is the window to be informed of
the event, “propagate’ tells the server to redirect the event to ancestorsif the wdw is not interested
in the event, “mask” is the event mask for the event being sent, and “event” is the actual event
structure.

One use of XSend Event() isfor sending client messages. A client message does not go through the
server, and is used mainly to provide aform of ICC. Y ou could consider a client message as a
semaphore or signal that a client might use to inform other clients that certain kinds of things were
happening. The client message can contain data, but it islimited to 20 bytes as defined by the
XClient Message Event structure in Xlib.h. Additionally, a client message is a non-maskable event
type, so clientsinterested in receiving client messages must specify No Event Mask as the mask
argument of XSelect Input() or XtAdd Event Handler().

To demonstrate client messages, let’ s again add some code to “trade” and “watch.” What you want
to do issimply inform the “watch” client that the “trade” client has been exited (see Figure 11-2).
The “watch” client will display a message in its window informing the user that “trade” has existed.
To do this, you must create a property that will contain the window id of the watch window so you
can send a client message to “watch” which will be understood as asignal that “trade” has been
exited. Calling on the previous section discussion, this simply means interning an atom for this
property and setting the value in the property. The code for “trade” is as follows:

file:///H:/ledonkey/docs/programming/1/2/ch11/244-247 .html (1 of 5) [13/12/02 18:10:25]

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif: Application Devel opment: Advanced Topics

watchlCC

| Trade ... exited!!
M From Property: SUNW B Nealy 20000 19.500
2 From File: SUNW B Nealy 20000 19.500

Figure 11-2 Watch with trade-exited message.

Xt Cal | backPr oc

Chow(whoCal | edMe, dat aFronCl i ent, dat aToG ved i ent)
W dget whoCal | edMe;
caddr t dataFronClient;
caddr _t dataTod ved i ent;

{
XC i ent MessageEvent event;
W ndow *wat ch_w ndow;
int type, format, nltens, renai nder;
/*
* W will be using client nessages to tell the watcher w ndow
* that we are going away.
*
* First see if the atomexists. If it does (!=None), then
* get the windowid for the watcher. If we got it okay,
* send an event telling it that we are goi ng away.
* Ot herw se, pass over this code.
*

/
WATCH W NDOW = Xl nt er nAt on(Xt Di spl ay(t op), XbkAt omMat cher, TRUE) ;
if (WATCH W NDOW ! = None) {
I f (XGet WndowProperty(XtDi splay(top),
Def aul t Root W ndow(Xt Di spl ay(top)),
WATCH_W NDOW 0, 4, FALSE, XA W NDOW
&t ype, & or mat , &l t ens, & emai nder, &at ch_w ndow)
== Success) {
/*

file:///H:/ledonkey/docs/programming/1/2/ch11/244-247 .html (2 of 5) [13/12/02 18:10:25]

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif:Application Development: Advanced Topics

* Since we are sinply telling Watch that we've been asked to
* exit we do not need to fill in any data.
*
* |f we had to pass data, we would set the event.format field
* to 8, 16, or 32, then provide the data in the 20 byte data part
* of this nessage type.
*/
I f (*watch_w ndow != NULL) {
event . di spl ay = XtD spl ay(top);
event . wi ndow = *wat ch_w ndow;
event.type = dient Message;
event. nessage_type = TRADE | NFQ,
XSendEvent (event . di spl ay, event . w ndow,
TRUE, Xt Al | Event s, &vent);
XFl ush(event. di spl ay) ;
}
}
}
Xt UnmapW dget (t op) ;
Xt Dest r oyW dget (t op) ;
Xt Cl oseDi spl ay(Xt D spl ay(top));
fcl ose(fout);
exit(0);
}

The “watch” client needs to set the property to hold itswindow id so “trade” can send it an event,
install an event handler to handle the client message, and provide the event handler to handle the
client message event. The following are the code additions needed to “watch”:

int init_icc(w)

W dget w;
{

W ndow wdw = Xt Wndowm(w) ;

Di splay *di sPLAY = XtDi splay(w);
/*
* W are setting up our window id on the root w ndow so that
* other clients may send nessages to us. Wth the w ndow id
* they can actually do nore than that, but we are an "open"
* world and have client agreenents that they will do no nore
* than send us client events.
*/

WATCH W NDOW = Xl nt er nAt on(di sPLAY, XbkAt omAat cher, FALSE) ;

XChangePr opert y(di sPLAY, Def aul t Root W ndow(di sPLAY),
WATCH_ W NDOW XA W NDOW

file:///H:/ledonkey/docs/programming/1/2/ch11/244-247 .html (3 of 5) [13/12/02 18:10:25]

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif:Application Development: Advanced Topics

32, PropModeAppend, &wdw, 1) ;
Xl nt er nAt on(di sPLAY, XbkAt omlr adel nf o, FALSE) ;
Xl nt er nAt on(di sPLAY, XbkAt omlr adeType, FALSE) ;

TRADE | NFO
TRADE _TYPE
/*
* W use the XIinternAtomcall that will either create or return a
* value for the requested atom

*/
}
Xt Cal | backProc Xit(w, call _data,client_data)
W dget w,
caddr _t cal |l data,client_data;
{
Di spl ay *di sPLAY = Xt Di spl ay(w);
/*
* W should renove the property for watch_w ndow so
* that anyone trying to send us a nessage will know we are
* dead.
*/
XDel et ePr operty(di sPLAY, Def aul t Root W ndow(di sPLAY),
WATCH_W NDOW ;
Xt UnmapW dget (w) ;
Xt Cl oseDi spl ay(di sPLAY);
exit(0);
}

The following code fragment would be in the main program.

/*

* W install an event handler to keep an eye out for client
* messages. Since they are non-naskabl e events we use the

* NoEvent Mask and set the third argunent to TRUE to tell the
* di spatcher that the event we are | ooking

* for is a non-nmaskabl e event.

*

Xt AddEvent Handl er (fi | eQut put, NoEvent Mask, TRUE,
Handl e _C i ent Messages, fil eQutput);

Lastly, you need to code the event handler used for the client message event:
Xt Event Handl er Handl e _d i ent Messages(w, cl i ent Dat a, event)
Wdget w,

caddr t clientDat a;
XEvent *event;

file:///H:/edonkey/docs/programming/1/2/ch11/244-247 .html (4 of 5) [13/12/02 18:10:25]

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif:Application Development: Advanced Topics

S~

L I S S

The tradel CC client will send us the nessage type as trade_info
totell us it died. we do it this way so we do not have to
create a separate atomfor this information. If you are

setting up your own private protocol you m ght need nore
nmessage_type entries so you understand what the event was all
about .

if (event->xclient.nessage type == TRADE | NFO
Xt xuTextInsertString((Wdget)clientData,"Trade ...
exited!'!'\n");

}

Previous [Table of Contents INext

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/ch11/244-247 .html (5 of 5) [13/12/02 18:10:25]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif:Application Development: Advanced Topics

A Practical Guide to X Window Programming: Developing Applications with the XT
Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Previous [Table of Contents |[Next

11.1.6. Cutting and Pasting: The Xt Selection Mechanism

The last ICC technique is a provision built into the X server. It isreferred to as the selection
mechanism, and is used to transfer data from client to client. The most common use of this
technique is when text is cut from one client and pasted into another. Text is not the only thing that
may be transferred; images and bitmaps could also be transferred, provided that both clients
understood what was being transferred.

The Intrinsics provides afunction that installs functions to handle three things that occur for
selections: convert, lose, and done. The function is as follows:

Xt OmnSel ection(wdg, selection, time, cvtProc, |oseProc, doneProc)

where “wdg” isthe widget that wants ownership of the selection, “selection” is an atom for the
selection to own (usually xa primary or xa_secondary), “time” is the current server time (use
Current Time), “cvtProc” is a pointer to a procedure to handle conversion of the selection,
“loseProc” is a pointer to a procedure to lose the selection, and “doneProc” is used to finish off the
selection.

Since most application writers use the standard widgets from one of the widget sets, the details of
the selection mechanism are hidden within the widget. As an example, both the Athenaand
OSF/Matif Text Widgets have built-in mechanisms for handling selections. Given that, the details
of selections are better |eft to a widget implementation, and from a practical point of view, not
something covered in this book. If you are still interested in the “how,” read through the Athena
Text Widget for how it goes about doing selections. Thisis afar better way to understand a
practical application than working through some bogus example that would be application-based.

11.2. Using Multiple Displays

The last topic to discuss is the management through a single client of multiple displays. Thisisan
interesting topic since it isfairly easy to do and may be a good way to implement some display-only
real-time update programs, such as “tickerstrips’ (ascrolling display of security prices). To discuss
how to do this, you must first be introduced to the notion of an application context. Thisis simply

file:///H:/ledonkey/docs/programming/1/2/ch11/247-254.html (1 of 8) [13/12/02 18:10:28]

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif:Application Development: Advanced Topics

the information pertaining to an application, its context. The information would be the windows
under management, the display to be connected to, etc.

Essentially, the application context is all the information needed for an application to run. Y ou
could think of it as the environment that each UNIX process runs under. The environment islike a
context in that it contains the environment variables (i.e., HOME, SHELL) that the process may use
to perform some task. An application context allows for multiple main loops used to manage a
client.

The procedure for managing multiple displays is quite ssmple, and is as follows:

1. Initialize the toolkit.

2. Create n application shells (one for each server).

3. If you have a multithreaded OS, create a separate application context to run the main loop
on the different threads.

4. Open the connection to the server.

5. Realize each top-level widget.

6. If you have a multithreaded OS, send each main loop on its own thread.

To demonstrate this, let’s examine avery trivia client called “multidpys’ (shown in Figure 11-3).
This client ssmply has a command button that, when clicked, toggles the foreground/background of
each command button on the different displays. Since this client was developed on an IBM PS/2
under AIX 1.1 in anon-networked environment, | started multiple X servers and toggled between
each. If it was extended to a multi-host network, each host would have to allow the other machine
accessto its display. This would be done by adding the host id to the server access list through
xhost. The client is defined as follows:

/* FILE mul ti dpys. c
* PURPCSE: Using a single client to nmanage nultiple
* application shells on multiple displays.
*/

#i ncl ude "XbkUtil.h"

#defi ne XbkShel | Nane “mul tidpys”
#defi ne XbkAppl C ass "Mul tidpys"”

file:///H:/edonkey/docs/programming/1/2/ch11/247-254.html (2 of 8) [13/12/02 18:10:28]

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif: Application Devel opment: Advanced Topics

- AIX Sh

% cat svrd.txt 1 k
This 15 server 0O e

You can consider this the host machine the client.
AR

If I click one of the above clients [will changs :
the coler on all of these buttons and the ones on s
the ather server. == H,%
E i
Each button represents an independant application & s
ghell and is controlled by a single client. i

% - %
e

e ;m

S
S
"- '-"C
: R
i

Figure 11-3a Multiple displays.

file:///H:/edonkey/docs/programming/1/2/ch11/247-254.html (3 of 8) [13/12/02 18:10:28]

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif: Application Devel opment: Advanced Topics

AIM Shall

% cat swril.txt
This 15 server 1

You can consider this a remote sachine even though
it 15 another server running on the local host.

If 1 click one of the above clients I will change
the color on all of thes |

Figure 11-3b Multiple displays.

file:///H:/edonkey/docs/programming/1/2/ch11/247-254.html (4 of 8) [13/12/02 18:10:28]

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif: Application Devel opment: Advanced Topics

% cat svro.txt th . -
This 15 server O : 7
.
You can consider this the host machine the client. f;ﬁr
If T ciick one of the above clients 1 will changes i _‘J
the color on all of these buttons and Lhe onez on e
the other server. s
e
Each button represents an independant application 5 :
ghell and is controlled by a single client, it
%] SR

Figure 11-3c Multiple displays.

file:///H:/edonkey/docs/programming/1/2/ch11/247-254.html (5 of 8) [13/12/02 18:10:28]

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif: Application Devel opment: Advanced Topics

A e

L
e

% cat svri.txt

This 15 server 1

You tan consider this a resote machine even thaough
it iz another server running on the local host.

If 1 click ome of the abowve clients 1 will changa
the color on &ll of then ! i

% ik

Figure 11-3d Multiple displays.

/* Add the w dget headers */

#i f def X11R3
#i ncl ude <X11/ Conmand. h>

#el se
#i ncl ude <X11/ Xaw Command. h>
#endi f
/[* W can define the list of X servers to connect to. In this case
* "1l be running two on ny machine. You could of course add
* several nmachines in the |ist.
*/
static char *connections[] = {
"uni x: 0",
"uni x: 0",
"uni x: 0",
"uni x: 1",
"uni x: 1",

file:///H:/ledonkey/docs/programming/1/2/ch11/247-254.html (6 of 8) [13/12/02 18:10:28]

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif:Application Development: Advanced Topics

"uni x: 1",
NULL} ;

defi ne NUMCONNECTI ONS

/* The callback in this exanple will toggle the colors for each of
* the conmmand buttons under control by this client. To do this

* we make the cnb array external so the callback can use it.

*/

W dget cnb[NUMCONNECTI ONS] ;

mai n(argc, argv)
Ant argc; char **argv;

{
Xt AppCont ext appC NUMCONNECTI ONS] ;
D spl ay *dpy[NUMCONNECTI ONS] ;
W dget t op[NUMCONNECTI ONS] ;
i nt i
Xt Cal | backPr oc change_col ors();

XtToolkitlnitialize();
for(i = 0; I < XtNunber(connections); i++) {

/* Since we're not really nultithreaded, create one application
* context. Wien the day cones for nultithreaded, sinply renove
* the | ogic.

*/
appdi] = (i == 0) ? XtCreateApplicationContext()
app(i-1];
dpy[i] = XtOpenDisplay(app(i], connections[i],

XbkShel | Nanme, XbkAppl C ass, NULL, 0, &argc, argv);

top[i] = XtAppCreateShell (app(i], XbkAppl d ass,
appl i cati onShel | Wdget d ass, dpy[i], NULL, 0);

cnb[i] = XtCreateManagedW dget (connections[i],

commandW dget d ass,

top[i], NULL, O);
Xt AddCal | back(cnb[i], Xt Ncal | back, change_col ors, NULL) ;
Xt Real i zeW dget (top[i]);

/* Now, if we had a nultithreaded CS, we could send each shell off
* on a different thread.

Xt AppMai nLoop(appdi]);
* |

file:///H:/ledonkey/docs/programming/1/2/ch11/247-254.html (7 of 8) [13/12/02 18:10:28]

A Practical Guide to X Window Programming: Developing Applications wit...e XT Intrinsics and OSF/Motif:Application Development: Advanced Topics

}

/* Since we don't we'll sinply nmanage the single context.
*/

Xt AppMai nLoop(app(0]) ;
/* actually all would do the trick */

}

Xt Cal | backPr oc change _col ors(w, j unk, nore_j unk)
W dget w;, caddr_t junk, nore_junk;
{

Pi xel fg, bg;
int i;
Arg gargs| 2], sargs| 2];

Xt Set Arg(gargs[0], Xt Nf or egr ound, &f g) ;
Xt Set Arg(gar gs[1] , Xt Nnackgr ound, &bqg) ;
Xt Set Ar g(sar gs[0] , Xt Nbackgr ound, f g) ;
Xt Set Arg(sargs[1], Xt Nf or egr ound, bg) ;

for(i=0;i<XtNunber(connections);i++) {
Xt Get Val ues(cnb[i], gargs, (Cardi nal) 2);
Xt Set Val ues(cnb[i], sargs, (Cardi nal) 2);
}
11.3. Summing Up

Asyou can see, the Intrinsics provides a great deal of flexibility to develop clients. ICCisa
powerful feature and should be well thought out prior to its implementation. Managing a client that
updates multiple displaysisfairly easy, and is an interesting subject to explore.

Previous [Table of Contents INext

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/ch11/247-254.html (8 of 8) [13/12/02 18:10:28]

file:///reference/crc00001.html

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Bibliography

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Table of Contents

Bibliography
Asente, P., “Simplicity and Productivity,” Unix Review, vol. 6, No. 9, pp. 57-63.
Jones, O., Introduction to the X Window System, Prentice Hall, 1989.

Kerningham, B. W. and R. Pike, The Unix Programming Environment, Prentice
Hall, 1978.

Kerningham, B. W. and D. M. Ritchie, The C Programming Language, Prentice
Hall, 1985.

Lemke, D. and S. H. Rosenthall, “Visualizing X11 Clients,” Proceedings of the
Summer 1988 USENIX Conference, pp. 125-138.

McCormack, J. and P. Asente, “Using the X Toolkit or How to Write a Widget,” in
Proceedings of the Summer 1988 USENIX Conference, pp. 1-13.

__“An Overview of the X Toolkit,” in Proceedings of the October 1988 ACM
SIGGRAPH Symposium on User Interface Software, pp. 46-55.

Nye, A., The Xlib Programming Manual, O’ Reilly and Associates, 1988.

O'Reilly, T., “The Toolkits (and Politics) of X Windows,” UNIX World, vol. 6, No.
2, pp. 66-73, February, 1989.

OSF, OS-/Motif Programmer’s Guide, Prentice Hall, 1990.

file:///H:/ledonkey/docs/programming/1/2/bib.html (1 of 2) [13/12/02 18:10:31]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Bibliography

Rochkind. M., Advanced Unix Programming, Prentice Hall, 1985.

Rosenthal, D. S, “A Simple X.11 Client Program, or, How Hard Can It Redlly Be
to Write ‘Hello World' ?” in Proceedings of the Winter 1988 USENIX Conference,
pp. 229-235.

Schaufler, R. W., and J. Gettys, “The X Window System,” ACM Transaction on
Graphics, vol. 5, No. 2, pp. 79-109, April 1986.

Stroustrup, B., The C++ Programming Language, Addison-Wesley, 1986.

Swich, R. R., and M. S. Akerman, “The X Toolkit: More Bricks for Building User
Interfaces,” in Proceedings of the Winter 1988 USENIX Conference, pp. 221-223.

Young, D., The X Window System: Programming and Applications with Xt,
Prentice Hall, 1989.

Table of Contents

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/bib.html (2 of 2) [13/12/02 18:10:31]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications wi...Classing, and Exported Functions OSF/Motif and Athena XAW (R4 and R3)

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Table of Contents

Appendix A
Widgets, Classing, and Exported Functions
OSF/Motif and Athena XAW (R4 and R3)

This appendix identifies all of the widgets (and gadgets for Motif) in the widget sets.
Additionally, the classing isidentified along with the widget exported functions.

A.l. Motif Widgets

Header File Widget Class Name
ArrowB.h xmArrowButtonWidgetClass;
ArrowBG.h xmArrowButtonGadgetClass,
BulletinB.h xmBulletinBoardWidgetClass;
CascadeB.h xmCascadeButtonWidgetClass;
CascadeBG.h xmCascadeButtonGadgetClass,
Command.h xmCommandWidgetClass;
DialogS.h xmDialogShelIWidgetClass;
DrawingA.h xmDrawingAreaWidgetClass;
DrawnB.h xmDrawnButtonWidgetClass;
FileSB.h xmFileSelectionBoxWidgetClass;
Form.h xmFormWidgetClass;

Frame.h xmFrameWidgetClass;

Label.h xmLabelWidgetClass,
LabelG.h xmL abel GadgetCl ass;

file:///H:/ledonkey/docs/programming/1/2/appendix-a.html (1 of 23) [13/12/02 18:10:33]

A Practical Guide to X Window Programming: Developing Applications wi...Classing, and Exported Functions OSF/Motif and Athena XAW (R4 and R3)

List.h xmListWidgetClass,
MainW.h xmMainWindowWidgetClass,
MenuShell.h xmMenuShellWidgetClass,
MessageB.h xmM essageBoxWidgetClass;,
PanedW.h xmPanedWindowWidgetClass;
PushB.h xmPushButtonWidgetClass,
PushBG.h xmPushButtonGadgetCl ass;
RowColumn.h xmRowColumnWidgetClass,
SashP.h xmSashWidgetClass;

Scale.h xmScaleWidgetClass;
ScrollBar.h xmScrolIBarWidgetClass,
ScrolledW.h xmScrolledWindowWidgetClass;
SelectioB.h xmSel ectionBoxWidgetClass,
SeparatoG.h xmSeparatorGadgetClass,
Separator.h xmSeparatorWidgetClass,
Text.h xmTextWidgetClass;
ToggleB.h xmToggleButtonWidgetClass,
ToggleBG.h xmToggleButtonGadgetCl ass;
Xm.h xmPrimitiveWidgetClass;
Xm.h xmGadgetClass;

Xm.h xmManagerWidgetClass;

A.2. Motif Widget Classing

t ypedef struct _XmArrowButtonGadget O assRec
Rect Obj C assPart rect _cl ass;
XnGadget C assPart gadget _cl ass;
XmAr r owBut t onGadget Cl assPart arrow _button_cl ass;
} XmArr owBut t onGadget O assRec;
t ypedef struct _XmArrowButtonC assRec

Cor e assPar t core_cl ass;
XnPrimtiveCd assPart primtive_cl ass;
XmAr r owBut t onCl assPart arrowbutton_cl ass;

} XmArrowButt onCl assRec;
typedef struct _XnBull eti nBoardd assRec

file:///H:/edonkey/docs/programming/1/2/appendix-a.html (2 of 23) [13/12/02 18:10:33]

Cor eCl assPart

Conposi t e assPart
Constrai nt Cl assPart
Xmvanager Cl assPar t

XmBul | et i nBoar dCl assPar t

} XnBul | eti nBoar dC assRec;

A Practical Guide to X Window Programming: Developing Applications wi...Classing, and Exported Functions OSF/Motif and Athena XAW (R4 and R3)

core_cl ass;
conposi te_cl ass;
constraint_cl ass;
manager _cl ass;

bul | etin_board cl ass;

t ypedef struct _XnCascadeButtonGadget C assRec

Rect Cbj d assPart
XnGadget Cl assPart
XnmLabel Gadget Cl assPart

rect cl ass;
gadget cl ass;
| abel cl ass;

XnCascadeBut t onGadget Cl assPart cascade button_cl ass;
} XnCascadeBut t onGadget Cl assRec;
typedef struct _XntCascadeButtonC assRec

Cor e assPart
XnmPrimtived assPart
XmLabel d assPart
XnmCascadeButt onCl assPart
} XnmCascadeBut t onCl assRec;

core_cl ass;

primtive_class;
| abel cl ass;
cascade_button_cl ass;

t ypedef struct _XnConmandC assRec

Cor e assPart
Conposi ted assPart
Constrai ntd assPart
Xmvanager Cl assPar t
XnBul | et i nBoar dd assPart
XnSel ecti onBoxd assPart
XmCommandd assPart

} XmCommandC assRec;

core_cl ass;

conposi te_cl ass;
constraint_cl ass;
manager _cl ass;

bul | etin_board cl ass;
sel ecti on_box cl ass;
command_cl ass;

typedef struct _XnDi al ogShel | C assRec

Cor e assPart
Conposi ted assPart
Shel | O assPart
WvEBhel | Cl assPar t
Vendor Shel | Cl assPart
Tr ansi ent Shel | C assPart
XnDi al ogShel | Cl assPart
} XnDi al ogShel | d assRec;

core_cl ass;
conposi te_cl ass;
shel | cl ass;
wm shel | _cl ass;
vendor shel |l cl ass;

transi ent _shell cl ass;

di al og_shel | part;

t ypedef struct _XnDraw ngAreaCl assRec

Cor eCl assPart

Conposi t e assPart
Constrai nt Cl assPart
Xmvanager Cl assPart

core_cl ass;
conposi te_cl ass;
constraint_cl ass;
manager _cl ass;

file:///H:/edonkey/docs/programming/1/2/appendix-a.html (3 of 23) [13/12/02 18:10:33]

A Practical Guide to X Window Programming: Developing Applications wi...Classing, and Exported Functions OSF/Motif and Athena XAW (R4 and R3)

XnDr awi ngAr eaCl assPar t drawi ng_area_cl ass;
} XnmDr awi ngAr ead assRec;
typedef struct _XnDrawnButtonC assRec {

Cor eCl assPart core_cl ass;
XnPrimtiveC assPart primtive_class;
XmLabel Cl assPart | abel cl ass;

XmDr awnBut t onCl assPart drawnbutton cl ass;
} XmDr awnBut t onC assRec;
typedef struct _XnFil eSel ecti onBoxC assRec
Cor eCl assPart core_cl ass;
Conposi teC assPart conposite cl ass;
Constrai nt Cl assPart constraint _cl ass;
Xmvanager Cl assPart nmanager cl ass;

XmBul | et i nBoar dCl assPart bul l etin board cl ass;
XnmBel ect i onBoxCl assPar t sel ecti on_box cl ass;
XnFi | eSel ecti onBoxCl assPar t file selection _box class;

} XnFil eSel ecti onBoxC assRec;
t ypedef struct _XnfFornC assRec
Cor eCl assPart core_cl ass;
Conposi teC assPart conposite cl ass;
Constraint Cl assPart constraint _cl ass;
Xmvanager Cl assPart nmanager cl ass;
XmBul | et i nBoar dCl assPart bull etin_board cl ass;
XnmFor nCl assPart formcl ass;
} Xnfor nCl assRec;
t ypedef struct _XnFranmeC assRec
Cor eC assPart core_cl ass;
Conposi teC assPart conposite cl ass;
Constrai nt Cl assPart constraint _cl ass;
Xmvanager Cl assPart nmanager cl ass;
XnFr ameCl assPart frane_cl ass;
} XnFramed assRec;
typedef struct _Xnlabel Gadget Cl assRec
Rect Obj d assPart rect cl ass;
XnGadget Cl assPart gadget cl ass;
XnmLabel Gadget Cl assPart | abel cl ass;
} Xmiabel Gadget O assRec;
typedef struct _Xnlabel Cl assRec

Cor eC assPart core_cl ass;
XnPrimtiveC assPart primtive class;
XmLabel Cl assPart | abel cl ass;

file:///H:/edonkey/docs/programming/1/2/appendix-a.html (4 of 23) [13/12/02 18:10:33]

A Practical Guide to X Window Programming: Developing Applications wi...Classing, and Exported Functions OSF/Motif and Athena XAW (R4 and R3)

} Xmiabel d assRec;
typedef struct _XnlListd assRec

Cor eCl assPart core_cl ass;
XnPrimtiveCd assPart primtive_cl ass;
XmLi st Cl assPart list _class;

} Xnmli st O assRec;

t ypedef struct _Xnmvhi nW ndowCl assRec {
CoreCl assPart core_cl ass;
Conposi teC assPart conposite cl ass;
Constrai nt Cl assPart constraint _cl ass;
Xmvanager Cl assPart nmanager cl ass;
Xnscr ol | edW ndowCl assPart sw ndow cl ass;
Xmvai nW ndowCl assPar t mM ndow cl ass;

} Xmvai nW ndowCl assRec;

t ypedef struct _XmvenuShel | C assRec

Cor eCl assPart core_cl ass;

Conposi t e assPart conposi te_cl ass;
Shel | Cl assPart shel | cl ass;

OverrideShel | d assPart override shell class;
XmvenuShel | Cl assPart nmenu_shel | _cl ass;

} XmvenuShel | O assRec;
t ypedef struct _XmvessageBoxC assRec

Cor eCl assPart core_cl ass;

Conposi ted assPart conposi te_cl ass;
Constrai nt Cl assPart constraint_cl ass;
Xmvanager Cl assPart manager _cl ass;

XmBul | et i nBoar dCl assPart bull etin board cl ass;
XmvessageBoxC assPart nmessage_box_cl ass;

} XmvessageBoxC assRec;

t ypedef struct _XnPanedW ndowCl assRec {
Cor eCl assPart core_cl ass;
Conposi teC assPart conposite cl ass;
Constrai nt Cl assPart constraint _cl ass;
Xmvanager Cl assPart nmanager cl ass;
XnmPanedW ndowCl assPar t vpaned_ cl ass;

} XmPanedW ndowCl assRec;

typedef struct _XnPushButtonGadget C assRec

Rect Obj d assPart rect cl ass;
XnGadget Cl assPart gadget cl ass;
XnmLabel Gadget Cl assPart | abel cl ass;

XnmPushBut t onGadget Cl assPart pushbutton_cl ass;

file:///H:/edonkey/docs/programming/1/2/appendix-a.html (5 of 23) [13/12/02 18:10:33]

A Practical Guide to X Window Programming: Developing Applications wi...Classing, and Exported Functions OSF/Motif and Athena XAW (R4 and R3)

} XmPushBut t onGadget Cl assRec;
typedef struct _XnPushButtonC assRec {

Cor eCl assPart core_cl ass;
XnPrimtiveC assPart primtive_class;
XmLabel Cl assPart | abel cl ass;

XnmPushBut t onCl assPart pushbutton_cl ass;
} XmPushBut t onCl assRec;
t ypedef struct _XnRowCol umC assRec

Cor eCl assPart core_cl ass;

Conposi t e assPart conposi te_cl ass;
Constrai nt Cl assPart constraint_cl ass;
Xmvanager Cl assPar t manager _cl ass;
XmRowCol utmCl assPart row _col um_cl ass;

} XmRowCol ummd assRec;
typedef struct _XnBashC assRec {

Cor eCl assPart core_cl ass;
XnPrimtiveC assPart primtive_class;
XnmBashCl assPart sash_cl ass;

} XnBSashC assRec;

typedef struct _XnScal eCl assRec
Cor eCl assPart core_cl ass;
Conposi teC assPart conposite cl ass;
Constrai nt Cl assPart constraint _cl ass;
Xmvanager Cl assPart nmanager _cl ass;
Xncal eCl assPart scal e_cl ass;

} Xnfcal ed assRec;

t ypedef struct _XnScroll BarC assRec
Cor eCl assPart core_cl ass;
XnPrimtiveC assPart primtive _cl ass;
XnScrol | Bar Cl assPart scrol | Bar _cl ass;

} Xntcrol | Bar O assRec;

typedef struct _XnScroll edW ndowCl assRec {
Cor eCl assPart core_cl ass;
Conposi ted assPart conposi te_cl ass;
Constrai ntCl assPart constraint_cl ass;
Xmvanager Cl assPart manager _cl ass;
Xnscr ol | edW ndowCl assPart sw ndow cl ass;

} xntcrol | edW ndowCd assRec;

t ypedef struct _XnSel ecti onBoxC assRec

Cor eCl assPart core_cl ass;
Conposi t e assPart conposi te_cl ass;

file:///H:/edonkey/docs/programming/1/2/appendix-a.html (6 of 23) [13/12/02 18:10:33]

A Practical Guide to X Window Programming: Developing Applications wi...Classing, and Exported Functions OSF/Motif and Athena XAW (R4 and R3)

Constrai nt Cl assPart constraint_cl ass;
Xmvanager Cl assPar t manager _cl ass;

XmBul | et i nBoar dCl assPart bul |l etin_board cl ass;
XnBel ect i onBoxCl assPart sel ecti on_box cl ass;

} Xntel ecti onBoxC assRec;
t ypedef struct _XnSepar at or Gadget G assRec
Rect Obj O assPart rect cl ass;
XnGadget Cl assPart gadget cl ass;
XnBepar at or Gadget Cl assPart separat or _cl ass;
} XnSepar at or Gadget C assRec;
t ypedef struct _XnSeparatorC assRec
Cor eCl assPart core_cl ass;
XnPrimtiveC assPart primtive_class;
XnBepar at or Cl assPart separat or _cl ass;
} XnfSepar at or G assRec;
typedef struct _XniTextd assRec {
CoreCl assPart core_cl ass;
XnPrimtiveC assPart primtive_class;
Xmlext Cl assPart text cl ass;
} Xmlext Cl assRec;
t ypedef struct _XnToggl eButtonGadget O assRec {

Rect Obj d assPart rect cl ass;
XnGadget Cl assPart gadget cl ass;
XnmLabel Gadget Cl assPart | abel cl ass;
Xnrfoggl eBut t onGadget Cl assPart t oggl e_cl ass;

} XmToggl eButt onGadget Cl assRec;
t ypedef struct _XnToggl eButtonC assRec {

Cor eCl assPart core_cl ass;
XnPrimtiveCd assPart primtive_class;
XmLabel Cl assPart | abel cl ass;
Xniroggl eBut t onCl assPart t oggl e_cl ass;

} Xmloggl eButt onCl assRec;
typedef struct XnPrimtiveCd assRec
Cor eCl assPart core_cl ass;
XnPrimtiveC assPart primtive_cl ass;
} XnPrimtived assRec;
t ypedef struct _XnGadget O assRec
Rect Cbj O assPart rect _cl ass;
XnGadget C assPart gadget cl ass;
} Xnzadget C assRec;
t ypedef struct _Xnmvhanager C assRec

file:///H:/edonkey/docs/programming/1/2/appendix-a.html (7 of 23) [13/12/02 18:10:33]

A Practical Guide to X Window Programming: Developing Applications wi...Classing, and Exported Functions OSF/Motif and Athena XAW (R4 and R3)

Cor eCl assPart core_cl ass;
Conposi teC assPart conposite cl ass;
Constrai nt Cl assPart constraint class;
Xmvanager Cl assPart nmanager cl ass;

} Xmvanager Cl assRec;

A.3. Motif Exported Functions

Header Return Type Function Name

ArrowB.h Widget XmCreateArrowButton();
ArrowBG.h Widget XmCreateArrowButtonGadget();
BulletinB.h Widget XmCreateBulletinBoard();
BulletinB.h Widget XmCreateBulletinBoardDialog();
CascadeB.h Widget XmCreateCascadeButton();
CascadeB.h void XmCascadeButtonHighlight();
CascadeBG.h Widget XmCreateCascadeButtonGadget();
CascadeBG.h void XmCascadeButtonlHighlight();
Command.h Widget XmCreateCommand();
Command.h Widget XmCommandGetChild();
Command.h void XmCommandA ppendValue();
Command.h void XmCommandSetVaue();
Command.h void XmCommandError();
CutPaste.h int XmClipboardBeginCopy();
CutPaste.h int XmClipboardStartCopy();
CutPaste.h int XmClipboardCopy();
CutPaste.h int XmClipboardEndCopy();
CutPaste.h void XmClipboardCancel Copy();
CutPaste.h int XmClipboardCopyByName();
CutPaste.h int XmClipboardundoCopy();
CutPaste.h int XmClipboardL ock();
CutPaste.h int XmClipboardUnlock();
CutPaste.h int XmClipboardStartRetrieve();
CutPaste.h int XmClipboardRetrieve():
CutPaste.h int XmClipboardEndRetrieve();

file:///H:/edonkey/docs/programming/1/2/appendix-a.html (8 of 23) [13/12/02 18:10:33]

A Practical Guide to X Window Programming: Developing Applications wi...Classing, and Exported Functions OSF/Motif and Athena XAW (R4 and R3)

CutPaste.h int XmClipboardlnquireCount();
CutPaste.h int XmClipboardl nquireFormat();
CutPaste.h int XmClipboardlnquireLength();
CutPaste.h int XmClipboardl nquirePendingltems();
CutPaste.h int XmClipboardwWithdrawFormat();
CutPaste.h int XmClipboardRegisterFormat();
DialogS.h Widget XmCreateDialogShell();
DrawingA.h Widget XmCreateDrawingArea();
DrawnB.h Widget XmCreateDrawnButton();
FileSB.h Widget XmCreateFileSel ectionBox();
FileSB.h Widget XmCreateFileSelectionDialog();
FileSB.h Widget XmFileSelectionBoxGetChild();
Form.h Widget XmCreateForm();

Form.h Widget XmCreateFormDialog();
Frame.h Widget XmCreateFrame();

Label.h Widget XmCreatelabel ();

LabelG.h Widget XmCreatel abel Gadget();

List.h void XmListAdditem();

List.h void XmListAddltemUnsel ected();
List.h void XmListDeleteltem();

List.h void XmListDeletePos();

List.h void XmListSelectltem();

List.h void XmListSelectPos();

List.h void XmListDeselectltem():

List.h void XmListDeselectPos():

List.h void XmListDeselectAllltems();
List.h void XmListSetPos();

List.h void XmListSetBottomPos():

List.h void XmListSetltem();

List.h void XmListSetBottomltem();

List.h Boolean XmListitemEXxists();

List.h void XmListSetHorizPos();

List.h Widget XmCreateList();

file:///H:/edonkey/docs/programming/1/2/appendix-a.html (9 of 23) [13/12/02 18:10:33]

A Practical Guide to X Window Programming: Developing Applications wi...Classing, and Exported Functions OSF/Motif and Athena XAW (R4 and R3)

List.h Widget XmCreateScrolledList();
MainW.h Widget XmCreateMainWindow();
MainW.h Widget XmMainWindowSepl();
MainW.h Widget XmMainWindowSep2();
MainW.h void XmMainWindowSetAreas();
MenuShell.h Widget XmCreateMenuShell();
MessageB.h Widget XmCreateM essageBox();
MessageB.h Widget XmCreateM essageDia og();
MessageB.h Widget XmCreateErrorDiaog();
MessageB.h Widget XmCreatel nformationDialog();
MessageB.h Widget XmCreateQuestionDialog();
MessageB.h Widget XmCreateWarningDialog();
MessageB.h Widget XmCreateWorkingDialog();
MessageB.h Widget XmM essageBoxGetChild();
PanedW.h Widget XmCreatePanedWindow();
PushB.h Widget XmCreatePushButton();
PushBG.h Widget XmCreatePushButtonGadget();
PushBG.h Widget XmCreatePushButtonGadget();
RowColumn.h Widget XmCreateRadioBox();
RowColumn.h Widget XmCreateRowColumn();
RowColumn.h Widget XmCreatePopupMenu();
RowColumn.h Widget XmCreatePulldownMenu();
RowColumn.h Widget XmCreateOptionMenu();
RowColumn.h Widget XmCreateMenuBar();
RowColumn.h void XmMenuPosition();
RowColumn.h Widget XmOptionL abel Gadget();
RowColumn.h Widget XmOptionButtonGadget();
Scale.h Widget XmCreateScale();

Scale.h void XmScaleSetV alue();

Scale.h void XmScaleGetVaue();
ScrollBar.h Widget XmCreateScrollBar();
ScrollBar.h void XmScrollBarGetVa ues();
ScrollBar.h void XmScrolIBarSetValues();

file:///H:/edonkey/docs/programming/1/2/appendix-a.html (10 of 23) [13/12/02 18:10:33]

A Practical Guide to X Window Programming: Developing Applications wi...Classing, and Exported Functions OSF/Motif and Athena XAW (R4 and R3)

ScrolledW.h Widget XmCreateScrolledWindow();
ScrolledW.h void XmScrolledWindowSetAreas();
SelectioB.h Widget XmCreateSelectionBox();
SelectioB.h Widget XmCreateSelectionDialog();
SelectioB.h Widget XmCreatePromptDiaog();
SelectioB.h Widget XmSelectionBoxGetChild();
SeparatoG.h Widget XmCreateSeparatorGadget();
Separator.h Widget XmCreateSeparator();
StringSrcP.h XmTextSource XmStringSourceCreate();
StringSrcP.h void XmStringSourceDestroy();
StringSrcP.h char *XmStringSourceGetVaue();
StringSrcP.h void XmStringSourceSetVaue();
StringSrcP.h Boolean XmStringSourceGetEditable();
StringSrcP.h void XmStringSourceSetEditable();
StringSrcP.h int XmStringSourceGetM axL ength();
StringSrcP.h void XmStringSourceSetM axL ength();
Text.h XmTextPosition XmTextGetlnsertionPosition();
Text.h void XmTextSetl nsertionPosition();
Text.h void XmTextSetSource();

Text.h void XmTextShowPosition();
Text.h void XmTextDisableRedisplay();
Text.h void XmTextEnableRedisplay();
Text.h Widget XmCreateText();

Text.h Widget XmCreateScrolledText();
Text.h void XmTextClearSelection();
Text.h char *XmTextGetSelection();
Text.h void XmTextSetSelection():

Text.h char *XmTextGetString();

Text.h void XmTextSetString();

Text.h void XmTextReplace();

Text.h Boolean XmTextGetEditable();

Text.h void XmTextSetEditable();

Text.h int XmTextGetMaxL ength();

file:///H:/edonkey/docs/programming/1/2/appendix-a.html (11 of 23) [13/12/02 18:10:33]

Text.h
TextOutP.h
TextOutP.h
TextOutP.h
TextOutP.h
TextP.h
TextP.h
TextSrcP.h
TextSrcP.h
ToggleB.h
ToggleB.h
ToggleB.h
ToggleBG.h
ToggleBG.h
ToggleBG.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h

void
LineNum
void
LineNum
void

void

void

void

void
unsigned int
void
Widget
unsigned int
void
Widget
int

void

void
XmString
XmString
XmString
XmString
XmString
XmString
Boolean
void

A Practical Guide to X Window Programming: Developing Applications wi...Classing, and Exported Functions OSF/Motif and Athena XAW (R4 and R3)

XmTextSetMaxL ength();
XmTextNumLines();
XmTextLinelnfo();
XmTextPosToLine();
XmTextMarkRedraw();
abort();

beopy();
XmTextInvalidate();
XmTextSetHighlight():
XmToggleButtonGetState():
XmToggleButtonSetState();
XmCreateT oggleButton();
XmToggleButtonGadgetGetState();
XmToggleButtonGadgetSetState();
XmCreateT oggleButtonGadget();
XmUseVersion;
XmCvtStringToUnitType();
XmSetFontUnit();
XmStringCreate();
XmStringDirectionCreate();
XmStringSeparatorCreate();
XmStringSegmentCreate();
XmStringLtoRCreate();
XmStringCreatel toR();
XmStringl nitContext();
XmStringFreeContext();

XmStringComponentType XmStringGetNextComponent();
XmStringComponentType XmStringPeekNextComponent();

Boolean
Boolean
XmFontList
XmFontList
void

XmStringGetNextSegment();
XmStringGetLtoR();
XmFontListCreate();
XmStringCreateFontList();
XmFontListFree();

file:///H:/edonkey/docs/programming/1/2/appendix-a.html (12 of 23) [13/12/02 18:10:33]

Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h
Xm.h

XmFontList
XmFontList
XmString
XmString
XmString
XmString
Boolean
Boolean

int

Boolean
void
Dimension
Dimension
Dimension
void

int

void

void

void

char

A.4. XAW R4 Widgets

Header File
AsciiSink.h
AsciiSrc.h
AsciiText.h
AsciiText.h
AsciiText.h
Box.h
Clock.h
Command.h
Diaog.h

A Practical Guide to X Window Programming: Developing Applications wi...Classing, and Exported Functions OSF/Motif and Athena XAW (R4 and R3)

XmFontListAdd();
XmFontListCopy();
XmStringConcat();
XmStringNConcat();
XmStringCopy();
XmStringNCopy();
XmStringCompare();
XmStringByteCompare();
XmStringL ength();
XmStringEmpty();
XmStringFree();
XmStringWidth();
XmStringHeight();
XmStringBaseling();
XmStringExtent();
XmStringLineCount();
XmStringDraw();
XmStringDrawlmage();
XmStringDrawUnderline();
*malloc();

Widget Class Name
ascii SinkObjectClass;
ascii SrcObjectClass;
ascii TextWidgetClass;
ascii StringWidgetClass;
asciiDiskWidgetClass;
boxWidgetClass;
clockWidgetClass,
commandWidgetClass,
dialogWidgetClass,

file:///H:/edonkey/docs/programming/1/2/appendix-a.html (13 of 23) [13/12/02 18:10:33]

A Practical Guide to X Window Programming: Developing Applications wi...Classing, and Exported Functions OSF/Motif and Athena XAW (R4 and R3)

Form.h formWidgetClass;
Grip.h gripWidgetClass;
Label.h label WidgetClass;
List.h listWidgetClass;
Logo.h logoWidgetClass;
Mailbox.h mailboxWidgetClass;
MenuButton.h menuButtonWidgetClass;
Paned.h panedWidgetClass,
Paned.h vPanedWidgetClass;
Scrollbar.h scrollbarWidgetClass;
Simple.h simpleWidgetClass;
SimpleMenu.h simpleMenuWidgetClass;
Sme.h smeObjectClass,
SmeBSB.h smeBSBODbjectClass;
SmelL.ine.h smeL.ineObjectClass;
StripChart.h stripChartWidgetClass,
Template.h templateWidgetClass;
Text.h textWidgetClass,
TextSink.h textSinkObjectCl ass;
TextSrc.h textSrcObjectClass;
Toggle.h toggleWidgetClass,
Viewport.h viewportWidgetClass,

A.5. XAW (R4) Classing

typedef struct _Ascii SinkC assRec {
(bj ect Cl assPart obj ect cl ass;
Text SIi nkCl assPar t text _sink _cl ass;
Asci i Si nkCl assPart ascii sink class;
} Ascii Si nkd assRec;
typedef struct _Ascii Srcd assRec {
(bj ect Cl assPart obj ect _cl ass;
Text SrcCl assPart text _src_cl ass;
Asci i SrcC assPart ascii _src_cl ass;
} Ascii Srcd assRec;

file:///H:/edonkey/docs/programming/1/2/appendix-a.html (14 of 23) [13/12/02 18:10:33]

A Practical Guide to X Window Programming: Developing Applications wi...Classing, and Exported Functions OSF/Motif and Athena XAW (R4 and R3)

typedef struct _Ascii Textd assRec {
Cor eCl assPart core_cl ass;
Si npl e assPart si npl e_cl ass;
Text O assPart t ext _cl ass;
Asci i C assPart ascii_cl ass;
} Ascii Text C assRec;
typedef struct _Ascii StringCd assRec {
CoreCl assPart core_cl ass;
Si npl ed assPart si npl e_cl ass;
Text O assPart text class;
Asci i C assPart ascii _cl ass;
Ascii StringC assPart string cl ass;
} Ascii Stringd assRec;
typedef struct _Ascii D skCd assRec {
CoreCl assPart core_cl ass;
Si npl e assPart si npl e_cl ass;
Text C assPart text class;
Asci i C assPart ascii _cl ass;
Asci i Di skC assPart di sk_cl ass;
} Ascii D skd assRec;
t ypedef struct Box{ assRec {
CoreCl assPart core_cl ass;
Conposi teC assPart conposite cl ass;
BoxCl assPart box cl ass;
} BoxC assRec;
typedef struct O ockCd assRec {
CoreCl assPart core_cl ass;
Cl ockd assPart cl ock cl ass;
} O ockd assRec;
typedef struct _CommandC assRec {
CoreCl assPart core_cl ass;
Si npl e assPart si npl e_cl ass;
Label C assPart | abel cl ass;
Commandd assPart conmand_cl ass;
} Commandd assRec;
typedef struct _Di al ogd assRec {
CoreCl assPart core_cl ass;
Conposi teC assPart conposite cl ass;
Constrai nt Cl assPart constraint _cl ass;
FornCl assPart formcl ass;
Di al ogC assPart di al og_cl ass;

file:///H:/edonkey/docs/programming/1/2/appendix-a.html (15 of 23) [13/12/02 18:10:33]

A Practical Guide to X Window Programming: Developing Applications wi...Classing, and Exported Functions OSF/Motif and Athena XAW (R4 and R3)

} Dial ogC assRec;

typedef struct _FornC assRec {
CoreCl assPart core_cl ass;
Conposi teC assPart conposite cl ass;
Constrai nt Cl assPart constraint _cl ass;
FornCl assPart formcl ass;

} For nCl assRec;

typedef struct GipCdassRec {

Cor eCl assPart core_cl ass;
Si npl ed assPart sinple_cl ass;
G i pd assPart grip_cl ass;

} Gipd assRec;
typedef struct _Label d assRec {
CoreCl assPart core_cl ass;
Si npl e assPart si npl e_cl ass;
Label C assPart | abel cl ass;
} Label d assRec;
typedef struct ListC assRec {
Cor eCl assPart core_cl ass;
Si npl e assPart si npl e_cl ass;
Li st Cl assPart list _class;
} Listd assRec;
t ypedef struct LogoCd assRec {
CoreC assPart core cl ass;
Logod assPart | ogo cl ass;
} Logod assRec;
typedef struct _Mil boxC assRec {
CoreCl assPart core_cl ass;
Mai | boxCl assPart nmil box_cl ass;
} Mui | boxd assRec;
t ypedef struct _MenuButtonC assRec {

Cor eCl assPart core_cl ass;

Si npl e assPart si npl e_cl ass;

Label C assPart | abel cl ass;
ConmmandC assPart command_cl ass;
MenuBut t onCl assPart nmenuBut t on_cl ass;

} MenuButt onC assRec;

typedef struct Panedd assRec {
Cor eC assPart core_cl ass;
Conposi teCd assPart conposite cl ass;
Constrai nt Cl assPart constraint _cl ass;

file:///H:/edonkey/docs/programming/1/2/appendix-a.html (16 of 23) [13/12/02 18:10:33]

A Practical Guide to X Window Programming: Developing Applications wi...Classing, and Exported Functions OSF/Motif and Athena XAW (R4 and R3)

PanedC assPart paned _cl ass;
} Panedd assRec;
t ypedef struct _Scrollbard assRec {
Cor eCl assPart core_cl ass;
Scrol | bard assPart scrol | bar _cl ass;
} Scroll bard assRec;
t ypedef struct _Sinpl eMenud assRec {

Cor eCl assPart core_cl ass;

Conposi ted assPart conposi te_cl ass;

Shel | Cl assPart shel | cl ass;
OverrideShel | d assPart override shell class;
Si mpl eMenud assPart si npl eMenu_cl ass;

} Si mpl eMenud assRec;

typedef struct _Sinpled assRec {
CoreCl assPart core_cl ass;
Si npl e assPart si npl e_cl ass;

} Si nmpl e assRec;

t ypedef struct _SneBSBC assRec {
Rect Obj C assPart rect cl ass;
Sned assPart snme_cl ass;
SneBSBCl assPart sne_bsb cl ass;

} SmeBSBC assRec;

t ypedef struct _SneLineC assRec {

Rect Obj d assPart rect cl ass;
Sned assPart snme_cl ass;
SnelLi ned assPart snme_line_class;

} SneLi ned assRec;
t ypedef struct _Sned assRec {
Rect Obj d assPart rect cl ass;
Sned assPart snme_cl ass;
} Smed assRec;
typedef struct _StripChartC assRec {
CoreCl assPart core_cl ass;
Si npl ed assPart sinpl e _cl ass;
StripChartC assPart strip_chart _cl ass;
} StripChart d assRec;
typedef struct TextCd assRec {
Cor eC assPart core_cl ass;
Si npl e assPart si npl e_cl ass;
Text O assPart t ext _cl ass;
} Text d assRec;

file:///H:/edonkey/docs/programming/1/2/appendix-a.html (17 of 23) [13/12/02 18:10:33]

A Practical Guide to X Window Programming: Developing Applications wi...Classing, and Exported Functions OSF/Motif and Athena XAW (R4 and R3)

t ypedef struct _TextSinkC assRec {
bj ect O assPart obj ect _cl ass;
Text Si nkCl assPart t ext _sink _cl ass;
} Text Si nkdl assRec;
typedef struct _TextSrcC assRec {
bj ect C assPart obj ect _cl ass;
Text SrcCl assPart t ext Src_cl ass;
} Text Srcd assRec;
t ypedef struct _Toggl ed assRec {
CoreCl assPart core_cl ass;

Si npl e assPart si npl e_cl ass;
Label C assPart | abel cl ass;
ConmmandC assPart command_cl ass;
Toggl ed assPart t oggl e_cl ass;

} Toggl ed assRec;

t ypedef struct _Viewportd assRec {
CoreCl assPart core_cl ass;
Conposi teC assPart conposite cl ass;
Constrai nt Cl assPart constraint _cl ass;
FornCl assPart formcl ass;
Vi ewport Cl assPart vi ewport cl ass;

} Viewportd assRec;

A.6. XAW R4 Exported Functions

Header File Return Type Function Name

AsciiSink.h XawTextSink XawAsciiSinkCreate();
Diaog.h void XawDia ogAddButton();
Diaog.h char *XawDiaogGetVaueString();
Form.h void XawFormDoL ayout();

List.h void XawListChange();

List.h void XawListUnhighlight();

List.h void XawListHighlight();

List.h XawListReturnStruct * XawListShowCurrent();
Paned.h void XawPanedSetMinMax();
Paned.h void XawPanedGetMinMax();
Paned.h void XawPanedSetRefigureM ode();

file:///H:/edonkey/docs/programming/1/2/appendix-a.html (18 of 23) [13/12/02 18:10:33]

A Practical Guide to X Window Programming: Developing Applications wi...Classing, and Exported Functions OSF/Motif and Athena XAW (R4 and R3)

Paned.h
Paned.h
Scrollbar.h
Text.h
Text.h
Text.h
Text.h
Text.h
Text.h
Text.h
Text.h
Text.h
Text.h
Text.h
Text.h
Text.h
Text.h
Text.h
Text.h
Text.h
Text.h
Xawlnit.h

int

void

void

void

int

void

void

void

void

void

void

void

int
XawTextPosition
void
XawTextPosition
void

void

void

Widget
XawTextPosition
void

XawPanedGetNumSub();
XawPanedAllowResiz&();
XawsScrollbarSetThumb();
XawTextChangeOptions();
XawTextGetOptions();
XawTextSetL astPos();
XawTextDisplay();

X awTextEnableRedisplay();
XawTextDisableRedisplay():,
XawTextSetSelectionArray();
XawTextGetSel ectionPos();
XawTextSetSource();
XawTextReplace();
XawTextTopPosition();
XawTextSetl nsertionPoint();
XawTextGetlnsertionPoint();
XawTextUnsetSelection();
XawTextSetSelection();
XawTextInvalidate();
XawTextGetSource()
XawTextSearch()
XawlnitializeWidgetSet();

A.7. XAW R3 Widgets

Header File Widget Class Name
AsciiText.h ascii StringWidgetClass;
AsciiText.h asciiDiskWidgetClass,
Box.h boxWidgetClass;
Clock.h clockWidgetClass,
Command.h commandWidgetClass;
Dialog.h dialogWidgetClass,
Form.h formWidgetClass;

file:///H:/edonkey/docs/programming/1/2/appendix-a.html (19 of 23) [13/12/02 18:10:33]

A Practical Guide to X Window Programming: Developing

Grip.h
Label.h
List.h
Load.h
Logo.h
Mailbox.h
Scroll.h
Simple.h
Text.h
VPaned.h
Viewport.h

Applications wi...Classing, and Exported Functions OSF/Motif and Athena XAW (R4 and R3)

gripWidgetClass;
label WidgetClass,
listWidgetClass;
loadWidgetClass;
logoWidgetClass,
mailboxWidgetClass;
scrollbarWidgetClass,
simpleWidgetClass;
textWidgetClass,
vPanedWidgetClass;
viewportWidgetClass;

A.8. XAW R3 Classing

typedef struct _Ascii StringCd assRec {

Cor eCl assPart
Si npl e assPart
Text Cl assPart

cor

e _cl ass
si npl e_cl ass;

t ext _cl ass;

Ascii StringC assPart ascii_string class;

} Ascii Stringd assRec;

typedef struct _Ascii D skCd assRec {

Cor e assPart

Si npl e assPart

Text C assPart

Asci i D skCl assPart
} Ascii D skd assRec;

core_cl ass;

si npl e_cl ass;

t ext _cl ass;

ascii _di sk cl ass;

t ypedef struct Box{ assRec {

Cor eCl assPart

Conposi t e assPart

BoxCl assPart
} BoxC assRec;

core_cl ass;

conposi te_cl ass;

box cl ass;

typedef struct O ockd assRec {

CoreCl assPart core_

cl ass;

Cl ockd assPart cl ock cl ass;

} O ockd assRec;

typedef struct _CommandC assRec {

Cor e assPart
Si npl ed assPart

core_cl ass;

si npl e_cl ass;

file:///H:/edonkey/docs/programming/1/2/appendix-a.html (20 of 23) [13/12/02 18:10:33]

A Practical Guide to X Window Programming: Developing Applications wi...Classing, and Exported Functions OSF/Motif and Athena XAW (R4 and R3)

Label C assPart | abel cl ass;
Commandd assPart command_cl ass;

} Commandd assRec;

typedef struct _Di al ogd assRec {
CoreCl assPart core_cl ass;
Conposi ted assPart conposite_cl ass;
Constrai nt Cl assPart constraint _cl ass;
FornCl assPart formcl ass;
Di al ogd assPart di al og_cl ass;

} Dial ogd assRec;

typedef struct _FornC assRec {

Cor eC assPart core_cl ass;

Conposi ted assPart conposi te_cl ass;
Constrai nt Cl assPart constraint _cl ass;
For nCl assPart formcl ass;

} For nCl assRec;
typedef struct GipCdassRec {

Cor eC assPart core_cl ass;
Si npl ed assPart sinpl e_cl ass;
G i pd assPart gri p_cl ass;

} Gipd assRec;

typedef struct _Label d assRec {
CoreCl assPart core_cl ass;
Si mpl e assPart si npl e_cl ass;
Label C assPart | abel cl ass;

} Label d assRec;

typedef struct _ListC assRec {

Cor eCl assPart core_cl ass;
Si mpl e assPart si npl e_cl ass;
Li st Cl assPart list _class;

} Listd assRec;

typedef struct _LoadCd assRec {
CoreC assPart core_cl ass;
LoadCl assPart | oad cl ass;

} Loadd assRec;

typedef struct _LogoCd assRec {
CoreCl assPart core_cl ass;
LogoCl assPart | ogo_cl ass;

} Logod assRec;

t ypedef struct _Mail boxC assRec {

CoreCl assPart core_cl ass;

file:///H:/edonkey/docs/programming/1/2/appendix-a.html (21 of 23) [13/12/02 18:10:33]

A Practical Guide to X Window Programming: Developing Applications wi...Classing, and Exported Functions OSF/Motif and Athena XAW (R4 and R3)

Mai | boxCl assPart nmil box_cl ass;
} Mui | boxd assRec;
t ypedef struct _Scrollbard assRec {
Cor eCl assPart core_cl ass;
Scrol | bard assPart scrol | bar _cl ass;
} Scroll bard assRec;
typedef struct _Sinpled assRec {
CoreCl assPart core_cl ass;
Si npl ed assPart si npl e_cl ass;
} Si nmpl e assRec;
typedef struct Textd assRec {
CoreCl assPart core_cl ass;
Si npl ed assPart si npl e_cl ass;
Text C assPart text class;
} Text d assRec;
typedef struct VPanedd assRec {
Cor eC assPart core_cl ass;
Conposi teC assPart conposite cl ass;
Constrai nt Cl assPart constraint _cl ass;
VPanedd assPart vpaned cl ass;
} VPanedd assRec;
t ypedef struct _Viewportd assRec {
CoreCl assPart core_cl ass;
Conposi teC assPart conposite cl ass;
Constraint Cl assPart constraint _cl ass;
FornCl assPart formcl ass;
Vi ewport Cl assPart vi ewport cl ass;
} Viewportd assRec;

A.9. XAW R3 Exported Functions

Header Return Type Function Name

Diaog.h void XtDialogAddButton();
Diaog.h char *XtDialogGetVaueString();
List.h void XtListChange();

List.h void XtListUnhighlight();

List.h void XtListHighlight():

List.h XtListReturnStruct * XtListShowCurrent();

file:///H:/edonkey/docs/programming/1/2/appendix-a.html (22 of 23) [13/12/02 18:10:33]

A Practical Guide to X Window Programming: Developing Applications wi...Classing, and Exported Functions OSF/Motif and Athena XAW (R4 and R3)

Scroll.h void XtScrollBarSetThumb();
Text.h void XtTextDisplay();

Text.h void XtTextSetSelectionArray();
Text.h void XtTextSetL astPos();
Text.h void XtTextGetSel ectionPos();
Text.h void XtTextSetSource();

Text.h int XtTextReplace();

Text.h XtTextPosition XtTextTopPosition();
Text.h void XtTextSetlnsertionPoint();
Text.h XtTextPosition XtTextGetl nsertionPoint();
Text.h void XtTextUnsetSelection();
Text.h void XtTextChangeOptions();
Text.h int XtTextGetOptions();
Text.h void XtTextSetSelection();
Text.h void XtTextInvalidate();

Text.h XtTextSource XtTextGetSource()

Text.h XtTextSink XtAsciiSinkCreate();
Text.h void XtAsciiSinkDestroy();
Text.h XtTextSource XtDiskSourceCreate();
Text.h void XtDiskSourceDestroy();
Text.h XtTextSource XtStringSourceCreate();
Text.h void XtStringSourceDestroy();
VPaned.h void XtPanedSetMinMax();
VPaned.h void XtPanedRefigureM ode();
VPaned.h void XtPanedGetMinMax();
VPaned.h int XtPanedGetNumSub();

Table of Contents

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/appendix-a.html (23 of 23) [13/12/02 18:10:33]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics
and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Table of Contents

Appendix B
Quick Xt Reference Guide X11R4

This appendix lists all the typedefs, function types, and function definitions for the X11R4 Intrinsics. Full
descriptions of the functions can be found in the manuals provided on the MIT release tapes.

The following was compiled by using the various header files:

<X11l/Intrinsic.h>
<X11/ Core. h>

<X11/ Conposite. h>
<X11/ Constraint. h>
<X11/ Obj ect . h>
<X11/ Rect Obj . h>

#defi ne Xt Nunber(arr) ((Cardinal) (sizeof(arr) / sizeof(arr[0])))

B.1. Typedefs

t ypedef char *String;

t ypedef struct _Wdget Rec *W dget;

t ypedef Wdget *W dgetList;

t ypedef struct _Wdgetd assRec *W dget d ass;

t ypedef struct _ConpositeRec *ConpositeW dget;

t ypedef struct _XtActionsRec *XtActionList;

t ypedef struct _XtEventRec *Xt Event Tabl e;

t ypedef struct _XtBoundAccActi onRec *Xt BoundAccActi ons;

typedef struct _XtAppStruct *XtAppContext;

t ypedef unsigned | ong Xt Val ueMask;

t ypedef unsigned | ong XtIntervalld;

t ypedef unsigned | ong Xt I nputld;

t ypedef unsigned | ong Xt Wor kPr ocl d;

t ypedef unsigned int Xt Geonet r yMask;

t ypedef unsigned | ong Xt GCMVask; /* Mask of values that are
used by w dget*/

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (1 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

t ypedef unsigned | ong Pi xel ; /* Index into col or map */
t ypedef char Bool ean;
t ypedef | ong Xt ArgVal ;

t ypedef unsi gned char Xt Enum
t ypedef unsigned int Car di nal ;

t ypedef unsigned short Dinension; /* Size in pixels */
t ypedef short Posi tion; /[* Ofset fromO coordinate */
t ypedef char* Xt Poi nt er;

t ypedef Xt Poi nter Opaque;

B.2. BASE Widget Typedefs

typedef struct _Wdgetd assRec *CoreW dget Cl ass;

typedef struct _WdgetRec *CoreW dget;

t ypedef struct _ConpositeC assRec *ConpositeW dget C ass;
typedef struct _ConstraintC assRec *Constraint Wdget d ass;
typedef struct _(ObjectRec *(bject;

typedef struct _(Objectd assRec *Objectd ass;

t ypedef struct _RectObhj Rec *Rect Qbj;

t ypedef struct _RectObj Cl assRec *Rect Obj C ass;

B.3. Translation Management Typedefs

typedef struct _TranslationData *XtTransl ati ons;
t ypedef struct _Transl ationData *Xt Accel erators;
t ypedef unsigned int Modifiers;

B.4. Intrinsic Specific Procedure Typedefs

t ypedef void (*XtActionProc)(

W dget /* wi dget */,
XEvent * /[* event */,
String* [* paranms */,
Car di nal * /* num parans */

);

t ypedef Xt ActionProc* XtBoundActi ons;
t ypedef struct _XtActionsRec{

String string;

Xt Act i onProc proc;
} Xt ActionsRec;

t ypedef enum {

/* address node paraneter representation */

/~k ____________________________________ */
Xt Addr ess, [* address */

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (2 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

Xt BaseOf f set [* of fset */

Xt nredi at e, /* const ant */

Xt Resour ceStri ng, /* resource name string */
Xt Resour ceQuark, /* resource nanme quark */
Xt W dget BaseOf f set , /* offset from ancestor */
Xt Procedur eAr g /* procedure to invoke */

} Xt Addr essMbde;

t ypedef struct {
Xt Addr essMode addr ess_node;
Xt Poi nt er addr ess i d;
Car di nal Si ze;
} Xt Convert ArgRec, *XtConvert ArgLi st;

t ypedef void (*XtConvert ArgProc) (

W dget /* w dget */,
Car di nal * [* size */,
Xr mVal ue* /* val ue */

);
t ypedef struct {
Xt Geonet ryMask request node;
Position x, y;
D mensi on wi dt h, hei ght, border_w dt h;
W dget sibling;
i nt stack_node; /| * Above, Below, Toplf, Bottom f, QOpposite,
Dont Change */
} Xt Wdget Geonetry;

/* Additions to Xlib geonetry requests: ask what woul d happen,
don't do it */

#defi ne Xt CWueryOnly (1 << 7)
/* Additions to Xlib stack nodes: don't change stack order */
#def i ne Xt SMDont Change 5
typedef void (*XtConverter)(
Xrnval ue* /* args */,
Car di nal * /* num. args */,
Xr mval ue* [* from?*/,
Xrmval ue* /[* to */
);
t ypedef Bool ean (*XtTypeConverter) (
Di spl ay* /* dpy */,
Xr nval ue* [* args */,
Car di nal * /* num.args */,
Xr mval ue* /[* from?*/,
Xrnval ue* /* to */,
Xt Poi nter* /* converter data */,
);

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (3 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

t ypedef void (*XtDestructor)(
Xt AppCont ext /* app */,

Xr nival ue* /* to */,

Xt Poi nt er /* converter data */,
Xrnval ue* [* args */,

Car di nal * /[* num.args */

);

t ypedef Opaque Xt CacheRef;
t ypedef Opaque Xt Acti onHookl d;

t ypedef void (*XtActi onHookProc) (

W dget [* w*/,
Xt Poi nt er [* client data */,
String /* action_nanme */,
XEvent * /* event */,
String* /| * params */,
Car di nal * /[* num_parans */
);
t ypedef void (*Xt KeyProc) (
Di spl ay* [* dpy */,
KeyCode* /* keycode */,
Modi fi ers* /* nmodifiers */,
Modi fi er s* /* nodifiers return */,
Key Synt /* keysymreturn */
);
t ypedef void (*XtCaseProc)(
Key Synt [* keysym */,
Key Synt /* lower_return */,
Key Sy nr [* upper_return */
);
t ypedef void (*Xt Event Handl er) (
W dget /* widget */,
Xt Poi nt er /* closure */,
XEvent * /* event */,
Bool ean* /* continue_to _dispatch */
);

t ypedef unsigned | ong Event Mask;
typedef enum {XtListHead, XtListTail } XtListPosition;

t ypedef unsigned Iong Xt nput Mask;

#defi ne Xtl nput NoneMask oL
#defi ne Xtl nput ReadMask (1L<<0)
#define XtlnputWiteMask (1L<<1)

file:///H:/edonkey/docs/programming/1/2/appendix-b.html (4 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

#defi ne Xtl nput Except Mask (1L<<2)

t ypedef void (*XtTi nerCall backProc) (
Xt Poi nt er /* closure */,
Xtintervalld* [/* id */

);

t ypedef void (*XtlnputCall backProc) (
Xt Poi nt er [* closure */,
I nt* /* source */,
Xt I nput | d* [* id */

);

t ypedef struct {
String namne;

Xt ArgVal val ue;
} Arg, *ArglList;

t ypedef Xt Pointer Xt Var Ar gsLi st ;

t ypedef void (*XtCall backProc) (
W dget /* wi dget */,
XtPointer [/* closure */, /* data the application registered */
XtPointer [/* call _data */ [* callback specific data */

)

typedef struct _XtCall backRec {
Xt Cal | backProc cal |l back;
Xt Poi nt er cl osure;

} XtCall backRec, *XtCall backLi st;

t ypedef enum {
Xt Cal | backNoLi st
Xt Cal | backHasNone,
Xt Cal | backHas Sone
} Xt Cal | backSt at us;

t ypedef enum {

Xt Geonet ryYes, / * Request accepted. */

Xt Geonret r yNo, / * Request denied. */

Xt Geonet r yAl nost /* Request denied, but willing to take
repl yBox. */

Xt Geonet r yDone /* Request accepted and done. */

} Xt GeonetryResul t;

t ypedef enum { Xt G abNone, Xt G abNonexcl usive, XtG abExcl usive}
Xt G abKi nd;

t ypedef struct {

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (5 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

W dget shell _w dget;
W dget enabl e_wi dget;
} Xt Popdownl DRec, * Xt Popdownl D;

t ypedef struct _XtResource {

String resource_nane; /* Resource nane */
String resource class;/* Resource class */
String resource_type; /* Representation type desired */

Cardinal resource_size; /* Size in bytes of representation */
Cardinal resource offset;/* Ofset frombase to put resource
val ue */
String default _type; /* Representation type of specified
default */
Xt Poi nter default_addr; /* Address of default resource
*/
} Xt Resource, *XtResourcelist;
t ypedef void (*XtErrorMsgHandl er) (

String /[* nanme */,

String [* type */,

String /* class */,

String /* defaultp */,

String* /* parans */,

Car di nal * /* num parans */
);
t ypedef void (*XtErrorHandl er) (

String /* meg */

);
t ypedef Bool ean (* Xt Wor kProc) (

Xt Poi nt er /[* closure */ /* data the application

regi stered */

);

t ypedef struct {
char match
String substitution;
} SubstitutionRec, *Substitution;

t ypedef Boolean (*XtFilePredicate)(/* String filenanme */);

t ypedef Xt Poi nter XtRequestld;

/*
* Routine to get the value of a selection as a given type.
* Returns TRUE if it successfully got the val ue as requested,
* FALSE ot herw se. Selection is the atom describing the type of
* selection (e.g., primary or secondary). Value is set to the
*

poi nter of the converted value, with length el enents of data,

file:///H:/edonkey/docs/programming/1/2/appendix-b.html (6 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

each of size indicated by format. (This pointer will be freed
usi ng Xt Free when the sel ection has been delivered to the
requestor.) Target is the type that the conversion should use
if possible; type is returned as the actual type returned.
Format should be either 8, 16, or 32, and specifies the word
size of the selection, so that Xlib and the server can convert
it between different machine types. */

* %X * X

* ok

*

t ypedef Bool ean (*Xt Convert Sel ecti onProc) (

W dget /* w dget */,
At ont /* selection */,
At ont /* target */,
At onf /* type_return */,
Xt Poi nter* [* value_return */,
unsigned long* /* length_ return */,
int* /* format _return */
);
/*

* Routine to informa wdget that it no | onger owns the given
* selection. */

t ypedef void (*XtLoseSel ecti onProc) (
W dget /* widget */,
At onf /* selection */

)

/*
* Routine to informthe sel ection owner when a sel ection requestor
* has successfully retrieved the sel ection val ue.

*/
t ypedef void (*XtSel ecti onDoneProc) (
W dget /* widget */,
At ont /* selection */,
At ont /* target */
);
/*

* Routine to call back when a requested val ue has been obtai ned
* for a selection.

*/

t ypedef void (*Xt Sel ectionCall backProc) (
W dget /* widget */,
Xt Poi nt er /* closure */,
At onf /* selection */,
At ont /I* type */,
Xt Poi nt er /* value */,

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (7 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

unsigned long* /* length */,

I nt* /[* format */
);
t ypedef void (*XtLoseSel ectionlncrProc) (
W dget /* w dget */,
At ont /* selection */,
Xt Poi nt er /* client data */
);
t ypedef void (*XtSel ecti onDonel ncrProc) (
W dget /* wi dget */,
At ont /* selection */,
At ont /* target */,
Xt Request | d* /* receiver_id */,
Xt Poi nt er /* client _data */
);
t ypedef Bool ean (* Xt Convert Sel ecti onl ncrProc) (
W dget /* wi dget */,
At ont /* selection */,
At ont /* target */,
At ont [* type */,
Xt Poi nter* /* value */,
unsigned long* /* length */,
I nt* [* format */,
unsigned long* /* max_|length */,
Xt Poi nt er /* client data */,
Xt Request | d* /* receiver_id */
);
t ypedef void (*Xt Cancel Convert Sel ecti onProc) (
W dget /* widget */,
At ont /* selection */,
At ont /* target */,
Xt Request | d* /* receiver_id */,
Xt Poi nt er /[* client _data */
);

B.5. Container Routines

voi d Xt Managechi | dren(

W dget Li st [* children */,
Car di nal /* num children */
);
voi d Xt ManageChi | d(
W dget [* child */
);

voi d Xt UnmanageChi | dr en(

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (8 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

W dget Li st [* children */,
Car di nal /* numchildren */
);
voi d Xt UnmanageChi | d(
W dget [* child */
)

B.6. Resource Conversion

Bool ean Xt Convert AndSt or e(

W dget /* widget */,
CONST String [* fromtype */,
Xr mval ue* /[* from?*/,
CONST String [/* to_type */,
Xr nval ue* /* to_in_out */
);
Bool ean Xt Cal | Converter(
Di spl ay* /[* dpy */,
Xt TypeConvert er /* converter */,
XrnVal uePtr /* args */,
Car di nal /* hum args */,
Xrmval uePtr [* from*/,
Xrnval ue* /[* to_return */,
Xt CacheRef * /* cache_ref _return */
);

B.7. Event Handling

Bool ean Xt Di spat chEvent (

XEvent * [* event */
);
Bool ean Xt Cal | Accept Focus(
W dget /* widget */,
Ti me* [* t */
);

Bool ean Xt PeekEvent (
XEvent * /* event */

)

Bool ean Xt AppPeekEvent (
Xt AppCont ext [* appCont ext */,
XEvent * /* event */

B.8. Checking Routines

file:///H:/edonkey/docs/programming/1/2/appendix-b.html (9 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

Bool ean Xt | sSubcl ass(
W dget /* wi dget */,
W dget C ass /* widgetd ass */

);

Bool ean Xt 1 sObj ect (
W dget /* object */

);

Bool ean _ Xt CheckSubcl assFlag(/* inplenentation-private */
W dget /* object */,
Xt Enum /* type_flag */

)

Bool ean _XtlsSubclassO(/* inplenentation-private */
W dget /* object */,
W dget Cl ass /* widget_class */,
W dget Cl ass /* flag_class */,
Xt Enum /* type_flag */

);

Bool ean Xt | sManaged(
W dget /* rectobj */

);

Bool ean XtlsReal i zed(
W dget /* widget */

);

Bool ean XtlsSensitive(
W dget /* widget */

);

B.9. Selection Management

/*
* Set the given widget to own the selection. The convertProc
* shoul d be call ed when soneone wants the current value of the
* selection. If At is not null, the
* | osesSel ection gets called whenever the wi ndow no | onger owns
* the selection (because soneone else took it). If it is not
* null, the doneProc gets called when the w dget has provided the
* current value of the selection to a requestor and the requestor
* has indicated that it has succeeded in reading At by deleting
* the property.
*/

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (10 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

Bool ean Xt OwmnSel ecti on(

W dget /* w dget */,
At om /* selection */,
Ti me [* time */,

Xt Convert Sel ecti onProc [/* convert */,
Xt LoseSel ectionProc /* | ose */,
Xt Sel ecti onDoneProc /* done */

)
/* incremental selection interface */
Bool ean Xt OwmnSel ecti onl ncrenent al (
W dget /* widget */,
At om /* selection */,
Ti me [* tinme */,

Xt Convert Sel ectionlncrProc /* convert call back */,
Xt LoseSel ectionlncrProc /* |ose_call back */,

Xt Sel ecti onDonel ncrProc /* done_cal | back */,

Xt Cancel Sel ecti onCal | backProc /* cancel call back */,
Xt Poi nt er /* client _data */

);
B.10. Geometry Management

Xt GeonetryResul t Xt MakeResi zeRequest (

W dget /* widget */,
Di nensi on /* width */,
Di nensi on /* height */,
D nensi on* [* replyWdth */,
Di nensi on* /* replyHei ght */
);
voi d Xt Transf or mCoor ds(
W dget /* widget */,
Posi tion [* x */,
Posi tion /*y *[,
Posi ti on* [* rootx */,
Positi on* [* rooty */
);
voi d Xt StringConversi onWar ni ng(
CONST String /* from*/, [/* String attenpted to convert. */
CONST String /* toType */ [/* Type attenpted to convert it to.*/
);
voi d Xt Di spl ayStri ngConver si onVar ni ng(

Di spl ay* [* dpy */,
CONST String [* from*/, [* String attenpted to convert. */

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (11 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

CONST String /* toType *//* Type attenpted to convert it to. */
);

Xt Convert ArgRec col or Convert Args[];

Xt Convert ArgRec screenConvertArg[];

voi d Xt AppAddConverter(/* obsolete */

Xt AppCont ext
CONST String
CONST String
Xt Converter

Xt Convert ArgLi st

Car di nal
)

/* app */,

[* fromtype */,
/* to_type */,
/*

converter */,
/* convert _args */,

/* num.args */

voi d Xt AddConverter(/* obsolete */

CONST String [* fromtype */,
CONST String /* to_type */,
Xt Converter /* converter */,

Xt Convert Ar gLi st

Car di nal
)

/*

/* convert_args */,
num args */

voi d Xt Set TypeConverter (
/[* fromtype */,
/* to_type */,

CONST String
CONST string

Xt TypeConverter

Xt Convert ArglLi st

Car di nal
Xt CacheType
Xt Dest ruct or

)

/* converter */,
/* convert_args */,

/* num.args */,
/| * cache_type */,
[* destructor */

voi d Xt AppSet TypeConverter (

Xt AppCont ext /* app_context */,
CONST string /* fromtype */,
CONST String /* to_type */,

Xt TypeConverter

Xt Convert ArgLi st

Car di nal
Xt CacheType

/*
/*

/* converter */,

/* convert _args */,
num args */,
cache_type */,

Xt Dest ruct or / * destructor */
);
voi d Xt Convert (
W dget /* widget */,
CONST String /* fromtype */,
Xr nval ue* [* from*/,
CONST String /* to_type */,

file://[H:/ledonkey/docs/programming/1/2/appendix-b.html (12 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

Xr mval ue* /[* to_return */
);
void Xt Direct Convert (
Xt Converter /* converter */,
XrnVal uePtr /* args */,
Car di nal /* num. args */,
Xr mval uePtr [* from?*/,
Xrnval ue* /[* to_return */
)

B.11. Translation Management

xt Transl ati ons Xt ParseTransl ati onTabl e(
CONST String /* source */

)

Xt Accel erators Xt ParseAccel er at or Tabl e(
CONST String /* source */

);
voi d XkOverri deTransl ati ons(
W dget /* wi dget */,
Xt Tr ansl aki ons /* new */
);
voi d Xt Augnent Tr ansl at i ons(
W dget /* w dget */,
Xt Transl ati ons /* new */
);
void Xtlnstall Accel erators(
W dget /* destination */,
W dget /* source */
);
void Xtlnstall All Accel erators(
W dget /* destination */,
W dget /* source */
);
voi d Xt Uni nstall Transl ati ons(
W dget /* widget */
);

voi d Xt AppAddAct i ons(
Xt AppCont ext /* app */,
Xt Act i onLi st /* actions */,

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (13 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

Car di nal [*

);
voi d Xt AddActi ons(

Xt Acti onLi sk
Car di nal

/*
/*
)

num acti ons */

actions */,
num acti ons */

Xt Act i onHookl d Xt AppAddAct i onHook(

Xt AppCont ext /*
Xt Act i onHookPr oc
Xt Poi nt er

),

app */,
/* proc */,
/* client _data */

voi d Xt RemoveAct i onHook(

Xt Act i onHookl d

);

voi d Xt Call Acti onProc(
W dget /*
CONST String /*
XEvent * /*
String* [*
Car di nal | *

[* id */

wi dget */,
action */,
event */,
parans */,
num par ans */

);
voi d Xt Regi ster G abActi on(

Xt Act i onProc /* action_proc */,
Bool ean /* owner _events */,
unsi gned i nt /* event _mask */,
i nt [* pointer_node */,
i nt /| * keyboard_node */
);
void XtSetMultidickTi me(
Di spl ay* [* dpy */,
i nt [* mlliseconds */
)
int XtGetMiltidickTinmg(
Di spl ay* /* dpy */
)
KeySym Xt Get Act i onKeysyn(
XEvent * /* event */,
Modi fi ers* /[* nodifiers return */
)

B.12. Keycode and Keysym Procedures

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (14 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

voi d Xt Tr ansl at eKeycode(

Di spl ay* [* dpy */,
KeyCode /| * keycode */,
Modi fiers /* nodifiers */,
Modi fi er s* /[* nodifiers return */,
Key Sy nt /[* keysymreturn */
);
voi d Xt Tr ansl at eKey/(
Di spl ay* [* dpy */,
KeyCode* /* keycode */,
Modi fi ers* [* nmodifiers */,
Modi fi er s* /* modifiers return */,
Key Sy n¥ /* keysymreturn */
);
voi d Xt Set KeyTr ansl at or (
Di spl ay* [* dpy */,
Xt KeyPr oc /* proc */
);
voi d Xt Regi st er CaseConverter (
Di spl ay* [* dpy */,
Xt CaseProc /* proc */,
KeySym /* start */,
KeySym [* stop */
);
voi d Xt Convert Case(
Di spl ay* [* dpy */,
KeySym [* keysym */,
Key Sy nt /* lower_return */,
Key Sy nt [* upper_return */
);
KeySynt Xt Get Keysynirabl e(
Di spl ay* [* dpy */,
KeyCode* /* mn_keycode_return */,
I nt* | * keysyns_per_keycode_return */
);
voi d Xt KeysynToKeycodelLi st (
Di spl ay* [* dpy */,
KeySym [* keysym */,
KeyCode* * /| * keycodes_return */,
Car di nal * /* keycount _return */
);

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (15 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

B.13. Event Management

#define Xt AllEvents ((Event Mask) -1L)

voi d XtlnsertEvent Handl er (

W dget /* wi dget */,
Event Mask /* event Mask */,
Bool ean /* nonmaskabl e */,
Xt Event Handl er /* proc */,
Xt Poi nt er /* closure */,
Xt Li st Position /* position */
)
voi d Xtl nsert RawEvent Handl er (
W dget /* w dget */,
Event Mask /* event Mask */,
Bool ean /* nonmaskabl e */,
Xt Event Handl er /* proc */,
Xt Poi nt er /* closure */,
Xt Li st Position /* position */
)
voi d Xt AddEvent Handl er (
W dget /* widget */,
Event Mask /* event Mask */,
Bool ean /* nonmaskabl e */,
Xt Event Handl er /* proc */,
Xt Poi nt er /* closure */
)
voi d Xt RenmoveEvent Handl er (
W dget /* wi dget */,
Event Mask /* event Mask */,
Bool ean /* nonmaskabl e */,
Xt Event Handl er /* proc */,
Xt Poi nt er /* closure */
)
voi d Xt AddRawEvent Handl er (
W dget /* widget */,
Event Mask /* event Mask */,
Bool ean /* nonmaskabl e */,
Xt Event Handl er [* proc */,
Xt Poi nt er /* closure */
);
voi d Xt RenoveRawEvent Handl er (
W dget /* widget */,

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (16 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

/*
nonnaskabl e */,
/* proc */,

/* closure */

event Mask */,

wi dget */,
/* event Mask */,
nonnaskabl e */,
/* proc */,
/* closure */,
/* position */

wi dget */,
/* event Mask */,
nonnaskabl e */,
/* proc */,
/* closure */,
/[* position */

wi dget */

wi dget */,
excl usive */,
spring_| oaded */

Event Mask
Bool ean [*
Xt Event Handl er
Xt Poi nt er
)
voi d XtlnsertEvent Handl er (
W dget | *
Event Mask
Bool ean [*
Xt Event Handl er
Xt Poi nt er
Xt Li st Position
);
voi d Xtl nsert RawEvent Handl er (
W dget /*
Event Mask
Bool ean /*
Xt Event Handl er
Xt Poi nt er
Xt Li st Position
)
Event Mask Xt Bui | dEvent Mask(
W dget /*
)
voi d Xt AddGr ab(
W dget /*
Bool ean /*
Bool ean [*
)
voi d Xt RenmoveG ab(
W dget /*
)
voi d Xt ProcessEvent (
Xt | nput Mask [*
)

voi d Xt AppProcessEvent (

Xt AppCont ext

Xt I nput Mask
);
voi d Xt Mai nLoop(
voi d

wi dget */

mask */
[* app */,
/* mask */

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (17 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

);
voi d Xt AppMai nLoop(
Xt AppCont ext [* app */
);
voi d Xt AddExposur eToRegi on(
XEvent * /* event */,
Regi on /* region */
);
voi d Xt Set Keyboar dFocus(
W dget /* subtree */,
W dget / * descendent */
);
Ti me Xt Last Ti nest anpPr ocessed(
Di spl ay* [* dpy */
);

B.14. Event Gathering Routines

Xtlnterval I d Xt AddTi neQut (
unsigned long /* interval */,
Xt Ti mer Cal | backProc /* proc */,
Xt Poi nt er /* closure */

),

XtInterval ld Xt AppAddTi meQut (
Xt AppCont ext /* app */,
unsigned long /* interval */,
Xt Ti mer Cal | backProc /* proc */,

Xt Poi nt er /* closure */
),
voi d Xt RenoveTi nmeCQut (
Xtlnterval ld [* tinmer */
)
Xt I nputld Xt Addl nput (
i nt /* source */,
Xt Poi nt er /* condition */,
Xt I nput Cal | backProc /* proc */,
Xt Poi nt er /* closure */
)
Xt I nputld Xt AppAddl nput (
Xt AppCont ext /* app */,
i nt /* source */,

file://[H:/ledonkey/docs/programming/1/2/appendix-b.html (18 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

Xt Poi nt er /[* condition */,
Xt nput Cal | backProc /* proc */,
Xt Poi nt er /* closure */
);
voi d Xt Renovel nput (
Xt nputld [* id */
)
voi d Xt Next Event (
XEvent * /* event */
)
)

voi d Xt AppNext Event (
Xt AppCont ext /| * appCont ext */,

XEvent * /* event */
)
#defi ne Xt ZMXEvent 1
#defi ne Xt MIi mer 2

#define Xtl MAl ternatel nput 4
#define XtI MAL1l (Xtl1 MXEvent | XtIMIinmer | XtlMAlternatel nput)

Xt I nput Mask Xt Pendi ng(
voi d

);

Xt | nput Mask Xt AppPendi ng(
Xt AppCont ext [* appContext */

);
B.15. Logic Macros

#define XtlsRect Obj (object) (_Xt CheckSubcl assFl ag(obj ect,
(Xt Enum) 0x02))

#define XtlsW dget (object) (_Xt CheckSubcl assFl ag(obj ect,

(Xt Enum) 0x04))

#defi ne XtlsConposite(w dget) (_Xt CheckSubcl assFl ag(w dget,
(Xt Enum) 0x08))

#define XtlsConstraint(w dget) (_Xt CheckSubcl assFl ag(w dget,
(Xt Enum) 0x10))

#define XtlsShell (w dget) (_Xt CheckSubcl assFl ag(w dget,

(Xt Enum 0x20))
#define xtlsOverrideShel | (w dget) \
(_Xt1sSubcl assO (wi dget
(W dget d ass) overri deShel | Wdget d ass, \
(W dget C ass) shel | Wdget C ass, (Xt Enum 0x20))

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (19 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

#define XtlsWvshel | (w dget) (_XtCheckSubcl assFl ag(w dget,
(Xt Enum) 0x40))
#define XtlsVendor Shel | (w dget) \
(_XtlsSubcl assO (w dget, (W dgetd ass)vendor Shel | Wdget C ass, \
(W dget d ass) wnShel | W dget Cl ass, (Xt Enum) 0x40))
#define XtlsTransi ent Shell (w dget) \
(_Xt1sSubcl assOf (wi dget,
(W dget d ass) transi ent Shel | Wdget d ass, \
(W dget d ass) wnShel | W dget O ass, (Xt Enum) 0x40))
#define XtlsTopLevel Shel | (w dget)
(_Xt CheckSubcl assFl ag(w dget, (Xt Enum 0x80))
#define XtlsApplicationShell (w dget) \
(_Xt1lsSubcl assO (wi dget
(W dget d ass) appl i cati onShel | Wdget d ass, \
(W dget d ass) topLevel Shel | Wdget C ass, (Xt Enum 0x80))

B.16. Widget State

voi d Xt Real i zeW dget (

W dget /* widget */
);
voi d Xt Unreal i zeW dget (
W dget /* widget */
);
voi d Xt DestroyW dget (
W dget /* widget */
);
voi d Xt Set Sensitive(
W dget /* widget */,
Bool ean /[* sensitive */
);
voi d Xt Set MappedWhenManaged(
W dget /* widget */,
Bool ean I * mappedWhenManaged */
);
W dget Xt NanmeToW dget (
W dget /* root */,
CONST String /* name */
);
W dget Xt W ndowToW dget (
Di spl ay* /* display */,
W ndow /* w ndow */

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (20 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

);
B.17. Argument List

#define XtSetArg(arg, n, d) \
((void)((arg).nanme = (n), (arg).value = (XtArgval)(d)))

ArgLi st Xt Mer geAr gLi st s(

Ar gLi st /* argsl */,

Car di nal /* num.argsl */,

Ar gLi st /* args2 */,

Car di nal /* num.args2 */
)
#defi ne Xt VaNest edLi st "Xt VaNestedList™
#defi ne XtVaTypedArg "Xt VaTypedAr g"

Xt Var Ar gsLi st Xt VaCr eat eAr gsLi st (
Xt Poi nt er [*unused*/,
);
B.18. Information Gathering Routines

Di splay *XtDi spl ay(

W dget /* w dget */
);
Di splay *XtDi spl ayOf Obj ect (
W dget /* w dget */
);
Screen * Xt Screen(
W dget /* widget */
);
Screen * Xt ScreenO™f (bj ect (
W dget /* object */
);
W ndow Xt W ndow(
W dget /* widget */
);
W ndow Xt W ndowOf Cbj ect (
W dget /* object */
);

String XtName(

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (21 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

W dget /* obj ect
);
W dget O ass Xt Super cl ass(

W dget /* obj ect
);
W dget O ass Xt d ass(

W dget /* obj ect
);
W dget Xt Par ent (

W dget /* wi dget
);

B.19. Widget Mapping

#defi ne Xt MapW dget (w dget)

#defi ne Xt UnmapW dget (w dget)
XUnmapW ndow(Xt Di spl

B.20. Callbacks

voi d Xt AddCal | back(
W dget
CONST String
Xt Cal | backProc
Xt Poi nt er

/* wi dget

/* cl

);

voi d Xt RenoveCal | back(
W dget /* w dget
CONST String
Xt Cal | backProc
Xt Poi nt er /* cl

)

voi d Xt AddCal | backs(
W dget /* wi dget
CONST String
Xt Cal | backLi st

);

voi d Xt RenoveCal | backs(
W dget /* w dget
CONST String

*/

*/

XMapW ndow(Xt Di spl ay(w dget),
Xt W ndow(wi dget))

\

ay(w dget), XtW ndow wi dget))

*/

/* cal | back_name */,
/* call back */,

osure */

*/

/* cal | back_name */,
/* call back */,

osure */

*/

[* cal | back_nanme */,
/| * cal | backs */

*/

/ * cal | back_name */,

file://[H:/ledonkey/docs/programming/1/2/appendix-b.html (22 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

Xt Cal | backLi st [* cal |l backs */
);
voi d Xt RenoveAl | Cal | backs(

W dget /* widget */,

CONST String /* cal | back_nanme */
);
void Xt Call Cal | backs(

W dget /* w dget */,

CONST String /* cal | back_nane */,

Xt Poi nt er /[* call _data */
);
voi d Xt Call Cal | backLi st (

W dget /* wi dget */,

Xt Cal | backLi st /* cal |l backs */,

Xt Poi nt er [* call _data */
);
Xt Cal | backSt at us Xt HasCal | backs(

W dget /* widget */,

CONST String /* cal | back_nane */
);

B.21. Geometry Management

Xt GeonetryResul t Xt MakeGeonet r yRequest (

W dget /* widget */,

Xt W dget GCeonet ry* /* request */,

Xt W dget Geonet ry* [* reply return */
);

Xt GeonetryResul t Xt Quer yGeonet ry(

W dget /* widget */,

Xt W dget Geonet ry* /* intended */,

Xt W dget Geonet ry* [* reply _return */
)

B.22. Pop-ups

W dget Xt Cr eat ePopupShel | (
CONST String /[* name */,
W dget C ass /* wi dgetC ass */,

W dget /* parent */,
Ar gLi st [* args */,
Car di nal /* num.args */

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (23 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

)

W dget Xt VaCr eat ePopupShel | (
CONST String /* name */,

W dget C ass /* wi dgetd ass */,
W dget /* parent */,
)
voi d Xt Popup(
W dget /* wi dget */,
Xt G abKi nd /* grab_kind */
);
voi d Xt PopupSpri ngLoaded(
W dget /* wi dget */
);
voi d Xt Cal | backNone(
W dget /* widget */,
Xt Poi nt er /* closure */,
Xt Poi nt er /[* call _data */
)
voi d Xt Cal | backNonexcl usi ve(
W dget /* widget */,
Xt Poi nt er /* closure */,
Xt Poi nt er /* call _data */
)
voi d xt Cal | backExcl usi ve(
W dget /* widget */,
Xt Poi nt er /* closure */,
Xt Poi nt er /* call _data */
);
voi d Xt Popdown(
W dget /* wi dget */
)
voi d Xt Cal | backPopdown(
W dget /* widget */,
Xt Poi nt er /* closure */,
Xt Poi nt er /[* call _data */
)
voi d Xt MenuPopupActi on(
W dget /* widget */,
XEvent * /* event */,
String* /| * params */,

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (24 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

Cardi nal * /[* num parans */

)
B.23. Widget Creation

W dget Xt Creat eW dget (
CONST String /[* nanme */,
W dget C ass /* w dget _class */,

W dget [* parent */,
Ar gLi st /* args */,
Car di nal /* num.args */

)

W dget Xt Cr eat eManagedW dget (
CONST String /[* nanme */,
W dget C ass /* w dget _class */,

W dget /* parent */,
ArgLi st /* args */,
Car di nal /* num.args */

),

W dget Xt VaCreat eW dget (
CONST String /* name */,
W dget C ass /* wi dget */,
W dget /* parent */,

);

W dget Xt VaCreat eManagedW dget (
CONST String /* name */,
W dget ass /* wi dget class */,
W dget /* parent */,

);

W dget Xt CreateApplicationShell (
CONST String /* name */,
W dget C ass /* widget class */,
ArgLi st [* args */,
Car di nal /* num_args */

);

W dget Xt AppCr eat eShel | (
CONST String /* nanme */,
CONST String /* class */,
W dget O ass /* widget class */,

Di spl ay* /[* display */,
ArgLi st [* args */,
Car di nal /* num. args */

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (25 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

W dget Xt VaAppCreat eShel | (
CONST String /* name */,
CONST String /* class */,
W dget Cl ass /* widget class */,
Di spl ay* /[* display */,

)
B.24. Toolkit Initialization

void XtToolkitlnitialize(
voi d

);

void XtDisplaylnitialize(
Xt AppCont ext /| * appCont ext */,
Di spl ay* [* dpy */,
CONST String /* name */,
CONST String /* class */,
Xr mOpt i onDescRec* /* options */,

Car di nal /* num options */,
Car di nal * /* argc */,
char ** /* argv */

W dget XtApplnitialize(
Xt AppContext* /* app_context_return */,

CONST String /* application_class */,
XrmOpt i onDesclLi st /* options */,

Car di nal /* num options */,

Cardi nal * /* argc_in_out */,

String* [* argv_in_out */,

CONST String* /* fall back resources */,
ArgLi st [* args */,

Car di nal /* num.args */

W dget Xt VaApplnitialize(
Xt AppContext* [* app_context _return */,
CONST String /* application_class */,
Xr mOpt i onDesclLi st /* options */,

Car di nal /* num.options */,
Cardi nal * /* argc. _in_out */,
String* [* argv_in_out */,

CONST String* /* fall back _resources */,

),

Wdget Xtlnitialize(
CONST String /* name */,

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (26 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

CONST String /* class */,

XrmOpt i onDescRec /* options */,
Car di nal /* num options */,
Cardi nal * /* argc */,
char ** /[* argv */

)

Di spl ay *Xt OpenDi spl ay(
Xt AppCont ext /[* appContext */,
CONST String /* displayNanme */,
CONST String / * appl Name */,
CONST String /* classNanme */,
Xr mOpt i onDescRec* [* urlist */,

Car di nal /[* numurs */,
Car di nal * [* argc */,
char ** /* argv */
);
Xt AppCont ext Xt Creat eAppl i cati onCont ext (
voi d
);

voi d Xt AppSet Fal | backResour ces(

Xt AppCont ext /* app_context */,

CONST String* /* specification list */
);

voi d Xt DestroyApplicati onCont ext (
Xt AppCont ext /| * appCont ext */

)

void XtlnitializeWdgetd ass(
W dget O ass /* widget class */
);

Xt AppCont ext Xt W dget ToAppl i cati onCont ext (
W dget /* widget */

);

Xt AppCont ext Xt Di spl ayToAppl i cati onCont ext (
Di spl ay* /* dpy */

);

XrmDat abase Xt Dat abase(
Di spl ay* /* dpy */
);

voi d Xt Cl oseDi spl ay(
Di spl ay* /* dpy */

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (27 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

)

voi d Xt CopyFr onPar ent (
W dget /* widget */,
i nt [* offset */,
Xr mval ue* [* val ue */

)

voi d Xt CopyDef aul t Dept h(
W dget /* w dget */,
i nt /* offset */,
Xr mval ue* [* val ue */

voi d Xt CopyDef aul t Col or map(

W dget /* wi dget */,
i nt /* offset */,
Xrnval ue* [* val ue */
);
voi d Xt CopyAncestor Sensitive(
W dget /* widget */,
I nt [* offset */,
Xr mval ue* /* val ue */
);
voi d Xt CopyScr een(
W dget /* widget */,
i nt /* offset */,
Xrnval ue* /* val ue */
);
voi d XrmConpi | eResour celLi st (
Xt Resour celLi st /* resources */,
Car di nal /* num.resources */
);
voi d Xt Get Appl i cati onResour ces(
W dget /* widget */,
Xt Poi nt er /* base */,
Xt Resour celLi st /* resources */,
Car di nal /* num.resources */,
Ar gLi st [* args */,
Car di nal /* num.args */
);
voi d Xt VaGet Appl i cati onResour ces(
W dget /* widget */,
Xt Poi nt er /| * base */,

Xt ResourcelLi st /* resources */,

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (28 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

Car di nal /* num.resources */,
);
voi d Xt Get Subr esour ces(
W dget /* w dget */,
Xt Poi nt er /| * base */,
CONST String /* name */,
CONST String /* class */,
Xt Resour celLi st /* resources */,
Car di nal /* num.resources */,
ArgLi st /* args */,
Car di nal /* num.args */
);
voi d Xt VaGet Subr esour ces(
W dget /* widget */,
Xt Poi nt er /* base */,
CONST String [* name */,
CONST String /* class */,
Xt ResourcelLi st /* resources */,
Car di nal /* num.resources */,
);
voi d Xt Set Val ues(
W dget /* widget */,
ArgLi st /* args */,
Car di nal /* num.args */
);
voi d Xt VaSet Val ues(
W dget /* wi dget */,
);
voi d Xt Get Val ues(
W dget /* widget */,
ArgLi st [* args */,
Car di nal /* num.args */
);
voi d Xt VaCet Val ues(
W dget /* widget */,
);
voi d Xt Set Subval ues(
Xt Poi nt er /| * base */,

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (29 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

Xt Resour celLi st /* resources */,
Car di nal /* numresources */,
ArgLi st /* args */,
Car di nal /* num.args */
);
voi d Xt VaSet Subval ues(
Xt Poi nt er /* base */,
Xt ResourcelLi st /* resources */,
Car di nal /* num.resources */,
);
voi d Xt Get Subval ues(
Xt Poi nt er /| * base */,
Xt Resour celLi st /* resources */,
Car di nal /* numresources */,
Ar gLi st [* args */,
Car di nal /[* num.args */
);
voi d Xt VaCGet Subval ues(
Xt Poi nt er /* base */,
Xt ResourcelList /* resources */,
Car di nal /* num.resources */,
)

voi d Xt Get Resour celLi st (
W dget C ass /* widget class */,
Xt Resour celLi st * /* resources_return */,
Car di nal * /* numresources return */

);

voi d Xt Get Constrai nt Resour celi st (
W dget C ass /* w dget _class */,

Xt Resour ceLi st * /* resources _return */,
Car di nal * /* numresources return */
);
#def i ne Xt Unspeci fi edPi xmap ((Pi xmap) 2)
#defi ne Xt UnspecifiedShelll nt (-1)

#defi ne Xt Unspecifi edW ndow ((W ndow) 2)

#defi ne Xt UnspecifiedW ndowG oup ((W ndow) 3)
#defi ne Xt Def aul t Foreground "Xt Def aul t For egr ound”
#def i ne Xt Def aul t Background " Xt Def aul t Backgr ound"
#def i ne Xt Def aul t Font "Xt Def aul t Font "

#define XtOfset(p_type,field) \

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (30 of 38) [13/12/02 18:10:37]

((Cardinal) (((char *) (& ((p_type)NULL)->field)))

NULL)))

#define XtOfsetO(s_type,field) XtOfset(s_ type*,field)

B.25. Error Handling

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

Xt Error MsgHandl er Xt AppSet Err or MsgHandl er (

Xt AppCont ext
Xt Err or MsgHandl er

)

/* app */,

[* handl er */

voi d Xt Set Err or MsgHandl er (

Xt Er r or MsgHandl er
);

/* handl er */

Xt Error MsgHandl er Xt AppSet War ni ngMsgHandl er (

Xt AppCont ext | *
Xt Err or MsgNandl er

)

app */,
/* handl er */

voi d Xt Set War ni ngMsgHandl er (

Xt Err or MsgHandl er
);

voi d Xt AppError Msg(

Xt AppCont ext /*
CONST string /*
CONST String | *
CONST string /*
CONST String /*
String* | *
Car di nal * [*

);

voi d Xt Error Msg(
CONST String | *
CONST String [*
CONST String /*
CONST String /*
String* [*
Car di nal * [*

);

voi d Xt AppWar ni ngMsg(
Xt AppCont ext [*
CONST String /*
CONST String /*

/* handl er */

app */,

name */,
type */,
class */,
defaultp */,
parans */,
num par ans */

nane */,

type */,
class */,
defaultp */,
parans */,
num parans */

app */,
nanme */,
type */,

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (31 of 38) [13/12/02 18:10:37]

((char *)

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

CONST String /* class */,
CONST String /* defaultp */,
String* /| * paranms */,
Cardi nal * /* num paranms */

),

voi d Xt War ni ngMsg(
CONST String /* name */,
CONST String /* type */,
CONST string /* class */,
CONST String /* defaultp */,
String* /| * params */,
Cardi nal * /* num parans */

)

Xt Error Handl er Xt AppSet Err or Handl er (
Xt AppCont ext /* app */,

Xt Er r or Handl er /* handl er */
)
voi d Xt Set Err or Handl er (

Xt Er r or Handl er /* handl er */
)

Xt Error Handl er Xt AppSet War ni ngHandl er (
Xt AppCont ext [* app */,

Xt Err or Handl er /* handl er */
)
voi d Xt Set War ni ngHandl er (

Xt Err or Handl er /* handl er */

voi d Xt AppErr or (
Xt AppCont ext [* app */,
CONST String /* message */
);
void Xt Error(

CONST String /* message */
);

voi d Xt AppWar ni ng(
Xt AppCont ext [* app */,
CONST String /* message */
);

voi d Xt Var ni ng(
CONST String /* message */
);

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (32 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

XrmDat abase * Xt AppGet Err or Dat abase(
Xt AppCont ext /* app */

);

XrmDat abase * Xt Get Er r or Dat abase(
voi d

);

voi d Xt AppCet Err or Dat abaseText (
Xt AppCont ext [* app */,
CONST String /* name */,
CONST String [* type */,
CONST String /* class */,
CONST String /* defaultp */,
String /* buffer */,
i nt /* nbytes */,
XrmDat abase [* dat abase */
);

voi d Xt Get Err or Dat abaseText (
CONST String /[* nanme */,
CONST String /* type */,
CONST String /* class */,
CONST String /* defaultp */,
String [* buffer */,
I nt /* nbytes */

);

B.26. Memory Management

#define Xt New(type) ((type *) XtMalloc((unsigned) sizeof(type)))
#define XtNewString(str) \
((str) == NULL ? NULL :
(strcpy(Xt Mal |l oc((unsigned)strlen(str) + 1), str)))

char *Xt Mal | oc(

Car di nal [* size */
)
char *xt Cal | oc(
Car di nal [* num */,
Car di nal [* size */
),
char *Xt Real | oc(
char* /* ptr */,
Car di nal /* num */

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (33 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

);
voi d Xt Free(

char* /* ptr */
);

B.27. Work Procedures

Xt Wor kProcl d Xt AddWor kPr oc(
Xt Wor kPr oc /[* proc */,
Xt Poi nt er /[* closure */

)

Xt Wor kProcl d Xt AppAddWor kPr oc(
Xt AppCont ext [* app */,
Xt Wor kPr oc /* proc */,
Xt Poi nt er /* closure */

)

void Xt RenmoveWbr kProc(
Xt Wor kProcl d [* id */

B.28. Graphics Context

GC Xt Get &C(
W dget /* w dget */,
Xt GCvhask /* val ueMask */,
XCGCval ues* /* val ues */
)
voi d Xt Dest royG(
cC /* gc */
)
voi d Xt Rel easeG(
W dget /* object */,
cC /* gc */
);
voi d Xt Rel easeCacheRef (
Xt CacheRef * [* cache_ref */
);
voi d Xt Cal | backRel easeCacheRef (
W dget /* widget */,
Xt Poi nt er /* closure */, [* Xt CacheRef */
Xt Poi nt er /* call _data */
)

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (34 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

voi d Xt Cal | backRel easeCacheRef Li st (

W dget /* widget */,
Xt Poi nt er /* closure */, [* Xt CacheRef* */
Xt Poi nt er [* call _data */
);
voi d Xt Set WMCol or mapW ndows(
W dget /* widget */,
W dget * /[* list */,
Car di nal /* count */
);

String XtFindFile(
CONST String /* path */,
Substituti on [/ * substitutions */,

Car di nal /* num substitutions */,

Xt Fi | ePredi cate [* predicate */
);
String XtResol vePat hname(

Di spl ay* [* dpy */,

CONST String /* type */,

CONST String [* filename */,

CONST String /* suffix */,

CONST String [* path */,

Xt Fi | ePredi cate [* predicate */
);

B.29. Selection Mechanisms

#define XT_CONVERT FAI L (At on) 0x80000001

/*

* The given w dget no |longer wants the selection. If it still

* owns it, then the selection owner is cleared, and the wi ndow s
* | osesSel ection is called. */

voi d Xt Di sownSel ecti on(

W dget /* widget */,
At om /* selection */,
Ti me [* time */
);
/*
* Cet the value of the given selection.
*/

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (35 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

voi d Xt Get Sel ecti onVal ue(

W dget /* w dget */,
At om /* selection */,
At om /* target */,
Xt Sel ectionCal | backProc /* call back */,
Xt Poi nt er /* closure */,
Ti e [* time */
);
voi d Xt Get Sel ecti onVal ues(
W dget /* widget */,
At om /* selection */,
At onf /* targets */,
i nt /[* count */,
Xt Sel ectionCal | backProc /* call back */,
Xt Poi nt er* /* closures */,
Ti me [* time */
)

/* Set the selection tinmeout value, in units of mlliseconds */

voi d Xt AppSet Sel ecti onTi neout (
Xt AppCont ext [* app */,
unsi gned long /* timeout */

),

voi d Xt Set Sel ecti onTi neout (
unsi gned long /* timeout */

)
/* Return the selection tinmout value, in units of mlliseconds */

unsi gned int Xt AppCet Sel ecti onTi nmeout (
Xt AppCont ext [* app */

),

unsi gned i nt Xt Get Sel ecti onTi meout (
voi d

),

XSel ecti onRequest Event * Xt Get Sel ecti onRequest (
W dget /* widget */,
At om /* selection */,
Xt Request 1 d /* request _id */

)

voi d Xt Get Sel ecti onVal uel ncrenent al (
W dget /* widget */,
At om /* selection */,

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (36 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

At om /* target */,
Xt Sel ectionCal | backProc /* selection_callback */,
Xt Poi nt er /* client _data */,
Ti me /* time */

);

voi d Xt Get Sel ecti onVal uesl ncrenent al (
W dget /* widget */,
At om /* selection */,
At ont /* targets */,
i nt /* count */,
Xt Sel ecti onCal | backProc /* call back */,
Xt Poi nter* /* client _data */,
Ti me [* time */

);

B.30. Grabs

voi d Xt G abKey(
W dget /* widget */,
KeySym [* keysym */,
Modi fiers /* modifiers */,
Bool ean /* owner _events */,
i nt /* pointer_node */,
I nt /* keyboard_node */

);

voi d Xt Ungr abKey(
W dget /* widget */,
KeySym /* keysym */,
Modi fiers /* nmodifiers */

);

i nt Xt G abKeyboar d(
W dget /* widget */,
Bool ean /* owner _events */,
i nt / * pointer_node */,
i nt / * keyboard _node */,
Ti me [* time */

);

voi d Xt Ungr abKeyboar d(
W dget /* widget */,
Ti me /* time */

);

voi d Xt GrabButton(
W dget /* w dget */,
i nt /* button */,

file://[H:/ledonkey/docs/programming/1/2/appendix-b.html (37 of 38) [13/12/02 18:10:37]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Xt Reference Guide X11R4

Modifiers /* nmodifiers */,
Bool ean /* owner events */,
unsi gned i nt /* event_mask */,
i nt /* pointer_node */,
i nt /| * keyboard_node */,
W ndow /* confine_to */,
Cur sor /| * cursor */

);

voi d Xt Ungr abBut t on(
W dget /* widget */,
unsi gned i nt /* button */,
Modifiers /* nmodifiers */

);

i nt Xt GrabPoi nter (
W dget /* widget */,
Bool ean /* owner_events */,
unsi gned i nt [* event _mask */,
i nt / * pointer_node */,
i nt / * keyboard node */,
W ndow /* confine to */,
Cur sor [* cursor */,
Ti me [* time */

);

voi d Xt Ungr abPoi nt er (
W dget /* w dget */,
Ti me /* time */

);

B.31. Miscellaneous

voi d Xt Get Appl i cati onNanmeAndd ass(

Di spl ay* [* dpy */,
String* /* name_return */,
String* /* class_return */

)

Table of Contents

Copyright © CRC Press LLC

file:///H:/ledonkey/docs/programming/1/2/appendix-b.html (38 of 38) [13/12/02 18:10:37]

file:///reference/crc00001.html

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Guide to the OSF/Motif Widget Set

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Table of Contents

Appendix C
Quick Guide to the OSF/Motif Widget Set

This appendix details the important points of the OSF/Motif Widget Set. It can be used as
a complete reference or a supplement to the OSF/Motif manuals.

C.1. OSF Widgets

C.2. Convenience Routines

The OSF/Motif Widget Set is quite complete. As a convenience to application writers, the
developers have provided mechanisms for creating often-used display entities. The
invocation is:

XnCr eat e[What Your Cr eat i ng] (par ent, nane, ar gs, nar gs)

where “parent” is the container this mechanism will belong to, “name” is the class name
for this set of widgets, “args’ isany Xm resources you would like to set, and “nargs’ isthe
number of args.

The following convenience routines are available:

XnCreateErrorDi al og()

XnCr eat eFi | eSel ecti onDi al og()
XnCr eat eFor nDi al og()

XnCr eat el nf ormati onDi al og()
XnCr eat eMenuBar ()

file:///H:/edonkey/docs/programming/1/2/appendix-c.html (1 of 18) [13/12/02 18:10:44]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Guide to the OSF/Motif Widget Set

XnCr eat eMessageDi al og()
XnCr eat eOpti onMenu()
XnCr eat ePopupMenu()

XnCr eat ePronpt Di al og()
XnCr eat ePul | downMenu()
XnCr eat eQuesti onDi al og()
XnCr eat eRadi oBox()
XnCreateScrol | edLi st()
XnCreat eScrol | edText ()
XnCr eat eSel ecti onDi al og()
XnCr eat eWar ni ngDi al og()
XnCr eat eWbr ki ngDi al og()

C.3. XmTextWidget Public Routines

The OSF/Motif Widget Set has arather complex widget referred to as the “ Text Widget.”
It is both adisplay and editing mechanism for text. Since it provides quite a bit of
functionality, there are afew exported useful routines.

Return Function and Description

char * XmTextGetString(XmTextWidget widget)
Retrieve the string from the widget.

void XmTextSetString(XmTextWidget widget, char *value)
Store a string to the widget.

void XmTextReplace(XmTextWidget widget, int frompos, int

topos, char *value)

Replace/insert a string into the widget; to “replace,” set
frompos > topos, to “insert,” set frompos = topos.

unsigned int XmTextGetEditable(XmTextWidget widget)
Determine if the text is editable.

void XmTextSetEditable(XmTextWidget widget, Boolean
editable)

Tell the widget to be editable.

int XmTextGetM axL ength(XmTextWidget widget, int
max_length)
Find out the maximum length for the string.

file:///H:/edonkey/docs/programming/1/2/appendix-c.html (2 of 18) [13/12/02 18:10:44]

void

char *

void

void

XmTextPosition

void

XmTextPosition

void

Boolean

XmTextPosition

Boolean

void

void

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Guide to the OSF/Motif Widget Set

XmTextSetM axL ength(XmTextWidget widget, int
max_length)

Set the maximum length for the string.

XmTextGet Selection(XmTextWidget widget)

Extract the selection (highlighted area) from the widget.

XmT extSet Selection(XmTextWidget widget, int frompos,
int topos, Time time)

Set the selection in the widget.

XmTextClear Selection(XmTextWidget widget, Time
time)

Turn the selection off.
XmTextGetTopPosition(XmTextWidget widget)

Find out the top line in the string that is displayed.

XmTextSetTopPosition(XmTextWidget widget,
XmTextPosition top_positon)

Set the top line in the string to be displayed.
XmTextGetl nsertionPoint(XmTextWidget widget)
Find out where the cursor isin the text.

XmTextSetl nsertionPoint(XmTextWidget widget,
XmTextPosition position)

Set the cursor to this position in the text.

XmTextGetSelectionPosition(XmTextWidget widget,
XmTextPosition * startpos, * endpos)

Determine the selection position.
XmTextXY ToPos(XmTextWidget widget, Position x,y)
Given the x,y coordinates, find the position in the string.

XmTextPosToXY (XmTextWidget widget,
XmTextPosition position, Position *x, *y)

Given the position in the string, find the x,y coordinates.
XmTextScroll(XmTextWidget widget, int dir)

Scroll the text in the direction, where dir > 1 means scrol |
down, dir < 1 means scroll up.

XmT extDisableRedisplay(XmTextWidget widget,
Boolean |osesbackingstore)

Tell the widget not to make any more screen updates.

file:///H:/edonkey/docs/programming/1/2/appendix-c.html (3 of 18) [13/12/02 18:10:44]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Guide to the OSF/Motif Widget Set

void XmTextEnableRedisplay(XmTextWidget widget)
Tell the widget to continue making screen updates.

C.3.1. Compound Strings

Return Function and Description

Boolean XmStringByteCompar e(XmString s1,s2)
Byte-by-byte compare of s1 and s2.

Boolean XmStringCompar e(XmString s1,s2)
Check if s1 and s2 are identical.

XmString XmStringConcat(XmSring s1,52)
Just like strcat().

XmString XmStringCopy(XmString sl)
Return a copy of sl.

XmString XmStringCreate(char *txt, XmStringChar Set char set)
Create a compound string out of txt using charset.

XmString XmStringCreatel toR(char *txt, XmStringChar Set
charset)
Same as XmStringCreate except it converts \n to charset
Separators.

XmString XmStringDirectionCreate(XmS3ringDirection direction)
Create a compound string with direction.

void XmStringDraw(Display *d, Window w, XmFontList

fontlist, XmString str, GC gc, Postion x,y, Dimension
width, UChar align, lay_dir, XRectangle *clip)

Like XDrawsString(), but displays string with foreground
only.

void XmStringDrawl mage(Display *d, Window w,
XmFontList fontlist, XmString str, GC gc, Postion X,y,
Dimension width, UChar align, lay dir, XRectangle
*clip)
Like X DrawlmageString(), but displays string with
foreground and background.

file:///H:/edonkey/docs/programming/1/2/appendix-c.html (4 of 18) [13/12/02 18:10:44]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Guide to the OSF/Motif Widget Set

void XmStringDrawUnder ling(Display *d, Window w,
XmFontList fontlist, XmString str, GC gc, Postion x,y,
Dimension width, UChar align, lay dir, XRectangle

*clip)
Draw an underlined compound string.
Boolean XmStringEmpty(XmString str)
Check if strisempty.
void XmStringExtent(XmFontList fontlist, XmString str,

Dimension *width, * height)
Like X TextExtent(), but returns the width and height of
Str.

XmFontList XmFontListAdd(XmFontList old, XFontStruct *font,
Xm3ringChar Set char set)

Add font to the font list destroying the old one.

XmFontList XmFontListCopy(XmFontList fontlist)
Make a copy of fontlist.

XmFontList XmFontL istCreate(XFontStruct *font, XmStringChar Set
charset)
Make anew font list using font.

void XmFontListFree(XmFontList fontlist)
Free the storage used by fontlist.

void XmStringFree(XmSring str)
Free the storage used by str.

void XmStringFreeContext(XmStringContext context)
Free the storage used by context.

Boolean XmStringGetLtoR(XmString str, XmStringChar Set

charset, char **txt)

Return the first component of the compound string found
by searching left to right.

XmStringComponentType XmStringGetNextComponent(XmString context, char
**txt, XmIringChar Set * charset, XmS3tringDirection
*dir, XmSringComponentType * ctype, UShort *len,
UChar **cval)

Get the next component of a compound string.

file:///H:/edonkey/docs/programming/1/2/appendix-c.html (5 of 18) [13/12/02 18:10:44]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Guide to the OSF/Motif Widget Set

Boolean

Dimension

Boolean

int

int

XmSitring

XmString

XmString

XmString

voidXmString

Dimension

C.4. Resource Values

XmStringGetNext Segment(XmSringContext context,
char **txt, XmStringChar Set * char set,
XmSringDirection *dir, Boolean * separator)

Get the next segment of a compound string.
XmStringHeght(XmFontList fontlist, XmString str)

Get the height in pixels of acompound string.
XmStringl nitContext(XmString * context, XmString str)

Create a string context used for
XmStringGetNextComponentO or
XmStringGetNextSegment().

XmStringL ength(XmString str)
Get the size (in bytes) of str.
XmStringL ineCount(XmString str)
Get the number of linesin str.

XmStringCreatel toR(char *txt, XmStringChar Set
char set)

Same as XmStringCreatel toR().
XmStringNCopy(XmString s1, int n)

Return up to n chars of sl.
XmStringNConcat(XmString s1,s2, int n)
Create anew string adding n bytes of s2 to sl.

XmStringSegmentCreate(char * txt, XmStringChar Set
charset, XmStringDirection dir, Boolean separator)

Create a segment using txt and charset in the direction dir
adding a separator (when separator = TRUE).

XmStringSepar ator Create()

Get a string separator.
XmStringWidget(XmFontList fontlist, Xm3tring str)
Get the width of str in pixels.

OSF/Motif widgets contain several resources that are specific to the widget set. For each of
these resources there is a corresponding resource type that the resource represents. The
following is alist of resource names, resource types, and the values for them:

file:///H:/edonkey/docs/programming/1/2/appendix-c.html (6 of 18) [13/12/02 18:10:44]

XmMamow Dircction
(XmEArmowDircction)

X mManachment
(XmBAttachment)

XmNcditMode
(XmREditMode)

XmMNdcfaultButtonType
(XmRDefaultButionType)

XmNdialogStyle
(XmEDalogStvie)

XmNdialogType
{XmRDialogType)

XmiNdisplay Policy
(XmRDisplayPolicy)

XmNindicatorType
(XmBindicatorType)

XmMlabelType
(XmRLabelType)

XmNlistSizePolicy
(XmRLisiSizePolicy)

XmARROW_UP
XmARROW _|EFT

KXmATTACH_NONE
XmATTACH_OPPOSITE_FORM
XmATTACH_OPPOSITE_WIDGET
XmATTACH_SELF
XmMULTI_LINE_EMT
XmDIALOG_OK_BUTTON

XmDIALOG_HELP_BUTTON

XmDIALOG_WORK_AREA

XmDIALOG_APPLICATION_MODAL

XmDIALOG_ERROR
XmDIALOG_MESSAGE
XmDIALOG_WARNING
XmDIALOG_PROMPT
XmDIALOG_COMMAND

XmAS_NEEDED

XmN_OF_MANY

XmSTRING

XmCONSTANT
XmRESIZE_IF_POSSIBLE

file:///H:/edonkey/docs/programming/1/2/appendix-c.html (7 of 18) [13/12/02 18:10:44]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Guide to the OSF/Motif Widget Set

XmARROW_DOWN
XmARROW_RIGHT

XmATTACH_FORM
XmATTACH_WIDGET
XmATTACH_POSITION

XmSINGLE_LINE_EDIT

XmDIALOG_CANCEL_BUTTON

XmDIALOG_MODELESS

XmDIALOG_SYSTEM_MODAL

XmDIALOG_INFORMATION
XmDIALOG_QUESTION
XmDIALOG_WORKING
XmDIALOG_SELECTION

XmSTATIC

XmONE_OF_MANY

XmPIXMAP

XmVARIABLE

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Guide to the OSF/Motif Widget Set

L L

SIS =L F

C.5. Motif Callback Data Structures

The OSF/Motif Widget Set provides various callback procedures for the kinds of actions
the widgets do. Thefollowing isalist of al the callback structures that are used by the
various callback procedures used by OSF/Moatif.

t ypedef struct {
I nt reason,
XEvent *event ;
} XmAnyCal | backSt ruct;

typedef struct {

I nt reason:;
XEvent *event ;
W ndow W ndow;

} XnmDr aw ngAr eaCal | backStruct;

t ypedef struct {

I nt reason;

XEvent *event ;

XnBtring item

I nt I tem | engt h;

I nt I tem position;
XnBtring *selected itens;

I nt sel ected item count;
I nt sel ection_type;

} Xnmli st Cal | backStruct;

t ypedef struct{

I nt reason;
XEvent *event ;
I nt val ue;

file:///H:/ledonkey/docs/programming/1/2/appendix-c.html (8 of 18) [13/12/02 18:10:44]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Guide to the OSF/Motif Widget Set

} Xnfcal eCal | backSt ruct ;

t ypedef struct{

I nt reason;
XEvent *event,
XnString val ue;

I nt | engt h;

} Xntel ecti onCal | backStruct;

t ypedef struct {

I nt reason;
XEvent *event;
XnString val ue;

I nt | engt h;
XnString mask;

I nt mask_| engt h;

} XnFil eSel ecti onBoxCal | backSt ruct

t ypedef struct {

i nt reason;
XEvent *event ;
XnBtring val ue;

I nt | engt h;

} XmCommandCal | backSt ruct ;

t ypedef struct {

i nt reason;
XEvent *event ;
W ndow W ndow,

} XnDr awnBut t onCal | backSt r uct ;

t ypedef struct {

i nt reason;
XEvent *event ;
W dget w dget ;
char *dat a;
char *cal | backstruct;

} XmRowCol umCal | backSt ruct ;

t ypedef struct {
I nt reason;
XEvent *event;

file:///H:/edonkey/docs/programming/1/2/appendix-c.html (9 of 18) [13/12/02 18:10:44]

I nt val ue;
} Xntcrol | Bar Cal | backSt ruct;

t ypedef struct {

i nt reason;
XEvent *event ;
i nt set ;

} XmToggl eButtonCal | backStruct;

C.5.1. Possible Callback Reasons

XmCR_ACTIVATE
XmCR_FOCUS
XmCR_CASCADING

XmCR_COMMAND_CHANGED

XmCR_HELP
XmCR_EXTENDED_SELECT
XmCR_OK

XmCR_DRAG
XmCR_PAGE_INCREMENT
XmCR_TO_BOTTOM

XmCR_ARM
XmCR_MAP

XmCR_COMMAND_ENTERED

XmCR_EXPOSE
XmCR_SINGLE_SELECT
XmCR_BROWSE_SELECT
XmCR_CANCEL
XmCR_INCREMENT

XmCR_PAGE_DECREMENT

XmCR_APPLY

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Guide to the OSF/Motif Widget Set

XmCR_DISARM
XmCR_UNMAP
XmCR_RESIZE
XmCR_INPUT
XmCR_MULTIPLE_SELECT
XmCR_DEFAULT_ACTION
XmCR_VALUE_CHANGED
XmCR_DECREMENT
XmCR_TO_TOP

KmCR_I .f}SEHG_FﬂEUS

XmCR_MODIEYING_TEXT_VALUE XmCR_MOVING_INSERT_CURSOR

- fid
|!I=-

a1
L5 =

]
|r
LTI

The callback reasons are somewhat logical extensions of the resource names used by the
widgets when specifying a callback. As you read through the next list, you will see that it
Is pretty ssimple to match the callback reason with the widget callback list.

C.5.2. Resources Used By Widget Classes

L I -

XmMresizePolicy
XxmMnoResize
XmMdialogSivie
XmMdialogTitle
EmMincusCallhack
XmNmapCallhack
XmMNunmapCallback

| T 1 R A Y pe—" |

file:///H:/ledonkey/docs/programming/1/2/appendix-c.html (10 of 18) [13/12/02 18:10:44]

XmRResizePolicy
XmRBoolean
XmRDiglogStvie
XmRXmSiring
XmAnvCallbackStruct
XmaAnvCallbackStruct
XmAnyCallbackStruct

LB Y T S NN LA P,

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Guide to the OSF/Motif Widget Set

X mCascade Button

XmCascade BunonGadget

¥mCommand

XmDialogShell

XmDrawingArea

XmDrawnButton

file:///H:/ledonkey/docs/programming/1/2/appendix-c.html (11 of 18) [13/12/02 18:10:44]

XmNmapCallhack
XmMNunmapCallback

XmN=zubMenuld
XmMNcascade Pixmap
XmMmappingDelay
XmMactivateCallback

XmMeascadingCallback

XmMsubMenuld
xmMeascade Fismap

X mMNmapping Delay
XmNactivateCallback
XmMNcascadingCallback

XmMNprompString
XmMNoommand
XmMhistoryItems

XmMhistory ItemCount
XmMhistoryMaxlterns
XmMhizporyVisiblelhemCount
XmMeommandEnicredCallback
XmMNcommandChangedCallback

XmMdclete Response

XmNmarginWidth
XmMmarginHeight
XmMresizePuolicy
XmNresizeCallback
XmNexposeCallback
XmMNinputCallback

XmMpushButtonEnabled
X mMshadowTvpe
XmNactvaeCallback
XmMNarmCallback
XmMdisarmCallback

XmAnvCallbackStruct
XmAnyCallbackStruct

XmRMenuWidget
XmRPrimForeground Pixmap
XmRlInt
XmAnvCallbackSiruct
XmAnyCallbacks5truct

XmRMenuWidget
EmRPnmForcgroundFixmap
XmRIm
XmanvCallbackStruct
XmAnvCallbacksStruct

XmRXmString
XmRXmString
XmRXmStringTable
XmRInt

XmRint

XmRint
xmCommandCallback Struct
XmCommandCallback Struct

XmRDelete Response

XmRShon

XmRShon

XmRResizePolicy
XmDrawingArcaCallbackStruct
XmDrawingArcaCallbackStruct
XmRDrawingArcaCallbackStruct

XmRBoolean
XmREShadowType
XmDrawnButtonCallbackStruct
XmDrawnBuntonCallbackStruct

XmDmawnButonCallback Struct

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Guide to the OSF/Motif Widget Set

L e A 5

S [

EKml.abel

XmlabelGadget

file:///H:/edonkey/docs/programming/1/2/appendix-c.html (12 of 18) [13/12/02 18:10:44]

xmMalignment
XmMNlabelTvpe
XmMlabelString
XmMNmarginWidth
XmMmarginHeight
XmMNmarginRight
XmMNmarginLeft
XmMNmarginBottom
XmNmarginHeight
XmMNfontList
XmMlabelPixmap
XmMIlabellnsensitiveFixmap
XmNsiringDircction
XmNmnemonic
XmMNaccelerator
XmMacceleratorText

xmMrecomputeSize

XmMalignment
XmMlabelType
XmNlabelString
XmNmarginWidth
XmMmarginHeight
XmNmarginRight
XmNmarginLeft
XmNmarginBottom
XmNmarginHeight

AP LF ..

XmRAlignment
XmRLabelType
XmRXmString
XmR5horn
XmRShort
XmRShort
XmRShort
XmR5hort
XmRShort
XmRFontList
XmRPrimForeground Pixmap
XmRPixmap
XmRStringDirection
XmRChar
XmRS5tring
XmRXmString
XmRBoolean

XmRAlignment
XmRLabelType
XmRXmString
XmRShort
XmRShort
XmRShor
XmR5hort
XmR35hort
XmRS5hort

W PR _aw e

XmList

I
i
i

|
if

|

!
i}'jiii

e s

XmPanedWindow

XmMNmarginLeft
XmNmarginBottom
XmNmarginHeight
XmNfontList
XmNlabel Pixmap

XmNlabellnsensitivePixmap

XmNmnecmonic
XmMNaccelerator
XmMNacceleratorText
XmMNrecompuieSize

XmMNstringDirection

XmMNlistSpacing

XmNhstMarginWidth
XmNlistMarginHeight

XmMfontList
XmMNilems
XmMNitemCount

XmiMNselectedltems

XmbeancelLabelString
XmNhelpLabe!String
XmMNokCallback

XmMNcancel

XmMNmarginWidth
XmMmarginHeight
XmMNspacing
XmNrefigureMode
XmMscparatorQOn

file:///H:/edonkey/docs/programming/1/2/appendix-c.html (13 of 18) [13/12/02 18:10:44]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Guide to the OSF/Motif Widget Set

XmRShort
XmRShor
XmRShort
XmRFontList
XmRPrimForcgroundPixmap
XmRPixmap
XmRChar
XmRString
XmRXmString
XmRBoolean
XmRStringDirection

XmRShort
XmRShort
XmRShort
XmRFontList
XmRXmStringTable
XmRInt
XmRXmStringTable

XmRXmStiring
XmRXmSiring
XmAnyCallbackStruct
xmAnyCallbackStruct

XmRShon
XmRShort
XmRint
XmRBoolean
XmRBoolean

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Guide to the OSF/Motif Widget Set

XmPrimitive

XmPushBunon

file:///H:/ledonkey/docs/programming/1/2/appendix-c.html (14 of 18) [13/12/02 18:10:44]

AT g T g
XmMspacing

XmNrefigure Mode
XmMscparatorOn
XmMNsashindent
XmMsashWidlh
XmMNsashHeight
XmNsashShadowThickness

Constraints

XmNallowResize
XmNminimum
XmMNmaximum
XmMNskipAdjust

XmNforeground
XmNbackgroundPixmap
XmNborderWidth
XmNhighlightColor
XmMNhighlightOnEnter
XmMNhighlightFixmap
XmMNhighlight Thickness
XmMNshadow Thickness
XmNiopShadowColor
XmMiopShadowPixmap
XmMbottomShadow Color
XmMbstomShadowPixmap
XmMuserData
XmMNhelpCallback

X mMiraversclOn

XmMAillOnArm
xXmMNarmColor
XmMNarmPixmap
XmMNshowAsDefault
XmiNshadowThickness
XmMNactivaicCallback
XmMarmCallback
XmMdisarmCallback

AT IR

XmRlInt
XmRBoolean
XmRBoolean
XmRPosition
XmRDimension
XmRDimension
XmHEInt

XmRBoolean
XmRInt
XmRInt
XmRBoolean

XmRPixel

XmRPixmap

XmRDimension

XmRPixel

XmRBoolean
XmRPrimHightlightPixmap
XmRShor

XmRShort

XmRPixel
XmRPrimTopShadowPixmap
XmRPixel
XmRPrimBottomShadowPixmap
XmRPainter

XmRCallback

XmRBoolean

XmRBoolean

XmRPixel
XmRAPrimForegroundPixmap
XmRShort

XmRShort
XmAnyCallbackStruct
xmAnyCallbackStruct
xmAnyCallbackStruct

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Guide to the OSF/Motif Widget Set

|
[
§]

s

|
[

HRHHiT
[

i

i
SEFHRERY prog HAF AR
g

o

i !Ef‘

il
1EFF10E
i

XmScrollBar

L T e | |] T L R

file:///H:/edonkey/docs/programming/1/2/appendix-c.html (15 of 18) [13/12/02 18:10:44]

XmMscaleWidth
XmMscaleHeight
XmNhighlightOnEnter
XmMhighlightThickness
XmMvalueChangedCallback
XmMdragCallback

XmMNwvalue

XmMNminimum
XmMNmaximum
XmMsliderSize
XmNshowArrows
XmMorientation
XmMprocessingDirection
XmMincrement
XmMpagelncrement
XmNinitialDelay
XmMrepeatDelay
XmMvalueChangedCallback
XmNincrementCallback
XmMNdecrementCallback
XmMNpagelncrementCallback
XmMpageDecrementCallback
XmNtoTopCallback
XmNtoBottomCallback
XmdragCallback

L T N W | PR RS | S | | . T

XmRDimension
XmRDimension
XmRBoolcan
XmRShort
XmScaleCallbackStruct
XmScaleCallbackStruct

XmRIm

XmRInt

XmRInt

XmRInt

XmRBoolean
XmROrientation
XmRProcessingDirection
AmRInt

XmRint

XmRIm

XmRimt
XmScrollBarCallbackStruct
XmScrollBarCallbackStruct
XmScrollBarCallbackStruct
XmScrollBarCallbackStruct
XmScrollBarCallbackStruct
XmScrollBarCallbackStruct
XmScrollBarCallbackStruct
XmScrollBarCallbackStruct

LT L LT LR

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Guide to the OSF/Motif Widget Set

XmNtoBottomCallback Xm5crollBarCallbackStruct
XmdragCallback XmScrollBarCallbackStruct

XmScrollWindow XmMNhorizontalScrollBar XmRWidget
XmMNverticalScrollBar XmRWidget
XmNworkWindow XmRWidget
XmNclipWindow XmRWidget
XmMNsecrollingPalicy XmRScrollingPolicy
XmMvisualPolicy xmREVisualPolicy
XmMscrollBarDisplayPolicy XmRScrollBarDisplayPolicy
XmNscrollBarPlacement XmRScrollBarPlacement
XmNscrolledWindowMarginWidth XmRS5hort
xmMscrolledWindowMarginHeight XmRShort
XmNspacing XmRInt

XmSelectionBox XmMNicxtAccelerators XmRAcceleratorTable
XmisclectionLabelString XmRXmString
XmMlistLabelString XmRXmString

IIIIIIHHH ';'EE[H

e geraarw mre

file:///H:/edonkey/docs/programming/1/2/appendix-c.html (16 of 18) [13/12/02 18:10:44]

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Guide to the OSF/Motif Widget Set

XmText

file:///H:/ledonkey/docs/programming/1/2/appendix-c.html (17 of 18) [13/12/02 18:10:44]

XmiNsct

XmNindicatorOn
XmMAllOnSelect
XmMNsclectColor
XmMvalueChangedCallback
XmMarmedCallback
XmiNdisarmedCallback

XmNvalue
XmiNmaxLength
XmMmarginHeight
XmMNmarginWidth
XmMoutputCreate
XmMinputCreate
XmMtopPosition
XmMcursorPosition
XmMeditMode
XmMautoShowCursarPosition
XmMeditable
XmMwordWrap
XmMblinkRate
XmMNpendingDelete
XmNsclectThreshold
XmNfontList
XmMcolumns

X mM rows

XmMresize Width
XmMresizreHeight
XmNscrollVertical
XmNMscrollHonzontal
XmMscrollLeftSide
XmMscrollRightSide
XmNcursorPosinionVisible
XmMactivateCallback
XmNfocusCallback
XmMNlosingFocusCallback
XmMvalueChangedCallback
XmNmodifyVerifyCallback

XmRBoolcan

XmRBoolean

XmRBoolean

XmRPixel
XmToggleButtonCallbackStruct
XmToggleButtonCallbackStruct
XmToggle ButtonCallbackSiroct

XmRString

XmRInt

XmRShon

XmRShort
XmRFunction
XmRFunction
XmRInt

XmRInt
XmREditMode
XmRBoolean
XmRBoolean
XmRBoolean
XmRShort
XmRBoolean

XmRInt

XmRFontList
XmRShort

XmRShort
XmRBoolean
XmRBoolean
XmRBoolean
XmRBoolcan
XmRBoolean
XmRBoolean
XmRBoolean
XmAnyCallbackStruct
XmAnyCalibackStruct
XmAnyCallbackStruct
XmAnyCallbackStruct
XmTextVerifyCallbackStruct

A Practical Guideto X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Quick Guide to the OSF/Motif Widget Set

XmMlosingFocusCallback

XmMvalueChangedCallback
XmNmodify VerifyCallback
XmNmotionVerifyCallback

”'i’if

HiHH
|
|

|
}
FEHITPTIREE

g

y
i

3
E

ik

|

Table of Contents

XmAnyCallbackStruct
XmAnyCallbackStruct
XmTextVerifyCallbackStruct
XmTextVerifyCallbackStruct

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/appendix-c.html (18 of 18) [13/12/02 18:10:44]

file:///reference/crc00001.html

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Index

A Practical Guide to X Window Programming: Developing Applications with
the XT Intrinsics and OSF/Motif

by Brian J. Keller

CRC Press, CRC Press LLC

ISBN: 0849374065 Pub Date: 12/01/90

Table of Contents

Index

A

Accelerators, 173-174

Action procedures, event handling, 68-75
Action procs, 176

Action table, in widget construction, 121
Address, 9

Ancestor, 13-15

ANSI standard, 118

Application, 20

Application building, 33-98

application resource setting, 158
client requirements and, 152
conventions, 33-34

design aspects, 147-148

entry form, 169-176

event handling, 52

aternate input procedures, 89-94
event handler, 56-64

timeout procedures, 75-83
translation management, 56, 64-75
work procedures, 84-89

initialization, 38-39
inter-client communication, 233-248

file:///H:/ledonkey/docs/programming/1/2/book-index.html (1 of 22) [13/12/02 18:10:46]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Index

|abel-creation function, 178

main program, 153-157

menu bar, 158-162

movement without mouse, 176-177
multiple displays, 248-253

pop-up help, 166-167

pop-up menu, 162-166

pop-up option list, 168-169
resources

application-specific resources, 45-50
command-line options table, 51
predefined converters, 47
representation types, 46

resource manager, 42, 44, 46, 64
setup of resource files, 43-45
sources of resources, 42-43

Xt Resource table, 46

scrolled list, made from list, 95-98
standardization of user interface, 148-150
structure of application, 34-42

header files, 34-35
main program, 35-42

Toggle action procedure, 178
widgets, creation of, 39-42
widget set, selection from, 150-153

Application context, multiple displays and, 248
Application resource setting, application building, 158
Argument list

reference guide to, 297
widgets, 40

AsciiDiskWidget, 166
AsciiDiskWidgetClass, 152
AsciiText Widget, 90
Asynchronous system, X as, 15-16
Athena, Project, 1

file:///H:/edonkey/docs/programming/1/2/book-index.html (2 of 22) [13/12/02 18:10:46]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Index

Athena TextWidget, 35n
Athenawidget set, 7, 75
Atoms

inter-client communication, 234
interning atom, 234

lifetime of, 234

predefined atoms, 235

Background work, 84

BASE widget typedefs, reference guide to, 276
Bitmaps, 94

Box WidgetClass, 152

Button abbreviations, 73

Callbacks

adding, 64

callback lists, 64

event handling, 64-68

example, 67-68, 73

Motif application, 229-232

Motif widgets, reference guide to, 327-329
reference guide to, 299-300

Checking routines, reference guide to, 285
Child, 13-15

C language, Xt and, 9-13

Classes, 17

Classing

A.5 classing, 266-270
A.8/R3 classing, 271-273
widgets, Motif, 256-261

Class initialize method, in widget construction, 124

file:///H:/edonkey/docs/programming/1/2/book-index.html (3 of 22) [13/12/02 18:10:46]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Index

ClassPart, widgets, 21-22, 99-100, 107

Class record, in widget construction, 122-123

Client events, communication with, inter-client communication, 243-247
Client messages, sending of, 244-247

Clients, 1, 7, 14

alarm.c, timeout procedures, 75-83

calcit.c, background work procedures, 84-89
client-server relationship, 3-4

malarm.c, OSF/motif port of alarm.c, 194-199
mclk.c, OSF/Motif and Athena Widget mix, 202-207
mlist.c, OSF/Motif port of xawlist.c, 199-201
multidpys.c, managing multiple displays, 249-253
mwtrade.c, OSF/Motif port of trade.c, 210-232
nothw.c, first X client, 38-39

nothwCmd.c, resource management, 48-49
trade.c, complete application, 154-178

watch.c, alternative input procedures, 90-93
xawlist.c, callbacks and listWidget, 65-68
xawlistScr.c, scrolling window, 95-98
XtandGC.c, event handlers and GCs, 57-63

Client writers, 19-20, 111, 126
Clipboard, Matif, 194

Color map events, function of, 56
Colors

color maps, 32
routines related to, 32

Command-line options table, resources, 51
Command-line parser, 51
CommandWidgetClass, 152
Communication events, function of, 56
Composite, 20

Composite widgets, 141-143, 145

structure of, 141-143
use of, 141

Compound strings

file:///H:/edonkey/docs/programming/1/2/book-index.html (4 of 22) [13/12/02 18:10:46]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Index

Motif, 193
reference guide to, 322-325

Constraint, 20
Constraint widget, 144-145

structure of, 144-145

Container routines, reference guide to, 283-284
Container widgets, 50

Motif, 190-191

Convenience routines, reference guide to, 320
Coordinates, windows, 14

Core, 20

CoreClassPart, widgets, 100-102

CorePartM embers, widgets, 103-104

CoreWidget, 20

Crossing events, 56

Cutting and pasting, selection mechanism, 247-248

Data transfer, selection mechanism, 247-248
Default procedures, in widget construction, 132-133
Default translations, in widget construction, 138-139
Destroy method, in widget construction, 128-129
Dialogs, Motif, 191-192

Display, 2

Display gadgets, 190

Display widgets, Motif, 189-190

Enter events, function of, 55-56
Entry form

application building, 169-176
Motif application, 219-221

file:///H:/edonkey/docs/programming/1/2/book-index.html (5 of 22) [13/12/02 18:10:46]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Index

Error-handlers

Xlib, 5
reference guide to, 308-311

Errors, 5
Event gathering routines, reference guide to, 294-295
Event handling, 52

action procedures, 68-75

alternate input procedures, 84-89
callbacks, 64-68

event handler, 56-64

reference guide to, 284-285
timeout procedures, 75-83
translation management, 56, 64-75
work procedures, 84-89

Event management, reference guide to, 292-294
Events, 5

callbacks, 64

color map events, 56
communication events, 56

core fields of event structure, 53-54
crossing events, 56

enter events, 55-56

event types/masks, listing of, 52-53
exposure events, 56

focus events, 55

handler, event example of removing, 64
keyboard events, 54-55

leave events, 55-56

masks, 52-53

nonmaskabl e events, 56

pointer events, 55

state events, 56

Exported functions

A.6/R4 exported functions, 270
A.9/R3 exported functions, 273-274

file:///H:/edonkey/docs/programming/1/2/book-index.html (6 of 22) [13/12/02 18:10:46]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Index

Exposure events, function of, 56

F
Field action routine, Motif application, 227-228
Field editing

FieldEd widget, creation of, 106-107
meaning of, 106
FieldEdWidgetClass, 152
Field-level help, Motif application, 221-223
Filing, 25
Focus events, function of, 55
Fonts, 25
font metrics, 28-29
loading and unloading of, 31
naming conventions, 29-30
wildcards in font names, 30-31
XLFD, 29
FormWidgetClass, 152
Forward declarations, 35
in widget construction, 118-119
Functions
Motif, exported functions, 261-265
Motif widgets, 188-189
Motif window manager, 185
G

Gadgets, display gadgets, Motif, 190

Geometry management, reference guide to, 286-288, 300
Getty, Jm, 1

Get_values method, in widget construction, 127-128

file:///H:/edonkey/docs/programming/1/2/book-index.html (7 of 22) [13/12/02 18:10:46]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Index

Global variables, 35

Glyph, 25

Grabbing, 55

Grabs, reference guide to, 315-316
Graphical user interfaces, 147
Graphics, 25-32

bitmaps, 31-32

color map/palette, 32
depth, 31

drawable, 25

filling, 25

fonts, 28-31
foreground/background, 32
glyph, 25

graphics context, 26-27
icons, 25, 31, 32
multi-font text, 28
pixmap, 25, 31, 32
text, 25

Graphics context, 26-27

creation of, 26-27
handling of, 27
reference guide to, 312-313

Header files

of application, 34-35
of widgets, 107-113, 117-118

Help

field-level help, Motif application, 221-223
main help, Motif application, 225-227

file:///H:/edonkey/docs/programming/1/2/book-index.html (8 of 22) [13/12/02 18:10:46]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Index

Icons

bitmaps, 31-32
installation of, 94-95

Implementation file, widgets, 114-129
Information gathering routines, reference guide to, 298
Inheritance, 22

mechanics for, 105-106
Initialization

application building, 38-39
in widget construction, 124

Initialize_hook method, in widget construction, 125-126
Input, alternate input procedures, event handling, 89-94
Insertion position, in widget construction, 129-130
Instance name, widgets, 40

Instance record, widgets, 22, 99, 102-103, 107
Inter-client communication, 233-248

atoms, 234
predefined, 235

client events, communication with, 243-247
meaning of, 233
properties, 234-243

changing properties, 236

communication to other clients with, 237-243
deleting properties, 236-237

getting properties, 236

meaning of, 234, 235

property names, 235

selection mechanism, 247-248

file:///H:/edonkey/docs/programming/1/2/book-index.html (9 of 22) [13/12/02 18:10:46]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Index

Internal editors, in widget construction, 133-138
Interning atom, 234
Intrinsic specific procedure typedefs, reference guide to, 276-283

Key abbreviations, 73

Keyboard events, function of, 54-55

Keyboard interface, 68 Keycode procedures, reference guide to, 290-291
Keyboard traversal, 176-178

Keysym procedures, reference guide to, 290-291

L abel-creation function, application building, 178
L abelWidgetClass, 152

L eave events, function of, 55-56
ListWidgetClass, 152

L ogic macros, reference guide to, 296

L ook-up tables, in widget construction, 122

Macros, in widget construction, 118

Main program, of application, 35-42

Managed widgets, 39, 188

Memory management, reference guide to, 311
Menu bar

application building, 158-162
Motif application, 217-218

Menu widgets, Motif, 192-193
Methods, 16
Motif

clipboard, 194

compound string, 193
convenience routines, 188-189
dialogs, 191-192

file:///H:/edonkey/docs/programming/1/2/book-index.html (10 of 22) [13/12/02 18:10:46]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Index

display gadgets, 190
environment of, 181
example clients

changing alarm to malarm, 194-199
changing xawlist to mlist, 199-202

exported functions, 261-265
gadget, 23

style guides, 181

traversal mechanism, 193
user interface, 149

widgets, 24, 181

classing, 256-261

compound strings, 193

container widgets, 189-190
display widgets, 189-190

listing of, 255-256

menu widgets, 192-193

mixing from another set, 202-207
names/class pointers, 187-188
reference guide to widget set, 319-338
resources, 189

widget creation function, 188-189

window manager, 182-186

button/key bindings, 186
functions of, 185
mwmrc file, 184, 186
resources of, 182-184

Motif application

building client, 209-216
callbacks, 229-232

client components, 209
entry form, 219-221

field action routine, 227-228
field-level help, 221-223
menu bar, 217-218

file:///H:/edonkey/docs/programming/1/2/book-index.html (11 of 22) [13/12/02 18:10:46]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Index

option list, 223-225

scrolled text, 225-227
supporting functions, 227-232
traversal mechanism, 228

Mouse, 55, 147
movement without mouse, 176-177
Multiple displays, 248-253

application context and, 248
example of, 249-253
management procedure, 248-249

Network packets, 5

Newman, Ron, 1

Nonmaskable events, 56

Notifiers, in widget construction, 131-132

Object-oriented programming, 16-17
Objects, 16-17

widgets, 23
windowless object, 23-24

Opague pointer, 12

Option list, Motif application, 223-225
Override, 20

OverrideWidgetClass, 151

Palette, 32
Parent, 13-15

file:///H:/edonkey/docs/programming/1/2/book-index.html (12 of 22) [13/12/02 18:10:46]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Index

Parent widget, 40

Pixmap, 25, 31-32, 94

Pointer events, function of, 55
Pointers, 9-11

Motif widgets, 187-188
Pop-ups, 55
application building

pop-up help, 166-167
pop-up menu, 162-166
pop-up option list, 168-169

reference guide to, 300-301

Portability, in widget construction, 129
Predefined converters, 47

Private header file, widgets, 111-113
“Proc” pointers, 127

Programmers, types of, 19
Programming conventions, 33, 34
Project Athena, 1

Properties

inter-client communication, 234-243

changing properties, 236

communication to other clients with, 237-243
deleting properties, 236-237

getting properties, 236

meaning of, 234, 235

property names, 235

Protocal, X, 5

Protocol widgets, 21

Public header file, widgets, 107-111

Public routines, reference guide to, 321-322

file:///H:/edonkey/docs/programming/1/2/book-index.html (13 of 22) [13/12/02 18:10:46]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Index

Realizing widgets, 41

RectObj, widgets, 23

Redisplay mechanism, in widget construction, 130
Re-entrant procedure, 84

Replies, 5

Representation types, 46

Requests, 5

Resource manager

files, 42-43

getting resources, 45-50, 158

predefined converters, 47

predefined representation types, 46

resource setting, example, 50

rules, 42

settings, 44-45

XrmOptionDescRec, description and example, 51
XtResource table members, 46

Resources

application-specific resources, 45-50
command-line options table, 51

Motif widgets, reference guide to, 325-326, 329-338
Motif window manager, 182-184

places for resources, 42

predefined converters, 47

representation types, 46

resource conversion, reference guide to, 284
rules related to naming, 44-45

setup of resource files, 43-45

sources of resources, 42-43

widgets, Motif, 189

Xt Resource table, 46

Resource table

in widget construction, 119-121
Xt resource table, 46

Root window, 13-15

file:///H:/edonkey/docs/programming/1/2/book-index.html (14 of 22) [13/12/02 18:10:46]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Index

inter-client communication and, 237

Ruler, 4
S
Scheifler, Robert, 1
Scrolled list, made from list, 95-98
Scrolled text, Motif application, 225-227
Segmentation violation, 11
Sel ection management, reference guide to, 286
Sel ection mechanisms
inter-client communication, 247-248
reference guide to, 313-315
Set_values method, in widget construction, 126-127
Siblings, 13-15
Sink, 125
Source, 125
Sprite events, 55
Stacking order, windows, 15
Standard user interface, 148-150
State events, function of, 56
Static definitions, 35
Structures, 11-13
Style guides, Matif, 181
T

Tab groups, 193
Text, 25

multi-font text, 28

Timeout procedures, event handling, 75-83
Toggle action procedure, application building, 178
Toolkit initialization, reference guide to, 303-308
TopLevel, 20

Transient, 20

Tranglation management

file:///H:/edonkey/docs/programming/1/2/book-index.html (15 of 22) [13/12/02 18:10:46]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Index

action procedure, 68
actions, 68

event handling, 56, 64-75
reference guide to, 288-290
syntax, 73-75

trandations, 68

trandation table, 70
XtActionRec, 70
XtTrandations, 70

Trand ation management typedefs, reference guide to, 276
Trandation tables, 73-75

event typesfor, 74
Traversa mechanism

Motif, 193
Motif application, 228

Type converter, in widget construction, 123
Typedefs, 275-283

BASE widget typedefs, 276

intrinsic specific procedure typedefs, 276-283
trandlation management typedefs, 276
typedef statement, 11-12

Union widget, 151

UNIX, 233

Unmanaged widgets, 39, 40, 41
User interface

OSF/Moatif style, 149
standardization of, 148-150

Utilities, in widget construction, 114-117

file:///H:/edonkey/docs/programming/1/2/book-index.html (16 of 22) [13/12/02 18:10:46]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Index

V
Value, 26, 27, 68
getting from widgets, 61-64
Viewport, 95-98
W

Widget class, 40

Widget creation, reference guide to, 302-303
Widget mapping, reference guide to, 299
Widgets

advantagesto use, 7
argument list, 40
classes of, 20-21
components of

ClassPart, 21-22, 99-100, 107
CoreClassPart, 100-102
CorePartMember, 103-104

instance record, 22, 99, 102-103, 107
Object, 23

RectObj, 23

composite widgets, 141-143, 145

structure of, 141-143
use of, 141

constraint widget, 144-145
structure of, 144-145
construction of

action table, 121

class initialize method, 124
classrecord, 122-123
destroy method, 128-129

file:///H:/edonkey/docs/programming/1/2/book-index.html (17 of 22) [13/12/02 18:10:46]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Index

forward declarations, 118-119
get_values method, 127-128
header files, 117-118
implementation file, 114-129
initialize_hook method, 125-126
initialize method, 124
look-up tables, 122

macros, 118

private header file, 111-113
public header file, 107-111
resource table, 119-121
set_values method, 126-127
type converter, 123

utilities, 114-117

container widgets, 50
creation of, 39-42

arguments for, 40-41
functionsfor, 40

managed widgets, 39

realizing widgets, 41
unmanaged widgets, 39, 40, 41

FieldEd widget, creation of, 106-107
functional aspects

default procedures, 132-133
default trandations, 138-139
insertion position, 129-130
internal editors, 133-138
notifiers, 131-132
portability, 129

redisplay mechanism, 130

getting value from, 61-64
Instance name, 40
meaning of widget, 19-20
Motif, 181

classing, 256-261
compound strings, 193

file:///H:/edonkey/docs/programming/1/2/book-index.html (18 of 22) [13/12/02 18:10:46]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Index

container widgets, 190-191
display widgets, 189-190

listing of, 255-256

menu widgets, 192-193
names/class pointers, 187-188
resources, 189

widget creation function, 188-189

parent widget, 40
tranglation table, 73-75
widget class, 40
widget tree, 41

Widget sets

AsciiDiskWidgetClass, 152

BoxWidgetClass, 152

CommandWidgetClass, 152
FieldEdWidgetClass, 152

FormWidgetClass, 152

L abelWidgetClass, 152

ListWidgetClass, 152

OverrideWidgetClass, 151

selection from set, building application, 150-153
union widget, 151

Widget state, reference guide to, 296-297
Widget writers, 19

Wildcards, in font names, 30-31
Windowless object, 23-24

Window manager

Motif, 182-186

button/key bindings, 186
functions of, 185
mwmrc file, 184, 186
resources of, 182-184

Windows

coordinates, 14

file:///H:/edonkey/docs/programming/1/2/book-index.html (19 of 22) [13/12/02 18:10:46]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Index

stacking order, 15

unviewable mapped windows, 14
window manager, 4-5

window tree system, 13-15

Work procedures

event handling, 84-89
reference guide to, 312

as event-driven programming system, 15-16, 52
graphics, 25-32

hardware and, 1, 3

history of, 1

protocol, 5

system architecture

client-server relationship, 2-3
window management, 4-5
X server responsibilities, 3-4

window tree system, 13-15
Xlib programming interface, 6
Xt, advantagesto use, 7

XAW

A/R.4 widgets, 265-266

A.5 classing, 266-270

A.6/R4 exported functions, 270
A.7/R3 widgets, 271

A.8/R3 classing, 271-273

A.9/R3 exported functions, 273-274

X Consortium Standard, 33
Xlib, 26

file:///H:/edonkey/docs/programming/1/2/book-index.html (20 of 22) [13/12/02 18:10:46]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Index

programming interface, 6
X server, 2,14

client-server relationship, 3-4
responsibilities of, 3-4

XStation, 2
Xt

advantagesto use, 7

application building, 33-98

C language and, 9-13

inheritance in, 105-106
object-oriented programming, 16-17
pointers, 9-11

structures, 11-13

Xt reference guide

argument list, 297

callbacks, 299-300

checking routines, 285

container routines, 283-284

error handling, 308-311

event gathering routines, 294-295
event handling, 284-285

event management, 292-294
geometry management, 286-288, 300
grabs, 315-316

graphics context, 313-313
information gathering routines, 298
keycode procedures, 290-291
keysym procedures, 290-291
logic macros, 296

memory management, 311
pop-ups, 300-301

resource conversion, 283-284

sel ection management, 286
selection mechanisms, 313-135
toolkit initialization, 303-308
translation management, 288-290

file:///H:/edonkey/docs/programming/1/2/book-index.html (21 of 22) [13/12/02 18:10:46]

A Practical Guide to X Window Programming: Developing Applications with the XT Intrinsics and OSF/Motif:Index

typedefs, 275-283

BASE widget typedefs, 276
intrinsic specific procedure typedefs, 276-283
translation management typedefs, 276

widget creation, 302-303
widget mapping, 299
widget state, 296-297
work procedures, 312

Table of Contents

Copyright © CRC Press LLC

file:///H:/edonkey/docs/programming/1/2/book-index.html (22 of 22) [13/12/02 18:10:46]

file:///reference/crc00001.html

