
WINDOW MANAGEMENT ALGORITHMS
FOR AN

ALL POINTS ADDRESSABLE DISPLAY

by
John Will Webster III

7.'

Submitted in Partial Fulfillment
of the Requirements for the

Degree of Bachelor of Science
at the

Massachusetts Institute of Technology

May, 1983

Signature of Authx__._
Department of Electrical Engineering and Computer Science, 1983

Copyright Q 1983, John W. Webster III

Certified by

fA //f"~~--'" Thesis Supervisor

Accepted by u, -
Chairman, Departmental Committee on Theses

Archives
MASSACHUSETTS INSTITUTE

Or TECHNOLOGY

JUN 1 0 1983

L!RRARIES

WINDOW MANAGEMENT ALGORITHMS
FOR AN

ALL POINTS ADDRESSABLE DISPLAY

by
John Will Webster III

supervised by
Carl E. Hewitt,

Associate Professor of
Electrical Engineering and Computer Science

ABSTRACT

This thesis discusses issues associated with the implementation
of window management systems. The results it presents include:
an algorithm for updating overlapping windows without consuming
large amounts of memory, a design for multiple-font menus, and a
design for a facility to support a general multiple-font text
formatter on an all points addressable (APA) display.

TABLE OF CONTENTS

Introduction............................
A Word About Windows
About JAWS.........................
The Canvas Data Structure..........
The Window Data Structure..........
The Window Update Cycle............
The Utility Routines...............
Architectural Benefits.............
Some Inadequacies..................
Thesis Organization................

Chapter 1 -- Screen Management Techniques..
Computation of the Changed Area.......
Screen Management Algorithms..........

The Do Nothing Algorithm.........
Doing Nothing to a Shadow Buffer.
The Fragmentation Algorithm......

Chapter 2 -- Pop-up Menus..................
What Should a Pop-up Menu Do?.........
Implementation Design Issues..........
Specifying the Implementation.........
The Implementation of a Pop-up Menu Ca
Handling Input........................

Chapter 3 -- Dynamic Redisplay...................

Chapter 4 -- Child Windows

......................... 1

........................ 3

............. 5

........................ 5

........................ 9

....................... 15

....................... 15

....................... 18

....................... 20

.................... 22

.................... 22

.................... 24

.................... 25

.................... 27

.................... 28

.................... 34

.................... 34

.................... 36

.................... 39

nvas 40

.................... 49

..............54

..............61

Chapter 5 -- Building a Bridge Between POLITE and JAWS
The POLITE User Interface........................
Entering User Requests into POLITE...............
How POPFLAVOR Supports the POLITE Menu System
Mapping Screen Coordinates to Canvas Coordinates.
Handling Keyboard Input..........................
Supporting the Document Manager..................
The Document Structure and Operations............

......... 67

......... 67

......... 69

......... 70

......... 71

......... 72

......... 75

......... 75

Mapping a Canvas Coordinate into a Document Coordinate....76
The Benefits of using JAWS with POLITE 77

Conclusion .. 79

Appendix A -- Display Algorithm Results and Analysis........
WINTEST1
WINTEST3
QUIXTEST................................
WINTEST4

...80

...87

...91

...92

...92

FIGURES

- A Typical Window Management System2
- The Application, Canvasses, and Windows4
- The Flavor Packages6
- The Window Hierarchy
- A Surfaced Window10
- A Buried Window ..11
- A Hidden Window ..12
- The Window Update Process14
- The DISPATCH Module16

- The REDISPLAY Algorithm23
- The "Do Nothing" Algorithm 26
- The Multiple Pass Fragmentation Algorithm29
- Complex and Simple Window Configurations32

- A Sample Pop-up Menu35
- The Structure of the Pop-up Menu Canvas41
- A Pop-up Menu Entry43
- The Correlation Routine for Pop-up Menus45
- The Correlation Primitives46
- The Modified Primitives47
- The Translation Routine for Pop-up Menus50
- The Input Routine for Pop-up Menus52

3.1 - A Window with a Shared Screen Buffer and Canvas..
3.2 - The Background Pattern...........................
3.3 - The Basic Pattern-Drawing Algorithm..............
3.4 - The BACKFLAVOR Translation Routine...............

4.1 - A Sample Parent-Child Relationship...............
4.2 - The Child Window Moves with his Parent...........
4.3 - Child Window Sharing its Parent's Screen Buffer..

5.1 - POLITE Uses JAWS to Interact with the APA Screen.
5.2 - The Buffer/Canvas Map as Used by POLITE..........

- WINTEST1 Initially.............
- WINTEST1 Midway Through........
- WINTEST1 at End................
- WINTEST3 Initially.............
- WINTEST3 Moving a Window.......
- QUIXTEST.......................
- WINTEST4.......................

........ 55

........ 56

........ 59
........ 61

........ 62
........ 63
........ 64

........68
........ 73

......................... 82

......................... 83

......................... 84

......................... 85

......................... 86

......................... 88

......................... 89

I.1

1.2

1.3
I.4

1.5

1.6

I.7

1.8

1.9

1.1

1.2

1.3
1.4

2.1

2.2
2.3
2.4
2.5

2.6

2.7

2.8

Al.1
A1.2
A1.3
A1.4
A1.5
A1.6
A1.7

TABLES

A1.1 - Screen Management Test Results81

INTRODUCTION

A WORD ABOUT WINDOWS

In the realm of display devices, we define a "window" to be a

rectangular region on a display device through which data is

viewed and manipulated. The window abstraction is particularly

useful in dividing one physical display device into several

virtual display devices to be shared by one or more application

programs and their components (Fig. I.1). Window management

systems are software packages which implement the window

abstraction. Examples of existing window systems include the

LISP machine window system (Weinreb and Moon), Smalltalk

(Tesler), and, the primary object of our discussion in this

thesis, JAWS (for "Jaws A Window System").

JAWS is an application-independent, general-purpose window

management system which is currently implemented on the PERQ

personal computer, a PASCAL machine with 1MB of primary storage

(PERQ), and supports an all points addressable (APA) display.

One of the essential features of JAWS is its general nature;

lack of dependence on application programs allows JAWS to be used

easily in several different applications. To date, several

application programs, including a 3270 terminal emulator

(O'Hara), the graphic editor which was used to draw the

illustrations for this thesis, and an integrated real-time

editor/formatter known as POLITE (for Personal On-Line

Integrated Text Editor)(Borkin and Prager), have been written

using JAWS for screen support. This thesis is concerned with the

- 1 -

I ADf T PATTnfl I I

Fig. I.1 -- The window management system enables several applications
to share the same physical screen.

-2-

development of some of the window management algorithms and

techniques used in JAWS and uses POLITE to illustrate how JAWS

might be used to support a useful application.

ABOUT JAWS

To begin, a summarization of the state of JAWS at the

initiation of the work described in this thesis is in order. The

original design and basic implementation of JAWS were done by

John C. Gonzalez (as his bachelor's thesis at MIT) and Robert P.

O'Hara of IBM (while on sabbatical at IBM's Cambridge Scientific

Center). A complete documentation of this effort is provided

in Gonzalez' thesis, Implementing a Window System on an APA

Display (Gonz), and should be consulted for details beyond those

which I provide here.

There are two basic image-containing structures in JAWS:

"canvasses" and "windows" (Fig. 1.2). Canvasses correspond

roughly to the "world" of the Core Graphics Standard (Siggraph)

in that they contain the data which is to be manipulated by the

application program; likewise, windows correspond to the

Standard's "viewports" in that they "view" (i.e. contain the

translated image of canvas data, particular canvasses. Note that

although a window may view only one canvas at a time, there is

nothing to prevent several windows from viewing the same canvas.

- 3 -

]< W/ NDOW n

F is. I.2 -- The appli cat ion program writ. es t canvasses Lh hi h are
v ieLed kb, windols.

-4-

THE CANVAS DATA STRUCTURE

There are several different types of canvasses, differing in

their representations and in the routines used to manipulate

them. The collections of routines which support these

different canvas types are known as "flavors". Thus, to

manipulate a particular canvas, the application program would

call routines available in the flavor which corresponds to the

type of that canvas (Fig. 1.3). For example, "CHRFLAVOR" is

a canvas flavor which supports text-oriented operations. The

underlying representation, which is, of course, hidden from the

application program, of a CHRFLAVOR canvas is a vector of

characters; the routines used to manipulate it may include such

things as MOVE_CURSOR, WRITE_CHARACTER, and so on. Fig. 1.3

shows the original four flavors of JAWS: CHRFLAVOR is explained

above, BITFLAVOR supports a bit-mapped canvas, QUIXFLAVOR

supports a canvas of vector endpoints, and WINFLAVOR supports

windows with no canvasses (more about this in Chapter 3). Canvas

A in Figure 1.3 is of type CHRFLAVOR while canvasses B and Z are

both of type QUIXFLAVOR.

THE WINDOW DATA STRUCTURE

Each window (Fig. 1.4) contains pointers to the canvas it

views, to its "screen buffer", which contains a representation

of the canvas' contents in a form intelligible to the display

device, and, possibly, to a list of child windows. A child

- 5 -

Fig. 1.3 -- The application program manipulates the canvasses through
the routines provided by the appropriate flavor package.

-6-

BOT NO

WINDOW

NEXTWIND

PREVWIND

SCREEN BUFFER --
CANVAS

CHILDREN \\

L ASTWI ND

- CANVAS

CHILDREN

WINDOW 3

NEXTWIND

PREVWIND

SCREEN BUFFER

CRNVAS
CHILDREN

Fig. 1.4 -- The window hierarchy.

-7-

TOPW ND

WINDOW 1

NEXTWIND

PREVWIND

SCREEN BUFFER
CANVAS
CHILDREN

WINDOW n

NEXTWIND

PREVWIND

SCREEN BUFFER

U

I CANAS B

1

CA~NVAS

IL

LI

I-

j
CANVAS

window is no different from its parent in structure (i.e. it can

have siblings, children, and a view of a canvas). It is

different, however, in that its existence is limited to the

region occupied by its parent and it shares its eldest parent's

screen buffer (i.e. if a window is a child of some other window,

it has no screen buffer of its own).

Windows are assembled in an hierarchy which determines the

order in which they are displayed on the screen. There are

three special pointers into that hierarchy: TOPWIND, BOTWIND, and

LASTWIND. The windows between TOPWIND and BOTWIND are visible on

the display with TOPWIND appearing to be above all other visible

windows and BOTWIND appearing to be beneath all other visible

windows. This gives a "2-1/2"-D quality to the display and

allows the user to think of overlapping windows just as he would

overlapping papers on his desk. The windows between BOTWIND and

LASTWIND are said to be "hidden", meaning they are not visible on

the display at all.

In Fig. 1.4, then, Window 3 would be "displayed" (i.e. have

the contents of its screen buffer transferred to the display

device) first, then Window 1. Window 2 is never explicitly

displayed since it is a child of Window 1 and shares its screen

buffer (i.e. its screen image was displayed automatically when

Window 1 was displayed). Window n is never displayed since it is

hidden. Thus, when portions of more than one window

occupy the same space on the physical display, which window is

- 8 -

visible to the user is determined by its position in the window

hierarchy.

The order of the hierarchy is originally determined by the

order in which the application program defines windows. JAWS

does, however, provide operations in the "window manager" which

alter that order. "Surfacing" a window means that it will always

be displayed last (i.e. it is TOPWIND); "burying" a window

causes it to be displayed first (it is BOTWIND); "hiding"

a window causes it to become invisible to the display

(however, its screen buffer is still updated in the event of a

change in its canvas). In Fig. 1.5, we have surfaced the window

containing the clock display, in Fig. 1.6 we have buried it, and

in Fig. 1.7 we have hidden it.

THE WINDOW UPDATE CYCLE

The changes made to a canvas are not immediately made visible

on the display device; instead, the application program must

explicitly indicate that it desires to have the changes to the

canvas be made visible before a screen update occurs. This

allows long and complex changes to the canvas seem instantaneous

to the user.

The application program notifies JAWS through the "canvas

manager" that it wishes to have the changes made to a certain

canvas transferred to the screen. This causes a series of events

-9-

22 Apr 83 16:39:14

Fis. I.5 -- The clock display is surfaced.

I.n b 1 f :40:35

Fig. 1.6 -- The clock display is buried.

Fi. I-7 -- The clck display is hidden.

I

to occur (Fig. 1.8). First, the canvas manager places the

changed canvas on a queue (the "CANVAS QUEUE") for processing

by the window manager and invokes that manager. In Figure I.8,

canvas B has changed and is therefore on the CANVAS QUEUE. For

each canvas on the CANVAS QUEUE, the window manager traverses the

entire window hierarchy updating the screen buffers of those

windows which view the changed canvas as is necessary by

flavor dependent translation routines (these will be discussed

in more detail in Chapter 2) and placing them on the "REDISPLAY

QUEUE". In Figure 1.8, windows 2 and 3 are placed on the

REDISPLAY QUEUE since they both view canvas B (see Fig. 1.4).

When this screen buffer update process is completed, the window

manager invokes the "screen manager". For each window that is

on the REDISPLAY QUEUE, the screen manager traverses the entire

window hierarchy and displays each window therein on the

display so that all changed windows are updated and the depth

relationships between the windows remain the same. Were

the screen manager to redisplay only the updated windows, it

may occur that some obscured window would become the obscurer of

another window which logically (i.e. according to the window

hierarchy) lies on top of it (a clear mistake). The process of

redisplaying each window in the window hierarchy is known as

"reburying" the changed window. This screen refresh completes

the update cycle.

- 13 -

F i. 1.8 -- The window updat e process.

-14-

THE UTILITY ROUTINES

Just as the application program must perform flavor dependent

manipulations on the canvasses, so must the various

managers sometimes perform operations which vary with the type of

canvas a window is viewing. An example of this occurs when the

window manager tries to correlate a point in a window with a

point in the canvas the window views. Obviously the way in which

this is done varies with the type of canvas the window views.

Because of this, there is a need for generic procedures in JAWS

(e.g. a generic correlation routine). Since PASCAL does not

support such procedures, we emulate them by using a dispatch

module as shown in Fig. 1.9 where the flavor utility routines are

analogous to the flavor routines seen in Fig. 1.3. These utility

routines are hidden from the application programmer.

ARCHITECTURAL BENEFITS

An important design feature of JAWS is that the managers

mentioned above (i.e. the canvas, window, and screen managers)

communicate through queues. This arrangement allows JAWS to run

in a multi-processing environment. Not only can several

application programs run concurrently and use the same window

management system, but also the various managers of JAWS can run

concurrently so that events not related to one another can occur

independently. For instance, in a single process environment,

all canvasses have to be translated into the appropriate screen

- 15 -

SCREEN MNAGER

Fig. 1.9 -- The DISPATCH module emulat es eneric procedures
for JHWS manasers.

-16-

-~~~~~~~~~~~~~~~~l

buffers before the screen buffers can be redisplayed. This is

logically unnecessary since the display of a given screen buffer

depends in no way upon the translation of a canvas into another

screen buffer. Also the queue architecture makes it extremely

easy to add new managers to JAWS.

A second important benefit of JAWS' design is that application

programs written using JAWS are somewhat device-independent. By

this I mean that if JAWS were to be moved to another machine or

made to support a different device, application programs written

using JAWS would still run (provided the language in which they

are written is supported on the new machine) since the interface

to which they were written (i.e. that provided by the three

managers and the flavor routines) would still be the same.

Another benefit is that JAWS can be readily expanded to

support different canvas data representations. To do so, one

simply writes a flavor package to support the new representation.

There is no theoretical limit to the number of flavors which can

be supported by JAWS; there may, however, be a practical limit

imposed by the system supporting the implementation (for

instance, some linkers may have a limit to the number of separate

modules a program can contain). Two examples of flavor additions

are detailed in subsequent chapters.

- 17 -

SOME INADEQUACIES

The design just described has several problems whose solutions

are the major focus of this thesis. The most visibly apparent

problem (to one who is running a program using JAWS) concerns the

reburying of changed windows. Each reburial causes the screen to

flicker slightly as the various windows are displayed. The

source of this problem is that to accomplish reburial, JAWS'

screen manager redisplays every visible window in the window

hierarchy in its entirety each time a screen buffer is changed

(i.e. each time something appears in the redisplay queue). The

resultant flickering is intolerable in interactive applications

which require several screen updates per second. As is detailed

below, this is neither necessary nor efficient and has been

greatly improved upon.

A second major problem with the above design is its handling

of child windows. The original design of JAWS makes the

following distinction between child windows and windows with no

parents ("top-level" windows): only top-level windows have screen

buffers (see Windows 1 and 2 in Fig. 1.4). This has several

implications. For one, child windows are restricted to not

overlapping, for if they were to overlap, one child's screen

image would be destroyed by the other and would have to be

regenerated from the canvas. Another implication is that if a

top-level window has children and is subsequently updated, the

screen image of the children would be overwritten and would have

- 18 -

to be regenerated from the canvas. A third drawback is that

child windows have to be treated differently from top-level

windows by the window manager and by the screen manager.

Consequently, these two managers are filled with special case

code which could be eliminated were child windows to be treated

in a more general fashion.

Another small, but significant, design oversight is the lack

of a facility for defining windows which have no screen buffers.

There are four possible combinations of possessing screen buffers

and canvasses; JAWS exploits two of these (buffer/canvas and

buffer/no canvas), but ignores the other two (no buffer/canvas

and no buffer/no canvas). The no buffer/canvas option is similar

to the default configuration of windows on the Lisp Machine

(Weinreb and Moon). Its main advantage is that it saves storage

(this is especially true on a raster display). Of course, such a

concept is applicable to only a small set of applications. Since

the screen manager does need to refresh the screen, the screen

image of the canvas must be easily generated. Also, in order to

make the storage savings worth the loss in update time, the

canvas representation must be fairly compact. The details of the

implementation of this feature and of the development of a canvas

flavor which utilizes it are given in Chapter 3.

Another deficiency affected JAWS' usefulness for interactive

programs. This is not the result of a design oversight; it is

- 19 -

simply a lack of function. Often when using interactive

programs, we select from a small set of commands and data. In

such a case, it is both feasible and more desirable to select the

command or datum from a menu instead of typing it in from the

keyboard. When a pointing device (such as a puck or a mouse) is

available, this feature becomes even more desirable since the

user need only know how to move the pointer and indicate a

selection. In some cases, to save screen space, we may wish for

the menu to display only some of the available options and to

have the ability to scroll to the other ones. Also, we may wish

to have a facility for indicating some modal difference between

various options on the menu (such as between commands and

arguments). To avoid having each application program implement

its own menu facility, a pop-up menu flavor, which supports

scrolling and multiple-fonts, has been added to JAWS. The

details of its implementation (given in Chapter 2) provide

insight into writing flavors for JAWS.

THESIS ORGANIZATION

The remainder of this thesis is devoted to providing more

detail on the issues mentioned above. Chapter 1 details the

various screen management algorithms used to solve the reburial

problem; Chapter 2 describes the implementation of pop-up menus

from the original design considerations to the final data

- 20 -

structures and algorithms used; Chapter 3 describes how JAWS

might be modified to support canvasses whose screen images are

generated dynamically instead of being buffered; Chapter 4

discusses the advantages and disadvantages we have experienced

with the two implementations of child windows (i.e. with and

without screen buffers); Chapter 5 discusses how JAWS might be

used to support POLITE.

- 21 -

CHAPTER 1

SCREEN MANAGEMENT TECHNIQUES

There are two major steps involved in achieving efficient

screen management. The first step involves limiting the area of

the screen management to only that area which has been changed.

This may seem to be an obvious procedure, but it is one which the

original implementation of JAWS ignored (recall that the reburial

process was accomplished by redisplaying EACH window in the

hierarchy in its ENTIRETY). A related but ancillary step is to

determine the bottom (i.e. closest to BOTWIND) window to be

redisplayed so that redisplay of the entire hierarchy is not

necessary. For instance, if a window is being surfaced, then it

is the bottom window to be redisplayed and the area to be

redisplayed is the area filled by the window.

COMPUTATION OF THE CHANGED AREA

The actual calculation of the extent of the changed area is

done by the redisplay routine. The routine (Fig. 1.1), expressed

for this thesis in terms of Pascal plus set operations, first

computes the window's absolute offset on the screen by

summing the offsets of its parents from their parents

(ultimately, the offset of a top-level window from the origin

of the screen is included in this sum). Next, the

redisplay routine computes the absolute offset of the changed

area by adding the window's absolute offset to the offset of

the changed area within the window. The width and height of the

changed area were previously determined by the caller of the

- 22 -

PROCEDURE rcdtsptp (ultndou, startx, starts', wlit , wd h, tg ht)
[xoff'set <- wi,nuow->.offsetx; poffse4 <- witondo->.offsetp;
par.3at <- window-\x.par

s <- { at ancestor wtandows of wtndiow >
V U E s DO

[xof.fst <- xoffset + w->.of'fsetx
yoffset <- poffset + W->.offsety]

xoffs-ct <- xofffset + stctx; poffsct - yoffsct + sart.p;ewtcuc(relisptypactgut, utrtow, xoffset, offsetw, wttt eght)
scr eca_mnager

Fig. 1.1 -- The redisplay alorithrn.

-23-

redisplay routine; therefore, if the entire window were to be

redisplayed, the redisplay routine would be called with offsets

of zero (indicating to redisplay from the upper-left-hand corner

of the window) and width and height equal to the width and height

of the window.

After it computes the absolute changed coordinates, the

redisplay routine creates a queue element containing the

above information (the window to be displayed and the changed

area) and places it on the redisplay queue. It then invokes

the screen manager, whose job it is to place the window in

question on the screen in its proper position with respect to

both the screen's coordinate system and the window's position in

the hierarchy. The screen manager faces the task of computing

exactly what is visible to the user. There are several ways of

doing this computation; all have different strengths and

weaknesses.

SCREEN MANAGEMENT ALGORITHMS

JAWS' screen manager was implemented using three different

algorithms for the overlap computation. The following sections

detail and compare those algorithms.

- 24 -

THE DO NOTHING ALGORITHM

The original enhancement to JAWS employed what I term here

the "Do Nothing" algorithm (DNA). Starting with the bottom

window (BOTWIND), DNA (Fig. 1.2) examines each window to see if

it is "influenced" by the changed coordinates. If it is, only

that portion of the window which was influenced is displayed on

the display device. DNA continues until it reaches TOPWIND, at

which point it is done.

The best feature of DNA is its simplicity; the code is

extremely simple and executes quickly. Unfortunately, this

algorithm is extremely inefficient. To begin, by starting with

BOTWIND, it ignores the fact that only those windows which lie

above the window on the redisplay queue need to be placed on the

screen to insure its proper reburial. Secondly, by ignoring the

relationships the windows in the hierarchy have to one another

(i.e. that some windows overlap), DNA often displays pixels which

are only going to be overwritten by some subsequent writing in

the same reburial. The first inefficiency compounds the second.

DNA's simplicity would be worth the incurred inefficiencies if

those inefficiencies did not noticeably affect the screen

manager's performance. Unfortunately, they do; the reburial of

any large area of the screen (large means approximately

one-thirtieth of the screen) results in a very noticeable flicker

of the image. If any sort of interaction is occurring in that

area (for instance, scrolling), the resultant flickering is very

- 25 -

PROCEDURE screen.r .n rer ()
[s <- wtndows betweert BOTWIND adnA TOPIIND
wintaow <- dc.uett (r td.sptc 1,ptue)
V w E s DO

[IF (w-tndow n.:ftu..ences w) THEN
[(tdispt6cV tnfttencc. portionr- of w)]]]

Fig. 1.2 -- The "Do Nothing" algorithm (DNR).

-26-

distracting and unappealing. The reason for this is that in an

intensely interactive application, the obscured window is

displayed almost as frequently as the windows which are supposed

to be obscuring it.

DOING NOTHING TO A SHADOW BUFFER

The second algorithm tried is like DNA, only instead of

writing the images directly onto the screen, it writes them into

a "shadow buffer" which is subsequently copied onto the screen,

thereby eliminating the flickering we experienced with DNA. We

call this algorithm DNASB (for DNA in a Shadow Buffer). A second

advantage DNASB has over DNA is that it displays only those

windows from the changed window forward (DNA displayed each

window in the hierarchy).

Since DNASB does not cause any screen flicker, it would seem

that it is much better than DNA. This may be true as far as the

aesthetics of JAWS is concerned, but we must also consider what

price we are paying to achieve that performance. First, since we

now have an additional buffer to manage, we need more code

(compare to DNA's simplicity) and more time to perform the

management. Second, we must consider that the shadow buffer must

be capable of containing an entire screen's worth of data

(since that is the largest part of a window can be displayed at

once). The implication of this is that we must have an

additional amount of storage equal to the storage consumed by the

- 27 -

screen buffer (in the PERQ, that comes to 96K bytes) set aside

for this buffer. If the underlying computer system does not have

this much memory, cases may arise in which the algorithm simply

does not have room enough to run; if the underlying system has a

virtual memory system, this storage consumption may lead to

excessive swapping for highly interactive programs. Finally, we

note that DNASB is inherently less efficient than DNA since it

has to do almost twice as much work just to display the data on

the screen. This inefficiency occurs since DNASB has to do work

equivalent to that of DNA to generate the image in the shadow

buffer and almost as much work as DNA does to move the shadow

buffer onto the display. Of course, DNASB's tactic of

displaying only those windows lying above the changed window in

the hierarchy does give it some redeeming value, but DNA could

easily be modified to do the same without taking on any of

DNASB's less desirable features.

THE FRAGMENTATION ALGORITHM

The third algorithm we tried is the best of the three we

considered. For reasons which should become clear shortly, we

term it the "multiple pass fragmentation" algorithm (MPF). Its

basic form is given in Figure 1.3. The idea behind the

algorithm is to exploit the notion of "subtracting" an obscured

window from an obscuring window and being left with the visible

- 28 -

PROCEDURE Lpf (wtondow)
[IF (c cce window tniftuenc s windo w) THEN

Is <: -wirndow
V w E s + { wiLvtndo's ctitd&rer } + witrnloi's ktgheZr s-tbl1,rs } DO

[IF (c}geiwitr4ow tnftunaces w) THEN
[V v E s DO

If - { frmgnents fron v subtrocted from w }
s <- s - {v U + f]]

red.tsp_1st <- recdtsp_1st + s]
IF b.ry-tg OR sur.f'acit THEN

[(call tLpf on, wlDindo s cldrcn)
IF burpitng THEN

[(c la map f on witnAo w's tig er s bli3 gs)]]

PROCEDURE sc r een mowr ()
[chge wndow - dx tc rccSts toyGIeue)
red&is7 st - {}
mf (c k~ecd_wtndow)

V i E rcttsp_ls t DO
[(d.'tsptay w on t}w. screen)]]

F i 9. 1.3 -- The Multiple Pass Fragmrnentation
algorithm (MPF).

-29-

fragments of the obscured window. This notion is key to the rest

of the algorithm. Now, to determine what is to be displayed when

a window changes, we simply subtract it from the window above it,

subtract each of the resultant fragments from the next window up,

and so on. Unfortunately, this is not always adequate. For

instance, if a window is being buried, it is not enough to figure

what part of it is showing, but we must also figure what parts of

the windows above it are showing to properly bury it. This

simply means that in the case of a window being buried, we must

invoke the algorithm recursively on the window's children and on

the windows lying above it in the hierarchy. A similar situation

arises in the case of a window being surfaced; in this case,

however, the algorithm need be recursively invoked for the

changed window's children only.

How does MPF compare to DNA and DNASB? First, it does not

allow the screen to flicker, so it is immediately a step ahead of

DNA. Second, its storage consumption is limited to descriptors

for window fragments instead of large display buffers as we saw

in DNASB. But the major distinction between MPF and the other

two algorithms is MPF's interesting performance characteristic:

its performance degrades in proportion to the difficulty of the

problem to be solved. The implication of this is that the user

who desires a simple, non-overlapping display does not incur the

same overhead as the user who wishes to have a complex display

with lots of overlapping windows. By contrasting this property

- 30 -

with DNA (where overlapping windows are not even supported very

well) and DNASB (where the user must always have the storage and

time overhead whether he uses overlapping windows or not), we see

that MPF affords the user a great deal of flexibility. At its

best, MPF performs as well as DNA does on non-overlapping

windows. On average, it outperforms DNASB and sometimes even DNA

on overlapping windows (see Appendix A for details).

Of course, there are two sides to every story, and MPF's story

is no exception. To begin, there is a lot more code for MPF than

there is for either of the others. The difference, however,

amounts to only about ten per cent of the entire window system,

so if one can afford JAWS without MPF then surely he can afford

JAWs with MPF. The second problem is more serious and concerns

the execution time of the MPF algorithm. Simply put, MPF is slow

on large problems (compare with DNASB's constant performance).

As Appendix A indicates, MPF begins to become slower than DNASB

when the user tries to bury a window beneath about six others

(this really depends on how the six are arranged on the screen;

complex patterns tend to take longer than less complex ones (Fig.

1.4)).

If we plot the performances of MPF and DNASB versus problem

complexity, we will see a point at which it is better to run

DNASB than it is to run MPF. The optimal algorithm, then, would

be able to analyze a window configuration according to some

- 31 -

(b)

Fi 9. 1.4 -- Conf i3urat ion (a) is relatively complex h hile
(b) is relativel.y simple.

-32-

I I

(a)

- - -

-

-

.

.

complexity criteria and then run either MPF or DNASB depending on

where the configuration's complexity fell on the graph. Of

course, then we would regain the problem of scrounging up

enough memory to run DNASB in its worst case unless we took that

factor into account while deciding which algorithm to run.

The perspicacious reader will no doubt have noticed that of

the three screen management algorithms we implemented, none was

the technique known as "double buffering" (i.e. having two

complete bit-maps for the display and drawing on one while

viewing the other). The reason we did not implement this

solution is that one of our principal objectives was to reduce

storage consumption; double buffering guarantees that we will use

twice the storage normally consumed by the display.

- 33 -

CHAPTER 2

POP-UP MENUS

This chapter is concerned with the implementation of a canvas

flavor which supports the pop-up menu abstraction described

below. Because of its function, we have chosen to name the

flavor POPFLAVOR. This chapter is divided into two major parts:

the first part refines the pop-up menu abstraction and the second

part details the implementation of POPFLAVOR.

WHAT SHOULD A POP-UP MENU DO?

A typical pop-up menu allows the user to select an entry by

moving a pointing device (such as a mouse or a puck) into a

position which is enclosed by the area of the desired entry. The

menu indicates to the user that it recognizes a selection by

highlighting the selected entry in some way (Fig. 2.1). To aid

the user in browsing, the pop-up menu also provides a scrolling

feature; the pop-up menu in Figure 2.1 has been partially

scrolled by using the scroll bar on its right margin. The user

then makes some finalizing action (such as pressing a button) to

let the menu know that the selection is final. After the

selection is finalized, the menu is hidden from the user and the

entry selected is acted upon by the application program.

When we attempt to implement such an interaction as described

above, we find ourselves faced with some pressing issues. How

does the menu get its contents? Who is in control of the

selection action: the application or the window system? If the

window system is in control, how much information does it need to

- 34 -

21 Apr 83 12:07:56

¾nd

a

~..

...·............ ;

This is a character
flavor window.

Opttons:
Lit MOVE L
MOVE

RESHAPE
MRKE CHILD
" I

Fig. 2.1 -- The pop-up menu indicates a selection by highlighting
the se ected entry.

RUN W.=l

know about the contents of the menu in order to support the

selection activities? How is the selected entry related to the

application (if the window system is in control of the

selection)? What happens if there are more entries than will fit

into a reasonably large screen area? What happens to the screen

area that is temporarily obscured by the pop-up menu? How does

the user indicate that he wishes to make no selection, but just

wants the menu to go away? The following description of the

implementation of pop-up menus addresses these and several other

issues.

IMPLEMENTATION DESIGN ISSUES

The first issue we must resolve is who is to be in control of

the pop-up menu interaction: the application or the window

system? Clearly, there are advantages and disadvantages to each.

One may wish to have the application implement the pop-up menu if

one desires a considerable degree of control over the features

provided by the menu; if the window system provided a pop-up

menu, there is a danger that the application programmer would

have no choice about the fine details of its behavior. The

disadvantage to having no window system provided facility is that

each application would then have to create its own. This would

be inefficient since functionally equivalent code would be have

to be written and debugged for each application (unless there

were some compatibility among applications that allowed modules

- 36 -

to be shared, but then we open up a can of file system management

worms). It seems, then, that a reasonable approach to the

problem would be to have the window system provide a pop-up menu

facility with application-defined options. Although this does

not provide the flexibility of an application specific pop-up

menu facility, it is more flexible than having one standard

pop-up menu provided by the window system.

Once we have chosen to have the window system provide the

pop-up menu facility, we must establish a method of communication

between the application and the window system. First, how should

the application specify the contents of a menu to the window

system? Since the basic components of menus are entries, it

seems logical that the application should specify a menu on a per

entry basis. So, for each entry the application wants in the

menu, it must specify the contents of that entry and a list of

options (e.g. what font to use when writing that entry into the

window). The window system would use this information to build

an internal representation of the application's menu and give the

application a name it can use to refer to that representation.

To use the menu to get input from the user, then, the application

would simply invoke the window system's routine for handling

input from pop-up menus with the desired menu's name as argument.

The invocation of the pop-up menu input routine brings us to

the next major issue: how is the input received by the window

- 37 -

system specified to the application? There are two obvious ways

of communicating the information. One is to return the number of

the entry selected to the application. The disadvantage of this

is it requires the application to maintain his own data structure

of the contents of the menu and to keep that data structure

consistent with the data maintained by the window system

(although this is easy to do when pop-up menu is first defined,

it may be troublesome if we allow the user to change the menu

interactively). This method's advantage is that it does not

require the application to parse the input. Parsing may not be

much of a problem when the menu's entries are restricted to those

defined by the application, but what happens when we place no

restrictions on the user's ability to change the menu to include

commands mixed with data instead of using several levels of menus

to specify data? How can the application understand what the

user is trying to do without performing some parsing?

The other way to communicate the selected entry is to return

the string contents of the selected entry. This method has

advantages and disadvantages which are the opposite of the entry

number method's. Since either method is better under different

circumstances, the best solution is to allow the application to

specify in what form he wants the input to arrive.

- 38 -

SPECIFYING THE IMPLEMENTATION

The following discussion on the implementation of POPFLAVOR is

a general one whose ideas apply equally well to all JAWS flavor

packages. POPFLAVOR is used here only as a medium for expressing

those ideas.

Now that we know the inputs and outputs of the pop-up menu

facility, we must decide how to implement something which adheres

to that specification. Since we are implementing this as part of

some window system, we should first decide how this feature fits

into the rest of that system. In our case, the window system is

JAWS; since, as was indicated in the introduction, abstract data

types in JAWS are typically implemented by flavor packages, we

should implement pop-up menus as a flavor (hence its name,

POPFLAVOR).

As a flavor package, POPFLAVOR must do two things: 1) it must

provide an interface to the application to allow it to manipulate

POPFLAVOR canvasses and 2) it must provide routines to support

applicable generic routines for the window system. Because the

functions provided by a pop-up menu are so narrow, the

application interface can be rather small. The major functions

required by the application are the ability to insert an entry,

the ability to delete an entry, and the ability to get input from

the user through the pop-up menu (the application programmer may

also desire functions which allow him to modify existing entries,

- 39 -

but for the purposes of our discussion, these are ancillary to

those functions listed above).

Supporting the functions required by the rest of JAWS (through

the DISPATCH module as mentioned in the introduction) is a

slightly more demanding matter. In addition to the somewhat

trivial tasks of creating and destroying POPFLAVOR canvasses, the

POP_UTILS module must also support the correlation of points on

the APA screen with entries in the canvas and the translation of

the canvas representation into a bit-map.

THE IMPLEMENTATION OF A POP-UP MENU CANVAS

The implementation detailed below was developed with the above

considerations in mind. The description given first specifies

the data representation used and then proceeds to specify the

algorithms used to perform the correlation and translation (these

are the two most interesting problems associated with the pop-up

menu canvas).

Since the application may make and delete entries at arbitrary

points in the menu and the menu may grow to an arbitrary size,

the data structure we choose must support these concepts easily.

For this reason, the top-level structure of the canvas is a

linked-list of entries (Fig. 2.2). The only disadvantage to this

representation is the storage consumed by the pointers in the

linked-list (on the PERQ, pointers consume two sixteen-bit words

- 40 -

ENTRY nENTRY n

Fig. 2.2 -- The top-level structure of the pop-up menu canvas is
a linked-list of entries.

-41-

!

each). There are two reasons why this is not a major issue in

our case: 1) typical pop-up menus are on the order of ten to

twenty entries (remember that they are supposed to make a more

friendly interface, so they will probably be kept brief to avoid

clumsiness) and 2) the PERQ has one million bytes of primary

memory, so a few words wasted are not that important to us when

balanced against the increase in efficiency we achieve. We are,

however, forced to assume a more conservative attitude when

presented with either a more demanding task (such as the

multiple-font canvas presented in Chapter 5) or a smaller

machine.

Next, we must specify what constitutes an entry. An entry

(Fig. 2.3) consists of three major parts: the string form of the

entry (TITLE) and the two attributes it can assume (FONT and

SPACING). The FONT field determines what font the TITLE string

is to be written in (note that although there can be several

fonts per menu, there can be only one font per entry); the

SPACING field determines how many bits of white (or background)

space is to be left between consecutive entries or an entry and

the window border.

Entries must also contain information to assist the

implementing code. An example of such information is the forward

pointer for the linked-list. There are several other such fields

in the entry structure which we present along with the algorithms

that utilize them.

- 42 -

Fig. 2.3 -- n ENTRY is composed of three fields: the TITLE field,
the FONT field, and the SPRCING field.

-43-

We now consider the correlation and translation algorithms.

Since the translation algorithm depends on the correlation

algorithm, we present the latter first. The primitive functions

needed to perform correlation are conversions from entry

coordinates to bit coordinates (ENTRY2BIT) and vice versa

(BIT2ENTRY). Once these primitives are established, it becomes

easy to write the correlation routine (Fig. 2.4).

The real question, then, becomes how to write these two

primitives. The simplistic answer is to start at the top of the

canvas and count the bits consumed between the first entry and

the entry of interest. This basic technique is the underlying

principle for both ENTRY2BIT and BIT2ENTRY (Fig. 2.5). However,

life isn't quite so simple. Were we to actually implement the

primitives this way, we would find that the canvas selection

process would be too slow to keep up with the user and that

smooth scrolling would be out of the question. What can we do to

improve the performance of this basic algorithm? The answer lies

in remembering the answers to our previous queries (somewhat like

dynamic programming). To implement this solution, we need to add

a field (the BITS_CONSUMED field) to our entry structure which

tells us how many bits from the top of the canvas each entry is.

Now, ENTRY2BIT becomes trivial; we simply look at the

BITS_CONSUMED field (Fig. 2.6). BIT2ENTRY still requires us to

start at the top of the canvas and search down, but now we are

merely examining the BITS_CONSUMED field and totaling our

- 44 -

fuSnctio pocorretole(wnuow, wtnx, wtriy) tn· ger
(carry - titZentry(wiAdowA.ccwcas,

wtniow^.i, vewposy + wir - windUow. topmarg)

RETURN (cany)]

Fig. 2.4 -- The correlation routine written assuming the existence
of BITZENTRY.

-45-

functior BIT2ENTRY(cvuas, b-ttcoor)
[E - { ldt eatries i cuas ; tot _ist <- 0
V e E DO

[tot_ itst <- tot ctist + (the height of 's font) +
(the tottl sacig for j

IF tot_cist > bttcoor THEN (c.e loop)]

RETURN(e)]

funcit-or ENTRY2BIT(covas, emtrycoor)
[E <- { a.o. eatrtes up to erntry tabetted entrycoor
tot clist - 0
V -c E DO

[totdisst <- tot dist + (the height of e's font) +
(the total spactng for e]

RETURN (totst)]

Fig. 2.5 -- The primitive correlation routines: BITZENTRY and
ENTRYZBIT.

-46-

functton BITZENTRY(cunvoas bttcoor)
[E <- { ad.t etrtes tn. canvas ; tot_dst <- 0
V e E DO

[tot ditst <- tot d-lst + e.btts consumed.
IF ot_&dtst > bttcoor THEN (teuve toop)]

RETURN(e)]

functtor ENTRY2BIT(canuas, rntrcoor)
[e <- (he rentrp correspoaitna to ertrycoor)
RETURN (. btt s_co rsuad)

Fig. 2.6 -- BIT2ENTRY and ENTRY2BIT modified to use the
BITS_CONSUMED field of each entry.

-47-

findings (Fig. 2.6) instead of calculating the bits used by an

entry through finding and totalling its font height and total

spacing.

We must remember to take care to be sure that the

BITSCONSUMED field is always accurate. There are two

alternative methods for achieving this goal. One method would be

to calculate the BITSCONSUMED field for each entry in the menu

upon menu creation and whenever a new entry is inserted in the

middle of the menu or deleted from the menu (these operations

affect the bit coordinates of subsequent entries because those

bit coordinates are absolute, not relative, values). This method

has the disadvantage of making insertion and deletion of menu

entries more expensive; we recognize, though, that these

operations will probably be done rather infrequently. The

alternative is to maintain another field (called COMPUTED) which

indicates whether or not the BITSCONSUMED field is accurate.

The ENTRY2BIT and BIT2ENTRY algorithms would be modified, then,

to first see if the BITS_CONSUMED field for the concerned entry

is accurate. If it is, then the algorithms would proceed as

described above; if it is not, then the algorithms would

calculate the correct value, insert it in the BITSCONSUMED

field, and use the COMPUTED field to mark it as being accurate.

This method has the disadvantage of making operations

unpredictably slow at times. Which method is preferable depends

- 48 -

on where the application programmer prefers to incur the overhead

associated with this technique.

Once we have the correlation primitives, we are ready to write

the other major routine: the translator (Fig. 2.7). Recall that

the mission of the translation routine is to take the canvas

representation of a pop-up menu and convert it into a bit-map.

The first step we must take toward performing the translation is

to decide what portion of the canvas to translate. We get this

information from one of two sources: Either the caller of the

routine tells us what portion of the canvas to translate or we

can determine what to translate by looking at the changed

coordinates written by the mutating routines (i.e. the routines

which change entries). Next, we must determine what portion of

the translation's target buffer (this is typically a screen

buffer) is affected by the change in the canvas. The call to

INFLUENCED in Figure 2.7 performs this task. Once we know the

bounds of the translation (in bits), we simply write the TITLE

field of each entry within those bounds into the target buffer

using the font indicated by the entry's FONT field and leaving as

many bits of space as are requested by the SPACING field.

HANDLING INPUT

The actual handling of user input is made trivial by the power

of the primitives we have defined. The input routine (called

- 49 -

procecurxe POPTRRNS(wtlndow, canvas, chg_coords)
[IF chged coorcLs = {} THEN

[chge&-coords <- changed coords o canvas 1
chFged coords <- tnfltlencei&(wtnlow, chgectcoords)
IF checl_coords {} THEN

[c E chged coords DO
[(write fTe canvuas etry corresponding to c inL window at

ENTRYZBIT (canvas, c) with proper font ad spacing)]]]

FiB. 2.7 -- The translation routine is easy write using the
ENTRY2BIT primitive.

-50-

f

POPPICKNCHOOSE) is simply a loop (Fig. 2.8) which fetches the

coordinates of the user's pointing device, correlates that point

with a point in the canvas, checks for any button presses, and

does the appropriate thing (highlight an entry, scroll,

terminate, etc.). This routine is also given responsibility for

placing the pop-up window upon entry and hiding it upon exit.

These functions are easily implemented using the window system

primitives. Highlighting is achieved by changing the highlight

attribute of the selected entry and invoking the translator to

transfer the change onto the screen; scrolling is achieved by

changing the window's view on the pop-up menu and invoking the

translator; popping the pop-up window onto the top of all other

windows on the screen is simply a SURFACE operation; making the

window go away when the user is done is simply a HIDE operation

(recall that JAWS supports overlapping windows, so refreshing the

area which is temporarily obscured by the pop-up window is done

automatically by the window system).

One remaining issue is how to terminate the loop in

POP_PICK N CHOOSE. We chose to terminate when the user presses a

button while pointing outside the pop-up menu's window (Fig.

2.8). There are, however, alternatives to this strategy. If

there are several buttons available to the user, the application

programmer could designate one of them as the terminating button.

We could extend this notion to include all keys on the keyboard

(we should be careful here to remember that we use pointing

- 51 -

funcZtiom POP PICK N CHOOSE(wirtnow)
EsuracewTndowT -

REPEAT
(I <- (pointer positionL tL bits)
C <- BITZENTRY(wtndow ^ .crwcas I)
IF C E { at erntries iat Wndow^.Ccanvos THEN

[igktgit (C)]
ELSE

[IF (I s Vta scrott regito of winadow) THEN
[(changc vtew of wtndw o cao.s and cl POPTRANS)]]]

UNTIL (button is pressec)
hiZe (w-indo w)
RETURN(c)]

Fig. 2.8 -- The input handling routine for pop-up menus.

-52-

devices to get away from using the keyboard so much). Finally,

we could designate an area within the pop-up menu's window to be

the termination area. All of these alternatives have one thing

in common: they free one expressive resource (e.g. a window area

or a button) at the expense of tying up another. Although there

is no one paradigm that is correct for all situations, it is

certain that the window system should allow the application

programmer as much freedom as possible in specifying such

features. Such a perspective is consistent with our desire to

provide the application programmer with the convenience of a

pop-up menu facility that is built into the window system while

not constricting his ability to specify what features that pop-up

menu facility possesses. Once again, these principles are

applicable not just to POPFLAVOR, but to all flavors we design.

- 53 -

CHAPTER 3

DYNAMIC REDISPLAY

The original implementation of JAWS was flexible enough to

support windows whose canvasses were their own screen buffers

(Fig. 3.1). This arrangement had the advantage of saving the

extra storage that would have been taken up by a bit-mapped

canvas of the same size as the window's screen buffer (note that

this notion is applicable only to windows which view bit-mapped

canvasses since screen buffers are bit-mapped). The

disadvantages, of course, are that any changes to the canvas

become immediately apparent in the screen buffer and such

canvasses must be the same size as their viewing window's screen

buffer. This concept has a limited scope of application, but we

did find it to be useful for windows which contained static

images, such as a window containing a background pattern for the

screen (Fig. 3.2).

An analogous concept which was not exploited in the original

implementation of JAWS is that of windows which view canvasses,

but have no screen buffer. Such an arrangement is similar to the

default windows on the LISP machine (Weinreb and Moon). Its

principal advantage is the saving of the space that would have

been used for the screen buffer's bit-map; its principal

disadvantage is that sometimes it may be difficult to regenerate

a window's screen image from its canvas quickly enough to support

the application. This concept, too, has a limited range of

application and is useful mainly for windows which view patterned

canvasses since the regularity of patterns makes it easy to

- 54 -

CANVAS
CHILDREN

F is. 3. 1 -- A window's screen buJffer may also serv e as i ts canvas.

-55-

WINDOW x

NEXTWIND
PREVWIND

,:~~~~~~~~rpppm P~~~~~~~~~~~~~~~~i iip~

--- I
I-
I

I

Fig. 3.2 -- The background pattern is implemented ysing a window
whose canvas is its screen buffer. This implemenation
uses half the srage that the same wind w would use
were i implemented normally (i.e. with separate c~anvas
and screen uffr).

generate them dynamically. The following section describes the

use of this concept for a more space-efficient implementation of

the background pattern of the screen mentioned above.

Since flavor construction is discussed in Chapter 2, I assume

here that the reader is familiar with the basic concepts involved

in flavor construction and, therefore, concentrate here on those

features of this flavor (termed BACKFLAVOR since it is used

primarily for the generation of background patterns) which are

different from the analogous features of "normal" flavors (such

as CHRFLAVOR).

BACKFLAVOR's major different feature is that it performs the

translation of data from the canvas representation into the

bit-mapped representation directly into the display's buffer.

This differs from the normal flavors which perform the

translation into the window's screen buffer. Because this

feature makes the translation visibly apparent to the user, the

translator must perform both quickly and gracefully (i.e. it

should not leave a mess on the screen en route to completing the

translation).

As an aside, we note that it may be desirable to have all of

the flavors provide translator routines in which the target

buffer is parametrized. This would enable us to have bufferless

windows which can view any canvas instead of limiting us to using

buffered windows with all normal flavors and bufferless windows

- 57 -

with BACKFLAVOR. The routine which displays windows on the

screen, then, would have to be modified to first check the window

to see if it is buffered. If it is, the routine would display it

on the screen just as it does today; if it is not, the routine

would call the generic translator routine with the display's

buffer as its target parameter. This arrangement is clearly

superior to what presently exists in JAWS. The only reason it

was not implemented is that the present structure of having

flavors determine what the target of their translation will be is

so thoroughly built into JAWS that performing the modification

would have consumed an unacceptable amount of the author's time.

As mentioned above, the translation routine must have the

property of being both fast and graceful. These goals are

particularly easy to achieve in our case since we are trying to

produce a constant pattern. Since the pattern is repeated every

four pixels in each direction, we can represent the entire

pattern as a four pixel by four pixel seed. The translation

routine, then, would consist of replicating this seed throughout

the target area. To do this, we employ an algorithm developed by

J. Gonzalez which expands the pattern geometrically throughout

the target area first horizontally and then vertically (Fig.

3.3).

Because our translator must be compatible with algorithms that

seek to display only part of a window, the algorithm we use in

- 58 -

PROCEDURE make patern(pterr, width, eigt, area)
[offset <- i(witdth of pttera)

WHILE offset < width DO
[if 2 offset < wiAdth then.

rem <- offset
else

rem <- widt. - offset

(draw potterr On area tt offsetr,0 in a rectangte of
heg t ecunl to ptern hetght Lv width eual to rem)
offset <- 2 < offset]

offset <- (he-igtt of pattern)

WHILE offset < heigt DO
[i 2 offset higkht then

rem <- offset
else

rem <- height - offset

(dr.w pttern. on. area at 0,offset . a rectangle of
height eqtual to rem aA wtidlt ea.l to width)

offset <- 2 < offset]]

Fi9. 3.3 -- The algorithm for spreading a pattern across a rectangular
area.

-59-

BACKFLAVOR's translator must be able to match the existing

pattern at any given point in the window without causing a

visible seam to appear. To do this, we must enhance Gonzalez'

algorithm as shown in Figure 3.4. The idea behind the

enhancement is to calculate where we are in the window and use

whatever component of the seed is appropriate for matching the

pattern at that point in the window.

Since BACKFLAVOR has been successfully integrated into JAWS,

we have been able to compare its performance to that of the more

traditional implementation of the background pattern. We have

found that for the most part it does not adversely affect the

performance of JAWS programs. The only time it makes a

noticeable difference to the user is when he is dragging windows

across the screen. Because the background is being filled

dynamically behind the dragged window, the dragging process is

noticeably, but not unacceptably, slower. In most cases, the

space we gain is worth this small loss in time; in the case of

the background pattern, our previous storage consumption of 96K

bytes has been reduced to one word.

- 60 -

CHAPTER 4

CHILD WINDOWS

This chapter compares the relative advantages and

disadvantages of having child windows share the screen buffers of

their parents and having child windows maintain their own screen

buffers. Before we proceed to compare the two implementations,

we must define what a child window is.

A child window (Fig. 4.1) is a window defined within another

window. The window which contains a child window is referred to

as being the child's "parent". The implications of this are

twofold: (1) The child window cannot be larger than or move

outside of its parent and (2) whenever the parent moves, the

child must both move with it and maintain a constant offset

within it (Fig. 4.2). Recall from the introduction that children

can view canvasses separate from their parents' and can have

children of their own (so several levels of children are

possible). We termed a window with no parent to be a "top-level"

window.

The original implementation of child windows did not allow

children to have their own screen buffers; instead, they shared

their top-level ancestor's screen buffer (Fig. 4.3). This meant

that when the canvas of a child window was being translated, the

target buffer of the translation was the child's top-level

ancestor's screen buffer. We lose in several ways here. First,

all of the window management routines which have to handle screen

buffers must become more complex to properly handle child windows

in addition to top-level windows. Second, we lose the ability to

- 61 -

PROCEDURE bcktrans(wtadoW, qrc)
[(4rec crrites intformatton, abou the aret to be transtaed&:

mo&dposx = strttIn3 x coorcdnirte
moposy = starting coorcnose
mo &wi = wtdk h o f r ea
mo dg = hetgt of are)

IF (mo&posx mo 4 = 0) ND (mo&posp mod 4 = 0) THEN
mak _potkerr(wtInciow^ .canvus, moctwtr, modgt wit b .o u.ffer

ELSE
x _off <- mo&posx mod 4; poff <- modposy mod 4;
r m id <- (wtindow's c vas widk h - x off)
rem_-gMt <- (winow' s cuas' eitghk - y_off)

(use xoff, p off, rem_ wiV, nd r em hkt to draw k he
odl p.rt of fhe are To be trasted&; whkt's eft is
sometnhtg hat make._patter cot hkantle)

mak_pttkerr(winow ^ .coxu as , modwid& - remwid,
modhkgt - remtg, wtrlow ^. bufer)]]

Fig. 3.4 -- The translation routine for BCKFLAVOR must be able to
match the pattern stored in a window's canvas to any
location in the window's buffer without leaving a seam.

-61-

Fig. . 1 -- n example of a parent-child relationship. Note
that the child is view in a canvas which is
d ifferent from that viewed by the parent.

-62-

I AM THE PARENT!

I AM THE CHILD.

-

Fig. 4.2 -- The chi
offset
mo ved.

ild window both moves ith and maintains its
within the parent window when the parent is

-63-

I AM THE PARENT!

I AM THE CHILD.

NEXTWIND

SCREEN BUFFER
CRNUHS

CHILDREN

CHILDREN

Fig. 4.3 -- The original implementation of child windows forced children
to share screen buffers with their parents. Here, WINDOW B
is the child of WINDOW and as such must use its screen buffer
Note that WINDOW B does, however, view a canvas which is
different from that viewed by WINDOW A.

-64-

WINDOW

PREVWIND

WINDOW B

PREVWIND
NEXTWIND

SCREEN BUFFER

CANVAS

/
/

/

I

--~~~~~~

V-/

I

have overlapping child windows since the overlapping feature

inherently requires some buffering. Finally, unless we are

willing to add yet more special-case code, we lack the ability to

update a top-level window with children without destroying the

children's screen images. Another important disadvantage of this

implementation is that it forces the perversion of the meanings

of some of the window operations. For example, the bury

operation cannot be performed on a child window since a child has

no screen buffer. Therefore, if the bury operation is invoked on

a child window, it will result in the burial of that child's

top-level ancestor.

The alternative to the above implementation is to give each

child window its own screen buffer. This allows the window

hierarchy to become fully recursive, eliminates special-case

code, and keeps the window management operations true to their

definitions. The only disadvantage to this implementation is its

potential inefficiency. Depending on the architecture of the

underlying machine, allocating a screen buffer may consume

valuable resources. Since child windows are often used to divide

a larger window into several small regions, allocating a screen

buffer for each child may be unacceptably inefficient in some

cases.

From a systems design perspective, then, the second

implementation is much more appealing than the first. The first

implementation, however, has its characteristics for some very

- 65 -

good reasons (as we have seen). How do we resolve this conflict?

Some obvious solutions are: use either the first or the second

implementation and accept their shortcomings; give the

application programmer a choice between the two implementations

for each child he makes; employ some intelligent method of

determining whether or not a screen buffer is necessary on a

child by child basis (this is essentially equivalent to what the

programmer would do in the previous proposal only now it is done

automatically and without the programmer's knowledge). We can

immediately eliminate the first proposal since we don't want

shortcomings in our system. The second may do as an easy fix,

but it is not really desirable since we don't want the

application programmer to have to know details about the window

system's implementation. The last proposal is interesting as an

artificial intelligence problem, but still leaves us with the

special-case code problem and, potentially, the segment use

problem. It does, however, preserve the meanings of the window

management operations and allow the implementation details of the

window system to remain hidden.

Our work in this area went only as far as implementing child

windows with their own screen buffers. Perhaps future

researchers will develop techniques for implementing the more

intelligent solution outlined above.

- 66 -

CHAPTER 5

BUILDING A BRIDGE BETWEEN POLITE AND JAWS

This chapter is concerned with the development of an interface

between POLITE (a real-time editor/formatter) and JAWS. POLITE

was originally implemented on the IBM 370 under CMS (Borkin and

Prager). We are now in the process of transporting it from the

370 to the PERQ minicomputer where it will require some window

management system to allow it to make use of the APA capabilities

of the PERQ without being substantially redesigned. A good way

to model the POLITE system is as a powerful text manipulating

device which has no way to control an APA screen. For that task,

it needs a window management system such as JAWS (Fig. 5.1).

Since there are two major parts to POLITE, the user interface

manager (referred to in ref. as the screen manager) and the

document manager, we first consider how features of the POLITE

user interface are supported by JAWS and then discuss the design

of the interface between the manager of POLITE's internal

document representation and JAWS' display mechanisms. The

material presented here is not intended to be a recipe for making

an editor/formatter. Details about POLITE are mentioned only

when they affect its interface to JAWS.

THE POLITE USER INTERFACE

The POLITE user interface manager is responsible for

monitoring user input and performing the correct actions

(actions include both screen manipulations and document

manipulations) to execute the user's commands. The screen

- 67 -

Fig 5.1 -- POLITE needs to use JAWS to interact with the APR screen.
The screen interface and the buffer manager each use JAWS
for different purposes.

-68-

interface relies on JAWS for both input support and window

management functions as discussed below.

ENTERING USER REQUESTS INTO POLITE

User requests are related to POLITE in one of two ways. The

user either enters the command via the keyboard in some command

area or he selects some command from a menu. In both cases, the

result of the user action is that a command string is presented

to the POLITE parser, parsed, and finally executed by the POLITE

command interpreter. The syntax for the commands on the menu is

exactly the same as that for those entered into the command area.

This leads naturally to allowing the user to modify and create

menus containing the commands (complete with arguments) he

desires. If a command is entered but requires more arguments

than those which were given, the POLITE parser will wait to allow

the user to enter more arguments before it terminates the parse.

This prevents the user from being forced to retype an entire

command just because he forgot an argument or entered an invalid

argument. This also allows the user to put partially complete

command strings in the menus he creates, thereby increasing that

feature's flexibility.

- 69 -

HOW POPFLAVOR SUPPORTS THE POLITE MENU SYSTEM

The POPFLAVOR canvas (Chapter 2) in JAWS supports the POLITE

menu system in several ways. First and foremost, it supports the

dynamic creation and modification of pop-up menus. This facility

allows POLITE to support the menu change feature with very little

code and little data structure complexity (since JAWS handles all

of the messy details of managing the menu data structure). A

second way in which POPFLAVOR supports the POLITE menu facility

is by giving the application a name for each menu it creates.

This simplifies the implementation of a POLITE facility for

allowing the user to name menus and subsequently request them by

name. Finally, by allowing menu entries to have multiple fonts,

POPFLAVOR gives the POLITE menu system increased flexibility.

For example, POLITE can use multiple fonts to indicate

graphically the difference between the command part of an entry

and the argument part.

POINTING AT POLITE OBJECTS

Some commands are of the class referred to as the "pointing

commands". This class includes such commands as "move" and

"delete". The reason they are called pointing commands is that

they require the user to indicate (or "point at") the object, or

unit of text, he wants to move or delete. Objects can be

anything from the entire document to a single character. The CMS

implementation of POLITE is compatible with the 3270 terminal

- 70 -

family and uses cursor movement keys to allow the user to point

at objects. The PERQ implementation should be able to support

pointing via an APA device such as a tablet or mouse.

MAPPING SCREEN COORDINATES TO CANVAS COORDINATES

Correlation of points on the screen (i.e. bit coordinates)

with pieces of text (i.e. character coordinates) is handled by

the JAWS window manager. This allows POLITE to quickly and

easily find out what window the user is pointing at and what

character within that window he has selected. A technique to

correlate this coordinate with a point in the internal document

representation is discussed below.

The canvas we propose to use to support POLITE text (called

TXTFLAVOR) also has a facility for marking blocks of text as

being selected. This facility is powerful enough to allow the

extent of a selection to be easily indicated, yet is still

low-level enough to allow the rules governing the determination

of the extent of the selection to be left up to the application

(in this case, POLITE). POLITE uses this selection capability to

determine the arguments for the pointing commands.

- 71 -

HANDLING KEYBOARD INPUT

The question of how to determine the extent of a selection can

be solved in a straightforward manner. A related but more

difficult question is how to handle keyboard input.

We normally modify the contents of an editor buffer in two

different modes: "insert" mode and "replace" mode. Insert mode

allows new text to be entered without erasing but relocating

existing text; replace mode allows existing text to be modified

without being relocated.

The actual placement of the entered text onto the screen is no

problem: we simply determine the cursor location, place the

character into the canvas at that point, and let JAWS update the

screen as it normally does after a canvas changes. The major

problem we face is in determining where in the buffer the entered

text belongs. For this purpose, there must be some manager

within the POLITE system which maps canvas coordinates into

buffer coordinates (Fig. 5.2). More detail about this manager is

given below. Given that we have such a device, we can easily

create temporary buffers to hold the user's keystrokes along with

their ultimate destinations until we decide to enter the text

into the buffer.

A related issue is determining how the screen appears to the

user as he types. In replace mode, the user should see the

character he enters appear in place of and in the same attribute

as the character beneath his cursor (assuming that all fonts used

- 72 -

Fig 5.2 -- The buffer/canvas map is used by the POLITE screen inter-
face to correlate canvas coordinates with buffer locations.
The POLITE buffer manager fills and updates the map as is
necessary when it updates the JAWS canvasses.

-73-

are fixed-width); TXTFLAVOR's TXTCHAR command supports this. In

insert mode, the user should see the character he enters appear

beneath the cursor and the character that was previously beneath

the cursor move to the right. But what happens to the character

at the end of the line? One solution is to wrap that character

around to the next line. Since this may cause that line to spill

also, this process must be repeated for each line in the canvas.

This approach works well for fixed font canvasses (provided

they contain a relatively small amount of text), but is not

appealing for a multiple font canvas for the following reason. A

multiple font canvas must be laid out bit-by-bit to have all of

its lines be justified; spilling a character from one line to

another may very well upset this justification. The solution we

chose is to have TXTINSERT (the character insertion routine) work

only if there is room on the current line for one more character.

If there is not, TXTINSERT indicates this to the application.

The application then has the option of opening more space in the

canvas by using TXTBRKLINES. This routine simply inserts just

the right amount of space in the canvas to cause the character

beneath the cursor to appear one line lower. This allows new

characters to be placed into the canvas without disturbing the

previous justification of the text.

- 74 -

SUPPORTING THE DOCUMENT MANAGER

The POLITE document manager's primary need is to have the

screen understand the characters it puts out. The JAWS multiple

font text canvas (TXTFLAVOR) provides the means for translating

character/attribute combinations into bit patterns. To see how,

let's look more closely at the document manager's operation.

THE BUFFER STRUCTURE AND OPERATION

POLITE text is stored as a hierarchical structure to minimize

the work done to effect a format change. To produce the proper

text layout from this representation, a formatter interprets the

representation into what one can model as a stream of

character/attribute combinations, which are simply character

codes combined with attribute control information (e.g. font,

color, underlining, spacing). The receiver of this stream is

whatever TXTFLAVOR canvas is viewing the part of the document

being formatted (there can be more than one). The idea of

canvasses viewing other data structures is somewhat alien to

JAWS, but is really no different from that of a window viewing a

canvas. In this case, the information relating canvasses to

documents is maintained by POLITE; the window system knows only

that it is receiving data from its application.

The stream model discussed above is somewhat inefficient in

that it requires each character to have a full set of attributes

associated with it specifying how it is to be printed. A more

- 75 -

efficient model is the "ink" model, where we choose an ink color

(i.e. attribute specification), write some characters in that

color, change colors, write more characters, and so forth. This

takes advantage of the similarity of adjacent characters.

TXTFLAVOR supports the ink model with the TXTCHGATTR routine

which is used to change the attributes in effect starting at the

present location within the canvas and extending for the

indicated number of characters. Characters are written using the

TXTCHAR routine, which needs to know only the character to be

written and the spacing to be left between it and its neighbors.

TXTCHAR determines what attribute to assign the character by

looking at the attributes in effect in the rest of the canvas.

MAPPING A CANVAS COORDINATE INTO A BUFFER COORDINATE

We have solved the output problem quite handily, but we still

must handle text input by directing it to the correct spot in the

correct document. This problem was touched upon several times in

previous sections, but cannot be solved fully without

considering its implications.

As was indicated above, it is fairly easy to map a screen

coordinate into a canvas and a character offset within that

canvas. The remaining task is mapping that canvas/offset pair

into a document location. For this we need some table which

provides information on what part of what document each canvas

- 76 -

views and what document locations selected points in each canvas

correspond to. Armed with this information, we can quickly

calculate the exact document/document-location pair which

corresponds to the canvas/offset pair we received from the JAWS

correlation routine. Since this table would have to be updated

whenever a canvas is being filled or modified, the responsibility

for maintaining the table should lie with the formatter. This

should be quite easy for the formatter to do since it has all the

information necessary at hand when it is filling a canvas (i.e.

it knows where it is in the document and where it is in the

canvas being filled).

Using the above technique, we can monitor the user's actions

and always know the exact location he is indicating or acting

upon. We can then buffer his character input and at the

appropriate time place it in the correct document at the correct

location. The phrase "appropriate time" is determined by the

user interface portion of POLITE and the issues associated with

it which were discussed previously.

THE BENEFITS OF USING JAWS WITH POLITE

The APA capability of the PERQ greatly enhances the user

interface by allowing more rapid user pointing, more flexible

menus, easier menu selection, etc. But more importantly, the

power of the JAWS window management features makes POLITE's code

- 77 -

on the PERQ simpler than its code on CMS even though its function

is greater. Furthermore, we must realize that JAWS does not make

any special concessions to POLITE. The features that are useful

to POLITE are useful to other applications as well as is

demonstrated by the existence of the 3270 emulator (O'Hara) and

the graphic editor mentioned in the introduction.

- 78 -

CONCLUSION

The techniques and ideas described in this thesis are useful

not only for JAWS, but also for other window management systems.

The author hopes that the efforts spent on this research will not

have to be repeated by future window system designers, but

instead will be used as a basis for developing new ideas.

One area for future work is the implementation of the multiple

font formatter design outlined in Chapter 5. Such work should

provide a fairly stringent test of JAWS usefulness.

Another area for future research is moving JAWS to different

machines. This will reveal how machine-independent the JAWS

interface really is. We strongly suspect that it will not be

very difficult to make a JAWS application run successfully on

different machines once they are running JAWS.

Other areas which we might investigate include support for a

general-purpose graphic flavor and support for non-character

input (e.g. handwriting).

- 79 -

APPENDIX A

DISPLAY ALGORITHM RESULTS AND ANALYSIS

Appendix A (Display Algorithm Results and Analysis)

Table Al.1 contains the running times of four different test

application programs each of which were run three separate times

using the three different screen management algorithms described

in the text (see Chapter 1). The results are adjusted so that

MPF always runs in time one while the others take either less

than or greater than time one depending on their relationship to

the MPF time.

The following is a description of each of the four application

programs used in the testing :

1. WINTEST1 surfaces eight windows and then buries them in

reverse order. Figure Al.1 shows the display after WINTEST1 has

completed its surfaces, Figure A1.2 shows the display midway

through the bury operations, and Figure A1.3 show the display at

the completion of the bury operations.

2. WINTEST3 surfaces two overlapping windows and moves the

bottom window across the screen (Figs. A1.4, A1.5).

3. QUIXTEST surfaces two overlapping windows and draws lines

into both windows simultaneously at the rate of several lines per

- 80 -

PROGRAM

WINTEST1

WINTEST3

QUIXTEST

WINTEST4

DNA

.95

.82

1.43

MPFDNRSB

.96

1.23

1.22

.76

1

1

1

11.07

Table H1.1 -- Running times of four test programs under the three
different screen manaqement alsorithms. Note that
the running time under MPF is normalized to one.

-81-

a;fter it has completed its in i t i al surfaces.I Fi9. 1.1 -- WINTEST1

-

I

-

I

I .=- .

-

I Fig. 1.2 -- WINTEST1 midway through its bury operat ions.

- --

I

I

I Fig. A1.3 -- WINTEST1 at the end of its bury operat ions.

I
I

Fig. A1.4 -- The two overlapping windows in WINTEST3.

-85-

Fig. 1.5 -- WINTESTB moving the bottom window across the screen.

-86-

second (Fig. A1.6). The burden is on the screen manager to

update the screen quickly enough to match this rate.

4. WINTEST4 surfaces three non-overlapping windows and writes

text into the canvas they all share. Since they all view

different portions of the canvas, the writing appears in them at

different times (Fig. A1.7).

There are two major criteria by which we can estimate the time

performance of each of these screen management algorithms: their

adeptness at handling the update of an overlapped window and the

amount of overhead they generate when handling simple redisplay

cases. An example of such overhead is provided by DNASB since it

causes even the simplest cases to take longer by always

performing twice as many writes as do the other algorithms (it

first writes to the shadow buffer and then to the screen).

Since the focus of our attention is the performance of MPF,

our analysis consists of comparing each of the other algorithms

to MPF for each of the test programs. This is the reason we have

chosen to normalize the time taken by MPF on each test program in

Table Al.1.

WINTEST1

WINTEST1 is the most complex of the four test programs.

Accordingly, we expect it to be the most demanding to MPF. Since

- 87 -

F i g. R1.6 -- QUIXTEST drawin9 lines into two overlapp i n windows. I

FTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT.
)yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU ...

WU~~~vUUUUUU9WUUUU9UUU~~~~~~~~~~~~vUUU9WUUUUU99~....... :::

11i!||!~~~~~~~~~~~~~~~ iCF~ThZ~~~~~~~~~~~~~~~~~.HH.............................RARRRRAGRARARRAGRRARARARAR.................... IIIBB....B
..................................... K K K

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FF FFNNN

n > > of o ~~~~. o>fof>. o>oo>oooo>>o.21 J J Su J J J J S S J J J J J J J J J J J J J J J S ~~~~...... |.......5..HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHPPP .'.................

IEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE MMMM

JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ BBBB

4 LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL3 TTTT 333m33
IMMMMM[MMMMMMMMMMMMMMMMMMMMMMMMMMM 33UUUU3,. ,3'.3,33.

JNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN yyyyUW 3.33.3...333. 3..

)0000000000000000000000000v003 ,.3,333,,33
.PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

!QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ3 ,..,3333'333,,3BBBBBBRBBBBBBBBBBBBBBBBBBBRBBpBBR)DDDDDDDDDDDDDDDD DDDDDDDDDDe~oooo 31 333.333L33

7TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 333....33. 3.Juuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu:000,,,,,.,j.333 .3333 .3.3 3.3 33....3333. 3.335 1n''l 11 Se ='u==' 1i'l:: j4S

;three windows to share the same canvas.|Fig. A1.7 -- WINTEST4 allows

DNA involves a minimal amount of processing prior to screen

writing, we expect it to run faster than MPF, which involves a

great deal of preprocessing, does. How much faster DNA is

depends on how many bits it writes to the screen unnecessarily

(i.e. how many bits are written only to be overwritten in the

same update). This figure is in turn determined by the degree of

overlapping present in the screen area to be redisplayed; that is

the ratio of the area being redisplayed to the sum of the

affected areas of each window to be redisplayed. This ratio, the

"overlap ratio", is proportional to the difference in performance

between a "thinking" algorithm (such as MPF) and a "non-thinking"

one (such as DNA). If the ratio is small, then there is a great

deal of writing time to be saved by not unnecessarily writing

bits; if it is large, then there are not that many bits to be

unnecessarily written, so one may as well not bother determining

which ones are necessary and which ones are not.

In the case of WINTEST1, we observe a high degree of

overlapping (Fig. Al.l). This means that the non-thinking

algorithms (DNA and DNASB) should all be bogged down by writing

bits unnecessarily. Therefore, although they do not incur the

preprocessing overhead of MPF, they lose time because of

unnecessary writes and in the end take almost as much time as MPF

does. This is verified by Table Al.1.

One may expect that DNASB would take much more time than DNA

since it does more bit writing. But once again, the overlap

- 90 -

ratio comes into play to tell us that the extra write to the

screen (from the shadow buffer in DNASB) is negligible when

compared to all of the writes done anyway be both DNA and DNASB.

Therefore, very little extra time is taken by DNASB (as is

indicated by Table Al.1).

WINTEST3

In WINTEST3, we note that the ratio of overlapping is much

higher than in WINTEST1. This, when coupled with the fact that

throughout more than half of the test, there is no overlapping,

suggests that the algorithms with the lowest overhead should

perform significantly better than the algorithms with higher

overhead.

The test results do, in fact, show this. The lowest overhead

algorithm for non-overlapping configurations and simple

configurations (i.e. configurations with a high overlap ratio) is

DNA; it performed best on this test. The highest overhead

belongs to DNASB (because the high overlap ratio makes its extra

writes more significant); accordingly, it is the slowest

algorithm on this test. MPF's preprocessing actually costs it

time on this test since the time spent trying to save bit writes

is greater than the time saved by not writing those bits (once

again, because of the high overlap ratio).

- 91 -

QUIXTEST

QUIXTEST is an example of a good configuration for MPF to

analyze. The area of overlap is large enough and the

configuration simple enough to make the time spent by MPF in

preprocessing less than the time it would have taken to write the

unnecessary bits. This allows MPF to outperform both DNA and

DNASB significantly.

WINTEST4

WINTEST4 demonstrates the disparity in performance by a

low-overhead algorithm, a medium-overhead algorithm, and a

high-overhead algorithm. In this case, DNA has no overhead

whatsoever since it does no preprocessing and there are no wasted

bits (compare to WINTEST3 where there were, in fact, some wasted

bits to keep DNA's time high). MPF has a small amount of

overhead in that it has to determine that there is no need for

preprocessing (this determination is, in and of itself, some form

of preprocessing). DNASB, of course, has its constant overhead

of doubling the writes it must do.

In analyzing the results of such tests, we must keep in mind

that there is a vast difference in the quality of the screen

management provided by DNA and that provided by MPF and DNASB.

We cannot expect to receive such an improvement without paying

some price in time. This being so, it is somewhat remarkable

- 92 -

that in half the tests, the non-flickering algorithms performed

as well as or better than DNA.

Another point brought out by the test results is that although

MPF outperforms DNASB in every configuration of simple to medium

complexity, DNASB does have the edge in the more complex

configurations. This emphasizes the point made in Chapter 1 that

a simple complexity test with little overhead could enable us to

achieve good performance in all cases by selecting MPF when it is

the appropriate algorithm and DNASB when it is not.

- 93 -

REFERENCES

(Borkin and Prager)
Borkin, S.A., and Prager, J.M., POLITE Project Progress
Repqort, IBM Cambridge Scientific Center Report G320-2140,
IBM Corp., April, 1982.

(Gonz)
Gonzalez, J.C., Iplementing a Window System for an All
Points Addressable Display, IBM Cambridge Scientific Center
Report G320-2141, IBM Corp., December, 1982.

(O'Hara)
O'Hara, Robert P., AIDE - An Interactive DispElY_
Environment, IBM Corp., September, 1982.

(PERQ)
Three Rivers Computer Corp., PERQ Software Reference Manual,
Pittsburgh, Pa., 1982.

(Tesler)
Tesler, Larry, "The Smalltalk Environment", Byte, Byte
Publications Inc., August, 1981, vol. 6 num. 8.

(Weinreb and Moon)
Weinreb, Daniel, and Moon, David A., Introduction to Using
the Window System, M.I.T. Artificial Intelligence Laboratory
Working Paper 210, May, 1981.

