

Johan Thelin

Foundations of
Qt Development

Foundations of Qt Development

Copyright © 2007 by Johan Thelin

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-831-3

ISBN-10 (pbk): 1-59059-831-8

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Qt, the Qt logo, Qtopia, the Qtopia logo, Trolltech, and the Trolltech logo are registered trademarks of
Trolltech ASA and/or its subsidiaries in the U.S. and other countries. All rights reserved.

Lead Editor: Jason Gilmore
Technical Reviewer: Witold Wysota
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jonathan Gennick, Jason Gilmore,

Jonathan Hassell, Chris Mills, Matthew Moodie, Jeffrey Pepper, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Senior Project Manager: Tracy Brown Collins
Copy Edit Manager: Nicole Flores
Copy Editor: Nancy Sixsmith
Assistant Production Director: Kari Brooks-Copony
Production Editor: Kelly Winquist
Compositor: Dina Quan
Proofreader: Paulette McGee
Indexer: Brenda Miller
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section.

Till Åsa.

Contents at a Glance

Foreword . xv

About the Author . xvii

About the Technical Reviewer . xix

Acknowledgments . xxi

PART 1 ■ ■ ■ Getting to Know Qt
■CHAPTER 1 The Qt Way of C++ . 3

■CHAPTER 2 Rapid Application Development Using Qt . 33

■CHAPTER 3 Widgets and Layouts . 55

■CHAPTER 4 The Main Window . 95

PART 2 ■ ■ ■ The Qt Building Blocks
■CHAPTER 5 The Model-View Framework . 123

■CHAPTER 6 Creating Widgets . 157

■CHAPTER 7 Drawing and Printing . 183

■CHAPTER 8 Files, Streams, and XML . 235

■CHAPTER 9 Providing Help . 257

■CHAPTER 10 Internationalization and Localization . 279

■CHAPTER 11 Plugins . 303

■CHAPTER 12 Doing Things in Parallel . 333

■CHAPTER 13 Databases . 371

■CHAPTER 14 Networking . 403

■CHAPTER 15 Building Qt Projects. 445

■CHAPTER 16 Unit Testing . 471

PART 3 ■ ■ ■ Appendixes
■APPENDIX A Third-Party Tools . 501

■APPENDIX B Containers, Types, and Macros . 507

■INDEX . 513

v

Contents

Foreword . xv

About the Author . xvii

About the Technical Reviewer . xix

Acknowledgments . xxi

PART 1 ■ ■ ■ Getting to Know Qt

■CHAPTER 1 The Qt Way of C++ . 3

Installing a Qt Development Environment . 3

Installing on Unix Platforms . 3

Installing on Windows . 5

Making C++ “Qt-er”. 6

Inheriting Qt . 7

Using a Qt String . 10

Building a Qt Program . 11

Signals, Slots, and Meta-Objects . 13

Making the Connection . 16

Revisiting the Build Process. 18

Connection to Something New . 19

Collections and Iterators. 21

Iterating the QList . 21

Filling the List . 24

More Lists . 24

Special Lists . 25

Summary. 31

■CHAPTER 2 Rapid Application Development Using Qt 33

The Sketch . 33

Event-Driven Applications . 34

Using Designer. 35

vii

From Designer to Code. 47

The Final Touches . 53

Summary. 54

■CHAPTER 3 Widgets and Layouts . 55

Creating Dialogs in Qt . 55

Size Policies . 57

Layouts . 60

Common Widgets . 62

QPushButton . 62

QLabel . 64

QLineEdit . 65

QCheckBox . 66

QRadioButton . 67

QGroupBox . 68

QListWidget. 69

QComboBox . 71

QSpinBox . 72

QSlider . 73

QProgressBar . 74

Common Dialogs . 75

Files . 75

Messages . 79

Even More Dialogs . 85

Validating User Input . 86

Validators. 87

Summary. 93

■CHAPTER 4 The Main Window . 95

Windows and Documents . 95

Single Document Interface . 96

Multiple Document Interface . 103

Comparing Single and Multiple Document Interfaces 111

Application Resources . 112

Resource File . 112

Project File . 114

Application Icon . 114

Dockable Widgets . 115

Summary . 119

■CONTENTSviii

PART 2 ■ ■ ■ The Qt Building Blocks

■CHAPTER 5 The Model-View Framework . 123

Showing Data by Using Views . 124

Providing Headers . 127

Limiting Editing . 127

Limiting Selection Behavior . 127

A Single Column List . 128

Creating Custom Views . 129

A Delegate for Drawing. 129

Custom Editing . 132

Creating Your Own Views . 135

Creating Custom Models . 140

A Read-Only Table Model . 141

A Tree of Your Own . 144

Editing the Model . 150

Sorting and Filtering Models . 153

Summary. 156

■CHAPTER 6 Creating Widgets . 157

Composing Widgets . 157

Changing and Enhancing Widgets . 162

Catching the Events. 164

Creating Custom Widgets from Scratch. 171

Your Widgets and Designer . 176

Promotion . 176

Providing a Plugin . 177

Summary. 182

■CHAPTER 7 Drawing and Printing . 183

Drawing Widgets . 183

The Drawing Operations . 184

Transforming the Reality . 200

Painting Widgets . 204

The Graphics View. 215

Interacting Using a Custom Item . 220

Printing . 228

OpenGL . 232

Summary . 232

■CONTENTS ix

■CHAPTER 8 Files, Streams, and XML . 235

Working with Paths . 235

Working with Files . 238

Working with Streams. 239

XML . 243

DOM . 244

Reading XML Files with SAX . 248

Files and the Main Window . 250

Summary. 255

■CHAPTER 9 Providing Help. 257

Creating Tooltips . 257

Creating HTML-Formatted Tooltips. 259

Inserting Images into Tooltips . 260

Applying Multiple Tooltips to a Widget . 260

Providing What’s This Help Tips . 263

Embedding Links into What’s This Help Tips 264

Taking Advantage of the Status Bar. 267

Creating Wizards . 269

Assisting the User . 275

Creating the Help Documentation . 275

Putting It Together . 277

Summary. 278

■CHAPTER 10 Internationalization and Localization. 279

Translating an Application . 279

Extracting the Strings . 281

Linguist: A Tool for Translating . 281

Set Up a Translation Object . 284

Qt Strings . 285

Dealing with Other Translation Cases . 287

Find the Missing Strings . 291

Translating on the Fly . 292

Other Considerations . 295

Dealing with Text . 295

Images . 296

Numbers . 296

Dates and Times . 298

Help . 301

Summary . 301

■CONTENTSx

■CHAPTER 11 Plugins . 303

Plugin Basics . 303

Extending Qt with Plugins . 304

Creating an ASCII Art Plugin. 304

Extending Your Application Using Plugins . 317

Filtering Images . 317

Merging the Plugin and the Application . 323

A Factory Interface. 326

Non-Qt Plugins . 329

Summary. 332

■CHAPTER 12 Doing Things in Parallel . 333

Basic Threading . 333

Building a Simple Threading Application . 334

Synchronizing Safely. 336

Protecting Your Data . 338

Protected Counting . 339

Locking for Reading and Writing . 341

Sharing Resources Among Threads . 344

Getting Stuck . 345

Producers and Consumers . 347

Signaling Across the Thread Barrier. 352

Passing Strings Between Threads . 353

Sending Your Own Types Between Threads 356

Threads, QObjects, and Rules . 359

Pitfalls when Threading . 359

The User Interface Thread . 360

Working with Processes . 363

Running uic . 363

The Shell and Directions. 368

Summary. 368

■CHAPTER 13 Databases . 371

A Quick Introduction to SQL. 371

What Is a Database? . 371

Inserting, Viewing, Modifying, and Deleting Data. 372

More Tables Mean More Power . 375

Counting and Calculating . 377

■CONTENTS xi

Qt and Databases . 378

Making the Connection . 378

Querying Data. 380

Establishing Several Connections . 382

Putting It All Together . 382

The Structure of the Application . 384

The User Interface . 384

The Database Class . 392

Putting Everything Together. 397

Model Databases . 398

The Query Model . 399

The Table Model . 399

The Relational Table Model . 400

Summary. 402

■CHAPTER 14 Networking . 403

Using the QtNetwork Module. 403

Working with Client Protocols . 403

Creating an FTP Client . 404

Creating an HTTP Client . 417

Sockets . 424

Reliability’s Role with UDP and TCP . 424

Servers, Clients, and Peers . 425

Sending Images Using TCP . 425

Broadcasting Pictures Using UDP . 436

Summary. 443

■CHAPTER 15 Building Qt Projects. 445

QMake . 445

The QMake Project File . 445

Working with Different Platforms . 450

Building Libraries with QMake. 453

Building Complex Projects with QMake . 454

The CMake Build System . 457

Managing a Simple Application with QMake 457

Working with Different Platforms . 461

Building Libraries with CMake. 465

Managing Complex Projects with CMake . 466

Summary . 469

■CONTENTSxii

■CHAPTER 16 Unit Testing. 471

Unit Testing and Qt . 472

The Structure of a Test . 472

Testing Dates . 474

Implementing the Tests . 475

Data-Driven Testing . 479

Testing Widgets . 483

Testing a Spin Box . 483

Driving Widgets with Data . 487

Testing Signals . 490

Testing for Real . 491

The Interface. 492

The Tests. 492

Handling Deviations. 497

Summary. 497

PART 3 ■ ■ ■ Appendixes

■APPENDIX A Third-Party Tools . 501

Qt Widgets for Technical Applications: Qwt . 502

wwWidgets . 503

QDevelop. 504

Edyuk . 505

■APPENDIX B Containers, Types, and Macros . 507

Containers. 507

Sequences . 507

Specialized Containers . 508

Associative Containers . 509

Types . 509

Types by Size . 509

The Variant Type . 510

Macros and Functions . 511

Treating Values. 511

Random Values . 511

Iterating . 512

■INDEX . 513

■CONTENTS xiii

Foreword

My very first computer, a ZX81, did not have a graphical user interface. Compared with

today’s offerings, I’d say it hardly had graphics at all. That computer never got me excited

about programming, mostly because the manuals were in English and I didn’t yet know how

to read the language.

Then I met the ABC80, a Swedish computer from Luxor. It had the same Z80 processor,

16 kilobytes of RAM, and no real graphics to talk about. It did have an introduction to BASIC in

Swedish, though, so it got me started with programming.

My next computer experience was an Atari ST. I must admit that in the beginning I used it

mostly for gaming. But as time passed I was thrilled about the possibilities of the Atari for pro-

gramming. I wrote games, utilities, and painting applications. I also ran into something that I

learned to like: an API for handling windows and drawing graphics.

Moving on, I got a PC. I learned C and C++, as well as how to do 3D graphics in software

(this was before 3D graphics cards). I was introduced to the Internet and learned lots of new

things from newsgroups and FAQs. I also got my first paid job as a programmer, processing

scientific data using FORTRAN.

At Chalmers University I met Tru64 UNIX and X Windows. The API for doing graphics felt

awkward, so I went looking for something better. That was when I found Qt. Back then, it just

solved my problem of the day: showing a couple of dialogs and drawing some graphics. But

the architecture got me hooked.

Over time, I used Qt more and more. I soon tried to figure out what it was that made Qt so

easy to use. The flexibility of the signals and slots concept that enabled me to connect widgets

and objects to each other was one reason. As was the up-to-date reference documentation—

nothing was left undocumented. And the naming made it easy to find the class and method I

was looking for. The name said it all.

Qt brought me to KDE and Linux. I learned to love GCC, Makefiles, and shell scripting.

The thing that thrilled me about Qt was that no matter what the task was, it fit right into its

architecture. Today, with Qt 4.0, the API covers most of the tasks that you might want to per-

form. Graphics, files, databases, networking, printing—you name it. Qt helps me solve my

problems quickly and easily.

I’ve recently become more and more involved in the Qt community. It all started

with my original “Independent Qt Tutorial” that introduced Qt 3.0 (you can still find it at

www.thelins.se/qt). I’m also a part of the administration team at QtCentre, which is where

I met the technical reviewer of this book, Witold Wysota. QtCentre (www.qtcentre.org) is

a community-driven forum, a wiki, and a news site—the natural meeting place for Qt

developers. Just over a year ago, Apress posted this question in the jobs section: Is there

anyone who wants to write a book about Qt? That was the starting point of the book that

you are reading right now.

Johan Thelin

M.Sc.E.E.

xv

About the Author

■JOHAN THELIN has worked with software development since 1995 and has

experience ranging from embedded systems to server-side enterprise

software. He started using Qt in 2000 and has loved using it ever since.

Since 2002 Johan has provided the Qt community with tutorials, articles,

and help (most notably, he wrote the “Independent Qt Tutorial”). He

currently works as a consultant focusing on embedded systems, FPGA

design, and software development.

xvii

About the Technical Reviewer

■WITOLD WYSOTA, Institute of Computer Science, Warsaw University of Technology, was born

in Wroclaw, Poland. He has a Master of Science degree in Computer Science from the Warsaw

University of Technology (WUT), where he is currently a PhD candidate. As such, he gives

lectures about Qt and conducts exercises using Qt for programming interactive applications.

Witold has been a Qt user since 2004 and was an active contributor to QtForum.org commu-

nity forum before January 2006—when he established QtCentre.org with Axel Jäger, Daniel

Kish, Jacek Piotrowski, and Johan Thelin. It has since become the biggest actively maintained,

community-based Qt-related site and forum.

Witold has been practicing the traditional Seven Star Praying Mantis Kung-Fu style since

1989 and has achieved success in domestic tournaments. He is interested in IT, sports, martial

arts, astrophysics, and history. He lives in Warsaw.

xix

Acknowledgments

There are so many people I want to thank—everybody involved in the project has been help-

ful, positive, and supportive. It has been a great time working with all of you.

First, many thanks go to Witold Wysota, who has provided me with feedback, technical

input, and kind words. Without his support I could not have completed this project. I would

also like to thank Jason Gilmore from Apress for his excellent feedback and writing tips.

Thanks to him, the text is far more enjoyable to read.

Jasmin Blanchette of Trolltech helped me by producing screenshots from the Mac. The

excellent support team at Trolltech also clarified unclear issues and fixed bugs. Everyone at

Trolltech has been very positive and supportive.

I want to thank all the people at Apress: Matt Wade, who gave me the chance to do this;

Elizabeth Seymour, Grace Wong, and Tracy Brown Collins for managing the project. An extra

thanks to Tracy who pushed me the last mile to get the project done on time.

Without the help of Nancy Sixsmith’s language skills, the text would not have been as easy

to read. Thanks to her attention to detail and excellent writing abilities, the text reads as well

as it does today.

There are so many people involved in this project that I have not worked with so closely.

I’m still very grateful to their efforts and appreciate their skills. Many thanks go to Kelly

Winquist, Dina Quan, Brenda Miller, April Milne, and Paulette McGee.

xxi

Getting to Know Qt

In the first few chapters of this book, you will get acquainted with the Qt way of doing

things—including using available classes as well as creating your own classes that inter-

act with the existing ones. You will also learn about the build system and some of the tools

available to help make the lives of Qt developers easier.

P A R T 1

The Qt Way of C++

Qt is a cross-platform, graphical, application development toolkit that enables you to com-

pile and run your applications on Windows, Mac OS X, Linux, and different brands of Unix.

A large part of Qt is devoted to providing a platform-neutral interface to everything, ranging

from representing characters in memory to creating a multithreaded graphical application.

■Note Even though Qt was originally developed to help C++ programmers, bindings are available for a

number of languages. Trolltech provides official bindings for C++, Java, and JavaScript. Third parties provide

bindings for many languages, including Python, Ruby, PHP, and the .NET platform.

This chapter starts by taking an ordinary C++ class and integrating it with Qt to make it

more reusable and easier to use. In the process, you have a look at the build system used to

compile and link Qt applications as well as installing and setting up Qt on your platform.

The chapter then discusses how Qt can enable you to build components that can be inter-

connected in very flexible ways. This is what makes Qt such a powerful tool—it makes it easy

to build components that can be reused, exchanged, and interconnected. Finally, you learn

about the collection and helper classes offered by Qt.

Installing a Qt Development Environment
Before you can start developing Qt applications, you need to download and set up Qt. You will

use the open source edition of Qt because it is freely available for all. If you have a commercial

license for Qt, you have received installations instructions with it.

The installation procedure differs slightly depending on the platform that you are plan-

ning to use for development. Because Mac OS X and Linux are both based on Unix, the

installation process is identical for the two (and all Unix platforms). Windows, on the other

hand, is different and is covered separately. You can start all three platforms by downloading

the edition suitable for your platform from www.trolltech.com/products/qt/downloads.

Installing on Unix Platforms

All platforms except Windows can be said to be Unix platforms. However, Mac OS X differs

from the rest because it does not use the X Window System, more commonly known as X11,

3

C H A P T E R 1

for handling graphics. So Mac OS X needs a different Qt edition; the necessary file (qt-mac-
opensource-src-version.tar.gz) can be downloaded from Trolltech. The X11-based Unix

platforms use the qt-x11-opensource-src-version.tar.gz file from Trolltech.

■Note Qt depends on other components such as compilers, linkers, and development libraries. The

requirements differ depending on how Qt is configured, so you should study the reference documentation

if you run into problems.

When the file has been downloaded, the procedure goes like this: unpack, configure, and

compile. Let’s go through these steps one by one. The easiest way is to work from the com-

mand prompt.

To unpack the file, download it, place it in a directory, and go there in your command

shell. Then type something like this (put x11 or mac in place of edition and use the version
that you have downloaded):

tar xvfz qt-edition-opensource-src-version.tar.gz

This code extracts the file archive to a folder named qt-edition-opensource-src-version.

Use the cd command to enter that directory:

cd qt-edition-opensource-src-version

Before building Qt, you need to configure it using the configure script and its options.

Run the script like this:

./configure options

There are lots of options to choose from. The best place to start is to use -help, which

shows you a list of the available options. Most options can usually be left as the default, but

the -prefix option is good to use. You can direct the installation to go to a specific location by

specifying a path just after the option. For instance, to install Qt in a directory called inst/qt4
in your home directory, use the following configure command:

./configure –prefix ~/inst/qt4

The Mac OS X platform has two other options that are important to note. First, adding the

-universal option creates universal binaries using Qt. If you plan to use a PowerPC-based

computer for your development, you have to add the -sdk option.

The configure script also makes you accept the open source license (unless you have a

commercial license) before checking that all the dependencies are in place and starting to cre-

ate configuration files in the source tree. When the script is done, you can build Qt using the

following command:

make

This process will take a relatively long time to complete, but after it finishes you can

install Qt by using the next line:

make install

CHAPTER 1 ■ THE QT WAY OF C++4

■Note The installation command might need root access if you try to install Qt outside your home

directory.

When Qt has been installed, you need to add Qt to your PATH environment variable. If you

are using a compiler that does not support rpath, you have to update the LD_LIBRARY_PATH
environment variable as well.

If you used the $HOME/inst/qt4 prefix when running configure, you need to add the

path $HOME/inst/qt4/bin to PATH. If you are using a bash shell, change the variable using an

assignment:

export PATH=$HOME/inst/qt4/bin:$PATH

If you want this command to run every time you start a command shell, you can add it to

your .profile file just before a line that reads export PATH. This exports the new PATH environ-

ment variable to the command-line session.

■Note The methods for setting up environment variables differ from shell to shell. If you are not using

bash, please refer to the reference documentation on how to set the PATH variable for your system.

If you have several Qt versions installed at once, make sure that the version that you

intend to use appears first in the PATH environment variable because the qmake binary used

knows where Qt has been installed.

If you have to change the LD_LIBRARY_PATH environment variable, add the

$HOME/inst/qt4/lib directory to the variable. On Mac OS X and Linux (which use the Gnu

Compiler Collection [GCC]), this step is not needed.

Installing on Windows

If you plan to use the Windows platform for your Qt development, download a file called qt-
win-opensource-version-mingw.exe from Trolltech. This file is an installer that will set up Qt

and a mingw environment.

■Note mingw, which is short for Minimalist GNU for Windows, is a distribution of common GNU tools for

Windows. These tools, including GCC and make, are used by the open source edition of Qt for compiling and

linking.

The installer works as a guide, asking you where to install Qt. Make sure to pick a direc-

tory path free from spaces because that can cause you problems later. After you install Qt, you

see a Start menu folder called Qt by Trolltech (OpenSource). This folder contains entries for

the Qt tools and documentation as well as a Qt command prompt. It is important that you

CHAPTER 1 ■ THE QT WAY OF C++ 5

access Qt from this command prompt because it sets up the environment variables such as

PATH correctly. Simply running the command prompt found in the Accessories folder on the

Start menu will fail because the variables are not properly configured.

Making C++ “Qt-er”
Because this is a book on programming, you will start with some code right away (see

Listing 1-1).

Listing 1-1. A simple C++ class

#include <string>
using std::string;
class MyClass
{
public:
MyClass(const string& text);

const string& text() const;
void setText(const string& text);

int getLengthOfText() const;

private:
string m_text;

};

The class shown in Listing 1-1 is a simple string container with a method for getting the

length of the current text. The implementation is trivial, m_text is simply set or returned, or

the size of m_text is returned. Let’s make this class more powerful by using Qt. But first, take a

look at the parts that already are “Qt-ish”:

• The class name starts with an uppercase letter and the words are divided using Camel-
Casing. That is, each new word starts with an uppercase letter. This is the common way

to name Qt classes.

• The names of the methods all start with a lowercase letter, and the words are again

divided by using CamelCasing. This is the common way to name Qt methods.

• The getter and setter methods of the property text are named text (getter) and setText
(setter). This is the common way to name getters and setters.

They are all traits of Qt. It might not seem like a big thing, but having things named in a

structured manner is a great timesaver when you are actually writing code.

CHAPTER 1 ■ THE QT WAY OF C++6

Inheriting Qt

The first Qt-specific adjustment you will make to the code is really simple: you will simply let

your class inherit the QObject class, which will make it easier to manage instances of the class

dynamically by giving instances parents that are responsible for their deletion.

■Note All Qt classes are prefixed by a capital Q. So if you find the classes QDialog and Dialog, you can

tell right away that QDialog is the Qt class, whereas Dialog is a part of your application or third-party

code. Some third-party libraries use the QnnClassName naming convention, which means that the class

belongs to a library extending Qt. The nn from the prefix tells you which library the class belongs to. For

example, the class QwtDial belongs to the Qt Widgets for Technical Applications library that provides

classes for graphs, dials, and so on. (You can find out more about this and other third-party extensions to

Qt in the appendixes.)

The changes to the code are minimal. First, the definition of the class is altered slightly, as

shown in Listing 1-2. The parent argument is also added to the constructor as a convenience

because QObject has a function, setParent, which can be used to assign an object instance to

a parent after creation. However, it is common—and recommended—to pass the parent as

an argument to the constructor as the first default argument to avoid having to type setParent
for each instance created from the class.

Listing 1-2. Inheriting QObject and accepting a parent

#include <QObject>
#include <string>
using std::string;

class MyClass : public QObject
{
public:
MyClass(const string& text, QObject *parent = 0);

...
};

■Note To access the QObject class, the header file <QObject> has to be included. This works for most

Qt classes; simply include a header file with the same name as the class, omitting the .h, and everything

should work fine.

CHAPTER 1 ■ THE QT WAY OF C++ 7

The parent argument is simply passed on to the QObject constructor like this:

MyClass::MyClass(const string& text, QObject *parent) : QObject(parent)

Let’s look at the effects of the change, starting with Listing 1-3. It shows a main function

using the MyClass class dynamically without Qt.

Listing 1-3. Dynamic memory without Qt

#include <iostream>
int main(int argc, char **argv)
{
MyClass *a, *b, *c;

a = new MyClass("foo");
b = new MyClass("ba-a-ar");
c = new MyClass("baz");

std::cout << a->text() << " (" << a->getLengthOfText() << ")" << std::endl;
a->setText(b->text());
std::cout << a->text() << " (" << a->getLengthOfText() << ")" << std::endl;

int result = a->getLengthOfText() - c->getLengthOfText();

delete a;
delete b;
delete c;

return result;
}

Each new call must be followed by a call to delete to avoid a memory leak. Although it is

not a big issue when exiting from the main function (because most modern operating systems

free the memory when the application exits), the destructors are not called as expected. In

locations other than loop-less main functions, a leak eventually leads to a system crash when

the system runs out of free memory. Compare it with Listing 1-4, which uses a parent that is

automatically deleted when the main function exits. The parent is responsible for calling

delete for all children and—ta-da!—the memory is freed.

■Note In the code shown in Listing 1-4, the parent object is added to show the concept. In real life, it

would be an object performing some sort of task—for example, a QApplication object, or (in the case of

a dialog box or a window) the this pointer of the window class.

CHAPTER 1 ■ THE QT WAY OF C++8

Listing 1-4. Dynamic memory with Qt

#include <QtDebug>
int main(int argc, char **argv)
{

QObject parent;
MyClass *a, *b, *c;

a = new MyClass("foo", &parent);
b = new MyClass("ba-a-ar", &parent);
c = new MyClass("baz", &parent);

qDebug() << QString::fromStdString(a->text())
<< " (" << a->getLengthOfText() << ")";

a->setText(b->text());
qDebug() << QString::fromStdString(a->text())

<< " (" << a->getLengthOfText() << ")";

return a->getLengthOfText() - c->getLengthOfText();
}

You even saved the extra step of having to keep the calculated result in a variable because

the dynamically created objects can be used directly from the return statement. It might look

odd to have a parent object like this, but most Qt applications use a QApplication object to act

as a parent.

■Note Listing 1-4 switched from using std::cout for printing debugging messages to qDebug(). The

nice thing about using qDebug() is that it sends the message to the right place on all platforms. It is also

easy to turn off: simply define the QT_NO_DEBUG_OUTPUT symbol when compiling. If you have debugging

messages after which you want to terminate the application, Qt provides the qFatal() function, which

works just like qDebug(), but terminates the application after the message. The compromise between the

two is to use qWarning(), which indicates something more serious than a debug message, but nothing

fatal. The Qt functions for debugging messages automatically appends a line break after each call, so you

do not have to include the std::endl any more.

When comparing the code complexity in Listing 1-3 and Listing 1-4, look at the different

memory situations, as shown in Figure 1-1. The parent is gray because it is allocated on the

stack and thus automatically deleted, whereas the instances of MyClass are white because they

are on the heap and must be handled manually. Because you use the parent to keep track of

the children, you trust the parent to delete them when it is being deleted. So you no longer

have to keep track of the dynamically allocated memory as long as the root object is on the

stack (or if you keep track of it).

CHAPTER 1 ■ THE QT WAY OF C++ 9

Figure 1-1. Difference between dynamic memory with a parent and without a parent on the stack

Using a Qt String

Another step toward using Qt is to replace any classes from the C++ standard template library

(STL) with the corresponding Qt class. Although it is not required (Qt works great alongside

the STL), it does make it possible to avoid having to rely on a second framework. The benefit

of not using the STL is that you use the same containers, strings, and helpers as Qt does, so the

resulting application will most likely be smaller. You also avoid having to track down compati-

bility issues and strange deviations from the STL standard when moving between platforms

and compilers—you can even develop on platforms that do not have implementations of

the STL.

Looking at the class as it currently stands, spot the string class as the only STL class used.

The corresponding Qt class is called QString. You can mix QString objects and string objects

seamlessly, but using only QString means performance gains and more features. For example,

QString supports Unicode on all platforms, making it a lot easier for international users to use

your application.

Listing 1-5 shows how your code looks after replacing all occurrences of string with

QString. As you can see, the changes to the class are minimal.

Listing 1-5. MyClass using QString instead of string

#include <QString>
#include <QObject>

class MyClass : public QObject
{
public:
MyClass(const QString& text, QObject *parent = 0);

const QString& text() const;
void setText(const QString& text);

int getLengthOfText() const;

CHAPTER 1 ■ THE QT WAY OF C++10

private:
QString m_text;

};

■Tip When mixing string and QString, use the QString methods toStdString and fromStdString

to convert to and from the Qt Unicode format to the ASCII representation used by the string class.

Building a Qt Program

Compiling and building this application should not be any different from building the original

application. All that you have to do is make sure that the compiler can find the Qt headers and

that the linker can find the Qt library files.

To handle all this smoothly and in a cross-platform manner, Qt comes with the QMake

tool, which can create Makefiles for a range of different compilers. It even creates the project

definition file for you if you want it to.

Try this by building a simple application. Start by creating a directory called testing. Then

put the code from Listing 1-6 inside this directory. You can call the file anything as long as it

has the cpp extension.

Listing 1-6. A trivial example

#include <QtDebug>

int main()
{

qDebug() << "Hello Qt World!";

return 0;
}

Now open a command line and change your working directory to the one that you just

created. Then type qmake -project and press Enter, which should generate a file named test-
ing.pro. My version of that file is shown in Listing 1-7.

■Tip If you are running the open-source version of Qt in Windows, you have an application called some-

thing like Qt 4.2.2 Command Prompt in the Start menu folder that was created when you installed Qt. Run

this application and use the cd command to change the directory. For example, first locate your folder using

Explorer; then copy the entire path (it should be similar to c:\foo\bar\baz\testing). Now type cd, fol-

lowed by a space at the command prompt before you right-click, select Paste, and then press Enter. That

should get you to the right working directory in a snap.

CHAPTER 1 ■ THE QT WAY OF C++ 11

Listing 1-7. A generated project file

##
Automatically generated by qmake (2.00a) to 10. aug 17:06:34 2006
##

TEMPLATE = app
TARGET +=
DEPENDPATH += .
INCLUDEPATH += .

Input
SOURCES += anything.cpp

The file consists of a set of variables that are set by using = or extended by using +=. The

interesting part is the SOURCES variable, which tells you that QMake has found the anything.
cpp file. The next step is to generate a platform-specific Makefile using QMake. Because the

working directory contains only one project file, simply type qmake and press Enter. This

should give you a Makefile and platform-specific helper files.

■Note On GNU/Linux, the result is a single file called Makefile. On Windows, if you use the open-source

edition and mingw you get Makefile, Makefile.Release, Makefile.Debug, and two directories: debug

and release.

The last step is to build the project from the generated Makefile. How to do this depends

on which platform and compiler you are using. You should usually type make and press

Enter, but gmake (common on Berkeley Software Distribution [BSD] systems) and nmake (on

Microsoft compilers) are other common alternatives. Try looking in your compiler manual if

you cannot get it to work at the first try.

■Tip When running Windows, applications do not get a console output by default. This means that Win-

dows applications cannot, by default, write output to the command-line users. To see any output from

qDebug(), you must add a line reading CONFIG += console to the project file. If you built the executable

and then saw this tip, try fixing the project file; then run make clean followed by make. This process

ensures that the project is completely rebuilt and that the new configuration is taken into account.

The only thing left to do now is to run the application and watch this message: Hello Qt
World!. The executable will have the same name as the directory that you used. For Windows

users, the executable ends up in the release directory with the exe file name extension, so you

start it by running the following command:

release\testing.exe

CHAPTER 1 ■ THE QT WAY OF C++12

On other platforms it is usually located directly in the working directory, so you start it by

typing the following:

./testing

On all platforms the result is the same: the Hello Qt World! message is printed to the

console. The resulting command prompt on the Windows platform is shown in Figure 1-2.

Figure 1-2. A Qt application running from the command prompt

Signals, Slots, and Meta-Objects
Two of the biggest strengths that Qt brings to C++ are signals and slots, which are very flexible

ways to interconnect objects and help to make code easy to design and reuse.

A signal is a method that is emitted rather than executed when called. So from your view-

point as a programmer, you declare prototypes of signals that might be emitted. Do not

implement signals; just declare them in the class declaration in the signals section of your

class.

A slot is a member function that can be invoked as a result of signal emission. You have to

tell the compiler which methods to treat as slots by putting them in one of these sections:

public slots, protected slots, or private slots. The protection level protects the slot only

when it is being used as a method. You can still connect a private slot or a protected slot to a

signal that you receive from another class.

When it comes to connecting signals and slots, you can connect any number of signals to

any number of slots. This means that a single slot can be connected to many signals, and a

single signal can be connected to many slots. There are no limitations to how you intercon-

nect your objects. When a signal is emitted, all slots connected to it are called. The order of the

calls is undefined, but they do get called. Let’s look at some code that shows a class declaring

both a signal and a slot (see Listing 1-8).

CHAPTER 1 ■ THE QT WAY OF C++ 13

Listing 1-8. A class with a signal and a slot

#include <QString>
#include <QObject>
class MyClass : public QObject
{

Q_OBJECT

public:
MyClass(const QString &text, QObject *parent = 0);

const QString& text() const;
int getLengthOfText() const;

public slots:

void setText(const QString &text);

signals:

void textChanged(const QString&);

private:
QString m_text;

};

The code is a new incarnation of the class MyClass you have been working with through-

out the chapter. There are changes related to the signals and slots in the three emphasized

areas of the listing. Start from the bottom with the new section labeled signals:. This tells you

that the functions declared in this section will not be implemented by you; they are simply

prototypes for the signals that this class can emit. This class has one signal: textChanged.

Moving upward, there is another new section: public slots:. Slots can be public, pro-

tected, or private like any other member—just add the appropriate protection level before the

slots keyword. Slots can be considered a member function that can be connected to a signal.

There is really no other difference; it is declared and implemented just like any other member

function of the class.

■Tip Setter methods are natural slots. By making all setters slots, you guarantee that you can connect sig-

nals to all interesting parts of your class. The only time when a setter should not also be a slot is when the

setter accepts some very custom type that you are sure will never come from a signal.

At the very top of the class declaration you find the Q_OBJECT macro. It is important that

this macro appears first in the body of the class declaration because it marks the class as a

class that needs a meta-object. Let’s look at what meta-objects are before continuing.

The word meta indicates that the word prefixed is about itself. So a meta-object is an

object describing the object. In the case of Qt, meta-objects are instances of the class

CHAPTER 1 ■ THE QT WAY OF C++14

QMetaObject and contain information about the class such as its name, its super classes, its

signals, its slots, and many other interesting things. The important thing to know now is that

the meta-object knows about the signals and slots.

This leads into the next implication of this feature. Until now, all the examples have fitted

nicely into a single file of source code. It is possible to go on like this, but the process is

much smoother if you separate each class into a header and a source file. A Qt tool called

the meta-object compiler, moc, parses the class declaration and produces a C++ implementa-

tion file from it. This might sound complex, but as long as you use QMake to handle the

project, there is no difference to you.

This new approach means that the code from Listing 1-8 goes into a file called myclass.h.

The implementation goes into myclass.cpp, and the moc generates another C++ file from the

header file called moc_myclass.cpp. The contents from the generated file can change between

Qt versions and is nothing to worry about. Listing 1-9 contains the part of the implementation

that has changed because of signals and slots.

Listing 1-9. Implementing MyClass with signals and slots

void MyClass::setText(const QString &text)
{
if(m_text == text)
return;

m_text = text;
emit textChanged(m_text);

}

The changes made to emit the signal textChanged can be divided into two parts. The first

half is to check that the text actually has changed. If you do not check this before you connect

the textChanged signal to the setText slot of the same object, you will end up with an infinite

loop (or as the user would put it, the application will hang). The second half of the change is

to actually emit the signal, which is done using the Qt keyword emit followed by the signal’s

name and arguments.

SIGNALS AND SLOTS UNDER THE HOOD

Signals and slots are implemented by Qt using function pointers. When calling emit with the signal as argu-

ment, you actually call the signal. The signal is a function implemented in the source file generated by the

moc. This function calls any slots connected to the signal using the meta-objects of the objects holding the

connected slots.

The meta-objects contain function pointers to the slots, along with their names and argument types.

They also contain a list of the available signals and their names and argument types. When calling connect,

you ask the meta-object to add the slot to the signal’s calling list. If the arguments match, the connection is

made.

When matching arguments, the match is checked only for the arguments accepted by the slot. This

means that a slot that does not take any arguments matches all signals. The arguments not accepted by the

slot are simply dropped by the signal-emitting code.

CHAPTER 1 ■ THE QT WAY OF C++ 15

Making the Connection

To try out the signals and slots in MyClass, the a, b, and c instances are created:

QObject parent;
MyClass *a, *b, *c;

a = new MyClass("foo", &parent);
b = new MyClass("bar", &parent);
c = new MyClass("baz", &parent);

Now connect them. To connect signals and slots, the QObject::connect method is

used. The arguments are source object, SIGNAL(source signal), destination object,

SLOT(destination slot). The macros SIGNAL and SLOT are required; otherwise, Qt refuses to

establish the connection. The source and destination objects are pointers to QObjects or

objects of classes inheriting QObject. The source signal and destination slot are the name and

argument types of the signal and slot involved. The following shows how it looks in the code.

Figure 1-3 shows how the object instances are connected.

QObject::connect(
a, SIGNAL(textChanged(const QString&)),
b, SLOT(setText(const QString&)));

QObject::connect(
b, SIGNAL(textChanged(const QString&)),
c, SLOT(setText(const QString&)));

QObject::connect(
c, SIGNAL(textChanged(const QString&)),
b, SLOT(setText(const QString&)));

■Caution Trying to specify signal or slot argument values when connecting will cause your code to fail at

run-time. The connect function understands only the argument types.

Figure 1-3. The connections between a, b, and c

The following line shows a call to one of the objects:

b->setText("test");

Try tracing the call from b, where there is a change from "bar" to "test"; through the con-

nection to c, where there is a change from "baz" to "test"; and through the connection to b,

CHAPTER 1 ■ THE QT WAY OF C++16

where there is no change. The result is that a is unaltered, while b and c get the text set to

"test." This is illustrated in Figure 1-4, in which you can see how the text "test" propagates

through the objects. Now try to trace the following call. Can you tell what the outcome will be?

a->setText("Qt");

Figure 1-4. Tracing the text through the connections

■Tip By providing a signal for each slot (for example, textChanged corresponds to setText), you make

it possible to tie two objects together. In the previous example, the objects b and c always have the same

value because a change in one triggers a change in the other. This is a very useful feature when one object

is a part of a graphical user interface, as you will see later.

CHAPTER 1 ■ THE QT WAY OF C++ 17

Revisiting the Build Process

The last time building Qt applications was mentioned, the reason for using the QMake tool

was platform independence. Another big reason is that QMake handles the generation of

meta-objects and includes them in the final application. Figure 1-5 shows how a standard C++

project is built.

Figure 1-5. A standard C++ project is built.

When using QMake, all header files are parsed by the meta-object compiler: moc. The moc
looks for classes containing the Q_OBJECT macro and generates meta-objects for these classes.

The generated meta-objects are then automatically linked into the final application. Figure 1-6

shows how this fits into the build process. QMake makes this completely transparent to you as

a developer.

Figure 1-6. Meta-objects are being built.

CHAPTER 1 ■ THE QT WAY OF C++18

■Tip Remember that Qt is simply standard C++ mixed with some macros and the moc code generator. If

you get compiler or linker messages complaining about missing functions with names telling you that they

are signals, the code for the signals is not being generated. The most common reason is that the class does

not contain the Q_OBJECT macro. It is also possible to get strange compilation errors by not inheriting

QObject (directly or indirectly) and still use the Q_OBJECT macro, or by forgetting to run qmake after having

inserted or removed the macro in a class.

Connection to Something New

Signals and slots are very loose types of connection, so the only thing that matters is that the

arguments’ types match between the signal and the slot. The called class does not need to

know anything about the calling class, and vice versa. That means that the simple example

class can be put to the test—letting it interact with a set of Qt’s classes.

The plan is to put MyClass between a widget that lets the user enter text, QLineEdit, and a

widget that shows text, QLabel. A widget is a visual component such as a button, a slider, a

menu item, or anything else that is a part of a graphical user interface. (Widgets are described

in some detail in Chapter 3.) You can make the MyClass object work as a bridge carrying text

from the user editable field to the label by connecting the textChanged signal from the

QLineEdit object to the setText slot of the MyClass object and then connecting the textChanged
signal from the MyClass object to the QLabel object’s setText slot. The entire setup is shown in

Figure 1-7.

Figure 1-7. MyClass acting as a bridge between QLineEdit and QLabel

The main function of this example can be split into three parts: creating the involved

object instances, making the connections, and then running the application. Listing 1-10

shows how the involved components are created. First, there is a QApplication object. For all

graphical Qt applications, there must be one (and only one) application instance available.

The application object contains what is called the event loop. In this loop, the application

waits for something to happen—for an event to occur. For example, the user presses a key or

moves the mouse, or a certain period of time has passed. As soon as an event has occurred, it

is transformed into a call to an appropriate QObject. For instance, the key press event would

go to the widget having keyboard focus. The event is processed by the receiving object, and

sometimes a signal is emitted. In the key press scenario, a textChanged signal is emitted; in the

case of a button and the key being entered or space, a pressed signal is emitted. The signals

are then connected to slots performing the actual tasks of the application.

Take a moment to review Listing 1-10. The QApplication object is created, along with

three widgets: a plain QWidget, a QLineEdit, and a QLabel. The QWidget acts as a container for

the other two. That is why you create a QVBoxLayout—it is a vertical box layout that stacks its

widgets on top of each other. Then you put the line edit and label in the box layout before

assigning the layout to the widget. The resulting widget is shown in Figure 1-8.

CHAPTER 1 ■ THE QT WAY OF C++ 19

Finally, you create an instance of MyClass, which is the last object that you will need.

Listing 1-10. Creating an application, widgets, layout, and a MyClass object

#include <QtGui>

int main(int argc, char **argv)
{
QApplication app(argc, argv);

QWidget widget;
QLineEdit *lineEdit = new QLineEdit;
QLabel *label = new QLabel;

QVBoxLayout *layout = new QVBoxLayout;
layout->addWidget(lineEdit);
layout->addWidget(label);
widget.setLayout(layout);

MyClass *bridge = new MyClass("", &app);

According to Figure 1-7, you need to make two connections (see Listing 1-11). It is impor-

tant to remember that the names of the signals and slots (textChanged and setText) just

happen to be the same as in MyClass. The only thing important to Qt is the type sent and

accepted as argument: QString.

Listing 1-11. Setting up the connections

QObject::connect(
lineEdit, SIGNAL(textChanged(const QString&)),
bridge, SLOT(setText(const QString&)));

QObject::connect(
bridge, SIGNAL(textChanged(const QString&)),
label, SLOT(setText(const QString&)));

You might fear that showing the user interface and then starting the event loop is the

hard part. In fact, the opposite is true. Listing 1-12 shows all the code involved. Because the

line edit and label are contained in the plain widget, they are shown as soon as the widget is

shown. When you try to show the widget, Qt realizes that it is missing a window and automati-

cally puts it in a window. Then the application method exec runs the event loop until all

windows are closed and returns zero as long as everything works as expected.

Listing 1-12. Showing the user interface and executing the event loop

widget.show();

return app.exec();
}

CHAPTER 1 ■ THE QT WAY OF C++20

As soon as the event loop is up and running, everything takes care of itself. Keyboard

activity ends up in the line edit widget. The key presses are handled, and the text changes

accordingly. These changes lead to textChanged signals being emitted from the line edit to

the MyClass object. This signal propagates through the MyClass object to the label where the

change can be seen by the user as the label is redrawn with the new text. A screenshot from

the application is shown in Figure 1-8.

Figure 1-8. It does not show on the surface, but MyClass is playing an important role in this
application.

The important thing to remember is that MyClass knows nothing about QLineEdit or

QLabel, and vice versa—they meet in the main function where they are interconnected. There

is no need for having events, delegates, or signal classes that are commonly known by the

involved classes. The only common factor is that they inherit QObject; the rest of the needed

information is available at run-time from the meta-objects.

Collections and Iterators
Qt has classes to replace the classes of the C++ STL (until now, you have seen the QString
class). This section looks at the containers and iterators that Qt has to offer.

Qt’s containers are template classes and can contain any other mutable class. There is a

range of different containers, including different lists, stacks, queues, maps, and hash lists.

With these classes come iterators—both STL-compatible ones and Qt’s Java-inspired versions.

Iterators are lightweight objects that are used to move around in the containers and to get

access to the data kept in them.

■Tip All Qt collection classes are implicitly shared, so no copies are made of a list until it is modified. Pass-

ing lists as arguments or returning lists as results is inexpensive performance and memory wise. Passing

const references to lists as arguments or results is even cheaper because it guarantees that no change can

be made unintentionally.

Iterating the QList

Let’s start by looking at the QList class. Listing 1-13 shows how a list of QString objects is

created and populated. Using the << operator for appending data makes it easy to fill lists

with information. When the list is populated, the foreach macro is used to print the contents

of the list.

CHAPTER 1 ■ THE QT WAY OF C++ 21

Listing 1-13. Populating a QList and printing the contents

QList<QString> list;
list << "foo" << "bar" << "baz";

foreach(QString s, list)
qDebug() << s;

Listing 1-13 shows how Qt developers think lists ought to be: easy to use. Using the

foreach macro shortens the code, but iterator instances are used behind the scenes.

Qt offers both STL-style iterators and Java-style iterators. The code in Listing 1-14 shows

how both iterators are used. The while loop at the top of the list uses the Java-style iterator

QListIterator. The function hasNext checks to see whether there are any more valid items in

the list, whereas the next method returns the current item and moves the iterator to the next

item. If you want to look at the next item without moving the iterator, use the peekNext
method.

The for loop at the end of the listing uses STL-style iterators. The iterator name can be

specified using either STL naming or Qt naming—const_iterator and ConstIterator are syn-

onyms, but the latter is more “Qt-ified.”

When iterating in for loops, it is valuable to use ++iterator instead of iterator++. This

gives you more efficient code because the compiler avoids having to create a temporary object

for the context of the for loop.

Listing 1-14. STL-style iterators and Java-style iterators side by side

QList<int> list;
list << 23 << 27 << 52 << 52;

QListIterator<int> javaIter(list);
while(javaIter.hasNext())
qDebug() << javaIter.next();

QList<int>::const_iterator stlIter;
for(stlIter = list.begin(); stlIter != list.end(); ++stlIter)
qDebug() << (*stlIter);

When comparing STL- and Java-style iterators, it is important to remember that STL-style

iterators are slightly more efficient. However, the readability and code clarity provided by the

Java-style iterators might be enough motivation to use them.

■Tip It is common to use typedef to avoid having to type QList<>::Iterator everywhere. For example,

a list of MyClass items could be called MyClassList (create the type like this: typedef QList<MyClass>

MyClassList) with an iterator called MyClassListIterator (create the type like this: typedef

QList<MyClass>::Iterator MyClassListIterator). This process helps to make code using STL-style

iterators more readable.

CHAPTER 1 ■ THE QT WAY OF C++22

Listing 1-14 showed you how to use constant iterators, but sometimes it is necessary to be

able to modify the list as you iterate over it. Using STL-style iterators, this means skipping the

const part of the name. For Java-style iteration, QMutableListIterator is used. Listing 1-15

shows iterating and modifying list contents using Qt classes:

Listing 1-15. Modifying lists using iterators

QList<int> list;
list << 27 << 33 << 61 << 62;

QMutableListIterator<int> javaIter(list);
while(javaIter.hasNext())
{
int value = javaIter.next() + 1;

javaIter.setValue(value);

qDebug() << value;
}

QList<int>::Iterator stlIter;
for(stlIter = list.begin(); stlIter != list.end(); ++stlIter)
{
(*stlIter) = (*stlIter)*2;
qDebug() << (*stlIter);

}

Listing 1-15 shows that the Java-style loop reads the next value using next and then sets

the current value using setValue. This means that the loop in the listing increases all the val-

ues in the list by one. It also means that setValue should not be used before next has been

called as the iterator; it then points at the non-existing value before the actual list.

■Caution When modifying the list by removing or inserting items, the iterators might become invalid. Be

aware of this when modifying the actual list (and not the list’s contents).

In the STL-style loop nothing has changed, except that this time the items referenced by

the iterator can be modified. This example used the Iterator name instead of iterator, which

does not affect the result (they are synonyms).

It is not only possible to iterate in one direction but for STL-style iterators it is also possi-

ble to use the -- operator as well as the ++ operator. For Java-style iterators, the methods next,

previous, findNext, and findPrevious are available. When using next and previous, it is

important to guard the code by using hasNext and hasPrevious to avoid undefined results.

■Tip When you pick an iterator to use, always try to use constant iterators when possible because they

give faster code and prevent you from modifying list items by mistake.

CHAPTER 1 ■ THE QT WAY OF C++ 23

When you need to iterate in a specialized way or just want to access a specific item, you

can always use indexed access with the [] operator or the at method. For a QList, this process

is very quick. For example, the following line calculates the sum of the sixth and eighth ele-

ment of a list:

int sum = list[5] + list.at(7);

Filling the List

Until now you have filled the lists using the << operator, which means appending new data to

the end of a list. It is also possible to prepend data; for example, put it at the start of the list or

insert data in the middle of it. Listing 1-16 shows the different ways of placing items in a list.

Figure 1-9 shows each of the insertions in the list. First, the string "first" is appended to

an empty list and then the string "second" is appended to the end of the list. After that, the

string "third" is prepended to the list. Finally, the strings "fourth" and "fifth" are inserted

into the list.

Listing 1-16. Appending, prepending, and inserting

QList<QString> list;

list << "first";
list.append("second");
list.prepend("third");
list.insert(1, "fourth");
list.insert(4, "fifth");

Figure 1-9. The list contents during appending, prepending, and inserting

More Lists

QList is not the only list class available; there are several lists for different scenarios. When

selecting which list class to use, the right answer is almost always QList. The only drawback of

using QList is that it can get really slow when you insert items in the middle of large lists.

The other two list classes are more specialized, but they should not be considered special

cases. The first one, the QVector class, guarantees that the items contained are kept in order in

memory, so when you insert items at the start of the list and in the middle of it, all items later

on in the list have to be moved. The benefit is that indexed access and iterating is quick.

CHAPTER 1 ■ THE QT WAY OF C++24

The second alternative is QLinkedList, which provides a linked list implementation that

gives quick iterations, but has no indexed access. It also supports constant time insertions

independently of where in the list the new item is inserted. Another nice aspect is that itera-

tors stay valid as long as the element is left in the list—it is possible to freely remove and insert

new items in the list and still use the iterator. Table 1-1 compares the linked list and vector

classes to the QList.

Table 1-1. Comparison of QList, QVector, and QLinkedList

Insertions Insertions Insertions Access by Access by
Class at start in middle at end index iterator

QList Fast Very slow on
large lists Fast Fast Fast

QVector Slow Slow Fast Fast Fast

QLinkedList Medium Medium Medium Not available Fast

Special Lists

Until now, you have looked at lists for generic purposes. Qt also has a set of specialized lists.

Let’s start by having a look at the QStringList.

List of Strings

The string list class inherits QList<QString> and can be treated as such. However, it also has

some string-specific methods that make it useful. First, you need to create a list and fill it with

some contents. This should not bring any surprises:

QStringList list;
list << "foo" << "bar" << "baz";

This gives you a list containing "foo", "bar" and "baz". You can join them with a string of

your choice between them. Here it is a comma:

QString all = list.join(",");

The string all will contain "foo,bar,baz" after this operation. Another thing to do is to

replace something in all strings contained in the list. For example, you can replace all occur-

rences of "a" with "oo":

list.replaceInStrings("a", "oo");

The replacement operation results in a new list with the following contents: "foo", "boor",

and "booz". Besides join, QString also has a method called split. This method splits the given

string by each occurrence of a given string and returns a QStringList that is easily added to

the already existing list. In this example, you split by each comma:

list << all.split(",");

The final list will contain the items "foo", "boor", "booz", "foo", "bar", and "baz".

CHAPTER 1 ■ THE QT WAY OF C++ 25

Stacks and Queues

The string list takes a list and extends it with methods, making it easier to work with the con-

tents. The other types of special lists are made for putting new items in a specific part of the

list and getting items from one specific part. The classes are QStack and QQueue, in which the

stack class can be classified as a LIFO (last in, first out) list, and the queue is classified as a

FIFO (first in, first out) list.

Working with the stack, new items are added to or pushed onto it using push. The top
method is used to look at the current item. The current item is returned and removed from

the stack by calling pop. This is called popping the stack. Before trying to pop the stack, you

can check whether there is something there to get by using the isEmpty method. Listing 1-17

shows how these methods are used. The string result will contain the text "bazbarfoo" when

the code shown in the listing has executed. Notice that the item first pushed onto the stack

appears last in the string—LIFO.

Listing 1-17. Using a stack

QStack<QString> stack;

stack.push("foo");
stack.push("bar");
stack.push("baz");

QString result;
while(!stack.isEmpty())
result += stack.pop();

For the queue, the corresponding methods are enqueue for adding items, dequeue for

pulling them out of the queue, and head for having a peek at the current item. Just as for the

stack, there is a method called isEmpty that indicates whether there is anything enqueued.

Listing 1-18 shows these methods in action. The resulting string will contain the text

"foobarbaz" when the code has executed. That is, the item first enqueued appears first in

the string—FIFO.

Listing 1-18. Using a queue

QQueue<QString> queue;

queue.enqueue("foo");
queue.enqueue("bar");
queue.enqueue("baz");

QString result;
while(!queue.isEmpty())
result += queue.dequeue();

CHAPTER 1 ■ THE QT WAY OF C++26

Mapping and Hashing

Lists are good for keeping things, but sometimes it is interesting to associate things, this is

where maps and hashes enter the picture. Let’s start by having a look at the QMap class, which

enables you to keep items in key-value pairs. For example, you can associate a value to a

string, as shown in Listing 1-19. When you create a QMap, the template arguments are the type

of key and then the type of values.

Listing 1-19. Creating a map associating strings with integers and filling it with information

QMap<QString, int> map;

map["foo"] = 42;
map["bar"] = 13;
map["baz"] = 9;

To insert a new item in a map, all you have to do is assign it with the [] operator. If the key

already exists, the new item replaces the existing one. If the key is new to the map, a new item

is created.

You can see whether a key exists by using the contains function or you can get a list of all

keys using the keys method. Listing 1-20 shows you how to acquire the keys and iterate over

all items in the map.

Listing 1-20. Showing all key-value pairs on the debugging console

foreach(QString key, map.keys())
qDebug() << key << " = " << map[key];

Instead of iterating over a list of the keys, it is possible to use an iterator directly on the

map, as shown in Listing 1-21. This gives instant access to both the key and the value through

the iterator, and thus saves a lookup per loop iteration.

Listing 1-21. Iterating over all key-value pairs

QMap<QString, int>::ConstIterator ii;
for(ii = map.constBegin(); ii != map.constEnd(); ++ii)
qDebug() << ii.key() << " = " << ii.value();

In Listing 1-20, the [] operator is used to access items that you know exist in the list. If the

[] operator is used to get an item that does not exist (as shown following), a new item is cre-

ated. The new item is equal to zero or created using the default constructor.

sum = map["foo"] + map["ingenting"];

If you use the [] operator instead of the value method, you prevent the map from creating

a new item. Instead, a zero or default constructed item is returned without being added to the

map. It is recommended practice to use value because it avoids filling the memory with non-

sense items from a bug that can be very hard to find:

sum = map["foo"] + map.value("ingenting");

CHAPTER 1 ■ THE QT WAY OF C++ 27

When creating a map, the type used as key must have the operators == and < defined

because the map must be able to compare keys and order them. QMap delivers good lookup

performance because it always keeps the keys sorted. This is evident when executing

Listing 1-20, in which the results are returned in bar-baz-foo order, not as they were inserted.

If this is not important to your application, you can gain even more performance by using a

QHash instead.

The QHash class can be used in the same way as QMap, but the order of the keys is arbitrary.

The type used for keys in a hash must have the == operator and a global function called qHash.

The qHash function should return an unsigned integer called a hash key that is used for looking

up items in the hash list. The only requirement for the function is that it should always return

the same value for the same data. Qt provides such functions for the most common types, but

you must provide such a function if you want to put your own classes in a hash list.

The performance of the hash list depends on the number of collisions that it can expect;

that is, the number of keys that yields the same hash key. By using your knowledge of the keys

that might appear, you can use the hash function to increase performance. For example, in a

phone book application, persons might have the same name, but usually do not share a name

and a phone number. Listing 1-22 shows the class Person that holds a person with name and

number.

Listing 1-22. A class holding name and number

class Person
{
public:
Person(const QString& name, const QString& number);

const QString& name() const;
const QString& number() const;

private:
QString m_name, m_number;

};

For this class, you must provide a == operator and a qHash function (shown in Listing 1-23).

The == operator ensures that both the name and number match. The qHash function takes the

hashes for the name and number from the qHash(QString) function and joins them using the

XOR logical operator (^).

Listing 1-23. Hash functions for the Person class

bool operator==(const Person &a, const Person &b)
{
return (a.name() == b.name()) && (a.number() == b.number());

}

uint qHash(const Person &key)
{
return qHash(key.name()) ^ qHash(key.number());

}

CHAPTER 1 ■ THE QT WAY OF C++28

To try out the hash function implemented in Listing 1-23, create a hash list and put a

couple of items in it before trying to look up both existing and non-existing items. This is

shown in Listing 1-24. The comment after each qDebug line shows the expected result.

Listing 1-24. Hashing the Person class

QHash<Person, int> hash;

hash[Person("Anders", "8447070")] = 10;
hash[Person("Micke", "7728433")] = 20;

qDebug() << hash.value(Person("Anders", "8447070")); // 10
qDebug() << hash.value(Person("Anders", "8447071")); // 0
qDebug() << hash.value(Person("Micke", "7728433")); // 20
qDebug() << hash.value(Person("Michael", "7728433")); // 0

Sometimes the interesting thing is not mapping a value to a key, but remembering which

keys are valid. In this situation, you can use the QSet class. A set is a hash without the value, so

there must be a qHash function and a == operator for the keys. Also, the order of the keys is

arbitrary. Listing 1-25 shows that you populate a set by using the same operator as when you

populate a list. Farther down, the two access methods can be seen. You can either access the

keys by using an iterator or you can call contains to see whether the key is a part of the set.

Listing 1-25. Populating a QSet; then showing the keys and testing for the key "FORTRAN"

QSet<QString> set;

set << "Ada" << "C++" << "Ruby";

for(QSet<QString>::ConstIterator ii = set.begin(); ii != set.end(); ++ii)
qDebug() << *ii;

if(set.contains("FORTRAN"))
qDebug() << "FORTRAN is in the set.";

else
qDebug() << "FORTRAN is out.";

Multiple Items per Key

The QMap and QHash classes store one item for each key. When you want to have a list of items

for each key, you can use QMultiMap and QMultiHash. These classes relate to each other just as

QMap relates to QHash—key order is preserved in the map; hashes are quicker but order the keys

arbitrarily.

This section discusses the QMultiMap class, but all that I say also applies to the QMultiHash
class. The QMultiMap class does not have a [] operator; instead, the insert method is used for

adding values and the method values for accessing the inserted items. Because the QMultiMap
can contain multiple elements for a key, the values method returns a QList with the items

associated with the given key. Before requesting a list, it is possible to see how many items are

associated to a given key using the count method.

CHAPTER 1 ■ THE QT WAY OF C++ 29

■Note The multicollection QMultiMap and QMultiHash classes are just wrappers of the QMap and QHash

classes. The QMap and QHash classes can be used as multicollections by using the insertMulti method,

but it is easy to overwrite a list of items by accident by using the [] operator or insert method. Using the

multicollections detects any such mistakes at compile-time and reduces the risk of hard-to-find bugs.

Listing 1-26 shows how a QMultiMap is created and populated. This code does not contain

any surprises. However, the relationship of QMultiMap with QMap shows that if you have a look

at the list returned from the keys method, foo appears twice. The best way to find all the

unique keys is to add all keys to a QSet and then iterate over it. Listing 1-27 shows how to first

find all keys and then iterate over them, showing all items for each key.

Listing 1-26. Creating and populating a QMultiMap

QMultiMap<QString, int> multi;

multi.insert("foo", 10);
multi.insert("foo", 20);
multi.insert("bar", 30);

Listing 1-27. Finding the unique keys and then iterating over each key and its associated items

QSet<QString> keys = QSet<QString>::fromList(multi.keys());

foreach(QString key, keys)
foreach(int value, multi.values(key))
qDebug() << key << ": " << value;

There is a quicker way to find all the items in a QMultiMap: use an iterator. A QMultiMap::
iterator has the member functions key and value, which are used to get the information that

it contains. Iterators can also be used to find all the items for a given key in a highly efficient

way. Using the find method, you can get an iterator that points to the first item belonging to a

given key. As the keys are sorted, you can reach all items belonging to a given key by iterating

until the iterator from find reaches the end of the QMultiMap or another key (Listing 1-28

shows an example). The iterator approach also avoids having to build a list with all the items

belonging to the key, which is what happens when you use the values method—saving both

memory and time.

Listing 1-28. Finding the items for a given key using an iterator

QMultiMap<QString, int>::ConstIterator ii = multi.find("foo");
while(ii != multi.end() && ii.key() == "foo")
{
qDebug() << ii.value();
++ii;

}

CHAPTER 1 ■ THE QT WAY OF C++30

In the start of this section, I said that all the information also applies to the QMultiHash
class. Listing 1-29 shows this by performing the same task as in Listing 1-26, Listing 1-27, and

Listing 1-28. The highlighted lines contain the changes needed—only changes of which class

to use. The only possible difference in outcome is that the keys are returned in an arbitrary

order. Notice that this does not mean that the find and iterate method fails—the keys appear

in an arbitrary order, but are still in order.

Listing 1-29. Finding the items for a given key using an iterator

QMultiHash<QString, int> multi;

multi.insert("foo", 10);
multi.insert("foo", 20);
multi.insert("bar", 30);

QSet<QString> keys = QSet<QString>::fromList(multi.keys());

foreach(QString key, keys)
foreach(int value, multi.values(key))
qDebug() << key << ": " << value;

QMultiHash<QString, int>::ConstIterator ii = multi.find("foo");

while(ii != multi.end() && ii.key() == "foo")
{
qDebug() << ii.value();
++ii;

}

Summary
Qt has a naming scheme that is recommended because it makes it easier to guess names of

classes and methods. All elements use CamelCasing; that is, each new word starts with a capi-

tal letter, like this: ThisIsAnExample.

Class names start with an uppercase letter, Qt classes are prefixed with a Q. This is an

example of a Qt class: QMessageBox, and this is another class: MyClass. A class prefixed by a Q

and a set of lowercase letters is a third-party Qt class; for example: QjColorPicker.

When using a Qt class, make sure to include the header file with the same name as the

class (this is case sensitive on most platforms) without any file extension (for example, the

class QMessageBox is included by #include <QMessageBox>).

Method names start with lowercase letters (for example, thisIsAMethod). Getter and setter

methods are named foo and setFoo, respectively. If there is a signal that reflects a change in

foo, it is usually called fooChanged. In the example here, foo is called a property.

Regarding signals and slots: setters are natural candidates for slots and also a good place

for emitting signals concerning changes. If you emit such a signal, make sure to check that the

setter receives a new value, not the same value. Doing so avoids infinite recursion loops.

CHAPTER 1 ■ THE QT WAY OF C++ 31

Slots can be public, protected, or private. These sections are labeled as public slots:,

protected slots:, or private slots:. Signals are signal prototypes and are placed after the

signals: label. Slots are implemented as any other member function, although you never

implement signals—just declare them in the class definition and let the meta-object compiler

handle the details.

When connecting signals and slots, remember that the connect method cannot handle

argument values, only argument types. The values of the arguments must come from the

emitting object.

When using signals and slots, you must inherit QObject and start the class declaration

with the Q_OBJECT macro. This adds the required code and tells the meta-object compiler that

the class needs a meta-object.

As soon as you have inherited QObject, you can assign a parent to an object and any num-

ber of children. Each parent takes responsibility for calling delete on its children, so as long as

you make sure to delete the ancestor to all objects, all objects are deleted.

Qt has classes for handling the tasks that usually are handled by the C++ standard tem-

plate library, STL. The Qt equivalents are more adapted to be used in combination with Qt,

but can interact with their STL equivalents with ease.

For handling text, use the QString class. It supports Unicode and interacts well with the

QStringList class. The string list class offers methods for search and replace in all strings con-

tained in the list as well as for joining the strings with a delimiter of your choice.

For keeping lists of any sort of object, Qt has the template classes QList, QLinkedList, and

QVector. All have pros and cons, but QList is usually the right choice. When inserting items

in the middle of a very large list, use QLinkedList when constant time insertions and quick

sequential access are required. QVector is good at random access and when items are required

to be stored in order in contiguous memory.

For queues and stacks, the QQueue and QStack classes work well; they offer quick insertion

and access from the ends indicated by their name. When you use a stack, you push and pop to

the top; when you use a queue, you enqueue items on the tail and dequeue them from the head.

The QMap and QHash classes associate items with keys. The QHash class sorts the items in an

arbitrary order while performing slightly faster than the QMap class. The map always sorts the

items by key. For managing several items per key, it is best to use the QMultiMap or QMultiHash
classes.

If you do not need to associate any items to a key but want to maintain a list of keys, the

QSet class is right for you. It works as a hash, but without any associated values.

CHAPTER 1 ■ THE QT WAY OF C++32

Rapid Application Development
Using Qt

Although Qt started as a tool for developing cross-platform applications with graphical

user interfaces, the toolkit has expanded into a tool useful for building all types of software—

command-line applications, embedded software, and graphical user interfaces for heavy

workstation applications.

The historical roots show as Qt makes it really easy to create a graphical user interface

and build an application around it. This chapter goes from the original idea all the way to a

working application in a few easy steps.

The Sketch
When developing software, it is always good to have a plan—a sketch that shows what it is that

you are trying to achieve. The goal of this chapter is a very simple phone book that holds a list

of contacts and phone numbers.

The graphical user interface, UI from here on, will be built around two dialogs: one for

showing the list and available actions, and one for editing contacts. Figure 2-1 shows an early

draft of the two dialogs.

33

C H A P T E R 2

Figure 2-1. The first draft of the user interface

The next step in the process is to transform the ideas found in the sketch into a structure

that can be implemented. To do so, you have to understand how a Qt application works.

Event-Driven Applications
All Qt applications are event-driven, so you cannot directly follow the path of execution from

the main function through all the parts of the application. Instead, you initialize your appli-

cation from the main function, and the main function then calls the exec method on a

QApplication object. This starts the application’s event loop. (An event can be anything from a

new package received over a network, a certain time having passed, or the user having pressed

a key or moved the mouse.)

The QApplication object waits for these events and passes them to any affected QObject.

For instance, when the user clicks the Clear All button in the phone book dialog shown in

Figure 2-1, the click is received by the application’s event loop. The QApplication object then

takes the clicked event and passes it on to the affected object: in this case, the QPushButton
object representing the button. This button object then reacts to the event and emits the

relevant signals.

By connecting signals for buttons being clicked and list items selected to slots imple-

menting the actual functionality of the application, the user interface is set up to react to user

interaction. So a good starting point when developing an application is to identify the actions

that the user can take through the UI shown in Figure 2-1.

■Tip The actions identified here are very much like use cases in the Unified Modeling Language (UML),

which means that the two approaches are very compatible.

CHAPTER 2 ■ RAPID APPLICATION DEVELOPMENT USING QT34

• The first action is to start the application. When this happens, the list dialog is shown.

• From the list dialog, the user adds a new item. This shows an empty editing dialog.

• From the list dialog, the user edits the currently selected item. This shows a filled-out

editing dialog.

• From the list dialog, the user removes the currently selected item.

• From the list dialog, the user clears the list.

• From the list dialog, the user exits the application.

• From the editing dialog, the user approves the changes made. This means that the

changes will be reflected in the list dialog.

• From the editing dialog, the user cancels the changes made.

Starting from the top of the list, the host operating system has to take care of starting the

application. Your part in the process is to show the list dialog from the main function. The rest

of the actions show up as buttons on the two dialogs that make up the UI.

To sum things up: the application consists of a main function, a list dialog, and an editing

dialog. Each dialog consists of a form—that is, an XML description of the UI—and a class

making up the actual QDialog that Qt is interested in. This is enough information to create a

project file. The result is shown in Listing 2-1. Notice that it starts with the application tem-

plate app, which is the starting point for all Qt applications. The rest of the project file is just a

list of files that needs to be created, which is what you will be doing for the rest of this chapter.

Listing 2-1. Phone book application’s project file

TEMPLATE = app
TARGET = addressbook

SOURCES += main.cpp editdialog.cpp listdialog.cpp
HEADERS += editdialog.h listdialog.h
FORMS += editdialog.ui listdialog.ui

Now create a new directory for the application and place the project file in it. When you

put the rest of the files shown in this chapter in that directory, you end up with a complete

application.

Using Designer
Designer is the tool for designing user interfaces that comes with Qt. This section shows you

how to use Designer to build the list dialog. Then you learn the specifications for the editing

dialog so you can put it together yourself.

Let’s begin by starting Designer. You see the dialog shown in Figure 2-2. For the list dialog,

choose to create a dialog with the buttons at the bottom and click Create.

CHAPTER 2 ■ RAPID APPLICATION DEVELOPMENT USING QT 35

■Tip If you are running Windows, you can start Designer by selecting it from the Start menu or by starting

the Qt command prompt and then typing designer at the console. Those of you running Mac OS X can use

Finder to locate Designer and start it. On a Unix platform, this process can be slightly different—especially if

you have both version 3 and 4 of Qt installed. Possible commands can be designer or designer-qt4. If

you have installed Qt 4 using a package manager, you are likely to find it from your Program menu. Read the

documentation for your distribution to get more information.

Figure 2-2. Designer dialog for creating new forms

Designer’s UI appears. Let’s start with a quick overview of this interface. Designer can be

run in two modes: docked windows or multiple top-level windows. You can change the setting

by choosing Edit ➤ User Interface Mode. Having multiple top-level windows is great for multi-

screen setups, but can result in a cluttered workspace if you are running many applications

together with Designer. Try both configurations to determine which one you prefer.

In either UI mode, Designer consists of a number of components listed as follows. Each of

these components can be shown or hidden from the Tools menu. I prefer not to show all the

components at all times—usually the widget box and Property Editor are enough for me—but

feel free to experiment to get a working environment that you enjoy.

• The widget box, shown in Figure 2-3, contains a list of all available widgets groups into

a number of categories.

• The Property Editor, shown in Figure 2-4, shows all the designable properties available

for the currently selected widget in the working form.

• The Object Inspector, shown in Figure 2-5, shows which object is parent to which

objects.

• The Signal/Slot Editor, also known as the Connection Editor, shown in Figure 2-6, is

used for managing connections between the objects making up the working form.

CHAPTER 2 ■ RAPID APPLICATION DEVELOPMENT USING QT36

• The Resource Editor, shown in Figure 2-7, is used to manage resources such as icons

that are compiled into the executable.

• The Action Editor, shown in Figure 2-8, is used to manage actions; that is, an object

represented in many places in the UI, such as the menu bar, toolbar, and a keyboard

shortcut.

Figure 2-3. Designer’s widget box along with the toolbar and the menus

Figure 2-4. Designer’s Property Editor

CHAPTER 2 ■ RAPID APPLICATION DEVELOPMENT USING QT 37

Figure 2-5. Designer’s Object Inspector

Figure 2-6. Designer’s Signal/Slot Editor

Figure 2-7. Designer’s Resource Editor

Figure 2-8. Designer’s Action Editor

CHAPTER 2 ■ RAPID APPLICATION DEVELOPMENT USING QT38

Figure 2-9 shows the form created from the template. The contents consist of a button

box containing two buttons: OK and Cancel. The button box is a widget, and all dialogs and

windows built using Qt consist of widgets and layouts. A widget is a part of the UI—for exam-

ple, a button, a label, or a slider. Widgets are organized in layouts. The reason for using layouts

instead of just remembering the coordinates of each widget is that you can resize fonts and

dialogs freely. Also, translators can write any label text because the label can resize according

to the text. There are many aspects of widgets and layouts that need to be covered in more

detail (Chapter 3 discusses it in more detail).

Figure 2-9. The form fresh from the template

■Note I refer to the dialog as a form because it is possible to design widgets containing other widgets,

main windows, and dialogs using Designer. They are all shown as a form in Designer—but the end results

are different.

You start your work in Designer by selecting the button box in the dialog and pressing

Delete. You see the cleared dialog shown in Figure 2-10.

Figure 2-10. The form cleared from buttons

CHAPTER 2 ■ RAPID APPLICATION DEVELOPMENT USING QT 39

After deleting the widget, you can now start adding widgets. Make sure that you are in the

mode for editing widgets. The working mode is selected from the toolbar shown in Figure 2-11.

Figure 2-11. The working modes are (from left to right): edit widgets, edit connections, edit
buddies, and edit tab order.

Now browse through the widget box and locate the push button (in the buttons’ group).

When you click and hold the push button, the mouse pointer changes into an actual button.

Drag that button to the form and place it in the upper-right corner. Add two more buttons in a

vertical row below the first one; then leave a gap before you add a fourth button in the lower-

right corner. The form should look similar to Figure 2-12 after you finish.

Figure 2-12. The form with the buttons

Now locate the vertical spacer in the widget box (it is in the spacers’ group near the top).

Drag the spacer to the dialog and place it in the gap between the upper three buttons and the

lower one, as shown in Figure 2-13.

Figure 2-13. The form after the spacer has been added

CHAPTER 2 ■ RAPID APPLICATION DEVELOPMENT USING QT40

Now select the four buttons and the spring, and then apply a vertical layout so that you

get the form shown in Figure 2-15. You can select multiple items by clicking and holding the

Shift key or by dragging a box containing the items that you want to select. Notice that you

do not want to add the layout from the widget box. Instead, select the widgets that you want

inside the layout and click the vertical layout button in the toolbar shown in Figure 2-14. The

buttons are the following (from left to right):

• Apply horizontal layout places the widgets in horizontal row.

• Apply vertical layout places the widgets in a vertical row.

• Horizontal splitter places the widgets in a horizontal row, but also enables the user to

adjust the size of the widgets.

• Vertical splitter places the widgets in a vertical row, but also enables the user to adjust

the size of the widgets.

• Apply grid layout places the widgets in a stretchable grid.

• Break layout removes any current layout.

• Adjust size adjusts the size of the current layout so that the contained widgets fit.

Try holding the pointer over the toolbar buttons to find the one with the tooltip Lay Out

Vertically, which is the one you want.

Figure 2-14. The layout toolbar

Figure 2-15. All widgets in a vertical layout

You can find the list widget in the group item widgets in the widget box. Place it on the

form in the middle of the free space. Then click on a free spot on the form, which selects the

actual form. You can see that you have selected the actual form by looking at the Object

CHAPTER 2 ■ RAPID APPLICATION DEVELOPMENT USING QT 41

Inspector. When the dialog is chosen, you have the right selection. Now apply a grid layout by

clicking the appropriate button in the toolbar. Applying a layout when having selected a

widget containing other widgets applies that layout to the form (layout is an attribute of the

parent widget, not the children within it). Figure 2-16 shows the form after the list widget has

been added, and Figure 2-17 shows the form after the layout has been applied.

■Tip If the contents of a dialog are not stretched when the dialog is resized, the problem is most likely that

you have forgotten to add a top-level layout. Select the dialog form itself and apply a layout—that should

solve the problem.

Figure 2-16. The list widget has been added

Figure 2-17. A grid layout has been applied to the form itself and all its contents

Now you have placed a number of widgets in layouts forming a dialog. You can try out

the dialog in different styles using the preview function available from the Form menu. Try

CHAPTER 2 ■ RAPID APPLICATION DEVELOPMENT USING QT42

resizing the dialog to see how the layouts interact and try different styles for seeing the dialog

on the different platforms that Qt supports. Before the dialog is done, however, there are a few

details to sort out. First, all texts and widget names must be set up.

Selecting a button displays its properties in the Property Editor. Simply click on the value

and edit it to change it. Table 2-1 shows the names and texts to apply to the buttons from the

top down. Notice that there are properties to change for both the dialog and the list widget.

Figure 2-18 shows the dialog after the changes.

Table 2-1. Properties to change

Widget Property Value

Top button name addButton

Top button text Add new

Second button name editButton

Second button text Edit

Third button name deleteButton

Third button text Delete

Bottom button name clearButton

Bottom button text Clear all

List widget name list

Dialog name ListDialog

Dialog window title Phone Book

Figure 2-18. Names and texts have been updated

The name property is used to give each widget a variable name, which is the name you

will use later on when you access the widget from the source code. This implies that the name
property must be a valid C++ identifier name; that is, not start with a digit and use only the

English alphabet, digits, and underscores.

CHAPTER 2 ■ RAPID APPLICATION DEVELOPMENT USING QT 43

■Tip If you want to adjust the main property of a widget (for example, the text of a label or button), simply

select the widget and press the F2 key.

One nice aspect of building forms in Designer is that it is possible to make connections

graphically. Select the mode for editing connections from the working mode toolbar. Then

click and drag from the clearButton value to the list value. When you release the mouse

button over the list, the dialog shown in Figure 2-19 displays.

Figure 2-19. Making the connection by picking the signal to the left and the slot to the right

On the left, the available signals from the clearButton value are shown; on the right, the

slots of the list value are shown. Pick the clicked() signal and the clear() slot and press OK.

The resulting connection is shown as an arrow in the form (see Figure 2-20).

Figure 2-20. The connection shown directly in the form

CHAPTER 2 ■ RAPID APPLICATION DEVELOPMENT USING QT44

The connection can also be seen in the Connection Editor, as shown in Figure 2-21.

Figure 2-21. The connection shown in the Connection Editor

The final step of preparing the form is to set up the tab order, which is the order in which

the widgets are visited when the user jumps between them using the Tab key. To do this, start

by selecting the tab order mode from the working mode toolbar. Each widget is now shown

with a number in a blue box—this is the tab order. Start clicking the blue boxes in the order

that you feel is right, and the numbers will change. Figure 2-22 shows the dialog with my tab

order—feel free to use another order if you like. When you are satisfied, preview the dialog and

move through the widgets by pressing Tab.

Figure 2-22. The form with the tab order set

All that is left now is to save the result of your work. Save the file as listdialog.ui in the

same directory as the project file from Listing 2-1.

To try out your new Designer skills, I present the details for the editing dialog as follows,

but you have to create it yourself. Notice that all the connections are set up automatically if

you start from the template with buttons on the bottom. Figure 2-23 shows the resulting dia-

log, along with the text properties of the labels, buttons, and the dialog.

CHAPTER 2 ■ RAPID APPLICATION DEVELOPMENT USING QT 45

Figure 2-23. Editing dialog

The Object Inspector is shown in Figure 2-24. You can tell the names of the different

objects from that view and also which objects go into which layout. To create a grid layout,

place the widgets in some sort of order, select them, and apply a grid layout. Designer usually

gets the grid right at the first try, but sometimes it might be necessary to break the layout

(available from the layout toolbar), rearrange the widgets, and apply it again. This is a place

where practice makes perfect.

Figure 2-24. Objects in the editing dialog

Figure 2-25 shows the connections in the dialog. They are already made in the template,

so you should not have to do anything about them.

Figure 2-25. Connections in the editing dialog

Finally, Figure 2-26 shows the tab order I chose. Feel free to set up a tab order that

suits you.

CHAPTER 2 ■ RAPID APPLICATION DEVELOPMENT USING QT46

Figure 2-26. Tab order of the editing dialog

To make sure that the dialog is put together in the right way, make sure that the Object

Inspector view and the form itself look 100 percent correct. The connections and tab order are

also important, but the other two views are the places in which any mistakes are most likely to

show. When you finish, save the dialog, along with the rest of the files, as editdialog.ui.

From Designer to Code
The files created in Designer are definitions of the UIs. If you open them in a text editor, you

can see that they are XML files.

■Caution If you are used to working with earlier versions of Qt and Designer, you will notice that things

have changed. Qt 4 brings a completely new Designer application and a completely new approach to the

way designs are used from the application code. You can no longer use Designer to add code to your project;

instead, you use the results from Designer from your code.

By including references to these XML files in the project file (as shown in Listing 2-1),

a C++ file is automatically generated when the project is built. If the Designer file is called

foo.ui, the resulting C++ file is called ui_foo.h. If the designed form is named FooDialog,

the resulting class is Ui::FooDialog.

■Note The Ui::FooDialog is placed in the Ui namespace to avoid namespace collisions because you

might want to call your final dialog class FooDialog. The generated file creates a class in the global name-

space as well. It is called Ui_FooDialog and is identical to Ui::FooDialog. I prefer using the class from

the Ui namespace because it feels more correct than prefixing the class name with Ui_, but you are free to

do as you like.

The generated C++ file is created by the user interface compiler (uic). It interacts with the

build process a bit like the meta-object compiler, but instead of taking a C++ header file, it

takes an XML description of a user interface. Figure 2-27 shows how it all fits together. By

using QMake to generate a Makefile, everything is handled automatically.

CHAPTER 2 ■ RAPID APPLICATION DEVELOPMENT USING QT 47

Figure 2-27. A Qt project is built from sources, generated meta-objects, and user interface
descriptions.

In Qt applications, all dialogs inherit from the QDialog class. The code generated by the

uic does not inherit that class; in fact, it does not even inherit from QObject. The conclusion is

that you must create a class based on QDialog. Let’s start by having a look at the list dialog.

Listing 2-2 shows the header file for the list dialog. A class called ListDialog is created

that inherits QDialog. The class has slots, so the Q_OBJECT macro must be there. Then, at the

very end, the Ui::ListDialog class is used to create the private member variable ui.

Listing 2-2. The header file for the ListDialog class

#ifndef LISTDIALOG_H
#define LISTDIALOG_H

#include <QDialog>
#include "ui_listdialog.h"

class ListDialog : public QDialog
{
Q_OBJECT

public:
ListDialog();

CHAPTER 2 ■ RAPID APPLICATION DEVELOPMENT USING QT48

private slots:
void addItem();
void editItem();
void deleteItem();

private:
Ui::ListDialog ui;

};

#endif // LISTDIALOG_H

The ui object consists of a set of pointers to all widgets and layouts that make up the dia-

log. It also contains two functions: setupUi (for populating a QDialog with the widgets and

layouts), and retranslateUi (for internationalizing applications—covered in more detail in

Chapter 10).

The implementation of the ListDialog constructor shows how the ui object is used (see

Listing 2-3). First, setupUi is called to create the UI of the dialog. When calling the setupUi, the

connections made in Designer are set up. The rest of the connections are done manually by

calling connect. In the calls, the ui object is used to access the widgets in the dialog.

No connections really have to be made manually. By implementing a slot named

on_addButton_clicked(), the setupUi call automatically connects the clicked signal from the

addButton to that slot. This works for all slots named using the scheme on_widget name_signal
name(signal arguments). Even as this is possible, I recommend not using it because it does

not encourage providing clear names for slots that reflect what they do. Also, when connecting

several signals result in the same action, this approach fails. You end up having several slots

calling the same function or—even worse—containing the same code. Making all connections

in the constructor of the dialog classes ensures that the code will be easy to follow and read—

you just created a table of how the user interface is connected to the slots performing the

actual work.

Listing 2-3. Constructor of the ListDialog class

ListDialog::ListDialog() : QDialog()
{
ui.setupUi(this);

connect(ui.addButton, SIGNAL(clicked()), this, SLOT(addItem()));
connect(ui.editButton, SIGNAL(clicked()), this, SLOT(editItem()));
connect(ui.deleteButton, SIGNAL(clicked()), this, SLOT(deleteItem()));

}

CHAPTER 2 ■ RAPID APPLICATION DEVELOPMENT USING QT 49

■Note There are more ways to use a UI created in Designer from a QDialog object than the method

shown here. The method used here is called the single inheritance approach. In the Designer user manual,

two alternate methods are described: the multiple inheritance method (inheriting both QDialog and Ui

classes) and the direct method (creating a QDialog and a Ui from the method using the dialog). I prefer

using the single inheritance approach and will use it throughout this book. It keeps the generated code sepa-

rated from the manually written source code through the ui object—something that helps making changes

more controllable. Feel free to consult the Designer user manual and try the alternatives if you want to.

Listing 2-4 shows the implementation of the addItem slot. The function looks very simple

and uses the EditDialog class (which has not been discussed yet). Before continuing with it,

let’s see how a dialog is used. First, the dlg variable is created. The this pointer passed on to

the EditDialog sets the parent of the dlg to the list dialog. Then you call the exec method of

the dialog, which shows the dialog in an application modal state. That a dialog is application

modal means that no other dialog or window of the application can get UI focus until the dia-

log is closed—forcing the user to use or close the shown dialog.

The exec method returns a status from the dialog, where Qt::Accepted means that the OK

button was clicked last (or that the accept slot was called to close the dialog). The other possi-

ble result is Qt::Rejected, meaning that the dialog was closed from the title bar or cancelled.

When the dialog has been shown using exec, and the result is Qt::Accepted, a new item is

added to the list widget: ui.list. The new item is built using the name and number getter mem-

bers from the editing dialog (you will have a look at them later on in this chapter).

Listing 2-4. Adding a new item to the list

void ListDialog::addItem()
{
EditDialog dlg(this);

if(dlg.exec() == Qt::Accepted)
ui.list->addItem(dlg.name() + " -- " + dlg.number());

}

The opposite of adding a new item is shown in Listing 2-5. Deleting a list widget item

is just a matter of calling delete on it. The currently selected item is returned from the

currentItem method, so just delete whatever that method returns.

If no item is selected, the return value is 0 (zero, a null pointer), but that is not a problem

when used in a call to delete—it is simply ignored.

Listing 2-5. Deleting an item of the list

void ListDialog::deleteItem()
{
delete ui.list->currentItem();

}

CHAPTER 2 ■ RAPID APPLICATION DEVELOPMENT USING QT50

When trying to edit the current item, it is important to ensure that the currentItem is a

valid pointer, which is why the editItem slot in Listing 2-6 starts by checking it. If the returned

pointer is a null pointer, the slot returns without doing anything.

If a valid pointer is encountered, the text of the current list widget item is split into a name

and a number using the split method. They are used to set up an editing dialog. When setting

the name and the number, the parts of the split text are trimmed, which means removing all

additional white space from the ends of the string (white space consists of all characters that

take up space without showing). Examples of white space are spaces, tabs, line-feeds, new-

lines, and so on.

As soon as the editing dialog has been set up, the code looks very much like the addItem
slot, just that the current item’s text is changed instead of adding a new item to the list widget.

Listing 2-6. Editing an item of the list

void ListDialog::editItem()
{
if(!ui.list->currentItem())
return;

QStringList parts = ui.list->currentItem()->text().split("--");

EditDialog dlg(this);
dlg.setName(parts[0].trimmed());
dlg.setNumber(parts[1].trimmed());

if(dlg.exec() == Qt::Accepted)
ui.list->currentItem()->setText(dlg.name() + " -- " + dlg.number());

}

You have used the editing dialog twice now, so it is time to have a look at it. In Listing 2-7,

you can see the class declaration. The EditDialog class inherits QDialog and has a private vari-

able called ui containing the generated code for the user interface. This is very much like the

ListDialog class.

The class then contains getters and setters for two properties: name and number. Because

the dialog is specially made for the application and not at all likely to be reused in other cir-

cumstances, I have taken the liberty to avoid the policies for getters and setters. The setters are

not slots, nor are there any signals that are emitted when a property is changed. When it is

obvious that a class will not be reused, there is no point in overdesigning it to make it reusable.

Because there are no signals or slots, the Q_OBJECT macro is omitted, so the class does not

have a meta-object. This saves memory at run-time and makes compilation slightly quicker.

Listing 2-7. Editing dialog class

class EditDialog : public QDialog
{
public:
EditDialog(QWidget *parent=0);

CHAPTER 2 ■ RAPID APPLICATION DEVELOPMENT USING QT 51

const QString name() const;
void setName(const QString&);

const QString number() const;
void setNumber(const QString&);

private:
Ui::EditDialog ui;

};

As Listing 2-8 shows, the constructor is very simple. Because all connections have been

made in Designer, a single call to setupUi is all that is needed. Looking at the connections in

Designer, you see that the accepted and rejected signals from the button box are connected

to the accept and the reject slot. The accepted signal is emitted when the user clicks OK, and

rejected is emitted from Cancel. The accept and reject slots set the result returned from exec
to Qt::Accepted or Qt::Rejected and then closes the dialog. This means that the dialog already

works as expected from the caller’s viewpoint.

Listing 2-8. Editing an item of the list

EditDialog::EditDialog(QWidget *parent) : QDialog(parent)
{
ui.setupUi(this);

}

The name and number properties are implemented in the same way. In Listing 2-9, the name
property is shown. The setter, setName, is trivial, simply passing on the value to the right

QLineEdit. The getter, name, is slightly more complex. Instead of simply returning the text from

the line edit, it removes any occurrences of double dashes ("--") using replace. All occur-

rences of double dashes are replaced by an empty string, which is the same thing as removing

them. They have to be removed because the name and number are divided by double dashes

in the list dialog, and the editing slot, editItem (see Listing 2-9), relies on that. Before return-

ing the double–dash-free string, it also calls trimmed to remove any white space left trailing at

the end of the text. This prevents the user from accidentally leaving spaces or tabs after the

name.

Listing 2-9. Editing an item of the list

const QString EditDialog::name() const
{
return ui.nameEdit->text().replace("--","").trimmed();

}

void EditDialog::setName(const QString &name)
{
ui.nameEdit->setText(name);

}

CHAPTER 2 ■ RAPID APPLICATION DEVELOPMENT USING QT52

The number property’s implementation looks identical to the implementation of the name
property. The only difference is the name of the QLineEdit involved: nameEdit is used for the

name and numberEdit for the number.

The Final Touches
The only part missing from the project file now is the main function. In Listing 2-10, you can

see the implementation. First, a QApplication object is created; then the list dialog is created.

The dialog is then shown before the exec method of the application is called.

Calling exec means that the QApplication object starts to process system events and

passes them on to the appropriate QObject instances—the application is event-driven. The

function returns as soon as all windows and dialogs have been closed, so when you close the

list dialog, exec returns, and the application reaches its end.

Listing 2-10. Editing an item of the list

int main(int argc, char **argv)
{
QApplication app(argc, argv);
ListDialog dlg;

dlg.show();

return app.exec();
}

Looking back at the list of user actions that you want the user to be able to perform, you

can see that most actions are represented by a connection. The connection can either be

made in Designer or by using the connect call in a dialog class’ constructor. The final push to

get the application going is the main function. Its job is to show the list dialog and to start the

event loop.

To test the application, start by running qmake on the project file you started with to gen-

erate a Makefile. Now build the application using make or your system’s equivalent, which

should generate an executable for you. In Figure 2-28, I am trying out the application for the

very first time—and it looks as if everything is working.

The application is not very useful because it cannot save and load data. The user interface

is fully functional, however.

CHAPTER 2 ■ RAPID APPLICATION DEVELOPMENT USING QT 53

Figure 2-28. The application is put to use.

Summary
This chapter showed the two classes of dialogs available in Qt applications: active or passive;

intelligent or dumb.

The list dialog contains a slot for each action that the user can perform. This is called an

active or intelligent dialog. Any dialog requiring anything but the simplest possible input from

the user is good to make active. Small active elements can make a dialog very much easier

to use.

The editing dialog does not contain any slots; it simply relies on the intelligence built into

the widgets used and the accept and reject slots. This is enough for very simple dialogs, in

which the user can fill out fields of different types. This is called a passive or dumb dialog. It is

quite common to have a few passive dialogs in an application; in fact, the application does not

work without them.

Even though the editing dialog is passive toward the user, it does not have to be passive

toward the developer—you. The editing dialog nicely hides the actual implementation of the

graphical user interface using the name and number properties. This made it possible to keep

the ui variable private at the cost of a few lines of trivial code. By doing this, you ensure that

the UI can be changed without changing the code using the editing dialog. Separating the UI

and the code of the application usually helps when maintaining and extending the application

in the future.

CHAPTER 2 ■ RAPID APPLICATION DEVELOPMENT USING QT54

Widgets and Layouts

All graphical user interfaces (UIs) are built around widgets that are arranged using layouts.

In this chapter you will learn which widgets Qt provides and how they are used. You will also

have a look at how layouts are used to create the desired design. The chapter alternates

between using code directly and using Designer to visually build the user interface, which

will teach you to understand the code that Designer generates.

Creating Dialogs in Qt
As you learned in the last chapter, a dialog is a top-level window, and all dialogs are built from

widgets. Further, widgets are organized using layouts that make it possible to build flexible

dialogs.

Layouts help make Qt special. Using layouts makes it easy to build dialogs that adapt to

changes in screen resolution, font sizes, and different languages. An alternative to using lay-

outs is static placement, which ensures that all widgets are given a size and location. So if a

translator wants to use texts of different lengths in different languages, the design of the dialog

must be adapted to the longest text. Using layouts, the design describes the relative placement

of the widgets instead of their absolute sizes and locations. The widgets then tell layouts how

much space they need and are placed in the dialog accordingly.

Let’s start the exploration by using Designer. Start Designer and create a new dialog from

the buttons at the bottom template. Then add a group box, a line edit, a label, and a vertical

spacer to the dialog, as shown in Figure 3-1. Make sure that the line edit and the label are

inside the group box. You can try to move the group box. If the other widgets are inside it,

they should move with the group box.

55

C H A P T E R 3

Figure 3-1. The widgets dropped onto the dialog form

Select the group box and apply a horizontal layout; then select the dialog form itself and

apply a vertical layout. Your dialog should now look similar to Figure 3-2.

Figure 3-2. The layouts have been applied.

Figure 3-3 shows the Object Inspector for the dialog. The information that all widgets that

contain other widgets also have a layout is not visible.

CHAPTER 3 ■ WIDGETS AND LAYOUTS56

Figure 3-3. The Object Inspector, showing the widgets in the dialog

Just to test the concept of the layout, try entering Supercalifragilisticexpialidocious as

the label text (bring up the context menu by using the right mouse button and pick Change

text from the menu). As shown in Figure 3-4, the label expands, and the line editor shrinks.

Figure 3-4. The label text goes Supercalifragilisticexpialidocious.

Size Policies

So what really happened in this example? Layouts look at the size hints and size policies of

widgets when calculating their sizes. If you look at the sizePolicy property in Designer, you

can see that the label has a Preferred size type for both the horizontal and vertical direction

(hSizeType and vSizeType). The line edit has a Fixed height (vertical direction), but has an

Expanding width (horizontal direction). What does all this mean?

Each widget calculates a size hint at run-time—the preferred size of the widget. It also has

properties for controlling the smallest and largest sizes it can accept (the minimumSize and

maximumSize properties).

When a widget says that its size policy is to keep a Preferred size in one direction, it

means that it can grow larger or be made smaller than the size hint if needed, but prefers not

to. It does not want to grow unless forced to by the layout and the surrounding widgets. For

example, if the user increases the size of a window, and the surrounding widgets are config-

ured not to grow, the widget grows beyond its preferred size.

The line edit has a Fixed height, so the height of the widget is not negotiable; it always

uses the size hint for size. The Expanding policy means that the widget can be shrunk, but

prefers to be as large as possible; it wants to grow.

CHAPTER 3 ■ WIDGETS AND LAYOUTS 57

There are several policies available (summed up in Table 3-1).

Table 3-1. Size policies and their behaviors

Size Policy Can Grow Can Shrink Wants to Grow Uses Size Hint

Fixed No No No Yes

Minimum Yes No No Yes

Maximum No Yes No Yes

Preferred Yes Yes No Yes

Expanding Yes Yes Yes Yes

MinimumExpanding Yes No Yes Yes

Ignored Yes Yes Yes No

You can learn a lot about the roles of size policies by playing with them in Designer

because as soon as you have applied a layout to your widgets, the policy change is reflected

directly in the form. Start by setting the label’s horizontal size type to Expanding, which makes

both the label and line edit try to be as large as possible so they share the given space. You can

also get the policy to Maximum and then try to vary the width of the dialog form. Using sizing

policies and layouts is a skill, and skills are learned by doing—so don’t be afraid to experiment

with them at length.

■Tip You can set the size policy and size hint for spacers as well, which is great for enforcing spaces and

grouping dialog items together.

Setting Size Policies in Code

Now you know the basics of layouts and size policies using Designer. How can you achieve the

same thing with code? It is important to know how to do this because the files produced by

Designer are converted into code by the uic tool. To use these files and to troubleshoot compi-

lation problems, you need to understand what is contained in the files. You are also likely to

create smaller user interface elements directly in code because using Designer is overkill in

such situations.

When I create dialogs by code, I try to group the things that I do into logical groups—so

first I create all the widgets (shown in Listing 3-1). I do not bother to assign parents to any of

the widgets because as soon as a widget is put in a layout, that layout takes responsibility for

the widget.

Listing 3-1. The widgets are created.

QDialog dlg;

QGroupBox *groupBox = new QGroupBox("Groupbox");
QLabel *label =

CHAPTER 3 ■ WIDGETS AND LAYOUTS58

new QLabel("Supercalifragilisticexpialidocious");
QLineEdit *lineEdit = new QLineEdit;
QDialogButtonBox *buttons =
new QDialogButtonBox(QDialogButtonBox::Ok |

QDialogButtonBox::Cancel);

The next step is to put the widgets in layouts. As with the dialog in Designer, you can use a

vertical layout and a horizontal layout. Looking at Listing 3-2 from the top down, you see that

it starts with the horizontal layout. The Qt class representing horizontal layouts is QHBoxLayout,

where H represents the horizontal direction. You can see that it will apply to groupBox as it is

passed as parent. The widgets are then added from left to right, first adding label and then

adding lineEdit. When they are added, the hLayout is made parent to them and they are

placed in the parent inside the group box.

The QVBoxLayout (used to manage vertical layout) is applied to the dialog itself. In it,

widgets are added from the top down. First the group box is added; then a spacer is added.

The spacer is not added as a widget; in fact, there is no spacer widget. By calling the

addStretch method, a QSpacerItem is inserted into the layout. This item works as a spacer,

so the effect is the same as when you used Designer. Finally buttons are added to the bottom

of the layout.

Listing 3-2. The widgets are laid out.

QHBoxLayout *hLayout = new QHBoxLayout(groupBox);
hLayout->addWidget(label);
hLayout->addWidget(lineEdit);

QVBoxLayout *vLayout = new QVBoxLayout(&dlg);
vLayout->addWidget(groupBox);
vLayout->addStretch();
vLayout->addWidget(buttons);

Both listings result in the dialog shown in Figure 3-4. If you want to play with the layout

policies from the code, you need to know which properties and methods to use. All widgets

have a sizePolicy property, which is represented by a QSizePolicy object. The minimumSize
and maximumSize properties are QSize objects.

■Tip When I refer to a property name, for example sizePolicy, it is understood that there is a getter

method called sizePolicy and a setter method called setSizePolicy. There are read-only properties

without setter, but they are uncommon.

Let’s start by setting a custom size policy through code. Listing 3-3 shows you how to copy,

modify, and apply a custom policy. First, the size policy from label is copied. It is preferred

with a stretch factor of 1. The stretch factor is changed, and the policy is applied to the label.

The stretch factor is then set to 1, and the policy is applied to lineEdit.

CHAPTER 3 ■ WIDGETS AND LAYOUTS 59

Listing 3-3. Modifying and applying a custom policy

QSizePolicy policy = label->sizePolicy();
policy.setHorizontalStretch(3);
label->setSizePolicy(policy);
policy = lineEdit->sizePolicy();
policy.setHorizontalStretch(1);
lineEdit->setSizePolicy(policy);

The code in Listing 3-3 shows two things. First, it shows you how to copy and apply a

policy using sizePolicy and setSizePolicy. It also shows stretch factors, with which you can

control the relative size of the widgets in a dialog. Three buttons are shown (see Figure 3-5),

and all have been assigned the horizontal size policy Preferred. Their stretch factors are (left

to right) 1, 3, and 2. This means that the first button takes 1/(1+3+2)—one-sixth—of the

width available; the second button takes 3/(1+3+2)—one-half; and the third uses 2/(1+3+2)—

one-third.

Figure 3-5. Buttons with stretch factors (left to right: 1, 3, and 2)

Layouts

Up to now you have looked at size policies and used horizontal and vertical layouts. From

Designer you can attain the three most common layouts: horizontal, vertical, and grid.

The box layouts (which you have seen several times) are available through the classes

QHBoxLayout (horizontal) and QVBoxLayout (vertical). They simply put the widgets in a row or

column from left to right or from top-down. Figures 3-6 and 3-7 show both classes in action.

In the examples, the widgets were added in this order: foo, bar, baz. When used in combina-

tion with stretch factors and size policies, they can be used as a basis for many different dialog

layouts.

■Tip If you need to, you can alter the direction in which widgets are added by using the setDirection

method. This means that you can add widgets from right to left to a horizontal layout or upwards to a vertical

layout.

Figure 3-6. Horizontal box layout

CHAPTER 3 ■ WIDGETS AND LAYOUTS60

Figure 3-7. Vertical box layout

The more powerful big brother of the box layouts is the grid layout QGridLayout. Using a

grid layout, you add your widgets into a table-like grid. By default, each widget occupies one

single table cell, but you can make it span several cells. Listing 3-4 shows you how to populate

a grid layout with three buttons, and the resulting layout is shown in Figure 3-8. The widgets

are added by using the addWidget(QWidget *widget, int row, int col, int height=1,
int width=1) method. The bar and baz buttons are added to the cells in the lower row and

span one cell in both directions. The foo button is larger (it spans two cells wide) and starts

in the top-left corner—first row and first column.

Listing 3-4. The grid layout is populated.

QGridLayout layout(&widget);
layout.addWidget(new QPushButton("foo"), 0, 0, 1, 2);
layout.addWidget(new QPushButton("bar"), 1, 0);
layout.addWidget(new QPushButton("baz"), 1, 1);

Figure 3-8. Grid layout

With layouts, the sizing policies of the widgets involved play an important role. For exam-

ple, push button widgets are by default Fixed in the vertical direction. This means that if you

rotate the layout from Listing 3-4 so that columns are rows (and vice versa), the result will look

like Figure 3-9. The button does not stretch to fill two cells; instead it is centered vertically, but

keeps the height from the size hint of the widget.

Figure 3-9. A grid layout with a fixed-height widget

CHAPTER 3 ■ WIDGETS AND LAYOUTS 61

It is possible to use other layout classes, but it is not very common to use them directly.

The box layouts and grid layout are usually all you need; combined with stretch factors and

sizing policies, you can build pretty much any conceivable dialog layout.

■Tip Do you want to experiment with size policies and layouts? Do it in Designer to receive visual feedback

as soon as you change the property value.

Common Widgets
All user interfaces start with layouts and widgets, and almost all user actions are started from a

widget, so knowing about available widgets is important when you design an application.

This section introduces the most common widgets, along with screenshots of them from

the major platforms. You also learn about closely related widgets as well as the most useful

signals and slots for each widget.

QPushButton

The push button is the most common button in dialogs. With its standard behavior (it just

reacts to clicks), the most interesting signal is clicked(). If you want the button to alternate

between the pressed and released states, you can set the checkable property to true. Doing so

makes the toggled(bool) signal interesting because it carries the current state as well as indi-

cating that a click has taken place.

Listing 3-5 shows the implementation of a dialog. In the constructor, two buttons are

created: an ordinary button and a toggle. The buttons are placed in a horizontal layout,

and their signals are connected to two of the dialog’s slots. The custom slots use the static

information method from the QMessageBox class to show a message.

■Tip In the buttonToggled slot, the QString arg method is used to combine two strings. The %1 in

the original string is replaced by the argument given to arg. You can join several (but not more than nine)

strings by using repeated calls to arg. For example, QString("%1 %3 %2").arg("foo").arg("bar").

arg("baz") results in the string "foo baz bar".

CHAPTER 3 ■ WIDGETS AND LAYOUTS62

Listing 3-5. Basic demonstration of the push button widget

ButtonDialog::ButtonDialog(QWidget *parent) : QDialog(parent)
{

clickButton = new QPushButton("Click me!", this);
toggleButton = new QPushButton("Toggle me!", this);
toggleButton->setCheckable(true);

QHBoxLayout *layout = new QHBoxLayout(this);
layout->addWidget(clickButton);
layout->addWidget(toggleButton);

connect(clickButton, SIGNAL(clicked()), this, SLOT(buttonClicked()));
connect(toggleButton, SIGNAL(clicked()), this, SLOT(buttonToggled()));

}

void ButtonDialog::buttonClicked()
{
QMessageBox::information(this, "Clicked!", "The button was clicked!");

}

void ButtonDialog::buttonToggled()
{
QMessageBox::information(this, "Toggled!",
QString("The button is %1!")
.arg(toggleButton->isChecked()?"pressed":"released"));

}

Various platforms have different placements of buttons at the bottom of dialogs. For exam-

ple, in a Mac or a Gnome desktop, the rightmost button is the accepting one (Ok), whereas in

Windows the rightmost button is usually Close or Cancel. By using the QDialogButtonBox
widget, you can get the ordinary buttons automatically. You can also add your own buttons

using addButton and give them a role. The buttons are placed where the user expects them

when you tell Qt which button has the HelpRole and which has the ApplyRole.

Listing 3-6 shows a small part of a dialog using the button box. First the button box is cre-

ated with a direction—it can be either Horizontal or Vertical. Then a button is created and

connected to a slot in the dialog before it is added to the button box with a QDialogButtonBox
role. Figure 3-10 shows the resulting dialog on a Windows XP system. Compare this with Fig-

ure 3-11, in which the style has been forced to Cleanlooks—the style for Gnome desktops. The

ordering is adapted to the current style, which makes the user experience better because the

user can stick to old habits instead of reading the text on all the buttons before clicking.

Listing 3-6. Creating a button, connecting it, and then adding it with a role to a button box

QDialogButtonBox *box = new QDialogButtonBox(Qt::Horizontal);

button = new QPushButton("Ok");
connect(button, SIGNAL(clicked()), this, SLOT(okClicked()));
box->addButton(button, QDialogButtonBox::AcceptRole);

CHAPTER 3 ■ WIDGETS AND LAYOUTS 63

■Note Instead of connecting the button to the slot in Listing 3-6, you could have connected the role of the

button box as this connect(box, SIGNAL(accepted()), this, SLOT(okClicked())).

Figure 3-10. A QDialogButtonBox with buttons in Windows XP style

Figure 3-11. A QDialogButtonBox with buttons in CleanLooks style

QLabel

The label widget, one of the most common widgets, is used to show text that helps the

user better understand dialogs. When using a QLabel, it is possible to give it a keyboard short-

cut or mnemonic by entering an ampersand in the label text just before the letter that you

want to be the mnemonic. For example, by setting the text to "E&xit", the mnemonic is x, and

the keyboard shortcut is Alt+x.

By assigning a buddy widget to the label using setBuddy(QWidget*), the user moves the

focus to that widget by pressing the mnemonic. This is shown in Listing 3-7, in which two

labels are made buddies to two line edits.

If you are using Designer, you can reach the buddy editing mode from the working mode

toolbar. You connect labels to their buddy widgets by drawing arrows, just as you do when you

make signals and slots connections.

Listing 3-7 shows how a dialog is populated by two labels and two line edits in a grid lay-

out. The labels are assigned each of the line edits as buddies. If you try running the example,

you will find that you can move between the line edits using the Alt key combined with the

mnemonic of the label in question.

CHAPTER 3 ■ WIDGETS AND LAYOUTS64

Listing 3-7. Labels and line edits as buddies

QDialog dlg;

QLabel *fooLabel = new QLabel("&Foo:");
QLabel *barLabel = new QLabel("&Bar:");
QLineEdit *fooEdit = new QLineEdit;
QLineEdit *barEdit = new QLineEdit;

fooLabel->setBuddy(fooEdit);
barLabel->setBuddy(barEdit);

QGridLayout *layout = new QGridLayout(&dlg);
layout->addWidget(fooLabel, 0, 0);
layout->addWidget(fooEdit, 0, 1);
layout->addWidget(barLabel, 1, 0);
layout->addWidget(barEdit, 1, 1);

QLineEdit

The line edit is used to enable the user to edit a single line of text. (For multiline texts, use

the QTextEdit widget.) The most common use is for the user to enter text, but you can also use

it for passwords. Just set the echoMode property to Password, and the entered text shows up as

asterisks.

You can set the text of the line edit using setText(const QString&), and you get it with

text(). Whenever the text is changed, you can connect to the textChanged(const QString&)
signal.

If you want to make sure that the user does not enter an entire essay into the field, you

can limit the length of the text using the maxLength property.

To try out the line edit widget, you can test it in Designer. First create a dialog with six line

edits and four labels, as shown in Figure 3-12. The figure shows the connections in which the

textChanged signal of each line edit in the left column is connected to the setText slot of the

corresponding widget in the right column. The label for each row then tells you what property

was changed for each line edit in the left column.

■Tip If you want to get to know a widget, try playing with its properties and do a preview (Ctrl+R) to see

how it behaves at run-time. This way, you can get quick feedback on the changes that you make.

CHAPTER 3 ■ WIDGETS AND LAYOUTS 65

Figure 3-12. The line edit widget demonstration dialog with its connections

Figure 3-13 shows how the dialog looks in preview mode. The password in the middle row

is hidden, and the length of the bottom row is limited.

Figure 3-13. The line edit widget demonstration in action

QCheckBox

A checkbox can be checked or unchecked by the user. The class is related to the push but-

ton widget through a common base class, so the programming interface should be familiar.

In the default mode, you can use the isChecked() method to tell whether the box is

checked or not. In some situations, you might want to have three states: unchecked, unde-

fined, and checked (use the tristate property to do this). In that mode you have to use the

checkState property to learn about the state.

When the checked state changes, the stateChanged(int) signal is emitted. For non-tristate
checkboxes, you can connect to the toggled(bool) signal instead.

CHAPTER 3 ■ WIDGETS AND LAYOUTS66

QRadioButton

The radio button is a close relative of the checkbox. It works like a checkbox, except that

only one in a group can be checked each time. After you have checked a box in a group, you

cannot remove the check; you can move it only within the group. This means that if you check

one box programmatically when you initialize your dialog, you are guaranteed that one of the

boxes is checked at all times. To monitor the state of the buttons, use the toggled(bool) signal

and the isChecked method.

A group of radio buttons consists of all buttons with the same parent widget. You can

divide the buttons into groups using group boxes, which also puts a nice frame with a title

around them. If you do not want to split them visually, you can use a QButtonGroup, as shown

in Listing 3-8. Figure 3-14 shows that it might be a bad idea not to divide them visually.

The listing can be divided into three sections. First, the group box and buttons are created;

then the buttons are added to their respective button group using the addButton method. The

button group does not initialize the buttons in any way; it simply ensures that at most one

radio button at a time is checked. The third and last section of the listing is the creation of the

grid and the placing of the buttons within the grid using addWidget.

Listing 3-8. Creating four radio buttons; then putting them in button groups and a layout

QGroupBox box("Printing Options");

QRadioButton *portrait = new QRadioButton("Portrait");
QRadioButton *landscape = new QRadioButton("Landscape");
QRadioButton *color = new QRadioButton("Color");
QRadioButton *bw = new QRadioButton("B&W");

QButtonGroup *orientation = new QButtonGroup(&box);
QButtonGroup *colorBw = new QButtonGroup(&box);

orientation->addButton(portrait);
orientation->addButton(landscape);
colorBw->addButton(color);
colorBw->addButton(bw);

QGridLayout *grid = new QGridLayout(&box);
grid->addWidget(portrait, 0, 0);
grid->addWidget(landscape, 0, 1);
grid->addWidget(color, 1, 0);
grid->addWidget(bw, 1, 1);

CHAPTER 3 ■ WIDGETS AND LAYOUTS 67

Figure 3-14. Four radio buttons in a group box. Can you tell which one groups with which?

QGroupBox

You can use a group box to structure the contents of a dialog. It provides a frame with a

title in which you can put other widgets. The group box is a passive widget that works only as a

container for other widgets.

If you want to be able to turn the option controlled by the widgets in the group box on or

off, you can make it checkable using the checkable property (this means that a checkbox will

be shown in the title). When the checkbox is unchecked, its contents are disabled, and users

cannot use it. Checkable group boxes have the isChecked() method and the toggled(bool)
signal.

Figure 3-15 shows a simple preview run from Designer. I have created three checkboxes

with a push button in each. The leftmost group box is not checkable and looks as expected

and you can click the button inside of it.

Figure 3-15. Group boxes: not checkable, checkable (checked), and unchecked

CHAPTER 3 ■ WIDGETS AND LAYOUTS68

The center and rightmost group boxes are checkable—one is checked and the other is

not. In the unchecked group, the button is disabled and the user cannot use it. This happens

automatically; no signal connections have been made. All that is necessary is that the button

be inside the group box.

■Caution When setting properties in Designer, they might be set too early. For example, if you set the

checked property to false in the group box example dialog, the push button remains enabled. This is

because the button is added to the group box after the checked property has been set and is thus left unal-

tered (since the group box enables and disables all contained widgets on the toggled signal). Instead,

create the dialog in Designer, but initialize all user modifiable properties after the call to setupUi in your

source code.

QListWidget

Qt has widgets for lists, tables, and trees. This chapter is limited to the list widget because

Qt has a very powerful approach to lists, tables, and trees using models and views (covered in

detail in Chapter 5).

The list widget is used to present a list of items to the user. You can add widgets to the

list using the addItem(const QString&) or addItems(const QStringList&) methods. When

the user changes the current item, you can tell by connecting to the currentItemChanged
(QListWidgetItem *, QListWidgetItem *) or currentTextChanged(const QString&) signals.

Notice that the current item does not always have to be selected—it depends on the selection

mode.

With the selectionMode property, you can enable the user to select only one item, a con-

tiguous range of items, or all items. Whenever the selection is changed, the itemSelectionChanged
signal is emitted.

The items of the list view can be added to the list from text strings, but they are stored as

QListWidgetItem objects. These objects are owned by the list widget and automatically deleted

when the list widget is destructed. If you want to remove an item from a list, simply find it by

using the currentItem property or the item(int row) method; then delete it.

CHAPTER 3 ■ WIDGETS AND LAYOUTS 69

Listing 3-9 shows an example of how a dialog with list widgets is set up. First, a layout is

created along with the widgets—two list widgets and two buttons for moving items between

the lists. After that, the buttons are connected to slots in the dialog class that perform the

actual moving of the items before the list is populated. Figure 3-16 shows the dialog with the

lists being used.

Listing 3-9. Creating and populating the list widgets

ListWidgetDialog::ListWidgetDialog() : QDialog()
{
QPushButton *left, *right;

QGridLayout *layout = new QGridLayout(this);
layout->addWidget(left = new QPushButton("<<"), 0, 1);
layout->addWidget(right = new QPushButton(">>"), 1, 1);
layout->addWidget(leftList = new QListWidget, 0, 0, 3, 1);
layout->addWidget(rightList = new QListWidget, 0, 2, 3, 1);

connect(left, SIGNAL(clicked()), this, SLOT(moveLeft()));
connect(right, SIGNAL(clicked()), this, SLOT(moveRight()));

QStringList items;
items << "Argentine" << "Brazilian" << "South African"

<< "USA West" << "Monaco" << "Belgian" << "Spanish"
<< "Swedish" << "French" << "British" << "German"
<< "Austrian" << "Dutch" << "Italian" << "USA East"
<< "Canadian";

leftList->addItems(items);
}

Figure 3-16. The list widget dialog in action

Listing 3-10 shows how the items are moved between two list widgets. The code shows the

slot for moving items from the left list to the right list. First, use the selectedItems().count()
method to determine whether there actually is anything to move. The takeItem(int) method

CHAPTER 3 ■ WIDGETS AND LAYOUTS70

is used to remove an item from one list widget without having to delete it. This method tells

the list widget that you take responsibility for managing the item and removes it from the list

widget. You can then add the item to the other list widget using the addItem(QListWidgetItem*)
method. This approach enables you to move the items between the list widgets without delet-

ing or creating anything.

Listing 3-10. Slot for moving items from the right to the left

void ListWidgetDialog::moveLeft()
{
if(rightList->selectedItems().count() != 1)
return;

QListWidgetItem *item = rightList->takeItem(rightList->currentRow());
leftList->addItem(item);

}

QComboBox

A combo box can be used like a list widget when only the current item is shown. An alter-

nate use is to provide the users with a list of items, but also enable them to write their own

texts. You control whether the user can type in custom text by using the editable property.

When the user picks an item from the list, the activated(int) and activated(const
QString&) signals are emitted.

■Tip Use the currentIndexChanged if you want the signal to be emitted when you change the current

item via code as well as when the user picks an item. The activated signal is emitted only when the user

changes the current item.

You can also use the currentIndex and currentText properties to find out about the

current item. When the user enters a custom text, you can detect it by connecting to the

editTextChanged(const QString&) signal.

A common use for the combo box widget is to enable the user to pick a font and a size in

word processors. To pick a font, Qt has had the QFontComboBox widget since version 4.2, which

shows each list item in the right font.

CHAPTER 3 ■ WIDGETS AND LAYOUTS 71

QSpinBox

When you want users to choose a number within a given range with some sort of preci-

sion, a spin box is ideal. Because it only allows the user to type in a value, it is precise. At the

same time, the user can change the value by clicking the up and down arrows. If some sort of

feedback is given, the arrows can be used to experiment with the effect of different values.

By default, the range is 0 to 99, and each click on one of the arrows changes the value by

one. You can change the range by changing the minimum and maximum properties. In the same

way, the singleStep property indicates how much each click adds or subtracts from the cur-

rent value. Notice that even if the single step size is larger than one, the user can still enter any

value in the box.

■Tip Instead of calling setMinimum(min) and setMaximum(max), it is possible to call setRange(min,max),

which can make the code more readable and also save you from typing an entire line of code.

When the value of the spin box is changed, it emits the valueChanged(int) signal. If you

want to connect something to the spin box, the setValue(int) slot can be used.

To try out the spin box widget, I put together a dialog consisting of an LCD number

(QLCDNumber) and a spin box (see Figure 3-17). The spin box’s valueChanged signal has been

connected to the LCD number’s display(int) slot. You can play with the spin box by making

changes to the singleStep property, typing in numbers, moving up and down using the arrow

keys, clicking the up and down buttons, or even using the page up and down keys. You will

soon get a hang of how to control the spin box widget to do what you want.

Figure 3-17. A spin box connected to an LCD value

CHAPTER 3 ■ WIDGETS AND LAYOUTS72

If you need to handle values of higher precision, the QDoubleSpinBox widget can be used.

Its programming interface is similar to the one of QSpinBox, but the decimals property enables

you to control the precision of the value.

For handling time, dates, or a combination of the two, you can use QTimeEdit, QDateEdit,

and QDateTimeEdit. They work in pretty much the same way as a spin box, but the user con-

trols the hours, minutes, seconds, years, months, and days of the month separately. The

programming interface is similar but not identical. For example, the range is controlled by

minimumDate and maximumDate, and minimumTime and maximumTime.

If you like spin box–like widgets to pick dates, you can use the QCalendarWidget. It looks

like an actual calendar and enables the user to pick a date by clicking it. You can compare the

calendar widget and a date edit widget in Figure 3-18. Which one is easier to use?

Figure 3-18. A calendar widget and a date edit widget

QSlider

A slider is used in exactly the same way as a spin box: to enable the user to pick a value

within a given range. The QSlider class also uses the minimum and maximum properties to control

the range of the control, as well as the setRange method to change both properties at once.

When it comes to the size of each change, the slider is different. The user can make either

big changes or small changes; they are controlled by the singleStep and pageStep properties.

When the user clicks on either side of the slider position indicator, a page step is made. To take

CHAPTER 3 ■ WIDGETS AND LAYOUTS 73

a single step, the user must click the slider to give it focus and then use the arrow keys of the

keyboard. Just as with the step size of the spin box, the user can still reach values between the

single steps by dragging the position indication into place.

To detect value changes, connect to the valueChanged(int) signal.

■Note Use valueChanged to avoid missing changes by keyboard, dragging, or clicking. The valueChanged

signal is always emitted, regardless of why the value changed.

In Designer, the slider widget shows up as two widgets: horizontal slider and vertical

slider. You can control the orientation of the widget between Horizontal and Vertical by

using the orientation property.

A very similar widget is the QScrollBar, which tells the user that the widget not only picks

a value but also picks a range of values indicated by the size of the slider. The pageStep prop-

erty indicates how large the slider is and tells the user how much of the range is selected.

QProgressBar

Sliders, scroll bars, and spin boxes are all useful for letting the user pick a value, but the

progress bar can be used to show a value in a read-only form. You can customize the range of

a progress bar using the minimum and maximum properties (yes, there is a setRange(int, int)
method as well). If you set both minimum and maximum to zero, you get an activity bar going

around and around without a defined end, which is great for showing that you are doing

something when performing long tasks that you cannot judge the length of in advance.

The actual progress is set using the setValue(int) method, and you can return the

progress bar to zero using the reset() method.

You can turn the percentage completed text on and off with the textVisible property and

you can alter the text to suit your application by using the format property. The format prop-

erty is a string in which any occurrence of %p is replaced with the current percentage, %v is

replaced with the current value, and %m is replaced with the maximum value.

Figure 3-19 shows a set of progress bars created in Designer. The slider at the top of the

dialog is connected to each slider through valueChanged(int) to setValue(int) connections.

By moving the slider, you can set the progress. The top progress bar has the default style; that

is, the format property is %p%, and the text is visible. The next progress bar has the format text

set to "%v out of %m steps completed." The third has hidden text. The progress bar at the

bottom has minimum and maximum set to zero, which means that it keeps moving to show

progress. The printed figure does not show that it moves continuously—there is no need to

call setValue or any other method to get movement.

CHAPTER 3 ■ WIDGETS AND LAYOUTS74

The last detail in the test dialog is the Reset button. Its clicked signal is connected to the

reset slot of all the progress bars. When clicking it, you reset the progress bars. This means

that the value of each progress bar is set to zero, and that the texts of the progress bars are hid-

den until the value is changed from a valueChanged(int) signal emitted when you move the

slider.

Figure 3-19. Progress bars with different configurations

Common Dialogs
When it comes to letting the user make choices, there are many dialogs that the users expect.

There are dialogs for opening and saving files, picking colors, choosing fonts, and so on. These

dialogs look different on the different platforms supported by Qt.

By using Qt’s implementations of these dialogs, you get access to one class interface,

which ensures that you use the native version whenever possible and fall back on a generic

version if needed.

Files

The most common dialogs are the file dialogs used to open and save documents. These

dialogs are all accessed through the QFileDialog class. Because the dialog is used for the same

tasks over and over again, the class has been equipped with a set of static methods that handle

the showing (and waiting for) the dialogs.

Opening

To open a file, the static getOpenFileName method is used. This shows a file dialog similar to

the one shown in Figure 3-20. The method accepts a whole bunch of arguments. The easiest

way to understand how it is used is to look at Listing 3-11.

CHAPTER 3 ■ WIDGETS AND LAYOUTS 75

Figure 3-20. A dialog for opening a file on the Windows platform

Listing 3-11. Picking a file to open

QString filename = QFileDialog::getOpenFileName(
this,
tr("Open Document"),
QDir::currentPath(),
tr("Document files (*.doc *.rtf);;All files (*.*)"));

if(!filename.isNull())
{

...

The first argument accepted by the method is a parent for the dialog. The dialog is modal,

so the given parent will be blocked from user interaction while it is open. The second argu-

ment is the caption of the window; the third is a path to the directory from which to start.

The fourth and last argument is a list of filters separated by double semicolons (;;). Each

document type in the filter consists of a text followed by one or more filter patterns enclosed

in parentheses. The filters specified in the listing are shown in Figure 3-21.

Figure 3-21. The filter controls which file types can be opened.

CHAPTER 3 ■ WIDGETS AND LAYOUTS76

The return value from the method is a QString. If the user has canceled or in other way

aborted the dialog, the returned string is a null string. By using the isNull method, you can

see whether the user picked a file. In the block of code following the if statement in the list-

ing, you can open the file and process its contents.

The dialog shown in Figure 3-20 is the native version used on the Windows platform.

When a native dialog is missing, Qt will fall back to its own dialog (see Figure 3-22). As you can

see, the dialog no longer provides shortcuts on the left. It also fails to show the proper icons

for the different file types.

Figure 3-22. Qt’s fallback dialog for opening files

The getOpenFileName method enables the user to pick only one file for opening. Some

applications let the user pick several files at once, which is where getOpenFileNames can be

used. The resulting file dialog is identical to the one shown when picking one file, except that

several files can be selected at once.

Listing 3-12 shows how the method is used. The arguments are the same as in Listing 3-11,

except that the method returns a QStringList instead of a single QString. If the list is empty,

the user has not picked any files.

Listing 3-12. Picking several files for opening

QStringList filenames = QFileDialog::getOpenFileNames(
this,
tr("Open Document"),
QDir::currentPath(),
tr("Documents (*.doc);;All files (*.*)"));

...

Saving

The QFileDialog class has a method for asking for a file name when saving files: getSaveFileName.

If the file already exists, a warning dialog similar to the one seen in Figure 3-23 displays.

CHAPTER 3 ■ WIDGETS AND LAYOUTS 77

Figure 3-23. Qt verifies when the user tries to replace an existing file.

In Listing 3-13 you can see the source code used for showing the dialog in Figure 3-24.

If you compare the listing with the corresponding listing for opening a file, you see that the

arguments are identical.

When specifying filters, it is good to know that Qt helps to enforce the file extension if not

specified by the user. This means that you need to have an All files (*.*) filter to enable

the user to pick a file extension freely.

Listing 3-13. Qt asks the user for a name for saving a file

QString filename = QFileDialog::getSaveFileName(
this,
tr("Save Document"),
QDir::currentPath(),
tr("Documents (*.doc)"));

...

Figure 3-24. Picking a name for saving a file

CHAPTER 3 ■ WIDGETS AND LAYOUTS78

Opening Directories

Slightly less common than asking for a file name is asking for a directory, but the QFileDialog
class has a static member for this as well. Listing 3-14 shows the getExistingDirectory
method being used. The arguments are the same as for the methods for opening and saving

files, except that no filter is given because there is no point to filtering for extensions when

working with directories.

Listing 3-14. Asking the user for a directory

QString dirname = QFileDialog::getExistingDirectory(
this,
tr("Select a Directory"),
QDir::currentPath());

...

The resulting dialog, when used on the Windows platform, is shown in Figure 3-25.

It enables the user to pick a directory and to create new directories from the dialog.

Figure 3-25. Picking a directory

Messages

You often have to tell the user something important, or ask for a word or a number, which is

where message boxes and input dialogs come in handy. Using them saves you from having to

design and implement your own dialogs. Instead, you can use Qt’s premade dialogs through

static methods—just like asking for file names.

CHAPTER 3 ■ WIDGETS AND LAYOUTS 79

Messages

The QMessageBox class is used to show messages to the users (it can also be used to ask basic

questions such as Do you want to save the file?). Let’s start by having a look at the three differ-

ent types of messages that can be shown. Figure 3-26 shows three dialogs with messages of

different importance.

Figure 3-26. Three different messages

The dialogs are shown using the source code in Listing 3-15. The static methods

information, warning, and critical accept the same arguments and work the same way. The

difference is the importance of the message and how it is announced in the system. All mes-

sages are presented with different icons, but other aspects can be affected as well. For

example, a Windows system plays different sounds for information and critical messages.

The parameters sent to the methods are the parent, the dialog title, and then the message.

The message can be formatted using standard C methods (for example, \n works as a line

break).

Listing 3-15. Showing three different messages to the user

QMessageBox::information(
this,
tr("Application Name"),
tr("An information message."));

QMessageBox::warning(
this,
tr("Application Name"),
tr("A warning message."));

QMessageBox::critical(
this,
tr("Application Name"),
tr("A critical message."));

The static method question can be used to ask the user questions (an example is shown in

Listing 3-16). The first three arguments are the same as when showing messages: parent, title,

and message. The next two arguments specify which buttons to show and which button will

act as the default button. You can see the buttons in the dialog resulting from the listing are

shown in Figure 3-27. The buttons are Yes, No, and Cancel, where the latter is the default.

CHAPTER 3 ■ WIDGETS AND LAYOUTS80

■Note It is possible to ask questions using information, warning, and critical as well—just specify

buttons other than the default OK button.

Listing 3-16. Asking the user a question

switch(QMessageBox::question(
this,
tr("Application Name"),
tr("An information message."),

QMessageBox::Yes |
QMessageBox::No |
QMessageBox::Cancel,

QMessageBox::Cancel))
{
case QMessageBox::Yes:

...
break;

case QMessageBox::No:
...

break;
case QMessageBox::Cancel:

...
break;

default:
...

break;
}

The switch statement checking the return value from the method call determines which

button was clicked. There are more buttons than the ones shown in the listing. The available

options are as follows:

• QMessageBox::Ok: OK

• QMessageBox::Open: Open

• QMessageBox::Save: Save

• QMessageBox::Cancel: Cancel

• QMessageBox::Close: Close

• QMessageBox::Discard: Discard or don’t save, depending on the platform

• QMessageBox::Apply: Apply

• QMessageBox::Reset: Reset

CHAPTER 3 ■ WIDGETS AND LAYOUTS 81

• QMessageBox::RestoreDefaults: Restore defaults

• QMessageBox::Help : Help

• QMessageBox::SaveAll: Save all

• QMessageBox::Yes: Yes

• QMessageBox::YesToAll: Yes to all

• QMessageBox::No: No

• QMessageBox::NoToAll: No to all

• QMessageBox::Abort: Abort

• QMessageBox::Retry: Retry

• QMessageBox::Ignore: Ignore

• QMessageBox::NoButton: Used when you want to let Qt pick a default button

Figure 3-27. The question is shown to the user.

Input Dialog

If you need to ask slightly more advanced questions than Yes/No/Cancel, you can use the

QInputDialog class. Using this class you can ask the user for values and texts, and to pick an

item from a given list.

Let’s start by having a look at getting a piece of text from the user by using the getText
method. You can see it in Listing 3-17. The dialog shown from the code in the listing is shown

in Figure 3-28.

The arguments given to the method are parent, dialog title, label, echo mode, initial text,

followed by a pointer to a Boolean. The Boolean is set to true by the call if the dialog was

closed from the user clicking OK. Otherwise, it is set to false.

The echo mode is the echoMode property of the line edit being used in the dialog. Set it to

QLineEdit::Normal to show the entered text as usual. If you set it to QLineEdit::Password, the

entered text will be shown as asterisks.

When the method call returns, check that ok is true and that the returned string contains

something. If that is the case, you can go on and do something with the text returned.

CHAPTER 3 ■ WIDGETS AND LAYOUTS82

Listing 3-17. Asking the user to enter some text

bool ok;
QString text = QInputDialog::getText(

this,
tr("String"),
tr("Enter a city name:"),
QLineEdit::Normal,
tr("Alingsås"),
&ok);

if(ok && !text.isEmpty())
{

...

Figure 3-28. The dialog shown to the user when asking for text

When you want the user to pick a string from a given list or enter a new string, you can

use the static getItem method. Listing 3-18 shows you how it is used. The resulting dialog is

shown in Figure 3-29.

The arguments given to the method are similar to the ones used when asking for a string.

The list starts with a parent, the dialog title, and a label text, followed by a list of items. The

items are kept in a QStringList. After the list of items follows a zero; this is the index in the

item list to start from. In this case, the dialog will start with "Foo" selected.

The false after the index indicates that the dialog will not let the user enter custom

strings. By changing it to true, the user can either pick a value from the list or write a new

string.

The arguments end with a pointer to a Boolean, used to indicate whether the user

accepted the dialog when closing it. Use this value and the contents of the returned string

when determining whether the user actually picked an item or canceled the dialog.

Listing 3-18. Asking the user to pick an item from a list

bool ok;
QStringList items;
items << tr("Foo") << tr("Bar") << tr("Baz");
QString item = QInputDialog::getItem(

this,
tr("Item"),
tr("Pick an item:"),
items,
0,

CHAPTER 3 ■ WIDGETS AND LAYOUTS 83

false,
&ok);

if(ok && !item.isEmpty())
{

...

Figure 3-29. The dialog shown to the user when picking an item from a list

The QInputDialog can help you with one more thing: getting values from the user. Use

the static getInteger method to show a dialog containing a spin box (an example is shown in

Figure 3-30). The source code used to generate the dialog is shown in Listing 3-19.

The arguments given to the method are, in order, the parent, the dialog title, and a label

text. Following this are the initial value, the minimum value, the maximum value, and the step

size. The last argument is a pointer to a Boolean, used to indicate whether the user accepted

the dialog when closing it. Use this value to determine whether the number was given by the

user or whether the dialog was canceled.

Listing 3-19. Asking the user for an integer value

bool ok;
int value = QInputDialog::getInteger(

this,
tr("Integer"),
tr("Enter an angle:"),
90,
0,
360,
1,
&ok);

if(ok)
{

...

Figure 3-30. Asking the user to enter a value

CHAPTER 3 ■ WIDGETS AND LAYOUTS84

If you need ask the user for a floating-point value, you can use the static getDouble
method, which uses a double spin box for showing and editing the value.

Even More Dialogs

Other situations exist in which the user expects a standard dialog to appear. Two dialogs pro-

vided by Qt have been selected for this discussion: the dialogs used for selecting colors and

fonts.

Colors

The QColorDialog class is used to enable the user to pick a color. The dialog is shown in

Figure 3-31. The source code for showing the dialog is simple (see Listing 3-20). The call to

QColorDialog::getColor accepts a QColor as a starting value and a parent. The return value

is a QColor that is invalid if the user has cancelled the dialog.

Listing 3-20. Asking the user for a color

QColor color = QColorDialog::getColor(
Qt::yellow,
this);

if(color.isValid())
{

...

Figure 3-31. Enabling the user to pick a color

CHAPTER 3 ■ WIDGETS AND LAYOUTS 85

Fonts

The QFontDialog class is used when you need to let the user pick a font. The dialog is shown in

Figure 3-32. Listing 3-21 shows you how the dialog is shown and how the result is interpreted.

The static getFont method shows the dialog and returns a QFont. Because a font cannot be

invalid, the arguments to the method start with a Boolean value that indicates whether the

user canceled the dialog. The value true indicates that the returned font has been accepted by

the user.

The second argument is a QFont to start from. The third argument is a parent widget, and

the last argument is a window title for the dialog.

Listing 3-21. How the dialog is shown and the result interpreted

bool ok;
QFont font = QFontDialog::getFont(

&ok,
QFont("Arial", 18),
this,
tr("Pick a font"));

if(ok)
{

...

Figure 3-32. Picking a font

Validating User Input
Whenever you ask users to enter something in a text field, you often get something strange

back. Sometimes they enter several words when you expect one. Or they do not use the right

decimal point. Or they write a number as text—as if your application is going to parse “three”

CHAPTER 3 ■ WIDGETS AND LAYOUTS86

for them. The point is that you cannot always trust a user to enter valid proper input—you

always have to validate everything.

When validating input, check to see that the input is right. This is not always the same as

check for errors. Even if you can detect 15 types of errors in input, someone somewhere will

try a 16th variant. And it will occur in the most inconvenient location at the most inconven-

ient time. Trust me.

Validators

Because Qt developers know that user input cannot be trusted, they provide the QValidator
class, which can be used to validate user input in QLineEdit and QComboBox widgets.

The QValidator class cannot be used directly. Instead, you must use one of its subclasses

or do it yourself.

Before you use validators, you should know something about how they work. A validator

validates a string, which can be Invalid, Intermediate, or Acceptable. An Acceptable string is

what you expect the user to enter. An Invalid string is invalid and cannot be turned into an

acceptable string. An Intermediate string is not acceptable, but can become one. When the

user enters text, it is impossible to enter Invalid strings. Intermediate strings are accepted as

input, however, as are Acceptable strings. So when a line editor with a validator refuses to

accept a key press, it probably occurs because it would render the string to be Invalid.

Validating Numbers

There are two validator classes for validating numbers: QIntValidator for integers and

QDoubleValidator for floating-point values. These two classes are shown in action in Listing 3-22.

The highlighted lines show where the validators are created and assigned, but have a look at

the entire listing first.

The listing shows a dialog class and its constructor. In the constructor two labels, two line

editors, and a button are created and put in a grid layout. The resulting dialog is shown in

Figure 3-33.

Looking at highlighted lines and the two validators, you can see that each validator class

takes quite a few arguments. Starting with the QIntValidator, it expects a lower limit, upper

limit, and parent. The object created in the listing allows integer values from zero to 100. The

QDoubleValidator also expects a lower limit, an upper limit, and then the number or wanted

decimals before the parent.

To assign a validator to a widget, use the setValidator(QValidator*) method, which is

available for the QLineEdit and QComboBox classes.

Listing 3-22. A dialog with two validated line editors

class ValidationDialog : public QDialog
{
public:
ValidationDialog()
{
QGridLayout *layout = new QGridLayout(this);

QLineEdit *intEdit = new QLineEdit("42");

CHAPTER 3 ■ WIDGETS AND LAYOUTS 87

QLineEdit *doubleEdit = new QLineEdit("3.14");
QPushButton *button = new QPushButton("Close");

layout->addWidget(new QLabel("Integer:"), 0, 0);
layout->addWidget(intEdit, 0, 1);
layout->addWidget(new QLabel("Double:"), 1, 0);
layout->addWidget(doubleEdit, 1, 1);
layout->addWidget(button, 2, 0, 1, 2);

...

connect(button, SIGNAL(clicked()), this, SLOT(accept()));
}

};

The integer validator makes sure that the input is good, but the double validator does not

do this in all circumstances. For example, it does not enforce the number of decimals speci-

fied.

When taking the data as input for your application, you must make sure to check that the

validators actually validate the strings to Acceptable. Also, make sure to use the QString::toInt
and QString::toDouble methods and see that they actually parse the values before using

them. The basic lesson here is to never trust your users when it comes to entering data.

Figure 3-33. A line edit for integers and one for floating-point values

Regular Expressions

When it comes to parsing text-based user input, you can really write a lot of code. Imagine

having to validate a phone number structured like +nn(p)aa...a-ll...l, where n represents

the nation number, p the local area code prefix, a an area code, and l the local number within

that area. There can be one to two digits in the nation number. The local area prefix can be 0,

8, or 9 (let’s say two to five numbers in the area code and at least one digit in the local number).

In this situation a regular expression can be your savior.

A regular expression, commonly known as a regexp or an RE, enables you to define how a

string can be structured. You can then try to match the input strings to your RE. The strings

matching are valid, whereas those not matching can be considered Invalid. In Qt, regexps are

represented by QRegExp objects.

Before you start using the QRegExp class, you need to understand how an RE is written.

REs can almost be considered a language of their own. This text does not go into details, but

explains the basic concept so that you can understand the ideas.

CHAPTER 3 ■ WIDGETS AND LAYOUTS88

The RE matching the phone number described earlier would look something like

\+\d{1,2}\([089]\)\d{2,5}\-\d+. Looking at this, it is easy to understand why some program-

mers avoid using REs. The expression is not as bad as it looks, though; when you understand

the basic building blocks, you can break it down into its components and read it.

First of all, the backslash \ is used to escape characters. For example, because a + has a

meaning in REs, we escape it to tell the QRegExp class to try to match a + instead of interpreting

it. This is the reason for escaping the parentheses (and the dash - as well).

■Tip Do not forget that C++ strings are escaped themselves. To write \d in C++, you need to write \\d. To

express \, you have to escape it in the RE (that is, \\, giving the C++ string \\\\).

The \d is a so called meta-character, which is a character representing one or more char-

acters. The \d represents a digit. The available meta-characters are listed as follows. Notice

that the standard C escapes work as well. For example, \n means a new-line character, and \t
means a tab character.

• . matches any character.

• \s matches white space (QChar::isSpace()).

• \S matches non–white space.

• \w matches a word character (QChar::isLetterOrNumber() or QChar::isMark() or under-

score _).

• \W matches a nonword character.

• \d matches a digit (QChar::isDigit()).

• \D matches a nondigit.

• \xnnnn matches the UNICODE character nnnn, where nnnn represents hexadecimal digits.

• \0nnn matches the ASCII character nnn, where nnn represents octal digits.

For the local area prefix, the expression is [089], which is a character group. Putting char-

acters inside square brackets means that any one of the characters can be matched. By putting

a ^ first inside the brackets, you tell the RE to match any character not inside the brackets. For

example, [^089] would match anything but 0, 8, or 9.

A character group can be expressed by using ranges as well. Suppose you want to match

all characters between a and f (that is, a, b, c, d, e, or f). You can do this by using the [a-fA-F]
group. Notice that you have to have one range for lowercase characters and one for uppercase

characters.

A character group consisting of just one character can leave out the brackets, so a
matches a. Since a dot matches any character, you must escape it to use it to match itself.

This means that \. matches ..

CHAPTER 3 ■ WIDGETS AND LAYOUTS 89

After some of the meta-characters, you see the expression {m,n}, where m and n are num-

bers. This tells the RE to match at least m instances of the preceding meta-character or

character group. If m equals to n, you can leave out n. This means that {m,m} equals {m}.

If you want to match one or more of something, you can add a + instead of {1,n}, where n
is a large enough number. In the same manner, * matches zero or more of something, and ?
matches zero or one of something.

A few more special characters are used as meta-characters, summarized in the following

list:

• ^ matches the start of the string being matched if appearing first in an RE.

• $ matches the end of the string being matched if appearing last in an RE.

• \b matches a word boundary. A word boundary can be white space or the start or end of

the string being matched.

• \B matches a nonword boundary.

Returning to the original RE for matching the phone number, you must add the start of

the string and end of the string to not match a number in the middle of a given string (this

gives the following RE: ^\+\d{1,2}\([089]\)\d{2,5}\-\d+$. Breaking it down gives the

following:

• ^ means the start of the string is matched.

• \+ means a +.

• \d{1,2} means one or two digits.

• \(means a left parenthesis.

• [089] means one of 0, 8, or 9.

• \) means a right parenthesis.

• \d{2,5} means two to five digits.

• \- means a dash.

• \d+ means one or more digits.

• $ means the end of the string is matched.

Now, let’s use this RE in combination with the QRegExp class (see Listing 3-23). The first

thing to notice is that all \ characters in the RE have been escaped since the RE is expressed

as a C++ string.

When trying to match a string to the RE, the indexIn(QString) method is used. This

method returns the index of the start of the matched part of the string. Because the RE starts

with ^, it has to be 0 if the string is matched, or -1 if not. If you skip the initial ^, the second

string results in an index of 5 since a phone number starts after five characters.

CHAPTER 3 ■ WIDGETS AND LAYOUTS90

Listing 3-23. Matching phone numbers with regular expressions

QRegExp re("^\\+\\d{1,2}\\([089]\\)\\d{2,5}\\-\\d+$");

qDebug() << re.indexIn("+46(0)31-445566"); // 0
qDebug() << re.indexIn("Tel: +46(0)31-445566"); // -1
qDebug() << re.indexIn("(0)31-445566"); // -1

By adding parentheses to the RE, it is possible to capture parts of the matched string.

Listing 3-24 added four pairs of parentheses, giving the following RE:

^\+(\d{1,2})\(([089])\)(\d{2,5})\-(\d+$). The contents of these parentheses can be

extracted using the cap method.

■Note This was the reason for escaping the parentheses to be matched.

The cap method takes an index as argument, where zero returns the entire matched

string. The indexes starting from one return the matched contents between the parentheses

from left to right.

Listing 3-24. Capturing the different parts of the phone number using a regular expression with
capturing parentheses

QRegExp reCap("^\\+(\\d{1,2})\\(([089])\\)(\\d{2,5})\\-(\\d+)$");

qDebug() << reCap.indexIn("+46(0)31-445566"); // 0
qDebug() << reCap.cap(0); // "+46(0)31-445566"
qDebug() << reCap.cap(1); // "46"
qDebug() << reCap.cap(2); // "0"
qDebug() << reCap.cap(3); // "31"
qDebug() << reCap.cap(4); // "445566"

Validating Text

Because regular expressions are very useful for verifying that a given string has the correct for-

mat, it is natural that Qt has a validator based on it. The QRegExpValidator takes a QRegExp as a

constructor argument and uses the RE to validate input.

Listing 3-25 shows how this looks in real code. The dialog class containing the line editor,

button, and label has been stolen and adapted from the listing—showing the validators for

numbers. The thing to notice is that the regular expression is treated as if it starts with a ^ and

ends with a $, so they are left out.

CHAPTER 3 ■ WIDGETS AND LAYOUTS 91

Listing 3-25. Using a regular expression for validating user input

class ValidationDialog : public QDialog
{
public:

ValidationDialog()
{
QGridLayout *layout = new QGridLayout(this);

QLineEdit *reEdit = new QLineEdit("+46(0)31-445566");
QPushButton *button = new QPushButton("Close");

layout->addWidget(new QLabel("Phone:"), 0, 0);
layout->addWidget(reEdit, 0, 1);
layout->addWidget(button, 1, 0, 1, 2);

...

connect(button, SIGNAL(clicked()), this, SLOT(accept()));
}

};

When the user inputs data, the QRegExpValidator enables all text to be removed from the

right. This means that the user must add the plus, the parentheses, and the dash. This is not

always clear and can cause confusion.

When entering valid text, the validator does not obstruct any input, but when editing in

the middle of the text there can be a problem. For example, it is impossible to remove the

entire country code as soon as the left parenthesis has been added because there must be at

least one digit there, according to the RE.

When the user has completed entering data, it is important to match the string to an RE

before accepting the data because the validator does not ensure that the string is complete.

It is recommended that you use the cap method to get the actual data from the input string.

Remember that you can use cap(0) to get the entire matched string. Compare this with the

QDoubleValidator, where it is important to user QString::toDouble and check the result, even

if the string has been monitored by a validator. See Figure 3-34.

Figure 3-34. Part of a phone number has been entered in to the validated line edit.

CHAPTER 3 ■ WIDGETS AND LAYOUTS92

Summary
Widgets and layouts are the building blocks of all user interfaces. Make sure to take the time to

learn how to use them.

Designer is a great tool to help you become familiar with the available components. It

enables you to try out widgets and practice building proper layouts. Remember to put all

widgets in layouts and test your designs by resizing the dialog. By making sure that it always

looks good, you ensure that it will work with different languages, screen resolutions, and font

settings.

The most important lessons from this chapter are the following:

• Always put dialog buttons in a QDialogButtonBox to ensure that they appear in the order

that the user expects on all platforms.

• Make sure that all widgets are managed by a layout—any stray widgets can make a

dialog look bad on other platforms and on systems with different visual settings.

• When designing a dialog, make sure to always look at it from the user’s viewpoint. Refer

to Figure 3-33 and think about structure, visual aids, and the user’s purpose when using

the design.

• Do not be afraid to experiment with Designer. You can learn to build any design by

using Designer and its preview capabilities.

CHAPTER 3 ■ WIDGETS AND LAYOUTS 93

The Main Window

Thus far in this book you have primarily used dialogs to communicate with your users. Yet

although dialogs are a great solution when you need a widget for holding widgets and guiding

the user in a particular task or configuring options surrounding a specific subject, most appli-

cations are not based around just one particular task, but a document. This is where a main

window enters the picture.

A main window is the top-level window around which an application is based. It can have

a menu bar, toolbars, a status bar, and areas in which toolboxes and other supporting win-

dows can be docked. It is possible to open the application’s dialogs from the main window,

and the main window contains the working document.

■Note Unless stated otherwise, in the context of this book the term document does not refer to files such

as those used for word processing purposes. Instead, in the context of Qt a document is the term used to

refer to the actual data that the user interacts with. The data can represent anything from a movie for view-

ing to a CAD model of a spaceship. To define what a document represents and what the user can do to it is

pretty much what desktop application development is all about.

Windows and Documents
There are two schools of thought when it comes to arranging documents in windows: the

single document interface (SDI) and multiple document interface (MDI). The difference is

whether each document is situated in a new window or whether the application uses only

one window for all documents, respectively. Figure 4-1 presents a comparison of the two.

Examples of MDI interfaces are Qt Designer and Photoshop; popular SDI applications are

WordPad, Google Earth, and a nontabbed Web browser.

The MDI concept was very common in the Windows 3.x days, while SDI always has been

dominant on X11. About the time of Windows 95, Microsoft’s policy started to shift, and today

most Windows products have an SDI interface.

To compare the two architectures and the structures they bring, you will build two appli-

cations around the QTextEdit widget, where the text editor will act as the document widget.

95

C H A P T E R 4

Figure 4-1. A single document interface compared with a multiple document interface

Single Document Interface

Let’s start by having a look at a single document interface. In an SDI-driven environment, each

main window corresponds to a document. The document itself is kept in a widget called the

central widget. Each main window has one central widget that appears in the central area of

the window that is left when all menu bars, docked widgets, toolbars, and such have been

added.

This gives our application a structure built around the main window and its central

widget. These two objects together will contain almost all slots reacting to user interaction,

so all responses to user actions are initiated from one of these two classes.

The slots of the main window are associated with tasks such as disabling and enabling

menu items, creating new files, and closing windows—housekeeping tasks. The slots of the

central widget handle the user interaction modifying the actual document—working tasks.

These tasks can include standard clipboard actions such as using cut, copy, and paste; per-

forming a document-specific operation such as rotating an image; stopping playback; or

running a wizard—anything that applies to the document of the application in question.

Text Editor

Let’s create a simple SDI-driven application based on the QTextEdit widget that can be used as

a multiline QLineEdit equivalent or as a simple word processor. You can see it and some SDI-

specific details in the constructor of the main window shown in Listing 4-1. A screenshot of

the application is shown in Figure 4-2.

Listing 4-1. Constructor of the SDI main window

SdiWindow::SdiWindow(QWidget *parent) : QMainWindow(parent)
{
setAttribute(Qt::WA_DeleteOnClose);
setWindowTitle(QString("%1[*] - %2").arg("unnamed"-).arg(-"SDI"));

CHAPTER 4 ■ THE MAIN WINDOW96

docWidget = new QTextEdit(this);
setCentralWidget(docWidget);

connect(docWidget->document(), SIGNAL(modificationChanged(bool)),
this, SLOT(setWindowModified(bool)));

createActions();
createMenus();
createToolbars();
statusBar()->showMessage("Done");

}

Figure 4-2. A single document application with two documents

Let’s work through this code. First, set the window attribute to Qt::WA_DeleteOnClose so

that Qt takes care of deleting the window from memory as soon as it is closed. This means less

memory management to worry about.

Next, the window title is set to QString("%1[*] - %2").arg("unnamed").arg("SDI"). The

arg method calls inserts the "unnamed" and "SDI" strings where the %1 and %2 symbols appear

in the first string. The leftmost arg replaces %1; the next replaces %2; and so on. You can merge

up to nine strings with a main string using this method.

You can use setWindowTitle to set any window title. You use the title shown in the preced-

ing example because it allows Qt to help us manage parts of the title (for example, indicating

whether the current document has been modified). This explains parts of the command, but it

does not explain why the first string is in a call to tr or why you won’t use "unnamed[*] - SDI"
right away. You want to be able to support other languages (you’ll learn more in Chapter 10).

CHAPTER 4 ■ THE MAIN WINDOW 97

For now, remember that all strings that are shown to the user need to be enclosed in calls

to tr(). Although this is done automatically by Designer, when you create user interfaces and

set texts through code, you’ll need to manage it yourself.

■Tip Scripts can be used to find strings missing tr(). If you are using a Unix shell, you can use this line to

find them: grep -n '"' *.cpp | grep -v 'tr('. Another method is to stop Qt from automatically con-

verting char* strings to QString objects. This will cause compiler errors for all the times you have missed

calling tr(). You can disable the conversion by adding a line reading DEFINES += QT_NO_CAST_FROM_

ASCII to your project file.

You use the arg method because the strings unnamed and SDI are independent from the

viewpoint of a translator. For example, the string SDI is used in more places. By splitting the

string, you ensure that it is translated once, avoiding any possible inconsistencies. Also, by

using a main string into which the unnamed and SDI strings are inserted, you enable the trans-

lator to reorder the strings and add more text around them, making the application more

adaptable to other cultures and languages.

One more thing about setting main window titles: the string [*] serves as a placeholder

for the document-modified marker that some applications use. The marker is shown when the

windowModified property is set to true; that is, when the document has been modified. The

reasons for letting Qt handle the showing of the marker are twofold. First, it avoids repeating

the code for handling it in all your applications. On Mac OS X, the color of the title text is used

to indicate whether the document has been modified. By not putting an asterisk in the win-

dow title, explicitly using your own code and letting Qt handle this instead, you also let Qt

handle any other aspects of the different platforms supported.

That was a lot of information about a window title! Continue down Listing 4-1 to the lines

that create the QTextEdit and set it as the central widget of the main window. This means that

it will fill the entire main window and act as the user’s view of the document.

The next line connects the modified status of the text editor’s document to the

windowModified property of the main window. It lets Qt show the asterisk and change the title

text color when the document is modified. The signal is emitted from docWidget->document(),

not directly from the docWidget because the formatted text is represented by the

QTextDocument. The QTextEdit is just a viewer and editor for formatted text, so the document

is modified, not the editor—hence the signal is emitted from the document.

Taking Actions

Continuing the review of Listing 4-1, you encounter four lines that set up menus, toolbars,

and a status bar. Before these actual menus are created, actions are created. An action,

embodied in the class QAction, makes it possible to store a text, a tooltip, a keyboard shortcut,

an icon, and more into one class. Each action emits the signal triggered()—and possibly

toggled(bool) when invoked by the user. The toggled signal is emitted when the action is

configured to be checkable. Actions work much like buttons that can be either checkable or

clickable.

CHAPTER 4 ■ THE MAIN WINDOW98

The nice thing is that the same action can be added to menus and toolbars, so if a user

enters advanced editing mode by pressing a toolbar button, the corresponding menu item is

automatically checked. This also applies when actions are enabled and disabled—menus and

buttons are automatically in sync. Also, the only connection required is the one going from the

action to the acting slot.

Listing 4-2 shows you how the actions are created in the method createActions, which is

called from the constructor shown in Listing 4-1. I have trimmed the listing down slightly to

show you the three major types of actions used. Before considering the differences, look at the

similarities; for example, every action is created as a QAction. The QAction constructor accepts

an optional QIcon, followed by a text and a parent. For the actions requiring a keyboard short-

cut, the setShortcut(const QKeySequence&) method is called. Using the setStatusTip(const
QString&), each action is assigned a tip to show on the status bar when the action acts as a

menu item and is hovered over. (Try it!) The strange-looking file path for the icon is a so-called

resource path (its use is explained in the resource section that follows).

Listing 4-2. Creating actions for the SDI application

void SdiWindow::createActions()
{
newAction = new QAction(QIcon(":/images/new.png"), tr("&New"), this);
newAction->setShortcut(tr("Ctrl+N"));
newAction->setStatusTip(tr("Create a new document"));
connect(newAction, SIGNAL(triggered()), this, SLOT(fileNew()));

...
cutAction = new QAction(QIcon(":/images/cut.png"), tr("Cu&t"), this);
cutAction->setShortcut(tr("Ctrl+X"));
cutAction->setStatusTip(tr("Cut"));
cutAction->setEnabled(false);
connect(docWidget, SIGNAL(copyAvailable(bool)),
cutAction, SLOT(setEnabled(bool)));

connect(cutAction, SIGNAL(triggered()), docWidget, SLOT(cut()));
...
aboutQtAction = new QAction(tr("About &Qt"), this);
aboutQtAction->setStatusTip(tr("About the Qt toolkit"));
connect(aboutQtAction, SIGNAL(triggered()), qApp, SLOT(aboutQt()));

}

First up is newAction, which is connected to a slot in the main window. This is the logical

place because creating new documents is not handled by the document itself (apart from ini-

tialization, but that is put in the document’s constructor). Instead, the creation and closure of

documents is handled by the main window. Please notice that the keyboard shortcut, set using

setShortcut, is enclosed in a tr() call, which gives the translator the freedom to change short-

cuts to localized versions.

Next is the cutAction. Its triggered signal, emitted when the user invokes the action, is

connected to a slot in the document. This is also logical because cutting takes data from

the document as well as modifying the document. The connection from copyAvailable to

setEnabled is an example of how to enable and disable actions. As soon as something is

CHAPTER 4 ■ THE MAIN WINDOW 99

selected, copyAvailable is emitted with true as the argument. When no selection is available,

the argument is false. So the action is enabled when applicable and disabled at all other

times.

The last action is the aboutQtAction, which is connected to the qApp object. The applica-

tion object manages application global tasks such as closing all windows and showing a dialog

with information about the Qt version being used.

■Note The global qApp pointer variable is always set to point to the active QApplication object. To get

access to this pointer, you must not forget to include the <QApplication> header file in the files where you

use it.

Menus and Toolbars

Looking back at Listing 4-1 you can see that after the call to createActions, the next steps are

the createMenus and createToolbars methods. These methods take the newly created actions

and put them in the right places.

Listing 4-3 shows how the File menu and the file operation’s toolbar are populated

with actions. Because each action already has a text and icon, all it takes is a call to

addAction(QAction*) for the text and icon to appear in the menu. The menuBar() and

addToolBar(const QString&) calls are a part of the main window class. The first time menuBar
is called, a menu bar is created. Later calls will refer to this menu bar because each window

has only one menu. Toolbars are created using the addToolBar method, and you can create

any number of toolbars for each window. Using the addSeparator() method, you can divide

the actions into groups, which can be used in both menus and toolbars.

Listing 4-3. The menus and toolbars are populated.

void SdiWindow::createMenus()
{
QMenu *menu;

menu = menuBar()->addMenu(tr("&File"));
menu->addAction(newAction);
menu->addAction(closeAction);
menu->addSeparator();
menu->addAction(exitAction);

...
}

void SdiWindow::createToolbars()
{
QToolBar *toolbar;

CHAPTER 4 ■ THE MAIN WINDOW100

toolbar = addToolBar(tr("File"));
toolbar->addAction(newAction);

...
}

Refer to Listing 4-1 again—you will see that after the actions have been added to the

menus and toolbars, the final call in the constructor creates a status bar and displays the mes-

sage "Done" in it. The statusBar() method works just like menuBar(): the bar is created and

returned at the first call and then a pointer to it is returned in subsequent calls.

Creating New Documents and Closing Open Ones

You will use the QTextEdit class as your document class because it contains all the functional-

ity you need. It can handle creating and editing text, as well as copying and pasting to and

from the clipboard. This leaves you with only the tasks of implementing the functionality for

creating new documents and closing any open documents.

Creating new documents is easy. All it takes is bringing up a new main window—the

constructor shown in Listing 4-1 will do all the hard work. Listing 4-4 shows the trivial imple-

mentation of the fileNew() slot. It creates a new window and then shows it.

Listing 4-4. Creating a new document

void SdiWindow::fileNew()
{
(new SdiWindow())->show();

}

Closing documents is more complex because a document (or the window containing a

document) can be closed in many different ways. One possible cause is the window manager

telling the window to close for various reasons. For example, perhaps the user is trying to close

the window by clicking the close button in the title bar. Or the computer is shutting down. Or

the user is choosing Exit or Close from the File menu of the application.

To intercept all these user actions that end up in attempts to close the current window,

you can implement an event handler for the close event by overriding the

closeEvent(QCloseEvent*) method. Listing 4-5 shows the SDI application implementation.

Listing 4-5. Closing a document

void SdiWindow::closeEvent(QCloseEvent *event)
{
if(isSafeToClose())
event->accept();

else
event->ignore();

}

bool SdiWindow::isSafeToClose()
{
if(isWindowModified())

CHAPTER 4 ■ THE MAIN WINDOW 101

{
switch(QMessageBox::warning(this, tr("SDI"),
tr("The document has unsaved changes.\n"

"Do you want to save it before it is closed?"),
QMessageBox::Discard | QMessageBox::Cancel))

{
case QMessageBox::Cancel:
return false;

default:
return true;

}
}

return true;
}

You can choose to accept() or ignore() an event: ignoring a close event leaves the win-

dow open, and accepting it closes the window. To ensure that it is safe to close the window, use

the isSafeToClose method, which ascertains whether the document has been modified using

isWindowModified(). If the document hasn’t been modified, it is safe to close it. If the docu-

ment has been modified, ask the user whether it is okay to discard the changes using a

QMessageBox.

■Tip QMessageBox is very useful when it comes to displaying short pieces of information to the user. The

four static methods information, question, warning, and critical can be used to show messages of

different importance. All four methods accept five arguments: a parent widget, a title text, a message text,

the combinations of buttons to show, and the button that will be used as the default button. The buttons and

default button all have default settings.

The buttons can be configured by or’ing together members from the QMessageBox::StandardButtons

enumerated type. The available buttons are: Ok, Open, Save, Cancel, Close, Discard, Apply, Reset,

RestoreDefaults, Help, SaveAll, Yes, YesToAll, No, NoToAll, Abort, Retry, and Ignore. The default

button can be picked from the same list, but only one button is allowed to be set as the default. The return

value from one of the four methods is the selected button, as named in this list.

The result of the isSafeToClose member is true if the document is not modified or if the

user chooses to close the message box with the Discard button and the closeEvent member

accepts the event. If the user clicks Cancel, the close event is ignored.

CHAPTER 4 ■ THE MAIN WINDOW102

The close event can have several sources: the user might have clicked Close or Exit from

the File menu, or the user might have closed the window by using features of the current plat-

form. If the close event’s source is the application exiting, an ignored close event means that

no more windows will be closed. The user cancels the entire process of exiting, not just the

closing of the current window, which makes it possible to cancel the entire closing-down

process of the entire application using the Cancel button of the QMessageBox shown from a

single document

In Chapter 8, you will learn that it is really easy to integrate saving changes at close if you

extend the isSafeToClose method. The structure looks unnecessarily complex now because

you need to be able to handle the save before closing option as well.

Building the Application

To create from the SdiWindow class, you need to provide a trivial main function that initializes a

QApplication object before creating and showing an SdiWindow. The application then runs by

itself, creating new windows for new documents and finishing when all documents have been

closed.

To build it, you also have to create a project file—using the file created from running

qmake -project is enough. Then simply run qmake followed by make to compile and link the

application.

Multiple Document Interface

To compare the SDI and MDI approaches and learn about their differences, you will create an

MDI application based on the same theme used in the previous section. A screenshot of the

application is provided in Figure 4-3.

Figure 4-3. A multiple document application with two documents

CHAPTER 4 ■ THE MAIN WINDOW 103

In the application, each document is given a smaller window inside the main window,

which is implemented using a document widget class and a QWorkspace. The workspace is the

area that contains all the document windows.

From the user’s viewpoint, the MDI application is identical to the SDI application, except

for the Window menu shown in Figure 4-4, which makes it possible to arrange the document

windows and to move to a document other than the currently active document.

Figure 4-4. Window menu

The Document and the Main Window

In the SDI application, possible user actions are divided between the document, the main

window, and the application. The same is valid for the MDI application, except that all events

for the document must pass through the main window because the main window must decide

which document widget to pass the event to. Let’s start with a look at the document widget

class. You can see the class definition in Listing 4-6.

Listing 4-6. Document widget class for the MDI application

class DocumentWindow : public QTextEdit
{
Q_OBJECT

public:
DocumentWindow(QWidget *parent = 0);

protected:
void closeEvent(QCloseEvent *event);

bool isSafeToClose();
};

The document class in an MDI application can be compared with a slim version of the

SDI application’s main window. All that it contains are the specifics for the document, so it

entails stripping all application global code as well as functions for creating new documents.

The class inherits the QTextEdit class and gets the same interface. The isSafeToClose and

closeEvent methods interact just as in the SDI example, while the constructor looks slightly

different. Listing 4-7 shows the constructor, which tells Qt to delete the document window as

CHAPTER 4 ■ THE MAIN WINDOW104

soon as it has been closed before setting the title and making the connection between the

modification status of the document and the windowModified property of the document win-

dow itself.

Listing 4-7. Constructor of the document widget class

DocumentWindow::DocumentWindow(QWidget *parent) : QTextEdit(parent)
{
setAttribute(Qt::WA_DeleteOnClose);
setWindowTitle(QString("%1[*]").arg("unnamed"));

connect(document(), SIGNAL(modificationChanged(bool)),
this, SLOT(setWindowModified(bool)));

}

That’s all there is to the document window—simply setting a title and setting up a con-

nection to let Qt indicate whether the document has been modified. Again, the method of

adding unnamed to the window title using the arg method gives the translator more freedom

when it comes to adapting the text. The [*] part of the window title is used by Qt to show or

hide an asterisk to indicate whether the file has been modified.

Let’s move on to the main window. It is shown in Listing 4-8 and looks very much like the

rest of the SDI application’s constructor—with one small addition.

The highlighted lines in the listing show how a QWorkspace is created and set as the central

widget of the main window. A workspace is a widget that treats all widgets put in it as MDI

children. (Refer to Figure 4-3—the two documents are widgets put inside the workspace.)

Next, the signal windowActivated from the workspace is connected to enableActions of

the main window. The windowActivated signal is emitted as soon as the currently active win-

dow is changed, either because the user changed documents or because the user closed the

last document. Either way, you have to make sure that only the relevant actions are enabled.

(You’ll return to this soon.)

Listing 4-8. Constructor of the main window with differences between MDI and SDI highlighted

MdiWindow::MdiWindow(QWidget *parent) : QMainWindow(parent)
{
setWindowTitle(tr("MDI"));

workspace = new QWorkspace;

setCentralWidget(workspace);

connect(workspace, SIGNAL(windowActivated(QWidget *)),

this, SLOT(enableActions()));

mapper = new QSignalMapper(this);

connect(mapper, SIGNAL(mapped(QWidget*)),

workspace, SLOT(setActiveWindow(QWidget*)));

CHAPTER 4 ■ THE MAIN WINDOW 105

createActions();
createMenus();
createToolbars();
statusBar()->showMessage(tr("Done"));

enableActions();

}

Next, a signal mapping object called QSignalMapper is created and connected. A signal
mapper is used to tie the source of the signal to an argument of another signal. In this exam-

ple, the action of the menu item corresponding to each window in the Window menu is tied

to the actual document window. The actions are in turn connected to mapper. When the

triggered signal is emitted by the action, the sending action has been associated with the

QWidget* of the corresponding document window. This pointer is used as the argument in

the mapped(QWidget*) signal emitted by the signal mapping object.

After the signal mapping object has been set up, the actions, menus, and toolbars are set

up just as in the SDI application. The very last line of the constructor then ensures that the

actions are properly enabled.

Managing Actions

When it comes to creating the actions of the main window, the process is fairly similar to that

used for the SDI application. The major differences are listed here:

• The document windows are closed by removing them from the workspace, not by clos-

ing the main window containing the document.

• The actions for the Window menu include tile window, cascade window, next window,

and previous window.

• The actions that are connected directly to the document in the SDI application are con-

nected to the main window in the MDI application.

Listing 4-9 shows parts of the createActions method. First, you can see that closeAction
is connected to closeActiveWindow() of workspace. Then you can see one of the Window menu

items: tileAction. It is connected to the corresponding slot of workspace and causes the work-

space to tile all the contained documents so that all can be seen at once. The other actions for

arranging the document windows are cascade windows, next window, and previous window.

They are set up in the same way as the tile action: simply connect the action’s triggered signal

to the appropriate slot of the workspace. The next action is the separatorAction, which acts as

a separator. Why it is created here will become clear soon. All you need to know now is that it

is used to make the Window menu look as expected.

Listing 4-9. Creating actions for the MDI application

void MdiWindow::createActions()
{
...
closeAction = new QAction(tr("&Close"), this);
closeAction->setShortcut(tr("Ctrl+W"));

CHAPTER 4 ■ THE MAIN WINDOW106

closeAction->setStatusTip(tr("Close this document"));
connect(closeAction, SIGNAL(triggered()), workspace, SLOT(closeActiveWindow()));

...
tileAction = new QAction(tr("&Tile"), this);
tileAction->setStatusTip(tr("Tile windows"));
connect(tileAction, SIGNAL(triggered()), workspace, SLOT(tile()));

...
separatorAction = new QAction(this);
separatorAction->setSeparator(true);

...
}

It is important to ensure that only the available actions are enabled, which prevents con-

fusion for the user by showing available menu items and toolbar buttons for tasks that aren’t

valid in the application’s current state. For instance, you can’t paste something when you don’t

have a document open—that makes no sense. Thus, the pasteAction action must be disabled

whenever you have no active document.

In Listing 4-10, the method enableActions() is shown alongside the helper method

activeDocument(). The latter takes the QWidget* return value from QWorkspace::activeWindow
and casts it into the handier DocumentWindow* using qobject_cast. The qobject_cast function

uses the type information available for all QObjects and descending classes to provide type-

safe casting. If the requested cast can’t be made, 0 is returned.

The activeDocument method returns NULL (or 0) if there is no active window or if the active

window is not the DocumentWindow type. It is used in the enableActions method. Two Boolean

values are used to make the code easier to read: hasDocuments and hasSelection. If the work-

space has an active document of the right type, most items are enabled, and the separatorAction
is visible. The copy-and-cut actions require not only a document but also a valid selection, so

they are enabled only if hasSelection is true.

Listing 4-10. Enabling and disabling actions

DocumentWindow *MdiWindow::activeDocument()
{
return qobject_cast<DocumentWindow*>(workspace->activeWindow());

}

void MdiWindow::enableActions()
{
bool hasDocuments = (activeDocument() != 0);

closeAction->setEnabled(hasDocuments);
pasteAction->setEnabled(hasDocuments);
tileAction->setEnabled(hasDocuments);
cascadeAction->setEnabled(hasDocuments);
nextAction->setEnabled(hasDocuments);
previousAction->setEnabled(hasDocuments);
separatorAction->setVisible(hasDocuments);

CHAPTER 4 ■ THE MAIN WINDOW 107

bool hasSelection = hasDocuments && activeDocument()->textCursor().hasSelection();

cutAction->setEnabled(hasSelection);
copyAction->setEnabled(hasSelection);

}

The helper function activeDocument is used in several places. One example passes the sig-

nals from the main window to the actual document window. The functions for doing this are

shown in Listing 4-11. All QActions such as menu items and toolbar buttons must be passed

through the main window like this when building an MDI-based application.

Listing 4-11. Passing signals from the main window to the document widget

void MdiWindow::editCut()
{
activeDocument()->cut();

}

void MdiWindow::editCopy()
{
activeDocument()->copy();

}

void MdiWindow::editPaste()
{
activeDocument()->paste();

}

Window Menu

Closely related to enabling and disabling actions is the functionality to handle the Window

menu. The Window menu (refer to Figure 4-4) enables the user to arrange document windows

and switch between different documents.

Listing 4-12 shows how menus are created. All menus except the Window menu are created

by putting the actions in them, just as in the SDI application. The Window menu is different

because it changes as documents are opened and closed over time. Since you need to be able

to alter it, a pointer to it—called windowMenu—is kept in the class. Instead of adding actions

to the menu, now the signal aboutToShow() from the menu is connected to the custom slot

updateWindowList() that populates the menu. The aboutToShow signal is emitted just before

the menu is shown to the user, so the menu always has valid contents.

Listing 4-12. Creating the Window menu

void MdiWindow::createMenus()
{
QMenu *menu;

CHAPTER 4 ■ THE MAIN WINDOW108

menu = menuBar()->addMenu(tr("&File"));
menu->addAction(newAction);
menu->addAction(closeAction);
menu->addSeparator();
menu->addAction(exitAction);

...
windowMenu = menuBar()->addMenu(tr("&Window"));
connect(windowMenu, SIGNAL(aboutToShow()), this, SLOT(updateWindowList()));

...
}

The updateWindowList slot is shown in Listing 4-13. In the slot, the menu is cleared before

the predefined actions are added. After that, each window is added as an action, and the first

nine windows are prefixed by a number that acts as a shortcut if keyboard navigation is used

(the user has pressed Alt+W to reach the Window menu). A Window menu with more than

nine documents open is shown in Figure 4-5.

Listing 4-13. Updating the Window menu

void MdiWindow::updateWindowList()
{
windowMenu->clear();

windowMenu->addAction(tileAction);
windowMenu->addAction(cascadeAction);
windowMenu->addSeparator();
windowMenu->addAction(nextAction);
windowMenu->addAction(previousAction);
windowMenu->addAction(separatorAction);

int i=1;
foreach(QWidget *w, workspace->windowList())
{
QString text;
if(i<10)
text = QString("&%1 %2").arg(i++).arg(w->windowTitle());

else
text = w->windowTitle();

QAction *action = windowMenu->addAction(text);
action->setCheckable(true);
action->setChecked(w == activeDocument());
connect(action, SIGNAL(triggered()), mapper, SLOT(map()));
mapper->setMapping(action, w);

}
}

CHAPTER 4 ■ THE MAIN WINDOW 109

Figure 4-5. Window menu with more than nine open documents

In the foreach loop where the windows are listed, each window is represented by a

QAction. These actions are created from a QString and belong to the windowMenu object, which

means that the call to clear() first in the slot deletes them properly. The triggered signal

from each action is connected to the map() slot of the signal mapping object. The call to

setMapping(QObject*, QWidget*) then associates the emitting action with the correct

document window. As you remember, the mapped signal from the signal mapping object is

connected to the setActiveWindow slot of workspace. The signal mapping object makes sure

that the right QWidget* is sent as an argument, with the mapped signal depending on the

source of the original signal connected to map.

If there were no document windows to add to the list, the separatorAction would be left

dangling as a separator with no items under it—which is why it’s hidden instead of disabled in

the enableActions slot.

Creating and Closing Documents

The difference between an SDI application and an MDI application is the way the documents

are handled. This difference shows clearly in the methods for creating and closing new

documents.

Starting with the fileNew() slot of the main window shown in Listing 4-14, you can see

that the trick is to create a new document window instead of a new main window. As a new

window is created, some connections need to be taken care of as well. As soon as the

copyAvailable(bool) signal is emitted, the currently active document has lost the selection

or has a new selection. This has to be reflected by the copy-and-cut actions and it is what the

two connect calls do.

When another document is activated, the status enabled by copy-and-cut is managed in

the enableActions() slot.

CHAPTER 4 ■ THE MAIN WINDOW110

Listing 4-14. Creating a new document

void MdiWindow::fileNew()
{

DocumentWindow *document = new DocumentWindow;
workspace->addWindow(document);

connect(document, SIGNAL(copyAvailable(bool)),
cutAction, SLOT(setEnabled(bool)));

connect(document, SIGNAL(copyAvailable(bool)),
copyAction, SLOT(setEnabled(bool)));

document->show();
}

When the user tries to close the main window, all the documents must be closed. If any of

the documents has unsaved changes, the DocumentWindow class takes care of asking the user

whether it is okay to close (and canceling the event if not). The closeEvent of the main window

attempts to close all document windows using the closeAllWindows() method of QWorkspace.

Before closing the main window, it checks to see whether any document was left open. If so,

the close event is canceled because the user has chosen to keep a document. You can see the

source code for the main window close event in Listing 4-15.

Listing 4-15. Closing all documents and the main window

void MdiWindow::closeEvent(QCloseEvent *event)
{
workspace->closeAllWindows();

if(activeDocument())
event->ignore();

}

Building the Application

Similar to the SDI application procedure, you need a trivial main function to get things

started. In this case, all the function needs to do is initialize the QApplication object and then

create and show an MdiWindow object.

Running qmake -project, followed by qmake and make, should compile and link the appli-

cation for you.

Comparing Single and Multiple Document Interfaces

If you compare the single and multiple document interface approaches, you’ll quickly notice

several important differences. The most important difference to the user is that SDI applications

generally match the average user’s expectations. It is quite easy to lose a document in an MDI

application—at least as soon as you maximize one document. Using SDI means that all docu-

ments appear in the task bar, and each window always corresponds to one document.

CHAPTER 4 ■ THE MAIN WINDOW 111

From a software development viewpoint, the SDI application is simpler. Testing one win-

dow is enough because each window handles only one document. The MDI approach has one

advantage from a development viewpoint: the document is clearly separated from the main

window. This is possible to achieve in the SDI case as well, but it requires more discipline. You

must never add functionality that affects the document in the main window; it goes in the

document widget class instead.

The MDI approach has another advantage: it’s possible to have several types of document

windows while still keeping the feeling of using a single application. This might be an unusual

requirement, but sometimes it is useful.

Because both SDI and MDI are fairly easy to implement using Qt, and both approaches

are fairly common, the final decision is up to you. Remember to evaluate the development

effort needed and see how your users will use the application; then choose what suits your

project best.

Application Resources
In the code for creating actions, you might have noticed how the icons were created. The code

looked something like this: QIcon(":/images/new.png"). Looking at the constructor for QIcon,

you can see that the only constructor taking a QString as an argument expects a file name,

which is what:/images/new.png is.

The colon (:) prefix informs the Qt file-handling methods that the file in question is to be

fetched from an application resource, which is a file embedded within the application when it

is built. Because it is not an external file, you do not have to worry about where in the file sys-

tem it is located. As you can see, you can still refer to files using paths and directories within

the resources. A resource file contains a small file system of its own.

Resource File

So, you access files from application resources using the : prefix. But how do you put the files

in a resource? The key lies in the Qt resource files with the qrc file name extension. The previ-

ous SDI and MDI applications used the four icons shown in Figure 4-6. The image files are

located in a directory called images inside the project directory.

Figure 4-6. The four icons used in the SDI and MDI applications

The XML-based Qt resource file for the images is shown in Listing 4-16. This is a file that

you create to tell Qt which files to embed as resources.

CHAPTER 4 ■ THE MAIN WINDOW112

■Tip You can create resource files from within Designer. Bring up the Resource Editor from the Tools menu

and start adding files.

The DOCTYPE, RCC, and qresource tags are all required. Each file to be included is then listed

in a file tag. In the file shown in Listing 4-16, the file tag is used in its simplest form without

any attributes.

Listing 4-16. Qt resource file for the SDI and MDI applications

<!DOCTYPE RCC><RCC version="1.0">
<qresource>

<file>images/new.png</file>
<file>images/cut.png</file>
<file>images/copy.png</file>
<file>images/paste.png</file>

</qresource>
</RCC>

If you want to refer to a resource file by a name other than the file used to build the

resource, you can use the alias attribute. Doing so can be handy if you use different resources

for different platforms. By aliasing the file names, you can refer to a single file name in your

application and still put different files into the resources, depending on the target platform.

Listing 4-17 shows how the alias attribute is used to change the name of a file or simply to

change the location within the resource file.

Listing 4-17. Using alias to change the resource file name

<file alias="other-new.png">images/new.png</file>
<file alias="new.png">images/new.png</file>

If you want to change the location of several files in a resource file, you can use the prefix
attribute of the qresource tag. It can be used to group the files of a resource file into virtual

directories. Listing 4-18 shows how multiple qresource tags are used to divide the images into

the file and edit directories. For example, the new.png file can be accessed as :/file/images/
new.png in the resulting application.

Listing 4-18. Using prefix to change the resource file location

<qresource prefix="/file">
<file>images/new.png</file>

</qresource>
<qresource prefix="/edit">

<file>images/cut.png</file>
<file>images/copy.png</file>
<file>images/paste.png</file>

</qresource>

CHAPTER 4 ■ THE MAIN WINDOW 113

Project File

Before you can access the resources from your application, you have to tell Qt which resource

files you need. There is nothing that limits the number of resource files—you can have one,

several, or none.

Resource files are compiled into a C++ source file using the resource compiler rcc. This is

handled by QMake just like the moc and the uic. Simply add a line reading RESOURCES +=
filename.qrc to your project file and then rebuild.

The resulting file is named qrc_filename.cpp, so foo.qrc generates qrc_foo.cpp, which is

compiled and linked into the application like any other C++ source file. It results in the files

from the resource file being added to a virtual file tree that is used by Qt when it encounters

file names starting with :.

Application Icon

Up until now, all the applications you have seen have used the standard Qt icon for all win-

dows. Instead, you might want to show your own icon in the title bar of the windows of your

application. You can do this by setting a window icon for all top-level windows and widgets

with the method setWindowIcon. For example, in the SDI and MDI applications, adding a call

to setWindowIcon(QIcon(":/images/logo.png")) in the constructor of each main windows

does the trick.

This process ensures that the right icon is shown for all the windows of the running appli-

cation. If you want to change the icon of the application executable, the application icon, you

need to treat each platform differently.

■Caution You need to recognize the difference between the application icon and the windows icon.

They can be the same, but are not required to be the same.

Windows

Executable files on Windows systems usually have an application icon. The icon is an image

of the ico file format. You can create ico files using a number of free tools such as The Gimp

(http://www.gimp.org) or png2ico (http://www.winterdrache.de/freeware/png2ico/index.
html). You can also use Visual Studio from Microsoft to create ico files.

After you create an ico file, you must put it in a Windows-specific resource file using the

following line:

IDI_ICON1 ICON DISCARDABLE "filename.ico"

The file name part of the line is the file name of your icon. Save the Windows resource file

as filename.rc where filename is the name of the resource file (it can be different from the

icon). Finally, add a line reading RC_FILE = filename.rc to your QMake project file.

CHAPTER 4 ■ THE MAIN WINDOW114

Mac OS X

Executables usually have an application icon on Mac OS X systems. The file format used for

the icon is icns. You can easily create icns files using freeware tools such as Iconverter. You

can also use Apple’s Icon Composer that ships with OS X for this task.

Now all you have to do to apply the icon to your executable is to add the line ICON =
filename.icns to your QMake project file.

Unix Desktops

In a Unix environment, the application’s executable does not have an icon (the concept is

unknown on the platform). However, modern Unix/Linux desktops use desktop entry files

specified by the freedesktop.org organization. It might seem nice and structured, but the

problem is that different distributions use different file locations for storing the icons. (This

topic is covered in more detail in Chapter 15.)

Dockable Widgets
Although the sample SDI and MDI applications used only one document window, it can

sometimes be useful to show other aspects of the document. At other times, toolbars are

too limited to show the range of tools that you need to make available. This is where the

QDockWidget enters the picture.

Figure 4-7 shows that the dock widgets can appear around the central widget but inside

the toolbars. The figure shows where toolbars and dock widgets can be placed. If they do not

occupy a space, the central widget stretches to fill as much area as possible.

Figure 4-7. Each main window has a central widget surrounded by dockable widgets and
toolbars.

CHAPTER 4 ■ THE MAIN WINDOW 115

■Note By the way, did you know that the toolbars can be moved around and hidden? Try building the

application described as follows and then right-click on one of the toolbars to hide it. Also try to drag the

handle of the toolbar to move it around.

Dock widgets can also be shown, hidden, and moved around to stick to different parts

of the main window. In addition, they can be detached and moved around outside the main

window. (A dock widget is an ordinary widget placed inside a QDockWidget.) The QDockWidget
object is then added to the main window, and everything works fine. Figure 4-8 shows a num-

ber of ways to show docks: docked, floating, and tabbed.

Figure 4-8. Docks can be shown in many different ways.

Using the SDI application as a base, try adding a dock widget. It will listen to the

contentsChange(int, int, int) signal from the QTextDocument available through the

QTextEdit::document() method. The signal is emitted as soon as the text document is changed

and tells you where the change took place, how many characters were removed, and how

many were added. A new widget called InfoWidget will be created that listens to the signal and

displays the information from the latest emitted signal.

Listing 4-19 shows the class declaration of InfoWidget. As you can see, the widget is based

on QLabel and consists of a constructor and a slot.

Listing 4-19. InfoWidget class

class InfoWidget : public QLabel
{
Q_OBJECT

public:
InfoWidget(QWidget *parent=0);

public slots:
void documentChanged(int position, int charsRemoved, int charsAdded);

};

CHAPTER 4 ■ THE MAIN WINDOW116

Now you reach the constructor of InfoWidget. The source code is shown in Listing 4-20.

The code sets up the label to show the text both horizontally and vertically centered using

setAlignment(Qt::Alignment). Make sure that the text is wrapped into multiple lines, if

needed, by setting the wordWrap property to true. Finally, the initial text is set to Ready.

Listing 4-20. Constructor of the InfoWidget class

InfoWidget::InfoWidget(QWidget *parent) : QLabel(parent)
{
setAlignment(Qt::AlignCenter);
setWordWrap(true);

setText(tr("Ready"));
}

The interesting part of the InfoWidget class is the implementation of the slot. The slots

arguments are three integers named position, charsRemoved, and charsAdded, which is a per-

fect match of the QTextDocument::contentsChange signal. The code shown in Listing 4-21 takes

charsRemoved and charsAdded and then builds a new text for the widget each time the signal is

emitted. The tr(QString,QString,int) version of the tr() method is used to allow the transla-

tor to define plural forms, which means that the charsRemoved and charsAdded values are used

to pick a translation. It doesn’t affect the English version because both "1 removed" and

"10 removed" are valid texts. (For other languages, this is not always true. You’ll learn more

in Chapter 10.)

Listing 4-21. The slot updates the text according to the arguments.

void InfoWidget::documentChanged(int position, int charsRemoved, int charsAdded)
{
QString text;

if(charsRemoved)
text = tr("%1 removed", "", charsRemoved).arg(charsRemoved);

if(charsRemoved && charsAdded)
text += tr(", ");

if(charsAdded)
text += tr("%1 added", "", charsAdded).arg(charsAdded);

setText(text);
}

If you thought creating the InfoWidget was simple, you’ll find that using it is even easier.

The changes affect the SdiWindow class, in which a new method called createDocks() is added

(see Listing 4-22). The steps for creating a dock widget are to create a new QDockWidget, create

and put your widget—the InfoWidget—in the dock widget, and finally call addDockWidget(Qt::
DockWidgetArea, QDockWidget*) to add the dock widget to the main window. When adding it

to the main window, you must also specify where you want it to appear: Left, Right, Top, or

CHAPTER 4 ■ THE MAIN WINDOW 117

Bottom. Using the allowedAreas property of the QDockWidget, you can control where a dock

can be added. The default value of this property is AllDockWidgetAreas, which gives the user

full control.

Before the createDocks method is ready, the signal from the text document to the

InfoWidget is connected.

Listing 4-22. Creating the dock widget

void SdiWindow::createDocks()
{
dock = new QDockWidget(tr("Information"), this);
InfoWidget *info = new InfoWidget(dock);
dock->setWidget(info);
addDockWidget(Qt::LeftDockWidgetArea, dock);

connect(docWidget->document(), SIGNAL(contentsChange(int, int, int)),
info, SLOT(documentChanged(int, int, int)));

}

That’s all that it takes to enable the dock widget, but because the user can close it you

must also supply a way for the user to show it. This is usually handled in the View menu (or

possibly in the Tools or Window menu, depending on the application). Adding a View menu

and making it possible to show and hide the dock widget from there is very easy. Because this

is a common task, the QDockWidget class already provides QAction for this. The action is avail-

able through the toggleViewAction() method. The changes needed to the createMenus
method of SdiWindow are shown in Listing 4-23.

Listing 4-23. Creating a new View menu for the main window

void SdiWindow::createMenus()
{
QMenu *menu;

menu = menuBar()->addMenu(tr("&File"));
menu->addAction(newAction);
menu->addAction(closeAction);
menu->addSeparator();
menu->addAction(exitAction);

menu = menuBar()->addMenu(tr("&Edit"));
menu->addAction(cutAction);
menu->addAction(copyAction);
menu->addAction(pasteAction);

menu = menuBar()->addMenu(tr("&View"));

menu->addAction(dock->toggleViewAction());

CHAPTER 4 ■ THE MAIN WINDOW118

menu = menuBar()->addMenu(tr("&Help"));
menu->addAction(aboutAction);
menu->addAction(aboutQtAction);

}

Before you can build the modified SDI application you must be sure to add the header

and source of InfoWidget to the project file. Then run qmake and make to build the executable.

Figure 4-9 shows the application running with two documents: one document has a floating

information dock; the other document is docked to the main window.

Figure 4-9. The SDI application with dock widgets

Summary
Some applications are best implemented as a single dialog, but most are based around a doc-

ument. For these applications, a main window is the best class to base the application’s

window around because it offers a view of the document along toolbars, menus, status bars,

and dockable widgets.

Using Qt’s QMainWindow class, you can choose between the established single document

and multiple document interfaces, or you can “roll your own” custom interface. All you have

to do is provide a central widget to the main window. For SDI applications, the central widget

is your document widget; for MDI applications, it is a QWorkspace widget in which you add

your document widgets.

The development approach is the same with dialogs, SDI applications, and MDI applica-

tions. Set up the user interface and connect all interesting signals emitted from user actions to

slots that perform the actual work.

The signals can come from menu items, keyboard shortcuts, toolbar buttons, or any other

conceivable source. To manage it you can use QAction objects, which enable you to place the

same action in different places and handle all sources using just one single signal to slot

connection.

CHAPTER 4 ■ THE MAIN WINDOW 119

When providing toolbars (and also menus), it is nice to be able to add icons to each

action. To avoid having to ship your application executable with a collection of icon image

files, you can use resources. By building an XML-based qrc file and adding a RESOURCES line to

your project file, you can embed files in your executable. At run-time, you can access the files

by adding the : prefix to the file name.

Providing icons for the application’s executable is one of the few platform-dependent

tasks you have to manage when using Qt. For Windows and Mac OS X, there are standardized

ways to add icons to an executable; on Unix, you still have to target your install package to a

specific distribution. Much work is being done here so I am sure that there will be a standard

way available soon.

This chapter showed you what is possible to do by using the framework available for main

windows in Qt. You will use the QMainWindow class in applications later on in this book, so there

is more to come!

CHAPTER 4 ■ THE MAIN WINDOW120

The Qt Building Blocks

This part looks at the key parts of Qt in depth. The classes and techniques presented here

enable you to create and modify the Qt building blocks and create custom components for

your own applications.

P A R T 2

The Model-View Framework

Models and views are design patterns that frequently occur in software of all types. By sepa-

rating the data into a model and rendering that model to the users through views, a robust

and reusable design is created.

Models are used to describe the structures shown in Figure 5-1: lists, tables, and trees.

A list is a one-dimensional vector of data. A table is a list, but with multiple columns—a two-

dimensional data structure. A tree is simply a table, but with yet another dimension because

data might be hidden inside other data.

When you think about how to build applications, you will find that these structures can

be used in almost all cases—so you can build a model the represents your data structure in a

good way. It is also important to remember that you need not change the way in which you

actually store your data—you can provide a model class that represents your data and then

maps each item in the modeled data to an actual item in your application’s data structures.

All these structures can be shown in many different ways. For example, a list can be

shown as a list (which shows all items at once) or as a combo box (which shows only the cur-

rent item). Each value can also be shown in different ways—for example, as text, values, or

even images. This is where the view enters the picture—its task is to show the data from the

model to the user.

Figure 5-1. A list, a table, and a tree

In the classic model-view-controller (MVC) design pattern (see Figure 5-2), the model

keeps the data, and the view renders it to a display unit. When the user wants to edit the data,

a controller class handles all modifications of the data.

Qt approached this pattern in a slightly different way. Instead of having a controller class,

the view handles data updating by using a delegate class (see Figure 5-2). The delegate has two
123

C H A P T E R 5

tasks: to help the view render each value and to help the view when the user wants to edit the

value. Comparing the classic MVC pattern with Qt’s approach, you can say that the controller

and view have been merged, but the view uses delegates to handle parts of the controller’s job.

Figure 5-2. MVC compared with model-view and delegates

Showing Data by Using Views
Qt offers three different default views: a tree, a list, and a table. In the Chapter 2 phone book

example you encountered the list view by way of the QListWidget. The QListWidget class is a

specialized version of QListView, but QListWidget contains the data shown in the list, whereas

QListView accesses its data from a model. The QListWidget is sometimes referred to as a con-

venience class because it is less flexible, but is more convenient in less complex situations

when compared with using the QListView and a model.

In the same way that the list widget relates to the list view, the QTreeWidget-QTreeView and

QTableWidget-QTableView pairs relate.

Let’s start with an example showing how to create a model, populate it, and show it using

all three views. To keep matters simple, it is created from a single main function.

The first thing to do is to create the widgets. In Listing 5-1, you can see that the QTreeView,

QListView, and QTableView are created and put into a QSplitter. A splitter is a widget that puts

movable bars between its children. This means that the user can divide the space between the

tree, list, and table freely. You can see the splitter in action in Figure 5-3.

Listing 5-1. Creating the views and putting them in a splitter

QTreeView *tree = new QTreeView;
QListView *list = new QListView;
QTableView *table = new QTableView;

QSplitter splitter;
splitter.addWidget(tree);
splitter.addWidget(list);
splitter.addWidget(table);

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK124

Figure 5-3. The tree, list, and table can be resized by using the splitter. The top window is the
default starting state, whereas the splitter bars have been moved in the lower window.

When the widgets are created, you have to create and populate a model. To get started,

the QStandardItemModel is used, which is one of the standard models shipped with Qt.

Listing 5-2 shows how the model is populated. The population process consists of three

loops: rows (r), columns (c), and items (i). The loops create five rows of two columns, in which

the first column has three items as children.

Listing 5-2. Creating and populating the model

QStandardItemModel model(5, 2);
for(int r=0; r<5; r++)
for(int c=0; c<2; c++)
{
QStandardItem *item =
new QStandardItem(QString("Row:%1, Column:%2").arg(r).arg(c));

if(c == 0)
for(int i=0; i<3; i++)
item->appendRow(new QStandardItem(QString("Item %1").arg(i)));

model.setItem(r, c, item);
}

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK 125

Let’s have a close look at how the population is made. First, QStandardItemModel is cre-

ated, and the constructor is told to make it five rows by two columns. Then a pair of loops for

the rows and columns is run where a QStandardItem is created for each position. This item is

put in the model by using the setItem(int, int, QStandardItem*) method. For all items in

the first column, where c equals 0, three new QStandardItem objects are created and put as

children to the item using the appendRow(QStandardItem*) method. Figure 5-4 shows how the

model looks in a tree view. The items for each column and row position are shown as a table.

In the table, the second row has been expanded, revealing the three child items.

Figure 5-4. The model shown in a tree view, with the second row opened to show the child items

Before the small example application shows the model, you must tell the views what

model to use by using the setModel(QAbstractItemModel*) method, as shown in Listing 5-3.

Listing 5-3. Setting the model for all views

tree->setModel(&model);
list->setModel(&model);
table->setModel(&model);

Although setting the model is all that’s required to get things up and running, I want to

demonstrate the differences between the models using the selection model, so there is one

more step to perform before you continue.

The selection model manages selections in a model. Each view has a selection model of

its own, but it is possible to assign a model using the

setSelectionModel(QItemSelectionModel*) method. By setting the tree’s model in the list and

the table, as shown in Listing 5-4, selections will be shared. This means that if you select some-

thing in one view, the same item will be selected in the other two as well.

Listing 5-4. Sharing the selection model

list->setSelectionModel(tree->selectionModel());
table->setSelectionModel(tree->selectionModel());

Wrapping all this in a main function along with a QApplication object gives you a working

application that can be built with QMake. Figures 5-3 and 5-4 show the running application.

There are a number of things for you to try out in the application that can teach you some-

thing about how the models and views work in Qt:

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK126

• Try picking one item at a time in any one of the views and study where the selection is

shown in the other views. Notice that the list shows only the first column, and the child

items only affect the tree view.

• Try picking items with the Ctrl or Shift keys pressed (and then try it with both).

• Try picking a row from each view. When you select a row in the list, only the first

column is selected.

• Try picking columns in the table (click the header) and see what happens in the other

views. Make sure to pick the second column and watch the list view.

• Double-click any item and alter the text. QStandardItem objects are by default editable.

• Don’t forget to experiment with the spacer bars.

Providing Headers

The views and the standard model are flexible. You might not like some details in the applica-

tion, so let’s start looking at these details. You can start by setting some descriptive text in the

headers: insert QStandardItems into the model by using setHorizontalHeaderItem(int,
QStandardItem*) and setVerticalHeaderItem(int, QStandardItem*). Listing 5-5 shows the

lines added to the main function to add horizontal headers.

Listing 5-5. Adding headers to the standard item model

model.setHorizontalHeaderItem(0, new QStandardItem("Name"));
model.setHorizontalHeaderItem(1, new QStandardItem("Phone number"));

Limiting Editing

Then there is the issue of the items being editable by the user. The editable property is con-

trolled at the item level. By using the setEditable(bool) method on each child item shown in

the tree view, you make them read-only (see the inner loop for it in Listing 5-6).

Listing 5-6. Creating read-only items in a standard item model

if(c == 0)
for(int i=0; i<3; i++)
{
QStandardItem *child = new QStandardItem(QString("Item %1").arg(i));
child->setEditable(false);
item->appendRow(child);

}

Limiting Selection Behavior

Sometimes it is helpful to limit the ways in which selections can be made. For example, you

might want to limit the user to selecting only one item at a time (or to select only entire rows).

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK 127

This limitation is controlled with the selectionBehavior and selectionMode properties of each

view. Because it is controlled on a view level, it is important to remember that as soon as the

selection model is shared between two views, both views need to have their selectionBehavior
and selectionMode properties set up properly.

The selection behavior can be set to SelectItems, SelectRows, or SelectColumns (which

limits the selections to individual items, entire rows, or entire columns, respectively). The

property does not limit how many items, rows, or columns the user can select; it is controlled

with the selectionMode property. The selection mode can be set to the following values:

• NoSelection: The user cannot make selections in the view.

• SingleSelection: The user can select a single item, row, or column in the view.

• ContiguousSelection: The user can select multiple items, rows, or columns in the view.

The selection area must be in one piece, next to each other without any gaps.

• ExtendedSelection: The user can select multiple items, rows, or columns in the view.

The selection areas are independent and can have gaps. The user can choose items by

clicking and dragging, selecting items while pressing the Shift or Ctrl keys.

• MultiSelection: Equivalent to ExtendedSelection from the programmer’s viewpoint,

the selection areas are independent and can have gaps. The user toggles the selected

state by clicking the items. There is no need to use the Shift or Ctrl keys.

In Listing 5-7, the table view is configured to allow only one entire row to be selected. Try

selecting multiple items and single items by using the tree and list views.

Listing 5-7. Changing the selection behavior

table->setSelectionBehavior(QAbstractItemView::SelectRows);
table->setSelectionMode(QAbstractItemView::SingleSelection);

A Single Column List

For the really simple lists, Qt offers the QStringListModel. Because lists of items are often kept

in QStringList objects in Qt applications, it’s nice to have a model that takes a string list and

works with all views.

Listing 5-8 shows how the QStringList object list is created and populated. A

QStringListModel is created, and the list is set with setStringList(const QStringList&).

Finally, the list is used in the list view.

Listing 5-8. Using the QStringListModel to populate a QListView

QListView list;
QStringListModel model;
QStringList strings;

strings << "Huey" << "Dewey" << "Louie";

model.setStringList(strings);
list.setModel(&model);

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK128

Creating Custom Views
Being able to show models through existing views can be useful, but sometimes you need to

be able to customize the views to your own needs. There are two approaches to this: either

build a delegate from the QAbstractItemDelegate class or create a completely custom view

from the QAbstractItemView class.

Creating a delegate is the easiest approach, so start there. The views shipped with Qt all

use delegates to draw and edit its items. By creating a delegate for drawing a row or a column—

or all items in a view—you can usually get the look and feel that you need.

A Delegate for Drawing

Start by creating a delegate to show integer values as a bar. The delegate can be seen in action

in the table view shown in Figure 5-5. The bars range from 0–100, where 0 is just a thin line in

blue, and 100 is a full green bar. If the value exceeds 100, the bar turns red to indicate that it is

out of range.

Figure 5-5. The BarDelegate class is used to show integer values as bars.

Because it is a delegate for showing bars, the new class is called BarDelegate and is built

on the QAbstractItemDelegate class. The abstract item delegate class is the base class of all

delegates. The class declaration is shown in Listing 5-9. The code can be considered a boiler-

plate for all delegates managing the showing of values because both methods to override are

clearly stated in the documentation for the QAbstractItemDelegate base class. The purpose of

the method is easy to guess from its name. The paint(QPainter*, const QStyleOptionViewItem&,
const QModelIndex&) method draws the item, whereas sizeHint(const QStyleOptionViewItem&,
const QmodelIndex&) indicates how large the each item wants to be.

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK 129

Listing 5-9. The class declaration of the custom delegate

class BarDelegate : public QAbstractItemDelegate
{
public:

BarDelegate(QObject *parent = 0);

void paint(QPainter *painter,
const QStyleOptionViewItem &option,
const QModelIndex &index) const;

QSize sizeHint(const QStyleOptionViewItem &option,
const QModelIndex &index) const;

};

The sizeHint method is shown in Listing 5-10. It simply returns a size that is large enough

yet doesn’t exceed the size limitations. Remember that this is just a hint; the real size can be

changed by Qt for layout issues or by the user by adjusting the size of rows and columns.

Listing 5-10. Returning a size hint for the custom delegate

QSize BarDelegate::sizeHint(const QStyleOptionViewItem &option,
const QModelIndex &index) const

{
return QSize(45, 15);

}

The sizeHint method is very straightforward; the paint method is more interesting (see

Listing 5-11). The first if statement checks whether the item is selected by testing the state of

the style option. (Style options are used to control the appearance of everything in Qt applica-

tions.) The styling system responsible for making Qt applications look like native applications

uses style option objects for palettes, areas, visual states, and everything else that affects the

appearance of objects on the screen. There are numerous style object classes—almost one for

every graphical element. All inherit the QStyleOption class.

Listing 5-11. Painting the value for the custom delegate

void BarDelegate::paint(QPainter *painter,
const QStyleOptionViewItem &option, const QModelIndex &index) const

{
if(option.state & QStyle::State_Selected)

painter->fillRect(option.rect, option.palette.highlight());

int value = index.model()->data(index, Qt::DisplayRole).toInt();

double factor = (double)value/100.0;

painter->save();

if(factor > 1)
{

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK130

painter->setBrush(Qt::red);
factor = 1;

}
else
painter->setBrush(QColor(0, (int)(factor*255), 255-(int)(factor*255)));

painter->setPen(Qt::black);
painter->drawRect(option.rect.x()+2, option.rect.y()+2,
(int)(factor*(option.rect.width()-5)), option.rect.height()-5);

painter->restore();
}

If the style option indicates that the item is selected, the background is filled with the

platform’s selected background color that you also get from the style option. For drawing, use

the QPainter object and the fillRect(const QRect&, const QBrush&) method that fills a given

rectangle.

The next line picks the value from the model and converts it to an integer. The code

requests the value with the DisplayRole for the index. Each model item can have data for sev-

eral different roles, but the value to be shown has the DisplayRole. The value is returned as a

QVariant. The variant data type can hold any type of values: strings, integers, real values,

Booleans, and so on. The toInt(bool*) method attempts to convert the current value to an

integer, which is what the delegate expects.

The two lines getting the information about the item’s selection state and value are high-

lighted. These lines must always appear in some form or another in delegate painting

methods.

The value from the model is used to calculate a factor, which tells you how large a fraction

of 100 the value is. This factor is used to calculate the length of the bar and the color to fill it

with.

The next step is to save the painter’s internal state, so you can change the pen color and

brush, and then call restore() to leave the painter as you got it. (The QPainter class is dis-

cussed in more detail in Chapter 7.)

The if statement checks whether factor exceeds one and takes care of coloring the brush

used to fill the bar. If the factor is larger than one, the bar goes red; otherwise, the color is cal-

culated so that a factor close to zero gives a blue color, and a factor close to one gives a green

color. Because the factor is used to control the length of the bar, the factor is limited to one if it

is too large, which ensures that you don’t attempt to draw outside the designated rectangle.

After the brush color has been set, the pen color is set to black by using the drawRect(int,
int, int, int) method before the bar is drawn. The rect member of option tells you how

large the item is. Finally, the painter is restored to the state that was saved before the method

ends.

To test the delegate, a table view and a standard model in a main function are created. The

source code for this is shown in Listing 5-12. The model has two columns: a read-only row

with strings and one that contains the integer values.

The delegate is created and set up in the highlighted lines at the end of the listing. The

setItemDelegateForColumn(int, QAbstractItemDelegate*) delegate is assigned to the second

column. If you don’t want to customize a row, you can assign a delegate to a row by using

setItemDelegateForRow(int, QAbstractItemDelegate*) or you can assign a delegate to an

entire model by using setItemDelegate(QAbstractItemDelegate*).

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK 131

Listing 5-12. Creating and populating a model; then setting a delegate for the second column

QTableView table;

QStandardItemModel model(10, 2);
for(int r=0; r<10; ++r)
{
QStandardItem *item = new QStandardItem(QString("Row %1").arg(r+1));
item->setEditable(false);
model.setItem(r, 0, item);

model.setItem(r, 1, new QStandardItem(QString::number((r*30)%100)));
}
table.setModel(&model);

BarDelegate delegate;

table.setItemDelegateForColumn(1, &delegate);

The resulting application is shown running in Figure 5-5. The problem is that the user

can’t edit the values behind the bars because no editor is returned from the delegate’s

createEditor method.

Custom Editing

To enable the user to edit items shown using a custom delegate, you have to extend the dele-

gate class. In Listing 5-13, the lines with the new members are highlighted. They are all

concerned with providing an editing widget for the model item. Each method has a task to

take care of, according to the following list:

• createEditor(...): Creates an editor widget and applies the delegate class as an event

filter

• setEditorData(...): Initializes the editor widget with data from a given model item

• setModelData(...): Sets the value for a model item to the value from the editor widget

• updateEditorGeometry(...): Updates the geometry (that is, the location and size) or the

editing widget

Listing 5-13. The custom delegate with support for a custom editing widget

class BarDelegate : public QAbstractItemDelegate
{
public:
BarDelegate(QObject *parent = 0);

void paint(QPainter *painter,
const QStyleOptionViewItem &option,
const QModelIndex &index) const;

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK132

QSize sizeHint(const QStyleOptionViewItem &option,
const QModelIndex &index) const;

QWidget *createEditor(QWidget *parent,

const QStyleOptionViewItem &option,

const QModelIndex &index) const;

void setEditorData(QWidget *editor,

const QModelIndex &index) const;

void setModelData(QWidget *editor,

QAbstractItemModel *model,

const QModelIndex &index) const;

void updateEditorGeometry(QWidget *editor,

const QStyleOptionViewItem &option,

const QModelIndex &index) const;

};

Because the value is shown as a bar growing horizontally, a slider moving in the horizon-

tal direction as editor is used. This means that the horizontal position of the slider will

correspond to the horizontal extent of the bar, as shown in Figure 5-6.

Figure 5-6. The custom delegate shows the value as a bar and edits the value using a custom
editing widget: a slider.

Let’s look at the createEditor and updateEditorGeometry methods shown in Listing 5-14.

The member for updating the geometry is pretty easy—it just takes the rect given through

option and sets the geometry of editor accordingly.

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK 133

Listing 5-14. Creating the custom editing widget and resizing it

QWidget *BarDelegate::createEditor(QWidget *parent,
const QStyleOptionViewItem &option, const QModelIndex &index) const

{
QSlider *slider = new QSlider(parent);

slider->setAutoFillBackground(true);
slider->setOrientation(Qt::Horizontal);
slider->setRange(0, 100);
slider->installEventFilter(const_cast<BarDelegate*>(this));

return slider;
}

void BarDelegate::updateEditorGeometry(QWidget *editor,
const QStyleOptionViewItem &option, const QModelIndex &index) const

{
editor->setGeometry(option.rect);

}

■Tip Using the setGeometry(const QRect&) method to set the location and size of a widget might

seem like a good idea, but layouts are the better choice in 99 percent of the cases. It is used here because

the area showing the model item is known and has been determined directly or indirectly from a layout if

layouts have been used.

The method for creating the editor contains slightly more code, but it is not complicated.

First, a QSlider is set up to draw a background so that the model item’s value is covered by the

widget. Then the orientation and range is set before the delegate class is installed as an event

filter. The event-filtering functionality is included in the base class QAbstractItemDelegate.

■Note Event filtering is a way to have a peek at the events sent to a widget before they reach the widget.

It is discussed in more detail in Chapter 6.

Before the editing widget is ready for the user, it must get the current value from the

model. This is the responsibility of the setEditorData method. The method, shown in

Listing 5-15, gets the value from the model. The value is converted to an integer using

toInt(bool*), so non-numeric values will be converted to the value zero. Finally, the value

of the editor widget is set by using the setValue(int) method.

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK134

Listing 5-15. Initializing the editor widget according to the model value

void BarDelegate::setEditorData(QWidget *editor, const QModelIndex &index) const
{

int value = index.model()->data(index, Qt::DisplayRole).toInt();
static_cast<QSlider*>(editor)->setValue(value);

}

The editor widget can be created, placed, and sized correctly, and then get initialized with

the current value. The user can then edit the value in a meaningful way, but there is no way

for the new value to get to the model. This is the task handled by setModelData(QWidget*,
QAbstractItemModel*, const QModelIndex&). You can see the method in Listing 5-16. The code

is fairly straightforward, even if it is slightly obscured by a cast. What happens is that the value

from the editor widget is taken and used in a setData(const QModelIndex&, const QVariant&,
int) call. The affected model index, index, is passed to the setModelData method as an argu-

ment, so there are no real hurdles left.

Listing 5-16. Getting the value from the editor widget and updating the model

void BarDelegate::setModelData(QWidget *editor,
QAbstractItemModel *model, const QModelIndex &index) const

{
model->setData(index, static_cast<QSlider*>(editor)->value());

}

The resulting application shows values as bars and enables the user to edit them using a

slider. (Refer to Figure 5-6 for the running application.)

Creating Your Own Views

When you feel that you can’t get to where you want by using the available views, delegates, or

any other tricks, you face a situation in which you have to implement a view of your own.

Figure 5-7 shows a table and a custom view showing the selected item. The custom view

shows a single item at a time (or a text explaining it if more than one item is selected at a

time). It is based around a QAbstractItemView and uses a QLabel for showing the text.

Figure 5-7. The custom view in action

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK 135

When implementing a custom view, you must provide implementations of a whole bunch

of methods. Some methods are important; others just provide a valid return value. Which

methods need a complex implementation largely depends on the type of view you are imple-

menting.

In Listing 5-17, you can see the class declaration of the custom view SingleItemView. All

methods except updateText() are required because they are declared as pure abstract meth-

ods in QAbstractItemView.

■Tip A pure abstract method is a virtual method set to zero in the base class declaration. This means that

the method is not implemented and that the class can’t be instantiated. To be able to create objects of a

class inheriting the base class, you must implement the method because all methods for all objects must be

implemented.

The methods in the class declaration tell you the responsibilities of a view: showing a view

of the model, reacting to changes in the model, and acting on user actions.

Listing 5-17. The custom view with all required members

class SingleItemView : public QAbstractItemView
{
Q_OBJECT

public:
SingleItemView(QWidget *parent = 0);

QModelIndex indexAt(const QPoint &point) const;
void scrollTo(const QModelIndex &index, ScrollHint hint = EnsureVisible);
QRect visualRect(const QModelIndex &index) const;

protected:
int horizontalOffset() const;
bool isIndexHidden(const QModelIndex &index) const;
QModelIndex moveCursor(CursorAction cursorAction,

Qt::KeyboardModifiers modifiers);
void setSelection(const QRect &rect, QItemSelectionModel::SelectionFlags flags);
int verticalOffset() const;
QRegion visualRegionForSelection(const QItemSelection &selection) const;

protected slots:
void dataChanged(const QModelIndex &topLeft, const QModelIndex &bottomRight);
void selectionChanged(const QItemSelection &selected,

const QItemSelection &deselected);

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK136

private:
void updateText();

QLabel *label;
};

The constructor of SingleViewItem sets up a QLabel inside the view port of the

QAbstractItemView widget. The QAbstractItemView class inherits QAbstractScrollArea,

which is used to create widgets that might need scroll bars. The inside of that scrollable

area is the view port widget.

The source code of the constructor, which is shown in Listing 5-18, shows how to make

the label fill the view port. First, a layout is created for the view port and then the label is

added to the layout. To ensure that the label fills the available area, its size policy is set to

expand in all directions. Finally, the label is configured to show the text in the middle of the

available area before a standard text is set.

Listing 5-18. Setting up a label in the viewport of the custom view

SingleItemView::SingleItemView(QWidget *parent) : QAbstractItemView(parent)
{
QGridLayout *layout = new QGridLayout(this->viewport());
label = new QLabel();

layout->addWidget(label, 0, 0);

label->setAlignment(Qt::AlignCenter);
label->setSizePolicy(
QSizePolicy(QSizePolicy::Expanding, QSizePolicy::Expanding));

label->setText(tr("<i>No data.</i>"));
}

In the constructor, a standard text is set; in the updateText method, the actual text is set.

Listing 5-19 shows the implementation of the method. It works by looking at the number of

QModelIndex objects it gets from the selection model’s selection method. The selection
method returns indexes to all selected items in the model. If the number of selected items is

zero, the text is set to No data. When one item is selected, the value of that item is shown.

Otherwise, meaning more than one selected item, a text informing the user that only one item

can be shown is displayed.

The value of the selected item is retrieved through the model’s data method and the

currentIndex method. As long as at least one item is selected, the combination of these

methods will return the value from the current item.

Listing 5-19. Updating the text of the label

void SingleItemView::updateText()
{

switch(selectionModel()->selection().indexes().count())
{
case 0:

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK 137

label->setText(tr("<i>No data.</i>"));
break;

case 1:
label->setText(model()->data(currentIndex()).toString());
break;

default:
label->setText(tr("<i>Too many items selected.
"

"Can only show one item at a time.</i>"));
break;

}
}

Because a large part of the view’s job is to show items, the views need to have methods for

telling what is visible and where. Because the view shows only one item, you are left with an

all-or-nothing situation. The method visualRect, shown in Listing 5-20, returns a rectangle

containing a given model index. The method simply checks whether it is the visible item—if

so, the area of the entire view is returned; otherwise, an empty rectangle is returned.

There are more methods working in the same way: visualRegionForSelection,

isIndexHidden, and indexAt. All these methods check to see whether the given model

index is the one that is shown and then returns accordingly.

Listing 5-20. Determining what is visible and what is not

QRect SingleItemView::visualRect(const QModelIndex &index) const
{
if(selectionModel()->selection().indexes().count() != 1)
return QRect();

if(currentIndex() != index)
return QRect();

return rect();
}

The purpose of some methods is to return valid values to maintain a predefined interface,

which is the job of the methods shown in Listing 5-21. Because the scroll bars are left unused,

and only one item is shown at a time, these methods are left as close to empty as possible.

Listing 5-21. Returning valid responses without taking action

int SingleItemView::horizontalOffset() const
{
return horizontalScrollBar()->value();

}

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK138

int SingleItemView::verticalOffset() const
{

return verticalScrollBar()->value();
}

QModelIndex SingleItemView::moveCursor(CursorAction cursorAction,
Qt::KeyboardModifiers modifiers)

{
return currentIndex();

}

void SingleItemView::setSelection(const QRect &rect,
QItemSelectionModel::SelectionFlags flags)

{
// do nothing

}

void SingleItemView::scrollTo(const QModelIndex &index, ScrollHint hint)
{
// cannot scroll

}

Reacting to Changes

The last task of the view is to react to changes in the model and to user actions (by changing

the selection, for example). The methods dataChanged and selectionChanged react to these

events by updating the text shown using updateText. You can see the implementation of the

two methods in Listing 5-22.

Listing 5-22. Reacting to changes in the model and the selection

void SingleItemView::dataChanged(const QModelIndex &topLeft,
const QModelIndex &bottomRight)

{
updateText();

}

void SingleItemView::selectionChanged(const QItemSelection &selected,
const QItemSelection &deselected)

{
updateText();

}

Using the custom view is just as simple as using one of the views shipped with Qt. Listing

5-23 shows how it can look (populating the model has been left out). A QStandardItemModel is

used and populated using a pair of nestled for loops. As you can see, using the view and shar-

ing the selection model is very easy. (The application can be seen in Figure 5-7.)

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK 139

Listing 5-23. Using the single item view together with a table view

int main(int argc, char **argv)
{

QApplication app(argc, argv);

QTableView *table = new QTableView;
SingleItemView *selectionView = new SingleItemView;

QSplitter splitter;
splitter.addWidget(table);
splitter.addWidget(selectionView);

...
table->setModel(&model);
selectionView->setModel(&model);

selectionView->setSelectionModel(table->selectionModel());

splitter.show();

return app.exec();
}

Creating Custom Models
Until now, you have been looking at custom views and delegates. The models have all been

QStandardItemModels or QStringListModels, so one of the major points of the model-view

architecture is missed: custom models.

By being able to provide models of your own, you can transform the data structures of

your application into a model that can be shown as a table, list, tree, or any other view. By let-

ting the model transform your existing data, you don’t have to keep the data sets—one for the

internals of the application and one for showing. This brings yet another benefit: you do not

have to ensure that the two sets are synchronized.

There are four approaches to custom models:

• You can keep your application’s data in the model and access it through the model’s

predefined class interface used by the views.

• You can keep your application’s data in the model and access it through a custom class

interface implemented next to the predefined interface used by the views.

• You can keep your application’s data in an external object and let the model act as a

wrapper between your data and the class interface needed by the views.

• You can generate the data for the model on the fly and provide the results through the

class interface used by the views.

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK140

This section discusses tables and trees, as well as read-only and editable models. All

models use different approaches to keeping and providing data to the views; all views work

with the standard views as well as any custom view that you use.

A Read-Only Table Model

First, you’ll see a read-only table model that generates its data on the fly. The model class,

which is called MulModel, shows a configurable part of the multiplication table. The class dec-

laration is shown in Listing 5-24.

The class is based on the QAbstractTableModel, which is a good class to start from when

creating two-dimensional models. All models are really based on the QAbstractItemModel
class, but the abstract table model class provides stub implementations for some of the meth-

ods required. The methods of the MulModel class each has a special responsibility:

• flags: Tells the view what can be done with each item (whether it can be edited,

selected, and so on)

• data: Returns the data for a given role to the view

• headerData: Returns the data for the header to the view

• rowCount and columnCount: Return the dimensions of the model to the view

Listing 5-24. Custom model class declaration

class MulModel : public QAbstractTableModel
{
public:
MulModel(int rows, int columns, QObject *parent = 0);

Qt::ItemFlags flags(const QModelIndex &index) const;
QVariant data(const QModelIndex &index, int role = Qt::DisplayRole) const;
QVariant headerData(int section, Qt::Orientation orientation,

int role = Qt::DisplayRole) const;
int rowCount(const QModelIndex &parent = QModelIndex()) const;
int columnCount(const QModelIndex &parent = QModelIndex()) const;

private:
int m_rows, m_columns;

};

The constructor simply remembers the number of rows and columns to show and then

passes the parent on to the base class constructor. The rowCount and columnCount methods are

just as simple as the constructor because they simply return the dimensions given to the con-

structor. You can see these methods in Listing 5-25.

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK 141

Listing 5-25. Constructor, rowCount, and columnCount methods

MulModel::MulModel(int rows, int columns, QObject *parent) :
QAbstractTableModel(parent)

{
m_rows = rows;
m_columns = columns;

}

int MulModel::rowCount(const QModelIndex &parent) const
{
return m_rows;

}

int MulModel::columnCount(const QModelIndex &parent) const
{
return m_columns;

}

The data method returns data for the given role. The data is always returned as a

QVariant, meaning that it can be converted to icons, sizes, texts, and values. The roles define

what the data is used for, as summarized in the following list:

• Qt::DisplayRole: Data to show (the text)

• Qt::DecorationRole: Data used to decorate the item (the icon)

• Qt::EditRole: Data in a format that can be used with an editor

• Qt::ToolTipRole: Data to show as a tooltip (text)

• Qt::StatusTipRole: Data to show as information in the status bar (text)

• Qt::WhatsThisRole: Data to show in What’s this? information

• Qt::SizeHintRole: Size hint for the views

The data method of MulModel supports the DisplayRole and the ToolTipRole. The display

role is the value for the current multiplication; the tooltip shown is the multiplication expres-

sion itself. The source code for the method is shown in Listing 5-26.

Listing 5-26. Providing data from the custom model

QVariant MulModel::data(const QModelIndex &index, int role) const
{
switch(role)
{
case Qt::DisplayRole:
return (index.row()+1) * (index.column()+1);

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK142

case Qt::ToolTipRole:
return QString("%1 x %2").arg(index.row()+1).arg(index.column()+1);

default:
return QVariant();

}
}

The header data is returned for different roles just as for the actual item data. When

returning header data, it is usually important to pay attention to the direction (that is, whether

the requested information is for the Horizontal or Vertical headers). Because it is irrelevant

for a multiplication table, the method shown in Listing 5-27 is very simple.

Listing 5-27. Providing headers for the custom model

QVariant MulModel::headerData(int section,
Qt::Orientation orientation, int role) const

{
if(role != Qt::DisplayRole)
return QVariant();

return section+1;
}

Finally, the flags returned by flags are used to control what the user can do to the item.

The method, shown in Listing 5-28, tells the view that all items can be selected and are

enabled. There are more flags available. Refer to the following list for a quick overview:

• Qt::ItemIsSelectable: The item can be selected.

• Qt::ItemIsEditable: The item can be edited.

• Qt::ItemIsDragEnabled: The item can be dragged from the model.

• Qt::ItemIsDropEnabled: Data can be dropped onto the item.

• Qt::ItemIsUserCheckable: The user can check and uncheck the item.

• Qt::ItemIsEnabled: The item is enabled.

• Qt::ItemIsTristate: The item cycles between tree states.

Listing 5-28. Flags being used to control what the user can do with a model item

Qt::ItemFlags MulModel::flags(const QModelIndex &index) const
{
if(!index.isValid())
return Qt::ItemIsEnabled;

return Qt::ItemIsSelectable | Qt::ItemIsEnabled;
}

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK 143

This is all the methods needed for the model. Before continuing, look at Figure 5-8, which

displays the MulModel in action showing a tooltip. The code for using the MulModel with a

QTableView is shown in Listing 5-29.

Figure 5-8. The MulModel class used with a QTableView

Listing 5-29. Using the custom model with a table view

int main(int argc, char **argv)
{
QApplication app(argc, argv);

MulModel model(12, 12);

QTableView table;
table.setModel(&model);

table.show();

return app.exec();
}

A Tree of Your Own

Although creating a two-dimensional table is not that difficult, creating tree models is slightly

more complex. To understand the difference between a table and a tree, have a look at

Figure 5-9, which shows a tree in Qt.

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK144

Figure 5-9. A tree is really a table in which each cell can contain more tables.

The trick of getting a tree model working is to map a tree structure to the indexes of the

model. This makes it possible to return data for each index as well as the number of rows and

columns available for each index (that is, the number of child items available for each index).

I chose to base the model on a tree structure that is available in all Qt applications: the

QObject ownership tree. Each QObject has a parent and can have children, which builds a tree

that the model will represent.

■Caution The model presented here shows a snapshot of a QObject tree. If the tree is modified by

adding or removing objects, the model will get out of sync and will have to be reset.

The application that will be implemented is shown in action in Figure 5-10.

Figure 5-10. The tree model showing QObjects through the QTreeView

Let’s start by having a look at the class declaration (see Listing 5-30). The class is called

ObjectTreeModel and is based on QAbstractItemModel. The highlighted lines in the listing show

the methods that have been added when compared with the MulModel.

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK 145

Listing 5-30. The class declaration for the tree model

class ObjectTreeModel : public QAbstractItemModel
{
public:

ObjectTreeModel(QObject *root, QObject *parent = 0);

Qt::ItemFlags flags(const QModelIndex &index) const;
QVariant data(const QModelIndex &index, int role) const;
QVariant headerData(int section, Qt::Orientation orientation,

int role = Qt::DisplayRole) const;
int rowCount(const QModelIndex &parent = QModelIndex()) const;
int columnCount(const QModelIndex &parent = QModelIndex()) const;

QModelIndex index(int row, int column,

const QModelIndex &parent = QModelIndex()) const;

QModelIndex parent(const QModelIndex &index) const;

private:
QObject *m_root;

};

The constructor is just as simple as with the MulModel class. Instead of remembering the

dimensions of a multiplication table, it stores a pointer to the root QObject as m_root.

The headerData method, shown in Listing 5-31, is slightly more complex than the

MulModel method because it returns only horizontal headers. You can tell from the method

that all tree nodes will have two columns: one for the object name and one for the class name.

Listing 5-31. The header function for the tree model

QVariant ObjectTreeModel::headerData(int section,
Qt::Orientation orientation, int role) const

{
if(role != Qt::DisplayRole || orientation != Qt::Horizontal)
return QVariant();

switch(section)
{
case 0:
return QString("Object");

case 1:
return QString("Class");

default:
return QVariant();

}
}

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK146

If you compare the index methods with the ObjectTreeModel class and the MulModel class,

you can see some real differences, which is expected because the data is represented in differ-

ent ways (and it is also indexed differently). In the MulModel, you didn’t have to provide an

index method because the QAbstractTableModel implemented it for you.

The ObjectTreeModel class’ index method takes a model index, parent, a column, and

a row; it gives a location in a table in the tree. The mapping of an index to the actual tree is

handled through the internalPointer() method of the model index. This method makes it

possible to store a pointer in each index, and you can store a pointer to the indexed QObject.

If the index is valid, you can get the appropriate QObject, and for it you want each child to

correspond to a row. This means that by using row as an index into the array returned from

children(), you can build a pointer to a new QObject that you use to build a new index.

The index is built using the createIndex method available from QAbstractItemModel (see

Listing 5-32).

In the index method, one assumption was made. If the view asks for an invalid index, it

gets the root of the tree, which gives the view a way to get started.

Listing 5-32. The workhorse—turning QObjects into indexes

QModelIndex ObjectTreeModel::index(int row, int column,
const QModelIndex &parent) const

{
QObject *parentObject;

if(!parent.isValid())
parentObject = m_root;

else
parentObject = static_cast<QObject*>(parent.internalPointer());

if(row >= 0 && row < parentObject->children().count())
return createIndex(row, column, parentObject->children().at(row));

else
return QModelIndex();

}

Given the index method, the methods for returning the number of available rows and

columns (shown in Listing 5-33) are easy to implement. There are always two columns, and

the number of rows simply corresponds to the size of the children array.

Listing 5-33. Calculating the number of rows and returning 2 for the number of columns

int ObjectTreeModel::rowCount(const QModelIndex &parent) const
{
QObject *parentObject;

if(!parent.isValid())
parentObject = m_root;

else
parentObject = static_cast<QObject*>(parent.internalPointer());

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK 147

return parentObject->children().count();
}

int ObjectTreeModel::columnCount(const QModelIndex &parent) const
{
return 2;

}

Getting the data is almost as easy as calculating the number of rows. The object name for

the first column is available through the objectName property, whereas you have to get the

QMetaObject to obtain the class name for the second column. You also have to make sure to

return it only for the DisplayRole. The ToolTipRole was left out of Listing 5-34, but you can

see how the DisplayRole data is retrieved.

Listing 5-34. Returning the actual data for each index

QVariant ObjectTreeModel::data(const QModelIndex &index, int role) const
{
if(!index.isValid())
return QVariant();

if(role == Qt::DisplayRole)
{
switch(index.column())
{
case 0:
return static_cast<QObject*>(index.internalPointer())->objectName();

case 1:
return static_cast<QObject*>(index.internalPointer())->
metaObject()->className();

default:
break;

}
}
else if(role == Qt::ToolTipRole)
{

...
}

return QVariant();
}

The last method implementation is slightly more complex: the parent method (see

Listing 5-35) returns an index for the parent of a given index. It is easy to find the parent of the

QObject that you get from the index, but you also need to get a row number for that parent.

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK148

The solution is to see that if the parent object is not the root object, it must also have a

grandparent. Using the indexOf method on the children array of the grandparent, you can get

the row of the parent. It’s important to know the order of your children!

Listing 5-35. Building an index for the parent requires asking the grandparent for the indexOf
method.

QModelIndex ObjectTreeModel::parent(const QModelIndex &index) const
{
if(!index.isValid())
return QModelIndex();

QObject *indexObject = static_cast<QObject*>(index.internalPointer());
QObject *parentObject = indexObject->parent();

if(parentObject == m_root)
return QModelIndex();

QObject *grandParentObject = parentObject->parent();

return createIndex(grandParentObject->children().indexOf(parentObject),
0, parentObject);

}

To try out the all-new ObjectTreeModel, you can use the main function from Listing 5-36.

The largest part of the main function is used to build a tree of QObjects. Creating a model with

a pointer to the root object and passing it to the view is done in just four lines of code (and

that includes creating and showing the view). The running application is shown in Figure 5-10.

Listing 5-36. Building a tree of QObjects and then showing it using the custom tree model

int main(int argc, char **argv)
{
QApplication app(argc, argv);

QObject root;
root.setObjectName("root");
QObject *child;
QObject *foo = new QObject(&root);
foo->setObjectName("foo");
child = new QObject(foo);
child->setObjectName("Mark");
child = new QObject(foo);
child->setObjectName("Bob");
child = new QObject(foo);
child->setObjectName("Kent");

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK 149

QObject *bar = new QObject(&root);
bar->setObjectName("bar");

...

ObjectTreeModel model(&root);

QTreeView tree;
tree.setModel(&model);

tree.show();

return app.exec();
}

Editing the Model

The previous two models—a two-dimensional array and a tree—showed complex structures,

but they were read-only. The IntModel shown here is very simple—just a list of integers—but it

can be edited.

Listing 5-37 shows the class declaration of the IntModel that is based on the simplest of

the abstract model bases: QAbstractListModel (which means that a one-dimensional list is

being created).

This class has fewer methods than MulModel and ObjectTreeModel. The only news is the

setData method used to make the model writeable.

Listing 5-37. The IntModel has fewer methods than MulModel, but MulModel does not have
setData.

class IntModel : public QAbstractListModel
{
public:
IntModel(int count, QObject *parent = 0);

Qt::ItemFlags flags(const QModelIndex &index) const;
QVariant data(const QModelIndex &index, int role = Qt::DisplayRole) const;
int rowCount(const QModelIndex &parent = QModelIndex()) const;

bool setData(const QModelIndex &index, const QVariant &value,
int role = Qt::EditRole);

private:
QList<int> m_values;

};

Because IntModel is a very simple model, it also has a number of simple methods. First,

the constructor shown in Listing 5-38 initializes the list with the number of values specified

through count.

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK150

Listing 5-38. Easy as one, two, three . . . the constructor just fills the list.

IntModel::IntModel(int count, QObject *parent)
{
for(int i=0; i<count; ++i)
m_values << i+1;

}

The number of rows equals the count property of the m_values list. This means that

rowCount is as simple as Listing 5-39.

Listing 5-39. The number of rows is the number of items in the list.

int IntModel::rowCount(const QModelIndex &parent) const
{
return m_values.count();

}

Returning data for each index is also easy (see Listing 5-40); you can use the rows property

of the index to look up the right value in the m_values list. The same QVariant for the DisplayRole
as the EditRole is returned. The EditRole represents the value used to initialize the editor. If

you leave it out, the user has to start with an empty editor every time.

Listing 5-40. Returning values is as simple as looking in the list.

QVariant IntModel::data(const QModelIndex &index, int role) const
{
if(role != Qt::DisplayRole || role != Qt::EditRole)
return QVariant();

if(index.column() == 0 && index.row() < m_values.count())
return m_values.at(index.row());

else
return QVariant();

}

To make an item editable, it is important to return the flag value ItemIsEditable as well as

ItemIsSelectable. By returning ItemIsEnabled, the item also looks active. The flag method is

shown in Listing 5-41.

Listing 5-41. Flagging editability, selectability, and being enabled

Qt::ItemFlags IntModel::flags(const QModelIndex &index) const
{
if(!index.isValid())
return Qt::ItemIsEnabled;

return Qt::ItemIsSelectable | Qt::ItemIsEditable | Qt::ItemIsEnabled;
}

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK 151

Listing 5-42 shows the setData method, which is the most complex method of the entire

IntModel class and still fits in seven lines of code. It first checks that the given index is valid

and that the role is the EditRole. (The EditRole is the data in a format suitable for editing and

is what you get from the view after the user has edited a value.)

After you establish that the index and role are fine, you must ensure that an actual change

has taken place. If the value has not changed (or if the index or role is invalid), false is

returned, indicating that no change has taken place.

When an actual change has taken place, the model’s value is updated, and the dataChanged
signal is emitted before returning true. Don’t forget emitting the signal and returning the cor-

rect value; otherwise, the interaction between the models and views will fail.

Listing 5-42. Updating the model according to an edit action

bool IntModel::setData(const QModelIndex &index, const QVariant &value, int role)
{
if(role != Qt::EditRole ||

index.column() != 0 ||
index.row() >= m_values.count())

return false;

if(value.toInt() == m_values.at(index.row()))
return false;

m_values[index.row()] = value.toInt();

emit dataChanged(index, index);
return true;

}

Listing 5-43 and Figure 5-11 show IntModel in use. The model being editable does not

affect the main function in any way. This is something that the model and view agree on using

the return value from the flag method of the model.

Listing 5-43. Using the IntModel with a QListView

int main(int argc, char **argv)
{
QApplication app(argc, argv);

IntModel model(25);

QListView list;
list.setModel(&model);
list.show();

return app.exec();
}

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK152

Figure 5-11. An IntModel being edited

Sorting and Filtering Models
The data delivered from models usually comes unsorted, but you can enable sorting by imple-

menting the sort method of your model. If you are using a tree view or table view to show

your model, you can enable the user to click headers to sort by setting the property

sortingEnabled to true.

As long as you use the QStandardItemModel model and stick to the types handled by

QVariant, the sorting will work right away. However, you are bound to run into situations in

which you do not want to change the model to perform the sorting. This is where proxy

models enter the picture.

A proxy model is a model that wraps another class in itself, transforms it, and takes its

place. The wrapped model is usually called the source model. All actions performed on the

proxy model are forwarded to the source model, and all changes in the source model are prop-

agated to the proxy model. To implement a proxy model, start from the QAbstractProxyModel
class (if you want to sort or filter a model, use the QSortFilterProxyModel class).

To get started, let’s provide custom sorting through a proxy model. Before you start imple-

menting the proxy model , you might want to have a look at the main function shown in

Listing 5-44. The main function shows that the proxy model, sorter, is inserted between the

source model (model) and the view (table). The source model is assigned to the proxy model

by using the setSourceModel(QAbstractItemModel*) method. Then the proxy is used as model

in the view instead of using the source directly.

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK 153

Listing 5-44. The source model is assigned to the proxy model that is then used by the view
instead of using the source model directly.

int main(int argc, char **argv)
{

QApplication app(argc, argv);

QStringListModel model;
QStringList list;
list << "Totte" << "Alfons" << "Laban" << "Bamse" << "Skalman";
model.setStringList(list);

SortOnSecondModel sorter;
sorter.setSourceModel(&model);

QTableView table;
table.setModel(&sorter);
table.setSortingEnabled(true);
table.show();

return app.exec();
}

If you want to provide custom sorting through a class inheriting QSortFilterProxyModel,

you need to override the lessThan(const QModelIndex&, const QModelIndex&) method. The

proxy class itself is very simple—all it takes is a constructor and the overriding method. The

example sorter proxy model ignores the first letter of strings before sorting them alphabeti-

cally. The class is called SortOnSecondModel, and the declaration is shown in Listing 5-45.

Listing 5-45. The class declaration of the custom sorting proxy model

class SortOnSecondModel : public QSortFilterProxyModel
{
public:
SortOnSecondModel(QObject *parent = 0);

protected:
bool lessThan(const QModelIndex &left, const QModelIndex &right) const;

};

The constructor of SortOnSecondModel is simple; it just passes the parent object onto the

constructor of the base class. The code of the class is contained in the lessThan method shown

in Listing 5-46.

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK154

Listing 5-46. The lessThan method ignores the first character of strings before comparing them.

bool SortOnSecondModel::lessThan(const QModelIndex &left,
const QModelIndex &right) const

{
QString leftString = sourceModel()->data(left).toString();
QString rightString = sourceModel()->data(right).toString();

if(!leftString.isEmpty())
leftString = leftString.mid(1);

if(!rightString.isEmpty())
rightString = rightstring.mid(1);

return leftString < rightString;
}

In the method, you use the sourceModel() method to get a reference to the source model

and you get the actual data to compare from it. Before comparing the strings, the first letter, if

any, is truncated from the left and right strings. Figure 5-12 shows the application running

with the source model sorted according to the proxy model’s sort order.

Figure 5-12. The custom sorting proxy model in action

When a model’s data changes, the sorting is not automatically updated, but it can be

changed by setting the dynamicSortFilter property of the proxy model to true. Before using

this method, make sure that your model is small enough to actually have the time to get sorted

before it changes again.

The previous application used only the sorting capabilities of QSortFilterProxyModel. If

you need to filter a model to leave out a few rows, you can reimplement the filterAcceptsRow
method. Use the filterAcceptsColumn to filter on columns. The methods take a source index

and row (or column) and return a Boolean value that is true if the row (or column) is to be

shown.

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK 155

Summary
Using models and views can seem like an overly complex way of doing things, but the result-

ing software is built with a structure that has been proven to be flexible and powerful.

You should consider using the model-view approach when you are dealing with situations

in which you need to show the same data in several ways; deal with common selections; or

just show lists, trees, or tables of data.

Using a standard view with custom delegates and models is often a better solution than

providing a completely custom widget.

CHAPTER 5 ■ THE MODEL-VIEW FRAMEWORK156

Creating Widgets

The term widgets is the name collectively applied to the various visual elements that com-

prise an application: buttons, title bars, text boxes, checkboxes, and so on. There are two

schools of thought on using widgets to create user interfaces: either stick to the standard

widgets or go out on a limb to create your own. Qt supports both.

Unless you have esoteric needs, you should stick to the established widgets as much as

possible. This makes your life really easy when you are using Qt because the standard widget

looks native on most platforms. However, if you want to walk on the wild side, you can take

advantage of Qt’s excellent styling capabilities, inherit widgets and override their painting; or

simply create your own widgets. In some situations you are required to do this because your

application handles data that can’t be shown otherwise. This chapter shows you how to tweak

and create widgets to suit your own needs.

Composing Widgets
Do you combine the same set of widgets in the same way every time? Composite widgets can

help. A composite widget is built by composing already existing widgets and providing them

with a nice set of properties, signals, and slots.

For instance, a keypad is very messy to manage. Figure 6-1 shows a keypad that consists

of a bunch of QPushButtons and a QLineEdit. Setting it up consists of creating a grid layout,

putting the widgets in the layout, and then making the connections to make things work.

Figure 6-1. A keypad made from a QLineEdit and a set of QPushButton widgets

Let’s have a look at which parts of the collection of widgets are “interesting” and which are

not (everything in the “not-interesting” category is unnecessarily complex). That complexity

can be hidden by creating a composite widget.
157

C H A P T E R 6

The rest of the application needs to know the text of the QLineEdit; everything else just

obfuscates the source code of your application. Listing 6-1 shows the class declaration of the

NumericKeypad class. If you focus on the signals and public sections you see that the text is all

that is available. The private sections are concerned with the internals of the widget: the text,

the line edit, and a slot for catching the input from the buttons.

Listing 6-1. The class declaration of the composite widget NumericKeypad

class NumericKeypad : public QWidget
{
Q_OBJECT

public:
NumericKeypad(QWidget *parent = 0);

const QString& text() const;

public slots:
void setText(const QString &text);

signals:
void textChanged(const QString &text);

private slots:
void buttonClicked(const QString &text);

private:
QLineEdit *m_lineEdit;
QString m_text;

};

Before you look at how the text is managed, you should understand how the widget is

constructed. You can tell that the widget is based on a QWidget from the class declaration.

In the constructor a layout is applied to the QWidget (this); then the QLineEdit and the

QPushButton widgets are put in the layout. The source code is shown in Listing 6-2.

Listing 6-2. Creating and laying out the buttons in the constructor

NumericKeypad::NumericKeypad(QWidget *parent)
{
QGridLayout *layout = new QGridLayout(this);

m_lineEdit = new QLineEdit
m_lineEdit->setAlignment(Qt::AlignRight);

QPushButton *button0 = new QPushButton(tr("0"));
QPushButton *button1 = new QPushButton(tr("1"));

...

CHAPTER 6 ■ CREATING WIDGETS158

QPushButton *buttonDot = new QPushButton(tr("."));
QPushButton *buttonClear = new QPushButton(tr("C"));

layout->addWidget(m_lineEdit, 0, 0, 1, 3);

layout->addWidget(button1, 1, 0);
layout->addWidget(button2, 1, 1);

...
layout->addWidget(buttonDot, 4, 1);
layout->addWidget(buttonClear, 4, 2);

...
}

You will probably find the parts of the constructor that were left out of the previous exam-

ple more interesting. Each QPushButton object, except the C button, is mapped to a QString
using the setMapping(QObject *, const QString&) method of QSignalMapper. When all the

mappings have been set up, the clicked() signals from the buttons are all connected to the

map() slot of the signal mapper. When map is called, the signal mapper will look at the signal

sender and emit the mapped string through the mapped(const QString&) signal. This signal is

in turn connected to the buttonClicked(const QString&) slot of this. You can see how this is

set up in Listing 6-3.

The listing also shows that the C button’s clicked signal is mapped to the clear slot of

the QLineEdit, and the textChanged signal of the QLineEdit is connected to the setText
method of the keypad widget. This means that clicking the C button clears the text; any

changes to the QLineEdit—either by user interaction or pressing the C button—update the

text of the NumericKeypad object.

Listing 6-3. Setting up the signal mapping in the constructor

NumericKeypad::NumericKeypad(QWidget *parent)
{
...
layout->addWidget(buttonDot, 4, 1);
layout->addWidget(buttonClear, 4, 2);

QSignalMapper *mapper = new QSignalMapper(this);

mapper->setMapping(button0, "0");
mapper->setMapping(button1, "1");

...
mapper->setMapping(button9, "9");
mapper->setMapping(buttonDot, ".");

connect(button0, SIGNAL(clicked()), mapper, SLOT(map()));
connect(button1, SIGNAL(clicked()), mapper, SLOT(map()));

...
connect(button9, SIGNAL(clicked()), mapper, SLOT(map()));

CHAPTER 6 ■ CREATING WIDGETS 159

connect(buttonDot, SIGNAL(clicked()), mapper, SLOT(map()));

connect(mapper, SIGNAL(mapped(QString)), this, SLOT(buttonClicked(QString)));

connect(buttonClear, SIGNAL(clicked()), m_lineEdit, SLOT(clear()));
connect(m_lineEdit, SIGNAL(textChanged(QString)), this, SLOT(setText(QString)));

}

The slots handling the changes of the text are shown in Listing 6-4. The buttonClicked slot

simply appends the new text to the end of the current text, which is kept in the QString vari-

able m_text. The text is kept in a separate string, not only in QLineEdit, because the user can

change the text directly by typing into the editor. If such a change were made, you couldn’t tell

whether the setText call was relevant or not because you couldn’t compare the current text to

the new. This could lead to the textChanged method being emitted without an actual change

taking place.

■Tip You could do a workaround by setting the text editor’s enabled property to false, but it causes the

editor to look different.

Listing 6-4. Handling changes of the text

void NumericKeypad::buttonClicked(const QString &newText)
{

setText(m_text + newText);
}

void NumericKeypad::setText(const QString &newText)
{
if(newText == m_text)
return;

m_text = newText;
m_lineEdit->setText(m_text);

emit textChanged(m_text);
}

The setText slot starts by checking whether an actual change has taken place. If so, the

internal text is updated as well as the QLineEdit text. Then the textChanged signal is emitted

with the new text.

Any external widget interested in the text of the QLineEdit can either connect to the

textChanged signal or ask by calling the text method. The method, shown in Listing 6-5, is

simple—it returns m_text.

CHAPTER 6 ■ CREATING WIDGETS160

Listing 6-5. Returning the current text

const QString& NumericKeypad::text() const
{

return m_text;
}

Using a composite widget is just as easy as using an ordinary widget. In Listing 6-6 you

can see how the NumericKeypad widget is used. The keypad is placed over a label just to test the

textChanged signal. The label’s setText slot is connected to the keypad’s textChanged signal.

Figure 6-2 shows the application in action. The text of the QLineEdit is reflected by the QLabel
at all times.

Listing 6-6. Using the NumericKeypad widget

int main(int argc, char **argv)
{
QApplication app(argc, argv);

QWidget widget;
QVBoxLayout *layout = new QVBoxLayout(&widget);

NumericKeypad pad;
layout->addWidget(&pad);

QLabel *label = new QLabel;
layout->addWidget(label);

QObject::connect(&pad, SIGNAL(textChanged(const QString&)),
label, SLOT(setText(const QString&)));

widget.show();

return app.exec();
}

Figure 6-2. The composite widget live

CHAPTER 6 ■ CREATING WIDGETS 161

There are many benefits of composing widgets. Using the NumericKeypad widget with the

main function is far easier than if all the buttons and the QLineEdit widget were configured

there. Also, the signals and slots create a nice interface to connect the keypad to the rest of the

widgets.

Take a step back and look at the widget itself—you see that the component is far more

reusable than the knowledge of how to set up the solution. This makes it more likely to be

used in more places in an application (or in more applications). As soon as you use it twice,

you will save development time and effort since you need to set up the signal mapper only

once. You also know that it works because you have verified it once—saving you the problem

of locating bugs.

Changing and Enhancing Widgets

Another way to customize widgets is by changing or enhancing their behavior. For example, a

QLabel can make a great digital clock widget; all that is missing is the part that updates the text

with the current time. The resulting widget can be seen in Figure 6-3.

Figure 6-3. A label acting as a clock

By using an already existing widget as the starting point for a new widget, you avoid having

to develop all the logic needed for painting, size hints, and such. Instead you can focus on

enhancing the widget with the functionality you need. Let’s see how this is done.

First, there must be a method that checks the time at even intervals—once every second,

for example. The text has to be updated to the current time each time it is checked. To check

the time every second, you can use a QTimer. A timer object can be set up to emit the timeout
signal at a given interval. By connecting this signal to a slot of the clock label, you can check

the time and update the text accordingly every second.

Listing 6-7 shows the class declaration for the ClockLabel widget. It has a slot, updateTime,

and a constructor. That (and inheriting QLabel) is all you need to implement this custom

behavior.

Listing 6-7. The ClockLabel class declaration

class ClockLabel : public QLabel
{
Q_OBJECT

public:
ClockLabel(QWidget *parent = 0);

private slots:
void updateTime();

};

CHAPTER 6 ■ CREATING WIDGETS162

You can see the implementation of the ClockLabel widget in Listing 6-8. Starting from the

bottom, the updateTime() slot is very simple—all it does is set the text to the current time. The

QTime::toString() method converts a time to a string according to a formatting string, where

hh represents the current hour and mm represents the minute.

A QTimer object is created in the constructor. The interval (how often the timeout signal is

to be emitted) is set to 1,000 milliseconds (1 second).

■Tip Divide the number of milliseconds by 1,000 to get the equivalent number of seconds. 1,000 milli-

seconds correspond to 1 second.

When the timer’s interval is set, the timer’s timeout() signal is connected to the

updateTime signal of this before the timer starts. QTimer objects must be started before they

begin emitting the timeout signal periodically. The signal emitting is turned off by using the

stop() method. This means that you can set up a timer and then turn it on and off depending

on the current state of the application.

■Caution QTimer objects are good enough for user interfaces and such, but you have to use an alterna-

tive solution if you are developing an application requiring precision timing. The accuracy of the intervals

depends on the platform on which the application is running.

Before the constructor is completed, an explicit call is made to updateTime, which ensures

that the text is updated at once. Otherwise, it would take one second before the text was

updated, and the user would be able to see the uninitialized widget for a short period of time.

Listing 6-8. The ClockLabel implementation

ClockLabel::ClockLabel(QWidget *parent) : QLabel(parent)
{
QTimer *timer = new QTimer(this);
timer->setInterval(1000);
connect(timer, SIGNAL(timeout()), this, SLOT(updateTime()));
timer->start();
updateTime();

}

void ClockLabel::updateTime()
{
setText(QTime::currentTime().toString("hh:mm"));

}

CHAPTER 6 ■ CREATING WIDGETS 163

Sometimes you might want to enhance an existing widget; for example, you might want a

slot to accept another type of argument or where a slot is missing. You can inherit the base

widget, add your slot, and then use the resulting class instead of the original one.

Catching the Events

Widgets provide the catalyst for processing user actions by providing access to the actual user-

generated events that trigger signals and provide interaction. Events are the raw input that the

user gives the computer. By reacting to these events, the user interface can interact with the

user and provide the expected functionality.

The events are processed by event handlers, which are virtual protected methods that the

widget classes override when they need to react to a given event. Each event is accompanied

with an event object. The base class of all event classes is QEvent, which enables the receiver to

accept or ignore an event using the methods with the same names. Ignored events can be

propagated to the parent widget by Qt.

Figure 6-4 shows user actions triggering events that are received by the QApplication.

These events result in the application calling the affected widget, which reacts to the event

and emits signals if necessary.

Figure 6-4. User actions passing the QApplication object before reaching the widgets and
triggering signals driving the application

Listening to the User

To better understand how event handling works, you can create a widget that emits a signal

carrying a string that tells you which event has just been received. The widget class is called

EventWidget, and the signal is named gotEvent(const QString &). By hooking this signal to a

QTextEdit, you get an event log that you can use to explore the events.

Start by having a quick look at Listing 6-9. The EventWidget has a range of event handlers,

and the responsibility of each is described in the following list. These event handling methods

are some of the most common ones, but there are more. In each line in the list I kept the event

object type with the event name so that you can see which events are related. For instance, all

focus events take a QFocusEvent pointer as argument.

CHAPTER 6 ■ CREATING WIDGETS164

• closeEvent(QCloseEvent*): The widget is about to close. (You saw how this was used

in Chapter 4.)

• contextMenuEvent(QContextMenuEvent*): A context menu is requested.

• enterEvent(QEvent*): The mouse pointer has entered the widget.

• focusInEvent(QFocusEvent*): The widget received focus.

• focusOutEvent(QFocusEvent*): Focus left the widget.

• hideEvent(QHideEvent*): The widget is about to be hidden.

• keyPressEvent(QKeyEvent*): A keyboard key has been pressed.

• keyReleaseEvent(QKeyEvent*): A keyboard key has been released.

• leaveEvent(QEvent*): The mouse pointer has left the widget.

• mouseDoubleClickEvent(QMouseEvent*): A mouse button has been double-clicked.

• mouseMoveEvent(QMouseEvent*): The mouse is moving over the widget.

• mousePressEvent(QMouseEvent*): A mouse button has been pressed.

• mouseReleaseEvent(QMouseEvent*): A mouse button has been released.

• paintEvent(QPaintEvent*): The widget needs to be repainted.

• resizeEvent(QResizeEvent*): The widget has been resized.

• showEvent(QShowEvent*): The widget is about to be shown.

• wheelEvent(QWheelEvent*): The mouse scroll view has been moved.

In the preceding list you can see that related events share the event object type. For

example, all mouse events—such as pressing, releasing, moving, and double-clicking—take a

QMouseEvent.

The events taking only a QEvent can be regarded as simple notifications. No additional

information is carried in a QEvent object, so all there is to know is that the event occurred.

Because the QEvent is the base class of all event classes, the event handlers sharing QEvent as

event object type are not related in the same way as the mouse events are, for example.

A few event handlers were left out of the list and the EventWidget class. Although the

missing handlers are not less relevant, they aren’t dramatically different from the ones used

in the class.

Listing 6-9. The EventWidget implements most event handlers and emits the gotEvent signal for
each event.

class EventWidget : public QWidget
{
Q_OBJECT

public:
EventWidget(QWidget *parent = 0);

CHAPTER 6 ■ CREATING WIDGETS 165

signals:
void gotEvent(const QString&);

protected:
void closeEvent(QCloseEvent * event);
void contextMenuEvent(QContextMenuEvent * event);
void enterEvent(QEvent * event);
void focusInEvent(QFocusEvent * event);
void focusOutEvent(QFocusEvent * event);
void hideEvent(QHideEvent * event);
void keyPressEvent(QKeyEvent * event);
void keyReleaseEvent(QKeyEvent * event);
void leaveEvent(QEvent * event);
void mouseDoubleClickEvent(QMouseEvent * event);
void mouseMoveEvent(QMouseEvent * event);
void mousePressEvent(QMouseEvent * event);
void mouseReleaseEvent(QMouseEvent * event);
void paintEvent(QPaintEvent * event);
void resizeEvent(QResizeEvent * event);
void showEvent(QShowEvent * event);
void wheelEvent(QWheelEvent * event);

};

Before you continue looking at the event handlers, look at the main function, which shows

the widget with a log. The source code is shown in Listing 6-10. The log is presented in a

QTextEdit widget, and the gotEvent signal is connected to the append(const QString&) slot of

the log. This is all the preparation needed before the widgets can be shown and the applica-

tion runs.

Listing 6-10. Creating a log widget and an EventWidget and using them

int main(int argc, char **argv)
{
QApplication app(argc, argv);

QTextEdit log;
EventWidget widget;

QObject::connect(&widget, SIGNAL(gotEvent(const QString&)),
&log, SLOT(append(const QString&)));

log.show();
widget.show();

return app.exec();
}

CHAPTER 6 ■ CREATING WIDGETS166

When the application is running, the log window is shown next to a window containing

the event widget. A sample log is shown in Figure 6-5. All events are listed, and selected

parameters are shown for some events. For example, the text is shown for QKeyEvent events,

and the position of the pointer is shown for QMouseEvent events.

Figure 6-5. A log from the EventWidget

Listing 6-11 offers the closeEvent handler as an example. The enterEvent, leaveEvent,

showEvent, hideEvent, and paintEvent handlers all simply log the name of the event. The show,

hide, and paint events have their own event object types. The QShowEvent and QHideEvent
classes add nothing to the QEvent class. The QPaintEvent does add a lot of information (you

will look more closely at this event later in this chapter).

Listing 6-11. A simple event handling method

void EventWidget::closeEvent(QCloseEvent * event)
{
emit gotEvent(tr("closeEvent"));

}

Dealing with Keyboard Events

The events dealing with keyboard activity are keyPressEvent and keyReleaseEvent. They both

look similar, so only keyPressEvent is shown in Listing 6-12. Because most modern environ-

ments support auto-repeating keys, you might get several keyPressEvents before you see the

CHAPTER 6 ■ CREATING WIDGETS 167

keyReleaseEvent. You usually cannot rely on seeing the keyReleaseEvent—the user might

move the focus between widgets (using the mouse) before releasing the key.

If you need to ensure that your widget gets all keyboard events, use the grabKeyboard and

releaseKeyboard methods. When a widget grabs the keyboard, all key events are sent to it

regardless of which widget currently has the focus.

The event handler in the listing shows modifier keys and the text of the pressed key. The

modifiers are stored as a bit mask, and several can be active at once.

Listing 6-12. A keyboard event handling method

void EventWidget::keyPressEvent(QKeyEvent * event)
{
emit gotEvent(QString("keyPressEvent(text:%1, modifiers:%2)")
.arg(event->text())
.arg(event->modifiers()==0?tr("NoModifier"):(

(event->modifiers() & Qt::ShiftModifier ==0 ? tr(""):
tr("ShiftModifier "))+

(event->modifiers() & Qt::ControlModifier ==0 ? tr(""):
tr("ControlModifier "))+

(event->modifiers() & Qt::AltModifier ==0 ? tr(""):
tr("AltModifier "))+

(event->modifiers() & Qt::MetaModifier ==0 ? tr(""):
tr("MetaModifier "))+

(event->modifiers() & Qt::KeypadModifier ==0 ? tr(""):
tr("KeypadModifier "))+

(event->modifiers()&Qt::GroupSwitchModifier ==0 ? tr(""):
tr("GroupSwitchModifier")))));

}

Dealing with Mouse Events

The context menu event is triggered when the user tries to bring up a context menu (the menu

that appears when right-clicking on something—usually offering actions such as cut, copy,

and paste). This event can be triggered with both the mouse and the keyboard. The event

object contains the source of the request (reason) and the coordinates of the mouse pointer

when the event occurs. The handler is shown in Listing 6-13. If a context menu event is

ignored, it is reinterpreted and sent as a mouse event, if possible.

All event objects carrying the mouse position have the pos() and globalPos() methods.

The pos method is the position in widget-local coordinates, which is good for updating the

widget itself. If you want to create a new widget at the location of the event, you need to use

the global coordinates instead. The positions consist of x and y coordinates, which can be

obtained directly from the event object through the x, y, globalX, and globalY methods.

Listing 6-13. A context menu has been requested.

void EventWidget::contextMenuEvent(QContextMenuEvent * event)
{
emit gotEvent(QString("contextMenuEvent(x:%1, y:%2, reason:%3)")

CHAPTER 6 ■ CREATING WIDGETS168

.arg(event->x())

.arg(event->y())

.arg(event->reason()==QContextMenuEvent::Other ? "Other" :
(event->reason()==QContextMenuEvent::Keyboard ? "Keyboard" :

"Mouse")));
}

The context menu event carries the mouse position, as does the QMouseEvent. The mouse

events are mousePressEvent, mouseReleaseEvent, mouseMoveEvent, and mouseDoubleClickEvent.

You can see the latter in Listing 6-14. The handler shows the button as well as the x and y coor-

dinates.

When dealing with mouse events, it is important to understand that the movement event

is sent only as long as a mouse button is pressed. If you need to get the movement event at all

times, you must enable mouse tracking with the mouseTracking property.

If you want to get all the mouse events, you can use the mouse just as you can use the

keyboard. Use the methods grabMouse() and releaseMouse() for this. Just be careful because a

bug occurring while the mouse is grabbed can prevent mouse interaction for all applications.

The rule is to grab only when necessary, to release as soon as possible, and to never ever forget

to release the mouse.

Listing 6-14. A mouse event handling method

void EventWidget::mouseDoubleClickEvent(QMouseEvent * event)
{
emit gotEvent(QString("mouseDoubleClickEvent(x:%1, y:%2, button:%3)")
.arg(event->x())
.arg(event->y())
.arg(event->button()==Qt::LeftButton? "LeftButton":

event->button()==Qt::RightButton?"RightButton":
event->button()==Qt::MidButton? "MidButton":
event->button()==Qt::XButton1? "XButton1":

"XButton2"));
}

Working with the Mouse Wheel

The mouse wheel is usually considered a part of the mouse, but the event has a separate event

object. The object contains the position of the mouse pointer when the event occurs as well as

the orientation of the wheel and the size of the scrolling (delta). The event handler is shown in

Listing 6-15.

The mouse wheel event is first sent to the widget under the mouse pointer. If it is not

handled there, it is passed on to the widget with focus.

Listing 6-15. The wheel is separate from the rest of the mouse.

void EventWidget::wheelEvent(QWheelEvent * event)
{
emit gotEvent(QString("wheelEvent(x:%1, y:%2, delta:%3, orientation:%4)")

CHAPTER 6 ■ CREATING WIDGETS 169

.arg(event->x())

.arg(event->y())

.arg(event->delta()).arg(event->orientation()==Qt::Horizontal?
"Horizontal":"Vertical"));

}

There are more event handlers implemented in the EventWidget class. You can learn a lot

about widgets by trying out different things on the widget and then studying the log.

Filtering Events

Creating an event filter is easier than inheriting a widget class and overriding an event handling

class. An event filter is a class inheriting QObject that implements the eventFilter(QObject*,
QEvent*) method. The method makes it possible to intercept events before they reach their

destinations. The events can then be filtered (let through or stopped).

Event filters can be used to implement many special functions, such as mouse gestures

and recognizing key sequences. They can be used to enhance widgets or to change a widget’s

behavior without having to subclass the widget.

Let’s try an event filter that removes any numerical key presses from the event queue.

The class declaration and implementation is shown in Listing 6-16. The interesting part is the

eventFilter method, which has two arguments: a pointer to the destination QObject (dest)

and a pointer to the QEvent object (event). By checking whether the event is a key press event

using type, you know that the event pointer can be cast to a QKeyEvent pointer. The QKeyEvent
class has the text method that you use to determine whether the key pressed is a number.

If the key press is from a numerical key, true is returned, indicating that the filter handled

the event. This stops the event from reaching the destination object. For all other events, the

value of the base class implementation is returned, which will result in either handling the

event by the base class filter or letting it pass through the final destination object.

Listing 6-16. The event filtering class KeyboardFilter stops key presses for numeric keys.

class KeyboardFilter : public QObject
{
public:
KeyboardFilter(QObject *parent = 0) : QObject(parent) {}

protected:
bool eventFilter(QObject *dist, QEvent *event)
{
if(event->type() == QEvent::KeyPress)
{
QKeyEvent *keyEvent = static_cast<QKeyEvent*>(event);

static QString digits = QString("1234567890");
if(digits.indexOf(keyEvent->text()) != -1)
return true;

}

CHAPTER 6 ■ CREATING WIDGETS170

return QObject::eventFilter(dist, event);
}

};

To test the event filter, you can install it on a QLineEdit (its source code is shown in

Listing 6-17). The QLineEdit and KeyboardFilter objects are created like any other objects.

Then the installEventFilter(QObject*) is used to install the filter on the line edit before the

editor is shown.

Listing 6-17. To use an event filter, you must install it on a widget. The events to that widget are
then passed through the filter.

int main(int argc, char **argv)
{
QApplication app(argc, argv);

QLineEdit lineEdit;
KeyboardFilter filter;

lineEdit.installEventFilter(&filter);
lineEdit.show();

return app.exec();
}

Try using the line edit. The key presses are filtered, but numbers can still be forced into

the editor by using the clipboard. You must be careful when implementing and applying event

filters—there might be hard-to-foresee side effects.

If you are careful when designing your filters you can enhance applications by filtering,

reacting to, and redirecting events—making interaction easier for the user. An example is to

catch keyboard events in a draw area, redirecting them to a text editor, and moving the focus.

This saves the user from clicking the text editor before entering text, making the application

more user-friendly.

Creating Custom Widgets from Scratch

When nothing else works, or if you choose to follow a different approach, you might end up in

a situation in which you have to create your own widget. Creating a custom widget consists of

implementing an interface of signals and slots as well as a set of applicable event handlers.

To show you how this is done, I will guide you through the CircleBar widget (see Figure 6-6).

The application shown in the figure has a CircleBar widget over a horizontal slider. Moving

the slider changes the value of the circle bar, as does rotating the mouse wheel when hovering

over the circle bar widget.

The function of the CircleBar widget is to show a value between 0 and 100 by varying the

size of the filled circle. A full circle means 100, while a dot in the middle means 0. The user can

change the value shown by using the mouse scroll wheel.

CHAPTER 6 ■ CREATING WIDGETS 171

Figure 6-6. The CircleBar widget and a horizontal slider

The main function, shown in Listing 6-18, sets up the slider and the circle bar. The code

works by first creating a base widget for the QVBoxLayout that holds the slider and the circle

bar. The slider and circle bar are then interconnected, so a valueChanged signal from one of

them results in a setValue call to the other one. Then the base widget is shown before the

application is started.

Listing 6-18. Setting up the CircleBar and the slider

int main(int argc, char **argv)
{
QApplication app(argc, argv);

QWidget base;
QVBoxLayout *layout = new QVBoxLayout(base);

CircleBar *bar = new CircleBar;
QSlider *slider = new QSlider(Qt::Horizontal);

layout->addWidget(bar);
layout->addWidget(slider);

QObject::connect(slider, SIGNAL(valueChanged(int)), bar, SLOT(setValue(int)));
QObject::connect(bar, SIGNAL(valueChanged(int)), slider, SLOT(setValue(int)));

base.show();

return app.exec();
}

From the main function you can see that the CircleBar widget needs a setValue(int) slot

and a valueChanged(int) signal. To make the interface complete, you also need to have a value
method to read the value.

CHAPTER 6 ■ CREATING WIDGETS172

Because the widget is painted by the code, the paintEvent needs to be reimplemented.

You will also need to reimplement the wheelEvent because you want to listen to mouse wheel

activity. I chose to add a heightForWidth function, which will be used to keep the widget

square, and a sizeHint method that gives it a nice starting size.

All this is summarized in the class declaration shown in Listing 6-19.

Listing 6-19. The class declaration of the CircleBar widget class

class CircleBar : public QWidget
{
Q_OBJECT

public:
CircleBar(int value = 0, QWidget *parent = 0);

int value() const;

int heightForWidth(int) const;
QSize sizeHint() const;

public slots:
void setValue(int);

signals:
void valueChanged(int);

protected:
void paintEvent(QPaintEvent*);
void wheelEvent(QWheelEvent*);

private:
int m_value;

};

The constructor of the CircleBar class shown in Listing 6-20 starts by initializing the

internal value that is kept in the m_value member. It also creates a new size policy that is

preferred in both directions and tells the layout management system to listen to the

heightForWidth method.

Listing 6-20. The constructor of the CircleBar widget

CircleBar::CircleBar(int value, QWidget *parent) : QWidget(parent)
{
m_value = value;

QSizePolicy policy(QSizePolicy::Preferred, QSizePolicy::Preferred);
policy.setHeightForWidth(true);
setSizePolicy(policy);

}

CHAPTER 6 ■ CREATING WIDGETS 173

The size policy is accompanied by the heightForWidth(int) method and the sizeHint
method returning the preferred widget size. The implementation of these methods is shown in

Listing 6-21. The heightForWidth method takes a width as argument and returns the wanted

height to the layout manager. The implementation used in the CircleBar class returns the

given width as height, resulting in a square widget.

Listing 6-21. The size handling methods

int CircleBar::heightForWidth(int width) const
{
return width;

}

QSize CircleBar::sizeHint() const
{
return QSize(100, 100);

}

The methods for handing the values value() and setValue are shown in Listing 6-22. The

value method is simple—it simply returns m_value. The setValue method limits the value to

the range 0–100 before checking whether a change has taken place. If so, m_value is updated

before a call to update is made and the valueChanged signal is emitted.

By calling update(), a repaint event is triggered, which causes a call to paintEvent.

Remember that you can’t draw the widget outside the paintEvent method. Instead, call update
and then handle the painting from the paintEvent method.

Listing 6-22. Handing the value of the CircleBar widget

int CircleBar::value() const
{
return m_value;

}

void CircleBar::setValue(int value)
{
if(value < 0)
value = 0;

if(value > 100)
value = 100;

if(m_value == value)
return;

m_value = value;

CHAPTER 6 ■ CREATING WIDGETS174

update();

emit valueChanged(m_value);
}

In Listing 6-23 you can see the implementation of the paintEvent method. Before you

look at the code, you should know how the autoFillBackground property works. As long as it is

set to true (the default), the widget’s background is filled with the appropriate color before the

paintEvent method is entered. This means that we do not have to worry about clearing the

widget's area before painting to it.

The radius and factor helper variables are calculated in the paintEvent method. Then a

QPainter object is created to draw the widget. First the pen is set to black, and the outer circle

is drawn; then the brush is set to black, and the inner circle is drawn. The pen is used to draw

the contour of the circle; the brush is used to fill it. By default, both are set to draw nothing, so

setting the pen only before drawing the outer circle gives a circle contour.

Listing 6-23. Painting the outer and inner circles

void CircleBar::paintEvent(QPaintEvent *event)
{
int radius = width()/2;
double factor = m_value/100.0;

QPainter p(this);
p.setPen(Qt::black);
p.drawEllipse(0, 0, width()-1, width()-1);
p.setBrush(Qt::black);
p.drawEllipse((int)(radius*(1.0-factor)),

(int)(radius*(1.0-factor)),
(int)((width()-1)*factor)+1,
(int)((width()-1)*factor)+1);

}

The final piece of the CircleBar widget is the wheelEvent method (see Listing 6-24). First

the event is accepted before the value is updated using setValue.

The delta value of the QWheelEvent object tells how many eighths of a degree the scroll

movement is. Most mice scroll 15 degrees at a time, so each “click” in the scroll wheel corre-

sponds to a delta of 120. I chose to divide the delta value by 20 before using it to change the

value. I picked the value 20 by feel—the bar is resized quickly enough while still giving enough

precision.

Listing 6-24. Updating the value from scroll wheel movements

void CircleBar::wheelEvent(QWheelEvent *event)
{
event->accept();
setValue(value() + event->delta()/20);

}

CHAPTER 6 ■ CREATING WIDGETS 175

Custom widgets consist of two parts: properties visible to the rest of the application

(value and setValue) and event handlers (paintEvent and wheelEvent). Almost all custom

widgets reimplement the paintEvent method, while the rest of the event handlers to reimple-

ment are picked by determining which are needed to implement the functionality wanted.

Your Widgets and Designer
After you have created a widget of your own, you might want to integrate it with Designer. The

benefit of doing this is that you are not forced to leave the Designer workflow because you are

using custom widgets. Another advantage is that if you develop widgets for others, you can let

them use Designer with your widgets as well as standard Qt widgets.

There are two approaches to integrating widgets with designer: one simple and one com-

plex. Comparing the two methods, the simple method leaves more work to do when using

Designer, while the complex method makes the integration with Designer seamless. Let’s start

out with the simple approach.

Promotion

You can test the promotion way of integrating your widgets with Designer using the ClockWidget
that you created earlier in this chapter. Because it is based on a QLabel, draw a QLabel on the

form you are designing. Now bring up the context menu for the label and choose the Promote

to Custom Widget menu entry, which brings up the dialog shown in Figure 6-7. The figure has

a class name—the header file name is automatically guessed by Designer.

Figure 6-7. Promoting a QLabel to a ClockWidget

To be able to use this feature of Designer, you must provide a constructor taking a QWidget
pointer and make the include file accessible for the make system. This can be done with the

INCLUDEPATH variable in the QMake project file.

It is important to pick a widget that is in your custom widget’s inheritance tree to make

sure that all properties shown in Designer are available for your widget. The user interface

compiler generates code for setting all properties marked as bold in Designer. In the property

box shown in Figure 6-8, the properties objectName, geometry, text, and flat will be set.

This means that if you promote the widget, your widget needs to have the setObjectName,

setGeometry, setText, and setFlat methods. If you choose to promote a widget from the

inheritance tree of your custom widget, you get these methods free through inheritance.

CHAPTER 6 ■ CREATING WIDGETS176

Figure 6-8. The properties marked as bold will be set in the code generated by uic.

Providing a Plugin

If you spend slightly more time implementing a plugin that works in Designer, you can skip

the promotion method in Designer. Instead your widget will appear in the widget box with all

the other widgets.

Creating a widget plugin for Designer is pretty much a copy-and-paste job. Before you can

start creating the plugin, you must make a small change to the widget class declaration. (For

the plugin, you’ll use the CircleBar widget developed earlier in this chapter.) The class decla-

ration is shown in Listing 6-25. The first half of the change is the addition of the QDESIGNER_
WIDGET_EXPORT macro, which ensures that the class is available from the plugin on all plat-

forms that Qt supports. The other half is the addition of a constructor taking a parent as

argument. This is needed for the generated code from uic to work.

CHAPTER 6 ■ CREATING WIDGETS 177

Listing 6-25. Changes to the CircleBar class

class QDESIGNER_WIDGET_EXPORT CircleBar : public QWidget

{

Q_OBJECT

public:

CircleBar(QWidget *parent = 0);

CircleBar(int value = 0, QWidget *parent = 0);

int value() const;

int heightForWidth(int) const;

QSize sizeHint() const;

public slots:

void setValue(int);

signals:

void valueChanged(int);

protected:

void paintEvent(QPaintEvent*);

void wheelEvent(QWheelEvent*);

private:

int m_value;

};

Now you can start looking at the actual plugin in Listing 6-26. The plugin class is simply

an implementation of the interface defined by the QDesignerCustomWidgetInterface class. All

methods must be implemented, and the task of each method is strictly defined.

The plugin class for the CircleBar widget is called CircleBarPlugin. This is a common

way to name widget plugin classes.

Listing 6-26. The plugin class

#ifndef CIRCLEBARPLUGIN_H
#define CIRCLEBARPLUGIN_H

#include <QDesignerCustomWidgetInterface>

class QExtensionManager;

class CircleBarPlugin : public QObject, public QDesignerCustomWidgetInterface
{

Q_OBJECT
Q_INTERFACES(QDesignerCustomWidgetInterface)

CHAPTER 6 ■ CREATING WIDGETS178

public:
CircleBarPlugin(QObject *parent = 0);

bool isContainer() const;
bool isInitialized() const;
QIcon icon() const;

QString domXml() const;
QString group() const;
QString includeFile() const;
QString name() const;
QString toolTip() const;
QString whatsThis() const;
QWidget *createWidget(QWidget *parent);
void initialize(QDesignerFormEditorInterface *core);

private:
bool m_initialized;

};

#endif /* CIRCLEBARPLUGIN_H */

First, widgets must handle an initialized flag, which is done through the constructor and

the isInitialized() and initialize(QDesignerFormEditorInterface*) methods. The methods

are shown in Listing 6-27. You can see that the implementation is pretty straightforward and

can be copied and pasted between all widget plugin classes.

Listing 6-27. Handing initialization

CircleBarPlugin::CircleBarPlugin(QObject *parent)
{

m_initialized = false;
}

bool CircleBarPlugin::isInitialized() const
{

return m_initialized;
}

void CircleBarPlugin::initialize(QDesignerFormEditorInterface *core)
{

if(m_initialized)
return;

m_initialized = true;
}

CHAPTER 6 ■ CREATING WIDGETS 179

If you thought initialized flag handling was simple, you will find the methods in Listing 6-28

even easier. The methods isContainer(),icon(),toolTip(), and whatsThis() return as little as

possible. You can easily give your widget a custom icon, a tooltip, and What’s this text.

Listing 6-28. Simple methods returning the least possible

bool CircleBarPlugin::isContainer() const
{

return false;
}

QIcon CircleBarPlugin::icon() const
{

return QIcon();
}

QString CircleBarPlugin::toolTip() const
{

return "";
}

QString CircleBarPlugin::whatsThis() const
{

return "";
}

The includeFile(),name(), and domXml() methods return standardized strings built from

the class name. It is important to return the same class name from both the name and domXml
methods. Notice that the name is case sensitive. You can see the methods in Listing 6-29.

Listing 6-29. Returning XML for the widget, header file name, and class name

QString CircleBarPlugin::includeFile() const
{

return "circlebar.h";
}

QString CircleBarPlugin::name() const
{

return "CircleBar";
}

QString CircleBarPlugin::domXml() const
{

return "<widget class=\"CircleBar\" name=\"circleBar\">\n"
"</widget>\n";

}

CHAPTER 6 ■ CREATING WIDGETS180

To control in which group of widgets your widget appears, the name of the group is

returned from the group() method. The method implementation is shown in Listing 6-30.

Listing 6-30. The group to join in Designer

QString CircleBarPlugin::group() const
{

return "Book Widgets";
}

To help Designer create a widget, you need to implement a factory method, which is

named createWidget(QWidget*) and is shown in Listing 6-31.

Listing 6-31. Creating a widget instance

QWidget *CircleBarPlugin::createWidget(QWidget *parent)
{

return new CircleBar(parent);
}

The final step is to actually export the plugin class as a plugin by using the Q_EXPORT_
PLUGIN2 macro, as shown in Listing 6-32. This line is added to the end of the implementation

file.

Listing 6-32. Exporting the plugin

Q_EXPORT_PLUGIN2(circleBarPlugin, CircleBarPlugin)

To build a plugin, you must create a special project file, which is shown in Listing 6-33.

The important lines are highlighted in the listing. What they do is tell QMake to use a template

for building a library; then the CONFIG line tells QMake that you need the designer and plugin
modules. The last line configures the output of the build to end up in the right place using the

DESTDIR variable.

Listing 6-33. The project file for a Designer plugin

TEMPLATE = lib
CONFIG += designer plugin release

DEPENDPATH += .

TARGET = circlebarplugin

HEADERS += circlebar.h circlebarplugin.h
SOURCES += circlebar.cpp circlebarplugin.cpp

DESTDIR = $$[QT_INSTALL_DATA]/plugins/designer

CHAPTER 6 ■ CREATING WIDGETS 181

After you build the plugin, you can check whether Designer has found it by accessing the

Help ➤ About Plugins menu item. This will bring up the dialog shown in Figure 6-9. In the

figure, you can see that the plugin has been loaded and that the widget has been found.

Figure 6-9. The plugin has been loaded.

Creating widget plugins for Designer is simply a matter of filling out a given interface. The

job is easy, but it can be quite tedious.

Summary
Custom widgets are what make your application different from the rest. The special task that

your application will perform is often handled through a special widget. Having said this, I

recommend that you pick standard widgets whenever possible because it can be difficult for

the users of your application to learn how to use your special widget.

Designing widgets that fit into the Qt way of writing applications is not hard. First, you

need to find a widget to inherit from—the starting point. If there is no given starting point, you

have to start from the QWidget class.

After you have picked a suitable starting point, you must decide which events you want to

pay attention to. This helps you decide which event handling functions to override. The event

handlers can be considered your interface with users.

When you have decided on your interface, you need to tend to the rest of the application,

including setters, getters, signals, and slots (as well as setting up size policies and creating size

hints). Make sure to think through usage scenarios other than the current one to make your

widget reusable. An investment in time when writing a widget can help you in future projects

because you can save having to reinvent the wheel time after time.

After having discussed all these software development issues, I must emphasize the most

important aspect of your widgets: usability. Try thinking as a user and make sure to test your

design on real users before putting it in your production software.

CHAPTER 6 ■ CREATING WIDGETS182

Drawing and Printing

All painting in Qt is performed through the QPainter class in one way or another. Widgets,

pictures, delegates—everything uses the same mechanism. There is actually one exception to

the rule (to use OpenGL directly), but you’ll start with the QPainter class.

Drawing Widgets
Using Qt you can draw on almost anything: widgets, pictures, pixmaps, images, printers,

OpenGL areas, and so on. The common base class of all these drawables is the QPaintDevice
class.

Since a widget is a paint device, you can easily create a QPainter for drawing onto the

widget; simply pass this as argument to the constructor, as shown in Listing 7-1.

Listing 7-1. Pass this as argument to the QPainter constructor from a paint event handler to set
everything up.

void CircleBar::paintEvent(QPaintEvent *event)
{
...
QPainter p(this);

...
}

To set up a painter for another paint device, just pass a pointer to it to the painter con-

structor. Listing 7-2 shows how a painter for a pixmap is set up. The pixmap that is 200 pixels

wide and 100 pixels high is created. The painter for drawing on the pixmap is then created,

and a pen and a brush are set up. Pens are used to draw the boundary of whatever shape you

are drawing. Brushes are used to fill the interior of the shape.

Before continuing, you need to know what a pixmap is and how it is different from an

image or a picture. There are three major classes for representing graphics in Qt: QPixmap is

optimized for being shown onscreen, QImage is optimized for loading and saving images, and

QPicture records painter commands and makes it possible to replay them later.

183

C H A P T E R 7

■Tip When targeting Unix and X11, the QPixmap class is optimized for showing only onscreen. It can even

be stored on the X server (handing the screen), meaning less communication between the application and

the X server.

Listing 7-2. Creating a pixmap and a painter before setting up a pen and a brush

QPixmap pixmap(200, 100);
QPainter painter(&pixmap);

painter.setPen(Qt::red);
painter.setBrush(Qt::yellow);

...

Listing 7-2 sets the pen and brush to Qt’s standard colors—a red pen and a yellow brush

in this case. It is possible to create colors from the red, green, and blue components through

the constructor of the QColor class. You can use the static methods QColor::fromHsv and

QColor::fromCmyk to create a color from hue, saturation, and value; or cyan, magenta, yellow,

and black. Qt also supports an alpha channel, controlling the opacity of each pixel. (You’ll

experiment with this later in the chapter.)

If you want to clear the pen and brush setting, you can use the setPen(Qt::noPen) and

setBrush(Qt::noBrush) calls. The pen is used to draw the outlines of shapes, while the brush is

used to fill them. Hence, you can draw the outlines without a brush and fill the shapes without

a pen.

The Drawing Operations

The painter class enables you to draw most basic shapes that you might need. This section

lists the most useful methods along with example output. First let’s take a look at a few classes

that are often used as arguments to the drawing method.

When drawing, you must tell the painter where to draw the shapes. Each point of the

screen can be specified using an x and a y value, as shown in Figure 7-1. As you can see, the

y-axis goes from the top, where y is 0 and downward to higher values. In the same way, the

x-axis grows while going from the left to the right. When talking about a point, you write (x,y).

This means that (0,0) is your upper-left corner of the coordinate system.

■Note It’s possible to use negative coordinates to move above and to the left of the (0,0) position.

CHAPTER 7 ■ DRAWING AND PRINTING184

Figure 7-1. The x value increases from left to right; the y value increases from the top downward.

Figure 7-2 shows how the coordinate system of a widget can be different from the screen

when drawing on a widget. The coordinates used when drawing on a widget are aligned so

that (0,0) is the upper-left corner of the widget (which is not always the same as (0,0) in the

device’s global coordinate system). The global coordinate system addresses actual pixels

onscreen, dots on printers, and points on other devices.

Figure 7-2. When drawing on a widget, the upper-left corner of the widget is (0,0).

CHAPTER 7 ■ DRAWING AND PRINTING 185

A point on the screen is represented by a QPoint object, and you can specify the x and y
values for a point in the constructor. A point is usually not enough to draw something; to

specify a point alongside a width and a height you can use the QRect class. The QRect construc-

tor accepts an x value, a y value, and a width, followed by a height. Figure 7-3 shows a QRect
and QPoint in a coordinate system.

Figure 7-3. A QPoint and a QRect with their x, y, width, and height properties

■Tip There are two classes closely related to QPoint and QRect: QPointF and QRectF. They are equiva-

lent, but operate on floating-point values. Almost all methods that accept a rectangle or point can accept

either type of rectangle or point.

Lines

A line is the most basic shape that you can draw using a painter. A line that goes between

two points is drawn by using the drawLine(QPoint,QPoint) method. If you want to join

more points in one go, you can use the drawPolyline(QPoint*, int) method. The

drawLines(QVector<QPoint>) method is also used to draw several lines at once, but the

lines aren’t continuous. The three methods are used in Listing 7-3 and the result is shown

in Figure 7-4.

In the listing, a pixmap is created and filled with white before a painter is created, and the

pen is configured to draw black lines. The two vectors polyPoints and linePoints are initial-

ized, where linePoints is calculated from shifting the polyPoints points 80 pixels to the right.

You can shift the points by adding an offset QPoint to each QPoint, which adds the x and y
values together separately.

CHAPTER 7 ■ DRAWING AND PRINTING186

■Note I refer to polyPoints as a vector because that is what a QPolygon really is. However, the

QPolygon class also provides methods for moving all the points around at once, as well as calculating

the rectangle containing all the points.

To draw actual lines, the drawLine, drawPolyline, and drawLines methods are called. Com-

pare the differences between drawPolyline and drawLines. As you can see, drawPolyline joins

all points, while drawLines joins each pair of points given.

Listing 7-3. Drawing lines using drawLine, drawPolyline, and drawLines

QPixmap pixmap(200, 100);
pixmap.fill(Qt::white);

QPainter painter(&pixmap);
painter.setPen(Qt::black);

QPolygon polyPoints;
polyPoints << QPoint(60, 10)

<< QPoint(80, 90)
<< QPoint(75, 10)
<< QPoint(110, 90);

QVector<QPoint> linePoints;
foreach(QPoint point, polyPoints)
linePoints << point + QPoint(80, 0);

painter.drawLine(QPoint(10, 10), QPoint(30, 90));
painter.drawPolyline(polyPoints);
painter.drawLines(linePoints);

Figure 7-4. Lines drawn using different methods; from left to right: drawLine, drawPolylines, and
drawLines (two lines)

CHAPTER 7 ■ DRAWING AND PRINTING 187

A line is drawn using the pen, so you can draw the line you need by altering the properties

of the pen object. The two most commonly used properties of a QPen object are color and

width, which control the color of the line drawn and the width.

When drawing continuous lines using drawPolyline, it is useful to be able to control how

the lines are joined together—the joinStyle property can help. Figure 7-5 shows the available

styles: bevel, miter, and rounded. The appropriate style is set by setting the joinStyle of your

QPen object to Qt::BevelJoin, Qt::MiterJoin, or Qt::RoundJoin.

Figure 7-5. Line segments can be joined in three ways: bevel, miter, and rounded.

The QPen can be set up to draw dotted and dashed lines as well as completely freely

dashed lines. The different variations of this are shown in Figure 7-6.

Figure 7-6. Lines can be drawn solid or dashed in different patterns—there are predefined
patterns as well as capabilities to do custom patterns.

The pattern is picked by setting the style property of the QPen object to Qt::SolidLine,

Qt::DotLine, Qt::DashLine, Qt::DotDashLine, Qt::DotDotDashLine, or Qt::CustomDashLine. If

you use a custom line, you must also set a custom dash pattern through the dashPattern prop-

erty (Listing 7-4 shows how it’s done). The output from the listing is shown in Figure 7-7.

The dashPattern consists of a vector list of qreal values. The values determine the width

of the dashes and gaps, where the first value is the first dash, then a gap, then a dash, then

another gap, and so on.

CHAPTER 7 ■ DRAWING AND PRINTING188

Listing 7-4. Drawing lines using predefined or custom patterns

QPixmap pixmap(200, 100);
pixmap.fill(Qt::white);

QPainter painter(&pixmap);

QPen pen(Qt::black);

pen.setStyle(Qt::SolidLine);
painter.setPen(pen);
painter.drawLine(QPoint(10, 10), QPoint(190, 10));

pen.setStyle(Qt::DashDotLine);
painter.setPen(pen);
painter.drawLine(QPoint(10, 50), QPoint(190, 50));

pen.setDashPattern(QVector<qreal>() << 1 << 1 << 1 << 1 << 2 << 2
<< 2 << 2 << 4 << 4 << 4 << 4
<< 8 << 8 << 8 << 8);

pen.setStyle(Qt::CustomDashLine);
painter.setPen(pen);
painter.drawLine(QPoint(10, 90), QPoint(190, 90));

Figure 7-7. Predefined and custom patterns

Square Shapes

You can draw rectangles with square or rounded corners, as shown in Figure 7-8. The methods

accept either a QRect or four values representing an (x,y) pair for the top-left corner, then the

width, followed by the height of the rectangle. The methods are named drawRect and

drawRoundRect.

CHAPTER 7 ■ DRAWING AND PRINTING 189

Figure 7-8. Rectangles with square and rounded corners

Listing 7-5 shows how rectangles with rounded and square corners are drawn. The first

two rectangles are drawn using coordinates specified directly in the method calls. The coordi-

nates are specified as x, y, w, h; where x and y specify the top-left corner, and w, h specify the

width of the rectangle.

■Note If w or h is less than 0, the corner specified by x, y is not the top-left corner of the rectangle.

The second pair of rectangles is drawn according to a given QRect class, which holds the

coordinates for the rectangle. In the drawRoundRect call, the rect variable is used directly. In

the drawRect call, the rectangle specified by rect is translated, or moved, 45 pixels down. This

is achieved by using the translated(int x, int y) method that returns a rectangle of the

same size, but moved by the amount of pixels specified.

The results of the drawing operations are shown in Figure 7-9.

Listing 7-5. Drawing rectangles to a pixmap

QPixmap pixmap(200, 100);
pixmap.fill(Qt::white);

QPainter painter(&pixmap);
painter.setPen(Qt::black);

painter.drawRect(10, 10, 85, 35);
painter.drawRoundRect(10, 55, 85, 35);

QRect rect(105, 10, 85, 35);

painter.drawRoundRect(rect);
painter.drawRect(rect.translated(0, 45));

CHAPTER 7 ■ DRAWING AND PRINTING190

Figure 7-9. The drawn rectangles

Round Shapes

Circles and ellipses are drawn by using the drawEllipse method (see Figure 7-10). The method

takes a rectangle or four values for x, y, width, and height (just like the rectangle drawing

methods). To draw a circle, you have to make sure that the width and height are equal.

Figure 7-10. Circles and ellipses are drawn using the drawEllipse method.

Drawing ellipses is fun because you can also draw parts of them. Qt can draw three parts

(shown in Figure 7-11):

• drawArc draws an arc—the part of the line around the circle.

• drawChord draws a circle segment—the area enclosed between the chord and the arc

outside the chord.

• drawPie draws a pie segment—a pie-shaped piece of the ellipse.

All the methods for drawing parts of ellipses take a rectangle (just like the drawEllipse
method). They then accept a starting angle and a value indicating how many degrees the part

of the ellipse is spanning over. The angles are expressed as integers, where the value is 1/16 of

a degree, which means that the value 5760 corresponds to a full circle. The value 0 corre-

sponds to three o’clock, and positive angles move counterclockwise.

Figure 7-11. An arc, a chord, and a pie-shaped piece of a circle

CHAPTER 7 ■ DRAWING AND PRINTING 191

Listing 7-6 shows how to draw ellipses and arcs (the results are shown in Figure 7-12). As

you can see, the proportions of the shapes are changed, and the rightmost ellipse and arc are

actually circular (the width equals the height).

As the source code shows, it is possible to specify the rectangle in which the ellipse or arc

is drawn by using coordinates directly or by passing a QRect value to the drawing method.

When specifying the angles, I multiplied the different values by 16 to convert the value

from actual degrees to the values that Qt expects.

Listing 7-6. Drawing ellipses and arcs

QPixmap pixmap(200, 190);
pixmap.fill(Qt::white);

QPainter painter(&pixmap);
painter.setPen(Qt::black);

painter.drawEllipse(10, 10, 10, 80);
painter.drawEllipse(30, 10, 20, 80);
painter.drawEllipse(60, 10, 40, 80);
painter.drawEllipse(QRect(110, 10, 80, 80));

painter.drawArc(10, 100, 10, 80, 30*16, 240*16);
painter.drawArc(30, 100, 20, 80, 45*16, 200*16);
painter.drawArc(60, 100, 40, 80, 60*16, 160*16);
painter.drawArc(QRect(110, 100, 80, 80), 75*16, 120*16);

Figure 7-12. The drawn ellipses and arcs

CHAPTER 7 ■ DRAWING AND PRINTING192

Text

Qt offers several possible ways to draw text (see Figure 7-13 for some examples). Refer to the

figure while you work your way through the code used to create it.

Figure 7-13. You can draw text in many different ways.

First of all, you need to create a QPixmap to draw to and a QPainter to draw with. You also

have to fill the pixmap with white and set the pen of the painter to be black:

QPixmap pixmap(200, 330);
pixmap.fill(Qt::white);

QPainter painter(&pixmap);
painter.setPen(Qt::black);

Draw the text at the top of the figure, which originates at a QPoint. The following source

code shows you the drawText call is used. The following drawLine class simply marks the point

used with a cross (you can see this cross in Figure 7-13 on the left of the top text).

QPoint point = QPoint(10, 20);
painter.drawText(point, "You can draw text from a point...");
painter.drawLine(point+QPoint(-5, 0), point+QPoint(5, 0));
painter.drawLine(point+QPoint(0, -5), point+QPoint(0, 5));

Drawing text from a point has its advantages—it is an easy way to get text onto the screen.

If you need more control, you can draw text in a rectangle, which means that you can align the

text to the right, left, or center horizontally (also at the top, bottom, or center vertically). The

enumerations used for alignment are summarized in this list:

• Qt::AlignLeft: Align left

• Qt::AlignRight: Align right

CHAPTER 7 ■ DRAWING AND PRINTING 193

• Qt::AlignHCenter: Center-align horizontally

• Qt::AlignTop: Align at the top

• Qt::AlignBottom: Align at the bottom

• Qt::AlignVCenter: Center-align vertically

• Qt::AlignCenter: Center-align both vertically and horizontally

Another benefit of drawing the text inside a rectangle is that the text is clipped to the rec-

tangle, which means you can limit the area used by the text. The following source code draws

a text centered in a rectangle:

QRect rect = QRect(10, 30, 180, 20);
painter.drawText(rect, Qt::AlignCenter,

"...or you can draw it inside a rectangle.");
painter.drawRect(rect);

Because you can limit the text to a rectangle, you also need to be able to determine how

much space the text uses. Start by translating the rectangle to a new position; you’ll get the

standard QFont from the QApplication object. Using the font, set a pixelSize to fit the rectangle

before drawing text on either side of the rectangle.

■Tip Because you’re painting to a QPixmap, use the font from the QApplication. If you were painting to a

QWidget or to a QPixmap used in a specific widget, it would be more logical to get the font from the widget.

This didn’t end up as expected; instead, the text is clipped at the bottom. The pixel size of

a font only defines the size above the base line on which all characters are drawn.

rect.translate(0, 30);

QFont font = QApplication::font();
font.setPixelSize(rect.height());
painter.setFont(font);

painter.drawText(rect, Qt::AlignRight, "Right.");
painter.drawText(rect, Qt::AlignLeft, "Left.");
painter.drawRect(rect);

To really be able to fit the text into a rectangle, use the QFontMetrics class to get accurate

measures of the text. The font metrics class can be used to determine the width of a given text

as well as its height. The height, however, is not dependent on any particular text; it’s defined

entirely by the font. The following code adjusts the height of the rectangle used to keep the

text before drawing the text. Refer to Figure 7-13: the text fits beautifully this time around.

CHAPTER 7 ■ DRAWING AND PRINTING194

rect.translate(0, rect.height()+10);
rect.setHeight(QFontMetrics(font).height());

painter.drawText(rect, Qt::AlignRight, "Right.");
painter.drawText(rect, Qt::AlignLeft, "Left.");
painter.drawRect(rect);

Using drawText to paint text has its limitations. For instance, parts of the text can’t be for-

matted, nor can it be divided into paragraphs. You can use the QTextDocument class to draw

formatted text (as shown in the following source code).

Drawing text with a text document is slightly more complicated than using drawText
directly. Start by creating a QTextDocument object that you initialize with HTML-formatted text

using setHTML. Set up the rectangle in which you’ll draw the text. Translate it to a new position

below the last drawn text and then adjust the height to allow for more text.

The rectangle is then used to set the width of the text document using setTextWidth.

Before you’re ready to draw the text, you must translate the painter (more about this soon)

because the text document will start painting its text at the (0,0) coordinate. Before translating

the painter, save the current state (it’s later restored with a call to the restore method).

Because you translated the painter, you must also translate the rectangle when you call

drawContents to draw the text to the given painter inside the given rectangle.

QTextDocument doc;
doc.setHtml("<p>A QTextDocument can be used to present formatted text "

"in a nice way.</p>"
"<p align=center>It can be formatted "
"in <i>different</i> ways.</p>"
"<p>The text can be really long and contain many "
"paragraphs. It is properly wrapped and such...</p>");

rect.translate(0, rect.height()+10);
rect.setHeight(160);
doc.setTextWidth(rect.width());
painter.save();
painter.translate(rect.topLeft());
doc.drawContents(&painter, rect.translated(-rect.topLeft()));
painter.restore();
painter.drawRect(rect);

As shown in Figure 7-13, the entire contents of the text document would not fit into the

given rectangle. Once again, there is a way to determine the height needed by the text. In this

case, use the height property of the size property from the QTextDocument. In the following

source code, you use this height to determine the size of the gray rectangle drawn below the

rendered text document. This rectangle shows how long the text really is.

rect.translate(0, 160);
rect.setHeight(doc.size().height()-160);
painter.setBrush(Qt::gray);
painter.drawRect(rect);

CHAPTER 7 ■ DRAWING AND PRINTING 195

■Note Although it is fairly easy to draw text using the drawText method, you might want to use the

QTextDocument class to draw more complex texts. This class enables you to draw complex documents

with various formatting and alignments in a straightforward way.

Paths

Painter paths make it possible to draw any shape you want, but the trick is to define a path

surrounding a region. You can then stroke the path with a given pen and brush. A path can

contain several closed regions; for instance, it is possible to represent an entire text string

using a path.

The path shown in Figure 7-14 is created in three steps. First, the QPainterPath object is

created and the circle is added using the addEllipse method. This ellipse forms one closed

region.

QPainterPath path;

path.addEllipse(80, 80, 80, 80);

Figure 7-14. A path has been filled.

The next step is to add the quarter circle originating from the center of the full circle and

stretching to the top and left. It is started at (100, 100), and you move to that point using a

moveTo call. Then you draw a line straight up using lineTo before drawing an arc using addArc.

The arc is drawn in a rectangle starting at (40, 40); that is, 160 pixels high and wide. It starts at

90 degrees and spans another 90 degrees counterclockwise. The region is then closed with a

line that returns to the starting point. This forms another closed region.

■Note The arc starts at 90 degrees because 0 degrees is considered to be the point to the right of the

center point and you want it to start right above the center.

path.moveTo(120, 120);
path.lineTo(120, 40);
path.arcTo(40, 40, 160, 160, 90, 90);
path.lineTo(120, 120);

CHAPTER 7 ■ DRAWING AND PRINTING196

The last part to add is the text below the shapes. This is done by setting up a large font and

then using it in a call to addText. The addText works like drawText but allows the text to start

only from a given point (that is, no texts contained in rectangles). This forms a whole bunch of

closed regions that form the text:

QFont font = QApplication::font();
font.setPixelSize(40);

path.addText(20, 180, font, "Path");

When the painter path is complete, all that’s left to do is stroke it with a painter. In the fol-

lowing code, you configure a pen and a brush for a painter. Then the drawPath method is used

to draw the actual painter path.

Figure 7-14 shows that when the regions overlap, the brush is not applied. This makes it

possible to create hollow paths by putting other paths inside them.

painter.setPen(Qt::black);
painter.setBrush(Qt::gray);

painter.drawPath(path);

Paths can consist of more shapes than the ones used in the preceding source code. The

following list mentions some of the methods that you can use to add shapes to your path:

• addEllipse: Adds an ellipse or circle.

• addRect: Adds a rectangle.

• addText: Adds text.

• addPolygon: Adds a polygon.

When building a region from lines, arcs, and other components, the following methods

can be useful:

• moveTo: Moves the current position.

• lineTo: Draws a line to the next position.

• arcTo: Draws an arc to the next position.

• cubicTo: Draws a cubic Bezier curve (a smooth line) to the next point.

• closeSubpath: Closes the current region by drawing a straight line from the current

position to the starting point.

Paths can be very useful for representing shapes that you need to draw over and over

again, but their true potential is shown when they are combined with brushes (discussed

next).

CHAPTER 7 ■ DRAWING AND PRINTING 197

Brushes

Brushes are used to fill shapes and paths. Until now you used brushes to fill the designated

areas using solid colors. This is only a part of what is possible. Using different patterns, gradi-

ents, or even textures, you can fill your shapes in any conceivable way.

When you create a QBrush object, you can specify a color and a style. The constructor is

defined as QBrush(QColor, Qt::BrushStyle). The QBrush is then given to a QPainter using the

setBrush method.

The style of the brush controls how the color is used when filling shapes. The simplest

styles are patterns, which are used when you need to fill a shape with lines or a dithered

shade. The available patterns and corresponding enumerated styles are shown in Figure 7-15.

Figure 7-15. The available patterns

A more flexible way to fill shapes is to use gradient brushes, which are brushes based on a

QGradient object. A gradient object represents a blend between one or more colors according

to a predefined pattern. The available patterns are shown in Figure 7-16. The linear gradient,

which is based on the QLinearGradient class, defines a two-dimensional linear gradient. The

radial gradient is implemented through QRadialGradient and describes a gradient emanating

from a single point where the shade depends on the distance from the point. The conical gra-
dient, QConicalGradient, represents a gradient emanating from a single point where the shade

depends on the angle from the point.

The different gradients are defined as a spread between two points (except for conical

gradients, which start and stop at an angle). The way the gradient is continued outside the

range defined by those points is defined by the spread policy, which is set with the setSpread
method. The results from the different spread policies are also shown in Figure 7-16. With

pad spread (QGradient::PadSpread) the gradient simply stops when the pads have been

reached. With repeat spread (QGradient::RepeatSpread) the gradient is repeated. With reflected
spread (QGradient::ReflectSpread) the gradient is repeated, but the direction is alternated—

causing the gradient to be reflected every other time.

■Note The spread policy does not affect the conical gradients because they define the color of all pixels.

CHAPTER 7 ■ DRAWING AND PRINTING198

Figure 7-16. Different gradients and spread policies

Listing 7-7 shows how the different gradients are configured. Notice that the linear gradi-

ent is defined between two points, forming a direction. The radial gradient is defined by a

center point and a radius, while the conical gradient is defined as a center point and a starting

angle. The starting angle is specified in degrees, where 0 degrees define the direction pointing

right from the center point.

The gradients are also assigned colors using the setColorAt method. The colors are set for

a value ranging between 0 and 1. These values define a point between the two points for linear

gradients, where one point is 0 and the other point is 1. In the same way, 0 defines the starting

point, and 1 defines the full specified radius for radial gradients. For conical gradients, 0 speci-

fies the starting angle. The value then increases in the counterclockwise direction until 1

specifies the ending angle—which is the same as the starting angle.

■Note It is possible to set several colors at different points; set the end colors to show the effect in a

clear way.

CHAPTER 7 ■ DRAWING AND PRINTING 199

Listing 7-7. Setting up gradients

QLinearGradient linGrad(QPointF(80, 80), QPoint(120, 120));
linGrad.setColorAt(0, Qt::black);
linGrad.setColorAt(1, Qt::white);

...

QRadialGradient radGrad(QPointF(100, 100), 30);
radGrad.setColorAt(0, Qt::black);
radGrad.setColorAt(1, Qt::white);

...

QConicalGradient conGrad(QPointF(100, 100), -45.0);
conGrad.setColorAt(0, Qt::black);
conGrad.setColorAt(1, Qt::white);

To use one of the gradients as a brush, simply pass the QGradient object to the QBrush
constructor. Gradient brushes are not affected by calls to the setColor method of the QBrush
object.

The last way to create a brush is to pass a QPixmap or a QImage object to the QBrush con-

structor or to call setTexture on a QBrush object. This process makes the brush use the given

image as a texture and fill any shape by repeating the pattern (an example is shown in

Figure 7-17).

Figure 7-17. A texture-based brush

Transforming the Reality

As you learned during the discussion of global (device) coordinates and local (widget) coordi-

nates, Qt can use different coordinate systems for different areas of the screen. The difference

between the global and local coordinates is that the origin, the point (0,0), has been moved. In

technical terms, this is known as translating the coordinate system.

CHAPTER 7 ■ DRAWING AND PRINTING200

■Note I refer to the device’s coordinates as global because they are shared between all painters working

on the device (and widgets, if the device happens to be a screen). Each painter is then transformed to a point

relevant to its purpose. Other commonly used notations are physical device coordinates and logical local

coordinates.

The coordinate system of a painter can be translated as well (an example of such a trans-

lation is shown in Figure 7-18). In the figure, the gray box is what is drawn in relation to the

original coordinate system. The coordinate system is transformed through the following call:

painter.translate(30, 30);

The result is that the rectangle is drawn where the black rectangle is—the coordinate

system has been shifted to the right and downward.

Figure 7-18. Translating the coordinate system means moving the origin (0,0).

The painter class is capable of more translations. The coordinate system can be trans-

lated, scaled, rotated, and sheared (these transformations are shown in Figure 7-19, Figure

7-20, and Figure 7-21).

To scale the painter, the following call is made:

painter.scale(1.5, 2.0);

The first parameter is the scaling along the x axis (in the horizontal direction), while the

second parameter is the vertical scaling (see Figure 7-19). Notice that the pen used for paint-

ing is scaled as well—the lines are higher than they are wide.

CHAPTER 7 ■ DRAWING AND PRINTING 201

Figure 7-19. Scaling the coordinate system moves all points closer to the origin (0,0).

When rotating, the following call is made:

painter.rotate(30);

The parameter is the number of degrees to rotate the coordinate system in the clockwise

direction. The method accepts floating-point values, so it is possible to rotate the coordinate

system any number or fraction of a degree (see Figure 7-20).

Figure 7-20. Rotating the coordinate system around the origin (0,0)

The last transformation—shearing—is a bit more complicated. What happens is that the

coordinate system is twisted around the origin. To understand this, look at Figure 7-21 and the

following call:

painter.shear(0.2, 0.5);

Notice that the larger the x value, the larger the change of the y value. In the same way, a

large y value results in a large change in the x value. The first parameter of the shear method

controls how large a change of the y value the x should give, and the second parameter does

the same in reverse. For example, look at the lower-right corner of the sheared rectangle and

compare it with the original gray box. Then compare the upper-left corner of the sheared and

original rectangles. Comparing the two points, you can see that one has moved more than the

other according to the size of the parameters of the shear method. Because the upper-right

corner has non-0 values for both x and y, that point is moved in both directions in accordance

with the parameters.

CHAPTER 7 ■ DRAWING AND PRINTING202

Figure 7-21. Shearing the coordinate system relative to the origin (0,0)

When you perform a transformation of the coordinate system of a painter, you want to

know that there’s a way to get the original settings back. By calling save on your painter object,

the current state is placed on a stack. To restore the last saved state, call restore (this is handy

when you want to apply several transformations that start from the original coordinate sys-

tem). It is also common to be given a pointer to a painter object; you should save the state

before modifying the painter and then restore the painter before returning from the method.

Keep Order

It’s possible to combine several transformations by performing them in turn. When doing this,

the ordering is important because all transformations are referring to the origin (0,0). For

example, rotating always means rotating around the origin, so if you want to rotate a shape

around a different point, you have to translate the center of rotation to (0,0), apply the rota-

tion, and then translate the coordinate system back.

Let’s draw a rectangle at (0,0)—that is, 70 pixels wide and -70 pixels high—with the follow-

ing line:

painter.drawRect(0, 0, 70, -70);

Now rotate the coordinate system 45 degrees using the following line (the result is shown

in Figure 7-22):

painter.rotate(45);

Figure 7-22. Simply rotating the rectangle rotates it around the origin.

CHAPTER 7 ■ DRAWING AND PRINTING 203

If you instead translate the coordinate system so that the center of the rectangle (35, -35)

is the origin before rotating and then retranslating the coordinate system into place, you end

up like Figure 7-23. The code for translating and rotating and then translating back is the fol-

lowing:

painter.translate(35, -35);
painter.rotate(45);
painter.translate(-35, 35);

Figure 7-23. By translating back and forth, it is possible to rotate around the center of the rectangle.

If you mix up the order of the translations, you end up with Figure 7-24 (you have rotated

around the wrong point).

Figure 7-24. Mixing up the order of the translations rotates around the wrong origin.

The order of translations is important for all translations. Both scaling and shearing are

equally dependent on the origin of the coordinate system, just as rotating is.

Painting Widgets

All Qt widgets are paint devices, so you can create a QPainter object and use it to draw to a

widget. However, this can be done only from the paintEvent(QPaintEvent*) method.

CHAPTER 7 ■ DRAWING AND PRINTING204

The paintEvent method is called by the event loop when a widget needs to be redrawn.

You need to tell Qt when you want to redraw your widgets, and Qt will call your paintEvent
method. You can achieve this with two methods: update and repaint. The repaint method

triggers and immediately redraws, while update places a request for an update on the event

queue. The latter means that Qt gets a chance to merge update calls into fewer (optimally as

single) calls to paintEvent. This can be both good and bad. It is bad because you could have

created a widget that relies on paintEvent being called a specific number of times. It is good

because it allows Qt to tune the number or repaints to the current workload of the system run-

ning your application. In almost all cases, you should use update. When doing so, try to avoid

relying on the paintEvent method being called a certain number of times.

■Note There are more reasons for not relying on paintEvent being called as often as you call update.

For instance, your widget can be completely obstructed, or something might be moving in front of it causing

fewer or more calls to paintEvent.

Before you get carried away and start implementing completely new widgets, let’s see how

a button is modified to look different. (A button is a good starting point because it has been

designed for this purpose.) All buttons inherit the QAbstractButton class, which defines the

basic mechanics and properties of a button. This class is then inherited into QPushButton,

QRadioButton, and QCheckBox, which implement three different views of a button.

■Note There are more abstract widgets made to be used as a base for custom widgets, including

QAbstractScrollArea, QAbstractSlider, and QFrame. Notice that even though the two first classes are

abstract, it is not a rule. QFrame can be used as the basis of a new widget, but is also useful on its own.

A New Button

The new button class doesn’t create a radically different button; it simply lets the text of the

button light up when the user presses it. The button class is called MyButton, and the class dec-

laration is shown in Listing 7-8.

In the listing, you can see that the class inherits QAbstractButton class. It then imple-

ments a constructor, a sizeHint method, and a paintEvent method. The sizeHint and

paintEvent methods override existing methods inherited from ancestor classes. This means

that their declarations must remain exactly the same (including that the sizeHint method be

declared as const).

Listing 7-8. The class declaration of the custom button

class MyButton : public QAbstractButton
{
Q_OBJECT

CHAPTER 7 ■ DRAWING AND PRINTING 205

public:
MyButton(QWidget *parent=0);

QSize sizeHint() const;

protected:
void paintEvent(QPaintEvent*);

};

You can review the constructor and the sizeHint method in Listing 7-9. The constructor

simply passes on the parent argument to the parent class. The sizeHint method returns the

size that the widget wants. This is just a hint given to the Qt layout classes, so you can’t rely on

the widget getting these dimensions.

Sizes are represented by QSize objects, which have two properties: width and height. For

the button, these two measurements are dependent on the text to show and the font to use

for showing it. To learn about the dimensions of a given QFont, use a QFontMetrics object. All

widgets have a fontMetrics property returning a QFontMetrics object for the current font. By

asking this object about the width and the height of a given string and then adding 10 pixels

extra in each direction for margins, you get an appropriate size for the widget.

■Note The height of a given font doesn’t depend on the text being entered. Instead, it takes the possible

height of the font into account. The width of a given text for most fonts depends on the text because charac-

ters’ widths differ.

Listing 7-9. The constructor and the sizeHint method of the button

MyButton::MyButton(QWidget *parent) : QAbstractButton(parent)
{
}

QSize MyButton::sizeHint() const
{
return QSize(fontMetrics().width(text())+10, fontMetrics().height()+10);

}

The task of painting the button is taken care of in the paintEvent method (see Listing 7-10).

The method starts with the creation of a QPainter object for painting to the widget. All widgets

are double-buffered by Qt, so when you draw to the painter, you are actually drawing to a

buffer that is used to redraw the screen. This means that you do not have to worry about

flickering.

There are two ways to draw widgets: directly or through a style. By using a style, you can

adapt the widget’s look to the rest of the system. By drawing directly to the widget, you get full

control. For the button you will draw the frame and background using a style and the text

directly.

CHAPTER 7 ■ DRAWING AND PRINTING206

Each widget has a QStyle associated with it that you can reach through the style prop-

erty. This style usually reflects the system’s setting, but it might have been changed from the

code instantiating widget. The widget itself should not care about the origin of the style or its

relation to the current platform.

Before you can use the style for drawing, you need to set up a style option object (in this

case, a QStyleOptionButton object). The style option class to use depends on the style element

to draw. By referring to the Qt documentation for the drawControl method, you can see which

style object it expects.

The style option object is initialized by passing the this pointer to its init method, which

configures most of the settings. However, you still need to tell whether the button is being

pressed or is toggled. These states are available from the isDown and isChecked methods

implemented by the QAbstractButton class. If the isDown method returns true, the button is

currently being pressed. If isChecked returns true, the button has been toggled and is currently

checked (that is, in its on state). When the button is being pressed, set the QStyle::State_
Sunken bit in the style option’s state property. For checked buttons, the QStyle::State_On bit

is set.

■Note The state bits are added using the |= operator (bitwise or), not clearing any bits set by the init

method.

When the style object has been properly set up, the drawControl(ControlElement,
QStyleOption*, QPainter*, QWidget*) of the current style method is called. In the call, you

ask for a QStyle::CE_PushButtonBevel to be painted, which paints all parts of the button

except the text and optional icon.

The second half of the paintEvent method takes care of painting the text directly to the

widget. It starts by setting the font of the painter to the widget’s current font. Then the color of

the pen is determined, depending on the state of the button. Disabled buttons have gray text,

pressed buttons have red text, and all other buttons have dark red text. Notice that isDown
returns true when the button is actively pressed, not when toggled buttons are left in the on

state. This means that the text lights up only when the mouse button is pressed.

When the pen and font of the painter are configured, continue by drawing the actual text

with drawText. The text is centered in the button and is contained by the actual rectangle that

the button occupies. You don’t take the margins that you added in the sizeHint method into

account.

The paintEvent method accepts a QPaintEvent pointer as argument; a pointer that you

choose to ignore in this example. The event object has a member method called rect() that

returns a QRect, specifying the rectangle that the paintEvent method needs to update. For

some widgets you can limit the painting to that rectangle to improve performance.

Listing 7-10. Painting the bevel using a style and the text directly

void MyButton::paintEvent(QPaintEvent*)
{
QPainter painter(this);

CHAPTER 7 ■ DRAWING AND PRINTING 207

QStyleOptionButton option;
option.init(this);
if(isDown())
option.state |= QStyle::State_Sunken;

else if(isChecked())
option.state |= QStyle::State_On;

style()->drawControl(QStyle::CE_PushButtonBevel, &option, &painter, this);

painter.setFont(font());

if(!isEnabled())
painter.setPen(Qt::darkGray);

else if(isDown())
painter.setPen(Qt::red);

else
painter.setPen(Qt::darkRed);

painter.drawText(rect(), Qt::AlignCenter, text());
}

To try out the button, you create a dialog with it. The resulting dialog is shown in action in

Figure 7-26 (but you are still a few steps away).

Start by creating a new dialog in Designer. Add three QPushButton widgets to the dialog

and set their text properties according to the figure of the dialog. Also, set the enabled prop-

erty to false for the top button and the checkable button to true for the bottom one.

Right-click each button and choose Promote To Custom Widget from the popup menu.

This will display the dialog shown alongside the popup menu in Figure 7-25. By entering

MyButton as the custom class name in the dialog, the header file name will (correctly) be

guessed to be mybutton.h, which will cause the user interface compiler to use the MyButton
class when creating the buttons instead of the QPushButton class.

■Caution Because MyButton does not inherit QPushButton (it inherits the QAbstractButton class),

it is important to leave the properties appearing under the QPushButton heading in the Property Editor

untouched. Otherwise, you will experience compilation errors. All properties from the base class

(QAbstractButton) and up can be used freely.

The dialog’s name is set to Dialog, and the middle button is named clickButton before

the design is saved as dialog.ui.

CHAPTER 7 ■ DRAWING AND PRINTING208

Figure 7-25. Using MyButton from Designer

To show the dialog, declare a minimal dialog class (shown in Listing 7-11 and Listing 7-12).

The dialog simply sets up the user interface from the design and connects the button’s clicked
signal to a slot showing a dialog.

Listing 7-11. Header of a minimal dialog

class Dialog : public QDialog
{
Q_OBJECT

public:
Dialog();

private slots:
void buttonClicked();

private:
Ui::Dialog ui;

};

Listing 7-12. Implementation of a minimal dialog

Dialog::Dialog() : QDialog()
{
ui.setupUi(this);

connect(ui.clickButton, SIGNAL(clicked()), this, SLOT(buttonClicked()));
}

CHAPTER 7 ■ DRAWING AND PRINTING 209

void Dialog::buttonClicked()
{
QMessageBox::information(this, tr("Wohoo!"), tr("You clicked the button!"));

}

The dialog, combined with a minimal main function, produces the dialog shown in

Figure 7-26. In the figure, the top button is disabled, the middle button is being pressed, while

the bottom one is an inactive toggle button.

Figure 7-26. The MyButton class in action

Completely Custom

If you need to create a completely new widget (something that does not act like any other

widget), you have to subclass the QWidget class directly. This enables you to do anything, but

that freedom also comes with responsibilities. All internal states have to be managed by you,

as will all repainting and size hinting.

Let’s start by looking at what you’re trying to do. The widget that you’ll create is called

CircleWidget and will listen to mouse events. When the mouse is pressed, a circle is created.

As long as a mouse button is pressed within the circle, the circle grows. If the mouse is pressed

while the pointer is kept outside the circle, the circle will shrink until it disappears, and a new

circle will start to grow where the pointer was when the first circle disappeared (see Figure 7-27).

Figure 7-27. A circle shown by the circle widget

CHAPTER 7 ■ DRAWING AND PRINTING210

You have to track mouse events: button presses, button releases, and pointer movements.

You also need to have a timer for growing and shrinking the circles over time. Finally, you have

to take care of the repainting and give the Qt layout classes a size hint (all can be seen in the

class declaration in Listing 7-13).

Looking at the class declaration, you can group together the contents:

• The basic necessities: Here you find the constructor and sizeHint.

• Painting: The paintEvent method uses the variables x, y, r, and color for keeping track

of what to draw.

• Mouse interaction: The mouse’s events are caught using mousePressEvent,

mouseMoveEvent, and mouseReleaseEvent. The last known mouse position is kept

in mx and my.

• Timing: The QTimer object pointed to by timer is connected to the timeout slot.

It updates x, y, r, and color depending on the mx and my values.

■Note The sizeHint method is not necessary, but you are encouraged to implement it for all your

widgets.

Listing 7-13. The class declaration of the custom widget

class CircleWidget : public QWidget
{
Q_OBJECT

public:
CircleWidget(QWidget *parent=0);

QSize sizeHint() const;

private slots:
void timeout();

protected:
void paintEvent(QPaintEvent*);

void mousePressEvent(QMouseEvent*);
void mouseMoveEvent(QMouseEvent*);
void mouseReleaseEvent(QMouseEvent*);

private:
int x, y, r;
QColor color;

CHAPTER 7 ■ DRAWING AND PRINTING 211

int mx, my;

QTimer timer;
};

The constructor shown in Listing 7-14 initializes the radius of the current circle, r, to 0,

meaning no circle. It then configures and connects a QTimer object. The timer interval is set to

50 milliseconds, meaning that the circle will be updated roughly 20 times per second (this is

often enough to imitate a continuous motion).

Listing 7-14. Initializing the custom widget

CircleWidget::CircleWidget(QWidget *parent) : QWidget(parent)
{
r = 0;

timer.setInterval(50);

connect(&timer, SIGNAL(timeout()), this, SLOT(timeout()));
}

The sizeHint method is the simplest one of the entire class; it simply returns a static size

(see Listing 7-15).

Listing 7-15. Returning a static size

QSize CircleWidget::sizeHint() const
{
return QSize(200, 200);

}

Listing 7-16 shows the three methods used to track the mouse activity. Before looking too

closely at the methods it is important to know that mouse movements are reported only when

the mouse buttons are pressed. This means that mouseMoveEvent will not be called unless a

mouse button is pressed.

■Tip You can get mouse movement reports by setting the mouseTracking property to true.

Both mousePressEvent and mouseMoveEvent update the mx and my variables according to the

coordinates passed in the QMouseEvent object. They are used by the timeout slot when deter-

mining whether it wants to grow or shrink the current circle. The timeout slot is connected to

the timer, so you can turn the timeout slot on and off by starting and stopping the timer in the

mousePressEvent and mouseReleaseEvent. The timer will be active only when a mouse button is

being pressed (during that time, the mx and my values are valid).

CHAPTER 7 ■ DRAWING AND PRINTING212

Listing 7-16. Handling mouse events

void CircleWidget::mousePressEvent(QMouseEvent *e)
{
mx = e->x();
my = e->y();

timer.start();
}

void CircleWidget::mouseMoveEvent(QMouseEvent *e)
{
mx = e->x();
my = e->y();

}

void CircleWidget::mouseReleaseEvent(QMouseEvent *e)
{
timer.stop();

}

When the timer is active, the timeout slot is called about 20 times per second. The task of

the slot is to determine whether it will create a new circle, grow the current circle, or shrink it.

Listing 7-17 shows how it’s done.

If the current radius, r, is 0, a new circle is created with its center (x, y) in the current

mouse position: mx, my. A new color is created randomly, so each new circle will have a new

color.

Whether working on a new circle or not, the slot then checks to see if mx, my is within the

circle by using the Pythagorean Theorem (comparing the squared distance between mx, my and

x, y to the radius, r, squared). If the mouse is within an existing circle, the radius is increased; if

it is outside, the radius is decreased.

When all the changes to the circle have been made, the update method is called, which

puts a paint event on the Qt event queue. When that event is reached, the paintEvent method

is invoked.

Listing 7-17. Changing the circles according to the current circle’s position and size and the
mouse pointer’s position

void CircleWidget::timeout()
{
if(r == 0)
{
x = mx;
y = my;

color = QColor(qrand()%256, qrand()%256, qrand()%256);
}

CHAPTER 7 ■ DRAWING AND PRINTING 213

int dx = mx-x;
int dy = my-y;

if(dx*dx+dy*dy <= r*r)
r++;

else
r--;

update();
}

The paintEvent method is shown in Listing 7-18. All the method does is paint the current

circle (as defined by x, y, r, and color if r is more than 0). Because circle edges sometimes have

a tendency to look jagged, you also tell the painter to soften the edges with antialiasing (by

setting a rendering hint). As the name suggests, it is a hint, not a guaranteed operation.

■Tip Antialiasing means that the edges of a shape are smoothed. The edges sometimes appear jagged

because the edge is located between the available pixels. By calculating the amount of color to add to each

pixel, a smoother result can be achieved (depending on how close to the edge each pixel is located).

Simply painting the new circle without erasing anything works because Qt always copies

the background graphics by default. Because this widget isn’t intended to be placed on top of

other widgets, that usually means plain gray. You can force Qt to fill the background with the

style’s background color by setting the autoFillBackground property to true.

Listing 7-18. Painting the circle

void CircleWidget::paintEvent(QPaintEvent*)
{
if(r > 0)
{
QPainter painter(this);

painter.setRenderHint(QPainter::Antialiasing);

painter.setPen(color);
painter.setBrush(color);
painter.drawEllipse(x-r, y-r, 2*r, 2*r);

}
}

When discussing paint events, there are a few widget attributes that you should be

aware of—they can be used to further optimize widget painting. You can set these attributes

using the setAttribute(Qt::WidgetAttribute, bool) method. The Boolean argument, which

CHAPTER 7 ■ DRAWING AND PRINTING214

is true by default, indicates that the attribute should be set. If false is passed instead,

the attribute is cleared. You can test whether an attribute is set by using the

testAttribute(Qt::WidgetAttribute) method. This incomplete list explains some

attributes that can be used to optimize widget painting:

• Qt::WA_OpaquePaintEvent: When the widget repaints itself, it draws all its pixels using

opaque colors. This means no alpha blending, and Qt doesn’t need to handle back-

ground clearing.

• Qt::WA_NoSystemBackground: The same as Qt::WA_OpaquePaintEvent, but more definite.

Widgets without system background are not event-initialized by Qt, so the underlying

graphics will shine through until the widget has been painted.

• Qt::WA_StaticContents: The content is static and has its center of origin in the top-left

corner. When such a widget is enlarged, only the new rectangles appearing to the right

and below need repainting. When being shrunk, no paintEvent at all is needed.

The Graphics View
Until now, you have managed all custom painting through the paintEvent. The graphics view

framework takes into account that most applications are built around a two-dimensional can-

vas. By providing classes for handing this scenario in an optimized manner, it is possible to

create a feeling of a custom widget without actually creating a custom widget.

The graphics view framework is built from three basic components: the view, the scene,

and the items. A view class, QGraphicsView, is a widget that shows the contents of a scene. The

scene, QGraphicsScene, holds a collection of widgets and manages the propagation of events

and states concerning the items. Each item is a subclass of QGraphicsItem and represents a

single graphical item or a group of items.

The basic idea is that you create a set of items, put it in a scene, and let a view show it. By

listening to events and redrawing your items, you can create the user interface that you want.

To avoid having to create a set of items, Qt comes with a range of prepared items.

Listing 7-19 shows a main function in which a scene is filled with standard items and

shown using a view. Let’s start from the top of the function and work down.

Start by creating a QGraphicsScene object called scene and pass a QRect to the constructor.

This rectangle is used to define the scene. All items are expected to appear inside of this area.

Notice that the scene can start from a non-zero coordinate—it can even start from a negative

coordinate.

The next step is to populate the scene with items. Start by creating

QGraphicsRectItem(QRect,QGraphicsItem*,QGraphicsScene*). The constructor accepts a rec-

tangle defining the dimensions and location of the item, a QGraphicsItem pointer to a parent

item, and a QGraphicsScene pointer to a parent scene. Using parent items, it is possible to

place items in other items (you’ll learn more about this later). By passing a scene pointer,

you add the item to the given scene. You can also do this with the addItem(QGraphicsItem*)
method available from the scene object. When the rectangle has been added to the scene, you

also set a pen and a brush for it.

CHAPTER 7 ■ DRAWING AND PRINTING 215

■Note If you don’t set a pen or a brush, you’ll end up with the standard settings, which usually means no

brush and black solid lines.

The next item you create is a QGraphicsSimpleTextItem. The constructor takes a QString
text and the two parent pointers. Because the constructor does not let you position the text,

call the setPos method to position the top-left corner of the item.

Add a QGraphicsEllipseItem with a constructor that takes a rectangle and the parent

pointers. Follow with a QGraphicsPolygonItem that takes a QPolygonF object and the parent

pointers. The QPolygonF is initialized using a vector of QPointF objects. These points define the

points between which the edges of the polygon are drawn. Set a pen and a brush for both of

these objects.

When these items have been added to the scene, create a QGraphicsView widget and call

setScene(QGraphicsScene*) to tell it which scene to show. You then show the view and run

app.exec() to start the event loop. The resulting window is shown in Figure 7-28.

Listing 7-19. Populating a scene with standard shapes

int main(int argc, char **argv)
{
QApplication app(argc, argv);

QGraphicsScene scene(QRect(-50, -50, 400, 200));

QGraphicsRectItem *rectItem = new QGraphicsRectItem(
QRect(-25, 25, 200, 40), 0, &scene);

rectItem->setPen(QPen(Qt::red, 3, Qt::DashDotLine));
rectItem->setBrush(Qt::gray);

QGraphicsSimpleTextItem *textItem = new QGraphicsSimpleTextItem(
"Foundations of Qt", 0, &scene);

textItem->setPos(50, 0);

QGraphicsEllipseItem *ellipseItem = new QGraphicsEllipseItem(
QRect(170, 20, 100, 75),
0, &scene);

ellipseItem->setPen(QPen(Qt::darkBlue));
ellipseItem->setBrush(Qt::blue);

QVector<QPointF> points;
points << QPointF(10, 10) << QPointF(0, 90) << QPointF(40, 70)

<< QPointF(80, 110) << QPointF(70, 20);
QGraphicsPolygonItem *polygonItem = new QGraphicsPolygonItem(

QPolygonF(points()), 0, &scene);
polygonItem->setPen(QPen(Qt::darkGreen));
polygonItem->setBrush(Qt::yellow);

CHAPTER 7 ■ DRAWING AND PRINTING216

QGraphicsView view;
view.setScene(&scene);
view.show();

return app.exec();
}

Figure 7-28. A graphics view with some standard items

Figure 7-28 and Listing 7-19 show a number of interesting things:

• The view’s upper-left corner corresponds to the scene coordinate -50, -50 because of

the QRect passed to the scene’s constructor.

• The rectangle item is obstructed by the polygon and ellipse because the scene items

are drawn in the order in which they were added to the scene. It can be controlled pro-

grammatically if you don’t like it.

• If you try running the example yourself and shrink the window containing the view, the

view will automatically show sliders to let you pan over the entire scene.

There are other standard items that come with Qt, some of which are listed here:

• QGraphicsPathItem: Draws a painter path.

• QGraphicsLineItem: Draws a single line.

• QGraphicsPixmapItem: Draws a pixmap; that is, a bitmapped image.

• QGraphicsSvgtIem: Draws a vector graphics image.

• QGraphicsTextItem: Draws complex text such as a rich text document.

You can transform shape items freely with a graphics view, which is also where the item’s

parent enters the picture. If an item’s parent item is transformed, the child is transformed in

the same way.

Listing 7-20 shows the function createItem, which takes a parent scene pointer and an

x offset as arguments. These two arguments are then used to create a rectangle containing

another rectangle and an ellipse. The outer rectangle is filled with a gray brush; the inner

items are filled with white.

CHAPTER 7 ■ DRAWING AND PRINTING 217

The function returns a pointer to the outer rectangle, which in turn contains the other

two. This means that the pointer can be used to manipulate all the shapes.

Listing 7-20. A shape containing two other shapes

QGraphicsItem *createItem(int x, QGraphicsScene *scene)
{
QGraphicsRectItem *rectItem = new QGraphicsRectItem(

QRect(x+40, 40, 120, 120),
0, scene);

rectItem->setPen(QPen(Qt::black));
rectItem->setBrush(Qt::gray);

QGraphicsRectItem *innerRectItem = new QGraphicsRectItem(
QRect(x+50, 50, 45, 100),
rectItem, scene);

innerRectItem->setPen(QPen(Qt::black));
innerRectItem->setBrush(Qt::white);

QGraphicsEllipseItem *ellipseItem = new QGraphicsEllipseItem(
QRect(x+105, 50, 45, 100),
rectItem, scene);

ellipseItem->setPen(QPen(Qt::black));
ellipseItem->setBrush(Qt::white);

return rectItem;
}

The createItem function is used in the main function shown in Listing 7-21, in which a

scene is created. Five items are then added to that scene before it is shown. Each of the items

is transformed in a different manner. The resulting scene can be seen in Figure 7-29. Refer to

the figure and the source code when you look at the transformations applied on each of these

items.

Figure 7-29. From the left: original, rotated, scaled, sheared, and all at once

The item1 item is placed in the scene without any transformations being applied. It can

be seen as the reference item.

The item2 item is translated, rotated 30 degrees, and then translated back to its original

position so that the rotation is made around the (0,0) point. By translating the item so its

center point is in the point (0,0), you can rotate it about its center before putting it back in its

original position by translating it back.

CHAPTER 7 ■ DRAWING AND PRINTING218

The item3 item is also translated so that the point (0,0) becomes the center of the item. It

is scaled before it is translated back because the scaling is also relative to the coordinate sys-

tem’s center point. By scaling the item around its center, you change the size of the shape, but

not its position.

The fourth item, item4, is translated and retranslated as both item2 and item3. Between

the translations it is sheared.

The fifth item, item5, is scaled, rotated, and sheared, which makes it distorted. This item

shows how to apply all transformations to one object.

■Note When applying transformations, it is important to keep the order in mind. Applying the transforma-

tions in a different order will yield a different result.

Listing 7-21. Transforming the five items

int main(int argc, char **argv)
{
QApplication app(argc, argv);

QGraphicsScene scene(QRect(0, 00, 1000, 200));

QGraphicsItem *item1 = createItem(0, &scene);

QGraphicsItem *item2 = createItem(200, &scene);
item2->translate(300, 100);
item2->rotate(30);
item2->translate(-300, -100);

QGraphicsItem *item3 = createItem(400, &scene);
item3->translate(500, 100);
item3->scale(0.5, 0.7);
item3->translate(-500, -100);

QGraphicsItem *item4 = createItem(600, &scene);
item4->translate(700, 100);
item4->shear(0.1, 0.3);
item4->translate(-700, -100);

QGraphicsItem *item5 = createItem(800, &scene);
item5->translate(900, 100);
item5->scale(0.5, 0.7);
item5->rotate(30);
item5->shear(0.1, 0.3);
item5->translate(-900, -100);

CHAPTER 7 ■ DRAWING AND PRINTING 219

QGraphicsView view;
view.setScene(&scene);
view.show();

return app.exec();
}

When working with graphics items, you can use the Z value to control the order in which

the items are drawn. You can set each item using the setZValue(qreal) method. The default

Z value for any item is 0.

When drawing the scene, items with a high Z value appear in front of items with lower

Z values. For items with the same Z value, the order is undefined.

Interacting Using a Custom Item

With custom items you can create the kind of behavior you want by using graphics view. This

flexibility and ease of implementing custom shapes are what make graphics view such a nice

tool to use.

The aim of this section is to create a set of handles: one central handle for moving shapes

and two edge handles for resizing them. Figure 7-30 shows the handles in action. Notice that

you can apply handles to several shapes at once and that the shapes used are standard shapes:

QGraphicsRectItem and QGraphicsEllipseItem.

Figure 7-30. The handles in action

CHAPTER 7 ■ DRAWING AND PRINTING220

Let’s start looking at the code, beginning from the main function of the application. This

shows how the handles are created, configured, and used. The main function is shown in

Listing 7-22.

The function starts by creating the Qt classes that you need: a QApplication, a

QGraphicsScene, and the two shapes represented through a QGraphicsRectItem and a

QGraphicsEllipseItem. When these shapes have been added to the scene, it’s time to create

six HandleItem objects—three for each of the shapes.

Each handle’s constructor takes the following arguments: an item to act upon, a scene, a

color, and a role. The available roles are TopHandle, RightHandle, and CenterHandle. When you

create a CenterHandle you have to pass a QList with pointers to the two other handles. That is,

if you choose to have other handles, the CenterHandle works perfectly on its own, as do the

other two variants.

The main function then continues by creating a QGraphicsView and sets it up to show the

scene. The main loop is then started by calling the exec method on the QApplication object.

However, you do not return the result from this directly. Because the handles refer to the other

shapes without being child nodes, it is important that you delete the handles first. The

remaining shapes are then deleted when the QGraphicsScene is destroyed.

Listing 7-22. Using the HandleItem class in a scene

int main(int argc, char **argv)
{
QApplication app(argc, argv);

QGraphicsScene scene(0, 0, 200, 200);

QGraphicsRectItem *rectItem = new QGraphicsRectItem(
QRect(10, 10, 50, 100),
0, &scene);

QGraphicsEllipseItem *elItem = new QGraphicsEllipseItem(
QRect(80, 40, 100, 80),
0, &scene);

HandleItem *trh = new HandleItem(rectItem, &scene, Qt::red,
HandleItem::TopHandle);

HandleItem *rrh = new HandleItem(rectItem, &scene, Qt::red,
HandleItem::RightHandle);

HandleItem *crh = new HandleItem(rectItem, &scene, Qt::red,
HandleItem::CenterHandle,
QList<HandleItem*>() << trh << rrh);

HandleItem *teh = new HandleItem(elItem, &scene, Qt::green,
HandleItem::TopHandle);

HandleItem *reh = new HandleItem(elItem, &scene, Qt::green,
HandleItem::RightHandle);

HandleItem *ceh = new HandleItem(elItem, &scene, Qt::green,
HandleItem::CenterHandle,
QList<HandleItem*>() << teh << reh);

CHAPTER 7 ■ DRAWING AND PRINTING 221

QGraphicsView view;
view.setScene(&scene);
view.show();

return app.exec();

}

Now that you know how the handles look and how the class is used in a scene, it’s time to

have a look at the actual class. Listing 7-23 shows the class declaration.

The listing starts with a forward declaration of the class because the class will contain

pointers to instances of itself. Then it defines an enumeration of the different available roles:

CenterHandle, RightHandle, and TopHandle.

The constructor that follows the enum contains all the expected arguments, as discussed

earlier. However, the role and list of handles have default values. The default role is a center

handle, and the list is empty by default.

The next two methods are required when inheriting from QGraphicsItem. The paint

method is responsible for painting the shape upon request, while boundingRect tells the scene

how large the shape is.

The class declaration then continues with a set of protected methods. You can override

these methods to interact with the user through the shape. The mousePressEvent and

mouseReleaseEvent methods react to the mouse buttons, while the itemChange method can be

used to filter and react to all changes to the item. You use it to react to and limit the moving of

the widget.

The private section ends the class declaration. It contains all the local states and variables

that are needed. The following list summarizes their roles and uses (you will look more closely

at how they are used in the rest of this section):

• m_item: The QGraphicsItem that the handles acts on.

• m_role: The role of the handle.

• m_color: The color of the handle.

• m_handles: A list of other handles acting on the same m_item—required by center

handles.

• m_pressed: A Boolean that indicates whether the mouse button is pressed. This is

important because you need to be able to tell whether the handle is moving because

of user interaction or programmatic changes.

Listing 7-23. The handle class

class HandleItem;

class HandleItem : public QGraphicsItem
{
public:

CHAPTER 7 ■ DRAWING AND PRINTING222

enum HandleRole
{
CenterHandle,
RightHandle,
TopHandle

};

HandleItem(QGraphicsItem *item, QGraphicsScene *scene,
QColor color, HandleRole role = CenterHandle,
QList<HandleItem*> handles = QList<HandleItem*>());

void paint(QPainter *paint,
const QStyleOptionGraphicsItem *option, QWidget *widget);

QRectF boundingRect() const;

protected:
void mousePressEvent(QGraphicsSceneMouseEvent *event);
void mouseReleaseEvent(QGraphicsSceneMouseEvent *event);

QVariant itemChange(GraphicsItemChange change, const QVariant &data);

private:
QGraphicsItem *m_item;

HandleRole m_role;
QColor m_color;

QList<HandleItem*> m_handles;

bool m_pressed;
};

The constructor shown in Listing 7-24 simply initializes all the class variables before set-

ting a high zValue. This ensures that the handles appear in front of the shapes that they work

with. Then a flag is set to make the shapes moveable by using the setFlag method.

■Tip Other flags let you enable the shape to be allowed to be selected (ItemIsSelectable) or accept

keyboard focus (ItemIsFocusable). These flags can be combined through logical or operations.

Listing 7-24. The constructor of the handle item

HandleItem::HandleItem(QGraphicsItem *item, QGraphicsScene *scene,
QColor color, HandleItem::HandleRole role,
QList<HandleItem*> handles)
: QGraphicsItem(0, scene)

CHAPTER 7 ■ DRAWING AND PRINTING 223

{
m_role = role;
m_color = color;

m_item = item;
m_handles = handles;

m_pressed = false;
setZValue(100);

setFlag(ItemIsMovable);
}

Because the class actually implements three different handles, it often uses switch
statements to differentiate between the different roles (see Listing 7-25, which shows the

boundingRect method). The bounding rectangle is defined by the location of the bounding

rectangle of the shape that is handled. The handles do not have a position of their own;

instead they are entirely based on the location and size of the handled shape.

Listing 7-25. Determining the bounding rectangle of the handles

QRectF HandleItem::boundingRect() const
{
QPointF point = m_item->boundingRect().center();

switch(m_role)
{
case CenterHandle:
return QRectF(point-QPointF(5, 5), QSize(10, 10));

case RightHandle:
point.setX(m_item->boundingRect().right());
return QRectF(point-QPointF(3, 5), QSize(6, 10));

case TopHandle:
point.setY(m_item->boundingRect().top());
return QRectF(point-QPointF(5, 3), QSize(10, 6));

}

return QRectF();
}

The paint method shown in Listing 7-26 uses the boundingRect method to determine

where and how to draw the different handles. The center handle is drawn as a circle, while the

top and right handles are drawn as arrows pointing up and right.

■Note When painting the top and right handles, use the center method to find the center point of the

bounding rectangle.

CHAPTER 7 ■ DRAWING AND PRINTING224

Listing 7-26. Painting the handles

void HandleItem::paint(QPainter *paint,
const QStyleOptionGraphicsItem *option,
QWidget *widget)

{
paint->setPen(m_color);
paint->setBrush(m_color);

QRectF rect = boundingRect();
QVector<QPointF> points;

switch(m_role)
{
case CenterHandle:
paint->drawEllipse(rect);
break;

case RightHandle:
points << rect.center()+QPointF(3,0) << rect.center()+QPointF(-3,-5)

<< rect.center()+QPointF(-3,5);
paint->drawConvexPolygon(QPolygonF(points));
break;

case TopHandle:
points << rect.center()+QPointF(0,-3) << rect.center()+QPointF(-5,3)

<< rect.center()+QPointF(5,3);
paint->drawConvexPolygon(QPolygonF(points));
break;

}
}

After you determine where to paint and then paint the handles, the next step is to wait for

user interaction. Listing 7-27 shows the methods for handling mouse button events such as

press and release.

Because you set the ItemIsMoveable flag earlier in the constructor, all you have to do is

update the m_pressed variable before passing the event on the QGraphicsItem handler.

Listing 7-27. Handling the mouse press and release events

void HandleItem::mousePressEvent(QGraphicsSceneMouseEvent *event)
{
m_pressed = true;
QGraphicsItem::mousePressEvent(event);

}

void HandleItem::mouseReleaseEvent(QGraphicsSceneMouseEvent *event)
{
m_pressed = false;
QGraphicsItem::mouseReleaseEvent(event);

}

CHAPTER 7 ■ DRAWING AND PRINTING 225

When a user chooses to move a handle, the itemChange method is invoked. This method

gives you a chance to react to (or even stop) a change (you can see the implementation in List-

ing 7-28). I cut out the parts of the listing that handle movements of the different roles (you

will look at them later); the listing shows only the outer framework. Simply let programmatic

movements and changes that aren’t related to movements pass through to the corresponding

QGraphicsItem method. If you run into a user-invoked position change, you act differently

depending on the role of the handle. But first the actual movement is calculated by comparing

the new position with the current position. The new position is passed through the data argu-

ment, while the current position is given from the pos method. You also determine the center

point of the shape being handled because it is used when handling both the right and top

handles.

Listing 7-28. Handling changes to the handle

QVariant HandleItem::itemChange(GraphicsItemChange change,
const QVariant &data)

{
if(change == ItemPositionChange && m_pressed)
{
QPointF movement = data.toPoint() - pos();
QPointF center = m_item->boundingRect().center();

switch(m_role)
{

...
}

}

return QGraphicsItem::itemChange(change, data);
}

Listing 7-29 shows how to handle a user-invoked position change of a center handle.

Move the item that is being handled, m_item, by using a moveBy call. All the handles in the

m_handles list are translated into place because any right and top handles must follow the

shape they are handling.

Listing 7-29. Handle movements of a center handle

switch(m_role)
{
case CenterHandle:
m_item->moveBy(movement.x(), movement.y());

foreach(HandleItem *handle, m_handles)
handle->translate(movement.x(), movement.y());

CHAPTER 7 ■ DRAWING AND PRINTING226

break;
...

}

return QGraphicsItem::itemChange(change, pos()+movement);

The top and right handles affect only themselves, which means that they do not use the

m_handles list. The center point of the shape is not affected; the horizontal direction is not

affected by the top handler nor is the vertical direction affected by the right handle.

Listings 7-30 and 7-31 show how the roles are handled. The listings look very similar; the

only difference is the direction in which they act.

Let’s look at the details of Listing 7-30; that is, the top handle. The listing starts with an if
clause that ensures that the shape will not be too small. If that’s the case, pass the current

position as the next position to the QGraphicsItem itemChange method.

If the handled shape is big enough, continue by limiting the movement to the direction

of the handle (you don’t allow horizontal movement for the top handle). Then you translate

the shape being handled so the center of the shape is the origo of the coordinate system. This

is a preparation for the scaling, in which you scale the shape according to the movement.

The shape is translated back into its original location, the switch statement is left, and the

QGraphicsItem itemChange method is given the event, but with the direction of limited

movement.

Listing 7-30. Handling movements of a top handle

switch(m_role)
{

...
case TopHandle:
if(-2*movement.y() + m_item->sceneBoundingRect().height() <= 5)
return QGraphicsItem::itemChange(change, pos());

movement.setX(0);

m_item->translate(center.x(), center.y());
m_item->scale(1, 1.0-2.0*movement.y()

/(m_item->sceneBoundingRect().height()));
m_item->translate(-center.x(), -center.y());
break;

}

return QGraphicsItem::itemChange(change, pos()+movement);

Listing 7-31. Handling movements of a right handle

switch(m_role)
{

...
case RightHandle:

CHAPTER 7 ■ DRAWING AND PRINTING 227

if(2*movement.x() + m_item->sceneBoundingRect().width() <= 5)
return QGraphicsItem::itemChange(change, pos());

movement.setY(0);

m_item->translate(center.x(), center.y());
m_item->scale(1.0+2.0*movement.x()

/(m_item->sceneBoundingRect().width()), 1);
m_item->translate(-center.x(), -center.y());

break;
...

}

return QGraphicsItem::itemChange (change, pos()+movement);

Printing

Qt handles printers with the QPrinter class, which represents a print job to a specific printer

and can be used as a paint device. This means that you can create a QPainter for painting onto

a page represented through QPrinter. The printer object is then used to create new pages and

tell the printer when the job is ready to be printed.

Take a look at some of the properties available from the class:

• colorMode: The printer prints in color or grayscale. Can be set to either QPrinter::Color
or QPrinter::GrayScale.

• orientation: The page can either be positioned as a landscape (QPrinter::Landscape)

or as a portrait (QPrinter::Portrait).

• outputFormat: The printer can print to the platform’s native printing system

(QPrinter::Native), a PDF document (QPrinter::PdfFormat), or a PostScript document

(QPrinter::PostScriptFormat). When printing to a file, which is necessary when creat-

ing PDF and PostScript documents, you must set the file name for the document using

setOutputFileName.

• pageSize: The size of the paper according to different standards. Includes the paper

sizes A4 (QPrinter::A4) and Letter (QPrinter::Letter), but supports many more. Refer

to the Qt documentation for details.

Let’s continue with some actual printing.

■Tip When experimenting with printing, it can be really useful to have a virtual printer driver or to print to a

file—it can save lots of paper.

CHAPTER 7 ■ DRAWING AND PRINTING228

Painting to the Printer

The most straightforward way to draw to a printer is to create a QPainter to access the

QPrinter object directly. To configure the QPrinter object, use a QPrintDialog standard dialog

(see Figure 7-31), in which the user can pick a printer and also make some basic choices about

the print job.

Figure 7-31. A printer selection and configuration dialog

Listing 7-32 shows the source code of an entire application that creates a five-page print-

out. The top of one of the pages from the print job is shown in Figure 7-32.

Figure 7-32. A painted page

Listing 7-32 starts by creating QApplication, QPrinter, and QPrintDialog. The dialog is

then executed; if it is accepted, you’ll do some printing.

The actual printing is prepared as you create a QPainter referring to the printer object and

set it to use a black pen. Then you use a for loop to create five pages. For each page, draw a

rectangle and two lines forming a cross in the QPrinter pageRect. This is a rectangle represent-

ing the printable area (the rectangle representing the entire paper is called the paperRect).

CHAPTER 7 ■ DRAWING AND PRINTING 229

Calculate the dimensions of the textArea rectangle. (This rectangle has one-half inch

margins on the sides and at the top, and a full inch at the bottom.) The resolution method

gives the number of dots per inch, so 0.5*printer.resolution() results in the number of dots

needed to cover one-half inch. You draw a frame around the text area and then print the page

number as text inside the same rectangle.

If you’re not on the last page, that is, the page isn’t equal to four, call the newPage method.

This page prints the current page and creates a new blank page to continue painting on.

Listing 7-32. Painting to a QPrinter object

int main(int argc, char **argv)
{
QApplication app(argc, argv);

QPrinter printer;
QPrintDialog dlg(&printer);
if(dlg.exec() == QDialog::Accepted)
{
QPainter painter(&printer);

painter.setPen(Qt::black);

for(int page=0; page<5; page++)
{
painter.drawRect(printer.pageRect());x
painter.drawLine(printer.pageRect().topLeft(),

printer.pageRect().bottomRight());
painter.drawLine(printer.pageRect().topRight(),

printer.pageRect().bottomLeft());

QRectF textArea(
printer.pageRect().left() +printer.resolution() * 0.5,
printer.pageRect().top() +printer.resolution() * 0.5,
printer.pageRect().width() -printer.resolution() * 1.0,
printer.pageRect().height()-printer.resolution() * 1.5);

painter.drawRect(textArea);

painter.drawText(textArea, Qt::AlignTop | Qt::AlignLeft,
QString("Page %1").arg(page+1));

if(page != 4)
printer.newPage();

}
}

return 0;
}

CHAPTER 7 ■ DRAWING AND PRINTING230

Rendering a Graphics Scene to the Printer

It might be easy to draw to a printer using a painter object, but it doesn’t help if your entire

document is based on the graphics view framework. You must be able to render your scene to

the printer, which is very easy to do.

Compare Listing 7-33 with Listing 7-19. Listing 7-33 uses the same scene as Listing 7-19,

but instead of showing it through a scene, it prints it to a printer using the render method. You

can compare the outputs by comparing Figure 7-33 with Figure 7-28. As you can see, the scene

is nicely represented both on paper and onscreen.

Figure 7-33. A printed graphics scene

The render method accepts four arguments. From left to right, they are a painter to ren-

der to, a destination rectangle, a source rectangle, and a flag determining how to scale. In the

listing, the painter paints to a QPrinter object. The destination rectangle represents the entire

printable area of the page, while the source is the entire scene. The scaling flag is set to

Qt::KeepAspectRatio, which means that the scene’s height-to-width ratio will be kept.

If you want the scene to stretch to fill the destination rectangle, you can use

Qt::IgnoreAspectRatio. Another alternative is to let the scene fill the page, but still keep its

height-to-width ratio by passing Qt::KeepAspectRatioByExpanding. This means that the scene

will continue beyond the available page unless the source and destination rectangles have the

same portions.

Listing 7-33. Rendering a graphics scene to the printer

int main(int argc, char **argv)
{
QApplication app(argc, argv);

QGraphicsScene scene(QRect(-50, -50, 400, 200));

...

QPrinter printer;
QPrintDialog dlg(&printer);
if(dlg.exec())
{
QPainter painter(&printer);

CHAPTER 7 ■ DRAWING AND PRINTING 231

scene.render(&painter, printer.pageRect(),
scene.sceneRect(), Qt::KeepAspectRatio);

}

return 0;
}

OpenGL

In the very first paragraph of this chapter I mentioned that the only alternative to using the

QPainter class is to use OpenGL directly. Because OpenGL is a programming interface and

falls outside the scope of this book, you’ll look at how the hardware acceleration for OpenGL

can be used without actually writing OpenGL code directly.

A QGraphicsView is a viewport to a given scene, but it also contains a viewport widget that

you can reach with the viewport property. If you provide the view with a QGLWidget, the graph-

ics will be drawn using OpenGL.

In Listing 7-21, the required change is limited to the line highlighted in Listing 7-34. The

code creates a new QGLWidget and sets it as the viewport. The QGraphicsView item takes owner-

ship of its viewport, so you don’t need to provide a parent pointer.

Listing 7-34. Drawing a graphics scene using OpenGL

int main(int argc, char **argv)
{
...

QGraphicsView view;
view.setScene(&scene);
view.setViewport(new QGLWidget());

view.show();

return app.exec();
}

To build a Qt application using OpenGL, you have to include the Qt OpenGL module by

adding a line reading QT += opengl to your project file. The differences between drawing the

scene using OpenGL or to a normal widget can’t be seen—that’s the point. However, on sys-

tems providing hardware acceleration of OpenGL the performance will be vastly improved.

Summary
It’s easy to draw using the QPainter class, which can be used to paint to various devices (a

screen, images, pixmaps, and printers). By scaling, rotating, shearing, and translating, it is

possible to draw almost any conceivable shape.

CHAPTER 7 ■ DRAWING AND PRINTING232

The QPainter class is the workhorse when creating custom widgets with painting logic.

If you want to represent multiple independent shapes in a single document or widget, the

graphics view framework is helpful. By creating a QGraphicsScene and populating it with

QGraphicsItem objects, you can easily create an interactive canvas for the users. The scene

can be shown using a QGraphicsView widget or just as easily printed using a QPainter for

painting to a QPrinter.

CHAPTER 7 ■ DRAWING AND PRINTING 233

Files, Streams, and XML

Handling files is a complex problem when it comes to cross-platform applications because

even the most basic features can vary across platforms. For instance, Unix systems use the

slash (/) as a separator in paths, whereas the Windows platform uses a backslash (\). And this

is just the beginning; you’ll also encounter an unnerving array of fundamental differences

such as different line endings and encodings, each of which can cause all sorts of strange

problems to crop up when you attempt to coax your application into running on multiple

platforms.

To overcome this problem, Qt offers a range of classes to handle paths, files, and streams.

Qt also handles XML files—a format structuring the contents in a portable way.

Working with Paths
The QDir class is the key to handling paths and drives in Qt applications. When specifying

paths to a QDir object, the slash (/) is used as a separator and is automatically converted to

whatever separator is used on the current platform. Drive letters are allowed, and paths start-

ing with a colon (:) are interpreted as references to resources embedded into the application.

The QDir static methods make it possible to easily navigate the file system. First,

QDir::current() returns a QDir that refers to the application’s working directory. QDir::home()
returns a QDir for the user’s home directory. QDir::root() returns the root, and QDir::temp()
returns the directory for temporary files. QDir::drives() returns a QList of QFileInfo objects,

representing the roots of all the available drives.

■Note Unix systems are considered to have a single drive /, whereas a Windows machine's drive space

can be configured to have several drives.

QFileInfo objects are used to hold information about files and directories. It has a number

of useful methods, some of which are listed here:

235

C H A P T E R 8

• isDir(), isFile(), and isSymLink(): Return true if the file information object repre-

sents a directory, file, or symbolic link (or a shortcut on Windows).

• dir() and absoluteDir():Return a QDir object represented by the file information

object. The dir method can return a directory relative to the current directory,

whereas absoluteDir returns a directory path starting with a drive root.

• exists(): Returns true if the object exists.

• isHidden(), isReadable(), isWritable(), and isExecutable():Return information

about the file’s state.

• fileName():Returns the file name without the path as a QString.

• filePath():Returns the file name including the path as a QString. The path can be

relative to the current directory.

• absoluteFilePath():Returns the file name including the path as a QString. The path

starts with a drive root.

• completeBaseName() and completeSuffix():Return QString objects holding the name of

the file and the suffix (extension) of the file name.

Let’s use these methods to create an application listing all drives and folders in the root of

each drive. The trick is to find the drives using QDir::drives and then find the directories of

each drive’s root (see Listing 8-1).

Listing 8-1. Listing the drives with the root directories

#include <QDir>
#include <QFileInfo>

#include <QtDebug>

int main(int argc, char **argv)
{
foreach(QFileInfo drive, QDir::drives())
{
qDebug() << "Drive: " << drive.absolutePath();

QDir dir = drive.dir();
dir.setFilter(QDir::Dirs);

foreach(QFileInfo rootDirs, dir.entryInfoList())
qDebug() << " " << rootDirs.fileName();

}

return 0;
}

CHAPTER 8 ■ FILES, STREAMS, AND XML236

The QDir::drives method returns a list of QFileInfo objects that are iterated using

foreach. After having printed the drive’s root path through qDebug, the QDir object for each

root is retrieved using the dir method.

■Note To use qDebug in a Windows environment, you must add the line CONFIG += console to your

project file.

One nice aspect of QDir objects is that they can be used to get a directory listing. By using

the filter() method, you can configure the object to return only directories. The directories

are then returned as a QList of QFileInfo objects from the entryInfoList method. These

QFileInfo objects represent directories, but the fileName method still returns the directory

name. The isDir and isFile methods make it possible to confirm that the file name is a direc-

tory name or the name of a file. This is easier to understand if you consider directories to be

files containing references to their contents.

The setFilter(Filters) method can be used to filter out directory entries based on a

number of different criteria. You can also combine the filters criteria to get the entry list you

want. The following values are supported:

QDir::Dirs: Lists directories that are matched by the name filter.

QDir::AllDirs: Lists all directories (does not apply the name filter).

QDir::Files: Lists files.

QDir::Drives: Lists drives. It is ignored on Unix systems.

QDir::NoSymLinks: Does not list symbolic links. It is ignored on platforms in which

symbolic links not are supported.

QDir::NoDotAndDotDot: Does not list the special entries . and ...

QDir::AllEntries: Lists directories, files, drives, and symbolic links.

QDir::Readable: Lists readable files. It must be combined with Files or Dirs.

QDir::Writeable: Lists writable files. It must be combined with Files or Dirs.

QDir::Executable: Lists executable files. It must be combined with Files or Dirs.

QDir::Modified: Lists files that have been modified. It is ignored on Unix systems.

QDir::Hidden: Lists files that are hidden. On Unix systems, it lists files starting with ..

QDir::System: Lists system files.

QDir::CaseSensitive: The name filter should be case sensitive if the file system is

case sensitive.

CHAPTER 8 ■ FILES, STREAMS, AND XML 237

The filter method is combined with the setNameFilters() method, which takes a

QStringList of file name–matching patterns such as *.cpp. Notice that the name filter is a list

of patterns, so it is possible to filter for *.cpp, *.h, *.qrc, *.ui, and *.pro files with one name

filter.

Working with Files
You can use QDir to find files and QFileInfo to find out more about files. To take it one step

further to actually open, read, modify and create files, you have to use the QFile class.

Let’s start looking at QFile by checking out Listing 8-2. The application checks whether

the file testfile.txt exists. If it does, the application attempts to open it for writing. If that is

allowed, it simply closes the file again. Along the way, it prints status messages using qDebug.

The highlighted lines in the listing show the interesting QFile operations. First, the file

name is set in the constructor. The file name can be set using the setFileName(const
QString&) method, which makes it possible to reuse a QFile object. Next, the application

uses the exists method to see whether the file exists.

The last highlighted line attempts to open the file for writing because it is easy to write-

protect a file on all platforms supported by Qt. The open method returns true if the file is

successfully opened.

The rest of the listing consists of code for outputting debug messages and exiting the

main function (using return). Make sure to close the file before exiting if the opening of the

file was successful.

Listing 8-2. Basic QFile operations

#include <QFile>

#include <QtDebug>

int main(int argc, char **argv)
{
QFile file("testfile.txt");

if(!file.exists())

{
qDebug() << "The file" << file.fileName() << "does not exist.";
return -1;

}

if(!file.open(QIODevice::WriteOnly))

{
qDebug() << "Could not open" << file.fileName() << "for writing.";
return -1;

}

qDebug() << "The file opened.";

CHAPTER 8 ■ FILES, STREAMS, AND XML238

file.close();

return 0;
}

The previous listing opened the file for writing. You can use other flags when opening files

to control how the file is read and modified:

• QIODevice::WriteOnly: Opens the file for writing.

• QIODevice::ReadWrite: Opens the file for reading and writing.

• QIODevice::ReadOnly: Opens the file for reading.

The preceding three flags can be combined with the following flags to control the file

access mode in detail:

• QIODevice::Append: Appends all written data to the end of the file.

• QIODevice::Truncate: Empties the file when it is opened.

• QIODevice::Text: Opens the file as a text file. When reading from the file, all line

endings are translated to \n. When writing to the file, the line endings are converted

to a format appropriate for the target platform (for example, \r\n on Windows and \n
on Unix).

• QIODevice::Unbuffered: Opens the file without any buffering.

You can always tell which mode is used for a given QFile object by calling the openMode()
method. It returns the current mode. For closed files, it returns QIODevice::NotOpen.

Working with Streams

After you have opened a file, it is more convenient to access it using a stream class. Qt comes

with two stream classes: one for text files and one for binary files. By opening a stream to

access a file, you can use redirect operators (<< and >>) to write and read data to and from the

file. With streams, you also get around platform differences such as endianess and different

line-ending policies.

Text Streams

With text streams, you can interface a file as you can from the C++ standard library—but with

a twist. The twist is that the file is handled in a cross-platform manner so that line endings and

other such details do not mess up the results when you move applications and files between

different computers.

To create a text stream for a file, create a QFile object and open it as usual. It is recom-

mended that you pass the QIODevice::Text flag with your read and write policy. After you

open the file, pass a pointer to the file object to the constructor of a QTextStream object. The

QTextStream object is now a stream to and from the file, depending on how the file was

opened.

CHAPTER 8 ■ FILES, STREAMS, AND XML 239

Listing 8-3 shows a main function that opens a file called main.cpp for reading as text. If

the file is opened successfully, a text stream is created. At the end of the function, the file is

closed.

Listing 8-3. Opening a text stream for reading

int main(int argc, char **argv)
{
QFile file("main.cpp");
if(!file.open(QIODevice::ReadOnly | QIODevice::Text))
qFatal("Could not open the file");

QTextStream stream(&file);

...

file.close();

return 0;
}

Listing 8-4 shows a simple loop meant to be used in the main function from the previous

listing. The loop uses atEnd to see whether the end of the file is reached. If not, a QString is

read from the stream using the >> operator and then printed to the debug console.

The result of executing the loop shown will not look like the contents of the main.cpp file.

Operator >> reads until the first white space is encountered. So the line #include <QFile>
would be split into #include and <QFile>. Because qDebug adds a line break after each call, the

example line would be printed over two lines on the debug console.

Listing 8-4. Reading from a text stream word by word

while(!stream.atEnd())
{
QString text;
stream >> text;
qDebug() << text;

}

The solution is to either read the entire file, including both text and line breaks, by using

the readAll() method on the stream object or to read it line by line. Reading with readAll()
works in most cases, but because the entire file is loaded into memory at once, it can easily

use up the entire memory.

To read the file line by line, use the readLine() method, which reads a complete line at a

time. Listing 8-5 shows the loop from the previous listing, but with readLine instead. Execut-

ing the loop gives a result on the debug console, showing the contents of the main.cpp file.

CHAPTER 8 ■ FILES, STREAMS, AND XML240

Listing 8-5. Reading from a text stream line by line

while(!stream.atEnd())
{
QString text;
text = stream.readLine();
qDebug() << text;

}

Data Streams

Sometimes you can’t rely on using a text file for your data. For instance, you might want to

support an already existing file format that is not text-based or you might want to produce

smaller files. By storing the actual data in a machine-readable, binary format instead of con-

verting it to human-readable text, you can save both file size and complexity in your save and

load method.

When you need to read and write binary data, you can use the QDataStream class. There

are two important matters you need to keep in mind when using data streams, however: data

types and versioning.

With data types, you must ensure that you use exactly the same data type for the >> oper-

ator as for the << operator. When dealing with integer values, it is best to use qint8, qint16,

qint32, or qint64 instead of the short, int, and long data types that can change sizes between

platforms.

The second issue, versioning, involves making sure that you read and write the data using

the same version of Qt because the encoding of the binary data has changed between the dif-

ferent versions of Qt. To avoid this problem, you can set the version of the QDataStream with

the setVersion(int) method. If you want to use the data stream format from Qt 1.0, set the

version to QDataStream::Qt_1_0. When creating a new format, it is recommended to use the

highest possible version (for Qt 4.2 applications, use QDataStream::Qt_4_2).

All the basic C++ types and most Qt types—such as QColor, QList, QString, QRect, and

QPixmap—can be serialized through a data stream. To make it possible to serialize a type of

your own, such as a custom struct, you need to provide << and >> operators for your type.

Listing 8-6 shows the ColorText structure and the redirect operators for it. The structure is

used for keeping a string and a color.

■Tip When an object or data is serialized, it means that the object is converted into a series of data

suitable for a stream. Sometimes this conversion is natural (for example, a string is already a series of char-

acters); in other cases it requires a conversion operation (for example, a tree structure can’t be mapped to a

series of data in a natural way). When conversion is needed, a serialization scheme must be designed that

defines how to serialize a structure and also how to restore the structure from the serialized data.

In this context, type means any type—a class, a structure, or a union. By providing the <<
and >> operators for such a type, you make it possible to use the type with a data stream with-

out requiring any special treatment. If you look at the stream operators in the listing, you see

CHAPTER 8 ■ FILES, STREAMS, AND XML 241

that they operate on a reference to a QDataStream object and a ColorText object, and return a

reference to a QDataStream object. This is the interface that you must provide for all custom

types that you want to be able to serialize. The implementation is based on using existing <<
and >> operators to serialize the type in question. Also remember to place the data on the

stream in the same order in which you plan to read it back in.

If you want to write stream operators for a type of variable size—for example, a string-like

class—you must first send the length of your string to the stream in your << operator to know

how much information you need to read back using your >> operator.

Listing 8-6. The ColorText structure with its << and >> operators

struct ColorText
{
QString text;
QColor color;

};

QDataStream &operator<<(QDataStream &stream, const ColorText &data)
{
stream << data.text << data.color;

return stream;
}

QDataStream &operator>>(QDataStream &stream, ColorText &data)
{
stream >> data.text;
stream >> data.color;

return stream;
}

Now that the custom type ColorText is created, let’s try to serialize a list of ColorText
objects: a QList<ColorText>. Listing 8-7 shows you how to do this. First, a list object is created

and populated. Then a file is opened for writing before a data stream is created in the same

manner as a text stream. The last step is to use setVersion to ensure that the version is prop-

erly set. When everything is set up, it is just a matter of sending the list to the stream by using

the << operator and closing the file. All the details are sorted out by the different layers of <<
operators being called directly and indirectly for QList, ColorText, QString, and QColor.

Listing 8-7. Saving a list of ColorText items

QList<ColorText> list;
ColorText data;

data.text = "Red";
data.color = Qt::red;
list << data;

CHAPTER 8 ■ FILES, STREAMS, AND XML242

...

QFile file("test.dat");
if(!file.open(QIODevice::WriteOnly))
return;

QDataStream stream(&file);
stream.setVersion(QDataStream::Qt_4_2);

stream << list;

file.close();

Loading the serialized data back is just as easy as serializing it. Simply create a destination

object of the right type; in this case, use QList<ColorText>. Open a file for reading and then

create a data stream. Ensure that the data stream uses the right version and reads the data

from the stream using the >> operator.

In Listing 8-8, you can see that the data is loaded from a file, and the contents of the

freshly loaded list are dumped to the debug console using qDebug from a foreach loop.

Listing 8-8. Loading a list of ColorText items

QList<ColorText> list;

QFile file("test.dat");
if(!file.open(QIODevice::ReadOnly))
return;

QDataStream stream(&file);
stream.setVersion(QDataStream::Qt_4_2);

stream >> list;

file.close();

foreach(ColorText data, list)
qDebug() << data.text << "("

<< data.color.red() << ","
<< data.color.green() << ","
<< data.color.blue() << ")";

XML
XML is a meta-language that enables you to store structurized data in a string or text file (the

details of the XML standard are beyond the scope of this book). The basic building blocks of

an XML file are tags, attributes, and text. Take Listing 8-9 as an example. The document tag

CHAPTER 8 ■ FILES, STREAMS, AND XML 243

contains the author tag and the text that reads Some text. The document tag starts with the

opening tag <document> and ends with the closing tag </document>.

Listing 8-9. A very simple XML file

<document name="DocName">
<author name="AuthorName" />
Some text

</document>

Both tags have an attribute called name with the values DocName and AuthorName. It is pos-

sible for a tag to have any number of attributes, ranging from none to infinity.

The author tag has no contents and is opened and closed at once. Writing <author /> is

equivalent to writing <author></author>.

■Note This information is the very least you need to know about XML. The XML file presented here is not

even a proper XML file—it lacks a document type definition. And you haven’t even started to learn about

namespaces and other fun details of XML. But you do know enough now to start reading and writing XML

files using Qt.

Qt supports two ways of handing XML files: DOM and SAX (described in the following

sections). Before you get started, you need to know that the XML support is part of the Qt

module QtXml, which means that you are required to add a line reading QT += xml to your

project file to include it.

DOM

The document object model (DOM) works by representing the entire XML document as a tree

of node objects in memory. Although it is easy to parse and modify the document, the entire

file is loaded into memory at once.

Creating an XML File

Let’s start by creating an XML file using the DOM classes. To make things easier, the goal is to

create the document shown in Listing 8-9. The process is divided into three parts: creating the

nodes, putting the nodes together, and writing the document to a file.

The first step—creating the nodes—is shown in Listing 8-10. The different building blocks

of the XML file include a QDomDocument object representing the document, QDomElement objects

representing the tags, and a QDomText object representing the text data in the document tag.

The elements and text object are not created using a constructor. Instead, you have to use

the createElement(const QString&) and createTextNode(const QString &) methods of the

QDomDocument object.

CHAPTER 8 ■ FILES, STREAMS, AND XML244

Listing 8-10. Creating the nodes for a simple XML document

QDomDocument document;

QDomElement d = document.createElement("document");
d.setAttribute("name", "DocName");

QDomElement a = document.createElement("author");
a.setAttribute("name", "AuthorName");

QDomText text = document.createTextNode("Some text");

The nodes created in Listing 8-10 are not ordered in any way. They can be considered to

be independent objects, even though they all were created with same document object.

To create the structure shown in Listing 8-9, the author element and text have to be put in

the document element by using the appendChild(const QDomNode&) method, as shown in

Listing 8-11. In the listing, you can also see that the document tag is appended to the document

in the same manner. It builds the same tree structure, as can be seen in the file that you are

trying to create.

Listing 8-11. Putting the nodes together in the DOM tree

document.appendChild(d);
d.appendChild(a);
d.appendChild(text);

The last step is to open a file, open a stream to it, and output the DOM tree to it, which

is what happens in Listing 8-12. The XML string represented by the DOM tree is retrieved by

calling toString(int) on the QDomDocument object in question.

Listing 8-12. Writing a DOM document to a file

QFile file("simple.xml");
if(!file.open(QIODevice::WriteOnly | QIODevice::Text))
{
qDebug("Failed to open file for writing.");
return -1;

}

QTextStream stream(&file);
stream << document.toString();

file.close();

Loading an XML File

Knowing how to create a DOM tree is only half of what you need to know to use XML through

DOM trees. You also need to know how to read an XML file into a QDomDocument and how to

find the elements and text contained in the document.

CHAPTER 8 ■ FILES, STREAMS, AND XML 245

This is far easier than you might think. Listing 8-13 shows all the code it takes to get a

QDomDocument object from a file. Simply open the file for reading and try to use the file in a call

to the setContent member of a suitable document object. If it returns true, your XML data is

available from the DOM tree. If not, the XML file was not valid.

Listing 8-13. Getting a DOM tree from a file

QFile file("simple.xml");
if(!file.open(QIODevice::ReadOnly | QIODevice::Text))
{
qDebug("Failed to open file for reading.");
return -1;

}

QDomDocument document;
if(!document.setContent(&file))
{
qDebug("Failed to parse the file into a DOM tree.");
file.close();
return -1;

}

file.close();

The root element of a DOM tree can be retrieved from the document object by using the

documentElement() method. Given that element, it is easy to find the child nodes. Listing 8-14

shows you how to use firstChild() and nextSibling() to iterate through the children of the

document element.

The children are returned as QDomNode objects—the base class of both QDomElement and

QDomText. You can tell what type of node you are dealing with by using the isElement() and

isText() methods. There are more types of nodes, but text and element nodes are most com-

monly used.

You can convert the QDomNode into a QDomElement by using the toElement() method. The

toText() method does the same thing, but returns a QDomText instead. You then get the actual

text using the data() method inherited from QDomCharacterData.

For the element object, you can get the name of the tag from the tagName() method.

Attributes can be queried using the attribute(const QString &, const QString &) method.

It takes the attribute’s name and a default value. In Listing 8-14, the default value is “not set.”

Listing 8-14. Finding the data from the DOM tree

QDomElement documentElement = document.documentElement();

QDomNode node = documentElement.firstChild();
while(!node.isNull())
{
if(node.isElement())
{

CHAPTER 8 ■ FILES, STREAMS, AND XML246

QDomElement element = node.toElement();
qDebug() << "ELEMENT" << element.tagName();
qDebug() << "ELEMENT ATTRIBUTE NAME"

<< element.attribute("name", "not set");
}

if(node.isText())
{
QDomText text = node.toText();
qDebug() << text.data();

}

node = node.nextSibling();
}

Listing 8-14 simply lists the child nodes of the root node. If you want to be able to traverse

DOM trees with more levels, you have to use a recursive function to look for child nodes for all

element nodes encountered.

Modifying an XML File

Being able to read and write DOM trees is all you need to know in many applications. Keeping

your application’s data in a custom structure and translating your data into a DOM tree before

saving and then extracting your data from the DOM tree when loading is usually enough.

When the DOM tree structure is close enough to your application’s internal structure, it is

nice to be able to modify the DOM tree on the fly, which is what happens in Listing 8-15.

To put the code in the listing in a context, you need to know that the document has been

loaded from a file before this code is run. When the code has been executed, the document is

written back to the same file.

You find the root node using documentElement, which gives you a starting point. Then you

ask the root node for a list of all author tags (all elements with the tagName property set to

author) by using the elementsByTagName(const QString &) method.

If the list is empty, add an author element to the root node. The freshly created element is

added to the root node using insertBefore(const QDomNode &, const QDomNode &). Because

you give an invalid QDomNode object as the second parameter to the method, the element is

inserted as the first child node.

If the list contains an author element, you add a revision element to it. The revision ele-

ment is given an attribute named count, whose value is calculated from the number of

revision elements already in the author element.

That’s all it takes. Because the nodes have been added to the DOM tree, you just need to

save it again to get an updated XML file.

Listing 8-15. Modifying an existing DOM tree

QDomNodeList elements = documentElement.elementsByTagName("author");
if(elements.isEmpty())
{
QDomElement a = document.createElement("author");

CHAPTER 8 ■ FILES, STREAMS, AND XML 247

documentElement.insertBefore(a, QDomNode());
}
else if(elements.size() == 1)
{
QDomElement a = elements.at(0).toElement();

QDomElement r = document.createElement("revision");
r.setAttribute("count",

QString::number(
a.elementsByTagName("revision").size() + 1));

a.appendChild(r);
}

Reading XML Files with SAX

The simple API for XML (SAX) can be used only to read XML files. It works by reading the file

and locating opening tags, closing tags, attributes, and text; and calling functions in the han-

dler objects set up to handle the different parts of an XML document. The benefit of this

approach compared with using a DOM document is that the entire file does not have to be

loaded into memory at once.

To use SAX, three classes are used: QXmlInputSource, QXmlSimpleReader, and a handler.

Listing 8-16 shows the main function of an application using SAX to parse a file. The

QXmlInputSource is used to provide a predefined interface between the QFile and the

QXmlSimpleReader object.

The QXmlSimpleReader is a specialized version of the QXmlReader class. The simple reader

is powerful enough to be used in almost all cases. The reader has a content handler that is

assigned using the setContentHandler method. The content handler must inherit the

QXmlContentHandler, and that is exactly what the MyHandler class does. Having set everything

up, it is just a matter of calling the parse(const QXmlInputSource *, bool) method, passing

the XML input source object as a parameter, and waiting for the reader to report everything

worth knowing to the handler.

Listing 8-16. Setting up a SAX reader with a custom handler class

int main(int argc, char **argv)
{
QFile file("simple.xml");
if(!file.open(QIODevice::ReadOnly | QIODevice::Text))
{
qDebug("Failed to open file for reading.");
return -1;

}

QXmlInputSource source(&file);

MyHandler handler;

CHAPTER 8 ■ FILES, STREAMS, AND XML248

QXmlSimpleReader reader;
reader.setContentHandler(&handler);
reader.parse(source);

file.close();

return 0;
}

The declaration of the handler class MyHandler can be seen in Listing 8-17. The class

inherits from QXmlDefaultHandler, which is derived from QXmlContentHandler. The benefit

of inheriting QXmlDefaultHandler is that the default handler class provides dummy imple-

mentations of all the methods that you otherwise would have had to implement as stubs.

The methods in the handler class get called by the reader when something is encountered.

You want to handle text and tags and know when the parsing process starts and ends, so the

methods shown in the class declaration have been implemented. All methods return a bool
value, which is used to stop the parsing if an error is encountered. All methods must return

true for the reader to continue reading.

Listing 8-17. The MyHandler SAX handler class

class MyHandler : public QXmlDefaultHandler
{
public:
bool startDocument();
bool endDocument();

bool startElement(const QString &namespaceURI,
const QString &localName,
const QString &qName,
const QXmlAttributes &atts);

bool endElement(const QString &namespaceURI,
const QString &localName,
const QString &qName);

bool characters(const QString &ch);
};

All methods except startElement look more or less like the method shown in Listing 8-18.

A simple text is printed to the debug console, and then true is returned. In the case of

endElement (shown in the listing), an argument is printed as well.

Listing 8-18. A simple handling class method

bool MyHandler::endElement(const QString &namespaceURI, const QString &localName,
const QString &qName)

{
qDebug() << "End of element" << qName;
return true;

}

CHAPTER 8 ■ FILES, STREAMS, AND XML 249

The startElement method, shown in Listing 8-19, is slightly more complex. First, the ele-

ment’s name is printed; then the list of attributes passed through an QXmlAttributes object is

printed. The QXmlAttributes is not a standard container, so you must iterate through it using

an index variable instead of just using the foreach macro. Before the method ends, you return

true to tell the reader that everything is working as expected.

Listing 8-19. The startElement method lists the attributes of the element.

bool MyHandler::startElement(const QString &namespaceURI, const QString &localName,
const QString &qName, const QXmlAttributes &atts)

{
qDebug() << "Start of element" << qName;
for(int i=0; i<atts.length(); ++i)
qDebug() << " " << atts.qName(i) << "=" << atts.value(i);

return true;
}

The reason for printing the qName instead of the namespaceURI or localName is that the

qName is the tag name that you expect. Namespaces and local names are beyond the scope of

this book.

It is not very complicated to build an XML parser by implementing a SAX handler. As

soon as you want to convert the XML data into custom data for your application, you should

consider using SAX. Because the entire document is not loaded at once, the memory require-

ments of the application are reduced, which might mean that your application runs more

quickly.

Files and the Main Window
You learned in Chapter 4 that the setup with a isSafeToClose and the closeEvent method was

a good starting point for giving the user the option to save the file when a window with a mod-

ified document is closed. Now the time has come to add support for that functionality to the

SDI application (the same concept also applies to the MDI application).

Starting with Listing 8-20, you can see the changes made to the SdiWindow class declara-

tion. The highlighted lines were added to handle the load and save functionality.

The change is made to add the menu items Open, Save, and Save As to the File menu. The

changes to the class declaration consist of four parts: actions for handling the menu entries,

slots for the actions, the functions loadFile and saveFile for loading and saving the docu-

ment to an actual file, and the private variable currentFilename for keeping the current file

name. All methods that have to do with saving documents return a bool value, telling the

caller whether the document was saved.

Listing 8-20. Changes made to the SdiWindow class to enable loading and saving documents

class SdiWindow : public QMainWindow
{
Q_OBJECT

CHAPTER 8 ■ FILES, STREAMS, AND XML250

public:
SdiWindow(QWidget *parent = 0);

protected:
void closeEvent(QCloseEvent *event);

private slots:
void fileNew();
void helpAbout();

void fileOpen();
bool fileSave();
bool fileSaveAs();

private:
void createActions();
void createMenus();
void createToolbars();

bool isSafeToClose();

bool saveFile(const QString &filename);

void loadFile(const QString &filename);

QString currentFilename;

QTextEdit *docWidget;

QAction *newAction;
QAction *openAction;

QAction *saveAction;

QAction *saveAsAction;

QAction *closeAction;
QAction *exitAction;

QAction *cutAction;
QAction *copyAction;
QAction *pasteAction;

QAction *aboutAction;
QAction *aboutQtAction;

};

Creating the actions and then adding them to the appropriate menu is done in exactly

the same way as for the already existing actions. The fileOpen method, connected to the

open action, is shown in Listing 8-21. It uses the static getOpenFileName method from the

QFileDialog class to get a file name. If the user has closed the dialog without choosing a file,

the resulting string’s isNull method returns true. In that case, you return from the slot with-

out opening a file.

CHAPTER 8 ■ FILES, STREAMS, AND XML 251

If an actual file name is retrieved, you can try to load the file using loadFile. However, if

the current document has not been given a file name and is unchanged, the file is loaded into

the current document. If the current document has a file name or has been modified, a new

SdiWindow instance is created and then the file is loaded into it.

All SdiWindows are given file names when they are saved or loaded, so only new files do

not have valid file names.

Listing 8-21. Implementing the slot connected to the open action

void SdiWindow::fileOpen()
{
QString filename = QFileDialog::getOpenFileName(this);
if(filename.isEmpty())
return;

if(currentFilename.isEmpty() && !docWidget->document()->isModified())
loadFile(filename);

else
{
SdiWindow *window = new SdiWindow();
window->loadFile(filename);
window->show();

}
}

The loadFile(const QString&) method is used to load the contents from a given file into

the document of the current window. The source code of the method is shown in Listing 8-22.

The function attempts to open the file. If the file cannot be opened, a message box is shown

for the user. If the file is opened, a QTextStream is created, and the entire file content is loaded

by using readAll. The document is then assigned the new text with the setPlainText method.

When the document has been updated, the currentFilename variable is updated, the modified

flag is set to false, and the window’s title is updated.

Listing 8-22. Source code actually loading file contents into the document

void SdiWindow::loadFile(const QString &filename)
{
QFile file(filename);
if(!file.open(QIODevice::ReadOnly | QIODevice::Text))
{
QMessageBox::warning(this, tr("SDI"), tr("Failed to open file."));
return;

}

QTextStream stream(&file);
docWidget->setPlainText(stream.readAll());

CHAPTER 8 ■ FILES, STREAMS, AND XML252

currentFilename = filename;
docWidget->document()->setModified(false);
setWindowTitle(tr("%1[*] - %2").arg(filename).arg(tr("SDI")));

}

The opposite method of loadFile is saveFile(const QString &). (You can see its imple-

mentation in Listing 8-23.) Despite their different tasks, the two functions’ implementations

look very similar. The concept is the same: attempt to open the file, send the document as

plain text to a stream and update the currentFilename, reset the modified bit, and update the

window title. When a file is actually saved, the saveFile function returns true; if the file is not

saved, the function returns false.

Listing 8-23. Source code for saving the document to a file

bool SdiWindow::saveFile(const QString &filename)
{
QFile file(filename);
if(!file.open(QIODevice::WriteOnly | QIODevice::Text))
{
QMessageBox::warning(this, tr("SDI"), tr("Failed to save file."));
return false;

}

QTextStream stream(&file);
stream << docWidget->toPlainText();

currentFilename = filename;
docWidget->document()->setModified(false);
setWindowTitle(tr("%1[*] - %2").arg(filename).arg(tr("SDI")));

return true;
}

The return value from the saveFile method is used in the implementation of the

fileSaveAs method shown in Listing 8-24. The Save As slot looks very much like the Open

slot. It uses the getSaveFileName method to ask the user for a new file name. If a file name is

selected, the saveFile method is called to try to save the document.

Notice that false is returned if the file dialog is canceled, and the return value from the

saveFile method is returned when an attempt to save the document is made. The saveFile
returns true only if the document actually has been written to the file.

Listing 8-24. Source code for the Save As action

bool SdiWindow::fileSaveAs()
{

QString filename =
QFileDialog::getSaveFileName(this, tr("Save As"), currentFilename);

CHAPTER 8 ■ FILES, STREAMS, AND XML 253

if(filename.isEmpty())
return false;

return saveFile(filename);
}

The fileSave method tries to save the document to the same file as before—the name

kept in currentFilename. If the current file name is empty, the file has not been given a file

name yet. In this case, the fileSaveAs method is called, showing the user a File dialog to pick

a file name. It is shown as source code in Listing 8-25.

The fileSave method returns the return value from either saveFile or fileSaveAs,

depending on which method is used to save the file.

Listing 8-25. Source code for the Save action

bool SdiWindow::fileSave()
{
if(currentFilename.isEmpty())
return fileSaveAs();

else
return saveFile(currentFilename);

}

The final option needed to make the dialog behave as expected is to let the user save the

file from the warning dialog shown when a modified document is being closed. The new

implementation of the isSafeToClose method is shown in Listing 8-26, in which the lines

containing the actual changes are highlighted.

The first change is the addition of the Save option to the warning dialog using the

QMessageBox::Save enumerated value. The other change consists of a case for handling the

Save button. If the button is pressed, a call is made to fileSave. If the file is not saved (that is,

false is returned), the close event is aborted. This makes it impossible for the user to lose a

document without actually having chosen to do so (or experiencing some sort of power

failure).

Listing 8-26. Source code for checking whether to close a document

bool SdiWindow::isSafeToClose()
{
if(isWindowModified())
{
switch(QMessageBox::warning(this, tr("SDI"),
tr("The document has unsaved changes.\n"

"Do you want to save it before it is closed?"),
QMessageBox::Save | QMessageBox::Discard | QMessageBox::Cancel))

{
case QMessageBox::Cancel:
return false;

case QMessageBox::Save:

return fileSave();

CHAPTER 8 ■ FILES, STREAMS, AND XML254

default:
return true;

}
}

return true;
}

Adding these saving and loading capabilities fits well into the SDI structure presented

earlier. By confirming that the document actually has been saved (by using the return value

from all methods involved), you can build a waterproof protection, making it impossible to

close an unsaved document without confirming to do so.

Summary
Using files on different platforms usually means trouble. The incompatibilities are found on

all levels: file names, directory paths, line breaks, endianess, and so on. You can avoid prob-

lems with paths, drives, and file names by using the QDir and QFileInfo classes.

After you locate a file, you can open it by using QFile. Qt has streams to read and write

data. If you use the QTextStream class, you can handle text files with ease; if you use the

QDataStream class, it is easy to serialize and read back your data from binary files. Just think

about the potential stream-versioning problem. Even if you use the same Qt versions for all

your application deployments, you will get more versions in the future. A simple setVersion
call can save days of frustration.

One alternative to storing your data as text or in a custom binary format is to use XML.

Qt enables you to use DOM, which allows you to read an entire XML document into memory,

modify it, and then write it back to a file. If you want to read an XML file without having to

load it all at once, you can use Qt’s SAX classes.

When you use XML, you need to add the line QT += xml to your project file because the

XML support is implemented in a separate module. This module is not included in all editions

of Qt, so verify that you have access to it before trying to use it.

Finally, you saw the missing piece of the SDI application. Adding the methods covered in

the final section of this chapter makes it easy to build applications that support file loading

and saving.

CHAPTER 8 ■ FILES, STREAMS, AND XML 255

Providing Help

Sometimes users need a helping hand. With Qt you can give them the instruction they’re

looking for in a variety of ways: wizards, tooltips, status bar messages, and pointers to product

documentation, to name a few.

When considering how to add help-related features to your application, keep in mind that

there’s much more to it than simply responding to the F1 key (the de facto mechanism for dis-

playing the application’s help window). Assistance is most effective when it’s an integral yet

nonintrusive part of your entire application.

By using a good design that clearly reflects both what users are currently doing and where

in the process they are, you can dramatically reduce the need for help. Some of the tools and

principles include providing wizards for complex settings, avoiding or clearly indicating differ-

ent working modes such as insert and overwrite, and alerting users when they’re about to do

something that can destroy a lot of information.

Providing lots and lots of help does not make it easy to use an application; too much help

can just make it hard to find the information that the user is looking for. What you need to

achieve is an easy-to-use whole: a combination of relevant help and a clear design. This is

what makes using your application a joy.

Creating Tooltips
One of the most common ways to add some additional guidance to the user is to provide

tooltips, which are little signs containing information (see Figure 9-1). They appear when you

hover the mouse pointer over a control for a short period of time.

Figure 9-1. The dialog and the tooltip for the group box

257

C H A P T E R 9

All widgets can be assigned a tooltip using the setTooltip(const QString&) method,

which accepts a string that can either be plain text or formatted using HTML. To demonstrate

tooltips, I have put together a QDialog class with a number of widgets. Listing 9-1 presents the

constructor used to set up the widgets and layouts (refer to Figure 9-1 to see the result).

Listing 9-1. The dialog constructor

ToolTipDialog::ToolTipDialog() : QDialog()
{
QGroupBox *groupBox = new QGroupBox(tr("Group"));
QGridLayout *gbLayout = new QGridLayout(groupBox);

QCheckBox *checkBox = new QCheckBox(tr("Check!"));
QLabel *label = new QLabel(tr("label"));
QPushButton *pushButton = new QPushButton(tr("Push me!"));

gbLayout->addWidget(checkBox, 0, 0);
gbLayout->addWidget(label, 0, 1);
gbLayout->addWidget(pushButton, 1, 0, 1, 2);

QGridLayout *dlgLayout = new QGridLayout(this);
dlgLayout->addWidget(groupBox, 0, 0);

...
}

In Listing 9-2 the tooltips for the checkbox and group box are set. The checkbox gets a

single line, while the group box text is divided into three lines using the standard line break \n.

The group box tooltip shows when you hover the mouse pointer around and between the

widgets contained in the group box. If you hover over the label, checkbox, or push button,

their respective tooltips are shown.

Listing 9-2. Setting simple tooltip texts

checkBox->setToolTip(tr("This is a simple tool tip for the check box."));
groupBox->setToolTip(tr("This is a group box tool tip.\n"

"Notice that it appears between "
"and around the contained widgets.\n"
"It is also spanning several lines."));

■Tip Breaking a string over multiple lines does not affect the result. From the C++ compiler’s viewpoint,

the string "foo"—line break—"bar" is identical to the string "foobar". Sometimes it is handy to be able

to break down a line because it can be used to increase the readability or simply to fit the code onto the

paper when printing it.

CHAPTER 9 ■ PROVIDING HELP258

Creating HTML-Formatted Tooltips

Although it is possible to represent new-lines with the
 HTML tag, Qt actually supports

many HTML tags that can make formatting tooltips much easier. Listing 9-3 shows some of

the formatting that is possible. The resulting tooltip is shown in Figure 9-2.

Listing 9-3. An HTML-formatted tooltip

label->setToolTip(tr("<p>It is possible to do lists.</p>"
""
"You can <i>format</i> text."
"Bold is possible too."
"And the color and "
"size."

""
"<p>You can do ordered lists as well.</p>"
""
"First."
"Second."
"Third."

""));

Figure 9-2. A tooltip with lists and formatting

The following list explains the most common tags that can be used to format your

tooltips:

• <p> ... </p>: This tag is used to enclose a paragraph. Paragraphs have some spacing

above and below, separating them from other parts of the text.

•
: This tag represents a line break. If you have decided to use HTML tags,

works, but \n does not. The \n system works only in texts without tags.

• <i> ... </i>: The enclosed text is shown as italic.

• ... : The enclosed text is shown as bold.

• ... : The enclosed text is shown in the specified color nnn.

The color can be expressed as a color name (such as red, green, black, or white) or as a

hexadecimal value prefixed with #. The format is #rrggbb, where rr is the red value, gg is

the green value, and bb is the blue value.

CHAPTER 9 ■ PROVIDING HELP 259

• ... : The enclosed text is shown in an alternate size. The nnn

part can either be a relative size prefixed with + or –, or a fixed size (an integer value).

• ... : Contains list items that are prefixed by bullets.

• ... : Contains list items that are prefixed by numbers.

• ... : The enclosed text is treated as a list item.

Inserting Images into Tooltips

Another very useful tag is the img tag, which is used to insert images from files or resources

into the text. Figure 9-3 shows an example tooltip. The tag’s syntax looks like ,

where nnn is the file name. If the file name starts with :, it refers to a resource embedded into

the executable file. Listing 9-4 presents the source code for creating the example tooltip found

in Figure 9-3.

Figure 9-3. A tooltip with text and an image

Listing 9-4. A tooltip including an image

pushButton->setToolTip(tr(""
"You can also insert images into your tool tips."));

It is easy to provide tooltips for all your widgets and thus give your users the support they

need. A tooltip is often used to answer questions such as “What does this button do?” and

“Where did that hide ruler button go?” When you design a tooltip, try to keep the text at a

minimum because the tips are often used to quickly obtain an understanding of the various

interface widgets.

Applying Multiple Tooltips to a Widget

There are times when you’ll want to assign several tooltips to a single widget—usually when

you’re dealing with views for models and other widgets showing a complex document. In

these situations a single widget is used to show several different items, in which each item

might need a tooltip of its own. For example, suppose you have a drawing application in

which you want to use tooltips to show the diameter of circles and the width and height of

rectangles. Because the entire drawing is shown using a single viewing widget, that widget

needs to provide different tooltips depending on where the mouse pointer is located.

To do this it helps to understand how the tooltip is shown. The actual appearance of a

tooltip is triggered through a ToolTip event. By intercepting the event in the event(QEvent*)
method, you can change the tooltip depending on where the mouse pointer is located.

Figure 9-4 shows the desired effect: the four squares are all part of one widget, but each

square shows a different tooltip text.

CHAPTER 9 ■ PROVIDING HELP260

■Note When working with a QGraphicsView and friends, you can set tooltips for each QGraphicsItem—

avoiding the need to intercept the ToolTip event for the view widget or the scene. When working with

item views, you can use the model-view architecture to set tooltips for each item by assigning data to

Qt::ToolTipRole. If you want to provide custom tooltips for the view, reimplement the

viewportEvent(QEvent*) method instead of event().

Figure 9-4. The same widget shows different tooltips for different parts.

Let’s get started with intercepting the right event and set the tooltip text for each of the

four squares. All events are passed through the event method before some of them are distrib-

uted to the different handlers, such as the paintEvent, mouseMoveEvent, and keyPressEvent
methods. Because there is no toolTipEvent method, you have to intercept the event in the

event method.

The source code for the interception is shown in Listing 9-5. Because the event method

receives a QEvent object, you must use the type property to determine whether a ToolTip
event was received. The QEvent class is the base class for all specialized event classes, so as

soon as you can tell that you are dealing with a tooltip, you can cast the QEvent object into a

QHelpEvent object.

CHAPTER 9 ■ PROVIDING HELP 261

■Note How can you tell that the ToolTip event is sent as a QHelpEvent object? Look at the documenta-

tion for the enum QEvent::Type; you’ll see a list of all event types and the type of objects passed along

such an event.

After the event object has been cast into a QHelpEvent object, the rectangles for the four

zones are set up. Then the tooltip is set depending on which rectangle contains the point

returned by the pos() method of the QHelpEvent object.

When the tooltip text has been set, do not mark the event as accepted. Instead call the

default handler (because it knows how to show the actual tooltip) by calling the parent’s han-

dler QWidget::event. This is where all the non-ToolTip events go as well—making sure that

everything works as expected.

Listing 9-5. Intercepting all ToolTip events and updating the tooltip text before passing it on to
the default handler

bool TipZones::event(QEvent *event)
{
if(event->type() == QEvent::ToolTip)
{
QHelpEvent *helpEvent = static_cast<QHelpEvent*>(event);

QRect redRect, greenRect, blueRect, yellowRect;

redRect = QRect(0, 0, width()/2, height()/2);
greenRect = QRect(width()/2, 0, width()/2, height()/2);
blueRect = QRect(0, height()/2, width()/2, height()/2);
yellowRect = QRect(width()/2, height()/2, width()/2, height()/2);

if(redRect.contains(helpEvent->pos()))
setToolTip(tr("Red"));

else if(greenRect.contains(helpEvent->pos()))
setToolTip(tr("Green"));

else if(blueRect.contains(helpEvent->pos()))
setToolTip(tr("Blue"));

else
setToolTip(tr("Yellow"));

}

return QWidget::event(event);
}

CHAPTER 9 ■ PROVIDING HELP262

Providing What’s This Help Tips
What’s this help looks very much like a tooltip, except the user has invoked the What’s this

mode and then clicked the widget of interest. The What’s this mode is entered by clicking the

question mark button that appears on the title bar of the dialog window if any widget has

What’s this help. The question mark button can be seen in Figure 9-5.

Figure 9-5. A dialog with the question mark button in the title bar

The What’s this help text tends to be slightly longer and more detailed than the tooltip text

because the user usually wants to know a bit more about a widget.

The What’s this text is set using the setWhatsThis(const QString&) method and can be set

for all widgets. Although the string passed as argument is very similar to the string passed as

tooltip, there are some differences.

The most important difference is line breaks. When specifying What’s this texts it is

important to use the
 tag, not the \n character to break the lines. Also, the What’s this

texts are always word-wrapped unless you explicitly specify the paragraph not to be wrapped.

Figure 9-6 shows the same What’s this text with and without word-wrapping.

To avoid word-wrapping you must put the text in a paragraph tag with the attribute

style='white-space:pre'. For example, the following line shows the word-wrapped text from

the figure:

checkBox->setWhatsThis(tr("This is a simple <i>What's This help</i> "
"for the check box."));

This piece of source code shows the same text without word-wrapping:

checkBox->setWhatsThis(tr("<p style='white-space:pre'>This is a simple "
"<i>What's This help</i> for the check box.</p>"));

Sometimes it can be useful to prevent word-wrapping, but try to let Qt handle it whenever

possible. By letting Qt wrap the lines, the text is more likely to appear properly on the screen.

Take the example of a low-resolution screen with a very large font size setting (see Figure 9-6).

Your nonwrapped text might not fit the screen.

CHAPTER 9 ■ PROVIDING HELP 263

Figure 9-6. The same What’s this text with and without word-wrapping

When it comes to formatting, What’s this help texts can handle all the tags that tooltip

texts can. Figure 9-7 shows What’s this help boxes demonstrating formatting and inline

images. Although the word-wrapping is slightly different, the results are identical to the

tooltip boxes.

Figure 9-7. What’s this help items handles the same formatting as tooltip texts.

Embedding Links into What’s This Help Tips

Even though What’s this texts usually are a bit more detailed than tooltip texts, sometimes

even the expanded text allowance isn’t enough. In these cases it can be useful to be able to

place a hyperlink in the text. The link can point to anything you please—for example, a dialog,

a section in online help, or a page on the Web.

When a link in a What’s this text is clicked, a WhatsThisClicked event is sent to the widget

tied to the What’s this help tip. This event can be intercepted in the event method, just as the

ToolTip event was intercepted when different tips for different parts of a widget were pro-

vided. However, because there might be many dialogs with What’s this help containing links,

a good solution is to intercept all the WhatsThisClicked events in one place. This process

enables you to treat all links in the same way using the same mechanisms. The event inter-

ception can be performed using an event filter.

The idea is to have an event filter that can be installed on all dialogs that provide What’s

this help. The filter object then emits a signal each time a link has been clicked. This signal can

be connected to a central point that performs the appropriate action (such as opening a help

page).

Listing 9-6 shows the class declaration of the LinkFilter filter class. It provides a signal

to emit when a link is clicked, a constructor, and the eventFilter method. The constructor

simply passes on the parent pointer to the QObject constructor to keep Qt happy.

CHAPTER 9 ■ PROVIDING HELP264

Listing 9-6. The declaration of the event filtering class

#ifndef LINKFILTER_H
#define LINKFILTER_H

#include <QObject>

class LinkFilter : public QObject
{

Q_OBJECT

public:
LinkFilter(QObject *parent=0);

signals:
void linkClicked(const QString &);

protected:
bool eventFilter(QObject*, QEvent*);

};

#endif // LINKFILTER_H

The actual filtering takes place in Listing 9-7. All events of the type WhatsThisClicked
are handled. The QEvent object is cast into a QWhatsThisClickedEvent object from which the

href property is emitted through the linkClicked signal. Make sure to call the QWhatsThis::
hideText method that hides the What’s this box before the signal is emitted and any action is

taken.

Finally, handled events return true, preventing any further event handling. All other

events return false—informing Qt that the event is ignored.

Listing 9-7. Filtering the events for WhatsThisClicked events

bool LinkFilter::eventFilter(QObject *object, QEvent *event)
{
if(event->type() == QEvent::WhatsThisClicked)
{
QWhatsThisClickedEvent *wtcEvent = static_cast<QWhatsThisClickedEvent*>(event);
QWhatsThis::hideText();
emit linkClicked(wtcEvent->href());
return true;

}

return false;
}

To test the LinkFilter class a simple dialog class, LinkDialog, was created The dialog has

a constructor and a slot: showLink(const QString&). (Listing 9-8 shows the constructor of the

dialog.)

CHAPTER 9 ■ PROVIDING HELP 265

First a LinkFilter is created and installed as an event filter for the dialog. The linkClicked
signal is connected to the showLink slot of the dialog. Notice that the WhatsThisClicked event

is passed through the dialog so you can intercept clicked links for all widgets in the dialog

here. Since the filter is installed on the dialog it is possible to install the filter from a main

window before showing the dialog.

After the filter is installed, a QPushButton widget is created and the What’s this text is set.

To create a link, the ... tag is used. The nnn part is the string passed as the

href property of the QWhatsThisClickedEvent and then passed on through the linkClicked sig-

nal. The text between the and parts is the text that will be shown as a link.

Before the constructor ends, the push button is placed in a layout.

Listing 9-8. Setting up a dialog with the LinkFilter event filter

LinkDialog::LinkDialog() : QDialog()
{
LinkFilter *filter = new LinkFilter(this);
this->installEventFilter(filter);
connect(filter, SIGNAL(linkClicked(const QString&)),

this, SLOT(showLink(const QString&)));

QPushButton *button = new QPushButton("What is this?");
button->setWhatsThis("This is a test link.");

QGridLayout *layout = new QGridLayout(this);
layout->addWidget(button, 0, 0);

}

Figure 9-8 shows the What’s this text and the link being shown. When the user clicks the

link, a QWhatsThisClickedEvent is triggered, the linkClicked signal is emitted, and the

showLink slot is triggered. The source code of the slot is shown in Listing 9-9.

Figure 9-8. The What’s this text with a link

Listing 9-9. Showing the clicked link using a message box

void LinkDialog::showLink(const QString &link)
{
QMessageBox::information(this, tr("Link Clicked"), tr("Link: %1").arg(link));

}

CHAPTER 9 ■ PROVIDING HELP266

All the slot does is show a message box with the link string (see Figure 9-9). Here, you can

add code to interpret the given string and then take the appropriate action instead of just

showing a message box.

Figure 9-9. The dialog showing the link text

Taking Advantage of the Status Bar
Status bars, which are usually found at the bottom of application windows, are often used to

display temporary messages as well as information about working modes, location in the cur-

rent document, size of the current file, and so on. The information shown is very dependent

on the application type, but it is information that is useful to the user.

The status bar is represented by a QStatusBar widget. When you use a status bar in a main

window you can get a reference to the status bar object with the statusBar() method. The first

time you call the method a status bar is created, whereas consecutive calls simply return a

pointer to the bar.

The most common use of the status bar is to show messages such as "Loading", "Saving",

"Ready", "Done", and so on. These messages are shown using the showMessage(const
QString&, int) method. For example, the following line shows the message text "Ready"
for two seconds (see Figure 9-10):

statusBar->showMessage(tr("Ready"), 2000);

Figure 9-10. A status bar showing a temporary message

The time given to showMessage is specified in milliseconds (multiply the time in seconds

by 1000 to get the time in milliseconds). If you call showMessage without specifying a time or

specifying a time of zero milliseconds, the message is shown until you replace the message by

calling showMessage or until you call clearMessage() to remove the message.

When not used for status messages, the status bar can contain a set of widgets. The usual

use for these widgets is to provide the user with information that is useful to have at hand at

all times.

Widgets can be added to the status bar as normal or permanent. The difference is that

normal widgets are covered by messages, whereas permanent widgets are always shown.

The widgets are added from left to right, but permanent widgets always appear to the right

of normal widgets.

CHAPTER 9 ■ PROVIDING HELP 267

The status bar shown in Figure 9-11 shows a status bar with a progress bar and three

labels. The label reading N indicates that the current document isn’t modified. This shows one

of the limitations of status bars: the available space is limited so the information will have to

be presented in a very compact format. It is possible to set a tooltip for the label to explain

what is shown, but it’s not a very intuitive solution.

Figure 9-11. A status bar with a progress bar and three labels

The creation of the status bar and the widgets are shown in Listing 9-10. The code is taken

from a constructor for a class based on QMainWindow. The highlighted lines are the ones that

affect the status bar. First a pointer to the status bar is acquired, then the permanent widget is

added using addPermanentWidget(QWidget*, int), and finally the three normal widgets using

addWidget(QWidget*, int) are added.

Listing 9-10. The status bar and its widgets are set up in the constructor of the main window.

MainWindow::MainWindow() : QMainWindow()
{
...
QStatusBar *statusBar = this->statusBar();

QProgressBar *progressBar = new QProgressBar;
QLabel *mode = new QLabel(tr(" EDIT "));
QLabel *modified = new QLabel(tr(" Y "));
QLabel *size = new QLabel(tr(" 999999kB "));

mode->setMinimumSize(mode->sizeHint());
mode->setAlignment(Qt::AlignCenter);
mode->setText(tr("EDIT"));
mode->setToolTip(tr("The current working mode."));

statusBar->addPermanentWidget(mode);

modified->setMinimumSize(modified->sizeHint());
modified->setAlignment(Qt::AlignCenter);
modified->setText(tr("N"));
modified->setToolTip(tr("Indicates if the current document "

"has been modified or not."));

size->setMinimumSize(size->sizeHint());
size->setAlignment(Qt::AlignRight | Qt::AlignVCenter);
size->setText(tr("%1kB ").arg(0));
size->setToolTip(tr("The memory used for the current document."));

CHAPTER 9 ■ PROVIDING HELP268

progressBar->setTextVisible(false);
progressBar->setRange(0, 0);

statusBar->addWidget(progressBar, 1);

statusBar->addWidget(modified);

statusBar->addWidget(size);

...
}

Notice that the widgets are created with a large size and the minimumSize policy to the

sizeHint is set. This means that the widgets will not be shrunk to a smaller size than this. By

setting the second argument to 1 when adding the progress bar, you enable it to take the rest

of the available space. The second argument is the stretch factor, which defaults to zero. By

playing with it, you can ensure that the widgets keep their relative sizes when the main win-

dow is resized.

The labels then get a proper text and a tooltip before they are added to the status bar.

Notice that the permanent widget appears on the right even if it is added before the normal

widgets. This is so that a message can cover the normal widgets while keeping the permanent

widgets visible. An example can be seen in Figure 9-12.

Figure 9-12. A status bar showing a message and the permanent widget

One of the more common uses of status bars is to show different working modes. (Don’t

forget that the status bar is fairly small.) Try to show the different working modes in other

ways, too: change the mouse pointer, change the appearance of handles for the objects being

processed, or simply change the background color. Just showing a small three-letter code on

the status bar is a good way to confuse just about any user.

Creating Wizards
When the user is faced with a multitude of options, a wizard can help by presenting the

options in a logical order and provide extra support in the form of explanatory text for

each option.

According to Qt, a wizard is a QWidgetStack containing all the pages; QPushButton widgets

for the Next, Previous, and Cancel buttons; and a QDialog for keeping all the components.

Each page is a QWidget in itself that can contain other widgets for settings.

A QWidgetStack is a special widget that can hold other widgets. These widgets are kept in a

stack (as in a stack of cards), in which only the current widget is visible. This makes it possible

to move forward and backward through the pages by simply changing the current widget of

the stack.

The best tool for designing a wizard is Qt Designer, but to show the concept I’ll show you

a hand-coded version. Its first page is shown in Figure 9-13.

CHAPTER 9 ■ PROVIDING HELP 269

Figure 9-13. The first page of the example wizard

A wizard is nothing more than a dialog to the rest of the application. Listing 9-11 shows

the declaration of the Wizard dialog class. The public interface contains only a constructor.

The private part of the interface consists of slots for the Next and Previous buttons, followed

by a number of pointers to the different widgets from which the dialog is composed.

Listing 9-11. The declaration of a wizard class

class Wizard : public QDialog
{
Q_OBJECT

public:
Wizard();

private slots:
void doNext();
void doPrev();

private:
QPushButton *next;
QPushButton *previous;

QStackedWidget *pages;

PageOne *pageOne;
PageTwo *pageTwo;
PageThree *pageThree;

};

In the wizard I chose to place all logic in the Wizard class, so all the pages simply handle

the visual details. The controls that can be accessed later, such as checkboxes and line edits

CHAPTER 9 ■ PROVIDING HELP270

with user configurations, are made public members in the page classes. The first page from

Figure 9-13 is shown in Listing 9-12.

The listing starts with the class declaration. For the first page, only the constructor and

the checkbox for accepting the rules are available because the Wizard class needs to be able to

tell whether the Next button is to be enabled or disabled.

The other half of the listing consists of the implementation of the constructor, in which

the widgets are created, set up, and put in the layout. The QTextEdit widget is used as a reader,

so the readOnly property is set to true before the text is set using setHtml.

Listing 9-12. The first page of the wizard

class PageOne : public QWidget
{
public:
PageOne(QWidget *parent = 0);

QCheckBox *acceptDeal;
};

PageOne::PageOne(QWidget *parent) : QWidget(parent)
{
QGridLayout *layout = new QGridLayout(this);

QTextEdit *textEdit = new QTextEdit;
textEdit->setReadOnly(true);
textEdit->setHtml(tr("<h1>The Rules</h1>"

"<p>The rules are to be followed!</p>"));

acceptDeal = new QCheckBox(tr("I accept"));

layout->addWidget(textEdit, 0, 0, 1, 2);
layout->addWidget(acceptDeal, 1, 1);

}

There is still one piece missing before you can show the first page in the wizard dialog: the

constructor. The constructor takes care of creating the Next, Previous, and Cancel buttons;

creates the pages; and puts them in a stack before applying layouts and making the needed

connections.

The source code for the constructor is shown in Listing 9-13. Following the code from the

top down, it starts with the creation of the layout and the widgets. The widgets are then placed

in the layout before the buttons are configured. Both Next and Previous are disabled from the

start because there is nothing to go back to, and the user has to approve of the rules before it is

possible to continue. These buttons are connected to the doNext() and doPrev() slots, while

the Cancel button is connected to the reject() slot that closes the dialog.

When the buttons are connected, the pages are created and added to the widget stack.

The final step is to connect the toggled(bool) signal of the checkbox from the first page to the

setEnabled(bool) slot of the Next button.

CHAPTER 9 ■ PROVIDING HELP 271

Listing 9-13. The constructor of the wizard

Wizard::Wizard() : QDialog()
{

QGridLayout *layout = new QGridLayout(this);

QPushButton *cancel = new QPushButton(tr("Cancel"));
next = new QPushButton(tr("Next"));
previous = new QPushButton(tr("Previous"));

pages = new QStackedWidget;

layout->addWidget(pages, 0, 0, 1, 5);
layout->setColumnMinimumWidth(0, 50);
layout->addWidget(previous, 1, 1);
layout->addWidget(next, 1, 2);
layout->setColumnMinimumWidth(3, 5);
layout->addWidget(cancel, 1, 4);

previous->setEnabled(false);
next->setEnabled(false);

connect(next, SIGNAL(clicked()), this, SLOT(doNext()));
connect(previous, SIGNAL(clicked()), this, SLOT(doPrev()));
connect(cancel, SIGNAL(clicked()), this, SLOT(reject()));

pages->addWidget(pageOne = new PageOne(pages));
pages->addWidget(pageTwo = new PageTwo(pages));
pages->addWidget(pageThree = new PageThree(pages));

connect(pageOne->acceptDeal, SIGNAL(toggled(bool)),�

next, SLOT(setEnabled(bool)));
}

When the user has checked the box and clicked the Next button, the dialog shown in

Figure 9-14 is displayed. There are a number of things to deal with when the next button is

clicked: the enabled property of the Next button is no longer depending on the state of the

checkbox, the Previous button needs to be enabled, and you mustn’t forget to show the next

page. All this is managed in the doNext slot.

CHAPTER 9 ■ PROVIDING HELP272

Figure 9-14. The second page of the example wizard

The source code for the doNext slot is shown in Listing 9-14. The basis of the method is a

switch operation that determines what to do depending on the page that the user was on

when clicking the Next button. Because this wizard contains three pages, there are three cases

to handle. When leaving the first page, the connection to handle the enabled property of the

Next button is disconnected, and the Previous button is enabled. When leaving the second

page for the last page, the text of the Next button is changed to Finish, as shown in Figure 9-15.

Listing 9-14. Handling the Next button

void Wizard::doNext()
{
switch(pages->currentIndex())
{
case 0:
previous->setEnabled(true);

disconnect(pageOne->acceptDeal, SIGNAL(toggled(bool)),
next, SLOT(setEnabled(bool)));

break;
case 1:
next->setText(tr("Finish"));

break;
case 2:
QMessageBox::information(this, tr("Finishing"),

tr("Here is where the action takes place."));
accept();

return;
}

pages->setCurrentIndex(pages->currentIndex()+1);
}

CHAPTER 9 ■ PROVIDING HELP 273

Figure 9-15. The final page of the example wizard

When leaving the last page, a message box is shown before the dialog is closed by using

the accept method before returning from the slot. This is where you would have completed

the wizard by actually doing something. The actual work can be done in the dialog or in the

code bringing up the dialog. Because you close the dialog using accept here and reject in all

other cases, you can check the dialog result and take action if the dialog was accepted.

The last task of the doNext slot is to update the currentIndex property of the widget stack,

which shows the next page. Because this is done for all pages, the code for it is placed outside

the switch block.

The final piece needed to complete the wizard is the ability to go back, which is handled

from the doPrev slot shown in Listing 9-15. The principle is the same as used in the doNext slot:

a switch operation to determine what to do depending on what page is being shown when the

button is clicked.

Listing 9-15. Handling the Previous button

void Wizard::doPrev()
{
switch(pages->currentIndex())
{
case 1:
previous->setEnabled(false);
next->setEnabled(pageOne->acceptDeal->isChecked());

connect(pageOne->acceptDeal, SIGNAL(toggled(bool)),
next, SLOT(setEnabled(bool)));

break;
case 2:
next->setText(tr("Next"));

CHAPTER 9 ■ PROVIDING HELP274

break;
}

pages->setCurrentIndex(pages->currentIndex()-1);
}

The actions being performed can be traced back to the doNext slot. When moving from

page 1 to 0, you reconnect the toggled signal to the enabled property of the Next button and

disable the Previous button. When moving from page 2 to 1, you reset the text of the Next but-

ton to Next.

As you can see, creating wizards is a fairly straightforward task. Because all wizards are

application-dependent, you’re bound to end up with a large amount of application-specific

code for each wizard. By designing the wizard using Qt Designer, you can reduce the amount

of work to implement a doNext and a doPrev slot. Nearly all the other code is there only to

handle the appearance of the dialog and the different pages.

Assisting the User
Of course, you might want to rely on the de facto standard for supplying help to users: the F1

key. The reference documentation is made available through the Qt Assistant that is bundled

with Qt. When you need to provide help, you can also use Assistant as the help system for your

application. Doing so is a two-stage process: configure Assistant and then integrate Assistant

in your application.

Creating the Help Documentation

Qt Assistant can render HTML documentation, so you have to format your help files using

HTML format to take advantage of this feature. The HTML files and images are placed in a

directory next to the executable file alongside two more files needed by Assistant. The first and

most important file is the Assistant Documentation Profile called qtbookexample.adp. This file

configures Assistant so the right documentation set is used and the window title is set up cor-

rectly. You can see the contents of the file in Listing 9-16.

The second file needed by Assistant is the about.txt file used to customize the about box

in Assistant. You can see that it is referenced from the profile part of the adp file. The profile
part configures the appearance of Assistant, configuring it with a window title, an icon, a start

page, a text for the about menu, the file that contains the text for the about box, and the rela-

tive path to the rest of the documents.

Listing 9-16. The Assistant documentation profile file

<!DOCTYPE DCF>

<assistantconfig version="3.2.0">

<profile>
<property name="name">qtbookexample</property>
<property name="title">Qt Book Example</property>
<property name="applicationicon">images/qt.png</property>

CHAPTER 9 ■ PROVIDING HELP 275

<property name="startpage">index.html</property>
<property name="aboutmenutext">About The Qt Book Example</property>
<property name="abouturl">about.txt</property>
<property name="assistantdocs">.</property>

</profile>

<DCF ref="index.html" icon="images/qt.png" title="Qt Book Example">
<section ref="./basics.html" title="Basics">
<section ref="./index.html" title="The first basic thing" />
<section ref="./index.html" title="The second basic thing" />
<section ref="./easystuff.html" title="Another basic topic" />

<keyword ref="./index.html">Basic Thing One</keyword>
<keyword ref="./index.html">Basic Thing Two</keyword>
<keyword ref="./easystuff.html">Another Basic Thing</keyword>

</section>
<section ref="./advanced.html" title="Advanced Topics">
<section ref="./adv1.html" title="The first advanced thing" />
<section ref="./adv2.html" title="The second advanced thing" />

<keyword ref="./adv1.html">Advanced Topic One</keyword>
<keyword ref="./adv2.html">Advanced Topic Two</keyword>

</section>

<section ref="./appendix.html" title="Appendix" />
<section ref="./faq.html" title="F.A.Q." />

</DCF>

</assistantconfig>

The second half of the adp file contains the different sections and keywords to use.

Figure 9-16 shows how the information is shown in the Contents and Index tabs of Assistant.

The other tabs take care of themselves. The bookmarks are added by the user, and the

Search tab offers searching throughout all files referenced from the adp file.

To test your adp file with Assistant, you can start Assistant with the parameter –profile
and then refer to your profile. For example, assistant –profile qtbookexample.adp starts

Assistant with the qtbookexample.adp documentation, as shown in Figure 9-16.

CHAPTER 9 ■ PROVIDING HELP276

Figure 9-16. The documentation profile is shown as a contents tree and a list of keywords in
Assistant.

Putting It Together

To use Assistant as your help documentation browser, you need to create a QAssistantClient
object. Make sure that you create only one object for your entire application—the user might

be confused if you start several Assistant instances at once.

Listing 9-17 shows how to create an assistant client object. The first argument given to the

constructor is a path to the Assistant executable. If you assume that the users have a working

Qt development environment installed, you can use the QLibraryInfo object to find the exe-

cutables. In the most common situation, the user doesn’t have Qt installed so you have to ship

the Assistant executable with your application and place it relative to your application’s exe-

cutable. You can find the location of your file by using the QApplication::applicationDirPath()
method.

Listing 9-17. Creating and configuring Assistant

QAssistantClient *assistantClient =
new QAssistantClient(QApplication::applicationDirPath(), qApp);

QStringList arguments;
arguments << "-profile" << "./documentation/qtbookexample.adp";
assistantClient->setArguments(arguments);

When you want to show the Assistant, simply call one of the openAssistant() or

showPage(const QString&) methods of your assistant client object. When your application

closes, make sure to call closeAssistant() on your client object to close down any open

instance of Assistant.

To be able to build a project using the QAssistantClient class, you must add the line

CONFIG += assistant to your project file.

CHAPTER 9 ■ PROVIDING HELP 277

Summary
Providing help is about much more than just responding to the F1 key; it’s about providing an

intuitive user interface and adding support when the user needs it. The support must be made

available through the channels that the user knows so the help is intuitive. By providing

tooltips and What’s this help for most widgets, many questions can be avoided.

When tooltips no longer help, a wizard can be used, or you can attempt to redesign the

user interface to avoid problems. The latter must always be an option, but sometimes a wizard

is the best alternative.

To make information available, you can use the status bar to give the user the same infor-

mation regardless of what the user is doing. But don’t count on the user seeing the status bar

at all times—if the working mode is changed by accident, users usually don’t go for the status

bar; instead they go to wherever they were when the change took place.

The final piece of a help system is online documentation. The Qt Assistant can help you

by providing a nice interface to your documentation. Simply compile your documentation

into a set of HTML documents, create a documentation profile, and use the Assistant as your

help client.

CHAPTER 9 ■ PROVIDING HELP278

Internationalization and
Localization

When you deploy your application for the international market you have to provide local-

ized versions. The reasons for doing so go far beyond the disparate languages spoken by the

world’s population; in fact, there are disparities regarding how time, dates, and monetary

values are represented; and even more complex written language issues such as whether text

should be read from the right or the left.

■Tip Internationalization and localization are actually two parts of the same process. Internationalization is

about freeing your application from any ties to a specific location—to make it independent of any specific

language or culture. Localization is the next step—to take an internationalized application and adapt it to a

specific location with a specific language and culture.

Before you start dealing with all the details that have to be managed for a successful adap-

tation to different languages and cultures of your application, have a look at the tools Qt

provides for managing this.

■Tip Did you know that internationalization is often written as i18n, where 18 is the number of characters

removed? Localization can often be seen as l10n (shortened in the same way).

Translating an Application
To get started, you need an application to translate. You’ll use the SDI application from

Chapter 4, with the additional features it was extended with in Chapter 8 (when file handling

support was added). You can see a screenshot from the application in Figure 10-1. Because I’m

a native Swedish speaker, the task will be to translate the application into Swedish.

279

C H A P T E R 1 0

Figure 10-1. The SDI application

The translations are kept in two different file formats: ts and qm. The ts files are used dur-

ing development and contain all words found in the application in an easily maintainable

XML file format. The qm files are used at run-time and contain the phrases in a portable com-

pressed format. The idea is to use the ts files as source files during development. The ts files

are then compiled into the distributable qm format used by the actual applications. The compi-

lation is referred to as releasing the translation.

Before you can start translating the application, you need to notify Qt of your intent.

Since the target language is Swedish as spoken in Sweden, and the commonly used code for

that locale is sv_SE, you can add it to the end of the application name: SDI_sv_SE.

■Note The sv_SE part of the name is built from combining the language code according to ISO 639-1 and

the country code according to ISO 3166-1. The application name is just an informal name for the application.

This naming convention is only by convention—you can name your translations any way you like.

To add this translation to the project, simply add the following line to the project file:

TRANSLATIONS += sdi_sv_SE.ts

You can add any number of translations to a project by adding new TRANSLATION += lines

as appropriate. You can also specify several translations at once by separating them by spaces

or tabs.

CHAPTER 10 ■ INTERNATIONALIZATION AND LOCALIZATION280

Extracting the Strings

When the project file has been updated with one or more translations, it is time to identify

the strings that need to be translated by extracting them from the various tr() calls found

throughout the application. There are other cases, too, but they will be discussed later.

The lupdate tool is used to extract the phrases—it creates or updates all ts files listed in

a given project file. It is nice to know that when it updates an existing file it does not remove

anything—all the translations already done are kept intact. Because the project file is called

sdi.pro, the command to enter at the command line is lupdate sdi.pro. This will create the

sdi_sv_SE.ts file from the strings found in the sources in the project file.

Although Qt comes with a tool for software translators, not all translation businesses

want to use custom tools. Fortunately, the ts files are quite easy to process because they are

formatted as XML. Listing 10-1 shows an extract of the untranslated sdi_sv_SE.ts file.

Listing 10-1. An example of the contents of an untranslated ts file

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE TS><TS version="1.1">
<context>

<name>SdiWindow</name>
<message>

<location filename="sdiwindow.cpp" line="254"/>
<source>%1[*] - %2</source>
<translation type="unfinished"></translation>

</message>
<message>

<location filename="sdiwindow.cpp" line="19"/>
...
</context>
</TS>

As you can see from the extraction, it shouldn’t be hard to convert it into the format that

your translation company prefers and back again.

Linguist: A Tool for Translating

Qt is bundled with the Linguist tool, which provides the translator with a convenient overview

of the strings to translate and their respective status: done, unknown, or missing. It also pro-

vides some simple checks to ensure that the translations are okay. For example, it checks that

the final punctuation is the same in both the original and the translated string.

Starting Linguist produces the user interface shown in Figure 10-2. The figure shows the

application after the translation has been opened and a few strings have been translated.

If you look more closely at Figure 10-2, you can see that the Linguist interface consists of

three panels. In the Context panel (on the left) are the classes containing strings and their

respective strings. The currently selected string is shown in its original and translated form in

the main panel (top right). In the Phrases panel, Qt suggests translations from looking at ear-

lier translations and a phrase book that you can load. (Phrase books are not covered here.)

CHAPTER 10 ■ INTERNATIONALIZATION AND LOCALIZATION 281

Figure 10-2. Linguist with a fresh translation file loaded

The easiest way to work in Linguist is to pick a string from the Context panel, translate it,

and press Ctrl + Enter. This brings you to the next nontranslated string if the four validators

are okay. The validators can be turned on and off from the Validation menu. Their functions

are listed as follows:

• Accelerators: This function ensures that there is an accelerator in the translation if there

is an accelerator in the original string.

• Ending Punctuation: This function ensures that the ending punctuation of the original

and the translated strings match.

• Phrase Matches: This function checks to see whether the original string matches a

known phrase. In that case, the translation should be the same as the translation of

the known phrase.

• Place Marker Matches: This function ensures that place markers (for example, %1, %2)

from the original string also exist in the translation.

CHAPTER 10 ■ INTERNATIONALIZATION AND LOCALIZATION282

It is possible to keep a translation if the validators do not accept it, but the Ctrl + Enter

shortcut will not move along automatically (ensuring that you make an active decision to

ignore the validators). When a validator objects to a translation, it shows a message in the

status bar (see Figure 10-3).

Figure 10-3. The validator objects to the translation because the translation does not refer to the
same place markers as in the source text.

As you progress through the translation, you can see your status in the right side of the

status bar. When all strings are translated, the numbers on both sides of the dash will match.

You can save your translation at any time and resume the work later. Linguist and lupdate do

not lose any information unless you overwrite it or remove it yourself.

When your translation is ready and saved, you have to compile or release it to be able to

use it from your application by using the lrelease tool. Simply pass your project name as

argument. In the case of the sdi.pro application, you run lrelease sdi.pro from the com-

mand line to build the needed qm files from your ts files.

CHAPTER 10 ■ INTERNATIONALIZATION AND LOCALIZATION 283

Set Up a Translation Object

When the translations are ready and have been released, it is time to load them into the appli-

cation. Since languages are set at an application level, the goal is to install a QTranslator
object containing the right translations on the QApplication object.

Before worrying about QTranslator objects, you need to determine which language the

user expects the application to be written in. This information can be found in the QLocale
class. A QLocale object represents a certain localization zone and language. The object is aware

of most localization details for that zone and language. To obtain an object representing the

zone and language of the computer, you can use the static method called QLocale::system.

This name is used in Listing 10-2 to load a translation into a QTranslator object before

installing it by calling installTranslator(QTranslator*). As you can see in the listing, the file

extension of the translation file is not specified. If the load call fails, the translator will not

have any effect, and the application will be shown in the language used in the source code.

Listing 10-2. A translation is loaded into a translator that is installed on the application.

int main(int argc, char **argv)
{
QApplication app(argc, argv);

QTranslator translator;
translator.load(QString("sdi_")+QLocale::system().name());
app.installTranslator(&translator);

QTranslator qtTranslator;
qtTranslator.load(QString("qt_")+QLocale::system().name());
app.installTranslator(&qtTranslator);

SdiWindow *window = new SdiWindow;
window->show();

return app.exec();
}

There are no rules when it comes to naming translation files. It could have been called

swedish.qm or 12345.qm—it doesn’t matter. The nice thing about connecting the name of the

locale with the translator is that you can use the QLocale::system to find the right language.

■Tip You can add your qm files to a resource file to integrate the translations into your application. It makes

the executable heavier, but reduces the dependencies on other files. This can make the application easier to

deploy.

CHAPTER 10 ■ INTERNATIONALIZATION AND LOCALIZATION284

Qt Strings

If you were to deploy the application now, only parts of it would be translated. With Qt’s stan-

dard dialogs for opening and saving documents and the About Qt dialog, strings embedded in

the Qt library are used. These strings are missed by lupdate since it looks only in the source

code of the current project. Instead, you have to install another translator for handling the

strings embedded within Qt’s standard dialogs.

Before you get to the code for adding such a translator, have a look at the translations

available for Qt. The Qt library contains about 2200 words (you can see Linguist with a Qt

translation loaded in Figure 10-4). Translations for these words are shipped with Qt for trans-

lating the default language (English) into French and German. There are other languages

included as well, but they are not officially supported by Trolltech. All translations are avail-

able from the translations subdirectory in your Qt installation directory. Notice that you can

use the qt_untranslated.ts file as a starting point if you need to support a new language. You

should also search online because many developers will release their translations for the use

of others.

Figure 10-4. A Qt translation loaded into Linguist

CHAPTER 10 ■ INTERNATIONALIZATION AND LOCALIZATION 285

Because the Qt strings are not a part of your application, you must release it manually.

You can do this by opening the file using Linguist and releasing it from the File menu (as

shown in Figure 10-5), or you can give the ts file as argument to lrelease instead of your

project file.

■Tip Another way to do it is to base your ts files on the appropriate Qt translation. Because lupdate

never removes anything, this is the same as merging the translations, which makes the release process

easier.

Figure 10-5. You can release the current translation with the Release option from the File menu.

When you have created or copied a translation of Qt’s strings into your project directory,

released it, and given the resulting file an appropriate name, it is time to load it into a transla-

tor and install it. In the case of Swedish, the file is called qt_sv_SE, and the loading is shown in

Listing 10-3. As you can see, the procedure is identical to the loading of translations for your

application’s strings.

CHAPTER 10 ■ INTERNATIONALIZATION AND LOCALIZATION286

Listing 10-3. Loading and installing a translator for Qt’s strings

int main(int argc, char **argv)
{

QApplication app(argc, argv);

QTranslator translator;
translator.load(QString("sdi_")+QLocale::system().name());
app.installTranslator(&translator);

QTranslator qtTranslator;
qtTranslator.load(QString("qt_")+QLocale::system().name());
app.installTranslator(&qtTranslator);

SdiWindow *window = new SdiWindow;
window->show();

return app.exec();
}

When both translators have been loaded and installed, the user interface is translated.

You can see the original English next to the translated Swedish in Figure 10-6.

Figure 10-6. The SDI application in English and Swedish

Dealing with Other Translation Cases

Two things happen when you enclose strings in tr calls: lupdate finds the string and gives it to

the translator; the string is then passed through the QApplication::translate method.

So there are two kinds of special cases that you need to take care of: make sure that

lupdate can find all your strings and ensure that all strings get passed through translate in

a way that allows the method to translate it properly.

CHAPTER 10 ■ INTERNATIONALIZATION AND LOCALIZATION 287

Finding All Strings

Sometimes you write code in which your strings do not appear inside a tr call. In this case you

can use the macros QT_TR_NOOP or QT_TRANSLATE_NOOP. Look at Listing 10-4 for an example.

The difference between the two macros is that QT_TR_NOOP does not take a context argu-

ment. That works fine for the strings in texts2, which are very unlikely to be mixed up with

other strings in the application. The strings in texts can very easily be mixed up, however. For

example, does the Title refer to the title of a web page or to a title for a person? In Swedish,

the translations would be Överskrift for a web page title and Befattning for a person’s title—

quite a big difference.

When strings can be ambiguous, the QT_TRANSLATE_NOOP macro comes in handy. It makes

it possible to add a context for the translator and translation mechanism. Figure 10-7 shows

the strings from Listing 10-4 as they appear in Linguist.

Listing 10-4. Strings outside tr calls can be made visible to lupdate using the QT_TR_NOOP and
QT_TRANSLATE_NOOP macros.

char *texts[] = { QT_TRANSLATE_NOOP("main","URL"),
QT_TRANSLATE_NOOP("main","Title"),
QT_TRANSLATE_NOOP("main","Publisher") };

char *texts2[] = { QT_TR_NOOP("This is a very special string."),
QT_TR_NOOP("And this is just as special.") };

Strings captured from within classes that inherit QObject starting with Q_OBJECT are auto-

matically placed in a context named after the class.

Using the strings from outside a QObject is easy. Just use the translate method available

from your application object. If your string does not have a context, you can pass a null string

(0); otherwise, pass the context as the first argument and the string as the second. The follow-

ing line uses strings from the texts and texts2 vectors:

QMessageBox::information(0, qApp->translate("main",texts[2]), qApp-
>translate(0,texts2[1]));

Telling Strings Apart

As discussed earlier, some strings can be ambiguous. For example, the word address can refer

to a postal address, a web URL, or a memory address in the computer’s main memory. The

translations for the different sentences can vary depending on the meaning and context. If

several of these meanings are used in one context, you can add a comment for each string to

make it possible for the translator to tell them apart.

CHAPTER 10 ■ INTERNATIONALIZATION AND LOCALIZATION288

Figure 10-7. The strings found using the QT_TRANSLATE_NOOP macro are found in a context.

Listing 10-5 shows an example of how comments are specified in tr calls. The comment is

simply sent along as a second argument to the tr method.

Listing 10-5. Adding comments to tell the same word with different meanings apart

new QLabel(tr("Address:", "Postal address"), this);
new QLabel(tr("Address:", "Website address"), this);

When the translator opens the ts file, the comment is shown below the actual string to

translate. The strings from Listing 10-5 are shown in Figure 10-8.

CHAPTER 10 ■ INTERNATIONALIZATION AND LOCALIZATION 289

Figure 10-8. The comment is shown to the translator below the original string.

You Have Altered n File(s)

When the translate method tries to translate a string, it needs to get an exact match, so only

one string in Listing 10-6 will work. The problem with merging strings using the + operator

inside a tr call (line1) is that lupdate can’t properly find the string. The problem with merging

the strings after the tr calls (line2) is that the word order is more or less fixed. By using the arg
call as shown in the line3 assignment, the translator can alter the word ordering freely, and

the string is matched regardless of the value of n.

Listing 10-6. Three ways to build a string: one right and two wrong

QString line1 = tr("You have altered " + QString::number(n) + " file(s).");
QString line2 = tr("You have altered ") + QString::number(n) + tr(" file(s).");
QString line3 = tr("You have altered %1 file(s).").arg(n);

There is one annoying problem with the line3 assignment: the (s) part. It’s possible to let

the translator provide strings for different values of n; the code for line4 in Listing 10-7 shows

CHAPTER 10 ■ INTERNATIONALIZATION AND LOCALIZATION290

how it is done. The tr call takes three arguments: the actual string, a comment, and then a

value used for determining whether the string is to be in singular or plural form.

Listing 10-7. Handling plural strings

QString line4 = tr("You have altered %1 file.", "", n).arg(n);

When a tr call with a value is found, the translator is given the capability to provide sin-

gular and plural versions of the string. Some languages have other special forms such as

paucal—Qt handles them as well. The string for line4 is shown in Figure 10-9.

Figure 10-9. Singular and plural versions of a string in Linguist

Find the Missing Strings

Sometimes it is easy to forget a call to tr or translate; or to leave out a string from the tr,

QT_TR_NOOP, or QT_TRANSLATE_NOOP markers. This leads to the string not being translated at

run-time or missed by the lupdate tool and thus be missing when translate is called.

CHAPTER 10 ■ INTERNATIONALIZATION AND LOCALIZATION 291

There are tools to locate the missing strings. For example, Qt 4 is shipped with the findtr
perl script. You can also use the more blunt grep command grep -n '"' *.cpp | grep -v
'tr(' if you are working on a Unix system.

Another method is to use a phony language in the source code (for example, adding FOO
before all strings and BAR after them—so an ordinary menu bar would read FOOFileBAR,

FOOEditBAR, and FOOHelpBAR). This makes it easy to spot strings not being translated, thus

making it likely that all are located during the testing process.

Neither trick is foolproof, so you need to pay attention to your strings and what you do to

them. Missing a string in the translation quickly sends a message of bad quality to your users.

■Tip One way to find missing tr() calls is to stop Qt from automatically converting char* strings to

QString objects, which will cause compiler errors for all the times you have missed calling tr(). You can

disable the conversion by adding a line reading DEFINES += QT_NO_CAST_FROM_ASCII to your project file.

Translating on the Fly

Sometimes you might want your application to be able to switch between different languages

on the fly. The user should be able to pick a language, and the entire environment is then

immediately translated into the chosen language. To try this, have a look at the application

shown in Figure 10-10. Only two languages to choose from, but the same solution applies to

any number of languages.

Figure 10-10. An application being translated on the fly

The principle is simple. When the user checks a radio button, the toggled signal is con-

nected to a slot. That slot loads a new translation into the QTranslator object installed, which

will cause all the calls to tr to return strings of the selected language. The only problem is that

all the tr calls need to be done again. In this situation it is good to know that when a new

translation is loaded, a QEvent::LanguageChange event is sent to all QObjects. It all works by

putting all the setText and setTitle calls in one function and calling that function as soon

as a language changed event occurs.

This all sounds nice in theory, so let’s have a look at the actual source code. Listing 10-8

shows the declaration of the DynDialog class, which is the dialog used in the application. You

need to keep references to all widgets showing text—the languages group box and both radio

buttons.

CHAPTER 10 ■ INTERNATIONALIZATION AND LOCALIZATION292

Listing 10-8. The DynDialog class declaration

class DynDialog : public QDialog
{
Q_OBJECT

public:
DynDialog();

protected:
void changeEvent(QEvent*);

private slots:
void languageChanged();

private:
void translateUi();

QGroupBox *languages;

QRadioButton *english;
QRadioButton *swedish;

};

The constructor shows that this dialog is intended to be translated dynamically. In the

source code shown in Listing 10-9 the widgets are created, configured, and placed in layouts,

but not a single call to setText or setTitle is made. Instead the translateUi method is called

at the very end.

Listing 10-9. The constructor of the DynDialog dialog—notice that no texts are set

DynDialog::DynDialog() : QDialog(0)
{
languages = new QGroupBox(this);
english = new QRadioButton(this);
swedish = new QRadioButton(this);

english->setChecked(true);
qTranslator->load("english");

QVBoxLayout *baseLayout = new QVBoxLayout(this);
baseLayout->addWidget(languages);

QVBoxLayout *radioLayout = new QVBoxLayout(languages);
radioLayout->addWidget(english);
radioLayout->addWidget(swedish);

CHAPTER 10 ■ INTERNATIONALIZATION AND LOCALIZATION 293

connect(english, SIGNAL(toggled(bool)), this, SLOT(languageChanged()));
connect(swedish, SIGNAL(toggled(bool)), this, SLOT(languageChanged()));

translateUi();
}

The translateUi method is shown in Listing 10-10. Here all the strings visible to the user

are passed through tr and then set.

Listing 10-10. Updating all the user visible strings at once

void DynDialog::translateUi()
{

languages->setTitle(tr("Languages"));

english->setText(tr("English"));
swedish->setText(tr("Swedish"));

}

Refer to Listing 10-9 to see that when the user picks another language (that is, toggles one

of the radio buttons), the languageChanged slot is invoked. The slot implementation is shown

in Listing 10-11. As you can see, the qTranslator loads a different translator for the different

user choices. The qTranslator pointer is an application global pointer that points to the

installed QTranslation object. The object is created and installed in the main function.

Listing 10-11. Loading translations

void DynDialog::languageChanged()
{

if(english->isChecked())
qTranslator->load("english");

else
qTranslator->load("swedish");

}

When a new translation is loaded, the QEvent::LanguageChanged event is sent to all

QObject instances. This event can be caught in the protected changeEvent method, as shown

in Listing 10-12. As soon as the event is encountered, the translateUi method is called again,

updating all visible texts using the newly loaded translator.

Listing 10-12. Watch for the QEvent::LanguageChanged event and update the user interface when
encountered.

void DynDialog::changeEvent(QEvent *event)
{
if(event->type() == QEvent::LanguageChange)
{
translateUi();

}

CHAPTER 10 ■ INTERNATIONALIZATION AND LOCALIZATION294

else
QDialog::changeEvent(event);

}

■Tip You can watch for more internationalization events in the changeEvent method. When the locale

changes, the QEvent::LocaleChange is sent.

To be able to build the system, a project file with the line TRANSLATIONS += english.ts
swedish.ts is used. Use lupdate to generate the ts files, Linguist to translate the strings, and

lrelease to generate the qm files. Then run qmake and make to build the application.

Other Considerations
When performing the actual localization of your application, there are several issues to be

aware of. It is not only a matter of translating text; you must also handle different ways of

typing numbers, showing images, handling currencies, and handling time and dates.

Dealing with Text

Because Qt works with Unicode characters internally, the QString and QChar classes can

handle almost any conceivable character. But this means that the standard libraries isalpha,

isdigit, isspace, and so on will not work correctly on all platforms because they sometimes

operate in a western European or American setting.

■Note I sometimes run into trouble registering my street address on English-speaking websites because

the town I live in is called Alingsås. The letter å is not recognized as a legal character.

The solution is to stick to the Qt-specific implementation of these methods. The QChar
class contains the methods isAlpha, isDigit, isSpace, and more that are equivalent to the

standard functions.

Taking Unicode into consideration is important not only when validating user input but

also when parsing files. To convert a Unicode QString to a char* vector (through a QByteArray),

you can use toAscii or toLatin1 to convert the string to an 8-bits-per-character format. The

result is either an ASCII string or a Latin1 (ISO 8859-1) string. If you want to convert to your

current 8-bit format, you can use the toLocal8Bit method, which converts to the 8-bit encod-

ing as indicated by the system’s settings.

You can also use the toUtf8 to convert it to UTF8. The UTF8 format represents many

characters, just as in ASCII, but supports all Unicode characters through encoding them as

multibyte sequences.

CHAPTER 10 ■ INTERNATIONALIZATION AND LOCALIZATION 295

When drawing text, Qt respects the direction of the text. Some languages are written from

right to left, so you must respect this in your custom widgets. The easiest way to do it is to

specify the location of the text using a rectangle instead of a point. In this way Qt can place

the text where the user expects it.

Images

There are two important things to think about when it comes to images: be careful about

using images to communicate plays on words and avoid sensitive symbols. Designing effec-

tive icons is an art, and having to follow these rules can make it even harder.

A classic example of a play on words is to show a log of a tree as an icon for a log viewer.

This is very logical in an English setting, but the word for a log of a tree in Swedish is stock. The

icon can then be said to represent a stock market trading tool—which would be a bad play on

words in an English setting.

When it comes to sensitive symbols, there are numerous things to avoid. On the top of the

list are religious symbols. Another example of an image that has a cultural charge is the red

cross (in some countries, the red crescent is more common). Avoiding political and military

symbols is also wise because they tend to vary widely among countries. The key is to use your

judgment and keep in mind that people are very easily offended.

Numbers

Numbers can be a tricky issue—both to print and to interpret. The QLocale class can handle

different negative signs, decimal points, group separators, exponential characters, and charac-

ters representing zero. All this gives you quite a number of details to get wrong.

In my experience the most commonly confused issues regarding the representation of

numbers are the characters used for the decimal point and as a group separator (dividing dig-

its in groups of three). Take the number 1.234 and 1,234, for example. The interpretation of

how these numbers are read depends on your country—in some countries, the first reads as

one thousand two hundred and thirty four; in others it reads as one point two three four.

Adding two decimals makes it better, but not perfect: 1.234,00 and 1,234.00. Both are valid,

but the decimal point and group separator are different.

■Tip Being able to handle the system’s decimal point character is very important. Different keyboards have

different characters for the decimal point on the numeric keypad. It can be very annoying to have to move

between the numeric keypad and the main keypad to write a decimal point.

Use the QLocale class and its method toString to convert numbers into text; use toFloat,

toInt, and so on to convert strings to numbers. Although this works for handling numbers

and strings shown to the user, remember to stick to one format when storing numbers as text

in files because the files can be moved between different countries (and you still have to be

able to read the numbers correctly, regardless of the current locale).

CHAPTER 10 ■ INTERNATIONALIZATION AND LOCALIZATION296

■Tip The system locale QString::toDouble and friends are used for converting strings into values.

Listing 10-13 shows a function using a given QLocale to convert and print three values.

The output from the function given a QLocale(QLocale::Swedish, QLocale::Sweden) and a

QLocale(QLocale::English, QLocale::UnitedStates) can be seen in Listing 10-14. Notice

the different decimal points and group separators being used.

Listing 10-13. Printing three values using a given locale

void printValues(QLocale loc)
{

QLocale::setDefault(loc);

double v1 = 3.1415;
double v2 = 31415;
double v3 = 1000.001;

qDebug() << loc.toString(v1);
qDebug() << loc.toString(v2);
qDebug() << loc.toString(v3);

}

Listing 10-14. The same three values printed using different locales

Swedish
"3,1415"
"31 415"
"1 000"
US English
"3.1415"
"31,415"
"1,000"

Currencies

Handling currencies is something that you have to do without the help of Qt. This is all right

because currencies can be treated as a number with limited precision—usually two decimals,

but sometimes none or three.

When you present currency values to users, it is important to remember some basics.

First of all, you can always put the three-letter currency code (ISO 4217) after the value (for

example, 280,00 SEK or 8.75 USD). Notice that I used the appropriate decimal point symbol

depending on the currency in the examples. (You should, of course, pick a decimal point

symbol depending on your user’s preference.)

CHAPTER 10 ■ INTERNATIONALIZATION AND LOCALIZATION 297

All currencies have names. For example, SEK is short for Swedish krona or just krona (the

plural is kronor). This is also something that can be put after the value being presented.

Some currencies have a sign or a symbol that can be used instead of putting a code or a

name after the value. This sign can be placed either before the value, be placed after the value,

or act as a decimal point symbol. Examples are £12.50 (GBP) and €12.50 (EUR). There are

many more symbols available for other currencies. Some symbols are widespread, while

others are used only in the local market where the currency is used.

From an internationalization perspective, I recommend using the ISO 4217 codes

because of neutrality (the codes are part of an international standard) and for ease of handling

(the code always goes after the value).

Dates and Times

Dates and times are presented in many different ways across the globe, making them a diffi-

cult challenge for developers. Although Qt provides classes to handle the complexity, there is a

risk of misinterpreting user input and confusing the user through output.

Let’s start by having a look at time and how it is presented to the user. Time expressed as

text is often presented as a digital clock, with two digits for hours and two digits for minutes.

The hours and minutes are separated by a colon or a simple dot. The issue here is that the

clock can be of the 24-hour type, where the hours run from zero to 23. The clock can also be of

the 12-hour type, where the hours run from zero to 11 twice. In the latter case, the minutes are

followed by AM or PM, indicating whether the time indicates a time in the morning or in the

evening.

You can handle both input and output in the way that the user expects with the QTime
methods toString and fromString (in combination with the timeFormat method of the QLo-
cale class) or by using the toString method from QLocale directly. Just make sure that you do

not interpret a PM time from a 12-hour clock as a time for a 24-hour clock followed by some

nonsense characters.

Listing 10-15 shows a function that prints times using given locales. The resulting output

is shown in Listing 10-16. The locales are QLocale(QLocale::Swedish, QLocale::Sweden) and

QLocale(QLocale::English, QLocale::UnitedStates).

Listing 10-15. Printing times using different locales

void printTimes(QLocale loc)
{

QLocale::setDefault(loc);

QTime t1(6, 15, 45);
QTime t2(12, 00, 00);
QTime t3(18, 20, 25);

qDebug() << "short";
qDebug() << loc.toString(t1, QLocale::ShortFormat);
qDebug() << loc.toString(t2, QLocale::ShortFormat);
qDebug() << loc.toString(t3, QLocale::ShortFormat);

CHAPTER 10 ■ INTERNATIONALIZATION AND LOCALIZATION298

qDebug() << "long";
qDebug() << loc.toString(t1, QLocale::LongFormat);
qDebug() << loc.toString(t2, QLocale::LongFormat);
qDebug() << loc.toString(t3, QLocale::LongFormat);

qDebug() << "default";
qDebug() << loc.toString(t1);
qDebug() << loc.toString(t2);
qDebug() << loc.toString(t3);

}

Listing 10-16. The resulting strings when printing times use different locales

Swedish
short
"06.15.45"
"12.00.00"
"18.20.25"
long
"kl. 06.15.45 W. Europe Daylight Time"
"kl. 12.00.00 W. Europe Daylight Time"
"kl. 18.20.25 W. Europe Daylight Time"
default
"kl. 06.15.45 W. Europe Daylight Time"
"kl. 12.00.00 W. Europe Daylight Time"
"kl. 18.20.25 W. Europe Daylight Time"
US English
short
"6:15:45 AM"
"12:00:00 PM"
"6:20:25 PM"
long
"6:15:45 AM W. Europe Daylight Time"
"12:00:00 PM W. Europe Daylight Time"
"6:20:25 PM W. Europe Daylight Time"
default
"6:15:45 AM W. Europe Daylight Time"
"12:00:00 PM W. Europe Daylight Time"
"6:20:25 PM W. Europe Daylight Time"

When it comes to representing dates, there are other issues to deal with. Months have dif-

ferent names in different countries, as do the days of the week. When writing dates, the order

of the day, month, and year differ between different countries. Just to make things even more

complex, the first day of the week can be either Sunday or Monday, depending on your loca-

tion. To help you manage this, the QLocale class can handle most of these issues.

CHAPTER 10 ■ INTERNATIONALIZATION AND LOCALIZATION 299

You can present and interpret dates properly by using the toString and fromString meth-

ods from the QDate class and the dateFormat method from QLocale, or by using the toString
method of QLocale directly.

To compare the impact of locales QLocale(QLocale::Swedish, QLocale::Sweden) and a

QLocale(QLocale::English, QLocale::UnitedStates) when it comes to date formatting, I

have used the function shown in Listing 10-17. The resulting output can be seen in Listing 10-18.

Listing 10-17. Printing dates using different locales

void printDates(QLocale loc)
{

QLocale::setDefault(loc);

QDate d1(2006, 10, 12);
QDate d2(2006, 01, 31);
QDate d3(2006, 06, 06);

qDebug() << "short";
qDebug() << loc.toString(d1, QLocale::ShortFormat);
qDebug() << loc.toString(d2, QLocale::ShortFormat);
qDebug() << loc.toString(d3, QLocale::ShortFormat);

qDebug() << "long";
qDebug() << loc.toString(d1, QLocale::LongFormat);
qDebug() << loc.toString(d2, QLocale::LongFormat);
qDebug() << loc.toString(d3, QLocale::LongFormat);

qDebug() << "default";
qDebug() << loc.toString(d1);
qDebug() << loc.toString(d2);
qDebug() << loc.toString(d3);

}

Listing 10-18. The resulting strings when printing dates using different locales

Swedish
short
"12 okt 2006"
"31 jan 2006"
"6 jun 2006"
long
"torsdag 12 oktober 2006"
"tisdag 31 januari 2006"
"tisdag 6 juni 2006"
default
"torsdag 12 oktober 2006"
"tisdag 31 januari 2006"

CHAPTER 10 ■ INTERNATIONALIZATION AND LOCALIZATION300

"tisdag 6 juni 2006"
US English
short
"Oct 12, 2006"
"Jan 31, 2006"
"Jun 6, 2006"
long
"Thursday, October 12, 2006"
"Tuesday, January 31, 2006"
"Tuesday, June 6, 2006"
default
"Thursday, October 12, 2006"
"Tuesday, January 31, 2006"
"Tuesday, June 6, 2006"

Notice that in both Listing 10-14 and Listing 10-18 the default format is the long format. If

I had to choose between long and short format, I would consider the shorter format easier to

read in most cases (unless I really needed all the details about weekdays and time zones).

Help

The translation tools that ship with Qt catch most of the help you provide: tooltips, status

messages, and What’s this strings are found as long as they are contained in tr calls. Don’t for-

get your online help documents. You must take care of translating your help documents and

make sure to show the correct language when the user requests help. It’s not very complicated;

it’s just something that you must not forget because the Qt workflow doesn’t catch it.

Summary
Internationalization and localization are about much more than just translating an applica-

tion. You can no longer depend on many things that you take for granted: date format, time

format, number format, icons being understood by the user, legal characters, and so on. The

process is really about understanding the target culture and its conventions. This is what

makes deploying an application worldwide such a big task.

By using lupdate, lrelease, and Linguist together with the QLocale class, you have come

a long way. Try to keep your text in QString and QChar as much as possible to ensure that

Unicode is used (saving you from having to think about encoding characters all the time).

Before deploying, be sure to test in all locales that you intend to target. Try to use local

testers if possible—they will probably spot more mistakes than you will.

CHAPTER 10 ■ INTERNATIONALIZATION AND LOCALIZATION 301

Plugins

Qt offers a rich programming interface that is capable of interacting with many different

technologies. This capability is what makes it possible for Qt-driven applications to look dif-

ferent on different platforms; images can be stored in many different ways and interact with

numerous database solutions. You might be surprised to know that you can create your own

new Qt features using a Qt feature known as a plugin.

The classes used by Qt to handle plugins are not limited to extending Qt. With the same

set of classes you can also create your own plugin interfaces and extend your own applications

with custom plugins. This makes it possible to create extendable applications without having

to deal with all the platform specifics involved in the process.

Plugin Basics
Before you can start working with plugins, you need to understand how a plugin works. To a

Qt application a plugin is just another instance of a class. The methods available are deter-

mined by an interface class. An interface class usually contains only pure virtual methods, so

no functions are implemented in the interface class. The plugin then inherits the QObject class

and the interface class and implements all the methods with their specific functionality. When

the application loads a potential plugin with the QPluginLoader class, it gets a QObject pointer.

By attempting to cast the given object to the interface class using qobject_cast, the applica-

tion can tell whether the plugin implements the expected interface and can be treated as an

actual plugin.

For the QPluginLoader to work properly the interface class must be declared an interface

by using the Q_DECLARE_INTERFACE macro, and the plugins must declare that they implement

an interface by using the Q_INTERFACES macro. These two macros enable you to safely match

a given plugin to the right interface. It is one step in a whole range of criteria that must be ful-

filled for Qt to trust the plugin. The following list contains all the checks that Qt performs

when attempting to load a plugin. If any criteria are not met, the plugin is not loaded.

• The same version of Qt must have been used for building the plugin and the applica-

tion. Qt checks that the major (4) and minor (4.2) numbers match, but the revision

number (4.2.2) can differ.

• The plugin and application must have been built using the same compiler for the same

operating system on the same platform. Versions of the compiler can differ as long as

their internal architecture remains the same (for example, name mangling).

303

C H A P T E R 1 1

• The Qt library used for the plugin and application must have been configured in

the same way and has to be compiled in “shared” mode (you can’t use plugins with

static Qt).

Extending Qt with Plugins
Qt has many interfaces that can be extended. For instance, you can add plugins for styles,

database drivers, text codecs, and image formats. If you use Qtopia Core, you can even use

plugins to access different hardware such as graphics drivers, mouse drivers, keyboard drivers,

and accessibility devices.

■Note Qtopia Core is a Qt edition for embedded systems such as palm tops, set top boxes, mobile phones,

and so on.

There are many benefits of Qt being extendable. For starters, it makes Qt more durable

because it can be adapted to new technologies. It can also make Qt lighter because unneeded

plugins don’t need to be deployed. It also ensures that you can keep using Qt’s application

programming interface even if you need to target special technologies.

Creating an ASCII Art Plugin

The principle of making a Qt plugin is the same regardless of the type of extension the plugin

actually provides. To understand how to extend Qt and how the interaction between Qt, the

plugin, and the application work, you’ll have a look at an image format plugin. The plugin will

save the images as ASCII art, in which each pixel is converted into a character (an example is

shown in Figure 11-1). This is something of a lost art, but it was quite common back in the

1980s and early 1990s.

Before you start looking at the plugin, you should see how Qt loads and saves images. The

general idea is to use the save and load methods from the QImage class. (Instead of using load
you can specify the file name in the constructor of QImage—it does the same thing.)

The QImage class uses a QImageReader class when it loads images. QImageReader checks to

see whether there is a QImageIOPlugin that can read the given image. When a plugin is found,

it is asked to return a QImageIOHandler that the QImageReader then uses to actually read the

image.

When writing, the process is about the same, but the file format is not determined from

the file but has to be specified when calling save. QImage passes it onto the QImageWriter class

that asks whether there is a QImageIOPlugin that can save in the given format. When found,

the QImageIOPlugin returns a QImageIOHandler that the QImageWriter uses to actually write the

image to a device, usually a file.

CHAPTER 11 ■ PLUGINS304

Figure 11-1. An ASCII art image

■Tip Image readers and writers work with QIODevice objects so an image can be read or written from,

and to network streams, memory buffers, files—you name it—because QIODevice is the base class of the

classes that manage these interfaces.

Both the reading and writing cases are shown in Figure 11-2. The figure also shows what

part is Qt and what part is the plugin. The shown scenario is commonly used with Qt plugins.

One is queried for what the plugin has to offer and then returns instances that perform the

actual tasks. In the case of image plugins, the QImageIOPlugin is queried and returns a

QImageIOHandler.

CHAPTER 11 ■ PLUGINS 305

Figure 11-2. The classes involved in the steps for reading and writing images using Qt

The Plugin

Now you’re ready to have a look at the ASCII art image plugin that can handle text images;

the format is called ti. You’ll also tell Qt to use ti as the preferred file extension for these

text images. The TextImagePlugin class inherits from the QImageIOPlugin class, while the

TextImageHandler inherits the QImageIOHandler class (nothing else is in the plugin).

Let’s start looking at the code, beginning with the class declaration of the TextImagePlugin
in Listing 11-1. The interface consists of three methods: keys, capabilities, and create. The

keys method returns a QStringList of the image formats that the plugin supports. The

capabilities method takes a QIODevice and an image format as arguments and then returns

a value indicating whether the plugin CanRead or CanWrite the specified format to or from

the given device. The last method, create, creates a QImageIOHandler for a given device and

format.

CHAPTER 11 ■ PLUGINS306

■Note The capabilities method can return the value CanReadIncremental if incremental reading

is supported. This means that it reads the image in several passes, making it possible to show the image

gradually. The ASCII art image plugin never attempts to implement it.

Listing 11-1. The class declaration of the image IO plugin

class TextImagePlugin : public QImageIOPlugin
{
public:

TextImagePlugin();
~TextImagePlugin();

QStringList keys() const;
Capabilities capabilities(QIODevice *device, const QByteArray &format) const;
QImageIOHandler *create(QIODevice *device,
const QByteArray &format = QByteArray()) const;

};

The most interesting of the methods is capabilities (shown in Listing 11-2), which

determines what the plugin can do for a given format or device. This means that the format
QByteArray must either contain the string ti or be empty for the plugin to be able to do any-

thing with it.

If the format QByteArray is empty, you must peek at the QIODevice. If it is open and write-

able, you can always write to it. If it is readable, and the plugin can read from it (more about

the static canRead method later on), you can read from it. It is important not to affect the

device in any way (ensure that you are just peeking; not actually reading, writing, or seeking).

■Note A QByteArray can be treated as Qt’s controlled version of char*. You can use it to carry text just

like a plain C string. Never use QString to do that (as you might have been doing with std::string)

because it internally converts to Unicode, which might corrupt your binary data.

Listing 11-2. Determining what the plugin can do with the given format and device

QImageIOPlugin::Capabilities TextImagePlugin::capabilities(QIODevice *device,
const QByteArray &format) const

{
if(format == "ti")
return (QImageIOPlugin::CanRead | QImageIOPlugin::CanWrite);

if(!format.isEmpty())
return 0;

CHAPTER 11 ■ PLUGINS 307

if(!device->isOpen())
return 0;

QImageIOPlugin::Capabilities result;

if(device->isReadable() && TextImageHandler::canRead(device))
result |= QImageIOPlugin::CanRead;

if(device->isWritable())
result |= QImageIOPlugin::CanWrite;

return result;
}

So how does Qt know which formats to ask for? All image plugins report which formats

they can handle with the keys method. The formats (or format, in this case) are put in a

QStringList that is returned. The implementation is shown in Listing 11-3.

Listing 11-3. Putting the image file formats in a QStringList

QStringList TextImagePlugin::keys() const
{
return QStringList() << "ti";

}

When the format is correct and can be handled, the last method comes into action. The

create method shown in Listing 11-4 creates an instance of the custom TextImageIOHandler,

configures it with a format and a device, and returns the result.

A format is set for the handler so it can be made to handle several formats. There are

many formats that are almost identical, so it can be useful to reduce the size of the source

code.

Listing 11-4. Creating and configuring an image IO handler

QImageIOHandler *TextImagePlugin::create(QIODevice *device,
const QByteArray &format) const

{
QImageIOHandler *result = new TextImageHandler();

result->setDevice(device);
result->setFormat(format);

return result;
}

Before you can move on to the handler class, you must tell Qt that this class is a part of the

plugin interface. You can do this by using the Q_EXPORT_PLUGIN2 macro, as shown in Listing 11-5.

The macro is placed somewhere in the implementation file (not the header). The first argu-

CHAPTER 11 ■ PLUGINS308

ment is the class name with all characters in lowercase, whereas the second argument is the

actual class name.

The macro tells Qt that this class is the interface to the plugin. Each plugin can have only

one interface, so this macro must be used exactly one time per plugin.

Listing 11-5. Exporting the class as a plugin

Q_EXPORT_PLUGIN2(textimageplugin, TextImagePlugin)

Reading and Writing Images

The TextImagePlugin makes up one-half of the plugin. The other half consists of the

TextImageHandler class, which is the class that performs all the heavy lifting—reading and

writing images to and from devices.

Let’s start by having a look at the class declaration in Listing 11-6. The class inherits the

QImageIOHandler class and implements the methods read, write, and two variations of

canRead. The read and write methods are pretty self-explanatory, but the two canRead versions

need a bit of explanation. The nonstatic version simply calls the static version. The reason

for having a static version is that it is easier to use from the capabilities method in the

TextImagePlugin class (refer to Listing 11-2). From Qt’s point of view, the static version is

not required.

Listing 11-6. The class declaration of the image IO handler

class TextImageHandler : public QImageIOHandler
{
public:
TextImageHandler();
~TextImageHandler();

bool read(QImage *image);
bool write(const QImage &image);

bool canRead() const;
static bool canRead(QIODevice *device);

};

The simplest of the more complex methods is the write method, shown in Listing 11-7.

It needs very little error checking and just streams the parts of the image to a QTextStream
writing to the device specified. The device method returns the same device as is set using

setDevice in the create method of TextImagePlugin (refer to Listing 11-4). It is used when

creating the text stream stream.

When the stream is set up, a prefix is written to the file. All ASCII art images start with a

line reading TEXT. Then the dimensions are written as width x height, where the x serves as a

separator character. You get the dimensions from the image given as an argument to the

method. The prefix and dimensions make up the header; the rest is the image data.

CHAPTER 11 ■ PLUGINS 309

The image data is calculated by converting the red, green, and blue values of each pixel to

an average gray scale value. The value is then shifted down and masked to three bits, giving

the value range 0–7. This value corresponds to the darkness of each pixel and is used to look

up a character in the map string.

The map variable is a char* initialized to .:ilNAM (including an initial space). The charac-

ters in the map string have been picked so that the lowest value is white, and each character

gets darker and darker as the index increases. The source image and the resulting ASCII art

can be seen in Figure 11-3. The ASCII art is shown in a word processor using a monospace font

set to a very small size.

When all image data is written to the stream, the stream’s good status is ensured before

true is returned for a successful write operation.

Listing 11-7. Writing the image to a device

bool TextImageHandler::write(const QImage &image)
{
QTextStream stream(device());

stream << "TEXT\n";
stream << image.width() << "x" << image.height() << "\n";
for(int y=0; y<image.height(); ++y)
{
for(int x=0; x<image.width(); ++x)
{
QRgb rgb = image.pixel(x, y);
int r = rgb & 0xff;
int g = (rgb >> 8) & 0xff;
int b = (rgb >> 16) & 0xff;

stream << map[7 - (((r+g+b)/3)>>5) & 0x7];
}
stream << "\n";

}

if(stream.status() != QTextStream::Ok)
return false;

return true;
}

Most fonts today are not monospace, which means that the width of a character depends

on the character; an i requires less space than an M. Another problem is that most fonts are

higher than they are wide. The ASCII art image plugin does not take this into account, so even

if a monospace font is used, the result appears to be stretched. It’s hard to compensate for this

in the write method because you never know which font the user will use to view the image.

All in all, the results are not perfect, but you can still tell what the image shows.

CHAPTER 11 ■ PLUGINS310

Figure 11-3. The source image alongside the resulting ASCII art

Although writing is a straightforward process, reading is quite the opposite because you

can never trust the input stream to be valid. It can contain anything, including something

completely unexpected (corrupted data or a completely different file format, for example), or

the file might be missing data. This means that the read method is more complex than the

write method.

In Listing 11-8 you can see how the header is read and validated. As with writing, it starts

with a QTextStream being created. The first line is read, and you ensure that it equals TEXT. If it

does not, the entire operation is aborted.

The dimensions, which follow the first line, are matched and filtered out using a regular

expression. If the expression fails to match, or if any of the dimensions fails to convert to a

number, the operation is aborted. Now you know that the header is okay so you can start read-

ing the image data.

CHAPTER 11 ■ PLUGINS 311

Listing 11-8. Determining whether you are willing to read the file

bool TextImageHandler::read(QImage *image)
{

QTextStream stream(device());
QString line;

line = stream.readLine();
if(line != "TEXT" || stream.status() != QTextStream::Ok)
return false;

line = stream.readLine();
QRegExp re("(\\d+)x(\\d+)");
int width, height;
if(re.exactMatch(line))
{
bool ok;

width = re.cap(1).toInt(&ok);
if(!ok)
return false;

height = re.cap(2).toInt(&ok);
if(!ok)
return false;

}
else
return false;

...
}

Because the header is valid, you can see the second half of the read method (the source

code is shown in Listing 11-9). The reading is very similar to the writing. First, a temporary

QImage is created; then each line is read and converted to gray scale. The length of each line is

checked against the expected image width, and no unexpected characters in the image data

are accepted. If the status of the stream is okay when the entire image has been read, the

image given as an argument is updated before true is returned to indicate a successful read.

Listing 11-9. Read the image from the device and determine whether it all went well.

bool TextImageHandler::read(QImage *image)
{
...
QImage result(width, height, QImage::Format_ARGB32);

for(int y=0; y<height; ++y)
{

CHAPTER 11 ■ PLUGINS312

line = stream.readLine();
if(line.length() != width)
return false;

for(int x=0; x<width; ++x)
{
switch(QString(map).indexOf(line[x]))
{
case 0:
result.setPixel(x, y, 0xffffffff);
break;

case 1:
result.setPixel(x, y, 0xffdfdfdf);
break;

case 2:
result.setPixel(x, y, 0xffbfbfbf);
break;

case 3:
result.setPixel(x, y, 0xff9f9f9f);
break;

case 4:
result.setPixel(x, y, 0xff7f7f7f);
break;

case 5:
result.setPixel(x, y, 0xff5f5f5f);
break;

case 6:
result.setPixel(x, y, 0xff3f3f3f);
break;

case 7:
result.setPixel(x, y, 0xff000000);
break;

default:
return false;

}
}

}

if(stream.status() != QTextStream::Ok)
return false;

*image = result;

return true;
}

CHAPTER 11 ■ PLUGINS 313

Saving an image as ASCII art and then reading it back results in some losses. The color-to-

gray-scale conversion and back is far from perfect. Taking the ASCII art image from Figure 11-3

and saving back to an ordinary pixel-based image results in the image shown in Figure 11-4.

Figure 11-4. The ASCII art is saved back as an ordinary image.

The remaining part of the TextImageHandler is the canRead method shown in Listing 11-10.

The nonstatic method calls the static method. The nonstatic method is really just a wrapper to

provide the interface that Qt expects. The static method uses the peek method to see whether

the file starts with the TEXT prefix. If the prefix is found, it is assumed that the rest of the file is

okay, and true is returned to indicate that the handler can read the file.

■Tip When designing file formats it is a good idea to prefix your actual data with a unique header.

This makes it possible to see whether the file is a good candidate for reading without having to read the

entire file.

CHAPTER 11 ■ PLUGINS314

It is important to use the peek method here because it leaves the QIODevice unaffected.

When attempting to read an image, Qt can pass the same device to several plugins to deter-

mine which one to use.

Listing 11-10. Peek at the device to determine whether the image looks right.

bool TextImageHandler::canRead(QIODevice *device)
{

if(device->peek(4) == "TEXT")
return true;

return false;
}

bool TextImageHandler::canRead() const
{
return TextImageHandler::canRead(device());

}

Building and Installing

To build a plugin and install it so that Qt can find it takes more than just running qmake
–project. You can use it to create a starting point, but you have to modify the project file

extensively.

Listing 11-11 shows the project file for the ASCII art image format plugin. The HEADERS and

SOURCES lines are just the same as for all Qt projects. The lines above them specify that you are

building a template, while the lines below indicate where the plugin will be installed.

Starting from the top, you set the TEMPLATE to lib, which tells QMake that you are building

a library, not an application. The next line tells QMake the name of the plugin: textimage. Fol-

lowing is the CONFIG line, in which you specify that the lib will be used as a plugin and that it

should be built in release mode (without debugging information). The last line in the top sec-

tion is the VERSION line, which is used to tell different plugin versions apart. In this case, the

resulting file is named textimage1.

The last two lines set up an installation target, which configures the actions that are per-

formed when you run make install. The first line of this section sets the path of the target to

$$[QT_INSTALL_PLUGINS]/imageformats—that is, the plugins/imageformats directory inside

the Qt installation directory. The second line of this section and the last line of the project file

tell Qt to install target when make install is run. It will copy the plugin file to the appropriate

directory, making it possible for Qt to find it.

Listing 11-11. The project file for the TextImagePlugin and TextImageHandler

TEMPLATE = lib
TARGET = textimage
CONFIG += plugin release
VERSION = 1.0.0

CHAPTER 11 ■ PLUGINS 315

HEADERS += textimagehandler.h textimageplugin.h
SOURCES += textimagehandler.cpp textimageplugin.cpp

target.path += $$[QT_INSTALL_PLUGINS]/imageformats
INSTALLS += target

To build and make this project, you must run qmake, followed by make. If it completes with-

out any problems, you can run make install to make the plugin available to Qt.

Using the Plugin

Before you start using the plugin, you need to know how Qt handles plugins. They are loaded

by the QApplication (actually by its superclass—QCoreApplication) object, so you must make

sure to have an instance of QApplication available when you use a plugin.

After you have a QApplication object, you can query the QImageReader and QImageWriter
classes for a list of supported formats by using the static supportedImageFormats method. The

reader returns the readable image formats, while the writer returns the writeable image for-

mats. The returned value is a QList of QByteArray objects, which is a list of all the available

keys returned from the different QImageIOPlugin objects.

Listing 11-12 shows a small foreach loop that queries for all readable image formats and

prints them to the debugging console. All formats that can be read can usually also be written—

but you can never assume this.

Listing 11-12. Asking Qt for the image formats that can be read

QApplication app(argc, argv);

foreach(QByteArray ba, QImageReader::supportedImageFormats ())
qDebug() << ba;

When reading, Qt usually determines the file format by querying the plugin’s

capabilities methods. This generates a call to the different canRead methods that determine

whether the specific plugin can handle the given file. (The application just needs to specify

the file name; Qt does the rest of the work.) As shown in Listing 11-13, the resulting QImage is

a null image if the loading fails. If you use the load method of QImage, you can get the return

value from it. The method returns true if the image is loaded; it returns false if it fails.

Listing 11-13. Reading an ASCII art image

QImage input("input.ti");
if(input.isNull())
qDebug() << "Failed to load.";

The opposite of reading—saving—is slightly more complex. Because there is no file prefix

to look for, you need to specify the file format when calling save (see Listing 11-14). In the list-

ing, a png image is read from disk. If the read is successful, the image is saved again as a ti
image. The save call returns a bool value, which indicates whether the operation was success-

ful. The value true means that it worked.

CHAPTER 11 ■ PLUGINS316

Listing 11-14. Writing an ASCII art image

QImage input("input.png");
if(input.isNull())
qDebug() << "Failed to load.";

else
if(!input.save("test.ti", "ti"))
qDebug() << "Failed to save.";

Extending Your Application Using Plugins
Extending Qt is one thing, but making your own application extendable is quite another. It not

only involves implementing a given interface; you must also design the interface, look for

plugins, load them, and then use them.

This is one of the areas where there traditionally have been lots and lots of platform

quirks to take into account. With Qt almost all of these quirks go away, and you can focus on

providing your users with a modularized and extendable design.

Filtering Images

This chapter began with an image file format plugin for Qt; it continues by creating an image

filtering application in which the filters are provided as plugins. A quick glance of what to

expect can be seen in Figure 11-5: filters are on the left and right; the original image appears

above the filtered image.

Figure 11-5. The image filtering application in action

CHAPTER 11 ■ PLUGINS 317

The Interface

A filter is used to take one image and return a new image that is a transformed version of the

given image, which means that it needs a method to take an image and return an image.

Because you’re planning to load it as a plugin, the application can’t know the name of each

filter from the start—thus it also needs a method returning its name.

How do you transform these lines into an actual plugin interface? A Qt plugin interface is

defined as a class consisting of pure virtual methods. This means that all the methods that are

a part of the plugin are made virtual and are left unimplemented. Instead they are marked as

=0 in the class declaration.

Combining the knowledge of what a plugin interface is and what the filter plugin needs to

do, you get something similar to the FilterInterface class shown in Listing 11-15. The name
method returns the name of the filter, and the filter method filters the given QImage and

returns the filtered result. The names are clear, and it is easy to understand how things are

supposed to work.

Listing 11-15. The ImageFilter interface class

class FilterInterface
{
public:
virtual QString name() const = 0;
virtual QImage filter(const QImage &image) const = 0;

};

Before this class can be used as a plugin interface, you must tell Qt that it is an interface

by using the lines shown in Listing 11-16. The first argument is the class involved; the second

is an identifier string that must be unique for the interface.

Listing 11-16. Declaring the ImageFilter as being a plugin interface to Qt

Q_DECLARE_INTERFACE(FilterInterface,
"se.thelins.CustomPlugin.FilterInterface/0.1")

When the interface has been defined, the development can be split into two parts: the

plugins and the application (the two sides of the interface).

Implementing a Filter

Let’s start by having a look at the filter plugin shown in Figure 11-5. The class is called Flip (its

declaration is shown in Listing 11-17). The header file includes the filter interface class decla-

ration so the plugin knows how to define the class according to the interface’s specification.

As shown in the listing, Flip inherits QObject and FilterInterface. It is important that

QObject is inherited first; otherwise the meta-object compiler will fail. The class declaration

then starts with the Q_OBJECT macro followed by a Q_INTERFACES macro, indicating that the

class implements the FilterInterface interface.

Following the macro declarations you’ll find the required methods. Since the base class

contains only pure virtual methods, all methods must be implemented here. If not, the plugin

class can’t be instantiated.

CHAPTER 11 ■ PLUGINS318

Listing 11-17. The class declaration of the filter Flip

#include "filterinterface.h"

class Flip : public QObject, FilterInterface
{
Q_OBJECT
Q_INTERFACES(FilterInterface)

public:
QString name() const;
QImage filter(const QImage &image) const;

};

The implementation of the name method is pretty straightforward. Because the name is

used in the user interface, it is passed in a more human-readable form than just Flip. The

source code can be seen in Listing 11-18.

Listing 11-18. The full name of Flip is "Flip Horizontally"

QString Flip::name() const
{
return "Flip Horizontally";

}

The filter method is slightly more complex (see the implementation source code in List-

ing 11-19). The resulting image is created from the dimensions and format of the given input

image. Then the flip is made before the resulting image is returned.

Listing 11-19. The filter method flips the given image and returns the result.

QImage Flip::filter(const QImage &image) const
{
QImage result(image.width(), image.height(), image.format());

for(int y=0; y<image.height(); ++y)
for(int x=0; x<image.width(); ++x)
result.setPixel(x, image.height()-1-y, image.pixel(x, y));

return result;
}

Before you finish the implementation of the Flip filter, you must tell Qt that the class

implements the interface of the plugin. This is done by using the Q_EXPORT_PLUGIN2, just as

with the image file format plugin (see Listing 11-20).

Listing 11-20. It is important to tell Qt that Flip is the plugin interface.

Q_EXPORT_PLUGIN2(flip, Flip)

CHAPTER 11 ■ PLUGINS 319

Building the Flip plugin is very much like building the image file format plugin. In the

project file shown in Listing 11-21 the template is set to lib, and so on. The filters are placed

in the subdirectory filters/flip in the application directory, so the filterinterface.h file

needs to be in the INCLUDEPATH. This means setting it to ../.. to include that search path. The

installation path is ../../plugins, so set the target’s path accordingly.

Listing 11-21. The project file for building the Flip plugin

TEMPLATE = lib
TARGET = flip
CONFIG += plugin release
VERSION = 1.0.0

INCLUDEPATH += ../..

HEADERS += flip.h
SOURCES += flip.cpp

target.path += ../../plugins
INSTALLS += target

Figure 11-5 shows the filters Blur and Darken next to the Flip filter. These filters are also

implemented as plugins. The implementations are very similar, except for the name returned

and actual filtering algorithms.

The Application

On the other side of the FilterInterface class is the application that uses the filter plugins.

The application is simple: it consists of a dialog built using Designer, an implementation of

the dialog, and a simple main function showing the dialog.

The dialog design consists of a QListWidget and two QLabel widgets. The structure of the

dialog according to Designer is shown in Figure 11-6. The dialog consists of a horizontal layout

so that the list appears to the left of the labels. (Refer to Figure 11-5 to see the dialog in action.)

Figure 11-6. The Object Inspector shows the structure of the FilterDialog.

Before you start going through the FilterDialog class in detail, you have to be familiar

with the strategy that you’ll use in the application. When using plugins with Qt, you use the

CHAPTER 11 ■ PLUGINS320

QPluginLoader class to load the plugins and to create an instance of the object implementing

the plugin interface. The instances that you find are placed in a QMap that maps filter names to

the actual filter objects. The map is then used to access the filters when the user requests them

to be applied.

Now you are ready to start looking at the source code. Listing 11-22 shows the class decla-

ration of the FilterDialog class, which implements the Designer dialog kept in the ui member

variable. The filters member variable is used to keep the filter plugins that are loaded.

The slot filterChanged is invoked when a filter is picked by the user. The findFilters
method, which is called from the constructor, looks for loads and lists plugins.

Listing 11-22. The FilterDialog class declaration

class FilterDialog : public QDialog
{
Q_OBJECT

public:
FilterDialog(QWidget *parent=0);

private slots:
void filterChanged(QString);

private:
void findFilters();

QMap<QString, FilterInterface*> filters;
Ui::FilterDialog ui;

};

The constructor shown in Listing 11-23 initializes the user interface using the setupUi
method generated by uic from the Designer file. It then sets an original image and connects

the QListWidget currentTextChanged signal to the filterChanged slot.

When the user interface has been set up and configured, the findFilters method is called

before the filterChanged slot is called explicitly once to generate a resulting image.

Listing 11-23. The constructor for the FilterDialog class

FilterDialog::FilterDialog(QWidget *parent) : QDialog(parent)
{
ui.setupUi(this);
ui.originalLabel->setPixmap(QPixmap("source.jpeg"));

connect(ui.filterList, SIGNAL(currentTextChanged(QString)),
this, SLOT(filterChanged(QString)));

findFilters();
filterChanged(QString());

}

CHAPTER 11 ■ PLUGINS 321

Most of the interesting stuff takes place in the findFilters method. The source code of

the method is available in Listing 11-24.

As you can tell from the listing, the QPluginLoader itself does not locate the plugins.

Instead you use a QDir object to find all files in a directory in which you expect the plugins to

be located. The first two highlighted lines create a QPluginLoader object for each file found and

try to create an instance of the plugin class.

If the instance returned is not null, you attempt to cast it to the FilterInterface class using

the qobject_cast method (this is shown in the last highlighted line). If the FilterInterface
pointer is not null, you have found an actual filter, so you can add the filter to the filters
map and show the name in the QListWidget.

If any of the highlighted steps results in a null value, indicating that the file could not

be loaded, it can be due to several causes: the file did not contain a plugin, the plugin was

built using the wrong tools or the wrong Qt version, or the plugin did not implement the

FilterInterface interface. In any case, the plugin is not valid and not of interest to the

application.

Listing 11-24. Finding the plugins, loading them, and putting them in the list

void FilterDialog::findFilters()
{

QDir path("./plugins");

foreach(QString filename, path.entryList(QDir::Files))
{
QPluginLoader loader(path.absoluteFilePath(filename));

QObject *couldBeFilter = loader.instance();

if(couldBeFilter)
{
FilterInterface *filter = qobject_cast<FilterInterface*>(couldBeFilter);

if(filter)
{
filters[filter->name()] = filter;
ui.filterList->addItem(filter->name());

}
}

}
}

When the user picks a plugin from the list of filters, the filterChanged slot is invoked

(the slot is shown in Listing 11-25). If the filter is empty, the original image is shown in the

filteredLabel label; otherwise you can use the filters map to find the selected filter. The

filter is applied to the image from the originalLabel label, and the resulting QImage is assigned

to the filteredLabel label.

CHAPTER 11 ■ PLUGINS322

Listing 11-25. Applying the filters when the user picks one from the list

void FilterDialog::filterChanged(QString filter)
{

if(filter.isEmpty())
{
ui.filteredLabel->setPixmap(*(ui.originalLabel->pixmap()));

}
else
{
QImage filtered = filters[filter]->
filter(ui.originalLabel->pixmap()->toImage());

ui.filteredLabel->setPixmap(QPixmap::fromImage(filtered));
}

}

The last piece of the puzzle is a main function that creates a QApplication object and then

shows the dialog. The project file is not affected by the usage of plugins, so running qmake
-project, followed by qmake and make, will do the job.

■Caution Because the filter’s source files are located in a subdirectory placed inside the directory con-

taining the application, the qmake -project command will include the filter’s source files in the project

alongside the application’s files. Make sure to remove the filter’s files from the resulting project file before

building or adding a -norecursive switch to qmake invocation to stop qmake from peeking into the

subdirectories.

All this code brings you to the application shown in Figure 11-5. Looking back at the size

of the code, it is hard to see how powerful the application is. It can be extended and modified

almost without limitations, and the added complexity is relatively small.

Merging the Plugin and the Application

You might want to have plugins but also keep some functionality in the application executable

(for deployment reasons, for instance). It is always easier to ship one executable than to ship

an executable and a bunch of plugins. Perhaps some plugins are required for the application

to be useful; for example, a development environment needs at least a code editor to work.

Then it would be logical to include that editor in the actual application executable even if it is

treated internally as a plugin.

Qt enables you to do this in an easy way, and the included plugins can be located using

the QPluginLoader and thus added to the same flow that is used for the rest of the plugins (it

does involve changes to both the plugin project and the application itself).

CHAPTER 11 ■ PLUGINS 323

Making the Plugin Static

When you build a plugin, you build a dynamic link library (DLL). If you add a line reading

CONFIG += static to your project file, the resulting library is made for static linking. This

means that the library is made for being added to the application at link time instead of being

dynamically loaded at run-time.

The project file for the Darken plugin, when adapted to static linking, is shown in

Listing 11-26. Compare this with the project file for the Flip plugin from Listing 11-21.

Listing 11-26. The project file for a statically linked plugin

TEMPLATE = lib
TARGET = darken
CONFIG += plugin release
VERSION = 1.0.0

INCLUDEPATH += ../..

HEADERS += darken.h
SOURCES += darken.cpp

target.path += ../../plugins
INSTALLS += target

CONFIG += static

Linking and Finding the Plugin

The changes to the application can be divided into three parts. First you must add the library

to the project file so it is linked to the application when the executable is built. Listing 11-27

shows the project file for the application.

The highlighted line adds a reference to the statically linked library using the –L com-

mand line option for adding a search path for libraries and the –l option for adding a library

reference. The search path added is dependent on the platform used to build the library.

Listing 11-27. The application project file with a reference to a statically linked plugin

TEMPLATE = app
TARGET =
DEPENDPATH += .
INCLUDEPATH += .

Input
HEADERS += filterdialog.h filterinterface.h
FORMS += filterdialog.ui
SOURCES += filterdialog.cpp main.cpp
win32:LIBS += -L./filters/darken/release/ -ldarken

!win32:LIBS += -L./filters/darken -ldarken

CHAPTER 11 ■ PLUGINS324

Second, make sure that the QPluginLoader can still find the plugin, even if it is statically

linked to the application, by adding the line shown in Listing 11-28.

Notice that the macro Q_IMPORT_PLUGIN expects the class name with lowercase characters,

not the actual class name. This is the string given as the first argument to the

Q_EXPORT_PLUGIN2 macro in the plugin source code.

Listing 11-28. The QPluginLoader is notified of the existence of the statically linked Darken plugin.

Q_IMPORT_PLUGIN(darken)

int main(int argc, char **argv)
{
...
}

The third and last change to the application is in the findFilters method in the

FilterDialog class. The updated version of the method is shown in Listing 11-29. The high-

lighted line shows the call to the QPluginLoader::staticInstances method, which returns

QObject pointers to all the statically linked plugins. Pointers can then be cast to FilterInterface
pointers using qobject_cast; if the cast operation does not return null, a filter has been found.

Compared with loading plugins dynamically, the steps to find a file and load it have been

replaced by the staticInstances call. This is an obvious change since the plugin is included in

the application’s executable file, so there is no external file to look for or load.

Listing 11-29. Querying the QPluginLoader for statically linked filters

void FilterDialog::findFilters()
{
foreach(QObject *couldBeFilter, QPluginLoader::staticInstances())

{
FilterInterface *filter = qobject_cast<FilterInterface*>(couldBeFilter);
if(filter)
{
filters[filter->name()] = filter;
ui.filterList->addItem(filter->name());

}
}

QDir path("./plugins");

foreach(QString filename, path.entryList(QDir::Files))
{
QPluginLoader loader(path.absoluteFilePath(filename));
QObject *couldBeFilter = loader.instance();
if(couldBeFilter)
{
FilterInterface *filter = qobject_cast<FilterInterface*>(couldBeFilter);
if(filter)

CHAPTER 11 ■ PLUGINS 325

{
filters[filter->name()] = filter;
ui.filterList->addItem(filter->name());

}
}

}
}

The changes made to the application do not change the user’s experience. In the example

shown previously the only difference is that the Darken filter is always available, even if no

plugins can be loaded.

Notice that there were no changes made to the method actually using the filters, either.

The filterChange method does not care how the plugin has been linked.

A Factory Interface

Comparing the plugin interface for image filters with the interface for image file formats, there

is a small but important difference: the filter plugins can contain only one filter per plugin,

while there can be several file formats in one plugin because of the way you design the plugin

interface. The file format plugin can be considered a file format factory, so the plugin serves

the application with file formats instead of handling them directly.

Making plugins act as factories can be very useful because the actual working classes that

are created using the factory can share code and inherit each other. You can also simplify the

deployment by grouping plugins into a few large plugins instead of having to deal with large

amounts of smaller ones. It is even possible to combine several different types of plugins in

one single plugin by using smart factory interfaces.

Instead of splitting out FilterInterface into a FilterPluginInterface and a FilterWorker,

you can quite easily extend the FilterInterface to be able to handle several filter operations

through one interface. Doing this requires changes to the interface itself, which means

changes to all the plugins as well as to the application itself.

A New Interface

The changes to the interface are made so that each FilterInterface can return several names,

and the filter can be specified when calling the filter method. The source code for the new

FilterInterface is shown in Listing 11-30 (compare it with the original interface shown in

Listing 11-15 and Listing 11-16).

The name method has been renamed to names and returns a QStringList instead of a

QString. The filter method has been given a new argument, specifying the name of the filter

to use. Finally, the version number in the identifier string passed to the Q_DECLARE_INTERFACE
macro has been updated to indicate that the interface has changed and that older plugins are

not compatible.

Listing 11-30. The new FilterInterface can handle several filters through one interface.

class FilterInterface
{
public:
virtual QStringList names() const = 0;

CHAPTER 11 ■ PLUGINS326

virtual QImage filter(const QString &filter, const QImage &image) const = 0;
};

Q_DECLARE_INTERFACE(FilterInterface,
"se.thelins.CustomPlugin.FilterInterface/0.2")

It is important to establish whether it is the responsibility of the application or the plugin

to make sure that no invalid filter name is ever passed as an argument to a filter method.

If that occurs, the plugins must be ready for it (and not crash the entire application).

Updating the Plugin

Converting an old plugin to the new interface is easy. Just put the name in a QStringList
before returning it from names and then ignore the filter name argument in the filter method.

Extending an old plugin is almost as easy. Return several names from the names method and

determine which filter to use in the filter method by using the filter name argument.

The Flip filter covered in Listings 11-17 to 11-21 has been extended to support flipping

both horizontally and vertically.

The small change has been made in the names method shown in Listing 11-31. It now

returns two QStrings, one for each filter.

Listing 11-31. Returning several names using a QStringList

QStringList Flip::names() const
{
return QStringList() << "Flip Horizontally" << "Flip Vertically";

}

The filter method is shown in Listing 11-32. The highlighted line shows where the

filter argument is evaluated to determine what to do.

Notice that if an unexpected filter name is given, the filter will perform a vertical flip.

Although it is probably not what the user expects, it will keep the application running—so it

is a good way to handle it because there is no specified solution to the problem. Perhaps an

invalid QImage could have been returned instead, but the entire discussion is about how an

application bug will show itself (so it is not worth wasting too much energy on the problem).

Much better to ensure that there is no such bug in the application!

Listing 11-32. The filter acts differently depending on the filter argument.

QImage Flip::filter(const QString &filter, const QImage &image) const
{
bool horizontally = (filter=="Flip Horizontally");

QImage result(image.width(), image.height(), image.format());

for(int y=0; y<image.height(); ++y)
for(int x=0; x<image.width(); ++x)
result.setPixel(
horizontally?x:(image.width()-1-x),

CHAPTER 11 ■ PLUGINS 327

horizontally?(image.height()-1-y):y,
image.pixel(x, y));

return result;
}

The Flip project isn’t affected by the changes, so recompiling and installing the resulting

plugin is all that’s necessary to get things up and running.

Changing the Loader

On the application side, the QPluginLoader is still used in combination with QDir to find and

load the plugins from the findFilters method in FilterDialog. However, for each filter found,

several filters can be added to the QListWidget and the filters QMap. The new findFilters
method is shown in Listing 11-33. The highlighted lines show that the names returned are

added one by one to the map and list widget. Compare this listing with Listing 11-29.

Listing 11-33. The findFilters method adds several filters from each plugin.

void FilterDialog::findFilters()
{
foreach(QObject *couldBeFilter, QPluginLoader::staticInstances())
{
FilterInterface *filter = qobject_cast<FilterInterface*>(couldBeFilter);
if(filter)
{
foreach(QString name, filter->names())

{

filters[name] = filter;

ui.filterList->addItem(name);

}

}
}

QDir path("./plugins");

foreach(QString filename, path.entryList(QDir::Files))
{
QPluginLoader loader(path.absoluteFilePath(filename));
QObject *couldBeFilter = loader.instance();
if(couldBeFilter)
{
FilterInterface *filter = qobject_cast<FilterInterface*>(couldBeFilter);
if(filter)
{
foreach(QString name, filter->names())

{

filters[name] = filter;

CHAPTER 11 ■ PLUGINS328

ui.filterList->addItem(name);

}

}
}

}
}

When performing the actual filtering operation, the filter’s name must be passed to the

filter method (this is handled from the filterChanged slot shown in Listing 11-34—the small

change has been highlighted in the listing). Compare the listing with Listing 11-25 to see the

difference.

Listing 11-34. Passing the filter’s name to the filter method

void FilterDialog::filterChanged(QString filter)
{
if(filter.isEmpty())
{
ui.filteredLabel->setPixmap(*(ui.originalLabel->pixmap()));

}
else
{
QImage filtered = filters[filter]->filter(filter,

ui.originalLabel->pixmap()->toImage());

ui.filteredLabel->setPixmap(QPixmap::fromImage(filtered));
}

}

With these minimal changes to the interface you have made it possible to package several

plugins in one file. Compare the development cost of this process with the potential deploy-

ment issues that can occur when you have to manage more files that carry one plugin.

Non-Qt Plugins
Almost all plugin technologies work by creating a DLL according to the target platform’s stan-

dard approach. Such a library exposes C symbols that can be resolved and referenced with

function pointers. Even Qt uses this approach, but wraps it in easy-to-use classes. If you open

up the ASCII art image format plugin from earlier in this chapter by using the Dependency

Walker (a free tool available from http://www.dependencywalker.com) on the Windows plat-

form (you can use the objdump utility on GCC-based platforms), you can see the two exported

symbols: qt_plugin_instance and qt_plugin_query_verification_data. (A screenshot from

the tool is shown in Figure 11-7.) The QPluginLoader uses the QLibrary class internally to inter-

face the C symbols exported to the DLL.

■Note A dynamic link library can also be referred to as a shared library (as well as a DLL).

CHAPTER 11 ■ PLUGINS 329

When you want to build support of plugins designed for other applications or earlier

non–Qt-based versions of your application, it is important to know how to handle plugins at a

lower level. This section shows you how it’s done and how Qt can be used to access plugins

that were designed for other applications or by using other tools.

Figure 11-7. A Qt image format plugin seen from the Dependency Walker

Let’s have a look at the source code of the trivial library that you’ll interface. Listing 11-35

shows the implementation of the sum function. All the function does is calculate a checksum

for a given data stream.

Listing 11-35. The sum function in all its glory

int sum(int len, char *data)
{
int i;
int sum = 0x5a;

for(i=0; i<len; ++i)
sum ^= data[i];

return sum;
}

On the Windows platform I used the custom Makefile shown in Listing 11-36 to build a

DLL. If you use another platform, you should change the file extension of the resulting file

(sum.dll in the file shown in the listing). On Unix the extension usually is .so, and on Mac OS

CHAPTER 11 ■ PLUGINS330

it is .dylib. Sometimes a completely custom extension is used if the file is used as a plugin for

a specific application.

Listing 11-36. A Makefile for building DLLs

all: sum.dll

sum.o: sum.c
gcc -c sum.c

sum.dll: sum.o
gcc -shared o sum.dll sum.o

clean:
@del sum.o
@del sum.dll

If you had to deal with the file extension of the DLL when building it, Qt saves you from

that hassle when you try to load it using QLibrary. The class first tries to load the library with

the exact name as specified. If that fails, it tries to use the platform-specific file extension

before giving up.

Listing 11-37 shows how QLibrary is used to load the sum DLL. The library itself is located

in the lib directory placed inside the working directory of the application.

The working order when using QLibrary is load, isLoaded, resolve. In the listing the file

name—without the file extension—of the DLL is specified in the constructor of the QLibrary
object (it can also be set with the setFileName method). When the file name has been set, load
is called and then the outcome of the loading operation is tested with isLoaded. If isLoaded
returns false, something has gone wrong, and the library can’t be loaded. There are several

reasons for the problem; for example, perhaps the file can’t be found or the file is corrupted.

When the library is loaded, it’s time to try to resolve the symbol that you want to use. In

this case, call resolve and pass the string sum as an argument. You must cast the resulting

pointer from void* to an appropriate function pointer type (in the listing the type is

SumFunction). If the returned pointer is a null pointer, the symbol could not be resolved;

otherwise, it is free to use.

The result from the successfully loaded library and resolved symbol in Listing 11-37 is the

string sum of 'Qt Rocks!' = 56.

Listing 11-37. Using QLibrary to load, find, and use sum

typedef int (*SumFunction)(int,char*);

int main(int argc, char **argv)
{
QLibrary library("lib/sum");

library.load();
if(!library.isLoaded())
{

CHAPTER 11 ■ PLUGINS 331

qDebug() << "Cannot load library.";
return 0;

}

SumFunction sum = (SumFunction)library.resolve("sum");
if(sum)
qDebug() << "sum of 'Qt Rocks!' = " << sum(9, "Qt Rocks!");

return 0;
}

What are the main differences between using QLibrary and letting Qt help you with the

plugins? For starters, QPluginLoader ensures that the plugin will work with the Qt application

by seeing that the plugin has been built using the right tools on the right platform. The

QPluginLoader also gives you access to a class instance instead of a set of C symbols that you

can use to create that class instance.

On the other hand, QLibrary enables you to use plugins built without Qt. You can also

adapt your Qt application to older, non-Qt specifications.

When you must use QLibrary, I recommend that you hide the code in a single class. That

way you can contain the complexities in that class and keep the object-orientated Qt style

throughout the rest of your application.

Summary
Qt makes handling plugins easy. It is possible to extend Qt to handle custom database drivers,

image formats, and even window decoration styles by inheriting and implementing an inter-

face class. You can also extend your own applications with plugins, either by letting Qt handle

the plugin interface or through a low-level interface.

If you need to interface plugins made for other applications or defined according to a

standard, you can use the QLibrary class for a low-level access to DLLs. This class makes it

possible to interface almost any code.

It is easier to let Qt handle the plugins through the QPluginLoader class in combination

with the Q_DECLARE_INTERFACE, Q_EXPORT_PLUGIN, and Q_INTERFACES macros and the QObject
class.

When creating new plugin interfaces, it is important to build interfaces that last. Try to

make the interfaces as generic as possible and try to make them act as factories. Being able to

put several plugins in one can greatly simplify deployment.

If you plan to use plugins in your application, you can use the same interface for the plug-

ins as for your internal functionalities. Simply turn the base functionality that you want to be a

part of the application into a statically linked plugin. In this way you have only one interface

to worry about from your application’s viewpoint—and you can still put functionality in your

executable file.

CHAPTER 11 ■ PLUGINS332

Doing Things in Parallel

When writing software, you often get to a point where a large chunk of work has to be per-

formed. If the writing is in a graphical application, the graphical user interface can sometimes

freeze. Fortunately, it can be avoided when you use threading.

Each application usually runs as a process. In most modern operating systems, several

applications can run at once, meaning that several tasks are being performed in parallel. The

processes are separated and are not concerned with each other.

Inside each process there can be one or more threads running. These threads share

resources and memory and need to be aware of each other. They can also collaborate on tasks,

splitting heavy works among them. This also helps multiprocessor systems work efficiently

because a single application can be split over several processors.

Going back to the original problem—the user interface freezing—threads can help. By

performing the large chunk of work that previously froze the application in a separate thread,

the main thread can focus on updating and responding to events emanating from the user

interface.

The distribution of threads and processes between processors, and the switching between

processes and threads, are handled by the underlying operating system, so threading is a very

platform-dependent topic. Qt provides common classes for threads and processes as well as

tools for making them cooperate and share data. However, the order of execution, as well as

pace and prioritization, differ between platforms, so you must take extra care when imple-

menting threading in your application.

Basic Threading
Let’s first have a look at Qt’s classes for threading and see how to get started with threads

using Qt.

It is important to understand that as soon as an application starts, it actually runs as a

thread, called the main thread. This means that the call to the QApplication::exec method is

made from the main thread, and the QApplication object lives in that thread. The main thread

is sometimes referred to as the graphical user interface (GUI) thread because all widgets and

other user interface objects must be handled by this thread.

The main thread typically consists of an event loop and a set of objects created in that

thread. By subclassing the Qt QThread class, you can create new threads with their own event
loops and objects. The QThread class represents a thread that performs the work implemented

in the run method. By implementing a custom run method for your thread, you have created a

thread separate from the main thread that can perform its task.

333

C H A P T E R 1 2

Building a Simple Threading Application

Listing 12-1 shows the class declaration for a class implementing a separate thread called

TextThread. You can tell that the class implements a separate thread because it inherits the

QThread class. When doing this, it is also necessary to implement the run method.

The constructor of the thread accepts a string of text and then outputs that text once

every second to the debug console when run.

Listing 12-1. The TextThread class declaration

class TextThread : public QThread
{
public:
TextThread(const QString &text);

void run();

private:
QString m_text;

};

The TextThread class is implemented in Listing 12-2. First there is a global variable,

stopThreads, which is used to stop the execution of all threads. It is possible to stop a thread

by using the terminate method, but that can be compared with letting a thread crash. Nothing

is cleaned up, and success is not guaranteed.

In the constructor, the given text is noticed and stored in a private member of the text

thread. Make sure to invoke the QThread constructor so that the thread is properly initialized.

In the run method, the execution enters a loop that is left when stopThreads is set to true.

In the loop the text is sent to the debug console using qDebug before the thread sleeps for at

least one second using the sleep method. Notice that sleep makes the thread wait for at least
the specified time. This means that the sleep can last for a longer time than specified and that

the time spent sleeping can vary between calls to sleep.

■Tip The sleep method enables you to put a thread on hold for a number of seconds. With msleep, you

can specify the sleeping period using milliseconds (thousands of a second); with usleep, you can specify

the sleeping period in microseconds (millions of a second). The possible minimum duration of a sleep is

determined by the hardware and current software platform. Requesting to sleep for one microsecond will

most likely result in a far longer sleeping period because of such limitations.

Listing 12-2. The TextThread class implementation and the global variable stopThreads

bool stopThreads = false;

TextThread::TextThread(const QString &text) : QThread()
{

CHAPTER 12 ■ DOING THINGS IN PARALLEL334

m_text = text;
}

void TextThread::run()
{
while(!stopThreads)
{
qDebug() << m_text;
sleep(1);

}
}

In Listing 12-3 the TextThread class is used to instantiate two objects that are started and

kept running as long as a dialog is open. When the user closes the dialog, the stopThreads flag

is set to true, and you wait for the threads to realize this before exiting the main function. This

wait can be up to a second because the threads can be sleeping when the flag is changed.

Listing 12-3. An application using the TextThread class

int main(int argc, char **argv)
{
QApplication app(argc, argv);

TextThread foo("Foo"), bar("Bar");

foo.start();
bar.start();

QMessageBox::information(0, "Threading", "Close me to stop!");

stopThreads = true;

foo.wait();
bar.wait();

return 0;
}

In the main function, the thread objects are created just like any other object. The threads

are then started using the start method. When the threads are expected to stop, the main

thread waits for them by calling the wait method for each of the threads. You have the option

of forcing the threads to stop after a specific interval by passing wait() a time limit specified in

milliseconds. Otherwise, passing no argument causes the application to wait until the thread

has stopped. When the wait call returns, you can use the isFinished or isRunning methods to

determine whether the wait call timed out or whether the thread was finished and its execu-

tion stopped.

CHAPTER 12 ■ DOING THINGS IN PARALLEL 335

Forcing a Thread to Terminate

If a thread fails to stop, you can call terminate to end its execution by brute force. Just keep in

mind that this will most likely result in memory leaks and other nastiness. If you use a protec-

tive flag such as stopThreads or implement a stopMe slot for each thread, you can force threads

to stop without having to depend on brute force methods such as terminate. The only time it

doesn’t work is when the thread has hung—and then you are dealing with a software bug that

should be solved.

Running the Threaded Application

When running the application, you see the output "Foo" and "Bar" appear in pairs, as shown

in Listing 12-4. Sometimes the order changes so that "Foo" appears before "Bar", or vice versa,

because the sleep call puts the thread to sleep for at least one second, and the operating sys-

tem can wake the threads in a different order than when they were put to sleep.

This outcome demonstrates one of the many pitfalls when working with threads: You can

never assume anything; and if you do, the behavior can be slightly different on other plat-

forms. It is important to rely only on the guarantees made in the Qt documentation—nothing

else.

Listing 12-4. A test run of the TextThread class

"Foo"
"Bar"
"Bar"
"Foo"
"Bar"
"Foo"
"Bar"
"Foo"
"Bar"
"Foo"
"Foo"
"Bar"
"Bar"
"Foo"

Synchronizing Safely
Sometimes you need to make two or more threads pay attention to what the others are doing.

This is called synchronizing the threads, which can occur when one thread uses the results of

another thread; then the first thread needs to wait until the other thread has actually pro-

duced something to work with. Another common scenario is when several threads share a

common resource; they all need to make sure that no other thread is using the same resource

at the same time.

To synchronize threads, you can use a special lock called a mutex, which can be locked

and unlocked. If a different thread is attempting to lock an already locked mutex, it will have

CHAPTER 12 ■ DOING THINGS IN PARALLEL336

to wait until it is unlocked by the current holder before it can lock it. It is said that the method

blocks until it can be completed. The lock and unlock operations are atomic, which means

that they are treated as single undivisable operations that can’t be interrupted during execu-

tion. This is important because locking a mutex is a two-step process. First the thread checks

that the mutex isn’t locked; then it marks it as locked. If the first thread would be interrupted

after having checked, and the second thread then checks and locks the mutex, the first thread

will think that the mutex is unlocked when it resumes. It will then mark an already locked

mutex as locked, which creates a situation in which two threads think that they have locked

the mutex. Because the locking operation is atomic, the first thread will not be interrupted

between the check and the locking, thus the second thread will check and find a locked

mutex.

In Qt, mutexes are implemented by the QMutex class. The methods for locking and unlock-

ing are called lock and unlock. Another method, tryLock, locks the mutex only if it is not

owned by another thread.

By altering the application from Listings 12-1, 12-2, and 12-3, you can make sure that the

"Foo" and "Bar" texts always appear in the same order. Listing 12-5 shows the modified run
method. The added lines of code have been highlighted.

The added lines make sure that each thread holds the lock while printing the text and

sleeping. During this time, the other thread also calls lock and then blocks until the current

holder unlocks the mutex.

The if statement had to be added because the main function might start to shut down

while the thread was blocking on the lock call. If it were not there, the blocked thread would

output its text one time too many before realizing that stopThreads is true.

Listing 12-5. The new run method with a mutex for ordering

QMutex mutex;

void TextThread::run()
{
while(!stopThreads)
{
mutex.lock();

if(stopThreads){

mutex.unlock();

return;

}
qDebug() << m_text;
sleep(1);
mutex.unlock();

}
}

Running this example again, you’ll see that "Foo" or "Bar" are printed once every second

and always in the same order. This halves the pace of the original application, in which both

"Foo" and "Bar" were printed every second. Which text is printed first is not guaranteed—bar
could initialize quicker than foo even if start is called first for foo. The order is not guaran-

teed, either. By increasing the workload of the system executing the threads or shortening the

CHAPTER 12 ■ DOING THINGS IN PARALLEL 337

sleep time, the order can change. It works because the thread unlocking the mutex needs less

than one second to reach the lock call and block.

■Tip It is possible to guarantee the order of the threads, but it requires two mutexes and a bigger change

of the run method.

Protecting Your Data

Mutexes are not intended to guarantee the order of threads; they protect data from being cor-

rupted when several threads try to access the data at the same time.

Before you can look at this in detail, you need to understand what the actual problem is.

Consider, for example, the expression n += 5. The computer will probably execute this in three

steps:

1. Read n from the memory.

2. Add 5 to the value.

3. Write the value back into the memory where n is stored.

If two threads try to execute the statement at the same time, the order could end up

something like this:

1. Thread A reads the original value of n.

2. Thread A adds 5 to the value.

3. The operating system switches to thread B.

4. Thread B reads the original value of n.

5. Thread B adds 5 to the value.

6. Thread B writes the value back to the memory where n is stored.

7. The operating system switches to thread A.

8. Thread A writes the value back to the memory where n is stored.

The result from the execution described previously would be that both threads A and B

store the value n+5 in memory and that thread A overwrites the value written by thread B. The

result is that the value of n is incorrect (it was supposed to be n+10, but it is n+5).

CHAPTER 12 ■ DOING THINGS IN PARALLEL338

By using a mutex to protect n, you prevent thread B from reaching the value when thread

A is working with it, and vice versa. One thread blocks while the other works, so the critical

part of the code is executed in series instead of in parallel. By protecting all potentially critical

parts of a class from parallel access, the objects can safely be called from multiple threads. The

class is said to be thread-safe.

Protected Counting

Instead of letting the TextThread threads write the text to qDebug directly, let the threads oper-

ate through a TextDevice object. It’s called a text device because it simulates a shared device

for printing text. To print text using the device, use the write method, which writes the given

text to the debug console. It also enumerates all texts so that you can tell how many times the

write method has been called.

The TextDevice class declaration can be seen in Listing 12-6. The class contains what you

expect from the preceding description of it: a constructor, a write method, a counter for enu-

merating the calls, and a QMutex for protecting the counter.

Listing 12-6. The TextDevice class declaration

class TextDevice
{
public:
TextDevice();

void write(const QString&);

private:
int count;
QMutex mutex;

};

The implementation of the TextDevice class demonstrates a new trick. Listing 12-7 shows

how the QMutexLocker class is used to lock the mutex. The mutex locker locks the mutex as

soon as it is constructed and then unlocks the mutex when it is being destructed.

You could have opted for a solution in which you called lock and unlock explicitly, but by

using the QMutexLocker you ensure that the mutex is unlocked even if you exit from a return
statement in the middle of the method or when reaching the end of the method. The conse-

quence is that the write method cannot be entered twice from different threads—the calls will

be serialized.

Listing 12-7. The TextDevice class implementation

TextDevice::TextDevice()
{
count = 0;

}

CHAPTER 12 ■ DOING THINGS IN PARALLEL 339

void TextDevice::write(const QString& text)
{

QMutexLocker locker(&mutex);
qDebug() << QString("Call %1: %2").arg(count++).arg(text);

}

The TextThread class’ run method has not changed much compared with the original

Listing 12-2. Now the write method is called instead of qDebug. The change is highlighted in

Listing 12-8.

The m_device member variable is a pointer to the TextDevice object to use. It is initialized

from a given pointer in the constructor.

Listing 12-8. The TextThread::run method now calls write instead of outputting directly to qDebug

void TextThread::run()
{
while(!stopThreads)
{
m_device->write(m_text);

sleep(1);
}

}

The main function has also been slightly revised, compared with what you saw in

Listing 12-3. The new version creates a TextDevice object that is passed on the TextThread
thread objects. The new version can be seen in Listing 12-9, in which the changes have been

highlighted.

Listing 12-9. A TextDevice object is instantiated and passed to the TextThread thread objects

int main(int argc, char **argv)
{
QApplication app(argc, argv);

TextDevice device;

TextThread foo("Foo", &device), bar("Bar", &device);

foo.start();
bar.start();

QMessageBox::information(0, "Threading", "Close me to stop!");

stopThreads = true;

foo.wait();
bar.wait();

return 0;
}

CHAPTER 12 ■ DOING THINGS IN PARALLEL340

Building and executing the application results in a list of numbered "Foo" and "Bar" texts

(an example can be seen in Listing 12-10). The order of the output is undefined, but the enu-

meration always works—thanks to the mutex that protects the counter.

Listing 12-10. A test run of the counting TextDevice

"Call 0: Foo"
"Call 1: Bar"
"Call 2: Bar"
"Call 3: Foo"
"Call 4: Bar"
"Call 5: Foo"
"Call 6: Bar"
"Call 7: Foo"
"Call 8: Bar"
"Call 9: Foo"
"Call 10: Bar"
"Call 11: Foo"

Locking for Reading and Writing

Using a mutex to protect a variable can sometimes result in a potential performance decrease.

Two threads can read the value of a shared variable simultaneously without locking it, but if a

third thread enters the scene and tries to update the variable, it has to lock it.

To handle this situation, Qt provides the QReadWriteLock class. This class works much like

QMutex, but instead of a lock method it provides the methods lockForRead and lockForWrite.

Just as when using QMutex, you can use these methods directly or you can use the QReadLocker
and QWriteLocker classes that lock a QReadWriteLock when being constructed and unlock it

when being destructed.

Let’s try using a QReadWriteLock in an application. You’ll change the behavior of the

TextDevice so that the counter is not updated from the write method, but from a new method

called increase. The TextThread objects will still be there calling write, but you’ll add another

thread class for increasing the counter. This class, which is called IncreaseThread, simply calls

increase of a given TextDevice object at an even interval.

Let’s start by having a look at the class declaration of the new TextDevice class, shown in

Listing 12-11. Compared with the code in Listing 12-6, the QMutex has been replaced by a

QReadWriteLock, and the increase method has been added to the interface.

Listing 12-11. The TextDevice class declaration with a QReadWriteLock

class TextDevice
{
public:
TextDevice();

void increase();
void write(const QString&);

CHAPTER 12 ■ DOING THINGS IN PARALLEL 341

private:
int count;
QReadWriteLock lock;

};

In the implementation shown in Listing 12-12, you can see the changes made to

the TextDevice class. The new method increase creates a QWriteLocker referencing the

QReadWriteLock before altering the counter. The updated write method creates a QReadLocker
in the same manner before using the counter when creating the text that is sent to the debug

console. The code is fairly easy to read and understand, even though the newly implemented

protection feature is a fairly complex concept.

Listing 12-12. The TextDevice class implementation using the QReadLocker and QWriteLocker to
protect the count member variable

TextDevice::TextDevice()
{
count = 0;

}

void TextDevice::increase()
{
QWriteLocker locker(&lock);

count++;
}

void TextDevice::write(const QString& text)
{
QReadLocker locker(&lock);

qDebug() << QString("Call %1: %2").arg(count).arg(text);
}

The IncreaseThread class bears many similarities to the TextThread class (the class decla-

ration is shown in Listing 12-13). Because it is a thread, it inherits QThread. The constructor

accepts a pointer to the TextDevice object to call increase on, and the class contains a private

pointer to such a device (named m_device) for keeping that pointer.

Listing 12-13. The IncreaseThread class declaration

class IncreaseThread : public QThread
{
public:
IncreaseThread(TextDevice *device);

void run();

private:
TextDevice *m_device;

};

CHAPTER 12 ■ DOING THINGS IN PARALLEL342

The implementation of the IncreaseThread class reflects what you learned from the class

declaration (you can see the code in Listing 12-14). The m_device is initialized in the construc-

tor, and the QThread constructor is invoked to initialize the base class.

In the run method, the increase method of m_device is called every 1.2 seconds, and the

loop is stopped when stopThreads is set to true.

Listing 12-14. The IncreaseThread class implementation

IncreaseThread::IncreaseThread(TextDevice *device) : QThread()
{
m_device = device;

}

void IncreaseThread::run()
{
while(!stopThreads)
{
msleep(1200);
m_device->increase();

}
}

The TextDevice class is not affected from these changes and is identical to the class

shown in Listing 12-8. The main function is also very similar to the previous example. The only

change is that an IncreaseThread object has been added. Listing 12-15 shows the main func-

tion with the added lines highlighted.

Listing 12-15. The main function, setting up a TextDevice, two TextThreads, and an
IncreaseThread

int main(int argc, char **argv)
{
QApplication app(argc, argv);

TextDevice device;
IncreaseThread inc(&device);

TextThread foo("Foo", &device), bar("Bar", &device);

foo.start();
bar.start();
inc.start();

QMessageBox::information(0, "Threading", "Close me to stop!");

stopThreads = true;

foo.wait();
bar.wait();

CHAPTER 12 ■ DOING THINGS IN PARALLEL 343

inc.wait();

return 0;
}

The application output can be seen in Listing 12-16. The order of the "Foo" and "Bar"
texts can change from time to time, and the counter is updated at a slightly different interval

so that sometimes you get four strings with the same counter value; sometimes you get two

strings. In some circumstances, you could end up with a single "Foo" or "Bar" with one

counter value (or three—if IncreaseThread would happen to call increase between two write
calls from the TextThread objects).

Listing 12-16. The TextDevice with a separate increase method running

"Call 0: Foo"
"Call 0: Bar"
"Call 0: Foo"
"Call 0: Bar"
"Call 1: Bar"
"Call 1: Foo"
"Call 2: Bar"
"Call 2: Foo"
"Call 3: Bar"
"Call 3: Foo"
"Call 4: Bar"
"Call 4: Foo"
"Call 4: Foo"
"Call 4: Bar"
"Call 5: Bar"
"Call 5: Foo"

Sharing Resources Among Threads
Mutexes and read-write locks are good for protecting shared variables and other shared items

when the access needs to be serialized. Sometimes your threads need to share not only a

variable but also a limited number of resources such as the bytes of a buffer. This is where

semaphores come in.

A semaphore can be seen as a counting mutex, and a mutex can be seen as a binary sem-

aphore. They are really the same thing, but a semaphore is initialized with a value instead of a

single locking bit. When you lock a mutex, you acquire a value from the semaphore, which

decreases the value of the semaphore. The value of the semaphore can never be less than zero,

so if a thread tries to acquire more resources than the semaphore contains, the thread blocks

until the requested amount is available. When you finish with the acquired value, you release
it back to the semaphore, which increases the value of the semaphore. By releasing, you can

increase the value of the semaphore beyond the initial value of the semaphore.

CHAPTER 12 ■ DOING THINGS IN PARALLEL344

The Qt class QSemaphore implements the semaphore feature. You can acquire a value from

a semaphore object by using the acquire method, or use the tryAcquire method if you don’t

want to block when the requested value is not available. The tryAcquire method returns true
if the acquisition was successful and false if the requested amount was not available. You

release a value back to a semaphore object using the release method. If you want to know the

value of a semaphore object without affecting the semaphore, you can use the available
method. This can be handy if the semaphore represents the availability of a shared resource

and you want to show the user how much of the resource is being used.

In Listing 12-17, you can see how the available value changes as a semaphore object is

used. The semaphore is initialized to have a value of 10 before a series of acquire and release
calls are made. The highlighted line shows a method call to tryAcquire that fails because the

call attempts to acquire more than is available. Because the call fails, the available value of the

semaphore is left unchanged.

Listing 12-17. The available value of a semaphore is changed because the object is used.

QSemaphore s(10);

s.acquire(); // s.available() = 9
s.acquire(5); // s.available() = 4
s.release(2); // s.available() = 6
s.release(); // s.available() = 7
s.release(5); // s.available() = 12
s.tryAcquire(15); // s.available() = 12

Getting Stuck

One of the biggest risks when implementing threaded systems is the deadlock, which occurs

when two threads block each other so that both block. Because both are blocked, neither can

release the resource that the other thread is blocking on. The result is that the system freezes.

■Note A deadlock can occur even with a single thread. Imagine a thread trying to acquire a value that is

higher than possible from a semaphore.

One of the most common examples used to visualize this is the problem with the dining

philosophers. Figure 12-1 shows a table in which five philosophers sit down to eat. Each has a

plate, and there are chopsticks on either side of the plates.

CHAPTER 12 ■ DOING THINGS IN PARALLEL 345

Figure 12-1. The philosophers are getting ready to dine.

The algorithm used by the philosophers for eating is divided into five steps:

1. Acquire the left chopstick.

2. Acquire the right chopstick.

3. Eat.

4. Release the right chopstick.

5. Release the left chopstick.

Because all philosophers are equally hungry, they all start at once by picking up the left

chopstick. The problem is that one philosopher’s left chopstick is the right chopstick for

another. So they all block when they try to acquire the right chopstick. A deadlock occurs,

and they all starve to death.

As you can see, deadlocks are dangerous, even potentially fatal. So, how are they avoided?

The first task is to identify potentially dangerous situations in which deadlocks can occur.

Look for threads competing for more than one resource that also acquire these resources at

different times. If each philosopher were to try to acquire both chopsticks in one operation,

the problem would never occur.

When a potentially dangerous situation is found, it must be defused. By not blindly

acquiring the second chopstick, but instead trying to acquire it, a block can be avoided. If

the second chopstick can’t be acquired, it is important to release the first stick, too, to avoid

CHAPTER 12 ■ DOING THINGS IN PARALLEL346

blocking the neighbors. The best action when missing the second chopstick and returning the

first one is to sleep for a while to let the neighboring philosophers finish their meals before

trying to get two chopsticks again. This would roughly translate into the following algorithm:

1. Acquire the left chopstick.

2. Try to acquire the right chopstick.

3. If both sticks were acquired, continue to step 6.

4. Release the left chopstick.

5. Think for a while before continuing with step 1.

6. Eat.

7. Release the right chopstick.

8. Release the left chopstick.

This eating algorithm can starve up to three philosophers in a worst-case scenario, but at

least two of them will get food—the deadlock is avoided. Because the probability for getting

two chopsticks is equal for all five philosophers, in real life five philosophers will get some-

thing to eat now and then.

Producers and Consumers

One common threading scenario in which semaphores come in handy is when you have one

or more threads producing data and one or more threads consuming that data. These threads

are referred to as producers and consumers.

Usually the producers and consumers share a buffer through which the information is

sent. By letting one semaphore keep track of the free space in the buffer and another sema-

phore keep track of the available data in the buffer, it is possible to let the consumers work in

parallel until the buffer is either full or empty (the producers or consumers must stop and

wait until there is more free space or data available).

Passing Data Through a Shared Circular Buffer

To show you how to work with semaphores, you’ll create an application that consists of a pro-

ducer and a consumer. The producer will pass a given text through a circular buffer to the

consumer, which will print the received text to the debug console.

Because there will be only one circular buffer, you have implemented it as a set of global

variables, as shown in Listing 12-18. The obvious solution if you are planning on using several

buffers is to declare these global variables in a class. Then refer each producer and consumer

using a buffer to an instance of that class.

The buffer consists of a size, bufferSize, and the actual buffer, buffer. Because you are

planning on moving QChar objects, the buffer is of that type. The buffer also needs two sema-

phores: one for keeping track of the free space available and one for the number of available

data items. Finally, there is a flag called atEnd that tells the consumer the producer will pro-

duce no more data.

CHAPTER 12 ■ DOING THINGS IN PARALLEL 347

Listing 12-18. The variables making a semaphore-monitored, thread-safe buffer

const int bufferSize = 20;

QChar buffer[bufferSize];
QSemaphore freeSpace(bufferSize);
QSemaphore availableData(0);

bool atEnd = false;

The buffer will be filled from index 0 to bufferSize-1 and then will begin to increase

starting from 0. Before putting a character in the buffer, the producer will acquire from the

freeSpace semaphore. When the character has been put in the buffer, the producer will release

to the availableData semaphore. This means that if nothing consumes data from the buffer, it

will be filled and the availableData semaphore value will be equal to bufferSize, and the pro-

ducer will not be able to acquire any more free space.

The producer class in the application is called TextProducer. Its constructor expects a

QString as argument and stores the string in the private member variable m_text. The work

of the producer is performed in the run method shown in Listing 12-19. The for loop iterates

over the text and then places the QChar objects on the buffer one by one, synchronizing with

the consumer, as described previously. When the entire text has been sent, the atEnd flag is set

to true so the consumer knows that the entire text has been sent.

Listing 12-19. The run method of the producer class

void TextProducer::run()
{
for(int i=0; i<m_text.length(); ++i)
{
freeSpace.acquire();
buffer[i % bufferSize] = m_text[i];

if(i == m_text.length()-1)
atEnd = true;

availableData.release();
}

}

The consuming thread reads in the same order that it is filled—from index 0 to

bufferSize-1 and then starting from 0 again. Before reading, it attempts to acquire from the

availableData semaphore. When a character has been read from the buffer, it then releases to

the freeSpace semaphore because that index of the buffer can be reused by the producer.

The consumer class, which is called TextConsumer, implements only a run method (see

Listing 12-20). The implementation of the run method is straightforward.

CHAPTER 12 ■ DOING THINGS IN PARALLEL348

Listing 12-20. The run method of the consumer class

void TextConsumer::run()
{
int i = 0;

while(!atEnd || availableData.available())
{
availableData.acquire();
qDebug() << buffer[i];
i = (i+1) % bufferSize;
freeSpace.release();

}
}

When it comes to synchronizing the producer and consumer and their accesses to the

buffer, it is very important to maintain control of the order in which the process occurs. Free

space must be acquired before the data is put into the buffer, and available data must be

released after the data has been written to the buffer. The same goes for taking data out of

the buffer—acquire available data before and release free space after. It is also important to

update the atEnd flag before releasing free space to avoid the consumer getting stuck waiting

for the available data semaphore while the atEnd flag is true. With the atEnd solution, there

must also be at least one byte of data to transmit; otherwise, the consumer will hang. One

solution is to transmit the length of the data first or an end-of-data token last.

Listing 12-21 shows a main function using the TextProducer and TextConsumer classes. It

initializes the producer with some contrived Latin text, starts both threads, and then waits for

them both to complete. The order in which they are started and the order of the wait calls are

irrelevant—both threads will synchronize themselves using the semaphores.

Listing 12-21. A main function using the TextProducer and TextConsumer classes

int main(int argc, char **argv)
{
QApplication app(argc, argv);

TextProducer producer("Lorem ipsum dolor sit amet, "
"consectetuer adipiscing elit. "
"Praesent tortor.");

TextConsumer consumer;

producer.start();
consumer.start();

producer.wait();
consumer.wait();

return 0;
}

CHAPTER 12 ■ DOING THINGS IN PARALLEL 349

Looking at the preceding example, note that there is a performance cost associated with

the acquire and release calls. There is a similar cost for using mutexes and read-write locks,

so it can sometimes give a performance boost to split the transmitted data into chunks. For

example, it might have been quicker to send the string as words instead of character by char-

acter, which would mean acquiring space for several characters at once in the producer thread

instead of one at a time and doing slightly more processing each time. This would, of course,

introduce the performance penalty that the buffer isn’t always fully used because the producer

would sometimes block even if there is free space in the buffer.

Dealing with Competing Producers

A common version of the producer-consumer scenario is to have several producers serving a

consumer with data. For example, you can have several working threads providing data for the

main thread. The main thread is the only thread that can update the user interface, so it is log-

ical to make it a consumer (it can also be a producer—a thread can be both a producer and

consumer at the same time).

There are two issues that you need to deal with before you can use several TextProducer
objects with the TextConsumer class presented in Listing 12-20. The first issue is the atEnd flag,

which needs to be converted into a semaphore. It will be released in the TextProducer con-

structor and acquired when the producer runs out of data in the run method. In the consumer,

the while loop cannot check for atEnd; atEnd.available() is used instead.

The second issue is the index used for writing to the buffer. Because there might be sev-

eral producers updating the buffer, they must share an index that must be protected by a

mutex.

Let’s have a look at the updated run methods starting with the TextProducer class (see

Listing 12-22). The highlighted lines show the shared index variable, index, and its mutex,

indexMutex. The mutex is locked and unlocked around the line containing index++. That is

the only place where index is referenced and updated. You cannot use a QMutexLocker here

because that would lock the mutex in the entire run method and block the other producer

threads. Instead, the mutex must be locked for the shortest possible period.

Listing 12-22. The TextProducer run method, updated for handling several simultaneous
producers

void TextProducer::run()
{
static int index = 0;

static QMutex indexMutex;

for(int i=0; i<m_text.length(); ++i)
{
freeSpace.acquire();
indexMutex.lock();

buffer[index++ % bufferSize] = m_text[i];

indexMutex.unlock();

if(i == m_text.length()-1)
atEnd.acquire();

CHAPTER 12 ■ DOING THINGS IN PARALLEL350

availableData.release();
}

}

The run method of the TextConsumer class has been only marginally updated. The high-

lighted line in Listing 12-23 shows how the atEnd semaphore is used in the while loop.

Compare this with Listing 12-20, in which atEnd is a flag.

Listing 12-23. The TextConsumer run method, updated for handing several simultaneous
producers

void TextConsumer::run()
{
int i = 0;

while(atEnd.available() || availableData.available())

{
availableData.acquire();
qDebug() << buffer[i];
i = (i+1) % bufferSize;
freeSpace.release();

}
}

Notice that the actual interaction between the producers and the consumer using the

semaphores for available data and free space is unchanged when comparing the single pro-

ducer and multiple producer versions.

Listing 12-24 shows a main function setting up two producers and a consumer. The pro-

ducers and consumer are set up and started; then the function waits for them to finish just as

in the single producer version.

Listing 12-24. A main function with two producers and one consumer

int main(int argc, char **argv)
{
QApplication app(argc, argv);

TextProducer p1("this text is written using lower case characters."
"it will compete with text written using upper case characters.");

TextProducer p2("THIS TEXT IS WRITTEN USING UPPER CASE CHARACTERS!"
"IT WILL COMPETE WITH TEXT WRITTEN USING LOWER CASE CHARACTERS!");

TextConsumer consumer;

p1.start();
p2.start();
consumer.start();

p1.wait();
p2.wait();

CHAPTER 12 ■ DOING THINGS IN PARALLEL 351

consumer.wait();

return 0;
}

Although the results from different executions of the dual producer version differ from

time to time, there is a repeating pattern. Listing 12-25 shows a result from one execution. You

can see that the lowercase producer takes control first, the uppercase producer cuts in, they

shift once or twice, and one of the threads takes the lead. The thread taking the start varies

from time to time, and the number of times that the leading thread changes differs from time

to time. The repeating pattern each time is that the distribution between the two threads is

uneven. One thread always provides the majority of the characters.

The reason for this pattern is that threads are scheduled to run for a few milliseconds

each before they lose focus. When the buffer has been filled and the producers cannot acquire

more free space, either thread can take the lead when there is free space again.

Listing 12-25. The characters received by the TextConsumer

this text is writTHteIS TEXT nIS WRITTEN USING UPP ER CASE CHARACTEuRS
!IT WILL COMPEsTE WITH TEXT WiRITTEN USING LOnWER CASE CHARACTgERS!
lower case characters.it will compete with text written using upper
case characters.

Signaling Across the Thread Barrier
Until now you have relied on shared buffers for passing data between threads. There is also a

slightly more costly (but far easier) solution: using signals and slots. Using them avoids having

to create and use buffers; instead, you can use the event-driven paradigm throughout the

entire application.

■Tip It was not possible to send signals between threads in Qt versions before Qt 4.0. Instead you had to

rely on passing custom events between the threads. This is still supported in Qt 4.0, but using signals and

slots is much easier.

There are some differences between passing signals among threads and using them

within a thread. When emitting signals in a single threaded application or within a single

thread, the emit call calls all the connected slots directly, and the emitting code is left waiting

until the slots are done. When emitting a signal to an object living in another thread, the signal

is queued. This means that the emit call will return before or at the same time that the slots are

activated.

It is possible to use queued signals within a single thread, too. All you need to do is explic-

itly tell connect that you want to create a queued connection. By default, connect uses direct

connections within threads and queued connections between threads. This is the most

CHAPTER 12 ■ DOING THINGS IN PARALLEL352

efficient choice, so the automatic setting always works, but you gain performance if you spec-

ify the connection to be queued.

Passing Strings Between Threads

Let’s go back to the TextThread and TextDevice classes from the beginning of the chapter.

Instead of having the text thread call the text device to pass the text, a signal will be sent. The

signal will go from the text thread to the text device receding in the main thread.

The new TextThread class can be seen in Listing 12-26. The highlighted lines show the

changes that have been made to add a signal and a stop method.

In the earlier versions, the class depended on a global flag variable that indicated that the

threads should halt execution; in this version, that flag, m_stop, is internal and is set using the

stop method.

To allow the signal, the Q_OBJECT macro has been added—as well as a signals section and

an actual signal, writeText, carrying a QString as argument.

Listing 12-26. The TextThread with the writeText signal

class TextThread : public QThread
{
Q_OBJECT

public:
TextThread(const QString& text);

void run();
void stop();

signals:

void writeText(const QString&);

private:
QString m_text;
bool m_stop;

};

The TextDevice class has been turned into a thread—it now inherits QThread and has the

same stop mechanism as the TextThread class. (The class declaration can be seen in Listing

12-27.) The highlighted lines show the Q_OBJECT macro, a public slots section, and the actual

slot (write) that accepts a QString as argument.

Listing 12-27. The TextDevice class declared as a thread

class TextDevice : public QThread
{
Q_OBJECT

CHAPTER 12 ■ DOING THINGS IN PARALLEL 353

public:
TextDevice();

void run();
void stop();

public slots:

void write(const QString& text);

private:
int m_count;
QMutex m_mutex;

};

Listing 12-28 shows the entire implementation of the TextThread class. All three method

bodies look simple—and they are. The constructor initializes the private members and passes

the call onto the QThread constructor. The stop method simply sets m_stop to true. The run
method consists of a while loop monitoring the said m_stop flag. As long as it runs, it emits a

writeText signal carrying m_text as the argument once per second.

Listing 12-28. The implementation of the TextThread class

TextThread::TextThread(const QString& text) : QThread()
{
m_text = text;
m_stop = false;

}

void TextThread::stop()
{
m_stop = true;

}

void TextThread::run()
{
while(!m_stop)
{
emit writeText(m_text);
sleep(1);

}
}

The TextDevice run method is very simple because the class does not perform any work

without receiving a call from a signal. Looking at Listing 12-29 you can see that the method

simply calls exec to enter the thread’s event loop, which waits for signals to arrive. The event
loop keeps running until quit is being called (this is the only thing that happens in the stop

method).

CHAPTER 12 ■ DOING THINGS IN PARALLEL354

In the same listing you can also see the write slot implementation. Because the slot can

be invoked from several threads at once, it protects the m_count counter using a mutex. The

slot can be called directly as a function just as well as being invoked by an emitted signal, so

you can’t forget this just because the signals are being queued and served one by one.

Listing 12-29. The write slot and the run method of the TextDevice class

void TextDevice::run()
{
exec();

}

void TextDevice::stop()
{
quit();

}

void TextDevice::write(QString text)
{
QMutexLocker locker(&m_mutex);

qDebug() << QString("Call %1: %2").arg(m_count++).arg(text);
}

Putting the TextThread and TextDevice classes to use is simple. Look at Listing 12-30 for

an example of a main function setting up two text threads and one device.

Because the data is exchanged via signals and slots, the different thread objects don’t

need to know about each other; they are simply interconnected using two calls to connect.

When the connections have been set up, they are started, and a dialog is shown. As soon as the

dialog is closed, all three threads are stopped. The function then waits for them to actually halt

before the application ends.

Listing 12-30. A main function using the TextThread and TextDevice classes

int main(int argc, char **argv)
{
QApplication app(argc, argv);

TextDevice device;
TextThread foo("Foo"), bar("Bar");

QObject::connect(&foo, SIGNAL(writeText(const QString&)),
&device, SLOT(write(const QString&)));

QObject::connect(&bar, SIGNAL(writeText(const QString&)),
&device, SLOT(write(const QString&)));

CHAPTER 12 ■ DOING THINGS IN PARALLEL 355

foo.start();
bar.start();
device.start();

QMessageBox::information(0, "Threading", "Close me to stop!");

foo.stop();
bar.stop();
device.stop();

foo.wait();
bar.wait();
device.wait();

return 0;
}

Running this application gives you a result similar to the one shown in Listing 12-10: a list

of numbered strings.

Sending Your Own Types Between Threads

Without any extra work, you can send objects of various classes such as QString, QImage,

QVariant, and so on through queued connections. In some scenarios you should use your own

types in your connections. This is actually very common because most applications involve

one or more custom types that are natural to pass along with a signal.

If you attempt to pass a custom type through a queued connection, you will run into run-

time errors that look very similar to the one shown in Listing 12-31. The errors occur when the

connection is being made and raised because of the way queuing of signals and their argu-

ments work.

Listing 12-31. Trying to pass a custom type through a queued connection

QObject::connect: Cannot queue arguments of type 'TextAndNumber'
(Make sure 'TextAndNumber' is registed using qRegisterMetaType().)
QObject::connect: Cannot queue arguments of type 'TextAndNumber'
(Make sure 'TextAndNumber' is registed using qRegisterMetaType().)

When a signal is queued, it is queued together with its arguments. This means that the

arguments are copied and stored in a queue before they are passed on to the slots. To be able

to queue an argument, Qt needs to construct, destruct, and copy such an object.

For Qt to know how to do this, all custom types need to be registered using

qRegisterMetaType, just as the error message says. Let’s look at how this is done in real life.

First you need some background about what it is that you are trying to achieve. In the

threaded signals and slots demo, you sent text strings from TextThread objects to a TextDevice
object. The text device counts the number of strings it has received. You’ll extend this by let-

ting the TextThread objects keep count of how many texts they have sent. They will then send

TextAndNumber objects that contain both text and its count to the text device.

CHAPTER 12 ■ DOING THINGS IN PARALLEL356

The TextAndNumber class, which is the custom type that will be passed through queued

connections, will hold a QString and an integer. Listing 12-32 shows the class declaration

for it.

The class itself consists of two constructors: one takes no parameters; the other takes text

and integer. The constructor that doesn’t take any parameters is needed by the meta-type reg-

istration, while the other is provided for convenience—you will use it later on when emitting.

The text and number are made public, so you do not need to worry about setter and getter

methods for them.

To use the class as a meta-type, you must also provide a public destructor and a public

copy constructor. Because this class contains no data that can’t be handled by the default ver-

sions, you do not implement them explicitly.

The highlighted line at the very end of the listing contains a reference to the Q_DECLARE_
METATYPE macro. By passing the type to this macro, the type can be used in combination with

QVariant objects, which is necessary to be able to register it using qRegisterMetaType.

Listing 12-32. The TextAndNumber class declaration

class TextAndNumber
{
public:
TextAndNumber();
TextAndNumber(int, QString);

int number;
QString text;

};

Q_DECLARE_METATYPE(TextAndNumber);

The actual call to qRegisterMetaType is made from the main function that can be seen in

the first highlighted line in Listing 12-33. The other two changed lines are the connect calls.

They have changed since you passed QString objects because the both the signals and slots

now have a new argument type.

Listing 12-33. The main function registering TextAndNumber as a meta-type and making
connections for the new signals and slots

int main(int argc, char **argv)
{
QApplication app(argc, argv);

qRegisterMetaType<TextAndNumber>("TextAndNumber");

TextDevice device;
TextThread foo("Foo"), bar("Bar");

QObject::connect(&foo, SIGNAL(writeText(TextAndNumber)),

&device, SLOT(write(TextAndNumber)));

CHAPTER 12 ■ DOING THINGS IN PARALLEL 357

QObject::connect(&bar, SIGNAL(writeText(TextAndNumber)),

&device, SLOT(write(TextAndNumber)));

...
}

The changes to the TextDevice class are limited to the write slot. The slot, shown in

Listing 12-34, now accepts a TextAndNumber object as argument instead of a QString. It prints

its own counter value, the received text, and the received number.

Listing 12-34. The TextDevice’s write slot accepting a TextAndNumber object as argument

void TextDevice::write(TextAndNumber tan)
{
QMutexLocker locker(&m_mutex);

qDebug() << QString("Call %1 (%3): %2")
.arg(m_count++)
.arg(tan.text)
.arg(tan.number);

}

The TextThread class has received slightly more changes, which can be seen in the run
method shown in Listing 12-35. First, the signal emitted now carries a TextAndNumber argu-

ment—here you use the convenient constructor mentioned earlier. The other change is that

each text thread now has a local counter, which is updated in the emit call and is not pro-

tected by any mutex because it is used in only one thread.

Listing 12-35. The TextThread run method now updates a counter and emits a TextAndNumber
object instead of a QString.

void TextThread::run()
{
while(!m_stop)
{
emit writeText(TextAndNumber(m_count++, m_text));
sleep(1);

}
}

Running the application described gives a result similar to the one shown in Listing 12-36.

The calls are counted by the TextDevice object while the number of occurrences of each string

is counted by each TextThread object. As you can see, the order of the text threads is not

controlled.

Listing 12-36. Running the text thread application with a thread local counter

"Call 0 (0): Foo"
"Call 1 (0): Bar"
"Call 2 (1): Bar"

CHAPTER 12 ■ DOING THINGS IN PARALLEL358

"Call 3 (1): Foo"
"Call 4 (2): Foo"
"Call 5 (2): Bar"
"Call 6 (3): Bar"
"Call 7 (3): Foo"
"Call 8 (4): Foo"
"Call 9 (4): Bar"
"Call 10 (5): Foo"
"Call 11 (5): Bar"
"Call 12 (6): Foo"
"Call 13 (6): Bar"

Threads, QObjects, and Rules
In the section on connections between threads, you learned that the connect call automati-

cally creates queued connections between objects living in different threads. All QObject
instances know which thread they belong to—they are said to have thread affinity.

There are a few restrictions that apply to the QObject and threads:

• The child of a QObject must belong to the same thread as the QObject itself.

• Event-driven objects can be used in only one single thread.

• All QObjects must be deleted before the QThread that they belong to is deleted.

The first rule means that the QThread itself never should be used as a parent because it

was created in another thread.

The second rule applies to mechanisms such as timers and network sockets. You can’t

start a timer or make a socket connection in a thread other than the timer’s or socket’s thread

because each thread has a event loop of its own. If you plan to use events in a thread, you

must call the QThread::exec method to start the thread’s local event loop.

The third rule is easy to manage: Let all objects that you create have a parent (or grand-

parent) on the stack in the thread’s run method.

It is important to understand that a QObject can be used from several threads at once—

but most objects provided by Qt are designed to be used from a single thread, so your mileage

may vary.

Pitfalls when Threading

There are some parts of Qt that are easy to use from a single thread. This doesn’t mean that

they can’t be used from a QThread object or that they are incompatible with threaded applica-

tions; it’s just best to keep all such objects within a single thread. If interaction with other

threads is needed, it can be performed using signals, slots, and methods of the thread manag-

ing the object in question.

The object types to keep in one thread include the entire SQL module and the QTimer,

QTcpSocket, QUdpSocket, QHttp, QFtp, and QProcess objects.

CHAPTER 12 ■ DOING THINGS IN PARALLEL 359

An example of “misbehaving” is to create a QFtp object from one thread and then interact

with it from another thread. This process might work, but it could cause mysterious and hard-

to-debug problems. To avoid having to hunt these ghost bugs, be careful when using threads.

The User Interface Thread

All widgets and user interface objects must be handled from the main thread (the thread

where QApplication::exec is called). This means that all user interfaces will act as some sort of

consumer—being fed information to visualize from the threads performing the actual work.

The benefit of splitting the application into these parts is that the user interface does not

freeze when the application encounters heavy tasks. Instead, some QAction objects might

be disabled while the processing is done in another thread. When the result is ready, it is fed

back to the main thread through a buffer, a custom event, a shared buffer, or some other

mechanism.

Texts and Number with Widgets

To show a simple user interface that is updated with data from a thread, you’ll replace the

TextDevice class from the TextAndNumber application with a dialog. The passing of data from

the TextThread producers is done via signal-to-slot connections. The running application is

shown in Figure 12-2.

Figure 12-2. The TextDialog in action

The class declaration of the dialog class can be seen in Listing 12-37. The dialog class is

called TextDialog and accepts TextAndNumber objects through the showText slot.

There are more things to learn from the class declaration. You can see that the dialog uses

a design made using Designer because it contains a Ui::TextDialog member variable. It also

has a private slot that is intended to be connected to a user interface signal called buttonClicked.

CHAPTER 12 ■ DOING THINGS IN PARALLEL360

Listing 12-37. The TextDialog class declaration

class TextDialog : public QDialog
{
Q_OBJECT

public:
TextDialog();

public slots:
void showText(TextAndNumber tan);

private slots:
void buttonClicked(QAbstractButton*);

private:
int count;
QMutex mutex;

Ui::TextDialog ui;
};

The dialog is shown in Figure 12-2, and the object hierarchy from Designer can be seen in

Figure 12-3. The list widget and button box are arranged in a grid layout inside the actual dialog.

The Close button of the button box is connected to the dialog’s reject slot to close it,

while the Reset button will be connected in the source code.

Figure 12-3. The TextDialog object hierarchy

Parts of the implementation of the TextDialog class can be seen in Listing 12-38. You can

see the constructor that sets up the user interface, connects the button box to the buttonClicked
slot, and initializes the counter.

The buttonClicked slot is also shown in the listing. The slot is invoked for clicks on both

the Close and Reset buttons. By checking the role of the abstract button, you can determine

whether Reset was clicked. In that case, the list widget is cleared from any list items it might

contain.

CHAPTER 12 ■ DOING THINGS IN PARALLEL 361

Listing 12-38. The user interface handling part of the TextDialog

TextDialog::TextDialog() : QDialog()
{
ui.setupUi(this);

connect(ui.buttonBox, SIGNAL(clicked(QAbstractButton*)),
this, SLOT(buttonClicked(QAbstractButton*)));

count = 0;
}

void TextDialog::buttonClicked(QAbstractButton *button)
{
if(ui.buttonBox->buttonRole(button) == QDialogButtonBox::ResetRole)
ui.listWidget->clear();

}

The remaining part of the TextDialog class implementation is the showText slot. It can be

seen in Listing 12-39 and is almost identical to the write slot of the TextDevice class shown

in Listing 12-34. All this shows is that there is no difference in communicating between two

QThread objects and communicating between QThread objects and the main thread. The same

rules apply, and the same limitations still exist.

Listing 12-39. The showText slot of the TextDialog

void TextDialog::showText(TextAndNumber tan)
{
QMutexLocker locker(&mutex);

ui.listWidget->addItem(QString("Call %1 (%3): %2")
.arg(count++)
.arg(tan.text)
.arg(tan.number));

}

The main function starting the threads and showing the dialog has not changed much

from Listing 12-33, except that the TextDevice has been replaced by a TextDialog. The dialog

is now started as a thread but shown before QApplication::exec is started. When that call

returns, the TextThread threads are stopped and waited for before the return value from the

exec call is returned.

The application can be seen in action in Figure 12-2. Notice that you can move up and

down in the list widget and clear it independently of the two threads; they will keep on adding

items in parallel with anything that happens in the main thread.

CHAPTER 12 ■ DOING THINGS IN PARALLEL362

Working with Processes
A close relative to the thread is the process, which can consist of several threads, but does not

share memory and resources in the same intimate way that a thread does. Threads belonging

to a single process share memory and resources and are all part of the same application. A

process is what you usually refer to as another application. It has its own memory and

resources and lives a life of its own. Qt handles processes through the QProcess class.

If you start a process from your application, you communicate with it via channels

(known as standard input, standard output, and standard error channels). These are the chan-

nels that are available to console applications, and the data is limited to streams of bytes.

Running uic

To text with processes that use the QProcess class, you’ll build a small application that

launches uic. The uic application is a nice one to play with because if you are a Qt developer

you have access to it (it is bundled with Qt). The uic application produces output to both

standard output and standard error. It can also handle some different arguments that you

pass to it.

The application using QProcess consists of a simple dialog class called ProcessDialog
(refer to Figure 12-4). The class declaration can be seen in Listing 12-40. The highlighted lines

show a range of slots matching the signals available from the QProcess class.

Listing 12-40. The ProcessDialog class declaration

class ProcessDialog : public QDialog
{
Q_OBJECT

public:
ProcessDialog();

private slots:
void runUic();

void handleError(QProcess::ProcessError);

void handleFinish(int, QProcess::ExitStatus);

void handleReadStandardError();

void handleReadStandardOutput();

void handleStarted();

void handleStateChange(QProcess::ProcessState);

private:
QProcess *process;

Ui::ProcessDialog ui;
};

CHAPTER 12 ■ DOING THINGS IN PARALLEL 363

The signals emitted from the QProcess class can be used to monitor the progress—or

failure—of a launched process:

• error(QProcess::ProcessError error): The process has experienced some sort of

internal error.

• started(): The process has started.

• finished(int code, QProcess::ExitStatus status): The process has exited.

• readyReadStandardError(): There is data to read from the standard error channel.

• readyReadStandardOutput(): There is data to read from the standard output channel.

• stateChanged(QProcess::ProcessState newState): The process has entered a new

state.

When there is data ready to read, you can read it using the readAllStandardError method

or readAllStandardOutput method, depending on the channel in which you are interested.

Using the set standardOutputFile and setStandardErrorFile, you can redirect the output from

either channel to a file.

The process’ state can change between the three states NotRunning, Starting, and

Running. When entering NotRunning, you know that the process has ended or will end very

soon. You can receive finished signals after the state is changed to NotRunning, but error

signals generally are emitted before the stateChanged signal.

Before you can receive any signals at all, you need to start a new process from the runUic
slot. You can see the slot implementation in Listing 12-41. The nonhighlighted lines disable

the user interface and clear the QTextEdit widget used for showing the application output

before creating a new QProcess object and setting up the connections.

The highlighted lines show how to initialize and launch a process. First the arguments are

assembled in a QStringList object before start is called. The start call takes the executable’s

name and the arguments as parameters. After the start method call, it is a matter of waiting

for the signals to arrive.

Listing 12-41. A QProcess object is created, connected, and launched.

void ProcessDialog::runUic()
{
ui.uicButton->setEnabled(false);
ui.textEdit->setText("");

if(process)
delete process;

process = new QProcess(this);

connect(process, SIGNAL(error(QProcess::ProcessError)),
this, SLOT(handleError(QProcess::ProcessError)));

connect(process, SIGNAL(finished(int,QProcess::ExitStatus)),
this, SLOT(handleFinish(int,QProcess::ExitStatus)));

connect(process, SIGNAL(readyReadStandardError()),

CHAPTER 12 ■ DOING THINGS IN PARALLEL364

this, SLOT(handleReadStandardError()));
connect(process, SIGNAL(readyReadStandardOutput()),

this, SLOT(handleReadStandardOutput()));
connect(process, SIGNAL(started()),

this, SLOT(handleStarted()));
connect(process, SIGNAL(stateChanged(QProcess::ProcessState)),

this, SLOT(handleStateChange(QProcess::ProcessState)));

QStringList arguments;

arguments << "-tr" << "MYTR" << "processdialog.ui";

process->start("uic", arguments);

}

When the signals arrive, the slots will make the output visible in the QTextEdit widget

used for showing the results of the execution. Because almost all slots look the same, take a

look at handleFinish. You can see the source code in Listing 12-42.

The slot passes the enumerated type through a switch statement to convert it into a

string. It then appends the resulting text to the text edit as a new paragraph in bold. All bold

texts are status messages, while the text with normal weight is the actual output from the

application.

Listing 12-42. The handleFinish slot implementation

void ProcessDialog::handleFinish(int code, QProcess::ExitStatus status)
{
QString statusText;

switch(status)
{
case QProcess::NormalExit:
statusText = "Normal exit";
break;

case QProcess::CrashExit:
statusText = "Crash exit";
break;

}

ui.textEdit->append(QString("<p>%1 (%2)<p>")
.arg(statusText)
.arg(code));

}

Running the application shows the different signals being emitted in the different phases

of the process’ life. Figure 12-4 shows the result of a successful execution. The signals emitted

are the following:

1. stateChanged(Starting)

2. started()

CHAPTER 12 ■ DOING THINGS IN PARALLEL 365

3. readyReadStandardOutput() (several times)

4. stateChanged(NotRunning)

5. finished(0, NormalExit)

Figure 12-4. The uic process running and completing succesfully. The top image shows the top of
the output text; the bottom image shows the end of the same text.

■Note You add the application’s output to QTextEdit using append calls, which leads to each new chunk

of text being added as a new paragraph. That is why the output looks slightly odd in the screenshots.

CHAPTER 12 ■ DOING THINGS IN PARALLEL366

The run pictured in Figure 12-5 shows a process exiting because of failure. The problem is

that the launched uic instance can’t locate the input file specified. The signals emitted are the

following:

1. stateChanged(Starting)

2. started()

3. readyReadStandardError() (possibly several times)

4. stateChanged(NotRunning)

5. finished(1, NormalExit)

As you can see, the only real difference—apart from the output being sent to the standard

error channel instead of the standard output channel—is that the exit code is nonzero. This is

the convention, but is not guaranteed. From the QProcess object’s viewpoint, the execution

went well—all problems were handled by the launched executable.

Figure 12-5. The uic process exits because of an error; it can’t find the specified input file.

If you give the process an invalid name for an executable, the problem will occur before

the process can be launched. This results in the signals shown in Figure 12-6:

1. stateChanged(Starting)

2. error(FailedToStart)

3. stateChanged(NotRunning)

The failure is detected by the QProcess object and reported through the error signal.

There will not be any finished signal or output to read because the process never reaches the

Running state.

CHAPTER 12 ■ DOING THINGS IN PARALLEL 367

Figure 12-6. The process can’t be started because the specified executable is missing.

The Shell and Directions

There are several common hurdles when working with processes. The first one occurs because

the command-line shell processes the arguments before passing them on to the executable.

For example, writing uic *.ui in a Unix shell will give all file names matching *.ui as argu-

ments to uic. When starting the process using QProcess, you must take care of it and find the

actual file names (use a QDir object).

The second issue is closely related to the first one. Pipes are managed by the command-

line shell. The command ls –l | grep foo does mean that the shell passes -l | grep foo as

arguments to ls, but that is what happens if you start using QProcess. Instead, you have to run

ls –l as one process and pass the resulting data to another process running grep foo.

This brings you to the last hurdle: the directions of channels. The standard output of a

process is your input. What the process writes is what your application reads. This goes for the

standard error channel, too—the process writes to it so your application reads from it. The

standard input is the other way around—the process reads from it so your application must

write to it.

Summary
Using threading increases the complexity of your application, but offers performance gains.

This is especially important as multiprocessor systems become more and more common.

When developing multithreaded applications, you must make sure to not make any

assumptions about timing or performance. You can never rely on things occurring in a certain

order or at a certain pace. If you are aware of this, it is really easy to get started—just inherit

the QThread class and implement the run method.

Shared resources are easily protected using the QMutex and QMutexLocker classes. If you

mostly read from a value, a better choice is the QReadWriteLock combined with QReadLocker
and QWriteLocker for better performance. For shared resources that you use in greater num-

bers than one, the QSemphore is your best choice.

CHAPTER 12 ■ DOING THINGS IN PARALLEL368

When threading, you must ensure that QObject instances are kept to a single thread. You

can access members of a QObject from a thread other than the thread in which the object was

created. Just make sure to protect any shared data. Some QObject derivates are not meant for

sharing at all: the networking classes, the entire database module, and the QProcess class.

Graphical classes are even pickier—they must be used from the main thread.

CHAPTER 12 ■ DOING THINGS IN PARALLEL 369

Databases

Databases are an integral part of even the simplest modern applications. While most readers

might tend to relate databases to websites and large corporate solutions, you might be sur-

prised to know that you can also use one to store data managed within a Qt application.

Qt offers a module for relational databases called QtSql. SQL, which stands for structured
query language, is a language used for manipulating relational databases. Using SQL, you can

communicate between different database engines and your application.

Qt supports many of the most popular databases, including MySQL, Oracle, PostgreSQL,

Sybase, DB2, SQLite, Interbase, and ODBC. These drivers can be built as plugins or can be

integrated in Qt.

In this chapter you’ll learn how to integrate both the MySQL and SQLite databases with

your Qt applications. You might use MySQL in more sophisticated situations and use SQLite

when a database is handy but a full-featured database server might be considered overkill.

A Quick Introduction to SQL
Before you begin looking at some basic SQL statements, you should understand that SQL is

another programming language. This book will not teach you to develop using SQL; it will

show you only the very basic information. You also need to know that the different database

servers supported by Qt support different dialects of SQL. This means that a statement can

look slightly different for a MySQL connection when compared with an SQLite connection.

By sticking to the very basics, these disparities can be avoided, but be prepared to read up on

the database engine you choose to use in the SQL manuals.

The statements used and described in this section have been tested with both MySQL and

SQLite, so there will be no dialectal hiccups.

■Note An SQL statement is also known as a query because some statements are used to query the

database for information.

What Is a Database?

The rest of this chapter discusses relational databases, which are collections of tables. The

tables each have a name and a set of columns and rows. The columns define the structure of

371

C H A P T E R 1 3

the table, while the rows contain the data. The tables are then tied together through relations,

in which column values from different tables are linked to each other.

Each column has a name and a type, which make it possible to control what goes where

and to retrieve by name. You can also control the allowed contents so that a NULL value will be

replaced by a default, or you can disallow NULL values altogether.

The rows contain the data as defined by the columns. When you are working with a data-

base you usually search for rows, add them, update them, or remove them.

The first thing you need to do is create an actual database, and the way you create it

depends on the database server that you plan to use. Please refer to the user manual of your

server for details.

Before you can start adding rows, you need to create a table by using the CREATE TABLE
command. Let’s call the table names. The following statement creates a table with an integer

column called id and two strings called firstname and lastname:

CREATE TABLE names (
id INTEGER PRIMARY KEY,
firstname VARCHAR(30),
lastname VARCHAR(30)
)

In the statement, you specify id as a PRIMARY KEY, which means that there can’t be two

identical id values in the same table. You can identify each row by its id column, which can be

used when searching for data.

The types used are INTEGER for integer values and VARCHAR(30) for the strings. The VARCHAR
type is a string of variable length. The value inside the parentheses limits the length of the

strings, so the firstname and lastname strings must be 30 characters or fewer.

One problem with the statement is that if the table already exists, it will fail. You can solve

this problem by adding the IF NOT EXISTS to it to create the following statement:

CREATE TABLE IF NOT EXISTS names (
id INTEGER PRIMARY KEY,
firstname VARCHAR(30),
lastname VARCHAR(30)
)

This statement adds the table or just passes by if it already exists.

To remove a table, use the DROP TABLE command. To drop the names table you just created,

simply execute the following:

DROP TABLE names

Inserting,Viewing, Modifying, and Deleting Data

The most basic operations needed to interact with a database are the capabilities to view, add,

modify, and delete data stored in the tables. As soon as you have set up your tables properly,

this is what you will be doing the rest of the time. These four operations make up what is

sometimes called a CRUD interface (which stands for Create, Read, Update, and Delete).

The SQL commands for performing these tasks include INSERT for adding data, SELECT for

viewing, UPDATE for modifying, and DELETE for deleting. All four tasks are described in the fol-

lowing sections.

CHAPTER 13 ■ DATABASES372

Inserting Data

Inserting a name into the names table is easy. Using the INSERT INTO statement, you can list the

column names, followed by the VALUES keyword and the actual values:

INSERT INTO names (id, firstname, lastname) VALUES (1, 'John', 'Doe')

It is possible to skip the column names, but that means you rely on the order of the

columns in the table—something that Murphy tells you is bound to change if you rely on it.

Although I placed the command on a single line, feel free to break your larger queries into

multiple lines for readability’s sake because SQL is not sensitive to line breaks.

When inserting items into the names table, you can have the database generate the id
values automatically by telling it that the column will AUTOINCREMENT when creating the table.

■Caution This feature is called AUTOINCREMENT by SQLite and AUTO_INCREMENT by MySQL, but other

databases might not support it at all. This means that the table creation statements might be incompatible.

Viewing Data

When you have put your data into a database, you need to be able to retrieve it to view it. This

is where the SELECT command enters the picture. The command can be used to dump the

entire contents of a table, but it can also be instructed to look for specific data, sort it, group it,

and perform calculations.

Let’s start by asking for the entire contents of the names table:

SELECT * FROM names

This line returns the entire names table, as follows. I have executed additional INSERT state-

ments. The asterisk between the SELECT and FROM works means that you are interested in all

columns.

id firstname lastname

1 John Doe

2 Jane Doe

3 James Doe

4 Judy Doe

5 Richard Roe

6 Jane Roe

7 John Noakes

8 Donna Doe

9 Ralph Roe

There are a number of different last names represented in this table, so let’s ask for all individ-

uals with the last name Roe residing in the database. To do this, the SELECT statement is

CHAPTER 13 ■ DATABASES 373

combined with a WHERE clause. The id column is not really that interesting, so ask for the

firstname and lastname columns instead of using an asterisk:

SELECT firstname, lastname FROM names WHERE lastname = 'Roe'

The results from the query are shown in the following table:

firstname lastname

Richard Roe

Jane Roe

Ralph Roe

WHERE clauses contain several comparisons that can be combined using AND, OR, NOT, and

parentheses to form more complex filters.

Notice that the order of the first names in the preceding table is not ideal. You can use the

ORDER BY clause to specify the sort order:

SELECT firstname, lastname FROM names WHERE lastname = 'Roe' ORDER BY firstname

The results from the command are shown in the following table (the ordering has been

fixed):

firstname lastname

Jane Roe

Ralph Roe

Richard Roe

Another clause that can be used with the SELECT statement is GROUP BY, which divides the

results into groups. It can be combined with the COUNT(*) function, which means the number

or rows found. If you group by last names, you can count the number of members of each

family:

SELECT lastname, COUNT(*) as 'members'
FROM names
GROUP BY lastname
ORDER BY lastname

The results from the command are shown in the following table. I named the calculated

column members by using the AS keyword. I also sorted the on the lastname column so that the

last names appear in alphabetical order:

lastname members

Doe 5

Noakes 1

Roe 3

CHAPTER 13 ■ DATABASES374

Modifying Data

Changing the data stored in the database tables is handled with the UPDATE statement. After

being combined with a WHERE clause, the changes can now be controlled. Because the id col-

umn is unique for each row, it can be used to change the name of one individual. The

following line renames John Noakes to Nisse Svensson:

UPDATE names SET firstname = 'Nisse', lastname = 'Svensson' WHERE id = 7

In this example, the WHERE clause is used to limit the update to the row with an id value

of 7. The changes are delimited by commas, and you can change both the firstname and

lastname fields.

You can use a more open WHERE clause to update several rows at once. The following line

changes the lastname field for all rows in which the firstname is Jane; it renames both Jane

Doe and Jane Roe to Jane Johnson:

UPDATE names SET lastname = 'Johnson' WHERE firstname = 'Jane'

■Caution Leaving out the WHERE clause will apply the change to all rows in the table.

Deleting Data

The DELETE statement is used to delete data from database tables. It looks very much like the

UPDATE statement—you specify which table you want to delete rows from (and which rows) by

using a WHERE clause.

You can start by removing the Nisse Svensson (formerly known as John Noakes) row:

DELETE FROM names WHERE id = 7

Just as with updating, you can use less specific WHERE clauses to delete several rows at

once. The following statement removes the two Johnsons that were created from the two

Janes:

DELETE FROM names WHERE lastname = 'Johnson'

More Tables Mean More Power

When you work with databases, you often need several tables that contain information about

different aspects of the same things. By using the JOIN clause together with SELECT, you can

still extract the information you need with a single query.

You join tables by specifying a relation—you define what ties the two tables together.

In the database used here there is a second table for salaries called salaries. The columns

are id and annual, and both are of the INTEGER type. The id column is used to link a salary to

an individual in the names table (this is the relation between the tables), while the annual col-

umn holds the annual income for each individual. The contents of the table can be seen as

follows (notice that some values for id are missing from the table):

CHAPTER 13 ■ DATABASES 375

id annual

1 1000

2 900

3 900

5 1100

6 1000

8 1200

9 1200

Now you can SELECT from names and ask the database to JOIN the tables names and

salaries ON the id columns. This is expressed in SQL as follows:

SELECT names.firstname, names.lastname, salaries.annual
FROM names JOIN salaries ON names.id = salaries.id

The result from this statement is shown as follows (the rows not represented in both

tables are left out):

firstname lastname annual

John Doe 1000

Jane Doe 900

James Doe 900

Richard Roe 1100

Jane Roe 1000

Donna Doe 1200

Ralph Roe 1200

To get all the rows from the names table, replace JOIN with LEFT JOIN. All the rows are

returned from the first table (the one on the left in the statement). The resulting statement

is this:

SELECT names.firstname, names.lastname, salaries.annual
FROM names LEFT JOIN salaries ON names.id = salaries.id

The rows not represented in the salaries table get the value NULL. The result from the

query can be seen in the following table:

firstname lastname annual

John Doe 1000

Jane Doe 900

James Doe 900

Judy Doe NULL

Richard Roe 1100

CHAPTER 13 ■ DATABASES376

firstname lastname annual

Jane Roe 1000

John Noakes NULL

Donna Doe 1200

Ralph Roe 1200

When working with databases with several tables, it is important to have a normalized
structure. Under normal circumstances, no information should appear more than once. An

example of the opposite is if the salaries table contains the lastname and id. In such a case,

changing the lastname requires two UPDATE calls.

The tables used this far are pretty simple, but try to remember to keep data in only one

place (which might sometimes require additional id columns just to tie things together). This

is a time well spent because it makes the structure easier to work with.

This introduction to SQL only scratches the surface of database design and join state-

ments. There are many more aspects to take into account before implementing a complex

database, and there are numerous other ways of joining tables and creating relationships.

Some of them are standardized, and others are very dependent on the database server you are

using. Before implementing any complex database design I suggest that you consult you data-

base server’s documentation as well as books focusing on the topic.

Counting and Calculating

When querying for data, the database can perform calculations on the data before returning

it. You saw such an example earlier in the chapter when COUNT(*) was used to count the num-

ber of family members for each lastname.

There are a whole range of mathematical functions available in SQL. Some of the most

common include SUM, MIN, and MAX, which are used to summarize the values of a column or to

get the minimum or maximum value. These functions provide you with a powerful tool. When

used in SELECT statements, it is possible to combine these functions with GROUP BY clauses to

calculate results based on groups of rows.

The results from these calculations can be combined using normal arithmetic operations

such as +, -, *, and /. The following statement uses the SUM function, division, and COUNT(*) to

calculate the average annual salary for each family:

SELECT
names.lastname,
SUM(salaries.annual)/COUNT(*) AS 'Average',
MIN(salaries.annual) AS 'Minimum',
MAX(salaries.annual) AS 'Maximum'

FROM names
LEFT JOIN salaries ON names.id = salaries.id
GROUP BY names.lastname

Because you do a left join, the family members that do not have an income will be

included in the COUNT(*), but not in the functions summarizing and picking out the minimum

and maximum values. This means that the minimum salary for those named Doe stays at 900,

CHAPTER 13 ■ DATABASES 377

but the average salary is calculated at 800. The complete results from the statement can be

seen in the following table:

lastname Average Minimum Maximum

Doe 800 900 1200

Noakes NULL NULL NULL

Roe 1100 1000 1200

It is easy to let the database perform lots of interesting functions on your data, which is

both good and bad. The potentially negative consequence can be a heavier workload on a

central server. The benefits are that less data is sent over the network and that the client code

is less complex.

Qt and Databases
Qt’s classes for handling and interfacing databases can be split into three groups. The first

layer is based around a set of database drivers, which make it possible to access different types

of database servers using Qt.

The second layer handles connections to databases, queries, and their results, as well as

error messages from the database servers. This layer is based on the driver layer because a

driver is required to connect to a database.

The third layer, which is called the user interface layer, offers a set of models for use with

Qt’s model view framework.

■Caution It is recommended that you work with a test database when you are developing new software

instead of the live version. It is easy to make a mistake in an SQL statement that renders the contents of an

entire database useless. Using a development database instead of the production database (used for the real

stuff) can save you huge headaches. At best, you will not have to restore the database from backups; at

worst, it can save your job.

Making the Connection

Each database connection is represented by a QSqlDatabase object, and the connections are

made via a driver. After picking a driver, you can set up the relevant properties such as

hostName, databaseName, userName, and password. After the connection is set up, you have to

open it before you can work with it.

To avoid having to pass around the same QSqlDatabase object, the entire QtSql module

has the concept of the default connection. As long as you connect to one database at a time,

all the classes interacting with databases already know which connection to use.

Listing 13-1 shows a connection to a MySQL server being set up and established. The

process is easy. First you add a database connection using the QMYSQL driver through the static

CHAPTER 13 ■ DATABASES378

QSqlDatabase::addDatabase method. Because you pass only a driver name and no connection

name, it will be the default connection.

The returned QSqlDatabase object is then set up. The properties for hostName,

databaseName, userName, and password are set. Then the database connection is opened using

the open method. If false is returned, the connection was not established. The reason for the

failure is returned through a QSqlError object that you can get by using the lastError method.

If true is returned, the connection has been successfully established.

■Note The properties that can be used when connecting to a database are hostName, databaseName,

userName, password, port, and connectOptions. The contents of these properties are dependent on the

database driver used.

Listing 13-1. Connecting to a MySQL server

QSqlDatabase db = QSqlDatabase::addDatabase("QMYSQL");

db.setHostName("localhost");
db.setDatabaseName("qtbook");

db.setUserName("user");
db.setPassword("password");

if(!db.open())
{
qDebug() << db.lastError();
qFatal("Failed to connect.");

}

Listing 13-2 shows how a connection is made to an SQLite database using the QSQLITE
driver. The SQLite database is different from the MySQL database because it is not based

around a server, so you don’t need to log in to the database using a username and password.

Instead, you only specify a file name through the databaseName property. The file contains the

database and is opened or created when the connection is opened successfully.

Listing 13-2. Connecting to an SQLite file

QSqlDatabase db = QSqlDatabase::addDatabase("QSQLITE");

db.setDatabaseName("testdatabase.db");

if(!db.open())
{
qDebug() << db.lastError();
qFatal("Failed to connect.");

}

CHAPTER 13 ■ DATABASES 379

A nice feature of the SQLite database engine is that the database can be created in mem-

ory. This means that the execution is very fast because no loading from and saving to disk is

required. If you want the information to last beyond the termination of the application, you

have to store it explicitly to a file or another database.

By specifying the file name ":memory: ", as shown in the following code line, the database

will be contained in memory:

db.setDatabaseName(":memory:");

When a QSqlDatabase object represents a connection that is not longer used, you can

close it using the close method. Any open connection is automatically closed by the

QSqlDatabase destructor if left opened.

Querying Data

When passing an SQL query to a database, a QSqlQuery object is used to represent both the

query and the results returned from the database engine. Let’s start by looking at a simple

SELECT query.

Listing 13-3 shows a query being executed. The SQL statement is simply passed to the

exec method of a QSqlQuery object. If the execution fails, the exec method returns false. Upon

failure, the lastError method of the query object contains more information about what went

wrong. Because you are dealing with a server being queried by a client application, it is not

necessarily the SQL statement that is wrong—it can also be connection failure, user authenti-

cation issues, or many other reasons.

Listing 13-3. Preparing and executing an SQL query

if(!qry.exec("SELECT firstname, lastname FROM names "
"WHERE lastname = 'Roe' ORDER BY firstname"))

qDebug() << qry.lastError();

If the execution of the query completes without problems, it is time to look at the results.

Listing 13-4 shows how that is done. First a QSqlRecord is retrieved. The record represents a

row in the results, and you can get the total number of columns using the count method. The

names of the returned columns are available from the fieldName(int) method. With these two

methods, a string with the column names is created in the first for loop.

In the while loop the first results row is requested from the QSqlQuery object by using the

next method. When a query object returns from a successful exec call, the current row is noth-

ing (that is, NULL). This is indicated as isValid is false. When calling next, the next row from

the results is returned if available. The first time the method is called, the first row is called.

When the call tries to move beyond the last available row, the return value is false.

■Note The next method works only on SELECT queries. You can see whether a QSqlQuery object is a

SELECT query with the isSelect method.

CHAPTER 13 ■ DATABASES380

For each row, the values from the columns are gathered by using the value(int) method.

The value method returns a QVariant, so it has to be converted into a QString by using the

toString method. Different columns can be of different values, so it is not necessary to use the

toString method. The QVariant class has methods for converting the value into most types.

The most common are toInt, toDouble, toBool, and toString.

Listing 13-4. Iterating over the column names and the results rows

QSqlRecord rec = qry.record();
int cols = rec.count();

QString temp;
for(int c=0; c<cols; c++)
temp += rec.fieldName(c) + ((c<cols-1)?"\t":"");

qDebug() << temp;

while(qry.next())
{
temp = "";
for(int c=0; c<cols; c++)
temp += qry.value(c).toString() + ((c<cols-1)?"\t":"");

qDebug() << temp;
}

In the previous listings, you passed the entire SQL query as an entire string. This might

work for simple queries, but it might be a problem as soon as you start adding user input to

the query. For example, if the user supplied the lastname string in Listing 13-3, you would have

a problem if the name contained a single quote mark ('). It can also be an issue handling

floating-point values because the decimal character differs between locales.

The solution to these problems is to bind the values used in the query in a preparation

stage before the query is executed. Listing 13-5 shows how this is done for an INSERT query.

The preparation of a query, which is an optional step, might consist of a syntax check for some

databases, while others will fail at execution. If the syntax check fails, the prepare call will

return false. Because you have tested the SQL statement before, you do not have to check for

that. However, even if the statements have been tested, the exec call can still fail due to prob-

lems with the database connection.

In Listing 13-5, the query is prepared with the prepare method. Instead of the actual

values, placeholders are placed in the query. The placeholders consist of a name prefixed by a

colon (:). When the query has been prepared, the bindValue(QString,QVariant) is used to

bind a value to each placeholder.

■Note You can use a question mark (?) as a placeholder and then bind values to it from left to right using

addBindValue(QVariant). I recommend against this procedure because it is far easier to alter and far less

error-prone when using code with named placeholders.

CHAPTER 13 ■ DATABASES 381

Listing 13-5. Binding values to a query containing an INSERT call

qry.prepare("INSERT INTO names (id, firstname, lastname) "
"VALUES (:id, :firstname, :lastname)");

qry.bindValue(":id", 9);
qry.bindValue(":firstname", "Ralph");
qry.bindValue(":lastname", "Roe");
if(!qry.exec())
qDebug() << qry.lastError();

Establishing Several Connections

If you need to use several database connections at once, you have to name them. If the con-

nection name is not specified, the default connection is always used. If a new connection is

established using the same name as a previous connection, it will replace the previous con-

nection. This goes for the default connection as well.

When you add the connection using QSqlDatabase::addDatabase(QString,QString), the

first parameter is the name of the database driver (for example, QMYSQL),while the second

optional parameter is the name of the connection.

When creating your QSqlQuery object, you can pass a database object to the constructor if

you want it to use a specific connection. If you need to retrieve the QSqlDatabase object for a

connection name, you can use the static QSqlDatabase::database(QString) method.

Putting It All Together
To try using the database classes for real, you will look at an image collection application,

which enables you to apply tags to images and then show the images with the selected tags.

The images and tags will be stored in an SQLite database. Because the database is contained

in a file, it can be considered the file format of the application.

The application consists of a simple dialog (see Figure 13-1). The tags are shown on the

right, and the number of images with any of the selected tags is shown in the label below the

list. The left half is used for showing the current image and for the buttons used for moving

between the images, adding images, and adding tags.

As you can see from the available buttons the application does not implement a complete

CRUD interface. It focuses on the two first parts: Create, as in adding tags and images; and

Read, as in showing the images and tags.

CHAPTER 13 ■ DATABASES382

Figure 13-1. The Image Book application in action

The database used in the application (shown in Figure 13-2) consists of two tables: one

for the tags and one for the images (called tags and images, respectively). The images table

keeps one image per row. The rows each contain an INTEGER called id that is used to identify

each image. The images are stored in a BLOB column called data alongside each id. A BLOB is a

binary large object, which pretty much means anything. The application stores the images in

PNG format in this column.

The tags table consists of an INTEGER column called id and a VARCHAR column called tag.

The id column connects the tags to the different images. Notice that there can be several tags

for each image.

Figure 13-2. The tags and images tables

CHAPTER 13 ■ DATABASES 383

The Structure of the Application

The application is split into two major parts: the user interface class and the database inter-

face class. The user interface uses the database interface to access the classes from the QtSql
module. The user interface is contained in the ImageDialog class, and the database interface is

found in the ImageCollection class.

By splitting the code that uses SQL into a specific class, you avoid having SQL strings

throughout the source code. There are several reasons to split the code containing SQL from

the rest of the code. First of all, that part of the code can be tested in detail, which is important

since any syntax errors in the SQL statements are detected first at run-time. It is convenient to

convert between the types used in the database and Qt’s classes in one place. And when you

change database engines, it might be necessary to review and update some of the SQL state-

ments used.

The User Interface

The user interface is implemented in the ImageDialog class. The public part of the class decla-

ration, shown in Listing 13-6, consists of a constructor and a set of slots, where each slot

represents a user action.

What can the user do? Looking at the class declaration and Figure 13-1 you can see a

number of possible user actions. The following lists them and their corresponding slots:

• Move between the images: nextClicked and previousClicked

• Change the selection in the list of tags: tagsChanged

• Add a new image: addImageClicked

• Add a new tag: addTagClicked

Add to this list the inherited tasks, such as being able to close the dialog to exit the

application.

Listing 13-6. Half of the ImageDialog class declaration

class ImageDialog : public QDialog
{
Q_OBJECT

public:
ImageDialog();

private slots:
void nextClicked();
void previousClicked();
void tagsChanged();

void addImageClicked();
void addTagClicked();

...
};

CHAPTER 13 ■ DATABASES384

The other half of the class declaration tells you something about how the application

works (the source code is shown in Listing 13-7). It starts with four private support methods:

selectedTags, updateImages, updateTags, and updateCurrentImage. You will look at each one of

them soon.

After the methods, the Designer-generated user interface class is included as ui before the

member variables used for keeping track of the images. The imageIds list contains the id values

for the images that are shown according to the selected tags. The currentImage is an index into

the imageIds list that indicates which image is active. Finally, the images variable is an instance

of the ImageCollection class that handles the database.

Listing 13-7. The private half of the ImageDialog class declaration

class ImageDialog : public QDialog
{
...
private:
QStringList selectedTags();

void updateImages();
void updateTags();
void updateCurrentImage();

Ui::ImageDialog ui;

QList<int> imageIds;
int currentImage;

ImageCollection images;
};

Widgets and Slots

The ImageDialog was created using Designer, so you can start by having a look at it (Figure 13-3

shows the basic design of the dialog). Apart from the text properties and the names of the dif-

ferent widgets, the only property that was altered is the SelectionMode of the QListWidget; it

was set to MultiSelection.

CHAPTER 13 ■ DATABASES 385

Figure 13-3. The design of the image dialog

Figure 13-4 shows the object hierarchy of the dialog (you can also see the names of the

different widgets). The only thing not apparent is that the layout of the dialog itself is a grid

layout.

Figure 13-4. The object hierarchy of the image dialog

CHAPTER 13 ■ DATABASES386

Let’s now look at the source code of the ImageDialog class, starting from the constructor

and user actions. (The code run before the dialog is shown, the constructor, can be seen in

Listing 13-8.)

It starts by setting up the user interface generated from the Designer file. When the widg-

ets are in place, it initializes currentImage to an invalid value to ensure that no image is visible

before updating the tag list and the images to be shown. When this is done, the connections

are made. Each button’s clicked signal is connected to a corresponding slot. The tag list’s

itemSelectionChanged signal is connected to the tagsChanged slot.

Listing 13-8. The constructor of the ImageDialog class

ImageDialog::ImageDialog()
{
ui.setupUi(this);

currentImage = -1;

updateTags();
updateImages();

connect(ui.previousButton, SIGNAL(clicked()), this, SLOT(previousClicked()));
connect(ui.nextButton, SIGNAL(clicked()), this, SLOT(nextClicked()));
connect(ui.addTagButton, SIGNAL(clicked()), this, SLOT(addTagClicked()));
connect(ui.addImageButton, SIGNAL(clicked()), this, SLOT(addImageClicked()));
connect(ui.tagList, SIGNAL(itemSelectionChanged()), this, SLOT(tagsChanged()));

}

Remember that the updateCurrentImage method disables the Next, Previous, and Add Tag

buttons. The updateCurrentImage method is called from updateImages, which is called from

the constructor. This means that if the Next, Previous, or Add Tag buttons are clicked, there is a

current image.

Looking at the slots, notice that three of them are fairly simple (see their implementations

in Listing 13-9). First up is the pair nextClicked and previousClicked. As discussed earlier, the

currentImage variable acts as an index into the imageIds list of id values. When a user clicks

the Next button, the currentImage value is increased. If the value is too large, it starts at zero

again. The same goes for the Previous button. The value is decreased and starts from the other

end of the list when needed.

The last simple slot is the tagsChanged slot, which is reached if the selection of tags is

changed. If they are changed, you need to get a new list of images. Calling updateImages takes

care of that.

Listing 13-9. Three simple slots

void ImageDialog::nextClicked()
{
currentImage = (currentImage+1) % imageIds.count();
updateCurrentImage();

}

CHAPTER 13 ■ DATABASES 387

void ImageDialog::previousClicked()
{

currentImage --;
if(currentImage == -1)
currentImage = imageIds.count()-1;

updateCurrentImage();
}

void ImageDialog::tagsChanged()
{
updateImages();

}

The next slot, addTagClicked, can be seen in Listing 13-10. The slot is invoked when the

user wants to add a tag to the current image.

The slot starts by asking the user for a tag by showing a QInputDialog. If the user specifies

a string, the text entered is converted to lowercase and is checked so that it meets the stan-

dards for a tag. In this case, that means that it consists of only the characters a–z. No spaces,

no special characters, no umlauts or other local characters; just a–z. The actual check is per-

formed using a regular expression.

If the text is found to be an actual tag, ask the ImageCollection object images to add the

tag to the current image. When the tag has been added, you need to update the tag list and call

updateTags.

Listing 13-10. Adding a tag to the current image

void ImageDialog::addTagClicked()
{

bool ok;
QString tag = QInputDialog::getText(
this, tr("Image Book"), tr("Tag:"),
QLineEdit::Normal, QString(), &ok);

if(ok)
{
tag = tag.toLower();
QRegExp re("[a-z]+");
if(re.exactMatch(tag))
{
QMessageBox::warning(this, tr("Image Book"),
tr("This is not a valid tag. "

"Tags consists of lower case characters a-z."));
return;

}

CHAPTER 13 ■ DATABASES388

images.addTag(imageIds[currentImage], tag);
updateTags();

}
}

The remaining slot, addImageClicked (shown in Listing 13-11), is used when the user

wants to add a new image to the collection. The slot also applies the currently selected tags to

the image to make sure that it stays visible.

The first thing the slot does is ask the user to pick a PNG image using a QFileDialog.

When an image has been picked, it is loaded. If the loading fails, the rest of the slot is aborted.

If the loading succeeds, the image is added to the ImageCollection, along with the cur-

rently selected tags. To get the tags, use the selectedTags method. When the image has been

added, you need to update the list of image id values. To take care of this, call the updateImages
method.

Listing 13-11. Adding an image to the collection with the current tags

void ImageDialog::addImageClicked()
{

QString filename = QFileDialog::getOpenFileName(
this, tr("Open file"), QString(), tr("PNG Images (*.png)"));

if(!filename.isNull())
{
QImage image(filename);

if(image.isNull())
{
QMessageBox::warning(this, tr("Image Book"),
tr("Failed to open the file '%1'").arg(filename));

return;
}

images.addImage(image, selectedTags());
updateImages();

}
}

As you can see, slots are fairly simple. They sometimes ensure that the user input is valid

before passing it on to the ImageCollection object. When something has to be updated, the

appropriate support method is used.

Support Methods

The selectedTags method is used with slots and support methods to take the selected tags

from the tag list and put them in a QStringList (the source code can be seen in Listing 13-12).

The method simply iterates through all items in the list widget. If an item is selected, its

text is added to the QStringList object result, which is then returned as the result from the

method.

CHAPTER 13 ■ DATABASES 389

Listing 13-12. Having the current selection of tags in a list can be handy

QStringList ImageDialog::selectedTags()
{

QStringList result;
foreach(QListWidgetItem *item, ui.tagList->selectedItems())
result << item->text();

return result;
}

The first support method called from the constructor is updateTags, which updates the

tag list without losing the current selection (the source code can be seen in Listing 13-13).

The method starts by getting the current selection from the selectedTags method. It then

asks the ImageCollection object for a new set of tags, clears the list, and adds the new tags.

When the new tags are in place, the method iterates over the list items and sets the selected
property to true for the items that were selected before the update.

Listing 13-13. Updating the tag list without losing the selection

void ImageDialog::updateTags()
{

QStringList selection = selectedTags();

QStringList tags = images.getTags();
ui.tagList->clear();
ui.tagList->addItems(tags);

for(int i=0; i<ui.tagList->count(); ++i)
if(selection.contains(ui.tagList->item(i)->text()))
ui.tagList->item(i)->setSelected(true);

}

When the constructor has updated the tag list, it’s time to update the images by calling

the updateImages method. The method takes care of updating the imageIds list. It also keeps

the currently shown image if it is still available in the new list of id values.

The source code for the method is shown in Listing 13-14. It begins by trying to retrieve

the id of the currently shown image. If no images are available, the id is set to -1, which is an

invalid id.

The method then continues by getting a new list of image id values from the

ImageCollection. This list is based on the current selection of tags.

If the id of the previous image is still in the list of id values, the currentImage index is

updated to keep showing the same image. If the same image can’t be shown, the first image is

shown (obviously, no image is shown if there are no images).

Because the method affects the currentImage index value, it calls the updateCurrentImage
method to update the user interface accordingly.

CHAPTER 13 ■ DATABASES390

Listing 13-14. Get a new list of image id values and keep showing the current image if possible.

void ImageDialog::updateImages()
{
int id;

if(currentImage != -1)
id = imageIds[currentImage];

else
id = -1;

imageIds = images.getIds(selectedTags());
currentImage = imageIds.indexOf(id);
if(currentImage == -1 && !imageIds.isEmpty())
currentImage = 0;

ui.imagesLabel->setText(QString::number(imageIds.count()));

updateCurrentImage();
}

The updateCurrentImage method, which is shown in Listing 13-15, checks to see whether

there is a current image. If there is, the method gets it from the ImageCollection object and

shows it by using the imageLabel widget. It also enables the Next, Previous, and Add Tag

buttons.

If there is no current image, the imageLabel is set to display the text "No Image", and the

buttons are disabled.

Listing 13-15. Update the currently shown image and make the right buttons available.

void ImageDialog::updateCurrentImage()
{

if(currentImage == -1)
{
ui.imageLabel->setPixmap(QPixmap());
ui.imageLabel->setText(tr("No Image"));

ui.addTagButton->setEnabled(false);
ui.nextButton->setEnabled(false);
ui.previousButton->setEnabled(false);

}
else
{
ui.imageLabel->setPixmap(
QPixmap::fromImage(
images.getImage(imageIds[currentImage])));

ui.imageLabel->clear();

CHAPTER 13 ■ DATABASES 391

ui.addTagButton->setEnabled(true);
ui.nextButton->setEnabled(true);
ui.previousButton->setEnabled(true);

}
}

As helpful as the support methods seem to be, the heavy lifting is actually performed

somewhere else. All the methods do is ask the ImageCollection object to do things and fetch

things.

The Database Class

The ImageCollection class, which takes you one step closer to the database, is responsible for

all contact with the database. It has been implemented so that it interacts with the rest of the

application using relevant types. The rest of the application should not need to know that the

ImageCollection is based around a database. The class declaration is shown in Listing 13-16.

You might notice that some of the methods are named getXxx, which is not the common

way to name a getter method in Qt application. The reason for this naming is to be able to

tell the rest of the application that these methods actually reach out and get something from

somewhere else; to indicate that the operation can take time depending on the circumstances.

All methods perform a limited task, so you should be able to get an idea of what they do

from their names.

Listing 13-16. The ImageCollection class definition

class ImageCollection
{
public:
ImageCollection();

QImage getImage(int id);
QList<int> getIds(QStringList tags);
QStringList getTags();

void addTag(int id, QString tag);
void addImage(QImage image, QStringList tags);

private:
void populateDatabase();

};

The class constructor, shown in Listing 13-17, opens a database connection and populates

it. The entire class uses the default connection, so there is no need to keep a QSqlDatabase
object. The database being accessed is an SQLite database stored in memory, so its content is

lost each time the application is ended. This can be handy when developing, and it is easy to

replace the database name :memory: with a proper file name and let the database be the file

format of the application.

CHAPTER 13 ■ DATABASES392

The populateDatabase method, shown in the same listing as the constructor, attempts to

create the two tables in the database. It uses the IF NOT EXISTS clause because a saved file will

contain the two tables—and that should not cause a failure.

Listing 13-17. The constructor and the populateDatabase method

ImageCollection::ImageCollection()
{
QSqlDatabase db = QSqlDatabase::addDatabase("QSQLITE");

db.setDatabaseName(":memory:");
if(!db.open())
qFatal("Failed to open database");

populateDatabase();
}

void ImageCollection::populateDatabase()
{
QSqlQuery qry;

qry.prepare("CREATE TABLE IF NOT EXISTS images "
"(id INTEGER PRIMARY KEY, data BLOB)");

if(!qry.exec())
qFatal("Failed to create table images");

qry.prepare("CREATE TABLE IF NOT EXISTS tags (id INTEGER, tag VARCHAR(30))");
if(!qry.exec())
qFatal("Failed to create table tags");

}

Working with the Image Tags

Some of the image collection’s responsibilities include managing the list of tags and keeping

track of which tag belongs to which image. Let’s start by having a look at the getTags method.

Its role is to return a list of all available tags.

The method’s source code can be seen in Listing 13-18. Because you use the default con-

nection, you create a query, prepare it, and execute it. The query itself contains a DISTINCT
clause since the same tag can occur several times for different images. This ensures that you

do not get a list with duplicates. When the query has been executed, the results are put in a

QStringList that is returned.

Listing 13-18. Querying for a list of tags, packaging them in a QStringList, and returning

QStringList ImageCollection::getTags()
{
QSqlQuery qry;

CHAPTER 13 ■ DATABASES 393

qry.prepare("SELECT DISTINCT tag FROM tags");
if(!qry.exec())
qFatal("Failed to get tags");

QStringList result;
while(qry.next())
result << qry.value(0).toString();

return result;
}

The other tag management method, the addTag method (see Listing 13-19), adds a tag to a

given image. Which image the tag belongs to is specified using an id value. The method does

not check for duplicates because the getTags method filters them away, so it is possible to add

the same tag several times to the same image.

Listing 13-19. Adding a new tag to an image

void ImageCollection::addTag(int id, QString tag)
{

QSqlQuery qry;

qry.prepare("INSERT INTO tags (id, tag) VALUES (:id, :tag)");
qry.bindValue(":id", id);
qry.bindValue(":tag", tag);
if(!qry.exec())
qFatal("Failed to add tag");

}

The Images

The getIds method deals with images from a tag point of view. It takes a QStringList of tags

and returns a list of id values for the images that have at least one of the tags. If no tags are

given to the method, it returns all image id values. This is why there are two different queries

prepared in the source code shown in Listing 13-20.

In the SQL statement handling one or more tags, the IN clause is used. Writing x IN (1,
2, 3) is equal to writing x=1 OR x=2 or x=3. Because the user interface ensures that the tags

consist of only the letters a–z, you can safely join them together and use them directly in the

SQL query.

■Caution You should always try to avoid inserting strings manually into SQL statements; use bindValue

whenever possible.

CHAPTER 13 ■ DATABASES394

The SQL statement is ended by a GROUP BY clause, ensuring that you do not get more than

one id. The results from the query are put together in a list of integers that is returned.

Listing 13-20. Getting every id for a given set of tags (or every id if no tags are given)

QList<int> ImageCollection::getIds(QStringList tags)
{
QSqlQuery qry;

if(tags.count() == 0)
qry.prepare("SELECT images.id FROM images");

else
qry.prepare("SELECT id FROM tags WHERE tag IN ('" +

tags.join("','") + "') GROUP BY id");

if(!qry.exec())
qFatal("Failed to get IDs");

QList<int> result;
while(qry.next())
result << qry.value(0).toInt();

return result;
}

Storing Images in the Database

Storing images in a database is not a straightforward task because there are no data types for

storing graphics. Instead you have to rely on the BLOB type, which is a binary large object (in

plain English: a chunk of raw data).

The process of getting a QImage object into a blob can be broken down into three steps.

First you create a buffer in memory and save the image to that buffer. The buffer is then con-

verted to a QByteArray, which is bound to a variable in an SQL INSERT query. That query is then

executed.

This is all done in the addImage method shown in Listing 13-21. As you can see from the

highlighted lines, a QBuffer object is created. The image is written to the buffer as a PNG with

a QImageWriter. When the buffer contains the image data, you use the data from the buffer in a

bindValue call when you prepare the INSERT query to put the image in the database.

Looking at the rest of the code, you query the database for the number of images to be able

to determine a new id. This method doesn’t work if you let the user remove images from the

database. It is possible to let the database assign a new id automatically using AUTOINCREMENT
when creating the table. That would have solved the problem. But since you support only

adding new images, i.e., not removing them, and it is assumed that only one client application

is using the database at a time, this solution works.

CHAPTER 13 ■ DATABASES 395

The INSERT statement is pretty straightforward; the id and data are bound to the query

before it is executed. When the image has been inserted, all the tags given to the method are

passed to addTag so that they are inserted into the database.

Listing 13-21. Add an image and its tags to the database.

void ImageCollection::addImage(QImage image, QStringList tags)
{

QBuffer buffer;

QImageWriter writer(&buffer, "PNG");

writer.write(image);

QSqlQuery qry;

int id;

qry.prepare("SELECT COUNT(*) FROM images");
qry.exec();
qry.next();
id = qry.value(0).toInt() + 1;

qry.prepare("INSERT INTO images (id, data) VALUES (:id, :data)");
qry.bindValue(":id", id);
qry.bindValue(":data", buffer.data());

qry.exec();

foreach(QString tag, tags)
addTag(id, tag);

}

The process for getting a stored image back from the database into a QImage object

involves the same classes. Listing 13-22 shows you how it’s done. Because the getImage
method doesn’t have to worry about generating new id values or tags, it is more straight-

forward than the addImage method.

First the query is prepared and executed; then the QByteArray is extracted from the result.

The array is passed on to a QBuffer, which you can use from a QImageReader. Notice that you

must open the buffer for reading before passing it to the image reader. From the image reader

you can get the QImage object that you return as a result.

Listing 13-22. From the query, through a buffer, to the reader

QImage ImageCollection::getImage(int id)
{

QSqlQuery qry;

qry.prepare("SELECT data FROM images WHERE id = :id");
qry.bindValue(":id", id);

CHAPTER 13 ■ DATABASES396

if(!qry.exec())
qFatal("Failed to get image");

if(!qry.next())
qFatal("Failed to get image id");

QByteArray array = qry.value(0).toByteArray();
QBuffer buffer(&array);
buffer.open(QIODevice::ReadOnly);

QImageReader reader(&buffer, "PNG");
QImage image = reader.read();

return image;
}

As you can see, it is fairly easy to store data as a file embedded in a database. Because the

QIODevice class is what is used by all Qt streams, and the class is base class of both QFile and

QBuffer, you can use this method for pretty much any file format.

Putting Everything Together

The ImageDialog class contains an instance of the ImageCollection class, so all the main func-

tion has to do is create a QApplication and an ImageDialog, show the dialog, and start the

event loop (the code is shown in Listing 13-23). It should all be familiar by now.

Listing 13-23. The main function

int main(int argc, char **argv)
{
QApplication app(argc, argv);

ImageDialog dlg;
dlg.show();

return app.exec();
}

The project file used can be generated by calling qmake –project and then appending the

line QT += sql to the resulting file. Figure 13-5 shows what the application looks like just after

it starts.

If you look at the code, you can see that most of the work is performed by the database

engine. Instead of having to iterate over your custom data structures to locate all unique tags,

you just pass the appropriate SELECT statement through a query.

When it comes to storing information, you can use SQLite as the file format of your appli-

cation. There are several methods to ensure that the file is valid. For example, you can have a

special table with information about your application, the version used for writing the file,

and so on. Load the file and then check that table before using the file.

CHAPTER 13 ■ DATABASES 397

Figure 13-5. The Image Book application being used

Model Databases
Until now, you have written queries for the databases and then extracted the data to lists and

values. But it is also possible to manage the data in a more straightforward way. Because the

data received from the database is usually the same data that you show to the users, it makes

sense to use a generic SQL model to do the job. Qt provides three different models:

• QSqlQueryModel: Provides a read-only model for displaying results from a given SELECT
query

• QSqlTableModel: Provides an editable model for showing a single table

• QSqlRelationalModel: Provides an editable model for showing data from a single table

with references to other tables

These models work just like all other database classes. So when you understand how the

Qt SQL module works, you will also know how these models can be used.

CHAPTER 13 ■ DATABASES398

The Query Model

The QSqlQueryModel enables you to show the results from a query through a view (Listing 13-24

shows you how it is used). The model is easy to set up: Simply create a QSqlQueryModel object

and specify a query using the setQuery call.

The rest of the code creates and configures a table model for showing the query model.

Listing 13-24. Showing the results of an SQL query in a table view

QSqlQueryModel *model = new QSqlQueryModel();
model->setQuery("SELECT firstname, lastname FROM names");

QTableView *view = new QTableView();
view->setModel(model);
view->show();

The query is passed to the tables used in the SQL introduction at the beginning of this

chapter. The resulting table model is shown in Figure 13-6.

Figure 13-6. The results of a query model

The Table Model

With the QSqlTableModel you get an editable model showing the contents of an entire table.

A short piece of source code using the class is shown in Listing 13-25.

When using the class, you select the table to show by using the setTable method. If you

want to add a WHERE clause, you can add the conditions using the setFilter method. By

default there is no filter, and the entire table is shown. When you have set up a filter and a

table, call select to perform the actual query to the database.

CHAPTER 13 ■ DATABASES 399

You can avoid showing a column by passing the ordinal position of the column in the

table when calling removeColumn. In the listing column, 0 is hidden; this corresponds to the id
column.

Listing 13-25. Setting up a table model showing the Doe names

QSqlTableModel *model = new QSqlTableModel();

model->setTable("names");
model->setFilter("lastname = 'Doe'");
model->select();

model->removeColumn(0);

QTableView *view = new QTableView();
view->setModel(model);
view->show();

The resulting table view is shown in Figure 13-7. The resulting view is editable because

the model is editable. By setting the editTriggers property of the view to QAbstractItemView::
NoEditTriggers, you can prevent the user from editing the data.

Figure 13-7. The results of a query model

The Relational Table Model

The QSqlRelationalTableModel is a more advanced incarnation of the table model. By creating

a relational model and specifying the relations between the different tables in the database, it

is possible to let the model look up information from several tables and present them as one.

Listing 13-26 shows how such a relation is used to link the id column from the names
table to the corresponding column in the salaries table. The result is that the annual
value from the salaries table is shown instead of the id. This relation is set up in the

setRelation(int,QSqlRelation) call in the listing. The first argument is the ordinal number of

the column to be used in the relation. The QSqlRelation given as the second argument takes

CHAPTER 13 ■ DATABASES400

three arguments: first, the name of the table to relate to; second, the column name in the

related-to table used when joining the tables; and third, the name of the column to take

from the table being joined in. In the example, you join with the salaries table based on

salaries.id and use the salaries.annual column. Just as with the table model, you need to

call select to get the data into the model.

To get nice headers, you can use the setHeaderData method to specify the orientation and

text of each column header. This can be done for all models, not only the relational one.

Listing 13-26. A relational table model showing the names and annual salaries with nice headers

QSqlRelationalTableModel *model = new QSqlRelationalTableModel();

model->setTable("names");
model->setRelation(0, QSqlRelation("salaries", "id", "annual"));
model->select();

model->setHeaderData(0, Qt::Horizontal, QObject::tr("Annual Pay"));
model->setHeaderData(1, Qt::Horizontal, QObject::tr("First Name"));
model->setHeaderData(2, Qt::Horizontal, QObject::tr("Last Name"));

QTableView *view = new QTableView();
view->setModel(model);
view->show();

The result from Listing 13-26 can be seen in Figure 13-8. Notice that the model is editable,

so the user can edit the view if you do not adjust the editTriggers property of the view.

Figure 13-8. The results of the relational table model

The relational model really helps when you look up something like the city name for a Zip

code instead of just a number. You can use a QSqlRelationalDelegate to let users pick a city

from a list instead of having to type in the name.

CHAPTER 13 ■ DATABASES 401

Summary
The Qt SQL module makes it possible to access almost any conceivable database in a cross-

platform manner. In fact, the SQL database drivers are plugins, so if you need to access a

custom database, you can still write a driver and use Qt’s classes to access it. In most cases, it

is easier to get an ODBC driver for such a database and use that as a layer between Qt and the

database in question.

When accessing databases, use the QSqlDatabase class to represent a connection. The

database module has a default connection, so you can avoid lots of extra fuzz as long as you

stick to using one connection at a time.

After you have connected to a database, use the QSqlQuery class to pass SQL queries to the

database. Be aware of SQL dialects, however—what one database accepts as a valid statement

can be considered invalid by another. It is important to try all SQL statements before releasing

a product because they are not checked for errors during compilation.

You can often avoid having to query the database and transforming the results into some-

thing that you can show your users by using the SQL models that are a part of the SQL module.

The available models are QSqlQueryModel, QSqlTableModel, and QSqlRelationalTableModel. Try

to use these models as often as possible—they can save you a lot of time and effort.

CHAPTER 13 ■ DATABASES402

Networking

Qt supports IP-based connections made with both transmission control protocol (TCP) and

user datagram protocol (UDP) sockets. Additionally, Qt supports client-side implementations

of the HTTP and FTP protocols, which help with creating FTP clients and HTTP-based down-

loading. All these classes are kept in a separate networking module of Qt.

This chapter starts with a discussion of client-side protocols and how they can be used for

downloading data (the client side of the protocols is the code used when interacting with a

server). You will also have a quick look at the QUrl class, which is used for handing URLs and

their different parts.

The latter half of the chapter discusses TCP and UDP socket classes and how you can

implement both servers and clients.

Using the QtNetwork Module
All Qt classes used for networking are a part of the QtNetwork module. This module is not

available in all closed source editions of Qt, but it is included in the open source release. This

means that if you plan to use it in your closed source Qt project, you must have access to the

module first.

After you make sure that you have access to the module, you need to include it in your

build process by telling QMake that you are using it (add the line reading QT += network to

your project file).

Working with Client Protocols
The QFtp and QHttp classes encapsulate the FTP and HTTP protocols. Keep in mind that both

classes implement only the client side of these protocols, so if you want to create an FTP

server or a HTTP server, you have to turn to the TCP server and socket classes (introduced

later in this chapter).

Comparing FTP and HTTP shows that although both protocols work in the same problem

domain, FTP is a slightly more complex protocol. For instance, the FTP protocol depends on a

state in which a connection is established and then used before it is closed. HTTP, on the other

hand, is stateless—it treats every request separately from the others.

However, both protocols are used in the same manner from the viewpoint of an applica-

tion developer. A protocol object is created (either a QFtp object or a QHttp object). When a

method is called, the requested action is performed asynchronously, meaning that the

403

C H A P T E R 1 4

method returns only a request identifier, not the actual result. Instead your application has to

wait for a signal that carries the result to be emitted.

Let’s have a look at how this works in practice, starting by developing an FTP client.

Creating an FTP Client

With the QFtp class you’ll implement a rudimentary FTP client that enables the user to con-

nect to ftp://ftp.trolltech.com, navigate the directory tree, and download files. Figure 14-1

shows the application in action.

The limitation of the functionality (being able to connect to only one host, for instance)

simplifies the application, but still shows how the QFtp class is used.

Figure 14-1. The FTP client in action

The FTP client consists of a single dialog that contains a QFtp object used to interact with

the FTP site. The QFtp object works asynchronously with the application, so when you issue a

command, you have to wait for a signal to arrive—the application keeps running while the

command is being carried out.

The QFtp class has a whole range of signals that are emitted when different events occur,

including the following:

• commandFinished(int request, bool error): This signal is emitted when a command

has finished. The request argument can be used to identify the command, while error
is true if an error has occurred during the execution of the command.

• listInfo(QUrlInfo info): This signal is emitted for each file or directory found when

listing the contents of a directory.

CHAPTER 14 ■ NETWORKING404

• dataTransferProgress(qint64 done, qint64 total): This signal is emitted during

uploads and downloads. The done argument reports how much of the total that has

been completed. The done and total arguments can be scaled, so you can’t depend on

these arguments representing bytes. If the total size is unknown, total is zero.

These three signals are connected from the QFtp object to three private slots of the dialog

in the dialog’s constructor. You can find the slots in the ClientDialog class shown in Listing 14-1

(their names start with ftp).

The class also includes the Ui::ClientDialog class generated from Designer as well as five

slots ending with Clicked; one for each push button seen in Figure 14-1. The selectionChanged
slot is connected to the itemSelectionChanged signal emitted from the QListWidget used for

showing the contents of the current directory.

The class also contains a QFile pointer used when downloading files and a QStringList
that is used to tell files and directories apart.

Listing 14-1. The ClientDialog class declaration

class FtpDialog : public QDialog
{
Q_OBJECT

public:
FtpDialog();

private slots:
void connectClicked();
void disconnectClicked();
void cdClicked();
void upClicked();
void getClicked();

void selectionChanged();

void ftpFinished(int,bool);
void ftpListInfo(const QUrlInfo&);
void ftpProgress(qint64,qint64);

private:
void getFileList();

Ui::FtpDialog ui;

QFtp ftp;
QFile *file;

QStringList files;
};

CHAPTER 14 ■ NETWORKING 405

Let’s have a look at the application, beginning with the user starting the application and

clicking the Connect button.

Setting up the Dialog

The ClientDialog is created and shown from the main function (the dialog’s constructor is

shown in Listing 14-2). It initializes the QFile pointer to null, configures the user interface,

and makes the necessary connections. Then it disables all buttons except the Connect button.

Throughout the application, the buttons will be enabled and disabled to reflect the avail-

able options. It is important to keep the buttons’ status in sync with the QFtp object because

there are no checks to see whether an action makes sense in the slots acting on the buttons

being clicked.

Listing 14-2. The ClientDialog constructor initializes, connects, and makes sure that the right
buttons are enabled and that the rest are disabled.

FtpDialog::FtpDialog() : QDialog()
{
file = 0;

ui.setupUi(this);

connect(ui.connectButton, SIGNAL(clicked()),
this, SLOT(connectClicked()));

connect(ui.disconnectButton, SIGNAL(clicked()),
this, SLOT(disconnectClicked()));

connect(ui.cdButton, SIGNAL(clicked()),
this, SLOT(cdClicked()));

connect(ui.upButton, SIGNAL(clicked()),
this, SLOT(upClicked()));

connect(ui.getButton, SIGNAL(clicked()),
this, SLOT(getClicked()));

connect(ui.dirList, SIGNAL(itemSelectionChanged()),
this, SLOT(selectionChanged()));

connect(&ftp, SIGNAL(commandFinished(int,bool)),
this, SLOT(ftpFinished(int,bool)));

connect(&ftp, SIGNAL(listInfo(QUrlInfo)),
this, SLOT(ftpListInfo(QUrlInfo)));

connect(&ftp, SIGNAL(dataTransferProgress(qint64,qint64)),
this, SLOT(ftpProgress(qint64,qint64)));

ui.disconnectButton->setEnabled(false);
ui.cdButton->setEnabled(false);
ui.upButton->setEnabled(false);
ui.getButton->setEnabled(false);

}

CHAPTER 14 ■ NETWORKING406

Connecting to the FTP Server and Listing the Files

When the dialog is constructed, it is being shown from the main function before the event loop

is started. When the user finally decides to click the Connect button, the event will be caught

by the QPushButton object that emits a signal that is connected to the connectClicked slot.

The slot, shown in Listing 14-3, calls the QFtp object accordingly. It uses the

connectToHost(QString) to connect to ftp.trolltech.com. Before doing this, the Connect

button is disabled so that the user can’t try to connect multiple times. The text of the

statusLabel is updated to keep the user informed about what is happening.

All calls to the QFtp objects are asynchronous, so the application can continue operating

while they are processed. You can tell when the command is done because it emits a signal

when it finishes.

Listing 14-3. Connecting to the host when the Connect button has been clicked

void FtpDialog::connectClicked()
{
ui.connectButton->setEnabled(false);

ftp.connectToHost("ftp.trolltech.com");
ui.statusLabel->setText(tr("Connecting to host..."));

}

When the connectToHost call is complete, the QFtp object emits a

commandFinished(int,bool) signal. The signal is connected to the ftpFinished slot of the class.

The relevant parts of the slot are shown in Listing 14-4.

The slot is divided into two switch statements. The first one handles failures (that is,

cases when error is true); the second one handles commands that have been successfully

completed.

It is possible to identify issued commands from the request argument given to the slot.

All calls to the QFtp object return a request identifier, and you can tell which command has

finished by matching it to the request argument. In the slot shown in the listing there is a dif-

ferent approach. Because you issue only one command of each type at a time, you can rely on

the currentCommand method, which returns an enumerated value, indicating which command

the slot refers to.

In the case of the Connect button being clicked, the command finishing is a ConnectToHost
command. If the call fails, you inform the user by using a message box and then re-enable to

the Connect button so the user can try again. If the command completes successfully, you can

continue the connection process by calling the login method. It simply issues a new com-

mand, resulting in a new call to the slot. Because the process involves several asynchronous

commands, the flow can be somewhat complex to comprehend. You can view it as a flow chart

in Figure 14-2.

CHAPTER 14 ■ NETWORKING 407

Listing 14-4. The ftpFinished slot handles ConnectToHost, Login, Close, and List.

void FtpDialog::ftpFinished(int request, bool error)
{
// Handle errors depending on the command causing it
if(error)
{
switch(ftp.currentCommand())
{
case QFtp::ConnectToHost:
QMessageBox::warning(this, tr("Error"), tr("Failed to connect to host."));
ui.connectButton->setEnabled(true);

break;
case QFtp::Login:
QMessageBox::warning(this, tr("Error"), tr("Failed to login."));
ui.connectButton->setEnabled(true);

break;
case QFtp::List:
QMessageBox::warning(this, tr("Error"),
tr("Failed to get file list.\nClosing connection."));

ftp.close();

break;
...

}

ui.statusLabel->setText(tr("Ready."));
}
// React to the current command and issue
// more commands or update the user interface
else
{
switch(ftp.currentCommand())
{
case QFtp::ConnectToHost:
ftp.login();

break;
case QFtp::Login:
getFileList();

break;
case QFtp::Close:
ui.connectButton->setEnabled(true);
getFileList();

CHAPTER 14 ■ NETWORKING408

break;
case QFtp::List:
ui.disconnectButton->setEnabled(true);
ui.upButton->setEnabled(true);
ui.statusLabel->setText(tr("Ready."));

break;
...

}
}

}

Figure 14-2. Connecting to an FTP site consists of the steps connect to host, log in, and list.

CHAPTER 14 ■ NETWORKING 409

When the login command is finished, you handle an error by informing the user and

re-enabling the Connect button. A successful command triggers a call to the getFileList
method, which retrieves the contents of the current directory. You can see the implementation

in Listing 14-5.

The getFileList method disables all buttons (remember that you are connected, so the

Connect button is already disabled). It then clears the list widget dirList and the QStringList
files before calling the QFtp object to list the contents of the current directory.

You check that the start of the FTP connection is LoggedIn because you call this method

when you want the dirList to be cleared (when disconnecting, for example).

When QFtp::list has been called, the listInfo signal is emitted once for each directory

entry. This signal is connected to the ftpListInfo slot shown below getFileList in Listing 14-5.

QUrlInfo contains lots of interesting information about each item, but you’re interested only

in the name property and to know whether the item is a file. If it is a file, add the name to the

files list (you’ll use this list later on to decide whether the Get File button or the Change

Directory button should be enabled).

Listing 14-5. Getting a list of directory items by calling list and then listening to listInfo signal

void FtpDialog::getFileList()
{
ui.disconnectButton->setEnabled(false);
ui.cdButton->setEnabled(false);
ui.upButton->setEnabled(false);
ui.getButton->setEnabled(false);

ui.dirList->clear();
files.clear();

if(ftp.state() == QFtp::LoggedIn)
ftp.list();

}

void FtpDialog::ftpListInfo(const QUrlInfo&info)
{
ui.dirList->addItem(info.name());
if(info.isFile())
files << info.name();

}

When the list command finishes, it emits a signal caught by the ftpFinished slot. The

relevant parts of the switch statements can be seen in Listing 14-4. As you can see, the FTP

connection is closed if a list command fails. If it succeeds, the Disconnect and Up buttons

are enabled.

When the connection has been closed, the ftpFinished slot is called again, and QFtp::Close
will be the current command. When the close command has successfully finished, enable the

Connect button and call getFileList method. Looking at the method in Listing 14-5 you see

that because the QFtp command is no longer LoggedIn, the result from the call is that the list of

directory entries is cleared.

CHAPTER 14 ■ NETWORKING410

Disconnecting from the FTP Server

When encountering a failing list command, call the close method on the QFtp object, which

closes the connection. When users want to disconnect, they click the Disconnect button,

which results in a call to the disconnectClicked slot shown in Listing 14-6.

The slot simply disables all the buttons so the user can’t do anything while the connection

is being closed. It then calls the close method. When the close call has finished, the ftpFinished
slot will enable the Connect button and clear the list of directory entries.

Listing 14-6. The disconnectClicked slot is triggered when the user clicks the Disconnect button.

void FtpDialog::disconnectClicked()
{
ui.disconnectButton->setEnabled(false);
ui.cdButton->setEnabled(false);
ui.upButton->setEnabled(false);
ui.getButton->setEnabled(false);

ftp.close();
}

File or Directory?

When the FTP connection is established, the Disconnect and Up buttons are enabled, and

the dirList widget contains a list of directory entries. To be able to download a file or navigate

more deeply into the directory tree, the user must select an item in the dirList. When this

happens, the itemSelectionChanged signal is emitted from the QListWidget, and the

selectionChanged slot is invoked. The slot is shown in Listing 14-7.

Determine whether the current selection in the slot consists of one item or no items. The

QListWidget’s selectionMode property has been set to SingleSelection, so you can’t run into

any other selection scenarios. If no items are selected, both the Get File and Change Directory

buttons are disabled.

If one item is selected, see whether the text of the selected item is found in the file

QStringList. If it is, the Get File button is enabled; otherwise, the Change Directory button

is enabled.

Listing 14-7. In the selectionChanged slot you ensure that the right buttons are enabled.

void FtpDialog::selectionChanged()
{
if(!ui.dirList->selectedItems().isEmpty())
{
if(files.indexOf(ui.dirList->selectedItems()[0]->text()) == -1)
{
ui.cdButton->setEnabled(ui.disconnectButton->isEnabled());
ui.getButton->setEnabled(false);

}
else

CHAPTER 14 ■ NETWORKING 411

{
ui.cdButton->setEnabled(false);
ui.getButton->setEnabled(ui.disconnectButton->isEnabled());

}
}
else
{
ui.cdButton->setEnabled(false);
ui.getButton->setEnabled(false);

}
}

Navigating the FTP Server Directory Structure

When users want to move between the directories of the FTP site, they use the Up and Change

Directory buttons. The latter is available to the user only if a directory is selected in the direc-

tory contents list.

Clicking these buttons results in one of the slots shown in Listing 14-8 being called. Both

slots work in exactly the same way: the buttons are disabled, the cd method of the QFtp object

is called, and the status text is updated. The difference is that when the Up button is pressed,

the cd call attempts to move to the parent directory (..), while the Change Directory button

attempts to move to a named subdirectory.

Listing 14-8. The slots for the Up and Change Directory buttons

void FtpDialog::cdClicked()
{
ui.disconnectButton->setEnabled(false);
ui.cdButton->setEnabled(false);
ui.upButton->setEnabled(false);
ui.getButton->setEnabled(false);

ftp.cd(ui.dirList->selectedItems()[0]->text());
ui.statusLabel->setText(tr("Changing directory..."));

}

void FtpDialog::upClicked()
{
ui.disconnectButton->setEnabled(false);
ui.cdButton->setEnabled(false);
ui.upButton->setEnabled(false);
ui.getButton->setEnabled(false);

ftp.cd("..");
ui.statusLabel->setText(tr("Changing directory..."));

}

CHAPTER 14 ■ NETWORKING412

Because both buttons result in a call to the same method in the QFtp object, both methods

end up in the same switch case in the ftpFinished slot. (The relevant parts of the source code

are shown in Listing 14-9.) The resulting action is the same, regardless of whether the cd call

failed or succeeded—getFileList is called. This extra call updates the directory contents list

and enables the relevant buttons. If the cd command fails because you were logged out or

because the connection failed, it fails the getFileList call as well. This failure leads to closing

the FTP connection (refer to Listing 14-4).

Listing 14-9. When a cd call is finished, the contents of the current directory will be updated.

void FtpDialog::ftpFinished(int request, bool error)
{
if(error)
{
switch(ftp.currentCommand())
{

...
case QFtp::Cd:
QMessageBox::warning(this, tr("Error"),

tr("Failed to change directory."));
getFileList();

break;
...

}

ui.statusLabel->setText(tr("Ready."));
}
else
{
switch(ftp.currentCommand())
{

...
case QFtp::Cd:
getFileList();

break;
...

}
}

}

If the getFileList call fails, the FTP connection is closed, as shown in Listing 14-4. This

means that if an invalid cd call would make the FTP connection invalid, the connection is

closed, which is the safest way to get out of such a situation.

CHAPTER 14 ■ NETWORKING 413

Downloading Files

If a file is selected in the directory contents list, the Get File button is enabled. Clicking this

button causes the getClicked slot to be called. The slot shown in Listing 14-10 implements a

three-stage operation. First, it asks what file name to use to save the file being downloaded by

using QFileDialog::getSaveFileName. If it gets a valid file name, it attempts to create a QFile
object for it and opens it for writing. If that succeeds, it calls the get method of the QFtp object,

passing the file name and QFile object as arguments.

The slot also disables all buttons before calling get. After it has called get, it updates the

status text.

The get method starts a download operation of the specified file. The resulting data is

saved to the given QIODevice (superclass of QFile). While a QFtp object performs a download,

the progress is reported through a series of dataTransferProgress signals connected to the

ftpProgress slot (see Listing 14-10 after the source code for the getClicked slot).

The arguments given to ftpProgress do not necessarily represent bytes; they show only

their relative size. In some situations, the size of the file being downloaded is unknown. Then

the total argument is zero. If the size is known, the slot updates the status label to show the

progress.

■Note The dataTransferProgress is emitted both when downloading and uploading. When using put

to upload a file, you can listen to the same signal as when using get to download when you want to show

progress.

Listing 14-10. Starting a download and showing progress

void FtpDialog::getClicked()
{

QString fileName =
QFileDialog::getSaveFileName(this, tr("Get File"),

ui.dirList->selectedItems()[0]->text());
if(fileName.isEmpty())
return;

file = new QFile(fileName, this);
if(!file->open(QIODevice::WriteOnly|QIODevice::Truncate))
{
QMessageBox::warning(this, tr("Error"),
tr("Failed to open file %1 for writing.").arg(fileName));

delete file;
file = 0;

return;
}

CHAPTER 14 ■ NETWORKING414

ui.disconnectButton->setEnabled(false);
ui.cdButton->setEnabled(false);
ui.upButton->setEnabled(false);
ui.getButton->setEnabled(false);

ftp.get(ui.dirList->selectedItems()[0]->text(), file);
ui.statusLabel->setText(tr("Downloading file..."));

}

void FtpDialog::ftpProgress(qint64 done, qint64 total)
{
if(total == 0)
return;

ui.statusLabel->setText(
tr("Downloading file... (%1%)")
.arg(QString::number(done*100.0/total, 'f', 1)));

}

When the get command finishes, it is handled by the ftpFinished slot (the code is shown

in Listing 14-11). When the download fails (and even when it succeeds), the QFile object is

closed and deleted, the buttons are re-enabled, and the status label is updated. The call to

selectionUpdated ensures that the buttons are enabled according to the current selection in

the directory contents list. This means that either Get File or Change Directory is enabled, or

neither is enabled (but not both).

The difference between a failed and a successful download is that when the download

fails, you call the remove method on the QFile object before deleting it. This removes the file

from the disk so that you don’t leave a half-finished file for the user.

Listing 14-11. Taking care of the file when the download has completed

void FtpDialog::ftpFinished(int request, bool error)
{

if(error)
{
switch(ftp.currentCommand())
{

...
case QFtp::Get:
QMessageBox::warning(this, tr("Error"), tr("Failed to get file?"));
file->close();
file->remove();

delete file;
file = 0;

CHAPTER 14 ■ NETWORKING 415

ui.disconnectButton->setEnabled(true);
ui.upButton->setEnabled(true);
selectionChanged();

break;
}

ui.statusLabel->setText(tr("Ready."));
}
else
{
switch(ftp.currentCommand())
{

...
case QFtp::Get:
file->close();

delete file;
file = 0;

ui.disconnectButton->setEnabled(true);
ui.upButton->setEnabled(true);
selectionChanged();

ui.statusLabel->setText(tr("Ready."));

break;
}

}
}

Putting It Together

By combining the dialog shown in Figure 14-1 and the preceding listings with a simple main
function showing the dialog, you have a complete FTP client. It is limited to one domain and

can only navigate around the directories and perform downloading, but all the needed mech-

anisms are in place.

To build the client, you must create a project file—preferably by using qmake -project
QT+=network. Then you can build your application as usual using qmake and make.

Other Applications of the QFtp Class

The QFtp class can be used for tasks other than building FTP client applications. Because the

get method downloads to a QIODevice, you can use it to download data directly into a QBuffer
device and show it (compare this to the way you stored images in a BLOB column in Chapter 13).

It is also possible to upload data using the put method, which is the opposite of the get
method. When uploading and downloading, it is important to control whether the FTP

CHAPTER 14 ■ NETWORKING416

connection communicates in binary mode or ASCII mode by using a third optional argument

to the get(QString,QIODevice*,TransferType) and put(QIODevice*,QString,TransferType)
methods. The transfer type can be either QFtp::Binary or QFtp::Ascii.

If you are missing a method in the QFtp class, you can send any command understood by

the FTP server using the raw command interface with the rawCommand method. If you expect a

reply from a raw command, you can listen to the rawCommandReply(int,QString) signal.

■Note It is recommended that you use the existing commands whenever possible.

Creating an HTTP Client

The HTTP protocol works like the FTP protocol, but there are differences. The most obvious

one is that when working with an FTP connection you connect, move around, and perform

actions. When working with HTTP, you perform one request at a time, and the requests them-

selves are more or less independent.

When it comes to similarities, both the QFtp and QHttp classes are asynchronous. They

also solve similar problems—they move data across a network.

Parsing and Validating URLs

Because the Web is driven by URLs, applications need to be able to properly parse these URLs

into their appropriate components to put the necessary communicative commands to work.

This is where QUrl enters the picture; it makes it easy to validate a URL and break it into the

components that you need.

Let’s start by having a look at Figure 14-3, which shows a complex URL and the different

parts that it comprises. The names for the parts in the figure correspond to properties of the

QUrl class.

Figure 14-3. A URL and its parts

When you receive a URL from the user, you can feed it to the QUrl constructor and then

ask the isValid method whether the URL can be interpreted. This is what happens in the

getClicked slot shown in Listing 14-12. The dialog is shown in action in Figure 14-4. The URL

is entered into a QLineEdit widget and is passed to the constructor of the QUrl object. The

CHAPTER 14 ■ NETWORKING 417

second constructor arguments tell the QUrl class to be tolerant. The alternative to being toler-

ant is strict, and this mode is set by passing the QUrl::StrictMode value to the constructor. The

tolerant mode compensates for common mistakes encountered in URLs entered by users.

Figure 14-4. The HttpDialog as shown to the user

If the URL is found to be invalid, the QLabel widgets used to show the different parts of the

URL are set to show no text. Then a dialog is shown before the method is left. If a valid URL

has been entered, the QLabel widgets are updated with the URL sections.

When updating the labels, the port property gets special treatment. If the user hasn’t

specified a port, the port property is set to -1, which means that the user wants to use the

default port for HTTP communications: port 80.

Listing 14-12. Parsing the URL and splitting it into its individual parts

void HttpDialog::getClicked()
{

QUrl url(ui.requestEdit->text(), QUrl::TolerantMode);

if(!url.isValid())
{
ui.hostLabel->clear();
ui.pathLabel->clear();
ui.portLabel->clear();
ui.userLabel->clear();
ui.passwordLabel->clear();

CHAPTER 14 ■ NETWORKING418

QMessageBox::warning(this, tr("Invalid URL"),
tr("The URL '%1' is invalid.").arg(ui.requestEdit->text()));

return;
}

ui.hostLabel->setText(url.host());
ui.pathLabel->setText(url.path());
ui.portLabel->setText(QString::number(url.port()==-1 ? 80 : url.port()));
ui.userLabel->setText(url.userName());
ui.passwordLabel->setText(url.password());

...

The source code from Listing 14-12 is a part of the HttpDialog class shown in Listing 14-13.

The dialog is used by the user to download files using HTTP. The user enters a URL in the

text field at the top and clicks the Get button. The button is connected to the getClicked slot

shown previously. When the URL has been validated, it is used to download the file to which it

points. While the file is being downloaded, the signals emitted from the QHttp object are listed

in the list widget at the bottom of the dialog.

Each of the slots starting with http is used for listening to the different signals that the

QHttp object emits while working. The user interface itself has been created in Designer and is

included as the ui member variable. Finally, a QFile pointer and QHttp object are used when

downloading data.

Listing 14-13. The HttpDialog class declaration

class HttpDialog : public QDialog
{
Q_OBJECT

public:
HttpDialog();

private slots:
void getClicked();

void httpStateChanged(int);
void httpDataSent(int,int);
void httpDataReceived(int,int);
void httpHeaderDone(const QHttpResponseHeader&);
void httpDataDone(const QHttpResponseHeader&);
void httpStarted(int);
void httpFinished(int,bool);
void httpDone(bool);

private:
Ui::HttpDialog ui;

CHAPTER 14 ■ NETWORKING 419

QHttp http;
QFile *file;

};

The code shown in Listing 14-12 manages the top half of the dialog. The interesting stuff

happens in the lower half of the dialog (discussed next).

Dialog Internals

The code for handling the URL handles the upper half of the dialog: the Request and URL

Components group boxes and their contents (refer to Figure 14-4). Before you look at the

lower half of the same dialog, the HTTP Status group box, let’s have a look at its constructor

(shown in Listing 14-14). The constructor has three tasks: initialize the local variables (that is,

file), call setupUi to create the user interface designed with Designer, and make all the con-

nections needed to make the dialog work.

The connections can be divided into two groups. The clicked signal from the getButton
connects a user interaction to a slot; the rest of the connections connect HTTP events to slots.

Listing 14-14. Initializing variables and the user interface before creating all connections

HttpDialog::HttpDialog() : QDialog()
{

file = 0;

ui.setupUi(this);

connect(ui.getButton, SIGNAL(clicked()), this, SLOT(getClicked()));

connect(&http, SIGNAL(stateChanged(int)),
this, SLOT(httpStateChanged(int)));

connect(&http, SIGNAL(dataSendProgress(int,int)),
this, SLOT(httpDataSent(int,int)));

connect(&http, SIGNAL(dataReadProgress(int,int)),
this, SLOT(httpDataReceived(int,int)));

connect(&http, SIGNAL(responseHeaderReceived(const QHttpResponseHeader&)),
this, SLOT(httpHeaderDone(const QHttpResponseHeader&)));

connect(&http, SIGNAL(readyRead(const QHttpResponseHeader&)),
this, SLOT(httpDataDone(const QHttpResponseHeader&)));

connect(&http, SIGNAL(requestStarted(int)),
this, SLOT(httpStarted(int)));

connect(&http, SIGNAL(requestFinished(int,bool)),
this, SLOT(httpFinished(int,bool)));

connect(&http, SIGNAL(done(bool)),
this, SLOT(httpDone(bool)));

}

CHAPTER 14 ■ NETWORKING420

The URL handling code discussed earlier was the top half of a slot called getClicked. You

saw how that method was connected to the user interface in the preceding constructor. When

you left the getClicked method in Listing 14-12, the URL had just been validated and split into

its building blocks.

When you continue in Listing 14-15, you use the URL to set the host property of the QHttp
object. Call setHost and specify the hostname and port. Just as when displaying the port, port

80 is the default if nothing else has been specified. If a username was specified, it is set, along

with its password, with the setUser method.

When the QHttp object has been set up, continue by asking the user for a file name

for storing the downloaded material by using the QFileDialog class’ static method

getSaveFileName. If the user cancels the dialog, return from the slot; otherwise, continue

by attempting to open the file for writing. If that fails, inform the user by displaying a

warning dialog and delete the QFile object.

If the user picks a file name that could be used for writing, call the

get(QString,QIODevice) method of the QHttp object to download the file. Finally, disable the

Get button while the actual download is performed.

Listing 14-15. Using the validated URL to start downloading

void HttpDialog::getClicked()
{
...

http.setHost(url.host(), url.port()==-1 ? 80 : url.port());
if(!url.userName().isEmpty())
http.setUser(url.userName(), url.password());

QString fileName = QFileDialog::getSaveFileName(this);
if(fileName.isEmpty())
return;

file = new QFile(fileName, this);
if(!file->open(QIODevice::WriteOnly|QIODevice::Truncate))
{
QMessageBox::warning(this, tr("Could not write"),
tr("Could not open the file %f for writing.").arg(fileName));

delete file;
file = 0;

return;
}

http.get(url.path(), file);
ui.getButton->setEnabled(false);

}

CHAPTER 14 ■ NETWORKING 421

Now the download starts; if all goes well, all you need to do is to wait for the done signal to

be emitted. The Boolean argument is true if an error is encountered, so you hope it will be

false. The signal is connected to the httpDone slot shown in Listing 14-16. If the error argu-

ment is false, close the QFile object by using the close method and delete the file object.

If the download operation has encountered a problem and the error argument is true,

the user is warned about it before closing and removing the file and before deleting the QFile
object. The file is removed by using the remove method. You have to remove the file because it

can contain a partial download (which can occur if the connection is broken in the middle of a

download operation).

The message you use to warn the user about the problems is retrieved with the

errorString method, which returns an error message.

Regardless of whether the download was successful, re-enable the Get button before

leaving the slot so the user can enter a new URL and try downloading more data.

Listing 14-16. When the download is finished or has failed, the done signal is emitted by the QHttp
object. That signal is connected to the httpDone slot.

void HttpDialog::httpDone(bool error)
{
ui.statusList->addItem(QString("done(%1)").arg(error ? "True" : "False"));

if(error)
{
QMessageBox::warning(this, tr("Http: done"), http.errorString());

if(file)
{
file->close();
file->remove();

delete file;
file = 0;

}
}

if(file)
{
file->close();

delete file;
file = 0;

}

ui.getButton->setEnabled(true);
}

All remaining slots simply output their names and argument values to the list at the bot-

tom of the dialog. This list shows the exact steps that the QHttp object uses to perform the

CHAPTER 14 ■ NETWORKING422

requested download. The QHttp object is very talkative and can emit the following signals

while working:

• dataReadProgress(int done, int total): A portion of the requested data has been

read. The arguments done and total show the proportions, but not necessarily the

number of bytes. Notice that total can be zero if the total size is unknown.

• dataSendProgress(int done, int total): A portion of the data being sent has been

transmitted. This argument works in the same way as dataReadProgress.

• done(bool error): The last pending request has been finished.

• readyRead(const QHttpResponseHeader &resp): A reading request has completed. This

signal is not emitted if a destination device was specified when issuing the request.

• requestFinished(int id, bool error): A request has finished. You can identify the

request from the id argument.

• requestStarted(int id): A request has started. You can identify the request from the id
argument.

• responseHeaderReceived(const QHttpResponseHeader &resp): A response header is

available.

• stateChanged(int state): The state of the QHttp object has changed.

Downloading Signals

Knowing what all the signals mean is one thing, but actually knowing what to expect is some-

thing else. Let’s have a look at two different downloading scenarios, starting with a successful

download.

It all starts with the request being made, first setting the host, and then starting the

download:

requestStarted(1)
requestFinished(1, False)
requestStarted(2)
stateChanged(Connecting)
stateChanged(Sending)
dataSendProgress(done: 74, total: 74)
stateChanged(Reading)

Now start reading, which will result in a whole range of dataReadProgress signals (their

arguments and number will differ depending on your computer):

responseHeaderReceived(code: 200, reason: OK, version: 1.1)
dataReadProgress(done: 895, total: 0)
...
dataReadProgress(done: 32546, total: 0)
stateChanged(Closing)
stateChanged(Unconnected)

CHAPTER 14 ■ NETWORKING 423

Now you have disconnected and the read is finished. All that remainsfor the HTTP object

is to say everything has been done and that all went well:

requestFinished(2, False)
done(False)

In the next try, you’ll attempt to download a file from a non-existing server. This means

that you won’t even get in contact with the server.

It all starts just as before: set the host and then try to download a file:

requestStarted(1)
requestFinished(1, False)
requestStarted(2)
stateChanged(Connecting)

The second request fails:

requestFinished(2, True)

This is reflected by the done signal as well; its argument is true, indicating error:

done(True)
stateChanged(Closing)
stateChanged(Unconnected)

Two scenarios were shown here, but there are many other scenarios. When dealing with

network applications, be careful to report success to the user when you receive the right data.

Don’t try to detect all the erroneous cases; try to find the successful one you were expecting.

Sockets
When using the QHttp and QFtp classes, you’re actually relying on underlying protocols to handle

the actual data transfers. The protocol used is TCP, which has a close relative that is slightly

less reliable called UDP. Both protocols are supported by Qt.

When using TCP and UDP sockets directly, you work at a far lower level than when using

HTTP and FTP. When you use these technologies, you are responsible for converting the sent

and received data to and from an application-friendly format and handling the data on the

application side.

This means more work for you, but also more control of the resulting protocol. FTP and

HTTP are not always suitable protocols because there might already be a protocol for the

application field. In other cases, the advantages of using a custom protocol are greater than

the extra work spent. The nature of the application sometimes means that using HTTP or FTP

is impossible or involves more work than implementing an application-specific protocol.

Reliability’s Role with UDP and TCP

Although there are several differences between UDP and TCP communication, most developers

need to remember only their different approaches to reliability. It is crucial for TCP-transmitted

data to actually reach its destination. On the other hand, when using UDP you just throw data

between the computers involved—the data is in no way guaranteed to reach the destination.

CHAPTER 14 ■ NETWORKING424

Also, when the data arrives at the destination, the TCP protocol ensures that the data is served

to your application in the right order. Data sent using UDP can arrive out of order, which is a

situation applications must handle.

TCP is best if you want to transfer a piece of data and need to transfer all data for it to be

useful. Examples include transferring files and maintaining sessions for remotely accessing a

computer. In these scenarios, a missing piece of data renders the rest of the data useless.

UDP is useful for feeding out data where timing is more important than reliability. For

example, when streaming video, it is better to miss a few frames than to drift in time. Other

examples include multiplayer games in which the location of other players can be less impor-

tant (as long as no direct interaction takes place).

Sometimes the requirements involve both the properties of TCP and UDP: One common

scenario is when the control over a data stream uses TCP while the actual data is being trans-

ferred using UDP. This means that user authentication, control commands, and such are

handled via a connection of guaranteed quality while the actual data is sent using UDP.

Servers, Clients, and Peers

Historically, computer communication has taken place with a server providing a service of

some kind for the clients.

■Note It has become more and more common for hosts to talk directly to each other. Examples include

file-sharing clients as well as VoIP solutions. From a software development viewpoint, it is not difficult to do;

you just need to create applications that are capable of handling both incoming and outgoing connections.

Creating Server-side Applications Using Qt

Server applications usually don’t need a graphical user interface; they tend to run in the back-

ground, invisible to the users. It is possible to write Qt applications without including the user

interface module. This involves two changes: first the QApplication object is replaced by a

QCoreApplication object; then you need to add a line reading QT -= gui to the project file.

The resulting application is not linked against any of Qt’s user interface classes, so it will

occupy less disk space and need less memory, both at run-time and when being distributed.

Sending Images Using TCP

Your first go at a client-server solution will involve a server application used to transmit

images that are requested by a client and made viewable to the end user. The server picks a

random image from a given directory and sends it to the clients via TCP. The client application

enables the user to request a new image by clicking a button and then receives and displays

the given image.

Creating the Server Application

Let’s start by having a look at the server side. You will look at the source code of the server in

the same order as it is executed, starting with the main function (shown in Listing 14-17).

CHAPTER 14 ■ NETWORKING 425

In the main function, you set up a Server object that listens to incoming connections to

port 9876. The connections might come from any source. If the listen call fails, tell the user

about it and then exit. Otherwise, start the event loop by calling the exec method from the

QCoreApplication object.

■Note If you don’t specify a port when calling listen, the QTcpServer class will pick a free port. You can

find out which port the server listens to by using the serverPort property. This can be very useful when you

don’t need to control which port to use.

Listing 14-17. The main function attempts to set up the server.

int main(int argc, char **argv)
{
QCoreApplication app(argc, argv);

Server server;
if(!server.listen(QHostAddress::Any, 9876))
{
qCritical("Cannot listen to port 9876.");
return 1;

}

return app.exec();
}

The Server class, which is shown in Listing 14-18, inherits the QTcpServer class. Using Qt’s

TCP server class as a base for the server implementation gives you a lot for free. Right now, the

main function creates an object instance and calls listen before entering the event loop. All

attempts to connect to the server will result in incomingConnection method being called. By

reimplementing the method, you can handle the connections.

Listing 14-18. The server class inherits QTcpServer and reimplements the incomingConnection
method.

class Server : public QTcpServer
{
public:
Server();

protected:
void incomingConnection(int descriptor);

};

The implementation of the server is almost as simple as the class declaration because the

actual work isn’t performed by the Server class. (You can see all the source code in Listing 14-19.)

CHAPTER 14 ■ NETWORKING426

Because a server can quickly become burdened with a number of simultaneous incoming

connections, sending an image can take awhile. To alleviate the load, take advantage of

threading—creating a new thread for each connection. By doing so, the Server object can

move on and process the next connection while the first one is being served.

When the incomingConnection method is called, a socket descriptor is passed as an argu-

ment. This integer can be used to connect a QTcpSocket object handling the connection. This

is passed on to the ServerThread object that is created and started. By connecting the finished

signal to the deleteLater slot, the thread objects are set up to clean up after themselves when

they’re done. The deleteLater slot is available for QObject and deletes the object instance

when the event loop is reached. This makes it possible for an object to delete itself—some-

thing that is usually impossible because deleting the this pointer from inside a class method

can cause unpredictable results and disastrous crashes.

Listing 14-19. The server simply starts a thread per connection.

Server::Server() : QTcpServer()
{
}

void Server::incomingConnection(int descriptor)
{

ServerThread *thread = new ServerThread(descriptor, this);

connect(thread, SIGNAL(finished()), thread, SLOT(deleteLater()));
thread->start();

}

The Server object creates a ServerThread object for each incoming connection. The

thread class consists of two methods: run and randomImage. You can see them in the class dec-

laration in Listing 14-20.

The run method is responsible for performing the actual task of transmitting an image

over the given socket. The randomImage method is used by the run method to get an image

to send.

Listing 14-20. Each incoming connection is handled by a ServerThread object.

class ServerThread : public QThread
{
public:
ServerThread(int descriptor, QObject *parent);

void run();

private:
QImage randomImage();

int m_descriptor;
};

CHAPTER 14 ■ NETWORKING 427

Let’s start by looking at the randomImage method (see Listing 14-21). The method uses a

QDir object to look for files in the ./images directory. It assumes that all files in that directory

are valid images. It then uses the qrand function to generate a random number used to pick

one of the files.

Before using qrand, it is important to initialize the random number generator with a seed;

otherwise, you will get the same series of numbers each time. The qsrand call uses the number

of seconds passed since midnight as the seed.

Listing 14-21. Pick a random file from images and load it using QImage.

QImage ServerThread::randomImage()
{
qsrand(QTime(0,0,0).secsTo(QTime::currentTime()));

QDir dir("images");
dir.setFilter(QDir::Files);
QFileInfoList entries = dir.entryInfoList();

if(entries.size() == 0)
{
qDebug("No images to show!");
return QImage();

}

return QImage(entries.at(qrand() % entries.size()).absoluteFilePath());
}

The task of actually sending the image is handled from the run method shown in Listing

14-22. The constructor, shown in the same listing, simply keeps the description for the run
method. In the run method, the descriptor is used to set up a QTcpSocket object. By setting the

socket descriptor using setSocketDescriptor, you get a socket object connected to the client

connecting to the server.

When the socket has been set up, it’s time to prepare the data for transmittal over the

socket. This is a two-stage process. First you create a QBuffer for writing the image to. A

QBuffer is a QIODevice (just as a QFile is), and QImageWriter can write to any QIODevice. The

call to the write method of QImageWriter leaves you with a buffer containing the image

encoded as a PNG.

Before you can send the contents of the buffer, you need to find a way to tell the

client how much data to expect. This is the next step. Start by creating a QByteArray and a

QStreamWriter to write that array. Set the version of the stream to Qt_4_0 to ensure that the

data is encoded one way. If you skip this step, a server compiled using a future version of Qt

might end up being incompatible with the clients.

Use the stream writer to put the size of the data contained in the QBuffer in the byte array.

After the size, you add the contents of the buffer to the byte array and write all the data to the

socket.

When the data has been sent, you don’t need the socket any more, so disconnect it

by using disconnectFromHost. Then wait for the disconnection to complete by using

waitForDisconnect before the run method is over. When the method returns, the finished

CHAPTER 14 ■ NETWORKING428

signal is emitted. This signal was connected to the deleteLater slot by the Server object, so

the ServerThread object deletes itself when the data has been sent.

Listing 14-22. The run method sends the image data over a socket.

ServerThread::ServerThread(int descriptor, QObject *parent) : QThread(parent)
{
m_descriptor = descriptor;

}

void ServerThread::run()
{
QTcpSocket socket;

if(!socket.setSocketDescriptor(m_descriptor))
{
qDebug("Socket error!");
return;

}

QBuffer buffer;
QImageWriter writer(&buffer, "PNG");
writer.write(randomImage());

QByteArray data;
QDataStream stream(&data, QIODevice::WriteOnly);
stream.setVersion(QDataStream::Qt_4_0);
stream << (quint32)buffer.data().size();
data.append(buffer.data());

socket.write(data);

socket.disconnectFromHost();
socket.waitForDisconnected();

}

Creating the Client Application

The client side of the image viewing system is what users will encounter. To them, it will work

like any other user application, showing the user interface from Figure 14-5. The application

enables the user to specify a server, download a new image, and view the last image.

In the figure, the server is running on the localhost (the same computer as the client).

Here you can put any computer name or an IP. When asked to get an image, the client will

attempt to establish a connection to the 9876 port on the server, which is the port that the

server listens to. If something goes wrong in this process (for example, no server is available),

the user sees an error message.

CHAPTER 14 ■ NETWORKING 429

Figure 14-5. The image viewer client application

The entire application consists of a single dialog implemented in the ClientDialog class.

A simple main function is used to show the dialog and gets the application started. The main
function simply creates a ClientDialog object, on which it calls the show method before it calls

exec on its QApplication object.

Listing 14-23 shows the class declaration of the dialog. It is built from a constructor, a slot

for the Get Image button (getClicked), and two slots for monitoring the TCP socket (tcpReady
and tcpError). The class also contains three private variables: the user interface (kept in ui),

a QTcpSocket object called socket, and the dataSize variable that’s used to keep track of how

much data you expect when downloading an image.

The user interface was created in Designer (refer to Figure 14-5 to see the dialog). The

active parts of the user interface are a QLineEdit for entering the server name, a QPushButton to

click to download a new image, and a QLabel used for showing images and status messages.

Listing 14-23. The client dialog class declaration

class ClientDialog : public QDialog
{

Q_OBJECT

public:
ClientDialog();

private slots:
void getClicked();

CHAPTER 14 ■ NETWORKING430

void tcpReady();
void tcpError(QAbstractSocket::SocketError error);

private:
Ui::ClientDialog ui;

QTcpSocket socket;
int dataSize;

};

Before looking at socket handling and image downloading, let’s start where it all begins.

As soon as the client application starts, the dialog is created (the constructor is shown in

Listing 14-24).

The constructor is extremely simple (a consequence of the dialog being so simple). All

the constructor does is initialize the user interface by using a call to setupUi, connect the

Get Image button to the getClicked slot, and make the needed connections around the

QTcpSocket object.

Listing 14-24. Constructing the client dialog

ClientDialog::ClientDialog() : QDialog()
{

ui.setupUi(this);

connect(ui.getButton, SIGNAL(clicked()), this, SLOT(getClicked()));

connect(&socket, SIGNAL(error(QAbstractSocket::SocketError)),
this, SLOT(tcpError(QAbstractSocket::SocketError)));

connect(&socket, SIGNAL(readyRead()),
this, SLOT(tcpReady()));

}

Following the application’s execution from the constructor, the code waits for the user

to fill out a server name and click the Get Image button. The button click brings you to the

getClicked slot shown in Listing 14-25.

The slot starts by disabling the Get Image button to prevent the user from attempting to

start a new download before the first one is done. Then the QLabel is cleared from any previ-

ous image, and a message is shown. The previous image is cleared through a call to setPixmap
with an empty QPixmap object.

When the user interface has been prepared for downloading, the dataSize variable is

initialized to zero, and the abort method is called on the QTcpSocket object to prevent any

remains from previous calls from disturbing. Finally, connectToHost is called to connect to the

9876 port of the specified server. This process leads to an incoming connection being detected

by the Server object shown in Listing 14-18, resulting in an image being sent to the client

application.

CHAPTER 14 ■ NETWORKING 431

Listing 14-25. The slot initiating downloads

void ClientDialog::getClicked()
{

ui.getButton->setEnabled(false);

ui.imageLabel->setPixmap(QPixmap());
ui.imageLabel->setText(tr("<i>Getting image...</i>"));

dataSize = 0;

socket.abort();
socket.connectToHost(ui.serverEdit->text(), 9876);

}

When working, the QTcpSocket class communicates its current status by emitting signals.

In the client application, you listen to the readyRead and error signals, but there are more (see

the following list):

• connected(): Emitted when a successful connectToHost call has been made and a con-

nection has been established.

• disconnected(): Emitted when the socket has been disconnected.

• error(QAbstractSocket::SocketError): Emitted when an error has occurred. The argu-

ment describes the cause of the error.

• hostFound(): Emitted when the host to connectToHost call has been made, and the

hostname has been looked up successfully and is resolved. It is emitted before the

connected signal and is no guarantee for the connection to be established—the server

can still refuse to accept it.

• stateChanged(QAbstractSocket::SocketState): Emitted when the state of the socket

changes.

• readyRead(): Emitted when data is available for reading. It is emitted only when new

data is available, so if you don’t read the data, the signal is not re-emitted until even

more data is available.

Notice that all these signals are defined in classes that the QTcpSocket class inherits.

The first five in the list are defined in the QAbstractSocket class, whereas readyRead comes

from the QIODevice class. This means that you’ll have to look up the superclasses instead of

QTcpSocket to find information about the signals when browsing the reference documentation.

The socket is always in a state, even when it is not connected. State changes result in the

stateChanged signal being emitted. The following states exist in client application sockets:

• QAbstractSocket::UnconnectedState: The socket is not connected.

• QAbstractSocket::HostLookupState: The socket is looking up the host.

• QAbstractSocket::ConnectingState: The socket has looked up the host and is attempt-

ing to establish a connection.

CHAPTER 14 ■ NETWORKING432

• QAbstractSocket::ConnectedState: The socket is connected to the server.

• QAbstractSocket::ClosingState: The socket is closing the connection.

The states listed here appear in the order in which they would occur in an actual applica-

tion. The socket starts as being not connected, looks up a host, attempts to connect, and is

then connected. Then the socket is closed and finally is back as being not connected. If an

error occurs, the socket returns to the not connected state and is ready to start over.

When discussing errors, the error signal carries an argument specifying the cause of the

error, which is specified by an enumerated type. The different problems applicable to TCP

sockets are listed as follows (if you want a human-readable version of the error, you can use

the errorString method instead, which returns a QString describing the problem):

• QAbstractSocket::ConnectionRefusedError: The connection was refused by the remote

host or timed out.

• QAbstractSocket::RemoteHostClosedError: The remote host closed the connection.

• QAbstractSocket::HostNotFoundError: The specified host could not be found.

• QAbstractSocket::SocketAccessError: The operation could not be carried out because

of security restrictions.

• QAbstractSocket::SocketResourceError: The socket could not be created. The operat-

ing system usually limits the number of simultaneously open sockets.

• QAbstractSocket::SocketTimeoutError: The socket timed out.

• QAbstractSocket::NetworkError: An error caused by the network. For instance, the con-

nection was lost or a cable was disconnected.

• QAbstractSocket::UnsupportedSocketOperationError: The socket operation is not sup-

ported by the current operating system (perhaps because the operating system does

not support IPv6 and such an address is being used).

• QAbstractSocket::UnknownSocketError: An error that could not be identified has

occurred.

Return now to the image-downloading client application. If all goes well when the user

has clicked the Get Image button, and the connection has been made, the QTcpSocket object

will start to emit readyRead signals.

This leads to the tcpReady slot being called. The implementation of the slot can be seen in

Listing 14-26. The slot can be said to work in two modes. If dataSize is zero, it checks to see

whether there are at least four bytes (the size of a quint32) available to read from the socket.

(The socket provides the bytesAvailable method for this purpose.)

When the four bytes are available, set up a QDataStream to read from the socket. You can

ensure that the stream is working with the same version as the server. If you don’t do this, you

can encounter strange problems in which the stream data is misinterpreted. When the stream

has been set up, you read the four bytes and place them in the dataSize variable.

Refer to the run method from Listing 14-22; you can tell that the dataSize variable con-

tains the number of bytes that make the image that you are waiting for. All you have to do is to

wait for that number of bytes to arrive.

CHAPTER 14 ■ NETWORKING 433

As soon as dataSize has been set to a value, compare it with the value returned from the

bytesAvailable method of the socket object. Keep doing this until you know that the entire

image has arrived.

The next step is to create a QImage object from the received data. As you recall, the image

is transmitted as a PNG file. Because the PNG format is compressed, the amount of data to

transfer is minimized.

To make an image from the data, start by reading the data into a QByteArray. The array is

placed in a QBuffer, from which you can read the image using a QImageReader. You then check

so that the resulting QImage is valid (that is, isNull returns false).

If the image is valid, show it using the QLabel; otherwise, an error message using the

QLabel is shown. Regardless of the outcome, re-enable the Get Image button so the user can

try downloading another image.

Listing 14-26. Handling the data received

void ClientDialog::tcpReady()
{

if(dataSize == 0)
{
QDataStream stream(&socket);
stream.setVersion(QDataStream::Qt_4_0);

if(socket.bytesAvailable() < sizeof(quint32))
return;

stream >> dataSize;
}

if(dataSize > socket.bytesAvailable())
return;

QByteArray array = socket.read(dataSize);
QBuffer buffer(&array);
buffer.open(QIODevice::ReadOnly);

QImageReader reader(&buffer, "PNG");
QImage image = reader.read();

if(!image.isNull())
{
ui.imageLabel->setPixmap(QPixmap::fromImage(image));
ui.imageLabel->clear();

}
else
{
ui.imageLabel->setText(tr("<i>Invalid image received!</i>"));

}

CHAPTER 14 ■ NETWORKING434

ui.getButton->setEnabled(true);
}

What was discussed previously is all valid as long as everything goes according to plan.

When you deal with networks, you see that things don’t always go the way you want. This hap-

pens more often as wireless connections, which are less reliable than cable connections,

become more common.

If an error occurs, it results in a call to the tcpError slot shown in Listing 14-27. The slot

simply shows the human readable string describing the error with a QMessageBox::warning.

It then re-enables the Get Image button so the user can try again.

However, there is one error that is ignored: when the connection is closed by the host. You

don’t want to show an error message for this because this is what happens when the server has

transferred an image—it closes the connection.

Listing 14-27. tcpError slot

void ClientDialog::tcpError(QAbstractSocket::SocketError error)
{
if(error == QAbstractSocket::RemoteHostClosedError)
return;

QMessageBox::warning(this, tr("Error"),
tr("TCP error: %1").arg(socket.errorString()));

ui.imageLabel->setText(tr("<i>No Image</i>"));
ui.getButton->setEnabled(true);

}

Further Thoughts About the Image Application

The entire system consists of both the client and the server, and Qt takes care of many of the

details for connecting them. Let’s have a quick look at the classes used.

Look at the server; you see that the task of taking an incoming request and opening a

QTcpSocket for responding is handled by the QTcpServer class. In the Server class that inherits

QTcpServer, create a thread for each incoming request so more incoming connections can be

accepted while answering earlier connections. This will increase the throughput of the server

as long as the computer running it has the power to handle all the connections.

The risk is that the server might get connected to so frequently that it runs out of memory.

This will result in memory swapping, increasing the time needed for processing each connec-

tion—leading to even more threads being active at once and even less memory being

available. This is not a Qt-specific problem, but instead is the way a server reacts when being

overloaded.

The client is found on the other side of the network. Using a QTcpSocket it is easy to con-

nect to the host and receive data. Because the QTcpSocket is a QIODevice, it is possible to read

from the socket using streams and other classes.

In the end, you can see that Qt simplifies implementing both sides of a TCP connection.

The code left to implement is the code specifying the protocol to use; that is the code that you

want to be able to focus on when using Qt’s TCP classes.

CHAPTER 14 ■ NETWORKING 435

Broadcasting Pictures Using UDP

While the reliability, or lack thereof, of UDP might lead you to believe that it’s not well-suited

to network-based application development, you might be surprised to learn that there are

several advantages of this approach. Perhaps most notably, the sending and receiving parties

are less tightly bound, meaning that it’s possible to broadcast data to several receivers at once.

This is what you’ll see when you try out the QUdpSocket class.

The idea is to broadcast an image, line by line, to all clients within the server’s subnet. The

client simply listens for a datagram message sent to a predetermined port (9988, in this case).

Each datagram is a self-contained package of data containing all the data needed for a line of

the image. When a line is received, the client updates the internal copy of the image by adding

the new line.

Because the server doesn’t know about the clients, and the clients simply listen to a port,

there is no real tie between them. The server can be started and stopped independently of the

clients, and there can be any number of clients listening to the same server.

Figure 14-6 shows the client application in action. The image is not fully received, and the

server transmits the lines in a random order at a limited pace, so it takes awhile to complete

the picture.

Figure 14-6. The UPC client application

The protocol that you use on top of UDP consists of datagrams that contain one line of

graphics data. The datagrams contain the dimensions of the image being broadcast, so the

CHAPTER 14 ■ NETWORKING436

clients can tell whether they need to resize and which line the current datagram contains—a

y-coordinate followed by the red, green, and blue values for each pixel of the line. Figure 14-7

shows the individual data types used for each piece of data transmitted. The protocol also

determines that the data is sent over the 9988 port.

■Tip You might have to open your firewall to be able to broadcast to port 9988 in your local network.

Notice that you need to open UDP port 9988, not the TCP port with the same number.

Figure 14-7. The structure of the datagram containing a line of an image

Creating the Client

The client consists of a single widget class: Listener. It inherits QLabel, so it can show text and

images. It also contains a QUdpSocket for listening to incoming datagrams and a QImage for

keeping a local copy of the image being received. The entire class declaration can be seen in

Listing 14-28. In the listing you can see that the class contains a single slot, dataPending, and a

constructor.

Listing 14-28. The Listener class declaration

class Listener : public QLabel
{
Q_OBJECT

public:
Listener(QWidget *parent=0);

private slots:
void dataPending();

private:
QUdpSocket *socket;
QImage *image;

};

Let’s start investigating the implementation by looking at the constructor (see Listing 14-29).

It basically does three things: it sets a text to show while waiting for the first datagram to

arrive, initializes the image variable to zero, and sets up the UDP socket.

The UDP socket is an instance of the QUdpSocket class, which can be used to implement

both a listener and a sender. For listening, bind the socket to a port (in this case, 9988). When

bound to a port, the socket will receive datagrams sent to that port. When it receives such a

CHAPTER 14 ■ NETWORKING 437

datagram, it can be read, so it emits the readyRead signal. That signal is connected to the

dataPending slot of the Listener class.

Listing 14-29. Listening to incoming datagrams

Listener::Listener(QWidget *parent) : QLabel(parent)
{

setText("Waiting for data.");

image = 0;

socket = new QUdpSocket(this);
socket->bind(9988);

connect(socket, SIGNAL(readyRead()), this, SLOT(dataPending()));
}

The dataPending socket, shown in Listing 14-30, consists of a while loop for emptying the

socket. Inside it is code for handling each datagram; after it is code for updating the shown

image.

The while loop runs for as long as the socket’s hasPendingDatagrams method returns true.

When that method returns true, it is possible to get the size of the first pending datagram

using the pendingDatagramSize method. To read the datagram, use the readDatagram method.

You can use these two methods to first create a QByteArray of the right size and then read the

datagram’s contents into the byte array.

When you have the datagram in the byte array, continue by creating a QDataStream object

for reading from the array. Also make sure to call setVersion to ensure that clients and servers

compiled with different Qt versions still work together. As soon as the stream has been set up,

it is time to start interpreting the lump of data you just received.

If you assume that the datagram contains data according to Figure 14-7, start by reading

three quint16 variables from the stream: width, height, and y.

The next step is to see whether you have a QImage object; if not, create a new one. If you

do have one, ensure that the dimensions of it correspond to the received image. If not, delete

it and create a new one with the right dimensions.

The last step consists of a for loop, in which you read three quint8 variables—red, green,

and blue—for each pixel and then set the corresponding pixel to that color using the setPixel
method.

When the hasPendingDatagrams method no longer returns true, clear the text shown and

show the received QImage. Call resize to ensure that the widget’s size corresponds to the size of

the image.

You can use a QImage to keep the buffered image because you know that it stores the

image using 24 bits per pixel. (This was specified when the QImage object was created by

passing the QImage::Format_RGB32 flag along the width and height.) The setPixmap method

expects a QPixmap object, so you have to convert the QImage to a QPixmap using the static

QPixmap::fromImage method.

CHAPTER 14 ■ NETWORKING438

The solution to update the shown image when the queue of pending datagrams has been

emptied assumes that you can process the datagrams quicker than they arrive; otherwise, the

shown image won’t be updated. One trick is to use a counter to ensure that you update the

shown image once every 10 lines or so. Look at the server to see why it isn’t necessary in this

case.

Listing 14-30. Handling an arrived datagram

void Listener::dataPending()
{

while(socket->hasPendingDatagrams())
{
QByteArray buffer(socket->pendingDatagramSize(), 0);
socket->readDatagram(buffer.data(), buffer.size());

QDataStream stream(buffer);
stream.setVersion(QDataStream::Qt_4_0);

quint16 width, height, y;
stream >> width >> height >> y;

if(!image)
image = new QImage(width, height, QImage::Format_RGB32);

else if(image->width() != width || image->height() != height)
{
delete image;
image = new QImage(width, height, QImage::Format_RGB32);

}

for(int x=0; x<width; ++x)
{
quint8 red, green, blue;
stream >> red >> green >> blue;

image->setPixel(x, y, qRgb(red, green, blue));
}

}

setText("");
setPixmap(QPixmap::fromImage(*image));
resize(image->size());

}

This was all the code needed for the client widget. The application consists of this widget

and a simple main function showing an instance of the widget.

CHAPTER 14 ■ NETWORKING 439

Creating the Server

The server simply sends random lines from the image test.png, which must be located in the

working directory used when launching the server. The application consists of a class that

does the actual broadcasting (called Sender) and a minimal main function.

The declaration of the Sender class is shown in Listing 14-31. The class inherits QObject,

which means that it does not have a user interface (it would have inherited QWidget directly or

indirectly). The class inherits QObject because it has a slot.

The broadcastLine slot is used to broadcast a single line of the image. The class holds the

image in the QImage object pointed to by image. The socket for the broadcast is a QUdpSocket
pointed to by socket. Next to the slot and the two pointers the class also contains a constructor.

Listing 14-31. The server’s class declaration

class Sender : public QObject
{

Q_OBJECT

public:
Sender();

private slots:
void broadcastLine();

private:
QUdpSocket *socket;
QImage *image;

};

The constructor, shown in Listing 14-32, consists of three parts. First the socket is created;

then the image is loaded. If the image doesn’t load, isNull returns true. In this case, you

report it by using qFatal, which ends the application.

If the image loads properly, continue to set up a QTimer object. The timer’s timeout signal

is connected to the broadcastLine slot. The purpose of the timer is to limit the rate at which

you send data to one line every 250ms, which means four lines per second.

Listing 14-32. Starting the broadcasting

Sender::Sender()
{

socket = new QUdpSocket(this);

image = new QImage("test.png");
if(image->isNull())
qFatal("Failed to open test.png");

QTimer *timer = new QTimer(this);
timer->setInterval(250);
timer->start();

CHAPTER 14 ■ NETWORKING440

connect(timer, SIGNAL(timeout()), this, SLOT(broadcastLine()));
}

Every time the timer times out, broadcastLine is called. The source code for the slot is

shown in Listing 14-33. When you look at the code, recall the datagram description shown in

Figure 14-7.

The first thing that happens when the slot is called is that a QByteArray is allocated to use

as a buffer. The size of the array can be calculated from the image width. The dimensions of

the image and y-coordinate consume six bytes; you then need three bytes per pixel for the

actual data, so you need 6+3*image->width() bytes. Set up a QDataStream for writing to the

buffer and set the version of the stream to match the version of the stream used by the client.

The next step is to add the dimensions of the image to the stream before you use qrand to

determine which line to broadcast. When you know which line to use, add the y-coordinate to

the stream as well.

■Note Because you use qrand without giving the randomizer a seed using qsrand, the image lines will be

broadcast in the same pseudorandom order each time the server runs.

Use a for loop to add the red, green, and blue values for each pixel to the stream. You use

the pixel method to get the QRgb value for each pixel of the QImage. You then use the qRed,

qGreen, and qBlue functions to get the individual red, green, and blue parts of the QRgb value.

When the values for all the pixels of the given line have been added to the stream, you’re

ready to broadcast the entire QByteArray buffer using the QUdpSocket object. You do this with

the writeDatagram method, which tries to send the entire given byte array as a datagram to the

given address and port. The code shown in Listing 14-33 uses QHostAddress::Broadcast as

host address and port 9988, so the data will be sent to port 9988 on all clients in the same sub-

net as the server.

Listing 14-33. Broadcasting a single line

void Sender::broadcastLine()
{

QByteArray buffer(6+3*image->width(), 0);
QDataStream stream(&buffer, QIODevice::WriteOnly);
stream.setVersion(QDataStream::Qt_4_0);

stream << (quint16)image->width() << (quint16)image->height();

quint16 y = qrand() % image->height();

stream << y;

for(int x=0; x<image->width(); ++x)
{
QRgb rgb = image->pixel(x, y);

CHAPTER 14 ■ NETWORKING 441

stream << (quint8)qRed(rgb) << (quint8)qGreen(rgb) << (quint8)qBlue(rgb);
}

socket->writeDatagram(buffer, QHostAddress::Broadcast, 9988);
}

The Sender class is used from the main function shown in Listing 14-34. The Sender object

is created and then a dialog box is shown using QMessageBox::information. While the dialog is

open, the QTimer in the Sender object triggers broadcasts. As soon as the user closes the dialog,

the main function ends, the Sender object is destroyed along with the QTimer, and the broad-

casting stops. This provides a good way to create a server that is easy to turn off.

Listing 14-34. The main function of the broadcaster

int main(int argc, char **argv)
{
QApplication app(argc, argv);

Sender sender;
QMessageBox::information(0, "Info", "Broadcasting image");

return 0;
}

Final Thoughts About UDP

To test the UDP server and client, start and stop both applications independently of each

other. You will then see that the clients and server are truly independent. As soon as a server

starts broadcasting, the clients will start receiving. As soon as a client is started, it also starts

receiving. Neither cares whether the other is active.

Although the client is pretty straightforward, as is the server, it can be helpful to end the

images so that each client would know when it has received the full image.

When looking at the whole, the protocol is what is important. Right now, you can broad-

cast only one image at a time (perhaps a unique image identifier value should have been

prepended to each datagram so that several images could be broadcast at once). By sending

a checksum for the entire image at the end of each datagram, the clients would be sure that

they had the right image when they saw the whole (or could discard the datagrams with

incorrect checksums).

It is also important to consider what happens if a network connection is closed and later

reopened. How does this affect the data received by the clients and, more importantly, how do

the clients present this to the users? Because the UDP protocol doesn’t guarantee any data to

arrive, or which data, or in which order, it is important to consider these limitations when

designing the contents of the datagrams.

CHAPTER 14 ■ NETWORKING442

Summary
When using the networking module of Qt, you can choose the level on which you want to con-

trol the operations. If you need to only fetch files or make requests that can be handled via

FTP or HTTP, use the QHttp and QFtp classes. These classes take care of many details and pro-

vide you with high-level operations. For instance, QHttp offers setHost and get. QFtp provides

you with connectToHost, login, get, and put.

When using the classes, you can listen to the done signal and then react to the Boolean

argument. If it is true, an error has occurred; otherwise, all is well. If an error has occurred,

you get a text to present to your users from errorString.

If you need to control the network interactions on a lower level, Qt provides classes for

sockets based on TCP and UDP. Although the differences between these two are many and

outside the scope of this book, each can be greatly simplified:

• TCP is good for establishing a session between two computers and transmitting data

between them in a reliable way. The data is transmitted as a stream.

• UDP is good for sending individual packages of data between computers. The sender

does not need to know whether a receiver is receiving, and the receiver does not know

if it has received all the data sent. The data is transmitted as individual independent

packages called datagrams.

When implementing a TCP server, you can inherit from the QTcpServer class. Simply

re-implement the incomingConnection to handle new connections. The integer argument

given is a socket descriptor. Pass this to the constructor of the QTcpSocket class to get a socket

connected to the incoming connection.

To set up the server to listen to a port, use the listen method. By specifying

QHostAddress::Any as host address, the server will accept all incoming connections.

A QTcpSocket is used both by the server—created from the socket descriptor—and the

client. In the client, you use the connectToHost to specify the server and port to connect to.

Because the QTcpSocket inherits from the QIODevice class, you can set up a QDataStream (or

QTextStream) to send and receive data over the connection it represents.

When implementing a UDP server, start by creating a QUdpSocket. You can then write to

the socket using writeDatagram. When implementing a client, use the same class, QUdpSocket,

but bind it to a port by using bind. Each time a datagram arrives to the port that the socket is

bound to, it emits a readyRead signal. You can then read the datagram using readDatagram.

CHAPTER 14 ■ NETWORKING 443

Building Qt Projects

This book has relied on QMake to build the example applications by using standard project

files without using any advanced features. However, QMake can also be used to manage

advanced projects and to handle projects resulting in multiple executables, libraries, and

plugins. This chapter introduces some of the most common features you’ll need when you

want to create more sophisticated Qt projects.

You’ll also learn about a great alternative to Qmake: Kitware’s CMake (http://www.cmake.
org/). Like QMake, CMake is an open-source, cross-platform build system. It’s worth dis-

cussing CMake because of its adoption as the build tool for one of Qt’s most prominent users,

the KDE project (http://www.kde.org/).

QMake
QMake is the build tool that is shipped with Qt. It is versatile and can be used to build most

projects on all the platforms supported by Qt. It is used to generate a build environment from

a project file. It can also create Makefiles and project files for Visual Studio and Xcode.

The QMake Project File

To start using QMake, let it create a project file for itself by executing the following command:

qmake -project

QMake will look for files that it recognizes in the current directory and subdirectories and

then add them to a standardized project for building an application.

■Note You should use the -project option only when creating a new project. When adding files to an

existing project you need to add them to your project file by hand; otherwise, you’ll lose any changes that

have been made to the project file.

Listing 15-1 shows a project file generated by QMake. As you can see, files ending with

cpp, h, and ui have been recognized. QMake recognizes most file endings used in Qt-based

software projects, but these three were the only file extensions available in this project.

445

C H A P T E R 1 5

Let’s have a look at the project file in detail, starting from the very top. The first thing to

note is that comments start with a hash character (#), which marks the rest of the line as a

comment. The first uncommented line (not counting empty lines) reads TEMPLATE = app; it

sets the variable TEMPLATE to app. Now TEMPLATE has a special meaning because its value is

used to determine the kind of project you’re trying to build—app means that you are building

an application. (Other template options are covered later on in this chapter.)

Three lines follow the TEMPLATE line that set TARGET, DEPENDPATH, and INCLUDEPATH, respec-

tively. Setting TARGET to nothing means that the resulting executable will be named after the

project file. For instance, if the project file is called superapp.pro, the resulting executable will

be called superapp (or superapp.exe on Windows). If you assign TARGET to a name instead of

nothing, that name will be used instead of the project file’s name.

The other two variables, DEPENDPATH and INCLUDEPATH, are set to ., so QMake knows that

you keep the files of the project in the current directory. The difference between the two is

that DEPENDPATH is used by QMake when mapping the dependencies in the project, whereas

INCLUDEPATH is passed on to the compiler to tell it where to look for included files. It is possible

to add more paths to these variables—just separate them with white space.

■Note The directory . (dot) refers to the current directory, just as the directory .. (two dots) refers to the

directory containing the current directory.

After specifying a template, choosing a name for the resulting executable, and notifying

QMake where the header files are kept, it is time to tell it what to compile. Doing so requires

three variables: SOURCES, HEADERS, and FORMS.

SOURCES is used for keeping source files ending with cpp, cc, or cxx depending on your

personal preferences. HEADERS is used for header files: h, hpp, or hxx. Finally, FORMS is used for

Designer forms: ui.

Listing 15-1. An automatically generated project file

##
Automatically generated by qmake (2.01a) må 19. mar 18:20:02 2007
##

TEMPLATE = app
TARGET =
DEPENDPATH += .
INCLUDEPATH += .

Input
HEADERS += mainwindow.h otherdialog.h preferencedialog.h
FORMS += otherdialog.ui preferencedialog.ui
SOURCES += main.cpp mainwindow.cpp otherdialog.cpp preferencedialog.cpp

CHAPTER 15 ■ BUILDING QT PROJECTS446

In the project file, two different assignment operators were used: = and +=. The first one, =,

replaces the existing value; the latter, +=, adds more to the existing value. To understand the

result, you need to know what a variable is to QMake.

QMake variables are lists of strings that can be put on a single line and split by white

space or split into different assignments. The following line:

SOURCES += main.cpp dialog.cpp mainwindow.cpp

is equivalent to this:

SOURCES += main.cpp
SOURCES += dialog.cpp \

mainwindow.cpp

Notice that the assignment was spread over two lines using the \ character. By ending a

line with a backslash, the line break is treated as white space, and the line is considered to

continue.

If you use += repeatedly and then use = by accident, you are likely to run into some

strange-looking bugs. Because the = operator replaces the contents of the variable, all previous

values will be lost. Another source of strange behavior can be when using += repeatedly and

accidentally adding the same value twice. To avoid this, you can use the *= operator, which

adds a value to a variable, but only if it isn’t already there.

There is yet another operator that can be used to control the contents of the QMake vari-

ables: -=. This operator removes the values from the list and can be used when you want to

remove a default option from Qt. For example, the following line removes the user interface

module from the build project:

QT -= gui

You have to remove the module because it is a part of the QT variable by default.

More Project File Options

The variables used in the automatically generated project file from Listing 15-1 are not the

only ones available. Actually, there are more than 100 variables used by QMake—far too many

to cover in this text. Instead of covering them all, the most useful ones are listed here:

• DEFINES: This variable contains the preprocessor defines that will be used to configure

the project. There are many defines that can be used to fine-tune the resulting Qt appli-

cation. For instance, QT_NO_DEBUG_OUTPUT is used to turn off qDebug messages, and

QT_DEBUG_PLUGINS turns on debugging information concerning the loading of plugins.

These defines are passed to the compiler, so you can use them in your code.

• LIBS: Use this variable to link against libraries. Use the -Lpath command to add a path

to the list of directories to search for libraries. Then use -llibrary (dash, lower case L,

library name) to add a reference to the actual library. To link against the library

/home/e8johan/mylib/libthelibrary.a, the project file line should read LIBS +=
-L/home/e8johan/mylib –lthelibrary. QMake takes care of converting these flags

(-L and -l) to the currently used compiler.

CHAPTER 15 ■ BUILDING QT PROJECTS 447

• DESTDIR: If you need to control where the resulting file ends up, you can use this vari-

able. For example, by setting it to ../bin, the resulting file will be placed in the bin
directory on the same directory level as the directory containing the project file.

When you build a Qt application, you end up with lots of intermediate files. Designer user

interfaces are compiled into header files by the user interface compile, header files are com-

piled into C++ source files by the meta-object compiler, and all C++ source files are compiled

into object files. Putting these files in the same directory as your source and header files can

lead to a rather messy situation. Sure, running make clean will clear it up, but you can do

better using the following variables:

• OBJECTS_DIR: Controls where the intermediate object files are placed.

• UI_DIR: Controls where the intermediate files generated by the user interface compiler

are placed.

• MOC_DIR: Controls where the intermediate files produced by the meta-object compiler

are placed.

A good policy is to place the object files in ./obj, the uic files in ./ui, and the moc files in

the ./moc directory by adding the following lines to your project file:

OBJECTS_DIR = obj
UI_DIR = ui
MOC_DIR = moc

■Note After these lines are added, QMake will attempt to create the directories automatically. On Unix

platforms it is common to use the directories .obj, .ui, and .moc instead because they are hidden by

default.

Managing Resources with QMake

When embedding resources into the executables, you create a resource file that you refer to

from the project file. A resource can be an icon, a translation, or any other file that your appli-

cation uses. (Refer to Chapter 4 for more on the resource file format.)

■Note The resources mentioned here are Qt resources, not Windows resources.

The resource files usually have the file name extension qrc. They are added to the

RESOURCES variable in the project file, which causes the resource compiler rcc to compile the

specified resources into an intermediate C++ source file. You can control where these interme-

diate files are placed by using the RCC_DIR variable.

CHAPTER 15 ■ BUILDING QT PROJECTS448

Configuring Qt

There are several ways to configure Qt during the build process. For instance, you can control

what parts of Qt to include and how those parts will behave, which enables you to build your

applications to use only the parts of Qt that they need—resulting in a smaller executable and

smaller memory footprint. You saw some of the defines that can be used to do this in the

DEFINES variable discussion, but you will look at more in this section.

The two major variables for controlling which parts of Qt to include are QT and CONFIG. QT
controls the modules to be included in your project. The default is to include core and gui.

The following modules are available (depending on which edition of Qt you are using):

• core: The core module

• gui: The user interface module, QtGui, used in all applications having a graphical user

interface

• network: The QtNetwork module, used in Chapter 14

• opengl: The QtOpenGL module, used in Chapter 7

• sql: The QtSql module, used in Chapter 13

• svg: The QtSvg module, used in Chapter 7

• xml: The QtXml module, used in Chapter 8

• qt3support: The Qt3Support module, used to make it easier to port Qt 3 applications

to Qt 4

The second major variable, the CONFIG variable, is usually set up in a reasonable fashion

by default. The most common values to use are the following:

• thread: If included, the application is built with support for multithreading.

• console: If included, Windows applications will have a console. This console is used to

show qDebug messages, for example.

• release: Builds the project in release mode.

• debug: Builds the project in debug mode.

• debug_and_release: Builds the project in both release and debug modes.

• plugin: Builds a plugin.

• dll: Builds a dynamically linkable library, also known as a shared object.

• qttestlib: Adds the Qt support library for building unit tests.

Building a QMake Pproject

After you create a project file for your Qt project, you need to run QMake to create the appro-

priate Makefile or project. The easiest way to do this is to type qmake to a command line

interface when in the same directory as the project file. It will use the platform defaults to

generate a proper Makefile.

CHAPTER 15 ■ BUILDING QT PROJECTS 449

You can also use QMake to generate a project file for Visual Studio. Simply run qmake -t
vcapp to generate such a file (replace vcapp with vclib to build a library project). To generate a

project file for Xcode, run qmake -spec macx-xcode.

You can also add project file lines to your QMake call. For example, qmake
"CONFIG+=console" is equivalent to adding the line CONFIG+=console to your project file.

If you choose to create a Makefile using QMake, you can build your project using a simple

make command (or nmake if you’re using Visual Studio). You can clean up your intermediate

files using make clean. The slightly more brutal step is to run make distclean, which cleans up

all generated files, including the Makefile. You will have to run QMake again to get a Makefile

for make.

Working with Different Platforms

There are many reasons why you might want to be able to handle platform specifics when

using a platform-neutral toolkit such as Qt. For example, you might want to use different icons

on different platforms or have a piece of custom source code that is platform-dependent.

QMake makes it easy to build your project in slightly different ways, depending on the plat-

form being used.

The different platforms are handled using a concept called scopes. There are lots of scopes

supported by Qt, but the most common are these:

• debug: The project is being built in debug mode.

• release: The project is being built in release mode.

• win32: The project is being built in a Windows environment.

• macx: The project is being built in a Mac OS X environment.

• unix (including Linux): The project is being built in a Unix environment.

You can handle scopes in two different ways. You can use brackets, as shown in the library

choosing if-else structure here:

win32 {
LIBS += -lmywin32lib

} else macx {
LIBS += -lmymacxlib

} else {
LIBS += -lmyunixlib

}

You can combine scopes by using the : operator; for example, macx:debug: ... is equiva-

lent to writing macx { debug { ... } }. The : operator brings an alternate way of specifying

scopes. You can set the LIBS variable like this:

win32:LIBS += -lmywin32lib
macx:LIBS += -lmymacxlib
!win32:!macx:LIBS += -lmyunixlib

CHAPTER 15 ■ BUILDING QT PROJECTS450

Notice that the ! operator was used to invert the scope. The expression !win32:!macx
means not win32 nor macx.

Windows-specific Features

If you want to be able to show debug output, you can add the value console to the CONFIG vari-

able. A more delicate way of doing this is to limit the change to Windows and debug mode

applications:

win32:debug:CONFIG += console

It ensures that you do not open a console window for applications built in release mode.

Another issue that you need to take care of when building applications for the Windows

platform is the application icon (the icon that Explorer uses when showing the executable).

■Tip You set the icon of the application’s windows by using the setWindowIcon method.

The application icon on Windows is represented by a Windows resource (not to be con-

fused with Qt resources), so you have to create a Windows resource file and add it to the Qt

project file. First you need to create an icon with the ico file format. There are many tools for

creating these files (examples include the Gimp and the icon editor in Visual Studio, but

searching the Internet shows numerous alternatives).

After you create an icon, you need to create the Windows resource file, which is a file with

the file extension rc. The file should consist of the following line.

IDI_ICON1 ICON DISCARDABLE "filename.ico"

Replace filename.ico with your icon. To add the resource file to your project file, simply

add a line reading RC_FILE += filename.rc, where filename.rc is your Windows resource file.

There is no need to prefix this line with a win32 scope because it is ignored on the platforms

where it does not apply.

OS X-specific Features

The biggest difference between Mac OS X and the other platforms supported by Qt is the

ability to run the same application on several processor platforms. The processors available,

PowerPC and Intel x86, have many differences—most troublesome is the endianess. Make

sure to always use Qt streams to load and store data—not only to files but also to databases,

network streams, and other buffers that can be read and written by both processors. The prob-

lem exists in the order of the bytes in multibyte values. For instance, a 32-bit integer reading

0x12345678 on one of the platforms will be read as 0x78563412 on the other if you do not

decide which endianess to stick to.

When configuring Qt on the Mac OS X platform, you can use the -universal flag, which

makes it possible to create universal binaries. You control which processors to support using

the CONFIG variable and the ppc and x86 values. Typing CONFIG += x86 ppc creates a universal

project that can be executed on either platform.

CHAPTER 15 ■ BUILDING QT PROJECTS 451

OS X applications have application icons just as Windows applications do. The file format

used on the Mac platform is icns. You can create icns files using several tools (search the

Internet for examples). Apple supplies the Icon Composer, which is the recommended tool to

use. After you create an icns file, you need to add it to your project file by using a line reading

ICON = filename.icns, where filename.icns is your icon file.

Unix- and X11-specific Features

Building and deploying on Unix systems is generally a harder task than on Windows because

there are many flavors of Unix. For each of these flavors there can be several different desktop

environments. (The desktop environment is what the user sees and uses, and can handle start

menus, docks, window styles, and so on.) Handling all these combinations means that there

are several ways to do things and many variations of the right thing to do.

Another issue that needs to be addressed is that the Qt library might already be installed

on the system that you are targeting. You need to find out what version and where, which you

can do in at least two ways. One way is to link your applications statically to Qt, which means

larger executables and no automatic updates if Trolltech decides to release an update of your

Qt version.

The other option is available only for Linux systems. You can require the system to sup-

port Linux Standard Base (LSB) because Qt 4.1 is available as an optional LSB module. Visit

http://www.linuxstandardbase.org for more information.

Now take a brief look at how your Qt application can be integrated into the current desk-

top environment after it has been installed properly.

■Tip For more information, please visit http://www.freedesktop.org.

Let’s see how the application icon is set. Unix binaries don’t know about the concept

resources of icons. Instead, a desktop entry file is used to describe each application. These

files have the file name extension of desktop and are usually stored in $XDG_DATA_DIRS/
applications or /usr/share/applications. An example file is shown in Listing 15-2.

Listing 15-2. An example desktop file for the myapplication project

[Desktop Entry]
Type=Application
Name=My Application
Exec=myapplication %F
MimeType=image/x-mydata;
Icon=/install/path/myicon.png

In the listing, the line reading [Desktop Entry] tells you that what follows is an entry for a

desktop entry. Next is Type, which tells you that the entry will describe an application. Accord-

ing to Name, the application is called My Application. The Exec line tells the desktop what

command to issue to start the application; in this case, it is myapplication. The %F part tells the

desktop where to list the file names if a user starts the application by trying to open one or

CHAPTER 15 ■ BUILDING QT PROJECTS452

more data files. The connection between these data files and the application is handled using

the MimeType entry that defines the mime type; that is, the file type that the application handles.

The last line, Icon, tells you which icon to use. The easiest way is to specify an absolute

path to the icon. If you specify only the file name, you must determine where to store the icon

file so that the desktop environment can find it.

When installing applications on Unix, it is common to support the make target install,

which enables the user to type make install to copy the application files to a global location.

This is supported by QMake using install sets.

An install set is a QMake variable with three subvalues: path, files, and extra. Let’s look

at an example. Suppose you want to install a set of plugins located in the subdirectory plugins
relative to the project file. When the application has been installed, you want these files to be

located in /usr/local/myapplication/plugins. Specify it as follows, where the last line adds

the plugins install set to the install make target:

plugins.files = plugins/*
plugins.path = /usr/local/myapplication/plugins
INSTALLS += plugins

You also want to have a list of the plugins in a file called plugins.lst, which is what the

extra subvalue is used for. It enables you to specify a list of commands to run before the files

are copied. By adding the following line, that list is created before the plugins are copied into

place:

plugins.extra = rm -f ./plugins/plugins.lst; ls -1 ./plugins > ./plugins/plugins.lst

The line consists of an rm command that removes any existing plugins.lst file because

the list would be included in the list of plugins if it existed. An ls command is than executed

that builds a new list that is piped into the plugins.lst file.

There is one special install set representing the files that QMake figures that you want to

copy: target. By specifying a path and adding it to INSTALLS, QMake takes care of the rest:

target.path = /usr/local/myapplication
INSTALLS += target

Because it is possible to use make as the building system on all platforms, it is recom-

mended to protect the install sets using platform scopes (in particular, the commands listed

in extra values need to be adapted to the different platforms).

Building Libraries with QMake

Until now, you have been dealing with projects for building applications. QMake can also be

used for building libraries, including static libraries, dynamic libraries, and plugins (which are

a special breed of dynamic libraries). To make QMake do this, you must change the TEMPLATE
variable to lib.

An example of a library project is shown in Listing 15-3. The project uses the SOURCES and

HEADERS variables in the same way as when building applications. TARGET and VERSION are

merged to create the file name of the resulting library, which is a common way to avoid ver-

sioning problems. Because different versions of the library have different names, the problem

is avoided.

CHAPTER 15 ■ BUILDING QT PROJECTS 453

■Caution Using VERSION means that the name of your library will be altered. Don’t let this confuse you.

The CONFIG variable is used to control what type of library is being built. A dynamic library

is built by adding the value dll. Other possible values are staticlib, which builds a static

library, and plugin, which is used to build plugins. Notice that adding the value plugin implic-

itly adds the dll value as well because a plugin is a dynamic library.

Listing 15-3. A project file for building a library

TEMPLATE = lib
TARGET = mylib
VERSION = 1.0.0
CONFIG += dll

HEADERS += mylib.h
SOURCES += mylib.cpp

The file name extensions used for libraries differ between different platforms and compil-

ers (it is all handled by QMake). For example, never specify the file name extension to the

TARGET variable; let QMake handle it instead.

Building Complex Projects with QMake

It is usually enough to build a library or an application, but sometimes your project consists

of several parts—resulting in several libraries and several applications. QMake is powerful

enough to handle these situations as well. Let’s have a look at how it can look.

The project shown here consists of a library and an application. The library is called base,

and the application is called app. The files of the project are structured as shown in Listing 15-4.

The master project file, complex.pro, is located at the base level, along with the directories bin,

lib, app, include, and src. The bin and lib directories are empty.

The app directory contains the source code and project file for the application. The

include directory contains the header files for the library; that is, the headers shared between

the library and the application. The src directory contains the source code and project file for

the library.

The two empty directories, lib and bin, are intended for the library built from the con-

tents of src and the resulting application binary from app, respectively.

■Note Because the lib and bin directories are used only to keep the files built, you can leave them out;

QMake will create them when asked to place files in them.

CHAPTER 15 ■ BUILDING QT PROJECTS454

Listing 15-4. The files and directories of the complex project

| complex.pro
|
+---bin
+---lib
|
+---app
| | app.pro
| | appwindow.cpp
| | appwindow.h
| | main.cpp
|
+---include
| base.h
|
\---src

| base.cpp
| src.pro

The master project file, complex.pro, is shown in Listing 15-5. It uses TEMPLATE, which is

new to you. The subdirs template is used to handle multiple project files placed in several dif-

ferent subdirectories. The directories to take care of are listed in the SUBDIRS variable. The

CONFIG value ordered tells QMake to build the projects of the different directories in the order

in which they were added to the SUBDIRS variable. If not specified, the build order is undefined.

Listing 15-5. The complex.pro project file

TEMPLATE = subdirs
SUBDIRS = src app
CONFIG += ordered

The whole file tells QMake to first build the project in the src directory and then build the

project in the app directory. Let’s continue by following QMake to the src directory.

In the src directory, QMake finds the src.pro project file (refer to Listing 15-6). It is a

common policy to name project files after the directories in which they are placed. This is

what happens if you run qmake -project in a directory, but you can create the project file

manually as well.

The purpose of the files in the src directory is to build a library that is used by the applica-

tion; that is, the contents of the app directory. The library’s source is kept in src, its headers are

in include, and the resulting library is placed in lib. The headers are kept in include because

they are shared between all parts of the complex project, and the include directory contains

the headers common to all by convention.

The first part of the project file tells QMake to create a library using the TEMPLATE variable.

It then specifies the name of the library using TARGET, specifies the version using VERSION, and

sets up CONFIG so that a static library is created.

CHAPTER 15 ■ BUILDING QT PROJECTS 455

The library is intended to end up in the lib directory, so the DESTDIR variable is set to

../lib, which is the relative path to that directory.

The header file for the project is stored in the project global include directory. You must

add that path to both the INCLUDEPATH and DEPENDPATH variables. The source file of the project

is stored in the same directory as the project file, so DEPENDPATH also includes a reference to the

. directory.

When the paths for included files and project files have been set up, list the SOURCES and

HEADERS. Because the directory containing the header file is included in the DEPENDPATH vari-

able, you don’t have to add the relative path to it; QMake will find it anyway.

Listing 15-6. The src.pro project file for building a library

TARGET = base
VERSION = 0.1.0
CONFIG += static

DESTDIR = ../lib

INCLUDEPATH += ../include
DEPENDPATH += . ../include

SOURCES += base.cpp
HEADERS += base.h

After QMake has visited the src directory, it will continue to the app directory and the

app.pro project file. The purpose of this project is to create an application that uses the library

built from the src project.

The app.pro project file is shown in Listing 15-7. As expected, it starts by setting TEMPLATE
to app, indicating that you are building an application. The file then continues by setting

TARGET to app and DESTDIR to ../bin. This tells QMake to create an application binary called

app (app.exe on Windows) and place it in the bin directory.

The next set of lines sets up INCLUDEPATH and DEPENDPATH. The include path is set to

include both . and ../include because the application uses header files that are local to the

application placed in the . directory and header files global to the parts of the complex project

placed in the include directory. Notice that the global headers belong to the library project, so

they are not included in DEPENDPATH.

The LIBS line is next, which is where the library created by the src.pro project file is

linked to this project. The first value, -L../lib, tells QMake that the libraries are stored in the

lib directory. The next value, -lbase, tells QMake to link the application to the base library.

Last in the project file is a list of source and header files. These are the source files local to

the application project.

Listing 15-7. The app.pro project file for building the application

TEMPLATE = app
TARGET = app
DESTDIR = ../bin

CHAPTER 15 ■ BUILDING QT PROJECTS456

INCLUDEPATH += . ../include
DEPENDPATH += .

LIBS += -L../lib -lbase

SOURCES += appwindow.cpp main.cpp
HEADERS += appwindow.h

To build this project, go to the directory containing complex.pro with a command line

shell. Running qmake from here results in the creation of a top-level Makefile. Running make
now will visit src and app, in that order. When visiting each subdirectory, a Makefile is created

from the local project file and then make is run to build each subproject.

The result is that the library is built first; then the application. The resulting files will be

placed where expected: in the bin and lib directories.

The CMake Build System
The CMake build system (http://www.cmake.org) is a generic build system. It isn’t focused on

building Qt applications; it’s focused on building any type of application. It’s interesting to Qt

developers because the KDE project chose to use CMake for the KDE 4 platform. The disad-

vantage of a generic build system is that using CMake can involve slightly more work than

using QMake. This does not mean that it is hard to use CMake, however. The tool has good

support for both Qt and KDE.

Although both CMake and QMake can perform any task, QMake has a slight bias toward

Qt applications (even though it can be useful in other projects). On the other hand, CMake

has a feature that QMake doesn’t: the capability to perform outside source builds, so the build

process—with all its intermediate files—can be kept outside the source tree. This feature is

very handy when you work with a version control system such as CVS or Subversion. Because

the build process doesn’t put its intermediate files inside the project’s source tree, it can be

kept clean from all files that are not under version control. This greatly reduces the risk of acci-

dentally adding intermediate files to the source repository.

■Note This text assumes that you are using a fairly recent version of CMake (at least version 2.4).

Managing a Simple Application with QMake

Let’s start by taking the same project that was built using the QMake project file from

Listing 15-1. It consists of references to source files, header files, and user interface files, as

well as configurations controlling what QMake will produce and how (see Listing 15-8).

All CMake projects are described in a file called CMakeLists.txt, which corresponds to the

project file that QMake uses. Each CMake file is based around a project, so the file starts by

setting the project’s name to basics using the PROJECT command.

CHAPTER 15 ■ BUILDING QT PROJECTS 457

You can continue by setting the variables basics_SOURCES, basics_HEADERS, and

basics_FORMS with the SET command. These variables work like QMake variables; they are set

to a list of values. The SET command takes a list of arguments, where the first argument is the

name of the variable to set. The following arguments are the values.

The variables’ names all start with the prefix basics_. (This convention is not necessary,

but it is handy.) The same convention tells you to create variables for sources, headers, and

forms. This looks familiar to anybody having used QMake—which is the purpose.

The next two lines introduce CMake’s Qt 4 support. First, the FIND_PACKAGE is used to

locate the Qt4 package. The package is marked as REQUIRED, which means that the build will

stop if Qt 4 not is present. The INCLUDE command is then used to set up the directories con-

taining the Qt header files and libraries. In the INCLUDE command, the ${variable} syntax is

used (referring to the value of the variable).

The next step is to use the commands that you just included. First, let the meta-object

compiler create C++ source files from the header files using the QT4_WRAP_CPP command. The

first argument is a variable name that will contain the names of the C++ source files created by

the meta-object compiler.

When the meta-object compilation has been set up, it is time to compile the user inter-

faces into header files with the QT4_WRAP_UI command. This command works just as the

QT4_WRAP_CPP command, resulting in a variable that contains references to the produced files.

When building software using CMake, it is important to know how outside source builds

are handled. The source files are located in the source directory located by

CMAKE_CURRENT_SOURCE_DIR, whereas the intermediate files and entire build system reside in

the binary directory kept in CMAKE_CURRENT_BINARY_DIR. When building inside the source tree,

these two variables point to the same directory; otherwise not.

Because the header files produced by the user interface compiler are created at compile

time, they will be located in the binary directory. Because these files are included by the

source files located in the source tree, you must look for include files in the binary directory

as well as the source tree. Thus, you add the CMAKE_CURRENT_BINARY_DIR to that include path

using the INCLUDE_DIRECTORIES command.

Before you are ready to build, you need to set up the right preprocessor definitions that

control how the Qt library thinks it was built. The Qt definitions are kept in the QT_DEFINITIONS
variable, which is added to the build environment using the ADD_DEFINITIONS command.

The next command, ADD_EXECUTABLE, is what makes the build result in an application.

It defines an application called basics that is built from the sources, meta-objects, and user

interface headers. The user interface headers are not compiled into anything because they are

header files. However, it is necessary for the application to refer to them because CMake

would otherwise miss what depends on them. If a part of the build system isn’t depended on

by an executable or a library, explicitly or indirectly, it is not built.

Before the entire build environment is created, you must tell CMake to link the applica-

tion against the Qt library with the TARGET_LINK_LIBRARIES command at the very end of the

project file. The QT_LIBRARIES variable was imported in the INCLUDE command earlier and con-

tains references to all the libraries needed by this project.

CHAPTER 15 ■ BUILDING QT PROJECTS458

Listing 15-8. A CMake project file for a basic Qt application

PROJECT(basics)

SET(basics_SOURCES main.cpp mainwindow.cpp otherdialog.cpp preferencedialog.cpp)
SET(basics_HEADERS mainwindow.h otherdialog.h preferencedialog.h)
SET(basics_FORMS otherdialog.ui preferencedialog.ui)

FIND_PACKAGE(Qt4 REQUIRED)
INCLUDE(${QT_USE_FILE})

QT4_WRAP_CPP(basics_HEADERS_MOC ${basics_HEADERS})
QT4_WRAP_UI(basics_FORMS_HEADERS ${basics_FORMS})

INCLUDE_DIRECTORIES(${CMAKE_CURRENT_BINARY_DIR})

ADD_DEFINITIONS(${QT_DEFINITIONS})

ADD_EXECUTABLE(basics ${basics_SOURCES}
${basics_HEADERS_MOC} ${basics_FORMS_HEADERS})

TARGET_LINK_LIBRARIES(basics ${QT_LIBRARIES})

Running CMake

To build the project file shown in Listing 15-8 you need to understand how CMake is executed.

Before you look at the command line options, have a look at the features that CMake offers.

You can run CMake from the source tree, just like QMake, leaving the intermediate files

and the results in the source tree. It is also possible to run CMake from a distant directory,

resulting in a clean source tree. This means that intermediate files and result files such as

applications and libraries will not appear in the source tree. By keeping the source tree clean

from these files, you can put the entire source tree under version control at all times. This

means that you do not have to clean out any unwanted files when adding your source to ver-

sion control, and you avoid the risk of adding intermediate files to the version control system

that you might be using by accident.

You can also use CMake to create projects for many different build systems. The different

systems are targeted by using different generators. On Linux and Mac OS X, the default gener-

ator usually works. This generator targets the GCC system. On Windows it can be necessary to

specify which generator to use. If you are using the open source version of Qt together with

MinGW, the generator to use is MinGW Makefiles. You do this using the -G command line

option—more about this later. Other supported build systems include various Microsoft com-

pilers, Borland, Watcom, MSYS, and generic Unix Makefiles.

When running CMake, it is important to have all the tools that you are planning to use in

your PATH environment variable, including your compiler and Qt tools (such as uic and moc).

These tools are usually in the path; if not, CMake will tell you what it cannot find.

CHAPTER 15 ■ BUILDING QT PROJECTS 459

So, how do you go about actually running CMake? The first step is to start a command

prompt to orient you to your project directory (the directory containing the CMakeLists.txt
file). From this directory, you can use the following line to build the project inside the source

tree:

cmake .

On Windows, you might have to tell CMake to using MinGW for building using the -G
command line option. This gives you the following command:

cmake . -G "MinGW Makefiles"

The . passed to CMake refers to the current directory. It tells CMake that this is the source

directory. If you want to build outside the source, it is how you tell CMake what to build. Let’s

start from the project directory as before, but now build in a separate directory that you create:

mkdir build
cd build
cmake ..

Sometimes you might have to add -G "MinGW Makefiles" to the cmake command to get it

to work properly. By building outside the source tree, you can see which files CMake creates

and how the system works.

One of the central files that can give you trouble is the CMakeCache.txt that CMake gener-

ates. If you want to change the generator, you need to remove this file to get CMake to

regenerate the build system.

CMake also creates a CMakeFiles directory, which contains many of the intermediate files

created in the build process. However, the files generated by the meta-object compiler and the

user interface compiler are not placed here. Instead, they are placed next to the files from

which they are generated or, if building outside the source, in the corresponding location in

the build directory.

Managing Resources with CMake

Resources and the Qt resource compiler are handled in the same way as the meta-object com-

piler and the user interface compiler. The steps involve setting up a variable, usually named

project_RESOURCES, which contains the names of the resource files of the project. This variable

corresponds to the RESOURCES variable in a QMake project.

This variable is then passed to the QT4_ADD_RESOURCES macro, which works as the macros

QT4_WRAP_CPP and QT4_WRAP_UI. This means that the leftmost argument is a variable to keep

the results from the rest of the arguments. The result variable is commonly named project_
RESOURCES_SOURCES; it is then added to the executable in the ADD_EXECUTABLE command.

The following listing shows the relevant lines taken from a fictive project:

SET(foo_RESOURCES foo.qrc)
QT4_ADD_RESOURCES(foo_RESOURCES_SOURCES ${foo_RESOURCES})

...

ADD_EXECUTABLE(foo ... ${foo_RESOURCES_SOURCES } ...)

CHAPTER 15 ■ BUILDING QT PROJECTS460

Configuring the Qt Modules

Because Qt consists of a number of modules, it is important to be able to control which Qt

modules to use. You can do this by using a range of QT_USE_QTmodule and QT_DONT_USE_QTmodule
variables. You set these variables to TRUE (using the SET command) before calling FIND_PACKAGE
to locate the Qt4 package. This causes the QT_LIBRARIES variable, used in the linking, to

include references to the modules needed.

Some of the available variables for including and excluding modules are listed as follows:

• QT_DONT_USE_QTCORE: Do not link to the QtCore module. This variable is almost never

used.

• QT_DONT_USE_QTGUI: Do not link to the QtGui module.

• QT_USE_QT3SUPPORT: Link to the Qt3Support module—used to help porting Qt 3 applica-

tions to Qt 4.

• QT_USE_QTASSISTANT: Include the assistant module in the linkage process.

• QT_USE_QTDESIGNER: Include the designer module in the linkage process.

• QT_USE_QTNETWORK: Include the QtNetwork module in the linkage process.

• QT_USE_QTOPENGL: Include the QtOpenGL module in the linkage process.

• QT_USE_QTSQL: Include the QtSql module in the linkage process.

• QT_USE_QTXML: Include the QtXml module in the linkage process.

■Note When using the Qt3Support module, you indirectly link to the QtNetwork, QtSql, and QtXml

modules. On some platforms it is necessary to explicitly specify that you are using these modules.

Working with Different Platforms

When using CMake, you will run into the same platform-specific issues as when using QMake.

To tell the platforms apart, there are a number of variables that are set to true, depending on

the current make environment. The most common are listed as follows:

• WIN32: true if building on Windows

• APPLE: true if building on OS X

• UNIX: true if building in an Unix-like environment, including OS X and Linux

• MINGW: true if building using the MinGW compiler

• MSYS: true if building in the MSYS environment

• MSVC: true if building using a Microsoft compiler

CHAPTER 15 ■ BUILDING QT PROJECTS 461

To test for a variable, use the IF(var) ... ELSE(var) ... ENDIF(var) construct. If

using MinGW as the build environment on Windows, you can use the statements shown in

Listing 15-9 to tell the difference between the platforms: Windows, OS X, and Unix/X11.

Simply replace the commented lines with the platform specifics for each system.

■Note CMake considers all text to the right of a # character as a comment.

Listing 15-9. Differentiating between the available platforms

IF(MINGW)
Windows, MinGW specifics here (i.e. Qt open source on Windows)

ELSE(MINGW)
IF(APPLE)
OS X specifics here

ELSE(APPLE)
Linux / Unix specifics here

ENDIF(APPLE)
ENDIF(MINGW)

The differences between QMake and CMake with regard to platform specifics affect only

the way that you solve the given problems. The problems to solve are still the same.

When using the solutions presented here, you need to make sure that you add the appro-

priate IF commands shown previously.

Windows-Specific Features

When building graphical applications in Windows, it is important to be able to control

whether the console is to be shown or not. This is the same problem that is solved when

adding console to the CONFIG variable of a QMake project.

■Caution The Windows-specific solutions presented here work with the MinGW compiler, which is the

compiler that comes with the open source edition of Qt for Windows. If you use another compiler, you will

have to adapt the solutions to that compiler.

The way to control the availability of a console is to switch between the windows and the

console subsystem options when linking. Adding the following line to your CMakeLists.txt file

will give you an application without a console to output to:

SET(LINK_FLAGS -Wl,-subsystem,windows)

The opposite, an application running with a console, is achieved using the following line:

SET(LINK_FLAGS -Wl,-subsystem,console)

CHAPTER 15 ■ BUILDING QT PROJECTS462

You also have to alter your TARGET_LINK_LIBRARIES call to include the LINK_FLAGS variable,

which gives you a line that looks like this:

TARGET_LINK_LIBRARIES(project ${QT_LIBRARIES} ${LINK_FLAGS})

The other issue that needs to be addressed is the application icon. What you actually do

to set an application icon is use a special compiler to create an object file from a given Win-

dows resource file. The following listing shows how the Windows resource file appicon.rc is

compiled into appicon.o. That file is then added to the project sources for later inclusion in

the actual binary.

ADD_CUSTOM_COMMAND(
OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/appicon.o
COMMAND windres.exe
-I${CMAKE_CURRENT_SOURCE_DIR}
-i${CMAKE_CURRENT_SOURCE_DIR}/appicon.rc
-o ${CMAKE_CURRENT_BINARY_DIR}/appicon.o)

SET(project_SOURCES ${project_SOURCES} ${CMAKE_CURRENT_BINARY_DIR}/appicon.o)

■Note The CMake commands can be split over several lines, which is why the custom command might

look strange.

The ADD_CUSTOM_COMMAND is used to insert custom build methods into a CMake-generated

Makefile. It consists of the OUTPUT part, listing the files generated by the custom step. In the

preceding listing, the output is the appicon.o file. The second part is the COMMAND part, specify-

ing the actual command to run. The listing runs the windres.exe file, passing the -I, -i, and -o
command line options to it.

OS X-Specific Features

OS X has some peculiarities, including the capability to use the same executable binary for

both the PowerPC and x86 platforms—a universal binary. To create such an executable, use

the CMAKE_OSX_ARCHITECTURES variable and set it to ppc;i386:

SET(CMAKE_OSX_ARCHITECTURES ppc;i386)

■Caution It is important to keep the ppc;i386 value together. Do not add spaces.

To set an application icon using CMake, you need to build an application bundle, which is

not as hard as it looks (CMake handles most of the details). All you have to do is set a few val-

ues and then make some adaptations to the final build stages. The variables are the following:

CHAPTER 15 ■ BUILDING QT PROJECTS 463

• MACOSX_BUNDLE_ICON_FILE: The icon file to use (in the icns file format).

• MACOSX_BUNDLE_BUNDLE_NAME: The name of the bundle.

• MACOSX_BUNDLE_COPYRIGHT: Copyright information.

• MACOSX_BUNDLE_INFO_STRING: An information string.

• MACOSX_BUNDLE_GUI_IDENTIFIER: A unique identifier as a Java-style package name.

This means something that looks like a reversed web server name, for instance,

se.thelins.exampleApplication is such a string.

• MACOSX_BUNDLE_BUNDLE_VERSION: A version string.

• MACOSX_BUNDLE_SHORT_VERSION_STRING: A short version string.

• MACOSX_BUNDLE_LONG_VERSION_STRING: A long version string.

After you set values to these strings, you have to tell CMake to create a bundle when call-

ing the ADD_EXECUTABLE command by adding the following line to the CMakeLists.txt file:

ADD_EXECUTABLE(exename MACOSX_BUNDLE ...)

Unix- and X11-Specific Features

For Unix systems, you need to make it possible to run make install, so CMake must know

what to build before installing and what files to install. For instance, you don’t want to copy

any intermediate files to the installation directory.

CMake expects the user to specify the CMAKE_INSTALL_PREFIX variable when running

CMake to create the build environment. It can look similar to the following line, where ..
refers to the CMakeLists.txt file, and the /usr/local directory is the installation target:

cmake .. -DCMAKE_INSTALL_PREFIX=/usr/local

There are two types of files that can be installed: targets and existing files. Targets are the

results from the build process. They can be executables called RUNTIME, dynamic link libraries

called LIBRARY, and static link libraries called ARCHIVE. The RUNTIME targets are created using

the ADD_EXECUTABLE command. You will learn about creating libraries later on in this chapter.

To specify which targets to install and where to install them, the INSTALL command is

used. It can look something like this:

INSTALL(TARGETS exenames
RUNTIME DESTINATION bin
LIBRARY DESTINATION lib)

The exenames can be a list of target names, including both executables and any type of

library. The RUNTIME DESTINATION specifies where the RUNTIME targets are placed in relation to

the installation prefix. The INSTALL command combined with the cmake command line earlier

on in this section would place these files in the /usr/local/bin directory. The LIBRARY
DESTINATION works in the same way. If you need to install static link libraries, you can place

them using the ARCHIVE DESTINATION directive. You’ll often build executables from your static

link libraries, which is why I did not specify a destination directory for them in the preceding

INSTALL command.

CHAPTER 15 ■ BUILDING QT PROJECTS464

Targets and existing files were mentioned earlier. Existing files can be documentation

files, icons, or any other files not generated in the build process. To install these files, use the

FILES directive in combination with the INSTALL command. The syntax looks like this:

INSTALL(FILES files DESTINATION directory)

In the preceding line, files represents a list of files in the source tree. The directory is

specified just as bin and lib were when installing the targets. A common directory would be

share/appname, where appname is the name of the application.

Listing 15-10 shows a partial example involving a target and files.

Listing 15-10. Setting up files for installation

SET(foo_DOCS docs/index.html docs/details.html)

...

ADD_EXECUTABLE(fooexe ...)

...

INSTALL(TARGETS fooexe
RUNTIME DESTINATION bin)

INSTALL(FILES ${foo_DOCS}
DESTINATION share/foo/docs)

Building Libraries with CMake

Building libraries with CMake is really easy. Instead of using the ADD_EXECUTABLE command

as you do when building applications, you can use the ADD_LIBRARY command. To specify

whether you are building a dynamic load library or a static library, use the SHARED or STATIC
directives as shown in the following lines:

ADD_LIBRARY(dllname SHARED dlldependencies)
ADD_LIBRARY(libname STATIC libdependencies)

A plugin is a shared library, but built in a certain environment. This means that you have

to add three preprocessor definitions to the build environment using the ADD_DEFINITIONS
command before creating your library target:

ADD_DEFINITIONS(-DQT_PLUGIN)
ADD_DEFINITIONS(-DQT_NO_DEBUG)
ADD_DEFINITIONS(-DQT_SHARED)
ADD_LIBRARY(pluginname SHARED plugindependencies)

The added definitions create a plugin in release mode. If you do not create it in release

mode, it will not appear in tools such as Designer because they are built in release mode.

When using plugins with your applications, the rule is to match the application and plugin

when it comes to release and debug modes.

CHAPTER 15 ■ BUILDING QT PROJECTS 465

■Note The defines added must, of course, match the configuration of your Qt library. If your Qt library is

static, QT_SHARED should not be defined.

Managing Complex Projects with CMake

Application projects often consist of more than one component. The usual design consists of

one or more libraries used to build one or more applications. Establishing what depends on

what and building such a system is not a simple task.

In this section, you’ll use the project from Listing 15-4, but with CMake instead of QMake.

The files and directories of the CMake setup are shown in Listing 15-11. Comparing the two

listings reveals that all QMake project files have been replaced by CMakeLists.txt files. The app
and bin directories have also been replaced with a build directory because you’ll keep the

build process outside the source tree.

Listing 15-11. The files and directories in the complex CMake project

| CMakeLists.txt
|
+---build
|
+---app
| | CMakeLists.txt
| | appwindow.cpp
| | appwindow.h
| | main.cpp
|
+---include
| base.h
|
\---src

| CMakeLists.txt
| base.cpp

Let’s start by having a look at CMakeLists.txt, which is located in the project root direc-

tory. You can see the entire file in Listing 15-12, which starts by defining a project called

complex.

The steps following the project naming initialize the variables EXECUTABLE_OUTPUT_PATH
and LIBRARY_OUTPUT_PATH to the bin and lib directories inside the PROJECT_BINARY_DIR direc-

tory. Recall the explanation of outside source build compared with inside source build:

PROJECT_BINARY_DIR represents the build root directory. If building inside the source, it will be

the same as PROJECT_SOURCE_DIR, which represents the source root directory.

The following two ADD_SUBDIRECTORIES commands build the contents of the src and app
directories (in that order):

CHAPTER 15 ■ BUILDING QT PROJECTS466

Listing 15-12. The root CMake file

PROJECT(complex)

SET(EXECUTABLE_OUTPUT_PATH ${PROJECT_BINARY_DIR}/bin)
SET(LIBRARY_OUTPUT_PATH ${PROJECT_BINARY_DIR}/lib)

ADD_SUBDIRECTORY(src)
ADD_SUBDIRECTORY(app)

The CMakeLists.txt file from the src directory is shown in Listing 15-13. The entire file

follows the template first introduced in Listing 15-8, but it targets a static library instead of an

application at the end.

When you used QMake, you could set up a list of dependency directories in which the

project’s source and header files are kept. Because this isn’t easily done using CMake, you have

to refer to the base.h header file with its full relative path: ../include.

■Note When discussing QMake, a dependency directory is often (but not always) the same as an include

file directory.

Because the library is static, you assume that it is linked to Qt through the applications to

which it is linked. Thus you do not need to add a TARGET_LINK_LIBRARIES command here.

The value of the LIBRARY_OUTPUT_PATH is kept from the root CMakeLists.txt file to this file

(because this file is invoked from the ADD_SUBDIRECTORIES command), so the resulting file will

be placed in the right directory.

Listing 15-13. The CMake file for building a static library

SET(src_SOURCES base.cpp)
SET(src_HEADERS ../include/base.h)

FIND_PACKAGE(Qt4 REQUIRED)
INCLUDE(${QT_USE_FILE})

INCLUDE_DIRECTORIES(${CMAKE_SOURCE_DIR}/include)

QT4_WRAP_CPP(src_HEADERS_MOC ${src_HEADERS})

ADD_DEFINITIONS(${QT_DEFINITIONS})

ADD_LIBRARY(base STATIC ${src_SOURCES} ${src_HEADERS_MOC})

Listing 15-14 shows the CMakeLists.txt file from the app directory. It is easily compared

with Listing 15-8, but it has some tweaks.

CHAPTER 15 ■ BUILDING QT PROJECTS 467

The first one is that it adds the common include directory using the INCLUDE_DIRECTORIES
command. This command is needed for the source files to find the base.h file. It also adds the

base library alongside the Qt libraries to the app target in the TARGET_LINK_LIBRARIES command.

Just as when you build the library, the placement of the resulting executable is controlled

from the root CMakeLists.txt file. The directory pointed to by the EXECUTABLE_OUTPUT_PATH
is used.

Listing 15-14. The CMake file for building the application

SET(app_SOURCES main.cpp appwindow.cpp)
SET(app_HEADERS appwindow.h)

FIND_PACKAGE(Qt4 REQUIRED)
INCLUDE(${QT_USE_FILE})

QT4_WRAP_CPP(app_HEADERS_MOC ${app_HEADERS})

INCLUDE_DIRECTORIES(${CMAKE_SOURCE_DIR}/include)

ADD_DEFINITIONS(${QT_DEFINITIONS})

ADD_EXECUTABLE(app ${app_SOURCES} ${app_HEADERS_MOC})
TARGET_LINK_LIBRARIES(app base ${QT_LIBRARIES})

By entering the build directory using a command prompt and then running cmake, refer-

ring to the root CMakeLists.txt file, you will generate Makefiles for the entire project. Running

make now builds it all. The output from running it in a MinGW environment is shown in

Listing 15-15. When possible, the output is color-coded. I highlighted the red and purple lines,

indicating the start of a build and the final linking of such a build.

Listing 15-15. Building the complex project using CMake and MinGW

[14%] Generating moc_base.cxx
Scanning dependencies of target base

[28%] Building CXX object src/CMakeFiles/base.dir/base.obj
[42%] Building CXX object src/CMakeFiles/base.dir/moc_base.obj
Linking CXX static library ../lib/libbase.a

[42%] "Built target base"
[57%] Generating moc_appwindow.cxx
Scanning dependencies of target app

[71%] Building CXX object app/CMakeFiles/app.dir/main.obj
[85%] Building CXX object app/CMakeFiles/app.dir/appwindow.obj
[100%] Building CXX object app/CMakeFiles/app.dir/moc_appwindow.obj
Linking CXX executable ../bin/app.exe

[100%] "Built target app"

CHAPTER 15 ■ BUILDING QT PROJECTS468

Summary
Comparing QMake and CMake is difficult. Both tools can do almost anything, and both tools

are mature, but their focuses differ. QMake makes it dead easy to build Qt-based software for

all platforms. CMake also makes it easy to do, but because the tool is more generic, it involves

slightly more work.

If you plan to use non-Qt components or get involved in the KDE project, CMake is rec-

ommended. Otherwise, I recommend that you use QMake.

You can build applications, libraries (shared and static), and plugins, but you must pay

attention to some platform-specific details. These details include application icons for Win-

dows and OS X, universal binaries and bundles for OS X, and, for the Windows platform,

whether you want to have a console or not.

CHAPTER 15 ■ BUILDING QT PROJECTS 469

Unit Testing

With software complexity on the rise and development schedules tightening all the time,

developers are constantly seeking out new ways to more efficiently create and develop their

applications. Because testing tends to be a task that consumes vast amounts of the allotted

schedule, it shouldn’t come as a surprise that considerable thought has been put into how to

streamline the testing process.

One commonplace strategy that has arisen as a result of this work is known as unit
testing, which is about testing all sections of a project independently to ensure that they work

according to specification. When putting the parts together, you will know that each section

works as expected, making the final testing and debugging easier.

Take, for instance, a unit conversion application in which there are hundreds of units and

even more cases that you might want to test. By automatically testing the conversion engine

unit and the user interface, you would avoid lots of testing. For example, it would be enough

to test that the user interface can submit a value, a source unit, and a destination unit; you

wouldn’t have to test all possible conversions from the user interface. All the conversion possi-

bilities would be tested as part of the testing of the conversion engine. If you would run into a

conversion problem, you could catch it while testing the conversion engine (you could debug

it without having to involve the user interface).

The tests can be built from the specifications for the interfaces within the applications,

thus making sure that the specifications are fulfilled. Some even argue that the tests make

specifications and that they should be written before the actual code being tested is written.

The concept of unit testing has received attention recently because it is a fundamental

part of the agile software development concept. Unit testing enables the code implementing a

function to be changed. As long as the tests are passed, the code will still work with the rest of

the application. This means that you can change your code any time you want, and—provided

that the tests all validate—the application will continue to run as expected. This is one of the

key concepts of agile software development.

■Tip You can find out more about agile software development at www.agilemanifesto.org and

www.extremeprogramming.org.

Unit tests can be seen as a complement to the compiler and linker. These tools discover

the apparent problems when constructing your software. The inner problems—such as a non-

functioning stack, a function miscalculating the results, and so on—must be caught using
471

C H A P T E R 1 6

beta testers, unit tests, or (beware!) actual users. By using unit tests, you can make sure that

your beta testers focus on important issues and that your users will be less likely to find bugs

in your software. The result will be a product of better quality.

Unit Testing and Qt
Qt comes with a lightweight unit testing module, the QtTest module (which might be expected

because Qt encourages building components). When developing with this approach, it is

important to be able to test each component individually.

The Structure of a Test

With the QtTest module, each unit test is constructed from a class, which must inherit the

QObject class and start with the Q_OBJECT macro. A unit test consists of several test cases, and

each test case is a private slot. Four special slots are not treated as test cases:

• initTestCase: Initializes the unit test class and is called before the test cases are run.

• cleanupTestCase: Cleans up the unit test and is called after all the tests cases have

been run.

• init: This method is run before each test case.

• cleanup: This method is run after each test case.

All other slots are considered test cases and run accordingly. The execution order, includ-

ing the special slots listed previously, can be seen in Figure 16-1.

The purpose of each test case is to test one or more aspects of a class. For instance, you

might test a function so that it always performs the right calculation or you might test an

interface to ensure that the internal state of an object behaves as expected.

In both these situations, it is important to test both common cases and borderline cases.

Tests validating the common cases can be few, but they should ensure that most of the used

unit functionality works properly. The test must also include handling bad user input. For

example, when a user enters an invalid input, a null string can be returned or a warning mes-

sage might be emitted. The borderline cases ensure that the function actually performs, even

close to the borders facing the users (for instance, to ensure that both ends of a list are accessi-

ble or that the user can enter an arbitrarily large value in an input field, but also that a

mathematical function can handle all the extreme points of its function, even the biggest pos-

sible number that can be passed to it).

CHAPTER 16 ■ UNIT TESTING472

Figure 16-1. The order of execution when a unit test is run

Listing 16-1 presents the basic structure of the class implementing the tests and the

QTEST_MAIN macro that runs the actual tests using a special unit test main function. The main
function macro can be placed anywhere—even in a different file from the test class.

Listing 16-1. Basic structure of a unit test

class MyTestClass : public QObject
{
Q_OBJECT

private slots:
// Test cases goes here

};

...

QTEST_MAIN(DateTest)

CHAPTER 16 ■ UNIT TESTING 473

The project file for the test case needs to include the class being tested, the test class, and

a configuration line reading CONFIG += qtestlib. It is possible to create such a file by running

qmake -project CONFIG+=qtestlib. Let’s have a look at it in detail.

To Qt, tests are really just applications, so the project file starts with the app template (you

also use the standard include and dependency paths):

TEMPLATE = app
INCLUDEPATH = .
DEPENDPATH = .

Then you give the target application a name:

TARGET = mytestapp

Next follows the class being tested—both the headers and sources:

HEADERS += myclass.h
SOURCES += myclass.cpp

Then follows the test class—headers and sources—as well as a main.cpp file that contains

the main function:

HEADERS += mytestclass.h
SOURCES += mytestclass.cpp main.cpp

Finally, the configuration line:

CONFIG += qtestlib

■Note The results from the tests are output to the console; on the Windows platform, you must also add a

line reading CONFIG += console to your project file.

Because the test is a normal application, all you need to do is run qmake && make to build

it. Then you can run the resulting mytestapp to perform the test.

Testing Dates
Let’s use the QtTest module to test a data class. For this test, you’ll use the QDate class because

it has an internal state as it somehow represents the date to itself. It also has an interface made

up from the isValid, day, month, and year property getters; and from the addDays, addMonths,

and addYears methods.

So what should be tested? It’s possible to add days, months, and years to dates. Adding

days can change the day, month, and year of the date. Adding months modifies only the

month and year, while adding years affects only the year property. I also like to test that the

dates are valid (February 29 is valid in leap years but not in other years).

CHAPTER 16 ■ UNIT TESTING474

Implementing the Tests

All these tests are implemented in the unit test class shown in Listing 16-2. The class inherits

QObject and includes Q_OBJECT. The different tests are then implemented as private slots.

Notice that the special slots have been left out because you won’t be doing any special initial-

ization or cleaning up.

The tests have been divided into testAddDays, testAddMonths, testAddYears, and

testValid. The first three tests add days, months and years; the last test checks that isValid
method works correctly.

Listing 16-2. The DateTest class holds the tests for the QDate class.

class DateTest : public QObject
{
Q_OBJECT

private slots:
void testAddDay();
void testAddMonth();
void testAddYear();
void testValid();

};

Starting from the bottom, look at the testValid method (its implementation is shown

in Listing 16-3). The test starts by setting a date and then testing the QVERIFY macro to see

whether the isValid method returns the expected value.

The QVERIFY(bool) macro is part of the QtTest module, used to verify whether a given

expression is true. If you want to associate a specific error message when the expression is

false, you can use the QVERIFY2(bool,string) macro, which prints the string when a problem

occurs.

As soon as a test macro fails, the current test case is aborted, so you don’t have to worry

about future macros failing as a result of the first problem. If you need to clean anything up,

do so in the special cleanup slot.

The first test checks that an unspecified date is invalid and a valid date is valid. So Febru-

ary 29 is valid in 1980 (a leap year), but is invalid in 1979.

Listing 16-3. Testing that the isValid method works as expected

void DateTest::testValid()
{
QDate date;

QVERIFY(!date.isValid());

date = QDate(1979, 5, 16);
QVERIFY(date.isValid());

CHAPTER 16 ■ UNIT TESTING 475

date = QDate(1980, 2, 29);
QVERIFY(date.isValid());

date = QDate(1979, 2, 29);
QVERIFY(!date.isValid());

}

It is possible to use QVERIFY to check values as well. For example, QVERIFY(x==4) checks

to see whether x equals 4. The alternative is to write QCOMPARE(x,4) instead. This uses the

QCOMPARE macro to see whether the actual value, x, equals the expected value, 4. The benefit is

that the message returned when a test fails tells you the actual and expected values.

Listing 16-4 shows the QCOMPARE macro in action. The slot shown, testAddMonths, starts by

setting a date. It then adds one month to the given date and ensures that the month part of the

date is updated correctly. It then adds 12 months to the date and sees that the year part of the

data also works.

Listing 16-4. Adding months and checking the results

void DateTest::testAddMonth()
{
QDate date(1973, 8, 16);
QCOMPARE(date.year(), 1973);
QCOMPARE(date.month(), 8);
QCOMPARE(date.day(), 16);

QDate next = date.addMonths(1);
QCOMPARE(next.year(), 1973);
QCOMPARE(next.month(), 9);
QCOMPARE(next.day(), 16);

next = date.addMonths(12);
QCOMPARE(next.year(), 1974);
QCOMPARE(next.month(), 8);
QCOMPARE(next.day(), 16);

}

The testAddDays and testAddYears slots looks very much like the testAddMonths slot. The

year testing slot simply adds a number of years. This is the only test case because the number

of years added affects only the year returned. The test for adding days, however, has three

cases: adding one day (affects only the day property), adding 31 days (affects the month prop-

erty), and adding 366 days (affects the year property).

Putting It Together

The DateTest class is kept in the datetest.cpp and datetest.h files. To create an application,

you must add a main function, which is kept in the main.cpp file shown in Listing 16-5.

The QtTest header that is included first contains all the macros from the QtTest module

(including QVERIFY, QCOMPARE, and so on). The next line includes the class implementing the

actual test. The QTEST_MAIN macro then creates a main function that runs the test cases.

CHAPTER 16 ■ UNIT TESTING476

Listing 16-5. The main function is implemented using the QTEST_MAIN macro.

#include <QtTest>

#include "datetest.h"

QTEST_MAIN(DateTest)

This is all referenced from a project file, which has been autogenerated through a call to

qmake –project "CONFIG+=qtestlib console". The qtestlib reference adds a reference to the

QtTest module, while console is required for Windows users. Without it, no messages are

shown. The resulting file is shown in Listing 16-6.

Listing 16-6. The project file puts it all together

##
Automatically generated by qmake (2.01a) ti 23. jan 18:26:56 2007
##

TEMPLATE = app
TARGET =
DEPENDPATH += .
INCLUDEPATH += .

Input
HEADERS += datetest.h
SOURCES += datetest.cpp main.cpp
CONFIG += qtestlib console

When all files are in place, it’s then just a matter of building and executing the test.

Running the Tests

The result of building a unit test is an ordinary application. If you run that application without

any command-line arguments, it will produce something like Listing 16-7. The output shows

the version of Qt and the version of the qtestlib used, which is followed by the result of each

test case. In this case, all get a PASS, and the summary at the end shows that all tests have

passed.

■Tip If you want colored output, set the environment variable QTEST_COLORED to 1.

Listing 16-7. Running the test without any arguments

********* Start testing of DateTest *********
Config: Using QTest library 4.2.2, Qt 4.2.2
PASS : DateTest::initTestCase()
PASS : DateTest::testAddDay()

CHAPTER 16 ■ UNIT TESTING 477

PASS : DateTest::testAddMonth()
PASS : DateTest::testAddYear()
PASS : DateTest::testValid()
PASS : DateTest::cleanupTestCase()
Totals: 6 passed, 0 failed, 0 skipped
********* Finished testing of DateTest *********

Sometimes a test case hangs. When this occurs, it is handy to use the –v1 command-line

argument when executing the test application. When this flag is given, the output tells you

when each test is entered and passed, so you can tell where the test hangs. A snippet of an

output is shown in Listing 16-8.

Listing 16-8. Running the test with the –v1 flag

********* Start testing of DateTest *********
Config: Using QTest library 4.2.2, Qt 4.2.2
INFO : DateTest::initTestCase() entering
PASS : DateTest::initTestCase()
INFO : DateTest::testAddDay() entering
PASS : DateTest::testAddDay()
INFO : DateTest::testAddMonth() entering
PASS : DateTest::testAddMonth()
INFO : DateTest::testAddYear() entering
...

If you still have a problem locating a hang or just want to make sure that all tests are

run, you can use the –v2 argument, which makes the test output when each test is entered

and passed (just as when using -v1), but it also shows when each testing macro is reached.

Listing 16-9 shows how this looks. Each macro has a line that tells you where it is located—it

reads something like this: filename.ext (line) : failure location.

Listing 16-9. Running the test with the –v2 flag

********* Start testing of DateTest *********
Config: Using QTest library 4.2.2, Qt 4.2.2
INFO : DateTest::initTestCase() entering
PASS : DateTest::initTestCase()
INFO : DateTest::testAddDay() entering
INFO : DateTest::testAddDay() COMPARE()
datetest.cpp(10) : failure location
INFO : DateTest::testAddDay() COMPARE()
datetest.cpp(11) : failure location
INFO : DateTest::testAddDay() COMPARE()
datetest.cpp(12) : failure location
INFO : DateTest::testAddDay() COMPARE()
...

CHAPTER 16 ■ UNIT TESTING478

When a test fails, the current test case is stopped immediately. The macro causing the fail-

ure will report what went wrong and where it is located, just as for the –v2 flag. An example of

a failure can be seen in Listing 16-10. The output is from a test being executed without any

command-line arguments.

If a test case fails, the others still run, so you can obtain a complete accounting of the test

status.

Listing 16-10. A test fails.

********* Start testing of DateTest *********
Config: Using QTest library 4.2.2, Qt 4.2.2
PASS : DateTest::initTestCase()
PASS : DateTest::testAddDay()
FAIL! : DateTest::testAddMonth() Compared values are not the same

Actual (next.day()): 16

Expected (15): 15

datetest.cpp(43) : failure location

PASS : DateTest::testAddYear()
PASS : DateTest::testValid()
PASS : DateTest::cleanupTestCase()
Totals: 5 passed, 1 failed, 0 skipped
********* Finished testing of DateTest *********

The reason for the failure was that the expected value in the QCOMPARE macro was changed

on line 43 in datetest.cpp.

If you want to limit the tests to just one test case, you can pass the name of the slot as a

command-line argument. For example, running datetest testValid runs only the testValid
test case.

Data-Driven Testing

The tests implemented in DateTest had a lot of duplicated code. For example, the

testAddMonths method in Listing 16-4 adds a date and checks the result twice. The

testAddDays adds days three times, and testValid tests three dates in the same way.

All this code duplication encourages copy-and-paste programming, which leads to mis-

takes. To avoid duplication, you can design the test cases to be data-driven instead. Put

simply, it is about putting the data in a table that is commonly referred to as a test vector.

You then perform the same test for each row of the table. Although it might be easy to imple-

ment this yourself, the QtTest module provides built-in support because the scenario is very

common.

To let the QtTest module take care of the data-serving details for you, you have to imple-

ment a certain structure. For each test case slot that is data-driven, you need a slot with the

same name, but ending with _data, which generates data for that test case. Listing 16-11

shows that the testAddDays, testAddMonths, and testAddYears have been merged into the

testAdd slot. This slot is fed data from the testAdd_data slot. The same goes for the testValid
slot, which gets its data from testValid_data. It is possible to have one or more data-driven

test cases in the same class as non–data-driven test cases, but in this case all tests were (more

or less) data-driven by themselves.

CHAPTER 16 ■ UNIT TESTING 479

Listing 16-11. The data-driven DateTest class

class DateTest : public QObject
{
Q_OBJECT

private slots:
void testAdd();
void testAdd_data();

void testValid();
void testValid_data();

};

The new testValid slot and its data slot are shown in Listing 16-12. Let’s start by

looking at the testValid_data data slot. It starts by creating four columns with QTest::
addColumn<type>: year, month, day, and valid, where valid is the value that you expect the

isValid method to return for a date made up from the year, month, and day. Then the data

rows are added by using the QTest::newRow method. Each row is given a name, and then the

data for the columns is entered by using the << operator.

The testValid test case slot—and the year, month, and day values—are fetched by using

the QFETCH macro. Notice that the testValid knows only what columns there are and that there

is a current row. How many rows there are and which row is active now is not relevant; the

QtTest module makes sure that the slot is called once for each row of data.

The QFETCH macro takes two arguments: the type of data to fetch and the name of the col-

umn to fetch. The value is available from a variable with the column name, which is why you

can use year, month, and day in the QDate constructor as ordinary variables.

It is possible to use the QFETCH macro to get the value from the value column and then use

QCOMPARE or even QVERIFY to check that it matches the expected value. Instead of doing this,

however, you can use the QTEST macro right away. It works just like QCOMPARE, but takes a col-

umn name instead of an expected value. It then compares the given value to the value for the

given column of the current row of data.

■Note In the process of turning testValid into a data-driven test case, the check of an empty construc-

tor was lost.

Listing 16-12. Checking to see whether a range of dates is valid

void DateTest::testValid()
{

QFETCH(int, year);
QFETCH(int, month);
QFETCH(int, day);

CHAPTER 16 ■ UNIT TESTING480

QDate date(year, month, day);
QTEST(date.isValid(), "valid");

}

void DateTest::testValid_data()
{
QTest::addColumn<int>("year");
QTest::addColumn<int>("month");
QTest::addColumn<int>("day");
QTest::addColumn<bool>("valid");

QTest::newRow("Valid, normal") << 1973 << 8 << 16 << true;
QTest::newRow("Invalid, normal") << 1973 << 9 << 31 << false;
QTest::newRow("Valid, leap-year") << 1980 << 2 << 29 << true;
QTest::newRow("Invalid, leap-year") << 1981 << 2 << 29 << false;

}

The testAdd slot has seen slightly bigger changes than testValid. (The slot and its accom-

panying data slot can be seen in Listing 16-13.) The data is structured in six columns: addDay,

addMonth, addYear, day, month, and year. The test case works by taking a predetermined date

(in this case, May 16, 1979) and then adds the addXxx columns to it. The day, month, and year

columns are then used for keeping the expected results.

As you can see in the testAdd slot implementation, the addXxx values are retrieved using

QFETCH. The resulting date is then checked using the QTEST macro. The data created in the

testAdd_data slot corresponds to the tests performed in the testAddXxx methods in the

non–data-driven class.

Listing 16-13. Checking to see whether the addDays, addMonths, and addYears methods work as
expected

void DateTest::testAdd()
{
QDate date(1979, 5, 16);

QFETCH(int, addYear);
QFETCH(int, addMonth);
QFETCH(int, addDay);

QDate next = date.addYears(addYear).addMonths(addMonth).addDays(addDay);

QTEST(next.year(), "year");
QTEST(next.month(), "month");
QTEST(next.day(), "day");

}

void DateTest::testAdd_data ()
{
QTest::addColumn<int>("addYear");

CHAPTER 16 ■ UNIT TESTING 481

QTest::addColumn<int>("addMonth");
QTest::addColumn<int>("addDay");
QTest::addColumn<int>("year");
QTest::addColumn<int>("month");
QTest::addColumn<int>("day");

QTest::newRow("Start date") << 0 << 0 << 0 << 1979 << 5 << 16;
...
}

The rest of the project does not need to be updated for the data-driven version of

DateTest to work. The results seen when running the tests from the command line are also

similar. The actual test cases are listed as they are run, while the data slots are left out.

One interesting side effect of using data-driven tests is that the name given for each row

of data is returned when a test fails (making the error messages more clear). In Listing 16-14

you can see an example of this. Instead of just saying that the next.year() value was unex-

pected, you know that the test case was testAdd(Twenty days).

Listing 16-14. When a test fails in a data-driven test case, the name of the current row is given as a
part of the failure message.

********* Start testing of DateTest *********
Config: Using QTest library 4.2.2, Qt 4.2.2
PASS : DateTest::initTestCase()
FAIL! : DateTest::testAdd(Twenty days) Compared values are not the same

Actual (next.year()): 1979

Expected ("year"): 2979

datetest.cpp(18) : failure location

PASS : DateTest::testValid()
PASS : DateTest::cleanupTestCase()
Totals: 3 passed, 1 failed, 0 skipped
********* Finished testing of DateTest *********

The consequences of shifting to data-driven tests are summarized in the following list:

• Less code: You implement the test only once, but run different cases using that one test.

• Less code redundancy: Because the test is only implemented once, it is not duplicated.

This also means not having to fix bugs in all tests if something is wrong.

• Potentially better failure messages: Because each test vector row has a name, you can

clearly see which case failed.

• Some test cases can no longer be performed: This is a drawback. Because the test vector

always contains data, it is hard to use it for testing some special cases (for instance, an

empty constructor). This would require you to have a special case in your test code and

a flag indicating no data, which would clutter the test code.

The last point can be fixed by putting these tests in a non–data-driven test case. It is not a

limitation because they can be combined with data-driven tests in one class.

CHAPTER 16 ■ UNIT TESTING482

Testing Widgets
An aspect that is difficult to check with automated testing such as unit testing is user interac-

tion. While most widgets have setters and getters that can be tested, to test user interaction

you must be able to simulate mouse and keyboard activity. The QtTest module can help.

Testing a Spin Box

To test a widget, you’ll put the QSpinBox class to the test, focusing on the capability to change

values up and down and that the minimum value and maximum value are respected. Because

the value can be changed in three different ways, the test class shown in Listing 16-15 contains

three test case slots:

• testKeys: Tests altering the value using keyboard interaction

• testClicks: Tests altering the value using mouse interaction

• testSetting: Tests altering the value using the setValue method

There are no differences between a unit test class testing a widget and a nonwidget.

Listing 16-15. A class for testing the QSpinBox class

class SpinBoxTest : public QObject
{
Q_OBJECT

private slots:
void testKeys();
void testClicks();
void testSetting();

};

The first test case you’ll consider is the testSetting slot, shown in Listing 16-16. In this

test case, it doesn’t matter that the class being tested is a widget; you’ll just test the value prop-

erty. First a QSpinBox object is created; subsequently its range is set to 1–10.

The tests then try setting a valid value, setting a too-small value and finally setting a too-

large value. The valid value is expected to stick, while the other two are expected to be kept

within the specified range.

Listing 16-16. Testing the value property using a programmatic interface

void SpinBoxTest::testSetting()
{
QSpinBox spinBox;

spinBox.setRange(1, 10);

spinBox.setValue(5);
QCOMPARE(spinBox.value(), 5);

CHAPTER 16 ■ UNIT TESTING 483

spinBox.setValue(0);
QCOMPARE(spinBox.value(), 1);

spinBox.setValue(11);
QCOMPARE(spinBox.value(), 10);

}

Listing 16-17 shows the first of the interaction tests: testKeys. The test begins with a

QSpinBox being created and set up with the same range as in the testSetting test. The spin box

is then initialized to a valid value before up and down keys are pressed. The values are tested

between each of the key presses so the value property is altered as expected. The next two

tests set the value to a limit value and try to move outside the allowed range by using key

presses. Here you ensure that the value property doesn’t change.

The key presses are sent to the spin box using the QTest::keyClick(QWidget*,Qt::Key)
method. By sending a key event to the widget using keyClick, Qt automatically sends both a

keyPress event and a keyRelease event for the key.

Listing 16-17. Testing changing the value using keyboard interaction

void SpinBoxTest::testKeys()
{
QSpinBox spinBox;

spinBox.setRange(1, 10);
spinBox.setValue(5);

QTest::keyClick(&spinBox, Qt::Key_Up);
QCOMPARE(spinBox.value(), 6);

QTest::keyClick(&spinBox, Qt::Key_Down);
QCOMPARE(spinBox.value(), 5);

spinBox.setValue(10);
QTest::keyClick(&spinBox, Qt::Key_Up);
QCOMPARE(spinBox.value(), 10);

spinBox.setValue(1);
QTest::keyClick(&spinBox, Qt::Key_Down);
QCOMPARE(spinBox.value(), 1);

}

void SpinBoxTest::testClicks()
{
QSpinBox spinBox;

spinBox.setRange(1, 10);
spinBox.setValue(5);

CHAPTER 16 ■ UNIT TESTING484

QSize size = spinBox.size();
QPoint upButton = QPoint(size.width()-2, 2);
QPoint downButton = QPoint(size.width()-2, size.height()-2);

QTest::mouseClick(&spinBox, Qt::LeftButton, 0, upButton);
QCOMPARE(spinBox.value(), 6);

QTest::mouseClick(&spinBox, Qt::LeftButton, 0, downButton);
QCOMPARE(spinBox.value(), 5);

spinBox.setValue(10);
QTest::mouseClick(&spinBox, Qt::LeftButton, 0, upButton);
QCOMPARE(spinBox.value(), 10);

spinBox.setValue(1);
QTest::mouseClick(&spinBox, Qt::LeftButton, 0, downButton);
QCOMPARE(spinBox.value(), 1);

}

void SpinBoxTest::testSetting()
{
QSpinBox spinBox;

spinBox.setRange(1, 10);

spinBox.setValue(5);
QCOMPARE(spinBox.value(), 5);

spinBox.setValue(0);
QCOMPARE(spinBox.value(), 1);

spinBox.setValue(11);
QCOMPARE(spinBox.value(), 10);

}

The final test slot checks mouse interaction. The tests are the same as for the two earlier

test cases: Try moving in the valid range; then try to move outside it. You can see its implemen-

tation in the testClicks slot shown in Listing 16-18.

The testClicks slot is very similar to the testKeys slot, except that instead of key clicks,

you send mouse clicks, which must be aimed at a point on the widget. The three highlighted

lines calculate where the up and down buttons are located. Look at these lines and Figure 16-2,

which shows the widget being tested.

The mouse clicks are sent to the widget using the QTest::mouseClick(QWidget*,
Qt::MouseButton, Qt::KeyboardModifiers, QPoint) method. The arguments used in the list-

ing simulate a click from the left mouse button without any keyboard modifier keys (Shift,

Alternate, Ctrl, and so on) being active. The point clicked depends on whether you try to click

the up or down button.

CHAPTER 16 ■ UNIT TESTING 485

■Caution The points used expect the up and down buttons to appear as they do in the Windows XP style.

Changing the style or using a right-to-left layout can cause the test to stop working.

Listing 16-18. Testing changing the value by using mouse interaction

void SpinBoxTest::testClicks()
{
QSpinBox spinBox;

spinBox.setRange(1, 10);
spinBox.setValue(5);

QSize size = spinBox.size();

QPoint upButton = QPoint(size.width()-2, 2);

QPoint downButton = QPoint(size.width()-2, size.height()-2);

QTest::mouseClick(&spinBox, Qt::LeftButton, 0, upButton);
QCOMPARE(spinBox.value(), 6);

QTest::mouseClick(&spinBox, Qt::LeftButton, 0, downButton);
QCOMPARE(spinBox.value(), 5);

spinBox.setValue(10);
QTest::mouseClick(&spinBox, Qt::LeftButton, 0, upButton);
QCOMPARE(spinBox.value(), 10);

spinBox.setValue(1);
QTest::mouseClick(&spinBox, Qt::LeftButton, 0, downButton);
QCOMPARE(spinBox.value(), 1);

}

Figure 16-2. A spin box widget

The QTEST_MAIN function macro treats unit tests intended to test widgets and those to test

other aspects of an application equally. The project file doesn’t have to be changed, either. By

building and running the unit test shown previously, you get a list of passed test cases.

CHAPTER 16 ■ UNIT TESTING486

Driving Widgets with Data

You’ve run into the same redundancy problem as with the QDate class—the unit test of

QSpinBox contains a lot of duplicated code. The solution is to convert the tests into data-driven

tests, which is done in exactly the same way—regardless of the class being tested.

All test cases are converted in similar ways, so start by focusing on the testKeys slot. The

new version of the slot is shown along with testKeys_data in Listing 16-19.

Most of the source code shown in the listing should be clear. However, the two high-

lighted lines are important. When you add a column of the type Qt::Key, you see a

compilation error if you do not declare it as a meta-type. The registration is made by using

the Q_DECLARE_METATYPE macro.

The test case works like all data-driven tests: It fetches data using QFETCH and uses the

data before using QTEST to check the outcome of the test.

Listing 16-19. Testing keyboard interaction using a data-driven test case

Q_DECLARE_METATYPE(Qt::Key)

void SpinBoxTest::testKeys()
{

QSpinBox spinBox;
spinBox.setRange(1, 10);

QFETCH(Qt::Key, key);
QFETCH(int, startValue);

spinBox.setValue(startValue);
QTest::keyClick(&spinBox, key);
QTEST(spinBox.value(), "endValue");

}

void SpinBoxTest::testKeys_data()
{
QTest::addColumn<Qt::Key>("key");

QTest::addColumn<int>("startValue");
QTest::addColumn<int>("endValue");

QTest::newRow("Up") << Qt::Key_Up << 5 << 6;
QTest::newRow("Down") << Qt::Key_Down << 5 << 4;
QTest::newRow("Up, limit") << Qt::Key_Up << 10 << 10;
QTest::newRow("Down, limit") << Qt::Key_Down << 1 << 1;

}

void SpinBoxTest::testClicks()
{
QSpinBox spinBox;
spinBox.setRange(1, 10);

CHAPTER 16 ■ UNIT TESTING 487

QSize size = spinBox.size();
QPoint upButton = QPoint(size.width()-2, 2);
QPoint downButton = QPoint(size.width()-2, size.height()-2);

QFETCH(QString, direction);
QFETCH(int, startValue);

spinBox.setValue(startValue);

if(direction.toLower() == "up")
QTest::mouseClick(&spinBox, Qt::LeftButton, 0, upButton);

else if (direction.toLower() == "down")
QTest::mouseClick(&spinBox, Qt::LeftButton, 0, downButton);

else
QWARN("Unknown direction - no clicks issued.");

QTEST(spinBox.value(), "endValue");
}

void SpinBoxTest::testClicks_data()
{
QTest::addColumn<QString>("direction");
QTest::addColumn<int>("startValue");
QTest::addColumn<int>("endValue");

QTest::newRow("Up") << "Up" << 5 << 6;
QTest::newRow("Down") << "Down" << 5 << 4;
QTest::newRow("Up, limit") << "Up" << 10 << 10;
QTest::newRow("Down, limit") << "Down" << 1 << 1;

}

void SpinBoxTest::testSetting()
{
QSpinBox spinBox;
spinBox.setRange(1, 10);

QFETCH(int, value);

spinBox.setValue(value);
QTEST(spinBox.value(), "endValue");

}

void SpinBoxTest::testSetting_data()
{
QTest::addColumn<int>("value");
QTest::addColumn<int>("endValue");

CHAPTER 16 ■ UNIT TESTING488

QTest::newRow("Valid") << 5 << 5;
QTest::newRow("Over") << 11 << 10;
QTest::newRow("Under") << 0 << 1;

}

The testClicks slot is similar to the testKeys slot, but you can’t add a column for holding

the QPoint to click because the point is calculated when you know the size of the widget being

tested. A column called direction has been added instead. The direction can be either "Up" or

"Down" (see Listing 16-20).

The test case slot works as expected: It sets up the QSpinBox, uses QFETCH to get the input

data, performs the task according to the data, and then evaluates using QTEST. What’s new is

that if it runs in to an unexpected direction, it uses the QWARN macro to inform the user. This

warning does not affect the result of the test; it simply emits a warning in the log.

Listing 16-20. Testing mouse interaction using a data-driven test case

void SpinBoxTest::testClicks()
{

QSpinBox spinBox;
spinBox.setRange(1, 10);

QSize size = spinBox.size();
QPoint upButton = QPoint(size.width()-2, 2);
QPoint downButton = QPoint(size.width()-2, size.height()-2);

QFETCH(QString, direction);
QFETCH(int, startValue);

spinBox.setValue(startValue);

if(direction.toLower() == "up")
QTest::mouseClick(&spinBox, Qt::LeftButton, 0, upButton);

else if (direction.toLower() == "down")
QTest::mouseClick(&spinBox, Qt::LeftButton, 0, downButton);

else
QWARN("Unknown direction - no clicks issued.");

QTEST(spinBox.value(), "endValue");
}

void SpinBoxTest::testClicks_data()
{
QTest::addColumn<QString>("direction");
QTest::addColumn<int>("startValue");
QTest::addColumn<int>("endValue");

QTest::newRow("Up") << "Up" << 5 << 6;
...
}

CHAPTER 16 ■ UNIT TESTING 489

The textSetting slot is converted in a similar manner and is not shown here. The result

from the unit test is also unchanged. Tests are performed (and the results are presented) in the

same way.

Testing Signals
Qt classes emit signals when they are stimulated by programmatic calls or user interaction.

Because signals and slots are key components of Qt applications, they must not be left out

during testing.

You can use the QSignalSpy class to listen to signals without connecting to them. A signal

spy is hooked up to listen to a certain signal from a certain object. The spy object then records

the argument values for each signal caught.

Listing 16-21 shows the data-driven testKeys method extended with signal listening

capabilities. (The original implementation slot was shown in Listing 16-19.)

The highlighted lines in the listing show major additions to the slot. Looking at the

changes from the top down, the first line creates a QSignalSpy object for monitoring the

valueChanged(int) signal emitted from the spinBox object. The signal spy is created after the

spin box has been set up with the start value to avoid catching a signal by mistake.

■Note This test checks only one signal. In real life, you would include the valueChanged(QString)

signal, too.

When the spy has been created, the actual test is being performed. After the test has been

performed, fetch the value for the new column willSignal. If the value is true, a signal is

expected.

If a signal is expected, verify that the spy has caught exactly one signal. Before you look at

how this is done, you must understand that QSignalSpy inherits QList<QList<QVariant> >.

This means that it is a list of lists holding variant objects.

Check the number of signals caught using the count property. To get the value from the

first argument from the signal, use the takeFirst method to get a list of argument values for

the signal. The zeroth index of the list returned (that is, the first argument of the signal) is con-

verted from QVariant to an integer using toInt before it is compared with the expected end value.

If willSignal tells you that no signal was expected, verify that no signal was emitted. It is

easy to forget to check the no-signal case. If you miss it and a signal is emitted without a

change, two objects connected to each other will hang in an infinite loop.

The changes to the test case data slot are limited to the new column willSignal holding a

Boolean telling the test whether a signal is expected or not.

Listing 16-21. Testing keyboard interaction—now with additional signal-monitoring skills

void SpinBoxTest::testKeys()
{

QSpinBox spinBox;
spinBox.setRange(1, 10);

CHAPTER 16 ■ UNIT TESTING490

QFETCH(Qt::Key, key);
QFETCH(int, startValue);

spinBox.setValue(startValue);

QSignalSpy spy(&spinBox, SIGNAL(valueChanged(int)));

QTest::keyClick(&spinBox, key);
QTEST(spinBox.value(), "endValue");

QFETCH(bool, willSignal);

if(willSignal)

{

QCOMPARE(spy.count(), 1);

QTEST(spy.takeFirst()[0].toInt(), "endValue");

}

else

QCOMPARE(spy.count(), 0);

}

void SpinBoxTest::testKeys_data()
{
QTest::addColumn<Qt::Key>("key");
QTest::addColumn<int>("startValue");
QTest::addColumn<int>("endValue");
QTest::addColumn<bool>("willSignal");

QTest::newRow("Up") << Qt::Key_Up << 5 << 6 << true;
QTest::newRow("Down") << Qt::Key_Down << 5 << 4 << true;
QTest::newRow("Up, limit") << Qt::Key_Up << 10 << 10 << false;
QTest::newRow("Down, limit") << Qt::Key_Down << 1 << 1 << false;

}

The changes to the other two test case slots, testClicks and testSetting, are almost

identical to the ones made to testKeys. The biggest change is that testSetting had to be

extended with a startValue column and a new test case testing the no-signal case.

The changes to the tests are limited to adding a new object. The state of this object is then

checked by using the standard macros from the QtTest module. This means that the unit is

being built and used in exactly the same way as for tests not checking for signals.

Testing for Real
Until now, you have been testing only parts of the interfaces of classes that are shipped with

Qt. Now you’ll create a unit test for the ImageCollection class from Chapter 13.

CHAPTER 16 ■ UNIT TESTING 491

The Interface

Before looking at the unit test class, let’s quickly review the ImageCollection class, which is

used to keep images and tags. It is possible to add new images, add tags to images, retrieve all

tags, retrieve all ids for images matching a set of tags, and get a specific image from an id. The

available methods are listed as follows:

• QImage getImage(int id): Gets an image from a given id.

• QList<int> getIds(QStringList tags): Retrieves the ids for the images matching any

of the tags specified. If no tags are specified, the method returns all ids.

• QStringList getTags(): Retrieves a list of all tags.

• addTag(int id, QString tag): Adds a tag to a given image.

• addImage(QImage image, QStringList tags): Adds an image to the collection with the

given tags.

The Tests

To test these methods, divide the tests into three sections: one for testing tags, one for testing

images, and one for testing the images from tag associations. These three sections can be seen

as slots in the unit test class declaration shown in Listing 16-22.

The class contains a private member function called pixelCompareImages. It is used to

ensure that two images are exactly identical, pixel by pixel. It is needed to see whether an

image is properly stored in the database.

Listing 16-22. The unit test class for testing the ImageCollection class

class ImageCollectionTest : public QObject
{
Q_OBJECT

private slots:
void testTags();
void testImages();
void testImagesFromTags();

private:
bool pixelCompareImages(const QImage &a, const QImage &b);

};

Testing Tags

Listing 16-23 shows the testTags test slot implementation. The tests performed are simple,

and the procedure is the following:

1. Make sure that there are no tags from the start—tests getIds.

2. Add one image and ensure that the image is in the collection—tests addImage.

CHAPTER 16 ■ UNIT TESTING492

3. Add one tag to the image and verify that the collection contains one tag—tests addTag
and getTags.

4. Add one more tag to the image and verify that the collection contains two tags—tests

addTag and getTags.

5. Add one more tag to the image and verify that the collection contains three tags—tests

addTag and getTags.

6. Add a duplicate tag to the image and verify that the collection contains three tags—

tests addTag and getTags.

7. Add a new tag to a nonexistent image and verify that the collection contains three

tags—tests addTag and getTags.

In the listing, you can see that the ImageCollection object is created and then the tests are

carried out. The last test is preceded by a QEXPECT_FAIL macro, which indicates that the test is

expected to fail because the image collection fails to check whether an image id exists before

adding a tag to it.

The last line in the test slot removes the database connection used by the image collec-

tion. This is necessary because the image collection class relies on the default connection. If a

new image collection object is created (in the next test case, for example), the QtSql module

will warn that the database connection is being replaced if the original connection isn’t

removed.

Listing 16-23. Testing the tag-keeping capabilities

void ImageCollectionTest::testTags()
{

ImageCollection c;

// Make sure that the collection is empty
QCOMPARE(c.getTags().count(), 0);

// At least one image is needed to be able to add tags
c.addImage(QImage("test.png"), QStringList());

// Verify that we have one image and get the id for it
QList<int> ids = c.getIds(QStringList());
QCOMPARE(ids.count(), 1);
int id = ids[0];

// Add one tag, total one
c.addTag(id, "Foo");
QCOMPARE(c.getTags().count(), 1);

// Add one tag, total two
c.addTag(id, "Bar");
QCOMPARE(c.getTags().count(), 2);

CHAPTER 16 ■ UNIT TESTING 493

// Add one tag, total three
c.addTag(id, "Baz");
QCOMPARE(c.getTags().count(), 3);

// Add a duplicate tag, total three
c.addTag(id, "Foo");
QCOMPARE(c.getTags().count(), 3);

// Try to add a tag to a nonexisting id
QEXPECT_FAIL("", "The tag will be added to the non-existing image.", Continue);
c.addTag(id+1, "Foz");
QCOMPARE(c.getTags().count(), 3);

// The ImageConnection adds a database that we close here
QSqlDatabase::removeDatabase(QLatin1String(QSqlDatabase::defaultConnection));

}

Testing Image Storage and Retrieval

The next test case, which is shown in Listing 16-24, checks that the image storage and retrieval

mechanisms work and are implemented in the testImages slot.

The test procedure is very simple: Add an image to the database (tests addImage), make

sure it is there (tests getIds), retrieve it (tests getImage), and compare it with the original

image.

One final test, which has been commented out, attempts to retrieve an image using an

invalid id. This results in a call to qFatal in the ImageCollection class, and the application will

end even if you call QTest::ignoreMessage(QString). The ignoreMessage can otherwise be

handy to avoid showing expected warning messages emitted using qDebug or qWarning.

Listing 16-24. Testing storing and retrieving images

void ImageCollectionTest::testImages()
{

ImageCollection c;

QCOMPARE(c.getIds(QStringList()).count(), 0);

QImage image("test.png");
c.addImage(image, QStringList());

// Verify that we have one image and get the id for it
QList<int> ids = c.getIds(QStringList());
QCOMPARE(ids.count(), 1);
int id = ids[0];

QImage fromDb = c.getImage(id);
QVERIFY(pixelCompareImages(image, fromDb));

CHAPTER 16 ■ UNIT TESTING494

// Will call qFatal and end the application
// QTest::ignoreMessage(QtFatalMsg, "Failed to get image id");
// fromDb = c.getImage(id+1);
// QVERIFY(fromDb.isNull());

// The ImageConnection adds a database that we close here
QSqlDatabase::removeDatabase(QLatin1String(QSqlDatabase::defaultConnection));

}

Testing Images and Tags

The final test case, testImagesFromTags, is shown in Listing 16-25. The test can seem rather

confusing at first, but the principle is to check that the correct number of image ids is returned

for each given tag. To do this, one image is added at a time; then the getIds method is called,

and the number of returned ids is compared with the expected result. The entire procedure is

described as follows:

1. Add an image with the tags Foo and Bar.

2. Verify that getTags returns two tags.

3. Verify the number of ids returned for Foo, Bar, and Baz; and a list containing Foo
and Bar.

4. Add an image with the tag Baz.

5. Verify that getTags returns three tags.

6. Verify the number if ids returned for Foo, Bar, and Baz.

7. Add an image with the tags Bar and Baz.

8. Verify that getTags returns three tags.

9. Verify the number of ids returned for Foo, Bar, and Baz; and a list containing Bar
and Baz.

To determine the number of expected ids for each set of tags, it is important to remember

that getIds is expected to return each image that has at least one of the given tags. This means

that when querying for images with Bar or Baz, all three image ids are returned. The first image

contains Bar, the second contains Baz, and the third contains both.

Listing 16-25. Testing images and tags at once

void ImageCollectionTest::testImagesFromTags()
{

ImageCollection c;

QCOMPARE(c.getIds(QStringList()).count(), 0);

QImage image("test.png");

CHAPTER 16 ■ UNIT TESTING 495

QStringList tags;
tags << "Foo" << "Bar";

c.addImage(image, tags);
QCOMPARE(c.getTags().count(), 2);
QCOMPARE(c.getIds(QStringList()).count(), 1);
QCOMPARE(c.getIds(QStringList() << "Foo").count(), 1);
QCOMPARE(c.getIds(QStringList() << "Bar").count(), 1);
QCOMPARE(c.getIds(tags).count(), 1);
QCOMPARE(c.getIds(QStringList() << "Baz").count(), 0);

tags.clear();
tags << "Baz";
c.addImage(image, tags);
QCOMPARE(c.getTags().count(), 3);
QCOMPARE(c.getIds(QStringList()).count(), 2);
QCOMPARE(c.getIds(QStringList() << "Foo").count(), 1);
QCOMPARE(c.getIds(QStringList() << "Bar").count(), 1);
QCOMPARE(c.getIds(tags).count(), 1);
QCOMPARE(c.getIds(QStringList() << "Baz").count(), 1);

tags.clear();
tags << "Bar" << "Baz";
c.addImage(image, tags);
QCOMPARE(c.getTags().count(), 3);
QCOMPARE(c.getIds(QStringList()).count(), 3);
QCOMPARE(c.getIds(QStringList() << "Foo").count(), 1);
QCOMPARE(c.getIds(QStringList() << "Bar").count(), 2);
QCOMPARE(c.getIds(tags).count(), 3);
QCOMPARE(c.getIds(QStringList() << "Baz").count(), 2);

// The ImageConnection adds a database that we close here
QSqlDatabase::removeDatabase(QLatin1String(QSqlDatabase::defaultConnection));

}

bool ImageCollectionTest::pixelCompareImages(const QImage &a, const QImage &b)
{
if(a.size() != b.size())
return false;

if(a.format() != b.format())
return false;

for(int x=0; x<a.width(); ++x)
for(int y=0; y<a.height(); ++y)
if(a.pixel(x,y) != b.pixel(x,y))
return false;

return true;
}

CHAPTER 16 ■ UNIT TESTING496

Handling Deviations

Having looked at the test cases, you might want to see the results from testing a class that was

designed for a specific application. The lessons learned are that things are not perfect and that

you must handle the imperfections in the test cases.

When you run into debug and warning messages, you can suppress them by using a call

to the QTest::ignoreMessage(QString) method. It is good to know that this method can’t be

used to stop a qFatal message from stopping the unit test application.

If a test fails, you can prevent the unit test from stopping by using the QEXPECT_FAIL
macro. The macro is reported as an XFAIL item in the results log, but the test case is still con-

sidered to be passed. See Listing 16-26 for an example.

The most disturbing adaptation that had to be made in the ImageCollectionTest class

was the workaround for avoiding the QtSql module warning about the default connection

being replaced. This message could have been removed by using the QTest::ignoreMessage
method. Instead the issue was fixed from the unit test by removing the default connection at

the end of each test case. Either method is an indication that the ImageCollection class is lim-

ited to being created only once for each time the application using it is being run.

Listing 16-26. The results from testing the ImageCollection class

********* Start testing of ImageCollectionTest *********
Config: Using QTest library 4.2.2, Qt 4.2.2
PASS : ImageCollectionTest::initTestCase()
XFAIL : ImageCollectionTest::testTags() The tag will be added to the
non-existing image.
imagecollectiontest.cpp(43) : failure location
PASS : ImageCollectionTest::testTags()
PASS : ImageCollectionTest::testImages()
PASS : ImageCollectionTest::testImagesFromTags()
PASS : ImageCollectionTest::cleanupTestCase()
Totals: 5 passed, 0 failed, 0 skipped
********* Finished testing of ImageCollectionTest *********

Each of the symptoms and methods described here is an indication that something needs

to be adjusted in the class being tested. When testing, sometimes the unexpected warnings

might have to be suppressed, but that should not be necessary with ordinary usage.

When looking at what to test, it is important to try to go beyond the expected. By testing

how the code reacts to invalid input data, you can create more robust code. By not letting your

code enter undefined states, you make the rest of the application easier to debug. Otherwise,

the discovery of an error can be delayed because the error is not made visible until later inter-

action between the flawed component and the rest of the application.

Summary
Unit testing is a method to ensure that your software components fulfill the specifications,

which makes it possible to focus the testing resources in the project on more useful areas.

It is important to focus on testing the interface, not the internals of the class begin tested.

The tests should not only test the valid and expected data; they should also “provoke” by

CHAPTER 16 ■ UNIT TESTING 497

passing unexpected data. This “provocation” helps to make your software components more

robust.

Qt’s unit testing framework, the QtTest module, can be included in the project by adding

a line reading CONFIG += qtestlib to the project file. The module consists of a set of macros

for testing:

• QCOMPARE(actual value, expected value): Compares the actual value to the

expected value.

• QVERIFY(expression): Evaluates the expression and considers the test to have passed

if the result is true.

• QTEST(actual value, column name): Compares the actual value to the column value

from the current data row.

When using the QTEST macro, you need to provide your test with a test vector of data by

using a data slot, which has the same name as the test slot, but ends with _data. The data slot

creates a set of columns by using the static QTest::addColumn<type>(char*) method, and rows

of data are then added with the static QTest::newRow(char*) method to which the data is fed

by using the << operator. The data can be retrieved from the test slot with the QFETCH(type,
column name) macro or the QTEST macro.

When testing Qt components, it is important to be able to intercept signals. They are

intercepted and recorded by using the QSignalSpy class.

When building an executable from a unit test, the main function is created using the

QTEST_MAIN(test class) macro. The main function takes care of creating an instance of the

unit test class and performing the tests.

CHAPTER 16 ■ UNIT TESTING498

Appendixes

P A R T 3

Third-Party Tools

This appendix shows you some third-party tools. A large community of projects is built on

and around Qt, and the tools shown here are just a small selection of what is available. The

purpose is not to show you how they are used, but to show you the diversity of available tools.

Each of the projects mentioned comes with good documentation and is easy to learn.

501

A P P E N D I X A

Qt Widgets for Technical Applications: Qwt

• Category: Widgets and classes

• Website: http://qwt.sf.net

• License: Qwt License—a generous version of LGPL

Qwt is a collection of classes and widgets for use in technical applications. The widgets

include dials, sliders, knobs, plots, scales, and legends. The widgets provided are well inte-

grated with Designer through plugins.

Some sample screenshots of Qwt in action can be seen in Figure A-1, which shows some

of the dials that Qwt provides. These dials, combined with wheels and sliders, make it easy to

specify values. However, the real power of Qwt is with its plotting capabilities. You can create

scatter plots, curve plots, and histograms—with or without contour lines. The data for all

these plots is served through the QwtData class or its descendants. By inheriting the QwtData
class, you can calculate the data to plot on the fly and then feed it to the appropriate plot

widget.

Figure A-1. Widgets and plots from the Qwt examples

APPENDIX A ■ THIRD-PARTY TOOLS502

wwWidgets

• Category: Widgets

• Website: http://www.wysota.eu.org/wwwidgets

• License: GPL

The wwWidgets library complements Qt with a range of widgets. These widgets focus on

the areas that Qt does not fill from the start—color-picking widgets, onscreen keypads, and

such—but also on common composed widgets such as the startup tip widget. Examples from

a Designer session are shown in Figure A-2. These widgets save time because they don’t have

to be reinvented with every new project.

The wwWidgets library is very well integrated with the rest of Qt—both in Designer and

the build system. When it is installed, it adds itself to the Qt installation, so all you need to do

to use it is add CONFIG += wwwidgets in your project file—just as simple as using a Qt module.

Figure A-2. Some wwWidgets in a Designer session

APPENDIX A ■ THIRD-PARTY TOOLS 503

QDevelop

• Category: Development environment

• Website: http://www.qdevelop.org

• License: GPL

QDevelop is a true cross-platform, integrated development environment adapted for Qt.

It provides a common development environment across all platforms supported by Qt. You

can see a sample session in Figure A-3.

The strengths of QDevelop include its capability to debug applications using the GNU

debugger (gdb), capability to handle QMake projects, capability to provide code completion

and lists of methods using ctags, and its plugin-based architecture.

■Caution To use gdb on the Windows platform, you must first install it (you can find details on the

QDevelop website).

Figure A-3. QDevelop in action

APPENDIX A ■ THIRD-PARTY TOOLS504

The dependency of ctags for code completion and method lists means that the interface

can be slow because ctags is run as an external process, and QDevelop waits for it to complete

before these features actually work.

QDevelop does have an annoying bug. When requesting help for a member function of a

Qt class, it fails. You must always position the cursor over the actual class name when looking

for help.

When Qt Assistant is launched to provide help, it launches as a separate application.

QDevelop launches both Designer and Qt Assistant as external applications running in paral-

lel with the QDevelop application. This works great, but you have to switch manually back and

forth between the applications.

Edyuk

• Category: Development environment

• Website: http://edyuk.sf.net

• License: GPL

Edyuk is another cross-platform, integrated development environment designed for use

with Qt. Edyuk, which is built around perspectives and plugins, integrates both Designer and

Qt Assistant fully, so you can switch between code view and Designer within the Edyuk envi-

ronment. Figure A-4 shows screenshots that display the code perspective (top) and the

Designer perspective (bottom).

The project file support is good, as is the code editor, but opening projects can be scary

because the user interface can sometimes be unresponsive while loading. However, the devel-

opment pace is high (at the time of writing this book), so this situation will probably have

improved by the time that you read this.

■Note Different panels that make up each perspective can be shown or hidden by using buttons located at

the bottom-right corner. These buttons are not always easy to find.

APPENDIX A ■ THIRD-PARTY TOOLS 505

Figure A-4. The Edyuk editor in action

APPENDIX A ■ THIRD-PARTY TOOLS506

Containers, Types, and Macros

Qt provides a range of macros, types, and containers for making your life as a developer

easier. You can use this chapter as a reference when comparing and using these features.

Containers
There are a number of containers available, which I have split into three groups: sequences,

specialized containers, and associative containers. Sequences are just plain lists for keeping

objects. Specialized containers are optimized for keeping a certain content type or for a spe-

cific usage scenario. Associative containers are used for associating each data item to a key

value.

Each of the following sections consists of the pros and cons of each type—pros are

marked with plus signs (+); cons are marked with minus signs (–).

Sequences

QList

+ Quick insertions at the start

+ Quick insertions at the end

+ Quick indexed access

+ Quick iterator access

– Slow insertions in the middle of large lists

QLinkedList

+ Quick insertions at the start

+ Quick insertions at the end

+ Quick insertions in the middle

+ Quick iterator access

– No indexed access 507

A P P E N D I X B

QVector

+ Quick insertions at the end

+ Quick indexed access

+ Fast iterator access

+ Uses contiguous memory

– Slow insertions at the start

– Slow insertions in the middle

Specialized Containers

QStringList

A QStringList is a QList<QString> with built-in string treatment member functions. The

following list covers some of them:

• join: Joins all the contained strings together, separating them with a given separator

string.

• split: Splits a QString into a QStringList by using a given separator string. This method

is a member of the QString class.

• replaceInStrings: Performs a search-and-replace operation on all the contained

strings.

QStack

A QStack is a list that implements a stack. You put new items on top of the stack using the push
method. You can peek at the top item by using the top method and you can take the top item

with the pop method.

QQueue

A QQueue is a list that implements a queue. You can put new items at the end of the queue

with the enqueue method. You take items from the beginning of the queue using the dequeue
method. You can look at the first item in the queue without removing it from the list using

the head method.

QSet

A set is a collection of keys without any order or count. You can insert new keys using the

insert method or the << operator. Then you can see whether a given key is available in the

set with the contains method. To remove a key, use the remove method.

APPENDIX B ■ CONTAINERS, TYPES, AND MACROS508

Associative Containers

An associative container associates a given key to a value or a set of values. The difference

between a hash and a map is that a hash sorts the keys using a hash function, whereas the

map keeps the keys in order. A hash function takes the key’s value and calculates an integer

from it called a hash value. The result is that hashes can look up keys more quickly because

integer comparisons are fast, while maps are more predictable when iterating through them

(because they sort their contents on the key value, not the hash value).

Values and keys used in hashes must be assignable (they must provide an operator=).

There must also be a qHash function overload returning a uint hash value for the type used as

a key.

Values and keys used in maps must be assignable, just as with values and keys used in

hashes. Instead of providing a qHash function for the key type, an operator< must be available.

QHash

To insert values into a QHash, you can use the hash[key] = value approach or call the

insert(key, value) method. To determine whether a hash contains a given key, you can

use the contains method. To get the value for a given key, use the value(key) method.

You can get a list of all the keys by using the keys method and get a list of all the values

by using the values method. Both these methods return data in arbitrary order. With a

QHashIterator, you can iterate over all key-value pairs kept in the hash.

QMultiHash

A QMultiHash is a hash for assigning several values to each key. You insert values using the

insert(key, value) method. Although the keys and values are available through the same

methods as when using the QHash, it is common to use the values(key) method to get a list

of values associated with a given key.

QMap/QMultiMap

QMap and QMultiMap are used in exactly the same way as QHash and QMultiMap. The differences

are described in the introduction to the associative containers section.

Types
Qt provides a whole range of types that are defined in a cross-platform manner. This means

that an unsigned 16-bit integer is just that—an unsigned 16-bit integer—on all platforms.

Qt also provides a variant object that can be used to represent and convert data between

several types.

Types by Size

The following types guarantee the size of their contents. By using Qt streams when reading

and writing them, the endianess of them is also preserved across platform boundaries.

APPENDIX B ■ CONTAINERS, TYPES, AND MACROS 509

• quint8: An 8-bit unsigned integer, range 0–255

• quint16: A 16-bit unsigned integer, range 0–65535

• quint32: A 32-bit unsigned integer, range 0–4294967295

• quint64: A 64-bit unsigned integer, range 0–1.844674407e19

• qint8: An 8-bit signed integer, range –128–127

• qint16: A 16-bit signed integer, range –32768–32767

• qint32: A 32-bit signed integer, range –2147483648–2147483647

• qint64: A 64-bit signed integer, range –9.223372036e18–9.223372036e18

Not guaranteeing its size, qreal is still useful because it represents a double value on all

platforms except ARM. On ARM platforms, the type represents a float because ARM has per-

formance issues with doubles.

The Variant Type

The QVariant type can be used to keep most value types used in Qt applications. When assign-

ing a value to a QVariant object, the value is automatically converted to a QVariant. To convert

a QVariant to a given type, you must specify what type you expect. All types available in the

QtCore module can be converted from using a toType method, where Type is the type name.

The types supported in this way are bool, QByteArray, QChar, QDate, QDateTime, double, int,

QLine, QLineF, QList<QVariant>, QLocale, qlonglong, QMap<QString, QVariant>, QPoint,

QPointF, QRect, QRectF, QRegExp, QSize, QSizeF, QString, QStringList, QTime, uint, qulonglong,

and QUrl.

Most other Qt types used in the QtGui module can also be used with the QVariant class.

Toconvert such a type to a QVariant, simply assign it to the QVariant object. To convert them

from a QVariant, use the value<type> method.

■Caution If you are using MSVC 6.0, you need to use qvariant_cast instead of value<type>.

Supporting Custom Types with the Variant

To support your own types in combination with the QVariant class, you need to register it as a

QMetaType. You can do this by using the Q_DECLARE_METATYPE(type) macro. You can place this

macro alongside your class in your header file.

To be able to use your class in all situations in which the QVariant class is used, you need

to register it through a function call by calling the qRegisterMetaType<type>(const char
*typeName). The type name should be the name of the class; for example:

qRegisterMetaType<MySpecialType>("MySpecialType");

APPENDIX B ■ CONTAINERS, TYPES, AND MACROS510

All types that you intend to use in this way must support a public constructor that does

not need any arguments, as well as a public copy constructor and a public destructor.

Macros and Functions
Qt comes with a number of macros and functions that provide common operations in a

convenient way. The functions and macros are divided into three parts: value processing

functions, functions for random numbers, and macros for iterations.

Treating Values

When dealing with values, you often find yourself looking for the largest value, the smallest

value, and so on. All these comparisons are available as functions:

• qMin(a, b): Returns the smaller value of a and b.

• qMax(a, b): Returns the larger value of a and b.

• qBound(min, v, max): Returns the value v if it is between min and max; otherwise,

returns min if it is less than min or max if it is larger than max. If min is greater than max,

the result is undefined.

The qAbs function is used to find the absolute value of the given argument.

You can use the qRound and qRound64 functions to round qreal values to integers. The

qRound function returns an int value, meaning that the result can differ between different

platforms because the size of int can vary. This potential platform-related issue is solved by

qRound64 because it returns a qint64 value that is of the same size on all platforms.

Random Values

Pseudorandom numbers are handled through the qrand and qsrand functions. The random

numbers are only pseudorandom because the same seed gives the same sequence of num-

bers. This means that it is important to use a varying value as the seed. A common value to

use is the current system time.

The qrand function returns the next integer number in the number sequence, while

qsrand is used to seed the sequence. Make sure to use qsrand before qrand if you do want to

have a predictable sequence of numbers.

The value returned from qrand is of the type int. This means that its size can vary between

platforms. A simple way to limit the range of a given random number is to use the modulus

operator combined with an offset. For example, to generate a random number between 15

and 30, you can use the following line of code:

int value = 15 + qrand()%16;

This code creates a random number between 0 and 15 using the %16 operation. It then

adds 15, moving the range to 15 through 30.

APPENDIX B ■ CONTAINERS, TYPES, AND MACROS 511

Iterating

When iterating over a list, the foreach(variable, container) macro is very handy. The

macro works with all Qt containers. For example, to iterate over a QStringList, use the follow-

ing line of code:

foreach(QString value, valueList)
doSomething(value);

When you want to iterate forever, it is common to use an empty for loop (for(;;)...) or

an everlasting while loop (while(true)...). To make your code easier to read, use the forever
macro instead. The following line shows how it can look in practice:

forever
doSomething();

If you don’t want Qt to add the foreach and forever keywords to your global namespace,

add the no_keywords value to your CONFIG variable in your project file. You can still use the

foreach macro through the Q_FOREACH name. The foreach macro is available as Q_FOREVER.

APPENDIX B ■ CONTAINERS, TYPES, AND MACROS512

Symbols
*.*All files () filter, 78
= assignment operator, 447
[] operator, 24, 27, 30
\ backslash, 89
^ XOR logical operator, 28
| pipe character, 368
hash character, 446, 462
< operator, 28
<< and >> redirect operators, 239, 241
<< operator, 21, 24
& ampersand, 64
++ operator, 23
++iterator, 22
+= assignment operator, 447
-- operator, 23
-= operator, 447
. decimal point, application translations and, 296
/ slash, 235
== operator, 28
: colon, 112, 235
;; semicolons, double, 76

A
a href tag (HTML), What’s this help tips and, 266
about.txt file, 275
aboutToShow() method, 108
absoluteDir() method, 236
absoluteFilePath() method, 236
abstract table model, 141
accept() method, 274
Acceptable strings, 87
acquire() method, 345
Action Editor (Designer), 37
actions, 34, 98

enabling/disabling, 99, 105
MDI and, 106

activated signals, combo boxes and, 71
activeDocument() method, 107
addArc() method, 196
addButton() method, 63
addDatabase() method, 379, 382
addDays() method, 474
addDockWidget() method, 117
addEllipse() method, painter paths and, 196
addImage() method, 395, 492
addImageClicked slot, 389
addItem() method, 50, 69, 71, 215
addItems() method, 69
addMonths() method, 474
addPermanentWidget() method, 268

addSeparator() method, 100
addStretch() method, 59
addTag() method, 394, 492
addTagClicked slot, 388
addText() method, 197
addWidget() method, 61, 67, 268
addYears() method, 474
ADD_CUSTOM_COMMAND command, 463
ADD_DEFINITIONS command, 458, 465
ADD_EXECUTABLE command, 458, 460, 464
ADD_LIBRARY command, 465
ADD_SUBDIRECTORIES command, 466
agile software development, 471
All files (*.*) filter, 78
allowedAreas property, 118
ampersand (&), label text and, 64
antialiasing, 214
app template, 35, 474
append() method, 166
appendChild() method, 245
appendRow() method, 126
application development, 33–54

agile software development and, 471
sketching/drafting for, 33

application icons, 114–115
application resources, 112–115
applicationDirPath() method, 277
applications, 33–54

CMake for, 457–468
creating, 11, 18–21, 103, 111
plugins for, 317–329
QMake for, 445–457
server, 425
technical, Qwt for, 502
threading, 334–336
translating, 279–295
unit testing and, 471–498

ApplyRole, 63
arcs, drawing, 191
arcTo() method, 197
arg() method, 62
ASCII art plugins, 304–317
ASCII characters, application translations and, 295
assignment operators, 447
Assistant, 275
Assistant Documentation Profile

(qtbookexample.adp), 275
associative containers, 507, 509
at() method, 24
atEnd flag, 347, 351
atEnd semaphore, 351

Index

513

attribute() method, 246
author tag, in XML, 244, 247
autoFillBackground property, 175, 214
available() method, 345

B
b tag (HTML), tooltips and, 259
backslash (\), 89
bevel line segment, 188
bindValue() method, 381
boundingRect() method, 222–228
box layouts, 60
boxes

button, 39
checkboxes, 66, 258
combo, 71
group. See group boxes
message, 62, 79
spin, 72, 483

br tag (HTML)
tooltips and, 259
What’s this help tips and, 263

broadcastLine() method, 440
brushes

for drawing, 198, 215
for painting, 184, 196

buddy widgets, 64
buffers, circular, 347
button boxes, 39
button presses, 34
buttonClicked() method, 159, 360
buttons, 39, 102, 205

drawing, 205–210
for keypads, 157
message boxes and, 80
radio, 67

C
C++

moving to Qt and, 6–13
signals/slots and, 13–21

calculations, SQL and, 377
calendar widget, 73
Cancel button, 103, 271
canRead() method, 309, 314, 316
cap() method, 91
capabilities() method, 306, 316
catching events, 164–171
CenterHandle role, 221
central widget, 96
changeEvent() method, 294
channels, processes and, 363, 368
char* (C++), 307
checkable property, 62, 68
checkboxes, 66, 258
checkState property, 66
children() method, 147
circles

drawing, 191
handles for manipulating, 220

circumflex (^), 89
classes

interface, 303
naming conventions for, 6
signals/slots and, 13

CleanLooks style, 63
cleanup() method, 472
cleanupTestCase, 472
clear() method, 44
clearMessage() method, 267
clicked() method, 44, 62, 159
client protocols, 403–424
ClientDialog class, 405
clients

FTP, 403, 404–417
HTTP, 417–424
TCP, 429–435
UDP, 437

ClockLabel class, 162
clocks, 162, 298
close() method

database connections and, 380
HTTP clients and, 422

closeAction() method, 106
closeActiveWindow() method, 106
closeAllWindows() method, 111
closeAssistant() method, 277
closeEvent() method, 101, 104, 111, 165, 167
CMake, 457–468

complex projects and, 466
Qt modules and, 461
running, 459

cmake command, 460, 464
CMakeFiles directory, 460
CMakeCache.txt file, 460
CMakeLists.txt file, 457, 460, 466

Unix platforms and, 464
Windows applications and, 462

collections, 21–31
colon (:), 112, 235
color property, lines and, 188
colorMode property, 228
colors, 85, 184
column headers, 401
columnCount() method, 141
combo boxes, 71
command-line shell, processes and, 368
command prompt, 5
commandFinished() method, 404, 407
comments, 289, 446
commercial license for Qt, 3
completeBaseName() method, 236
completeSuffix() method, 236
composite widgets, 157–176
configure command, 4
configure script, 4
conical gradients, 198
connect() method, 16
connected() method, 432
connecting signals/slots, 16

■INDEX514

Connection Editor (Designer), 36, 45
connectToHost() method

FTP clients and, 407
TCP clients and, 431

consumers, 347–352
containers, 507
contains() method, 27
context menus, 168
Context panel (Linguist), 281
contextMenuEvent() method, 165
coordinates, drawing and, 184, 200–204
copyAvailable() method, 99, 110
count() method, 29
count property, 151
counting, protection for, 339
CREATE TABLE command, 372
create() method, 306, 308
createActions() method, 99, 106
createDocks() method, 117
createEditor() method, 132
createElement() method, 244
createIndex() method, 147
createItem() method, 217
createMenus() method, 118
createTextNode() method, 244
createWidget() method, 181
creating

applications, 11, 18–21, 103, 111
ASCII art plugins, 304–317
delegates, 129
dialogs, 55–62
documents, 101, 110
FTP clients, 404–417
HTTP clients, 417–424
models, 124, 140–153
Qt applications, 11, 18
read-only items, 127
server applications, 425
tables, 372
TCP clients, 429–435
TCP servers, 425–429
tooltips, 257–262
UDP clients, 437
UDP servers, 440
views, 124, 129–140
What’s this help tips, 263–267
widgets, 58, 157–182
wizards, 269–275
XML files, 244

critical message, 80
critical() method, 80, 102
CRUD (Create, Read, Update, and Delete), 372, 382
cubicSubpath() method, 197
cubicTo() method, 197
currencies, application translations and, 297
current() method, 235
currentCommand() method, 407
currentFilename variable, 250, 252
currentIndex property, 71, 274

currentIndex() method, 137
currentIndexChanged() method, 71
currentItem() method, 50
currentItem property, 69
currentItemChanged() method, 69
currentText property, 71
currentTextChanged() method, 69, 321
custom types, threads and, 356
customizing widgets, 157–182

D
dashPattern property, lines and, 188
data-driven testing

dates and, 479–482
keyboard interaction and, 487

data streams, 241
data types, 241
data() method, 137, 141, 246
databases, 371–402

connections for, 378, 382
database data, working with, 372–375
image collection sample application and,

382–397
passing queries and, 380
Qt and, 37, 378–382
test databases and, 378

dataChanged() method, 139
dataPending() method, UDP clients and, 437
dataReadProgress() method, 423
dataSendProgress() method, 423
dataTransferProgress() method, 405, 414
date and time, 73

application translations and, 298
checking/updating, 162
clocks and, 162
precision timing and, 163
unit testing and, 474–482

deadlocks, threads and, 345
debug scope, 450
debugging messages, 9
decimal point (.), application translations and, 296
delegate class, 123
delegates, 124, 129–135
DELETE command, 375
deleteLater() method, 427, 429
deleting

parents, 7
table data, 372
tables, 372

Dependency Walker, 329
dequeue() method, 26
design

help functionality and, 257
testing widgets and, 182
tooltips and, 260

Designer, 35–54
buddy editing mode and, 64
components of, 36
dialogs, creating with, 55

■INDEX 515

Find
it

faster
at

h
ttp

://su
p

e
rin

d
ex.a

p
re

ss.co
m

/

Qt 4 and, 47
widgets, integrating with, 176–182
wizards and, 269

designer command, 36
designer command-qt4 command, 36
getDouble() method, 85
desktop files, 452
development environment for Qt

Edyuk and, 505
installing, 3
QDevelop class and, 504

device() method, 309
devices, plugins and, 304–315
dialog forms, 56
dialogs, 33, 35–53, 75–86

creating, 55–62
for file manipulation, 75–79
group boxes for, 68
for message manipulation, 79–85

digital clocks, 162, 298
dir() method, 236
direct inheritance, 50
directories

listing, 236
opening, 79

Discard button, 102
disconnectClicked() method, FTP clients and, 411
disconnected() method, 432
disconnectFromHost() method, 428
dockable widgets, 115
docked windows mode, for Designer, 36
document object model (DOM), 244–248
document tag, in XML, 243
documentElement() method, 246
documents

arranging in windows, 95–112
closing, 101, 110
creating, 101, 110
definition of in Qt, 95
MDI and, 104

DocumentWindow class, 104, 111
DOM (document object model), 244–248
domXml() method, 180
done() method, 422
doNext() method, 271
doPrev() method, 271, 274
drawArc() method, 191
drawChord() method, 191
drawContents() method, 195
drawControl() method, 207
drawEllipse() method, 191, 197
drawing, 183–233

basic shapes and, 184–200
brushes for, 198, 215
graphics view framework and, 215–232
lines, 186
painting and, 204–215
paths, 196
round shapes, 191

square shapes, 189
text, 193–196

drawLine() method, 186
drawLines() method, 186
drawPath() method, 197
drawPie() method, 191
drawPolygon() method, 197
drawPolyline() method, 186
drawRect() method, 131, 189, 197
drawRoundRect() method, 189
drawText() method, 193

painter paths and, 197
vs. QTextDocument class, 195

drivers, database connections and, 378
drives, listing, 236
drives() method, 235
DROP TABLE command, 372
.dylib files, 331
dynamicSortFilter property, 155

E
echoMode property, 65, 82
editable property, combo boxes and, 71
EditDialog class, 50
editing

custom, 132
dialogs, 35, 45
models, 150
widgets, 132

editItem() method, 51
editTextChanged signal, 71
Edyuk, 505
elementsByTagName() method, 247
ellipses

drawing, 191
handles for manipulating, 220

emit keyword, 15
enableActions() method, 105–107, 110
enabled property, 272
endElement() method, 249
enqueue() method, 26
enterEvent() method, 165, 167
error() method, 364, 432
errors, TCP clients and, 433
errorString() method, 422
escaping characters, 89
event-driven applications, 34
event filters, 132, 134, 170
event handlers, 164–170, 173
event logs, 164, 166
event loop, 19
event() method

tooltips and, 260
What’s this help tips and, 264

eventFilter() method, 170, 264
events, catching, 164–171
EventWidget class, 164
exec() method, 20, 34, 50, 53

queries and, 380
threads and, 359

■INDEX516

Expanding policy, 57
exporting widget plugins, 181

F
F1 key, 257, 275
factory interfaces, plugins and, 326–329
fieldName() method, 380
fileName() method, 236
fileNew() method, 101, 110
fileOpen() method, 251
filePath() method, 236
files, 235–255

dialogs for, 75–79
finding/finding information about, 238
FTP downloads and, 412
HTTP downloads and, 419–424
loading, 250–255
main window and, 250–255
opening, 75
saving, 77, 250–255

fileSaveAs() method, 254
fillRect() method, 131
filter() method, 237, 318, 326, 329
filterAcceptsColumn() method, 155
filterAcceptsRow() method, 155
filterChange() method, 326
filterChanged() method, 321, 329
FilterDialog class, 320, 325
filteredLabel label, 322
filtering

events, 132, 134, 170
images, 317–323
models, 153

FilterInterface class, 318–328
find() method, iterators and, 30
findFilters() method, 321, 325, 328
findNext() method, 23
findPrevious() method, 23
findtr perl script, 292
finished() method, 365, 428
firstChild() method, 246
Fixed policy, 58
flags() method, 141, 143, 151
flat property, 176
floating-point values, getting from users, 85
focusInEvent() method, 165
focusOutEvent() method, 165
folders, listing, 236
font color tag (HTML), tooltips and, 259
font size tag (HTML), tooltips and, 260
fontMetrics property, 206
fonts

combo box widget for, 71
dialog for choosing, 86

for loops, iterators and, 22
foreach macro, 21, 512
foreign languages, localization for, 279–30

on-the-fly translations and, 292
strings and, 281, 285–295

format property, progress bar and, 74
forms, 35, 39–47
fromCmyk() method, 184
fromHsv() method, 184
fromStdString() method, 11
fromString() method, 298
FTP clients, 403

changing directories and, 411
connecting to/disconnecting from, 407–411
creating, 404–417
downloading files from, 412
listing files and, 407–410

ftpFinished() method, 407, 410, 413, 415
ftpListInfo() method, 410
ftpProgress() method, 414
function pointers, 15
functions, 511

G
geometry property, 176
get() method, 421
getClicked() method

FTP clients and, 414
HTTP clients and, 419, 421
TCP clients and, 431
URLs and, 417

getExistingDirectory() method, 79
getFileList() method, 410, 413
getFont() method, 86
getIds() method, 394, 492
getImage() method, 396, 492
getInteger() method, 84
getItem() method, 83
getOpenFileName() method, 75, 251
getOpenFileNames() method, 77
getSaveFileName() method, 77, 253

FTP clients and, 414
HTTP clients and, 421

getTags() method, 393, 492
getter methods, 6, 59, 392
getText() method, 82
globalPos() method, 168
gmake command, 12
gotEvent() method, 164, 166
grabKeyboard() method, 168
grabMouse() method, 169
gradients, painting and, 198
graphical user interface. See UI
graphics, classes for, 183
graphics view framework, 215–232
grep command, missing strings and, 292
grid layouts, 60
grids, radio buttons and, 67
group boxes, 55, 68

radio buttons and, 67
tooltips for, 258

group() method, 181

■INDEX 517

Find
it

faster
at

h
ttp

://su
p

e
rin

d
ex.a

p
re

ss.co
m

/

H
handleFinish() method, 365
handles, for manipulating shapes, 220–228
hash character (#), for comments, 446, 462
hash keys, 28
hash values, 509
hashes, 27–29, 509
hasNext() method, 22
hasPendingDatagrams() method, 438
hasPrevious() method, 23
head() method, 26
headerData() method, 141, 146
headers, 127, 141, 146, 401
heightForWidth() method, 173
Hello Qt World!, 12
help functionality, 257–278

application translations and, 301
help documentation and, 275

HelpRole, 63
hideEvent() method, 165, 167
hideText() method, 265
home() method, 235
horizontal layouts, 59
horizontal sliders, 74
hostFound() method, 432
href property, 265
HTML, 259, 263, 266

help documentation and, 275
setHtml() method and, 271
tooltips and, 259

HTTP clients, 403
creating, 417–424
downloads and, 419–424

HttpDialog class, 419
httpDone() method, 422
hyperlinks, adding to What’s this help tip text, 264

I
i tag (HTML), tooltips and, 259
i18n (internationalization), 279
icon() method, 180
icons, 112, 114–115
Ignored property, 58
ignoreMessage() method, 494, 497
image collection (sample) application, 382–397
image plugins, 304–317
ImageCollection class, 384–397, 492
ImageDialog class, 384–391, 397
images. See also QImage class

application translations and, 296
broadcasting via UDP, 436–442
classes for, 183
filtering, 317–323
loading, 304
reading/writing, 309–315, 316
saving, 304, 316
sending via TCP, 425–435
testing, 492–496
tooltips, inserting into, 260

img tag, 260
INCLUDE command, 458
includeFile() method, 180
INCLUDE_DIRECTORIES command, 458, 468
incomingConnection() method, 426
index() method, 147
indexOf() method, 149
information message, 80
information() method, 62, 80, 102
InfoWidget class, 116
inheritance, 7, 50
init() method, 472
initialize() method, 179
initTestCase, 472
input dialog, 82
INSERT INTO command, 373
insert() method, 29
insertBefore() method, 247
insertMulti() method, 30
INSTALL command, 464
install sets, 453
installEventFilter() method, 171
installing development environment for Qt, 3
installTranslator() method, 284
integer values, getting from users, 84
interface

main window and, 95–120
multiple document (MDI), 103–112
single document (SDI), 96–103, 111

interface classes, 303
Intermediate strings, 87
internalPointer() method, 147
internationalization, 279–301
Invalid strings, 87
isAlpha() method, 295
isChecked() method, 66, 207

buttons and, 67
group boxes and, 68

isContainer() method, 180
isDigit() method, 295
isDir() method, 236
isDown() method, 207
isElement() method, 246
isEmpty() method, 26
isExecutable() method, 236
isFile() method, 236
isFinished() method, 335
isHidden() method, 236
isInitialized() method, 179
isLoaded() method, 331
isReadable() method, 236
isRunning() method, 335
isSafeToClose() method, 102, 104, 254
isSelect() method, 380
isSpace() method, 295
isSymLink() method, 236
isText() method, 246
isValid() method, 380, 417
isWindowModified(), 102
isWritable() method, 236

■INDEX518

item() method, 69
itemChange() method, 222
items

custom, 220–228
graphics view framework and, 215
making read-only, 127

itemSelectionChanged() method, 69, 387, 405, 411
iterator++, 22
iterators, 21–31

naming conventions for, 22
QMultiMap class and, 30

J
Java-style iterators, 22
join() method, 25
joinStyle property, lines and, 188

K
KDE project, 445, 457
keyboard events, 167
keyboard shortcuts

for actions, 99
for labels, 64

keypads, 157–162
keyPressEvent() method, 165, 167
keyReleaseEvent() method, 165, 167
keys() method, 27, 306, 308
Kitware’s CMake. See CMake

L
l10n (localization), 279
label text, 39, 57, 64, 83, 137
labels, 19, 39, 55, 57–65, 137. See also QLabel class

custom policies and, 59
buddies and, 64

language codes, 280
languageChange() method, 294
lastError() method

database connections and, 379
database queries and, 380

layouts, 39
box, 60
grid, 60
vertical/horizontal, 59
widgets and, 55–93

LD_LIBRARY_PATH environment variable, 5
leaveEvent() method, 165, 167
lessThan() method, 154
li tag (HTML), tooltips and, 260
libraries

CMake and, 465
QMake and, 453

license for Qt, 3
line edits, 55, 64, 65
linear gradients, 198
lines, drawing, 186
lineTo() method, 196
Linguist tool, 281, 285
linkClicked() method, 265

linked lists, 25, 507
LinkFilter class, What’s this help tips and, 264
Linux platform

CMake and, 459
installing Qt on, 3
QMake and, 452

Linux Standard Base (LSB), 452
list dialogs, 35–53
ListDialog class, 48
listInfo() method, 404, 410
lists, 21–31, 69, 123, 507

classes for, compared, 25, 124
input dialog and, 83
removing items from, 69
single-column, 128
special, 25–31

load() method, 304, 316
loadFile() method, 250
localhost, 429
localization, 279–301
lock() method, 337, 339
lockForRead() method, 341
lockForWrite() method, 341
lrelease tool, 283
LSB (Linux Standard Base), 452
lupdate tool, 281, 283, 287

M
Mac OS X platform

CMake and, 459
icons and, 115
installing Qt on, 3
macx scope and, 450
QMake and, 451

macros, 511
macx scope, 450
main function, 34, 53
main property, for widgets, 44
main window, 95–120

files and, 250–255
MDI and, 104
SDI and, 105

Makefiles, 11
map() method, 159
mapped() method, 106, 159
maps, 27–29, 509
mathematical functions, SQL and, 377
Maximum policy, 58
maximum property

progress bar and, 74
sliders and, 73
spin boxes and, 72

MaximumExpanding policy, 58
maximumSize property, 57, 59
maxLength property, 65
MDI (multiple document interface), 103–112
MdiWindow class, 111
menuBar() method, 100
menus, 108
message boxes, 62, 79

■INDEX 519

Find
it

faster
at

h
ttp

://su
p

e
rin

d
ex.a

p
re

ss.co
m

/

messages
dialogs for, 79–85
in status bar, 267

meta-characters, 89
meta-object compiler (moc), 15
meta-objects, 14, 18
methods

getter, 392
HTTP clients and, 423
naming conventions for, 6
pure abstract, 136
support, 389

Microsoft Windows systems. See Windows platform
mingw.exe (Minimalist GNU for Windows), 5
Minimum policy, 58
minimum property

progress bar and, 74
sliders and, 73
spin boxes and, 72

minimumSize policy, 269
minimumSize property, 57, 59
miter line segment, 188
mnemonics, labels and, 64
moc (meta-object compiler), 15
model-view framework, 123–156
model-view-controller (MVC) design pattern, 123
models, 123–156

creating, 124
custom, 140–153
editing, 150
populating, 125
proxy, 153
read-only table, 141
sorting/filtering, 153
source, 153, 155
standard item, 125, 127
tree, 144

modules, 449, 461
mouse events, 165, 168, 211, 222

cautions for, 169
custom widgets and, 210

mouse wheel, 169, 173
mouseDoubleClickEvent() method, 165, 169
mouseMoveEvent() method, 165, 169, 211
mousePressEvent() method, 165, 169, 211, 222
mouseReleaseEvent() method, 165, 169, 211, 222
mouseTracking property, 169, 212
moveTo() method, 196
msleep() method, threading application and, 334
multiline edits, 65
multiple inheritance, 50
multiple top-level windows mode, for Designer, 36
mutexes, 336–341, 350

mutex locker and, 339
semaphore and, 344

MVC (model-view-controller) design pattern, 123
MyHandler SAX handler class, 248
MySQL, 371, 378

N
name property, 43, 51
name() method, 180, 318, 326
names() method, 327
namespace collisions, avoiding, 47
naming conventions

for classes, 6
for iterators, 22
for methods, 6
name property and, 43
for translation files, 284
for widget plugin classes, 178

networking, 403–443
FTP clients and, 403, 404–424
TCP client/server and, 424, 425–435
UDP client/server and, 424, 436–442

Next button, 271
next() method, 22, 380
nextSibling() method, 246
nmake command, 12
normal widgets, 267
normalized structure, databases and, 377
NotRunning state, processes and, 364
number property, 51
numbers

application translations and, 296
validating, 87

numeric keypads, 157–162
NumericKeypad class, 158

O
objdump utility, 329
Object Inspector (Designer), 36, 46, 56
objectName property, 148, 176
ObjectTreeModel, 145
ol tag (HTML), tooltips and, 260
on_addButton_clicked() method, 49
open() method, 379
openAssistant() method, 277
OpenGL, 232
orientation property, 74, 228
originalLabel label, 322
OS X platform. See Mac OS X platform
outputFormat property, 228
outside source builds, 457

P
p tag (HTML), tooltips and, 259
pad spread, 198
pageSize property, 228
pageStep property, sliders and, 73
paint() method, 129
paintEvent() method, 165, 173, 204–215
painting, 183–233. See also drawing

basic shapes and, 184–200
brushes for, 184, 196
graphics view framework and, 215–232

parents, 7
parse() method, 248

■INDEX520

passwords, QLineEdit for, 65
pasteAction() method, 107
PATH environment variable, 5, 6
paths, 196, 235
patterns, painting and, 198
peek() method, 314
peekNext() method, 22
pen, for drawing, 184, 188

graphics views and, 215
paths and, 196

pendingDatagramSize() method, 438
permanent widgets, 267
phone book (sample) application, 33–43
Phrases panel (Linguist), 281
pictures. See images
pipe character (|), processes and, 368
pixelCompareImages() method, 492
pixelSize() method, 194
pixmaps, 183, 193
plotting, Qwt for, 502
plugin interfaces, 318
plugins, 177–182, 303–332

building/installing, 315
CMake project builds and, 465
how they work, 303
making static, 324
non-Qt, 329
QMake project builds and, 453
using, 316

plugins/imageformats directory, 315
pointers, 147
points, onscreen, 184, 193
popping the stack, 26
populateDatabase() method, 393
populating models, 125
port 9876, 429
port 9988, 436, 441
pos() method, 168, 262
Preferred policy, 57, 60
prepare() method, 381
preprocessor definitions, 458
Previous button, 271, 274
previous() method, 23
printing, graphics view framework and, 228–232
private slots, 13
processes, 333, 363–368
producers, 347–352
progress bar widget, 74
PROJECT command, 457
projects, 445–469

CMake and, 457–468
QMake and, 445–457

promotion, for integrating widgets with Designer,
176

Property Editor (Designer), 36
protected counting, 339
protected slots, 13
protocols, 403–424
proxy models, 153
pseudorandom numbers, 511

public slots, 13
pure abstract methods, 136
push buttons, 62
push() method, 26

Q
QAbstractButton class, 205
QAbstractItemDelegate class, 129, 134
QAbstractItemModel, 141, 145
QAbstractItemView class, 129, 135, 137
QAbstractListModel, 150
QAbstractProxyModel, 153
QAbstractScrollArea class, 137
QAbstractSocket class, 432
QAbstractTableModel, 141
QAction class, 98, 108, 110, 118
qApp pointer variable, 100
QApplication class, 8, 19, 34, 126

events and, 164
handles and, 221
MDI applications and, 111
plugins and, 316
printing and, 229
QCoreApplication class and, 425
SDI applications and, 103

QAssistantClient class, 277
QBrush class, 198
QBuffer class, 395, 428, 434
QButtonGroup class, 67
QByteArray class, 307, 316, 395, 428

TCP clients and, 434
UDP clients and, 438
UDP servers and, 441

QCalendarWidget class, 73
QChar class, 295
QCheckBox class, 66, 205
QColor class, 184
QColorDialog class, 85
QComboBox class, 71, 87
QCOMPARE macro, 476, 479, 498
QConicalGradient class, 198
QCoreApplication class, 316, 425
QDataStream class, 241

UDP clients and, 438
UDP servers and, 441

QDate class, 474–482
QDateEdit class, 73
QDateTimeEdit class, 73
qDebug() method, 9, 334, 339
QDesignerCustomWidgetInterface class, 178
QDESIGNER_WIDGET_EXPORT macro, 177
QDevelop class, 504
QDialog class, 35, 48, 51, 269
QDialogButtonBox class, 63
QDir class, 235, 238
QDockWidget class, 115
QDomCharacterData class, 246
QDomDocument class, 244
QDomElement class, 244
QDomNode class, 246

■INDEX 521

Find
it

faster
at

h
ttp

://su
p

e
rin

d
ex.a

p
re

ss.co
m

/

QDomText class, 244
QDoubleSpinBox class, 73
QDoubleValidator class, 87, 92
QEvent class, 164–170

event filters and, 170
tooltips and, 261

QEXPECT_FAIL macro, 493, 497
qFatal() method, 9, 440
QFETCH macro, 480, 487
QFile class, 238
QFile pointer, 405
QFileDialog class, 75, 79, 251
QFileInfo class, 235, 238
QFocusEvent class, 164
QFont class, 194, 206
QFontComboBox class, 71
QFontDialog class, 86
QFontMetrics class, 194, 206
QFtp class, 359, 403, 404–417
QGradient class, 198
QGraphicsEllipseItem class, 216, 220
QGraphicsItem class, 215, 261
QGraphicsLineItem class, 217
QGraphicsPathItem class, 217
QGraphicsPixmapItem class, 217
QGraphicsPolygonItem class, 216
QGraphicsRectItem class, 215, 220
QGraphicsScene class, 215, 221
QGraphicsSimpleTextItem class, 216
QGraphicsSvgtIem class, 217
QGraphicsTextItem class, 217
QGraphicsView class, 215, 232, 261
QGridLayout class, 61
QGroupBox class, 68
QHash class, 28, 30, 509
qHash function, 28
QHBoxLayout class, 59
QHelpEvent class, 261
QHideEvent class, 167
QHttp class, 359, 403
QIcon class, 99, 112
QImage class, 183, 304, 312, 316, 327, 428

filtering images and, 318
storing images and, 395
TCP clients and, 434
UDP clients and, 437
UDP servers and, 440

QImageIOHandler class, 304, 309
QImageIOPlugin class, 304, 316
QImageReader class, 304, 316

image collection sample application and, 396
TCP clients and, 434

QImageWriter class, 304, 316
image collection sample application and, 395
TCP clients and, 428

QInputDialog class, 82
QIntValidator class, 87
QIODevice class, 305, 315, 397, 428, 432
QKeyEvent class, 167, 170

QLabel class, 19, 64, 135, 137, 161, 320
digital clocks and, 162
promoting widgets and, 176
TCP clients and, 430
UDP clients and, 437

QLibrary class, 329, 331
QLibraryInfo class, 277
QLinearGradient class, 198
QLineEdit class, 19, 21, 65, 82, 96

keypads and, 157
TCP clients and, 430
validating user input and, 87

QLinkedList class, 25, 507
QList class, 21, 24, 507
Qlist<QString>, 25
QListIterator class, 22
QListView class, 124
QListWidget class, 69, 124, 320, 328
QListWidgetItem class, 69
QLocale class, 284, 296–300
qm files, 280
QMainWindow class, 268
qmake command, 12, 19, 445, 449
qmake-project command, 323
QMake tool, 11, 18, 47, 445–457

complex projects and, 454
Qt modules and, 449
running, 449

QMap class, 27–29, 321, 509
QMessageBox class, 62, 80, 102
QMetaObject class, 15, 148
QMetaType class, 510
QModelIndex class, 137
QMouseEvent class, 165, 167, 169
QMultiHash class, 29, 31, 509
QMultiMap class, 29, 509
QMutableListIterator, 23
QMutex class, 337, 341, 339
QMutexLocker class, 339
qName tag, 250
QnnClassName naming convention, 7
QObject class, 7, 21, 145

application translations and, 288
event filters and, 170
plugins and, 303, 318
threads and, 359
UDP servers and, 440

<QObject> header file, 7
qobject_cast() method, 303, 322, 325
QPaintDevice class, 183
QPainter class, 131, 183–233

custom widgets and, 175
text and, 193

QPainterPath class, 196
QPaintEvent class, 167
QPicture class, 183
QPixmap class, 183, 193, 431
QPluginLoader class, 303, 321, 323, 328–332
QPoint class, 186
QPointF class, 186

■INDEX522

QPolygon class, 187
QPolygonF class, 216
QPrintDialog class, 229
QPrinter class, 228–232
QProcess class, 363–368
QProgressBar class, 74
QPushButton class, 34, 62, 205, 208, 269

FTP connections and, 407
TCP clients and, 430

QPushButtons class, keypads and, 157
QQueue class, 26, 508
QRadialGradient class, 198
QRadioButton class, 67, 205
qrc file extension, 112, 448
QReadLocker class, 341
QReadWriteLock class, 341
QRect class, 186, 189, 207
QRectF class, 186
QRegExp class, 88
QRegExpValidator class, 91
qRegisterMetaType() method, 356
QScrollBar class, 74
QSemaphore class, 345
QSet class, 29, 508
QShowEvent class, 167
QSignalMapper class, 106, 159
QSignalSpy class, 490
QSize class, 206
QSizePolicy class, 59
QSlider class, 73, 134
QSortFilterProxyModel, 153
QSpacerItem, 59
QSpinBox class, 72, 483
QSplitter class, 124
QSqlDatabase class, 378, 382, 392
QSqlError class, 379
QSqlQuery class, 380, 382
QSqlQueryModel, 399
QSqlRecord class, 380
QSqlRelation class, 400
QSqlRelationalDelegate class, 401
QSqlRelationalTableModel, 400
QSqlTableModel, 399
QStack class, 26, 508
QStandardItem class, 126
QStandardItemModel, 125, 139, 153
QStatusBar class, 267
QStreamWriter class, 428
QString class, 10, 20, 110

application translations and, 295
file dialogs and, 77
threads and, 353–359

QStringList class, 25, 83, 128, 364, 508
file dialogs and, 77
image collection sample application and, 389,

393
image file formats and, 308
updating plugins and, 327

QStringListModel, 128
QStyle class, 207

QStyleOption class, 130
QStyleOptionButton class, 207
Qt

commercial license for, 3
creating applications in, 11, 18–21, 103, 111
databases and, 371, 378–382
development environment installation for, 3
naming conventions and, 6
unit testing and, 472

QT += xml, 244
Qt 4.2.2 Command Prompt (Windows), 11
Qt by Trolltech folder, 5
Qt command prompt, 5
QT4_ADD_RESOURCES command, 460
QT4_WRAP_CPP command, 458, 460
QT4_WRAP_UI command, 458, 460
QTableView class, 124, 144
QTableWidget class, 124
qtbookexample.adp (Assistant Documentation

Profile), 275
QTcpServer class, 426
QTcpSocket class 359, 427–432
QTEST macro, 480, 487, 498
QTEST_MAIN macro, 473, 476
QTextDocument class, 116, 195
QTextEdit class, 65, 95, 166, 271, 364

DocumentWindow class and, 104
events and, 164

QTextStream class, 239, 252, 309, 311
QThread class, 333, 359
QTime class, 298
QTimeEdit class, 73
QTimer class, 162, 211, 359, 440
QtModule class, 479–482
QtNetwork module, 403
Qtopia Core, 304
QTranslation class, 294
QTranslator class, 284, 292
qTranslator pointer, 294
QTreeView class, 124
QTreeWidget class, 124
QtSql module, 371, 378
QtTest module, 472–483, 491
QtXml module, 244
QT_TRANSLATE_NOOP macro, 288
QT_TR_NOOP macro, 288
qt_untranslated.ts file, 285
QUdpSocket class, 359, 436, 440
queries, databases and, 380
query model, 399
question mark button, in dialog title bar, 263
question() method, 80, 102
queued connections, custom types and, 356
queues, 26, 508
QUrl class, 417
QValidator class, 87
QVariant class, 142, 151, 381, 510
QVBoxLayout class, 60, 172
QVector class, 24, 508
QVERIFY macro, 475, 480, 498

■INDEX 523

Find
it

faster
at

h
ttp

://su
p

e
rin

d
ex.a

p
re

ss.co
m

/

QWARN macro, 489
qWarning() method, 9
QWhatsThisClickedEvent, 266
QWheelEvent class, 175
QWidget class, 158, 210, 269
QWidgetStack class, 269
QWorkspace class, 104, 111
QWriteLocker class, 341
Qwt, 502
QwtData class, 502
QXmlAttributes class, 250
QXmlContentHandler class, 248
QXmlDefaultHandler class, 249
QXmlInputSource class, 248
QXmlSimpleReader class, 248
Q_DECLARE_INTERFACE macro, 303, 326
Q_DECLARE_METATYPE macro, 357
Q_EXPORT_PLUGIN2 macro, 181, 308, 319, 325
Q_IMPORT_PLUGIN macro, 325
Q_INTERFACES macro, 303
Q_OBJECT macro, 14, 19, 48

R
radial gradients, 198
radio buttons, 67
random numbers, 511
rawCommand() method, 417
rawCommandReply() method, 417
read() method, 309, 311
read-only items, creating, 127
read-only table models, 141
read-write locks, 341–344, 350
readAll() method, 240, 252
readAllStandardError() method, 364
readAllStandardOutput() method, 364
readDatagram() method, 438
readLine() method, 240
readOnly property, 271
readyRead() method, 423

TCP clients and, 432
UDP clients and, 438

readyReadStandardError() method, 364
readyReadStandardOutput() method, 365
rect() method, 207
rectangles

drawing, 189
handles for manipulating, 220
text, drawing within, 193

redirect operators (<< and >>), 239, 241
reflected spread, 198
regular expressions, 88–92
reject() method, 271
relational databases, 371. See also databases
relational table model, 400
release scope, 450
release() method, 345
releaseKeyboard() method, 168
releaseMouse() method, 169
releasing translations, 280, 283

remove() method, HTTP clients and, 422
render() method, 231
repaint() method, 205
repeat spread, 198
requestFinished() method, 423
requestStarted() method, 423
reset() method, progress bar and, 74
resizeEvent() method, 165
resolve() method, 331
Resource Editor (Designer), 37
resource files, 112

CMake and, 460
qm files, adding to, 284
QMake and, 448

responseHeaderReceived() method, 423
restore() method, 131
retranslateUi function, 49
right-click menus, 168
RightHandle role, 221
roles, 63, 141
root() method, 235
round shapes, drawing, 191
rounded line segment, 188
rowCount() method, 141, 151
run() method

sending images and, 427
threading application and, 334

Running state, processes and, 364

S
save() method, 304, 316
saveFile() method, 250, 253
SAX (Simple API for XML), reading XML files with,

244, 248
scenes, graphics view framework and, 215
scopes, 450
scroll bars, 74, 137
SDI (single document interface), 96–103, 111
sdi.pro project file, 281
SdiWindow class, 103, 117, 250
SELECT command, 373

joining tables and, 375
mathematical functions and, 377

selectedItems().count() method, 70
selectedTags() method, 385, 389
selection model, 126
selection() method, 137
selectionBehavior property, 128
selectionChanged() method, 139, 405, 411
selectionMode property, 69, 128, 411
selections, limiting, 127
selectionUpdated() method, FTP clients and, 415
semaphores, 344–352
semicolons, double (;;), 76
separatorAction() method, 106
sequences, 507
serialized data, 241
server applications, 425
serverPort property, 426

■INDEX524

servers, 425
TCP, 425–429
UDP, 440

SET command, 458, 461
setAttribute() method, 214
setBrush() method, 184, 198
setColorAt() method, 199
setContentHandler() method, 248
setData() method, 135, 150, 152
setDevice() method, 309
setDirection() method, 60
setEditable() method, 127
setEditorData() method, 132, 134
setEnabled() method, 271
setFileName() method, 238, 331
setFilter() method, 237
setFlag() method, 223
setHeaderData() method, 401
setHorizontalHeaderItem() method, 127
setHost() method, 421
setHtml() method, 271
setItem() method, 126
setMapping() method, 159
setModel() method, 126
setModelData() method, 132, 135
setNameFilters() method, 238
setPen() method, 184
setPixel() method, 438
setPixmap() method, 431
setPlainText() method, 252
setRelation() method, 400
sets, 29, 508
setScene() method, 216
setSelectionModel() method, 126
setShortcut() method, 99
setSocketDescriptor() method, 428
setSourceModel() method, 153
setSpread() method, 198
setStatusTip() method, 99
setStringList() property, 128
setter methods, 6, 14, 59
setText() method, 15, 20, 65, 159
setTexture() method, 200
setTextWidth() method, 195
setTooltip() method, 258
setupUi() method, 49, 321
setUser() method, 421
setValidator() method, 87
setValue() method, 23, 74, 134, 172, 174
setVersion() method, 241
setVerticalHeaderItem() method, 127
setWhatsThis() method, 263
setZValue() method, 220
shell, processes and, 368
showEvent() method, 165, 167
showLink() method, 265
showMessage() method, 267
showPage() method, 277
showText() method, 362
SIGNAL macro, 16

signal mappers, 106
Signal/Slot Editor, 36, 45
signals, 13–21, 44

combo boxes and, 71
connecting, 16
HTTP clients and, 423
processes and, 363–368
testing, 490
threads and, 352–359

Simple API for XML (SAX), reading XML files with,
244, 248

single-column lists, 128
single inheritance, 50
singleStep property, 72, 73
size hints, 57
size policies, 57

custom, 59
layouts and, 61

sizeHint() method, 129, 173, 205, 211, 269
sizePolicy property, 57, 59
slash (/), paths and, 235
sleep() method, threading application and, 334
sliders, 39, 73, 74
SLOT macro, 16
slots, 13–21, 44

central widget and, 96
connecting, 16
image collection sample application and,

385–389
main window and, 96
processes and, 363–368
threads and, 352–359

.so files, 330
socket descriptors, 427
sockets, 424–442
sort() method, 153
sorting models, 153
sortingEnabled property, 153
SortOnSecondModel, 154
source models, 153, 155
sourceModel() method, 155
specialized containers, 507
spin boxes, 72, 483
split() method, 25
splitters, 124
spread policies, 198
SQL (Structured Query Language), 371–382,

398–401
SQL module, threads and, 359
SQLite, 371

connection for, 379
image collection sample application and,

382–397
square brackets([]), 89
square shapes, drawing, 189
stacks, 26, 508
standard error channels, processes and, 363
standard input channels, processes and, 363
standard item models, 125, 127
standard output channels, processes and, 363

■INDEX 525

Find
it

faster
at

h
ttp

://su
p

e
rin

d
ex.a

p
re

ss.co
m

/

standard template library (STL), 10
started() method, 364
startElement() method, 249
Starting state, processes and, 364
stateChanged() method, 66, 364, 423, 432
static placement, 55
staticInstances() method, 325
status bars, 267–269, 301
statusBar() method, 101, 267
STL (standard template library), 10
STL-style iterators, 22
streams, 239–243
stretch factors, 60
string lists, 128, 508. See also QStringList class
strings. See also QString class

passing between threads, 353–356
regular expressions and, 88–92
tr() method and, 98
translations and, 281, 285–295
validating, 87, 91

Structured Query Language (SQL), 371–382,
398–401

style options, 130
style property, 188, 207
styles, for drawing, 206
support methods, 389
supportedImageFormats() method, 316
switch operation, 273
switch statement, 81
synchronizing threads, 336–344
system() method, 284

T
tab order, 45
table model, 399
tables, 123

joining, 375
relational databases and, 371
table model for, 399

tagName() method, 246
tags, testing, 492–496
tagsChanged slot, 387
takeItem() method, 70
TARGET_LINK_LIBRARIES command, 458, 467
TCP clients, 429–435
TCP protocol, 424–435

reliability and, 424
sending images via, 425–435

TCP servers, 425–429
tcpError() method, 435
technical applications, Qwt for, 502
temp() method, 235
template classes, 21
test vectors, 479
testAttribute() method, 215
testClicks, 483–491
testing, 471–498

delegates, 131
tags, 492–496

testKeys, 483–491

testSetting, 483–491
text

application translations and, 295
buttons, drawing text within, 207
drawing, 193–196
label text and, 39, 57, 64, 83, 137
formatting, 195
rectangles, drawing text within, 193

text devices, 339
text documents, 195
text editor, 96
text images, 306
text property, 43, 176
text streams, 239, 309
text() method, 65, 160
textChanged() method, 14, 19, 65, 159
TextImageHandler class, 306, 309, 314
TextImageIOHandler class, 308
TextImagePlugin class, 306, 309
textures, painting and, 198, 200
textVisible property, progress bar and, 74
this pointer, 50
thread affinity, 359
threads, 333–362

deadlocks and, 345
main, 333
pitfalls of, 359
processes and, 333, 363–368
sharing resources among, 344–352
signals/slots and, 352–359
synchronizing, 336–344
terminating, 336
thread affinity and, 359

ti files, 306
tileAction() method, 106
time. See date and time
timeout() method, 162, 211, 440
timers, 162, 211
toBool() method, 381
toDouble() method, 88, 92, 381
toDoublt() method, 297
toElement() method, 246
toFloat() method, 296
toggled() method, 62, 66, 98

buttons and, 67
checkboxes and, 271
group boxes and, 68
on-the-fly application translations and, 292

toggleViewAction() method, 118
toInt() method, 88, 131, 296, 381
tools. See utilities
ToolTip events, 260
toolTip() method, 180
tooltips, 180, 257–262

application translations and, 301
images, inserting into, 260

top() method, 26
TopHandle role, 221
toStdString() method, 11
toString() method, 245, 296, 298, 381

■INDEX526

toText() method, 246
tr() method, 98, 281
translate() method, 287
translateUi() method, 293
translating applications, 279–295

on-the-fly translations and, 292
strings and, 281, 285–295

transmission control protocol. See entries at TCP
trees, 123, 144
triggered() method, 98, 106
tryAcquire() method, 345
tryLock() method, 337
ts files, 280
typedef, 22
types, 509

U
UDP clients, 437
UDP protocol, 424, 436–442, 424
UDP servers, 440
UI (user interface), 33

actions and, 34
FTP clients and, 406
HTTP clients and, 419
image collection sample application and,

384–392
QCoreApplication class and, 425
server applications and, 425
TCP clients and, 430
threads and, 360
widgets and, 55–93

uic application, 363
ul tag (HTML), tooltips and, 260
UML (Unified Modeling Language), 34
Unicode characters, application translations and,

295
Unified Modeling Language (UML), 34
unit testing, 471–498

data driven, 479–482, 487
handling deviations and, 497
structure of, 472

Unix platforms
CMake and, 459, 464
drives and, 235
icons and, 115
installing Qt on, 3
QMake and, 452
QPixmap class and, 184

unix scope, 450
unlock() method, 337, 339
UPDATE command, 375
update() method, 174, 205
updateCurrentImage() method, 385, 387, 390
updateEditorGeometry() method, 132
updateImages() method, 385, 387, 390
updateTags() method, 385, 388, 390
updateText() method, 136, 139
updateTime() method, 162
updateWindowList() method, 108
URLs, parsing/validating, 417

use cases, in UML, 34
user datagram protocol. See entries at UDP
user interface. See UI
users

asking questions of, 80
interaction with, testing, 483–490
selections by, limiting, 127
validating input from, 86–92

usleep() method, threading application and, 334
UTF8 format, application translations and, 295
utilities

CMake. See CMake
Dependency Walker, 329
Designer. See Designer
Linguist, 281, 285
lrelease, 283
lupdate, 281, 283, 287
mingw.exe, 5
moc (meta-object compiler), 15
objdump, 329
QMake tool. See QMake
third-party, 501–505

V
validating user input, 86–92
validators, 87–88, 91
value() method, 27, 174, 381
valueChanged() method, 172

sliders and, 74
spin boxes and, 72
testing, 490

values, getting from users, 84
values() method, 29
values processing functions, 511
variables, QMake and, 446
vectors, 24, 508
version control systems, outside source builds and,

457
versioning, 241
vertical layouts, 59
vertical sliders, 74
vertical spacers, 55
View menu, dockable widgets and, 118
view port, 137
viewport property, 232
viewportEvent() method, 261
views, 124–140

creating, 124
custom, 129–140
graphics view framework and, 215

W
wait() method, 335
waitForDisconnect() method, 428
warning message, 80
warning() method, 80, 102
What’s this help tips, 263–267, 301
whatsThis() method, 180
WhatsThisClicked events, 264

■INDEX 527

Find
it

faster
at

h
ttp

://su
p

e
rin

d
ex.a

p
re

ss.co
m

/

wheel events, 175
wheelEvent() method, 165, 173, 175
white space, 51
widget box (Designer), 36
widget plugin classes, 178
widgets, 19, 55–93

buddy, 64
central widget and, 96
composite, 157–176
creating/customizing, 157–182
custom, 171–176, 210–215
dockable, 115
drawing, 183–204
image collection sample application and,

385–389
integrating with Designer, 176–182
painting, 204–215
properties for, 43
size policies for, 57
status bar, adding to, 267
unit testing for, 483–490

width property, lines and, 188
win32 scope, 450
Window menu, 108
windowActivated() method, 105
windowModified property, 98, 105
windows, arranging documents in, 95–112
Windows platform

CMake and, 459, 462
drives and, 235
icons and, 114
installing Qt on, 5
QMake and, 450

windows title property, for widgets, 43
WindowsXP style, 64
wizards, 269–275
word-wrapping, 263
working modes, displaying, 269
workspace, 104, 111
write() method, 309, 339
writeDatagram() method, 441
wwWidgets library, 503

X
X11 platform, QPixmap class and, 184
XML, 243–250

DOM and, 244–248
modifying files and, 247
QT += xml for, 244
SAX, reading files with, 248
translating applications and, 280

XML files
creating, 244
referencing in projects, 47

XOR logical operator (^), 28

Z
Z value, 220

■INDEX528

	cover-image-large.jpg
	front-matter.pdf
	front-matter_001.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	front-matter_002.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	fulltext_010.pdf
	fulltext_011.pdf
	fulltext_012.pdf
	fulltext_013.pdf
	fulltext_014.pdf
	fulltext_015.pdf
	back-matter.pdf

