

Dan Gookin

Programmer’s Guide
to NCurses

01_107591 ffirs.qxp 1/12/07 9:00 PM Page iii

01_107591 ffirs.qxp 1/12/07 9:00 PM Page ii

Programmer’s Guide
to NCurses

01_107591 ffirs.qxp 1/12/07 9:00 PM Page i

01_107591 ffirs.qxp 1/12/07 9:00 PM Page ii

Dan Gookin

Programmer’s Guide
to NCurses

01_107591 ffirs.qxp 1/12/07 9:00 PM Page iii

File Attachment
C1.jpg

Programmer’s Guide to NCurses
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-10759-1

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copy-
right Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the
Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no repre-
sentations or warranties with respect to the accuracy or completeness of the contents of this
work and specifically disclaim all warranties, including without limitation warranties of fit-
ness for a particular purpose. No warranty may be created or extended by sales or promo-
tional materials. The advice and strategies contained herein may not be suitable for every
situation. This work is sold with the understanding that the publisher is not engaged in ren-
dering legal, accounting, or other professional services. If professional assistance is
required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an orga-
nization or Website is referred to in this work as a citation and/or a potential source of fur-
ther information does not mean that the author or the publisher endorses the information
the organization or Website may provide or recommendations it may make. Further, read-
ers should be aware that Internet Websites listed in this work may have changed or disap-
peared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support,
please contact our Customer Care Department within the U.S. at (800) 762-2974, outside the
U.S. at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data provided by the publisher.

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered
trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc. is not associated with any prod-
uct or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

01_107591 ffirs.qxp 1/12/07 9:00 PM Page iv

Dan Gookin has been writing about technology for over 20 years. He’s con-
tributed articles to numerous high-tech magazines and written more than 100
books on personal computers, many of them accurate.

Dan combines his love of writing with his gizmo fascination to create books
that are informative, entertaining, and not boring. Having sold more than 14
million titles translated into more than 30 languages, Dan can attest that his
method of crafting computer tomes does seem to work.

Perhaps his most famous title is the original DOS For Dummies, published in
1991. It became the world’s fastest-selling computer book, at one time moving
more copies per week than the New York Times #1 bestseller (though as a refer-
ence, it could not be listed on the NYT Bestseller list). From that book spawned
the entire line of For Dummies books, which remains a publishing phenomenon
to this day.

Dan’s most recent titles include Word 2007 For Dummies, Laptops For Dum-
mies, 2nd Edition, and PCs For Dummies, 10th Edition. He also maintains the
vast and helpful Web page www.wambooli.com.

Dan holds a degree in Communications/Visual Arts from the University of
California, San Diego. Presently he lives in the Pacific Northwest, where he
enjoys spending time with his boys in the gentle woods of Idaho.

About the Author

v

01_107591 ffirs.qxp 1/12/07 9:00 PM Page v

01_107591 ffirs.qxp 1/12/07 9:00 PM Page vi

Acquisitions Editor
Kit Kemper

Development Editor
Lisa Thibault

Technical Editor
Thomas Dickey

Production Editor
Felicia Robinson

Copy Editor
C.M. Jones

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive
Publisher
Joseph B. Wikert

Project Coordinator
Erin Smith

Graphics and Production
Specialists
Sean Decker
Carrie A. Foster
Brooke Graczyk
Denny Hager
Stephanie D. Jumper
Alicia B. South

Quality Control Technicians
Cynthia Fields
John Greenough

Proofreading and Indexing
Broccoli Information Management
Sossity R. Smith

Anniversary Logo Design
Richard Pacifico

Credits

vii

01_107591 ffirs.qxp 1/12/07 9:00 PM Page vii

01_107591 ffirs.qxp 1/12/07 9:00 PM Page viii

Acknowledgments xv

Introduction xvii
Assumptions xvii
Curses or NCurses? xviii
Conventions xviii
Compatibility Issues xix
Contacting the Author xix

Chapter 1 The Setup 1
NCurses Is a UNIX Thing 1
Run (Don’t Walk) to a Terminal Screen Near You 2
Know Something About the Shell 3

Some Shelly Stuff 3
Know Your History, Because You’re Going to Repeat It 4

Make a Place for Your Stuff 4
Using an Editor to Create an NCurses Program 5

Picking an Editor 5
Creating Your First NCurses Program 6
Some Deviations 7

Know Thy Compiler 8
Linking NCurses or Curses? 8
What Does the gcc Command Do? 9
Re-editing Your Source Code 9
Where Is the Program? 10
Fixing Stuff (Again) 10
Don’t Panic When You Still Don’t See Anything! 12
Do You Think a.out Is a Goofy Name? 13

Contents

ix

02_107591 ftoc.qxp 1/12/07 9:01 PM Page ix

All Done! 13
General Info 13
Handy Shell Commands to Know 14
Source Code Tidbits 14
Compiling Tips 14

Chapter 2 Basic I/O, the NCurses Way 15
The Skeleton 15

The initscr() Function 17
The initscr() Function’s Exceptions 19
The endwin() Function 20
The refresh() Function 20

Writing Text 21
Tossing Up Text One Stupid Character at a Time 21
Pausing for a Side-trip 22
Blurping Text 23
The move() Function 24
The Old Formatted Text Trick 24

Reading Text 26
The Silly Typewriter Program 26
Consuming a String Whole 27
Swallowing Only So Much of a String 28
The Obligatory scanw() Program 29

Chapter 3 Formatting Text 31
Text Abuse with Text Attributes 31

More than Boring Black and White (but Not Much) 32
Testing Some Attributes 33
Multiple-Attribute Mania 34

Can It Do Color? 35
Colors and Color Pairs 37
Eight or Sixteen Colors? 38
Spruce Up Some Text! 39
A Color Thing Your Terminal Probably Cannot Do 40

Coloring a Window 42
Screen Background Color 42
More than Solid 43
Changing Color on the Fly 43

Noise, Too! 44

Chapter 4 Around the Window 47
Measuring the Standard Screen 47

The Size of the Window Is Y by X 48
And Now: the Shortcut 49

Moving the Cursor Around 49
Watch Out! I’ve Got You Cornered! 50
Some Compacting 51

x Contents

02_107591 ftoc.qxp 1/12/07 9:01 PM Page x

Center that Title! 52
Some Fun with mvprintw() 54

Whither the Cursor? 55

Chapter 5 More Text Manipulation 57
Inserting and Deleting Functions 57
Editing Shakespeare 58

Inserting Some Lines 59
Final Changes to Hamlet 60
Inserting One Character at a Time 61
A More Visual Example 62

Less of Hamlet 63
Goodbye, Chunk of Text! 64
Out It Goes and in It Comes 65

Chapter 6 Clearing and Zapping 69
Commands to Erase Chunks of the Screen 69

The Obligatory Test Program 70
Clear the Screen! 71
Clear or Erase? 71

Clrto means Clear To 72
Less Blah on the End of a Line 72
Less Blah to the End of the Screen 73

You Mean that’s It for My NCurses Erasing
Fun and Excitement? 74

Chapter 7 Keyboard Madness! 75
Reading from the Keyboard 75

Is a Character Waiting? 76
Testing Waiting Characters 77
How to Implement kbhit() 78
Flushing Input 79
Silence, Please! 81

Reading Special Keys 82
Keypad On! 83
What’s Where on the Keyboard 85
The Highlighted Menu Bar 85

Chapter 8 Windows, Windows Everywhere! 89
Ye Olde Standard Screen 89

Commands that Require a Window Argument 90
The Pseudo Commands 90
The Other Prefix, mv 91

Making Windows 91
The Obligatory New Window Sample Program 92
Switching between Windows 94
Windows of a Smaller Size 96

Removing a Window 97

Contents xi

02_107591 ftoc.qxp 1/12/07 9:01 PM Page xi

Dueling Windows 98
Stained Glass Windows 100
Stop Repeating Me! 102

On Your Own 104

Chapter 9 Subwindows 105
The Thing with Subwindows 105
Making Subwindows 107

Your First Subwindow 108
Your Second Subwindow 109

Sub-subwindows 110
Removing a Subwindow 111
Subwindows Versus Windows 112

Chapter 10 More Window Tricks 115
Copying Window Contents 115

To overlay or to overwrite? 116
The overwrite() difference 118
The magic of copywin() 118
Plain old window duplication 121

Scrolling Around 122
Can it scroll? 122
Scroll Away 124
The old manual scroll 124
Scrolling by leaps and bounds 125
Negative scrolling 127

The Moving Experience 127

Chapter 11 Dig My Pad, Man 131
The Monster Window 131

Making a Pad 132
Viewing a Pad’s Contents 133
More Pad-Viewing Stuff 135

Subpads 138
Making a subpad 138
Working with a Subpad 139
Some Optimization 141

Removing a Pad 142
Pad Miscellany 143

Another Pad Function 143
Forbidden Pad Functions 144
Forbidden Pad Stuff 145

Chapter 12 The Joy of Soft Labels 147
What Is a Soft Label? 147
Doing the Soft Label Thing 148

Stand by for Soft Labels 148
Gimme Some Soft Labels 149
Making the Index Line 151

xii Contents

02_107591 ftoc.qxp 1/12/07 9:01 PM Page xii

Soft Labels Here and Gone 152
Hiding and Restoring the Labels 152
Changing a Label 153
Removing a Label 154

Hooking in the Function Keys 154

Chapter 13 Messing Mit der Mouse 157
Hello, Mouse 157

Can NCurses Deal with the Mouse? 158
Can Your Terminal Deal with the Mouse? 158

Reading the Mouse 160
The “Reading the Mouse” Overview 161
Where Did You Click that Mouse? 162
On Your Own 163
What Clicked? 163

To Eek or Not to Eek? 165

Chapter 14 A Mixture of Stuff 167
Adios, Cursor 167
Line Drawing 169

Boxing Windows 169
Building Better Boxes 172
We Control the Horizontal and the Vertical 174

Between NCurses and Disk 176
Functions that Dump the Screen 176
Taking a Snapshot of the Screen 176
Examining the Dump File 178
Restoring the Screen 178
Functions that Dump a Window 180

Appendix A NCurses Library Reference 185

Appendix B The Alternative Character Set 523

Appendix C The chtype 525

Appendix D Keypad Character Codes 527

Index 533

Contents xiii

02_107591 ftoc.qxp 1/12/07 9:01 PM Page xiii

02_107591 ftoc.qxp 1/12/07 9:01 PM Page xiv

I’d like to thank Thomas Dickey for his marvelous work augmenting my dive
into the NCurses library. I truly appreciate his participation in this project and
admire him not only for maintaining NCurses but working to assist others
with their questions and problems. Thank you, Thomas!

Acknowledgments

xv

03_107591 flast.qxp 1/12/07 9:02 PM Page xv

03_107591 flast.qxp 1/12/07 9:02 PM Page xvi

The NCurses library is a programming tool you can use in UNIX distributions
as well as in Windows under CYGWIN to program, control, and manipulate text
on the terminal screen. With NCurses you can control interactive I/O, orga-
nize information into windows on the screen, use color to highlight text and
organize information, and even use a mouse to further refine input. It’s all pos-
sible with NCurses.

This book presents NCurses in two parts. The first part is a 14-chapter tuto-
rial that covers enough of the basic NCurses library to get you started and
more. The second part is an A to Z reference of more than 175 NCurses func-
tions. It is not a rehash of the man pages but descriptions and examples based
on my own research. The reference is cross-referenced, and the entire book is
indexed.

I’ve created this book so that it will be the only Curses reference you’ll need.
Feel free to mark up the pages, dog-ear, and put sticky notes where necessary.
This is your book!

Assumptions

This book assumes that you’re using a UNIX-like operating system (Linux,
FreeBSD, Mac OS X, or some other OS based on UNIX).

Most UNIX operating systems today use a graphical user interface (GUI),
though for programming Curses you’ll need to have access to a terminal
screen. This can be a terminal window inside the GUI. Make sure you know
how to open such a beast.

Introduction

xvii

03_107591 flast.qxp 1/12/07 9:02 PM Page xvii

Curses or NCurses?

The Curses library of terminal control functions has been with UNIX since the
early 1980s. As such, it was part of the older versions of UNIX, which required
complex licenses and such to be used.

NCurses is the New Curses software emulation of the original Curses and is
available from the GNU folks at the Free Software Foundation. Odds are pretty
good that the computer system you’re using employs NCurses, not the origi-
nal Curses. Because of that, this book uses NCurses to refer to the library and
its functions.

The book is current with NCurses version 5.5.

Conventions

In this book, you’ll find the following conventions used:

■■ C language keywords, function names, or prompt commands are listed
in monospace type, such as: if or newwin() or ls -l.

■■ Filenames are listed in monospaced caps, such as A.OUT or GOODBYE.C.
Directory and pathnames are also in small caps: ~/PROG/C/CURSES

■■ Program code appears with the source code filename first, followed by
the code:

Listing I-1: box.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 box(stdscr,’*’,’*’);

8 refresh();

9 getch();

10

11 endwin();

12 return 0;

13 }

The line numbers, to the left of the bar, are for reference only; do not type
them. The code is to the right of the bar.

xviii Introduction

03_107591 flast.qxp 1/12/07 9:02 PM Page xviii

The programs in this book are short and to the point. As such, they rarely
include comments. Even so, be sure to comment your own code and name
your variables in a friendly way.

Some programs later in the book dispense with error-checking for some
NCurses procedures. This is noted as a bad practice in real life but is done here
to keep the code short and easy to read and type. In your code, always be sure to
check for errors with those NCurses functions that can return errors, as noted in
the text.

Compatibility Issues

I wrote this book on a G5 Mac running OS X. Programs were also tested on a
FreeBSD computer as well as a system running Mandrake Linux. All the pro-
grams in this book work, but not all of them work well or identically on all sys-
tems. Even though NCurses is very universal, do not expect all the code here
to fly perfectly on your computer.

If you encounter problems with NCurses on your OS, please refer to the OS
Technical Support — or an online forum or Wikipedia — for assistance. Odds
are pretty good that I don’t have your same setup, so e-mailing me isn’t going
to get you anywhere.

As this book goes to press, I’ve already reported several dozen issues with
NCurses on Mac OS X to the OS X developer support team, as well as to the
NCurses maintenance team.

Contacting the Author

Here is my real e-mail address:

dgookin@wambooli.com

I cannot promise to answer all my e-mail, as I get a ton of it and most of it is
for technical support, which is not my business. I do enjoy hearing feedback
about my books, and I will answer questions about the books. I cannot, obvi-
ously, write your source code for you.

This book has a companion web page, which is shared with the site I use to
support my C programming books. The page can be found at:

http://www.c-for-dummies.com/ncurses/

Introduction xix

03_107591 flast.qxp 1/12/07 9:02 PM Page xix

There you’ll find supplemental material and bonus programs, plus perhaps
an FAQ when one is warranted. The C Language forum has plenty of regulars
who know C very well and are eager to help out beginners as well as old
hands. Try visiting there first with your problems or questions regarding C.

Enjoy NCurses!
DAN

xx Introduction

03_107591 flast.qxp 1/12/07 9:02 PM Page xx

1

This chapter covers a basic setup and organization for you to get started with
NCurses programming. Here you’ll find:

■■ An introduction to the terminal window in UNIX

■■ A smattering of basic shell commands

■■ Creating a special curses directory for this document’s programs

■■ A review of available text editors

■■ The creation of a basic NCurses program

■■ A review of the gcc compiler and linking commands

■■ Re-editing source code and debugging exercises

The idea here is to show you how everything works and to get you com-
fortable programming with NCurses, even if you’ve never written a UNIX
program before.

NCurses Is a UNIX Thing

You must have a UNIX-like operating system to work the samples and exam-
ples in this book.

The Setup

C H A P T E R

1

04_107591 ch01.qxp 1/12/07 9:02 PM Page 1

Beyond this, note that you must also have the programming libraries
installed for your operating system. Without those libraries, programming in
NCurses just isn’t gonna happen. Refer to your operating system’s installation
or setup program, such as /stand/sysinstall in FreeBSD, to install the C
programming libraries for your operating system. If special extensions are
required to get the NCurses library installed, use them!

NOTE It’s possible to program NCurses in Windows when using the Cygwin
environment. I’ve not toyed with Cygwin, so I’m unable to comment on it here.
For more information, refer to www.cygwin.com.

Run (Don’t Walk) to a Terminal Screen Near You

NCurses is about programming the terminal screen, so you’ll need access to a
terminal screen or window to run the programs.

You can either use one of the virtual terminals (which you can access on
most PCs by pressing Alt+F1, Alt+F2, Alt+F3, and so on) or open a terminal
window in the X Window System environment or in Mac OS X using the Ter-
minal program. (See Figure 1-1.)

Figure 1-1: A terminal window for Mac OS X

Note that the terminal you choose can affect what NCurses does. Not all ter-
minal types can, for example, do color or draw lines on the screen.

2 Chapter 1 ■ The Setup

04_107591 ch01.qxp 1/12/07 9:02 PM Page 2

Know Something About the Shell

The program you use in the terminal screen is a shell. It displays a shell prompt
and lets you type one of the gazillions of UNIX commands and what not —
which is all basic UNIX stuff.

The following sections review basic shell operations and a smattering of
commands. If you feel you already know this, skim up to the section titled
“Make a Place for Your Stuff.”

Some Shelly Stuff
For example, the standard Bourne shell may look like this:

$

The dollar sign is the prompt, and you type your commands after the
prompt.

The Bash shell, popular with Linux, may look like this:

Bash-2.05a$

Or the shell may be customized to display your login name:

dang$

Or even the working directory:

/home/dang/$

Whatever!
No one really cares about which shell you use, but you should know enough

shell commands to be able to do these things:

■■ Make directories

■■ Display a file’s contents

■■ Copy files

■■ Rename files

■■ Remove files

It’s beyond the scope of this book to teach you such stuff, though a handy
list of popular shell commands is provided at the end of this chapter.

Chapter 1 ■ The Setup 3

04_107591 ch01.qxp 1/12/07 9:02 PM Page 3

Note that this book does not display the shell prompt when you’re directed
to enter a command. Simply type the command; then press Enter to send the
command to the shell program for processing.

It is always assumed that you press the Enter key to input the command.

NOTE Please do check your typing! The shell is very fussy about getting things
correct. In the Bash shell, you’ll see a command not found error when you
mistype something:

-bash: tcc: command not found

Know Your History, Because You’re Going to Repeat It
One handy shell feature you should take advantage of is the history. Various
history commands allow you to recall previously typed text at the command
prompt. This is commonly done as you edit, compile, re-edit, and recompile
your code.

For example, most of the time you’re using this book you’ll be cycling
through three sets of commands. First comes the editing:

vim goodbye.c

Then comes the compiling:

gcc –lncurses goodbye.c

Then comes the running:

./a.out

I’ll cover these steps in detail later, but for now recognize that these
commands are to be repeated over and over: Edit, compile, run (or test); then
re-edit, recompile, and test again. To assist you in that task, employ your
shell’s history function.

In the Bash shell, for example, use the up arrow key on your keyboard to
recall a previous command. To recall the second previous command, press the
up arrow key twice. I’m not intimate with the other shells, so if you use the C
shell or Bourne shell, review your documentation for any history commands
available with those shells.

Make a Place for Your Stuff

Please do be organized and build yourself a handy little directory into which you
can save, compile, and test the various programs presented in this document.

4 Chapter 1 ■ The Setup

04_107591 ch01.qxp 1/12/07 9:02 PM Page 4

For example, in my home directory, I have the following set up:

$HOME/prog/c/ncurses

$HOME is the home directory, the shell variable that represents your
account’s home directory for most UNIX shells that I’ve played with. It can
also be abbreviated as ~/ in some shells.

Then I have a subdirectory called PROG, which contains all my program-
ming junk and test files. PROG contains subdirectories for C language pro-
grams, Perl programs, shell scripts, and whatever else I’m dabbling in.

The C subdirectory contains C programs and directories.
Finally, the NCURSES directory is where I built all the sample files for this

book.
You should consider a similar setup for your system, even if it’s just some-

thing like $HOME/ncurses. As long as you can keep all the sample files
around and be able to access them later, you’ll be a happy camper.

If you want to create a ~/PROG/C/NCURSES directory for your stuff, you
can use the following command in your home directory:

mkdir –p prog/c/ncurses

The –p switch directs mkdir to build all parent directories to the final
NCurses directory.

Using an Editor to Create an NCurses Program

There’s no point in bothering with a fancy developer environment or IDE
when you’re programming NCurses. I think you’ll be happier using the termi-
nal window and a shell prompt, unless you’ve been totally corrupted by some
IDE. Then you’re on your own!

Picking an Editor
Since day one of UNIX, a text editor has been used to create code. That’s what
I recommend for this book. Any text editor will do, and most UNIX-like oper-
ating systems give you a smattering of editors to choose from:

■■ ee. The “easy editor” is a popular choice for many UNIX newcomers.
No one will think any less of you for using ee, especially if you’re using
it with your C programming.

■■ emacs. This is the most popular choice, mostly because its commands
are more word processor-like and you don’t have to keep whacking the
Escape key as you do in vi/vim.

Chapter 1 ■ The Setup 5

04_107591 ch01.qxp 1/12/07 9:02 PM Page 5

■■ vim. This is my personal choice, simply because it’s so damn raw and
complex. As you get used to vim, though, it becomes a very powerful
and handy tool. Plus it’s common to all Unixes.

Whenever this book tells you to edit or create some source code, you’ll use
your favorite text editor to make it happen. (And please do create these pro-
grams in your NCurses directory, as covered in the previous section.)

If you don’t know any editors, I recommend ee as the easiest. Otherwise,
this book does not teach you how to use any text editor; I assume you’ll figure
that out on your own.

Creating Your First NCurses Program
Rather than just discuss all this stuff, why not get moving?

Use the cd command to change directories to the NCURSES directory
you just created. You can confirm which directory you’re using with the pwd
command.

This is what I see on my screen:

/HOME/DANG/PROG/C/NCURSES

Your screen will probably show something different. The point is the same:
You’re in the NCURSES directory and ready to create some source code with
your editor.

Source code is presented in this book as follows: First comes the filename,
then the source code. To the left are line numbers for reference purposes only.
Do not type the line numbers!

Use your editor to name (or create) the file; then input all the text exactly as
shown in Listing 1-1.

Listing 1-1: GOODBYE.C

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6 addstr(Goodbye, cruel C programming!);

7

8 endwin();

9 return 0;

10 }

So if you’re using vim, you would type:

vim goodbye.c

6 Chapter 1 ■ The Setup

04_107591 ch01.qxp 1/12/07 9:02 PM Page 6

Then you would enter the text into the editor using your favorite, cryptic
vim commands.

NOTE Note that some compilers require there to be an extra blank line
following the last line of code. This is not shown above or in any sample code
in this document.

When you’re done entering text, double-check to ensure that you didn’t
miss anything.

Note that from now on it’s assumed that whenever you see source code as
shown here, you are to type it and name it according to the source code head-
ing. And, naturally, you don’t have to type every program, only those you want
to experiment with.

Some Deviations
The next step in the programming process is compiling and linking, handled
deftly by the common GCC command. But before compiling and linking, con-
sider a few sidetracks, just to get you oriented if you’re not used to program-
ming in UNIX.

Use the ls command to view the contents of your NCURSES directory.
The ls command displays or lists the files in the directory, one of which

should be goodbye.c. Confirm that.

~/prog/c/ncurses$ ls

goodbye.c

~/prog/c/ncurses$

You can also use the long variation on the ls command to see more details.

~/prog/c/ncurses$ ls -l

total 8

-rw-r--r-- 1 dang dang 113 dec 7 13:02 goodbye.c

~/prog/c/ncurses$

Now you can see permissions, owner, group, file size, and date information
for the GOODBYE.C file — all of which help to confirm the file’s existence.

Finally, you can view the file’s contents with the cat command:

~/prog/c/ncurses$ cat goodbye.c

#include <ncurses.h>

int main(void)

{

initscr();

Chapter 1 ■ The Setup 7

04_107591 ch01.qxp 1/12/07 9:02 PM Page 7

addstr(Goodbye, cruel C programming!);

endwin();

return 0;

}

~/prog/c/ncurses$

And there is the file yet again on the screen.
Typing ls and cat are not required steps in the program-creation process. I

just like to remind you of their use here, which I liken to peering into the mail
drop box twice just to confirm that your mail actually made it into the box and
is not somehow stuck on the hinged lid.

Time to compile!

Know Thy Compiler

The standard C compiler in the UNIX environment is gcc, the GNU C com-
piler. Here is how it works in this book: You will see source code listed, such as
the goodbye.c program. You will immediately know to type it and compile it.

To compile, you will type something at the shell prompt, perhaps like this:

gcc goodbye.c –lncurses

That’s the gcc command, your compiler.
The first option is the name of the source code file, the text file you created.

In this case, it’s named goodbye.c. The single, lowercase c denotes a stan-
dard C source code file, not C++.

Finally comes –lncurses, which tells the compiler to -l “link in” the
NCurses library. This is very important! NCurses is not just a header file; it’s
also a library. And you must link in the library to have those NCurses functions
work.

Use this command:

gcc goodbye.c –lncurses

And you’re compiled. Or not.

Linking NCurses or Curses?
On most systems I’ve visited, both the CURSES and NCURSES libraries are the
same thing, meaning that if you link in -lcurses instead of -lncurses,
the results are the same. The only advantage here is that typing -lcurses
saves you a keystroke. Otherwise, I recommend using -lncurses.

8 Chapter 1 ■ The Setup

04_107591 ch01.qxp 1/12/07 9:02 PM Page 8

What Does the gcc Command Do?
The gcc command either outputs a slew of error messages or shows you
nothing.

When you get a slew of error messages, you must re-edit the source file and
try to work out whatever bugs you can. The compiler is brutally honest, but
it’s also nice in that it does give you a line number to show you where (approx-
imately) you screwed up.

When gcc does nothing, the source code is properly compiled and linked.
This is what you want.

In this case, I’ve tricked you into typing sloppy code so that you’ll see an
error message. Something like:

goodbye.c:6: macro ‘addstr’ used with too many (2) args

One variation of the gcc compiler yielded even more information:

goodbye.c:6:45: macro “addstr” passed 2 arguments, but takes just 1

These error messages are just oozing with information:

■■ goodbye.c tells you which source code file is offensive.

■■ The 6 tells you that the error is either in line 6 or the previous line. In
the second example, the 45 tells you which column in the line is offen-
sive — very specific.

■■ Then the error message itself; something is apparently wrong with the
call to the addstr macro. Must fix.

NOTE If you didn’t see the error message, you probably have been coding C
for some time and just put the addstr() function’s text in double quotes out
of habit. Good for you!

Re-editing Your Source Code
In programming you do more re-editing than editing. In this case, the error
was on purpose so I could show you how the compiler displays an error mes-
sage. The fix is easy: Just edit the GOODBYE.C source code file again.

Don’t forget to use your shell’s history (if available) to recall that editing
command!

Chapter 1 ■ The Setup 9

04_107591 ch01.qxp 1/12/07 9:02 PM Page 9

NOTE Here’s a tip: Familiarize yourself with the editor’s command that
instantly jumps to a specific line number. Most of your editing will actually be
re-editing, where the compiler directs you to a specific line number. If you
know the line-number-jumping command, you can get there quickly to fix your
source code and try (again) to compile it:

In vim, the line number skipping command is nG, where n is the line number
and G is Shift+G. Thus, typing 6G will get you right to line 6.

The line should read:

addstr(“Goodbye, cruel C programming!”);

Then you should save the file to disk and re-compile it. But nothing hap-
pens. That’s good! However....

Where Is the Program?
The program gcc creates is named a.out. It’s a binary file, and its permis-
sions are all properly set so that the operating system knows it’s a program file
and not a slice of Velveeta.

Use the ls command to confirm that a.out exists, if you like.
To run the program, you need to focus on the current directory: ./A.OUT.
You can’t just type a.out, because the operating system looks only to the

search path for programs to run. So you must specifically direct tired old UNIX
to look in the current directory — abbreviated by the . single dot — to run the
program.

So ./ means “look in the current directory” and A.OUT means “run the file
named a.out.”

Of course, if you have the manual dexterity, you can always type a full path-
name, something like:

~/prog/c/ncurses/a.out

This also runs the a.out program, but I believe you’ll find typing ./A.OUT
a lot easier.

Nothing happens, not even an error. Again, there is a problem and you need
to re-edit and recompile.

Fixing Stuff (Again)
Fixing stuff (again) in this case means that you forgot a key NCurses com-
mand. (Or more properly, fixing it again here means that I didn’t specify a
command on purpose simply to drive this point home.)

10 Chapter 1 ■ The Setup

04_107591 ch01.qxp 1/12/07 9:02 PM Page 10

The problem? You didn’t use the refresh() function, which is a common
blunder in NCurses programming. Only by using refresh() is the NCurses
“window” updated and any text written to the screen displayed. So, back to
the editor!

Insert the refresh() function after the addstr() function on line 6. Your
code should look like Listing 1-2, complete.

Listing 1-2: goodbye.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6 addstr(“Goodbye, cruel C programming!”);

7 refresh();

8

9 endwin();

10 return 0;

11 }

Double-check your work.
Remember that you can use your shell’s history to quickly recall those com-

mon commands: your editor, your compiler, and the ./a.out command.

Figure 1-2: Output of the GOODBYE.C code.

Now it should work, and you’ll see the string thrown up onto the screen via
NCurses, as shown in Figure 1-2. Congratulations!

Chapter 1 ■ The Setup 11

04_107591 ch01.qxp 1/12/07 9:02 PM Page 11

Don’t Panic When You Still Don’t See Anything!
Even with the refresh() function in the code, it’s still possible that you
won’t see any program output. The problem isn’t the program or even
NCurses; it’s your terminal.

Many terminals, such as xterm, support a feature known as rmcup. It
restores the screen to what it looked like before a program was run. The situa-
tion also occurs with any full-screen terminal program, such as man or less; the
program’s text disappears after you quit the program, and the prompt
“window” is restored.

Sadly, there is no handy way to switch off rmcup support from a terminal
window. The terminfo file for the terminal needs to be recompiled to remove
rmcup support, or a new terminfo file needs to be created in your home
directory, one that lacks rmcup as an option.

The quick solution is to use the getch() function in your code. By inserting
a line with getch() before the endwin() function, you can pause output and
see what NCurses does before the program quits, as shown in Listing 1-3.

Listing 1-3: goodbye.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6 addstr(“Goodbye, cruel C programming!”);

7 refresh();

8 getch();

9

10 endwin();

11 return 0;

12 }

The new line 8 was added, allowing the program to pause, and for you to
read the output.

Many of the program examples in this book use getch() to pause output.
But some programs do not; be sure to use getch() in your code to see output,
or modify your terminfo file to disable the rmcup feature.

NOTE It might also help to be vocal about the rmcup feature for future
releases of your operating system. While many folks may see rmcup as a handy
thing, other users dislike it. The solution is to make the feature easy to disable.
Let’s hope that will be possible sooner than later.

12 Chapter 1 ■ The Setup

04_107591 ch01.qxp 1/12/07 9:02 PM Page 12

Do You Think a.out Is a Goofy Name?
Yes, a.out is a goofy name, but that’s because the compiler doesn’t know any
better.

For running the myriad test programs in this book, using a.out will be a
blessing. It won’t take up as much disk space as individually compiling each
program and creating separate silly little programs, plus it means you can
instantly recall the ./a.out command using your shell’s history command.

But anyway, if you’d rather compile to a different output file, you need to
specify the –o switch when you use gcc. It goes like this:

gcc goodbye.c –lncurses –o goodbye

gcc is still the compiler.
goodbye.c is the source code.
-lncurses directs the compiler to link in the NCurses library.
And finally, -o goodbye tells gcc to create the output file named goodbye

as opposed to creating a.out.
Use the preceding command to accomplish this.
Do not forget the ./ prefix! Silly old UNIX needs to know where to find the

file. So you must type ./GOODBYE to run the program.
By the way, the output file doesn’t have to be the same name as the source

code file. You could use the following command if you like:

gcc goodbye.c –lncurses –o cloppyfeen

This creates the program file named cloppyfeen from the source code
found in goodbye.c., so what you name the final program file can be any-
thing you like.

All Done!

That pretty much does it for your whirlwind introduction to NCurses pro-
gramming using the C language in the UNIX environment. This chapter has
imparted the following knowledge, stuff that you’ll need to carry with you
throughout the remainder of this document:

General Info
Keep in mind that it’s a good idea to keep your learning NCurses files in your
special NCURSES directory. This is assumed.

Do remember those handy shell history commands. You’ll be doing a lot of
repetitious commands here, and pressing the up arrow key is a lot easier than
retyping boring old UNIX commands.

Chapter 1 ■ The Setup 13

04_107591 ch01.qxp 1/12/07 9:02 PM Page 13

And from now on, I will not be reminding you to specifically input, compile,
and run the sample programs. There may be other, specific instructions given
in the text, but whenever you see source code, it’s assumed that you can type
it in and run it if you want to learn more.

Handy Shell Commands to Know
cat Displays a text file (source code) to the screen

clear Clears the screen

cp Copies a file

ls –l Lists files in the long format

ls Lists files

mv Moves or renames a file

rm Removes (deletes) a file

Source Code Tidbits
End the source code file with .C to show that it’s a C language source code file.
(Some editors, such as vim, may even recognize this and bless you with color-
coded, in context contents as you edit.)

The main() function is an int and must return a value to the shell via
either return or the exit() function.

If you use the exit() function, remember to include the STDLIB.H header
file at the top of your source code.

If the program seems not to display anything, remember to add a getch()
function before the endwin() function.

Compiling Tips
The compiler used in this book is gcc.

You must link in the NCurses library by using the –lncurses option to
properly compile these programs.

The program file produced is always named a.out.
You must type ./a.out to test run the program file.
You can use the –o compiler option to specify the name of the output file as

something different from a.out.
The compiler command format is:

gcc filename.c –lncurses

You supply the filename according to the source code name given in this
document.

14 Chapter 1 ■ The Setup

04_107591 ch01.qxp 1/12/07 9:02 PM Page 14

15

NCurses allows you full control over terminal screen (or window) but only if
you heed its rules! There is a definite way to set up an NCurses program and
some specific tricks and traps to know. Also, you must use NCurses’ own I/O
functions to display text as well as read input from the keyboard.

The Skeleton

The majority of NCurses programs have the same basic skeleton, which looks
something like this:

#include <ncurses.h>

int main(void)

{

initscr(); /* Initialize ncurses */

/* i/o and other programming done here */

endwin(); /* Properly close ncurses */

return 0; /* cough up return value for the shell */

}

Basic I/O, the NCurses Way

C H A P T E R

2

05_107591 ch02.qxp 1/12/07 9:03 PM Page 15

The bookends are the two functions initscr() and endwin(). Between
them you can stuff all the NCurses commands and functions that your little
heart desires, plus the usual hoard of C programming commands — with the
exception of the standard I/O commands. No, you must use NCurses’ own
I/O commands for NCurses to work. But more on that later.

#include <ncurses.h>

You must include the NCURSES.H header file so that the compiler doesn’t
choke on your NCurses functions.

NOTE Please note that including the NCURSES.H header file does not
automatically link in the NCurses library. No, you must do that with the
–lncurses switch when you compile (as covered in Chapter 1). There is a
difference between the header and library files!

The NCurses header file does a few nifty tricks. First, it automatically
includes the following other header files:

stdio.h

unctrl.h

stdarg.h

stddef.h

Therefore, there is no need to re-include these header files in your source
code. In fact, if you do, you may end up slowing things down and creating files
much larger than they need to be. So if you’re tempted to do this:

#include <stdio.h>

#include <ncurses.h>

Do only this instead:

#include <ncurses.h>

Also, the NCURSES.H file defines such things as TRUE, FALSE, OK, ERR, and
other useful constants. It contains definitions for structures you’ll be using
later. Plus, it includes many other wonderful and useful goodies. If you have
the time, peruse the header file, which can be found at /USR/INCLUDE/
NCURSES.H.

16 Chapter 2 ■ Basic I/O, the NCurses Way

05_107591 ch02.qxp 1/12/07 9:03 PM Page 16

The initscr() Function
The initscr() function initializes NCurses. It does not clear the terminal
screen. Instead, it sets up internal memory structures and interfaces between
the NCurses functions and your computer’s terminal I/O thingy.

Two important items initscr() creates are called the standard screen and
the current screen. Both of these are internal structures used by NCurses to effi-
ciently display information on the terminal screen.

The standard screen, or stdscr, is the default output window for NCurses,
as shown in Figure 2-1. As you’ll discover later in Chapter 8, all NCurses out-
put commands, and a select few input commands, are window oriented. The
standard screen is the main window you’ll use, and it’s exactly the same size
as the terminal screen. The initscr() function creates the standard screen
and uses the variable stdscr to reference it.

The standard screen, however, is not the same as the terminal window, and
stuff you write to the standard screen doesn’t appear on the terminal window.
Well, not right away.

The refresh() command is required to update text on the terminal win-
dow, letting you see what NCurses has done. What refresh() does is to
check for new text has been output by NCurses and update that text on the
current screen, or curscr, as shown in Figure 2-2.

The current screen is NCurses’s internal representation of what is believed
to be on the terminal screen, or what the user sees, as shown in Figure 2-2. The
refresh() function is responsible for updating the current screen, which
then updates what is shown to the user.

Like the standard screen, the current screen is an NCurses window. But
unlike stdscr, it’s uncommon (and not recommended) to output directly to
curscr. There are many reasons for this, as you’ll learn later in this book.

In addition to the standard screen and current screen, there is something
called the virtual screen. The virtual screen exists for efficiency’s sake. It con-
tains updated information, only those items changed or touched in a certain
window and which are waiting to be updated on the current screen, as shown
in Figure 2-3.

Figure 2-1: The standard screen is the default window for NCurses text output commands.

NCURSES!

Welcome to
my very first
ncurses
program!

Commands

Chapter 2 ■ Basic I/O, the NCurses Way 17

05_107591 ch02.qxp 1/12/07 9:03 PM Page 17

Figure 2-2: The current screen holds an approximation of what NCurses believes to be on
the terminal window.

Figure 2-3: How the virtual screen helps keep text output efficient

CURSES!
Commands

stdscr

Terminal screen

= =

This is cool!

Welcome to
my very first
ncurses
program! This
is cool!

Virtual Screen

wnoutre
fre

sh();

wnoutre
fre

sh();

Somewhere
in memory

Welcome to
my very first
ncurses
program! This
is cool!

curscr

doupdate();

doupdate();

Welcome to
my very first
ncurses
program! This
is cool!

CURSES!

Welcome to
my very first
ncurses
program!

Commands

stdscr

Somewhere
in memory Terminal screen

= =
Welcome to
my very first
ncurses
program!

Welcome to
my very first
ncurses
program!

curscr

refre
sh();

refre
sh();

18 Chapter 2 ■ Basic I/O, the NCurses Way

05_107591 ch02.qxp 1/12/07 9:03 PM Page 18

Internally, the refresh() function consists of two commands. The first is
wnoutrefresh(), which updates only the changed portions of a window or
the standard screen to the virtual screen. The second half of the refresh()
function is doupdate(), which makes the current screen match the virtual
screen’s updates. Again, this is done to keep text output efficient. The other
way would be to update the complete terminal screen each time new text is
output, which can be maddeningly slow on some terminals.

All this terminology (standard screen, current screen, virtual screen,
wnoutrefresh() and doupdate()) can be overwhelming. Don’t let it get to
you now. It’s merely the internal mechanisms by which NCurses works. As
another example, consider the source code for GOODBYE.C as shown in
Chapter 1:

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6 addstr(“Goodbye, cruel C programming!”);

7 refresh();

8 getch();

9

10 endwin();

11 return 0;

12 }

In line 5, the initscr() function configures NCurses and creates both the
stdscr and curscr.

Text is written to the stdscr using the addstr() function in line 6.
The refresh() command in line 7 updates both the virtual screen, which

immediately updates the current screen and, in the end, the terminal window
so that you can see the text.

In line 8, everything pauses with getch(), waiting for the user to press
Enter.

The endwin() function shuts NCurses down in line 10, but endwin()
deserves its own section and explanation.

The initscr() Function’s Exceptions
For starting out, it’s easy to remember that initscr() is the function that ini-
tializes NCurses for your code. But initscr() isn’t alone; it has a twin func-
tion called newterm().

The newterm() function sets up NCurses just as initscr() does, but it
allows you more control over the input and output sources. Therefore, it’s kind
of an advanced function, and, if you’re curious, you can look it up in Appen-
dix A. Otherwise, it does not appear in the tutorial portion of this book.

Chapter 2 ■ Basic I/O, the NCurses Way 19

05_107591 ch02.qxp 1/12/07 9:03 PM Page 19

Also, initscr() isn’t necessarily the very first NCurses function you’ll
use in your code. There are several functions in NCurses that must be used
before initscr(). These functions are mentioned under the definition of
inistscr() in Appendix A, and more information on each function can be
found in that appendix as well.

The endwin() Function
The cleanup hitter in the NCurses line up is the endwin() function. It undoes
any modifications that NCurses has made to your terminal, and does other
tidying up.

It’s very important that you finish your NCurses program with this command!
If you neglect to use endwin(), your terminal’s behavior becomes unpre-

dictable. (This is the voice of experience here.) So be very, very sure that you
use endwin() when your program is done — especially if you’re program-
ming some large, monster program with several exit holes.

Note that the standard C output functions — putc(), puts(), printf(),
and so on — do output text when NCurses is active, though by doing so
NCurses would be confused about what’s on the display. Therefore, it’s better
not to use such output functions while NCurses is actively outputting text.

Incidentally, endwin() need not be the end of your NCurses program. It’s
possible to use endwin() to merely suspend NCurses and return to the ter-
minal. When the refresh() function is used after endwin(), it reactivates
NCurses visual mode, though you must still use another endwin() function
to properly end your program. The entry for endwin() in Appendix A
explains more about this feature.

The refresh() Function
Rare is the NCurses program without a refresh() function. It’s almost
required. refresh() updates the screen, noting any changes between what
you want on the screen and what’s there and writing the difference.

Use the following code in Listing 2-1 to create the cls program.

Listing 2-1: cls.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6 refresh();

7

8 endwin();

9 return 0;

10 }

20 Chapter 2 ■ Basic I/O, the NCurses Way

05_107591 ch02.qxp 1/12/07 9:03 PM Page 20

Yes, indeed, the program clears the screen. Here’s how. When initscr()
runs, it initializes stdscr, the default window, to all blanks and it sets the cur-
sor to the home position, top row, left-most column. The refresh() function
updates stdscr to the current screen and the terminal display, which has the
effect of clearing the screen and homing the cursor.

Writing Text

Here are three popular NCurses text output functions:

addch(ch);

addstr(*str);

printw(format,var[,var...]);

The addch() function places (or adds) a single character to the display.
addstr() adds an entire string, essentially calling addch() over and over

until the entire string is coughed up. You’ve already seen addstr() in use
with the goodbye.c program in Chapter 1. It’s similar to the puts() func-
tion in C, though a newline (\n) isn’t automatically appended to the string.
printw() is the NCurses version of the printf() function. It outputs a

formatted string to the display.
NCurses sports more text output functions, but for getting started these

three basic functions are fine.

Tossing Up Text One Stupid Character at a Time
I love marquee programs. But rather than write a really fancy one, I’ll just
show you how addch() can blurt out one character at a time as the following
program in Listing 2-2 demonstrates.

Listing 2-2: ADD1.C

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 char text[] = “Greetings from NCurses!”;

6 char *t;

7

8 initscr(); /* initialize NCurses */

9 t = text; /* initialize the pointer */

10

11 while(*t) /* loop through the whole string */

12 {

(continued)

Chapter 2 ■ Basic I/O, the NCurses Way 21

05_107591 ch02.qxp 1/12/07 9:03 PM Page 21

Listing 2-2 (continued)

13 addch(*t); /* put one char to curscr */

14 t++; /* increment the pointer */

15 refresh(); /* update the screen */

16 napms(100); /* delay a bit to see the display */

17 } /* end while */

18 getch(); /* wait here */

19

20 endwin(); /* clean up NCurses */

21 return 0; /* keep the shell happy */

22 }

This program inches through a string of text using a pointer t. The pointer
allows each character in the string to be displayed one at a time via the
addch() function.

The napms() function pauses output one-tenth of a second between each
character displayed, which helps to drive home the nature of addch(). I’ll
cover napms() in more detail in the next section.

NOTE Note the importance of refresh()! You cannot see what’s on the
screen until you refresh!

Pausing for a Side-trip
In addition to all the fun screen (and soon-to-come keyboard) frivolity,
NCurses also features a variable pausing function, napms(). Such a cute
name!

napms(ms)

The napms() function pauses program execution for ms milliseconds. So
the statement:

napms(1000);

causes program execution to pause for one whole second. The statement:

napms(100);

used in the code for ADD1.C pauses execution for only a paltry 1/10th

second.
Change the value of napms() in line 16 of the ADD1.C code in Listing 2-3 to

see how it affects the program’s output.

22 Chapter 2 ■ Basic I/O, the NCurses Way

05_107591 ch02.qxp 1/12/07 9:03 PM Page 22

Blurping Text
There’s no point in using addch() to display an entire line of text. That’s
because there’s also the addstr() function, which takes care of the tedious
task for you.

Listing 2-3: ADD2.C

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 char text1[] = “Oh give me a clone!\n”;

6 char text2[] = “Yes a clone of my own!”;

7

8 initscr();

9 addstr(text1); /* add the first string */

10 addstr(text2); /* add the second string */

11 refresh(); /* display the result */

12 getch(); /* wait */

13

14 endwin();

15 return 0;

16 }

Note the comments in Listing 2-3: The string is added with the addstr()
function, not displayed. The string gets displayed only when refresh()
updates the current screen.

Another thing to note: The \n at the end of the first string did, indeed, move
the cursor down to the next line.

This next program example in Listing 2-4 contains a subtle variation on the
ADD2.C code.

Listing 2-4: ADD3.C

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 char text1[] = “Oh give me a clone!\n”;

6 char text2[] = “Yes a clone of my own!”;

7

8 initscr();

9 addstr(text1); /* add the first string */

10 addstr(text2); /* add the second string */

11 move(2,0); /* cursor to row 3, column 1 */

12 addstr(“With the Y chromosome changed to the X.”);

(continued)

Chapter 2 ■ Basic I/O, the NCurses Way 23

05_107591 ch02.qxp 1/12/07 9:03 PM Page 23

Listing 2-4 (continued)

13 refresh(); /* display the result */

14 getch();

15

16 endwin();

17 return 0;

18 }

I added the move() function in line 11, which changes the cursor’s location
on the standard screen window. I also added another addstr() function at
line 12 to write the next line of text.

The move() Function
There are many cursors in NCurses. For example, each window has its own
cursor and that cursor location stays the same in each window regardless of
what happens to the cursor in other windows.

In the code for ADD3.C shown in Listing 2-4, the newline displayed by
addstr() in line 9 moves the cursor on the standard screen window from the
end of the current line of text, down to the start of the next line — as you
would expect.

In line 11 of ADD3.C, the move() function moves the cursor’s location. Here
is the format of the move() function:

move(y,x)

y is a row value, going up and down the screen.
x is a column value, going left to right across the screen.
The upper-left corner of the screen is coordinate 0,0. And, of course, the total

number of rows and columns depends on your terminal configuration, though
there is a way to discover it, as I’ll show you in Chapter 4. Figure 2-4 also helps
illustrate how the coordinates work out.

NOTE It’s important to remember that the move() function puts the row
first, or Y, X (if you’re used to Cartesian coordinates). Think row, column as
opposed to X, Y.

The Old Formatted Text Trick
In NCurses, the printw() function can be used just like printf() to display
strings of text, variables, formatted text, and all that sort of junk. If you know
printf(),you also know printw() — but remember that in NCurses the
printw() function is the one you want to use. Check out Listing 2-5 to see
how this works.

24 Chapter 2 ■ Basic I/O, the NCurses Way

05_107591 ch02.qxp 1/12/07 9:03 PM Page 24

Figure 2-4: Plotting window coordinates in NCurses

Listing 2-5: YODA.C

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int yoda = 874;

6 int ss = 65;

7

8 initscr();

9 printw(“Yoda is %d years old\n”,yoda);

10 printw(“He has collected %d years\n”,yoda-ss);

11 printw(“of Social Security.”);

12 refresh();

13 getch();

14

15 endwin();

16 return 0;

17 }

Nothing truly new here. The printw() function works just as you would
expect printf() to work.

0 , 0
1 , 0
2 , 0

5 , 0

0 , 5 0 , 10

5 , 20

6th row
21st column

0 , 20

10 , 0

Chapter 2 ■ Basic I/O, the NCurses Way 25

05_107591 ch02.qxp 1/12/07 9:03 PM Page 25

Reading Text

There is nothing really magical about writing text to the screen. Well, the
move() function is pretty cool. But the really cool stuff — especially if you’re
weary of a lack of single-character input functions in C — comes with reading
text in from the keyboard.

Here are some NCurses console input functions:

getch()

getstr(*str)

getnstr(*str,length)

scanw(format,var[,var...])

The getch() function returns a single character from the console. There is
no need to press the Enter key, because the character is read right away.

The getstr() and getnstr() functions read in a string of text from the
console. Of the two, use getnstr(), which measures input and is therefore
more secure than the straight getstr() function.

Finally, scanw() works just like the standard I/O function scanf(). It
allows formatted input.

There are other NCurses functions for console input. Some help you shape
input, which I’ll get into later in this book. For now I’m just going to demon-
strate the basic commands listed here.

The Silly Typewriter Program
Nothing best demonstrates “one character in/one character out” than a sim-
ple, stupid typewriter program, such as the one in Listing 2-6.

Listing 2-6: TYPEWRITER.C

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 char ch;

6

7 initscr();

8 addstr(“Type a few lines of text\n”);

9 addstr(“Press ~ to quit\n”);

10 refresh();

11

12 while((ch = getch()) != ‘~’)

13 ;

14

15 endwin();

26 Chapter 2 ■ Basic I/O, the NCurses Way

05_107591 ch02.qxp 1/12/07 9:03 PM Page 26

Listing 2-6 (continued)

16 return 0;

17 }

Note the while loop here. Basically, it’s saying to read all character input
until the ~ character is received; then bail. Try the program out:

Type a few lines of text

Press ~ to quit

Pressing Enter may result in a return instead of a return/line feed combina-
tion. That’s fine; the program is more about I/O than actually editing text.

Note, however, that getch() in its natural state does display the text you’ve
input; there is no need to use refresh() when getch() is reading text.

The getch() function doesn’t always display text as it’s typed. It’s possible
in NCurses to turn off echo on input. I’ll cover that in Chapter 7.

Consuming a String Whole
The getstr() function works similarly to the standard gets() function,
which simply takes keyboard input and stuffs it into a buffer — and without
bounds checking, I might add. I demonstrate the function in Listing 2-7, but
for security reasons, in your real programs, please use the getnstr() func-
tion instead, which is shown in the next section.

Listing 2-7: STRING1.C

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 char first[24];

6 char last[32];

7

8 initscr();

9 addstr(“What is your first name? “);

10 refresh();

11 getstr(first);

12

13 addstr(“What is your last name? “);

14 refresh();

15 getstr(last);

16

17 printw(“Pleased to meet you, %s %s!”,first,last);

18 refresh();

19 getch();

20

21 endwin();

22 return 0;

23 }

Chapter 2 ■ Basic I/O, the NCurses Way 27

05_107591 ch02.qxp 1/12/07 9:03 PM Page 27

In this program, only 24 characters are allocated for first name storage, then
32 for last name. Please be sane about this and try not to type any super-long
names!

Also note the positioning of the refresh() functions. Like getch(), get-
str() normally displays its input as you type, so there’s no need to
refresh() after or during the function.

What is your first name? Clark

What is your last name? Kent

Pleased to meet you, Clark Kent!

And it pretty much works as you would expect it to.

Swallowing Only So Much of a String
Rather than risk some idiot typing 3,000 characters of text for his first name
(the latter part of which is a worm program designed to hijack your computer),
use the getnstr() function instead of getstr(). That n in there means
“accept only n characters of input,” a wise and logical addition to the input
command.

Listing 2-8 shows a subtle modification of the previous string1.c
program.

Listing 2-8: STRING2.C

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 char first[4];

6 char last[4];

7

8 initscr();

9 addstr(“Enter the first 3 letters of your first name? “);

10 refresh();

11 getnstr(first,3);

12

13 addstr(“Enter the first 3 letters of your last name? “);

14 refresh();

15 getnstr(last,3);

16

17 addstr(“Your secret agent name is “);

18 printw(“%s%s”,first,last);

19 addch(‘!’);

20 refresh();

21 getch();

22

28 Chapter 2 ■ Basic I/O, the NCurses Way

05_107591 ch02.qxp 1/12/07 9:03 PM Page 28

Listing 2-8 (continued)

23 endwin();

24 return 0;

25 }

The size of the input buffers, first and last, is set to 4 characters. That’s
3 letters plus the null \0 at the end of the string.

Note the format for getnstr(): First comes the character buffer, then the
maximum character count. Users can still backspace and erase after reaching
that number of characters, but if they try to type any more, the computer beeps
at them (or the screen flashes).

The printw() function displays the two short strings.
Finally addch() is used to display the exclamation point.

The Obligatory scanw() Program
I’m not a big scanf() fan (as you already know if you’ve read my C pro-
gramming books); therefore you’re not going to be seeing much of scanw()
outside of this section. Given that, Listing 2-9 shows the obligatory demon-
stration of scanw().

Listing 2-9: SUSHI.C

1 #include <ncurses.h>

2

3 #define UNI 4.5

4

5 int main(void)

6 {

7 int pieces;

8

9 initscr();

10

11 addstr(“SUSHI BAR”);

12 move(3,0);

13 printw(“We have Uni today for $%.2f.\n”,UNI);

14 addstr(“How many pieces would you like? “);

15 refresh();

16

17 scanw(“%d”,&pieces);

18 printw(“You want %d pieces?\n”,pieces);

19 printw(“That will be $%.2f!”,UNI*(float)pieces);

20 refresh();

21 getch();

22

23 endwin();

24 return 0;

25 }

Chapter 2 ■ Basic I/O, the NCurses Way 29

05_107591 ch02.qxp 1/12/07 9:03 PM Page 29

Again, this could just be a simple scanf() program, though scanw() is
used instead. I’ve not much more to say about it, mostly because, as I’ve
already mentioned, I’m not a big scanf() fan.

TI P The big flub everyone makes with scanf()/scanw() is forgetting the
ampersand before nonarray variable names. That one will cost you a core dump
or three if you don’t catch it.

30 Chapter 2 ■ Basic I/O, the NCurses Way

05_107591 ch02.qxp 1/12/07 9:03 PM Page 30

31

NCurses not only puts text up on the screen; it also lets you put text on the
screen with style. While the style may not be as elaborate as the styles offered
in a GUI word processor, it is enough to add emphasis, fun, and perhaps a wee
bit o’ color to what would otherwise be boring terminal text.

Text Abuse with Text Attributes

There are three useful functions that control the tone of the text displayed on
the screen:

attrset(attr)

attron(attr)

attroff(attr)

The attrset() function sets text attributes. It directs NCurses to apply the
attribute(s) specified to all text displayed from that point onward.

The attron() and attroff() functions turn specific text attributes on or
off, respectively.

There is some confusion regarding whether to use attrset() or
attron() to apply text attributes. You can use either one. For example:

attrset(A_BOLD);

Formatting Text

C H A P T E R

3

06_107591 ch03.qxp 1/12/07 9:03 PM Page 31

attron(A_BOLD);

Both these statements apply the bold text attribute to any text displayed
afterward. The difference is that attrset() turns off all other attributes pre-
viously applied, leaving only bold applied to the text, while attron() adds
the bold attribute to any attributes already applied to the text.

More than Boring Black and White (but Not Much)
When you start up NCurses, the text output is displayed using the normal
(A_NORMAL) text attribute. That equates to the standard white text on a black
background or however you have your terminal configured (for example,
green text on a white background or whatever).

But that’s so boring!
Table 3-1 lists the basic (noncolor) text attributes you can apply to text using

the attrset() or attron() functions.

Table 3-1: NCurses Text Attributes

ATTRIBUTE NAME WHAT IT DOES

A_ALTCHARSET Displays text using an alternative character set
(defined by your terminal)

A_BLINK Annoying blinking text

A_BOLD Bright text, bold text, thick text (depending on
terminal type)

A_DIM Dimmed text (not as bright as regular text)

A_INVIS “Hidden text” (available only on certain terminals)

A_NORMAL Normal text

A_REVERSE Inverse text

A_STANDOUT Same as standout()

A_UNDERLINE Underline text

A_PROTECT “Protected text,” available only on certain
terminals, prevents text from being overwritten.

A_HORIZONTAL

A_LEFT

A_LOW

A_RIGHT

A_TOP

A_VERTICAL Not implemented

32 Chapter 3 ■ Formatting Text

06_107591 ch03.qxp 1/12/07 9:03 PM Page 32

The attributes listed in Table 3-1 are used with the attrset(), attron(),
and attroff() functions to control the appearance of text on the screen.
attron() and attroff() are used to set and reset individual attributes.
attrset() is used to override any previous text attributes and set a new
attribute for all text.

Some attributes are defined by the XSI (X/Open System Interface) but not
yet implemented, at least not in any version of NCurses I’ve found. These are:
A_HORIZONTAL, A_LEFT, A_LOW, A_RIGHT, A_TOP, and A_VERTICAL.
(These are “highlighted modes,” and I’m not really certain what that means.)

Testing Some Attributes
You can use the following program in Listing 3-1 as a base or test bed for test-
ing the various attributes listed in Table 3-1.

Listing 3-1: twinkle.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 attron(A_BOLD);

8 addstr(“Twinkle, twinkle little star\n”);

9 attron(A_BLINK);

10 addstr(“How I wonder what you are.\n”);

11 attroff(A_BOLD);

12 addstr(“Up above the world so high,\n”);

13 addstr(“Like a diamond in the sky.\n”);

14 attrset(A_NORMAL);

15 addstr(“Twinkle, twinkle little star\n”);

16 addstr(“How I wonder what you are.\n”);

17 refresh();

18 getch();

19 endwin();

20 return 0;

21 }

The important thing to remember about this code is that an attribute stays
on until you turn it off, either via attroff() or attrset(). Otherwise, the
attributes are slapped on to all text output after the attribute function is used,
which can be seen in Figure 3-1.
A_BOLD displays the text foreground in bold.

Chapter 3 ■ Formatting Text 33

06_107591 ch03.qxp 1/12/07 9:03 PM Page 33

Figure 3-1: Output of the twinkle.c code

A_BLINK blinks the text on and off. Note that your terminal definition, or
GUI terminal preferences panel, may disable this feature. It’s generally
accepted that blinking text is perhaps the most irritating attribute you can ever
assign to anything on the screen.

NOTE Note that text attributes affect only text, not the spaces or “blanks”
between words.

Multiple-Attribute Mania
You don’t have to issue multiple attrset(), attron(), or attroff()
functions to apply or remove multiple attributes. Thanks to the unique bit pat-
terns of the attribute constants in NCurses, text attributes can be applied all at
once by using a logical OR between each attribute you want in a single
attron() or attrset() function.

For example, if you want your text bold and blinking, you can use:

attrset(A_BOLD | A_BLINK);

Here, both the bold and blink attributes are specified, meaning any text dis-
played after that statement will boldly blink (highly irritating). See Listing 3-2
as an example.

Listing 3-2: annoy.c

1 #include <ncurses.h>

2

3 #define COUNT 5

4

5 int main(void)

Blinking Text

34 Chapter 3 ■ Formatting Text

06_107591 ch03.qxp 1/12/07 9:03 PM Page 34

Listing 3-2 (continued)

6 {

7 char text[COUNT][10] = { “Do”, “you”, “find”, “this”, “silly?” };

8 int a,b;

9

10 initscr();

11

12 for(a=0;a<COUNT;a++)

13 {

14 for(b=0;b<COUNT;b++)

15 {

16 if(b==a) attrset(A_BOLD | A_UNDERLINE);

17 printw(“%s”,text[b]);

18 if(b==a) attroff(A_BOLD | A_UNDERLINE);

19 addch(‘ ‘);

20 }

21 addstr(“\b\n”);

22 }

23 refresh();

24 getch();

25

26 endwin();

27 return 0;

28 }

Here’s some sample output:

Do you find this silly?

Do you find this silly?

Do you find this silly?

Do you find this silly?

Do you find this silly?

Any number of attributes (including color) can be applied in a single
attron() or attrset() command and likewise turned off via attroff() or
standend(). Simply specify the | (logical OR) between the attribute constants.

Can It Do Color?

Of course, NCurses can do color! The question is whether or not the terminal
can. Fortunately, the NCurses library comes with the tools to assist you in
determining whether or not the terminal is color blind or rainbow ready.

has_colors()

The has_colors() function returns a logical TRUE if the terminal is able to
display colored text, FALSE otherwise. (Both TRUE and FALSE are defined in
NCURSES.H, so don’t fret over them or redefine them in your code.)

Chapter 3 ■ Formatting Text 35

06_107591 ch03.qxp 1/12/07 9:03 PM Page 35

After determining whether the terminal has colors, you need to start up
NCurses color abilities. Here’s the function that does that, aptly named:

start_color()

The start_color() function returns OK if the color functions are properly
initialized. (And OK is defined in NCURSES.H.) So after successful completion
of the start_color() command, you can use color attributes on text and to
shade the background.

The following program in Listing 3-3 determines whether your terminal can
do colors in NCurses and can start the color routines. If so, the program tells
you how many colors and color combinations you can use. (More on that in
the next section.)

Listing 3-3: colortest.c

1 #include <ncurses.h>

2 #include <stdlib.h>

3

4 void bomb(char *msg);

5

6 int main(void)

7 {

8 initscr();

9

10 /* first test for color ability of the terminal */

11 if(!has_colors())

12 bomb(“Terminal cannot do colors\n”);

13

14 /* next attempt to initialize curses colors */

15 if(start_color() != OK)

16 bomb(“Unable to start colors.\n”);

17

18 /* colors are okay; continue */

19 printw(“Colors have been properly initialized.\n”);

20 printw(“Congratulations!\n”);

21 printw(“NCurses reports that you can use %d colors,\n”,COLORS);

22 printw(“and %d color pairs.”,COLOR_PAIRS);

23 refresh();

24 getch();

25

26 endwin();

27 return 0;

28 }

29

30 void bomb(char *msg)

31 {

32 endwin();

33 puts(msg);

34 exit(1);

35 }

36 Chapter 3 ■ Formatting Text

06_107591 ch03.qxp 1/12/07 9:03 PM Page 36

Here’s the output I see on my computer:

Colors have been properly initialized.

Congratulations!

NCurses reports that you can use 8 colors,

and 64 color pairs.

Note the use of the COLORS and COLOR_PAIRS. These constants are set
when start_color() checks to see how many colors are available to the ter-
minal, as well as how much space is left for storing color information in the
NCurses attr_t variable type. The next section explains the difference
between COLORS and COLOR_PAIRS.

Colors and Color Pairs
In NCurses, the COLORS and COLOR_PAIRS constants report how many col-
ors the terminal can display and how many color combinations (foreground +
background — a color pair) can be defined. This may not be the way you’ve
dealt with text colors in the past, so pay attention!

The COLORS value reflects the basic set of colors available to the terminal.
The typical PC reports only eight colors available. These are the standard eight
text colors used on PCs since the first IBM PC color graphics adapter set the
standard back in 1981. The colors are listed in Table 3-2, along with their
NCurses constant names and values.

Table 3-2: NCurses Colors

NCURSES PC BIOS NCURSES
NUMBER NUMBER PC NAME NAME

0 0 Black COLOR_BLACK

1 4 Red COLOR_RED

2 2 Green COLOR_GREEN

3 6 Brown COLOR_YELLOW

4 1 Blue COLOR_BLUE

5 5 Magenta COLOR_MAGENTA

6 3 Cyan COLOR_CYAN

7 7 White COLOR_WHITE

Chapter 3 ■ Formatting Text 37

06_107591 ch03.qxp 1/12/07 9:03 PM Page 37

It’s important to remember that the COLORS value tells you how many col-
ors are available, yet the colors are numbered starting with zero. So the range
of colors available is 0 through COLORS minus one.

A color pair is simply a combination of foreground and background color
attributes. Each combination is a color pair and assigned a number from 1
through the value of COLOR_PAIRS minus 1.

For example, the color pair COLOR_YELLOW, COLOR_RED indicates yellow
text on a red background. To assign those colors as a text attribute, you must
first associate them with a color pair number. This is done with the
init_pair function:

init_pair(pair,f,b)

The init_pair() function assigns two colors to color pair number pair. f
is the foreground, or text, color; b is the background color.

init_pair(1,COLOR_YELLOW,COLOR_RED);

The preceding statement defines color pair number 1 as yellow text on a red
background.

The next step is to apply the color attribute to the text. This is done by using
the attrset() or attron() function just as you would apply any other text
attribute. The key, however, is to use the COLOR_PAIR(n) constant:

attrset(COLOR_PAIR(1));

The preceding statement applies the color attributes assigned to color pair 1
to the text that follows. If COLOR_PAIR(1) is defined as yellow text on a red
background, that’s the attribute taken by the text.

To apply a different color to the text, use init_pair() to set up fore-
ground and background colors for a color pair. Then use the COLOR_PAIR(n)
constant with attrset() or attron() to apply that color pair combination
to your text.

Eight or Sixteen Colors?
While NCurses may report only eight colors available, on most terminals there
are twice as many colors to choose from. The secret is to apply the bold text
attribute (A_BOLD) with a color pair.

The bold text attribute affects only the foreground text color. It gives you
access to the eight brighter versions of the standard eight (or however many)
text colors available.

38 Chapter 3 ■ Formatting Text

06_107591 ch03.qxp 1/12/07 9:03 PM Page 38

For example, if color pair 1 is defined as Magenta on Black, applying bold to
the text attribute yields pink on black text:

attrset(COLOR_PAIR(1) | A_BOLD);

The other foreground text colors become brighter versions of their original
colors when logically OR’d with the A_BOLD attribute. Brown actually
becomes yellow, and black becomes a midtone gray.

Spruce Up Some Text!
The color-pair stuff is only confusing when you’re reading about it. The best
way to understand the way NCurses applies color is, naturally, with a test pro-
gram such as Listing 3-4.

Listing 3-4: colorme.c

1 #include <ncurses.h>

2 #include <stdlib.h>

3

4 void bomb(int r);

5

6 int main(void)

7 {

8 initscr();

9 start_color();

10

11 init_pair(1,COLOR_BLACK,COLOR_RED);

12 init_pair(2,COLOR_BLUE,COLOR_BLACK);

13 attrset(COLOR_PAIR(1));

14 addstr(“My name is Mr. Black!\n”);

15 attrset(COLOR_PAIR(2));

16 addstr(“My name is Mr. Blue!\n”);

17 attrset(COLOR_PAIR(1));

18 addstr(“How do you do?\n”);

19 attrset(COLOR_PAIR(2));

20 addstr(“How do I do “);

21 attron(A_BOLD);

22 addstr(“what”);

23 attroff(A_BOLD);

24 addch(‘?’);

25 refresh();

26 getch();

27

28 endwin();

29 return 0;

30 }

Chapter 3 ■ Formatting Text 39

06_107591 ch03.qxp 1/12/07 9:03 PM Page 39

Note that I’m not using any error-checking with start_color() in line 10.
In this code, I’m assuming that you know whether or not your terminal can do
color. In the code you plan on releasing, it’s wise to check for color and have
your programs behave accordingly.

This basic program contains a simple back-and-forth conversation between
two color pairs, shown in Figure 3-2. Be mindful of the parenthesis in the
attrset(COLOR_PAIR(n)) statements.

Notice how the color attributes affect only the text put to the screen. The red
background doesn’t “splash” out the rest of the line, and the foreground color,
like other text attributes, affects only characters, not the blanks or white space
between text.

A Color Thing Your Terminal Probably Cannot Do
NCurses has a treat for you when you’re lucky enough to have a terminal that
can define its own text colors. For example, you can define pink text and use it
if you like. This is done via the init_color() function. The problem is that
this function doesn’t appear to be supported on many terminals. That can be
confirmed with another function, can_change_color(), which returns a
logical TRUE or FALSE depending on whether the terminal has the color-
changing ability:

if(!can_change_color())

bomb(“Unable to do color change.\n”);

Now if you can get it to work, the init_color() function comes into play,
wherein you can create your own unique text colors. That function looks
something like this:

init_color(color,r,g,b);

Figure 3-2: Sample output for colorme.c code

40 Chapter 3 ■ Formatting Text

06_107591 ch03.qxp 1/12/07 9:03 PM Page 40

The values passed to init_color() are all short integers. The first
color represents the new color number. It must be in the range of zero to
COLOR minus 1. Then come values for the red (r), green (g), and blue (b) argu-
ments, each of which ranges from 0 to 1000, representing the intensity of that
particular color.

So, for example, the following call to init_color() defines (or redefines)
color number 2 as a dark gray:

init_color(2,250,250,250);

The following source code in Listing 3-5 demonstrates how init_color is
used to define the color pink for color code 1.

Listing 3-5: color_me.c

1 #include <ncurses.h>

2

3 #define NEW_COLOR 1

4 #define RED 1000

5 #define GREEN 750

6 #define BLUE 750

7

8 int main(void)

9 {

10 initscr();

11 start_color();

12 if(!can_change_color())

13 addstr(“This probably won’t work, but anyway:\n”);

14

15 init_color(NEW_COLOR,RED,GREEN,BLUE);

16

17 init_pair(1,NEW_COLOR,COLOR_BLACK);

18 attrset(COLOR_PAIR(1));

19 printw(“This is the new color %d.\n”,NEW_COLOR);

20 refresh();

21 getch();

22

23 endwin();

24 return 0;

25 }

The init_color() function is used in line 15 to create the new color
“pink” by mixing 1000 points of red with 750 points each of blue and green,
which works out to be pink. Then that color is put to use by the init_pair()
function, and the printw() function should display its text in the new color.

On my terminal, which cannot change text color values, the new color
shows up as red, which is the default for color 1 anyway. I would call that a
failure.

Chapter 3 ■ Formatting Text 41

06_107591 ch03.qxp 1/12/07 9:03 PM Page 41

Coloring a Window

In addition to coloring text, NCurses’ color attributes can be applied to win-
dows as well, including the standard screen, the default window you see in
NCurses. (The standard screen is the same size as the terminal screen.)

The function to fill the standard screen window with color (or any text
attribute) is:

bkgd()

The bkdg() function, as its name suggests, sets the background attributes
for the standard screen. Every screen location is filled with the attribute(s)
specified, whether they’re plain text attributes or color.

Screen Background Color
To set the background color, you must do three things, two of which you
already know:

1. First, activate color. Use the has_color() command if necessary to
determine whether the console can do colors. If so, use
start_color() to put NCurses into rainbow mode.

2. Second, use init_pair() to create the color pair(s) you want to use,
setting foreground and background colors.

3. Third, use bkgd() to color the entire window.

The code shown in Listing 3-6 demonstrates how background color is set.

Listing 3-6: bgcolor1.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 start_color();

8 init_pair(1,COLOR_WHITE,COLOR_BLUE);

9 bkgd(COLOR_PAIR(1));

10 refresh();

11 getch();

12

13 endwin();

14 return 0;

15 }

42 Chapter 3 ■ Formatting Text

06_107591 ch03.qxp 1/12/07 9:03 PM Page 42

The result should be a solid blue screen, top to bottom. Any text added at
this point appears with the color attribute applied automatically, in this case
with white text on a blue background.

Press the Enter key to end the program; then modify the code to add some
text. For example, insert the following before line 10:

addstr(“So this is what a color screen looks like?\n”);

The text appears on the screen with the same attribute: white text on a blue
background.

More than Solid
Now if the solid screen bores you, it’s possible to use the bkgd() function to
fill each character space on the screen with a given character. That’s because
the argument to the bkgd() function is a chtype character.

The NCurses chtype is a special type of variable that includes both an
attribute and a character. So, if you like, you can specify a single character as
the background attribute for a window.

Modify the BGCOLOR1.C source code and change line 9 to read:

bkgd(‘.’);

Upon running the program, you’ll see the window’s background filled with
dots or periods. They appear between words as well because it’s the dot that
defines the window’s background “attribute.”

To combine the dot and the color pair, modify line 9 to read:

bkgd(COLOR_PAIR(1) | ‘.’);

The | in the code is the logical OR. It takes the value of COLOR_PAIR(1) and
logically ORs it with the character code for a period. You can also use the logi-
cal OR to apply other attributes or characters for the bkgd() function. (See
Appendix C for more information on the chtype variable in NCurses.)

Changing Color on the Fly
The bkgd() function affects all attributes and unused character places on the
screen. Any text you’ve written stays on the screen as text; only the attributes
are changed, as Listing 3-7 demonstrates:

Chapter 3 ■ Formatting Text 43

06_107591 ch03.qxp 1/12/07 9:03 PM Page 43

Listing 3-7: bgcolor2.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 start_color();

8 init_pair(1,COLOR_WHITE,COLOR_BLUE);

9 init_pair(2,COLOR_GREEN,COLOR_WHITE);

10 init_pair(3,COLOR_RED,COLOR_GREEN);

11 bkgd(COLOR_PAIR(1));

12 addstr(“I think that I shall never see\n”);

13 addstr(“a color screen as pretty as thee.\n”);

14 addstr(“For seasons may change\n”);

15 addstr(“and storms may thunder;\n”);

16 addstr(“But color text shall always wonder.”);

17 refresh();

18 getch();

19

20 bkgd(COLOR_PAIR(2));

21 refresh();

22 getch();

23

24 bkgd(COLOR_PAIR(3));

25 refresh();

26 getch();

27

28 endwin();

29 return 0;

30 }

The program initially displays some text on the screen, blue on a white back-
ground. Press the Enter key and the colors change to green on a white back-
ground — but the text is unchanged. Press Enter again and the text color
changes to red, the background to green. Ugly, but it proves that you can
change the screen color without bothering any printed text.

Noise, Too!

NCurses doesn’t have sound routines (at least not yet), but there is an audible
way to attract attention to your programs, a way beyond text attributes and
colors. Two functions do the job.

44 Chapter 3 ■ Formatting Text

06_107591 ch03.qxp 1/12/07 9:03 PM Page 44

The beep() function, as you can guess, simply beeps the terminal’s
speaker. Or, if you’re from the ancient days, it would ring the bell on the tele-
type! Either way, it’s getting the user’s attention.

The flash() function is newer than beep, designed to get attention by
flashing the screen, supposedly to assist the hearing impaired in recognizing
alerts. Sadly, flash() isn’t implemented on every terminal, so it may just
beep the speaker on your computer. The one way to find out is to run a test
program such as Listing 3-8.

Listing 3-8: notice.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 addstr(“Attention!\n”);

8 beep();

9 refresh();

10 getch();

11 addstr(“I said, ATTENTION!\n”);

12 flash();

13 refresh();

14 getch();

15 endwin();

16 return 0;

17 }

After you see Attention! on the screen, you should hear the beep. Press
Enter to see I said, ATTENTION! and look for the flash. On my computer, I
just heard another beep. Press Enter again to end the program.

Chapter 3 ■ Formatting Text 45

06_107591 ch03.qxp 1/12/07 9:03 PM Page 45

06_107591 ch03.qxp 1/12/07 9:03 PM Page 46

47

One of the things that make NCurses appeal to programmers is the control it
offers, not only over the text you display but over the location of that text as
well. The key is moving the cursor. Secondary to that, of course, is knowing
how big the terminal screen (or, in NCurses, the standard screen window) can
be, so that you keep all your text visible.

Measuring the Standard Screen

If you’re going to be moving the cursor hither, thither, and yon, it helps to
know the dimensions of your terminal screen. Not every terminal is going to
be exactly like yours, and it’s an especially bad thing to assume that all termi-
nals follow the dimensions of the standard PC text screen’s 25 rows by 80
columns.

In NCurses the terminal screen isn’t part of the equation. Instead, a window
is used called the standard screen, which coincidentally is just the same size and
dimensions as the terminal’s screen. (Yes, this may seem trivial at this point,
but soon you’ll discover NCurses window functions, wherein all this makes
much more sense.)

Around the Window

C H A P T E R

4

07_107591 ch04.qxp 1/12/07 9:03 PM Page 47

The Size of the Window Is Y by X
To discover the size of any window in NCurses, the following function can be
used:

getmaxyx(win,y,x)

The getmaxyx() function returns the dimensions of the window win in
rows and columns, where y is the row and x is the column. That the function
is named getmaxyx() should help you remember that Y, or rows, comes first.

The win argument is the name of a specific window in NCurses. For the ter-
minal screen, you use the standard screen window, which is named stdscr.

The y and x arguments are int variables (not pointers) that will hold
the maximum number of rows and columns in the named window. (See
Listing 4-1.)

Listing 4-1: screensize.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int x,y;

6

7 initscr();

8

9 getmaxyx(stdscr,y,x);

10 printw(“Window size is %d rows, %d columns.\n”,y,x);

11 refresh();

12 getch();

13

14 endwin();

15 return 0;

16 }

Here’s what I see for output:

Windows size is 24 rows, 80 columns.

That’s my terminal window’s size; yours may be different. Because my ter-
minal window is in a graphical window in a GUI, I can resize it. When I do and
make the window wider, rerunning the program reports the new results:

Windows size is 24 rows, 85 columns.

The point here is to remember that it’s a bad thing to guess the terminal’s
size. Write your code so that your program uses getmaxyx() to determine
the screen size and save those values in variables; do not use constants!

48 Chapter 4 ■ Around the Window

07_107591 ch04.qxp 1/12/07 9:03 PM Page 48

And Now: the Shortcut
The getmaxyx() function can read the dimensions of any NCurses window,
but because the standard screen is special, there are two NCurses constants
you can use as well (refer to Listing 4-2):

LINES

COLS

The value of the LINES constant is equal to the number of rows on the stan-
dard screen window and, therefore, the terminal screen.

The value of COLS is equal to the number of columns on the standard screen
window, as well as the terminal.

Listing 4-2: stdscrsize.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 printw(“Window size is %d rows, %d columns.\n”,LINES,COLS);

8 refresh();

9 getch();

10

11 endwin();

12 return 0;

13 }

The output is the same as from the SCREENSIZE.C code, though LINES
and COLS are always specific to the standard screen.

Do remember that the Y constant is LINES, not ROWS.

Moving the Cursor Around

In NCurses, the cursor — that thing that tells curses where to put the next
character on the screen — is moved around via the move() function but also
by most commands that put text to the screen. As you’ve seen in early chap-
ters, putting a \n to the screen moves the text down to the next line. Nothing
surprising there.

To provide basic cursor control, there is only one command:

move(y,x)

Chapter 4 ■ Around the Window 49

07_107591 ch04.qxp 1/12/07 9:03 PM Page 49

You’ve already seen this command at work in Chapter 2, and there’s really
nothing to it. But in this chapter I’ll add three more interesting commands that
combine moving the cursor with slapping down text:

mvaddch(y,x,ch)

mvaddstr(y,x,*str)

mvprintw(y,x,format,arg[...])

Oh, you could probably guess how they go, but I love sample programs, and
the urge to create them is just too great! So follow along and learn a tad bit more
about moving the cursor in NCurses.

Watch Out! I’ve Got You Cornered!
There are four corners on the standard screen: upper left, upper right, lower
left, and lower right. And you know what would just look lovely in each
corner? Why, an asterisk, that’s what. Just like the program in Listing 4-3
demonstrates:

Listing 4-3: corners1.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int rows,cols;

6

7 initscr();

8 getmaxyx(stdscr,rows,cols);

9 rows--;

10 cols--;

11

12 move(0,0); /* UL corner */

13 addch(‘*’);

14 refresh();

15 napms(500); /* pause half a sec. */

16

17 move(0,cols); /* UR corner */

18 addch(‘*’);

19 refresh();

20 napms(500);

21

22 move(rows,0); /* LL corner */

23 addch(‘*’);

24 refresh();

25 napms(00);

26

27 move(rows,cols); /* LR corner */

50 Chapter 4 ■ Around the Window

07_107591 ch04.qxp 1/12/07 9:03 PM Page 50

Listing 4-3 (continued)

28 addch(‘*’);

29 refresh();

30 getch();

31

32 endwin();

33 return 0;

34 }

The program slaps down an asterisk in every corner of the screen.
Line 12 isn’t necessary; NCurses initializes the cursor at the home location of

0,0 when the standard screen window is created by initscr(). Even so, I rec-
ommend using a move(0,0); statement in your code just in case future edi-
tions of NCurses change and because it’s never really a good idea to assume
anything in your code.

Some Compacting
The folks who write and maintain NCurses came to a strong realization many
years ago that any move() function is usually followed by a command to actu-
ally stick text on the screen. I mean, the following code in any program would
be rather silly:

move(10,13); /* move to here */

move(5,6); /* then to here */

move(17,11); /* try out this spot */

move(21,0); /* then put the cursor here */

What’s the point of all that? No, sir, move() functions are followed by some
type of text output function or statement. And you already know three of
them: addch(), addstr(), and printw(). By prefixing mv (for move) to each
of those commands, you get a combined move-and-print command.

Listing 4-4 shows a modification, do-over to the original 4corner.c source
code:

Listing 4-4: corners2.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int rows,cols;

6

7 initscr();

8 getmaxyx(stdscr,rows,cols);

9 rows--;

(continued)

Chapter 4 ■ Around the Window 51

07_107591 ch04.qxp 1/12/07 9:03 PM Page 51

Listing 4-4 (continued)

10 cols--;

11

12 mvaddch(0,0,’*’); /* UL corner */

13 refresh();

14 napms(500); /* pause half a sec. */

15

16 mvaddch(0,cols,’*’); /* UR corner */

17 refresh();

18 napms(500);

19

20 mvaddch(rows,0,’*’); /* LL corner */

21 refresh();

22 napms(500);

23

24 mvaddch(rows,cols,’*’); /* LR corner */

25 refresh();

26

27 getch();

28

29 endwin();

30 return 0;

31 }

The output is the same, but you’ve saved a lot of typing and redundancy.
Note the format for the mvaddch() function:

mvaddch(y,x,ch)

The row and column come first, and the character to punch in that spot goes
last. Again, this is just like combining the two functions, move() and
addch().

Center that Title!
It’s possible to have lots of fun with math and positioning text all over the
screen. Don’t run away! Remember that the computer does the math. Center-
ing text on the screen is an old and ancient art. It works like this:

1. Figure out how wide the screen is.

2. Figure out how wide your title text is.

3. Subtract the title text length from the screen width. The value left over
needs to be shared equally as spaces on either side of the title.

4. Divide the value left over by two. That’s the number of characters to
space over to center the title.

But don’t fret over writing that code yourself. The following program in
Listing 4-5 has it all done for you.

52 Chapter 4 ■ Around the Window

07_107591 ch04.qxp 1/12/07 9:03 PM Page 52

Listing 4-5: ctitle.c

1 #include <ncurses.h>

2 #include <string.h>

3

4 void center(int row, char *title);

5

6 int main(void)

7 {

8 initscr();

9

10 center(1, “Penguin Soccer Finals”);

11 center(5, “Cattle Dung Samples from Temecula”);

12 center(7, “Catatonic Theater”);

13 center(9, “Why Do Ions Hate Each Other?”);

14 getch();

15

16 endwin();

17 return 0;

18 }

19

20 void center(int row, char *title)

21 {

22 int len,indent,y,width;

23

24 getmaxyx(stdscr,y,width); /* get screen width */

25

26 len = strlen(title); /* get title’s length */

27 indent = width – len; /* subtract it from screen width */

28 indent /= 2; /* divide result into two */

29

30 mvaddstr(row,indent,title);

31 refresh();

32 }

The center() function is what centers the title text on a line. You supply
the row number and the line of text to center. The center() function then
centers that text on the given row.

NOTE Remember that the top row on the terminal screen is zero, not 1!

I included several center() commands with titles of varying length. Feel
free to add more or experiment with the lengths.

The math part is done in the center() function. First, the string’s length
is calculated and returned by the strlen() function and stored in the len
variable. Then that’s subtracted from the screen’s width, as returned from
getmaxyx(). Then it’s cut in half in line 28.

Chapter 4 ■ Around the Window 53

07_107591 ch04.qxp 1/12/07 9:03 PM Page 53

Some Fun with mvprintw()
Why do the math when the compiler can do it for you? One gem with
printf(), and then, of course, NCurses’ printw(), is that it can justify
strings in its output. For example:

printf(“%40s”, “This is right-justified”);

The %s normally tells printf() to replace the %s with a string. The %40s,
however, tells printf() to set aside 40 spaces in which to stick the string. As
with numbers, the string is right-justified:

________________This is right-justified

Now if you prefix the size of the field with a minus sign, you get left-justi-
fied output:

printf(“%-40s”, “This is left-justified”);

The –40means to set aside 40 spaces and left-justify the given string. To wit:

This is left-justified_________________

This calculating feature of printf(), and therefore printw()and there-
fore mvprintw(), can be put to use to do interesting justification on the screen
without a lot of mathematical overhead, as the following program in Listing
4-6 demonstrates:

Listing 4-6: mydata.c

1 #include <ncurses.h>

2

3 #define COL1 5

4 #define COL2 38

5

6 int main(void)

7 {

8 initscr();

9

10 mvprintw(5,COL1, “%30s”, “Your name:”);

11 mvprintw(5,COL2, “%-30s”, “Art Grockmeister”);

12

13 mvprintw(7,COL1, “%30s”, “Your company:”);

14 mvprintw(7,COL2, “%-30s”, “Sterling/Worbletyme”);

15

16 mvprintw(9,COL1, “%30s”, “Position:”);

54 Chapter 4 ■ Around the Window

07_107591 ch04.qxp 1/12/07 9:03 PM Page 54

Listing 4-6 (continued)

17 mvprintw(9,COL2, “%-30s”, “Grand Duke of Finance”);

18

19 mvprintw(11,COL1, “%30s”, “Date hired:”);

20 mvprintw(11,COL2, “%-30s”, “October 19, 1993”);

21 refresh();

22 getch();

23

24 endwin();

25 return 0;

26 }

The move-cursor commands don’t seem to be logical until you think of
them as placing given 30-character fields on the screen. Remember that the
printw() function is doing the alignment.

Here’s what the output generally looks like:

Your name : Art Grockmeister

Your company : Sterling/Worbletyme

Position : Grand Duke of Finance

Date hired : October 19, 1993

You can adjust the positions of the columns easily by changing the values of
the COL1 and COL2 constants. This is why they were declared as constants
instead of being hard-coded into the program.

Whither the Cursor?

Knowing where the cursor is doesn’t seem as popular or necessary a function
as being able to move the cursor. But consider the case where a program
involves full-screen user input. In that example, it helps to have a function that
tracks down where the booger is.

The getyx() function reads the logical cursor location from the window
win (stdscr for the standard screen) and puts its row and column positions
into the variables y and x. As with the move() function, the home location 0,0
is the upper-left corner of the screen. (See Listing 4-7.)

Chapter 4 ■ Around the Window 55

07_107591 ch04.qxp 1/12/07 9:03 PM Page 55

Listing 4-7: whereami.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 char ch=’\0’; /* initialize ch to NULL */

6 int row,col;

7

8 initscr();

9

10 addstr(“Type some text; ‘~’ to end:\n”);

11 refresh();

12

13 while((ch=getch()) != ‘~’)

14 ;

15

16 getyx(stdscr,row,col);

17 printw(“\n\nThe cursor was at row %d, column %d\n”,row,col);

18 printw(“when you stopped typing.”);

19 refresh();

20 getch();

21

22 endwin();

23 return 0;

24 }

The program lets you type away on the screen, similar to the
typewriter.c program shown earlier in this book. When you press the tilde
key, ~, the getyx function grabs the location of the cursor, and the printw
statement tells you where it was.

Note that the function is named getyx(), not getxy().
Here’s a sample of the output you may see:

Type some text; ‘~’ to end:

Bill is a jerk!~

The cursor was at row 1, column 16

When you stopped typing.

56 Chapter 4 ■ Around the Window

07_107591 ch04.qxp 1/12/07 9:03 PM Page 56

57

NCurses provides a wealth of text-manipulation functions, which are more
than just positioning the cursor. There are functions that can insert and delete
characters or lines of text, causing other text on the screen to jump around and
make room or to fill in the gaps. This chapter covers those amazing functions.

Inserting and Deleting Functions

Writing a program that spits up text on the screen is a relatively easy task.
What becomes a pain in the rear is when you have to modify the text you splash
on the screen. That becomes the “Oh, no! I now have to rethink how all this is
going to work” chore.

Face it. Some dolt somewhere is always going to change his mind. You must
learn to be versatile, to plan ahead. And if that’s not always possible, you can
rely on the following functions in NCurses that insert and delete text:

insch(ch)

insertln()

delch()

deleteln()

More Text Manipulation

C H A P T E R

5

08_107591 ch05.qxp 1/12/07 9:04 PM Page 57

The ins sisters are used to insert a single character or a complete line of text.
The insch() inserts a character. The insertln() function scrolls in a blank
line of text.

The del brothers have no arguments. They delete a single character or an
entire line of text from the screen.

As someone who’s struggled to write his own text editor can attest, these
routines are blessings in disguise! And they work in the logical manner you
would expect them to — yet another wreath to toss on the monument to
NCurses’ designers.

Editing Shakespeare

The following source code in Listing 5-1 serves as the core for the next several
sets of programs.

Listing 5-1: hamlet1.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 char Ham1[] = “To be, or not to be: that is the question:\n”;

6 char Ham2[] = “Whether ‘tis nobler in the mind to suffer\n”;

7 char Ham3[] = “The slings and arrows of outrageous fortune,\n”;

8 char Ham4[] = “Or to take arms against a sea of troubles,\n”;

9 char Ham5[] = “And by opposing end them?\n”;

10

11 initscr();

12

13 addstr(Ham1);

14 addstr(Ham3);

15 addstr(Ham5);

16 refresh();

17 getch();

18

19 endwin();

20 return 0;

21 }

The program dutifully prints every other line of the start of Hamlet’s
famous soliloquy:

To be, or not to be: that is the question:

The slings and arrows of outrageous fortune

And by opposing end them?

58 Chapter 5 ■ More Text Manipulation

08_107591 ch05.qxp 1/12/07 9:04 PM Page 58

Doesn’t quite sound the same, right? Of course, to the ignorant it still
“sounds” like Shakespeare — but I’m not here to argue the merits of the bard’s
poetry or why people seem so turned off by him.

Inserting Some Lines
The purpose of this lesson is to rebuild the quote properly. The HAMLET1.C
code contains all the text so you don’t have to retype the entire soliloquy. But
just pretend the input was coming from the terminal and you needed to insert
a new line of text between lines 1 and 2?

Remember that on the screen, lines 1 and 2 appear on screen rows 0 and 1.
Therefore, you would need to insert a blank line at row 1 and shove in the new
text there. Further, you would need to scroll the other lines down so that the
new line wouldn’t overwrite the existing line.

Fortunately, the insertln() function does all that: It inserts a blank line all
the way across the screen and scrolls the rest of the text beneath that line down
one notch (see Listing 5-2). At that point, you merely need to add the string of
text you need.

Listing 5-2: hamlet2.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 char Ham1[] = “To be, or not to be: that is the question:\n”;

6 char Ham2[] = “Whether ‘tis nobler in the mind to suffer\n”;

7 char Ham3[] = “The slings and arrows of outrageous fortune,\n”;

8 char Ham4[] = “Or to take arms against a sea of troubles,\n”;

9 char Ham5[] = “And by opposing end them?\n”;

10

11 initscr();

12

13 addstr(Ham1);

14 addstr(Ham3);

15 addstr(Ham5);

16 refresh();

17 getch(); /* wait for key press */

18

19 move(1,0); /* position cursor */

20 insertln(); /* insert a blank line, scroll text down */

21 addstr(Ham2); /* line to insert */

22 refresh();

23 getch(); /* wait for key press */

24

25 endwin();

26 return 0;

27 }

Chapter 5 ■ More Text Manipulation 59

08_107591 ch05.qxp 1/12/07 9:04 PM Page 59

Lines 18 through 22 are the new ones, as shown in the listing, inserting the
proper second line of the speech. When the program runs, after the first three
lines are displayed, press Enter. That way, getch() has something to eat, and
then the rest of the program works.

The new code starts by moving the logical cursor to row 1 (the second row)
column 0 (first column).

Next, the insertln() function creates a blank line on the same line where
the logical cursor is placed. It always blanks the entire line, even if the cursor
is placed on the far left side of the screen.

Finally, the addstr() function inserts a new string of text at the cursor’s
position, which is still 1,0. The insertln() function does not move the cur-
sor; it uses the cursor’s row position as a guide for which line to blank.

The result is that the existing text is scrolled down and the new line is inserted.
(Note that insertln() scrolls the entire contents of the standard screen win-
dow. If there is text on the last line, that line is scrolled off into oblivion.)

Final Changes to Hamlet
The problem with HAMLET2.C is that it’s still missing one line of text. There
are multiple ways to add that last line of text and finish the program, any one
of which is acceptable as long as the results on the screen look like this:

To be, or not to be: that is the question:

Whether ‘tis nobler in the mind to suffer

The slings and arrows of outrageous fortune,

Or to take arms against a sea of troubles,

And by opposing end them?

Try your own solution before looking at mine in Listing 5-3.

NOTE The most common mistake is forgetting that the first insertln scrolls
down the rest of the text; you must move the cursor to row 3, not row 2, to
insert the fourth line.

Listing 5-3: hamlet3.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 char Ham1[] = “To be, or not to be: that is the question:\n”;

6 char Ham2[] = “Whether ‘tis nobler in the mind to suffer\n”;

7 char Ham3[] = “The slings and arrows of outrageous fortune,\n”;

8 char Ham4[] = “Or to take arms against a sea of troubles,\n”;

60 Chapter 5 ■ More Text Manipulation

08_107591 ch05.qxp 1/12/07 9:04 PM Page 60

Listing 5-3 (continued)

9 char Ham5[] = “And by opposing end them?\n”;

10

11 initscr();

12

13 addstr(Ham1);

14 addstr(Ham3);

15 addstr(Ham5);

16 refresh();

17 getch();

18

19 move(1,0); /* position cursor */

20 insertln(); /* insert blank line, scroll text down */

21 addstr(Ham2); /* line to insert */

22 refresh();

23 getch();

24

25 move(3,0);

26 insertln(); /* insert blank line at line 4 */

27 addstr(Ham4); /* add line 4 */

28 refresh();

29 getch();

30

31 endwin();

32 return 0;

33 }

Inserting One Character at a Time
The insch() function inserts only one character into a row of text, shoving all
the characters to the left one space to the left. And like insertln(), any char-
acter that gets shoved off the left side of the screen is forgotten; no “wrapping”
takes place with insch().

The following source code in Listing 5-4 is one of those classic chestnuts, the
scrolling marquee. Of course, it’s a lot easier to write, thanks to the insch()
function.

Listing 5-4: marquee1.c

1 #include <ncurses.h>

2 #include <string.h>

3

4 int main(void)

5 {

6 char text[] = “Stock Market Swells! DOW tops 15,000!”;

7 char *t;

8 int len;

9

(continued)

Chapter 5 ■ More Text Manipulation 61

08_107591 ch05.qxp 1/12/07 9:04 PM Page 61

Listing 5-4 (continued)

10 initscr();

11

12 len = strlen(text);

13 t = text; /* initialize pointer */

14 while(len)

15 {

16 move(5,5); /* always insert at the same spot */

17 insch(*(t+len-1)); /* work through string backwards */

18 refresh();

19 napms(100); /* .1 sec. delay */

20 len--;

21 }

22 getch();

23

24 endwin();

25 return 0;

26 }

Each character in the string is processed backward in the while loop (lines
14-21), from the end to the beginning. The *(t+len-1) calculation initially
points to the last character in the string, based on its length len (with the t
pointer always pointing at the start of the string).

As the while loop decrements the value of len, the *(t+len-1) calcula-
tion points to each previous character in the string. The insch() function
then displays that character at location 5,5, pushing the rest of the text on that
line one notch to the left. The result is the scrolling marquee.

A More Visual Example
The following code in Listing 5-5 modifies the original MARQUEE1.C source
code, filling the screen with text so that you can more graphically see how the
insch() function affects text on the screen.

Listing 5-5: marquee2.c

1 #include <ncurses.h>

2 #include <string.h>

3

4 void fill(void);

5

6 int main(void)

7 {

8 char text[] = “Stock Market Swells! DOW tops 15,000!”;

9 char *t;

10 int len;

11

12 initscr();

62 Chapter 5 ■ More Text Manipulation

08_107591 ch05.qxp 1/12/07 9:04 PM Page 62

Listing 5-5 (continued)

13

14 fill();

15 refresh();

16 len = strlen(text);

17 t = text; /* initialize pointer */

18 while(len)

19 {

20 move(5,5); /* always insert at the same spot */

21 insch(*(t+len-1)); /* work through string backwards */

22 refresh();

23 napms(100); /* .1 sec. delay */

24 len--;

25 }

26 getch();

27

28 endwin();

29 return 0;

30 }

31

32 void fill(void)

33 {

34 int a,x,y;

35

36 getmaxyx(stdscr,y,x);

37 for(a=0; a<y; a++)

38 addstr(“A B C D E F G H I J K L M N O P Q R S T U V W X Y

Z\n”);

39 }

Less of Hamlet

On the deleting side, NCurses offers the delch() and deleteln() func-
tions. My favorite is delch() because I can pronounce it. Even so, the follow-
ing source code in Listing 5-6 shows deleteln() first. It’s a modification of
the original HAMLET.C source code, which makes typing easier.

Listing 5-6: hamlet4.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 char Ham1[] = “To be, or not to be: that is the question:\n”;

6 char Ham2[] = “Whether ‘tis nobler in the mind to suffer\n”;

7 char Ham3[] = “The slings and arrows of outrageous fortune,\n”;

8 char Ham4[] = “Or to take arms against a sea of troubles,\n”;

(continued)

Chapter 5 ■ More Text Manipulation 63

08_107591 ch05.qxp 1/12/07 9:04 PM Page 63

Listing 5-6 (continued)

9 char Ham5[] = “And by opposing end them?\n”;

10

11 initscr();

12

13 addstr(Ham1);

14 addstr(Ham2);

15 addstr(Ham3);

16 addstr(Ham4);

17 addstr(Ham5);

18 refresh();

19 getch(); /* wait for key press */

20

21 move(1,0); /* move to the line to delete */

22 deleteln(); /* Delete and backscroll */

23 refresh();

24 getch(); /* wait for key press */

25

26 endwin();

27 return 0;

28 }

First, the whole chunk of text is displayed. Good.
Press Enter to delete the text. Note how it scrolls up? Yes, the deleteln()

function is nearly the opposite of the insertln() function, complete with
logical reverse scrolling. And the vanished line goes off into bit-hell as well;
don’t look for it anywhere.

Do note that deleteln() does not affect the location of the cursor. After
the last refresh() command above, the cursor is still at location 1,0, eagerly
awaiting more text to be added to the screen.

Goodbye, Chunk of Text!
It’s time to edit Hamlet’s speech. Your job is to display the text, then press a
key to delete the word “outrageous.”

The command to use is delch(), which has no arguments. It simply
removes whichever character happens to be lurking at the current cursor posi-
tion. Any characters to the right on the same line are then shuffled over left one
notch; a blank character is then added to the end of the line.

Hint: “outrageous” is 10 characters long, but you probably also want to
delete the space character immediately after it. So 11.

Here’s another hint: Row 2, Column 25.
You should be able to see the text displayed, press a key, and then watch as

the word “outrageous” vanishes. Such tidy editing.

64 Chapter 5 ■ More Text Manipulation

08_107591 ch05.qxp 1/12/07 9:04 PM Page 64

As long as your program worked, everything is fine by me. For comparison
purposes only, Listing 5-7 shows my solution to the problem.

Listing 5-7: hamlet5.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 char Ham1[] = “To be, or not to be: that is the question:\n”;

6 char Ham2[] = “Whether ‘tis nobler in the mind to suffer\n”;

7 char Ham3[] = “The slings and arrows of outrageous fortune,\n”;

8 char Ham4[] = “Or to take arms against a sea of troubles,\n”;

9 char Ham5[] = “And by opposing end them?\n”;

10 int c;

11

12 initscr();

13

14 addstr(Ham1);

15 addstr(Ham2);

16 addstr(Ham3);

17 addstr(Ham4);

18 addstr(Ham5);

19 refresh();

20 getch(); /* wait for key press */

21

22 move(2,25); /* move to the start of “outrageous” */

23 for(c=0;c<11;c++)

24 delch(); /* gobble! */

25 refresh();

26 getch(); /* wait for key press */

27

28 endwin();

29 return 0;

30 }

Gobble! Note that delch() does not “backscroll” the screen or “reverse
wrap” any text from the following line. You can make such a thing happens,
but you will have to write the code that does it.

Out It Goes and in It Comes
One more final modification to the Hamlet speech!

On your own, modify the source code so that it displays each character of
“outrageous” being deleted one at a time. Further, modify the source code
so that the word “obnoxious” is inserted in place of “outrageous,” again
one character at a time. Hint: Use the napms() function to create a delay
between inserting and deleting each character.

Chapter 5 ■ More Text Manipulation 65

08_107591 ch05.qxp 1/12/07 9:04 PM Page 65

How did you do? Did you forget to not delete (or reinsert) the space after
“outrageous?” Did you use insch() and discover that your new text
was inserted backward? Or did you cheat and just use my solution, shown in
Listing 5-8?

Listing 5-8: hamlet6.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 char Ham1[] = “To be, or not to be: that is the question:\n”;

6 char Ham2[] = “Whether ‘tis nobler in the mind to suffer\n”;

7 char Ham3[] = “The slings and arrows of outrageous fortune,\n”;

8 char Ham4[] = “Or to take arms against a sea of troubles,\n”;

9 char Ham5[] = “And by opposing end them?\n”;

10 char *ob = “obnoxious”;

11 int c;

12

13 initscr();

14

15 addstr(Ham1);

16 addstr(Ham2);

17 addstr(Ham3);

18 addstr(Ham4);

29 addstr(Ham5);

20 refresh();

21 getch(); /* wait for key press */

22

23 /* First, remove “outrageous” */

24

25 move(2,25); /* move to the start of “outrageous” */

26 for(c=0;c<10;c++) /* only loop 2 times */

27 {

28 delch(); /* gobble! */

29 refresh(); /* update screen (cursor doesn’t move)

*/

30 napms(100); /* pause */

31 }

32

33 /* Second, insert “obnoxious” */

34

35 move(2,25); /* reset cursor */

36 for(c=0;c<9;c++)

37 {

38 insch(*(ob+8-c));

39 refresh();

40 napms(100);

41 }

42 getch();

66 Chapter 5 ■ More Text Manipulation

08_107591 ch05.qxp 1/12/07 9:04 PM Page 66

Listing 5-8 (continued)

43

44 endwin();

45 return 0;

46 }

In this source code, I decided to use a little pointer math to display the
“obnoxious” string:

insch(*(ob+8-c));

Pointer ob is positioned to point at the “s” in obnoxious. That’s eight char-
acters into the string minus the value of c, which is zero at the start of the for
loop. As the for loop progress, the value of c increases, which backsteps one
character at a time through the string.

Remember that insch() inserts text backward because it doesn’t move the
cursor. So you have to slide “obnoxious” in back to front.

Chapter 5 ■ More Text Manipulation 67

08_107591 ch05.qxp 1/12/07 9:04 PM Page 67

08_107591 ch05.qxp 1/12/07 9:04 PM Page 68

69

There is a difference between clearing a chunk of the screen and deleting text
in NCurses. That difference is that clearing merely erases, replacing the text
with blank characters. Deleting, on the other hand, removes the text and tight-
ens up the hole, which is demonstrated with the delch() and deleteln()
functions in Chapter 5.

In this chapter, you’re introduced to the handful of NCurses commands that
erase text without scrolling or tightening up the holes. I call it “Clearing and
Zapping.”

Commands to Erase Chunks of the Screen

NCurses sports four functions to clear or erase any chunk of the screen:

erase()

clear()

clrtobot()

clrtoeol()

The erase() and clear() functions do pretty much the same thing: clear
the screen. Between the two, the clear() function is more thorough, though
it has more internal overhead.

Clearing and Zapping

C H A P T E R

6

09_107591 ch06.qxp 1/12/07 9:04 PM Page 69

The clrtobot() function clears from the cursor’s current position to the
bottom of the screen. And clrtoeol() clears from the cursor’s position to
the end of the current line. Simple.

The Obligatory Test Program
The best way to demonstrate the erase-chunks commands is to have some-
thing on the screen worthy of erasure. For that I present the BLAH1.C program
in Listing 6-1.

Listing 6-1: blah1.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int c,y,x,cmax;

6

7 initscr();

8

9 getmaxyx(stdscr,y,x);

10 cmax = (x * y) / 5;

11 for(c=0;c<cmax;c++) addstr(“blah “);

12 refresh();

13

14 getch();

15

16 endwin();

17 return 0;

18 }

The code uses the getmaxyx() function to grab the screen size, given in Y
columns and X rows. Then a calculation is made to determine the maximum
number of strings, blah+space, that can be put on the terminal screen.

Running the program results in a screen full of blah, as shown in Figure 6-1.

Figure 6-1: Screen full of blah

70 Chapter 6 ■ Clearing and Zapping

09_107591 ch06.qxp 1/12/07 9:04 PM Page 70

Now you’re ready to experiment with clearing chunks of text on the screen.

Clear the Screen!
The first modification to blah1.c is the BLAH2.C source code shown in List-
ing 6-2. This code shows how the clear function is used to clear the screen.

Listing 6-2: blah2.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int c,y,x,cmax;

6

7 initscr();

8

9 getmaxyx(stdscr,y,x);

10 cmax = (x * y) / 5;

11 for(c=0;c<cmax;c++) addstr(“blah “);

12 refresh();

13 getch();

14

15 clear(); /* clear the screen */

16 refresh(); /* don’t forget this! */

17 getch();

18

19 endwin();

20 return 0;

21 }

The code in Listing 6-2 uses the clear() function in line 15 to clear the
standard screen window. But that does nothing visually; remember that a
refresh() function is required (line 16) to show what’s been done.

Note that this clearing of the screen moves the cursor to “home” after clear-
ing the screen, just as if you issued a move(0,0) function.

Clear or Erase?
The erase() and clear() functions are nearly identical, but the clear()
function does a more thorough job, ensuring that the NCurses window is com-
pletely redrawn from scratch the next time a refresh() function is issued.

Using the BLAH2.C source code, create a file, BLAH3.C. In that file, replace
line 15 with:

erase();

The output is the same.

Chapter 6 ■ Clearing and Zapping 71

09_107591 ch06.qxp 1/12/07 9:04 PM Page 71

Clrto means Clear To

Oftentimes, you don’t really want to erase the entire screen but rather only
part of it. Because the text screen runs top to bottom, the two nonfull-screen
NCurses erasing functions erase text from the cursor’s current position to
either the end of the current line of text or the end of the screen, depending on
which you use.

Less Blah on the End of a Line
The clrtoeol() function (see Listing 6-3) is used to erase text from the cur-
sor’s position to the end of the current line. If you use the vi/vim editor, this is
equivalent to the D command, though, unlike a text editor, clrtoeol()
erases text on the screen; it’s a visual command.

NOTE EOL means End of Line in primitive computer-speak. There is no EOL
control code, though the Master Computer in the film Tron said, “End of line,”
whenever it was done talking. This trivia tidbit has absolutely nothing to do
with NCurses.

Listing 6-3: blah4.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int c,y,x,cmax;

6

7 initscr();

8

9 getmaxyx(stdscr,y,x);

10 cmax = (x * y) / 5;

11 for(c=0;c<cmax;c++) addstr(“blah “);

12 refresh();

13 getch();

14

15 move(5,20); /* Setup the cursor */

16 clrtoeol(); /* clear to the end of line */

17 refresh();

18 getch();

19

20 endwin();

21 return 0;

22 }

72 Chapter 6 ■ Clearing and Zapping

09_107591 ch06.qxp 1/12/07 9:04 PM Page 72

The clrtoeol() function clears text only from the cursor’s position to the
end of the line (line 6). No surprises. No shocks. No Taco Bell dog dancing
across the screen.

And, yes, the clrtoeol() function does not affect the cursor’s position,
nor does it alter any text on any other row.

Less Blah to the End of the Screen
The clrtobot() function (see Listing 6-4) takes all the text from the cursor’s
position to the last position on the screen and replaces the text with blanks
(spaces). After using clrtobot(), the screen looks half blank, more or less.

NOTE BOT means Bottom of Text.

Listing 6-4: blah5.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int c,y,x,cmax;

6

7 initscr();

8

9 getmaxyx(stdscr,y,x);

10 cmax = (x * y) / 5;

11 for(c=0;c<cmax;c++) addstr(“blah “);

12 refresh();

13 getch();

14

15 move(5,20); /* Setup the cursor */

16 clrtobot(); /* clear to the end of screen */

17 refresh();

18 getch();

19

20 endwin();

21 return 0;

22 }

From the original BLAH4.C source code, only line 16 is changed. Replace the
clrtoeol() function with clrtobot(). That directs NCurses to clear the
screen from the cursor’s position (5,20) to the end of the screen.

The screen fills with the “blahs” again. Press a key, and the bottom two-
thirds is zapped, leaving only four “blahs” on line 6. It looks something like
Figure 6-2.

Chapter 6 ■ Clearing and Zapping 73

09_107591 ch06.qxp 1/12/07 9:04 PM Page 73

Figure 6-2: Using clrtobot() to clear part of the screen

You Mean that’s It for My NCurses
Erasing Fun and Excitement?

Yep.
There are no NCurses commands to clear the top part of the screen, so no

counterpart to clrtobot() exists. Likewise, no command exists to erase text
from the cursor’s position to the start of a line. Even so, it’s possible to code
these commands yourself, should you need them.

74 Chapter 6 ■ Clearing and Zapping

09_107591 ch06.qxp 1/12/07 9:04 PM Page 74

75

The getch() function is one of the immediate blessings that NCurses offers
struggling *nix programmers. Unlike the C macro getchar(), which is a
stream-reading command, getch() hops back right away with whatever key
was pressed. Such a function helps make your programs more interactive,
which can be a huge bonus.

Using getch() merely to read the keyboard is grand, but there is far more
getch() can do. In fact, this lengthy chapter discusses many of the options
available to getch() and how you can use it to do more than you possibly
expected.

Reading from the Keyboard

The getch() function normally waits until a key is pressed on the keyboard.
This is known as a blocking call; program execution is stopped until a key is
pressed. But it’s possible to change that behavior so that getch() does not
pause the program. In NCurses, that’s done with the nodelay() function.

nodelay(sdtscr,TRUE)

Keyboard Madness!

C H A P T E R

7

10_107591 ch07.qxp 1/12/07 9:04 PM Page 75

The preceding function directs the getch() function to become nonblock-
ing for the given window, the standard screen (stdscr). To restore getch()
to its normal blocking mode, this version of nodelay() is used:

nodelay(stdscr,FALSE)

When getch() is in nonblocking mode, it will not pause program execu-
tion to wait for a key press. Instead, when no key is pressed or a key isn’t wait-
ing to be read from the keyboard buffer, getch() returns the value ERR —
and the program continues. Likewise, if a key is pressed, getch() returns the
key’s value, as it usually does — and the program continues.

NOTE TRUE, FALSE, and ERR are defined in NCURSES.H.

Is a Character Waiting?
The following program in Listing 7-1 demonstrates how getch()’s personal-
ity can be changed by using the nodelay() function.

Listing 7-1: keywait1.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int value = 0;

6

7 initscr();

8

9 addstr(“Press any key to begin:\n”);

10 refresh();

11 getch();

12

13 nodelay(stdscr,TRUE); /* turn off getch() wait */

14 addstr(“Press any key to stop the insane loop!\n”);

15 while(getch() == ERR)

16 {

17 printw(“%d\r”,value++);

18 refresh();

19 }

20

21 endwin();

22 return 0;

23 }

76 Chapter 7 ■ Keyboard Madness!

10_107591 ch07.qxp 1/12/07 9:04 PM Page 76

At first, in line 11, getch() carries on its normal blocking function. The
program waits for a key to be pressed on the keyboard. (The key’s value is
unimportant, so it’s not saved.)

The nodelay() function in line 13 turns off getch()’s blocking. There-
fore, the while loop continues as long as getch() returns the value ERR,
which is what it generates when no key has been pressed. During the while
loop, values are displayed on the screen so that you’re aware of the program
continuing.

Note that there is no need to restore getch()’s function with another
nodelay() function, at least not in this example.

Testing Waiting Characters
With getch()’s waiting ability turned off, you can use getch() to filter
through keys pressed on the keyboard and scan for only those you need, dis-
carding the rest.

For example, suppose you need to modify the KEYWAIT1.C program so
that instead of any key stopping the insane loop, only the spacebar works to
stop it.

Try it! Modify the KEYWAIT1.C source code on your own. Change the code
so that only the spacebar key stops the insane loop. There are many ways to do
this, so be creative!

If you’ve done things properly, the program stops the loop only when the
spacebar has been pressed. You can press other keys on the keyboard, and the
program continues to loop; only the spacebar stops it.

Listing 7-2 shows my solution, though it is only one of many.

Listing 7-2: keywait2.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int value = 0;

6

7 initscr();

8

9 addstr(“Press any key to begin:\n”);

10 refresh();

11 getch();

12

13 nodelay(stdscr,TRUE); /* turn off getch() wait */

14 addstr(“Press the Spacebar to stop the insane loop!\n”);

15 while(1)

16 {

17 printw(“%d\r”,value++);

(continued)

Chapter 7 ■ Keyboard Madness! 77

10_107591 ch07.qxp 1/12/07 9:04 PM Page 77

Listing 7-2 (continued)

18 refresh();

19 if(getch() == ‘ ‘) break;

20 }

21

22 endwin();

23 return 0;

24 }

How to Implement kbhit()
If you’re an ancient DOS programmer or just familiar with the C language on
the PC, you might remember (and reminisce about) the old kbhit() function.
It was used to determine whether or not characters were waiting to be read
from the keyboard buffer. kbhit() returned TRUE if characters were waiting,
FALSE otherwise.

You can use nodelay() and getch() in NCurses to emulate this behavior
somewhat but not exactly. The problem is that getch() still fetches a key. So
what you need is a way to take that key and stuff it back to the keyboard input
queue. The function that handles that is called, logically, ungetch(). Here’s
the format:

ungetch(ch)

The ungetch() function places the character ch back into the input buffer.
You can do this to pre-stuff characters if you like or to toss back characters
when creating a kbhit()-like function, as shown in Listing 7-3.

Listing 7-3: kbhit.c

1 #include <ncurses.h>

2

3 int kbhit(void)

4 {

5 int ch,r;

6

7 /* turn off getch() blocking and echo */

8 nodelay(stdscr,TRUE);

9 noecho();

10

11 /* check for input */

12 ch = getch();

13 if(ch == ERR) /* no input */

14 r = FALSE;

15 else /* input */

16 {

17 r = TRUE;

18 ungetch(ch);

78 Chapter 7 ■ Keyboard Madness!

10_107591 ch07.qxp 1/12/07 9:04 PM Page 78

Listing 7-3 (continued)

19 }

20

21 /* restore block and echo */

22 echo();

23 nodelay(stdscr,FALSE);

24 return(r);

25 }

26

27 int main(void)

28 {

29 initscr();

30

31 addstr(“Press any key to end this program:”);

32 while(!kbhit())

33 ;

34

35 endwin();

36 return 0;

37 }

And when you press a key, the program ends. Voílà, there is your kbhit()
function equivalent.

Of course, this function does assume that echo() is set and nodelay() is
FALSE for the standard screen. It also assumes that the standard screen is the
input screen. Adjust these items as needed for your own use, or just assume
that kbhit() makes these assumptions and live with it.

NOTE See the section “Silence, please!” later in this chapter for more
information on the echo() function.

Flushing Input
Text typed at the computer keyboard is stored in a buffer. The various text-
reading, or keyboard input, functions fetch characters from that buffer as the
program needs them, which is a basic description of how keyboard input
works.

The reason for the buffer is to allow for keyboard input while the program
is doing something else. I can think of two benefits to this:

■■ First, it allows you to type ahead while the computer can do something
else (and the keyboard buffer is often called the type-ahead buffer).

■■ Second, it means that the program doesn’t have to constantly scan the
keyboard to determine whether you’ve pressed a key.

Chapter 7 ■ Keyboard Madness! 79

10_107591 ch07.qxp 1/12/07 9:04 PM Page 79

There are times, however, when you want to clear or flush the keyboard
buffer. For example, suppose your program asks a very serious question and
requires a Y or N key press. There may just be a rogue Y or N in the keyboard
buffer, so when your program pauses to read the keyboard, it may read that
older key press instead of the one corresponding to the current question. To
prevent that from happening, you can flush input, clearing the keyboard buffer.
In NCurses, the flushinp() function carries out that task (see Listing 7-4).

Listing 7-4: flush1.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 char buffer[81];

6

7 initscr();

8

9 addstr(“Type on the keyboard whilst I wait...\n”);

10 refresh();

11 napms(5000); /* 5 seconds */

12

13 addstr(“Here is what you typed:\n”);

14 getnstr(buffer,80);

15 refresh();

16

17 endwin();

18 return 0;

19 }

The program displays some text:

Type on the keyboard whilst I wait...

While that’s on the screen, type something such as your name or the ever-
popular asdf. Then, after a five-second pause, you’ll see that text displayed.

The FLUSH1.C code demonstrates the type-ahead buffer in action. While
the napms() function in line 11 is holding up program execution, the key-
board can still be used, and any characters you type are stored in the
keyboard’s buffer. The getnstr() function later picks up, processes, and dis-
plays what you typed, what was waiting in the buffer. Pressing Enter ends
getnstr()’s waiting, also ending the program.

The following modification to FLUSH1.C in Listing 7-5 inserts the
flushinp() function before getnstr(). Because input is flushed, anything
you type will be erased from the buffer and getnstr() will just have to wait!

80 Chapter 7 ■ Keyboard Madness!

10_107591 ch07.qxp 1/12/07 9:04 PM Page 80

Listing 7-5: flush2.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 char buffer[81];

6

7 initscr();

8

9 addstr(“Type on the keyboard whilst I wait...\n”);

10 refresh();

11 napms(5000); /* 5 seconds */

12

13 addstr(“Here is what you typed:\n”);

14 flushinp();

15 getnstr(buffer,80);

16 refresh();

17

18 endwin();

19 return 0;

20 }

Line 14 is the new line.
When the code is run, you’ll see:

Type on the keyboard whilst I wait...

Go ahead and type text as you did before. Then wait.

Here is what you typed:

Because of the flushinp() function, no text is displayed.

Silence, Please!
Aside from waiting for your keyboard input, another normal behavior for
getch() is to echo, or display, the character typed on the screen. It was pop-
ular for old C compilers to include a getch() function that did not echo the
character typed; it was the companion getche() function that echoed the
character typed to the display.

Those old functions are long gone (though I’ve seen them in some C com-
pilers). Even so, the point is that turning text-echoing off and on is something
programmers desire, as shown in Listing 7-6. NCurses is happy to oblige.

Chapter 7 ■ Keyboard Madness! 81

10_107591 ch07.qxp 1/12/07 9:04 PM Page 81

Listing 7-6: whoru.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 char name[46];

6 char password[9];

7

8 initscr();

9

10 mvprintw(3,10,”Enter your name: “);

11 refresh();

12 getnstr(name,45);

13 mvprintw(5,6,”Enter your password: “);

14 refresh();

15

16 getnstr(password,8);

17

18 endwin();

19 return 0;

20 }

The program asks for your name and password. Sadly, the password is dis-
played as it’s typed, which is a security risk. It would be nice to turn off the
echo of characters while the password is input, right? But not if you insert the
following on line 15:

noecho();

After recompiling and running, the password is typed “in the dark.” The
noecho() function affected input by not echoing the characters typed. Yes,
even though getch() isn’t used, internally the getnstr() function does use
getch()’s guts, so noecho() turns off the display for all input functions.

To turn on the display again (which isn’t necessary in this sample program),
use the echo() function.

Remember! Even with noecho(), text is being processed by the program.
The noecho() function affects only the display, not the keyboard.

Reading Special Keys

The amazing getch() function is so incredibly handy that marketing wizards
could do one of those 30-minute, late-night infomercials on the thing. For exam-
ple, when properly coddled, getch() can be told to interpret nonalphanu-
meric keys on the keyboard. This includes function keys, arrow keys, cursor
control keys, and even a few keys seldom found on the typical PC keyboard.

82 Chapter 7 ■ Keyboard Madness!

10_107591 ch07.qxp 1/12/07 9:04 PM Page 82

Keypad On!
All keys on the computer keyboard generate a code when that key is pressed.
The code is returned by key-reading functions, either as the raw code itself or
as some other special value as “cooked” by the operating system.

In the case of the alphanumeric keys, the key’s ASCII character value is
returned when you press that key. For other keys, other values are returned, a
16-bit value, a pair of 8-bit values, or perhaps even an escape sequence. Know-
ing which type of value returned means you can determine exactly which key
was pressed, even nonalphanumeric keys. The drawback, of course, is that not
every terminal produces the same results or even has the same keys.

NCurses to the rescue!
The NCURSES.H header file defines many of the extra keys found on termi-

nal keyboards. To activate and use those definitions, the keypad() function
is used:

keypad(stdscr,TRUE)

The keypad() function indicates which window it affects, such as stdscr
for the standard screen, followed by TRUE to turn the feature on or FALSE
to turn it off. Once enabled, your program can use various defined keyboard
constants to read those extra keyboard keys, as the following program in
Listing 7-7 demonstrates.

Listing 7-7: arrowkeys.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int ch;

6

7 initscr();

8

9 keypad(stdscr,TRUE);

10 do

11 {

12 ch = getch();

13 switch(ch)

14 {

15 case KEY_DOWN:

16 addstr(“Down\n”);

17 break;

18 case KEY_UP:

19 addstr(“Up\n”);

20 break;

(continued)

Chapter 7 ■ Keyboard Madness! 83

10_107591 ch07.qxp 1/12/07 9:04 PM Page 83

Listing 7-7 (continued)

21 case KEY_LEFT:

22 addstr(“Left\n”);

23 break;

24 case KEY_RIGHT:

25 addstr(“Right\n”);

26 default:

27 break;

28 }

29 refresh();

30 } while(ch != ‘\n’);

31

32 endwin();

33 return 0;

34 }

Locate the arrow keys on your computer keyboard. As you press each
arrow key, you’ll see that key’s direction displayed on the screen, as shown in
Figure 7-1.

NOTE Note that other keys display as well. That’s because getch() is in echo
mode, and that’s the way it behaves.

NOTE You will need to turn the numeric keypad off to use the arrow keys on
the 8, 4, 6, and 2 keys on the standard PC keyboard.

Figure 7-1: Sample output of the ARROWKEYS.C source code

84 Chapter 7 ■ Keyboard Madness!

10_107591 ch07.qxp 1/12/07 9:04 PM Page 84

What’s Where on the Keyboard
When the keypad() function has activated the keyboard’s extra keys, you can
use the definitions in NCURSES.H to help your program read the keys.

To determine exactly which keys are available to you, refer to Table 7-1. A
more complete list can be found in Appendix D.

You might want to run some tests to assure that NCurses on your computer
can access the function keys. For example, to check for Function key 5, you
would use:

ch == KEY_F(5)

as the comparison. Remember that variable ch must be an int, not a char
(that’s a common mistake).

Also be aware that your operating system may steal the function keys from
your program. If so, you can use the raw() function in NCurses to try to get
the function keys passed directly to your program. Refer to Appendix A for
more information on the raw() function.

The Highlighted Menu Bar
Knowing what you’ve learned so far in this book, you should now be able to
pull off quite a few tricks using NCurses. One of them is a fancy moving menu
bar system, similar to what’s shown in Figure 7-2.

Table 7-1: Some special key definitions

DEFINITION KEYBOARD KEY

KEY_UP Cursor up arrow

KEY_DOWN Cursor down arrow

KEY_LEFT Cursor left arrow

KEY_RIGHT Cursor right arrow

KEY_HOME Home key

KEY_NPAGE Page Down or Next Page

KEY_PPAGE Page Up or Previous Page

KEY_END End key

KEY_BACKSPACE Backspace key

KEY_F(n) Function key n

Chapter 7 ■ Keyboard Madness! 85

10_107591 ch07.qxp 1/12/07 9:04 PM Page 85

Figure 7-2: A sample menu bar system

Working the menu system involves pressing the up or down arrows on the
keyboard. When you do, the highlight bar moves up or down to select an item
in the menu. Pressing the Enter key selects that item.

The source code for such a fancy interface isn’t really that difficult, given the
way NCurses works. Listing 7-8 shows one way to pull it off.

Listing 7-8: menubar.c

1 #include <ncurses.h>

2

3 #define MENUMAX 6

4

5 void drawmenu(int item)

6 {

7 int c;

8 char mainmenu[] = “Main Menu”;

9 char menu[MENUMAX][21] = { /* 6 items for MENUMAX

*/

10 “Answer E-mail”,

11 “Off to the Web”,

12 “Word processing”,

13 “Financial management”,

14 “Maintenance”,

15 “Shutdown”

16 };

17

18 clear();

19 addstr(mainmenu);

20 for(c=0;c<MENUMAX;c++)

21 {

22 if(c==item)

23 attron(A_REVERSE); /* highlight selection */

24 mvaddstr(3+(c*2),20,menu[c]);

25 attroff(A_REVERSE); /* remove highlight */

26 }

86 Chapter 7 ■ Keyboard Madness!

10_107591 ch07.qxp 1/12/07 9:04 PM Page 86

Listing 7-8 (continued)

27 mvaddstr(17,25,”Use arrow keys to move; Enter to select:”);

28 refresh();

29 }

30

31 int main(void)

32 {

33 int key,menuitem;

34

35 menuitem = 0;

36

37 initscr();

38

39 drawmenu(menuitem);

40 keypad(stdscr,TRUE);

41 noecho(); /* Disable echo */

42 do

43 {

44 key = getch();

45 switch(key)

46 {

47 case KEY_DOWN:

48 menuitem++;

49 if(menuitem > MENUMAX-1) menuitem = 0;

50 break;

51 case KEY_UP:

52 menuitem--;

53 if(menuitem < 0) menuitem = MENUMAX-1;

54 break;

55 default:

56 break;

57 }

58 drawmenu(menuitem);

59 } while(key != ‘\n’);

60

61 echo(); /* re-enable echo */

62

63 /* At this point, the value of the selected menu is kept in the

64 menuitem variable. The program can branch off to whatever

subroutine

65 is required to carry out that function

66 */

67

68 endwin();

69 return 0;

70 }

It’s a long piece of source code, but the actual guts that do the work aren’t
that complex.

Chapter 7 ■ Keyboard Madness! 87

10_107591 ch07.qxp 1/12/07 9:04 PM Page 87

The code required to move the menu bar isn’t really that difficult. The pro-
gram reads the up and down arrow key in the same way as the ARROWKEYS.C
source code shown earlier in this chapter. Note, however, that I do turn echo
off in line 41 so that extra characters typed at the prompt are not distracting. A
complementary echo() command at line 61 turns on echoing for the rest of
the code (supposedly).

The menuitem variable keeps track of which menu item is highlighted and
selected. Its value is changed by pressing the up or down arrow keys. Those
keys merely change the value of menuitem. (The display highlighting is more
of an after effect.) The if comparisons in lines 49 and 53 assure that menuitem
never gets out of range; if so, the value “wraps.”

The core of the program is the drawmenu() function at line 5. It’s not really
that tough to do; the for loop at line 20 does all the work. It displays each line
of the menu one after the other. The math in line 24 assures that a blank line
separates each menu command. And the if comparison in line 22 turns on the
A_REVERSE attribute for the one menu item that is highlighted.

The advantage of NCurses here is that the refresh() statement in line 28
redraws the entire screen. So the highlight bar doesn’t really move; it’s merely
redrawn. That avoids the work of having to find the previously highlighted
text and manually unhighlighting it.

After the fancy display work is done, the program can continue. Branching
to the proper menu-routine is simply done by using the value of menuitem
and, say, a switch-case structure.

88 Chapter 7 ■ Keyboard Madness!

10_107591 ch07.qxp 1/12/07 9:04 PM Page 88

89

From the “And Now He Tells You” Department comes this important tidbit:
NCurses is a windowed environment. Nearly all NCurses text output func-
tions are window oriented, either directly or via a macro defined in the
NCURSES.H header file.

If you’ve been plowing through the tutorial part of book front to back, you
haven’t really noticed this windowed aspect of NCurses. Well, not by much, at
least. Those few commands that required a window argument used stdscr,
the standard screen. But that really isn’t as much the standard screen as it is the
default window to which NCurses sends its output.

In the bigger picture, the standard screen is only one of many windows your
programs can use in NCurses. So be prepared for some eye-opening looks
through various NCurses windows.

Ye Olde Standard Screen

When the initscr() function initializes NCurses, it does various things (per-
forms duties, sets up memory, and so on). One of the many tasks is to create the
default window for program output, the standard screen, named stdscr.

Windows, Windows
Everywhere!

C H A P T E R

8

11_107591 ch08.qxp 1/12/07 9:05 PM Page 89

Commands that Require a Window Argument
So far in this book, you’ve experienced commands that use stdscr to refer to
the terminal window. Here’s a sampling:

getmaxyx(win,row,col)

getyx(win,y,x)

keypad(win,bf)

nodelay(win,bf)

Each of these commands requires a win or window argument, so that
NCurses knows which window on the screen to refer to. Previous chapters in
this book use stdscr to represent the standard screen, the only window
NCurses creates. But other window names can be used as well, the names of
new windows you create yourself. (More on that in a few paragraphs.)

The Pseudo Commands
Nearly all text-output functions in NCurses require a win argument, specify-
ing which window to send the output. As a win argument, stdscr isn’t used
much, because many of the command text-output functions have been cus-
tomized for use with stdscr; those text-output functions exist as special
macros written in the NCURSES.H file.

For example, the addch() function, which adds a character to the standard
screen, is really a macro. The actual function is named waddch() and here is
its format:

waddch(win,ch);

The addch macro, or pseudo function, looks like this in NCURSES.H:

#define addch(ch) waddch(stdscr,ch)

So anytime you’ve used addch() in a program, the compiler secretly swaps
it out with the proper window-based function, waddch(), specifying stdscr
as the named window.

Pseudo functions have been used for just about all of the character and text-
output functions introduced so far in this book’s tutorial. There’s nothing
wrong with using the shorter, nonwindowed version of the function; my pur-
pose here is simply to tell you that NCurses always refers to a specific window
for its commands, whether you’re using a window version of a function or not.

Surprise!

90 Chapter 8 ■ Windows, Windows Everywhere!

11_107591 ch08.qxp 1/12/07 9:05 PM Page 90

The window (real) version of any pseudo function has the same name as the
pseudo function, but the real function is prefixed by a w. Also, the function’s
first argument is the name of the window the function acts upon.

The Other Prefix, mv
NCurses actually sports two prefixes for its text output commands. In addition
to w, specifying a window, there is also mv, which was explained in Chapter 4.

When you prefix a command with mv, the first two arguments are the row
(y) and column (x) to position the cursor before outputting text. Therefore:

addch(‘Q’);

The preceding command outputs a Q wherever the cursor currently hap-
pens to be.

mvaddch(5,10,’Q’);

The preceding command places a cursor at position 5,10 on the screen.
That’s the sixth row, 11th column. Remember that the first row and column are
numbered zero.

To direct addch() to a specific window and a specific location, this format
is used:

mvwaddch(stdscr,5,10,’Q’);

The mv prefix always comes first; after all, the real command is waddch(),
not addch(). But, inside the parenthesis, the window’s name comes first, as
shown above. You’ll probably forget that from time to time, but the slew of
pointer error messages generated will help remind you.

Making Windows

Creating a new window is simple, thanks to the newwin() function:

newwin(rows,cols,y_org,x_org)

The newwin() function is told the window’s size in rows and cols (verti-
cal by horizontal characters) and where the window is located on the terminal
screen, given that the upper-left corner of the terminal is location 0,0.

The range of values for rows, cols, y_org, and x_org depends on your
computer’s memory and, of course, screen size. The smallest you can go is a
one-character window.

Chapter 8 ■ Windows, Windows Everywhere! 91

11_107591 ch08.qxp 1/12/07 9:05 PM Page 91

When the call to newwin() is successful, a pointer to a window structure is
returned. This structure is declared in your program using this format:

WINDOW *name;

The WINDOW variable is defined in NCURSES.H; you supply the name, which
is the name you’ll use to refer to the new window. When the call fails, NULL is
returned. (The call fails because of a lack of memory or because the window is
too large for the screen or doesn’t fit entirely on the screen.)

And now: the shortcut!

newwin(0,0,0,0);

When you use the newwin() function with all zeros, a new window is cre-
ated that is the exact same size and location as the standard screen. Ta-da!

The Obligatory New Window Sample Program
The following source code directs NCurses to create two windows on the
screen. The first, naturally, is the standard screen. But the newwin() function
in line 13 creates a second window, named two (line 5), as shown in Listing 8-1.

Listing 8-1: twowin1.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *two; /* pointer for new window */

6

7 initscr();

8

9 addstr(“This is the original window, stdscr.\n”);

10 refresh();

11 getch();

12

13 two = newwin(0,0,0,0);

14 if(two == NULL)

15 {

16 addstr(“Unable to allocate memory for new window.”);

17 endwin();

18 return(1);

19 }

20 waddstr(two,”This is the new window created!\n”);

21

22 getch();

23

92 Chapter 8 ■ Windows, Windows Everywhere!

11_107591 ch08.qxp 1/12/07 9:05 PM Page 92

Listing 8-1 (continued)

24 endwin();

25 return 0;

26 }

When the program runs, you’ll see the text:

This is the original window, stdscr

That’s the standard screen. Press Enter to see the new window and its text.
And... nothing!
Press Enter to end the program.
The program compiled properly, so there must be some other reason why

the new window didn’t display. Here’s a review:

■■ Line 13: The new window is created.

■■ Lines 14 through 19: When there is a problem, this chunk of code han-
dles the situation. So the new window most definitely is created and
exists in the program. That’s not what’s wrong.

■■ Line 20: Could be a problem, but there’s no way to find out when you
cannot see the text.

Hmmm. You can’t see the text. If you recall from your basic knowledge of
NCurses, what is required so that you can see text output?

Yep! It’s the refresh() function. But for a specific window, you need the
wrefresh() function. Here’s the format:

wrefresh(win)

The wrefresh() function is required to update and display the content of
a specific window, win. (In fact, the refresh() function itself is merely a
macro defined as wrefresh(stdscr).) So all the program is missing is a
wrefresh() to update the new window. The following needs to be added at
line 23:

wrefresh(two);

The program now runs as expected, and when you press the Enter key,
you’ll see the window two and the text displayed:

This is the new window created!

What you’re seeing above and on the screen is text belonging to the window
two. Though you cannot see the standard screen window’s text, it’s still there,
in memory somewhere. What’s visible on the screen now is only the contents
of the new window, two.

Chapter 8 ■ Windows, Windows Everywhere! 93

11_107591 ch08.qxp 1/12/07 9:05 PM Page 93

If the program continued, you could direct text output to one screen or the
other and you can switch between the windows as well, as demonstrated in
the following section.

Switching between Windows
There is no advantage of having multiple windows unless you can switch
between them. For example, you can have one window (or a set of windows)
detailing help information. You can then display those windows when a user
hits the Help key or some other key on the keyboard, as the code in Listing 8-2
demonstrates.

Listing 8-2: helpmenu1.c

1 #include <ncurses.h>

2

3 void showhelp(void);

4

5 WINDOW *help;

6

7 int main(void)

8 {

9 int ch;

10

11 initscr();

12

13 /* build help menu */

14 if((help = newwin(0,0,0,0)) == NULL)

15 {

16 addstr(“Unable to allocate window memory\n”);

17 endwin();

18 return(1);

19 }

20 mvwaddstr(help,6,32,”Help menu Screen”);

21 mvwaddstr(help,9,28,”Press the ~ key to quit”);

22 mvwaddstr(help,12,28,”Press ENTER to go back”);

23

24 /* now start the program loop */

25

26 addstr(“Typer Program\n”);

27 addstr(“Press + for help:\n\n”);

28 refresh();

29 noecho();

30 do

31 {

32 ch = getch();

33 refresh();

34 if(ch == ‘+’)

35 showhelp();

94 Chapter 8 ■ Windows, Windows Everywhere!

11_107591 ch08.qxp 1/12/07 9:05 PM Page 94

Listing 8-2 (continued)

36 else

37 addch(ch);

38 } while (ch != ‘~’);

39

40 endwin();

41 return 0;

42 }

43

44 void showhelp(void)

45 {

46

47 wrefresh(help);

48 getch(); /* wait for key press */

49

50 refresh();

51 }

This example is yet another typing program, la-di-da! Note, however, that
echo is off and, therefore, an addch() function is required (line 37) to display
input. But anyway, when you press the + key, a second window help appears
displaying the help screen. Pressing Enter then returns you to the standard
screen.

The showhelp() function is where the swapping takes place. The function
used to display the help screen is wrefresh() function, as shown in line 47.
Likewise, a refresh() function in line 50 is used to switch back to the stan-
dard screen. That makes sense, so why doesn’t it work?

Well, it does work! The wrefresh() function writes only changed text to
the screen. Refer to Chapter 2: Only new text written to the screen or text
changed — what NCurses refers to as touched text — is written to the screen
when you wrefresh(). By working in that manner, NCurses is very efficient.
But when you want to display an entire window’s contents, that behavior isn’t
very helpful.

The solution is to force NCurses to display the entire window. Without man-
ually going through and rewriting the thing, you can use the touchwin()
function:

touchwin(win)

The touchwin() function leads NCurses to believe that every character
location in the window win has been touched or updated since the last refresh.
Therefore, on the next refresh() or wrefresh() call, the entire window
will be written to the screen.

To fix the code, add the following at line 46:

touchwin(help);

Chapter 8 ■ Windows, Windows Everywhere! 95

11_107591 ch08.qxp 1/12/07 9:05 PM Page 95

And add the following at line 49:

touchwin(stdscr);

After compiling, you can deftly switch between the windows (using + and
Enter), with everything working as expected.

Windows of a Smaller Size
There is no reason for the help menu window to be as large as it is. Using the
newwin() function, you can set the size and location of the new window to be
as large as the screen (with all zeros; line 14 of HELPMENU1.C) or as tiny as one
character. Here is the full format for the newwin() function again:

newwin(rows,cols,y_org,x_org)

Figure 8-1 shows a graphical representation of how those arguments work.
The values rows and cols set the size of the new window. The window’s

position is relative to the screen, y_org and x_org, where the home position is
0,0. Remember that the newwin() function fails either when not enough mem-
ory is available or part of the window hangs off the visible screen. I didn’t do it
in the sample program, but consider using the getmaxyx() function to deter-
mine screen width and height before you set the new window’s size.

Figure 8-1: Positioning a new window on the screen

“Home” 0,0

ncols

New window

nl
in

es

begin_x

be
gi

n_
y

96 Chapter 8 ■ Windows, Windows Everywhere!

11_107591 ch08.qxp 1/12/07 9:05 PM Page 96

Meanwhile, to change the help window’s size, edit the MENUHELP1.C
source code and change line 14 as follows:

if((help = newwin(10,30,4,26)) == NULL)

Also change lines 20, 21 and 22 to:

mvwaddstr(help,1,7,”Help menu Screen”);

mvwaddstr(help,5,3,”Press the ~ key to quit”);

mvwaddstr(help,8,4,”Press ENTER to go back”);

The changes are minor; just some positioning and new offsets. But after sav-
ing, compiling, and running, you can still see the original window, stdscr,
behind the help window.

Removing a Window

To remove a single window, such as a new window you created, the del-
win() function is used:

delwin(win)

The delwin() function removes the window win, a window you created
by using the newwin() function sometime earlier in your code. delwin()
removes the window’s internal structure and memory used by the window,
but it does not erase the window’s screen image. To do that, you’ll have to
wrefresh(), and possibly touchwin(), another window on the screen. See
Listing 8-3.

Listing 8-3: twowin2.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *two; /* pointer for new window */

6

7 initscr();

8

9 addstr(“This is the original window, stdscr.\n”);

10 refresh();

11 getch();

12

13 two = newwin(0,0,0,0);

(continued)

Chapter 8 ■ Windows, Windows Everywhere! 97

11_107591 ch08.qxp 1/12/07 9:05 PM Page 97

Listing 8-3 (continued)

14 if(two == NULL)

15 {

16 addstr(“Unable to allocate memory for new window.”);

17 endwin();

18 return(1);

19 }

20 waddstr(two,”This is the new window created!\n”);

21 wrefresh(two);

22 getch();

23

24 delwin(two);

25 addstr(“The second window was removed.\n”);

26 refresh();

27 getch();

28

29 endwin();

30 return 0;

31 }

The preceding source code is a simple update from TWOWIN1.C, wherein
the code was added to remove the window created.

When the program is run, after pressing the Enter key, the second window
is removed. The screen may look something like this:

This is the new window created!

The second window was removed.

On some terminals you may need to force NCurses to update the standard
screen. That’s because the delwin() function does not repaint the screen after
deleting a window. So to update the screen you need another refresh; insert a
new line before the refresh() function in line 26:

touchwin(stdscr);

That fixes the updating problem.

Dueling Windows

The following series of programs shows you what fun you can have with win-
dows. Each program is based on the code shown in Listing 8-4, which pro-
duces four separate windows on the screen.

98 Chapter 8 ■ Windows, Windows Everywhere!

11_107591 ch08.qxp 1/12/07 9:05 PM Page 98

Listing 8-4: quad1.c

1 #include <ncurses.h>

2 #include <stdlib.h>

3

4 void bomb(void);

5

6 int main(void)

7 {

8 WINDOW *a,*b,*c,*d;

9 int maxx,maxy,halfx,halfy;

10

11 initscr();

12

13 /* calculate window sizes and locations */

14 getmaxyx(stdscr,maxy,maxx);

15 halfx = maxx >> 1;

16 halfy = maxy >> 1;

17

18 /* create four windows to fill the screen */

19 if((a = newwin(halfy,halfx,0,0)) == NULL) bomb();

20 if((b = newwin(halfy,halfx,0,halfx)) == NULL) bomb();

21 if((c = newwin(halfy,halfx,halfy,0)) == NULL) bomb();

22 if((d = newwin(halfy,halfx,halfy,halfx)) == NULL) bomb();

23

24 /* Write to each window */

25 mvwaddstr(a,0,0,”This is window A\n”);

26 wrefresh(a);

27 mvwaddstr(b,0,0,”This is window B\n”);

28 wrefresh(b);

29 mvwaddstr(c,0,0,”This is window C\n”);

30 wrefresh(c);

31 mvwaddstr(d,0,0,”This is window D\n”);

32 wrefresh(d);

33 getch();

34

35 endwin();

36 return 0;

37 }

38

39 void bomb(void)

40 {

41 addstr(“Unable to allocate memory for new window.\n”);

42 refresh();

43 endwin();

44 exit(1);

45 }

Chapter 8 ■ Windows, Windows Everywhere! 99

11_107591 ch08.qxp 1/12/07 9:05 PM Page 99

When run, the program creates four windows: a, b, c, and d. Each window
is labeled with a specific mvwaddstr() function and a specific wrefresh().

Stained Glass Windows
Is it a window or a hole? In fact, the window itself is really defined by the space
around it, the frame and the panes of glass. When I work with windows, I want
to see that frame. The best way I think that can happen is with color, as the fol-
lowing improvement to the QUAD1.C program (Listing 8-5) demonstrates.

Listing 8-5: Quad2.c

1 #include <ncurses.h>

2 #include <stdlib.h>

3

4 void bomb(void);

5

6 int main(void)

7 {

8 WINDOW *a,*b,*c,*d;

9 int maxx,maxy,halfx,halfy;

10

11 initscr();

12 start_color();

13 init_pair(1,COLOR_BLACK,COLOR_BLUE);

14 init_pair(2,COLOR_BLACK,COLOR_RED);

15 init_pair(3,COLOR_BLACK,COLOR_GREEN);

16 init_pair(4,COLOR_BLACK,COLOR_CYAN);

17

18 /* calculate window sizes and locations */

19 getmaxyx(stdscr,maxy,maxx);

20 halfx = maxx >> 1;

21 halfy = maxy >> 1;

22

23 /* create four windows to fill the screen */

24 if((a = newwin(halfy,halfx,0,0)) == NULL) bomb();

25 if((b = newwin(halfy,halfx,0,halfx)) == NULL) bomb();

26 if((c = newwin(halfy,halfx,halfy,0)) == NULL) bomb();

27 if((d = newwin(halfy,halfx,halfy,halfx)) == NULL) bomb();

28

29 /* Write to each window */

30 mvwaddstr(a,0,0,”This is window A\n”);

31 wbkgd(a,COLOR_PAIR(1));

32 wrefresh(a);

33 mvwaddstr(b,0,0,”This is window B\n”);

34 wbkgd(b,COLOR_PAIR(2));

35 wrefresh(b);

36 mvwaddstr(c,0,0,”This is window C\n”);

100 Chapter 8 ■ Windows, Windows Everywhere!

11_107591 ch08.qxp 1/12/07 9:05 PM Page 100

Listing 8-5 (continued)

37 wbkgd(c,COLOR_PAIR(3));

38 wrefresh(c);

49 mvwaddstr(d,0,0,”This is window D\n”);

50 wbkgd(d,COLOR_PAIR(4));

41 wrefresh(d);

42 getch();

43

44 endwin();

45 return 0;

46 }

47

48 void bomb(void)

49 {

50 addstr(“Unable to allocate memory for new window.\n”);

51 refresh();

52 endwin();

53 exit(1);

54 }

The start_color() function in line 12 initializes color but without error
checking: I’m assuming that your terminal can do color and further that
start_color() will not fail. Remember in your “real” programs to always
use has_colors() and test to see if start_color() returns OK before
moving on in color.

The program defines four colors pairs, each of which is assigned to a specific
window via the wbkgd() function.

Sample output is shown in Figure 8-2. As you can see, the four windows
appear individually mapped and well delineated (though not in color in this
book).

Figure 8-2: Coloring the four windows’ separate colors

Chapter 8 ■ Windows, Windows Everywhere! 101

11_107591 ch08.qxp 1/12/07 9:05 PM Page 101

Stop Repeating Me!
The following, third rendition of the quad series of programs in Listing 8-6
adds a while loop to show you yet another aspect of NCurses and its
windows.

Listing 8-6: quad3.c

1 #include <ncurses.h>

2 #include <stdlib.h>

3

4 void bomb(void);

5

6 int main(void)

7 {

8 WINDOW *a,*b,*c,*d;

9 int maxx,maxy,halfx,halfy;

10 int ch;

11

12 initscr();

13 start_color();

14 init_pair(1,COLOR_BLACK,COLOR_BLUE);

15 init_pair(2,COLOR_BLACK,COLOR_RED);

16 init_pair(3,COLOR_BLACK,COLOR_GREEN);

17 init_pair(4,COLOR_BLACK,COLOR_CYAN);

18

19 /* calculate window sizes and locations */

20 getmaxyx(stdscr,maxy,maxx);

21 halfx = maxx >> 1;

22 halfy = maxy >> 1;

23

24 /* create four windows to fill the screen */

25 if((a = newwin(halfy,halfx,0,0)) == NULL) bomb();

26 if((b = newwin(halfy,halfx,0,halfx)) == NULL) bomb();

27 if((c = newwin(halfy,halfx,halfy,0)) == NULL) bomb();

28 if((d = newwin(halfy,halfx,halfy,halfx)) == NULL) bomb();

29

30 /* Write to each window */

31 wbkgd(a,COLOR_PAIR(1));

32 mvwaddstr(a,0,0,”This is window A\n”);

33 wrefresh(a);

34 wbkgd(b,COLOR_PAIR(2));

35 mvwaddstr(b,0,0,”This is window B\n”);

36 wrefresh(b);

37 wbkgd(c,COLOR_PAIR(3));

38 mvwaddstr(c,0,0,”This is window C\n”);

39 wrefresh(c);

102 Chapter 8 ■ Windows, Windows Everywhere!

11_107591 ch08.qxp 1/12/07 9:05 PM Page 102

Listing 8-6 (continued)

41 wbkgd(d,COLOR_PAIR(4));

40 mvwaddstr(d,0,0,”This is window D\n”);

42 wrefresh(d);

43

44 /* Update each window */

45 do

46 {

47 ch = wgetch(a);

48 waddch(b,ch);

49 waddch(c,ch);

50 waddch(d,ch);

51 wrefresh(b);

52 wrefresh(c);

53 wrefresh(d);

54 } while(ch != ‘~’);

55

56 endwin();

57 return 0;

58 }

59

60 void bomb(void)

61 {

62 addstr(“Unable to allocate memory for new window.\n”);

63 refresh();

64 endwin();

65 exit(1);

66 }

In brief:

■■ Line 10 is added to declare a character input variable; remember that
it’s an int not a char.

■■ Lines 45 through 54 are new; creating an input loop. The getch()
function automatically displays input, useful here to avoid a flash-peek
at the standard screen. The wgetch() function is used in line 47. It
reads a character input from window a, which also displays on window
a. The remaining functions display the same character on the other
three windows.

NOTE Though NCurses uses only one input queue, it’s possible to read input
from a specific window. This is done mostly for modifying the text, as certain
input functions can be filtered through various windows. Refer to the entry for
getch() in Appendix A.

Chapter 8 ■ Windows, Windows Everywhere! 103

11_107591 ch08.qxp 1/12/07 9:05 PM Page 103

On Your Own

Write an NCurses program that creates two side-by-side windows that fill the
screen. As you type in the first window, text also appears in the second win-
dow but with the rot13 filter applied. (Rot13 is a simple cipher where A and N
are swapped, B and O, C and P, and so on for the 36 letters of the alphabet.)

My solution for this problem can be found on this book’s companion page
on the Web: www.c-for-dummies.com/ncurses/.

104 Chapter 8 ■ Windows, Windows Everywhere!

11_107591 ch08.qxp 1/12/07 9:05 PM Page 104

105

Subwindows are strange and interesting creatures in NCurses. From one per-
spective, they are exactly what you imagine them to be: tiny windows within
other windows. But at the same time, because of the way NCurses implements
subwindows, they are not what they seem to be.

I once struggled with the concept of subwindows in NCurses. In fact, much
of the documentation on the Internet claims that subwindows are buggy and
should be avoided. That isn’t exactly correct. With proper understanding, sub-
windows can be time-saving gizmos in NCurses, not to be avoided at all.

The Thing with Subwindows

Subwindows are like real windows in NCurses in that they share the same
data structure. You use the same WINDOW variable to create a subwindow as
you do a full window. NCurses functions that control or manipulate a window
also control and manipulate subwindows (with a few exceptions). But a sub-
window is not the same thing as a real window.

The main difference between a subwindow and a real window is that sub-
windows share memory with a parent window. So when you put a character to
a subwindow, you’re also placing that character into the parent window as well.

Subwindows

C H A P T E R

9

12_107591 ch09.qxp 1/12/07 9:05 PM Page 105

For example, in Figure 9-1, it appears that there are two windows on the
screen. The smaller window is a subwindow, which has different color attrib-
utes from the parent window. The parent window shows the text Hello, son,
and the subwindow displays Hello, Dad. Even so, the text Hello, Dad also
exists in the parent window. The memory is shared.

If you were to change the text in the subwindow, you would also be chang-
ing or adding text to the parent. Likewise, the parent window can change text
in the subwindow. This can be confusing and frustrating but only when you
assume that a subwindow is like a regular window. It is not.

The best way to think of a subwindow is merely as a convenient way to ref-
erence a specific portion of the parent.

Figure 9-2 illustrates an example of using subwindows to reference a region
on the screen. The areas boxed at the bottom of the screen in Figure 9-2 contain
information that is occasionally rewritten or updated. Rather than have to do
a lot of complex cursor-positioning math, simply create a subwindow in the
proper spot; then use that window as a reference to position the cursor. This is
one example of how subwindows can be used to define regions of the screen
instead of separate windows.

As long as you consider the subwindow to be merely a reference to a specific
portion of the parent, you’ll do well with subwindows. But when you believe
the subwindow to be separate and unique, like a real window, you’ll get into
all sorts of trouble.

Figure 9-1: A glorious subwindow

106 Chapter 9 ■ Subwindows

12_107591 ch09.qxp 1/12/07 9:05 PM Page 106

Figure 9-2: An example of a useful subwindow

Making Subwindows

Subwindows have all of the basic attributes of real windows: a name, size,
location, unique cursor coordinates, and so on. Because they share memory
with the parent, the subwindow must reside completely within the parent
window. And, naturally, subwindows are created by using their own unique
functions:

subwin(win,rows,cols,y,x)

derwin(win,rows,cols,y,x)

The only difference between these functions has to do with the final two
arguments. With subwin(), y and x are coordinates relative to the screen; in
derwin(), y and x are relative to the parent window.

C7D0044

C7D0045

C7D0046

C7D0047

C7E000A

Lorem ipsum dolor sit amet, consectetuer adispiscing elit,
sed diam nonummy nibh euismod tincisunt ut laoreet dolore
magna aliquam erat volutpat.

Ut wisi enim ad minim veniam, quis nostrus exerci tation
ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo
consequat. Lorem.

Ipsum dolor sit amet, consectetuer adipiscing elit, sed diam
nonummy nibh euismod

Tincidunt ut laoreet dolore magna aliquam erat volutpat.
Ut wisi enim ad minim veniam.

Quis nostrud exerci tation ullamcorper suscipit lobortis
nisl ut aliquip ex ea commodo consequat.

Event
C7D0046
C7D0047
C7E000A

main (window of interdeterminate size)

subwindow “A” displays information

Top part of
window used to
display scrolling
text

subwindow “B”
displays information

Timestamp
Wednesday, June 18, 2008 @ 21:30
Wednesday, June 18, 2008 @ 23:47
Yesterday @ 04:51

45,848 K
67,494 K
8,777 K

23 K
>1 K

Chapter 9 ■ Subwindows 107

12_107591 ch09.qxp 1/12/07 9:05 PM Page 107

After creation, the subwindow can be addressed like any other window,
named in a window-oriented command, deleted, or affected in the same was
as regular windows. Subwindows can even have subwindows of their own.

Your First Subwindow
Subwindows exist totally within a parent window. In a way, it helps to think of
them more as a region of the parent window, though the subwindow still
maintains its own cursor and text, and attributes can be written directly to the
subwindow just as with other windows in NCurses.

subwin(win,rows,cols,y,x)

The subwin() function creates the subwindow. win refers to the parent
window, which can be stdscr, the standard screen. rows and cols gives the
size of the subwindow in character rows and columns. Finally, the x and y rep-
resent the upper-left location of the subwindow relative to the screen, not the
parent window org.

When the subwin() function is successful, a new window is created,
returned as a WINDOW pointer by subwin() (see line 13 in the kid1.c code in
Listing 9-1). When the function fails, such as when no memory is available or
the subwindow does not reside completely within the parent, NULL is returned.

Listing 9-1: kid1.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *sonny;

6

7 initscr();

8 start_color(); /* remember to check for errors! */

9 init_pair(1,COLOR_WHITE,COLOR_BLUE);

10 init_pair(2,COLOR_RED,COLOR_YELLOW);

11

12 /* create subwindow */

13 sonny = subwin(stdscr,5,20,10,30);

14 if(sonny == NULL)

15 {

16 addstr(“Unable to create subwindow\n”);

17 endwin();

18 return 1;

19 }

20

21 /* color windows and splash some text */

22 bkgd(COLOR_PAIR(1));

108 Chapter 9 ■ Subwindows

12_107591 ch09.qxp 1/12/07 9:05 PM Page 108

Listing 9-1 (continued)

23 addstr(“Hello, son.”);

24 wbkgd(sonny,COLOR_PAIR(2));

25 waddstr(sonny,”Hello, Dad.”);

26 refresh();

27 getch();

28

29 endwin();

30 return 0;

31 }

The code uses color to help you locate the subwindow on the screen. Note
that the start_color() function is used in this code without error checking;
remember to do error checking, as well as use the has_colors() function for
any code you plan on releasing publicly.

(Sample output can be seen in Figure 9-1.)

Your Second Subwindow
The following code in Listing 9-2 is a modification of the original KID1.C
source code. This time I’ve added the derwin() function, which uses coordi-
nates relative to the parent window to create the new subwindow. (Of course,
because in both cases the parent is the standard screen, there really is no gross
difference shown.)

Listing 9-2: kid2.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *sonny,*babygirl;

6

7 initscr();

8 start_color(); /* remember to check for errors! */

9 init_pair(1,COLOR_WHITE,COLOR_BLUE);

10 init_pair(2,COLOR_RED,COLOR_YELLOW);

11 init_pair(3,COLOR_CYAN,COLOR_WHITE);

12

13 /* create subwindow and remember to check for errors! */

14 sonny = subwin(stdscr,5,20,10,30);

15 babygirl = derwin(stdscr,5,20,1,50);

16

17 /* color windows and splash some text */

18 bkgd(COLOR_PAIR(1));

19 addstr(“Hello, son, hello baby girl.”);

20 wbkgd(sonny,COLOR_PAIR(2));

(continued)

Chapter 9 ■ Subwindows 109

12_107591 ch09.qxp 1/12/07 9:05 PM Page 109

Listing 9-2 (continued)

21 waddstr(sonny,”Hello, Dad.”);

22 wbkgd(babygirl,COLOR_PAIR(3));

23 waddstr(babygirl,”Hello, Papa.”);

24 refresh();

25 getch();

26

27 endwin();

28 return 0;

29 }

Sub-subwindows

Because a subwindow is considered a real window in nearly every sense, it’s
quite possible for a subwindow to have a subwindow of its own. You simply
name the subwindow’s variable as the win in the subwin() function, as the
code in Listing 9-3 demonstrates.

Listing 9-3: kid3.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *grandpa,*father,*boy;

6 int maxx,maxy;

7

8 initscr();

9

10 start_color(); /* remember to check for errors! */

11 init_pair(1,COLOR_WHITE,COLOR_BLUE);

12 init_pair(2,COLOR_RED,COLOR_YELLOW);

13 init_pair(3,COLOR_CYAN,COLOR_GREEN);

14

15 getmaxyx(stdscr,maxy,maxx);

16

17 /* create windows - remember to check for errors! */

18 grandpa = newwin(maxy-4,maxx-10,2,5);

19 father = subwin(grandpa,maxy-8,maxx-20,4,10);

20 boy = subwin(father,maxy-16,maxx-40,8,20);

21

22 /* color windows and splash some text */

23 wbkgd(grandpa,COLOR_PAIR(1));

24 waddstr(grandpa,”Grandpa”);

25 wbkgd(father,COLOR_PAIR(2));

26 waddstr(father,”Father”);

27 wbkgd(boy,COLOR_PAIR(3));

28 waddstr(boy,”Boy”);

29 wrefresh(grandpa);

110 Chapter 9 ■ Subwindows

12_107591 ch09.qxp 1/12/07 9:05 PM Page 110

Listing 9-3 (continued)

30 getch();

31

32 endwin();

33 return 0;

34 }

The program creates three windows. First comes window grandpa, which
is a “real” window. Then father is created as a subwindow of grandpa.
Finally, son is created as a subwindow of father. The background colors
make the windows more dramatically visible on the screen.

Removing a Subwindow

Subwindows are killed off just like regular windows, using the same del-
win() function. Deleting a subwindow removes the subwindow’s internal
structure (the thing WINDOW points at) but not the window’s data, because that
information is shared with the parent window. Also, to visually remove the
subwindow, the parent window must be touched and refreshed, as the follow-
ing program in Listing 9-4 demonstrates.

Listing 9-4: kid4.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *grandpa,*father,*boy;

6 int maxx,maxy;

7

8 initscr();

9

10 start_color(); /* remember to check for errors! */

11 init_pair(1,COLOR_WHITE,COLOR_BLUE);

12 init_pair(2,COLOR_RED,COLOR_YELLOW);

13 init_pair(3,COLOR_CYAN,COLOR_GREEN);

14

15 getmaxyx(stdscr,maxy,maxx);

16

17 /* create windows - remember to check for errors! */

18 grandpa = newwin(maxy-4,maxx-10,2,5);

19 father = subwin(grandpa,maxy-8,maxx-20,4,10);

20 boy = subwin(father,maxy-16,maxx-40,8,20);

21

22 /* color windows and splash some text */

23 wbkgd(grandpa,COLOR_PAIR(1));

(continued)

Chapter 9 ■ Subwindows 111

12_107591 ch09.qxp 1/12/07 9:05 PM Page 111

Listing 9-4 (continued)

24 waddstr(grandpa,”Grandpa\n”);

25 wbkgd(father,COLOR_PAIR(2));

26 waddstr(father,”Father\n”);

27 wbkgd(boy,COLOR_PAIR(3));

28 waddstr(boy,”Boy\n”);

29 wrefresh(grandpa);

30 getch();

31

32 /* remove the subwindow “boy” */

33 delwin(boy);

34 wclear(father);

35 waddstr(father,”Bye, son!\n”);

36 wrefresh(father);

37 getch();

38

39 endwin();

40 return 0;

41 }

The code is merely a modification to the KID3.C source. Added are lines 32
through 37.

The delwin() function removes window boy in line 33. Then boy’s parent
window, father, is cleared, a string is added, and the father window is
refreshed.

NOTE Merely refreshing the parent window does not remove the subwindow
(same data, remember?). The parent window can overwrite the subwindow or
remove it entirely with any character-erasing function, including wclear(), as
shown in line 34 of the program.

NOTE This is important: You should delete a window’s subwindows before
you can delete the main window. If you don’t, the memory used by the
subwindow will not be released in your program, and other, various ugly and
unpredictable errors may result.

Subwindows Versus Windows

Subwindows work like real windows in many ways:

■■ Subwindows use a separate WINDOW data structure in memory.

■■ Subwindows sport their own cursor, separate from the parent
window’s cursor.

112 Chapter 9 ■ Subwindows

12_107591 ch09.qxp 1/12/07 9:05 PM Page 112

■■ Subwindows can have their own color and text attributes.

■■ Subwindows can be manipulated by all the same functions that manip-
ulate regular windows.

There are a few exceptions to that last point: Some functions do not behave
the same way with subwindows as they do with real windows. Those specific
functions that don’t work with subwindows are documented in Appendix A,
as well as in the various man pages and other references.

Internally, a subwindow knows that it’s a subwindow. It can reference the
parent window, thanks to a pointer stored inside the subwindow’s WINDOW
structure. Sadly, that doesn’t work the other way around: Parent windows
have no way of knowing whether they have subwindows. This is the main
reason you’re not supposed to remove a window unless you first remove its
subwindows.

Finally, remember the shared memory deal. Anything you write to a sub-
window is also written to the parent. Likewise, the parent has no respect for its
subwindow and can effortlessly write text over the subwindow’s text. In fact,
text written over the subwindow’s text becomes part of the subwindow,
thanks to the shared memory.

As long as you can keep these points in mind, and put subwindows to use
as I’ve described here, I believe you’ll find them useful and handy to have.

Chapter 9 ■ Subwindows 113

12_107591 ch09.qxp 1/12/07 9:05 PM Page 113

12_107591 ch09.qxp 1/12/07 9:05 PM Page 114

115

NCurses has a basket full of windows tricks, more than what one chapter
alone can handle. In fact, Chapter 8 just touched on the surface of what you
can do with windows. This chapters carries on, offering even more windows
tricks, including copying windows, windows that scroll or not, and moving
windows.

Copying Window Contents

Copying text between two windows is possible by using one of NCurses win-
dow copying functions. They are

overlay (swin,dwin)

overwrite(swin,dwin)

copywin(swin,dwin,srow,scol,drow,dcol,dxrow,dxcol,type)

dupwin(win)

Of the first three, the copywin() function is my favorite and the most pow-
erful. Even so, each one serves a purpose and helps you get text from one win-
dow into another.

More Window Tricks

C H A P T E R

10

13_107591 ch10.qxp 1/12/07 9:05 PM Page 115

To overlay or to overwrite?
The overlay() and overwrite() functions work almost identically, taking
the contents of source window, the source or scrwin, and plopping that text
down into the destination window, or destwin. The difference between the
two is subtle, as shown in Listing 10.1.

Listing 10-1: doop1.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *alpha;

6 char text1[] = “Lorem ipsum dolor sit amet, consectetuer

adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet

dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis

nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex

ea commodo consequat.”;

7 char text2[]= “Four score and seven years ago our fathers

brought forth on this continent, a new nation, conceived in Liberty, and

dedicated to the proposition that all men are created equal.”;

8

9 initscr();

10

11 /* Build windows */

12 alpha = newwin(0,0,0,0); /* Remember to check for errors! */

13

14 addstr(text1); /* Add text to stdscr and wait */

15 refresh();

16 getch();

17

18 waddstr(alpha,text2); /* Show win alpha and wait */

19 wrefresh(alpha);

20 getch();

21

22 /* Copy text from one window to the other, non-destructively */

23 overlay(stdscr,alpha);

24 wrefresh(alpha);

25 getch();

26

27 endwin();

28 return(0);

29 }

The source code looks tough, thanks to the two large text strings. The first,
text1, is the classic Lorem ipsum text. The second, text2, is Lincoln’s Gettys-
burg Address. Honestly, you can replace either string with other text, as long
as the text is unique and the two strings are different from each other.

116 Chapter 10 ■ More Window Tricks

13_107591 ch10.qxp 1/12/07 9:05 PM Page 116

The program doesn’t check for an error when the new window, alpha, is cre-
ated in line 12; you would want to do error checking for your “real” programs.
The zeros in the newwin() function assure that both source and destination
windows occupy the full screen, which seems to be how the overlay() func-
tion (line 23) works best.

First the program displays the Lorem ipsum text in the stdscr window.
Something like this:

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam

nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat

volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation

ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat.

Press the Enter key and the contents of the alpha window are displayed,
looking something like this:

Four score and seven years ago our fathers brought forth on this

continent, a new nation, conceived in Liberty, and dedicated to the

proposition that all men are created equal.

Finally, press the Enter key again to overlay the contents of stdscr on top
of alpha. Here’s what the mess could look like:

Loremsipsumadolorvsityamet,aconsectetuerradipiscingfelit,osedhdiamono

nummy,nibheeuismodntincidunteutilaoreettdolore magnaaaliquamteratrvol

utpat. Utawisilenim ademinimtveniam,lquis nostrud exerci tation

ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat.

The Lorem ipsum text overlays the original alpha window text. The only
alpha window text that peeks through is whatever was found in the spaces
between the stdscr text. It’s hard to tell which text is which in the output, but
Figure 10-1 should help.

Figure 10-1: Original text in black, alpha text in gray, overlay showing gray text through
black

stdscr:
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh
 euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad
 minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut
 aliquip ex ea commodo consequat.

alpha:
 Four score and seven years ago our fathers brought forth on this continent, a ne
 w nation, conceived in Liberty, and dedicated to the proposition that all men ar
 e created equal.

overlay(stdscr,alpha):
 Loremsipsumadolorvsityamet,aconsectetuerradipiscingfelit,osedhdiamononummy,nibhe
 euismodntincidunteutilaoreettdolore magnaaaliquamteratrvolutpat. Utawisilenim ad
 eminimtveniam,lquis nostrud exerci tation ullamcorper suscipit lobortis nisl ut
 aliquip ex ea commodo consequat.

Chapter 10 ■ More Window Tricks 117

13_107591 ch10.qxp 1/12/07 9:05 PM Page 117

Sadly, you cannot use color in the program to show how overlay()works,
similar to what’s seen in Figure 10-1. Any text copied from one window to
another takes on the attributes of the new window.

The overwrite() difference
To see how overwrite() differs from overlay() is easy.

Change lines 22 and 23 to read:

/* Copy text from one window to the other, destructively */

overwrite(stdscr,alpha);

The overwrite() function is destructive, so no characters from the
original text appear, peeking through Lorem ipsum as they did in the doop1.c
program.

The magic of copywin()
The best of the three basic text-copying functions is copywin(), which allows
you a great deal of control over which chunk of text is copied from the source
window and where it ends up in the destination window. And unlike
overlay() and overwrite(), copywin() seems to work on windows of
any size. Here’s the detailed format:

copywin(swin,dwin,srow,scol,drow,dcol,dxrow,dxcol,type)

The srcwin and destwin are the source and destination windows, which
can be of any size or position on the screen.
srow and scol are the starting coordinates of the chunk of text to be copied,

as offset within the srcwin.
drow and dcol set the starting coordinates of where the chunk will be

copied into the destwin. The size of the chunk copied is set by dxrow and
dxcol, which are offsets with destwin.

Finally, type can be either TRUE or FALSE. If TRUE, then the text copied is
non-destructive, as with overlay(). If FALSE, then the text block replaces
the block in the destwin, just like overwrite().

I realize that’s confusing, so I drew up Figure 10-2 to help you visualize
things.

118 Chapter 10 ■ More Window Tricks

13_107591 ch10.qxp 1/12/07 9:05 PM Page 118

Figure 10-2: A visual explanation of the copywin() function

Here’s a sample program to toy with (see Listing 10.2).

Listing 10-2: doop3.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *top,*bottom;

6 int maxx, maxy, halfx, halfy, rc;

7 char text1[] = “Lorem ipsum dolor sit amet, consectetuer

adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet

dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis

nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex

ea commodo consequat.”;

8 char text2[]= “Four score and seven years ago our fathers

brought forth on this continent, a new nation, conceived in Liberty, and

dedicated to the proposition that all men are created equal.”;

9

10 initscr();

11

12 /* Get window sizes */

13 getmaxyx(stdscr,maxy,maxx);

14 halfy = maxy >> 1;

15 halfx = maxx >> 1;

16

(continued)

srcwin

dstwin

0,0

0,0

sm
inrow

dm
axrow

dmaxcol
dm

inrow

dmincol

smincol

Chapter 10 ■ More Window Tricks 119

13_107591 ch10.qxp 1/12/07 9:05 PM Page 119

Listing 10-2 (continued)

17 /* Build windows */

18 top = newwin(halfy,maxx,0,0);

19 bottom = newwin(halfy,halfx,halfy,halfx);

20

21 waddstr(top,text1);

22 wrefresh(top);

23 waddstr(bottom,text2);

24 wrefresh(bottom);

25

26 /* Wait for key press */

27 getch();

28

29 /* Copy text from top to bottom */

30 rc = copywin(top,bottom,0,0,0,0,4,12,FALSE);

31 wrefresh(bottom);

32 getch();

33

34 endwin();

35 return 0;

36 }

For your “real” programs, remember to check for errors when creating the
two windows in lines 19 and 20.

The copywin() function uses the FALSE option, so the rectangle of text
from window top overwrites the original contents of window bottom. Figure
10-3 may help you to see the results.

Figure 10-3: Cute graphical illustration of copywin()

120 Chapter 10 ■ More Window Tricks

13_107591 ch10.qxp 1/12/07 9:05 PM Page 120

Plain old window duplication
The final window copying function is dupwin(), which copies an entire
window — size, text and all — to a new window, a duplicate. It’s basically the
newwin() function, but uses an existing window as a template to create the
new window.

newwin = dupwin(win)

The dupwin() function returns a WINDOW pointer, which is then used to ref-
erence and write to the new window (Listing 10.3).

Listing 10-3: dup.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *fred,*barney;

6

7 initscr();

8

9 /* Build window & wait */

10 fred = newwin(0,0,0,0);

11 waddstr(fred,”This is the original window, Fred.\n”);

12 wrefresh(fred);

13 getch();

14

15 /* Create and show barney */

16 barney = dupwin(fred);

17 waddstr(barney,”This is the Barney copy of window Fred.\n”);

18 wrefresh(barney);

19 getch();

20

21 /* Go back to fred */

22 waddstr(fred,”Nice to see you again!\n”);

23 wrefresh(fred);

24 getch();

25

26 /* One more time to barney */

27 waddstr(barney,”And Barney says ‘Hi’ as well.\n”);

28 touchwin(barney);

29 wrefresh(barney);

30

31 endwin();

32 return 0;

33 }

Chapter 10 ■ More Window Tricks 121

13_107591 ch10.qxp 1/12/07 9:05 PM Page 121

The new window barney is created based on fred in line 16. The new win-
dow inherits fred’s text. Then the program bounces back and forth between
the windows, displaying information.

Scrolling Around

Scrolling text doesn’t seem like a big deal, and it isn’t — today! Thirty years
ago it was a big deal — so much so that a scrolling screen of text was patented
(probably by IBM).

The fact that text scrolls on the screen seems to be taken for granted. But it’s
not something that the terminal does automatically: scrolling must be pro-
grammed. After all, the screen is merely a matrix of text. Internally, the screen
buffer is only as big as the screen. Whenever you see something larger than the
screen displayed (and scrollable), it’s programming magic that moves text
from a separate buffer to the screen.

Fortunately, scrolling the screen is no big deal, even if you have to program
the scroll yourself: a line of text is removed, the remaining text is moved, then
a new line of text is added. It’s not really that complicated, and you could do it
yourself — but you don’t have to! NCurses gladly handles any scrolling
chores your programs require.

Can it scroll?
In NCurses, scrolling text is a window attribute, just like the window’s size,
location, cursor location, and other attributes. This attribute is normally
turned off, meaning that windows in NCurses doesn’t scroll a window by
default. Here’s proof, as shown in Listing 10-4.

Listing 10-4: scroller.c

1 #include <ncurses.h>

2

3 #define FILENAME “gettysburg.txt”

4

5 int main(void)

6 {

7 FILE *text;

8 WINDOW *lister;

9 int maxy,maxx,ch;

10

11 initscr();

12 getmaxyx(stdscr,maxy,maxx);

13

14 /* create window lister */

122 Chapter 10 ■ More Window Tricks

13_107591 ch10.qxp 1/12/07 9:05 PM Page 122

Listing 10-4 (continued)

15 lister = newwin(maxy,maxx/2,0,maxx/4);

16 if(lister == NULL)

17 {

18 addstr(“unable to create window\n”);

19 refresh(); getch();

20 endwin();

21 return(1);

22 }

23

24 /* open the file */

25 text = fopen(FILENAME,”r”);
26 if(text == NULL)

27 {

28 addstr(“unable to open file\n”);

29 refresh(); getch();

30 endwin();

31 return(2);

32 }

33

34 /* display the file’s contents */

35 do

36 {

37 ch = fgetc(text);

38 waddch(lister,ch);

39 wrefresh(lister);

40 } while (ch != EOF);

41 fclose(text);

42 getch();

43

44 endwin();

45 return(0);

46 }

This program creates a new window, lister. The window is half the width
of the standard screen, but just as tall. A file is opened on disk and displayed,
character by character, in the window. The notion here is to display enough
text that the window needs to scroll to display the whole thing.

Note that the filename is defined in line 3. I’m using the text from Lincoln’s
Gettysburg Address, which is saved in the same folder as SCROLLER.C and in
a file named GETTYSBURG.TXT. Be sure to specify the name of an existing text
file in line 3; the file must contain enough text to require the window to scroll
to display it all.

Breaking with tradition here, I’m doing some error-checking in this pro-
gram, both for creating the new window as well as opening the file.

And... it doesn’t scroll. Instead, after the window is filled, remaining text in
the file continues to be plugged in to the bottom-most, right character position
in window lister.

Chapter 10 ■ More Window Tricks 123

13_107591 ch10.qxp 1/12/07 9:05 PM Page 123

Scroll Away
Enabling scrolling in NCurses is easy, thanks to the scrollok() function:

scrollok(win,TRUE);

The scrollok() function sets or resets the ability of a window to scroll.
The window is specified as win, and the second argument is either TRUE or
FALSE to turn scrolling on or off (respectively) for that window.

Add the following at line 23:

scrollok(lister,TRUE);

This time the text continues to display as the window scrolls its contents up,
allowing for the new text.

If your text file isn’t long enough to scroll the window, then choose another
file.

Scrolling affects the location of the window’s cursor. When a character is
placed at the bottom right position in a window, scrolling advances the text up
one line (the scroll), then returns the cursor to the start of the bottom line in the
window, column zero.

The old manual scroll
Whether a window has its scrolling attribute set or not, you can still manually
scroll the text in a window by using the scroll() function:

scroll(win)

The scroll() function scrolls text in the window win up one line. This
works only if the window has its scrolling attribute set. When in doubt, set
scrolling on with scrollok(win,TRUE), otherwise the scroll() function
returns ERR (see Listing 10-5).

Listing 10-5: scrup1.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int maxy,maxx,y;

6 initscr();

7

8 getmaxyx(stdscr,maxy,maxx);

9 scrollok(stdscr,TRUE);

10

124 Chapter 10 ■ More Window Tricks

13_107591 ch10.qxp 1/12/07 9:05 PM Page 124

Listing 10-5 (continued)

11 for(y=0;y<=maxy;y++)

12 mvprintw(y,0,”This is boring text written to line %d.”,y);

13 refresh();

14 getch();

15

16 scroll(stdscr);

17 refresh();

18 getch();

19

20 endwin();

21 return 0;

22 }

The code uses the standard screen, stdscr, for output, though scrolling
works similarly for any window. In line 9, the scrollok() function allows
the stdscr to be scrolled. The for loop, lines 11 and 12, fill the screen with
text. After pressing Enter (line 14), the scroll() function in line 16 scrolls the
text on the screen up one notch.

Here are some things to notice when the screen scrolls:

■■ The top line of the window is scrolled away; it disappears.

■■ All lines after the top line are each scrolled up one notch.

■■ A blank line fills the last line of the screen.

■■ The cursor position does not change; it remains at the same coordinates
as before the scroll. So if the cursor is at position 10,15, it will not scroll
up to line 9,15, but rather remain at 10,15.

Scrolling by leaps and bounds
Say you need to scroll the screen up two lines instead of three? It can happen.
One way to make it happen is to just use scroll() thrice.

Edit line 16 to read:

scroll(stdscr); scroll(stdscr); scroll(stdscr);

Did it work? It should have, though I’ve found some versions of NCurses
that require this nonsense:

scroll(stdscr);

refresh();

scroll(stdscr);

refresh();

scroll(stdscr);

refresh();

Chapter 10 ■ More Window Tricks 125

13_107591 ch10.qxp 1/12/07 9:05 PM Page 125

Regardless of how you get it to work, you’re wasting code. Obviously there
must be a better solution than awkwardly re-issuing scroll() functions.
And that solution is this function:

scrl(n)

The scrl() function scrolls the standard screen n number of lines. So to
scroll up three lines, scrl(3) would be used. To make scrl() imitate
scroll(), scrl(1) would be used (see Listing 10-6).

Listing 10-6: scrup2.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6 int maxy,maxx,y;

7

8 getmaxyx(stdscr,maxy,maxx);

9 scrollok(stdscr,TRUE);

10

11 for(y=0;y<=maxy;y++)

12 mvprintw(y,0,”This is boring text written to line %d.”,y);

13 refresh();

14 getch();

15

16 scrl(3);

17 refresh();

18 getch();

19

20 endwin();

21 return(0);

22 }

Only line 16 is changed, from the scroll() function to scrl(3). The
result scrolls the screen up three lines instead of one.

As expected, the scrl() function hops text on the screen up by three rows.
Blank rows replace the rows scrolled up from the bottom of the window. And,
as with the scroll() function, the cursor’s position on the screen is not
affected by the function call.

The window version of the scroll() function is wscrl(). The format is

wscrl(win,n)

win is the name of the window being scrolled and n indicates the number of
lines to scroll.

126 Chapter 10 ■ More Window Tricks

13_107591 ch10.qxp 1/12/07 9:05 PM Page 126

Both wscrl() and scrl() return OK upon success and ERR when there is
problem. The most common problem is that the window does not have its
scrolling attribute set.

Negative scrolling
The scrl() function is a true scrolling function, one that doesn’t assume things
always have to scroll up. In fact, when you specify a negative value for n in
scrl(n), text on the screen scrolls down. See for yourself; change line 16 to read:

scrl(-3)

Scrolling down is merely the opposite of scrolling up: lines move down on
the screen. New, blank lines appear at the top. Text at the bottom of the screen
is scrolled into oblivion. The cursor’s position does not change.

The Moving Experience

When NCurses creates a window it doesn’t really bolt it down on the screen.
Just as you can change text within a window, text attributes, the cursor loca-
tion in the window, you can also change the window’s location on the screen.
This is thanks to the handy mvwin() function:

mvwin(win,row,col);

The mvwin() function moves window win to new location row, col, rela-
tive to the standard screen. (So 0,0 is the upper-left corner.) As long as the whole
window remains on the screen, you can move it anywhere. See Listing 10-7.

Listing 10-7: windrop.c

1 #include <ncurses.h>

2

3 #define TSIZE 18

4

5 int main(void)

6 {

7 WINDOW *b;

8 int maxy,maxx,y,x;

9

10 initscr();

11

12 getmaxyx(stdscr,maxy,maxx);

(continued)

Chapter 10 ■ More Window Tricks 127

13_107591 ch10.qxp 1/12/07 9:05 PM Page 127

Listing 10-7 (continued)

13 x = (maxx-TSIZE) >> 1;

14

15 b = newwin(1,TSIZE,0,x);

16 waddstr(b,”I’m getting sick!”);

17

18 for(y=1;y<maxy;y++)

19 {

20 mvwin(b,y,x);

21 wrefresh(b);

22 getch();

23 }

24

25 endwin();

26 return(0);

27 }

The code creates a long, thin window b, which barely contains the text I’m
getting sick!. The for loop is used to change the window’s location on the
screen, dropping vertically from the first row down to the last row.

The window drops down on the screen, one line for every press of the Enter
key. But because the underlying window isn’t updated, window b’s old loca-
tion remains visible. Must fix that!

Insert these two lines after line 21, inside the for loop:

touchline(stdscr,y-1,1);

refresh();

The touchline() function works like touchwin(), though instead of
updating the entire window only a single line of a window is updated — and
that saves time. So in this case, the previous line of the background window,
stdscr, is updated as window b is moved to the line below.

The window actually does appear to move, now that its previous location is
erased. (Actually, the window beneath the moving window is refreshed,
which has the effect of erasing the moving window’s previous position.)

The only effect you can add now is to populate the background window
with something interesting, which further shows that window b is moving
over something.

Insert these two lines before line 15:

bkgd(‘.’);

refresh();

The bkgd() function fills the stdscr window’s background with periods.
Or if you want to be more creative, just flood the background window with

128 Chapter 10 ■ More Window Tricks

13_107591 ch10.qxp 1/12/07 9:05 PM Page 128

random text or the Gettysburg address — anything that can help prove win-
dow b moves (or floats) over the top of that window.

Window b moves as before, but now you can see that the background win-
dow’s contents do not change.

When using mvwin(), remember these points:

■■ The window can be moved anywhere on the screen, as long as the
entire window remains on the screen. If one or more rows or columns
falls off the edge of the screen, then the window is not moved; the
mvwin() function returns ERR.

■■ To complete the move, the window in the background must be
updated. The touchline() or touchwin() functions can handle this,
followed by a wrefresh() of the background window.

■■ Do not move subwindows using mvwin(). Subwindows share mem-
ory with the parent window, but the parent window is unaware of
this. Therefore, when you move the subwindow, NCurses cannot
update which text was moved in which window and the results can be
disastrous.

■■ Don’t confuse the mvwin() function with wmove(), which is used to
move the cursor’s location in a window.

Chapter 10 ■ More Window Tricks 129

13_107591 ch10.qxp 1/12/07 9:05 PM Page 129

13_107591 ch10.qxp 1/12/07 9:05 PM Page 130

131

Welcome to the Brobdingnagian part of your NCurses version of Gulliver’s
Travels. It’s the land of the big. If you recall, adventurer Gulliver visits many
lands in Jonathan Swift’s Gulliver’s Travels. Nearly everyone remembers Lil-
liput, land of the little people. But Gulliver also visits a land of giants, called
Brobdingnag.

In NCurses, there are windows, but there are also pads. A pad is a super-
sized, Brobdingnagian window (or can be). Unlike regular windows, which
can be at least one character in size and at most the same size as the terminal
screen, a pad can be any size, up to as much as memory allows. This chapter
explores the possibilities of pads.

The Monster Window

Pads are not really the same things as windows in a number of interesting and
useful ways. About the most obvious is that a pad can be any size, from one
character on up to many columns and rows, far beyond what can be seen on
the screen at once.

Dig My Pad, Man

C H A P T E R

11

14_107591 ch11.qxp 1/12/07 9:06 PM Page 131

Making a Pad
Pads are created like windows. The WINDOW type is used to define the variable —
just like a window, though a new command is used to actually create the pad:

newpad(rows,cols)

rows and cols set the height and width of the pad in characters. Values
range from 1 up to however large a pad memory can handle.

The value returned from newpad() is the address of a WINDOW structure
in memory (see Listing 11-1), which is exactly the same as for a regular
window, though as you’ll read in a few paragraphs, pads and windows have
differences.

Listing 11-1: bigpad1.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *p;

6 int x,c;

7

8 initscr();

9

10 /* create a new pad */

11 p = newpad(50,100);

12 if(p == NULL)

13 {

14 addstr(“Unable to create new pad”);

15 refresh();

16 endwin();

17 return(1);

18 }

19

20 addstr(“New pad created”);

21 refresh();

22

23 endwin();

24 return 0;

25 }

The pad is created in line 11, assigned to variable p. Line 12 tests to see if
memory can handle a pad of 100 columns by 50 rows (more than four times the
size of the typical terminal screen).

If the pad was created, “New pad created” is displayed on the standard
screen. Why wasn’t the text put and displayed from the pad? You’ll read why
in the next section!

132 Chapter 11 ■ Dig My Pad, Man

14_107591 ch11.qxp 1/12/07 9:06 PM Page 132

Viewing a Pad’s Contents
Text is put to a pad just like any other window using the standard NCurses
text-output commands. Unlike standard windows, however, you just can’t
refresh a pad, not with wrefresh(), at least. Here’s proof. Change lines 20
and 21 to read:

waddstr(p,”New pad created”);

wrefresh(p);

Nothing, eh?
True, the waddstr() function did indeed add text to the pad. But

wrefresh() doesn’t update or display the pad. Even if it could, consider this:
When the pad was created, where was it put on the screen?

Ah-ha!
Pads, unlike windows, lack screen coordinates. In fact, it helps to think of a

pad as a virtual screen that’s way, way off in memory. There is just no rela-
tionship between the pad itself and the visible screen.

To display text written to the pad, you need to know where it is on the pad
and copy that chunk from the pad to the screen for display. The prefresh()
function is what handles the operation:

prefresh(pad,pminrow,pmincol,

sminrow,smincol,smaxrow,smaxcol)

The prefresh() function looks intimidating, but it’s not: pad is the name
of a pad created by using the newpad() function. The rest of the arguments
define a rectangle of text (and attributes) in the pad and specify where that rec-
tangle will be placed on the standard screen. The remaining arguments of
prefresh() calculate that rectangle’s location:
pminrow and pmincol represent the Y and X coordinates of the upper-left

corner of a chunk of the pad.
sminrow and smincol are the Y and X coordinates on the standard screen

where the chunk of the pad will be displayed. smaxrow and smaxcol define
the size of the rectangle, both relative to the pad and the screen. Figure 11-1
helps illustrate this.

Change line 21 to read:

prefresh(p,0,0,0,0,1,15);

Now you see the text; prefresh() copies a chunk from the pad and dis-
plays it on the screen.

Chapter 11 ■ Dig My Pad, Man 133

14_107591 ch11.qxp 1/12/07 9:06 PM Page 133

Figure 11-1: Mapping out how prefresh() works

stdscr (terminal window)

0, 0

0, 0

smincol

sminrow

smaxrow

smaxcol

pad

pmincol

pminrow

Origin Destination & size

used to determine size
at origin as well

prefresh (pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)

134 Chapter 11 ■ Dig My Pad, Man

14_107591 ch11.qxp 1/12/07 9:06 PM Page 134

More Pad-Viewing Stuff
One key thing to remember about pads is that the pad’s size is set starting with
one, yet prefresh() uses zero as a base. So if a pad were 20 characters wide,
you would reference those characters from column 0 through column 19 —
not 1 through 20.

Listing 11-2 shows yet another pad program to whet your pad appetite.

Listing 11-2: paddy1.c

1 #include <ncurses.h>

2 #include <stdlib.h>

3

4 #define FILENAME “gettysburg.txt”

5 #define TALL 24

6 #define WIDE 19

7 #define SPACER 5

8

9 void bomb(char *message);

10

11 int main(void)

12 {

13 WINDOW *p;

14 FILE *f;

15 int ch;

16

17 initscr();

18

19 /* create a new pad */

20 p = newpad(200,WIDE+1);

21 if(p == NULL)

22 bomb(“Unable to create new pad\n”);

23

24 /* open the file */

25 f = fopen(FILENAME,”r”);

26 if(f == NULL)

27 bomb(“Unable to open file\n”);

28

29 /* display file’s contents on the pad */

30 while((ch=fgetc(f)) != EOF)

31 waddch(p,ch);

32 fclose(f);

33

34 /* display the pad’s contents on the screen */

35 prefresh(p, 0, 0, 0, 0, TALL-1,

WIDE);

36 prefresh(p, TALL, 0, 0, WIDE+SPACER, TALL-1,

WIDE*2+SPACER);

(continued)

Chapter 11 ■ Dig My Pad, Man 135

14_107591 ch11.qxp 1/12/07 9:06 PM Page 135

Listing 11-2 (continued)

37 prefresh(p, TALL*2, 0, 0,WIDE*2+SPACER*2, TALL-1,

WIDE*3+SPACER*2);

38 wgetch(p);

39

40 endwin();

41 return 0;

42 }

43

44 void bomb(char *message)

45 {

46 addstr(message);

47 refresh(); getch();

48 endwin();

49 exit(1);

50 }

The code creates a tall, narrow pad in line 20, 200 lines deep by 20 lines wide.
The constant WIDE is defined as 19 because the actual width of the pad goes
from zero to 19, not 20. That comes into play later in the code.

The text file defined at line 4 is read in line 25. I’ve used the GETTYS-
BURG.TXT file, which is a text copy of Lincoln’s Gettysburg Address. (Ensure
that whatever file you specify is in the same directory as the PADDY1.C pro-
gram.) Each character is read from the program and put to the pad in lines 30
and 31.

Of course, nothing shows up on the screen until prefresh() comes
around. This code takes the long, tall pad and displays the first three chunks of
the file in the columns on the screen in lines 35, 36, and 37. Constants TALL and
WIDE define the height and width of the chunk read; SPACER is used to put
some air between the columns.

The output is shown in Figure 11-2, with Figure 11-3 describing how it works.

Figure 11-2: Output of the PADDY.C source code

136 Chapter 11 ■ Dig My Pad, Man

14_107591 ch11.qxp 1/12/07 9:06 PM Page 136

Figure 11-3: What PADDY.C does

WIDE

TA
LL

Four score and seven
years ago our fathers
brought forth on this
continent, a new nation,
conceived in Liberty, and
dedicated to the
proposition that all men
are created equal.

Now we are engaged in a
great civil war, testing
whether that nation, or
any nation so conceived
and so dedicated, can
long endure. We are met
on a great battle-field of
that war. We have come
to dedicate a portion of
that field, as a final resting
place for those who here
gave their lives that nation
might live. It is altogether
fitting and proper that we
should do this.

But, in a larger sense, we
can not dedicate -- we can
not consecrate -- we can
not hallow -- this ground.
The brave men, living and
dead, who struggled here,
have consecrated it, far
above our poor power to
add or detract. The world
will little note, nor long
remember what we say
here, but it can never
forget what they did here.
It is for us the living,
rather, to be dedicated
here to the unfinished
work which they who
fought here have thus far
so nobly advanced. It is
rather for us to be here
dedicated to the great
task remaining before us
-- that from these
honored dead we take
increased devotion to that
cause for which they gave
the last full measure of
devotion -- that we here
highly resolve that these
dead shall not have died
in vain -- that this nation,
under God, shall have a
new birth of freedom --
and that government of
the people, by the people,
for the people, shall not
perish from the earth.

Chapter 11 ■ Dig My Pad, Man 137

14_107591 ch11.qxp 1/12/07 9:06 PM Page 137

Subpads

Just as windows can have subwindows, there is also a beast known as a sub-
pad. Yeah, I’m not thrilled about it. Like the subwindow, the subpad shares
memory with the parent; changing the contents of a subpad changes the text
on a pad.

Making a subpad
Almost without thinking, you can guess that the subpad() function creates a
new subpad:

subpad(org,rows,cols,y,x)

org is the parent pad. rows and cols set the subpad’s size, which (logi-
cally) must not be greater than the orig pad’s size. y and x set the subpad’s
position relative to the parent, where 0,0 is the upper-left corner.

If the subpad() call is successful, a subpad is created in memory and a
pointer to a WINDOW structure is returned by subpad(). If NULL is returned,
the subpad was not created. (See Listing 11-3.)

Listing 11-3: sonofpad.c

1 #include <ncurses.h>

2 #include <stdlib.h>

3

4 void bomb(char *message);

5

6 int main(void)

7 {

8 WINDOW *pod,*pea;

9

10 initscr();

11

12 /* create a new pad */

13 pod = newpad(50,50);

14 if(pod == NULL)

15 bomb(“Unable to create new pad”);

16

17 addstr(“New pad created\n”);

18 refresh();

19

20 /* create a subpad */

21 pea = subpad(pod,20,20,29,29);

138 Chapter 11 ■ Dig My Pad, Man

14_107591 ch11.qxp 1/12/07 9:06 PM Page 138

Listing 11-3 (continued)

22 if(pea == NULL)

23 bomb(“Unable to create subpad”);

24

25 addstr(“Subpad created\n”);

26 refresh(); getch();

27

28 endwin();

29 return 0;

30 }

31

32 void bomb(char *message)

33 {

34 addstr(message);

35 refresh(); getch();

36 endwin();

37 exit(1);

38 }

First, the pad is created; if successful, you’ll see:

New pad created

Then a subpad on that pad is created. If the stars are in proper alignment,
you’ll see:

Subpad created

Pop the cork on some bubbly.

Working with a Subpad
As with subwindows, I feel that the best way to put a subpad to use is as a
quick way to reference specific coordinates within a pad. So if something inter-
esting is happening always at location 20,30 in the pad, consider placing a sub-
pad there so you can use coordinates local to the subpad instead of having to
calculate things in the pad.

A perfect example of these local coordinates can be seen in the code for
PADDY1.C. Rather than calculate offsets within the pad p, three subpads can
be created, each of which represents one of the columns of text displayed on
the screen (see Figure 11-2). This greatly helps to clean up the prefresh()
statements near the end of the code, as this improvement in Listing 11-4
demonstrates.

Chapter 11 ■ Dig My Pad, Man 139

14_107591 ch11.qxp 1/12/07 9:06 PM Page 139

Listing 11-4: paddy2.c

1 #include <ncurses.h>

2 #include <stdlib.h>

3

4 #define FILENAME “gettysburg.txt”

5 #define TALL 24

6 #define WIDE 19

7 #define SPACER 5

8

9 void bomb(char *message);

10

11 int main(void)

12 {

13 WINDOW *p,*s1,*s2,*s3;

14 FILE *f;

15 int ch;

16

17 initscr();

18

19 /* create a new pad */

20 p = newpad(200,WIDE+1);

21 if(p == NULL)

22 bomb(“Unable to create new pad\n”);

23

24 /* create three subpads */

25 s1 = subpad(p,TALL,WIDE+1,0,0);

26 if(s1 == NULL) bomb(“Unable to create subpad 1\n”);

27 s2 = subpad(p,TALL,WIDE+1,TALL,0);

28 if(s2 == NULL) bomb(“Unable to create subpad 2\n”);

29 s3 = subpad(p,TALL,WIDE+1,2*TALL,0);

30 if(s3 == NULL) bomb(“Unable to create subpad 3\n”);

31

32 /* open the file */

33 f = fopen(FILENAME,”r”);

34 if(f == NULL)

35 bomb(“Unable to open file\n”);

36

37 /* display file’s contents on the pad */

38 while((ch=fgetc(f)) != EOF)

39 waddch(p,ch);

40 fclose(f);

41

42 /* display the pad’s contents on the screen */

43 prefresh(s1, 0, 0, 0, 0, TALL-1, WIDE);

44 prefresh(s2, 0, 0, 0, WIDE+SPACER, TALL-1, WIDE*2+SPACER);

45 prefresh(s3, 0, 0, 0, WIDE*2+SPACER*2, TALL-1, WIDE*3+SPACER*2);

46 wgetch(p);

140 Chapter 11 ■ Dig My Pad, Man

14_107591 ch11.qxp 1/12/07 9:06 PM Page 140

Listing 11-4 (continued)

47

48 endwin();

49 return 0;

50 }

51

52 void bomb(char *message)

53 {

54 addstr(message);

55 refresh(); getch();

56 endwin();

57 exit(1);

58 }

The program’s output is identical to the original, but some effort was saved
by using local references to the subpads in lines 43, 44, and 45.

Some Optimization
Here’s a bit of advanced NCurses for you: The code in the previous section
uses three prefresh() functions in PADDY2.C to update pad data to the
standard screen:

prefresh(s1, 0, 0, 0, 0, TALL-1, WIDE);

prefresh(s2, 0, 0, 0, WIDE+SPACER, TALL-1, WIDE*2+SPACER);

prefresh(s3, 0, 0, 0, WIDE*2+SPACER*2, TALL-1, WIDE*3+SPACER*2);

These three statements work, but they’re inefficient. Each prefresh()
internally calls two lower-level NCurses functions: pnoutrefresh() and
doupdate().

The pnoutfresh() function examines a given rectangle of text in a pad,
and notes that the text in that rectangle that has been changed or updated since
the last prefresh(). That text, referred to as touched, is then queued up for
display on the standard screen. Then the doupdate() function takes care of
the task of actually updating the screen. So the three prefresh() functions
actually work out to be:

pnoutrefresh(s1, 0, 0, 0, 0, TALL-1, WIDE);

doupdate();

pnoutrefresh(s2, 0, 0, 0, WIDE+SPACER, TALL-1, WIDE*2+SPACER);

doupdate();

pnoutrefresh(s3, 0, 0, 0, WIDE*2+SPACER*2, TALL-1, WIDE*3+SPACER*2);

doupdate();

Chapter 11 ■ Dig My Pad, Man 141

14_107591 ch11.qxp 1/12/07 9:06 PM Page 141

That’s a lot of work for the processor, so a better way to arrange things is like
this:

pnoutrefresh(s1, 0, 0, 0, 0, TALL-1, WIDE);

pnoutrefresh(s2, 0, 0, 0, WIDE+SPACER, TALL-1, WIDE*2+SPACER);

pnoutrefresh(s3, 0, 0, 0, WIDE*2+SPACER*2, TALL-1, WIDE*3+SPACER*2);

doupdate();

The original three prefresh() functions become pnoutrefresh() func-
tions, which is easy to do because both functions have the same exact argu-
ments. Then a single doupdate() function is all that’s needed to update the
standard screen and display information.

Yes, the changes may seem trivial. And it’s not like this update to the code
results in a peppier program, especially on today’s faster computers. But it’s a
good trick to know.

The pnoutrefresh() function is actually a pad-based version of the
wnoutrefresh() function designed to optimize window updating. For
more information on that function, refer to Appendix A.

Removing a Pad

Pads are blown to smithereens just like windows. In fact, the same function,
delwin(), is used to remove a pad:

delwin(pad)

The preceding function returns OK when the named pad is successfully
removed or it returns ERR when something bad happens.

Just as with removing windows, it’s wise to remove subpads (also by using
delwin()) before removing a pad. When you don’t, the memory used by the
subpad will not be freed, and bad things will happen: pestilence, darkness,
February will get two days back, and other misfortunes may befall you.
Listing 11-5 shows an obligatory sample program.

Listing 11-5: bigpad3.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *p;

6 int x,c;

7

8 initscr();

9

142 Chapter 11 ■ Dig My Pad, Man

14_107591 ch11.qxp 1/12/07 9:06 PM Page 142

Listing 11-5 (continued)

10 /* create a new pad */

11 p = newpad(50,100);

12 if(p == NULL)

13 {

14 addstr(“Unable to create new pad”);

15 refresh();

16 endwin();

17 return(1);

18 }

19

20 addstr(“New pad created”);

21 refresh();

22 getch();

23

24 if(delwin(p)==OK)

25 addstr(“...and now it’s gone!\n”);

26 else

27 addstr(“...and it’s still there!\n”);

28 refresh(); getch();

29

30 endwin();

32 return 0;

33 }

You should see:

New pad created

Press Enter and you’ll see:

New pad created...and now it’s gone!

Pad Miscellany

Maybe someday one of your NCurses programs will find use for a pad or
maybe even a subpad or two. They’re handy structures to have, especially if
you have a predefined chunk of information you’d like brought into your win-
dows from time to time.

Another Pad Function
The pechochar() function both places a character on the pad and displays it
on the screen but only after a chunk of the screen has been squared off with
prefresh(). Listing 11-6 shows a program that makes use of it.

Chapter 11 ■ Dig My Pad, Man 143

14_107591 ch11.qxp 1/12/07 9:06 PM Page 143

Listing 11-6: oddpad.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *p;

6 char text[] = “This is interesting”;

7 char *t;

8

9 initscr();

10

11 /* create a new pad */

12 p = newpad(50,100);

13 if(p == NULL)

14 {

15 addstr(“Unable to create new pad”);

16 refresh();

17 endwin();

18 return(1);

19 }

20

21 t = text;

22 prefresh(p,0,0,1,1,1,25);

23 while(*t)

24 pechochar(p,*t++);

25 wgetch(p);

26 endwin();

27 return 0;

28 }

The code makes use of prefresh() in line 22 to box off a chunk of the
screen, only a line to display the text. The while loop then uses
pechochar() to read a string of text that is both sent to the pad and also dis-
played on the screen.

You should see:

This is interesting

displayed on the second row, starting at the second column of the screen.

Forbidden Pad Functions
Know that you can use all the standard NCurses functions with a pad except
the following:

mvwin()

scroll()

144 Chapter 11 ■ Dig My Pad, Man

14_107591 ch11.qxp 1/12/07 9:06 PM Page 144

scrl()

subwin()

wrefresh()

wnoutrefresh()

Additionally, pads are created by using the newpad() function, not
newwin(). (Refer to Appendix A for information on the wnoutrefresh()
function.)

Forbidden Pad Stuff
Don’t bother moving a pad. In fact, the concept seems silly because pads do
not exist relative to the screen.

Pads cannot be scrolled.
As with subwindows, do not move a subpad — and for the same reason.

The coordination between the parent and the subpad is nonexistent. Because
both share memory, moving a subpad results in chaos for the parent and cata-
strophe for your program.

Also, remember to remove subpads before deleting the pad itself. If you
don’t, the memory used by the subpads will not be cleared.

Chapter 11 ■ Dig My Pad, Man 145

14_107591 ch11.qxp 1/12/07 9:06 PM Page 145

14_107591 ch11.qxp 1/12/07 9:06 PM Page 146

147

Dig down deep into NCurses’ bag of tricks and you’ll discover a clever and
quick instant interface trick called soft labels. They really aren’t anything amaz-
ing, though they can save you time over having to do the programming your-
self. So when you want to slap together a quick and friendly interface, soft
labels take care of that programming overhead for you.

What Is a Soft Label?

Soft labels are typically associated with a set of function keys found just below
the screen on a terminal keyboard. This is something that was more common
in the old days of mainframes and their remote terminals than it is today.

For example, the terminal may have keys F1 through F8 just below the built-
in screen. Above each key would be a highlighted bit of text on the screen. The
text represented the command associated with the key, similar to what you see
in Figure 12-1.

Pressing F1, for example, may shift the screen into printing mode. The soft
labels might change to reflect the new screen and show the new functions for
the keys F1 through F8. Theoretically, the user understands that, by pressing
a function key, he or she is issuing the command specified in the soft label.
Theoretically.

The Joy of
Soft Labels

C H A P T E R

12

15_107591 ch12.qxp 1/12/07 9:06 PM Page 147

Figure 12-1: How soft labels might have worked on an older terminal

Doing the Soft Label Thing

In NCurses, soft labels are visual elements only. There is no back connection
between function keys and soft labels, unless you program one yourself. Oth-
erwise, setting and displaying soft keys is merely a visual part of NCurses.

Stand by for Soft Labels
If you’re writing a program that uses soft labels, you’ll need to use the
slk_init() function:

slk_init(n)

All soft label functions begin with slk. I assume that slk stands for soft label
keys, though that’s just a guess.

The slk_init() function must appear before the initscr() function in
your code. The reason is that slk_init() changes the size of the standard
screen, reserving the bottom row for the soft keys. All NCurses commands,
then, affect only the top several rows of the screen; the bottom row is reserved
— and cannot be touched, other than to mess with the soft labels.

F1 F2 F3 F4 F5 F6 F7 F8

Blah! Dang! Bing! Bang! Oops! Fftt! Ugh! Oh !

148 Chapter 12 ■ The Joy of Soft Labels

15_107591 ch12.qxp 1/12/07 9:06 PM Page 148

The value of n determines how many soft labels there will be, as well as how
they’re arranged on the screen. Figure 12-2 details the results for valid values
of n from 0 through 3.

Gimme Some Soft Labels
The slk_init() function merely announces the presence of soft labels. You
must also assign text to the labels, as well as display the labels in their special
row on the screen.

Assigning text to the labels is done by using the slk_set() function:

slk_set(label,text,pos)

The slk_set() function has three arguments.

■■ label is the label number, ranging from 1 to 12, marching from left to
right across the screen. The number of labels you need to set depends
on the value used with the slk_init() function.

■■ text is the text to appear on the label. When there are eight soft labels
on the screen, up to eight characters of text appears in the labels. For 12
soft labels on the screen, only five characters of text appear in the
labels.

■■ pos determines the text’s orientation within the label. There are three
values: 0 for left-justified; 1 for centered; and 2 for right-justified.

Figure 12-2: Soft key setup options for slk_init(n)

n = 0 Alpha

slk_init (n)

Beta Gamma Delta Epsilon Zeta Eta Theta

n = 1 Alpha Beta Gamma Delta Epsilon Zeta Eta Theta

n = 2 A B C D J K LFE IG H

n = 3 Alpha Betab Child Doctor Irene Jokes Kill LuckEleph Float Gas Helic

F1 — F2 — F3 — F4 — F5 — F6 — F7 — F8 — F9 — F10 — F11 — F12 —

Chapter 12 ■ The Joy of Soft Labels 149

15_107591 ch12.qxp 1/12/07 9:06 PM Page 149

Finally, to make the labels show up, the slk_refresh() function is used:

slk_refresh()

Like other refresh() functions in NCurses, this one updates the screen. In
this case, only the soft label row on the screen is updated (see Listing 12-1).

Listing 12-1: softies1.c

1 #include <ncurses.h>

2

3 #define LEFT 0

4 #define CENTER 1

5 #define RIGHT 2

6

7 int main(void)

8 {

9 slk_init(0);

10 initscr();

11

12 slk_set(1,”Help!”,LEFT);

13 slk_set(2,”File”,LEFT);

14 slk_set(3,”Print”,LEFT);

15 slk_set(4,”Text”,CENTER);

16 slk_set(5,”Edit”,CENTER);

17 slk_set(6,”Quick”,RIGHT);

18 slk_set(7,”Conf”,RIGHT);

19 slk_set(8,”Change”,RIGHT);

20 slk_refresh();

21 getch();

22

23 endwin();

24 return 0;

25 }

The code creates eight soft labels across the bottom of the terminal screen:
three on the left, two centered, and three on the right.

NOTE Note that the text within the labels is aligned according to the label’s
position. The LEFT, CENTER, and RIGHT constants in the slk_set() function do
not control the position of the labels on the screen but rather the text within
the labels. Prove this: Edit lines 12, 13, and 13, replacing LEFT with CENTER. Then
edit lines 17, 18, and 19, replacing RIGHT with CENTER.

The labels are still arranged in the same pattern on the screen, but the text
within the labels is centered.

150 Chapter 12 ■ The Joy of Soft Labels

15_107591 ch12.qxp 1/12/07 9:06 PM Page 150

Making the Index Line
Specifying option 3 for slk_init() shows the same layout for soft labels as
option 2 but with the addition of an index line. In most versions of NCurses I’ve
seen, this index line is a list of function key names right above the soft labels,
as shown in Figure 12-2. As with the soft label line, the index line is protected
from being overwritten and the standard screen size is decreased by one line
accordingly (see listing 12-2).

Listing 12-2: softies2.c

1 #include <ncurses.h>

2

3 #define LMAX 12

4 #define CENTER 1

5

6 int main(void)

7 {

8 char label_text[LMAX][6] = { “Help”, “File”, “Edit”, “Frmt”,

9 “Find”, “Block”, “Ins”, “Del”,

10 “View”, “Switch”, “Win”, “Help” };

11 int label;

12

13 slk_init(3);

14 initscr();

15

16 for(label=0;label<LMAX;label++)

17 slk_set(label+1,label_text[label],CENTER);

18 slk_refresh();

19

20 getch();

21

22 endwin();

23 return 0;

24 }

You’ll note that this time a for loop is used to load in the labels via
slk_set() in lines 16 and 17. All the labels will be centered.

Chances are that the index line is there — but blank! That’s because
NCurses needs a little extra nudge to show that special text.

Insert this new line between lines 15 and 16:

slk_restore();

This time the index line appears.
The slk_restore() function is used primarily in conjunction with

slk_clear(). The slk_clear() function removes the soft labels from the

Chapter 12 ■ The Joy of Soft Labels 151

15_107591 ch12.qxp 1/12/07 9:06 PM Page 151

screen and slk_restore() puts them back, which is demonstrated later in
this chapter. But in SOFTIES2.C, slk_restore() somehow supplies
NCurses with the extra oomph needed to show the index line. (In fact, you can
replace slk_refresh() with slk_restore() in many instances, though I
don’t recommend it.)

Soft Labels Here and Gone

The original reason for function keys was variety. The function keys could per-
form any function assigned to them, depending on the software. Therefore,
they were called function keys instead of a this-or-that specific key.

Sadly, the role of the function key has changed, thanks to Microsoft
Windows. Function keys now do specific things in all programs. That is, F1 is
universally the Help key. And I wonder why keyboard manufacturers haven’t
just relabeled the thing “Help” instead of F1. But I digress.

In the original scheme of things, the role played by the function keys
changed from program to program and even within a specific program,
depending on what you were doing. Likewise, the soft labels your program
might use should be changeable as well. The following sections describe how
the soft labels can be manipulated.

Hiding and Restoring the Labels
Two NCurses functions deal with hiding and redisplaying the soft labels:

slk_clear()

slk_restore()

The slk_clear()function hides the soft labels. The slk_restore()func-
tion unhides them. See Listing 12-3 for examples of this.

Listing 12-3: lonoff.c

1 #include <ncurses.h>

2

3 #define LMAX 8

4 #define CENTER 1

5

6 int main(void)

7 {

8 char label_text[LMAX][8] = { “S”, “O”, “F”, “T”,

9 “K”, “E”, “Y”, “S” };

10 int label;

11

12 slk_init(1);

152 Chapter 12 ■ The Joy of Soft Labels

15_107591 ch12.qxp 1/12/07 9:06 PM Page 152

Listing 12-3 (continued)

13 initscr();

14

15 for(label=0;label<LMAX;label++)

16 slk_set(label+1,label_text[label],CENTER);

17 slk_refresh();

18 getch();

19

20 slk_clear();

21 getch();

22

23 slk_restore();

24 getch();

25

26 endwin();

27 return 0;

28 }

At first the eight labels appear. Press Enter and they’re gone. Press Enter
again and they’re back!

NOTE Note that even while hidden, your programs still cannot access the
bottom row(s) of the screen where the soft labels appear.

Changing a Label
When your program needs to change a label, you simply reissue the
slk_set() function for that label, along with the new text. Add a
slk_refresh()and you’re done (see Listing 12-4).

Listing 12-4: duck.c

1 #include <ncurses.h>

2

3 #define LMAX 8

4 #define CENTER 1

5

6 int main(void)

7 {

8 char label_text[LMAX][8] = { “Duck”, “Duck”, “Duck”, “Duck”,

9 “Duck”, “Duck”, “Duck”, “Duck” };

10 int label;

11

12 slk_init(1);

13 initscr();

14

(continued)

Chapter 12 ■ The Joy of Soft Labels 153

15_107591 ch12.qxp 1/12/07 9:06 PM Page 153

Listing 12-4 (continued)

15 for(label=0;label<LMAX;label++)

16 slk_set(label+1,label_text[label],CENTER);

17 slk_refresh();

18 getch();

19

20 slk_set(7,”Goose!”,CENTER);

21 slk_refresh();

22 getch();

23

24 endwin();

25 return 0;

26 }

Pressing the Enter key changes label 7 from Duck to Goose!. Hurry! Run
around the monitor and back to your seat before the program catches you!

Removing a Label
To remove a label or, more properly, to remove the text from a label, you sim-
ply use the slk_set() function with a null string of text.

Change line 20 to read:

slk_set(7,””,CENTER);

The seventh label is now blank.

Hooking in the Function Keys

As I write earlier in this chapter, there is no automatic hook in NCurses
between soft labels and the function keys. If you want F1 to perform whatever
command is listed by soft label 1, you have to do that code yourself.

(Supposedly, on some terminals with built-in soft labels, the connection
between the labels and the related key is already made in NCurses. Because I
don’t have access to those terminals or even emulators, I cannot confirm this.)

Rather than flip back and forth between this chapter and Chapter 7, I
decided to offer up a little bit of code in Listing 12-5 that shows how function
keys can be linked into soft labels. It may not be much, but it’s a start.

Listing 12-5: ham.c

1 #include <ncurses.h>

2

3 #define LMAX 12

4 #define CENTER 1

154 Chapter 12 ■ The Joy of Soft Labels

15_107591 ch12.qxp 1/12/07 9:06 PM Page 154

Listing 12-5 (continued)

5

6 int main(void)

7 {

8 char label_text[LMAX][20] = { “I”, “AM”, “SAM”, “DO”,

9 “NOT”, “LIKE”, “THAT”, “SAY”,

10 “WOULD”, “COULD”, “YOU”,

11 “GREEN EGGS AND HAM” };

12 int label,ch;

13

14 slk_init(2); /* 12 soft labels */

15 initscr();

16 noecho(); /* disable key echoing */

17 keypad(stdscr,TRUE); /* Turn on Fkey reading */

18

19 /* display the labels and instructions */

20 for(label=0;label<LMAX;label++)

21 slk_set(label+1,label_text[label],CENTER);

22 slk_refresh();

23 addstr(“Use the Function Keys to type\n”);

24 addstr(“Press ‘?’ or ‘!’ or ‘.’ to end a line\n”);

25 addstr(“Press Enter to quit\n\n”);

26 refresh();

27

28 /* Process input */

29 while((ch=getch()) != ‘\n’)

30 {

31 switch(ch)

32 {

33 case ‘?’:

34 case ‘!’:

35 case ‘.’:

36 addch(ch);

37 addch(‘\n’);

38 break;

39 case KEY_F(1):

40 printw(“%s “,label_text[0]);

41 break;

42 case KEY_F(2):

43 printw(“%s “,label_text[1]);

44 break;

45 case KEY_F(3):

46 printw(“%s “,label_text[2]);

47 break;

48 case KEY_F(4):

49 printw(“%s “,label_text[3]);

50 break;

(continued)

Chapter 12 ■ The Joy of Soft Labels 155

15_107591 ch12.qxp 1/12/07 9:06 PM Page 155

Listing 12-5 (continued)

51 case KEY_F(5):

52 printw(“%s “,label_text[4]);

53 break;

54 case KEY_F(6):

55 printw(“%s “,label_text[5]);

56 break;

57 case KEY_F(7):

58 printw(“%s “,label_text[6]);

59 break;

60 case KEY_F(8):

61 printw(“%s “,label_text[7]);

62 break;

63 case KEY_F(9):

64 printw(“%s “,label_text[8]);

65 break;

66 case KEY_F(10):

67 printw(“%s “,label_text[9]);

68 break;

69 case KEY_F(11):

70 printw(“%s “,label_text[10]);

71 break;

72 case KEY_F(12):

73 printw(“%s “,label_text[11]);

74 break;

75 default:

76 break;

77 }

78 refresh();

79 }

80

81 endwin();

82 return 0;

83 }

156 Chapter 12 ■ The Joy of Soft Labels

15_107591 ch12.qxp 1/12/07 9:06 PM Page 156

157

NCurses has the ability to interface with a mouse or similar pointing device
attached to a computer. Information about the mouse can be read and used in
your programs in a number of ways, just as mice are used in graphical pro-
grams.

All this stuff is optional, of course; NCurses is, after all, a text-based thing
and mice are associated with graphical things. But if you want to take advan-
tage of the mouse, you can certainly well do it.

Hello, Mouse

Even though your computer may have a mouse — indeed, the terminal window
you use may be an oasis of text floating in a graphical operating system — the
sucker may not quite be set up to read the mouse inside the terminal.

For example, some terminals intercept the mouse, using it at the operating
system level to select text from the terminal window. If so, any mouse events
are probably blocked from your program’s view. There is a way to test for this,
as covered in the section “Can your terminal deal with the mouse?” later in
this chapter. But before that, you should check to see if your version of
NCurses supports the mouse in the first place.

Messing Mit der Mouse

C H A P T E R

13

16_107591 ch13.qxp 1/12/07 9:06 PM Page 157

Can NCurses Deal with the Mouse?
Mouse programming is specific to NCurses. If your system is using the older
Curses or an earlier version of NCurses, mouse functionality might not be
available. Before you set out to do mouse programming, first check to see if
NCurses is up to the task (see Listing 13-1).

Listing 13-1: mtest.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 mmask_t mmask;

6

7 initscr();

8

9 if(NCURSES_MOUSE_VERSION > 0)

10 addstr(“This version of NCurses supports the mouse.\n”);

11 else

12 addstr(“This version of NCurses does not support the

mouse.\n”);

13 refresh();

14 getch();

15 endwin();

16 return 0;

17 }

This program simply reads the value of the NCURSES_MOUSE_VERSION
variable, which is defined in the NCURSES.H header file. If the variable exists,
the happy message is displayed:

This version of NCurses supports the mouse.

Otherwise, you end up with:

This version of NCurses does not support the mouse.

(Refer to the section “To Eek or Not to Eek?” at the end of this chapter for
suggestions on how to best use NCURSES_MOUSE_VERSION.)

Can Your Terminal Deal with the Mouse?
Step 1 is to see if you have the latest version of NCurses, complete with mouse
support. If so, you need to move on to step 2: Check to see if the terminal

158 Chapter 13 ■ Messing Mit der Mouse

16_107591 ch13.qxp 1/12/07 9:06 PM Page 158

you’re using properly interprets the mouse. This is done by using the
mousemask() function:

mousemask(newmask,*oldmask)

It’s the mousemask() function’s job to make mouse activity visible to your
program. To put it another way: mousemask() is what turns on mouse mon-
itoring for your program.

The newmask argument tells NCurses which mouse events to watch for. The
events are defined in NCURSES.H and listed in Appendix A. But most of the
time you’ll probably use the ALL_MOUSE_EVENTS value, which tells NCurses
to keep an eye on all mouse buttons, up or down, clicked, double- or triple-
clicked, or used with Shift, Alt, or Ctrl keys on the keyboard. (In NCurses, only
mouse clicks and releases are monitored, not mouse movement.)

Most of the time, the value of *oldmask is NULL.
The value returned by mousemask()is of the mmask_t type (a long

integer). The value matches the mask created on a bit-by-bit basis; it also deter-
mines whether the mouse is capable of monitoring the particular mouse
action. For example:

mmask_t mbitmask;

mbitmask = mousemask(BUTTON3_CLICKED,NULL);

if(mbitmask & BUTTON3_CLICKED)

addstr(“I am able to read a button 3 click.”);

else

addstr(“I am not able to read the button 3 click.”);

refresh();

BUTTON3_CLICKED is a value defined in NCURSES.H. The call above to
mousemask() tells NCurses to watch for only that value, which is generated
when button 3 on the mouse is clicked. If such a thing is possible, the value
returned by mousemask(), and stored in mbitmask, will equal the value of
BUTTON3_CLICKED. This is checked by the logical comparison in the if state-
ment, and addstr() displays the happy or unhappy news.

Not every computer mouse has three buttons, so the preceding code is a
good way to determine whether or not your program can use button 3. A more
useful test of mousemask() is with the ALL_MOUSE_EVENTS constant, which
can be used to determine whether or not the terminal can see anything the
mouse does (see Listing 13-2).

Chapter 13 ■ Messing Mit der Mouse 159

16_107591 ch13.qxp 1/12/07 9:06 PM Page 159

Listing 13-2: mtest.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 mmask_t mmask;

6

7 initscr();

8

9 if(NCURSES_MOUSE_VERSION > 0)

10 addstr(“This version of NCurses supports the mouse.\n”);

11 else

12 addstr(“This version of NCurses does not support the

mouse.\n”);

13 refresh();

14

15 mmask = mousemask(ALL_MOUSE_EVENTS,NULL);

16 if(mmask == 0)

17 addstr(“Unable to access the mouse on this terminal.\n”);

18 else

19 addstr(“Mouse events can be captured.\n”);

20 refresh();

21 getch();

22 endwin();

23 return 0;

24 }

The new lines, shown above, are 15 through 21. The code uses the
mousemask() function call to determine whether or not the terminal can see
the mouse. If the value returned in mmask is zero, the mouse cannot be read.

Upon running the program, you should hope to see:

This version of NCurses supports the mouse.

Mouse events can be captured.

The message Unable to access the mouse on this terminal may
appear, even though you know that you computer recognizes the mouse and
even uses it to select text in the terminal window. And that’s the problem! The
operating system is intercepting the mouse before signals can be passed to the
terminal. If possible, try to turn off mouse-selection functions for the terminal
window or somehow enable mouse actions to pass through to text-based ter-
minal programs.

Reading the Mouse

Once assured that your computer terminal is heavy for some hot mouse
action, you’ll need some additional tools to snoop out what the mouse is up to.

160 Chapter 13 ■ Messing Mit der Mouse

16_107591 ch13.qxp 1/12/07 9:06 PM Page 160

The “Reading the Mouse” Overview
After mousemask() initializes the mouse and tells NCurses which mouse
events to scan, you use these two functions to read the mouse:

getch()

getmouse(&musevent)

First comes the getch() function. Just as it can read the keyboard,
getch() can also detect mouse input. The mouse input is defined in
NCURSES.H as KEY_MOUSE. And to read that character, you must activate
extended keyboard reading for getch() by using the keypad() function.
Further, many programmers also use noecho() so that getch() can be read
repeatedly.

Don’t panic!
Here is a summary so far:

■■ Issue the noecho() and keypad() functions to prepare getch() for
reading mouse events.

■■ Issue the mousemask() function to tell NCurses which mouse events
to scan for.

■■ Compare getch() input with KEY_MOUSE to see if a mouse event has
occurred.

When a mouse event has occurred — the user has clicked one of the mouse
buttons somewhere on the terminal screen — you then use the getmouse()
function to retrieve information about the event:

getmouse(&musevent)

musevent is the address of a pointer variable of the MEVENT type:

MEVENT musevent;

Unlike the WINDOW type of pointer, you do not specify a * when declaring a
mouse event variable. But you do use the &when specifying the variable name
in the getmouse() function:

getmouse(&musevent);

After getch() detects a mouse event (KEY_MOUSE), a call to getmouse()
fills the named MEVENT structure with information about the mouse event that
just occurred. Table 13-1 lists the data you can then read, using me as the
mouse event variable name (the same that would be used with the
getmouse() function).

Chapter 13 ■ Messing Mit der Mouse 161

16_107591 ch13.qxp 1/12/07 9:06 PM Page 161

Table 13-1: Events recorded in the mouse event structure

VARIABLE MOUSE EVENT

me.id Unique ID number (used to distinguish among multiple mice)

me.x Screen column coordinate

me.y Screen row coordinate

me.z Undefined (though could be used to read wheel button)

me.bstate Bit pattern representing mouse button action

So, for example, to read the screen coordinates of where a click took place,
you would use musevent.y and musevent.x in your code.

Here is the complete summary of steps needed to take to read a mouse
event:

1. Issue the noecho() and keypad() functions to prepare getch() for
reading mouse events.

2. Issue the mousemask() function to tell NCurses which mouse events
to scan for.

3. Compare getch() input with KEY_MOUSE to see if a mouse event has
occurred.

4. After confirming the mouse event (previous step), use getmouse() to
read the event’s information into an MEVENT structure.

5. Examine the MEVENT structure’s data to determine what event took
place at which coordinates on the screen.

Once your program has the mouse coordinates, you can do with them
whatever you will, depending on the program: Choose an item, draw a block
character, beep the speaker, or whatever.

Where Did You Click that Mouse?
The following code in Listing 13-3 reads information about where the mouse
was clicked and displays those coordinates on the screen.

Listing 13-3: mspy.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 MEVENT mort;

6 int ch;

162 Chapter 13 ■ Messing Mit der Mouse

16_107591 ch13.qxp 1/12/07 9:06 PM Page 162

Listing 13-3 (continued)

7

8 initscr();

9 noecho();

10 keypad(stdscr,TRUE);

11

12 mousemask(ALL_MOUSE_EVENTS,NULL);

13

14 while(1)

15 {

16 ch = getch();

17 if(ch == KEY_MOUSE)

18 {

19 getmouse(&mort);

20 move(0,0);

21 clrtoeol();

22 printw(“%d\t%d”,mort.y,mort.x);

23 refresh();

24 continue;

25 }

26 if(ch == ‘\n’)

27 break;

28 }

29

30 endwin();

31 return 0;

32 }

NOTE This program assumes your terminal has full access to mouse functions!
Refer to the program MTEST.C earlier in Listing 13-2 when in doubt.

As you click the mouse about on the terminal screen, the Y (row) and X (col-
umn) coordinates are displayed in the upper-left corner.

Press the Enter key to end the program.

On Your Own
Modify the MSPY.C source code so that an asterisk is placed on the screen
at the spot where the mouse was clicked. Name this new source code file
CLICKPUT.C.

What Clicked?
The following code in Listing 13-4 uses the predefined button constants to dis-
play information about which mouse button was pressed.

Chapter 13 ■ Messing Mit der Mouse 163

16_107591 ch13.qxp 1/12/07 9:06 PM Page 163

Listing 13-4: clicky.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 MEVENT mort;

6 int ch;

7

8 initscr();

9 noecho();

10 keypad(stdscr,TRUE);

11

12 mousemask(ALL_MOUSE_EVENTS,NULL);

13

14 while(1)

15 {

16 ch = getch();

17 if(ch == KEY_MOUSE)

18 {

19 clear();

20 getmouse(&mort);

21 switch(mort.bstate)

22 {

23 case BUTTON1_PRESSED:

24 mvaddstr(0,0,”Button 1 Pressed!”);

25 break;

26 case BUTTON1_RELEASED:

27 mvaddstr(1,0,”Button 1 Released!”);

28 break;

29 case BUTTON1_CLICKED:

30 mvaddstr(2,0,”Button 1 Clicked!”);

31 break;

32 case BUTTON1_DOUBLE_CLICKED:

33 mvaddstr(3,0,”Button 1 Dbl-Clicked!”);

34 break;

35 case BUTTON2_PRESSED:

36 mvaddstr(0,20,”Button 2 Pressed!”);

37 break;

38 case BUTTON2_RELEASED:

39 mvaddstr(1,20,”Button 2 Released!”);

40 break;

41 case BUTTON2_CLICKED:

42 mvaddstr(2,20,”Button 2 Clicked!”);

43 break;

44 case BUTTON2_DOUBLE_CLICKED:

45 mvaddstr(3,40,”Button 2 Dbl-Clicked!”);

46 break;

47 case BUTTON3_PRESSED:

48 mvaddstr(0,40,”Button 3 Pressed!”);

49 break;

164 Chapter 13 ■ Messing Mit der Mouse

16_107591 ch13.qxp 1/12/07 9:06 PM Page 164

Listing 13-4 (continued)

50 case BUTTON3_RELEASED:

51 mvaddstr(1,40,”Button 3 Released!”);

52 break;

53 case BUTTON3_CLICKED:

54 mvaddstr(2,40,”Button 3 Clicked!”);

55 break;

56 case BUTTON3_DOUBLE_CLICKED:

57 mvaddstr(3,40,”Button 3 Dbl-Clicked!”);

58 break;

59 default:

60 break;

61 }

62 refresh();

63 continue;

64 }

65 if(ch == ‘\n’)

66 break;

67 }

68

69 endwin();

70 return 0;

71 }

It’s long! But you can start with the MSPY.C source as a base and then just
use a lot of copy/paste/edit commands to add the bulk of the case
statements.

By clicking various mouse buttons — press, release, click, double-click —
you’ll see appropriate text on the screen. This program may help you deter-
mine how NCurses interprets your mouse’s buttons.

The code doesn’t list every possible constant for the mouse. Refer to Appen-
dix A for the full list.

To Eek or Not to Eek?

If you want to be a good programmer, you may elect to have mouse support
optionally compiled into your code, depending on whether or not the version
of NCurses on the destination computer supports mouse functions. The idea is
to create a program that uses text but can also employ mouse input, should
such a thing be available.

Thanks to the presence of the NCURSES_MOUSE_VERSION constant, you
can use the #ifdef compiler directive to selectively compile mouse support
into your code. For example:

#ifdef NCURSES_MOUSE_VERSION

mousemask(ALL_MOUSE_EVENTS,NULL);

#endif

Chapter 13 ■ Messing Mit der Mouse 165

16_107591 ch13.qxp 1/12/07 9:06 PM Page 165

The mousemask() function is compiled into the program only when the
NCURSES_MOUSE_VERSION constant exists. Likewise, the following may
appear in the switch case structure:

#ifdef NCURSES_MOUSE_VERSION

case KEY_MOUSE:

getmouse(&event);

/* mouse stuff here */

break;

#endif

The idea here is to surround the mouse-specific stuff with #ifdef and
#endif. That way, should the target system support the mouse, that support
is compiled into your program. If support isn’t available, the user will never
know.

166 Chapter 13 ■ Messing Mit der Mouse

16_107591 ch13.qxp 1/12/07 9:06 PM Page 166

167

It would be tough to write a book that covers every single last NCurses func-
tion. A lot of the functions are internal or used only in specific cases by
advanced users who know their operating systems intimately. For most of us
programmers, however, the basic smattering of NCurses functions presented
in the previous chapters is enough to create more visually interesting pro-
grams than by just using the standard C I/O functions.

This chapter contains a mélange of those leftover functions not covered ear-
lier in this book. These functions aren’t obscure or unique enough to deserve
full banishment into Appendix A, nor are they worthy enough to be put into
an earlier chapter. No, they live here. And I love using the word mélange.

Adios, Cursor

Sometimes the blinking (or not) cursor is a benefit, and sometimes it just gets
in the way. When it gets in the way, NCurses lets you turn it off, hiding the cur-
sor from view. Here’s the function:

curs_set(n)

The curs_set() function is how NCursers controls the cursor. The value
of n can be 0, 2, or 2: 0 makes the cursor invisible; 1 sets the cursor to normal

A Mixture of Stuff

C H A P T E R

14

17_107591 ch14.qxp 1/12/07 9:07 PM Page 167

mode; 2 sets the cursor to a very visible mode that must be seen to be believed.
See Listing 14-1 for an example.

Listing 14-1: cursset.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 /* first, turn the cursor off */

8 curs_set(0);

9 addstr(“ <- The cursor has been turned off”);

10 move(0,0);

11 refresh();

12 getch();

13

14 /* second, turn the cursor on */

15 curs_set(1);

16 addstr(“\n <- The cursor now on”);

17 move(1,0);

18 refresh();

19 getch();

20

21 /* third, turn the cursor very on */

22 curs_set(2);

23 addstr(“\n <- The cursor is now very on”);

24 move(2,0);

25 refresh();

26 getch();

27

28 endwin();

29 return 0;

30 }

Note that curs_set() works only on terminals that support cursor-
visibility options. If your terminal can’t reset the cursor, such as when the
CURSSET.C program doesn’t seem to do anything, check for the availability of
the curs_set() function:

if(curs_set(0) == ERR)

beep();

When you add this snippet of code to your program and you hear the beep,
know that your terminal doesn’t support the curs_set() function for the
given cursor visibility.

168 Chapter 14 ■ A Mixture of Stuff

17_107591 ch14.qxp 1/12/07 9:07 PM Page 168

Line Drawing

NCurses has support for a variety of line-drawing and boxing functions,
allowing you to spruce up your plain-text screen with some almost-graphical
lines.

The quality of the lines depends on the terminal. Sometimes the ASCII text
characters such as | - and + are used for drawing. Sometimes the terminal
may use extended ASCII or special line-drawing characters that look quite
good on the screen. And sometimes you can specify which characters you
want to use for drawing.

Boxing Windows
One way to make a window stand out, especially when it’s smaller than the
screen, is to draw a box around it. NCurses has a handy box() function to
help make that possible:

box(win,v_char,h_char)

win is the window to box. v_char is the character to use when drawing the
vertical (up-down) lines around the window; h_char is the character for the
horizontal (left-right) lines. If you put zero for v_char or h_char (or both),
default characters are chosen as defined in the NCURSES.H header file. (See
Listing 14-2.)

Listing 14-2: helpmenu3.c

1 #include <ncurses.h>

2

3 void showhelp(void);

4

5 WINDOW *help;

6

7 int main(void)

8 {

9 int ch;

10

11 initscr();

12

13 /* build help menu */

14 if((help = newwin(10,30,4,26)) == NULL)

15 {

16 addstr(“Unable to allocate window memory\n”);

17 endwin();

18 return(1);

19 }

(continued)

Chapter 14 ■ A Mixture of Stuff 169

17_107591 ch14.qxp 1/12/07 9:07 PM Page 169

Listing 14-2 (continued)

20 mvwaddstr(help,1,7,”Help menu Screen”);

21 mvwaddstr(help,5,3,”Press the ~ key to quit”);

22 mvwaddstr(help,8,4,”Press ENTER to go back”);

23 box(help,0,0);

24

25 /* now start the program loop */

26 addstr(“Typer Program\n”);

27 addstr(“Press + for help:\n\n”);

28 refresh();

29 noecho();

30 do

31 {

32 ch = getch();

33 refresh();

34 if(ch == ‘+’)

35 showhelp();

36 else

37 addch(ch);

38 } while (ch != ‘~’);

39

40 endwin();

41 return 0;

42 }

43

44 void showhelp(void)

45 {

46 touchwin(help); /* force update */

47 wrefresh(help);

48 getch(); /* wait for key press */

49 touchwin(stdscr); /* forces character update */

50 refresh();

51 }

NOTE This code is introduced in Chapter 8; the only difference between this
and the previous version is the addition of line 23.

The help menu window, when displayed, looks similar to what you see in
Figure 14-1, though your terminal may use different characters to create the box.

The box() function doesn’t draw a line around the window but actually
uses the outside rows and columns in which to display its text. There is noth-
ing special protecting the box; text can overwrite it. In fact, if you want to pre-
serve the box, create a subwindow inside the window, a subwindow that is
centered and two rows and two columns less than the original window in size.
You can then write text to the subwindow directly without having to worry
about erasing the box. Figure 14-2 illustrates this.

170 Chapter 14 ■ A Mixture of Stuff

17_107591 ch14.qxp 1/12/07 9:07 PM Page 170

Figure 14-1: The help window is boxed

Figure 14-2: Protecting a box from being overwritten

Main window

Subwindow inside main window
(Write stuff to this window)

main window
main = newwin(0,0,maxy,maxx)

subwindow
sub = subwin(main,maxy-2,maxx-2,1,1)

0,0

1,1

box()

maxy,maxx

maxy-1,maxx-1

Chapter 14 ■ A Mixture of Stuff 171

17_107591 ch14.qxp 1/12/07 9:07 PM Page 171

NOTE Here’s a tip: If the window is small and the box takes up too much
space, consider merely coloring the window instead. Use bkgd() as described in
Chapter 3.

Building Better Boxes
It’s possible to set the characters used to draw the box yourself. The following
code in Listing 14-3 demonstrates.

Listing 14-3: box.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 box(stdscr,’*’,’*’);

8 refresh();

9 getch();

10

11 endwin();

12 return 0;

13 }

This program draws a box around the standard screen. The asterisk charac-
ter * is used to draw the horizontal and vertical lines.

Asterisks are used to draw the box. Note that the corners of the box may still
be + characters or perhaps specific corner graphics symbols.

If you want to replace the characters in the box’s corner, you’ll have to use
the border() function instead:

border(left,right,top,bot,uleft,uright,lleft,lright)

Note right away that border() is specific to the standard screen, stdscr.
There is a related, wborder() function where the first argument is win, for
the window to be boxed. The arguments in border() are characters to place
in one of the eight positions of the box: left, right, top, and bot are the
sides of the box; uleft, uright, lleft, and lright are the corners. See
Listing 14-4.

172 Chapter 14 ■ A Mixture of Stuff

17_107591 ch14.qxp 1/12/07 9:07 PM Page 172

Listing 14-4: border.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 border(0x000000ba,0x000000ba,0x000000cd,0x000000cd,

8 0x000000c9,0x000000bb,0x000000c8,0x000000bc);

9 refresh();

10 getch();

11

12 endwin();

13 return 0;

14 }

The hex codes supplied for border() are the extended ASCII codes to
draw a double-line border. Table 14-1 lists them. Note that they only appear as
a double border if your computer system’s terminal supports the extended
ASCII character set. It’s found on codepage 437, or it may be included with a
special font you can choose for the terminal window.

Lines 7 and 8 in Listing 14-4 use a long int hex chunk to display the char-
acters. This is because the characters are NCurses’ chtypes, not chars. Refer to
Appendix C for more information on the chtype.

If your terminal window supports codepage 437, you’ll see a double-lined
border. Otherwise, you’ll see various and sundry symbols used, typically let-
ters with diacritical marks, question marks, or other characters various and
ugly.

Remember that both border() and box()wrap around the entire window
only, and the box text can be overwritten.

Table 14-1: Extended ASCII/Codepage 437 double-line characters

CHARACTER DECIMAL HEX CHARACTER DECIMAL HEX

186 xBA 187 xBB

205 xCD 200 xC8

201 xC9 188 xBC

Chapter 14 ■ A Mixture of Stuff 173

17_107591 ch14.qxp 1/12/07 9:07 PM Page 173

We Control the Horizontal and the Vertical
For plain-on straight lines — lines from here to there but not diagonal or weird
angles — NCurses has the following functions:

hline(ch,n)

vline(ch,n)

The hline() and vline() functions draw a horizontal or vertical line
from the cursor’s current position (right or down, respectively), as shown in
Listing 14-5. The line is drawn using character ch or using the standard line-
drawing character when ch is zero. n sets the length of the line in characters.

Remember: The line is drawn from the cursor’s current position. And nei-
ther function, hline() nor vline(), changes the cursor’s position.

Listing 14-5: steps.c

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int y,x,maxy,maxx;

6

7 initscr();

8

9 getmaxyx(stdscr,maxy,maxx);

10

11 for(y=x=0;y<maxy;y++,x+=2)

12 {

13 move(y,x);

14 hline(0,maxx-x);

15 vline(0,maxy-y);

16 }

17 refresh();

18 getch();

19

20 endwin();

21 return 0;

22 }

When the planets are properly aligned, Figure14-3 should be something like
the result you’ll see.

As with many other screen-output functions, there are mv and w prefixes for
the hline() and vline() function (see Listing 14-6).

174 Chapter 14 ■ A Mixture of Stuff

17_107591 ch14.qxp 1/12/07 9:07 PM Page 174

Figure 14-3: The output of STEPS.C

Listing 14-6: plus.c

1 #include <ncurses.h>

2

3 #define HLIN 10

4 #define VLIN 5

5

6 int main(void)

7 {

8 int y[] = { 0, 0, 5, 0, 5, 5, 10, 10, 10, 10, 15, 5 };

9 int x[] = { 10, 10, 1, 20, 20, 30, 1, 10, 20, 20, 10, 0 };

10 int c;

11

12 initscr();

13

14 for(c=0;c<12;c+=2)

15 {

16 mvhline(y[c], x[c], 0, HLIN);

17 mvvline(y[c+1], x[c+1], 0, VLIN);

18 }

19

20 refresh();

21 getch();

22

23 endwin();

24 return 0;

25 }

The result is crude, but I think you’ll get the idea.

Chapter 14 ■ A Mixture of Stuff 175

17_107591 ch14.qxp 1/12/07 9:07 PM Page 175

Between NCurses and Disk

This last quartet of NCurses functions introduced in this chapter are used to
save interact between NCurses and disk:

scr_dump()

scr_restore()

putwin()

getwin()

The scr_dump() and putwin() functions are used to write information
from either the terminal screen or a specific window to a special file on disk.
The scr_restore() and getwin() functions then read that information
back from disk, splashing the information up on the screen. The following sec-
tions mull over the details.

Functions that Dump the Screen
There are two NCurses functions that “dump the screen,” transferring a win-
dow’s contents from memory disk or disk to memory:

scr_dump(filename)

scr_restore(filename)

Each function takes filename, the name of a file, as an argument. Note that
the argument is the file’s name itself, not a FILE pointer. Both functions open,
read, and close the named file. There is no need for fopen() or fclose()
before or after these functions.

The scr_dump() function overwrites any existing filename already on
disk. There is no warning, though you can write your own code to determine
whether or not filename already exists before using scr_dump().

When the dump or restore is successful, the functions return OK; otherwise,
ERR is returned.

Both functions relate to what is displayed on the curscr; these are not win-
dow-specific functions.

Taking a Snapshot of the Screen
The scr_dump() function performs what old timers refer to as a screen dump.
The inelegant term dump simply means to transfer a chunk of data (often raw
data) from one device to another. In the case of a screen dump, the data from
the screen is saved to disk. See Listing 14-7 for an example.

176 Chapter 14 ■ A Mixture of Stuff

17_107591 ch14.qxp 1/12/07 9:07 PM Page 176

Listing 14-7: dump.c

1 #include <ncurses.h>

2 #include <stdlib.h>

3 #include <time.h>

4

5 #define FILENAME “windump”

6

7 int main(void)

8 {

9 char word[7];

10 int x,w,r;

11

12 srandom((unsigned)time(NULL)); /* seed randomizer */

13 word[7] = ‘\0’;

14 initscr();

15

16 /* Fill most of the screen with random 6-char words */

17 for(x=0;x<200;x++)

18 {

19 for(w=0;w<6;w++)

20 word[w] = (random() % 26) + ‘a’;

21 printw(“%s\t”,word);

22 }

23 addch(‘\n’);

24 addstr(“Press Enter to write this screen to disk\n”);

25 refresh();

26 getch();

27

28 /* write the window to disk */

29 r = scr_dump(FILENAME);

30 if(r == ERR)

31 addstr(“Error writing window to disk\n”);

32 else

33 addstr(“File written; press Enter to quit\n”);

34 refresh();

35 getch();

36

37 endwin();

38 return 0;

39 }

Most of the code works to write 200 words to the screen, words composed of
six random characters. That’s simply to put something unique up on the
screen; scr_dump() captures anything and everything.

The actual dump takes place at line 29. If the function fails, ERR is returned.
This is evaluated in line 30 and appropriate messages are displayed.

If all goes well, you’ll first see the random smattering of text, similar to what
is shown in Figure 14-4.

Chapter 14 ■ A Mixture of Stuff 177

17_107591 ch14.qxp 1/12/07 9:07 PM Page 177

Figure 14-4: The DUMP.C program produces output similar to this.

Press Enter to write that window to disk. Then press Enter again to quit the
program.

Examining the Dump File
The code for DUMP.C writes a file to disk named WINDUMP. Using the ls -l
command on the windump file shows that it’s of quite a substantial size, 45K
on my computer:

-rw-r--r-- 1 dang dang 46204 Jan 16 13:25 windump

The file is a binary representation of an NCurses window data structure. It
includes a header followed by the raw data from the window.

The window header is of the structure type _win_st, which is defined in
the NCURSES.H header file. It’s the same thing as the WINDOW variable used to
create a window; _win_st is the structure name. Figure 14-5 lists some of the
highlights of a window dump, using the output of the hexdump utility.

The data includes all the screen positions, rows, and columns that show up
as the text on the screen. Each screen position is 24 bytes long, which includes
the character displayed and any attributes for that screen position. You can see
this in how potogav appears in the ASCII column of Figure 14-5 but also as
the first “word” of Figure 14-4.

Restoring the Screen
The scr_restore() function is used to read a screen dump back from disk
into NCurses. As with scr_dump(), the scr_restore() function merely
requires the name of the file (see Listing 14-8).

178 Chapter 14 ■ A Mixture of Stuff

17_107591 ch14.qxp 1/12/07 9:07 PM Page 178

Figure 14-5: Things to see inside a window dump file

Listing 14-8: undump.c

1 #include <ncurses.h>

2

3 #define FILENAME “windump”

4

5 int main(void)

6 {

7 int r;

8

9 initscr();

10

11 addstr(“Press Enter to restore the screen\n”);

12 refresh();

13 getch();

14

15 /* restore the window from disk */

16 r = scr_restore(FILENAME);

17 if(r == ERR)

18 addstr(“Error reading window file: press Enter\n”);

19 refresh();

20 getch();

21

22 endwin();

23 return 0;

24 }

Chapter 14 ■ A Mixture of Stuff 179

17_107591 ch14.qxp 1/12/07 9:07 PM Page 179

The screen saved to disk by DUMP.C is restored, including the text prompt-
ing you to press Enter (shown in Figure 14-4)!

Functions that Dump a Window
When it’s only the contents of a window you need to save to disk, pull out the
putwin() and getwin() functions. They write the same type of dump to
disk, but they use completely different formats from their screen-oriented
companions, scr_dump() and scr_restore(), covered in the section
“Functions that dump the screen,” earlier in this chapter:

putwin(win,file)

win = getwin(file)

In both functions, win is the name of a WINDOW pointer, indicated by some
window created in NCurses. file is a FILE pointer representing an open file.
The file must be successfully opened by fopen() and it must be closed by
fclose() (or similar functions). Data is written to the file via putwin() and
read by getwin() (see Listing 14-9).

Listing 14-9: windisk.c

1 #include <ncurses.h>

2 #include <stdlib.h>

3

4 #define FILENAME “window.dat”

5

6 void bomb(char *message);

7

8 int main(void)

9 {

10 FILE *wfile;

11 WINDOW *win;

12 int r;

13

14 initscr();

15 start_color();

16 init_pair(1,COLOR_WHITE,COLOR_BLUE);

17

18 addstr(“Creating new window\n”);

19 refresh();

20

21 /* Crete the window */

22 win = newwin(5,20,7,30);

23 if(win == NULL)

24 bomb(“Unable to create window\n”);

25 wbkgd(win,COLOR_PAIR(1));

26 mvwaddstr(win,1,2,”This program was\n”);

180 Chapter 14 ■ A Mixture of Stuff

17_107591 ch14.qxp 1/12/07 9:07 PM Page 180

Listing 14-9 (continued)

27 mvwaddstr(win,2,5,”created by\n”);

28 mvwaddstr(win,3,5,”Dan Gookin\n”); /* put your name

here */

29 wrefresh(win);

30 getch();

31

32 /* open the file */

33 wfile = fopen(FILENAME,”w”);

34 if(wfile==NULL)

35 bomb(“Error creating file\n”);

36

37 /* write the window’s data */

38 r = putwin(win,wfile);

39 if(r == ERR)

40 addstr(“Error putting window to disk\n”);

41 else

42 addstr(“Window put to disk\n”);

43 fclose(wfile);

44 refresh();

45 getch();

46

47 endwin();

48 return 0;

49 }

50

51 void bomb(char *message)

52 {

53 addstr(message);

54 refresh();

55 getch();

56 endwin();

57 exit(1);

58 }

Most of the code is devoted to creating a tiny blue window on the screen and
populating that window with text.

In line 33, a file is opened on disk. Line 38 puts the window to the file via the
putwin() function. Then the file is closed and the program ends.

NOTE Be sure to use your own name in line 28. Likewise, you may want to
adjust the column argument of the mvwaddstr() function so that the name is
relatively centered in the window.

The program displays the tiny blue window and then saves that window to
disk in the filename WINDOW.DAT. The next program reads that window back
in from disk and displays it on the screen, as shown in Listing 14-10.

Chapter 14 ■ A Mixture of Stuff 181

17_107591 ch14.qxp 1/12/07 9:07 PM Page 181

Listing 14-10: DISKWIN.C

1 #include <ncurses.h>

2 #include <stdlib.h>

3

4 #define FILENAME “window.dat”

5

6 void bomb(char *message);

7

8 int main(void)

9 {

10 FILE *wfile;

11 WINDOW *win;

12 int r;

13

14 initscr();

15 start_color();

16 init_pair(1,COLOR_WHITE,COLOR_BLUE);

17

18 addstr(“Press Enter to read the window from disk:\n”);

19 refresh();

20 getch();

21

22 /* open the file */

23 wfile = fopen(FILENAME,”r”);

24 if(wfile==NULL)

25 bomb(“Error reading file\n”);

26

27 /* write the window’s data */

28 win = getwin(wfile);

29 if(win == NULL)

30 bomb(“Unable to read/create window\n”);

31 fclose(wfile);

32 wrefresh(win);

33 getch();

34

35 endwin();

36 return 0;

37 }

38

39 void bomb(char *message)

40 {

41 addstr(message);

42 refresh();

43 getch();

44 endwin();

45 exit(1);

46 }

182 Chapter 14 ■ A Mixture of Stuff

17_107591 ch14.qxp 1/12/07 9:07 PM Page 182

Note that the getwin() function both reads the window’s data from disk
and initializes the window; there is no need to use newwin() before
getwin() to create the window. It does not, however, update the curscr;
you still must use a wrefresh() command for that.

The window is restored to the same size, location, and appearance as before.
The cursor position is also restored. Any attributes are also restored, though if
the specific COLOR_PAIR associated with the window, or the window’s text, is
redefined as another color, that other color is used. (Attributes include only a
COLOR_PAIR value, not the color pairs assigned to that value.)

After being restored, your code can continue to use the window, write to it,
manipulate it, and remove it if necessary.

Chapter 14 ■ A Mixture of Stuff 183

17_107591 ch14.qxp 1/12/07 9:07 PM Page 183

17_107591 ch14.qxp 1/12/07 9:07 PM Page 184

185

Some low-level NCurses and terminal functions, as well as some functions
listed but not fully implemented, are not documented in this appendix.

A few of the extended NCurses functions are not documented here, including:

is_term_resized()

resize_term()

resizeterm()

addch()

The addch() functions display a single character to the screen. The character is
placed at the cursor’s position and overwrites any character already in that spot.

Man Page Formats
int addch(const chtype ch);

int waddch(WINDOW *win, const chtype ch);

int mvaddch(int y, int x, const chtype ch);

int mvwaddch(WINDOW *win, int y, int x, const chtype ch);

NCurses Library
Reference

A P P E N D I X

A

18_107591 appa.qxp 1/12/07 9:08 PM Page 185

Format Reference
ch is an NCurses chtype variable, which can represent a single character or
character and attribute combination. See Appendix C for more information.

Refer to the mv, mvw, and w entries elsewhere in this appendix for informa-
tion on the win, y, and x arguments.

Return Value
Upon success addch() returns OK, or ERR upon failure.

Notes
Characters placed at the last column cause the cursor’s location to drop to the
next row. Characters placed at the last column of the last row do not advance
the cursor unless scrolling is enabled for the window, in which case the win-
dow will scroll up one line. See scrollok().

The addch() function interprets some characters specially:

■■ \t. the tab character advances the cursor to the next tab stop, which is
set every eight columns in a window. This value can be reset by using
the TABSIZE variable; see TABSIZE.

■■ \n. the newline character erases all text from the cursor’s position to
the end of the line (see clrtoeol()), then drops the cursor down to
the next line. If the cursor is on the last line of the screen, then the win-
dow’s contents are scrolled, but only if scrolling is enabled for that
window; see scrollok().

■■ \r. the carriage return moves the cursor to the start of the current line
(column zero). It will not erase to the end of the line.

■■ \b. the backspace character moves the cursor back one notch. It does
not erase. When the cursor is at the start of a line (column zero), the
backspace does nothing.

Control characters other than \t (^I), \n (^J), \r (^M), or \b (^H) are dis-
played using the ^c notation by addch(). This effectively puts two characters
to the screen, both the ^ and the control character’s corresponding key value,
such as G for ^G. See unctrl() for more information.

You can also use addch() to place ACS (Alternate Character Set) charac-
ters to the screen. Refer to Appendix B for more information on those
characters.

186 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 186

Examples
addch(‘A’);

This statement puts the character A to the standard screen at the cursor’s
current position.

addch(‘1’ | A_BOLD);

This statement displays at the cursor’s current position the character 1 with
the bold text attribute applied.

waddch(zippy,’\t’);

This statement places a tab a the cursor’s current position in window
zippy. The tab character advances the cursor to the next tab stop.

mvaddch(y,x,ACS_PI);

This statement places at the row and column represented by int variables
y and x the character constant ACS_PI, the character π. (See Appendix B for a
list of the ACS constants.)

mvwaddch(main,0,0,bullet);

This statement moves the cursor to home position 0,0 in window main and
places there the chtype character represented by the variable bullet.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 addch(‘H’);

8 addch(‘i’);

9 addch(‘!’);

10 refresh();

11 getch();

12

13 endwin();

14 return 0;

15 }

Sample output:

Hi!

Appendix A ■ NCurses Library Reference 187

18_107591 appa.qxp 1/12/07 9:08 PM Page 187

Also See
Chapter 2, addstr(), clrtoeol(), scroll(), TABSIZE

addchstr()

The addchstr() functions place a formatted string of text at the cursor’s
position. The string of formatted text is not a char array, but an array of
NCurses chtype characters, which includes both the character and its
formatting information.

Man Page Formats
int addchstr(const chtype *chstr);

int addchnstr(const chtype *chstr, int n);

int waddchstr(WINDOW *win, const chtype *chstr);

int waddchnstr(WINDOW *win, const chtype *chstr, int n);

int mvaddchstr(int y, int x, const chtype *chstr);

int mvaddchnstr(int y, int x, const chtype *chstr, int n);

int mvwaddchstr(WINDOW *win, int y, int x, const chtype *chstr);

int mvwaddchnstr(WINDOW *win, int y, int x, const chtype *chstr, int n);

Format Reference
chstr is an array of formatted text to be displayed on the screen. The array is
composed of chtype characters, which are not char but long int values.
(The chtype character consists of a character plus attribute information.)
n is used only in the addchnstr() functions. It is an int value, a variable

or constant, that represents the maximum number of characters to write to the
screen. When n is less than the string’s length, then only n characters are dis-
played. When n is equal to -1, the entire string is displayed. (Also see Notes,
below.) When n is greater than the string’s length, garbage may be displayed
on the screen.

Refer to the mv, mvw, and w prefix entries elsewhere in this appendix for
information on the win, y, and x arguments.

Return Value
Upon success the addchstr() family of functions return integer constants OK
or ERR upon success or failure, respectively.

Normally, returns values are not checked with addchstr(); however, if
you use the mv- or mvw- prefix versions of the functions, then be sure to check
the return value should the function accidentally try to move the cursor to an
off-screen location.

188 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 188

Notes
It helps if you understand this function as add-chstr: add a chtype string
to the screen. For displaying a standard character string to the screen, use
addstr() instead.

Unlike other output functions, text displayed by addchstr() does not
wrap from one line to another. Any excess text displayed beyond the last col-
umn in the window just doesn’t appear.
addchstr() does not interpret the control characters \t, \n, or \b, nor

will it display control characters prefixed with a ^, as other NCurses output
functions do.

Placing chtype characters on the screen with the addchstr() function is
faster than using the addstr() function.

The chtype array is terminated with a \0 value, just as char arrays, or
strings, are terminated.

Try not to use values of n larger than the string. Doing so results in random
data being displayed.

Examples
addchnstr(fline,25);

This statement puts the first 25 characters of the chtype string fline to the
screen at the current cursor position.

mvaddchstr(0,xc,title);

This statement puts the chtype string title at row zero and the column
represented by variable xc.

Sample Program

1 #include <ncurses.h>

2

3 int main(void)

4 {

5 chtype text[6] = { ‘H’ | A_BOLD, ‘e’, ‘l’, ‘l’, ‘o’, ‘\0’ };

6

7 initscr();

8

9 addchstr(text);

10 refresh();

11 getch();

12

13 endwin();

14 return 0;

15 }

Appendix A ■ NCurses Library Reference 189

18_107591 appa.qxp 1/12/07 9:08 PM Page 189

Sample output:

Hello

Also See
Appendix C, inchstr()

addstr()

The addstr() function displays a string of text on the screen. The text is dis-
played at the cursor’s current position and each character displayed advances
the cursor.

Man Page Formats
int addstr(const char *str);

int addnstr(const char *str, int n);

int waddstr(WINDOW *win, const char *str);

int waddnstr(WINDOW *win, const char *str, int n);

int mvaddstr(int y, int x, const char *str);

int mvaddnstr(int y, int x, const char *str, int n);

int mvwaddstr(WINDOW *win, int y, int x, const char *str);

int mvwaddnstr(WINDOW *win, int y, int x, const char *str, int n);

Format Reference
str is text, either a literal string or text stored in a string variable (char array).
The string is terminated with a \0 (null) character.
n is an int value or variable used to limit output to only n characters of the

string. The value of n ranges from 0 through the length of the string.
When n is -1, the entire string is written.

Refer to the mv, mvw, and w prefix entries elsewhere in this appendix for
information on the win, y, and x arguments.

Return Value
The addstr() function returns the integer constant OK, or ERR upon failure.

Notes
addstr() features the same type of output as addch(): control codes \t, \n,
\r, and \b are interpreted as tab, newline, return, and backspace. Other control

190 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 190

codes are displayed using the ^ followed by the code’s text character equiva-
lent. Refer to the addch() entry for more information.

When string is longer than the screen or window’s width, then it contin-
ues to the following line on the screen. If scrolling is enabled for the window,
then text displayed on the last line causes the screen to scroll.

The addstr() function does not automatically append a \n to the text it
displays.

Remember that in addition to performing a carriage return/line feed, the \n
will erase any existing text to the end of the line.

Setting the value of n greater than the length of the string does not appear to
affect output, unlike addchstr(). In this case, setting n to a value greater
than the string’s length merely outputs the entire string and nothing extra.

Examples

addstr(first_name);

This statement displays text stored in the string variable first_name on
the screen at the cursor’s current position.

waddstr(status,”Results:\n”);

This statement displays the text Results, plus a new line, in the window
named status. The newline drops the cursor down to the following line on
the screen.

mvaddstr(y,x,”Copyright 2006, Grockmeister Studios.”);

This statement displays the string Copyright 2006, Grockmeister
Studios. at the position represented by int variables y and x on the screen.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 addnstr(“The password is ‘Zeppelin.’\n”,17);

8 refresh();

9 getch();

10

11 endwin();

12 return 0;

13 }

Appendix A ■ NCurses Library Reference 191

18_107591 appa.qxp 1/12/07 9:08 PM Page 191

Sample output:

The password is ‘

Only the first 17 characters are displayed.

Also See
Chapter 2, addch(), printw()

assume_default_colors()

assume_default_colors() is an extended NCurses function that allows
you to set which foreground and background colors to use as the default after
start_color() initializes NCurses for color.

Explanation
After start_color() turns on NCurses text color support, the text back-
ground color is set to black and the foreground color set to white. Black and
white, or COLOR_BLACK and COLOR_WHITE, are the defaults, defined as
COLOR_PAIR(0). By using the assume_default_colors() function, you
can change the values of COLOR_PAIR(0) to something else or to whichever
colors the terminal program otherwise uses to display text.

Man Page Format
int assume_default_colors(int fg, int bg);

Format Reference
fg is an int value representing the color for text, the foreground color.
bg is an int value represent the background color.
Values for both fg and bg range from 0 through the value of COLORS-1.
A special value of -1 sets the foreground and background colors equal to the

same color as used by terminal when not running NCurses. See the Notes for
more information.

Return Value
When all goes well, the function returns OK, ERR otherwise.

192 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 192

Notes
The color constants defined in NCURSES.H can also be used as values for fg
and bg. Refer to init_pair() for the list.

The assume_default_colors() (or use_default_colors()) func-
tion is the only way to set COLOR_PAIR(0).

Using -1 for fg and bg tells NCurses to use the same foreground and back-
ground colors as the terminal. For example, if you’ve configured your xterm
window to use blue text on a white background, then specifying
assume_default_colors(-1,-1) directs NCurses to use those same two
colors as the foreground and background for COLOR_PAIR(0), the color pair
used when start_color() first initializes NCurses color.

Note that by using -1 it’s possible on some terminals to use colors not nor-
mally available to NCurses. For example, on xterm in OS X it’s possible to set
text color to gray text on a pink background. Sadly, these colors are not avail-
able to the other NCurses color functions.

It’s not wise to set both the bg and fg values to the same thing. You can; but
nothing shows up on the screen.
assume_default_colors() is a an extended NCurses function. See

“Extended Functions” later in this appendix.

Examples
assume_default_colors(COLOR_WHITE,COLOR_BLUE);

The colors used for text output after start_color() initializes NCurses
color will be white text on a blue background. White on blue becomes the val-
ues for COLOR_PAIR(0).

assume_default_colors(-1,-1);

The colors set by start_color() for COLOR_PAIR(0) will be the same as
used in the terminal window.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int r;

6

7 initscr();

8 start_color();

9

10 assume_default_colors(COLOR_RED,COLOR_CYAN);

11 addstr(“The default colors have been set to\n”);

Appendix A ■ NCurses Library Reference 193

18_107591 appa.qxp 1/12/07 9:08 PM Page 193

12 addstr(“Red text on a cyan background.\n”);

13 refresh();

14 getch();

15

16 endwin();

17 return 0;

18 }

Sample output:

The default colors have been set to

Red text on a cyan background.

The text above appears as red on a cyan background.

Also See
COLORS, init_pair(), use_default_colors()

attr_get()

The attr_get() function is used to read which text attributes are being used
in a window. The values returned are compared (by logical OR) with known
attributes. The function also determines whether the window uses color and if
so which color pair is being used.

Man Page Formats
int attr_get(attr_t *attrs, short *pair, void *opts);

int wattr_get(WINDOW *win, attr_t *attrs, short *pair,void *opts);

Format Reference
attrs is the location of a variable of the NCurses type attr_t, a long int
(the same as a chtype). It is used to store the attribute information read from
window. Essentially attrs is a bit field and the bits in the field are set accord-
ing to which attributes are active in the window. Appendix C describes the
chtype bit field.
pair is the memory location of a short int value used to store the color

pair number used to color the window.
The NULL placeholder represents the opts argument. opts is not defined

presently but reserved for future use.
Refer to the w prefix entry later in this appendix for information on the win

argument.

194 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 194

Return Value
The functions return OK or ERR upon success or failure.

Notes
The attrs argument is declared by using NCurses’ attr_t variable type:

attr_t ats;

Here in this line of code, the variable ats is created from the attr_t type.
Both the attrib and pair argument are memory locations. They can be

represented by pointer variables or regular variables prefixed with the & unary
operator.

It’s possible to replace either attrib or pair with NULL, in which case that
particular chunk of information will not be returned by attr_get().

The pair value returns only the color pair number. It does not tell you
which colors are assigned to that color pair number. For that tidbit you need to
use the pair_content() function.

In my experiments I’ve been unable to get attr_get() to return both text
and color attributes from a given window. The function seems to prioritize text
attributes, such as A_BOLD, A_BLINK, and so on. But when those attributes are
present along with color information, only the attribute values are returned.
When the attributes are removed from the window, the color information is
returned. (This is probably an effect of NCurses’ handling the ncv
(no_color_video) capability of the terminal. When the terminal description
says (with this capability) that colors do not mix with the given video attrib-
utes, it only uses the colors.)

To specifically retrieve a window’s background attributes, use the
getbkgd() function. See getbkgd().

Example
attr_get(&a,&cp,NULL);

This statement returns the attributes used in the stdscr, saving them in the
a variable. Color pairs, if used, are saved in the cp variable.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 attr_t attributes;

6 short cpair;

Appendix A ■ NCurses Library Reference 195

18_107591 appa.qxp 1/12/07 9:08 PM Page 195

7

8 initscr();

9 attrset(A_BOLD | A_REVERSE | A_BLINK);

10

11 attr_get(&attributes,&cpair,NULL);

12 addstr(“Attributes active in this window:\n”);

13 if(attributes & A_COLOR) printw(“Color w/ pair ;

%d\n”,cpair);

14 if(attributes & A_STANDOUT) addstr(“Standout\n”);

15 if(attributes & A_REVERSE) addstr(“Reverse\n”);

16 if(attributes & A_BLINK) addstr(“Blink\n”);

17 if(attributes & A_DIM) addstr(“Dim\n”);

18 if(attributes & A_BOLD) addstr(“Bold\n”);

19 refresh();

20 getch();

21

22 endwin();

23 return 0;

24 }

Sample output:

Also See
Appendix C, attrset(), COLOR_PAIR(), getbkgd()

attroff()

The attroff() function is used to turn off one or more text attributes. The
attributes have previously been applied by either the attron(), attrset(),
or similar attribute functions.

Man Page Formats
int wattroff(WINDOW *win, int attrs);

int wattroff(WINDOW *win, int attrs);

int attr_off(attr_t attrs, void *opts);

int wattr_off(WINDOW *win, attr_t attrs, void *opts);

196 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 196

Format Reference
attrs is an int value in one set of calls, and attr_t in the others. But it is really
the same thing in NCurses. It is typically one or more attribute constants as
defined in NCURSES.H, and listed in under attrset() later in this appendix.
The named attribute is removed from any text displayed after the attroff()
function is used; other attributes are not affected.

Multiple attributes can be specified in a single attroff() function by sep-
arating each with a | (logical OR).
COLOR_PAIR(n) is also considered a text attribute, where n is a color pair

number defined by an init_pair() function earlier in the program.
NULL is used as a placeholder for the as-yet-to-be-defined opts value found

in the attr_off() and wattr_off() functions. (Honestly, it’s been ten
years, so it’s doubtful that X/Open is going to define it!)

Refer to the w prefix entry later in this appendix for information on the win
argument.

Return Value
The return value is stated as “not important” according to the documentation.

Notes
attroff()affects only the text displayed after the attroff() function is
issued. It does not affect all text on the screen at once.

To turn off all attributes with attroff(), each attribute must be specified
individually; you cannot use A_NORMAL with attroff() to reset all text
attributes back to normal. (See attrset().)

Removing a COLOR_PAIR attribute with attroff() restores the text to
“normal” (white on black) text. So if you set one COLOR_PAIR attribute, then
apply a second COLOR_PAIR attribute, removing the second COLOR_PAIR
does not restore the first COLOR_PAIR. You must re-apply the COLOR_PAIR
using an attron() function.

Apparently removing a COLOR_PAIR attribute with attroff() also
removes all other text attributes.
attroff() and attr_off() are pretty much identical, save for the NULL

argument required in attr_off(). (In NCurses, you’ll mostly find under-
scores used by functions that manipulate wide characters.) Attributes are set
by either the attrset() or attron() functions.

Attributes affect the output of the addch(), addstr(), and printw()
functions.

Also refer to the Notes for attrset().

Appendix A ■ NCurses Library Reference 197

18_107591 appa.qxp 1/12/07 9:08 PM Page 197

Examples
attroff(A_BOLD);

This statement removes the bold text attribute from any new text displayed.

wattroff(help,COLOR_PAIR(1));

This statement removes the text color assigned to COLOR_PAIR 1 from any
new text displayed in the window help.

attroff(A_BOLD | A_REVERSE);

This statement removes both the bold and reverse attributes from any new
text displayed.

Sample Program
Refer to the entry for attrset() for a sample program.

Also See
Chapter 3, Appendix C, attrset()

attron()

The attron() function enables specified text attributes for any text put to the
screen or a specific window.

Man Page Formats
int attron(int attrs);

int wattron(WINDOW *win, int attrs);

int attr_on(attr_t attrs, void *opts);

int wattr_on(WINDOW *win, attr_t attrs, void *opts);

Format Reference
attrs is usually one or more attribute constants as defined in NCURSES.H,
each an long int. The named attribute is applied to any text displayed after
the attron() function is used. Setting a new attribute does not affect previ-
ous attributes applied to the text.

Refer to the entry for attrset() for a list of attribute values.

198 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 198

Multiple attributes can be specified in a single attron() function by sepa-
rating each with a | (logical OR).
COLOR_PAIR(n) is also considered a text attribute, where n is a color pair

number defined by an init_pair() function earlier in the program.
NULL is used in the attr_on() functions as a placeholder for the unde-

fined opts value.
Refer to the w prefix entry later in this appendix for information on the win

argument.

Return Value
The return value is stated as “not important” according to the documentation.

Notes
The new attributes are applied only to new text displayed after the attron()
function. These attributes are in addition to any set by previous attron() or
attrset() functions.

Applying a new COLOR_PAIR value with attron() replaces any previ-
ously defined text colors with the new colors.

Only one COLOR_PAIR can be used at a time; COLOR_PAIR attributes can-
not be combined, as other attributes can.

Attributes affect the output of the addch(), addstr(), and printw()
functions.

Also refer to the Notes for attrset().

Examples
attron(A_REVERSE);

This statement applies the reverse text attribute from any new text displayed.
This attribute is applied in addition to any previously-applied text attributes.

wattron(warning,A_BOLD | A_BLINK);

This statement sets both the bold and blink attributes from any new text
displayed in the warning window.

attron(COLOR_PAIR(3));

This statement set the text displayed to the color assigned to COLOR_PAIR 3.

Sample Program
Refer to the entry for attrset() for a sample program.

Appendix A ■ NCurses Library Reference 199

18_107591 appa.qxp 1/12/07 9:08 PM Page 199

Also See
Chapter 3, Appendix C, attrset(), chgat()

attrset()

The attrset() function sets attributes for all text output functions that fol-
low. The text displayed after using attrset() ignores any attributes previ-
ously assigned by an attrset() or attron() function and instead uses the
new attributes specified by attrset().

Man Page Formats
int attrset(int attrs);

int wattrset(WINDOW *win, int attrs);

int attr_set(attr_t attrs, short pair, void *opts);

int wattr_set(WINDOW *win, attr_t attrs, short pair, void *opts);

Format Reference
attrs is a long int value representing one or more attribute constants. The
attribute(s) affect text put to the screen after the attrset() command is used.
The attributes defined in NCURSES.H are as follows:

A_ALTCHARSET A_UNDERLINE

A_BLINK A_PROTECT

A_BOLD A_HORIZONTAL

A_DIM A_LEFT

A_INVIS A_LOW

A_NORMAL A_RIGHT

A_REVERSE A_TOP

A_STANDOUT A_VERTICAL

pair is a short int value representing a color pair number, similar to the
n used in COLOR_PAIR(n).
NULL is used in the attr_set() functions as a placeholder the undefined

opts value.
Refer to the w prefix entry later in this appendix for information on the win

argument.

200 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 200

Return Value
The return value is stated as “not important” according to the documentation.

Notes
Attributes set by attrset() can be removed by using the attroff() func-
tion. New attributes can be added by using the attron() function.
attrset() is an in-line function; it affects only text displayed after

attrset() is used. attrset() does not reset all text in a window at once.
Attributes affect the output of the addch(), addstr(), and printw()

functions.
All text attributes can be turned off by using this statement:

attrset(A_NORMAL);

Both attron() and the attrset() functions are used to set text attributes.
attron() always adds the text attribute(s) specified to whatever attributes
exist already. attrset(), on the other hand, resets all text attributes to only
those listed by the attrset() function.

In NCurses, text attributes are combined with a character to produce the
NCurses chtype. The attributes and character stay together; move or copy the
character, and the attributes go with it. This is unlike other text attribute sys-
tems where the attribute is applied to the character’s location on the screen and
characters at that location take on the attributes of the location. In NCurses,
characters and attributes are often the same thing. (Also see Appendix C.)

Multiple attributes are applied by specifying each in the attrset() function,
separated by a | (logical OR). This also includes using the COLOR_PAIR(n)
attribute.

It is technically possible that using a logical OR to combine attributes may
not work. For example, if more than the maximum number of color pairs are
defined (which can happen on some terminals, such as xterm-88color or
xterm-256color), then using the logical OR may result in nonexistent attributes
being assigned. (NCurses 5.5 can be compiled to support 32768 color pairs.)

The attributes listed in this entry can also be combined with COLOR_PAIR(n)
values, where n indicates a foreground (text) and background color combina-
tion, as defined by init_pair().

Not all the attributes listed in this entry are implemented on every terminal.
For example, NCurses doesn’t implement the A_TOP, A_LEFT, A_RIGHT,
A_VERTICAL, or A_HORIZTIONAL attributes because there is no terminal that
uses those features. Refer to the “Format Reference” section earlier to see
which are available for you to use.
attrset(A_NORMAL) turns off all attributes.

Appendix A ■ NCurses Library Reference 201

18_107591 appa.qxp 1/12/07 9:08 PM Page 201

To determine which attributes are available for the terminal, use the
termattrs() function.

Also refer to the Notes for attron and attroff().

Examples
attrset(A_BOLD);

This statement sets text attributes to bold. Any attributes previously
assigned to the text are removed.

wattrset(new,A_NORMAL | COLOR_PAIR(1));

This statement resets all text attributes for the window new to use the colors
specified by COLOR_PAIR(1).

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6 start_color();

7 init_pair(1,COLOR_WHITE,COLOR_BLUE);

8

9 attrset(A_BOLD);

10 addstr(“Attributes set for the screen to BOLD.\n”);

11 attroff(A_BOLD);

12 addstr(“Bold attribute has been removed.\n”);

13 attron(COLOR_PAIR(1));

14 addstr(“Color pair 1 has been added.\n”);

15 attrset(A_REVERSE);

16 addstr(“Attrset just reset things to reverse.\n”);

17 attroff(A_REVERSE);

18 addstr(“And now things are back to normal.\n”);

19 refresh();

20 getch();

21

22 endwin();

23 return 0;

24 }

Sample output:

202 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 202

Also See
Chapter 3, Appendix C, attroff(), attron(), chgat(), init_pair()

baudrate()

The baudrate() function returns the terminal’s speed in bits per second (bps).

Man Page Format
int baudrate(void);

Format Reference
The function has no arguments.

Return Value
baudrate() returns an int value representing the terminal’s speed value in
bps. Values returned depend on the terminal.

Notes
A baud is a measurement of signal modulation. The term is a holdover from the
early days of modems when a 300 baud modem communicated at roughly 300
bps. As modem technology advanced, the bps rating was used while many
incorrectly used the term “baud” instead. The value returned by baudrate()
is really a bps value.

Virtual terminals return whichever value is defined for the terminal. This
value probably will not reflect reality but merely the speed defined for the tty.
Use the stty command to see which speed is set for a virtual terminal; the
same value is returned by NCurses baudrate() function.

Knowing the speed of a terminal becomes relative when using some
NCurses functions that update an entire screen of information. At 9600 bps, a
full re-write of a screen by touchwin()/refresh() becomes noticeable.
Therefore, the baudrate() function can be used to avoid redundant text

Appendix A ■ NCurses Library Reference 203

18_107591 appa.qxp 1/12/07 9:08 PM Page 203

writing to slower terminals. But given that some terminal windows don’t
properly report bps values, this may end up being a futile exercise.

Example
speed = baudrate();

This statement sets the value of int variable speed equal to the terminal’s
speed in bps.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int b;

6

7 initscr();

8

9 b = baudrate();

10 printw(“This terminal’s baud rate is %d.\n”,b);

11 refresh();

12 getch();

13

14 endwin();

15 return 0;

16 }

Sample output:

This terminal’s baud rate is 9600.

beep()

The beep() function plays a tone over the computer’s speaker. beep() liter-
ally causes the computer to go beep!

Man Page Format
int beep(void);

204 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 204

Format Reference
The function takes no arguments.

Return Value
If the computer beeps, beep() returns OK. It returns ERR otherwise.

Notes
The standard C output functions can make a beep by displaying the Ctrl-G
character, the ASCII Bell. NCurses’ output functions, however, are not passed
through standard output. Displaying a Ctrl-G (0x07) character with NCurses
output functions displays ^G on the screen. Silently.

This function doesn’t work if the terminal has been configured not to beep.
The beep produced is whatever sound is set up as the default computer

sound. For text-based systems, this is just a tone over the speaker. For graphical
interfaces, the sound used is the default sound, which can be any tone, sound
file, or whatever.

It is not possible to change the beep sound from within NCurses.
I would not rely on this function’s return of ERR to determine whether or

not a terminal can produce sound.

Example
beep();

This entry makes the computer go beep!

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 addstr(“Press any key to beep:\n”);

8 refresh();

9 getch();

10 beep();

11 addstr(“Thanks!\n”);

12 refresh();

13 getch();

14

15 endwin();

16 return 0;

17 }

Appendix A ■ NCurses Library Reference 205

18_107591 appa.qxp 1/12/07 9:08 PM Page 205

Sample output:

Press any key to beep:

(Press Enter .)
BEEP!

Thanks!

Also See
Chapter 3, flash()

bkgd()

The bkgd() functions set the background attributes for the stdscr or a spe-
cific window. It writes new attributes to every character position on the win-
dow and even fills in blanks (spaces) with characters, if a character is specified
as part of the attribute. bkgd() does not overwrite any existing text.

Man Page Formats
int bkgd(chtype ch);

int wbkgd(WINDOW *win, chtype ch);

Format Reference
ch is an NCurses chtype variable, a long int. It typically consists of for-
matting attributes, which are constants declared in NCURSES.H. It can also
consist of regular text characters. Multiple attributes are combined by using
the | (logical OR).

Refer to attrset(), as well as Appendix C, for a list of the chtype for-
matting attributes.

Refer to the w prefix entry later in this appendix for information on the win
argument.

Return Value
The bkgd() function returns ERR on failure.

206 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 206

Notes
bkgd() over-writes any existing text attributes applied by attrset() or
attron(). For example, if a word is highlighted in bold text and then bkgd()
is used to color the screen yellow-on-white, the bold text attribute is removed
and the text takes on the yellow-on-white attribute.

Characters fill the background, or nontext locations on the screen, when
applied by bkgd(). Any text output function overwrites those “background”
characters. And a further use of bkgd() with a text character as part of the
attribute also erases those background characters.
bkgd() differs from bkgdset() in that the latter affects only new text writ-

ten to the window. So if you want to change a window’s background all at
once, use bkgd().

It’s a common typo to transpose the g and d in bkgd().

Examples
bkgd(A_BOLD);

This function sets all text attributes on the screen to bold. This replaces any
existing applied attributes, including color.

bkgd(COLOR_PAIR(1) | ‘+’);

Here, the screen is colored according to COLOR_PAIR 1 and all the non-text
places are filled with + as a background character. Additional text written to
the screen overwrites the + background characters. Space characters will not
overwrite the + background, however, and space characters used to overwrite
text also let the + background “shine through.”

wbkgd(summary,A_NORMAL);

This statement removes all attributes from the window summary.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6 start_color();

7 init_pair(1,COLOR_WHITE,COLOR_BLUE);

8 init_pair(2,COLOR_YELLOW,COLOR_RED);

9

Appendix A ■ NCurses Library Reference 207

18_107591 appa.qxp 1/12/07 9:08 PM Page 207

10 bkgd(COLOR_PAIR(1) | ‘.’);

11 refresh();

12 getch();

13

14 addstr(“bkgd() has preset the background.\n”);

15 addstr(“Press Enter to change it again.\n”);

16 refresh();

17 getch();

18

19 bkgd(COLOR_PAIR(2));

20 addstr(“All done!\n”);

21 refresh();

22 getch();

23

24 endwin();

25 return 0;

26 }

Sample output:
At first, the screen is filled with white periods on a blue background.

Press the Enter key to see text displayed over the background, as shown in Figure A-1.

Press Enter again and the window background is changed to yellow text on a red background with the

periods gone.

Also See
Chapter 3, Appendix C, attrset(), bkgdset()

Figure A-1: A white dot on blue background

208 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 208

bkgdset()

The bkgdset() function sets the background attributes for a window, affect-
ing only the text put to the screen after the bkgdset() function is issued.

Man Page Formats
int bkgdset(chtype ch);

void wbkgdset(WINDOW *win, chtype ch);

Format Reference
ch is an NCurses chtype variable, a long int, which represents formatting
attributes for the screen. It can also include a text character to be used as the
screen background character. Multiple attributes can be combined by using a
| (logical OR).

Refer to attrset(), as well as Appendix C, for a list of the chtype for-
matting attributes.

Refer to the w prefix entry later in this appendix for information on the win
argument.

Return Value
Nothing; bkgdset() is a void function.

Notes
Issuing a bkgdset() function by itself does not affect the screen at all. Only
after text is written to the screen, or a portion of the screen is erased, do the
affects of bkgdset() show up.

Unlike bkgd(), the bkgdset() function does not override any attributes
previously set on the screen.

Text attributes set by attrset(), as well as other text-attribute-setting
functions, are different from the background attributes.

Examples
bkgdset(A_BOLD);

This function sets text attributes for any text displayed afterwards to include
bold.

wbkgd(fireworks,COLOR_PAIR(4));

Appendix A ■ NCurses Library Reference 209

18_107591 appa.qxp 1/12/07 9:08 PM Page 209

This statement sets the text color to COLOR_PAIR 4 for any text to be dis-
played in the window fireworks.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6 start_color();

7 init_pair(1,COLOR_YELLOW,COLOR_RED);

8

9 bkgdset(A_BOLD);

10 addstr(“bkgd() has set the background attributes to bold.\n”);

11 addstr(“Press Enter to change it.\n”);

12 refresh();

13 getch();

14

15 bkgdset(COLOR_PAIR(1));

16 addstr(“All done!\n”);

17 refresh();

18 getch();

19

20 endwin();

21 return 0;

22 }

Sample output:
The following is displayed in bold:

bkgd() has set the background attributes to bold.

Press Enter to change it.

Press Enter and the attributes change to yellow text on a red background; the fol-
lowing is displayed:

All done!

Also See
Chapter 3, Appendix C, attrset(), bkgd()

border()

The border() function is used to draw a line or box around a window. The line
can use default line drawing characters or you can chosse specific characters,

210 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 210

and the line occupies the outside character positions (rows and columns) of the
window.

Man Page Formats
int border(chtype ls, chtype rs, chtype ts, chtype bs,

chtype tl, chtype tr, chtype bl, chtype br);

int wborder(WINDOW *win, chtype ls, chtype rs,

chtype ts, chtype bs, chtype tl, chtype tr,

chtype bl, chtype br);

Format Reference
All arguments to border (save for win) represent characters to be used to draw
the border. The eight arguments represent the four edges and four corners:

■■ ls represents the character used to draw the border’s left side

■■ rs, the right side

■■ ts, the top side

■■ bs, the bottom side

■■ tl represents the character used to draw the top left corner

■■ tr, the top right corner

■■ bl, the bottom left corner

■■ br, the bottom right corner

Each of these arguments are a chtype character, i.e., a long int represent-
ing both a character and an attribute. (See Appendix C.)

When any argument is zero, default characters are used, as shown in
Table A-1.

Refer to Appendix B for more information about Alternative Character Set
(ACS) characters.

Refer to the w prefix entry later in this appendix for information on the win
argument.

Table A-1: ACS line drawing characters

Argument ACS default Argument ACS default

ls ACS_VLINE tl ACS_ULCORNER

rs ACS_VLINE tr ACS_URCORNER

ts ACS_HLINE bl ACS_LLCORNER

bs ACS_HLINE br ACS_LRCORNER

Appendix A ■ NCurses Library Reference 211

18_107591 appa.qxp 1/12/07 9:08 PM Page 211

Return Value
OK is returned.

Notes
Remember: You do not set the border’s size or origin; the border follows the
outline of the stdscr or named window. So if you want a border of a specific
size, create a new window or subwindow and place the border in there.

The border occupies the top and bottom rows and the far left and right
columns of the window.

The border is not protected and can easily be erased or replaced by putting
characters to the window at the border’s position.

Text placed inside a window with a border must reside within the border to
avoid over-writing the border. For example, the first line of text in such a win-
dow should be placed at position 1, 1, not position 0, 0.

You can apply a border to the smallest window possible, which is one char-
acter in size. In that case, the only part of the border visible is the lower-right
corner.

The smallest window where the full border is visible is a 3-by-3 character
window. The borders four corners are used to box a 2-by-2 window, though no
window content can be displayed without erasing the border.

Examples
border(0,0,0,0, 0,0,0,0);

This statement draws a border around the outside edge of the standard
screen. The ACS line drawing characters are used to create the border.

wborder(menu, ‘|’, ‘|’, ‘-’, ‘-’, ‘+’, ‘+’, ‘+’, ‘+’);

This statement places a border around the window menu. The characters
used to draw the border are specified: | for the vertical lines, - for the hori-
zontal lines, and + for the four corners.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *newman;

6

7 initscr();

8 start_color();

212 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 212

9 init_pair(1,COLOR_YELLOW,COLOR_RED);

10

11 newman = newwin(5,30,5,10);

12 if(newman == NULL)

13 {

14 endwin();

15 puts(“Error creating window”);

16 return(1);

17 }

18

19 wbkgd(newman,COLOR_PAIR(1));

20 wborder(newman,0,0,0,0,0,0,0,0);

21 mvwaddstr(newman,1,1,”Ta-da!”);

22 wrefresh(newman);

23 wgetch(newman);

24

25 endwin();

26 return 0;

27 }

Sample output:
The program creates a window on the screen 30 characters wide by 5 characters tall.

The window is colored red with yellow text. A border is drawn around the window, and
text inside the border says Ta-da!.

Also See
Chapter 14, Appendix B, box(), hline(), vline()

box()

The box() function draws a simple box around the outside edges of a win-
dow. The function uses the ACS characters to draw the box, though the char-
acters used to draw the horizontal and vertical lines can be specified inside the
box() function.

Man Page Format
int box(WINDOW *win, chtype verch, chtype horch);

Format Reference
win refers to a specific window or stdscr for the standard screen.
verch is a chtype character used to create the left and right (vertical) lines

of the box. The chtype combines both a character and an attribute, though

Appendix A ■ NCurses Library Reference 213

18_107591 appa.qxp 1/12/07 9:08 PM Page 213

typically only a character (constant or variable) is used. See Appendix C for
more information on chtypes.
horch is a chtype character used to create the top and bottom (horizontal)

lines of the box.
When zero is specified for either verch or horch the default ACS character

is used: ACS_VLINE for verch and ACS_HLINE for horch. See Appendix B
for more information on these characters.

Return Value
box() always returns int 0 or OK.

Notes
The characters used to draw the corners of the box are shown in Table A-2.

The box() function is equivalent to the following border() function:

wborder(win,verch,verch,horch,horch,0,0,0,0)

There is no wbox() function.
Also refer to the Notes for border() as the same information applies to

both functions.

Examples
box(stdscr,0,0);

This function draws a box around the standard screen window using the
default line drawing characters.

box(table1, ‘*’, ‘*’);

This function draws a box around the window table1, using asterisks for
both the horizontal and vertical lines.

Table A-2: ACS line drawing characters used in box()

POSITION ACS CHARACTER POSITION ACS CHARACTER

Top left ACS_ULCORNER Bottom left ACS_LLCORNER

Top right ACS_URCORNER Bottom right ACS_LRCORNER

214 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 214

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 box(stdscr,0,0);

8 mvaddstr(1,1,”Ta-da!”);

9 refresh();

10 getch();

11

12 endwin();

13 return 0;

14 }

Sample output:
The program draws a box around the entire screen, placing the words Ta-da!

inside the box at row 1, column 1.

Also See
Chapter 14, Appendix B, border(), hline(), vline()

can_change_color()

The can_change_color() function determines whether or not a terminal
can re-define its color set. If so, then the color_content() function can be
used to create new color values for use with NCurses various text color
attribute functions.

Man Page Format
bool can_change_color(void);

Format Reference
The function has no arguments.

Return Value
can_change_color() returns a Boolean value, TRUE or FALSE, depending
on whether the terminal can redefine its colors.

Appendix A ■ NCurses Library Reference 215

18_107591 appa.qxp 1/12/07 9:08 PM Page 215

Notes
Terminals where this command returns TRUE include the Linux console,
xterm-88color, xterm-256color, PuTTY, or anything with “ccc” in the terminal
description.

Examples
r = can_change_color();

In this statement, the value of r equals TRUE if color values can be changed
on the terminal, FALSE otherwise.

if(can_change_color())

This if condition evaluates true if the color values can be changed.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 bool tf;

6 initscr();

7

8 tf = can_change_color();

9 if(tf == TRUE)

10 addstr(“This terminal can change the standard colors.\n”);

11 else

12 addstr(“This terminal cannot change the colors.\n”);

13 refresh();

14 getch();

15

16 endwin();

17 return 0;

18 }

Sample output:

This terminal can change the standard colors.

Or:

This terminal cannot change the colors.

Also See
start_color(), color_content(), TRUE

216 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 216

cbreak()

The cbreak() function modifies input, activating what’s called cbreak mode.
This increases the number of characters available to your program, as well as
speeds up input somewhat.

Explanation
NCurses reads keyboard input through the terminal. This is known as cooked
input mode as text input is buffered by the terminal and certain characters
typed at the keyboard are intercepted and used for certain things. This all hap-
pens before the text is passed through to your NCurses program.

Buffering refers to how text is read. The terminal uses line buffering, which
stores a line of text and sends it to NCurses after \n is encountered.

The special characters include, for example, the Killchar key used at the
command prompt to erase a line of text or the Erasechar key used to delete
text.

The cbreak mode disables the line buffering and the trapping of keys such
as Killchar and Erasechar.

Man Page Format
int cbreak(void);

int nocbreak(void);

Format Reference
The cbreak() command activates cbreak mode.

The nocbreak() command restores cooked input mode (normal).

Return Value
OK upon success, ERR upon failure.

Notes
The settings that cbreak() and nocbreak() affect are inherited. That is, the
settings may be on or off when your program starts. The only way to ensure
that your program uses cbreak() mode input is to issue the cbreak() func-
tion in your code. Ditto for nocbreak().

The cbreak() setting overrides raw(). Even so, try to use either
cbreak() or raw() functions, not both at the same time. See raw().

Appendix A ■ NCurses Library Reference 217

18_107591 appa.qxp 1/12/07 9:08 PM Page 217

The nocbreak() function also disables (or undoes) any delay set by the
halfdelay() function. See halfdelay().

Examples
cbreak()

Here, cbreak mode is set for the program.

nocbreak()

Here, the cbreak mode is cancelled.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int ch;

6 initscr();

7

8 cbreak();

9 mvaddstr(0,0,”Type away, cbreak mode is on:”);

10 while(getch() != ‘\n’)

11 ;

12

13 nocbreak();

14 mvaddstr(3,0,”Type away, cbreak mode is off:”);

15 while(getch() != ‘\n’)

16 ;

17

18 endwin();

19 return 0;

20 }

Sample output:

Type away, cbreak mode is on:

You can’t really determine the change in the line buffering, but try typing the
kill/erase character. On my terminal, Ctrl-U is the Killchar key and typing it with cbreak
mode on merely displays ^U on the screen. Similarly, pressing Delete displays ^?.

Type away, cbreak mode is off:

Try typing Killchar or Delete and the results are the same as if you typed
them at the command prompt.

218 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 218

Also See
raw(), halfdelay()

chgat()

The chgat() function changes text attributes on the screen. New attributes
specified replace any existing attributes without overwriting text. In fact, the
advantage of using chgat() is that it lets you change text attributes without
having to rewrite that bit of text.

Man Page Formats
int chgat(int n, attr_t attr, short color,

const void *opts);

int wchgat(WINDOW *win, int n, attr_t attr,short color,

const void *opts)

int mvchgat(int y, int x, int n, attr_t attr,short color,

const void *opts)

int mvwchgat(WINDOW *win, int y, int x, int n,attr_t attr, short color,

const void *opts)

Format Reference
n is the number of characters chgat() affects. When n is -1, then all characters
from the cursor’s current position to the end of the line are affected. When 0 is
specified, no text is changed. Otherwise, the new attributes are applied to n
number of characters from the cursor’s current position and to the right. When
n is greater than the window width, the window width is assumed.
attr is an NCurses attr_t type (long int) value representing text attrib-

utes to be applied. Refer to attrset() for a list of attr_t constants as
defined in NCURSES.H.
color is short int representing the number of a COLOR_PAIR defined by

the init_pair function. Note that color is the pair number itself, not the
COLOR_PAIR(n) thing.
NULL is required for the opts argument, which is currently not defined in

NCurses.
Refer to the mv, mvw, and w prefix entries elsewhere in this appendix for

information on the win, row, and col arguments.

Return Value
The return value is stated as “not important” according to the documentation.

Appendix A ■ NCurses Library Reference 219

18_107591 appa.qxp 1/12/07 9:08 PM Page 219

Notes
chgat() affects text attributes from the current cursor’s position right.

The most common mistake you’ll make is specifying COLOR_PAIR(1), for
example, for the color argument. Instead you should just specify the pair
number, 1.

A simple refresh() will not update the new attributes put to the screen.
Therefore a touchline() function applied to the same line, or a touchwin()
function for the entire window, is necessary to see the effects of chgat().

Examples
chgat(-1,A_BOLD,0,NULL);

This statement applies the bold text attribute to all text from the cursor’s
current position to the end of the line. Color isn’t changed.

mvchgat(4,28,5,0,3,NULL);

Here, the mvchgat() function moves the cursor to row 4, column 28 on the
screen. The color attributes for the five characters at that location (and to the
right) are changed to COLOR_PAIR(3). (It’s assumed that color has been
started and COLOR_PAIR(3) defined elsewhere in the code.)

wchgat(popup,20,A_UNDERLINE,1,NULL);

The statement here changes attributes for 20 characters starting at the cur-
sor’s current position in window popup. Both the underline text attribute and
COLOR_PAIR(1) are applied to the 20 characters.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6 start_color();

7 init_pair(1,COLOR_RED,COLOR_WHITE);

8 init_pair(2,COLOR_WHITE,COLOR_BLUE);

9

10 addstr(“This is the incredibly boring first line\n”);

11 addstr(“This is the incredibly boring second line\n”);

12 addstr(“This is the incredibly boring third line\n”);

13 addstr(“This is the incredibly boring fourth line\n”);

14 refresh();

15 getch();

16

220 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 220

17 mvchgat(0,0,4,0,1,NULL);

18 mvchgat(1,12,10,0,2,NULL);

19 mvchgat(2,23,6,A_UNDERLINE,0,NULL);

20 mvchgat(3,30,6,A_BOLD,0,NULL);

21 touchwin(stdscr);

22 refresh();

23 getch();

24

25 endwin();

26 return 0;

27 }

Sample output:

This is the incredibly boring first line

This is the incredibly boring second line

This is the incredibly boring third line

This is the incredibly boring fourth line

Press Enter and new attributes are applied to the text: In the first line, the word
This appears with red text on a white background; the second line shows the
word incredibly with white text on a blue background; in the third row, the word
boring is underlined; in the last row, the word fourth appears in bold text.

Also See
attrset(), attron()

clear()

The clear() function clears the screen or named window, writing blanks, or
space characters, to every screen position. Additionally, the clear() function
calls clearok(), to ensure that the screen is erased and completely rewritten
with the next call to a refresh() function. (See clearok().)

Man Page Formats
int clear(void);

int wclear(WINDOW *win);

Format Reference
The clear() function takes no arguments. It’s a pseudo function that affects
only the standard screen.

Appendix A ■ NCurses Library Reference 221

18_107591 appa.qxp 1/12/07 9:08 PM Page 221

Refer to the w prefix entry later in this appendix for information on the win
argument.

Return Value
Always returns OK.

Notes
clear() is the same as wclear(stdscr).

Clearing the screen also homes the cursor; after the clear() function, the
cursor is placed at location 0, 0.

The clear() function removes only characters and their attributes. It does
not affect the background attributes. If a background character is set via
bkgd() or bkgdset(),that character will show up in the blanks clear()
fills the screen with.

The clear() function is the same as the erase() function, though
erase() does not also call clearok().

Examples
clear();

The statement clears the standard screen, erasing all the text.

wclear(sidebar);

The statement erases the contents of the window sidebar.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int c,y,x,cmax;

6

7 initscr();

8

9 getmaxyx(stdscr,y,x);

10 cmax = (x * y) / 5;

11 for(c=0;c<cmax;c++) addstr(“blah “);

12 refresh();

13 getch();

14

15 clear(); /* clear the screen */

16 refresh(); /* don’t forget this! */

222 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 222

17 getch();

18

19 endwin();

20 return 0;

21 }

Sample output:
The screen is filled with the text blah blah blah. Pressing the Enter key erases

the screen.

Also See
Chapter 6, erase(), clearok(), refresh()

clearok()

The clearok() function modifies window behavior in NCurses. When
switched on, clearok() forces the next call to refresh() to entirely erase
the window and redraw it from scratch.

Explanation
Normally, the refresh() function merely updates those parts of the window
that have been changed. But by switching on clearok(), a complete erasure
and rewrite of the window is possible.

Man Page Format
int clearok(WINDOW *win, bool bf);

Format Reference
win is the name of the window to erase and redraw. stdscr can be used for
win to update the standard screen.
bf is a Boolean value, either TRUE or FALSE. TRUE is used to activate

erasing/redrawing for the named window; FALSE turns it off.

Return Value
The function always returns OK.

Appendix A ■ NCurses Library Reference 223

18_107591 appa.qxp 1/12/07 9:08 PM Page 223

Notes
The screen isn’t actually erased and redrawn until a refresh() or
wrefresh() function is used.

When the current screen, curscr, is used as the win argument, NCurses
erases and redraws the entire screen from scratch at the next refresh().

Apparently erasing and redrawing the entire screen is visually distracting,
but this must only be so with slower terminal speeds. (Refer to baudrate().)

Examples
clearok(stdscr,TRUE);

The statement causes the next call to refresh() to erase and redraw the
standard screen, ensuring that what’s shown in the screen matches memory.

clearok(menu,FALSE);

Here, clearok() updating is disabled for the window menu. Any subse-
quent calls to refresh() update only changed parts of the screen.

clearok(curscr,TRUE);

After executing this statement, the next call to wrefresh() forces the stan-
dard screen to be cleared and then redrawn from scratch.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int x;

6

7 initscr();

8

9 for(x=0;x<350;x++) /* fills screen with junk */

10 printw(“-0- “);

11 refresh();

12 getch();

13

14 mvaddstr(5,20,”Holy updates, Batman!”);

15 clearok(stdscr,TRUE);

16 refresh();

17 getch();

18

19 endwin();

20 return 0;

21 }

224 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 224

Sample output:
The screen is partially filled with a pattern. Press Enter and a new string of text is

written to the screen, the screen is then erased and redrawn. (This can happen so fast
that the visual effect isn’t noticed.)

Also See
clear(), TRUE, refresh(), touchwin()

clrtobot()

The clrtobot() function clears the screen from the cursor’s current position
to the end of the line (right) and to the bottom of the screen.

Man Page Formats
int clrtobot(void);

int wclrtobot(WINDOW *win);

Format Reference
The clrtobot() function has no arguments.

Refer to the w prefix entry later in this appendix for information on the win
argument.

Return Value
The function returns OK.

Notes
The function does not move the cursor.

Any text attributes are erased by this function.
Remember that the text doesn’t visually go away until you refresh() the

window.

Example
clrtobot();

After this statement, text is cleared from the cursor’s position to the right, all
the way to the end of the line, and then all rows below to the bottom of the
window.

Appendix A ■ NCurses Library Reference 225

18_107591 appa.qxp 1/12/07 9:08 PM Page 225

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int c,y,x,cmax;

6

7 initscr();

8

9 getmaxyx(stdscr,y,x);

10 cmax = (x * y) / 5;

11 for(c=0;c<cmax;c++) addstr(“blah “);

12 refresh();

13 getch();

14

15 move(5,20); /* Setup the cursor */

16 clrtobot(); /* Clear to end of screen */

17 refresh();

18 getch();

19

20 endwin();

21 return 0;

22 }

Sample output:
The screen is filled with the text blah blah blah. Pressing the Enter key clears

the screen from cursor location 5,20 to the end of the screen.

Also See
Chapter 6, clear(), clrtoeol(), refresh()

clrtoeol()

The clrtoeol() function clears text from the cursor’s current position to the
end of the line.

Man Page Formats
int clrtoeol(void);

int wclrtoeol(WINDOW *win);

Format Reference
The clrtoeol() function has no arguments.

226 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 226

Refer to the w prefix entry later in this appendix for information on the win
argument.

Return Value
The function returns OK.

Notes
Refer to the Notes for clrtobot().

Example
wclrtoeol(inputwin);

After this statement, text is cleared from the cursor’s position to the right, all
the way to the end of the line, in the window inputwin.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int c,y,x,cmax;

6

7 initscr();

8

9 getmaxyx(stdscr,y,x);

10 cmax = (x * y) / 5;

11 for(c=0;c<cmax;c++) addstr(“blah “);

12 refresh();

13 getch();

14

15 move(5,20); /* Setup the cursor */

16 clrtoeol(); /* Clear to end of line */

17 refresh();

18 getch();

19

20 endwin();

21 return 0;

22 }

Sample output:
The screen is filled with the text blah blah blah. Pressing the Enter key clears

the screen from cursor location 5,20 to the end of the line.

Appendix A ■ NCurses Library Reference 227

18_107591 appa.qxp 1/12/07 9:08 PM Page 227

Also See
Chapter 6, clear(), clrtobot(), refresh()

color_content()

The color_content() function reads the individual red, green, and blue
intensity values for each one of NCurses color values.

Man Page Format
int color_content(short color, short *r, short *g, short *b);

Format Reference
c is a short int representing a color number. Values for c range from 0
through the value of COLOR. (See COLOR.)
r, g, and b are the addresses of short int variables that will store the red,

green, and blue intensity values, respectively. Note that these arguments are
pointers, either pointer variables or the address of short int variables. Refer
to the Examples section.

Return Value
The function returns OK on success, ERR otherwise.

Notes
This function is useless unless the start_color() function has first been
issued to set up NCurses for using color.

Values for the color intensity can range from 0 up to 1000.
This function works on any NCurses colors, whether they are the default

NCurses colors or custom colors you created yourself by using the
init_color() function.

Examples
color_content(3,rd,gr,bl);

Here, the statement reads intensity values for color 3 and stores them at the
addresses indicated by pointer variables rd, gr, and bl. (It is assumed that

228 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 228

these pointer variables are initialized and actually point to the address of some
short ints.)

color_content(6,&red,&green,&blue);

Here, the intensity values are stored in short int variables red, green,
and blue. Note that they are simply short int variables; the & is used to get
the address of those variables, which is what the color_content() function
craves for those arguments.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 short x,r,b,g;

6

7 initscr();

8 start_color();

9

10 for(x=0;x<COLORS;x++)

11 {

12 color_content(x,&r,&g,&b);

13 printw(“Color %d = Red: %4d\tGreen: %4d\tBlue: %4d\n”,

14 x,r,g,b);

15 }

16 refresh();

17 getch();

18

19 endwin();

20 return 0;

21 }

Sample output:

Color 0 = Red: 0 Green: 0 Blue: 0

Color 1 = Red: 680 Green: 0 Blue: 0

Color 2 = Red: 0 Green: 680 Blue: 0

Color 3 = Red: 680 Green: 680 Blue: 0

Color 4 = Red: 0 Green: 0 Blue: 680

Color 5 = Red: 680 Green: 0 Blue: 680

Color 6 = Red: 0 Green: 680 Blue: 680

Color 7 = Red: 680 Green: 680 Blue: 680

Also See
start_color(), COLORS, init_color()

Appendix A ■ NCurses Library Reference 229

18_107591 appa.qxp 1/12/07 9:08 PM Page 229

color_set()

The color_set() function sets the foreground and background text color
attributes to a specific color pair.

Man Page Format
int color_set(short color_pair_number, void* opts);

Format Reference
color_pair_number is a short int representing a color pair number, a
foreground/background text color combination as previously defined by an
init_pair() function.

The opts value is currently set to NULL. It’s reserved for use in a future ver-
sion of NCurses.

Return Value
color_set() returns an int value when the color pair argument is outside
the range 0 to COLOR_PAIRS-1.

Notes
The color_set() function affects only text put to the window. To color the
entire window, use the bkgd() function.

Argument p is a number representing the value n from a COLOR_PAIR(n)
number. It is not the constant COLOR_PAIR(n) itself.
color_set(2,NULL) is equivalent to attrset(COLOR_PAIR(2)).

Example
color_set(2,NULL);

This statement causes any text displayed afterward to use the foreground
and background color combination defined in the color pair 2.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

230 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 230

6 start_color();

7

8 init_pair(1,COLOR_RED,COLOR_YELLOW);

9 color_set(1,NULL);

10 addstr(“The color of this window is now\n”);

11 addstr(“Red on Yellow.\n”);

12 refresh();

13 getch();

14

15 endwin();

16 return 0;

17 }

Sample output:

The color of this window is no

Red on Yellow

The text above appears in red on a yellow background.

Also See
init_pair(), attrset(), bkgd()

COLORS

COLORS is an int constant set internally by NCurses. It represents the number
of colors available for use by the various color functions.

The value COLORS holds is correct only after the start_color() function
has initialized NCurses color functions.

Man Page Format
Not applicable.

Format Reference
COLORS works like any constant value in C. It can be used as an immediate
value, a comparison, or in combination with other values.

Return Value
The value of COLORS depends on the number of colors available to the termi-
nal. If the start_color() function has not yet been used, then COLORS
equals zero.

Appendix A ■ NCurses Library Reference 231

18_107591 appa.qxp 1/12/07 9:08 PM Page 231

Notes
Because the first color number is zero, the highest valid color value is really
COLORS-1.

The typical PC uses eight basic colors — black, red, green, brown, blue,
magenta, cyan, and white — so the value of COLORS is set to 8. Also see the
entry for init_pair().

For some reason, NCurses refers to the PC color “brown” as being yellow.
It’s brown.

Though only 8 colors are available, 16 text colors are possible on the PC. By
applying the A_BOLD attribute to color text, the “bright” version of each text
color can be used. (So “bright brown” is finally the “yellow” NCurses desires
to see.) See attrset(). (Note that the A_BOLD attribute actually uses a spe-
cific bold font on certain terminals, not just brightly colored text.)

The basic eight colors are based upon setting bits for the RGB (red, green,
and blue) values on the standard PC monitor, where R is the first bit, G is
the second, and B the third. Table A-3 illustrates the colors, constants, and bit
values.

Examples
if(COLORS)

Here, when the value of COLORS is greater than zero, the if test passes.

printw(“This terminal can use %d colors.\n”,COLORS);

This statement displays the number of colors available for the terminal.

Table A-3: NCurses color values, Bits, and Constants

COLOR BITS B-G-R COLOR CONSTANT

0 0 0 0 COLOR_BLACK

1 0 0 1 COLOR_RED

2 0 1 0 COLOR_GREEN

3 0 1 1 COLOR_YELLOW

4 1 0 0 COLOR_BLUE

5 1 0 1 COLOR_MAGENTA

6 1 1 0 COLOR_CYAN

7 1 1 1 COLOR_WHITE

232 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 232

Sample Program
Refer to the entry for start_color() for a sample program and output.

Also See
Chapter 3, COLOR_PAIRS, attrset(), start_color()

COLOR_PAIRS

The COLOR_PAIRS constant is an int value set internally by NCurses. It rep-
resents the number of COLOR_PAIR(n) color pairs available for use when you
apply foreground and background text colors.

Man Page Format
Not applicable.

Format Reference
COLOR_PAIRS works like any C language constant. You can use
COLOR_PAIRS as an immediate value, a comparison, or in combination with
other values.

Return Value
The value of COLOR_PAIRS depends on the number of colors available to the
terminal. If the start_color() function has not yet been used, then COLORS
equals zero.

Notes
You must first use the start_color() function to initialize NCurses color
functions before the COLOR_PAIRS constant can hold a meaningful value.

There is a difference between the COLOR_PAIRS constant and the text
attribute COLOR_PAIR(n). The first is a constant value created by NCurses.
The second is a text attribute representing a color pair combination created by
the init_pair() function.

Yes, the COLOR_PAIRS constant is plural, while the COLOR_PAIR(n)
attribute is singular. But it makes sense when you think that COLOR_PAIRS is
a quantity whereas COLOR_PAIR(n) is a single pair.

Appendix A ■ NCurses Library Reference 233

18_107591 appa.qxp 1/12/07 9:08 PM Page 233

A common value for COLOR_PAIRS is 64, though do not consider that to be
true for all terminals or implementations of NCurses.

Examples
printw(“This terminal can use %d color pairs.\n”,COLOR_PAIRS);

This statement displays the number of color pairs available for the terminal.

if(COLOR_PAIRS)

Here, when the value of COLOR_PAIRS is greater than zero, the if test
passes.

Sample Program
Refer to the entry for start_color() for a sample program and output.

Also See
Chapter 3, COLORS, init_pair(), attrset(), start_color()

COLS

The COLS constant is an int value set internally by NCurses to represent the
number of columns available on the standard screen.

Man Page Format
Not applicable.

Format Reference
COLS works like any C language constant. It can be used as an immediate
value, in a comparison, or in combination with other values.

Return Value
The value of COLS depends on the number of columns in the terminal or stan-
dard screen, stdscr.
COLS is an int.

234 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 234

Notes
Most standard terminal windows use 80 columns.

Do note that with terminal windows in graphical environments, terminals
can be just about any size. Some text screens also have the ability to display
more than 80 columns of text on the screen.
COLS is a variable, not a constant. Note that changing the value of COLS

does not re-size the standard screen or terminal window.
Normally, NCurses sets COLS equal to the COLUMNS environment variable.

This can be changed by using the use_env() function. See use_env().
Use the getmaxyx() function to determine the number of columns in any

NCurses window.

Example
step = COLS/10;

Here, the value of variable step is equal to COLS divided by 10.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 printw(“This window is %d lines by %d columns.\n”,\

8 LINES,COLS);

9 refresh();

10 getch();

11

12 endwin();

13 return 0;

14 }

Sample output:

This window is 24 lines by 80 columns.

Also See
LINES, getmaxyx(), use_env()

Appendix A ■ NCurses Library Reference 235

18_107591 appa.qxp 1/12/07 9:08 PM Page 235

copywin()

The copywin() function copies a rectangle of text and attributes from one
window to another window, either destructively or nondestructively.

Man Page Format
int copywin(const WINDOW *srcwin, WINDOW *dstwin, int sminrow,

int smincol, int dminrow, int dmincol, int dmaxrow,

int dmaxcol, int overlay);

Format Reference
srcwin is a WINDOW pointer to the window from which text and attributes
will be copied, the source window.
dstwin is a WINDOW pointer to the window into which text will be copied,

the destination window.
sminrow and smincol are int values representing the row and column

from which text is copied in the source window (srcwin).
dminrow, dmincol, dmaxrow, and dmaxcol, represent a rectangle in the

destination window (dstwin) where the copied text is pasted. dminrow and
dmincol form the upper-left corner of the rectangle as row and column val-
ues; dmaxrow and dmaxcol form the lower-right corner of the rectangle as
row and column values.
overlay is a Boolean value, either TRUE or FALSE. If TRUE, the text copied

is nondestructive, and only blanks in the destination window are overwritten
with text from the source window. If FALSE, the text copied is destructive,
replacing all text in the destination window’s rectangle with text and attrib-
utes from the source window.

Return Value
OK or ERR, based on the function’s success or failure.

Notes
A visual example of how copywin() works can be found in Figure 10-2.

NCurses uses the difference between dminrow and dmaxrow, as well as the
difference between dmincol and dmaxcol, to help calculate the size of both
the source and destination rectangles.

When overlay is TRUE only text is copied from srcwin to dstwin. The
text appears only in the “blank” portions of the window. Text will not over-
write any existing text.

236 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 236

When overlay is FALSE, the entire rectangle of text and attributes is
copied from srcwin to dstwin. Any existing text and any attributes applied
to that text in dstwin is replaced with text and attributes from srcwin.

Example
copywin(top,bottom,0,0,0,20,10,30,FALSE);

Here, copywin() copies a chunk of text from window top to window
bottom. The chunk starts at location 0,0 in window top. It is pasted to loca-
tion 0,20 in window bottom. The text chunk measures 10 rows by 10 columns
(10-0 and 30-20).

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *alpha,*beta;

6 int half,size,x;

7

8 initscr();

9 start_color();

10 init_pair(1,COLOR_WHITE,COLOR_BLUE);

11 init_pair(2,COLOR_WHITE,COLOR_RED);

12

13 /* create and color two side-by-side windows */

14 half = COLS >> 1;

15 size = half * COLS;

16 size >>= 1;

17 alpha = newwin(LINES,half-1,0,0);

18 wbkgd(alpha,COLOR_PAIR(1));

19 beta = newwin(LINES,half-1,0,half);

20 wbkgd(beta,COLOR_PAIR(2));

21

22 /* populate the windows with text */

23 for(x=0;x<size;x++)

24 {

25 wprintw(alpha,”O “);

26 wprintw(beta,” X”);

27 }

28 wrefresh(alpha);

29 wrefresh(beta);

30 wgetch(beta);

31

32 /* copy from window beta to window alpha */

33 copywin(beta,alpha,10,5,10,5,15,30,TRUE);

34 wrefresh(alpha);

35 wgetch(alpha);

Appendix A ■ NCurses Library Reference 237

18_107591 appa.qxp 1/12/07 9:08 PM Page 237

36

37 endwin();

38 return 0;

39 }

NOTE Error checking is not being done for the two newwin() functions; be
sure to check errors for this function in your own code.

Sample output:
Two windows are created, side-by-side. On the left is window alpha, colored blue

with white O’s. On the right is window beta, colored red with white X’s. Pressing
Enter copies a chunk of text from beta to alpha. With TRUE in line 33, only the X’s are
copied. When you edit line 33 to change TRUE to FALSE, a red rectangle with only X’s
and spaces is copied, clobbering all underlying text already in window alpha.

Also See
Chapter 10, overlay(), overwrite(), dupwin()

curs_set()

The curs_set() function controls the cursor’s visibility.

Man Page Format
int curs_set(int visibility);

Format Reference
The value of visibility can be 0, 1, or 2:

■■ 0 makes the cursor invisible

■■ 1 sets the cursor to normal mode

■■ 2 sets the cursor to a very visible mode

Return Value
The function returns a value, 0, 1, 2, representing the previous cursor state,
defined above. ERR is returned if the cursor state cannot be changed.

238 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 238

Notes
Not all terminals support the curs_set() function.

By returning the cursor’s previous state, it’s possible to restore the cursor
later. But note that the endwin() function restores the terminal’s cursor to a
visible state if curs_set() has altered it. However, the cursor may not be
restored to the same state it was in before the NCurses program was started,
meaning that if the cursor was invisible when your program started, that state
will not be restored when your program ends.

Examples
curs_set(0);

This command makes the cursor invisible.

curs_set(1);

Here, the cursor is restored to normal, visible mode.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int r;

6 initscr();

7

8 /* first, turn the cursor off */

9 r = curs_set(0);

10 if(r == ERR)

11 {

12 endwin();

13 puts(“This terminal cannot change the cursor.”);

14 return(1);

15 }

16 addstr(“The cursor has been turned off: “);

17 refresh();

18 getch();

19

20 /* second, turn the cursor on */

21 curs_set(1);

22 move(1,0);

23 addstr(“The cursor now on: “);

24 refresh();

25 getch();

26

27 /* third, turn the cursor very on */

Appendix A ■ NCurses Library Reference 239

18_107591 appa.qxp 1/12/07 9:08 PM Page 239

28 curs_set(2);

29 move(2,0);

30 addstr(“The cursor is now very on: “);

31 refresh();

32 getch();

33

34 curs_set(r); /* restore cursor */

35 endwin();

36 return 0;

37 }

Sample output:

This terminal cannot change the cursor.

Or:

The cursor has been turned off:

The cursor now on:

The cursor is now very on:

Each line is followed by the cursor in the indicated state.

Also See
Chapter 14, move()

curses_version()

The curses_version() function returns a string that describes the name,
version, release, and patch information for the version of NCurses being run.
This is an extended NCurses function.

Man Page Format
const char * curses_version(void);

Format Reference
The function has no arguments.

Return Value
The function returns a string in the format:

ncurses major.minor.patch

240 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 240

The text ncurses begins the string. It stands for NCurses or New Curses,
the version of the NCurses library used to compile the program.
major is the major release number.
minor is the minor release number.
patch is the number of the most recent patch.

Notes
Several constants defined in NCURSES.H contain similar information for
determining NCurses version, as listed in Table A-4.

The NCURSES_VERSION string is simply the NCURSES_VERSION_MAJOR
and NCURSES_VERSION_MINOR values, separated by a dot.

Example
vernum = curses_version();

Here, the string returned by curses_version() is stored in the char array
(string variable) vernum.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 #ifdef NCURSES_VERSION

8 printw(“This is %s.\n”,curses_version());

9 #else

10 printw(“You are apparently not using NCurses.\n”);

11 #endif

12 refresh();

13 getch();

14

15 endwin();

16 return 0;

17 }

Sample output:
Hopefully, something like:

This is ncurses 5.4.20040208.

Appendix A ■ NCurses Library Reference 241

18_107591 appa.qxp 1/12/07 9:08 PM Page 241

Table A-4: NCurses version constants

CONSTANT DEFINES

NCURSES_VERSION String containing NCurses major and
minor versions

NCURSES_VERSION_MAJOR Major version number

NCURSES_VERSION_MINOR Minor version number

NCURSES_VERSION_PATCH Patch number

Also See
NCURSES_VERSION

delch()

The delch() function deletes the character at the cursor’s position. Any char-
acters to the right on the same line are then slid one place to the left. Blanks are
used to fill in the end of the line.

Man Page Formats
int delch(void);

int wdelch(WINDOW *win);

int mvdelch(int y, int x);

int mvwdelch(WINDOW *win, int y, int x);

Format Reference
The base function has no arguments; refer to the mv, mvw, and w prefix entries
elsewhere in this appendix for information on the win, y, and x arguments.

Return Value
OK on success, or ERR on failure.

Notes
This function does not change the cursor’s position.

To delete a line of text, use the deleteln() function.
To insert a single character, the insch() function is used.

242 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 242

Example
mvdelch(5,0);

After this statement, the character at location 5,0 is removed, and all remain-
ing text on that line is slid over to the left one notch.

Sample Program
1 #include <ncurses.h>

2

3 #define Y 5

4 #define X1 10

5 #define X2 60

6 #define DELAY 250

7

8 int main(void)

9 {

10 char text[] = “Elvis found alive *** Stock market tops 20,000 ***;

Rocky XII big box office hit *** Congressman indicted *** “;

11 char *t;

12

13 initscr();

14 noecho();

15 nodelay(stdscr,TRUE);

16

17 t = text;

18 while(getch() == ERR)

19 {

20 if(*t == ‘\0’) t = text;

21 mvinsch(Y,X2,*t);

22 mvdelch(Y,X1);

23 refresh();

24 napms(DELAY);

25 t++;

26 }

27

28 endwin();

29 return 0;

30 }

Sample output:
A scrolling marquee appears on line 5 between columns 10 and 60. The text (line

10) is repeatedly scrolled right to left.

Also See
Chapter 5, deleteln(), insch()

Appendix A ■ NCurses Library Reference 243

18_107591 appa.qxp 1/12/07 9:08 PM Page 243

deleteln()

The deleteln() function removes a line of text from the screen. The line
removed is based on the cursor’s position, the Y or row value. All lines below
are then scrolled up one line, with a blank line of text appearing at the bottom
of the screen.

Man Page Formats
int deleteln(void);

int wdeleteln(WINDOW *win);

Format Reference
The function takes no arguments; refer to the entry for w elsewhere in this
appendix for information on the win argument.

Return Value
OK upon success, ERR on failure.

Notes
The line that is deleted is the line the cursor is on, specifically the cursor’s row.

Unlike clrtoeol(), the entire line is erased regardless of the cursor’s
position.

The lines below the current line are scrolled up one notch regardless of the
window’s scroll setting. See scrollok().

Example
deleteln();

After this statement, all text on the same line as the cursor is erased. The
rows below the line erased are scrolled up one row, with a new blank row
appearing at the bottom of the window.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int x;

244 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 244

6

7 initscr();

8 noecho();

9 addstr(“To be, or not to be: that is the question:\n”);

10 addstr(“Whether ‘tis nobler in the mind to suffer\n”);

11 addstr(“The slings and arrows of outrageous fortune,\n”);

12 addstr(“Or to take arms against a sea of troubles,\n”);

13 addstr(“And by opposing end them?\n”);

14

15 move(0,0);

16 for(x=0;x<5;x++)

17 {

18 refresh();

19 getch();

20 deleteln();

21 }

22

23 endwin();

24 return 0;

25 }

Sample output:

To be, or not to be: that is the question:

Whether ‘tis nobler in the mind to suffer

The slings and arrows of outrageous fortune,

Or to take arms against a sea of troubles,

And by opposing end them?

Each time Enter is pressed, a line is removed from the screen.

Also See
Chapter 5, delch(), insertln(), clrtoeol(), insdelln()

delscreen()

The delscreen() function deletes a SCREEN structure, freeing memory and
undoing the things done when the structure was created. It’s a clean-up routine.

Man Page Format
void delscreen(SCREEN* sp);

Appendix A ■ NCurses Library Reference 245

18_107591 appa.qxp 1/12/07 9:08 PM Page 245

Format Reference
sp is the address of a SCREEN pointer, returned/created by the newterm()
function.

Return Value
The function returns nothing.

Notes
The newterm() function creates SCREEN pointers. See newterm().

The endwin() function does not release the space referenced by a SCREEN
pointer. Therefore delscreen() can be used to free up that space.

The SCREEN pointer is not reset to NULL by delscreen().
The SCREEN pointer returned by a program’s first set_term() call, which

represents the default terminal, should not be removed by delscreen().

Example
delscreen(newsp);

Memory associated with the SCREEN structure referenced by the pointer
newsp is freed by the delscreen() function.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 SCREEN *s;

6

7 s = newterm(NULL, stdout, stdin);

8 set_term(s);

9

10 addstr(“Hello!”);

11

12 refresh();

13 getch();

14

15 endwin();

16 delscreen(s);

17 return 0;

18 }

246 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 246

Sample output:

Hello!

Also See
newterm(), set_term(), endwin()

delwin()

The delwin() function removes a window, releasing the memory used by
both the WINDOW structure and the window itself.

Man Page Format
int delwin(WINDOW *win);

Format Reference
win refers to a WINDOW variable, a window created earlier in the program by
the newwin(), subwin(), derwin(), dupwin(), or newpad() function.

Return Value
OK upon success, or ERR on failure.

Notes
The delwin() function removes the window’s information from memory. It
does not remove the window from the current screen. For that, the underlying
window should be touched and refreshed. See touchwin() and refresh().
delwin() can delete both subwindows and parent windows. It can also be

used to remove pads. See newpad().
You must delete subwindows before deleting their parents. Because sub-

windows share memory with the parent window, the end result of removing
the parent would be memory violations by the subwindow.

Example
delwin(menu);

Here, the window menu and its WINDOW structure are removed from memory.

Appendix A ■ NCurses Library Reference 247

18_107591 appa.qxp 1/12/07 9:08 PM Page 247

Sample Program
1 #include <ncurses.h>

2

3 #define ALPHA_W 30

4 #define ALPHA_H 5

5

6 int main(void)

7 {

8 WINDOW *alpha;

9 int x,y;

10

11 initscr(); noecho();

12 start_color();

13 init_pair(1,COLOR_WHITE,COLOR_BLUE);

14

15 x = (COLS - ALPHA_W) >> 1;

16 y = (LINES - ALPHA_H) >> 1;

17

18 addstr(“Creating new window....\n”);

19 refresh();

20 alpha = newwin(ALPHA_H,ALPHA_W,y,x);

21 if(alpha == NULL)

22 {

23 endwin();

24 puts(“Problem creating window”);

25 return(1);

26 }

27

28 addstr(“Displaying window:\n”);

29 addstr(“Press Enter to remove the window:\n”);

30 refresh();

31 wbkgd(alpha,COLOR_PAIR(1));

32 mvwaddstr(alpha,2,12,”Hello!”);

33 wrefresh(alpha);

34 wgetch(alpha);

35

36 delwin(alpha);

37 addstr(“Window removed: press Enter to clear it:\n”);

38 refresh();

39 getch();

40

41 touchwin(stdscr);

42 addstr(“Done!\n”);

43 refresh();

44 getch();

45

46 endwin();

47 return 0;

48 }

248 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 248

Sample output:

Creating new window....

Displaying window:

A blue window appears in the center of the screen with the text (in white) Hello!

Press Enter to remove the window:

Press Enter.

Window removed: press Enter to clear it:

The window has been removed from memory, but the screen still needs to be
updated. Press Enter:

Done!

Also See
Chapter 8, newwin(), subwin(), touchwin()

derwin()

The derwin() function is used to create a subwindow, similar to the
subwin() function though derwin() places the subwindow relative to the
parent window, not the screen.

Man Page Format
WINDOW *derwin(WINDOW *orig, int nlines, int ncols,

int begin_y, int begin_x);

Format Reference
orig is a pointer to a window. That window then becomes the parent of the
subwindow derwin() creates.
nlines and ncols are int values that set the subwindow’s size in rows

and columns, respectively. Values range from 1 on up, though the window cre-
ated cannot be taller or wider than the screen or its parent. When 0 is specified
for nlines or ncols, then the subwindow extends to the bottom or right
edge of the window, respectively.

Appendix A ■ NCurses Library Reference 249

18_107591 appa.qxp 1/12/07 9:08 PM Page 249

begin_y and begin_x give the subwindow’s origin relative to the parent
window. Values for begin_y and begin_x are ints, ranging from 0, 0 (the
upper-left corner of the parent window) to the maximum number of rows and
columns for the parent window minus the size of the subwindow.

Return Value
Upon success, a WINDOW pointer is returned, used to reference the subwindow.
On failure, NULL is returned. (See NULL.)

Notes
The main difference between derwin() and subwin() is in the arguments
that set the window’s original. In the derwin() call, the coordinates are rela-
tive to the parent window; in subwin() the coordinates are relative to the
standard screen.

Aside from the one difference in the origin coordinates, subwin() and
derwin() are pretty much the same. Refer to the entry for subwin() for a
host of notes that also apply to derwin().

Example
subby = derwin(main,MAXY-2,MAXX-2,1,1);

This statement creates a subwindow subby within the parent window
main. The size of subby is equal to MAXY-2 rows by MAXX-2 columns, and
subby’s upper-left corner is set down at row 1, column 1 of the window main.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *pops,*sonny;

6 int x2,y2,x4,y4;

7

8 initscr();

9 start_color();

10 init_pair(1,COLOR_WHITE,COLOR_BLUE);

11 init_pair(2,COLOR_RED,COLOR_YELLOW);

12 x2 = COLS >> 1;

13 y2 = LINES >> 1;

250 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 250

14 x4 = (COLS - x2) >> 1;

15 y4 = (LINES - y2) >> 1;

16

17 /* create parent and subwindow */

18 pops = newwin(y2,x2,y4,x4);

19 sonny = derwin(pops,y4,x4,2,2);

20 if(sonny == NULL)

21 {

22 endwin();

23 puts(“Unable to create subwindow\n”);

24 return(1);

25 }

26

27 /* color windows and splash some text */

28 wbkgd(pops,COLOR_PAIR(1));

29 waddstr(pops,”Hello, son.”);

30 wbkgd(sonny,COLOR_PAIR(2));

31 waddstr(sonny,”Hello, Dad.”);

32 wrefresh(pops);

33 wgetch(pops);

34

35 endwin();

36 return 0;

37 }

Sample output:
See Figure A-2 to view the sample output.

Also See
subwin()

Figure A-2: The derived window (subwindow), says hello to its parent.

Appendix A ■ NCurses Library Reference 251

18_107591 appa.qxp 1/12/07 9:08 PM Page 251

doupdate()

The doupdate() function directs NCurses to write text stored internally,
from the virtual screen to the terminal. It’s the latter half of what takes place
during a refresh() operation.

Explanation
Refer to the entry for wnoutrefresh() for an explanation of how doup-
date() works in the refresh process.

Man Page Format
int doupdate(void);

Format Reference
The function has no arguments.

Return Value
Always OK.

Notes
wnoutrefresh() is a direct companion to the doupdate() function.
doupdate() can also be used to update the screen for a pnoutrefresh()

function, as well as the slk_noutrefresh() function.

Example
doupdate();

After this statement, any text waiting to be updated on the screen will be
displayed on the terminal.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

252 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 252

7 addstr(“The screen has been updated thanks to the\n”);

8 addstr(“wnoutrefresh() and doupdate() functions.\n”);

9 wnoutrefresh(stdscr);

10 doupdate();

11 getch();

12

13 endwin();

14 return 0;

15 }

Sample output:

The screen has been updated thanks to the

wnoutrefresh() and doupdate() functions.

Also See
wnoutrefresh(), refresh()

dupwin(win)

The dupwin() function creates an exact duplicate of a window. The new win-
dow is of the same size and at the same location as the original window.

Man Page Format
WINDOW *dupwin(WINDOW *win);

Format Reference
win is a WINDOW pointer variable, indicating a window previously created in
the program.

Return Value
The function returns a pointer to a WINDOW variable, which is the exact dupli-
cate of the original win. If there is a problem, NULL is returned.

Notes
Unlike a window created by using the newwin() function, a window created
using dupwin() inherits the text and attributes from the original window, as
well as input modes and filters, such as keypad().

Appendix A ■ NCurses Library Reference 253

18_107591 appa.qxp 1/12/07 9:08 PM Page 253

Example
doppelganger = dupwin(original);

This statement creates a new window, doppelganger, an exact duplicate
of window original. If the operation is a success, then doppelganger is of
the same size and at the same location as original, and it has the same con-
tents. If the operation fails, doppelganger is NULL.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *alpha,*beta;

6 int x;

7

8 initscr();

9 start_color();

10 init_pair(1,COLOR_WHITE,COLOR_BLUE);

11 init_pair(2,COLOR_WHITE,COLOR_RED);

12

13 /* create and populate the original window */

14 alpha = newwin(5,30,0,0);

15 wbkgd(alpha,COLOR_PAIR(1));

16 for(x=0;x<75;x++)

17 wprintw(alpha,”O “);

18 wrefresh(alpha);

19 wgetch(alpha);

20

21 /* duplicate window alpha to window beta */

22 beta = dupwin(alpha);

23 if(beta == NULL)

24 {

25 endwin();

26 puts(“Error creating duplicate window”);

27 return 1;

28 }

29

30 /* move new window and change color */

31 mvwin(beta,10,40);

32 wbkgd(beta,COLOR_PAIR(2));

33 mvwaddstr(alpha,0,0,”This is window Alpha!”);

34 mvwaddstr(beta,0,0,”This is window Beta!”);

35 wrefresh(alpha);

36 wrefresh(beta);

37 wgetch(beta);

38

254 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 254

39 endwin();

40 return 0;

41 }

The sample output is shown in Figure A-3.

Also See
Chapter 10, newwin(), copywin()

echo()

The echo() and noecho() functions control the behavior of NCurses text
input functions, getch() and getstr(). When echo() is set, the getch()
function displays (echoes) characters typed to the screen. When noecho() is
set, getch() does not display the text typed.

Man Page Formats
int echo(void);

int noecho(void);

Format Reference
echo() enables echoing of input text.
noecho() directs NCurses to suppress the local echo of input text.
Both functions lack an argument.

Figure A-3: Window Alpha and its duplicate, Beta

Appendix A ■ NCurses Library Reference 255

18_107591 appa.qxp 1/12/07 9:08 PM Page 255

Return Value
OK upon success, ERR on failure.

Notes
Echo mode is initially set on in a new window.

It’s useful to use noecho() when your program processes its own input
(such as in an editor) or when the display of text isn’t needed, as in a game.
noecho() does not hide the cursor. Refer to curs_set().

Examples
echo();

This statement directs NCurses to turn on the echo of text to the screen for
input during the getch(), getstr() and related functions.

noecho();

This statement disables the display of text to the screen for the getch(),
getstr(), and related text input functions.

Sample Program
1 #include <ncurses.h>

2 #include <ctype.h>

3

4 int main(void)

5 {

6 int ch;

7 87 initscr();

9

10 addstr(“Normally echo is on. Type your name and press ;

Enter:\n”);

11 refresh();

12 while(getch() != ‘\n’)

13 ;

14

15 mvaddstr(2,0,”Now echo is off. Type your name and press ;

Enter:\n”);

16 refresh();

17 noecho();

18 while(getch() != ‘\n’)

19 ;

20

21 mvaddstr(4,0,”Echo is still off, but input is being ;

displayed\n”);

256 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 256

22 addstr(“and manipulated manually. Type your name and press ;

Enter:\n”);

23 do

24 {

25 ch = getch();

26 addch(toupper(ch));

27 refresh();

28 } while(ch != ‘\n’);

29

30 addstr(“Press Enter to quit:”);

31 refresh();

32 getch();

33

34 endwin();

35 return 0;

36 }

Sample output:

Normally echo is on. Type your name and press Enter:

Joe Bazooka

With echo() set, text displays as it normally does.

Now echo is off. Type your name and press Enter:

When noecho() is set, nothing appears during input.

Echo is still off, but input is being displayed

and manipulated manually. Type your name and press Enter:

JOE BAZOOKA

The noecho() mode is still active, but above the program provides its own, mod-
ified output.

Press Enter to quit:

Also See
getch(), getstr()

echochar()

The echochar() function provides improved performance in displaying sin-
gle characters.

Appendix A ■ NCurses Library Reference 257

18_107591 appa.qxp 1/12/07 9:08 PM Page 257

Explanation
echochar() is basically a combined version of the addch() and refresh()
functions, yet it’s more efficient than using those two functions separately. For
output of multiple single characters to a window, echochar() is best.

Man Page Formats
int echochar(const chtype ch);

int wechochar(WINDOW *win, const chtype ch);

Format Reference
ch is an NCurses chtype character — a long int value that combines a sin-
gle character with optional attributes. Refer to Appendix C.

Refer to the w entry elsewhere in this appendix for information on the win
argument.

Return Value
ERR upon failure, or OK on success.

Notes
While echochar() is more efficient for placing text on the screen on charac-
ter at a time, it is not as efficient when it comes to placing control characters.

The notes for addch() also apply to echochar(). See addch() for more
information.

Examples
echochar(vch);

This statement places the character and formatting saved in the chtype
variable vch on the screen.

echochar(‘H’ | A_BOLD);

Here, a bold H is placed on the screen.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

258 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 258

4 {

5 char text[] = “Hello there, handsome!”;

6 char *t;

7

8 t = text;

9 initscr();

10

11 while(*t)

12 echochar(*t++);

13 getch();

14

15 endwin();

16 return 0;

17 }

Sample output:

Hello there, handsome!

Also See
addch(), refresh()

endwin()

The endwin() function is used to end a NCurses program, returning terminal
operation to normal.

Man Page Format
int endwin(void);

Format Reference
The function has no arguments.

Return Value
OK upon success, ERR on not success.

Notes
endwin() is required at the end of a NCurses program to undo what was
done by either initscr() or newterm(), and to restore terminal behavior.

Appendix A ■ NCurses Library Reference 259

18_107591 appa.qxp 1/12/07 9:08 PM Page 259

The endwin() function does not remove windows or other data structures
from memory.

It’s possible to use endwin() merely as a way to escape from NCurses
visual mode and briefly return to tty mode. To restore NCurses operations,
merely call refresh() or doupdate(). But you must still call endwin()
again when the NCurses program is done. (See the Sample Programs.)

This function does move the cursor. After calling endwin(), the cursor is
placed on the lower-left corner of the screen.

Example
endwin();

This statement restores normal terminal operation.

Sample Program #1
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 addstr(“Now you’re in NCurses.\n”);

8 refresh();

9 getch();

10

11 endwin();

12

13 fputs(“Now you’re not in NCurses.\n”,stdout);

14 fflush(stdout);

15 getch();

16

17 addstr(“Now you’re back in NCurses again.\n”);

18 refresh();

19 getch();

20

21 endwin();

22 return 0;

23 }

Sample output:

Now you’re in NCurses.

Press Enter and you’ll see the tty screen:

Now you’re not in NCurses.

260 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 260

Press Enter and you’re returned to NCurses:

Now you’re in NCurses

Now you’re back in NCurses again.

Sample Program #2
1 #include <ncurses.h>

2 #include <stdlib.h>

.3

4 int main(void)

5 {

6 initscr();

7

8 addstr(“Press Enter to go to the shell....:\n”);

9 refresh();

10 getch();

11

12 endwin();

13 system(“`echo $SHELL`”);

14

15 addstr(“Back safe and sound....\n”);

16 refresh();

17 getch();

18

19 endwin();

20 return 0;

21 }

Sample output:

Press Enter to go to the shell....:

Press Enter and you’ll see your shell prompt displayed. Type exit to return to the
NCurses program, and:

Press Enter to go to the shell....:

Back safe and sound....

Also See
initscr(), newterm(), isendwin()

erase()

The clear() function clears the screen or named window, writing blanks, or
space characters, to every screen position.

Appendix A ■ NCurses Library Reference 261

18_107591 appa.qxp 1/12/07 9:08 PM Page 261

Man Page Formats
int erase(void);

int werase(WINDOW *win);

Format Reference
The erase() function has no arguments. It’s a pseudo function that affects
only the standard screen.

Refer to the w prefix entry later in this appendix for information on the win
argument.

Return Value
Always returns OK.

Notes
You don’t see the window erased until a call to refresh() updates the window.

Clearing the screen also homes the cursor; after the erase() function, the
cursor is placed at location 0, 0.

The erase() function removes only characters and their attributes. It does
not affect the background character and its attributes. If a background charac-
ter is set via bkgd() or bkgdset(), then that character will show up in the
blanks erase() fills the screen with.
erase() is the same as werase(stdscr).
The erase() function is visually the same as the clear() function; how-

ever, clear() also calls the clearok() function to enforce the erasure and
redisplay of the screen.

Because of the overhead involved with clear(), erase() is the quicker of
the two functions, though on many terminals the speed difference is negligible.

Examples
erase();

The statement erases the standard screen.

werase(sidebar);

The statement clears away the text in the window sidebar.

262 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 262

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int c,y,x,cmax;

6

7 initscr();

8

9 getmaxyx(stdscr,y,x);

10 cmax = (x * y) / 5;

11 for(c=0;c<cmax;c++) addstr(“blah “);

12 refresh();

13 getch();

14

15 erase(); /* clear the screen */

16 refresh(); /* don’t forget this! */

17 getch();

18

19 endwin();

20 return 0;

21 }

Sample output:
The screen is filled with the text blah blah blah. Pressing the Enter key clears

the screen.

Also See
Chapter 6, clear(), refresh()

erasechar()

The erasechar() function returns whatever character or character code cur-
rently serves as the terminal’s Erasechar, or ERASE, key.

Man Page Format
char erasechar(void);

Format Reference
The function has no arguments.

Appendix A ■ NCurses Library Reference 263

18_107591 appa.qxp 1/12/07 9:08 PM Page 263

Return Value
A char value is returned, indicating the terminal’s currently set Erasechar.

Notes
The Erasechar is the key or key combination you press to back up and erase
text at the command prompt. On the keyboard it could be Del, Backspace,
Rubout, Ctrl+H or ^H, code 0x7F or ^?, or what have you.

The getstr() functions properly interpret the Erasechar. Other input
functions can use the erasechar() function to determine which character is
the Erasechar and then programming can be used to adjust behavior appro-
priately. (Or just use getstr() instead.)

The cbreak() and raw() modes modify NCurses input functions to
ignore the Erasechar key’s function. When Erasechar is input, it’s treated just
like any other character, typically displayed on the screen in the ^c format.

The unctrl() function can be used to translate a control code, such as the
code used for Erasechar, into the displayable ^c format.

Example
if(ch == echochar())

The if condition tests true when the value of variable ch is the same as the
terminal’s Erasechar.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 char ch;

6

7 initscr();

8

9 ch = erasechar();

10 printw(“The Erasechar is 0x%02x or %s\n”,ch,unctrl(ch));

11 refresh();

12 getch();

13

14 endwin();

15 return 0;

16 }

Sample output:

The Erasechar is 0x7f or ^?

264 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 264

Also See
killchar(), cbreak(), raw(), unctrl()

ERR

NCurses uses the int value ERR as a return value for functions that have not
or are unable to complete their tasks.

Man Page Format
Not applicable.

Format Reference
ERR can be used like any other constant, though it is most often found in a
comparison:

if(function() == ERR)

Or if the return value from a function is saved in a variable, r:

if(r == ERR)

Or:

while(function() == ERR)

Return Value
The value of ERR is set in NCURSES.H to -1.

Notes
Not every function returns ERR on failure. Some don’t return anything; others
may return NULL or have some other factor used to determine the function’s
failure.
ERR’s counterpart is the OK constant. See OK.

Examples
if(touchwin(menu) == ERR)

The statement works out to be true when the touchwin() function fails.

Appendix A ■ NCurses Library Reference 265

18_107591 appa.qxp 1/12/07 9:08 PM Page 265

nodelay(stdscr,TRUE);

while(getch() == ERR)

Here, the while loop continues to spin as long as no key is touched on the
keyboard.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int y = 0,x = 0, r;

6

7 initscr();

8

9 addstr(“You Move The Cursor!\n”);

10 addstr(“Enter the Y (row) coordinate: “);

11 refresh();

12 scanw(“%d”,&y);

13 addstr(“Enter the X (column) coordinate: “);

14 refresh();

15 scanw(“%d”,&x);

16

17 r = move(y,x);

18 if(r == ERR)

19 mvaddstr(3,0,”You cannot move the cursor there!”);

20 else

21 {

22 mvaddstr(3,0,”You have moved the cursor!”);

23 move(y,x);

24 }

25 refresh();

26 getch();

27

28 endwin();

29 return 0;

30 }

Sample output:

You Move The Cursor!

Enter the Y (row) coordinate: 12

Enter the X (column) coordinate: 40

You have moved the cursor!

Also See
OK

266 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 266

FALSE

NCurses uses the Boolean value FALSE for comparisons, for setting options, as
a value returned from specific functions.

Man Page Format
Not applicable.

Format Reference
FALSE is used in one of many ways:

function([arg(s)],FALSE)

Some functions use FALSE as shown above to reset an option in a NCurses
function.

var = function([arg(s)])

The value FALSE may be returned by some NCurses functions. Above, the
value of var could be either TRUE or FALSE. var is a bool variable type.

if(eval == FALSE)

while([eval ==] FALSE)

The value FALSE can be used in comparisons, as shown above.
Functions that return FALSE can also be used immediately inside

comparisons:

if(function([arg(s)])

while(function([arg(s)])

Here, when the function returns a FALSE value, the program responds
accordingly.

Return Value
The value of FALSE is set in NCURSES.H to zero.

Notes
The logical opposite of FALSE is TRUE. Functions that use or return FALSE can
equally use or return TRUE, depending on the situation. Refer to the Notes
under the TRUE entry later in this Appendix, for a list of NCurses functions
that use the value FALSE.

Appendix A ■ NCurses Library Reference 267

18_107591 appa.qxp 1/12/07 9:08 PM Page 267

Examples
if(can_change_color())

Here, if evaluates the results of the can_change_color() function. If
FALSE is returned, then the terminal cannot use custom colors for text attributes.

meta(stdscr,FALSE);

This function truncates text input from the standard screen to 7-bits wide
instead of 8. (See meta().)

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 bool tf;

6 initscr();

7

8 tf = has_colors();

9 if(tf == FALSE)

10 addstr(“This terminal cannot do colors.\n”);

11 else

12 addstr(“This terminal can do colors.\n”);

13 refresh();

14 getch();

15

16 endwin();

17 return 0;

18 }

Sample output:

This terminal can do colors.

Or:

This terminal cannot do colors.

Also See
TRUE

268 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 268

filter()

The filter() function restricts all of NCurses output to only one line on the
screen.

Man Page Format
void filter(void);

Format Reference
Nothing ventured.

Return Value
Nothing gained.

Notes
filter() must be used before the initscr() or newterm() function that
initializes NCurses.

The filter() function disables some of the terminal’s cursor movement
commands, specifically those that move the cursor up or down or to the home
position. In fact, the terminal command to home the cursor is reinterpreted as
a simple carriage return when the filter() is active.

The documentation describes filter() as disabling the cursor movement
commands described in Table A-5.

Table A-5: Cursor movements disabled by filter()

NAME TERMCAP DESCRIPTION

clear cl Clears the screen.

cud DO Moves the cursor down a given number of lines.

cud1 do Moves the cursor down one line.

cup cm Moves the cursor to a specific row/column
location or to Home.

cuu UP Moves the cursor up a given number of lines.

cuu1 up Moves the cursor up one line.

vpa cv Moves the cursor to row 1.

Appendix A ■ NCurses Library Reference 269

18_107591 appa.qxp 1/12/07 9:08 PM Page 269

The filter() function sets the value of the LINES constant to 1.
The cursor can be moved to specific locations on the first line (row zero), but

attempts to move the cursor to other lines when filter() is on results in no
text being displayed.

The bkgd() functions affect only the current line of the screen when fil-
ter() is on.

There is no nofilter() function to reverse this function. To undo the
filter() effects, open the terminal again with newterm().

Example
filter();

initscr();

These statements direct NCurses to limit its output to only the top line of the
screen, or to format the output for a terminal that can display or print only one
line of text at a time.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 char name[80];

6

7 filter();

8 initscr();

9

10 addstr(“With the filter on, all of NCurses fits on only\n”);

11 addstr(“one line of the screen.\n”);

12 refresh();

13 getch();

14

15 mvaddstr(0,0,”Enter your name: “);

16 refresh();

17 getnstr(name,79);

18 mvprintw(0,0,”Pleased to meet you, %s!\n”,name);

19 refresh();

20 getch();

21

22 endwin();

23 return 0;

24 }

Sample output:

With the filter on, all of NCurses fits on only one line of the screen.

270 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 270

Note how both lines of text appear on the same screen line? Press Enter:

Enter your name: n, all of NCurses fits on only one line of the screen.

The cursor is “homed,” but the line isn’t erased.
Input your name, press Enter and the line will be erased:

Pleased to meet you, Joe Bazooka!

Also See
LINES, initscr(), newterm()

flash()

The flash() function causes the screen to blink, or quickly display a solid
color, then return to normal. This is done as an attention-getting move, similar
to playing a tone over the computer’s speaker.

Man Page Format
int flash(void);

Format Reference
The function takes no arguments.

Return Value
Supposedly, if the screen flashes, OK is returned. flash() returns ERR other-
wise. Both OK and ERR are defined in NCURSES.H.

Do not rely upon the ERR return value to determine whether or not the ter-
minal really did flash.

Notes
flash() is used mostly an alternative to the beep() function, specifically
designed for situations where noise is undesirable or for the hearing impaired.

This function doesn’t work if the terminal has been configured not to flash.
On most monitors, the flash is made of the current text foreground color.
Some terminals may both beep and flash the screen when the flash()

function is used.

Appendix A ■ NCurses Library Reference 271

18_107591 appa.qxp 1/12/07 9:08 PM Page 271

Example
flash();

And the screen winks at you.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 addstr(“Press any key to flash:\n”);

8 refresh();

9 getch();

10 flash();

11 addstr(“Thanks!\n”);

12 refresh();

13 getch();

14

15 endwin();

16 return 0;

17 }

Sample output:

Press any key to flash:

(Press Enter.)
The screen winks at you!

Thanks!

Also See
Chapter 3, beep()

flushinp()

The flushinp() function clears the keyboard input buffer, or queue, ensur-
ing that no characters are waiting to be read.

272 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 272

Man Page Format
int flushinp(void);

Format Reference
The function takes no arguments.

Return Value
Always OK.

Notes
Flushing input is recommended for situations where the user is posed a vital
question. By using flushinp() you ensure that no stray keys will be read, for
example, as input to a critical yes/no question.

You can use the intrflush() function to have keyboard input flushed
when the user presses an interrupt key. See interflush().

Example
flushinp();

This statement removes all characters typed and waiting in the keyboard
input queue.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 char buffer[81];

6

7 initscr();

8

9 addstr(“Type on the keyboard whilst I wait...\n”);

10 refresh();

11 napms(5000); /* 5 seconds */

12

13 addstr(“Here is what you typed:\n”);

14 flushinp();

15 getnstr(buffer,80);

16 refresh();

17

18 endwin();

Appendix A ■ NCurses Library Reference 273

18_107591 appa.qxp 1/12/07 9:08 PM Page 273

19 return 0;

20 }

Sample output:

Type on the keyboard whilst I wait...

There is a pause of 5 seconds while you type.

Here is what you typed:

Nothing is displayed, because the input was flushed. Press Enter.

Also See
Chapter 7, intrflush(), quiflush(), typeahead()

getbegyx()

The getbegyx() function returns the upper-left coordinates, the top-left cor-
ner, of the named window.

Man Page Format
void getbegyx(WINDOW *win, int y, int x);

Format Reference
win refers to a specific window. It’s a WINDOW variable representing a window
or subwindow. (Pads do not have an origin coordinate.)
y and x are int variables that will hold the starting row and column num-

ber of the winwindow. Row 0, column 0 represents the upper-left corner of the
screen. Note that these are not pointer variables.

Return Value
This function is really a macro and as such its return value doesn’t exist and
shouldn’t be used.

Notes
The y and x values for the standard screen, stdscr, are always 0, 0.

The y and x arguments are not pointers; do not prefix them with the & operator!

274 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 274

The coordinates returned are relative to the standard screen.
The other coordinates of the window’s right side and bottom can be calcu-

lated by using the getmaxyx() function, the getbegyx() function, and a
modicum of math.

To discover the beginning coordinates of a subwindow within a parent win-
dow, use the getparyx() function; see getparyx().

A window’s location can be changed. See mvwin().
Pads are not created on the terminal screen, and therefore they do not have

a beginning coordinate or origin.

Example
getbegyx(menu,mrow,mcol);

This statement fetches the beginning location of the window menu and places
the row and column coordinates into the mrow and mcol variables, respectively.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int row,col;

6 WINDOW *peri;

7

8 initscr(); noecho();

9 start_color();

10 init_pair(1,COLOR_WHITE,COLOR_BLUE);

11

12 peri = newwin(5,30,2,30);

13 wbkgd(peri,COLOR_PAIR(1));

14 waddstr(peri,”I am the peripatetic window”);

15

16 getbegyx(peri,row,col);

17 printw(“The origin for window %s is row %d, column %d.\n”,\

18 “peri”,row,col);

19 refresh();

20 wrefresh(peri);

21 getch();

22

23 wtouchln(stdscr,2,5,1);

24 mvwin(peri,12,40);

25 wrefresh(peri);

26 getbegyx(peri,row,col);

27 printw(“The origin for window %s is now row %d, column ;

%d.\n”,\

28 “peri”,row,col);

Appendix A ■ NCurses Library Reference 275

18_107591 appa.qxp 1/12/07 9:08 PM Page 275

29 refresh();

30 getch();

31

32 endwin();

33 return 0;

34 }

The sample output is shown in Figure A-4.
Press Enter, and you will see what appears in Figure A-5.

Also See
getparyx(), getmaxyx(), mvwin()

Figure A-4: Window peri’s original location

Figure A-5: Window peri’s final resting place

276 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 276

getbkgd()

The getbkgd() function returns the current background attribute for the
name window.

Man Page Format
chtype getbkgd(WINDOW *win);

Format Reference
win is a WINDOW variable representing a window in NCurses.

Return Value
A chtype variable is returned, which includes any characters, attributes, or
color pair applied as the background for the named window.

If the background has not been set, either by bkgd() or bkgdset(), then
getbkgd() returns zero.

Notes
Refer to attrset() earlier in this appendix for a list of NCurses attribute con-
stants. Also refer to Appendix C for more information on the chtype variable.

It is up to your code to extract information about the specific formats used
from the chtype variable getbkgd() returns.

The chtype merely lists the color pair being used for the background. You
can, however, use the pair_content() function to determine which two col-
ors have been assigned to the color pair.

Example
bkgdattrib = getbkgd(main);

Here, a chtype character holding the attributes for the background of win-
dow main is saved in the bkgdattrib variable.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 chtype ch,a;

Appendix A ■ NCurses Library Reference 277

18_107591 appa.qxp 1/12/07 9:08 PM Page 277

6 char bgchar;

7 int bgcolor,x;

8 short fore,back;

9 char colors[8][8] = { “Black”, “Red”, “Green”, “Yellow”,

10 “Blue”, “Magenta”, “Cyan”, “White” };

11 char attribs[15][11] = { “Standout”, “Underline”, “Reverse”,

12 “Blink”, “Dim”, “Bold”,

13 “AltChar”, “Invis”, “Protect”,

14 “Horizontal”, “Left”, “Low”,

15 “Right”, “Top”, “Vertical” };

16

17 a = 0x10000;

18

19 initscr();

20 start_color();

21 init_pair(1,COLOR_WHITE,COLOR_BLUE);

22 bkgd(COLOR_PAIR(1) | A_BOLD);

23

24 ch = getbkgd(stdscr);

25

26 bgchar = (ch & A_CHARTEXT); /* Read character */

27 bgcolor = (ch & A_COLOR) >> 8; /* Read color pair */

28 pair_content(bgcolor,&fore,&back); /* Read colors */

29

30 printw(“Background chtype is 0x%04x\n”,(unsigned)ch);

31 printw(“Background character is 0x%02x or ‘%c’\n”,\

32 bgchar,bgchar);

33 printw(“Background color pair is %d\n”,bgcolor);

34 printw(“\tForeground color is %s\n”,colors[fore]);

35 printw(“\tBackground color is %s\n”,colors[back]);

36 addstr(“Other attributes found:\n”);

37 for(x=0;x<15;x++)

38 {

39 if(a & ch)

40 printw(“%s\n”,attribs[x]);

41 a <<= 1;

42 }

43 refresh();

44 getch();

45

46 endwin();

47 return 0;

48 }

Sample output:

Background chtype is 0x200120

Background character is 0x20 or ‘ ‘

Background color pair is 1

Foreground color is White

Background color is Blue

278 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 278

Other attributes found:

Bold

Also See
bkgd(), attr_get(), pair_content(), Appendix C

getch()

The getch() function reads a single character input from the keyboard.

Man Page Formats
int getch(void);

int wgetch(WINDOW *win);

int mvgetch(int y, int x);

int mvwgetch(WINDOW *win, int y, int x);

Format Reference
The function has no arguments; refer to the entries for w, mv, and mvw else-
where in this appendix for more information on the win, y, and x arguments.

Return Value
Under typical operation, getch() returns an int value equal to the key
pressed, such as a specific character, symbol, control code, and so on.

When the keypad() function is set TRUE for a specific window, then a
getch() call referencing that window can also return special keys on the key-
board. Refer to Appendix D for a list of these keys.

When the nodelay() function is TRUE for a specific window, then
getch() calls referencing that window return ERR when a key is not waiting
in the input queue. Otherwise the int key value is returned as normal.

Notes
It is not necessary to call refresh() after the getch() function as getch()
naturally echoes its input to the screen. Also see echo().

The functions listed in Table A-6 affect the behavior and return value of
getch(). (Refer to each entry elsewhere in this appendix for details.)

Appendix A ■ NCurses Library Reference 279

18_107591 appa.qxp 1/12/07 9:08 PM Page 279

NCurses has only one input queue; therefore, it may seem bizarre that
wgetch() has a win argument. This argument isn’t used to direct input from a
particular window, but rather for the selective application of specific input filters
that can be assigned to a window. The functions that apply such filtering are:
intrflush(), keypad(), meta(), nodelay(), and notimeout(), as listed
in Table A-6.

The wgetch() function also determines which window is checked for
changes and that window is then refreshed For example, by specifying
wgetch(two), you get a character from the keyboard and refresh the win-
dow two.

To apply a window-specific input modification to wgetch(), use stdscr,
the standard screen.

Table A-6: NCurses functions that affect input

FUNCTION ON/OFF DESCRIPTION

cbreak() Disables text input line buffering and erase/kill
nocbreak() character processing

echo() Controls display (echo) of text as its input
noecho()

halfdelay() Similar to cbreak mode, though with a timeout value

intrflush(win,TRUE) Activates text buffer flush on interrupt key input
intrflush(win,FALSE)

keypad(win,TRUE) Allows special keyboard keys to be input; refer to
keypad(win,FALSE) Appendix D

meta(win,TRUE) Determines whether 7 or 8 bits of keyboard input
meta(win,FALSE) are read

nodelay(win,TRUE) Transforms getch() into a nonblocking call
nodelay(win,FALSE)

notimeout(win,TRUE) Controls a delay after Esc key press
notimeout(win,FALSE)

raw() Disables all keyboard buffering and key traps;
noraw() enters raw mode text processing

qiflush() Flushes input on the SUSP, QUIT, and INTR keys
noqiflush()

timeout(delay) Similar to cbreak (and halfdelay) mode but with a
variable timeout value

typeahead() Enables/disables typeahead interrupt on refresh

280 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 280

The echo()/noecho() functions control whether or not getch() dis-
plays its input on the screen. Normally, getch() displays each character
typed as its input; no refresh() is required.

To turn getch() into a non-blocking call (meaning getch() does not wait
for a key to be pressed), use nodelay(). See nodelay().

To read non-alphanumeric keys on the keyboard, the keypad() function is
used. See keypad().

Input modification functions that are not window-specific apply to all input
for getch(), as well as getstr().

To read a character at a specific location on the screen, the inch() function
is used.

To insert a character, pushing text to the right, use the insch() function.
Remember that getch() returns an int value, not a char. There are still a

few old fogies such as myself who will mistakenly use char variables with
getch(). Nope! Use int variables.

Examples
c = getch();

Here, the int variable c receives the value of the next key typed at the key-
board.

key = mvgetch(5,30);

Here, the cursor is moved to row 5, column 3, where the program waits for
a key to be pressed and its value stored in the key variable.

while((ch=getch()) != ‘\n’)

The while loop continues to turn, once for each key pressed at the key-
board, but it will stop when the newline character is input (pressing Enter).

keypad(editor,TRUE);

ch = wgetch(editor);

Above, the keypad() function is applied to the window editor, meaning
that special keys can be read. Those keys are then read using the wgetch()
function, and stored in the ch variable, along with any alphanumeric keys read.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

Appendix A ■ NCurses Library Reference 281

18_107591 appa.qxp 1/12/07 9:08 PM Page 281

4 {

5 int key;

6

7 initscr();

8

9 noecho(); /* turn input echo off */

10 addstr(“Type your name: “);

11 while((key=getch()) != ‘\n’)

12 {

13 switch(key)

14 {

15 case ‘a’:

16 addch(‘A’);

17 break;

18 case ‘e’:

19 addch(‘E’);

20 break;

21 case ‘i’:

22 addch(‘I’);

23 break;

24 case ‘o’:

25 addch(‘O’);

26 break;

27 case ‘u’:

28 addch(‘U’);

29 break;

30 default:

31 addch(key);

32 break;

33 }

34 refresh();

35 }

36 getch();

37

38 endwin();

39 return 0;

40 }

Sample output:

Type your name:

As you type, any vowels typed appear in uppercase.

Also See
Chapter 2, Chapter 7, Appendix D, ungetch(), getstr(), insch()

282 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 282

getmaxyx()

getmaxyx() fetches the height and width of a named window in rows and
columns. Technically, this is not a function but a macro defined in NCURSES.H.

Man Page Format
void getmaxyx(WINDOW *win, int y, int x);

Format Reference
win is the name of a WINDOW pointer representing a window created earlier in
the code. stdscr can be used for the standard screen.
y is an int variable. After the call to getmaxyx(), that variable holds the

number of rows found in win. Values returned by y range from 1 on up to
the window’s height.
x is an int variable. After the call to getmaxyx() it holds the number of

columns found in win. Values returned by x range from 1 on up to the win-
dow’s width.

Return Value
getmaxyx() is a macro and its return value is undefined.

Notes
Rows go left and right across the screen and may also be called lines. They’re
counted from the top of the screen to the bottom. In the Cartesian coordinate
system, rows represent Y values.

Columns go up and down. They’re counted from the left of the screen to the
right. In the Cartesian coordinate system, columns represent X values.

The key to remembering the order of the arguments is in the name of the
getmaxyx() function itself: Get Max Y X, the y or row value comes first.

The arguments y and x are int variables, not pointers. Even though it seems
like they should be prefixed with the & (address) operator, do not do this.

The values returned by y and x measure screen height and width starting
with the number 1. But note that when placing the cursor on the screen, the
first row and first column are numbered zero. So while getmaxyx() may
return 25 and 80 for the number of row and col, the bottom right location on
the window is 24, 79.

As a pseudo function, getmaxyx() merely reads the window’s size values
from the WINDOW structure. See WINDOW for more information.

Appendix A ■ NCurses Library Reference 283

18_107591 appa.qxp 1/12/07 9:08 PM Page 283

The size of the standard screen is stored in the COLS and LINES variables
defined by NCurses when the initscr() function is run.

A macro getmaxy() exists in NCURSES.H. It returns the maximum row
value for a named window. The format is getmaxy(win), and it returns the
maximum row value for window win, or ERR upon failure.

Example
getmaxyx(menu,menurow,menucol);

This statement reads the height and width of the window menu, storing the
total number of rows in menurow, and the number of columns in menucol.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int x,y;

6

7 initscr();

8

9 getmaxyx(stdscr,y,x);

10 printw(“Window size is %d rows, %d columns.\n”,y,x);

11 refresh();

12 getch();

13

14 endwin();

15 return 0;

16 }

Sample output:

Window size is 24 rows by 80 columns.

Also See
Chapter 4, newwin(), COLS, LINES, WINDOW

getnstr()

See getstr().

284 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 284

getparyx()

The getparyx() function returns a subwindow’s origin relative to its parent
window.

Man Page Format
void getparyx(WINDOW *win, int y, int x);

Format Reference
win is the name of a WINDOW variable representing a subwindow.
y and x are int variables that will hold the subwindow’s origin relative to the

parent window. These are not pointers! y and x are relative to the parent window,
where row 0 and column 0 are the upper-left corner of the parent window.

Return Value
getparyx() is a macro and as such it has no return value.

Notes
When win is not a subwindow, the values -1 and -1 are returned for y and x.

Remember that the coordinates returned are relative to the parent window,
not the screen.

The getbegyx() function is used to return a window’s coordinates relative
to the screen. getbegyx() can be used on any window.

Example
getparyx(footer,y,x);

Here, the origin of subwindow footer relative to its parent window is
saved in int variables y (row) and x (column).

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *subby,*sonny;

Appendix A ■ NCurses Library Reference 285

18_107591 appa.qxp 1/12/07 9:08 PM Page 285

6 int row,col;

7

8 initscr();

9 start_color();

10 init_pair(1,COLOR_WHITE,COLOR_BLUE);

11 init_pair(2,COLOR_YELLOW,COLOR_RED);

12

13 subby = newwin(10,30,10,40);

14 wbkgd(subby,COLOR_PAIR(1));

15 getparyx(subby,row,col);

16 wprintw(subby,”This subwin’s org: %d, %d.”,row,col);

17 wrefresh(subby);

18

19 sonny = subwin(subby,7,30,13,40);

20 wbkgd(sonny,COLOR_PAIR(2));

21 getparyx(sonny,row,col);

22 wprintw(sonny,”This subwin’s org: %d, %d.”,row,col);

23 wrefresh(sonny);

24

25 wgetch(sonny);

26

27 endwin();

28 return 0;

29 }

The sample output is shown in Figure A-6.

Also See
subwin(), getmaxyx()

Figure A-6: The getbegyx() function reads the windows’ origin.

286 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 286

getmouse()

The getmouse() function is used to retrieve a mouse event, storing infor-
mation about the event — button state, coordinates — in a special MEVENT
structure.

Man Page Format
int getmouse(MEVENT *event);

Format Reference
event is the address of a MEVENT structure, which will be used to store infor-
mation about a mouse event. See MEVENT for the details.

Return Value
OK when an event was captured or ERR if no event was visible.

Notes
The types of events getmouse() monitors are determined in advance by the
mousemask() function. See mousemask().

It’s actually the getch() function that reads when a mouse event
has occurred. The getmouse() function is used to place information
about that event into the MEVENT structure, which the program can then act
upon.

Example
getmouse(&me);

This statement reads a recent mouse event, storing information about the
event in the MEVENT structure referenced by variable me.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 MEVENT mort;

6 int ch;

Appendix A ■ NCurses Library Reference 287

18_107591 appa.qxp 1/12/07 9:08 PM Page 287

7

8 initscr();

9 noecho();

10 keypad(stdscr,TRUE);

11

12 mousemask(BUTTON1_CLICKED,NULL);

13 while(1)

14 {

15 ch = getch();

16 if(ch == KEY_MOUSE)

17 {

18 getmouse(&mort);

19 move(0,0);

20 clrtoeol();

21 printw(“Mouse clicked at %d, %d”,mort.y,mort.x);

22 refresh();

23 continue;

24 }

25 if(ch == ‘\n’)

26 break;

27 }

28

29 endwin();

30 return 0;

31 }

Sample output:
Clicking mouse button one results in its position being displayed:

Mouse clicked at 10, 14

Also See
Chapter 13, NCURSES_MOUSE_VERSION, MEVENT, mousemask(), unget
mouse()

getstr()

The getstr() function reads a line of text from the terminal, with a newline
or a carriage return (Enter/Return) character marking the end of input.

Man Page Formats
int getstr(char *str);

int getnstr(char *str, int n);

int wgetstr(WINDOW *win, char *str);

int wgetnstr(WINDOW *win, char *str, int n);

288 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 288

int mvgetstr(int y, int x, char *str);

int mvwgetstr(WINDOW *win, int y, int x, char *str);

int mvgetnstr(int y, int x, char *str, int n);

int mvwgetnstr(WINDOW *, int y, int x, char *str, int n);

Format Reference
str represents string variable (char array) storage, either an array declared
or a buffer allocated via malloc() or a similar function.

For those functions where n is specified, n is an int value representing the
maximum number of characters that can be input. The value of n should be
one less than the size of the buffer to account for the \0 (null) character
getstr() appends to the end of the string.

Refer to the entries for w, mv, and mvw elsewhere in this appendix for infor-
mation on the w, mv, and mvw variations to this function.

Return Value
OK on success; ERR upon failure.

Notes
I highly recommend using the getnstr() variation of the functions, which
helps limit input and avoids the potential for a nasty buffer overflow.

Attempting to input more characters than n has specified results in the ter-
minal beeping at the user, once for each character over the n limit.

When input is longer than the length of the current line, getstr() wraps
text to the following line.

Text input by getstr() overwrites any existing text in the row. To insert a
string of text, use the insstr() function instead, though note that insstr()
does not read text from the keyboard. See insstr().

The \n or \r that ends input is not included with the string returned by
getstr().
getstr() is essentially a series of calls to the getch() function, and there-

fore the input modification functions that change getch()’s behavior also
apply to getstr(). See getch() for the details.

The Killchar and Erasechar keys function appropriately for the getstr()
function. Refer to killchar() and erasechar() for details. When
keypad() is set true for a window, the wgetstr() functions interpret both
the KEY_BACKSPACE and KEY_LEFT keys as the Killchar key.

Using the Killchar key does not count as an input character when n is spec-
ified in the getnstr() functions. The same holds for Erasechar. getnstr()
properly maintains the number of characters input, resetting input characters

Appendix A ■ NCurses Library Reference 289

18_107591 appa.qxp 1/12/07 9:08 PM Page 289

to zero when Erasechar is pressed and decrementing input characters by 1
when Killchar is pressed.

Using the Erasechar key returns the cursor to its original location. This holds
true even when input text has wrapped to the following line.

Examples
mvgetnstr(5,12,command,64);

This statement moves the cursor to row 5, column 12 and accepts up to
64 characters of input to be stored in the buffer referenced by the command
variable.

wgetnstr(main,input[y],len);

This statement reads input as filtered through the window main. Text is
stored in the input[y] variable, and only len characters may be input.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 char first[50],last[4];

6

7 initscr();

8 addstr(“Enter the first 3 letters of your first name? “);

9 refresh();

10 getnstr(first,3);

11

12 addstr(“Enter the first 3 letters of your last name? “);

13 refresh();

14 getnstr(last,3);

15

16 printw(“Your secret agent name is %s%s!”,first,last);

17 refresh();

18 getch();

19

20 endwin();

21 return 0;

22 }

Sample output:

Enter the first 3 letters of your first name? Con

Enter the first 3 letters of your last name? Dor

Your secret agent name is ConDor!

290 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 290

Also See
Chapter 2, getch(), scanw()

getsyx()

The getsyx() reads the virtual screen’s cursor location.

Explanation
NCurses is a window-oriented environment. The cursor’s position is normally
read relative to a window, such as the standard screen. Yet the cursor also has
a location in the real world on the terminal. It’s the getsyx() function that
returns that real world location.

Man Page Format
void getsyx(int y, int x);

Format Reference
y and x are int variables, not pointers. After the function call, y holds the
value of the cursor’s row and x holds the column value.

Return Value
This function is a macro, and as such its return value is unimportant.

Notes
Values returned in y and x range from 0, for the upper-left corner of the win-
dow, though the maximum row and column values for the standard screen.

When -1, -1 is returned it means that leaveok() has been set TRUE for a
window.

To read the cursor’s location in a window use the getyx() function.
When using the ripoffline() function you should limit the use of the

values returned by getsyx() only as arguments for the setsyx() function.
I get the hint from the man pages that getsyx() is really meant as an inter-

nal NCurses function to be used in conjunction with setsyx().

Example
getsyx(row,col);

Appendix A ■ NCurses Library Reference 291

18_107591 appa.qxp 1/12/07 9:08 PM Page 291

This statement reads the cursor’s location on the virtual screen, saving it
into the row and col variables.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *win;

6 int vy,vx,stdy,stdx,winy,winx;

7

8 initscr();

9 noecho();

10 win = newwin(5,20,10,30);

11 box(win,0,0);

12 waddstr(win,”This is ‘win’”);

13 wrefresh(win);

14

15 getyx(win,winy,winx);

16 getyx(stdscr,stdy,stdx);

17 getsyx(vy,vx);

18 printw(“In Window win, the cursor is at %d,%d.\n”,winy,winx);

19 printw(“On the standard screen, the cursor is at ;

%d,%d.\n”,stdy,stdx);

20 printw(“On the virtual screen, the cursor is at ;

%d,%d.\n”,vy,vx);

21 refresh();

22 getch();

23

24 getsyx(vy,vx);

25 printw(“Now on the virtual screen, the cursor is at ;

%d,%d.\n”,vy,vx);

26 refresh();

27 getch();

28

29 leaveok(win,TRUE);

30 wrefresh(win);

31 getyx(win,winy,winx);

32 getsyx(vy,vx);

33 printw(“In Window win, the cursor is now at ;

%d,%d.\n”,winy,winx);

34 printw(“On the virtual screen, the cursor is ;

now at %d,%d.\n”,vy,vx);

35 refresh();

36 getch();

37

38 endwin();

39 return 0;

40 }

292 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 292

Sample output:

In Window win, the cursor is at 0,13.

On the standard screen, the cursor is at 0,0.

On the virtual screen, the cursor is at 10,43.

Press Enter.

Now on the virtual screen, the cursor is at 3,0.

Press Enter again.

In Window win, the cursor is now at 0,13.

On the virtual screen, the cursor is now at -1,-1.

Also See
leaveok(), getyx(), setsyx()

getwin()

The getwin() function reads a window from disk, one previously saved via
the putwin() function.

Man Page Format
WINDOW *getwin(FILE *filep);

Format Reference
filep is a FILE variable representing a file opened for reading on disk. The
file should be a window previously saved by using the putwin() function.

Return Value
On success, a window is created and a WINDOW pointer returned representing
that window. On failure, NULL is returned.

Notes
getwin() is the companion function to putwin(), which saves WINDOW data
to disk.

Appendix A ■ NCurses Library Reference 293

18_107591 appa.qxp 1/12/07 9:08 PM Page 293

The window is restored in the same position and size on the screen. Even the
cursor is placed in the same position from which it was saved.

All text attributes are restored when the saved window is loaded via
getwin(). The same color pairs, if specified, are assigned as attributes though
the color values of each pair are not retained (unless the program is using the
same color pair values).

Example
nextwin = getwin(wfp);

The statement creates a new window named footnote based on data pre-
viously saved to disk and referenced by the wfp file pointer.

Sample Program
This program assumes a file named WINDOW.DAT has previously been saved
to disk. See putwin().

1 #include <ncurses.h>

2 #include <stdlib.h>

3

4 #define FILENAME “window.dat”

5

6 void bomb(char *message);

7

8 int main(void)

9 {

10 FILE *wfile;

11 WINDOW *win;

12 int r;

13

14 initscr();

15 start_color();

16 init_pair(1,COLOR_WHITE,COLOR_RED);

17

18 addstr(“Press Enter to read the window from disk:\n”);

19 refresh();

20 getch();

21

22 /* open the file */

23 wfile = fopen(FILENAME,”r”);

24 if(wfile==NULL)

25 bomb(“Error reading file\n”);

26

27 /* write the window’s data */

28 win = getwin(wfile);

29 if(win == NULL)

294 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 294

30 bomb(“Unable to read/create window\n”);

31 fclose(wfile);

32 wrefresh(win);

33 getch();

34

35 endwin();

36 return 0;

37 }

38

39 void bomb(char *message)

40 {

41 endwin();

42 puts(message);

43 exit(1);

44 }

Sample output:
Refer to putwin() for what the output looks like (well, similar to).

Also See
Chapter 14, putwin(), scr_dump(), scr_restore()

getyx()

The getyx() function reads the cursor location from a specific window and
saves it in two int variables.

Man Page Format
void getyx(WINDOW *win, int y, int x);

Format Reference
win is the name of a WINDOW pointer, indicating a window created earlier in
the code. It can also be stdscr for the standard screen.
y is an int variable to hold a value indicating which row the cursor is blink-

ing on.
x is an int variable to hold a value indicating which column the cursor

blinks in.

Return Value
getyx() is a macro and as such its return value should not be used.

Appendix A ■ NCurses Library Reference 295

18_107591 appa.qxp 1/12/07 9:08 PM Page 295

Notes
Note that it’s always getyx(), not getxy().

The yx part of getyx() also helps you to remember that the row, or Y,
component comes first.

Both y and x are int variables, not pointers. Do not prefix them with &
though it would seem like you need to do this.

Location 0, 0 is the home position, the upper-left corner of the screen.
Maximum values for y and x depend on the size of the screen.
In a way, getyx() is the opposite of the wmove() function.

Example
getyx(stdscr,y,x);

This statement reads the cursor’s current position on the standard screen
and stores it in the y and x variable.

Sample Program
1 #include <ncurses.h>

2 #include <time.h>

3 #include <stdlib.h>

4

5 int main(void)

6 {

7 int r,x,row,col;

8

9 initscr();

10 srandom((unsigned)time(NULL));

11

12 r = random();

13 r %= 300;

14 for(x=0;x<r;x++)

15 addch(‘*’);

16 getyx(stdscr,row,col);

17 printw(“\nThe cursor ended up at location %d, %d.\n”,\

18 row,col);

19 refresh();

20 getch();

21

22 endwin();

23 return 0;

24 }

Sample output:

The cursor ended up at location 0, 43.

296 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 296

Also See
Chapter 4, move()

halfdelay()

The halfdelay() function directs NCurses input functions to enter half
delay mode.

Explanation
Half delay mode is similar to cbreak mode with regard to characters being
made available immediately to the program as they’re typed. Unlike cbreak
mode, however, halfdelay() sets the blocking delay duration. After a given
number of tenths of a second, the input function returns ERR when nothing
has been typed.

Man Page Format
int halfdelay(int tenths);

Format Reference
tenths is an int value ranging from 1 to 255, indicating the number of tenths
of a second getch() (and related functions) to wait for character input.

Return Value
ERR on failure, OK or a value other than ERR on success.

Notes
halfdelay() covers all NCurses input. If you want to vary the delay associ-
ated with a specific window, use the wtimeout() function instead: See
timeout().

Small values of tenths require quite a fast typist to keep up!
Remember that it’s the input function, such as getch(), that returns ERR

when half delay mode times out. The halfdelay() function returns
ERR only when there is an error setting that function.

The nodelay() function essentially is like setting halfdelay(0), though
zero is an invalid argument for halfdelay().

Your program can leave half delay mode by using the nocbreak() func-
tion. See cbreak().

Appendix A ■ NCurses Library Reference 297

18_107591 appa.qxp 1/12/07 9:08 PM Page 297

Examples
halfdelay(20);

This statement sets the half delay pause to 2 full seconds.

halfdelay(1);

This statement sets the pause to 1/10th of a second, demanding fast input!

Sample Program
1 #include <ncurses.h>

2

3 #define DELAY 10

4

5 int main(void)

6 {

7 int ch;

8

9 initscr();

10

11 halfdelay(DELAY);

12 printw(“Half delay has been set to %d/10 seconds.\n”,DELAY);

13 addstr(“Try to type in your name fast enough:\n”);

14 refresh();

15

16 do

17 {

18 ch = getch();

19 if(ch == ‘\n’)

20 break;

21 } while(ch != ERR);

22

23 mvaddstr(5,0,”Hope you got it all in!”);

24 refresh();

25 getch();

26

27 endwin();

28 return 0;

29 }

Sample output:

Half delay has been set to 10/10 seconds.

Try to type in your name fast enough:

Try to type quickly; if you pause longer than 1 second, either at first or between any
keys, the program is over.

298 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 298

Also See
nodelay(), timeout(), cbreak(), getch()

has_colors()

The has_colors() function is used to determine whether or not the terminal
has the ability to display color text attributes.

This function is used before start_color(). Obviously there’s no point in
doing colors in a program for a terminal that cannot display them.

Man Page Format
bool has_colors(void);

Format Reference
The function has no arguments.

Return Value
has_colors() returns a Boolean value, either TRUE or FALSE, the former
when the terminal can do color and the latter when it cannot.

Notes
This is one of the rare text color function in NCurses that uses the plural colors. The
other two are assume_default_colors() and use_default_colors().

Examples
r = has_colors();

After this statement, the value of r will equal TRUE if the terminal can pro-
duce color text, FALSE otherwise.

if(has_colors)

The above if condition evaluates true if the console has the ability to use
color text.

Appendix A ■ NCurses Library Reference 299

18_107591 appa.qxp 1/12/07 9:08 PM Page 299

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 bool tf;

6 initscr();

7

8 tf = has_colors();

9 if(tf == TRUE)

10 addstr(“This terminal can do colors.\n”);

11 else

12 addstr(“This terminal cannot do colors.\n”);

13 refresh();

14 getch();

15

16 endwin();

17 return 0;

18 }

Sample output:

This terminal can do colors.

Or:

This terminal cannot do colors.

Also See
start_color(), TRUE

has_ic()

The has_ic() function determines whether the terminal has the ability to
insert and delete characters.

Man Page Format
bool has_ic(void);

Format Reference
The function has no arguments.

300 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 300

Return Value
A Boolean value is returned: TRUE if the terminal has insert and delete charac-
ter capabilities, FALSE if not.

Notes
If the terminal does not have the ability to insert and delete characters, then it
will be provided by NCurses in software.

The insch() function is used to insert a character on the screen. The
delch() function deletes a character.

The idcok() function is used to switch between hardware and software
modes for inserting and deleting characters. See idcok().

This is one of several NCurses functions that report back information on the
terminal. The others include baudrate(), erasechar(), killchar(),
has_il(), longname(), termattrs(), and termname().

Example
if(has_ic())

The if condition passes when the terminal has the ability to insert and
delete characters.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 addstr(“This terminal “);

8 if(has_ic())

9 addstr(“has “);

10 else

11 addstr(“does not have “);

12 addstr(“insert/delete character abilities”);

13 refresh();

14 getch();

15

16 endwin();

17 return 0;

18 }

Appendix A ■ NCurses Library Reference 301

18_107591 appa.qxp 1/12/07 9:08 PM Page 301

Sample output:

This terminal has insert/delete character abilities

Also See
has_il(), insch(), delch(), idcok()

has_il()

The has_il() function determines whether the terminal has the ability to insert
and delete lines or can perform that ability to affect a scrolling region of text.

Man Page Format
bool has_il(void);

Format Reference
The function has no arguments.

Return Value
A Boolean value is returned: TRUE if the terminal has insert and delete line
capabilities, FALSE if not.

Notes
The insdelln() function is used to insert or delete lines of text on the screen.

The idlok() function is used to switch between hardware and software
modes for inserting and deleting lines of text. See idlok().

When the terminal has the ability to insert and remove lines, then it can use
those abilities to scroll text. Also see scrollok() and scrl().

Example
if(has_il())

The if condition passes when the terminal has the ability to insert and
delete lines of text.

302 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 302

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 addstr(“This terminal “);

8 if(has_il())

9 addstr(“has “);

10 else

11 addstr(“does not have “);

12 addstr(“insert/delete line abilities”);

13 refresh();

14 getch();

15

16 endwin();

17 return 0;

18 }

Sample output:

This terminal has insert/delete character abilities

Also See
has_ic(), insdelln(), scrollok(), scrl(), idcok()

hline()

The hline() function draws a horizontal (left-right) line from the cursor’s
current location to the right a given number of character places.

Man Page Format
int hline(chtype ch, int n);

Format Reference
ch is a chtype character used to draw the line. Though typically only a single
character, such as -, is used, you can combine characters, text attributes and

Appendix A ■ NCurses Library Reference 303

18_107591 appa.qxp 1/12/07 9:08 PM Page 303

colors with the chtype variable. See Appendix C. When zero is specified for
ch, the default ASC_HLINE character is used. See Appendix B for more infor-
mation on ACS characters.
n is an int value that sets the length of the line in characters. Valid values

for n range from 0 on up to whatever an integer can hold. If n is zero, then no
line is displayed. When n is greater than the distance between the current cur-
sor position and the left edge of the window, then only as many ch characters
as can be displayed on a line are shown. (The line does not wrap.)

Refer to the mv, mvw, and w prefix entries elsewhere in this appendix for
information on the win, row, and col arguments.

Return Value
hline() always returns OK.

Notes
The line always goes from the cursor’s current position to the right.

Drawing the line does not affect the cursor’s location. The cursor remains at
its previous location, or whichever location was set by the mvhline() or
mvwhline() functions.

The line drawn is not protected against erasure by other NCurses text out-
put functions; the line can be overwritten at any time.

Examples
hline(0,10);

This function draws a line 10 characters long (wide) from the cursor’s cur-
rent position. The default line drawing character is used.

mvhline(y,10,’*’,len);

Here, the function draws a line using asterisks. The line is len characters
long from location row y, column 10.

mvwhline(tasks,0,0,0,100);

Here, a line is drawn across the top of window tasks using the default line
drawing character. If the window is narrower than 100 characters, the excess
line is ignored.

304 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 304

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int maxy,maxx,halfx,y,len;

6 initscr();

7

8 getmaxyx(stdscr,maxy,maxx);

9 halfx = maxx >> 1; /* x/2 */

10 len = 1;

11

12 for(y=0;y<maxy;y++,len++)

13 {

14 mvhline(y,halfx-len,0,len+len);

15 }

16 refresh();

17 getch();

18

19 endwin();

20 return 0;

21 }

The sample output is shown in Figure A-7.

Also See
Chapter 14, Appendix B, box(), vline()

Figure A-7: The hline() festive tree

Appendix A ■ NCurses Library Reference 305

18_107591 appa.qxp 1/12/07 9:08 PM Page 305

idcok()

The idcok() function directs whether NCurses uses the terminal (hardware)
ability to insert or delete characters, or whether software routines are used
instead.

Man Page Format
void idcok(WINDOW *win, bool bf);

Format Reference
win is the name of a WINDOW variable representing a window on the screen or
stdscr for the standard screen.
bf is a Boolean value, either TRUE or FALSE. When set TRUE, the terminal’s

insert/delete character routines are used. When set FALSE, software routines
are used instead.

Return Value
This function always returns OK.

Notes
Normally, the software insert/delete character routines are used, as in
idcok(win,TRUE). Therefore it is unnecessary to use idcok(win,TRUE) in
a window unless the terminal routines have been previously disabled and you
want to re-enable them.

The has_ic() function determines whether or not the terminal has the
ability to insert and delete characters.

NCurses uses the insch() function to insert a character on the screen; the
delch() function is used to delete a character.

Example
idcok(w,FALSE);

The statement directs NCurses to use software routines for inserting and
deleting characters in the window w.

Sample Program
1 #include <ncurses.h>

2

3 #define LENA 8

306 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 306

4 #define LENF 11

5 #define LENS 7

6 #define DELAY 150

7 #define ROW 10

8

9 int main(void)

10 {

11 char first[] = “The terminal”;

12 char second[] = “Software”;

13 int x;

14

15 initscr();

16

17 mvaddstr(ROW,0,”Something is doing the inserting ;

and deleting.”);

18 refresh();

19 getch();

20

21 move(ROW,0);

22 for(x=0;x<=LENA;x++)

23 {

24 delch();

25 refresh();

26 napms(DELAY);

27 }

28 for(x=LENF;x>=0;x--)

29 {

30 insch(first[x]);

31 refresh();

32 napms(DELAY);

33 }

34 getch();

35

36 idcok(stdscr,FALSE);

37

38 for(x=0;x<=LENF;x++)

39 {

40 delch();

41 refresh();

42 napms(DELAY);

43 }

44 for(x=LENS;x>=0;x--)

45 {

46 insch(second[x]);

47 refresh();

48 napms(DELAY);

49 }

50 getch();

51

52 endwin();

53 return 0;

54 }

Appendix A ■ NCurses Library Reference 307

18_107591 appa.qxp 1/12/07 9:08 PM Page 307

Sample output:

Something is doing the inserting and deleting.

Press Enter and Something is gobbled up and replaced by The terminal.

The terminal is doing the inserting and deleting.

Press Enter and The terminal is gobbled up and replaced by Software.

Software is doing the inserting and deleting.

Also See
has_ic(), insch(), delch(), idlok()

idlok()

The idlok() function directs whether NCurses uses the terminal (hardware)
ability to insert or delete characters or whether software routines are used
instead.

Man Page Format
void idcok(WINDOW *win, bool bf);

Format Reference
win is the name of a WINDOW variable representing a window on the screen,
such ass stdscr for the standard screen.
bf is a Boolean value, either TRUE or FALSE. When set TRUE, the terminal’s

(hardware) insert/delete line routines are used. When set FALSE, software
routines are used instead.

Return Value
idlok() always returns OK.

Notes
The has_il() function determines whether or not the terminal has the abil-
ity to insert and delete lines of text.

308 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 308

NCurses uses the insdelln() function to insert or delete lines of text on
the screen.

Example

idcok(w,FALSE);

The statement directs NCurses to use software routines for inserting and
deleting characters in the window w.

Sample Program
1 #include <ncurses.h>

2

3 #define DELAY 150

4 #define ROW 10

5 #define REPEAT 5

6

7 static void fancy(char *text)

8 {

9 int x;

10

11 for(x=0;x<REPEAT;x++)

12 {

13 mvaddstr(ROW+1,0,text);

14 refresh();

15 napms(DELAY);

16 insdelln(1);

17 }

18 for(x=0;x<=REPEAT;x++)

19 {

20 insdelln(-1);

21 refresh();

22 napms(DELAY);

23 }

24 }

25

26 int main(void)

27 {

28 initscr();

29

30 mvaddstr(ROW,0,”What is inserting and deleting the text?”);

31 refresh();

32 getch();

33

34 idlok(stdscr,TRUE);

35 fancy(“Hardware is!”);

36 getch();

37

Appendix A ■ NCurses Library Reference 309

18_107591 appa.qxp 1/12/07 9:08 PM Page 309

38 idlok(stdscr,FALSE);

39 fancy(“Software is!”);

40 getch();

41

42 endwin();

43 return 0;

44 }

Sample output:
The program inserts and deletes rows of text, first with idlok() set to TRUE, then

with it set to FALSE.

Also See
has_il(), insdelln(), idcok()

immedok()

The immedok() function provides for automatic update (refreshing) in a win-
dow any time that window’s information is changed.

Man Page Format
void immedok(WINDOW *win, bool bf);

Format Reference
win is the name of a WINDOW variable representing a window on the screen,
such as stdscr for the standard screen.
bf is a Boolean value, either TRUE to enable the immedok() function or

FALSE to disable it. NCurses normally sets immedok() to the FALSE state for
new windows and the standard screen.

Return Value
The function has no return value.

Notes
getch(), and related input functions such as getstr(), automatically
update a window. Pretty much all NCurses text output functions, however,
require a refresh() to update the screen. immedok() set TRUE removes that
requirement and the updating is done automatically.

310 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 310

Yes, it’s true: By setting immedok() to TRUE, you greatly increase the over-
head required to update the screen. Refer to wnoutrefresh() for informa-
tion on optimizing window and text output.

Example
immedok(menu,TRUE);

Here, the statement sets immediate refreshing for all output to the window
menu.

Sample Program
1 #include <ncurses.h>

2

3 #define DELAY 500

4 #define TEXT “Lookee Here!”

5

6 static void show(void)

7 {

8 mvaddstr(1,10,TEXT);

9 napms(DELAY);

10 mvaddstr(2,50,TEXT);

11 napms(DELAY);

12 mvaddstr(10,1,TEXT);

13 napms(DELAY);

14 mvaddstr(20,30,TEXT);

15 napms(DELAY);

16 }

17

18 int main(void)

19 {

20 initscr();

21

22 addstr(“First round: immedok() is OFF! (Press Enter ;

and wait!)”);

23 refresh();

24 getch();

25 show();

26 mvaddstr(LINES-1,0,”Press Enter:”);

27 refresh();

28 getch();

29

30 immedok(stdscr,TRUE);

31 clear();

32 addstr(“Second round: immedok() is ON! (Press Enter ;

and watch!)”);

33 getch();

34 show();

35 mvaddstr(LINES-1,0,”Press Enter:”);

Appendix A ■ NCurses Library Reference 311

18_107591 appa.qxp 1/12/07 9:08 PM Page 311

36 getch();

37

38 endwin();

39 return 0;

40 }

Sample output:

First round: immedok() is OFF! (Press Enter and wait!)

Press Enter. Nothing happens until the refresh() in line 27.

Second round: immedok() is ON! (Press Enter and watch!)

Press Enter. Note that text is updated on the screen with nary a refresh() in sight!

Also See
refresh(), clearok()

inch()

The inch() function returns the character and text attribute at the cursor’s
position.

Man Page Format
chtype inch(void);

chtype winch(WINDOW *win);

chtype mvinch(int y, int x);

chtype mvwinch(WINDOW *win, int y, int x);

Format Reference
The base function has no arguments; refer to the mv, mvw, and w prefix entries
elsewhere in this appendix for information on the win, y, and x arguments.

Return Value
A chtype variable is returned, indicating the character and text attribute(s)
found at the cursor’s location.

312 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 312

Notes
Reading the text and attribute with inch() does not advance the cursor.

The chtype variable returned can be stored or used in any NCurses func-
tion that swallows chtype variables. If you want to extract something specific
from that variable, then a logical AND operation is in order. For example, to
extract the character from the value returned:

char_var = (inch() & A_CHARTEXT);

The A_CHARTEXT constant helps mask off the non-character attributes of
the chtype. Likewise, to extract the text formatting attributes only:

attrib = (inch() & A_ATTRIBUTES);

A_ATTRIBUTES helps mask off color and text information, saving the
attributes value into the long int attrib, above. And to extract the color
pair value:

cpair = (inch() & A_COLOR);

The cpair int variable holds the color pair value returned by the inch()
function.

There is another NCurses function, insch(), which inserts characters on
the screen. Do not confuse that with inch().

Examples
v = inch();

Here, the text character and attributes at the cursor’s location on the stan-
dard screen are saved in chtype variable v.

attr = winch(menu) & A_ATTRIBUTES;

The long int variable attr (or type attr_t) saves the attributes only
from the cursor’s current position in window menu.

ch = mvwinch(help,0,0) & A_CHARTEXT;

Here, int variable ch saves the text character from position 0, 0 in window
help.

Appendix A ■ NCurses Library Reference 313

18_107591 appa.qxp 1/12/07 9:08 PM Page 313

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *other;

6 int x;

7 chtype ch;

8

9 initscr();

10 start_color();

11 init_pair(1,COLOR_WHITE,COLOR_BLUE);

12

13 addstr(“Creating and filling other window...”);

14 other = newwin(0,0,0,0);

15 if(other==NULL)

16 {

17 endwin();

18 puts(“Error creating window”);

19 return(1);

20 }

21 wbkgd(other,COLOR_PAIR(1));

22 waddch(other,’\”’);

23 wattron(other,A_BOLD);

24 waddstr(other,”Hello!”);

25 wattroff(other,A_BOLD);

26 waddstr(other,”\” from the other window!”);

27 addstr(“Done!\n”);

28 addstr(“Press Enter to evaluate the other window’s text:\n”);

29 refresh();

30 getch();

31

32 addstr(“Other window’s text:\n”);

33 for(x=0;x<31;x++)

34 {

35 ch = mvwinch(other,0,x);

36 addch(ch & A_CHARTEXT);

37 }

38 refresh();

39 getch();

40

41 addstr(“\nAnd here are the other window’s text ;

and attributes:\n”);

42 for(x=0;x<31;x++)

43 {

44 ch = mvwinch(other,0,x);

45 addch(ch);

46 }

47 refresh();

314 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 314

48 getch();

49

50 endwin();

51 return 0;

52 }

Sample output:

Creating and filling other window...Done!

Press Enter to evaluate the other window’s text:

Press Enter.

Other window’s text:

“Hello!” from the other window!

Press Enter.

And here are the other window’s text and attributes:

“Hello!” from the other window!

The text displayed is lifted from the other window thanks to the inch() function.

Also See
inchstr(), insch()

inchstr()

The inchstr() function reads an array of chtype characters from a window,
found at the cursor’s position and for a given length of characters or until the
end of the line. The chtype characters are returned in an array, and each
chtype character contains text, attribute, and color information.

Man Page Formats
int inchstr(chtype *chstr);

int inchnstr(chtype *chstr, int n);

int winchstr(WINDOW *win, chtype *chstr);

int winchnstr(WINDOW *win, chtype *chstr, int n);

int mvinchstr(int y, int x, chtype *chstr);

int mvinchnstr(int y, int x, chtype *chstr, int n);

int mvwinchstr(WINDOW *win, int y, int x, chtype *chstr);

int mvwinchnstr(WINDOW *win, int y, int x, chtype *chstr, int n);

Appendix A ■ NCurses Library Reference 315

18_107591 appa.qxp 1/12/07 9:08 PM Page 315

Format Reference
chstr is an array of the NCurses chtype, a long int containing character
and formatting information read from a window. The array contains chtype
characters read from the cursor’s current position to the right a given number
of characters or to the right edge of the window. The array is saved with \0 as
the final element.

When n is specified (in the inchnstr() functions) n characters are read from
the cursor’s current position. The value of n ranges from 0 through the width of
the window, though when 0 is specified nothing is read. A value of
-1 reads all characters from the cursor’s position to the end of the row. Values
larger than the length of the row are read only to the end of the row, not beyond.

When n is not specified, as with the inchstr() functions, then characters
are read from the cursor’s location to the end of the row. (This is the same as
when -1 is specified for n.)

Refer to the mv, mvw, and w prefix entries elsewhere in this appendix for
information on the win, y, and x arguments.

Return Value
ERR is returned when the function fails. Otherwise, an int value other than
ERR is returned.

Notes
Do not assume the width of the window being read! It’s possible by using
inchstr() to overflow the chtype array. Buffer overflows are a Bad Thing
and must be avoided.

I recommend using getmaxy() to determine a window’s row width, then use
malloc() to properly allocate a chtype array, and finally use inchnstr() to
read in the proper number of chtype characters from the window. Refer to the
Sample Program.

Each chtype character can be masked using the logical & (AND) to extract
specific information: character, attribute, or color pair. Refer to the entry for
inch() for the details.

This function does not move the cursor.

Examples
inchstr(chstr)

Here, inchstr() reads text from the cursor’s current position on the stan-
dard screen to the end of the row. The text and attributes are stored in the
chtype array, chstr.

mvinchstr(0,0,title)

316 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 316

Here, the cursor is moved to location 0,0 on the standard screen. Text and
attributes from the entire top row are read into chtype array title.

mvwinchnstr(menu,5,31,option,12)

In this statement, text and attributes are read from cursor location row 5, col-
umn 31 in window menu. Twelve characters are read and stored in the chtype
array option.

Sample Program
1 #include <ncurses.h>

2 #include <stdlib.h>

3

4 int main(void)

5 {

6 int y,x;

7 chtype *c;

8

9 initscr();

10 start_color();

11 init_pair(1,COLOR_RED,COLOR_WHITE);

12

13 /* set aside memory for chtype array */

14 getmaxyx(stdscr,y,x);

15 c = calloc((x+1), sizeof(chtype));

16 if(c == NULL)

17 {

18 endwin();

19 puts(“Unable to allocate memory.”);

20 return(1);

21 }

22

23 /* write something interesting to the screen */

24 attron(COLOR_PAIR(1));

25 addstr(“This is a bit of text!”);

26 attroff(COLOR_PAIR(1));

27 refresh();

28 getch();

29

30 /* copy the text using inchstr */

31 mvinchstr(0,0,c);

32 mvaddstr(10,0,”Here is the chtype string read:\n”);

33 addchstr(c);

34 refresh();

35 getch();

36

37 endwin();

38 return 0;

39 }

Appendix A ■ NCurses Library Reference 317

18_107591 appa.qxp 1/12/07 9:08 PM Page 317

Sample output:
In red on white text:

This is a bit of text!

Press Enter, and appearing mid-screen:

Here is the chtype string read:

This is a bit of text!

Also See
Appendix C, inch(), addchstr()

init_color()

The init_color() function allows you to redefine colors NCurses can use
for text attributes. For those terminals on which this function works, you can
create interesting colors by adjusting individual red, green, and blue values,
theoretically creating a billion possible colors.

Man Page Format
int init_color(short color, short r, short g, short b);

Format Reference
c is a short int representing a color number to change. The range of valid
values for c is from 0 through the value of COLOR. (See COLOR.)
r, g, and b are short int values representing the intensity of the red, green

and blue hues of the color created. Values range from 0 through 1000, where 0
is black and 1000 is full intensity for red, green, or blue.

Return Value
ERR upon failure, OK otherwise.

Notes
Use the can_change_color() function to determine whether or not the ter-
minal has the ability to redefine its colors set. When can_change_color()
returns TRUE, then the init_color() function can be used.

318 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 318

When all three color arguments, red, green, and blue, are set to the same
value the result is a gray tone. The lower the value, the darker the gray; the
higher the value, the lighter the gray.

The default colors used by NCurses relate to the init_color() statements
shown in Table A-7.

The color_content() function is used to determine the red, green, and
blue color values of colors in NCurses, kind of the opposite of the
init_color() function. See color_content() elsewhere in this appendix.

Examples
init_color(5,1000,500,0);

The statement defines color 5 in NCurses to be a flavor of orange. Full inten-
sity red and half intensity green equals orange.

init_color(6,1000,500,0);

The statement defines color 6 to be purple.

Sample Program
1 #include <ncurses.h>

2

3 #define NEW_COLOR 1

4 #define RED 1000

5 #define GREEN 750

6 #define BLUE 750

7

8 int main(void)

9 {

10 initscr();

11 start_color();

12 if(!can_change_color())

13 addstr(“This probably won’t work, but anyway:\n”);

14

15 init_color(NEW_COLOR,RED,GREEN,BLUE);

16

17 init_pair(1,NEW_COLOR,COLOR_BLACK);

18 attrset(COLOR_PAIR(1));

19 printw(“This is the new color %d.\n”,NEW_COLOR);

20 refresh();

21 getch();

22

23 endwin();

24 return 0;

25 }

Appendix A ■ NCurses Library Reference 319

18_107591 appa.qxp 1/12/07 9:08 PM Page 319

Table A-7: Values for NCurses colors

COLOR INIT_COLOR() FUNCTION CONSTANT NAME

0 init_color(0,0,0,0); COLOR_BLACK

1 init_color(0,1000,0,0); COLOR_RED

2 init_color(0,0,1000,0); COLOR_GREEN

3 init_color(0,1000,1000,0); COLOR_YELLOW

4 init_color(0,0,0,1000); COLOR_BLUE

5 init_color(0,1000,0,1000); COLOR_MAGENTA

6 init_color(0,0,1000,1000); COLOR_CYAN

7 init_color(0,1000,1000,1000); COLOR_WHITE

Sample output:

This is the new color 1

The text is displayed in pink on a black background.

Also See
Chapter 3, can_change_color(), COLORS, color_content()

init_pair()

The init_pair() function assigns a foreground and background text color
to a color pair value. The color pair value is then used with the
COLOR_PAIR(n) attribute to apply those foreground and background colors
to text or a window as a whole.

Man Page Format
int init_pair(short pair, short f, short b);

Format Reference
pair is a short int value representing a color pair number. Values range from
0 through the value of the COLOR_PAIR constant, minus 1. The color pair num-
ber is used to reference the foreground/background text color combination,
specifically with the COLOR_PAIR(n) attribute. The n in COLOR_PAIR(n) is
the same as pair, representing the color pair created.

320 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 320

f and b are a short int values representing the text foreground and text
background colors, respectively. Values range from 0 through the value of
COLOR, minus 1. Refer to COLOR elsewhere in this appendix for the list of col-
ors and color constants commonly available.

Return Value
The function returns OK when the pair has been created successfully; other-
wise, ERR is returned.

Notes
The start_color() function must be used before this function.
start_color() initializes NCurses to do color. See start_color().

Table A-8 lists NCurses color numbers, hues, and constants.
Values for the color pair number, pair, range from 1 through

COLOR_PAIR-1. This is because pair number 0 is reserved as the default text
color, typically white on black. Also see the assume_default_colors()
function elsewhere in this appendix.

Examples
init_pair(1,COLOR_WHITE,COLOR_BLUE);

The statement creates a new color pair attribute, COLOR_PAIR(1), which
colors text white on a blue background.

init_pair(13,4,2);

Here, COLOR_PAIR(13) is created. The colors used correspond to color 4
and 2, for blue text on a green background. (See COLORS.)

Table A-8: NCurses color constants

COLOR CONSTANT NAME

0 COLOR_BLACK

1 COLOR_RED

2 COLOR_GREEN

3 COLOR_YELLOW

4 COLOR_BLUE

5 COLOR_MAGENTA

6 COLOR_CYAN

7 COLOR_WHITE

Appendix A ■ NCurses Library Reference 321

18_107591 appa.qxp 1/12/07 9:08 PM Page 321

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int pair,fg,bg;

6

7 initscr();

8 start_color();

9

10 pair = 1;

11 for(fg=0;fg<COLORS;fg++)

12 for(bg=0;bg<COLORS;bg++)

13 {

14 init_pair(pair,fg,bg);

15 pair++;

16 }

17

18 for(pair=0;pair<COLOR_PAIRS;pair++)

19 {

20 attrset(COLOR_PAIR(pair));

21 addstr(“Color! “);

22 if(!(pair % COLORS))

23 addch(‘\n’);

24 }

25 refresh();

26 getch();

27

28 endwin();

29 return 0;

30 }

The sample output is shown in Figure A-8.

Figure A-8: Colorful color combinations (trust me)

322 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 322

Also See
start_color(), attrset(), COLOR, COLOR_PAIR, pair_content()

initscr()

The initscr() function initializes NCurses functions. It sets up various
internal memory structures, creates the standard screen window, and displays
the virtual screen on the terminal.

Man Page Format
WINDOW *initscr(void);

Format Reference
The function has no arguments.

Return Value
initscr() returns a pointer to a WINDOW variable, which ends up being the
standard screen, stdscr.

Notes
The newterm() function can also be used to initialize NCurses, specifically
for special input and output needs.

There are a few special NCurses functions that must be called before
initscr() (or newterm()) is used to initialize NCurses. These are
filter(), ripoffline(), slk_init(), and use_env().

It is not necessary to save the WINDOW pointer returned by initscr(), as
NCurses creates the stdscr variable automatically.

The endwin() function is required to end NCurses programming and
return the terminal to normal behavior. See endwin().

When initscr() cannot initialize the terminal, it exits the program.

Example
initscr();

This statement is found near the top of just about every NCurses program.

Appendix A ■ NCurses Library Reference 323

18_107591 appa.qxp 1/12/07 9:08 PM Page 323

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6 addstr(“Goodbye, cruel C programming!”);

7 refresh();

8 getch();

9

10 endwin();

11 return 0;

12 }

Sample output:

Goodbye, cruel C programming!

Also See
Chapter 1, newterm(), endwin()

innstr()

See instr().

insch()

The insch() function inserts only one character into a row of text, shoving all
the characters to the right one space to the right. The character is inserted at the
cursor’s current position.

Man Page Format
int insch(chtype ch);

int winsch(WINDOW *win, chtype ch);

int mvinsch(int y, int x, chtype ch);

int mvwinsch(WINDOW *win, int y, int x, chtype ch);

Format Reference
ch is a chtype character, which can be a single character, a text attribute, a
color pair, or a combination of each. (See Appendix C.)

324 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 324

Refer to the mv, mvw, and w prefix entries elsewhere in this appendix for
information on the win, y, and x arguments.

Return Value
ERR on failure, or OK if everything ends up happily ever after.

Notes
The insch() function inserts a character at the cursor’s position. It does not delete
any character already at that position, nor does it move the cursor’s location.

Any characters shoved off the right edge of the window by insch() are not
wrapped to the next line. Those characters pushed off are lost.

When you merely want to put a character at a location without rearranging
the rest of the text, use the addch() function instead.

To insert a string of characters use the insstr() function. See insstr().
When inserting multiple characters remember to insert them backwards.

That is, insert the last characters first; otherwise, the string inserted (one char-
acter at a time) appears sdrawkcab.

There is another NCurses function, inch(), which reads a character from a
window (kind of the opposite of addch()). Do not confuse inch() with
insch()!

Examples
mvinsch(5,10,’A’);

After this statement, an A is placed on the screen at row 5, column 10. Any
text from column 10 to the right edge of the window is scooted one notch to the
right to make room for the A.

winsch(tally,c);

Here, the character stored in variable c is placed at the cursor’s current posi-
tion in window tally. Existing text on that row is moved over one notch to
the right to make room.

insch(‘*’ | A_BOLD);

Here, a bold * is inserted at the cursor’s current position in the standard
screen.

Sample Program
Refer to the entry for delch() for a sample program and output.

Appendix A ■ NCurses Library Reference 325

18_107591 appa.qxp 1/12/07 9:08 PM Page 325

Also See
Chapter 5, insstr(), addch(), insertln(), delch()

insdelln()

The insdelln() function either inserts or deletes a given number of lines in
a window.

Man Page Format
int insdelln(int n);

int winsdelln(WINDOW *win, int n);

Format Reference
n is an int value that indicates the number of lines to insert or delete. When n is
positive, then that number of lines are inserted at the row the cursor is on. When
n is negative, that number of lines are removed from the row the cursor is on.

Refer to the entry for w later in this appendix for information on the win
argument.

Return Value
ERR on failure or OK when things are all sunny and okay.

Notes
The insdelln() function does not change the cursor’s location.

Lines inserted cause text below to scroll down. The bottom n line(s) are then
removed from the window.

Lines removed cause the text below to scroll up; n blank lines are inserted at
the bottom of the window.
insdelln(1) is equivalent to insertln().
insdelln(-1) is equivalent to deleteln().
When n is zero, obviously, nothing happens.

Examples
insdelln(2);

Two new, blank rows of text are inserted at the line the cursor is on. The two
blank lines will be on the cursor line and below that line. Any text already on

326 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 326

those two lines is scrolled down, with the bottom two rows on the window
scrolled off.

winsdelln(editor,-12);

Here, 12 lines of text are deleted from the window, editor. The lines start
on the cursor’s line and extend down 11 lines. Any lines below are then
scrolled up, with blank lines inserted at the bottom of the window.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int y,x,c,halfy;

6

7 initscr();

8

9 getmaxyx(stdscr,y,x);

10 halfy = y >> 1;

11

12 for(c=0;c<y;c++)

13 mvprintw(c,15,”This is amazing row %d!\n”,c);

14 refresh();

15 getch();

16

17 move(halfy,0);

18 for(c=0;c<halfy;c++)

19 {

20 insdelln(1);

21 refresh();

22 napms(100);

23 }

24

25 move(0,0);

26 for(c=0;c<halfy;c++)

27 {

28 insdelln(-1);

29 refresh();

30 napms(100);

31 }

32

33 endwin();

34 return 0;

35 }

Sample output:
The screen is filled with text on each line. Pressing Enter clears the screen by

scrolling the bottom half down and then the top half up.

Appendix A ■ NCurses Library Reference 327

18_107591 appa.qxp 1/12/07 9:08 PM Page 327

Also See
insertln(), deleteln()

insertln()

The insertln() function inserts a fresh, blank line of text on the screen
above the cursor’s current line. All lines from the cursor’s current line to the
bottom of the window are scrolled down one row. The last row of the screen is
removed.

Man Page Format
int insertln(void);

int winsdelln(WINDOW *win, int n);

Format Reference
The function takes no arguments; refer to the entry for w elsewhere in this
appendix for information on the win argument.

Return Value
OK upon success, ERR on failure.

Notes
The cursor’s row position determines which row the new blank line appears
on. Text already on that row is scrolled down to the row beneath, as is all text
below that line.
insertln() scrolls text on the screen down even when scrolling is not

active for the window. See scrollok().
This function does not move the cursor.

Example
insertln();

After the statement, all text in the window from the line the cursor is on to
the bottom is scrolled down one row. A new blank row then appears on the
cursor’s line.

328 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 328

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int x;

6 char hamlet[5][46] = { “And by opposing end them?”,

7 “Or to take arms against a sea of troubles,”,

8 “The slings and arrows of outrageous fortune,”,

9 “Whether ‘tis nobler in the mind to suffer”,

10 “To be, or not to be: that is the question:” };

11

12 initscr();

13

14 for(x=0;x<5;x++)

15 {

16 move(0,0);

17 insertln();

18 addstr(hamlet[x]);

19 refresh();

20 getch();

21 }

22

23 endwin();

24 return 0;

25 }

Sample output:

And by opposing end them?

Press Enter.

Or to take arms against a sea of troubles,

And by opposing end them?

Press Enter.

The slings and arrows of outrageous fortune,

Or to take arms against a sea of troubles,

And by opposing end them?

Press Enter.

Whether ‘tis nobler in the mind to suffer

The slings and arrows of outrageous fortune,

Or to take arms against a sea of troubles,

And by opposing end them?

Appendix A ■ NCurses Library Reference 329

18_107591 appa.qxp 1/12/07 9:08 PM Page 329

Press Enter.

To be, or not to be: that is the question:

Whether ‘tis nobler in the mind to suffer

The slings and arrows of outrageous fortune,

Or to take arms against a sea of troubles,

And by opposing end them?

Also See
Chapter 5, deleteln(), insch(), insdelln()

insstr()

The insstr() function inserts a string of characters at the cursor’s position,
shoving remaining text on that line to the right. It’s equivalent to multiple calls
to the insch() function.

Man Page Formats
int insstr(const char *str);

int insnstr(const char *str, int n);

int winsstr(WINDOW *win, const char *str);

int winsnstr(WINDOW *win, const char *str, int n);

int mvinsstr(int y, int x, const char *str);

int mvinsnstr(int y, int x, const char *str, int n);

int mvwinsstr(WINDOW *win, int y, int x, const char *str);

int mvwinsnstr(WINDOW *win, int y, int x, const char *str, int n);

Format Reference
str is a string of text characters (a char array) inserted at the cursor’s position.
These are plain text characters, not chtype characters.

Those functions that use n specify how many characters of str to display.
Values for n range from 0 on up to the length of the str. If n is greater than the
length of the str, or when n is 0 (or less than 0), then the entire str is displayed.

Refer to the mv, mvw, and w prefix entries elsewhere in this appendix for
information on the win, y, and x arguments.

Return Value
OK upon success, ERR upon not-success.

330 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 330

Notes
The insstr() function does not change the cursor’s location. (Contrast this
with addstr(), which does move the cursor.)

Characters moved beyond the right edge of the screen are lost; the
insstr() function does not wrap text or scroll the screen.

Specifying values of n longer than the actual length of the string does not
cause blanks to be displayed. Instead, the entire string is displayed, just as if
the insstr() (non-n) version of the function were used.

Just as with addstr() and addch(), this function interprets the control
characters for Tab, Newline, and Backspace. For example, a tab advances text
to the next tab stop; newline erases the rest of the line and causes insstr() to
continue to insert text on the following line (column 0), and backspace moves
the cursor backward one notch.

When inserting only one character, use the insch() function instead.

Examples
insstr(“ERROR ->”);

Here, the string ERROR-> is inserted into the standard screen at the cursor’s
position.

mvinsnstr(found_y,found_x,patch,5);

Here, the first five characters from the string patch are inserted into the stan-
dard screen at the locations specified in the found_y and found_x variables.

winsstr(tally,result[x]);

Here, the text represented by result[x] is inserted at the cursor’s current
position in the window tally.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int y,x,a,b;

6 char ch;

7 char s[] = “Excuse me while I squeeze in here!”;

8

9 initscr();

Appendix A ■ NCurses Library Reference 331

18_107591 appa.qxp 1/12/07 9:08 PM Page 331

10

11 getmaxyx(stdscr,y,x);

12 x >>= 1; /* cut x in half*/

13 for(a=0;a<y;a++)

14 {

15 for(b=0;b<x;b++)

16 addch(‘.’);

17 addch(‘\n’);

18 }

19 refresh();

20 getch();

21

22 mvinsstr(5,10,s);

23 refresh();

24 getch();

25

26 endwin();

27 return 0;

28 }

Sample output:
The left side of the screen is populated with dots. Pressing Enter causes text to be

inserted, visually showing the dots previously there pushed off to the right.

Also See
insch(), addstr()

instr()

The instr() function reads text characters from a window and stores them in
a char array. Text is read from the cursor’s current position to the end of the
line or for the length specified, depending on the version of the function.

Man Page Formats
int instr(char *str);

int innstr(char *str, int n);

int winstr(WINDOW *win, char *str);

int winnstr(WINDOW *win, char *str, int n);

int mvinstr(int y, int x, char *str);

int mvinnstr(int y, int x, char *str, int n);

int mvwinstr(WINDOW *win, int y, int x, char *str);

int mvwinnstr(WINDOW *win, int y, int x, char *str, int n);

332 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 332

Format Reference
str indicates a char array big enough to hold text from the window, plus the
terminating \0 character NCurses appends to the end of the string. The text is
read from the cursor’s position to the end of the row.

For the n functions, n represents the maximum number of characters to read
and place into the str. When n is 0, less than 0, longer than the width of the
window, or longer than the distance from the cursor to the end of the row, then
the whole line is read — just like the instr() version of the function.

Refer to the w, mv, and mvw entries elsewhere in this appendix for informa-
tion on the win, y, and x arguments.

Return Value
OK on success, ERR on failure. Refer to OK and ERR elsewhere in this appendix
for additional and vital information.

Notes
The instr() function does not move the cursor.
instr() reads the entire line of text, saving blanks as the space character

(\x20). The last character of the array is \0, not \n.
This function reads only text characters from the window. To read chtype

characters, which include both text and formatting attributes, use the inch-
str() function instead. See inchstr().

When control characters are put to the screen, NCurses displays them as
two characters, ^ followed by the control character’s key code. When a func-
tion such as instr() reads the screen, it returns the ^ and character code val-
ues, not the control code that was originally put to the screen.

Examples
winnstr(beta,first_name,32);

In the statement, 32 characters of text are read from the cursor’s current
location (to the right) in the window beta. The characters are stored in the
string first_name.

mvinstr(0,0,row[0]);

The entire top row of the standard screen is read and stored into the string
array row[0].

Appendix A ■ NCurses Library Reference 333

18_107591 appa.qxp 1/12/07 9:08 PM Page 333

Sample Program
1 #include <ncurses.h>

2 #include <stdlib.h>

3

4 int main(void)

5 {

6 int y,x;

7 char *c;

8

9 initscr();

10 start_color();

11 init_pair(1,COLOR_RED,COLOR_WHITE);

12

13 /* set aside memory for chtype array */

14 getmaxyx(stdscr,y,x);

15 c = (char *)malloc((x+1));

16 if(c == NULL)

17 {

18 endwin();

19 puts(“Unable to allocate memory.”);

20 return(1);

21 }

22

23 /* write something interesting to the screen */

24 attron(COLOR_PAIR(1));

25 addstr(“This is a bit of text!”);

26 attroff(COLOR_PAIR(1));

27 refresh();

28 getch();

29

30 /* copy the text only using instr */

31 mvinstr(0,0,c);

32 mvaddstr(10,0,”Here is the text read:\n”);

33 addstr(c);

34 refresh();

35 getch();

36

37 endwin();

38 return 0;

39 }

Sample output:
This is a bit of text appears at the top of the screen in red-on-white text.

Only the text is read by mvinstr() in line 31, and displayed on line 11 after the
Enter key is pressed.

Also See
inchstr()

334 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 334

intrflush()

The intrflush() function controls whether the keyboard input queue is
flushed when an interrupt key is typed at the keyboard.

Man Page Format
int intrflush(WINDOW *win, bool bf);

Format Reference
win is ignored.
bf is a Boolean value, either TRUE or FALSE. TRUE turns on interrupt flush-

ing on keyboard input. FALSE disables interrupt flushing.

Return Value
ERR upon failure, OK or some value other than ERR upon success.

Notes
When intrflush() is TRUE, pressing a break key results in an instant flush
of the input queue, and immediate action upon the break key. When it is
FALSE, then the interrupt is still acted upon, but any text in the buffer may
appear later, such as at the command prompt.

The interrupt keys intrflush() monitors are listed in Table A-9.
The behavior of the Break key on your keyboard (if one exists) depends on

how its mapped in the terminal.
When intrflush() is turned on, pressing an interrupt key results in a

faster response than would otherwise be experienced.
On the downside, having intrflush() turned on may result in disconnect

between what NCurses believes to be displayed on the screen versus what’s
actually there.

Table A-9: Interrupt keys monitored by intrflush()

KEY FUNCTION NAME KEY(S) ASCII SIGNAL

Break BREAK Break? n/a BRKINT

Interrupt INTR ^C 0x03 SIGINT

Quit QUIT ^\ 0x1c SIGQUIT

Appendix A ■ NCurses Library Reference 335

18_107591 appa.qxp 1/12/07 9:08 PM Page 335

The default state for interrupt flushing is set by the terminal and inherited
by your NCurses program.

Examples
intrflush(NULL,TRUE);

Here, the intrflush() state is set TRUE, meaning that the input buffer is
flushed when an interrupt key is pressed.

intrflush(NULL,TRUE);

The intrflush() state is set above to FALSE, meaning that the input is not
flushed when an interrupt key is pressed but may be flushed afterwards.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 char buffer[81];

6

7 initscr();

8 intrflush(NULL,FALSE);

9

10 addstr(“Type on the keyboard whilst I wait...\n”);

11 refresh();

12 napms(5000); /* 5 seconds */

13

14 addstr(“Here is what you typed:\n”);

15 getnstr(buffer,80);

16 refresh();

17

18 endwin();

19 return 0;

20 }

Sample output:

Type on the keyboard whilst I wait...

Type something; then press Ctrl+C. The Ctrl+C quits the program, and then you’ll
see the text you typed appear at the prompt.

Also See
flushinp(), qiflush(), typeahead()

336 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 336

isendwin()

The isendwin() function is used to determine whether NCurses visual mode
has not been reactivated after a call to the endwin() function has been made.

Explanation
Though endwin() is officially the “End of NCurses Program” function, it’s
still possible to use NCurses functions after the endwin() call has been made.

For example, endwin() can be used to suspend NCurses visual mode and
return to tty mode. Afterwards, any subsequent calls to refresh() or doup-
date() restore NCurses visual mode, meaning that though endwin() has
been called, NCurses functions are still being used. (The endwin() function
still needs to be called when the program really does quit.)

The isendwin() function returns TRUE if endwin() has been called and
the program has not re-activated NCurses visual mode. isendwin() returns
FALSE if endwin() has been called and followed by a refresh() or doup-
date() function to once again activate NCurses visual mode.

Man Page Format
bool isendwin(void);

Format Reference
The function has no arguments.

Return Value
A Boolean value, either TRUE or FALSE, both of which are defined in
NCURSES.H.
TRUE is returned when the endwin() function has been called and NCurses

visual mode has been restarted by a refresh() or doupdate() function.
FALSE is returned when endwin() has been called and NCurses has not

returned to visual mode.

Notes
Do not use this function to determine whether or not NCurses is in visual mode.
FALSE is returned when isendwin() is called before endwin() has been

issued.

Appendix A ■ NCurses Library Reference 337

18_107591 appa.qxp 1/12/07 9:08 PM Page 337

Calling isendwin() before initscr() or newterm() has initialized
NCurses isn’t necessarily a Bad Thing; like other NCurses functions used out-
side of initialization it will merely return FALSE.

I refer to this as the “Is it really over?” function.

Examples
endwin();

if(isendwin())

The if condition evaluates to TRUE because the endwin() function was
just issued.

endwin();

refresh();

if(isendwin())

The if condition evaluates to FALSE because although the endwin() func-
tion has been issued, the refresh() function has restarted NCurses visual
mode.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 addstr(“Press Enter to temporarily suspend this program:\n”);

8 refresh();

9 getch();

10

11 endwin();

12

13 fputs(“Program suspended...”,stdout);

14 if(isendwin())

15 fputs(“isendwin() returns TRUE...”,stdout);

16 else

17 fputs(“isendwin() returns FALSE...”,stdout);

18 puts(“Press Enter:”);

19 fflush(stdout);

20 getch();

21

22 addstr(“Now NCurses visual mode has been restarted ;

after endwin().\n”);

23 if(isendwin())

338 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 338

24 addstr(“isendwin() returns TRUE.\n”);

25 else

26 addstr(“isendwin() returns FALSE.\n”);

27 refresh();

28 getch();

29

30 endwin();

31 return 0;

32 }

Sample output:

Press Enter to temporarily suspend this program:

Press Enter and the program ends. You see:

Program suspended...isendwin() returns TRUE...Press Enter:

Press Enter:

Press Enter to temporarily suspend this program:

Now NCurses visual mode has been restarted after endwin().

isendwin() returns TRUE.

Also See
endwin()

is_linetouched()

The is_linetouched() function determines whether a line of text in a win-
dow has been altered since the last screen update.

Explanation
NCurses keeps track of which portions of a window have been changed since
the last refresh(). The is_linetouched() function determines whether
or not any text on a given line (row) of text has been modified since that
refresh(). If so, the function returns TRUE, FALSE otherwise.

Man Page Format
bool is_linetouched(WINDOW *win, int line);

Appendix A ■ NCurses Library Reference 339

18_107591 appa.qxp 1/12/07 9:08 PM Page 339

Format Reference
win is an NCurses window, either stdscr for the standard screen or the name
of a WINDOW variable returned from a function that creates new windows.
line is an int value indicating which row (line) to check for updates. Val-

ues range from 0 for the top row to the maximum rows in a window.

Return Value
The value returned by is_linetouched() is one of the following constants
declared in NCURSES.H:

■■ TRUE, indicating that the line has been modified since the last
refresh()

■■ FALSE, indicating that the line and the current screen match up (or
should match up as far as NCurses is concerned)

■■ ERR, which happens when an invalid line number is specified

Notes
The is_linetouched() function is merely a tool you can use to determine
whether or not a row of text has been updated since the last refresh().
Using the is_linetouched() function does not force NCurses to update the
screen but rather indicates which line will be updated on the next refresh.
is_linetouched() works best after a recent refresh. For example, when a

window is just created, or initscr() has created the standard screen, then
effectively all lines in the window are touched. Only after issuing a recent
refresh() does the is_linetouched() function become truly useful.

The is_linetouched() function always returns TRUE after the
touchline() function is used. See touchline().

Example
if(is_linetouched(alpha,0));

Here, the if test passes when modifications have been made to line 0 in
window alpha.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

340 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 340

5 WINDOW *hide;

6 int row;

7

8 initscr();

9 hide = newwin(0,0,0,0);

10

11 refresh(); /* Initial write of the standard ;

screen */

12 waddstr(hide,”Changes are being made to the standard ;

screen\n”);

13 mvaddstr(3,5,”Change!”);

14 mvaddstr(10,60,”Change!”);

15 mvaddstr(20,40,”Change!”);

16 waddstr(hide,”Press Enter to see which rows have been ;

changed:\n”);

17 wrefresh(hide);

18 getch();

19

20 for(row=0;row<LINES;row++)

21 {

22 if(is_linetouched(stdscr,row))

23 wprintw(hide,”Line %d has been updated.\n”,row);

24 }

25 wrefresh(hide);

26 getch();

27

28 endwin();

29 return 0;

30 }

Sample output:

Changes are being made to the standard screen

Press Enter to see which rows have been changed:

Line 3 has been updated.

Line 10 has been updated.

Line 20 has been updated.

Also See
touchline(), wtouchln(), is_wintouched(), refresh()

is_wintouched()

The is_wintouched() function helps determine whether any part of a win-
dow has been changed or updated since the last refresh().

Appendix A ■ NCurses Library Reference 341

18_107591 appa.qxp 1/12/07 9:08 PM Page 341

Man Page Format
bool is_wintouched(WINDOW *win);

Format Reference
win is the name of the window to examine.

Return Value
The function returns TRUE when the window has been changed, FALSE other-
wise. TRUE and FALSE are defined in NCURSES.H.

Notes
A window is considered touched immediately after it’s created or, in the case
of stdscr, immediately after the initscr() function. On such a new win-
dow, the is_wintouched() function always returns TRUE. Therefore, it’s
best to use is_wintouched() after a refresh() or wrefresh() call is
made for a specific window.
is_wintouched() always returns TRUE after the touchwin() function is

used. See touchwin().
The is_wintouched() function does not force NCurses to update a win-

dow on the next call to refresh(). Instead, is_wintouched() is merely a
tool you can use to determine whether or not a window has been modified since
the last refresh or whether a refresh for a particular window is really necessary.

Example
if(is_wintouched(stdscr));

This if test is true when the standard screen has been updated since the last
call to refresh().

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *fred;

6

7 initscr();

8 fred = newwin(0,0,0,0);

9

342 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 342

10 wrefresh(fred); /* Initial write of fred */

11 waddstr(fred,”Hello?”);

12 addstr(“The window ‘fred’ “);

13 if(is_wintouched(fred))

14 addstr(“has”);

15 else

16 addstr(“has not”);

17 addstr(“ been changed since the last refresh().\n”);

18 refresh();

19 getch();

20

21 endwin();

22 return 0;

23 }

Sample output:

The window ‘fred’ has been changed since the last refresh().

Also See
touchwin(), untouchwin(), is_linetouched(), refresh()

keyname()

The keyname() function returns a string representing the character or key
code associated with a specific value.

Man Page Format
char *keyname(int c);

char *key_name(wchar_t w);

Format Reference
c is an int value representing a specific character code.
wchar_t w is used to represent wide character formats with the key_name()

variation of this function.

Return Value
A string, char pointer, representing the character, control code, meta code, or
keyboard constant for the key code specified. NULL is returned on error.

Appendix A ■ NCurses Library Reference 343

18_107591 appa.qxp 1/12/07 9:08 PM Page 343

Notes
Codes corresponding to ASCII control codes are displayed using their corre-
sponding alphabetic or punctuation symbol, prefixed by the ^ symbol.

Extended ASCII codes are displayed prefixed by M- (for meta), followed by
their corresponding ASCII code characters.
keyname() also returns the constant name defined for special keys on the

keyboard, such as KEY_UP. While KEY_UP is defined in NCURSES.H as a spe-
cific value, when that value (the KEY_UP constant) is used with keyname(),
the string “KEY_UP” is returned, and similarly for other special keyboard keys
and constants.

Example
ckey = keyname(v);

Here, the string returned by keyname() for the key code in variable v is
saved in the char pointer variable ckey.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int c;

6

7 initscr();

8

9 for(c=0;c<255;c++)

10 printw(“%-5s”,keyname(c));

11

12 refresh();

13 getch();

14

15 endwin();

16 return 0;

17 }

Sample output:

^@ ^A ^B ^C ^D ^E ^F ^G ^H ^I ^J ^K ^L ;

^M ^N ^O

^P ^Q ^R ^S ^T ^U ^V ^W ^X ^Y ^Z ^[^\ ;

^] ^^ ^_

! “ # $ % & ‘ () * + , -;

. /

0 1 2 3 4 5 6 7 8 9 : ; < =;

> ?

344 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 344

@ A B C D E F G H I J K L M;

N O

P Q R S T U V W X Y Z [\] ;

^ _

` a b c d e f g h i j k l m;

n o

p q r s t u v w x y z { | };

~ ^?

M-^@ M-^A M-^B M-^C M-^D M-^E M-^F M-^G M-^H M-^I M-^J M-^K M-^L M-;

^M M-^N M-^O

M-^P M-^Q M-^R M-^S M-^T M-^U M-^V M-^W M-^X M-^Y M-^Z M-^[M-^\ ;

M-^] M-^^ M-^_

M- M-! M-” M-# M-$ M-% M-& M-’ M-(M-) M-* M-+ M-, M;

-- M-. M-/

M-0 M-1 M-2 M-3 M-4 M-5 M-6 M-7 M-8 M-9 M-: M-; M-< ;

M-= M-> M-?

M-@ M-A M-B M-C M-D M-E M-F M-G M-H M-I M-J M-K M-L M-M;

M-N M-O

M-P M-Q M-R M-S M-T M-U M-V M-W M-X M-Y M-Z M-[M-\ M-];

M-^ M-_

M-` M-a M-b M-c M-d M-e M-f M-g M-h M-i M-j M-k M-l M-m;

M-n M-o

M-p M-q M-r M-s M-t M-u M-v M-w M-x M-y M-z M-{ M-| M-};

M-~

Also See
unctrl(), addch()

keypad()

The keypad() function allows special keys (nonalphanumeric), function
keys, and cursor control keys to be read by NCurses programs.

Man Page Format
int keypad(WINDOW *win, bool bf);

Format Reference
win is the name of a WINDOW variable, indicating the window through which
special keys can be read, or stdscr for the standard screen. (See getch() for
more information on how the win argument plays out with NCurses input.)
bf is a Boolean value, either TRUE to turn on the read of special keys or

FALSE to disable that feature.

Appendix A ■ NCurses Library Reference 345

18_107591 appa.qxp 1/12/07 9:08 PM Page 345

Return Value
ERR on failure, OK or some value other than ERR on success.

Notes
Many of the special keys keypad() allows your code to monitor are defined
in NCURSES.H and listed in Appendix D.

The operating system may steal special function keys from your program,
intercepting them before your code has a chance to process the key process.
When that’s the case, you can try to use the raw() function in NCurses to get
the function keys passed directly to your program.

On PCs, the Num Lock state must be off for the keys on the numeric keypad
to be read as cursor movement keys, not numbers. Note, however, that xterm
looks to see what’s going on and overlays its own configuration, which may
override this.

Example
keypad(menu,TRUE);

Here, reading of special keys from the keyboard is possible by wgetch()
functions reading input from the window menu.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int ch;

6

7 initscr();

8

9 keypad(stdscr,TRUE);

10 do

11 {

12 ch = getch();

13 switch(ch)

14 {

15 case KEY_DOWN:

16 addstr(“Down\n”);

17 break;

18 case KEY_UP:

19 addstr(“Up\n”);

20 break;

21 case KEY_LEFT:

22 addstr(“Left\n”);

346 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 346

23 break;

24 case KEY_RIGHT:

25 addstr(“Right\n”);

26 default:

27 break;

28 }

29 refresh();

30 } while(ch != ‘\n’);

31

32 endwin();

33 return 0;

34 }

Sample output:

Up

Down

Left

Right

Up

Up

Down

Left

Right

Left

Right

Up

Down

Down

Also See
Chapter 7, Appendix D, getch()

killchar()

The killchar() function returns the character that currently serves as the
terminal’s Killchar, or KILL, key.

Man Page Format
char killchar(void);

Format Reference
The function has no arguments.

Appendix A ■ NCurses Library Reference 347

18_107591 appa.qxp 1/12/07 9:08 PM Page 347

Return Value
A char value is returned, indicating the terminal’s currently set Killchar.

Notes
The Killchar is the key or key combination you press to back up and erase an
entire line of text at the command prompt, resetting the cursor back to the start
of input.

The getstr() functions properly interpret the Killchar.
The cbreak() and raw() modes modify NCurses input functions to

ignore the Killchar’s keys function. When Killchar is input, it’s treated just like
any other character, typically displayed on the screen in the ^c format.

The unctrl() function can be used to translate a control code, such as the
code used for Killchar, into the displayable ^c format.

Example
if(ch == killchar())

The if condition tests true when the value of variable ch is the same as the
terminal’s Killchar.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 char ch = ‘\0’;

6

7 initscr();

8

9 ch = killchar();

10 printw(“The Killchar is 0x%02x or %s\n”,ch,unctrl(ch));

11 refresh();

12 getch();

13

14 endwin();

15 return 0;

16 }

Sample output:

The Killchar is 0x15 or ^U

348 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 348

Also See
erasechar(), cbreak(), raw(), unctrl()

leaveok()

The leaveok() function directs NCurses not to update a window’s virtual
cursor location to the hardware cursor location during a refresh() operation.

Explanation
As part of the refresh operation, NCurses synchronizes a window’s virtual cur-
sor location with the hardware location on the screen. When the leaveok()
function is activated for a window (set TRUE), then NCurses does not synchro-
nize the cursor’s position for the window; the hardware cursor’s position then
remains where it was or ends up in some other location.

Man Page Format
int leaveok(WINDOW *win, bool bf);

Format Reference
win is a WINDOW variable indicating which window leaveok() is to monitor.
The cursor’s location for win will not be updated when win is refreshed.
bf is a Boolean value, either TRUE to have the cursor position not updated

during a refresh, or FALSE to have the cursor position updated. Most win-
dows are preset to FALSE.

Return Value
The function always returns OK.

Notes
The location where the cursor ends up cannot be predicted in advance. In fact,
in my experience you should not rely on the cursor being or staying anywhere
when leaveok() is TRUE.

The cursor’s location on one window does not affect the cursor’s location on
another window.

Appendix A ■ NCurses Library Reference 349

18_107591 appa.qxp 1/12/07 9:08 PM Page 349

The leaveok() function can be issued any time after a window has been
created and before it’s refreshed.
leaveok() can save overhead for those programs that don’t rely upon the

cursor or need a cursor blinking on the screen in any particular spot.
leaveok() does not hide the cursor. For that you need to use the

curs_set() function (and hope that your terminal supports it).

Examples
leaveok(stdscr,TRUE);

Here, the statement directs NCurses not to synchronize the hardware cursor
with the virtual cursor location on the standard screen.

leaveok(help,FALSE);

This statement isn’t needed, as FALSE is the normal condition for a window.
However, if a previous leaveok() function set leaveok() to TRUE for the
window help, then the statement restores the window’s cursor back to nor-
mal updating.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6 start_color();

7 init_pair(1,COLOR_WHITE,COLOR_BLUE);

8

9 addstr(“This is the standard screen as it normally ;

appears.\n”);

10 addstr(“The cursor is synchronized ->”);

11 refresh();

12 getch();

13

14 leaveok(stdscr,TRUE);

15 bkgd(COLOR_PAIR(1));

16 addstr(“\n\nThe cursor is now not being updated.\n”);

17 addstr(“This means that its position could be anywhere.\n”);

18 refresh();

19 getch();

20

21 endwin();

22 return 0;

23 }

350 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 350

Sample output:

This is the standard screen as it normally appears.

The cursor is synchronized ->

The cursor appears after the >. Press Enter and the screen is painted white-on-blue,
and the cursor blinks in the lower-right corner (well, on my screen).

The cursor is now not being updated.

This means that its position could be anywhere.

Also See
refresh(), curs_set(), getsyx()

LINES

The LINES constant is an int value set internally by NCurses to represent the
number of rows, or lines, available on the standard screen.

Man Page Format
Not applicable.

Format Reference
LINES works like any C language constant. It can be used as an immediate
value, in a comparison, or in combination with other values.

Return Value
The value of LINES depends on the number of rows in the terminal or stan-
dard screen, stdscr.
LINES is an int.

Notes
Most standard terminal windows have either 24 or 25 rows.

Do note that with terminal windows in graphical environments, terminals
can be just about any size. Also, some text screens have the ability to show 30,
40, 50, or even more rows.

Appendix A ■ NCurses Library Reference 351

18_107591 appa.qxp 1/12/07 9:08 PM Page 351

ROWS is a variable, not a constant. Note that changing the value of ROWS
does not re-size the standard screen or terminal window.

Normally NCurses sets LINES equal to the LINES environment variable.
This can be changed by using the use_env() function. See use_env().

Use the getmaxyx() function to determine the number of rows in any
NCurses window.

Yeah, this should really be ROWS, but who am I?

Examples
printw(“This screen has only %d rows.\n”,LINES);

Here, the printw() function displays the value of LINES in a string of text
put to the screen.

if(LINES<25)

This statement tests to see if the value of LINES is less than 25. If so, then the
next block of statements are executed.

Sample Program
Refer to the entry for COLS for a sample program and output.

Also See
COLS, getmaxyx(), use_env()

longname()

The longname() function returns a string describing the current terminal.

Man Page Format
char *termname(void);

Format Reference
The function has no arguments.

352 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 352

Return Value
A string representing information about the terminal. On error, NULL is
returned.

Notes
It’s best to call longname() after the initscr() or newterm() function has
been used.

The termname() function returns only the terminal’s name, which may be
part of the string returned by longname().

The string longname() returns is the verbose terminal description —
but not that verbose! The maximum number of characters returned by
longname() is 128, which includes the trailing \0.

Other functions that return information about the terminal include
baudrate(), erasechar(), killchar(), has_il(), has_ic(),
termattrs(), and termname().

Example
tp = longname();

Here, the memory location of the string returned by the longname() func-
tion is saved in the tp pointer.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 addstr(“Here is the longname() information:\n”);

8 addstr(longname());

9 refresh();

10 getch();

11

12 endwin();

13 return 0;

14 }

Sample output:

Here is the longname() information:

generic color xterm

Appendix A ■ NCurses Library Reference 353

18_107591 appa.qxp 1/12/07 9:08 PM Page 353

Also See
termname()

meta()

The meta() function controls whether the keyboard is read in 7-bit or 8-bit
mode.

Explanation
Meta comes from old terminal keyboards that had a Meta key, similar to the
Alt key on a PC or the Command key on a Mac. The Meta key was a special
shift key used in combination with other keys to allow for extended input of
keyboard commands. In many cases, the Meta key merely added the 8th bit on
input of standard keys. So the U key, which has a 7-bit value of 1010101
would have the 8-bit value 11010101 when input with the Meta key pressed.

Man Page Format
int meta(WINDOW *win, bool bf);

Format Reference
win is the name of a WINDOW variable representing a window on the screen.
The man page says that this argument, however, is ignored.
bf is a Boolean value, TRUE to enable the reading of the 8th bit on input,

FALSE to restrict character input to 7 bits.

Return Value
ERR on failure, or OK or a value other than ERR on success.

Notes
Setting meta() TRUE is the same as setting the CS8 flag for the terminal in
POSIX.

When the meta_off/rmm and meta_on/smm abilities are defined for the
terminal, NCurses sends those signals to the terminal when you call meta():
smm is sent for meta() TRUE, and rmm is sent for meta() FALSE.

354 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 354

Eight-bit characters can be input on the PC by using the Alt key pad. Press-
ing and holding the Alt key, type a meta key value between 128 and 255 on the
keypad. Release the Alt key to generate that key value.

Example
meta(win,TRUE);

The statement allows for 8-bit character input in the window win.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int c;

6

7 initscr();

8

9 meta(stdscr,TRUE);

10 addstr(“Input is now 8 bits wide.\n”);

11 refresh();

12 c = getch();

13 printw(“\nAnd getch() reads the value %d.\n”,c);

14 meta(stdscr,FALSE);

15 addstr(“Input is now 7 bits wide.\n”);

16 refresh();

17 c = getch();

18 printw(“\nAnd getch() reads the value %d.\n”,c);

19

20 refresh();

21 getch();

22

23 endwin();

24 return 0;

25 }

Sample output:

Input is now 8 bits wide.

?

And getch() reads the value 197.

Input is now 7 bits wide.

~S

And getch() reads the value 19.

Appendix A ■ NCurses Library Reference 355

18_107591 appa.qxp 1/12/07 9:08 PM Page 355

Also See
getch()

MEVENT

NCurses uses the MEVENT structure to store information about a specific
mouse event. The getch() function is used to determine when a mouse event
has taken place. After that, getmouse() reads information about the mouse
event and stores that data into a MEVENT structure. The program can then read
data from the MEVENT structure to see what happened and act accordingly.

Man Page Format
Not applicable.

Format Reference
MEVENT is a structure defined in NCURSES.H. It has the following components:

short id;

int x, y, z;

mmask_t bstate;

id is a short int value used to make a distinction between multiple point-
ing devices, for example on a laptop with both a mouse pad and external
mouse.
x is an int value representing the column in which the mouse pointer was

at during the event. Values start at 0 for the leftmost column.
y is an int value representing the row in which the mouse pointer was at

during the event. Values start at 0 for the top row.
z is an int value reserved for future use, though it might be for reading the

wheel button.
bstate is a mmask_t (long int) value representing the mouse’s button

state at the time of the event. mmask_t values and their defined constants are
listed in Table A-10.

Return Value
Not applicable.

356 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 356

Table A-10: Mouse action constant values

MOUSE ACTION CONSTANT VALUE

BUTTON1_RELEASED 0x1

BUTTON1_PRESSED 0x2

BUTTON1_CLICKED 0x4

BUTTON1_DOUBLE_CLICKED 0x8

BUTTON1_TRIPLE_CLICKED 0x10

BUTTON1_RESERVED_EVENT 0x20

BUTTON2_RELEASED 0x40

BUTTON2_PRESSED 0x80

BUTTON2_CLICKED 0x100

BUTTON2_DOUBLE_CLICKED 0x200

BUTTON2_TRIPLE_CLICKED 0x400

BUTTON2_RESERVED_EVENT 0x800

BUTTON3_RELEASED 0x1000

BUTTON3_PRESSED 0x2000

BUTTON3_CLICKED 0x4000

BUTTON3_DOUBLE_CLICKED 0x8000

BUTTON3_TRIPLE_CLICKED 0x10000

BUTTON3_RESERVED_EVENT 0x20000

BUTTON4_RELEASED 0x40000

BUTTON4_PRESSED 0x80000

BUTTON4_CLICKED 0x100000

BUTTON4_DOUBLE_CLICKED 0x200000

BUTTON4_TRIPLE_CLICKED 0x400000

BUTTON4_RESERVED_EVENT 0x800000

BUTTON_CTRL 0x1000000

BUTTON_SHIFT 0x2000000

BUTTON_ALT 0x4000000

ALL_MOUSE_EVENTS 0x7ffffff

REPORT_MOUSE_POSITION 0x8000000

Appendix A ■ NCurses Library Reference 357

18_107591 appa.qxp 1/12/07 9:08 PM Page 357

Notes
The actions the mouse can perform are defined as constants in NCURSES.H.
Table A-10 lists them, along with their long int values. Please do note that
these values may change in the future as more mouse abilities come to be mon-
itored in NCurses.

Examples
MEVENT me;

The statement creates a MEVENT structure named me.

getmouse(&me)

The getmouse() function above reads information about the most recent
mouse event and stores it in the MEVENT structure me.

row = me.y;

col = me.x;

The two statements read the values of the mouse’s row and column loca-
tions from the MEVENT structure me. The row location is saved in the variable
row; the column location is saved in the variable col.

Sample Program
Refer to the entry for getmouse() for a sample program and output.

Also See
Chapter 13, getmouse(), mousemask()

mouse_trafo()

The mouse_trafo() function helps translate mouse coordinates between the
screen and the standard screen.

Man Page Format
bool mouse_trafo(int* pY, int* pX, bool to_screen);

bool wmouse_trafo(const WINDOW* win, int* pY, int* pX, bool to_screen);

358 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 358

Format Reference
pY and pX are the addresses of int variables. pY holds the row value of a
screen coordinate, pX holds the column value.
to_screen is a Boolean value, either TRUE or FALSE. When to_screen is

TRUE, the coordinates pY and pX are converted from the window’s coordinates
to the screen’s coordinates. When to_screen is FALSE, the coordinates are
converted from the screen’s coordinates into the window’s coordinates.

Refer to the w entry later in this appendix for information on the win argument.

Return Value
The function returns a Boolean value, either TRUE upon success or FALSEwhen
one of the coordinates is NULL or the coordinates are outside the window.

Notes
This isn’t an easy one to figure out, but the Sample Program should help.

The function is called with pY and pX already filled with a set of coordi-
nates. When the function is successful, new coordinates are put into those vari-
ables. Otherwise, when the function fails, the coordinate pair is unchanged.

Functions such as ripoffline() and slk_init() affect the size of the
standard screen, meaning that mouse_trafo() might be necessary to check
the mouse event coordinates for such a reduced-size standard screen.

Example
if (mouse_trafo(&ry,&rx,FALSE))

Here, the ry and rx variables contain the coordinates of a mouse
click obtained from the MEVENT structure, read by getmouse(). The
mouse_trafo() function translates those coordinates from screen-relative to
window-relative. When the translation is successful, the condition passes and
the if statement(s) are then executed.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *tinkie;

6 MEVENT mwhat;

Appendix A ■ NCurses Library Reference 359

18_107591 appa.qxp 1/12/07 9:08 PM Page 359

7 int ch,row,col;

8

9 initscr();

10 noecho();

11 mousemask(ALL_MOUSE_EVENTS,NULL);

12

13 tinkie = newwin(LINES-4,COLS-4,2,1);

14 keypad(tinkie,TRUE);

15

16 while(1)

17 {

18 ch = wgetch(tinkie);

19 if(ch == KEY_MOUSE)

20 {

21 getmouse(&mwhat);

22 row = mwhat.y;

23 col = mwhat.x;

24 wmouse_trafo(tinkie,&row,&col,FALSE);

25 mvwaddch(tinkie,row,col,’*’);

26 refresh();

27 continue;

28 }

29 if(ch == ‘\n’)

30 break;

31 }

32

33 endwin();

34 return 0;

35 }

Sample output:
The mouse clicks produce an asterisk, *, in the window tinkie. The

mouse_trafo() function helps translate the coordinates from screen-relative to rel-
ative to the window, meaning that the asterisks show up where the mouse is clicked.
(Recompile with FALSE in line 24 to see the difference.)

Also See
getmouse()

mousemask()

The mousemask() function determines which mouse events are to be moni-
tored for those programs that use the mouse.

360 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 360

Explanation
A mouse event is some type of action done with the mouse. It includes press-
ing, releasing, clicking, double-clicking, and triple-clicking for up to four
mouse buttons, as well as using the Ctrl, Shift, or Alt keys while clicking. Refer
to Table A-10 for the full list.

The mousemask() function merely determines which or how many of the
various mouse events a program is to monitor. The actual reading of the mouse
events is done through a combination of the getch() and getmouse() func-
tions. See getmouse().

Additionally, the mousemask() function can be used to determine whether
or not a given terminal can read the mouse. Refer to the Sample Program.

Man Page Format
mmask_t mousemask(mmask_t newmask, mmask_t *oldmask);

Format Reference
newmask is a mmask_t variable (long int), representing the mouse actions
your program monitors. Mouse action constants are defined in the
NCURSES.H file and listed in the Notes section. Multiple actions are specified
in the newmask argument by using a | (logical OR) between the constants. Or
the ALL_MOUSE_EVENTS value can be used to monitor all mouse actions.
oldmask, also an mmask_t variable, can be a previous value returned from

the mousemask() function, but mostly NULL is specified in its place.

Return Value
The value returned by mousemask() is an mmask_t variable representing the
mouse actions mousemask() will be monitoring, specifically those actions
your terminal is capable of monitoring. Therefore it’s important to check this
value to determine that your program is using those mouse actions you need.

Notes
Setting the value of newmask to zero has the effect of turning off the mouse
pointer.

Mouse button constants are listed in Table A-11. In Table A-12 you’ll find a
list of multi-click functions. Finally, Table A-13 lists keyboard shift states that
can be logically OR’d with other mouse states.

Appendix A ■ NCurses Library Reference 361

18_107591 appa.qxp 1/12/07 9:08 PM Page 361

Table A-11: Mouse action constant values

BUTTON UP/RELEASED DOWN/PRESSED DOWN-UP/CLICKED

1 BUTTON1_RELEASED BUTTON1_PRESSED BUTTON1_CLICKED

2 BUTTON2_RELEASED BUTTON2_PRESSED BUTTON2_CLICKED

3 BUTTON3_RELEASED BUTTON3_PRESSED BUTTON3_CLICKED

4 BUTTON4_RELEASED BUTTON4_PRESSED BUTTON4_CLICKED

Table A-12: Mouse action constants

BUTTON DOUBLE-CLICKED TRIPLE-CLICKED RESERVED EVENT

1 BUTTON1_DOUBLE_ BUTTON1_TRIPLE_ BUTTON1_
CLICKED CLICKED RESERVED_EVENT

2 BUTTON2_DOUBLE_ BUTTON2_TRIPLE_ BUTTON2_
CLICKED CLICKED RESERVED_EVENT

3 BUTTON3_DOUBLE_ BUTTON3_TRIPLE_ BUTTON3_
CLICKED CLICKED RESERVED_EVENT

4 BUTTON4_DOUBLE_ BUTTON4_TRIPLE_ BUTTON4_
CLICKED CLICKED RESERVED_EVENT

Table A-13: Mouse action constants (continued)

ACTION CONSTANT

Control key pressed during button up/down BUTTON_CTRL

Shift key pressed during button up/down BUTTON_SHIFT

Alt key pressed during button up/down BUTTON_ALT

All events ALL_MOUSE_EVENTS

Examples
mousemask(ALL_MOUSE_EVENTS);

The statement directs NCurses to scan for all available mouse events.

mmask = mousemask(ALL_MOUSE_EVENTS);

Here, the statement saves the return value of mousemask() to the mmask_t
variable mmask. Then mmask can be used later to check for which mouse
events are available.

362 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 362

mousemask(BUTTON1_CLICKED | BUTTON_CTRL);

The statement directs NCurses to monitor both the button 1 click as well as
the button 1 click with the keyboard’s Ctrl (control) key pressed.

Sample Program
Refer to the entry for getmouse() for a sample program and output.

Also See
Chapter 13, getmouse(), MEVENT

move()

The move() function relocates the cursor to the given row and column coor-
dinates.

Man Page Format
int move(int y, int x);

int wmove(WINDOW *win, int y, int x);

Format Reference
y is an int value representing the number of the row to which to move
the cursor. Values range from 0 for the top row, to whatever the size of the
window.
x is an int value representing the number of the column to which the cur-

sor is moved. Values range from 0 for the left-most column, to the width of the
window.

Refer to the entry for w later in this appendix for more information on the
win argument.

Return Value
ERR upon failure, or OK on success, though values other than ERR may also be
returned upon success.

Notes
move() is a pseudo function, representing wmove(stdscr,row,col).

The row, or y, argument comes first.

Appendix A ■ NCurses Library Reference 363

18_107591 appa.qxp 1/12/07 9:08 PM Page 363

Location 0, 0 is the home position, the upper-left corner of a window.
The function fails when it attempts to place the cursor outside the bounds of

the window.
Use the getmaxyx() function to determine the size of the window

and, therefore, the bounds for row and col in the move() function.
But remember that the first row and column in a window are numbered 0
(zero), not 1.

Most functions that place text to the screen also advance the cursor.
The mv and mvw prefix functions both more the cursor as well as place text.

Examples
move(0,0);

The statement homes the cursor on the standard screen.

wmove(menu,xmax/2,ymax/2);

After the statement, the cursor is placed at the center of the window menu,
assuming the xmax and ymax represent the maximum values for the rows and
columns for that window.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 addstr(“Putting an asterisk at location 10,50:”);

8 move(10,50);

9 addch(‘*’);

10 refresh();

11 getch();

12

13 endwin();

14 return 0;

15 }

Sample output:

Putting an asterisk at location 10, 50:

And an asterisk appears at that position on the standard screen.

364 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 364

Also See
Chapter 4, mv prefix, curs_set(), mvcur(), getyx(), getmaxyx()

mv prefix functions

Nearly all NCurses text output functions come with a variation prefixed by
mv. The mv means that the function includes a new cursor location. This saves
typing over having to use a move() function before using a standard text out-
put function; both functions are combined into one.

Format
The mv prefix functions feature y and x as their first arguments.
y is the vertical or row position at which to place the character. Zero repre-

sents the top row. The maximum value for y depends on the window’s height.
x is the horizontal or column position at which to place the character. Zero

represents the far left column. The maximum value for x depends on the win-
dow’s width.

Refer to the individual functions elsewhere in this appendix for information
on other arguments listed.

Return Value
All the mv-prefixed functions shown earlier return either OK or ERR. Normally,
these values aren’t checked; however, it’s a good idea to check them with the
mv-prefixed functions — especially when there is a possibility that a character
would be placed outside a window’s boundary.
OK and ERR are defined in NCURSES.H.

Notes
The functions mvwin() and mvderwin() are not mv-prefix functions.

While the mv prefix functions save typing, using them is not more efficient
nor saves any time over using the separate move() function before an output
function.

Also See
addch(), addchstr(), addstr(), and so on

Appendix A ■ NCurses Library Reference 365

18_107591 appa.qxp 1/12/07 9:08 PM Page 365

mvderwin()

The mvderwin() function uses a subwindow to display a different portion of
the parent window. It does not really move anything other than data.

Explanation
Subwindows share memory with their parent. Therefore, moving a subwindow
doesn’t really do anything. Instead, what this function does is allow you to dis-
play a different portion of the parent window in the subwindow rectangle.

Man Page Format
int mvderwin(WINDOW *win, int par_y, int par_x);

Format Reference
win is the name of a WINDOW variable representing a subwindow.
par_y is an int value representing the row value of a coordinate in the par-

ent window.
par_x is an int value representing the column value of a coordinate in the

parent window.

Return Value
OK on success or ERR upon failure.

Notes
The mvderwin() function takes a rectangle of text from the parent window at
location par_y, par_x, with the same width and depth as the subwindow, as
copies that text into the subwindow’s location.

This function also copies any text attributes from the source location in the
parent window to the subwindow, overwriting any attributes already in
the subwindow.
mvderwin() updates a window inside a subwindow in much the same

manner as prefresh() updates a portion of a pad inside a window. See
prefresh().

This function works on all subwindows, whether they were created by the
subwin() or derwin() functions.

The mvwin() function is used to move a window. It should not be used on
a subwindow.

366 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 366

According to popular lore on the Internet, “The subwindow functions are
flaky, incompletely implemented, and not well tested.”

Example
mvderwin(sub,5,10);

Here, the statement copies text from location row 5, column 10 in the parent
window and places it into the subwindow sub. The width and depth of the
information copied is equal in size to the subwindow.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *sonny;

6

7 initscr();

8 start_color();

9 init_pair(1,COLOR_WHITE,COLOR_BLUE);

10 init_pair(2,COLOR_RED,COLOR_YELLOW);

11

12 sonny = subwin(stdscr,5,20,10,30);

13

14 bkgd(COLOR_PAIR(1));

15 addstr(“Hello, son.”);

16 wbkgd(sonny,COLOR_PAIR(2));

17 waddstr(sonny,”Hello, Dad!”);

18 refresh();

19 getch();

20

21 mvderwin(sonny,0,0);

22 wbkgd(sonny,COLOR_PAIR(2));

23 wrefresh(sonny);

24 getch(sonny);

25

26 endwin();

27 return 0;

28 }

Sample output:
A yellow subwindow is created with the text Hello, Dad! Press Enter and the

text Hello, son. is copied from the upper-right corner of the parent into the sub-
window via mvderwin().

Appendix A ■ NCurses Library Reference 367

18_107591 appa.qxp 1/12/07 9:08 PM Page 367

Also See
mvwin(), prefresh(), subwin(), derwin()

mvw prefix functions

A host of NCurses text output functions come prefixed by mvw. This combines
the mv and w prefixes, allowing text to be placed at a specific position within a
specific window.

Format
The mvw prefix functions feature win, y, and x as their first arguments.
win is a WINDOW variable, representing a window created earlier in the pro-

gram. Refer to the W Prefix entry later in this appendix for more details.
y and x represent the cursor’s position on the screen. They are int values

for the row and column, ranging from 0 to the height and width of the win-
dow, respectively.

Refer to the individual functions elsewhere in this appendix for information
on the other arguments in the various mvw prefix functions.

Notes
Note that win always comes first, even though mv comes first in the mvw prefix.

The mvwin() function is not an mvw-prefix function.

Also See
addch(), addchstr(), addstr(), and so on

mvwin()

The mvwin() function is used to move a window on the screen, changing its
origin to the coordinates given.

Man Page Format
int mvwin(WINDOW *win, int y, int x);

Format Reference
mvwin(win,row,col)

368 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 368

win is a WINDOW variable referring to the window you want moved.
row is the new starting row for the window’s left edge.
col is the new starting column for the window’s top.
Values for row and col are ints, ranging from 0 for the left/top edge of the

standard screen, on through the dimensions of the standard screen, minus
the size of window win. See LINES and COLS.

Return Value
OK upon success, or ERR on failure. Failure most often occurs when the move
results in part of the window being off-screen. In that case, ERR is returned and
the window remains at its original location.

Notes
The original window is not erased by the move, leading to a “Picard maneu-
ver” type situation where the moved window appears twice on the screen. To
remove the old window, use a touchline() or touchwin() function on the
background window. Refer to the Sample Program.

According to the man page, “moving subwindows is allowed, but should be
avoided.” I’ll go one step further: do not use this function on a subwindow! Also
see mvderwin().

The wmove() function is used to relocate the cursor in a window. See
move().

Example
mvwin(help,ybase+dy,xbase+dx);

The function moves the window help to the new location specified by the
ybase+dy (row) and xbase+dx (column) arguments.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int row,col;

6 WINDOW *peri;

7

8 initscr();

9 start_color();

10 init_pair(1,COLOR_WHITE,COLOR_BLUE);

11

12 peri = newwin(5,30,2,30);

Appendix A ■ NCurses Library Reference 369

18_107591 appa.qxp 1/12/07 9:08 PM Page 369

13 wbkgd(peri,COLOR_PAIR(1));

14 waddstr(peri,”I am the peripatetic window”);

15 wrefresh(peri);

16 getch(peri);

17

18 wtouchln(stdscr,2,5,1);

19 mvwin(peri,12,40);

20 wnoutrefresh(stdscr);

21 wnoutrefresh(peri);

22 doupdate();

23 getch();

24

25 endwin();

26 return 0;

27 }

Sample output:
A blue subwindow appears on the screen. Press Enter and it moves to a new location.

Also See
Chapter 10, touchline()

napms(ms)

The napms() function pauses program execution for a given number of
microseconds (millionth of a second).

Man Page Format
int napms(int ms);

Format Reference
napms(ms)

ms is the number of milliseconds program execution pauses. It’s an int value,
therefore the maximum pause for any computer system depends on the size of
an int. Negative values and 0 result in no pause, but do not produce an error.

Return Value
Always returns OK.

370 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 370

Notes
Yeah, the name is cute: nap ms. Get it? Still, namps is a popular typo.

1000 milliseconds equals 1 second.
napms() is defined as a low-level NCurses function, one of the few docu-

mented in this appendix.

Examples
napms(500);

The statement causes program execution to pause for half a second.

napms(60000);

The statement delays program execution for one minute.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 addstr(“Give me a second...”);

8 refresh();

9 napms(1000);

10 addstr(“...Thanks!\n”);

11 refresh();

12 getch();

13

14 endwin();

15 return 0;

16 }

Sample output:

Give me a second...

A second passes . . .

...Thanks!

Also See
Chapter 2

Appendix A ■ NCurses Library Reference 371

18_107591 appa.qxp 1/12/07 9:08 PM Page 371

NCURSES_MOUSE_VERSION

The NCURSES_MOUSE_VERSION constant is defined in NCURSES.H and set
equal to the NCurses mouse support release version.

Man Page Format
Not applicable.

Format Reference
The NCURSES_MOUSE_VERSION constant returns an int value equal to the
current version of the mouse support software.

Return Value
NCURSES_MOUSE_VERSION is set equal to 2 for the current release of NCurses
as this book goes to press.

Notes
The NCURSES_MOUSE_VERSION constant is used to help programmers deter-
mine mouse support as well as integrate mouse support into their code.

Examples
#ifdef NCURSES_MOUSE_VERSION

/*

* Mouse functions go here

*/

#endif

Here, NCURSES_MOUSE_VERSION is used in a macro to allow mouse access
in a program where NCurses mouse support is available.

printw(“This is NCurses mouse version %d.\n”,NCURSES_MOUSE_VERSION);

The printw() function displays the text This is NCurses mouse ver-
sion followed by the current version value.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

372 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 372

4 {

5 initscr();

6

7 if(NCURSES_MOUSE_VERSION > 0)

8 addstr(“This version of NCurses supports the mouse.\n”);

9 else

10 addstr(“This version of NCurses does not support ;

the mouse.\n”);

11 refresh();

12 getch();

13

14 endwin();

15 return 0;

16 }

Sample output:

This version of NCurses supports the mouse.

Also See
Chapter 13, NCURSES_VERSION, mousemask(), getmouse()

NCURSES_VERSION

NCURSES_VERSION is one of a series of constants defined in NCURSES.H that
describe which version of NCurses is being used.

Explanation
NCurses version constants are employed in programs that rely upon version-
specific NCurses commands, typically used with various preprocessor direc-
tives to selectively compile code, though they can also be used as immediate
values.

Man Page Format
Not applicable.

Format Reference
NCURSES_VERSION

NCURSES_VERSION_MAJOR

NCURSES_VERSION_MINOR

NCURSES_VERSION_PATCH

Appendix A ■ NCurses Library Reference 373

18_107591 appa.qxp 1/12/07 9:08 PM Page 373

The NCURSES_VERSION constant contains a string specifying NCurses
major and minor versions.

The NCURSES_VERSION_MAJOR constant contains NCurses major version
number.

The NCURSES_VERSION_MINOR constant contains NCurses minor version
number.

The NCURSES_VERSION_PATCH constant contains NCurses most recent
patch number.

Return Value
The values the constants contain depend on the release of NCurses, obviously.
Otherwise:

■■ NCURSES_VERSION is a string value, such as 5.4.

■■ NCURSES_VERSION_MAJOR is a numeric value, such as 5.

■■ NCURSES_VERSION_MINOR is a numeric value, such as 4.

■■ NCURSES_VERSION_PATCH is a numeric value combining the year,
month and day of the most recent NCurses patch release, such as
20040208. (This value is also defined for release versions of NCurses.)

Notes
You can find newer versions of Curses (well, NCurses) at:

http://ftp.gnu.org/pub/gnu/ncurses/

A constant CURSES also exists, which is set to 1. Your programs should use
the NCURSES_VERSION... constants instead.

Examples
printw(“This is NCurses version %s.\n”,NCURSES_VERSION);

Here, the printw() function displays the text This is NCurses version
followed by the current version string.

if(NCURSES_VERSION_MAJOR<5)

The if test checks to ensure that the user’s version of NCurses is at least
major release 5.

374 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 374

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 #ifdef NCURSES_VERSION

8 printw(“This is NCurses version %s.%d.\n”,\

9 NCURSES_VERSION,NCURSES_VERSION_PATCH);

10 #else

11 printw(“You are apparently not using NCurses.\n”);

12 #endif

13 refresh();

14 getch();

15

16 endwin();

17 return 0;

18 }

Sample output:

This is NCurses version 5.4.20040208.

Also See
curses_version()

newpad()

The newpad() function is used to create a special type of window storage area
called a pad.

Explanation
Pads work a lot like windows, though they’re not displayed on the screen as
such. Instead, the pad exists in memory and only chunks of it at a time are
written to an actual window on the screen. The main advantage of this
arrangement is that pads can be of any size, even a size greater than the screen.

Man Page Format
WINDOW *newpad(int nlines, int ncols);

Appendix A ■ NCurses Library Reference 375

18_107591 appa.qxp 1/12/07 9:08 PM Page 375

Format Reference
nlines is an int value indicating the number of rows the pad will have. Val-
ues for nlines range from 1 on up to 32767, or the value of NCURSES_SIZE_T
(normally defined as a short)..
ncols is an int value indicating the number columns for the new pad. Val-

ues range from 1 on up to 327676, or the value of NCURSES_SIZE_T.

Return Value
Upon successful creation of a new pad, a WINDOW pointer is returned. NULL is
returned when there is a problem.

Notes
It’s the prefresh() function that determines which part of a pad appears on
a window. See prefresh().

The symbol NCURSES_SIZE_T can be modified, though not casually. By
doing so you can change the maximum size of a pad. Do keep in mind that
NCurses applications are limited to short integers.

All text output and formatting commands work with a pad just as they do
any window.

The getch() and getch() functions can be used with a pad, but unlike a
window the input will not be displayed. Pads are not automatically updated
with those functions, whereas regular windows are.

Pads cannot be scrolled. Do not use scrollok(), scroll() or scrl()
with a pad.

Pads cannot be moved. Do not use mvwin() with a pad.
Do not use wrefresh() or wnoutrefresh() with a pad.
Pads cannot have subwindows; do not use subwin() with a pad. Instead,

use subpad() to create a subpad. See subpad() for additional information
and warnings.

Pads are removed by using the delwin() function, just as windows are
removed. See delwin().

Examples
p = newpad(200,WIDE+1);

The statement creates a pad with 200 rows and WIDE+1 columns. If success-
fully created, variable p is used like any other WINDOW variable to reference the
pad in the code.

376 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 376

tinypad = newpad(2,10);

Here, a pad with 2 rows and 10 columns is created. Such a small pad could
be used as off-screen storage.

doc = newpad(LINES,COLS+40);

The doc pad created here is as tall as the standard screen, but 40 characters
wider. This type of pad could be used to facilitate sideways scrolling —
coupled with adept programming and use of the prefresh() function.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *p;

6

7 initscr();

8

9 p = newpad(50,100); /* create a new pad */

10 if(p == NULL)

11 {

12 endwin();

13 puts(“Unable to create new pad”);

14 return(1);

15 }

16

17 addstr(“New pad created\n”);

18 refresh();

19 getch();

20

21 endwin();

22 return 0;

23 }

Sample output:

New pad created

Also See
Chapter 11, prefresh(), pechochar(), delwin(), subpad()

Appendix A ■ NCurses Library Reference 377

18_107591 appa.qxp 1/12/07 9:08 PM Page 377

newterm()

The newterm() function initializes NCurses for use on a specific terminal,
with a specific terminal configuration, for a one-line terminal, or for multiple
terminals. newterm() is used in place of initscr() when your code needs
to access terminals in a special way.

Man Page Format
SCREEN *newterm(char *type, FILE *outfd, FILE *infd);

Format Reference
type is a string of text representing a terminal type, such as ansi or xterm,
which is what helps facilitate placing stuff on the screen. When NULL is speci-
fied, the value of environmental variable $TERM is used.
outfd is a FILE pointer representing a file opened for output to the terminal.
infd is a FILE pointer representing a file opened for input from the terminal.

Return Value
The function returns a SCREEN pointer, which identifies a screen structure in
memory. It’s through that pointer that NCurses accesses the terminal named
by newterm().

Notes
Use the set_term() function after initializing NCurses with newterm() to
set the output terminal. See set_term().

After everything is set up, you can use NCurses input and output functions
with the new terminal just as you did when initscr() set things up for one
terminal only.

The termname() function can be used to obtain the current terminal name
(the termtype argument), though using NULL seems simple enough. See
termname().

Example
term_a = newterm(“ansi”,fileout,filein);

Here, a new ansi terminal is created using open file handles fileout for
output and filein for input. The resulting NCurses terminal is saved in the

378 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 378

SCREEN pointer term_a. (Also refer to the Sample Program for more of
the setup involved before newterm() can be called.)

Sample Program
1 #include <ncurses.h>

2

3 #define INTERM “/dev/ttyp1”

4 #define OUTTERM “/dev/ttyp2”

5

6 int main(void)

7 {

8 FILE *termin,*termout;

9 SCREEN *tp1,*tp2;

10 char name[81];

11

12 /* Open terminal one for reading

13 Open terminal two for writing */

14 termin = fopen(INTERM,”r”);

15 termout = fopen(OUTTERM,”w”);

16 if(termin==NULL || termout==NULL)

17 {

18 puts(“Unable to open terminal.”);

19 return(1);

20 }

21

22 /* set up the new terminal in NCurses */

23 tp2 = newterm(NULL,termout,termin);

24 if(tp2 == NULL)

25 {

26 puts(“Unable to open terminal window.”);

27 return(2);

28 }

29

30 /* NCurses is now started for the new terminal */

31 tp1 = set_term(tp2);

32 printw(“Welcome to NCurses output on terminal %s.\n”,OUTTERM);

33 printw(“You can type on terminal %s, and see it ;

here.\n”,INTERM);

34 addstr(“What is your name: “);

35 refresh();

36 getnstr(name,80);

37 printw(“%s, glad to have you aboard!”,name);

38 refresh();

39 getch();

40

41 endwin();

42 return 0;

43 }

Appendix A ■ NCurses Library Reference 379

18_107591 appa.qxp 1/12/07 9:08 PM Page 379

NOTE Specify the proper terminal device names and types in lines 3 and 4. I
used the names of the virtual terminals on the screen in Mac OS X. The terminal
names you use should be two screens you can access and see on your console.

Sample output:
If possible, configure the two terminal windows so that you can see both at once.

Make sure no programs are running on the second terminal. On the second terminal,
you’ll see:

Welcome to NCurses output on terminal /dev/ttyp2.

You can type on terminal /dev/ttyp1, and see it here.

What is your name:

Type your name on the first terminal window and press Enter.

Dan Gookin, glad to have you aboard!

Press Enter to quit the program and restore both windows.

Also See
set_term(), initscr()

newwin()

The newwin() function creates a new window within NCurses.

Man Page Format
WINDOW *newwin(int nlines, int ncols, int begin_y, int begin_x);

Format Reference
nlines is an int value that sets the height of the window in rows. Values
for nlines range from 1 through the height of the standard screen. When 0 is
specified for nlines, the new window’s height will be the same as the stan-
dard screen’s height.
ncols is an int value setting the width of the window in columns. Values

range from 1 through the width of the standard screen. Specifying 0 for ncols
sets the new window’s width to the same as the standard screen’s width.

380 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 380

begin_y is an int value indicating the location of the new window’s top row
relative to the standard screen. Values range from 0 for the top row to the maxi-
mum number of rows on the standard screen minus the new window’s height.
begin_x is an int value indicating the location of the new window’s left-

most column. Values range from 0 for the far left column to the maximum
number of columns on the standard screen minus the new window’s width.

Together, begin_y and begin_x plot the coordinates of the new window’s
upper-left corner. The window’s lower-right corner is calculated by adding the
nlines and ncols values to that coordinate.

Return Value
Upon success, the function returns a pointer referencing a WINDOW structure
in memory. The pointer is used to reference the window in other NCurses
commands.

Upon failure, the pointer is equal to NULL. Failure occurs when the window
is larger than the screen, part of the window does not fit on the screen, or not
enough memory is available to allocate space for the window.

Notes
Refer to Figure 8-1 for a visual representation of how the newwin() function’s
arguments map out onto the screen.

The smallest window possible is a 1-by-1 character window, big enough for
only one character.

The window cannot be larger than the standard screen, nor can the window
be positioned so that part of it extends beyond the edge of the screen’s rectan-
gle. Either condition causes an error (NULL pointer) to be returned by
newwin().

When you need a window larger than the screen, you need a pad. See
newpad().

Refer to the entries for COLS and LINES to get the size of the standard
screen.

The function newwin(0,0,0,0) creates a new window the same size and
position as the standard screen.
newwin() merely creates the new window’s structure and the pointer refer-

ence. It does not display the window’s contents. Use wrefresh() for that task.
The w prefix commands direct output or detect input associated with a par-

ticular window.
Windows can be splashed with color, text attributes, or even a “back-

ground” text character. Refer to the bkgd() function for more info.
To place a box or border around a window, refer to the box() and

border() functions.

Appendix A ■ NCurses Library Reference 381

18_107591 appa.qxp 1/12/07 9:08 PM Page 381

Examples
if((help = newwin(10,30,4,26)) == NULL)

Here, a new window named help is created, being 10 rows high and 30
rows wide and located at position 4, 26 on the standard screen. But the state-
ment is also a comparison, and if that newwin() function fails, then the if test
passes and the next few statements are executed.

a = newwin(halfy,halfx,0,0);

b = newwin(halfy,halfx,0,halfx);

c = newwin(halfy,halfx,halfy,0);

d = newwin(halfy,halfx,halfy,halfx);

These four statements create four windows, a, b, c, and d. Assuming that
halfy and halfx are half the row height and column width of the standard
screen, then the four windows occupy four equal sections of the standard
screen: a in the upper left; b in the upper right; c in the lower left; and d in the
lower right.

Sample Program
1 #include <ncurses.h>

2

3 #define ALPHA_W 30

4 #define ALPHA_H 5

5

6 int main(void)

7 {

8 WINDOW *alpha;

9 int x,y;

10

11 /* set things up */

12 initscr();

13 start_color();

14 init_pair(1,COLOR_WHITE,COLOR_BLUE);

15

16 /* Calculate the window origin coordinates that will place

17 the window at the center of the standard screen */

18 x = (COLS - ALPHA_W) >> 1;

19 y = (LINES - ALPHA_H) >> 1;

20

21 addstr(“Creating new window....\n”);

22 refresh();

23 alpha = newwin(ALPHA_H,ALPHA_W,y,x);

24 if(alpha == NULL)

25 {

26 endwin();

27 puts(“Problem creating window”);

382 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 382

28 return(1);

29 }

30

31 addstr(“Displaying window:\n”);

32 refresh();

33 wbkgd(alpha,COLOR_PAIR(1));

34 mvwaddstr(alpha,2,12,”Hello!”);

35 wrefresh(alpha);

36

37 getch();

38

39 endwin();

40 return 0;

41 }

Sample output:

Creating new window....

Displaying window:

And a blue window appears in the center of the screen, with the word Hello! dis-
played in its center.

Also See
Chapter 8, WINDOW, dupwin(), refresh(), delwin(), w prefix commands

nl()

nl() is an input modification function that allows your program to distin-
guish between the line feed and carriage return codes.

Explanation
The newline \n actually generates two separate cursor movement commands.
The first is the carriage return (CR), which moves the cursor to the start of a
line — just like the carriage return bar on the old manual typewriters. The sec-
ond cursor movement command is the line feed (LF), which advances the cur-
sor down one row on the screen.

Code-wise, ASCII defines CR as code 13 or ^M, and LF as code 10 or ^J. On
the PC keyboard, the Enter key is traditionally mapped to ^M, which is why
you often find text files imported from a PC (Windows) to UNIX as lacking
linefeeds. Similarly, PC users often find imported UNIX text files to lack car-
riage returns. The reason is that the Enter key in UNIX, the \n, is mapped to
code 10, which provides both carriage return and line feed functions.

Appendix A ■ NCurses Library Reference 383

18_107591 appa.qxp 1/12/07 9:08 PM Page 383

The terminal normally interprets both code 13 or ^M and code 10 or ^J as
the \n, which is code 10. So whether you type Enter, Ctrl+J, or Ctrl+M on the
keyboard, the nl() mode translates that key press into code 10. When
nonl() is specified, your program can properly interpret the Ctrl+M key
combination as code 13, a carriage return or \r. NCurses uses the nl() mode
by default.

Man Page Format
int nl(void);

int nonl(void);

Format Reference
The function takes no arguments.

Return Value
Always OK.

Notes
Regardless of the nl() or nonl() modes, NCurses always displays the \n char-
acter as both a carriage return/line feed. (The \r character always returns to
the beginning of the line.)

Supposedly NCurses is able to more efficiently move the cursor in nonl()
mode.

Example
nonl();

The statement allows the program to distinguish between the line feed and
carriage return characters.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int ch = ‘\0’;

6

7 initscr();

8

384 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 384

9 nonl();

10 while(ch != ‘z’)

11 ch = getch();

12

13 endwin();

14 return 0;

15 }

Sample output:
As you type, experiment with the Ctrl+M and Ctrl+J keys to see how they perform

differently. Recompiling the program after commenting out line 9 shows how NCurses
interprets both Ctrl+M and Ctrl+J the same.

Also See
getch()

nocbreak()

See cbreak().

nodelay()

The nodelay() function transforms the getch() function from a blocking
call to nonblocking.

Explanation
Normally the getch() function waits for a key to be pressed. Waiting, wait-
ing. nodelay() turns off the delay for a window, causing wgetch() to return
ERR when a character isn’t waiting or the character’s value when a key has
been pressed and its character is waiting in the input queue.

Man Page Format
int nodelay(WINDOW *win, bool bf);

Format Reference
win is the name of a window. Only wgetch() commands referencing win (or
getch() for stdscr) are affected by nodelay().

Appendix A ■ NCurses Library Reference 385

18_107591 appa.qxp 1/12/07 9:08 PM Page 385

bf is a Boolean value, either TRUE or FALSE. TRUE turns on nodelay for
the named window, causing calls to getch() not to pause. FALSE sets the
normal mode, where getch() pauses to wait for a key.

Return Value
OK upon success, ERR on failure.

Notes
Normally, nodelay is set equal to FALSE.

There is no delay() function, but two other NCurses functions control
input delay. Check out timeout() and halfdelay().

NCurses uses only one input queue from the keyboard, but by assigning a
window value, it’s possible to manipulate the input stream differently by asso-
ciating wgetch()with a specific window. See getch() for more information.

Example
nodelay(stdscr,TRUE);

The statement turns getch() into a non-blocking call for the standard screen.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int value = 0;

6

7 initscr();

8

9 nodelay(stdscr,TRUE); /* turn off getch() wait */

10 addstr(“Press the Spacebar to stop the insane loop!\n”);

11 while(1)

12 {

13 printw(“%d\r”,value++);

14 refresh();

15 if(getch() == ‘ ‘) break;

16 }

17 getch();

18

19 endwin();

20 return 0;

21 }

386 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 386

Sample output:

Press the Spacebar to stop the insane loop!

Press the Spacebar to stop the counter.

Also See
Chapter 7, getch(), timeout(), halfdelay()

noecho()

See echo().

nonl()

See nl().

noqiflush()

See qiflush().

noraw()

See raw().

notimeout()

The notimeout() function determines whether or not NCurses input func-
tions pause after the user presses the Esc key.

Explanation
An escape sequence can be generated either by the keyboard, such as when a
specialty or function key is pressed, or manually input by the user. A one-
second timeout is used to help determine whether the escape sequence is
generated by the keyboard or the user, seeing how user input is slower than
the escape sequence produced by the keyboard.

Appendix A ■ NCurses Library Reference 387

18_107591 appa.qxp 1/12/07 9:08 PM Page 387

When notimeout() is set TRUE for a window, then getch() calls to that
window will not wait one second to determine whether an escape sequence
comes from the keyboard or user. The end effect is that input is greatly sped up
for those programs where it’s unlikely that the user will be manually inputting
escape sequences or when keyboard escape sequences are not used. (Also see
keypad().)

Man Page Format
int notimeout(WINDOW *win, bool bf);

Format Reference
win is a WINDOW variable representing a window on the screen.
bf if a Boolean value, either TRUE or FALSE, both of which are defined in

NCURSES.H.

Return Value
ERR upon failure or an int value other than ERR upon success.

Notes
There are three delays the getch() function checks when it is first called:
notimeout(), nodelay(), and halfdelay().

Don’t confuse this function with timeout(), which adjusts the delay asso-
ciated with blocking text input, not just the delay associated with Escape char-
acter input.

The delay doesn’t seem to be present one way or the other when keypad()
is set FALSE for the window.

Internally, NCurses uses the ESCDELAY constant to set the Esc key delay in
increments of a millisecond. The value of 1000 sets a 1 second Esc key delay,
which is the default on many systems.

The notimeout() state is only used in one special case: deciding whether
to continue reading after a character was read. It’s done independently of the
keypad() logic.

I have not been able to get this function to work. As a workaround, I
recommend setting the value of the ESCDELAY variable to zero when
notimeout(win,TRUE) fails to behave:

ESCDELAY = 0;

388 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 388

Example
notimeout(stdscr,TRUE);

The statement disables the Esc key delay for the standard screen window.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int ch = ‘\0’;

6

7 initscr();

8

9 keypad(stdscr,TRUE);

10 notimeout(stdscr,FALSE);

11 addstr(“Press the Esc key and note the delay:\n”);

12 refresh();

13 while(ch != ‘\n’)

14 ch = getch();

15

16 ch = ‘\0’;

17 notimeout(stdscr,TRUE);

18 mvaddstr(3,0,”Now with notimeout TRUE, press Esc:\n”);

19 refresh();

20 while(ch != ‘\n’)

21 ch = getch();

22

23 endwin();

24 return 0;

25 }

Sample output:

Press the Esc key and note the delay:

^[

Now with notimeout TRUE, press Esc:

^[

Also See
getch(), timeout(), notimeout(), nodelay(), halfdelay()

Appendix A ■ NCurses Library Reference 389

18_107591 appa.qxp 1/12/07 9:08 PM Page 389

OK

The int constant OK is used to indicate successful completion of a function.

Man Page Format
Not applicable.

Format Reference
OK can be used like any other constant, though it is most often found in a com-
parison:

if(function() == OK)

Or if the return value from a function is saved in a variable, r:

if(r == OK)

Or:

while(function() == OK)

Return Value
The value of OK is set in NCURSES.H to 0.

Notes
Not every function returns OK upon success.

Some functions are documented as returning ERR upon failure, but any
value other than ERR — not specifically OK — upon success.

Note that OK might be defined as being zero, therefore something like:

while(function())

cannot work based upon the function’s success if the success returned is OK
and OK is defined as zero.
OK’s counterpart is the ERR constant. See ERR.

Example
if(putwin(menu,mfile) != OK)

390 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 390

The statement checks to see if the putwin() function has not returned OK,
meaning that the operation has failed.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int y = 0,x = 0, r;

6

7 initscr();

8

9 addstr(“You Move The Cursor!\n”);

10 addstr(“Enter the Y (row) coordinate: “);

11 refresh();

12 scanw(“%d”,&y);

13 addstr(“Enter the X (column) coordinate: “);

14 refresh();

15 scanw(“%d”,&x);

16

17 r = move(y,x);

18 if(r == ERR)

19 {

20 mvaddstr(3,0,”You have moved the cursor!”);

21 move(y,x);

22 }

23 else

24 mvaddstr(3,0,”You cannot move the cursor there!”);

25 refresh();

26 getch();

27

28 endwin();

29 return 0;

30 }

Sample output:

You Move The Cursor!

Enter the Y (row) coordinate: 50

Enter the X (column) coordinate: 5

You cannot move the cursor there!

Also See
ERR

Appendix A ■ NCurses Library Reference 391

18_107591 appa.qxp 1/12/07 9:08 PM Page 391

overlay()

The overlay() function takes text from one window and places that text into
the blank portions of another window.

Man Page Format
int overlay(const WINDOW *srcwin, WINDOW *dstwin);

Format Reference
srcwin is a WINDOW pointer representing the source window, from which text
is copied.
dstwin is a WINDOW pointer representing the destination, the window

where text from srcwin is pasted.

Return Value
The function returns OK upon success, or ERR when there is a problem.

Notes
With the overlay() function, only the blank parts of the destination window
are over-written with text from the source window. Text from srcwin will not
replace text in dstwin, neither will text attributes be copied to the dstwin.
srcwin and dstwin do not need to be the same size. However:

■■ The two windows must overlap. It is only the overlapping portion of
the windows that is overlaid.

■■ When the two windows do not overlap, overlay() returns ERR.

The overlay() function behaves the same as the copywin() function
with the TRUE argument.

Example
overlay(first,second);

After the statement, locations where window first overlaps window
second will be changed; any blank spots in window second will be filled by
overlapping text from window first.

392 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 392

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *alpha,*beta;

6 int x;

7

8 initscr();

9 start_color();

10 init_pair(1,COLOR_WHITE,COLOR_BLUE);

11 init_pair(2,COLOR_WHITE,COLOR_RED);

12

13 /* create and color two side-by-side windows */

14 alpha = newwin(5,30,0,0);

15 wbkgd(alpha,COLOR_PAIR(1));

16 beta = newwin(5,30,1,2);

17 wbkgd(beta,COLOR_PAIR(2));

18

19 /* populate the windows with text */

20 for(x=0;x<75;x++)

21 {

22 wprintw(alpha,”O “);

23 wprintw(beta,” X”);

24 }

25 wrefresh(alpha);

26 wrefresh(beta);

27 getch(beta);

28

29 /* copy from window beta to window alpha */

30 overlay(beta,alpha);

31 wrefresh(alpha);

32 wrefresh(beta);

33 wgetch(beta);

34

35 endwin();

36 return 0;

37 }

Sample output:
Two windows appear, one blue with Os and another red with Xs. The two windows

overlap for all but one row and column. Pressing Enter copies the Xs from the red win-
dow to the blue.

Also See
Chapter 10, copywin(), overwrite(), dupwin()

Appendix A ■ NCurses Library Reference 393

18_107591 appa.qxp 1/12/07 9:08 PM Page 393

overwrite()

The overwrite() function takes text from one window and pastes it into
another window, replacing the second window’s text contents and attributes.

Man Page Format
int overwrite(const WINDOW *srcwin, WINDOW *dstwin);

Format Reference
srcwin is a WINDOW pointer representing the source window, from which text
is copied.
dstwin is a WINDOW pointer representing the destination, the window

where text from srcwin is pasted.

Return Value
The function returns OK or ERR upon success or failure, respectively.

Notes
The overwrite() function literally overwrites the contents of srcwin with
dstwin; both text and attributes from srcwin replace text in dstwin.
srcwin and dstwin do not need to be the same size, but the two windows

must overlap. Only the overlapping portion of the windows is affected by the
overwrite() function.

When the two windows do not overlap, overlay() returns ERR.
The overwrite() function behaves the same as the copywin() function

with the FALSE argument.

Example
overwrite(top, bottom);

The statement causes text from window top to overwrite and replace text
from window bottom at those locations where the two windows overlap.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

394 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 394

5 WINDOW *alpha,*beta;

6 int x;

7

8 initscr();

9 start_color();

10 init_pair(1,COLOR_WHITE,COLOR_BLUE);

11 init_pair(2,COLOR_WHITE,COLOR_RED);

12

13 /* create and color two side-by-side windows */

14 alpha = newwin(5,30,0,0);

15 wbkgd(alpha,COLOR_PAIR(1));

16 beta = newwin(5,30,1,2);

17 wbkgd(beta,COLOR_PAIR(2));

18

19 /* populate the windows with text */

20 for(x=0;x<75;x++)

21 {

22 wprintw(alpha,”O “);

23 wprintw(beta,” X”);

24 }

25 wrefresh(beta);

26 wrefresh(alpha);

27 wgetch(alpha);

28

29 /* copy from window beta to window alpha */

30 overwrite(beta,alpha);

31 wrefresh(beta);

32 wrefresh(alpha);

33 wgetch(alpha);

34

35 endwin();

36 return 0;

37 }

Sample output:
Two windows appear, one blue with Os overlapping another red with Xs. Pressing

Enter copies the Xs from the red window to the blue, replacing any existing text and
attributes. In fact, it appears as if the red window is on top, but it is not.

Also See
Chapter 10, copywin(), overlay(), dupwin()

pair_content()

The pair_content() function is used to determine which two colors have
been assigned to a color pair.

Appendix A ■ NCurses Library Reference 395

18_107591 appa.qxp 1/12/07 9:08 PM Page 395

Man Page Format
int pair_content(short pair, short *f, short *b);

Format Reference
pair is a short int value representing a color pair number. Values range
from 0 through the value of the COLOR_PAIRS constant, minus 1.
f and b are addresses of short int variables to hold the color value of the

text foreground and text background colors for pair, respectively. Values
returned for foreground or background range from 0 through the value
returned by COLORS, minus 1.

Return Value
The function returns OK for success or ERR for failure.

Notes
The start_color() function must be issued first in a program, or the
pair_content() function will return ERR.

It is not necessary that pair represent a defined color pair. When called
with an undefined color pair value, pair_content() returns zero for both
foreground and background colors.

Colors 0 through 7 are defined as constants in NCURSES.H. See COLORS
elsewhere in this appendix for the values.

Examples
pair_content(3,fg,bg);

This statement reads the color attributes assigned to color pair 3. The fore-
ground value is stored in the location indicated by pointer variable fg, and the
background value is stored in the location indicated by pointer variable bg. It’s
assumed that the pointer variables are initialized earlier in the code.

pair_content(pair,&fore,&back);

Here, the color values for color pair indicated by variable pair are stored in
the locations for variables fore and back.

396 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 396

Sample Program
1 #include <ncurses.h>

2

3 char *ncolor(int color);

4

5 int main(void)

6 {

7 short pair,f,b;

8

9 initscr();

10 start_color();

11

12 /* Create color pairs */

13 init_pair(1,COLOR_WHITE,COLOR_BLUE);

14 init_pair(2,COLOR_BLACK,COLOR_RED);

15 init_pair(3,COLOR_YELLOW,COLOR_RED);

16 init_pair(4,COLOR_BLUE,COLOR_GREEN);

17 init_pair(5,COLOR_CYAN,COLOR_MAGENTA);

18

19 /* display pair colors */

20 for(pair=1;pair<=5;pair++)

21 {

22 attrset(COLOR_PAIR(pair));

23 pair_content(pair,&f,&b);

24 printw(“Pair %d: %s foreground, %s background.\n”,\

25 pair,ncolor(f),ncolor(b));

26 }

27 refresh();

28 getch();

29

30 endwin();

31 return 0;

32 }

33

34 char *ncolor(int color)

35 {

36 switch(color)

37 {

38 case COLOR_BLACK:

39 return(“Black”);

40 case COLOR_RED:

41 return(“Red”);

42 case COLOR_GREEN:

43 return(“Green”);

44 case COLOR_YELLOW:

45 return(“Yellow”);

Appendix A ■ NCurses Library Reference 397

18_107591 appa.qxp 1/12/07 9:08 PM Page 397

46 case COLOR_BLUE:

47 return(“Blue”);

48 case COLOR_MAGENTA:

49 return(“Magenta”);

50 case COLOR_CYAN:

51 return(“Cyan”);

52 case COLOR_WHITE:

53 return(“White”);

54 }

55 return(“?”);

56 }

Sample output:

Pair 1: White foreground, Blue background.

Pair 2: Black foreground, Red background.

Pair 3: Yellow foreground, Red background.

Pair 4: Blue foreground, Green background.

Pair 5: Cyan foreground, Magenta background.

And the code here appears formatted with the colors indicated.

Also See
start_color(), init_pair(), COLOR_PAIRS

PAIR_NUMBER()

The PAIR_NUMBER() pseudo function is used to return which color pair is
being used to format text.

Man Page Format
Not applicable.

Format Reference
PAIR_NUMBER(attr)

attr is the value produced by the COLOR_PAIR(n) attribute. It’s the value
used internally when NCurses builds attribute information to be stored on the
screen in the chtype variable. (See Appendix C.)

398 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 398

Return Value
The value returned by PAIR_NUMBER() is an int is equal to whichever color
pair number has been used to format the text and background colors. Its range
is between 0 and the value of COLOR_PAIRS, minus 1.

Notes
In reality, COLOR_PAIR(n) is simply a cluster of bits used in the chtype
value to define how a character in an NCurses window is formatted. The
PAIR_NUMBER() pseudo function simply extracts the COLOR_PAIR(n)
value, n itself, from that chtype value. This is why it’s often written that
PAIR_NUMBER() is the “opposite” of the COLOR_PAIR(n) function.

Examples
n = PAIR_NUMBER(a)

The value of variable a is equal to the value of a specific COLOR_PAIR(n).
The value returned in variable n will be the same as a from COLOR_PAIR(a).

x = PAIR_NUMBER(COLOR_PAIR(n));

This statement is basically the same as x = n.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int c,p;

6

7 initscr();

8 start_color();

9

10 init_pair(1,COLOR_RED,COLOR_WHITE);

11

12 c = COLOR_PAIR(1);

13 p = PAIR_NUMBER(c);

14 printw(“COLOR_PAIR(1) = %d\n”,c);

15 printw(“PAIR_NUMBER(%d) = %d\n”,c,p);

16 refresh();

17 getch();

Appendix A ■ NCurses Library Reference 399

18_107591 appa.qxp 1/12/07 9:08 PM Page 399

18

19 endwin();

20 return 0;

21 }

Sample output:

COLOR_PAIR(1) = 256

PAIR_NUMBER(256) = 1

Also See
init_pair(), COLOR_PAIR

pechochar()

The pechochar() function is used to both put single characters to a pad and
display those characters on the standard screen.

Man Page Format
int pechochar(WINDOW *pad, chtype ch);

Format Reference
pad is the name of a WINDOW pointer, referencing a pad created by the
newpad() function.
ch is a chtype variable, a long int value. It can be a single character or a

combination character and formatting attributes. See Appendix C for more
information on chtype characters.

Return Value
OK on success, ERR on utter failure.

Notes
For the pechochar() function to work, a prefresh() function must first be
used. prefresh() defines both the area on the standard screen where text
appears as well as the part of the pad to which text is written. See the “Sample
Program” for more information.

400 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 400

After prefresh() has been issued, then pechochar() can be used to
simultaneously put text to the pad and display that text on the screen; no fur-
ther calls to prefresh() are needed.
pechochar() advances the cursor’s location on both the pad and standard

screen. It behaves exactly like the addch() function in that respect.
The wide character version of this command is pecho_wchar(). Here is

the man page format:

int pecho_wchar(WINDOW *pad, const cchar_t *wch);

Examples
pechochar(p,c);

The statement places the character represented by c onto pad p, displaying
that character on the standard screen.

pechochar(xpad,’A’ | A_BOLD);

Here, the statement places a bold letter A on pad xpad as well as on the stan-
dard screen.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *p;

6 char text[] = “Greetings from pad p.”;

7 char *t;

8

9 initscr();

10

11 p = newpad(50,100); /* create a new pad */

12 if(p == NULL)

13 {

14 endwin();

15 puts(“Unable to create new pad”);

16 return(1);

17 }

18

19 t = text;

20 prefresh(p,0,0,0,0,1,25);

21 while(*t)

22 {

Appendix A ■ NCurses Library Reference 401

18_107591 appa.qxp 1/12/07 9:08 PM Page 401

23 pechochar(p,*t);

24 t++;

25 napms(50);

26 }

27 wgetch(p);

28

29 endwin();

30 return 0;

31 }

Sample output:

Greetings from pad p.

Also See
addch(), newpad(), prefresh()

pnoutrefresh()

The pnoutrefresh() function is analogous to the wnoutrefresh() func-
tion, but for a pad instead of a window. It’s used to optimize the updating of
multiple pads to the standard screen.

Explanation
pnoutrefresh() can best be used when updating several pads on the stan-
dard screen. Rather than using prefresh() on each pad, you can use
pnoutrefresh() on each pad, then a single doupate() function to perform
all the updates at once.

Man Page Format
int pnoutrefresh(WINDOW *pad, int pminrow, int pmincol,

int sminrow, int smincol, int smaxrow, int smaxcol);

Format Reference
Refer to the entry for prefresh() as the arguments are the same for both.

402 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 402

Return Value
OK on success; ERR when things get fouled up.

Notes
Internally, the prefresh() function is composed of a pnoutfresh() func-
tion followed by a call to doupdate().

Example
pnoutrefresh(p,0, 0, 0, 0, 23,19);

pnoutrefresh(p,24, 0, 0,24,23,43);

pnoutrefresh(p,48, 0, 0,48,23, 67);

doupdate();

The pnoutrefresh() functions update portions of the pad p to various
locations on the standard screen. The final doupdate() function updates the
screen with the information.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *pad;

6 int a;

7

8 initscr();

9

10 pad = newpad(40,100);

11 if(pad == NULL)

12 {

13 endwin();

14 puts(“Problem creating pad”);

15 return(1);

16 }

17

18 for(a=0;a<4000;a++)

19 {

20 waddch(pad,’A’ + (a % 26));

21 }

22

23 prefresh(pad,0,0,7,30,17,50);

24 wgetch(pad);

Appendix A ■ NCurses Library Reference 403

18_107591 appa.qxp 1/12/07 9:08 PM Page 403

25

26 mvwaddstr(pad,1,0,”Hello, there!”);

27 pnoutrefresh(pad,0,0,7,30,17,50);

28 doupdate();

29 wgetch(pad);

30

31 endwin();

32 return 0;

33 }

Sample output:
The output is the same as shown for prefresh() below, though after pressing the

Enter key, the text Hello, there! appears on the second line.

Also See
newpad(), prefresh(), doupdate(), wnoutrefresh()

prefresh()

The prefresh() function is used to display information stored in a pad
structure to a window.

Explanation
Pads work like windows, though they’re not displayed on the screen. To see
the information put to a pad, the prefresh() function is used. Unlike the
refresh() function, prefresh() takes a rectangle of text (and attributes)
from the pad and places it in a window. This is how information from a pad is
displayed.

Man Page Format
int prefresh(WINDOW *pad, int pminrow, int pmincol,

int sminrow, int smincol, int smaxrow, int smaxcol);

Format Reference
pad is the name of a pad, a WINDOW pointer returned from the newpad()
function.

404 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 404

pminrow and pmincol are int values represents the upper-left (Y and X)
coordinates of a rectangle of text on the pad.
sminrow and smincol are int values representing the upper-left (Y and X)

coordinates of a rectangle of text on the standard screen. This location is where
the text from the pad will be placed.
smaxrow and smaxcol represent the lower-right (Y and X) coordinate of

the rectangle on the standard screen. These are int values and they are rela-
tive to the home location, not to sminrow and smincol. The differences
between the upper-left and lower-right coordinates on the screen are also used
to calculate the size of the rectangle copied from the pad.

Return Value
OK or ERR depending on success or failure of the call.

Notes
prefresh() always outputs text to the standard screen.

The prefresh() function updates the standard screen; there is no need to
call refresh() after prefresh() to see the text.

You cannot prefresh() a rectangle from the pad that is larger than the
standard screen (or larger than the pad, for that matter).

Examples
prefresh(p,0,0,0,0,10,35);

The statement here places part of the pad p on the standard screen. The text
from the pad starts at location 0, 0. The rectangle on the standard screen starts
at location 0, 0, and it is 10 rows deep by 35 columns wide.

prefresh(psto,py,px,10,5,11,75);

Here, text from the pad psto is read from starting location py, px, and
placed on the screen at location 10, 5. The rectangle is 1 row high and 70 char-
acters wide.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

Appendix A ■ NCurses Library Reference 405

18_107591 appa.qxp 1/12/07 9:08 PM Page 405

4 {

5 WINDOW *pad;

6 int a;

7

8 initscr();

9

10 pad = newpad(40,100);

11 if(pad == NULL)

12 {

13 endwin();

14 puts(“Problem creating pad”);

15 return(1);

16 }

17

18 for(a=0;a<4000;a++)

19 {

20 waddch(pad,’A’ + (a % 26));

21 }

22

23 prefresh(pad,0,0,7,30,17,50);

24 wgetch(pad);

25

26 endwin();

27 return 0;

28 }

The sample output is shown in Figure A-9.

Also See
Chapter 11, newpad()

Figure A-9: A square chunk of the pad appears on the terminal screen.

406 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 406

printw()

The printw() function is the NCurses equivalent to the standard C
printf() function. Use printw() in your NCurses programs when you
need printf().

Man Page Format
int printw(const char *fmt, ...);

int wprintw(WINDOW *win, const char *fmt, ...);

int mvprintw(int y, int x, const char *fmt, ...);

int mvwprintw(WINDOW *win, int y, int x, const char *fmt, ...);

int vw_printw(WINDOW *win, const char *fmt, va_list varglist);

int vwprintw(WINDOW *win, const char *fmt, va_list varglist);

Format Reference
The format for printw() is identical to printf(). fmt is a formatting string
that defines text to be output. The string can contain text, escape characters,
and replaceable parameters. fmt is followed by a list of variables that are
displayed by the replaceable parameters.

Refer to the entries for w, mv, and mvw elsewhere in this appendix for infor-
mation on the w, mv, and mvw variations to this function.

The vwprintw() functions are the NCurses versions of the vprintf()
function, where varglist is a va_list (for example, a pointer) representing
variable arguments. Refer to the man page for vprintf().

Return Value
ERR on failure, OK or any int value other than ERR on success.

Notes
Internally, NCurses calls the sprintf() or vsprintf() functions to do the eval-
uation and text formatting for printw(). The output is done through the
addstr() function and therefore all the notes for addstr() also apply to
printw().

A variable argument version of printw(), analogous to vsprintf(), is
vw_printw(). Here is the man page format:

int vw_printw(WINDOW *win, const char *fmt, va_list varglist);

The older version of vw_printw() was vwprintw(). It carries the same
format as vw_printw() but has been deprecated.

Appendix A ■ NCurses Library Reference 407

18_107591 appa.qxp 1/12/07 9:08 PM Page 407

Examples
printw(“Pleased to meet you, %s %s!”,first,last);

Here, the statement displays on the standard screen the text Pleased to
meet you followed by the strings represented by first and last.

wprintw(test,”_maxx = %d, _maxy = %d\n”,test->_maxx,test->_maxy);

The statement displays the values of _maxx and _maxy for the window
test on the window test.

mvprintw(11,COL2, “%-30s”, “October 19, 1993”);

Here, the statement displays at row 11 and the column indicated by COL2,
the text October 19, 1993 right-justified in a column 30 characters wide.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int yoda = 874,ss = 65;

6

7 initscr();

8

9 printw(“Yoda is %d years old\n”,yoda);

10 printw(“He has collected %d years\n”,yoda-ss);

11 printw(“of Social Security.”);

12 refresh();

13 getch();

14

15 endwin();

16 return 0;

17 }

Sample output:

Yoda is 874 years old

He has collected 809 years

of Social Security.

Also See
Chapter 2, addstr(), scanw()

408 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 408

putwin()

The putwin() function saves a window’s data to a formatted file on disk. All
window information is saved: size, text, attributes, and so forth.

Man Page Format
int putwin(WINDOW *win, FILE *filep);

Format Reference
win is the name of a WINDOW variable representing the window to save to disk.
filep is a FILE pointer representing a file open for writing.

Return Value
ERR on failure, or OK (or a value other than ERR) on success.

Notes
The getwin() function is used to read a window data file previously saved to
disk by putwin(). See getwin().

The file saved to disk starts with a WINDOW structure header and then con-
tains chtype-like data for each character in the window. As saved to disk,
each character in the window occupies 16 bytes.

Example
putwin(help,hfile);

The statement saves information about and contents of the window help to
a file referenced by hfile.

Sample Program
1 #include <ncurses.h>

2 #include <stdlib.h>

3

4 #define FILENAME “window.dat”

5

6 void bomb(char *message);

7

8 int main(void)

9 {

Appendix A ■ NCurses Library Reference 409

18_107591 appa.qxp 1/12/07 9:08 PM Page 409

10 FILE *wfile;

11 WINDOW *win;

12 int r;

13

14 initscr();

15 start_color();

16 init_pair(1,COLOR_WHITE,COLOR_BLUE);

17

18 addstr(“Creating new window\n”);

19 refresh();

20

21 /* Crete the window */

22 win = newwin(5,20,7,30);

23 if(win == NULL)

24 bomb(“Unable to create window\n”);

25 wbkgd(win,COLOR_PAIR(1));

26 mvwaddstr(win,1,2,”This program was\n”);

27 mvwaddstr(win,2,5,”created by\n”);

28 mvwaddstr(win,3,5,”Dan Gookin\n”); ;

/* put your name here */

29 wrefresh(win);

30 getch();

31

32 /* open the file */

33 wfile = fopen(FILENAME,”w”);

34 if(wfile==NULL)

35 bomb(“Error creating file\n”);

36

37 /* write the window’s data */

38 r = putwin(win,wfile);

39 if(r == ERR)

40 addstr(“Error putting window to disk\n”);

41 else

42 addstr(“Window put to disk\n”);

43 fclose(wfile);

44 refresh();

45 getch();

46

47 endwin();

48 return 0;

49 }

50

51 void bomb(char *message)

52 {

53 endwin();

54 puts(message);

55 exit(1);

56 }

The sample output is shown in Figure A-10.

410 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 410

Figure A-10: This window is saved to disk.

Refer to the entry for getwin() for a sample program that loads in the window
image.

Also See
Chapter 14, getwin(), scr_dump(), scr_restore()

qiflush()

The qiflush() and noqiflush() function control whether or not the key-
board input buffer is flushed when the Interrupt, Quit, or Suspend keys are used.

Man Page Format
void qiflush(void);

void noqiflush(void);

Format Reference
The functions take no arguments.

The qiflush() function directs NCurses to flush any text waiting in the
input queue whenever the Interrupt, Quit, or Suspend keys are pressed.

The noqiflush() function directs NCurses to retain whatever text is in the
buffer, which is typically flushed out at the next command prompt.

Return Value
OK upon success; ERR on failure.

Appendix A ■ NCurses Library Reference 411

18_107591 appa.qxp 1/12/07 9:08 PM Page 411

Notes
Table A-14 explains the Interrupt, Quit, and Suspend keys.

The terminal’s initial state determines whether qiflush() or noqiflush()
is the norm for NCurses. You can use the stty -a command to check for your
terminal: the noflsh and –noflush lflags disable or enable flush after INTR,
QUIT, SUSP, respectively.

Examples
qiflush();

The statement causes any text left in the input queue to be flushed when the
Interrupt, Quit, or Suspend keys are pressed.

noqiflush();

If the Interrupt, Quit, or Suspend keys are pressed after this command is
issued, then any text remaining in the input queue stays there, only to be
dumped out at the next opportunity.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 char buffer[81];

6

7 initscr();

8 noqiflush();

9

10 addstr(“Type on the keyboard whilst I wait...\n”);

11 refresh();

12 napms(5000); /* 5 seconds */

13

14 addstr(“Here is what you typed:\n”);

15 getnstr(buffer,80);

16 refresh();

17

18 endwin();

19 return 0;

20 }

412 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 412

Table A-14: Interrupt, Quit, and Suspend Explained

KEY FUNCTION NAME KEY(S) ASCII FUNCTION

Interrupt INTR ^C 0x03 Halt the program (SIGINT)

Quit QUIT ^\ 0x1c Halts the program (SIGQUIT)

Suspend SUSP ^Z 0x1a Immediately stops program
and sends it into the
background (SIGTSTP)

Sample output:

Type on the keyboard whilst I wait...

Type something, then press Ctrl+Z. The Ctrl+Z suspends the program, placing it
into the background. Any text you typed appears on the command prompt because
noqiflsh() prevented it from being flushed. Type fg to return to the program.

Also See
flushinp(), intrflush(), typeahead()

raw()

The raw() function removes any modifications done by the terminal to input,
allowing your program to read input in the un-cooked or raw mode. The com-
panion noraw() function ensures that cooked mode, not raw, is enforced in
NCurses.

Explanation
Normally the terminal has some control over input that’s passed to your
program. For example, your terminal’s Killchar, Erase, Interrupt, and other
special keys can also be used in your program. By using the raw() function,
you can disable all that interception, allowing your program to receive all
keyboard input.

Man Page Format
int raw(void);

int noraw(void);

Appendix A ■ NCurses Library Reference 413

18_107591 appa.qxp 1/12/07 9:08 PM Page 413

Format Reference
The raw() command activates raw mode.

The noraw() command restores cooked input mode (normal).

Return Value
OK upon success, ERR upon failure.

Notes
The raw mode disables any keyboard buffering done by the terminal, which in
effect allows characters to be read more quickly. However, if this is all you’re
after, I recommend using cbreak() instead of raw().

Raw mode specifically ignores the Interrupt, Quit, Suspend, Killchar,
Erasechar, and flow control characters. Knowing which keys are which
depends on how your terminal is configured. (Use the command stty -a to
determine which keys your terminal uses.) Table A-15 lists common values.

If your keyboard has a Break key, then raw mode may or may not affect it,
depending on how the key is mapped.

Table A-15: Keys and codes ignored in raw mode

KEY FUNCTION NAME KEY(S) ASCII FUNCTION

Delayed Suspend DSUSP ^Y 0x19 Stops program when
character is read (SIGTSTP)

Erasechar ERASE ^? 0x7F Back up and erase
^H

Flow control STOP
START ^S ^S pauses text output,

^Q 0x13 ^Q restarts
0x11

Interrupt INTR ^C 0x03 Halt the program (SIGINT)

Killchar KILL ^U 0x15 Erases the input line, from
cursor position to the line
start

Quit QUIT ^\ 0x1c Halts the program (SIGQUIT)

Suspend SUSP ^Z 0x1a Immediately stops program
and sends it into the
background (SIGTSTP)

414 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 414

NOTE Because raw mode ignores the Quit and Suspend keys, be extra
careful! Unlike other NCurses programs, when raw() is active you cannot
“break out” by pressing Ctrl+C or Ctrl+\. When a program runs amok in raw
mode, the only way to kill it is with the kill command from another terminal
window.

The cbreak() setting overrides raw(). See cbreak().

Examples
raw()

Here, raw mode is set for the program.

noraw()

Here, the raw mode is cancelled.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int ch;

6 initscr();

7

8 raw();

9 mvaddstr(0,0,”Type away, raw mode is on:”);

10 while(getch() != ‘\n’)

11 ;

12

13 noraw();

14 mvaddstr(3,0,”Type away, raw mode is off:”);

15 while(getch() != ‘\n’)

16 ;

17

18 endwin();

19 return 0;

20 }

Sample output:

Type away, raw mode is on:

Try any of the keys listed in the above table: Ctrl+Z, Ctrl+C, Ctrl+U. You’ll see
them display ^Z, ^C, ^U instead of performing their normal terminal functions. Press
Enter to end the line.

Appendix A ■ NCurses Library Reference 415

18_107591 appa.qxp 1/12/07 9:08 PM Page 415

Type away, raw mode is off:

Typing works as in the terminal. Keys from the above table perform their regular
actions.

Also See
cbreak(), halfdelay()

redrawwin()

The redrawwin() function is used to help force an update of the terminal
window when the contents of a window may be corrupted or in need of a com-
plete refresh.

Man Page Format
int redrawwin(WINDOW *win);

Format Reference
win is the name of a window to update. It’s a WINDOW variable representing a
window on the screen, or stdscr for the standard screen.

Return Value
ERR on failure, OK or some value other than ERR when things go well.

Notes
This function is equivalent to wredrawln(win,0,n), where win is the name
of the window and n is the window’s bottom row.
wredrawwin() works by telling NCurses to discard its corresponding data

in the current screen, so it is forced to recompute when refreshing that window.
Refer to the entry for wredrawln() for more information and notes about

this function.

Example
redrawwin(boy);

The statement directs NCurses to completely update the contents of the
window boy.

416 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 416

Sample Program
1 #include <ncurses.h>

2 #include <stdlib.h>

3 int main(void)

4 {

5 WINDOW *coffee;

6 initscr();

7

8 coffee = newwin(2,40,0,0);

9

10 waddstr(coffee,”I’m just an innocent little program,\n”);

11 waddstr(coffee,”minding my own business...”);

12 wmove(coffee,0,0);

13 wrefresh(coffee);

14 getch();

15

16 system(“echo \”RANDOM DATA\” > `tty`”);

17 getch();

18

19 wredrawln(coffee,0,1);

20 wrefresh(coffee);

21 getch();

22

23 endwin();

24 return 0;

25 }

Refer to the entry for wredrawln() for sample output.

Also See
wredrawln(), refresh()

refresh()

The refresh() function is used to update the screen in NCurses. Most
NCurses output functions require that refresh() be used so that you can see
the output on the terminal display.

Explanation
In NCurses, there is the virtual window that exists in memory and then the
current screen, which is what’s shown on the screen. What the refresh()
function does is to check to see which parts of a window have been touched
(changed) since the last refresh(), then those parts of the window are writ-
ten to the current screen during the next refresh() operation.

Appendix A ■ NCurses Library Reference 417

18_107591 appa.qxp 1/12/07 9:08 PM Page 417

Man Page Format
int refresh(void);

int wrefresh(WINDOW *win);

Format Reference
The function has no arguments.

Refer to the w entry elsewhere in this appendix for information on the win
argument.

Return Value
ERR on failure, OK or a value other than ERR on success.

Notes
Next to getch(), refresh() is the most often used function in NCurses.

Internally, the refresh() function is a combination of wnoutrefresh()
and doupdate() calls.

It’s possible that refresh() alone may not properly update the screen. If
so, consider using the clearok() function before calling refresh(). Also
see the touchwin() function.

When you are using the following combination:

wrefresh(w);

getch();

it’s okay to replace it with:

wgetch(w);

which not only waits for a key to be pressed but updates the window w.
You can avoid using refresh() by calling the immedok() function with

TRUE as the argument for a given window. If so, all output to that window is
immediately and automatically refreshed. There is a performance trade off
involved with all that updating. See immedok().

It’s possible to optimize screen output, especially when updating multiple
windows, by using the wnoutrefresh() function on each window, then a
single doupdate() function call to perform the actual screen update. See
doupdate().

418 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 418

Examples
refresh();

The statement updates the standard screen with any information waiting to
be displayed.

wrefresh(mini);

The statement updates the window mini.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6 addstr(“Goodbye, cruel C programming!”);

7 refresh();

8 getch();

9

10 endwin();

11 return 0;

12 }

Sample output:

Goodbye, cruel C programming!

Also See
Chapter 8, clearok(), immedok(), touchwin(), wnoutrefresh()

ripoffline()

The ripoffline() function creates a special one-line window at the top or
bottom of the terminal screen.

Man Page Format
int ripoffline(int line, int (*init)(WINDOW *, int));

Appendix A ■ NCurses Library Reference 419

18_107591 appa.qxp 1/12/07 9:08 PM Page 419

Format Reference
line is an int value, either positive or negative. When line is positive, a sin-
gle row is ripped from the top of the terminal window. When line is negative,
a single row is ripped from the bottom of the terminal window.
init is the name of a function ripoffline() calls to create the line. The

function is called with two arguments: first a pointer to a WINDOW structure
representing the ripped-off line, and second and int value representing the
number of columns in the ripped off line. (The number of rows is always 1.)
The WINDOW and int values are passed by NCurses to your init function. Your
init function must return an int value.

Return Value
Always OK.

Notes
The ripoffline() function must be used before initscr() or newterm().

You may call ripoffline() up to five times.
The function referenced in ripoffline() is responsible for placing infor-

mation inside the line. NCurses passes to your function the name of the
WINDOW variable used to reference the line, plus the number of columns in the
line. Your function can use any of the standard NCurses text output functions
to create the line, referencing the WINDOW variable, of course. The only two
functions not allowed are refresh() and doupdate(). So be sure to use a
wnoutrefresh() command to help put the line’s text to the screen.

The size of the standard screen is reduced by one line for each call made to
ripoffline(). This reduces the value of LINES and sets the standard
screen’s home cursor location down one row for each new ripoffline()
window created at the top of the screen.

The line ripped off can be referenced elsewhere in your NCurses program.
To do so, save the WINDOW pointer to a global variable inside the init func-
tion. Once saved, you can use that global variable to reference the ripped-off
line elsewhere in the program, updating the line via wrefresh() just as you
would any other window.
ripoffline() is used internally by NCurses to set up the soft label keys.

See slk_init().

Example
ripoffline(1,setup);

The statement removes a line from the top of the screen. The setup() func-
tion is called to initialize the line.

420 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 420

Sample Program
1 #include <ncurses.h>

2

3 static int ruler(WINDOW *w,int cols)

4 {

5 int x;

6

7 waddch(w,’|’);

8 for(x=1;x<cols;x++)

9 {

10 if(x % 5)

11 waddch(w,’-’);

12 else

13 waddch(w,’+’);

14 }

15 waddch(w,’|’);

16 wnoutrefresh(w);

17 return 0;

18 }

19

20 int main(void)

21 {

22 ripoffline(1,ruler);

23 initscr();

24

25 addstr(“The ruler has been placed atop the screen.\n”);

26 printw(“The standard screen is now %d rows high.\n”,LINES);

27 refresh();

28 getch();

29

30 endwin();

31 return 0;

32 }

The sample output is shown in Figure A-11.

Figure A-11: The ripoffline() function places a “ruler” atop the terminal window.

Appendix A ■ NCurses Library Reference 421

18_107591 appa.qxp 1/12/07 9:08 PM Page 421

Also See
LINES, slk_init()

scanw()

The scanw() function is the NCurses equivalent of the scanf() function.
When you need scanf() in your NCurses code, you use scanw() instead.

Man Page Format
int scanw(char *fmt, ...);

int wscanw(WINDOW *win, char *fmt, ...);

int mvscanw(int y, int x, char *fmt, ...);

int mvwscanw(WINDOW *win, int y, int x, char *fmt, ...);

int vw_scanw(WINDOW *win, char *fmt, va_list varglist);

int vwscanw(WINDOW *win, char *fmt, va_list varglist);

Format Reference
The format for scanw() is identical to scanf(). fmt is a formatting string
that describes the type of input. The string is followed by variable pointers in
which the input is stored.

Refer to the entries for w, mv, and mvw elsewhere in this appendix for infor-
mation on the w, mv, and mvw variations to this function.

The vwscanw() functions are comparable to the vscanf() function,
where varglist is a va_list (for example, a pointer) representing variable
arguments. Refer to the man page for vscanf().

Return Value
An int value is returned, either ERR when things go wrong or a value equal
to the number of fields successfully scanned.

Notes
scanw() uses getstr() for input with the string passed internally to the
sscanf() function for evaluation.

A variable argument version of scanw(), analogous to vscanf(), is
vw_scanw(). Here is the man page format:

422 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 422

int vw_scanw(WINDOW *win, char *fmt, va_list varglist);

The older version of vw_scanw() was vwscanw(). It carries the same for-
mat as vw_scanw() but has been deprecated.

Consider compiling your code with -Wall as an option to help trou-
bleshoot common scanf() and scanw() issues.

Examples
scanw(“%d”,&age);

The statement reads an integer value from the keyboard and stores it in the
age variable.

scanw(“%20s”,petname);

Here, scanw() reads up to 20 nonwhite space characters from the keyboard
and stores them in the petname string (char array).

Sample Program
1 #include <ncurses.h>

2

3 #define UNI 4.5

4

5 int main(void)

6 {

7 int pieces = 0;

8

9 initscr();

10

11 addstr(“SUSHI BAR MENU\n\n”);

12 printw(“We have Uni today for $%.2f.\n”,UNI);

13 addstr(“How many pieces would you like? “);

14 refresh();

15

16 scanw(“%d”,&pieces);

17 printw(“You want %d pieces?\n”,pieces);

18 printw(“That will be $%.2f!\n”,UNI*pieces);

19 refresh();

20 getch();

21

22 endwin();

23 return 0;

24 }

Appendix A ■ NCurses Library Reference 423

18_107591 appa.qxp 1/12/07 9:08 PM Page 423

Sample output:

SUSHI BAR MENU

We have Uni today for $4.50.

How many pieces would you like? 3

You want 3 pieces?

That will be $13.50!

Also See
Chapter 2, getstr(), printw()

scr_dump()

The scr_dump() function takes a snapshot of the current screen and saves it
to disk.

Man Page Format
int scr_dump(const char *filename);

Format Reference
filename is the name of a file under which the standard screen data will be
saved. It is not a FILE pointer.

Return Value
OK upon success or ERR on failure.

Notes
The scr_restore() function is the companion to scr_dump(), restoring
the image saved to disk and back to the virtual screen.

The file format used by scr_dump() is the same as for putwin(). In fact,
the getwin() function can be used to read in the file created by scr_dump().

Remember that the scr_dump() function’s argument is a filename, not a
FILE pointer!

Examples
scr_dump(screen);

424 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 424

Here, the scr_dump() function saves the current screen to disk using the
file specified by the screen variable.

scr_dump(“test.win”);

The statement above saves the screen to a file named TEST.WIN.

Sample Program
1 #include <ncurses.h>

2 #include <stdlib.h>

3 #include <time.h>

4

5 #define FILENAME “windump”

6

7 int main(void)

8 {

9 char word[7];

10 int x,w,r;

11

12 srandom((unsigned)time(NULL)); /* seed randomizer */

13 word[7] = ‘\0’;

14 initscr();

15

16 /* Fill most of the screen with random 6-char words */

17 for(x=0;x<200;x++)

18 {

19 for(w=0;w<6;w++)

20 word[w] = (random() % 26) + ‘a’;

21 printw(“%s\t”,word);

22 }

23 addch(‘\n’);

24 addstr(“Press Enter to write this screen to disk\n”);

25 refresh();

26 getch();

27

28 /* write the window to disk */

29 r = scr_dump(FILENAME);

30 if(r == ERR)

31 addstr(“Error writing window to disk\n”);

32 else

33 addstr(“File written; press Enter to quit\n”);

34 refresh();

35 getch();

36

37 endwin();

38 return 0;

39 }

The sample output is shown in Figure A-12.

Appendix A ■ NCurses Library Reference 425

18_107591 appa.qxp 1/12/07 9:08 PM Page 425

Figure A-12: Random bits of text appear on the screen and are saved to disk.

Also See
Chapter 14, scr_restore(), putwin()

scr_init()

The scr_init() function reads the window data saved to disk by
scr_dump() and uses information from that file to configure the screen.

Explanation
The scr_dump() function writes window data to disk. It writes the visible
data to disk (what you see on the screen), as well as various window settings
and options.

To restore the visible screen, the scr_restore() function is used.
However, to restore both the screen and the window settings, scr_init()
must be used before scr_restore(). Or, to make things easier, the
scr_set() function can be used, which is a combination of scr_init()
followed by scr_restore().

Man Page Format
int scr_init(const char *filename);

Format Reference
filename is the name of a file in which the standard screen data has been
saved. The value is a string, not a FILE pointer.

426 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 426

Return Value
OK on success or ERR on failure.

Notes
By itself, scr_init() merely reads window setting information from the
named file.

The information scr_init() sets in memory can be updated to the screen
by using a wrefresh(curscr) statement.

The scr_init() function pays heed to the terminfo rmcup and nrrmc
capabilities. When rmcup exists, the function returns ERR. (Refer to Chapter 1
for a description of rmcup.)

Example
if(scr_init(“windata.bin”) == ERR)

The statement checks to see if the scr_init() function returns ERR. If not,
information from the WINDATA.BIN file is read from disk and used to config-
ure NCurses window structures.

Sample Program
Refer to the entry for scr_restore() for a sample program and output.

Also See
scr_dump(), scr_restore(), scr_set()

scr_restore()

The scr_restore() function fetches a previously saved screen dump and
loads it into memory, replacing the current virtual screen.

Man Page Format
int scr_restore(const char *filename);

Format Reference
filename is the name of a file to which screen data has been saved. It is not a
FILE pointer.

Appendix A ■ NCurses Library Reference 427

18_107591 appa.qxp 1/12/07 9:08 PM Page 427

Return Value
OK or ERR, based on success or failure.

Notes
The scr_restore() function does not display the screen data. A call to
doupdate() is required to display the restored screen.

While the cursor’s location is saved in the window file by scr_dump(), the
scr_restore() function does not restore the cursor’s location. The cursor
instead remains at whatever location it was at when scr_restore() was
issued. To fix this, scr_init() should be called before scr_dump().

Example
scr_restore(“windump.dat”);

The statement restores the screen previously saved to disk in the file
WINDUMP.DAT.

Sample Program
1 #include <ncurses.h>

2

3 #define FILENAME “windump”

4

5 int main(void)

6 {

7 int r;

8

9 initscr();

10

11 addstr(“Press Enter to restore the screen\n”);

12 refresh();

13 getch();

14

15 /* restore the window from disk */

16 r = scr_init(FILENAME);

17 if(r != ERR)

18 {

19 scr_restore(FILENAME);

20 wrefresh(curscr);

21 }

22 else

23 {

24 addstr(“Error reading window file: press Enter\n”);

25 refresh();

26 }

428 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 428

27 getch();

28

29 endwin();

30 return 0;

31 }

Sample output:
The previously saved screen (see scr_dump()) is restored.

Also See
Chapter 14, scr_dump(), scr_set(), getwin()

scr_set()

The scr_set() function combines the abilities of the scr_init() and
scr_restore() functions.

Man Page Format
int scr_set(const char *filename);

Format Reference
filename is the name of a screen data file. It is a text constant, not a FILE
pointer.

Return Value
OK on success or ERR on failure.

Notes
The scr_set() function is equivalent to a call to scr_init() followed by a
call to scr_restore(). Refer to scr_init() or scr_restore() for more
information.

Example
rc = scr_set(fname);

The scr_set() function loads window data from a file referenced by the
fname (string) variable. Both the window’s settings and visual data are

Appendix A ■ NCurses Library Reference 429

18_107591 appa.qxp 1/12/07 9:08 PM Page 429

loaded. The int variable rc contains either OK or ERR depending on the func-
tion’s success or failure.

Sample Program
1 #include <ncurses.h>

2

3 #define FILENAME “windump”

4

5 int main(void)

6 {

7 int r;

8

9 initscr();

10

11 addstr(“Press Enter to restore the screen\n”);

12 refresh();

13 getch();

14

15 /* restore the window from disk */

16 r = scr_set(FILENAME);

17 if(r == ERR)

18 addstr(“Error reading window file: press Enter\n”);

19 wrefresh(curscr);

20 getch();

21

22 endwin();

23 return 0;

24 }

Sample output is the same as for scr_restore().

Also See
Chapter 14, scr_dump(), scr_restore(), scr_set()

scrl()

The scrl() function scrolls text in a window up or down a given number of
lines.

Man Page Format
int scrl(int n);

int wscrl(WINDOW *win, int n);

430 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 430

Format Reference
n is an int value indicating the number of lines to scroll the window. When n
is positive, n lines are scrolled up; when n is negative, n lines are scrolled down.

Refer to the w entry later in this appendix for information on the win
argument.

Return Value
Always OK.

Notes
Scrolling must be enabled for the window for scroll() to function properly.
See scrollok().

Scrolling does not affect the cursor’s location in the window. If the cursor is
on row 5, then scrolling the text in the window up or down moves only the
text; the cursor remains at row 5.

When text is scrolled up, blank lines are inserted at the bottom of the win-
dow; lines at the top are removed. When text is scrolled down, blanks lines are
inserted at the top of the window, with lines at the bottom being removed.

Examples
scrl(1);

The statement scrolls the standard screen up one line, which is the same as
the scroll() function.

wscrl(viewer,-3);

The statement scrolls the text in the window viewer down three rows.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int ch;

6

7 initscr();

8

9 scrollok(stdscr,TRUE);

10 keypad(stdscr,TRUE);

11 noecho();

Appendix A ■ NCurses Library Reference 431

18_107591 appa.qxp 1/12/07 9:08 PM Page 431

12

13 addstr(“Press Enter to quit; Up/Down to scroll”);

14 mvaddstr(LINES/2,0,”Scroll me!”);

15 refresh();

16

17 do

18 {

19 ch = getch();

20 if(ch == KEY_UP)

21 scrl(1);

22 if(ch == KEY_DOWN)

23 scrl(-1);

24 } while(ch != ‘\n’);

25

26 endwin();

27 return 0;

28 }

Sample output:
Use the up/down arrows on the keyboard to scroll the text on the screen. Press Enter

to quit.

Also See
Chapter 10, scrollok(), setscrreg()

scroll()

The scroll() function scrolls text in a window up one line.

Man Page Format
int scroll(WINDOW *win);

Format Reference
win is the name of a WINDOW variable representing the window to be scrolled.
Text in that window is moved up one line; the top line of text is removed and
a new blank line is inserted at the bottom.

Return Value
Always OK.

432 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 432

Notes
The scroll() function is a macro equivalent to wscrl(win,1). See wscrl().

Also see scrl() for more notes and information.

Example
scroll(main);

The statement scrolls the contents of the window main up one line.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 scrollok(stdscr,TRUE);

8 mvaddstr(LINES/2,0,”Watch me scroll up!”);

9 refresh();

10 getch();

11

12 scroll(stdscr);

13 refresh();

14 getch();

15

16 endwin();

17 return 0;

18 }

Sample output:

Watch me scroll up!

Press Enter and the line scrolls up one notch.

Also See
Chapter 10, scrollok(), scrl()

Appendix A ■ NCurses Library Reference 433

18_107591 appa.qxp 1/12/07 9:08 PM Page 433

scrollok()

The scrollok() function enables scrolling in a window.

Man Page Format
int scrollok(WINDOW *win, bool bf);

Format Reference
win is the name of a WINDOW variable representing a window created in your
code.
Bf is a Boolean value, either TRUE or FALSE as defined in NCURSES.H.

When TRUE, scrolling for window win is activated. FALSE is the default con-
dition, meaning that the window isn’t scrolling.

Return Value
OK on success; ERR on failure.

Notes
The scrollok() function enables scrolling. That means any text displayed
after the last line, or a newline or line feed on the last line, pops text up by one
row in the window. The top row of text is lost, and a new blank row appears
on the bottom to allow for the next text.

The scrollok() setting is inherited by subwindows. If you set
scrollok() TRUE for a window, then all its subwindows will also have the
ability to scroll. Otherwise, new windows and new subwindows start out with
scrollok() disabled.

Text can be manually scrolled by using the scroll() or scrl() functions.
Pads cannot be scrolled. Trying to apply scrollok() to a pad returns ERR.

Example
scrollok(main,TRUE);

The statement enables scrolling for the window main.

434 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 434

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int x = 0;

6

7 initscr();

8

9 scrollok(stdscr,TRUE);

10 while(1)

11 {

12 printw(“%d\t”,x);

13 x++;

14 refresh();

15 }

16

17 endwin();

18 return 0;

19 }

Sample output:
Incrementing numbers are displayed in columns that scroll up the screen. Press

Ctrl+C to halt the program.

Also See
Chapter 10, scroll(), scrl(), setscrreg()

setscrreg()

The setscrreg() function determines which region (between two rows) of
the screen will be scrolled.

Man Page Format
int setscrreg(int top, int bot);

int wsetscrreg(WINDOW *win, int top, int bot);

Appendix A ■ NCurses Library Reference 435

18_107591 appa.qxp 1/12/07 9:08 PM Page 435

Format Reference
top is an int value indicating the top row for the scrolling region. Values
range from 0 for the top row, to the value of bot minus 1.
bot is in int value indicating the bottom row of the scrolling region. Values

range from top+1 to the bottom of the window.
Refer to the w entry elsewhere in this appendix for information on the win

argument.

Return Value
OK on success, ERR on failure. The function fails when top is greater than or
equal to bot, or when bot is greater than the bottom of the window.

Notes
This function works only after scrolling has been enabled for the window via
the scrollok() function. See scrollok().

Unless setscrreg() is used, the top and bottom rows of the window
define the scrolling region.

The bottom row of the window can be returned using w->_maxy, where w
is the window’s WINDOW variable name.

Text can still be written to the window below the scrolling region, specifi-
cally by using the various mv-prefix text output functions.

Examples
setscrreg(5,stdscr->_maxy);

The statement creates a scrolling region from line 5 through the bottom of
the standard screen.

wsetscrreg(options,2,opbot);

Here, the statement creates a scrolling region in the window options,
from line 2 (the third line) of the window through the value represented by
opbot.

436 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 436

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int x = 0;

6 int stdbot;

7

8 initscr();

9 stdbot = stdscr->_maxy;

10

11 scrollok(stdscr,TRUE);

12 setscrreg(3,stdbot-3);

13

14 attrset(A_BOLD);

15 mvaddstr(stdbot-2,0,”Press Ctrl+C to stop.”);

16 attroff(A_BOLD);

17 move(0,0);

18 while(1)

19 {

20 printw(“%d\t”,x);

21 x++;

22 refresh();

23 }

24

25 endwin();

26 return 0;

27 }

The sample output is shown in Figure A-13.

Also See
scrollok(), scrl()

Figure A-13: Only the indicated region of the window scrolls.

Appendix A ■ NCurses Library Reference 437

18_107591 appa.qxp 1/12/07 9:08 PM Page 437

setsyx()

The setsyx() function is used to set the virtual screen’s cursor location.

Man Page Format
void setsyx(int y, int x);

Format Reference
y and x are int values used to set the row and column positions of the virtual
screen’s cursor, respectively. Values range from 0 up through the values of
LINES and COLS. When -1 is specified for both y and x, the leaveok() state
is set TRUE.

Return Value
setsyx() is a macro and as such its return value should not be used.

Notes
To move the cursor in a window, use the move() function. See move().

The row, or y, argument comes first.
Most often setsyx() is used internally in conjunction with getsyx(),

which fetches the virtual screen’s cursor location. That way the cursor’s loca-
tion can be saved and restored while NCurses is doing something else.

Example
setsyx(row,col);

The statement places the virtual screen’s cursor to the position indicated by
the row and col variables.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int y,x;

6

7 initscr();

8

438 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 438

9 setsyx(5,5);

10 getsyx(y,x);

11 addstr(“The cursor on the virtual screen is set to 5, 5.\n”);

12 printw(“And getsyx() reports %d, %d.\n”,y,x);

13 refresh();

14 getch();

15

16 endwin();

17 return 0;

18 }

Sample output:

The cursor on the virtual screen is set to 5, 5.

And getsyx() reports 5, 5.

Also See
getsyx(), leaveok()

set_term()

The set_term() function determines which terminal to use for NCurses
input and output functions. Used primarily in conjunction with newterm()
when configuring unique terminal setups for NCurses.

Man Page Format
SCREEN *set_term(SCREEN *new);

Format Reference
new is the name of a SCREEN pointer, returned by newterm().

Return Value
set_term() returns a SCREEN pointer indicating which terminal was previ-
ously in use.

Notes
This is the only function that manipulates SCREEN pointers. (The delscreen()
function removes space allocated to the pointers.)

Appendix A ■ NCurses Library Reference 439

18_107591 appa.qxp 1/12/07 9:08 PM Page 439

Examples
old = set_term(new);

The statement activates NCurses I/O on the terminal specified by SCREEN
pointer new. The terminal currently used is saved in SCREEN pointer old.

set_term(old);

The statement transfers NCurses I/O to the terminal identified by SCREEN
pointer old.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 SCREEN *s;

6

7 s = newterm(NULL, stdout, stdin);

8 set_term(s);

9

10 addstr(“Hello!”);

11

12 refresh();

13 getch();

14

15 endwin();

16 return 0;

17 }

The program assigns standard input and output to the new terminal s,
which is setup by set_term(). The addstr() function in line 10 outputs to
standard output.

Sample output:

Hello!

Also See
newterm(), delscreen()

440 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 440

slk_attr()

The slk_attr() function returns the attributes currently be used to format
the soft labels.

Man Page Format
attr_t slk_attr(void);

Format Reference
The function has no arguments.

Return Value
A long int value of the NCurses attr_t type is returned, packed with val-
ues according to which formatting attributes have been applied to the soft
labels. Appendix C describes the bit field.

Notes
This function is the soft label version of the attr_get() function. See
attr_get().

Examples
va = slk_attr();

The statement stores attributes used to format the soft labels in the va
variable.

if(slk_attr() & A_BOLD)

The evaluation is true when the A_BOLD attribute is being used to format
the soft labels.

if(slk_attr() == A_BOLD)

The evaluation is true when only the A_BOLD attribute is being used to for-
mat the soft labels.

Appendix A ■ NCurses Library Reference 441

18_107591 appa.qxp 1/12/07 9:08 PM Page 441

Sample Program
1 #include <ncurses.h>

2

3 #define CENTER 1

4 #define LCOUNT 8

5

6 int main(void)

7 {

8 char labels[LCOUNT][19] = { “Help!”, “File”, “Print”, “Text”,

9 “Edit”, “Quick”, “Config”, “System” };

10 char *text;

11 int x;

12

13 slk_init(0);

14 initscr();

15

16 for(x=0;x<LCOUNT;x++)

17 slk_set(x+1,labels[x],CENTER);

18 slk_refresh();

19 if(slk_attr() & A_STANDOUT)

20 addstr(“The labels are formatted with the ;

standard attribute.\n”);

21 refresh();

22 getch();

23

24 endwin();

25 return 0;

26 }

Sample output:

The labels are formatted with the standard attribute.

Also See
attr_get(), slk_attron(), slk_attrset()

slk_attroff()

The slk_attroff() function is used to remove one or more attributes from
the soft label key display.

Man Page Format
int slk_attroff(const chtype attrs);

int slk_attr_off(const attr_t attrs, void * opts);

442 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 442

Format Reference
attrs is a chtype variable representing one or more attribute constants. These
constants are defined in NCURSES.H as listed in Table A-1 under attrset().
NULL is used as a placeholder the undefined opts argument.

Return Value
ERR on failure or OK or any value other than ERR when things go right.

Notes
The soft key labels are normally formatted with the standout (A_STANDOUT) for-
mat. slk_attroff() can be use to remove this attribute, or slk_attrset()
can be used to assign new attributes.

Also see the Notes for slk_attron() and slk_attrset() for more
information.

Example
slk_attroff(A_BOLD);

The statement removes the bold attribute from any text written to the soft
labels by subsequent slk_set() commands.

Sample Program
1 #include <ncurses.h>

2

3 #define CENTER 1

4 #define LCOUNT 8

5

6 int main(void)

7 {

8 char labels[LCOUNT][19] = { “Help!”, “File”, “Print”, “Text”,

9 “Edit”, “Quick”, “Config”, “System” };

10 char *text;

11 int x;

12

13 slk_init(0);

14 initscr();

15

16 slk_attroff(A_STANDOUT);

17 for(x=0;x<LCOUNT;x++)

18 slk_set(x+1,labels[x],CENTER);

19 slk_refresh();

20 getch();

Appendix A ■ NCurses Library Reference 443

18_107591 appa.qxp 1/12/07 9:08 PM Page 443

21

22 endwin();

23 return 0;

24 }

Sample output:
The labels are displayed in normal text; the slk_attroff(A_STANDOUT) func-

tion removes the standout formatting normally applied to the labels.

Also See
attroff(), slk_attron(), slk_attrset()

slk_attron()

The slk_attron() function applies the standard text attributes to the soft
labels. It is the soft label key equivalent of the attron() function.

Man Page Formats
int slk_attron(const chtype attrs);

int slk_attr_on(attr_t attrs, void* opts);

Format Reference
attrs is a chtype variable representing one or more attribute constants as
defined in NCURSES.H.
NULL is used in the slk_attr_on() function as a placeholder for the

undefined opts value.

Return Value
ERR on failure, OK or some value other than ERR on success.

Notes
As with attron(), the slk_attron() function merely adds attributes to
those already set. Setting a new attribute does not affect previous attributes
applied to the soft labels.

Soft label keys are normally displayed with the A_STANDOUT attribute
applied.

Multiple attributes can be applied by using more than one NCurses
attribute constant separated by a logical OR in the slk_attron() statement.

444 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 444

Refer to Table A-1 (in the attrset() entry) for a list of NCurses attribute
constants.
COLOR_PAIR(n) can be specified as a text attribute, where n is a color pair

number defined by an init_pair() function earlier in the program. Also see
the slk_color() function.

Individual labels can be assigned unique attributes by using slk_attron()
or slk_attrset() and then issuing a slk_set() function to update one or
more labels. The updated labels show the newly applied attributes.

Examples
slk_attron(A_UNDERLINE);

Here, the underline attribute is set in addition to any other attributes
already defined for the soft labels.

slk_attron(A_BOLD | A_BLINK);

This statement turns on the bold and (annoying) blink attributes, in addition
to any other attributes previously defined, for the soft labels.

Sample Program
1 #include <ncurses.h>

2

3 #define CENTER 1

4 #define LCOUNT 8

5

6 int main(void)

7 {

8 char labels[LCOUNT][19] = { “Help!”, “File”, “Print”, “Text”,

9 “Edit”, “Quick”, “Config”, “System” };

10 char *text;

11 int x;

12

13 slk_init(0);

14 initscr();

15

16 for(x=0;x<LCOUNT;x++)

17 slk_set(x+1,labels[x],CENTER);

18 slk_attron(A_BOLD);

19 slk_refresh();

20

21 refresh();

22 getch();

23

24 endwin();

25 return 0;

26 }

Appendix A ■ NCurses Library Reference 445

18_107591 appa.qxp 1/12/07 9:08 PM Page 445

Sample output:
The labels appear in bold text (in addition to inverse/standout).

Also See
attron(), slk_attrset(), slk_attroff(), slk_color()

slk_attrset()

The slk_attrset() function discards any previously defined attributes for
the soft label keys and defines a new set of attributes. It is the soft label key
counterpart of the attrset() functions.

Man Page Format
int slk_attrset(const chtype attrs);

int slk_attr_set(const attr_t attrs, short color_pair_number, ;

void* opts);

Format Reference
attrs is a chtype value representing one or more attribute constants, as
defined in NCURSES.H and listed in Table A-1 (under attrset()).
color_pair_number is a short int value representing a color pair num-

ber defined by init_pair() earlier in the code. It’s the same value as the n
used in COLOR_PAIR(n).
NULL is used in the slk_attr_set() functions as a placeholder the unde-

fined opts value.

Return Value
ERR on failure, a value other than ERR (such as OK) on success.

Notes
By default, the soft label keys are displayed in the A_STANDOUT (reverse text)
format. They use color pair 0.

Also see the entry for attrset() for more notes, as well as the notes for
slk_attron().

446 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 446

Examples
slk_attrset(A_BOLD);

Here, the bold attribute is applied to the soft labels.

slk_attrset(A_BOLD | A_UNDERLINE);

The statement here applies both bold and underline attributes to the soft
label keys.

slk_attrset(COLOR_PAIR(1));

slk_attr_set(0,1,NULL);

These two functions are identical; both assign color pair 1 to the soft label keys.

Sample Program
1 #include <ncurses.h>

2

3 #define CENTER 1

4 #define LCOUNT 8

5

6 int main(void)

7 {

8 char labels[LCOUNT][19] = { “Help!”, “File”, “Print”, “Text”,

9 “Edit”, “Quick”, “Config”, “System” };

10 char *text;

11 int x;

12

13 slk_init(0);

14 initscr();

15

16 for(x=0;x<LCOUNT;x++)

17 slk_set(x+1,labels[x],CENTER);

18 slk_attrset(A_BOLD);

19 slk_refresh();

20 getch();

21

22 endwin();

23 return 0;

24 }

Sample output:
The labels appear in bold text.

Also See
attrset(), slk_attron(), slk_attroff()

Appendix A ■ NCurses Library Reference 447

18_107591 appa.qxp 1/12/07 9:08 PM Page 447

slk_clear()

The slk_clear() function hides the soft labels.

Man Page Format
int slk_clear(void);

Format Reference
The function has no arguments.

Return Value
ERR on failure; OK upon success (actually, any value other than ERR on success).

Notes
slk_clear() does not need to be followed by a refresh() type command;
it’s effect is immediately seen.

This function merely hides the labels. To make them appear again, use the
slk_restore() function.

Using slk_clear() does not alter the reduced size of the standard screen.
The bottom line(s) formerly used by the soft labels still cannot be used.
slk_clear() hides all the soft labels. If you merely want to hide (or

remove) one label, use slk_set() to assign that label a null string. See
slk_set().

Example
slk_clear();

The statement removes the soft label key display from the screen.

Sample Program
1 #include <ncurses.h>

2

3 #define CENTER 1

4 #define LCOUNT 8

5

6 int main(void)

7 {

448 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 448

8 char labels[LCOUNT][9] = { “Help!”, “File”, “Print”, “Text”,

9 “Edit”, “Quick”, “Conf”, “System” };

10 int x;

11

12 slk_init(0);

13 initscr();

14

15 for(x=0;x<LCOUNT;x++)

16 slk_set(x+1,labels[x],CENTER);

17 slk_refresh();

18

19 addstr(“Press Enter to hide the soft label keys:\n”);

20 refresh();

21 getch();

22

23 slk_clear();

24 addstr(“Press Enter to restore the soft label keys:\n”);

25 refresh();

26 getch();

27

28 slk_restore();

29 getch();

30

31 endwin();

32 return 0;

33 }

Sample output:
Soft keys are displayed (refer to the figure for slk_set()).

Press Enter to hide the soft label keys:

And the soft labels are gone.

Press Enter to restore the soft label keys:

And they come back again.

Also See
slk_restore(), slk_set()

slk_color()

The slk_color() function chooses a color pair for the foreground and back-
ground of the soft label text.

Appendix A ■ NCurses Library Reference 449

18_107591 appa.qxp 1/12/07 9:08 PM Page 449

Man Page Format
int slk_color(short color_pair_number);

Format Reference
color_pair_number is a short int value representing a color pair defined
by the init_pair() function.

Return Value
The function returns ERR on failure, OK or some value other than ERR on success.

Notes
Only the labels are colored; the spaces between the labels are left as the termi-
nal’s assumed default color, such as black. Any color applied to the standard
screen extends down to the last row just above the soft labels.

The index line (for slk_init() value 3) is always colored using color pair
0; the slk_color(), as well as other slk attribute functions, do not affect the
index line.

The slk_color(n) function is equivalent to slk_attron(COLOR_
PAIR(n)).

The man page states that slk_color() has effect only when the soft labels
are simulated on the bottom of the screen.

Example
slk_color(4);

Here, the statement applies the foreground and background colors of color
pair 4 to the soft labels.

Sample Program
1 #include <ncurses.h>

2

3 #define CENTER 1

4 #define LCOUNT 8

5

6 int main(void)

7 {

8 char labels[LCOUNT][19] = { “Help!”, “File”, “Print”, “Text”,

450 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 450

9 “Edit”, “Quick”, “Config”, “System” };

10 char *text;

11 int x;

12

13 slk_init(0);

14 initscr();

15 start_color();

16 init_pair(1,COLOR_BLUE,COLOR_WHITE);

17

18 slk_color(1);

19 for(x=0;x<LCOUNT;x++)

20 slk_set(x+1,labels[x],CENTER);

21 slk_refresh();

22 getch();

23

24 endwin();

25 return 0;

26 }

Sample output:
The labels appear with white text on a blue background.

Also See
color_set(), slk_attron(), slk_attrset(), init_pair()

slk_init()

The slk_init() function directs NCurses to configure itself to display soft
label keys on the screen.

Explanation
Soft label keys consist of one or two rows of text along the bottom of the screen.
Each text label is associated with a function or soft label key, so that pressing
that key carries out the function as indicated (or so the theory goes).

NCurses soft label key (slk) functions allow for the display of the soft label
keys in your program, though programming your keyboard’s function keys
must also be done to get the things to work.

Man Page Format
int slk_init(int fmt);

Appendix A ■ NCurses Library Reference 451

18_107591 appa.qxp 1/12/07 9:08 PM Page 451

Format Reference
fmt is an int value from 0 through 3. The values specified describe how
the soft keys are configured, as referenced in Table A-16 and illustrated in
Figure A-14.

Return Value
ERR on failure, OK (or a value other than ERR) on success.

Notes
The slk_init() function must be used before initscr() or newterm().
slk_init() decreases the number of lines available on the standard screen

by one or two, depending on the format. This affects the value of the LINES
constant. See LINES.

The slk_set() function is used to apply text to the labels. To make the
labels show up, slk_refresh() is used.

I’ve found that when specifying 3 for fmt, it’s often necessary to use
an slk_restore() command just after initscr() to get the index line to
display.

There are terminals where the soft key labels are supplied by default; for
example, they’re not a part of the standard screen. For those terminals,
NCurses lets you program the labels. The labels are simulated on other termi-
nals (by removing one or two lines from the standard screen).

Table A-16: Soft label setup for slk_init()’s n argument

TOTAL CHARS PER
FMT LABELS LABEL PATTERN INDEX LINE

0 8 8 4-4 No

1 8 8 3-2-3 No

2 12 5 4-4-4 No

3 12 5 4-4-4 Yes

Figure A-14: Soft label key setups

452 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 452

Example
slk_init(0);

initscr();

These statements set up the terminal for soft key labels. The first line speci-
fies 8 labels in a 4-4 pattern. Note that this function must appear before
initscr(). Further code is required to apply text to and display the labels.

Sample Program
Refer to the entry for slk_set() for a sample program and output.

Also See
Chapter 12, slk_set(), slk_reset()

slk_label()

The slk_label() function returns the text assigned to a soft key label.

Man Page Format
char *slk_label(int labnum);

Format Reference
labnum is an int value indicating which label to be read. Values range from 1
through 8 or 12, depending on the label configuration defined by
slk_init().

Return Value
A pointer is returned, the memory location of the text displayed in the label.
On error, NULL is returned.

Notes
Any blanks used to align the label are not returned by slk_label().

If the label’s text is truncated, then only the truncated part is returned by the
slk_label() function.

When a label is not defined (blank), a null string is returned.

Appendix A ■ NCurses Library Reference 453

18_107591 appa.qxp 1/12/07 9:08 PM Page 453

Examples
lab3 = slk_label(3);

The statement places the memory location of the text used in soft label 3 into
the char pointer lab3.

printw(“Label %d is %s.\n”,x,slk_label(x));

The printw() statement displays the label number and text for the label
referenced by variable x.

Sample Program
1 #include <ncurses.h>

2

3 #define CENTER 1

4 #define LCOUNT 8

5

6 int main(void)

7 {

8 char labels[LCOUNT][19] = { “Help!”, “File”, “Print”, “Text”,

9 “Edit”, “Quick”, “Config”, “System” };

10 char *text;

11 int x,c;

12

13 slk_init(0);

14 initscr();

15

16 for(x=0;x<LCOUNT;x++)

17 slk_set(x+1,labels[x],CENTER);

18 slk_refresh();

19

20 addstr(“Retrieve the text for which label? “);

21 refresh();

22 scanw(“%d”,&c);

23 text = slk_label(c);

24 printw(“The text for label %d is \”%s\”.\n”,c,slk_label(c));

25 refresh();

26 getch();

27

28 endwin();

29 return 0;

30 }

Sample output:
The soft labels are displayed.

Retrieve the text for which label?

454 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 454

Type a number, such as 7.

The text for label 7 is “Config”.

Also See
slk_set(), slk_init()

slk_noutrefresh()

The slk_noutrefresh() function finds touched parts of the soft labels and
prepares those portions for updating on the virtual screen.

Man Page Format
int slk_noutrefresh(void);

Format Reference
The function has no arguments.

Return Value
OK, or some value other than ERR, on success; ERR on failure.

Notes
Refer to wnoutrefresh() for more information on this type of function and
how it can be used to optimize NCurses output.

When you use slk_noutrefresh(), as well as other noutrefresh()
functions, the doupdate() function is required to do the actually displaying
of text.

Example
slk_noutrefresh();

The statement scans for any changes (touches) to the soft labels and prepares
the updated portions to be written to the screen.

Appendix A ■ NCurses Library Reference 455

18_107591 appa.qxp 1/12/07 9:08 PM Page 455

Sample Program
1 #include <ncurses.h>

2

3 #define CENTER 1

4 #define LCOUNT 8

5

6 int main(void)

7 {

8 char labels[LCOUNT][19] = { “Help!”, “File”, “Print”, “Text”,

9 “Edit”, “Quick”, “Config”, “System” };

10 char *text;

11 int x;

12

13 slk_init(0);

14 initscr();

15

16 for(x=0;x<LCOUNT;x++)

17 slk_set(x+1,labels[x],CENTER);

18 slk_noutrefresh();

19 addstr(“Welcome to your Soft Label Key program\n”);

20 wnoutrefresh(stdscr);

21 doupdate();

22 getch();

23

24 endwin();

25 return 0;

26 }

Sample output:
Both the text Welcome to your Soft Label Key program and soft labels

appear at the same time, thanks to the single doupdate() function.

Also See
wnoutrefresh(), doupdate(), slk_refresh(), slk_touch()

slk_refresh()

The slk_refresh() function displays the soft label keys on the screen or
updates the soft label keys after a change has been made. It’s analogous to the
refresh() function but specific to the soft label keys.

Man Page Format
int slk_refresh(void);

456 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 456

Format Reference
The function has no arguments.

Return Value
ERR on failure, OK (or a value other than ERR) on success.

Notes
The slk_refresh() function is specific to the line(s) on the screen contain-
ing the soft label keys. Because the line(s) is outside of the standard screen, this
special function is required to update the text (labels) displayed there.

Like other refresh() functions in NCurses, slk_refresh() is a combina-
tion of two lower-level functions: slk_noutrefresh() and the doupdate()
function. See slk_noutrefresh() and doupdate()for more information.

Example
slk_refresh();

The function updates the soft label key display.

Sample Program
Refer to the entry for slk_set() for a sample program and output.

Also See
Chapter 12, slk_init(), slk_set()

slk_restore()

The slk_restore() function redisplays the soft labels after an slk_clear()
command has temporarily hidden them.

Man Page Format
int slk_restore(void);

Format Reference
The function has no arguments.

Appendix A ■ NCurses Library Reference 457

18_107591 appa.qxp 1/12/07 9:08 PM Page 457

Return Value
ERR on failure; OK or any value other than ERR upon success.

Notes
This function is often used in conjunction with slk_clear() to show or hide
the soft label keys.

As with slk_clear(), an slk_refresh() is not needed to follow the
slk_restore() and display the soft label keys.

A call to the slk_restore() function may be necessary right after
initscr() to urge NCurses to display the soft label key’s index line. See
slk_init().

Example
slk_restore();

The statement restores the soft label key display to the screen. Presumably
they were cleared previously by a slk_clear() function.

Sample Program
Refer to the entry for slk_clear() for a sample program and output.

Also See
Chapter 12, slk_clear()

slk_set()

The slk_set() function applies a text label to a specific soft key.

Man Page Format
int slk_set(int labnum, const char *label, int fmt);

Format Reference
labnum is an int value representing a specific soft key label. Values range
from 1 through 8 or 1 through 12 depending on the number of soft key labels

458 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 458

slk_init() has created. The labels are numbered from left to right across the
screen.
label is a string constant or variable representing the text to be assigned a

label. When eight labels are displayed, each label can have up to eight charac-
ters of text displayed. For the 12 label configuration, each label displays up to
five characters. Extra characters are truncated on the right.
fmt is an int value describing how text is to be aligned within a label’s space.

Valid values are 0 for left-justified; 1 for centered; and 2 for right-justified.

Return Value
An int value: ERR on failure, OK (or a value other than ERR) on success.

Notes
Soft label keys must first be initialized before slk_set() can be used. See
slk_init().

The slk_init() function also determines the total number of labels avail-
able as well as how many characters can appear in each label. See Table A-16.

Remember that the labels are numbered starting with 1, not zero.
The labels and their text do not appear until an slk_restore() function is

used.
To remove text from a label, specify a null string as the label argument in

slk_set().
A label’s text can be changed at any time by issuing an slk_set() function

with new label text, followed by the appropriate slk_refresh() function.
The slk_label() function returns text assigned to a given label. See

slk_label().

Examples
slk_set(1,”HELP!”,1);

Here, the text HELP! is applied to the first soft label. It is centered within the
label.

slk_set(8,””,0);

slk_refresh()

The statements remove the label from soft label key 8.

Appendix A ■ NCurses Library Reference 459

18_107591 appa.qxp 1/12/07 9:08 PM Page 459

Sample Program
1 #include <ncurses.h>

2

3 #define LEFT 0

4 #define CENTER 1

5 #define RIGHT 2

6

7 int main(void)

8 {

9 slk_init(0);

10 initscr();

11

12 slk_set(1,”Help!”,LEFT);

13 slk_set(2,”File”,LEFT);

14 slk_set(3,”Print”,LEFT);

15 slk_set(4,”Text”,CENTER);

16 slk_set(5,”Edit”,CENTER);

17 slk_set(6,”Quick”,RIGHT);

18 slk_set(7,”Conf”,RIGHT);

19 slk_set(8,”Change”,RIGHT);

20 slk_refresh();

21 getch();

22

23 endwin();

24 return 0;

25 }

The sample output is shown in Figure A-15.

Also See
Chapter 12, slk_init(), slk_label(), slk_refresh()

Figure A-15: Soft label keys are set.

460 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 460

slk_touch()

The slk_touch() function flags all portions of the soft labels as requiring
an update, forcing NCurses to redraw the soft labels on the next slk_
noutrefresh() or slk_refresh() call.

Man Page Format
int slk_touch(void);

Format Reference
The function has no arguments.

Return Value
ERR on failure, OK or some value other than ERR on success.

Notes
Refer to the entry for touchwin() for the lowdown on how NCurses reacts to
touched portions of a window and how that relates to information being
updated on the screen. The same information applies to the soft labels.

Example
slk_touch();

The statement flags all of the soft labels are requiring an update with the
next slk_noutrefresh() or slk_refresh() function.

Sample Program
1 #include <ncurses.h>

2

3 #define CENTER 1

4 #define LCOUNT 8

5

6 int main(void)

7 {

8 char labels[LCOUNT][19] = { “Help!”, “File”, “Print”, “Text”,

9 “Edit”, “Quick”, “Config”, “System” };

10 char *text;

11 int x;

Appendix A ■ NCurses Library Reference 461

18_107591 appa.qxp 1/12/07 9:08 PM Page 461

12

13 slk_init(0);

14 initscr();

15 start_color();

16 init_pair(1,COLOR_RED,COLOR_YELLOW);

17

18 for(x=0;x<LCOUNT;x++)

19 slk_set(x+1,labels[x],CENTER);

20 slk_refresh();

21 getch();

22

23 slk_color(1);

24 slk_touch();

25 slk_refresh();

26 getch();

27

28 endwin();

29 return 0;

30 }

Sample output:
The soft labels appear. Press Enter and they reappear with color applied. If the

slk_touch() was not issued in line 24, then the new color attributes would not
have been seen. (Comment out that line, and recompile to see.)

Also See
slk_refresh(), touchwin()

standend()

The standend() function is used to turn off text attributes.

Man Page Format
int standend(void);

int wstandend(WINDOW *win);

Format Reference
The function has no arguments.

Refer to the w entry later in this appendix for information on the win argument.

Return Value
The return value, according to the documentation, is “not meaningful.”

462 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 462

Notes
While it would seem that standend() is the logical bookend function to
standout(), it does more than just turn off the standout text attribute; it
turns off all text attributes, even color.
standend() is identical to the following:

attrset(A_NORMAL);

Example
standend();

The statement restores the normal text attribute for all text subsequently dis-
played on the standard screen.

Sample Program
For a sample program and sample output refer to the standout() function’s
entry (next).

Also See
Chapter 3, attrset(), attroff()

standout()

The standout() function activates the standout attribute for text displayed
on the screen.

Man Page Format
int standout(void);

int wstandout(WINDOW *win);

Format Reference
The function has no arguments.

Refer to the w entry later in this appendix for information on the win
argument.

Appendix A ■ NCurses Library Reference 463

18_107591 appa.qxp 1/12/07 9:08 PM Page 463

Return Value
The return value, according to the documentation, is “not meaningful.”

Notes
On most terminals, standout displays text in reverse video, such as black text
on a white background.

This function is identical to the following:

attron(A_STANDOUT);

In fact, the standout() function may simply be a macro using the
attron(A_STANDOUT) function as its definition.
standout() is an older Curses function and therefore I recommend avoid-

ing it. Use attron() or attrset() instead.

Example
wstandout(output);

The statement activates the standout attribute for any text subsequently
written to the window output.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 addstr(“Yes, I must admit that “);

8 standout();

9 addstr(“Chris”);

10 standend();

11 addstr(“ is my favorite pupil.”);

12 refresh();

13 getch();

14

15 endwin();

16 return 0;

17 }

Sample output:

Yes, I must admit that Chris is my favorite pupil.

464 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 464

Also See
Chapter 3, attrset(), attron()

start_color()

The start_color() function is used on those terminals that can display col-
ored text to allow NCurses to access those color abilities. No NCurses text or
background color functions can be used until start_color() has initialized
colors in NCurses.

Man Page Format
int start_color(void);

Format Reference
The function has no arguments.

Return Value
OK upon success, meaning that your program can use color functions and color
attributes. ERR upon failure.

Notes
The has_colors() function can be used initially to determine whether or
not the terminal is capable of setting text colors.
start_color() traditionally appears just after the initscr() or

newterm() function.
The colors applied to text or to a window’s background are created as color

pairs. See init_pair().
Colors are applied similar to other attributes. See attrset(), attron(),

bkgd(). Colors can also be applied directly by using a logical OR to build a
chtype character, and then using any of the chtype character functions to
place that text in a window.

Custom colors can be created by using the init_color() function, though
not every terminal supports it. Also see the can_change_color() function.

The number of colors available to a terminal can be found by examining the
COLORS constant. See COLORS.

Appendix A ■ NCurses Library Reference 465

18_107591 appa.qxp 1/12/07 9:08 PM Page 465

Also refer to this appendix’s COLORS entry for a list of NCurses color
constants.

The number of color pairs available is found by examining the COLOR_PAIRS
constant.

Example
start_color();

The function initializes color for the NCurses program.

Sample Program
1 #include <ncurses.h>

2 #include <stdlib.h>

3

4 void bomb(int r);

5

6 int main(void)

7 {

8 initscr();

9

10 /* first test for color ability of the terminal */

11 if(!has_colors()) bomb(1);

12

13 /* next attempt to initialize NCurses colors */

14 if(start_color() != OK) bomb(2);

15

16 /* colors are okay; continue */

17

18 printw(“Colors have been properly initialized.\n”);

19 printw(“Congratulations!\n”);

20 printw(“NCurses reports that you can use %d ;

colors,\n”,COLORS);

21 printw(“and %d color pairs.”,COLOR_PAIRS);

22 refresh();

23 getch();

24

25 endwin();

26 return 0;

27 }

28

29 void bomb(int r)

30 {

31 endwin();

32 printw(“Color problem %d\n”,r);

33 exit(r);

34 }

466 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 466

Sample output:

Colors have been properly initialized.

Congratulations!

NCurses reports that you can use 8 colors,

and 64 color pairs.

Also See
Chapter 3, has_colors(), init_pair()

subpad()

The subpad() function creates and defines a rectangle on a pad as a subpad,
much the same as subwin() creates a subwindow.

Man Page Format
WINDOW *subpad(WINDOW *orig, int nlines, int ncols,int begin_y, int

begin_x);

Format Reference
orig is a WINDOW variable, a pointer, representing the parent pad.
nlines and ncols are int values that set the subpad’s size in rows and

columns. Values for nlines and ncols cannot be larger than the parent pad.
begin_y and begin_x are int values that set the subpad’s position rela-

tive to the parent pad. The value 0,0 is the parent pad’s upper-left corner.

Return Value
When the subpad() call is successful, a subpad is created in memory and a
pointer to a WINDOW structure is returned. When things go awry, NULL is
returned and no subpad is created.

Notes
The subpad must fit completely inside the parent pad. Aside from that, like
pads subpads can be larger than the standard screen.

As with a subwindow, a subpad shares memory with the pad: Changes to
one are reflected in the other.

Appendix A ■ NCurses Library Reference 467

18_107591 appa.qxp 1/12/07 9:08 PM Page 467

The best way to put a subpad to use is as a shortcut to reference a specific
area in a pad. As such, it’s easier to calculate offsets with in a subpad than from
the entire pad. Refer to the code for PADDY2.C in Chapter 11 for an example.

As with the pad, the subpad is created off-screen. Use the prefresh()
function to display its contents. See prefresh().

Subpads are removed with the delwin() function. Be sure to remove all
subpads before the parent pad is removed.

It’s possible to have subpads within subpads.
It may be necessary to call touchline() or touchwin() on the pad to

update the information on the subpad.

Example
s2 = subpad(p,TALL,WIDE+1,TALL,0);

The statement creates a subpad s2 inside pad p. The pad is TALL rows tall
and WIDE+1 columns wide. It’s located at offset TALL, 0 inside pad p.

Sample Program
1 #include <ncurses.h>

2 #include <stdlib.h>

3

4 void bomb(char *message);

5

6 int main(void)

7 {

8 WINDOW *pod,*pea;

9

10 initscr();

11

12 /* create a new pad */

13 pod = newpad(50,50);

14 if(pod == NULL)

15 bomb(“Unable to create new pad”);

16

17 addstr(“New pad created\n”);

18 refresh();

19

20 /* create a subpad */

21 pea = subpad(pod,20,20,29,29);

22 if(pea == NULL)

23 bomb(“Unable to create subpad”);

24

25 addstr(“Subpad created\n”);

26 refresh();

27 getch();

28

29 endwin();

468 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 468

30 return 0;

31 }

32

33 void bomb(char *message)

34 {

35 endwin();

36 puts(message);

37 exit(1);

38 }

Sample output:

New pad created

Subpad created

Also See
Chapter 11, newpad(), prefresh()

subwin()

The subwin() function creates a subwindow or window within a window.

Man Page Format
WINDOW *subwin(WINDOW *orig, int nlines, int ncols,

int begin_y, int begin_x);

Format Reference
orig is a window on the screen, which becomes the parent window of the
subwindow.
nlines and ncols are int values indicating the number of rows and

columns the subwindow contains, respectively. Values range from 1 to the dis-
tance between the window’s origin and the bottom and right edges of the win-
dow, respectively. When either nlines or ncols is 0, the subwindow extends
from its origin to the bottom or right edge of the parent window, respectively.
Neither nlines nor ncols can be negative.
begin_y and begin_x give the subwindow’s origin, the upper-right coor-

dinate relative to the standard screen. Values for begin_y and begin_x are
ints, ranging from 0, 0 (the upper-left corner of the screen) to the maximum
number of rows and columns for the standard screen. (See COLS and LINES.)

Appendix A ■ NCurses Library Reference 469

18_107591 appa.qxp 1/12/07 9:08 PM Page 469

Return Value
Upon success, a pointer is returned, which is saved in a WINDOW variable
declared just as regular windows are declared. On failure, NULL is returned.
(See NULL.)

Notes
You shouldn’t really think of a subwindow as a real window. In fact, if you
need a real window, use newwin() or any of the window creation functions,
to make a new window. The features available to real windows over subwin-
dows are far more rich and versatile.

Subwindows are best put to use as a way to access a specific rectangle
within a window. For example, you can apply a unique background to the sub-
window or use its coordinates as handy offsets that would require more over-
head to calculate otherwise. Chapter 9 has more details.

Subwindows can have their own subwindows.
Remember that the begin_y and begin_x coordinates for the subwin-

dow’s origin are relative to the standard screen, not the parent window.
As with a real window, a subwindow cannot be larger than the standard

screen, nor can any part of the window be off the screen.
The smallest subwindow is one character by one character.
All commands that deal with windows also apply to subwindows. Though:
A refresh() call to the parent window is all that’s needed to initially dis-

play both the parent and any subwindow(s). After that, however, calls to
wrefresh() are required to update a subwindow.

Subwindows do not have their own window data in memory. Instead, they
share memory with their parents. This leads to many drawbacks, among them:
It’s possible for the parent window to overwrite text in a subwindow; and
the subwindow must be deleted before removing the parent window. (See
delwin().)

Examples
footnote = subwin(stdscr,2,COLS,LINES-2,0);

The statement creates a subwindow named footnote in the standard
screen. The window occupies the bottom two rows of the screen from the left
to right sides of the standard screen window. (See COLS, LINES.)

menu_edit = subwin(menubar,12,20,2,43);

470 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 470

Here, the subwindow menu_edit is created in the window menubar.
menu_edit is 12 rows by 20 columns and its upper-left corner is at row 2,
column 23, which are screen coordinates and not offsets within the window
menubar.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *sonny;

6

7 initscr();

8 start_color();

9 init_pair(1,COLOR_WHITE,COLOR_BLUE);

10 init_pair(2,COLOR_RED,COLOR_YELLOW);

11

12 /* create subwindow */

13 sonny = subwin(stdscr,14,50,10,30);

14 if(sonny == NULL)

15 {

16 endwin();

17 puts(“Unable to create subwindow\n”);

18 return(1);

19 }

20

21 /* color windows and splash some text */

22 bkgd(COLOR_PAIR(1));

23 addstr(“Hello, son.”);

24 wbkgd(sonny,COLOR_PAIR(2));

25 waddstr(sonny,”Hello, Dad.”);

26 refresh();

27 getch();

28

29 endwin();

30 return 0;

31 }

The sample output is shown in Figure A-2.

Also See
Chapter 9, newwin(), derwin(), delwin(), WINDOW

Appendix A ■ NCurses Library Reference 471

18_107591 appa.qxp 1/12/07 9:08 PM Page 471

syncok()

The syncok() function directs NCurses to automatically (or not) touch par-
ents of a subwindow when that subwindow’s contents are changed.

Man Page Format
int syncok(WINDOW *win, bool bf);

Format Reference
win is a WINDOW variable representing a subwindow.
bf is a Boolean value, either TRUE to touch the subwindows for updating

and FALSE not to.

Return Value
OK on success, ERR on failure (though it could be any value other than ERR on
success).

Notes
The syncok() attribute is tied into a specific window; it is not a global
attribute in NCurses. Subwindows are created with the syncok() attribute
disabled (set to FALSE).

Seeing as how a subwindow and its parent window share memory, the pur-
pose of this function seems questionable.

Example
syncok(subby,TRUE);

The statement causes any changes to the window subby to automatically be
touched in all parent windows. Then again, because the memory is shared, the
information is updated regardless.

Sample Program
Not applicable.

Also See
wsyncup(), subwin()

472 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 472

TABSIZE

NCurses uses the value of TABSIZE to set the position of tab stops on the
screen. These stops are used when the \t, or tab, character is displayed; the
cursor is advanced on the current line to the location of the next tab stop.

Man Page Format
Not applicable.

Format Reference
TABSIZE=n

The new TABSIZE value is set to equal n, which is an int value, either a
variable or constant.
TABSIZE could also be used in any function where an int value is required,

such as:

printw(“Tab stops are set every %d characters.\n”,TABSIZE);

Return Value
TABSIZE is set equal to 8 by NCurses. The value is set internal to the NCurses
library, not in the NCURSES.H file.

Notes
TABSIZE is a global variable. Resetting its value in a function does not keep
the new value local to that function.
TABSIZE is initially set to a value of 8, meaning that the \t character

advances the cursor to the next column matching a multiple of 8:

8, 16, 24, 32, 40, 48, 56, 64, 72

and on up to the far right column on the screen
As a variable, the value of TABSIZE can be reset at any time in an NCurses

program. Resetting TABSIZE affects tab positions from that point in the pro-
gram onward.

Tab characters do cause the cursor to drop down to the next line on the dis-
play. That is, displaying a \t character after the last tab stop on a line causes
the cursor to drop to the next line and display the character at the first tab stop
position on the following line, which is at column 0.

Appendix A ■ NCurses Library Reference 473

18_107591 appa.qxp 1/12/07 9:08 PM Page 473

Displaying a tab at the last position on the last row of a window causes a
window to scroll, but only when scrolling is enabled for that window.

Examples
TABSIZE=10;

The statement sets the tab stops to intervals of 10.

If(x > (maxx - TABSIZE))

This comparison is made using the value of TABSIZE.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 addstr(“Tabs set naturally:\n”);

8 addstr(“A\tB\tC\tD\tE\tF\tG\tH\tI\tJ\tK\tL\tM\n”);

9 addstr(“Tab stop set to 5\n”);

10 TABSIZE = 5;

11 addstr(“A\tB\tC\tD\tE\tF\tG\tH\tI\tJ\tK\tL\tM\n”);

12 refresh();

13 getch();

14

15 endwin();

16 return 0;

17 }

Sample output:

Tabs set naturally:

A B C D E F G H ;

I J

K L M

Tab stop set to 5

A B C D E F G H I J K L M

Also See
addch(), addstr()

474 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 474

termattrs()

The termattrs() function is used to confirm which attributes the terminal is
capable of producing.

Man Page Format
chtype termattrs(void);

attr_t term_attrs(void);

Format Reference
The functions have no arguments.

Return Value
The functions return a long int bit field with bits set according to which
attributes the terminal is capable of producing. The chtype attributes are
defined in NCURSES.H and are prefixed with A; attr_t attributes are also
defined in NCURSES.H and prefixed by WA.

Notes
It’s possible to ferret out specific attributes by using a logical OR with the
attribute constant and the value returned by termattrs().

The attr_get() function is used to read attributes currently being used in
a window. See attr_get().

Refer to Appendix C for more information on the chtype attribute constants.

Examples
printw(“The terminals attributes value is %X.\n”,termattrs());

The function displays the termattrs() value as a hexadecimal number.

a = termattrs();

Here, the attributes bit mask for the current terminal is saved in chtype
variable a.

Appendix A ■ NCurses Library Reference 475

18_107591 appa.qxp 1/12/07 9:08 PM Page 475

Sample Program
1 #include <ncurses.h>

2

3 static void attryn(chtype a, chtype c)

4 {

5 if(a & c)

6 addstr(“Yes”);

7 else

8 addstr(“No”);

9 addch(‘\n’);

10 }

11

12 int main(void)

13 {

14 chtype attributes;

15

16 initscr();

17

18 attributes = termattrs();

19 addstr(“This terminal is capable of the following ;

attributes:\n”);

20 printw(“%14s”,”AltCharSet: “); attryn(attributes, ;

A_ALTCHARSET);

21 printw(“%14s”,”Blink: “); attryn(attributes, A_BLINK);

22 printw(“%14s”,”Bold: “); attryn(attributes, A_BOLD);

23 printw(“%14s”,”Dim: “); attryn(attributes, A_DIM) ;

24 printw(“%14s”,”Invisible: “); attryn(attributes, A_INVIS);

25 printw(“%14s”,”Normal: “); attryn(attributes, ;

A_NORMAL);

26 printw(“%14s”,”Reverse: “); attryn(attributes, A_REVERSE);

27 printw(“%14s”,”Standout: “); attryn(attributes, ;

A_STANDOUT);

28 printw(“%14s”,”Underline: “); attryn(attributes, ;

A_UNDERLINE);

29 printw(“%14s”,”Protect: “); attryn(attributes, A_PROTECT);

30 printw(“%14s”,”Horizontal: “); attryn(attributes, ;

A_HORIZONTAL);

31 printw(“%14s”,”Left: “); attryn(attributes, A_LEFT);

32 printw(“%14s”,”Low: “); attryn(attributes, A_LOW);

33 printw(“%14s”,”Right: “); attryn(attributes, A_RIGHT);

34 printw(“%14s”,”Top: “); attryn(attributes, A_TOP);

35 printw(“%14s”,”Vertical: “); attryn(attributes, ;

A_VERTICAL);

36 refresh();

37 getch();

38

39 endwin();

40 return 0;

41 }

476 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 476

Sample output:

This terminal is capable of the following attributes:

AltCharSet: Yes

Blink: No

Bold: Yes

Dim: No

Invisible: No

Normal: Yes

Reverse: Yes

Standout: Yes

Underline: Yes

Protect: No

Horizontal: No

Left: No

Low: No

Right: No

Top: No

Vertical: No

Also See
Appendix C, attrset(), attr_get()

termname()

The termname() function returns the terminal name as a string (char array).

Man Page Format
char *termname(void);

Format Reference
The function takes no arguments.

Return Value
The function returns a string in the form of a pointer. It can be used as an
immediate value or stored in a char pointer variable.
NULL can be returned by termname() when there is an error.

Appendix A ■ NCurses Library Reference 477

18_107591 appa.qxp 1/12/07 9:08 PM Page 477

Notes
The name returned by termname() is the same as returned by the $TERM
environment variable.

For a more verbose string describing the terminal, use the longname()
function. See longname().

Example
addstr(termname());

refresh();

These statements display the terminal name on the standard screen.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6

7 printw(“The term name is %s.\n”,termname());

8 refresh();

9 getch();

10

11 endwin();

12 return 0;

13 }

Sample output:

The termname is xterm-color.

Of course, your output may vary.

Also See
longname(), newterm()

timeout()

The timeout() function sets a variable delay for NCurses text input functions.

478 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 478

Man Page Format
void timeout(int delay);

void wtimeout(WINDOW *win, int delay);

Format Reference
delay is an int value, either negative, positive, or zero. When delay is neg-
ative, input functions are blocking as normal. When delay is zero, input func-
tions are non-blocking and return ERR when no input is in the queue. Positive
values of delay represent the number of milliseconds NCurses waits for char-
acter input before the input function returns ERR.

Return Value
ERR on failure or OK on success.

Notes
One thousand milliseconds equals one second.

Setting the nodelay() function is the same as timeout(0).
The halfdelay() function is similar to using positive values with time-

out(), though halfdelay() uses tenths of a second as its argument, not
milliseconds. And halfdelay() is directed at all NCurses input, not win-
dow-oriented as timeout() is.

Examples
timeout(1000);

The statement sets the text input delay to one second. When getch() has
not received input after one second, it returns ERR.

timeout(-1);

The statement activates (or reactivates) the blocking nature of text input
functions such as getch(). This could be used in a program to reset a previ-
ously set timeout() value.

Sample Program
1 #include <ncurses.h>

2

3 #define DELAY 1000

4

Appendix A ■ NCurses Library Reference 479

18_107591 appa.qxp 1/12/07 9:08 PM Page 479

5 int main(void)

6 {

7 int ch;

8

9 initscr();

10

11 timeout(DELAY);

12 printw(“The timeout delay has been set to %d ;

milliseconds.\n”,DELAY);

13 addstr(“Try to type in your name fast enough:\n”);

14 refresh();

15

16 do

17 {

18 ch = getch();

19 if(ch == ‘\n’)

20 break;

21 } while(ch != ERR);

22

23 mvaddstr(5,0,”Hope you got it all in!”);

24 refresh();

25 getch();

26

27 endwin();

28 return 0;

29 }

Sample output:

The timeout delay has been set to 1000 milliseconds.

Try to type in your name fast enough:

Try to type quickly; if you pause longer than 1 second, either at first or between any
keys, the program is over.

Also See
getch(), nodelay(), halfdelay()

touchline()

The touchline() function marks one or more rows in a window as changed,
which directs NCurses to update the row(s) on the next call to refresh().

Explanation
Refer to the entry for touchwin() for an explanation. The same material
applies for the touchline() function, though for touchline() only

480 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 480

specific lines in a window are marked as changed, and therefore written to the
screen upon the next refresh() call.

Man Page Format
int touchline(WINDOW *win, int start, int count);

Format Reference
win is a WINDOW variable representing a window created earlier in this pro-
gram, or stdscr for the standard screen.
start is an int value representing the starting row to be updated. Values

range from 0 for the top row on through as many rows as there are in the
named window.
count is an int value that tells NCurses how many rows to update. Values

range from 1 for just the named row, on up to as many rows as there are from
the current row to the end of the window.

Return Value
ERR upon failure and an int value other than ERR upon success.

Notes
Remember that touchline() requires three arguments: window, starting
line, and count. It’s really a “touch lines” function.
touchline() updates lines from the named row down.
A common reason for using touchline() is when NCurses is having

trouble updating the current screen, such as when one window overlaps
another.

The touchline() function by itself does not update the screen. It merely
coordinates between the named window and memory. A refresh() or
wrefresh() function is required after touchline() to actually see the
updated window.

If you know specifically which lines of text need updating, then the
touchline() function is more efficient than calling touchwin().

Examples
touchline(stdscr,0,10);

Here, the top 10 lines of the standard screen are touched, meaning that each
and every character will be updated on the next refresh() call.

Appendix A ■ NCurses Library Reference 481

18_107591 appa.qxp 1/12/07 9:08 PM Page 481

touchline(menu,10,0);

Here, the touchline() function flags line 10 in the window menu for
updating with the next wrefresh(menu) call.

Sample Program
1 #include <Ncurses.h>

2 #include <stdlib.h>

3 #include <time.h>

4

5 #define MAX 23

6

7 int main(void)

8 {

9 WINDOW *alpha;

10 int rows[MAX];

11 int c,r,total;

12

13 srandom((unsigned)time(NULL)); /* seed randomizer */

14 for(c=0;c<MAX;c++) /* initialize array */

15 rows[c] = 0;

16 total = 0; /* initialize counter */

17

18 /* NCurses setup stuff */

19 initscr();

20 start_color();

21 init_pair(1,COLOR_WHITE,COLOR_BLUE);

22 alpha = newwin(0,0,0,0);

23 wbkgd(alpha,COLOR_PAIR(1));

24 untouchwin(alpha); /* pretend win is updated */

25

26 addstr(“Press Enter to touch and display window alpha\n”);

27 refresh();

28 getch();

29

30 /* Loop to gradually reveal the blue window */

31 while(total<MAX)

32 {

33 r = random() % (MAX + 1);

34 if(rows[r]==0)

35 {

36 rows[r] = 1;

37 touchline(alpha,r,1);

38 wrefresh(alpha); /* update the line */

39 napms(100); /* pause 1/10 sec */

40 total++;

41 }

42 }

43 getch();

482 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 482

44

45 endwin();

46 return 0;

47 }

Sample output:

Press Enter to touch and display window alpha

After pressing enter, each row of window alpha is updated one after the other as each
is touched. Eventually the entire screen turns blue.

Also See
refresh(), touchwin(), wtouchln(), is_linetouched()

touchwin()

The touchwin() function directs NCurses to treat a window as if every char-
acter on the window has been changed or modified since the last refresh, forcing
NCurses to redraw the entire window on the next refresh() or wrefresh()
function.

Explanation
Internally, NCurses keeps track of which parts of a window have been updated
since the last refresh. For efficiency’s sake, only those changed parts of the win-
dow are then updated to the current screen on the next refresh. By using
touchwin(), every single character in the window is flagged as touched, or
changed, forcing NCurses to redraw everything from scratch on the next
refresh() or wrefresh() call.

Man Page Format
int touchwin(WINDOW *win);

Format Reference
touchwin(win)

win is the name of a window to touch. After the call, all locations in the win-
dow are flagged as requiring updating for the next call to wrefresh(win).

Appendix A ■ NCurses Library Reference 483

18_107591 appa.qxp 1/12/07 9:08 PM Page 483

Return Value
ERR upon failure, or a value other than ERR upon success.

Notes
It’s only necessary to use touchwin() when NCurses is having trouble
updating the current screen. This happens most often when dealing with over-
lapping windows.

By itself, touchwin() does not redisplay the current screen or the named
window; it merely updates the window’s contents. To update the current screen,
you must call wrefresh() for the window after using the touchwin()
function.

Using touchwin() followed by wrefresh() is similar to using the
clearok() function for that window, followed by wrefresh(). Though
remember that the clearok() function clears the screen before redrawing the
image, and it does not change a window’s status from touched to untouched.

Example
touchwin(help);

Here, the touchwin() function assures that all parts of the window help
will be drawn for the next call to wrefresh(help).

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *bob;

6

7 initscr();

8 start_color();

9 init_pair(1,COLOR_WHITE,COLOR_BLUE);

10 init_pair(2,COLOR_RED,COLOR_WHITE);

11

12 bob = newwin(0,0,0,0);

13 wbkgd(bob,COLOR_PAIR(2));

14 bkgd(COLOR_PAIR(1));

15

16 waddstr(bob,”Hello from the window bob!\n”);

17 waddstr(bob,”I like long walks and romantic candlelit ;

dinners.\n”);

484 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 484

18 waddstr(bob,”Press Enter to return to the standard ;

screen.\n”);

19 addstr(“This is the standard screen.\n”);

20 addstr(“To see the window bob, press the Enter key:\n”);

21 refresh();

22 getch();

23

24 wrefresh(bob);

25 getch();

26

27 addstr(“Welcome back to the standard screen (kinda).\n”);

28 addstr(“To see the whole window bob, press Enter.\n”);

29 refresh();

30 getch();

31

32 waddstr(bob,”Thanks!\n”);

33 waddstr(bob,”Press Enter to see the whole standard ;

screen.\n”);

34 touchwin(bob);

35 wrefresh(bob);

36 getch();

37

38 touchwin(stdscr);

39 refresh();

40 getch();

41

42 endwin();

43 return 0;

44 }

Sample output:
In white text on a blue screen:

This is the standard screen.

To see the window bob, press the Enter key:

Press Enter to see red text on a white screen:

Hello from the window bob!

I like long walks and romantic candlelit dinners.

Press Enter to return to the standard screen.

Press Enter to see:

Hello from the window bob!

I like long walks and romantic candlelit dinners.

Welcome back to the standard screen (kinda).

To see the whole window bob, press Enter.

Appendix A ■ NCurses Library Reference 485

18_107591 appa.qxp 1/12/07 9:08 PM Page 485

The top two lines are red on white; the bottom two lines are white on blue. Press
Enter:

Hello from the window bob!

I like long walks and romantic candlelit dinners.

Press Enter to return to the standard screen.

Thanks!

Press Enter to see the whole standard screen.

Press Enter:

This is the standard screen.

To see the window bob, press the Enter key:

Welcome back to the standard screen (kinda).

To see the whole window bob, press Enter.

Also See
clearok(), refresh(), is_wintouched(), untouchwin()

TRUE

TRUE is a Boolean value used in NCurses for setting options, as a value
returned by specific functions, or for comparisons.

Man Page Format
Not applicable.

Format Reference
TRUE can be used in one of the following ways:

function([arg(s)],TRUE)

Here, TRUE is used in the given function to switch some NCurses setting on
or activate an option.

var = function([arg(s)])

In this statement, the value returned by the function can be either TRUE or
FALSE and is stored in the var variable. var is declared as a bool value.

if(eval == TRUE)

while([eval ==] TRUE)

486 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 486

Here, TRUE is used as a comparison to some evaluation eval. Or in the case
of the while loop, TRUE can be used by itself to create an endless loop.

Functions that return TRUE can also be used immediately inside compar-
isons:

if(function([arg(s)])

while(function([arg(s)])

Here, the function returns a TRUE (or FALSE) value, which is then imme-
diately evaluated by if or while.

Return Value
The value of TRUE is set in NCURSES.H to 1.

Notes
Table A-17 shows which NCurses functions use the Boolean TRUE.

The logical opposite of TRUE is FALSE. Functions that use or return TRUE
can equally use or return FALSE, depending on the situation.

Table A-17: NCurses functions using TRUE or FALSE

FUNCTION RETURNS T/F FUNCTION USES T/F

can_change_color() clearok()

has_colors() idcok()

has_ic() idlok()

has_il() immedok()

is_linetouched() intrflush()

is_wintouched() keypad()

isendwin() leaveok()

mouse_trafo() meta()

wenclose() mouse_trafo()

nodelay()

notimeout()486

scrollok()

syncok()

use_env()

Appendix A ■ NCurses Library Reference 487

18_107591 appa.qxp 1/12/07 9:08 PM Page 487

Examples
if(can_change_color())

Here, if evaluates the results of the can_change_color()function. If
TRUE is returned, then the terminal has the ability to use custom colors for text
attributes.

scrollok(stdscr,TRUE);

The previous function turns on text scrolling for the standard screen.

Sample Program
1 #include <Ncurses.h>

2

3 int main(void)

4 {

5 bool tf;

6 initscr();

7

8 tf = has_colors();

9 if(tf == TRUE)

10 addstr(“This terminal can do colors.\n”);

11 else

12 addstr(“This terminal cannot do colors.\n”);

13 refresh();

14 getch();

15

16 endwin();

17 return 0;

18 }

Sample output:

This terminal can do colors.

Or:

This terminal cannot do colors.

Also See
FALSE

488 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 488

typeahead()

The typeahead() function controls NCurses typeahead feature (see the next
section) and determines which input source to monitor for typeahead.

Explanation
typeahead is an internal feature NCurses uses to optimize input. When there
is keyboard activity during a screen update, NCurses suspends the update to
immediately process the keyboard input, specifically if the input is coming
from a tty. The next refresh() or doupdate() call then completes the
screen update.

The typeahead() function allows you to specify which input source to
monitor for typeahead or whether typeahead should be disabled.

Man Page Format
int typeahead(int fd);

Format Reference
fd is a file descriptor or FILE type variable, such as stdin. It specifies the
input source typeahead monitors. When the value -1 is specified, then typea-
head is disabled.

Return Value
OK upon success or ERR on failure.

Notes
The file value typeahead() normally uses depends on how NCurses was
started. When initscr() is used, then the default value is stdin, standard
input. When newterm() is used, then default input is set as the third argu-
ment (see newtertm()).

The typeahead feature does disrupt screen updates. If you’d rather have
your program always and completely update the screen whenever
refresh() or doupdate() is called, then specify typeahead(-1).

Appendix A ■ NCurses Library Reference 489

18_107591 appa.qxp 1/12/07 9:08 PM Page 489

Examples
typeahead(-1);

The statement disables NCurses typeahead optimization during a screen
refresh.

typeahead(stdio);

Here, NCurses typeahead is set for standard input, most likely to restore
typeahead after being disabled.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 initscr();

6 typeahead(-1); /* Disable typeahead */

7

8 addstr(“All this text will be put to the screen without a\n”);

9 addstr(“keyboard interruption.”);

10 refresh();

11 getch();

12

13 endwin();

14 return 0;

15 }

Sample output:

All this text will be put to the screen without a

keyboard interruption.

Refreshing takes place so quickly on x-terminals that you’d really need to hook up a
remote terminal, set it to something slow, and then test this function to really see the
results.

Also See
newterm(), flushinp(), intrflush()

unctrl()

The unctrl() function is used primarily to convert control codes to a dis-
playable string using the ^c format, where ^ is the “control” prefix and c is a
letter or symbol corresponding to the code.

490 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 490

Man Page Format
char *unctrl(chtype c);

Format Reference
c is a chtype character representing a character or code plus optional format-
ting attributes.

Return Value
unctrl() returns a pointer to a character array (string) representing the char-
acter or code c. For displayable characters, the character itself is returned in the
string. For control codes, the code letter prefixed by a ^ is returned. See Notes.

On error, NULL is returned.

Notes
Though the ch argument is a chtype and may contain formatting attributes,
any attributes present are ignored by the unctrl() function.

Table A-18 references the ASCII control codes, 0 through 32 plus code 127.

Table A-18: Control keys and codes

VALUE VALUE
HEX DEC CHAR CODE MEANING

0x00 0 ^@ NUL Null

0x01 1 ^A SOH Start Of Heading

0x02 2 ^B STX Start Of Text

0x03 3 ^C ETX End Of Text

0x04 4 ^D EOT End Of Transmission

0x05 5 ^E ENQ Enquiry

0x06 6 ^F ACK Acknowledge

0x07 7 ^G BEL Bell

0x08 8 ^H BS Backspace

0x09 9 ^I HT Horizontal Tab

0x0a 11 ^J LF Line Feed

0x0b 12 ^K VT Vertical Tab

(continued)

Appendix A ■ NCurses Library Reference 491

18_107591 appa.qxp 1/12/07 9:08 PM Page 491

Table A-18 (continued)

VALUE VALUE
HEX DEC CHAR CODE MEANING

0x0c 13 ^L FF Form Feed

0x0d 14 ^M CR Carriage Return

0x0e 15 ^N SO Shift Out

0x0f 16 ^O SI Shift In

0x10 17 ^P DLE Data Link Escape

0x11 18 ^Q DC1 Device Control 1

0x12 19 ^R DC2 Device Control 2

0x13 20 ^S DC3 Device Control 3

0x14 21 ^T DC4 Device Control 4

0x15 22 ^U NAK Negative Acknowledge

0x16 23 ^V SYN Synchronous idle

0x17 24 ^W ETB End Transmission Block

0x18 25 ^X CAN Cancel

0x19 26 ^Y EM End of Medium

0x1a 27 ^Z SUB Substitute

0x1b 28 ^[ESC Escape

0x1c 29 ^\ FS Form Separator

0x1d 30 ^] GS Group Separator

0x1e 31 ^^ RS Record Separator

0x1f 32 ^_ US Unit Separator

0x7f 127 ^? DEL Delete

In some localities, codes 0x80 through 0x8f are represented as shown in the
table, but prefixed by the ~ (tilde). Code 0xff is displayed by unctrl() as ~?.

Examples
p = unctrl(x);

Here, the char pointer variable p references a string representing the char-
acter’s code value of x.

printw(“That character is code %s.\n”,unctrl(x));

492 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 492

Here, the printw() function displays the string returned by the unctrl()
function.

Sample Program
1 #include <ncurses.h>

2

3 #define MAX 0x7f

4

5 int main(void)

6 {

7 chtype ch;

8

9 initscr();

10

11 for(ch=0;ch<=MAX;ch++)

12 printw(“%s\t”,unctrl(ch));

13 refresh();

14 getch();

15

16 endwin();

17 return 0;

18 }

Sample output:

^@ ^A ^B ^C ^D ^E ^F ^G ;

^H ^I

^J ^K ^L ^M ^N ^O ^P ^Q ;

^R ^S

^T ^U ^V ^W ^X ^Y ^Z ^[;

^\ ^]

^^ ^_ ! “ # $ % ;

& ‘

() * + , - . / ;

0 1

2 3 4 5 6 7 8 9 ;

: ;

< = > ? @ A B C ;

D E

F G H I J K L M ;

N O

P Q R S T U V W ;

X Y

Z [\] ^ _ ` a ;

b c

d e f g h i j k ;

l m

n o p q r s t u ;

v w

x y z { | } ~ ^?

Appendix A ■ NCurses Library Reference 493

18_107591 appa.qxp 1/12/07 9:08 PM Page 493

Also See
keyname(), addch()

ungetch()

The ungetch() function places a specific character back into the keyboard
input queue.

Explanation
Characters read from the keyboard are buffered by the terminal, fed one at a
time into the various NCurses key-reading functions. So, for example,
getch()reads the oldest character waiting in the buffer, then the next charac-
ter and so on. When the buffer is empty, getch() waits or returns ERR
depending on the nodelay() status.

What ungetch() does is to place a character into the keyboard input
buffer. That character then becomes the next character to be read, unless
ungetch() is called again with another character.

You can use ungetch() to “stuff the ballot box” as it were, but it can also
be used in conjunction with getch() to preview waiting characters.

Man Page Format
int ungetch(int ch);

Format Reference
ch is an int value representing a character to be placed into the keyboard
input buffer.

Return Value
OK upon success or ERR on failure.

Notes
When stuffing more than one character into the keyboard buffer, remember to
do it backwards. For example, to stuff OK into the buffer, you need to do:

ungetch(‘K’);

ungetch(‘O’);

494 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 494

Remember that ungetch() requires an int argument, not a char.
It’s also possible to stuff special keys into the keyboard buffer, such as

KEY_LEFT or KEY_F(10). Refer to Appendix D for a list of these constants.
ungetch() is not a window-oriented function; all windows share the same

input queue.

Examples
ungetch(‘\t’);

Here, a tab character is placed into the input queue. The next time a character-
reading function fetches a character from the keyboard, that character will be \t.

ungetch(‘n’);

ungetch(‘e’);

ungetch(‘B’);

In the previous code, the name Ben is stuffed into the input queue by suc-
cessive ungetch() functions.

ch = getch();

if(ch != ‘\n’)

{

ungetch(ch);

ungetch(‘\n’);

}

This code tests to see if there is a newline at the end of whatever text has
been input. When there isn’t, then the if statements are executed and a new-
line is added to the queue.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 char name[80];

6 char stuff[] = “\nakoozaB eoJ”;

7 char *c;

8

9 c = stuff;

10 initscr();

11

12 /* stuff input */

13 while(*c)

14 ungetch(*c++);

Appendix A ■ NCurses Library Reference 495

18_107591 appa.qxp 1/12/07 9:08 PM Page 495

15

16 /* typical Q&A type of code */

17 addstr(“Your name: “);

18 refresh();

19 getstr(name);

20 printw(“Pleased to meet you, %s.\n”,name);

21 refresh();

22 getch();

23

24 endwin();

25 return 0;

26 }

Sample output:

Your name: Joe Bazooka

Pleased to meet you, Joe Bazooka.

No typing necessary!

Also See
Chapter 7, getch(), nodelay()

untouchwin()

The untouchwin() function removes all signs of updates on a window, lead-
ing NCurses to believe that the window has been fully updated (refreshed).

Explanation
NCurses keeps track of changes made in a window. For efficiency’s sake, only
the text changed in a window is written to the current screen during the next
refresh() call. By using untouchwin(), you direct NCurses to ignore
changes made in a window, and to assume that all text has been updated.

This call can be used when you want only a specific part of a window’s
update to be displayed. For example, you could use several functions to out-
put text to a window, then use untouchwin(), then output more text. Only
the text output after untouchwin() would then be updated at the next
refresh() call.

In the sample program for touchline(), untouchwin() is used just after
the window is created. This allows subsequent calls to the touchline()
function and wrefresh() to reveal the window one line at a time.

496 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 496

Man Page Format
int untouchwin(WINDOW *win);

Format Reference
win is a WINDOW variable referencing a window to be untouched. After the
function is called, NCurses assumes that the window’s memory and informa-
tion on the screen have been synchronized and an update is not needed.

Return Value
ERR upon failure or an int value other than ERR upon success.

Notes
The opposite of the untouchwin() function is touchwin(), which tells
NCurses that every possible text position in a window needs updating on the
next refresh() call.

There is no untouchln() or untouchline() function corresponding
to untouchwin(), but there is the wtouchln() function. In fact,
untouchwin() is most likely a macro version of wtouchln().

Example
untouchwin(help);

The window help is flagged as fully updated, meaning the next call
to wrefresh(help) will not update any text written before the previous
statement.

Sample Program
Refer to the entry for touchline() for a sample program and output.

Also See
touchwin(), refresh()

Appendix A ■ NCurses Library Reference 497

18_107591 appa.qxp 1/12/07 9:08 PM Page 497

use_default_colors()

use_default_colors() is an extended NCurses function that sets the
foreground and background text colors to the same as used in the terminal
window when start_color() initializes NCurses text color attributes.

Man Page Format
int use_default_colors(void);

Format Reference
The function has no arguments.

Return Value
OK is returned when things work; ERR otherwise.

Notes
The start_color() function in NCurses initializes the color functions. It
also sets the default foreground and background color for text, which is stored
in COLOR_PAIR(0). Normally the colors are set to white text on a black
background. The use_default_colors() function, however, resets
COLOR_PAIR(0) to match the same foreground and background text colors
used in the terminal window. So if you’re using xterm and have the text color
set to yellow text on a black background, that color combination then becomes
COLOR_PAIR(0) for use in NCurses.

The use_default_colors() function is the same as assume_default_
colors(-1,-1).

Refer to the entry for assume_default_colors() for more information.

Example
use_default_colors();

The colors set by start_color() for COLOR_PAIR(0) will be the same as
used by the terminal window.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

498 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 498

4 {

5 int r;

6

7 initscr();

8 start_color();

9

10 use_default_colors();

11 addstr(“The default colors have been set to\n”);

12 addstr(“the same as the terminal’s colors.\n”);

13 refresh();

14 getch();

15

16 endwin();

17 return 0;

18 }

Sample output:

The default colors have been set to

the same as the terminal’s colors.

The text above appears colored the same as text in the terminal window.

Also See
COLORS, init_pair(), assume_default_colors()

use_env()

The use_env() function tells NCurses whether to use the terminal’s terminfo
definitions of lines and columns or the default LINES and COLUMNS environ-
ment variable values.

Man Page Format
void use_env(bool f);

Format Reference
f is a Boolean value, either TRUE or FALSE. When set TRUE, NCurses uses the
values of the environment variables LINES and COLUMNS as the size of the
window. When set FALSE, the values for the window size are pulled from
the terminfo database. In either case, NCurses also takes into account the ter-
minal’s size by asking the system. When using the environment variables,

Appendix A ■ NCurses Library Reference 499

18_107591 appa.qxp 1/12/07 9:08 PM Page 499

those override the system’s size. When using the terminfo database, the sys-
tem’s values (if known) override the database.

Return Value
The function returns nothing.

Notes
The use_env() function must be specified before the initscr() or newterm()
function initializes NCurses.

If either LINES or COLUMNS is not set in the environment, then NCurses
uses the values from the terminfo database by default. If you manually set
LINES or COLUMNS in the environment, then Bad Things can happen.

A few applications set $LINES or $COLUMNS, and they’re not resizeable.
Note that the environment variable is COLUMNS but in NCurses the COLS

variable is used instead. See COLS.

Example
use_env(FALSE);

The statement directs NCurses to use the terminfo database’s values for the
current screen size.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 use_env(FALSE);

6 initscr();

7

8 printw(“LINES = %d\n”,LINES);

9 printw(“COLS = %d\n”,COLS);

10 refresh();

11 getch();

12

13 endwin();

14 return 0;

15 }

Sample output:

LINES = 24

COLS = 80

500 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 500

Also See
initscr(), LINES, COLS

vline()

The vline() function draws a vertical (up-down) line from the cursor’s cur-
rent location down a given number of rows.

Man Page Format
int vline(chtype ch, int n);

int wvline(WINDOW *win, chtype ch, int n);

int mvvline(int y, int x, chtype ch, int n);

int mvwvline(WINDOW *, int y, int x, chtype ch, int n);

Format Reference
ch is a chtype character used to draw the line. Though typically only a single
character, such as |, is used, you can combine characters, text attributes and
colors with the chtype variable. Refer to Appendix C. When zero is specified
for ch, the default ASC_VLINE character is used. See Appendix B for more
information on ACS characters.
n is an int value that sets the length of the line in rows. Valid values for n

range from 0 on up to whatever an integer can hold. When n is zero no line is
displayed. When n is greater than the distance between the current cursor
position and the bottom of the window, then only as many ch characters as
can be displayed are shown. (Long vertical lines will not cause the screen to
scroll, nor will the line wrap in any way.)

Refer to the mv, mvw, and w prefix entries elsewhere in this appendix for
information on the win, row, and col arguments.

Return Value
vline() always returns OK.

Notes
The line always goes from the cursor’s current position down.

Drawing the line does not affect the cursor’s location. The cursor remains at
its previous location or whichever location was set by the mvvline() or
mvwvline() functions.

Appendix A ■ NCurses Library Reference 501

18_107591 appa.qxp 1/12/07 9:08 PM Page 501

The line drawn is not protected against erasure by other NCurses text out-
put functions; the line can be overwritten at any time.

Examples
vline(0,10);

The function draws a line 10 characters long (tall) from the cursor’s current
position. The default line drawing character is used.

mvvline(y,10,’*’,len);

Here, the function draws a vertical line using asterisks. The line is len char-
acters long from location row y, column 10.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int maxy,maxx,halfy,x,len;

6 initscr();

7

8 getmaxyx(stdscr,maxy,maxx);

9 halfy = maxy >> 1; /* y/2 */

10 len = 1;

11

12 for(x=0;x<maxx;x++)

13 {

14 mvvline(halfy-len,x,0,len+len);

15 if(!(x % 7)) len++;

16 }

17 refresh();

18 getch();

19

20 endwin();

21 return 0;

22 }

The sample output is shown in Figure A-16.

Also See
Chapter 14, Appendix B, box(), hline()

502 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 502

Figure A-16: The vline() function draws a, well, modern art-like thing on the terminal.

vwprintw()

See printw().

vwscanw()

See scanw().

w prefix functions

This appendix lists NCurses’ pseudo functions. Internally, most NCurses func-
tions come with the w prefix, which means that the function initially specifies
a window argument. This entry covers the common information shared by all
w prefix functions; refer elsewhere for the function specifics.

Format
All w prefix functions feature win as their first argument.
win is a WINDOW variable, representing a window created earlier in the

program.
Refer to the individual functions elsewhere in this appendix for information

on the other arguments listed.

Appendix A ■ NCurses Library Reference 503

18_107591 appa.qxp 1/12/07 9:08 PM Page 503

Notes
The WINDOW variable always comes first in those functions that require it. Even
with the mvw prefix, win comes first (then the screen coordinates).

The argument win is a WINDOW pointer variable, but do not prefix it with the
& operator.

The pseudo functions are macros defined as their w-prefix counterparts
with the stdscr, standard screen, argument used for the window.

Also See
addch(), addchstr(), addstr(), and so on

wcursyncup()

The wcursyncup() function sets the cursor position for all ancestors of a
window equal to the cursor position in the named window.

Man Page Format
void wcursyncup(WINDOW *win);

Format Reference
win is the name of a subwindow, a WINDOW variable.

Return Value
The function returns no value.

Notes
wcursyncup() basically fixes the cursors location. The cursor doesn’t move
when focus is changed from the subwindow to any of its parents.

Each window still maintains its own cursor location; wcursyncup() sim-
ply sets them all to the same relative screen coordinates.

Example
wcursyncup(little);

The statement sets the cursor’s location in all parents of subwindow little
to the same location.

504 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 504

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *sonny;

6 int a;

7

8 initscr();

9 start_color();

10 init_pair(1,COLOR_WHITE,COLOR_BLUE);

11 init_pair(2,COLOR_RED,COLOR_YELLOW);

12

13 bkgd(COLOR_PAIR(1));

14 sonny = subwin(stdscr,5,20,10,30);

15 wbkgd(sonny,COLOR_PAIR(2));

16

17 waddstr(sonny,”This string is written to the window ‘sonny’”);

18 wnoutrefresh(stdscr);

19 wnoutrefresh(sonny);

20 doupdate();

21 getch();

22

23 wcursyncup(sonny);

24 refresh();

25 getch();

26

27 endwin();

28 return 0;

29 }

Sample output:
Two windows appear on the screen, with text written to the smaller, yellow

subwindow. After wcursyncup(), the cursor’s location on the standard
screen is reset to the same location as was set in the window sonny. If you
comment out line 23, you can see how the cursor location changes to the home
position, 0-0, upon the second refresh() in line 24.

Also See
move()

wenclose()

The wenclose() function determines whether the coordinates of a mouse
click are within a given window.

Appendix A ■ NCurses Library Reference 505

18_107591 appa.qxp 1/12/07 9:08 PM Page 505

Man Page Format
bool wenclose(const WINDOW *win, int y, int x);

Format Reference
win is the name of a WINDOW variable representing a window in NCurses.
y and x are int values or variables, representing the vertical (row) and hor-

izontal (column) position of a mouse click or event.

Return Value
The function returns a Boolean value, either TRUE or FALSE whether the coor-
dinate is inside or outside the named window, respectively. Both TRUE and
FALSE are defined in NCURSES.H.

Notes
This function works best when you refresh and update the window in question.

Example
if(wenclose(menu,me.y,me.x)

The if condition tests TRUE when the coordinates of me.y and me.x are
within the window menu. Assume that me is an MEVENT structure updated by
getmouse().

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 WINDOW *target;

6 MEVENT eek;

7 int ch;

8

9 initscr();

10 start_color();

11 init_pair(1,COLOR_WHITE,COLOR_CYAN);

12 noecho();

13 keypad(stdscr,TRUE);

14

15 target = newwin(5,3,9,39);

16 wbkgd(target,COLOR_PAIR(1));

506 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 506

17 wnoutrefresh(stdscr);

18 wnoutrefresh(target);

19 doupdate();

20

21 mousemask(BUTTON1_CLICKED,NULL);

22 while(1)

23 {

24 ch = getch();

25 if(ch == KEY_MOUSE)

26 {

27 getmouse(&eek);

28 if(wenclose(target,eek.y,eek.x))

29 {

30 beep();

31 touchwin(target);

32 wnoutrefresh(target);

33 }

34 else

35 {

36 mvaddch(eek.y,eek.x,’*’);

37 wnoutrefresh(stdscr);

38 }

39 doupdate();

40 continue;

41 }

42 if(ch == ‘\n’)

43 break;

44 }

45

46 endwin();

47 return 0;

48 }

Sample output:
A small cyan window appears in the middle of the screen. Clicking the mouse inside

that window beeps the speaking. Clicking outside of the window displays a * at the
click point.

Also See
getmouse(), wmouse_trafo()

WINDOW

WINDOW is an NCurses variable type used to reference a window on the screen.
Internally, WINDOW represents a structure created in memory and filled with
various values and settings according to the window’s state.

Appendix A ■ NCurses Library Reference 507

18_107591 appa.qxp 1/12/07 9:08 PM Page 507

Man Page Format
Not applicable.

Format Reference
Most of the settings in the WINDOW structure can be adjusted by using standard
NCurses functions. Even so, the following references names and values found
in the WINDOW structure. In each example, win represents the name of a
WINDOW variable.

Cursor’s location

win->_cury

win->_curx

The _cury and _curx elements are variables of the NCURSES_SIZE_T
type (int) representing the cursor’s location in a window, row and column.
These are the same values returned by the getyx() function. (Actually
getyx() is a macro that reads the cury and curx values.)

Window size

win->_maxy

win->_maxx

win->_begy

win->_begx

The _maxy and _maxx elements are variables of the NCURSES_SIZE_T
type (short) the representing the maximum values for the placing the cursor
in a column or row. The header file says that these are not the window size, but
they are one less than the window size. That’s because the first row and col-
umn is zero. (The getmaxyx() function returns these values plus one.)

The _begy and _begx elements are variables of the NCURSES_SIZE_T
type (int) indicating the coordinate of the window’s upper-left corner. These
are the same values returned y the getbegyx() function.

Window state flags

win->_flags

flags is a short that contains 7 bit flags, as shown in Table A-19.
Testing these values is done with a logical AND. See the Examples for more

information.

508 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 508

Table A-19: Window state flags

CONSTANT BIT POSITION ON VALUE

_SUBWIN 0x01 Window is a subwindow

_ENDLINE 0x02 Window is flush-right

_FULLWIN 0x04 Window is full screen

_SCROLLWIN 0x08 Window’s bottom edge is screen
bottom edge

_ISPAD 0x10 Window is a pad

_HASMOVED 0x20 Cursor has moved since last
refresh

_WRAPPED 0x40 Cursor was just wrapped

Window attributes

win->_attrs

win->_bkgd

The _attrs element is an attr_t type variable indicating which attributes
are applied to text (non-space characters) in a window. The bit fields in
_attrs are filled according to which attributes are set. See attrset().
_bkgd is a chtype() variable equal to the current background chtype

(character and attribute) assigned to the window. This value is set by the
bkgd() function.

Window options

win->_notimeout

win->_clear

win->_leaveok

win->_scroll

win->_idlok

win->_idcok

win->_immed

win->_sync

win->_use_keypad

win->_delay

For all Boolean elements, the value TRUE sets the bit and the condition,
described below.
_notimeout is a Boolean value which when set directs NCurses not set a

timeout for the Esc key press. This value is controlled by the notimeout()
function.

Appendix A ■ NCurses Library Reference 509

18_107591 appa.qxp 1/12/07 9:08 PM Page 509

_clear is a Boolean value which when set tells NCurses that information in
the window needs to be redrawn from scratch. This setting is controlled by the
clearok() function.
_leaveok is a Boolean value which when set tells NCurses not to update

the cursor’s position for the window. This setting is controlled by the
leaveok() function.
_scroll is a Boolean value, which when set tells NCurses that the win-

dow’s contents can be scrolled. This setting is controlled by the scrollok()
function.
_idlok is a Boolean value, which when set tells NCurses to use the hardware

insert/delete line feature. This setting is controlled by the idlok() function.
_idcok is a Boolean value, which when set tells NCurses to use the hard-

ware insert/delete character feature. This setting is controlled by the idcok()
function.
_immed is a Boolean value, which when set tells NCurses to automatically

call the wrefresh() function any time the window’s image is changed. This
setting is controlled by the immedok() function.
_sync is a Boolean value, which when set tells NCurses to automatically

update a subwidow’s data any time the parent window’s data is changed. This
setting is controlled by the syncok() function.
_use_keypad is a Boolean value, which when set tells NCurses to interpret

the keyboard’s keypad, function, cursor and other special keys. This setting is
controlled by the keypad() function.
_delay is an int value, which sets the keyboard input delay. Values less

than zero turn getch() into a non-blocking call. Zero sets no delay. Values
greater than zero set the delay in milliseconds. This setting is controlled by the
nodelay() and timeout() functions.

Window data

win->_line

_line is a pointer to a special structure that holds the window’s actual data.
NCurses developers really don’t want you messing with that data, so this ele-
ment of the WINDOW structure is undocumented.

Window Scrolling Region

win->_regtop

win->_regbottom

510 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 510

The two variables _regtop and _regbottom are NCURSES_SIZE_T val-
ues that set the top and bottom of a scrolling region of text in a window. These
are set by using the setscrreg()function.

Subwindow Data

win->_parx

win->_pary

win->_parent

For a subwindow, _parx and _pary are int values indicating the upper-left
corner of the subwindow relative to the parent. These coordinates are returned
via the getparyx() function.
_parent is a WINDOW pointer indicating the parent window. This value is

the address of the parent window’s structure, not its name. See the Examples.

Pad Data

Data for a pad is kept in a pdat structure within the WINDOW structure. The
pdat structure is named _pad and referenced as listed below:

win->_pad._pad_y

win->_pad._pad_x

win->_pad._pad_top

win->_pad._pad_left

win->_pad._pad_bottom

win->_pad._pad_right

The pad data in the window corresponds to the arguments used for the
prefresh() function as shown in Table A-20.

Table A-20: WINDOW pad data related the prefresh() function’s arguments

PREFRESH() ARGUMENTS WINDOW PDAT STRUCTURE ELEMENT

pminrow _pad._pad_y

pmincol _pad._pad_x

sminrow _pad._pad_top

smincol _pad._pad_left

smaxrow _pad._pad_bottom

smaxcol _pad._pad_right

Appendix A ■ NCurses Library Reference 511

18_107591 appa.qxp 1/12/07 9:08 PM Page 511

Return Value
Not applicable.

Notes
Obviously, it’s preferable to change attributes by using the proper NCurses
functions wherever possible.

The subwindow information for a window, win->_parx, win->_pary,
win->_parent, is set only when the window is a subwindow.

Note that there is no reference in the WINDOW structure for any subwindows.
True, subwindows do link back to their parents (via the _parent element).
But there is no element in the WINDOW structure to reference any offspring.
(NCurses does maintain an internal list of all windows.)

Examples
if(win->_flags & _FULLWIN)

The if test is true if the _FULLWIN bit is set for the window win, meaning
that window win is full screen.

if(sub->_parent == stdscr)

The if condition is true when the standard screen has a subwindow
named sub.

Sample Program
Not applicable.

Also See
getyx(), getmaxyx(), getbegyx(), attrset(), bkgd(), notimeout(),
clearok(), leaveok(), scrollok(), idlok(), idcok(), immedok(),
syncok(), keypad(), nodelay(), timeout(), setscrreg(),
getparyx(), prefresh()

wnoutrefresh()

The wnoutrefresh() function copies modified (touched) text from a win-
dow to the virtual screen.

512 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 512

Explanation
The refresh operation in NCurses consists of two parts:

■■ First, NCurses takes those portions of a window that have been
changed or touched and writes those portions from the window data
structure to a virtual screen in memory.

■■ Second, the contents of the virtual screen touched since the last refresh
are displayed on the terminal.

The copying of information from a window data structure to the virtual
screen is carried out by the wnoutrefresh() function. The updating of the
virtual screen to the terminal is handled by another function, doupdate().
Together they form the two components of a refresh() or wrefresh() call.

The advantage of using wnoutrefresh() comes when updating multiple
windows. In that case, repeated calls to wnoutrefresh() followed by a sin-
gle doupdate() call is more efficient than a series of wrefresh() calls, plus
it results in less flicker.

Man Page Format
int wnoutrefresh(WINDOW *win);

Format Reference
win represents the window to update on the virtual screen. It’s a WINDOW
variable, representing a window created earlier in the code or stdscr for the
standard screen.

Return Value
ERR upon failure, OK (or some value other than ERR) upon success.

Notes
wnoutrefresh() has the effect of un-touching a window. See touchwin().

A similar function, pnoutrefresh(), exists for help in updating pads. See
pnoutrefresh().

The slk_noutrefresh() function is used for help in updating soft labels.
See slk_noutrefresh().

Appendix A ■ NCurses Library Reference 513

18_107591 appa.qxp 1/12/07 9:08 PM Page 513

Examples
wnoutrefresh(alpha);

wnoutrefresh(beta);

wnoutrefresh(gamma);

doupdate();

The three wnoutrefresh() functions update information from the three
windows, alpha, beta, and gamma. Then final doupdate() function
updates the terminal. These four statements are more efficient than three cor-
responding wrefresh() functions.

wnoutrefresh(stdscr);

Here, the standard screen is updated to the virtual screen. A subsequent call
to doupdate() will update the terminal screen.

Sample Program
Refer to the entries for doupdate() and mvwin() for sample programs and
output.

Also See
refresh(), doupdate(), wredrawln(), touchwin()

wredrawln()

The wredrawln() function directs NCurses to update specific lines from a
window to the terminal.

Explanation
This function, along with redrawwin(), operates under the assumption that
something has disrupted a program’s text on the terminal. In that instance,
NCurses may not recognize the corrupted screen or know that its internal rep-
resentation of the screen (curscr) is out of sync. The wredrawln() function
allows a program to fix one or more lines in a window, forcing NCurses to
write those lines and make the curscr once again match what the user sees.

Man Page Format
int wredrawln(WINDOW *win, int beg_line, int num_lines);

514 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 514

Format Reference
win is a WINDOW variable representing a window on the screen.
beg_line is an int value specifying a line on the screen to update. Values

range from 0 for the top line, down to as many rows are between beg_line
and the bottom of the window.
num_lines is the number of rows to update, from 1 through as many rows

are available between beg_line and the bottom of the window.

Return Value
ERR upon failure or some value other than ERR upon success, usually OK but
not always.

Notes
wredrawln() does not actually refresh the screen. The next wrefresh()
command merely ensures that the lines touched by wredrawln() are fully
updated on the terminal screen.

The lines wredrawln() replaces are completely replaced.
The redrawwin() function is used to force a re-write of the entire screen.

It’s equivalent to wredrawln(win,0,n), where win is the name of the
window and n is the window’s bottom row.

I’ve yet to see this function work as described. Though it appears to do
something, just not what is advertised. A better solution is to use the following
as a replacement for wredrawln():

touchwin(stdscr);

touchwin(curscr);

wrefresh(curscr);

Example
wredrawln(stdscr,0,11);

The statement describes the top 12 lines of the standard screen as in need of
a complete refresh.

Sample Program
1 #include <ncurses.h>

2 #include <stdlib.h>

3

4 int main(void)

Appendix A ■ NCurses Library Reference 515

18_107591 appa.qxp 1/12/07 9:08 PM Page 515

5 {

6 initscr();

7

8 addstr(“I’m just an innocent little program,\n”);

9 addstr(“minding my own business...\n”);

10 move(0,0);

11 refresh();

12 getch();

13

14 system(“echo \”RANDOM DATA\” > `tty`”);

15 getch();

16

17 wredrawln(stdscr,0,2);

18 refresh();

19 getch();

20

21 endwin();

22 return 0;

23 }

Sample output:

I’m just an innocent little program,

minding my own business...

Press Enter to write text over the program’s output:

RANDOM DATA innocent little program,

minding my own business...

Press Enter to restore the program’s output:

I’m just an innocent little program,

minding my own business...

(Again: This doesn’t work on any of the terminals or under any of the platforms
on which I’ve tried it, and it’s most likely a bug that will go away in the future.
Until then, changing line 17 to refresh(curscr)does fix the program but does-
n’t address the issue of whether wredrawln() is properly working or not.)

Also See
wredrawln(), refresh()

wrefresh()

See refresh().

516 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 516

wsyncdown()

The wsyncdown() function is called to ensure that locations touched in a win-
dow are also touched in any subwindows.

Man Page Format
void wsyncdown(WINDOW *win);

Format Reference
win is the name of a WINDOW variable representing a window on the screen.

Return Value
The function returns no value.

Notes
This function is called internally by the wnoutrefresh() function. It’s
unusual to call this function manually.

The wsyncdown() function recursively calls all parent windows of the
named window. Therefore, specify the smallest child window to synchronize
the refresh to all of its parents.

This function is not related to the wsyncup() function.

Example
wsyncdown(pp);

The statement touches an changed locations in the window pp, then checks
for any parent windows to pp and touches the same changed locations in those
windows as well. Again, the wrefresh(pp) command would do the same
thing, so there is seldom a need to use this command.

Sample Program
Not applicable.

Also See
wnoutrefresh()

Appendix A ■ NCurses Library Reference 517

18_107591 appa.qxp 1/12/07 9:08 PM Page 517

wsyncup()

The wsyncup() function touches the locations in the parents of a subwindow
that have been changed in the subwindow.

Man Page Format
void wsyncup(WINDOW *win);

Format Reference
win is the name of a WINDOW variable representing a subwindow.

Return Value
This function returns no value.

Notes
wsyncup() is called internally by NCurses whenever the mvwin() function
is used to relocate a window.

This function may be called automatically whenever there is a change made
to any window. See syncok() for more information.
wsyncup() seems rather redundant, given that a subwindow shares mem-

ory with its parent.

Example
wsyncup(baby);

The statement touches all changed locations in the subwindow baby inside
all parent windows as well.

Sample Program
Not applicable.

Also See
syncok(), refresh()

518 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 518

wtimeout()

See timeout().

wtouchln

The wtouchln() function flags one or more lines in a specific window as
either requiring updating on the screen or as not needing updating. (Refer to
the entry for refresh() for more information about how parts of windows
are touched and require updating.)

Man Page Format
int wtouchln(WINDOW *win, int y, int n, int changed);

Format Reference
win is a WINDOW variable indicating which window the wtouchln() function
affects.
y is the top row to mark as either touched or untouched.
n indicates how many rows, including row, to flag as being touched or

untouched. Values range from 1 to the number of rows between row and the
bottom of the window.
changed is either 1 or 0. When changed is 1, then the rows indicated are

flagged as touched and will be updated at the next wrefresh() call. When
changed is 0, then the rows indicated are flagged as up to date or untouched.

Return Value
The function returns ERR upon failure; an int value other than ERR is
returned upon success.

Notes
The touchwin(), touchline(), and untouchwin() functions are all
macros defined in NCURSES.H that use the wtouchln() function. Table A-21
shows how they map out.

Appendix A ■ NCurses Library Reference 519

18_107591 appa.qxp 1/12/07 9:08 PM Page 519

Table A-21: wtouchln() equivalents of other NCurses functions

FUNCTION WTOUCHLN() EQUIVALENT

touchline(win,row,count) wtouchln(win,row,count,1)

touchwin(win) wtouchln(win,0,getmaxy(win),1)

untouchwin(win) wtouchln(win,0,getmaxy(win),0)

(The getmaxy() macro is defined in NCURSES.H; refer to the Notes entry
for getmaxyx() in this appendix for details.)

Examples
wtouchln(stdscr,0,halfy,1);

The statement flags the top half of the standard screen as being in need of
updating on the next refresh() call. This assumes that the halfy variable
equals half the window’s height.

wtouchln(help,13,1,0);

The statement tells NCurses to ignore any modifications done on row 13 in
the window help.

Sample Program
1 #include <ncurses.h>

2

3 int main(void)

4 {

5 int r;

6 initscr();

7

8 /* Write some text to the entire window */

9 for(r=0;r<LINES;r++)

10 mvprintw(r,0,\

11 “This is the fabulous row %d on the standard screen.”,r);

12

13 /* Update every other line */

14 for(r=0;r<LINES;r+=2)

15 {

16 wtouchln(stdscr,r,1,1);

17 wtouchln(stdscr,r+1,1,0);

520 Appendix A ■ NCurses Library Reference

18_107591 appa.qxp 1/12/07 9:08 PM Page 520

18 }

19 refresh();

20 getch();

21

22 endwin();

23 return 0;

24 }

Sample output:

This is the fabulous row 0 on the standard screen.

This is the fabulous row 2 on the standard screen.

This is the fabulous row 4 on the standard screen.

This is the fabulous row 6 on the standard screen.

This is the fabulous row 8 on the standard screen.

This is the fabulous row 10 on the standard screen.

This is the fabulous row 12 on the standard screen.

This is the fabulous row 14 on the standard screen.

This is the fabulous row 16 on the standard screen.

This is the fabulous row 18 on the standard screen.

This is the fabulous row 20 on the standard screen.

This is the fabulous row 22 on the standard screen.

Note how the standard screen cursor blinks after the last line printed, line 23, which
wasn’t refreshed? Cursor movement is independent of characters placed on the screen
and is not affected by touch or untouch functions. Also see leaveok().

Also See
refresh(), touchwin(), untouchwin()

Appendix A ■ NCurses Library Reference 521

18_107591 appa.qxp 1/12/07 9:08 PM Page 521

18_107591 appa.qxp 1/12/07 9:08 PM Page 522

523

The Alternative Character Set, or ACS, is defined in the NCURSES.H file. Its pur-
pose is to provide a common set of characters for use on all platforms. The
table in this appendix gives the name defined for the characters, as specified in
NCURSES.H. The Char column shows what the character commonly looks
like. The ASCII column displays the ASCII character substituted when the
character isn’t available. And the Description column describes the character’s
appearance or use.

DEFINE NAME CHAR ASCII DESCRIPTION

ACS_BLOCK # A solid (100 percent) block

ACS_BOARD # A 50 percent shaded block

ACS_BTEE ⊥ + Line art bottom T intersection

ACS_BULLET • o Bullet

ACS_CKBOARD : A 33 percent shaded block

ACS_DARROW ↓ v Down arrow

ACS_DEGREE ° ‘ Degree symbol

ACS_DIAMOND ◊ + Diamond

(continued)

The Alternative Character Set

A P P E N D I X

B

19_107591 appb.qxp 1/19/07 8:36 PM Page 523

DEFINE NAME CHAR ASCII DESCRIPTION

ACS_GEQUAL ≥ > Greater than or equal to

ACS_HLINE __ - Line art horizontal line

ACS_LANTERN § # Lantern or section symbol

ACS_LARROW ← < Left arrow

ACS_LEQUAL ≤ < Less than or equal to

ACS_LLCORNER + Line art lower-left corner

ACS_LRCORNER + Line art lower-right corner

ACS_LTEE + Line art left T intersection

ACS_NEQUAL � ! Not equal

ACS_PI π * Pi

ACS_PLMINUS ± # Plus/minus

ACS_PLUS + + Plus

ACS_RARROW → > Right arrow

ACS_RTEE + Line art right T intersection

ACS_S1 Scan line 1 (top)

ACS_S3 Scan line 3 (high)

ACS_S7 Scan line 7 (low)

ACS_S9 Scan line 9 (bottom)

ACS_STERLING £ f British pound

ACS_TTEE + Line art top T intersection

ACS_UARROW ↑ ^ Up arrow

ACS_ULCORNER + Line art upper-left corner

ACS_URCORNER + Line art upper-right corner

ACS_VLINE ⏐ | Line art vertical line

The wide or char_t constants are identical to those listed in the table,
though with the prefix W added to the defined name. For example, the wide
plus/minus character is defined as WACS_PLMINUS.

524 Appendix B ■ The Alternative Character Set

⊥

19_107591 appb.qxp 1/19/07 8:36 PM Page 524

525

In NCurses, chtype is a special type of variable that holds a combination of
character and attribute information. Those values are stored in a long int.
(The chtype variable in NCurses is typedef’d to a long int.)

Functions using chtype variables include: addch(), addchstr(),
attroff(), attron(), and attrset(), plus a host of others. But more impor-
tant, each character position in an NCurses window stores a chtype value. As a
chtype, character locations in a window include both character and attribute
information. Because of that, when characters are copied or moved in NCurses,
the attribute information is copied and moved along with the character.

The chtype need only describe characters; it doesn’t have to include
attribute information. To add the attribute, use the chtype in a function such
as addch(). The attribute can be applied by using a logical OR with the char-
acter to display. For example:

addch(‘E’ | A_BOLD);

This function displays the character E at the cursor’s current position, plus
applies the bold text attribute to that character.

Attributes for chtypes can also be assigned by using any of the attribute
functions, such as attroff(), attron(), or attrset().

The names and values of NCurses text attributes are listed in Table C-1. Also
refer to Table 3-1 for information on what each attribute does or how it controls
the screen.

The chtype

A P P E N D I X

C

20_107591 appc.qxp 1/12/07 9:09 PM Page 525

Table C-1: Text attribute masking values

ATTRIBUTE ATTRIBUTE
NAME VALUE (HEX) NAME VALUE (HEX)

A_NORMAL 0x00000000 A_ALTCHARSET 0x00400000

A_ATTRIBUTES 0xFFFFFF00 A_INVIS 0x00800000

A_CHARTEXT 0x000000FF A_PROTECT 0x01000000

A_COLOR 0x0000FF00 A_HORIZONTAL 0x02000000

A_STANDOUT 0x00010000 A_LEFT 0x04000000

A_UNDERLINE 0x00020000 A_LOW 0x08000000

A_REVERSE 0x00040000 A_RIGHT 0x10000000

A_BLINK 0x00080000 A_TOP 0x20000000

A_DIM 0x00100000 A_VERTICAL 0x40000000

A_BOLD 0x00200000

Obviously, it’s better to use the attribute name than its value. To further clari-
fy things, Figure C-1 illustrates how the chtype variable is bitmapped to the
various attributes.

Figure C-1: The chtype bitmap

Note how the A_ATTRIBUTES and A_CHARTEXT attributes (Table C-1) are
used in the bitmap. They can effectively mask out either the character or
attribute branch of the chtype variable.

0

(n
ot

 u
se

d)

Vertical
Right

Left

Protected

Alternative Char.

Dim
m

ed

Reverse

Standout

To
p

Lo
w

Hor
izo

nt
al

In
vis

ibl
e

Bo
ld

Bli
nk

ing

Und
er

lin
e

0 0

Color pair value

Character code

526 Appendix C ■ The chtype

20_107591 appc.qxp 1/12/07 9:09 PM Page 526

527

The following constants are defined in NCURSES.H. They’re used by those
functions that read special keys from the keyboard. The keys are defined in
Table D-1.

Table D-1: NCurses keypad codes and values

DEFINE VALUE (OCT) KEY NAME / DESCRIPTION

KEY_CODE_YES 0400 A wchar_t contains a key code

KEY_MIN 0401 Minimum key value

KEY_BREAK 0401 Break key (unreliable)

KEY_DOWN 0402 Down-arrow key

KEY_UP 0403 Up-arrow key

KEY_LEFT 0404 Left-arrow key

KEY_RIGHT 0405 Right-arrow key

KEY_HOME 0406 Home key

KEY_BACKSPACE 0407 Backspace key

KEY_F0 0410 Function keys

(continued)

Keypad Character Codes

A P P E N D I X

D

21_107591 appd.qxp 1/12/07 9:09 PM Page 527

Table D-1 (continued)

DEFINE VALUE (OCT) KEY NAME / DESCRIPTION

KEY_F(n) (KEY_F0+(n)) Value of function key n (Space set
aside for up to 64 Function keys)

KEY_DL 0510 Delete-line key

KEY_IL 0511 Insert-line key

KEY_DC 0512 Delete-character key

KEY_IC 0513 Insert-character key

KEY_EIC 0514 sent by rmir or smir in insert mode

KEY_CLEAR 0515 Clear-screen / Erase key

KEY_EOS 0516 Clear-to-end-of-screen key

KEY_EOL 0517 Clear-to-end-of-line key

KEY_SF 0520 Scroll-forward key

KEY_SR 0521 Scroll-backward key

KEY_NPAGE 0522 Next-page / PgDn key

KEY_PPAGE 0523 Previous-page / PgUp key

KEY_STAB 0524 Set-tab key

KEY_CTAB 0525 Clear-tab key

KEY_CATAB 0526 Clear-all-tabs key

KEY_ENTER 0527 Enter/send key

KEY_SRESET 0530 Soft (partial) reset (unreliable)

KEY_RESET 0531 Reset or hard reset (unreliable)

KEY_PRINT 0532 Print key

KEY_LL 0533 Lower-left key (home down or
bottom)

KEY_A1 0534 Upper left of keypad (see notes)

KEY_A3 0535 Upper right of keypad

KEY_B2 0536 Center of keypad

KEY_C1 0537 Lower left of keypad

KEY_C3 0540 Lower right of keypad

KEY_BTAB 0541 Back-tab key

KEY_BEG 0542 Begin key

528 Appendix D ■ Keypad Character Codes

21_107591 appd.qxp 1/12/07 9:09 PM Page 528

Table D-1 (continued)

DEFINE VALUE (OCT) KEY NAME / DESCRIPTION

KEY_CANCEL 0543 Cancel key

KEY_CLOSE 0544 Close key

KEY_COMMAND 0545 Command key

KEY_COPY 0546 Copy key

KEY_CREATE 0547 Create key

KEY_END 0550 End key

KEY_EXIT 0551 Exit key

KEY_FIND 0552 Find key

KEY_HELP 0553 Help key

KEY_MARK 0554 Mark key

KEY_MESSAGE 0555 Message key

KEY_MOVE 0556 Move key

KEY_NEXT 0557 Next key

KEY_OPEN 0560 Open key

KEY_OPTIONS 0561 Options key

KEY_PREVIOUS 0562 Previous key

KEY_REDO 0563 Redo key

KEY_REFERENCE 0564 Reference key

KEY_REFRESH 0565 Refresh key

KEY_REPLACE 0566 Replace key

KEY_RESTART 0567 Restart key

KEY_RESUME 0570 Resume key

KEY_SAVE 0571 Save key

KEY_SBEG 0572 Shift+Begin key

KEY_SCANCEL 0573 Shift+Cancel key

KEY_SCOMMAND 0574 Shift+Command key

KEY_SCOPY 0575 Shift+Copy key

KEY_SCREATE 0576 Shift+Create key

(continued)

Appendix D ■ Keypad Character Codes 529

21_107591 appd.qxp 1/12/07 9:09 PM Page 529

Table D-1 (continued)

DEFINE VALUE (OCT) KEY NAME / DESCRIPTION

KEY_SDC 0577 Shift+Delete-character key

KEY_SDL 0600 Shift+Delete-line key

KEY_SELECT 0601 Select key

KEY_SEND 0602 Shift+End key

KEY_SEOL 0603 Shift+Clear-To-End-Of-Line key

KEY_SEXIT 0604 Shift+Exit key

KEY_SFIND 0605 Shift+Find key

KEY_SHELP 0606 Shift+Help key

KEY_SHOME 0607 Shift+Home key

KEY_SIC 0610 Shift+Insert-Character key

KEY_SLEFT 0611 Shift+Left-Arrow key

KEY_SMESSAGE 0612 Shift+Message key

KEY_SMOVE 0613 Shift+Move key

KEY_SNEXT 0614 Shift+Next key

KEY_SOPTIONS 0615 Shift+Options key

KEY_SPREVIOUS 0616 Shift+Previous key

KEY_SPRINT 0617 Shift+Print key

KEY_SREDO 0620 Shift+Redo key

KEY_SREPLACE 0621 Shift+Replace key

KEY_SRIGHT 0622 Shift+Right-Arrow key

KEY_SRSUME 0623 Shift+Resume key

KEY_SSAVE 0624 Shift+Save key

KEY_SSUSPEND 0625 Shift+Suspend key

KEY_SUNDO 0626 Shift+Undo key

KEY_SUSPEND 0627 Suspend key

KEY_UNDO 0630 Undo key

KEY_MOUSE 0631 Mouse event

KEY_RESIZE 0632 Terminal resize event

KEY_EVENT 0633 Some other event

KEY_MAX 0777 Maximum key value

530 Appendix D ■ Keypad Character Codes

21_107591 appd.qxp 1/12/07 9:09 PM Page 530

Not every keyboard has all these keys. Some are from the ancient days of
computers!

The values specified in the Values column may not be the same for all plat-
forms; they’re listed here merely as reference. Be sure to use the symbol
defined in your code instead of a value.

Not all keys are defined in all implementations of NCurses.
As a tip, when dealing with the numeric keypad, it helps to use the illustra-

tion shown in Figure D-1.

Figure D-1: The NCurses numeric keypad

a1

7
up

8
a3

9

left

4
b2

5
right

6

c1

1
down

2
c3

3

Appendix D ■ Keypad Character Codes 531

21_107591 appd.qxp 1/12/07 9:09 PM Page 531

21_107591 appd.qxp 1/12/07 9:09 PM Page 532

533

Index

#endif compiler, 166
#ifdef compiler, 165
./a.out command, 11, 13
^c format, 490, 186
^G notation, 186
^ symbol, 344
+ character, 172, 207

A
A_ALTCHARSET attribute, 32
A_ATTRIBUTES attribute, 313, 526
A_BLINK attribute, 32, 34, 526
A_BOLD attribute, 32, 34, 39, 232,

441, 526
A_CHAR attribute, 526
A_CHARTEXT constant, 313
A_COLOR attribute, 526
A_DIM attribute, 32, 526
A_HORIZONTAL attribute, 32
A_INVIS attribute, 32
A_LEFT attribute, 32
A_LOW attribute, 32
A_NORMAL attribute, 32, 526
A_PROTECT attribute, 32
A_REVERSE attribute, 32, 88, 526
A_RIGHT attribute, 32

A_STANDOUT attribute, 32, 444, 526
A_TOP attribute, 32
A_UNDERLINE attribute, 32, 526
A_VERTICAL attribute, 32
ACS_BLOCK, 523
ACS_BOARD, 523
ACS_BTEE, 523
ACS_BULLET, 523
ACS_CKBOARD, 523
ACS_DARROW, 523
ACS_DEGREE, 523
ACS_DIAMOND, 523
ACS_GEQUAL, 524
ACS_HLINE, 524, 214
ACS_LANTERN, 524
ACS_LARROW, 524
ACS_LEQUAL, 524
ACS_LLCORNER, 524
ACS_LRCORNER, 524
ACS_LTEE, 524
ACS_NEQUAL, 524
ACS_PI, 524
ACS_PLMINUS, 524
ACS_PLUS, 524
ACS_RARROW, 524
ACS_RTEE, 524

22_107591 bindex.qxp 1/12/07 9:09 PM Page 533

534 Index ■ A

ACS_S1, 524
ACS_S3, 524
ACS_S7, 524
ACS_S9, 524
ACS_STERLING, 524
ACS_TTEE, 524
ACS_UARROW, 524
ACS_ULCORNER, 524
ACS_URCORNER, 524
ACS_VLINE, 214, 524
addch() function

examples, 187
format reference, 186
man page formats, 185
return value, 186
sample program, 187

addchnstr() function, 188
addchstr() function

examples, 189
format reference, 188
man page formats, 188
return value, 188
sample program, 189–190

add-chstr string, 189
addstr() function

examples, 191
format reference, 190
man page formats, 190
return value, 190
sample program, 191–192

addstr macro, 9
ALL_MOUSE_EVENTS value, 159, 361
alphanumeric keys, 83
alpha window, 117
Alternative Character Set (ACS),

186, 211
ansi terminal, 378
a.out program, 10, 14
ARROWKEYS.C source code, 88
ASC_HLINE, 304
ASC_VLINE, 501
ASCII text, 169

assume_default_colors()
function

examples, 193
explanation, 192
format reference, 192
man page format, 192
return value, 192
sample program, 193–194

asterisk character *, 172
ats variable, 195
attr_get() function

examples, 195
format reference, 194
man page formats, 194
return value, 195
sample program, 195–196

attr_on() function, 199
attr_set() function, 200
attr_t attributes, 475
attr_t constants, 219
attr_t variable type, 37, 195,

441, 509
attrib argument, 195
attributes, 201, 225
attributes, text, 31–35
attr long int variable, 313, 398
attroff() function

examples, 198
format reference, 197
man page formats, 196
return value, 197
sample program, 198

attron() function
examples, 199
format reference, 198–199
man page formats, 198
return value, 199
sample program, 199

attrs argument, 195
attrs bit field, 194
attrs chtype variable, 443, 444, 446
_attrs element, 509

22_107591 bindex.qxp 1/12/07 9:09 PM Page 534

Index ■ A–C 535

attrset(COLOR_PAIR(n))
statements, 40

attrset() function
examples, 202
format reference, 200
man page formats, 200
return value, 201
sample program, 202–203

attrs int value, 197, 198
attrs long int value, 200

B
Bash shell, 3, 4
baud, 203
baudrate() function

example, 204
format reference, 203
man page format, 203
return value, 203
sample program, 204

\b backspace character, 186
beep() function

examples, 205
format reference, 205
man page format, 204
return value, 205
sample program, 205–206

beg_line int value, 515
begin_x int value, 250, 381, 467
begin_y int value, 250, 381, 467
_begx element, 508
_begy element, 508
bg range, int value, 192
bg values, 193
binary files, 10
bkdg() function, 42
_bkgd chtype() variable, 509
bkgd() function

examples, 207
format reference, 206
man page formats, 206
return value, 206
sample program, 207–208

bkgdset() function
examples, 209–210
format reference, 209
man page formats, 209
return value, 209
sample program, 210

blink attributes, 34
blinking cursors, 167
blocking call, 75
bold attributes, 34
Boolean value, 223
bool variable type, 267
border() function

examples, 212
format reference, 211
man page formats, 211
return value, 212
sample program, 212–213

borders, 212
bot int value, 436
Bourne shell, 3
box() function

examples, 214
format reference, 213–214
man page format, 213
return value, 214
sample program, 215

bs argument, ACS line drawing, 211
buffering, 79, 217
BUTTON3_CLICKED value, 159

C
can_change_color() function

examples, 216
format reference, 215
man page format, 215
return value, 215
sample program, 216

carriage return (CR), 383
cat command, 7–8, 14
cbreak() function

examples, 218
explanation, 217

22_107591 bindex.qxp 1/12/07 9:09 PM Page 535

536 Index ■ C

cbreak() function (continued)
format reference, 217
man page format, 217
return value, 217
sample program, 218

cbreak mode, 217
c chtype character, 491
C compiler, 8
cd command, 6
center() function, 53
centering text, 52–53
char_t constant, 524
character input variable, 103
char array, 333
Char column, 523
ch argument, 491
char pointer variable, 477, 492
char value, 264
ch character, 174
ch chtype character, 258, 303, 501
ch chtype variable, 400
chgat() function

examples, 220
format reference, 219
man page formats, 219
return value, 219
sample program, 220–221

ch int value, 494
chstr characters, 188
chtype array, 189
chtype attributes, 475
chtype bit field, 194
chtype character, 43, 187, 189, 211,

213, 465
chtype variable, 186, 206, 209, 277,

304, 312, 333, 398
ch variable, 85
C I/O functions, 167
_clear Boolean value, 510
clear command, 14
clear() function

examples, 222
format reference, 221–222
man page formats, 221

return value, 222
sample program, 222–223

clearing, 69–74
clearok() function

examples, 224
explanation, 223
format reference, 223
man page format, 223
return value, 223
sample program, 224–225

CLICKPUT.C source code, 163
cloppyfeen program file, 13
clrtobot() function

example, 225
format reference, 225
man page formats, 225
return value, 225
sample program, 226

clrtoeol() function
example, 227
format reference, 226–227
man page formats, 226
return value, 227
sample program, 227

cls program, 20
COL1 constant, 55
COL2 constant, 55
color, 35–41
color_content() function

examples, 228–229
format reference, 228
man page format, 228
return value, 228
sample program, 229

color_pair_number short int
value, 446, 450

COLOR_PAIR(0) values, 192
COLOR_PAIR attribute, 197
COLOR_PAIR value, 183,199
COLOR_PAIRS constant, 37-38, 466
color_pairs function

examples, 234
format reference, 233
man page format, 233

22_107591 bindex.qxp 1/12/07 9:09 PM Page 536

Index ■ C 537

return value, 233
sample program, 234

COLOR_RED constant, 38
color_set() function

example, 230
format reference, 230
man page format, 230
return value, 230
sample program, 230–231

COLOR_YELLOW constant, 38
color argument, 220
color attributes, 40
coloring windows, 42–44
color pairs, 38
COLORS constant, 37
COLORS int constant

examples, 232
format reference, 231
man page format, 231
return value, 231
sample program, 233

COLORS value, 38
color value, 232
COLS constant

example, 235
format reference, 234
man page format, 234
return value, 234
sample program, 235

colslue, 96
command not found error, 4
commands
pseudo commands, 90–91
requiring window argument, 90

command variable, 290
compilers, 7
compiling tips, 14
{xe “control”} characters, 189
cooked input mode, 217
copying windows contents
copywin() function, 118–120
overlay versus overwrite, 116–118

overwrite() function, 118
window duplication, 121–122

copy/paste/edit commands, 165
copywin() function

example, 237
FALSE option, 120
format reference, 236
man page format, 236
return value, 236
sample program, 237–238

count int value, 481
cpair int variable, 313
cp command, 14
C programming commands, 16
C subdirectory, 5
cud cursor movement, filter()

function, 269
cud1 cursor movement, filter()

function, 269
cup cursor movement, filter()

function, 269
current screen, 17
curs_set() function

examples, 239
format reference, 238
man page format, 238
return value, 238
sample program, 239–240

curscr screen, 224
curses_version() function

example, 241
format reference, 240
man page format, 240
return value, 240–241
sample program, 241–242

cursors
hiding, 167–168
moving around

centering text, 52–53
mvprintw() function, 54–55

CURSSET.C program, 168
_curx element, 508
_cury element, 508

22_107591 bindex.qxp 1/12/07 9:09 PM Page 537

538 Index ■ C–E

cuu cursor movement, filter()
function, 269

cuu1 cursor movement, filter()
function, 269

D
dcol coordinate, 118
D command, 72
Delayed Suspend key function, 414
delay() function, 386
delay int value, 479
_delay int value, 510
del brothers, 58
delch() function

example, 243
format reference, 242
man page formats, 242
return value, 242
sample program, 243

deleteln() function
examples, 244
format reference, 244
man page formats, 244
return value, 244
sample program, 244–245

delscreen() function
example, 246
format reference, 246
man page format, 245
return value, 246
sample program, 246–247

delwin() function
example, 247
format reference, 247
man page format, 247
return value, 247
sample program, 248–249

derwin() function
example, 250
format reference, 249–250
man page format, 249
return value, 250
sample program, 250–251

Description column, 523
destwin window, 116, 118
directory for programs, 4–5
doc pad, 377
doupate() function, 402, 403
doupdate() function

example, 252
explanation, 252
format reference, 252
man page format, 252
return value, 252
sample program, 252–253

drawing lines
boxing windows, 169–172
building better boxes, 172–173
controlling horizontal and vertical,

174–175
drawmenu() function, 88
drow coordinate, 118
dstwin WINDOW pointer, 236, 392, 394
dueling windows, 98–103
dump file, 178
duplication of windows, 121–122
dupwin() function, 121
dupwin(win) function

examples, 254
format reference, 253
man page format, 253
return value, 253
sample program, 254–255

E
easy editor, 5
echochar() function

examples, 258
explanation, 258
format reference, 258
man page formats, 258
return value, 258
sample program, 258–259

echo() function
examples, 256
format reference, 255

22_107591 bindex.qxp 1/12/07 9:09 PM Page 538

Index ■ E–F 539

man page formats, 255
return value, 256
sample program, 256–257

echoing text, 81–82
editors, 5–8

choosing, 5–6
creating first NCurses program, 6–7

ee text editor, 5
emacs text editor, 5
_ENDLINE constant, 509
endwin() function

example, 260
format reference, 259
man page format, 259
return value, 259
sample program # 1, 260–261
sample program # 2, 261

erasechar() function
example, 264
format reference, 263
man page format, 263
return value, 264
sample program, 264

Erasechar key, 217, 264, 289, 414
erase-chunks commands, 70
erase() function

examples, 262
format reference, 262
man page formats, 262
return value, 262
sample program, 263

erasing, 69–71
ERR constant, 340
ERR int value

examples, 265–266
format reference, 265
man page format, 265
return value, 265
sample program, 266

error messages, 9
ERR return value, 271
ERR value, 77
Escape character input, 388

escape sequence, 387
ESCDELAY constant, 388
exit() function, 14

F
FALSE constant, 340
FALSE value

examples, 268
format reference, 267
man page format, 267
return value, 267
sample program, 268

fclose() function, 176, 180
fg range, int value, 192
fg value, 193
filep FILE

pointer, 409
variable, 293

FILE pointer, 180
filter() function

example, 270
format reference, 269
man page format, 269
return value, 269
sample program, 270–271

first_name string variable, 191
flash() function

examples, 272
format reference, 271
man page format, 271
return value, 271
sample program, 272

Flow key function, 414
FLUSH1.C code, 80
flushing input, 79–81
flushinp() function

example, 273
format reference, 273
man page format, 273
return value, 273
sample program, 273–274

fmt formatting string, 407
fmt int value, 459
fopen() function, 176, 180

22_107591 bindex.qxp 1/12/07 9:09 PM Page 539

540 Index ■ F–G

for loop, 67, 88, 128, 151
formatted strings, 188
formatting text
beep() function, 44–45
color, 35–41
coloring windows, 42–44
text attributes, 31–35

found_x variable, 331
found_y variable, 331
_FULLWIN constant, 509
function keys, 152, 154–156

G
gcc command, 7, 8, 9, 10
getbegyx() function

example, 275
format reference, 274
man page format, 274
return value, 274
sample program, 275–276

getbkgd() function
example, 277
format reference, 277
man page format, 277
return value, 277
sample program, 277–279

getch() function
examples, 281
format reference, 279
man page formats, 279
return value, 279
sample program, 281–282

getchar() function, 75
getmaxy() function, 284, 316
getmaxyx() function

example, 284
format reference, 283
man page format, 283
return value, 283
sample program, 284

getmouse() function
example, 48, 287
format reference, 287
man page format, 287

return value, 287
sample program, 287–288

getmouse() monitors, 287
getnstr() function, 26, 27, 28, 29,

80, 82, 284, 289
getparyx() function

example, 285
format reference, 285
man page format, 285
return value, 285
sample program, 285–286

gets() function, 27
getstr() function

examples, 290
format reference, 289
man page formats, 288–289
return value, 289
sample program, 290

getsyx() function
example, 291–292
explanation, 291
format reference, 291
man page format, 291
return value, 291
sample program, 292–293

getwin() function
example, 294
format reference, 293
man page format, 293
return value, 293
sample program, 294–295

getxy() function, 56
getyx() function

example, 296
format reference, 295
man page format, 295
return value, 295
sample program, 296

GNU C compiler
gcc command, 9
re-editing source code, 9–10
whether to link -lcurses or -

lNCurses, 8
goodbye.c error message, 9
GOODBYE.C source code, 9

22_107591 bindex.qxp 1/12/07 9:09 PM Page 540

Index ■ H–I 541

H
h_char character, 169
halfdelay() function

examples, 298
explanation, 297
format reference, 297
man page format, 297
return value, 297
sample program, 298

has_colors() function
examples, 299
format reference, 299
man page format, 299
return value, 299
sample program, 300

has_ic() function
example, 301
format reference, 300
man page format, 300
return value, 301
sample program, 301–302

has_il() function
example, 302
format reference, 302
man page format, 302
return value, 302
sample program, 303

_HASMOVED constant, 509
hex codes, 173
hiding

cursor, 167–168
soft labels, 152–153

highlighted menu bar, 85–88
history commands, 4
hline() function

examples, 304
format reference, 303–304
man page format, 303
return value, 304
sample program, 305

home directory, 5
home position, 296, 364
horch chtype character, 214
horizontal lines, controlling, 174–175

I
IBM PC color graphics adapter, 37
_idcok Boolean value, 510
idcok() function

example, 306
format reference, 306
man page format, 306
return value, 306
sample program, 306–308

_idlok Boolean value, 510
idlok() function

example, 309
format reference, 308
man page format, 308
return value, 308
sample program, 309–310

id short int value, 356
if comparisons, 88
if condition, 216, 264
_immed Boolean value, 510
immedok() function

example, 311
format reference, 310
man page format, 310
return value, 310
sample program, 311–312

inch() function
examples, 313
format reference, 312
man page format, 312
return value, 312
sample program, 314–315

inchnstr() function, 316
inchstr() function

examples, 316–317
format reference, 316
man page formats, 315
return value, 316
sample program, 317–318

index line, 151–152
infd FILE pointer, 378
inherited commands, 217

22_107591 bindex.qxp 1/12/07 9:09 PM Page 541

542 Index ■ I

init_color() function
examples, 319
format reference, 318
man page format, 318
return value, 318
sample program, 319–320

init_pair() function
examples, 321
format reference, 320–321
man page format, 320
return value, 321
sample program, 322

init function, 420
initscr() function

example, 323
format reference, 323
man page format, 323
return value, 323
sample program, 324

innstr() function, 324
input buffers, 29
input functions, 26
input variable, 290
insch() function

examples, 325
format reference, 324–325
man page format, 324
return value, 325
sample program, 325

insdelln() function
examples, 326–327
format reference, 326
man page format, 326
return value, 326
sample program, 327

insertln() function
examples, 328
format reference, 328
man page format, 328
return value, 328
sample program, 329–330

ins sisters, 58

insstr() function
examples, 331
format reference, 330
man page formats, 330
return value, 330
sample program, 331–332

instr() function
examples, 333
format reference, 333
man page formats, 332
return value, 333
sample program, 334

Interrupt key function, 335, 413, 414
int hex chunk, 173
int key value, 279
intrflush() function

examples, 336
format reference, 335
man page format, 335
return value, 335
sample program, 336

int value, 188, 190, 420
int variables, 48, 187, 191, 204, 281
I/O

reading text
scanw() program, 29–30
strings, 27–29
typewriter program, 26–27

skeleton of programs
endwin() function, 20
initscr() function, 17–19
refresh() function, 20–21

writing text
blurping text, 23–24
move() function, 24
old formatted text trick, 24–25
one character at a time, 21–22

I/O commands, 16
is_linetouched() function

example, 340
explanation, 339
format reference, 340

22_107591 bindex.qxp 1/12/07 9:09 PM Page 542

Index ■ I–K 543

man page format, 339
return value, 340
sample program, 340–341

is_wintouched() function
example, 342
format reference, 342
man page format, 342
return value, 342
sample program, 342–343

isendwin() function
examples, 338
explanation, 337
format reference, 337
man page format, 337
return value, 337
sample program, 338–339

_ISPAD constant, 509

K
kbhit() function, 78–79
KEY_A1 code, 528
KEY_A3 code, 528
KEY_B2 code, 528
KEY_BACKSPACE key, 85, 289
KEY_BEG code, 528
KEY_BREAK code, 527
KEY_BTAB code, 528
KEY_C1 code, 528
KEY_C3 code, 528
KEY_CANCEL code, 529
KEY_CATAB code, 528
KEY_CLEAR code, 528
KEY_CLOSE code, 529
KEY_CODE_YES code, 527
KEY_COMMAND code, 529
KEY_COPY code, 529
KEY_CREATE code, 529
KEY_CTAB code, 528
KEY_DC code, 528
KEY_DL code, 528
KEY_DOWN code, 527
KEY_DOWN key definition, 85
KEY_EIC code, 528

KEY_END code, 85, 529
KEY_ENTER code, 528
KEY_EOL code, 528
KEY_EOS code, 528
KEY_EVENT code, 530
KEY_EXIT code, 529
KEY_F0 code, 527
KEY_FIND code, 529
KEY_F(n) code, 85, 528
KEY_HELP code, 529
KEY_HOME code, 85, 527
KEY_IC code, 528
KEY_IL code, 528
KEY_LEFT code, 85, 289, 527
KEY_LL code, 528
KEY_MARK code, 529
KEY_MAX code, 530
KEY_MESSAGE code, 529
KEY_MIN code, 527
KEY_MOUSE code, 161, 530
KEY_MOVE code, 529
key_name() function, 343
KEY_NEXT code, 529
KEY_NPAGE code, 85, 528
KEY_OPEN code, 529
KEY_OPTIONS code, 529
KEY_PPAGE code, 85, 528
KEY_PREVIOUS code, 529
KEY_PRINT code, 528
KEY_REDO code, 529
KEY_REFERENCE code, 529
KEY_REFRESH code, 529
KEY_REPLACE code, 529
KEY_RESET code, 528
KEY_RESIZE code, 530
KEY_RESUME code, 529
KEY_RIGHT code, 85, 527
KEY_SAVE code, 529
KEY_SBEG code, 529
KEY_SCANCEL code, 529
KEY_SCOMMAND code, 529
KEY_SCOPY code, 529
KEY_SCREATE code, 529

22_107591 bindex.qxp 1/12/07 9:09 PM Page 543

544 Index ■ K–L

KEY_SDC code, 530
KEY_SDL code, 530
KEY_SELECT code, 530
KEY_SEND code, 530
KEY_SEOL code, 530
KEY_SEXIT code, 530
KEY_SF code, 528
KEY_SFIND code, 530
KEY_SHELP code, 530
KEY_SHOME code, 530
KEY_SIC code, 530
KEY_SLEFT code, 530
KEY_SMESSAGE code, 530
KEY_SMOVE code, 530
KEY_SNEXT code, 530
KEY_SOPTIONS code, 530
KEY_SPREVIOUS code, 530
KEY_SPRINT code, 530
KEY_SR code, 528
KEY_SREDO code, 530
KEY_SREPLACE code, 530
KEY_SRESET code, 528
KEY_SRIGHT code, 530
KEY_SRSUME code, 530
KEY_SSAVE code, 530
KEY_SSUSPEND code, 530
KEY_STAB code, 528
KEY_SUNDO code, 530
KEY_SUSPEND code, 530
KEY_UNDO code, 530
KEY_UP code, 85, 344, 527
keyboard

reading from
flushing input, 79–81
implementing kbhit(), 78–79
testing waiting characters, 77–78
text-echoing, 81–82
whether character waiting, 76–77

reading special keys
highlighted menu bar, 85–88
keypad() function, 83–84
what’s where on keyboard, 85

keyboard buffer, 80

keyname() function
example, 344
format reference, 343
man page format, 343
return value, 343
sample program, 344–345

keypad character codes, 527–531
keypad() function

example, 346
format reference, 345
man page format, 345
return value, 346
sample program, 346–347

key-reading functions, 83
key variable, 281
KEYWAIT1.C program, 77
killchar() function

example, 348
format reference, 347
man page format, 347
return value, 348
sample program, 348

Killchar key, 217, 289, 348, 414
kill command, 415

L
label argument, 459
label argument, slk_set()

function, 149
labels, soft

changing, 153–154
hiding and restoring, 152–153
hooking in function keys, 154–156
making index line, 151–152
overview, 147–148
removing, 154
slk_init() function, 148–150

label string constant, 459
labnum int value, 453, 458
lcurses command, 8
_leaveok Boolean value, 510
leaveok() function

examples, 350
explanation, 349

22_107591 bindex.qxp 1/12/07 9:09 PM Page 544

Index ■ L–M 545

format reference, 349
man page format, 349
return value, 349
sample program, 350–351

len characters, 304
len pointer, 62
len variable, 53
line drawing

boxing windows, 169–172
building better boxes, 172–173
controlling horizontal and vertical,

174–175
line-drawing characters, 169
line feed (LF), 383
line int value, 420
line-number-jumping command, 10
_line pointer, 510
LINES constant, 49
lines function

examples, 352
format reference, 351
man page format, 351
return value, 351
sample program, 352

–lncurses command, 8
–lncurses option, 14, 16
long int bit field, 475
long int values, 358
longname() function

example, 353
format reference, 352
man page format, 352
return value, 353
sample program, 353

Lorem ipsum text, 116
ls argument, ACS line drawing, 211
ls command, 7, 10, 14
ls –l command, 14, 178

M
macros, 504
main() function, 14
major release number, 241

_maxx element, 508
_maxy element, 508
mcol variable, 275
me.bstate variable, 162
me.id variable, 162
menu_edit subwindow, 471
menuitem variable, 88
meta() function

example, 355
explanation, 354
format reference, 354
man page format, 354
return value, 354
sample program, 355

Meta key, 354
mevent function

examples, 358
format reference, 356
man page format, 356
return value, 356–357
sample program, 358

MEVENT structure, 287, 356, 358, 506
me.x variable, 162
me.y variable, 162
me.z variable, 162
minor release number, 241
mmask_t type, 159
mmask_t values, 356
mouse

overview, 157–158
reading

overview, 161–162
what was clicked, 163–165
where mouse was clicked, 162–163

support compiled into code, 165–166
and terminal, 158–160
and version of NCurses, 158

mouse_trafo() function
example, 359
format reference, 359
man page format, 358
return value, 359
sample program, 359–360

22_107591 bindex.qxp 1/12/07 9:09 PM Page 545

546 Index ■ M–N

mouse event, reading, 162
mousemask() function

examples, 362–363
explanation, 159, 361
format reference, 361
man page format, 361
return value, 361
sample program, 363

move() function
examples, 364
format reference, 363
man page format, 363
return value, 363
sample program, 364

mrow variable, 275
MSPY.C source code, 163
mvaddch() function, 52
mvchgat() function, 220
mv command, 14
mvderwin() function

example, 367
explanation, 366
format reference, 366
man page format, 366
return value, 366
sample program, 367

mvhline() function, 304
mvinstr() function, 334
mv prefix, 51, 91, 174, 188
mv prefix function, 364, 365
mvprintw() function, 54–55
mvvline() function, 501
mvwaddstr() function, 100, 181
mvwhline() function, 304
mvwin() function

examples, 369
format reference, 368–369
man page format, 368
points for using, 129
return value, 369
sample program, 369–370

mvw- prefix, 188
mvw prefix function, 364, 368
mvwvline() function, 501

N
napms() function, 22, 65, 80, 371
napms(ms) function

examples, 371
format reference, 370
man page format, 370
return value, 370
sample program, 371

n characters, 190
ncols int value, 249, 376, 380, 469
NCURSES_MOUSE_VERSION

constant, 165-166
ncurses_mouse_version function

examples, 372
format reference, 372
man page format, 372
return value, 372
sample program, 372–373

NCURSES_MOUSE_VERSION
variable, 158

NCURSES_VERSION_MAJOR constant,
242, 374

NCURSES_VERSION_MINOR constant,
242, 374

NCURSES_VERSION_PATCH constant,
242, 374

NCURSES_VERSION constant, 242, 374
ncurses_version function

examples, 374
explanation, 373
format reference, 373–374
man page format, 373
return value, 374
sample program, 375

NCURSES_VERSION string, 241, 374
NCurses commands, 148
NCURSES directory, 5
NCURSES.H header file, 16, 83, 89, 90,

158, 169, 178
negative scrolling, 127
newmask argument, 159
newmask mmask_t variable, 361
newpad() function

examples, 376–377
explanation, 375

22_107591 bindex.qxp 1/12/07 9:09 PM Page 546

Index ■ N–O 547

format reference, 376
man page format, 375
return value, 376
sample program, 377

newterm() function
example, 378–379
format reference, 378
man page format, 378
return value, 378
sample program, 379–380

new window sample program, 92–94
newwin() function

examples, 382
format reference, 380–381
man page format, 380
return value, 381
sample program, 382–383

n int value, 304
nl() function

example, 384
explanation, 383–384
format reference, 384
man page format, 384
return value, 384
sample program, 384–385

nlines int value, 249, 376, 380, 468
\n newline character, 186
nocbreak() function, 217, 280,

297, 385
nodelay() function

examples, 386
explanation, 385
format reference, 385–386
man page format, 385
return value, 386
sample program, 386–387

noecho() function, 82, 161, 255, 280,
281, 387

nofilter() function, 270
–noflush lflag, 412
nonl() function, 384, 387
noqiflsh() function, 413

noqiflush() function, 280, 387, 411
noraw() function, 280, 387, 413
_notimeout Boolean value, 509
notimeout() function

example, 389
explanation, 387–388
format reference, 388
man page format, 388
return value, 388
sample program, 389

noutrefresh() function, 455
NULL placeholder, 194
Num Lock state, 346

O
–o compiler option, 14
OK int constant

example, 390–391
format reference, 390
man page format, 390
return value, 390
sample program, 391

old formatted text trick, 24–25
oldmask mmask_t variable, 361
opts argument, 194
opts value, 200, 230
orig WINDOW variable, 467
–o switch, 13
outfd FILE pointer, 378
output functions, 21, 205
overlay() function

example, 392
format reference, 392
man page format, 392
return value, 392
sample program, 393

overwrite() function
example, 394
format reference, 394
man page format, 394
return value, 394
sample program, 394–395

22_107591 bindex.qxp 1/12/07 9:09 PM Page 547

548 Index ■ P–Q

P
pads

forbidden pad functions, 144–145
making, 132
removing, 142–143
subpads

making, 138–139
optimization, 141–142
working with, 139–141

viewing, 135–137
viewing contents of, 133–134

pointer, 404
pair_content() function

examples, 396
format reference, 396
man page format, 396
return value, 396
sample program, 397–398

pair_number() function
examples, 399
format reference, 398
man page format, 398
return value, 399
sample program, 399–400

pair argument, 195
pair short int value, 200, 320
par_x int value, 366
par_y int value, 366
parent window, 106
_parent WINDOW pointer, 511
patch, 241
pecho_wchar() function, 401
pechochar() function

examples, 401
format reference, 400
man page format, 400
return value, 400
sample program, 401–402

plural colors, 299
pmincol, 133
pmincol int value, 405
pminrow, 133
pminrow int value, 405

pnoutrefresh() function
example, 403
explanation, 402
format reference, 402
man page format, 402
return value, 403
sample program, 403–404

pointers, 22
pointer variables, 228–229, 396
prefresh() function

examples, 405
explanation, 404
format reference, 404–405
man page format, 404
return value, 405
sample program, 405–406

previous command, 4
printf() function, 21, 24–25, 54, 407
printw() function

examples, 408
format reference, 407
man page format, 407
return value, 407
sample program, 408

printw statement, 56
programming libraries, 2
PROG subdirectory, 5
pseudo functions, 90–91, 504
–p switch, 5
puts() function, 21
putwin() function

example, 409
format reference, 409
man page format, 409
return value, 409
sample program, 409–411

pwd command, 6

Q
qiflush() function

examples, 412
format reference, 411
man page format, 411

22_107591 bindex.qxp 1/12/07 9:09 PM Page 548

Index ■ Q–S 549

return value, 411
sample program, 412–413

quad programs, 102
Quit key function, 335, 413, 414

R
raw() function

examples, 415
explanation, 413
format reference, 414
man page format, 413
return value, 414
sample program, 415–416

\r carriage return, 186
reading

from keyboard
flushing input, 79–81
implementing kbhit(), 78–79
special keys, 82–88
testing waiting characters, 77–78
text-echoing, 81–82
whether character waiting, 76–77

mouse
overview, 161–162
what was clicked, 163–165
where mouse was clicked, 162–163

text
scanw() program, 29–30
strings, 27–29
typewriter program, 26–27

redrawwin() function
example, 416
format reference, 416
man page format, 416
return value, 416
sample program, 417

refresh() function
examples, 419
explanation, 417
format reference, 418
man page format, 418
return value, 418
sample program, 419

removing
pads, 142–143
soft labels, 154
subwindows, 111–112
windows, 97–98

restoring
screen, 178–180
soft labels, 152–153

ripoffline() function
examples, 420
format reference, 420
man page format, 419
return value, 420
sample program, 421

rm command, 14
rmcup feature, 12
rows value, 96
ROWS variable, 352

S
scanf() function, 29, 422
scanw() function

examples, 423
format reference, 422
man page format, 422
return value, 422
sample program, 423–424

scanw() program, 29–30
scol coordinate, 118
scr_dump() function

examples, 424–425
format reference, 424
man page format, 424
return value, 424
sample program, 425–426

scr_init() function
example, 427
explanation, 426
format reference, 426
man page format, 426
return value, 427
sample program, 427

22_107591 bindex.qxp 1/12/07 9:09 PM Page 549

550 Index ■ S

scr_restore() function
example, 428
format reference, 427
man page format, 427
return value, 428
sample program, 428–429

scr_set() function
examples, 429–430
format reference, 429
man page format, 429
return value, 429
sample program, 430

screen
dumping, 176
restoring, 178–180
taking snapshot of, 176–178

screen size, 48
scrl() function

examples, 431
format reference, 431
man page format, 430
return value, 431
sample program, 431–432

_scroll Boolean value, 510
scroll() function

examples, 433
format reference, 432
man page format, 432
return value, 432
sample program, 433

scrolling
negative scrolling, 127
old manual scroll, 124–125
scrl() function, 125–127
whether can scroll, 122–123

scrolling text, 122
scrollok() function

example, 434
format reference, 434
man page format, 434
return value, 434
sample program, 435

_SCROLLWIN constant, 509
scrwin window, 116

set_term() function
examples, 440
format reference, 439
man page format, 439
return value, 439
sample program, 440

setscrreg() function
examples, 436
format reference, 436
man page format, 435
return value, 436
sample program, 437

setsyx() function
example, 438
format reference, 438
man page format, 438
return value, 438
sample program, 438–439

setup
directory for programs, 4–5
editors

choosing, 5–6
creating first NCurses program, 6–7

GNU C compiler
gcc command, 9
re-editing source code, 9–10
and rmcup. feature, 12
whether to link -lcurses or -

lncurses, 8
shell, 3–4, 14
short int variables, 228, 396
showhelp() function, 95
skeleton of programs
endwin() function, 20
initscr() function, 17–19
refresh() function, 20–21

slk_attr() function
slk_attr_on() function, 444
slk_attr_set() function, 446

examples, 441
format reference, 441
man page format, 441
return value, 441
sample program, 442

22_107591 bindex.qxp 1/12/07 9:09 PM Page 550

Index ■ S 551

slk_attroff() function
example, 443
format reference, 443
man page format, 442
return value, 443
sample program, 443–444

slk_attron() function
examples, 445
format reference, 444
man page formats, 444
return value, 444
sample program, 445–446

slk_attrset() function
examples, 447
format reference, 446
man page format, 446
return value, 446
sample program, 447

slk_clear() function
example, 448
format reference, 448
man page format, 448
return value, 448
sample program, 448–449

slk_color() function
example, 450
format reference, 450
man page format, 450
return value, 450
sample program, 450–451

slk_init() function
example, 453
explanation, 451
format reference, 452
man page format, 451
return value, 452
sample program, 453

slk_label() function
examples, 454
format reference, 453
man page format, 453
return value, 453
sample program, 454–455

slk_noutrefresh() function

example, 455
format reference, 455
man page format, 455
return value, 455
sample program, 456

slk_refresh() function
examples, 457
format reference, 457
man page format, 456
return value, 457
sample program, 457

slk_restore() function
examples, 458
format reference, 457
man page format, 457
return value, 458
sample program, 458

slk_set() function
examples, 459
format reference, 458–459
man page format, 458
return value, 459
sample program, 460

slk_touch() function
examples, 461
format reference, 461
man page format, 461
return value, 461
sample program, 461–462

slk functions, 148
smaxcol, 133
smaxrow, 133
smincol, 133
smincol int value, 236, 405
sminrow, 133
sminrow int value, 236, 405
snapshots of screen, 176–178
soft label key (slk)

functions, 451
soft labels

changing, 153–154
hiding and restoring, 152–153
hooking in function keys, 154–156

22_107591 bindex.qxp 1/12/07 9:09 PM Page 551

552 Index ■ S–T

soft labels (continued)
making index line, 151–152
overview, 147–148
removing, 154
slk_init() function, 148–150

source code, 6–7, 9–10, 14
SPACER constant, 136
special keys, 82–88
sprintf() function, 407
sp SCREEN pointer, 246
srcwin WINDOW pointer,

118, 236, 392, 394
srow coordinate, 118
standard screen

commands requiring window
argument, 90

measuring, 47–49
mv prefix, 91
pseudo commands, 90–91

standend() function
example, 463
format reference, 462
man page format, 462
return value, 462
sample program, 463

standout() function
example, 464
format reference, 463
man page format, 463
return value, 464
sample program, 464

start_color() function
example, 466
format reference, 465
man page format, 465
return value, 465
sample program, 466–467

start int value, 481
stdscr screen, 17, 21, 83, 89, 90, 108,

125, 212, 283, 504
stdscr variable, 323
stdscr window, 117
string patch, 331
strings, 27–29

strlen() function, 53
str string variable, 289, 330
str text, 190
stty command, 203
subdirectories, 5
subpad() function

example, 468
format reference, 467
man page format, 467
return value, 467
sample program, 468–469

subpads
making, 138–139
optimization, 141–142
working with, 139–141

_SUBWIN constant, 509
subwindows

making, 107–110
overview, 105–107
removing, 111–112
sub-subwindows, 110–111
versus windows, 112–113

subwin() function
examples, 470–471
format reference, 469
man page format, 469
return value, 470
sample program, 471

Suspend key function, 413, 414
switch case structure, 166
switching between windows, 94–96
_sync Boolean value, 510
syncok() function, 472, 510, 518

T
tabsize function

examples, 474
format reference, 473
man page format, 473
return value, 473
sample program, 474

TALL constant, 136
\t character, 473

22_107591 bindex.qxp 1/12/07 9:09 PM Page 552

Index ■ T 553

termattrs() function
examples, 475
format reference, 475
man page format, 475
return value, 475
sample program, 476–477

terminal, and mouse, 158–160
terminal screen, 2, 17
terminfo file, 12
termname() function

example, 478
format reference, 477
man page format, 477
return value, 477
sample program, 478

testing waiting characters, 77–78
text

centering, 52–53
deleting chunks of text, 64–65
formatting
beep() function, 44–45
color, 35–41
coloring windows, 42–44
text attributes, 31–35

inserting and deleting functions,
57–58

inserting lines, 59–60
inserting one character at a time,

61–62
reading
scanw() program, 29–30
strings, 27–29
typewriter program, 26–27

writing
blurping text, 23–24
move() function, 24
old formatted text trick, 24–25
one character at a time, 21–22

text argument, slk_set()
function, 149

text attributes, 31–35
text colors, 38–39
text-echoing, 81–82
text editor, 5
text floating, 157

text output commands, 91
the alternative character set, 523–524
the chtype, 525–526
timeout() function

examples, 479
format reference, 479
man page format, 479
return value, 479
sample program, 479–480

to_screen Boolean value, 359
top int value, 436
touched text, 95, 141
touchline() function

examples, 481–482
explanation, 480–481
format reference, 481
man page format, 481
return value, 481
sample program, 482–483

touchwin() function
example, 484
explanation, 483
format reference, 483
man page format, 483
return value, 484
sample program, 484–486

t pointer, 22
TRUE constant, NCURSES.H, 340
TRUE value

examples, 488
format reference, 486–487
man page format, 486
return value, 487
sample program, 488

ts argument, ACS line drawing, 211
\t tab character, 186
type-ahead buffer, 79
typeahead() function

examples, 490
explanation, 489
format reference, 489
man page format, 489
return value, 489
sample program, 490

typewriter program, 26–27, 56

22_107591 bindex.qxp 1/12/07 9:09 PM Page 553

554 Index ■ U–W

U
unctrl() function

examples, 492–493
format reference, 491
man page format, 491
return value, 491
sample program, 493

ungetch() function
examples, 495
explanation, 494
format reference, 494
man page format, 494
return value, 494
sample program, 495–496

UNIX, 1–2, 383
untouchline() function, 497
untouchln() function, 497
untouchwin() function

example, 497
explanation, 496
format reference, 497
man page format, 497
return value, 497
sample program, 497

use_default_colors() function
example, 498
format reference, 498
man page format, 498
return value, 498
sample program, 498–499

use_env() function
example, 500
format reference, 499–500
man page format, 499
return value, 500
sample program, 500

_use_keypad Boolean value, 510

V
v_char character, 169
Values column, 531
var variable, 486
verbose terminal description, 353

verch character, 213
vertical lines, controlling, 174–175
vim text editor, 6
virtual screen, 17
virtual terminals, 2, 203, 380
vline() function

examples, 502
format reference, 501
man page format, 501
return value, 501
sample program, 502

vprintf() function, 407
vscanf() function, 422
vsprintf() function, 407
vw_printw() function, 407
vw_scanw() function, 422
vwprintw() function, 407, 503
vwscanw() function, 422, 503

W
waddch() function, 90
waddstr() function, 133
wattr_off() function, 197
wbkgd() function, 101
wborder() function, 172
wclear() function, 112
wcursyncup() function

examples, 504
format reference, 504
man page format, 504
return value, 504
sample program, 505

wenclose() function
example, 506
format reference, 506
man page format, 506
return value, 506
sample program, 506–507

wfp file pointer, 294
wgetch() function, 103, 280, 281,

346, 385
wgetstr() function, 289

22_107591 bindex.qxp 1/12/07 9:09 PM Page 554

Index ■ W 555

while loop, 27, 62, 77, 102, 144, 266,
281, 487

WIDE constant, 136
_win_st structure type, 178
win argument, 48, 90, 224
WINDOW data structure, 112
WINDOW pointer, 180, 236, 293
WINDOW pointer variable, 504
windows

boxing, 169–172
copying contents
copywin() function, 118–120
overlay versus overwrite, 116–118
overwrite() function, 118
window duplication, 121–122

dueling, 98–103
functions that dump windows,

180–183
making windows, 91–97
measuring standard screen, 47–49
moving, 127–129
moving cursor around

centering text, 52–53
mvprintw() function, 54–55

new window sample program, 92–94
removing, 97–98
scrolling

negative scrolling, 127
old manual scroll, 124–125
scrl() function, 125–127
whether can scroll, 122–123

small, 96–97
standard screen

commands requiring window
argument, 90

mv prefix, 91
pseudo commands, 90–91

subwindows
making, 107–110
overview, 105–107
removing, 111–112
sub-subwindows, 110–111
versus windows, 112–113

switching between, 94–96

WINDOW variable type
examples, 512
format reference, 508–511
man page format, 508
return value, 512
sample program, 512

win WINDOW pointer variable, 253
win WINDOW variable, 247, 274
wmove() function, 129, 296, 369
wnoutrefresh() function

examples, 514
explanation, 513
format reference, 513
man page format, 513
return value, 513
sample program, 514

w prefix, 174, 194, 199, 209, 222, 381,
503–504

_WRAPPED constant, 509
wredrawln() function

example, 515
explanation, 514
format reference, 515
man page format, 514
return value, 515
sample program, 515–516

wredrawwin() function, 416
wrefresh() function, 93, 95, 97, 100,

129, 133, 183, 224, 342, 381, 420, 470,
481, 483, 496, 510, 516, 517

writing text
blurping text, 23–24
move() function, 24
old formatted text trick, 24–25
one character at a time, 21–22

wscrl() function, 126, 127
wsyncdown() function

examples, 517
format reference, 517
man page format, 517
return value, 517
sample program, 517

22_107591 bindex.qxp 1/12/07 9:09 PM Page 555

556 Index ■ W–Z

wsyncup() function
examples, 518
format reference, 518
man page format, 518
return value, 518
sample program, 518

wtimeout() function, 297, 519
wtouchln() function

examples, 520
format reference, 519
man page format, 519
return value, 519
sample program, 520–521

X
x int variable, 283, 295, 356, 363

Y
y int variable, 283, 295, 356, 363

Z
z int variable, 356

22_107591 bindex.qxp 1/12/07 9:09 PM Page 556

	Cover
	Copyright
	Contents
	Acknowledgments
	Introduction
	Assumptions
	Curses or NCurses?
	Conventions
	Compatibility Issues
	Contacting the Author

	Chapter 1 The Setup
	NCurses Is a UNIX Thing
	Run (Don't Walk) to a Terminal Screen Near You
	Know Something About the Shell
	Some Shelly Stuff
	Know Your History, Because You're Going to Repeat It

	Make a Place for Your Stuff
	Using an Editor to Create an NCurses Program
	Picking an Editor
	Creating Your First NCurses Program
	Some Deviations

	Know Thy Compiler
	Linking NCurses or Curses?
	What Does the gcc Command Do?
	Re-editing Your Source Code
	Where Is the Program?
	Fixing Stuff (Again)
	Don't Panic When You Still Don't See Anything!
	Do You Think a.out Is a Goofy Name?

	All Done!
	General Info
	Handy Shell Commands to Know
	Source Code Tidbits
	Compiling Tips

	Chapter 2 Basic I/O, the NCurses Way
	The Skeleton
	The initscr() Function
	The initscr() Function's Exceptions
	The endwin() Function
	The refresh() Function

	Writing Text
	Tossing Up Text One Stupid Character at a Time
	Pausing for a Side-trip
	Blurping Text
	The move() Function
	The Old Formatted Text Trick

	Reading Text
	The Silly Typewriter Program
	Consuming a String Whole
	Swallowing Only So Much of a String
	The Obligatory scanw() Program

	Chapter 3 Formatting Text
	Text Abuse with Text Attributes
	More than Boring Black and White (but Not Much)
	Testing Some Attributes
	Multiple-Attribute Mania

	Can It Do Color?
	Colors and Color Pairs
	Eight or Sixteen Colors?
	Spruce Up Some Text!
	A Color Thing Your Terminal Probably Cannot Do

	Coloring a Window
	Screen Background Color
	More than Solid
	Changing Color on the Fly

	Noise, Too!

	Chapter 4 Around the Window
	Measuring the Standard Screen
	The Size of the Window Is Y by X
	And Now: the Shortcut

	Moving the Cursor Around
	Watch Out! I've Got You Cornered!
	Some Compacting
	Center that Title!
	Some Fun with mvprintw()

	Whither the Cursor?

	Chapter 5 More Text Manipulation
	Inserting and Deleting Functions
	Editing Shakespeare
	Inserting Some Lines
	Final Changes to Hamlet
	Inserting One Character at a Time
	A More Visual Example

	Less of Hamlet
	Goodbye, Chunk of Text!
	Out It Goes and in It Comes

	Chapter 6 Clearing and Zapping
	Commands to Erase Chunks of the Screen
	The Obligatory Test Program
	Clear the Screen!
	Clear or Erase?

	Clrto means Clear To
	Less Blah on the End of a Line
	Less Blah to the End of the Screen

	You Mean that's It for My NCurses Erasing Fun and Excitement?

	Chapter 7 Keyboard Madness!
	Reading from the Keyboard
	Is a Character Waiting?
	Testing Waiting Characters
	How to Implement kbhit()
	Flushing Input
	Silence, Please!

	Reading Special Keys
	Keypad On!
	What's Where on the Keyboard
	The Highlighted Menu Bar

	Chapter 8 Windows, Windows Everywhere!
	Ye Olde Standard Screen
	Commands that Require a Window Argument
	The Pseudo Commands
	The Other Prefix, mv

	Making Windows
	The Obligatory New Window Sample Program
	Switching between Windows
	Windows of a Smaller Size

	Removing a Window
	Dueling Windows
	Stained Glass Windows
	Stop Repeating Me!

	On Your Own

	Chapter 9 Subwindows
	The Thing with Subwindows
	Making Subwindows
	Your First Subwindow
	Your Second Subwindow

	Sub-subwindows
	Removing a Subwindow
	Subwindows Versus Windows

	Chapter 10 More Window Tricks
	Copying Window Contents
	To overlay or to overwrite?
	The overwrite() difference
	The magic of copywin()
	Plain old window duplication

	Scrolling Around
	Can it scroll?
	Scroll Away
	The old manual scroll
	Scrolling by leaps and bounds
	Negative scrolling

	The Moving Experience

	Chapter 11 Dig My Pad, Man
	The Monster Window
	Making a Pad
	Viewing a Pad's Contents
	More Pad-Viewing Stuff

	Subpads
	Making a subpad
	Working with a Subpad
	Some Optimization

	Removing a Pad
	Pad Miscellany
	Another Pad Function
	Forbidden Pad Functions
	Forbidden Pad Stuff

	Chapter 12 The Joy of Soft Labels
	What Is a Soft Label?
	Doing the Soft Label Thing
	Stand by for Soft Labels
	Gimme Some Soft Labels
	Making the Index Line

	Soft Labels Here and Gone
	Hiding and Restoring the Labels
	Changing a Label
	Removing a Label

	Hooking in the Function Keys

	Chapter 13 Messing Mit der Mouse
	Hello, Mouse
	Can NCurses Deal with the Mouse?
	Can Your Terminal Deal with the Mouse?

	Reading the Mouse
	The "Reading the Mouse" Overview
	Where Did You Click that Mouse?
	On Your Own
	What Clicked?

	To Eek or Not to Eek?

	Chapter 14 A Mixture of Stuff
	Adios, Cursor
	Line Drawing
	Boxing Windows
	Building Better Boxes
	We Control the Horizontal and the Vertical

	Between NCurses and Disk
	Functions that Dump the Screen
	Taking a Snapshot of the Screen
	Examining the Dump File
	Restoring the Screen
	Functions that Dump a Window

	Appendix A NCurses Library Reference
	Appendix B The Alternative Character Set
	Appendix C The chtype
	Appendix D Keypad Character Codes
	Index

