
Programming with Motir

Keith D. Gregory

Programming
with Motif1M
With 112 Illustrations

Springer-Verlag
New York Berlin Heidelberg London Paris
Tokyo Hong Kong Barcelona Budapest

Keith D. Gregory
Wakefield, MA 01880
U.S.A.

Pennission to reprint the portions of OSF /Motif'I'M copyrighted material appearing in
this book has been granted by Open Software Foundation, Incorporated.

PostScript is a registered trademark of Adobe Systems, Incorporated.
UNIX is a registered trademark of UNIX Systems Laboratories, Incorporated.
DECstation, Digital, the Digital logo, MicroVAX. and VAX are trademarks of the
Digital Equipment Corporation.
X Window System is a trademark of the Massachusetts Institute of Technology.
Motif, OSF, and OSF /Motif are registered trademarks of the Open Software
Foundation, Incorporated.
IBM is a registered trademark and OS/2 is a trademark of International Business
Machines Corporation.
Hewlett-Packard (HP) is a trademark of the Hewlett-Packard Company.
MS-Windows is a registered trademark of Microsoft Corporation.

library of Congress Cataloging-in-Publication Data
GregoI)', Keith D.

Programming with motif / Keith D. Gregory
p. cm.

Includes bibliographical references and index.

ISBN-13:978-0-387-97877-2 e-ISBN-13:978-1-4612-2954-4

DOl: 10.1007/978-1-4612-2954-4

1. X Window System (Computer System) 2. Motif (Computer program)
I. Title.
QA76.76.W56G84 1992
005.4'3-dc20 92-17576

Printed on acid-free paper.

©1992 Sprtnger-VerlagNewYork, Inc.

All rights reseIVed. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews
or scholarly analysis. Use in connection with any form of information storage and
retrieval, electronic adaptation, computer software, or by similar or dissimilar methodol
ogy now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication,
even if the former are not especially identified, is not to be taken as a sign that such
names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly
be used freely by anyone.

Production supervised by Ken Dreyhaupt; manufacturing coordinated by Vincent Scelta.
Camera-ready copy prepared from the author's Microsoft Word meso

98765432

ISBN -13 :978-0-387-97877-2

For Jennifer

Preface

About this Book
This book is a detailed introduction to programming with the OSF /MotifI'M
graphical user interface. It is an introduction in that it does not require the
reader to have experience programming in the X Window environment. It is
detailed in that it teaches you how to use the interface components provided by
Motif in a complex application. Although it contains a great deal of reference
material, it is not meant as an authoritative reference - that is the job of the
OSF/Motif Programmer's Reference, which uses over 900 pages in the process.
Instead, this book provides its reference material in a practical, "how to" manner
and allows the reader to use the Programmer's Reference effectively.

The target reader is an experienced C programmer and user of the X Window
System under the UNIX operating system. 'the reader should be familiar with the
tools provided by UNIX for the compilation and testing of programs; while this
book does examine the process by which a Motif program is compiled, it does not
explain that process. It also assumes that the reader is familiar with "x" terms
such as 'pointer' and 'display'.

How this Book Came to Exist
As a programmer learning Motif, I found that Motif books assumed that the
reader knew the X toolkit, needed to know a bit about the capabilities of Motif,
but really wanted to write widgets. Books that covered the X toolkit only quickly
went in a direction away from Motif and ended with the reader writing widgets. I
was a programmer who had used Xlib for some small projects and wanted to
make the leap to Motif; I didn't know what a widget was, and I certainly didn't
want to write one.

I have written this book for people in a similar situation, which I believe is the
one facing most programmers learning Motif. At one time, a programmer would
enter the world of X through Xlib or Xt and eventually move on to writing a new
widget set. At the present time, however, I believe that most programmers enter
the world of X seeking solutions to business problems and find themselves
directly at the door of Motif or Open Look.

With this in mind, I start the book with the basics of toolkit programming and
end before widget implementation. Throughout, I try to present information that

vii

viii Preface

is needed for an actual application, without the details used to get "the last 10%"
from the environment.

As source material, I use documentation and code from the XII distribution,
with Motif documentation published by the Open Software Foundation. In
addition, I have received information from the large group of programmers
represented by the comp.windows.xand comp.windows.x.motijnewsgroups.

Suggested Reading Plan
Looking at this book, you may be intimidated by its length - and become more
intimidated when I suggest that you start at the front cover and end at the back
cover. I say this because Motif is a complex environment, and I have attempted
to structure the book such that each chapter builds upon the ones before it. The
chapter descriptions below will give you an idea of this structure.

If, however, you are one of those people who likes to see something work right
away, there is an abbreviated introduction that gives you "Hello World" in one
hour or less. This abbreviated process is also described in the chapter listings.

Chapters
Chapter I describes Motif: what it is, why it exists, and what benefit it provides
to users and programmers. If you are unfamiliar with the purpose and
organization of X and Motif - from Xlib to toolkits to the Motif library - I
recommend reading this chapter. For those on the "quick start" plan, it may be
safely skipped.

Chapter 2 describes the widget, the abstract graphical object that is the core of
Motif programming. This description is from both the abstract rerspective of
object-oriented programming and the programming perspective 0 "what does a
widget do." Along the way, it presents the key ideas of derivation (the creation of
a new type of widget by building on an existing widget) and parentage (the
hierarchical organization of widgets in a program). This chapter proviaes the
foundation for the rest of the bOOK and should be read by everyone.

Chapter 3 describes resources, which are used to customize the appearance and
interaction of a widget. It presents a large amount of material, covering various
attributes of resources. This material is invaluable and should be read in detail,
but is best read in the context of an actual program - which has not yet been
presented. For this reason, I recommend reading the introductory sections
(through Sample Resource File) at first and then rereading the whole chapter
once you've written your first program.

Chapter 4 describes the format of a Motif program and provides you with an
understanding of what happens when you press the Return key. It too is
invaluable and should be read in detail, but this reading may be postponed until
after Chapter 5. I do, however, recommend at least skimming this chapter and
reading CompUing A Motij Program in detail.

Chapter 5 introduces the first widget: XmLabel, which is used to display static
text. It also presents the first program -like most books, this is "Hello, World."

Preface ix

This program completes the "quick start" plan, and I recommend that skimmed
chapters should be reread.

Chapter 6 describes manager widgets, which are used to position other widgets
and thus control the appearance of a program's interface. The four most
common Motif managers: XmBulletinBoard, XmRowColumn, XmPanedWindow,
and XmFonn are described, with examples showing the uses of each.

Chapter 7 describes the standard Motif button widgets: XmPushButton,
XmArrowButton, and XmToggleButton. In this chapter, they are presented as
user-interface objects; their link to the program is postponed to Chapter 8.

Chapter 8 describes the X event mechanism by which programs receive input. It
starts at the lowest level, that of actual events, and describes what events are
and how the program uses them. After this, it describes the callback
mechanism, which is a high-level link between programs and events. Next are
actions and translations, a yet higher level of event processing.

Chapter 9 describes methods of keyboard input. It starts with a low-level
description of keyboard events and then presents the XmText widget, which is
Motifs primary means of keyboard input. This chapter contains three
progressively complex examples of XmText usage: as an entry field, as a single
screen memo pad, and as a replacement for the more utility.

Chapter 10 describes scrollbars, a user-interface object used to control the
position and scope of a program's displayed data. This chapter starts at a low
level, with the XmScrolLBar widget and its interface. Next is a description of
XmScrolledWindow, a manager widget that transparently handles the scrolling of
its contents. The chapter finishes with a description of the xmScale widget, a
related widget that is used to input and display data values.

Chapter 11 describes the program as a whole. This description is from two
perspectives: the appearance of a program, as defmed by the OSF / Motif Style
Guide, and those widgets that exist to assist the programmer in implementing a
program with the desired appearance. This chapter also presents the beginnings
of a text editor implemented with Motif widgets.

Chapter 12 describes menus, the primary means by which a user controls the
operation of a Motif program. It starts with a description of the menu bar and its
pull-down menus and adds these items to the text editor. It also presents pop-up
and option menus, which are used to provide context-sensitive input.

Chapter 13 describes dialogs, which provide the program with auxiliary windows
for user interaction. Examples include a custom dialog that implements a search
facility for the text editor, as well as the use of Motifs "canned" message dialogs.

Chapter 14 describes lists and the way that the user interacts with them. It
starts with the basic list, as implemented by XmList, and follows with widgets
built around a list: XmSelectionBox, XmFileSelectionBox, and XmCommand. It
also presents examples of uses of lists, ranging from an e-mail address-selection
dialog to a file-selection module for the text editor.

Chapter 15 is an introduction to the use of Xlib - the low-level X drawing
functions - with Motif. It describes the general form of an Xlib call and presents
the XmDrawingArea widget, which acts as a "canvas" for such calls. The scope of
this chapter is necessarily limited - Xlib could easily occupy an entire book by
itself.

x Preface

Chapter 16 presents advanced resource topics. These range from the way that
Motif associates resource specifications with a program's invocation name, to the
use and creation of functions that convert resource data from one type to
another. Along the way, it describes the X approach to command-line program
options and a method by which the resource file may be used to change program
variables.

Chapter 17, the final chapter, describes interclient communication. This topic
involves both the X-specific methods of interclient communications, along with
the traditional communication methods such as pipes. This chapter is quite long
and presents a variety of communications methods - a subject that I feel other
books have omitted.

The appendices exist for reference only. Appendix A is simply a character chart,
showing the ISO Latin 1 character set - an extension of ASCII used by X and
many other modern systems. Appendix B presents a summary of widget
information - a "mini Programmer's Reference." Appendix C provides a
complete reference for X events - seemingly a requirement for X-related books.
Appendix D contains a summary of changes in X and Motif, while Appendix E
lists other sources of information, from the official OSF /Motif documentation to
various X user groups.

The book fInishes with a glossary of X and Motif terms.

Source Code Conventions
Like most books on programming, this book contains a lot of source code. I
believe that the keys to understanding any program are its naming conventions.
Mine generally follow those of the MIT X consortium and are as below:

• Function names consist of one or more words, run together, with the fIrst
letter of each word capitalized (eg, MyFunction).

• Variables consist of one or more words, with all characters in lowercase.

•

•

Where a variable name consists of several words, underscores separate
the words; in cases where the name is a contraction of multiple words
(eg, appshell for 'application shell'), no underscores are used.

My conventions do not follow those of the X consortium in the naming of
variables used for widgets: I do not differentiate between such variables
and other program variables. The X standard specifies that widget names
consist of one or more words, run together, with the fIrst letter of every
word but the fIrst capitalized.

Macro names and symbolic constants consist of one or more words,
separated by underscores, with all characters in uppercase (Eg,
A_CONSTANT). This follows the X Consortium specification; mixed case is
reserved for X "action" macros such as XtSetArg.

Names beginning with a capital 'X are reserved for use by the X libraries
and are not used as program variables or functions. Specific prefIxes are:
"X" for low-level names (those associated with Xlib) , "Xt" for names
associated with the X Toolkit (also known as the Intrinsics), and "Xm" for
Motif.

•

Preface xi

I do not use naming techniques to differentiate between global and local
variables. All global variables are declared in one location and typically
carry the same names from program to program. As my tendency is to
use global variables to hold utility data only (and. for Motif programs.
some widgets of general interest). I feel that no naming conventions are
needed.

My source-code structuring rules are as follows:

• Indentation is four characters per level.

• Braces are aligned with the level they enclose. except for function bodies
(where they are aligned at column 1). Braces always occupy their own
line: I do not follow the "K&R" style of putting an opening brace at the
end of the line above the block it encloses.

• Function parameter declarations are indented four characters and
appear between function definition and function body; as described
below. the ANSI format is not used. Function variables are similarly
indented four characters. I do not use block-level variables.

• Function parameters are declared using the "old style": parameter names
are specified in the header line. with declarations between the header line
and the function body. I do this primarily because ANSI C compilers have
been slow to arrive in the UNIX world.

• When a new function is introduced. it is "prototyped" out of context. In
this case only. I align the function's parameters with its name - I believe
this approach is less cluttered than standard indentation.

Text Conventions
The text of this book is set in a proportional typeface. Italics are used to
highlight the initial use of glossary terms. for names of Motif widget classes.
names of standard programs (eg. a.out). common parenthetical abbreviations
(eg. eg). and occasionally. to emphasize a point in the text. Italics are also used
for computer names in captions. Boldface is used in the text to highlight user
interface items in a specific program (eg. the File menu).

Computer text is set in a monospaced font (Letter Gothi c) that resembles
lineprinter output. Such usage includes source listings (which are separate from
the text). as well as variable and function names that appear in the text. This
typeface is italicized to indicate that the italicized word(s) are replaced in actual
usage (eg. the name of a prototype function would be italicized).

This book uses two types of quotation marks: text and literal. Text quotation
marks are used to highlight idiomatic phrases and actual quotations; single
quotes (' and .) for "jargon" words. double quotes (" and ") for all else. Literal
quotation marks (") are used in the text to delimit literal strings (eg. "MyString").
Sin~e quotes (') are used in the C manner to delimit Single-character strings (eg.
'\nT; such strings may contain C "escape" characters. Double quotes (") do not
connote C semantics (ie. such strings are not NUL-terminated) unless otherwise
indicated.

xii Preface

A final note about notes. I footnote heavily and use footnotes to provide
infonnation tangential to the topic under consideration. I consider such notes
important - they often clarify obscure points of a topic - but understand that
some people find them distracting. They may be safely skipped, or their reading
may be postponed until a more convenient time.

Caveats
The first and foremost caveat is that this book is written from the perspective of
Motif 1.0 and XII Release 3 (XIIR3) - versions that are essentially obsolete. I
made this decision after an infonnal poll indicated that many sites are limited to
this configuration; I did not want to give such sites a book that they couldn't
use.

For Motif, this decision was easy to make: Motif 1.1 was released during the
writing of this book and did not come into widespread usage until just before it
went to press. Where I feel that 1.1 provides a better technique than 1.0, I note
this possibility, either in the text or as a footnote. The only place where this rule
does not hold is in Chapter 18: the clipboard mechanism did not work properly
under 1.0 and thus must be discussed from the perspective of 1.1.

For X, this was a more difficult decision: XII Release 4 (XIIR4) was commonly
available while I was writing this book, and R5 was released before the fmal
draft. However, my poll indicated that many people were still using R3.
Moreover, the differences between R3 and R4 have a minimal effect on this book:
the biggest impact is on type conversion, as described in Chapter 17.

The second caveat is that this book is written from a UNIX perspective, while X
and Motif are available on other platfonns. In answer to this, I must answer "I go
with what I know" - I use a UNIX system and am not able to test on other
platfonns. There is also the question of how much infonnation to include -
adding infonnation specific to VMS and other systems would cause the book to
grow in size. I believe that the infonnation contained in this book is of use to
such people; the examples, however, are most likely not.

A third (and final) caveat is that every vendor's system is slightly different. The
placement of files, even the names of some files, may differ between your site
and this book. I have attempted, in all cases, to use standard names. In some
cases, where I know of differences, I present alternatives.

Acknowledgments
I've been working on this book for apprOximately one and a half years, and I've
tried to keep track of all the people that had an fufluence on it; at one time, that
list even included the Boston Red Sox. The first influence occurred in 1987,
when Art Shane gave me the opportunity to branch out from programming into
writing. The idea for this particular book came from my brother, David, who
impressed upon me the fact that the Motif market was wide open.

For help and support during the writing, I thank my editors at Springer-Verlag,
Mark, David, and Andrea. For their comments, I thank both the reviewers that I

Preface xiii

know - Andy, Ed, Luke, Rob, and Ted - and those that I don't; although not all
of their comments resulted in change, each added to what is here. I would also
like to thank Apple Computer for providing me with A/UX, and Integrated
Computer Solutions for providing me with Motif.

Finally, I wish to thank everyone at Symmetrix for adapting to my schedule of
"sometimes here, more often not" while this book was being written. And, oh yes,
the Boston Red Sox, for reasons that only one person knows.

Contents

Preface vii
About this Book .. vii
How this Book Came to Exist .. vii
Suggested Reading Plan ... viii
Chapters ... viii
Source Code Conventions... x
Text Conventions .. xi
Caveats ... xii
Acknowledgments .. xii

1 An Introduction To Motif 1
"Mechanism, not Policy" .. I
Enter Motif .. 2
The Layers of X .. 3

2 The Widget 5
What Is a Widget? ... 5
An Introduction to Object-Oriented Programming 5
Widgets as Objects ... 7
The Motif Class Tree .. 7
Widget Instance Tree... 10

3 Widget Resources 11
What Are Resources? ... 11
Resource Tables ... 12
A Short Note on Resource Naming Conventions 13
Resource Files ... 13
The Naming of Widgets .. 13
Format of a Resource Specification.. 16
Sample Resource File... 17
Setting Resources by Class.. 19
Resolution of Wild carded Widget Names ... 19
The Resource not Set. .. 20
Commenting the Resource File .. 20

xv

xvi Contents

How Many Resource Files Could One Program Use? 21
Setting Resources from the Command Line 22
Setting Resources Programmatically .. 23
"Hard Wiring" Resource Values 25
Getting Resources Programmatically .. 26

4 Writing A Motif Program 27
The Widget Data 1'ype 27
Stages in the Life of a Motif Program .. 27
A Program Template .. 32
Header Files .. 34
Compilation of a Motif Program 35
A Short Note About Program Size 36
What About Standard I/O? .. 37

5 XmLabel 39
Overview .. 39
XmLabel Inheritance .. 39
XmLabel Resources .. 40
Using XrnLabel: "Hello, World!" .. 42
Setting a Label's Font 44
The xmString Data Type .. 48
Setting labelString Programmatically .. 51
Using XmLabel with Pictures .. 53

6 Managers 57
Overview 57
Inheritance 57
Constraints: An Overview ... 59
Management Revisited 59
Measurement: The unitType Resource 63
XmBulletinBoard 65
XmBulletinBoard Examples .. 68
XmRowColurnn 73
XmRowColurnn Examples 80
XmPanedWindow 87
XmPanedWindow Example: Three Labels and a Paned Window 91
XmFonn ... 92
XmFonn Examples ... 100

7 Buttons 107
Overview .. 107
Inheritance .. 108
XmPushButton ... 108
XmPushButton Example: Press Here ... 112
XmArrowButton ... 114
XmArrowButton Example 115
XmToggleButton ... 117
XmToggleButton Examples ... 122

Contents xv11

8 Events and Callbacks 125
Overview .. 125
Handling X Events ... 127
Event Handler Example: Mouse Tracker .. 135
Callbacks .. 142
Button Callbacks ... 145
XmPushButton Callback Example: Press Here 146
Actions.. 148
Translations .. 151
Action/Translation Example: Multibutton Pushbutton 159
XmPushButton Default Translations ... 162

9 Keyboard Input 165
Overview .. 165
Input Focus ... 165
Keyboard Events .. 166
Traversal ... 167
Traversal Example: Three Tab Groups ... 169
XmText .. 172
XmText Resources .. 173
XmText Callbacks .. 179
XmText Default Translations .. 182
XmText Convenience Functions ... 185
XmText Example: Memo Pad .. 190
XmText Example: EntIy Fields ... 192
Scrolled Text .. 197
Creating a Scrolled Text "Widget" ... 198
Scrollea Text Resources... 199
Scrolled Text Example: File Browser .. 200

10 Scrollbars 205
Overview .. 205
Scrollbar Components and Terminology ... 205
XmScroUedWindow .. 207
XmScroUedWindow Resources .. 208
Creating and .Initializing a S~rolled ~indow 211
xmScroTledWindow Example. Scrolling Row-Column 212
XmScrollBar ... 215
XmScrollBar Resources .. 216
XmScrollBar Callbacks ... 219
Getting and Setting a Scrollbar's Values Programmatically 221
XInScrollBar Example .. 221
xmScale 224
xmScaie Resources .. 225
xmScaie Callbaaks ... :. 228
Getting and Setting a Scale's Value Programmatically 228
XmScale Example .. 229

xviii Contents

11 The Motif "Look" 233
Overview .. 233
Components of a Motif Client ... 233
XmMainWindow ... 235
XmMain Window Resources .. 235
XmMainWindow Convenience Functions .. 237
XmSeparator .. 238
XmSeparator Resources ... 239
XmSeparator Example .. 241
XInFrame .. 243
XmFrarne Resources .. 244
XmFrame Example: Labels in Frames .. 246
The New Standard Program Template .. 248
The Text Editor: A Sample Application ... 254

12 Menus 261
Overview .. 261
XmCascadeButton. 261
XmCascadeButton Resources ... 262
XmCascadeButton Callbacks .. 263
XmRowCoZumn Menu Resources .. 264
XmRowCoZumn Callbacks ... 266
The Menu Bar ... 267
The Standard Motif Menu Bar .. 269
Menu Bar Example: Adding a Menu Bar to the Editor 272
XmMenuShell and a Menu Pane's Instance Tree 276
Pull-Down Menus .. 276
Pull-Down Example: Adding Pull-Down Menus to the Editor 278
Mnemonics .. 282
Menu Accelerators ... 285
Cascading Pull-Downs ... 287
Cascading Pull-Down Example .. 288
Pop-Up Menus ... 289
Pop-Up Menu Example: Color Selection Menu 290
Option Menus .. 294
XmRowCoZumn Resources Specific to Option Menus 295
Option Menu Example: Font Family and Size 297
Menu Summcuy ... 300

13 Di~ogs 305
Overview .. 305
Dialog Modality .. 305
Dialog Design and Components ... 306
XmDinlogSheU 307
XmDialogShell Resources ... 308
Dialog Management and Unmanagement.. ... 310
XmBulletinBoard Dialog Resources .. 310
Building and Using a Dialog .. 313
Bulletin Board Dialog Example: Find ... 314
Message Boxes ... 325
XmMessageBox .. 327
XmMessageBox Resources ... 328
XmMessageBox Convenience Functions ... 330

Contents xix

XmMessageBox Example: "Can't Find" Alert 331
Grabbing and Assigning Input Focus ... 334

14 Lists 337
Overview .. 337
XmList ... 337
XmList Resources .. 339
XmList Callbacks ... 342
XmList Convenience Functions .. 344
XmList Example: E-Mail Address Selection ... 347
Scrolled List ... 351
Scrolled List Resources .. 352
Scrolled List Example: Scrolling E-Mail Addresses 353
xmSelectionBox 354
XmSelectionBox Resources ... 355
XmSelectionBox Callbacks .. 359
Creating and Using a Selection Box. ... 360
Accessing a Selection Box's Children ... 360
XmSelectionBox Example: E-Mail Addresses 361
XmFUeSelectionBox .. 363
XmFUeSelectionBox Resources ... 365
Creating and Using XmFileSelectionBox .. 366
XmFUeSelectionBox Example: Open/Save As 368
XmCol7lJTlQ.nd ... 379
XmCol7lJTlQ.nd Resources .. 380
XmCommand Convenience Functions .. 382
XmCommand Example ... 384

15 Using Xlib With Motif 387
Overview .. 387
The X Server .. 387
Color in a Digital World ... 389
The Standard Xlib Parameters ... 391
The Graphics Context .. 393
XmDrawir!gArea 401
XmDrawir!gArea Resources .. 402
XmDrawir!gArea Callbacks ... 403
XmDrawingArea Example: Doodle .. 406

16 Resources Revisited 427
Overview .. 427
Program Instance Names ... 427
Command-Line Options ... 432
Resource Converters .. 436
Writing a Converter ... 444
Quarks .. 452
Using Converters Outside the Resource Manager 455
The Conversion Cache ... 459
Application Resources .. 460

xx Contents

17 Interclient Communication 467
Overview .. 467
File I/O ... 467
Timeouts ... 474
Background Processing: WorkProcs ... 478
Sending Events Between Clients .. 482
Atoms .. 485
Window Properties ... 487
Window Manager Protocols .. 493
Selection .. 502
The Clipboard .. 513
Example: Adding Cut. Copy. and Paste to the Text Editor 521
XmText Direct Clipboard Interface .. 530

Appendix A:
ISO Latin 1 Character Set 533

Appendix B:
Widget Class Summary 535
Overview .. 535
ApplicationShell ... 535
Composite .. 536
Constrain.t. 536
Core ... 537
OverrideSheU ... 538
Shell .. 538
TopLeveLShell ... 539
TransientShell .. 539
VendorShell ... 539
WM"Shell .. 540
XmArrowButton ... 541
XmBulletinBoard .. 542
XmCascadeButton. 543
XmCo1TlTJ1.QJ1d•.....•....•.......••.....•.•.....••.....•.......•......•..•...........•••...... 543
XmDialogShell 544
XmDrawingArea 544
XmDrawnButton .. 545
XmF'ileSelectionBox .. 545
XmForm•.....................••...........•••.....••..•....•.......•.....••...... 546
XmF'rame 547
XmLabel .. 547
XmList ... 548
X1T1Main. Win.dow ... 549
X1T1Manager ... 549
X1T1MenUShell ... 550
X1T1MessageBox 550
XmPanedWindow 551
XmPrimitive .. 552
XmPushButton ... 553
XmRowColumn ... 554
xmScale 555

Contents xxi

XmScroUBar 556
XmScrolledWindow .. 557
xmSelectionBox 558
XmSeparator .. 559
XmText .. 560
XmToggleButton ... 561

Appendix C:
X Event Reference 563
Overview .. 563
Event Types ... 563
Event Masks .. 565
XEvent ... 567
XAnyEvent ... 570
ButtonPress. ButtonRelease .. 571
CirculateNoti.fi.J ... 573
CirculateRequest .. 574
ClientMessage ... 575
ColonnnpNoti.fi.J .. 577
ConjigureNoti.fi.J .. 578
ConjigureRequest ... 580
CreateNoti.fi.J ... 583
DestroyNoti.fi.J ... 584
EnterNoti.fi.J. LeaveNoti.fi.J ... 585
Expose ... 588
Focusln. FocusOut. ... 589
GraphicsExpose. NoExpose ... 592
GravityNoti.fi.J .. 594
KeymapNoti.fi.J .. 595
KeyPress. KeyRelease 596
MapNoti.fi.J. UnmapNoti.fi.J ... 598
MappingNoti.fi.J .. 600
MapRequest ... 601
MotionNotify ... 602
PropertyNoti.fi.J .. 605
ReparentlVoti.fi.J ... 606
ResizeRequest. ... 607
SelectionClear .. 608
SelectionNoti.fi.J ... 609
SelectionRequest .. 611
VisibilityNoti.fi.J ... 613

Appendix D:
Changes In X And Motif 615
Overview .. 615
From Motif 1.0 to 1.1 ... 615
From XII Release 3 to Release 4 ... 618
From XII Release 4 to Release 5 ... 622

xxii Contents

Appendix E:
Where To Go For More Information 625
Overview .. 625
Documentation .. 625
Mailing Lists/NetNews ... 627
The FAQs .. 628
Getting X and Motif Software ... 628
Getting This Book's Sample Programs .. 629

Glossary 631

Index 655

1
An Introduction To Motif

"Mechanism, Dot PoUcy"

This phrase is one of the design goals of the X window system. It means that X
provides a mechanism for graphical user interfaces, but does not dictate the
appearance of programs using such interfaces. "Mechanism, not policy" could be
applied equally to PostScript: it provides a mechanism for formatting a printed
page, but does not specify the content of that page.

By eliminating questions of policy, the X Consortium was able to simplify the
design of X and avoid a system "designed by committee." There are two
important results of this simplification. The first is that an X program is
portable; an X program running on one vendor's system may display output and
receive input from a user on another vendor's system. The second result is that
each vendor is free to implement its own "look and feel"; X does not prevent
creativity .

The drawback to such an approach is that it can lead to chaos. An example of
such chaos is seen in software for the IBM PC. Until recently, every program had
a unique user interface, and a typical user had to remember five dIfferent ways
to exit five different programs.

In the case of X, this chaos did not occur. One reason was that graphical user
interfaces were well understood by the time X appeared. Another and perhaps
more important reason was that writing an X program was not a trivial task.
Every program interacted with the server at a very low level, essentially using an
"assembly language" for the X protocol.

As a result, few production programs were written using the early releases of X
- and many of those that were came from the X Consortium. It wasn't until the
release of the X Intrinsics (Xt) that the writing of an X program became simple.
This was because the intrinsics introduced the widget: a self-contained object
that provides user-interface functionality.

Along with the intrinsics - which prOvided the structure for widgets - the X
Consortium released the Athena widget set. Although Athena was meant as
sample code only, it provided most of the elements of a user interface: menus,

1

2 Programming with Motif

text boxes, and so on. As a result, an X program could be written easily, and the
number of X programs (and programmers) proliferated.

Enter Motif
With the intrinsics in place, vendors could produce their own widget sets.
Unfortunately, these sets were vendor-specific - one vendor had little reason to
support another vendor's product. Again, this was a situation that could have
led to chaos, but did not.

The reason was that the late-1980s saw the formation of two industry
consortiums, UNIX International (UI) and the Open Software Foundation (OSF),
both of which had the goal of producing a standardized operating system. 1 As
part of this collaboration, each produced an X-based user interface: Open Look
for UI and Motif for OSF.

Figure 1.1 presents a sample Motif program. One of the most striking features of
such a program is its three-dimensional appearance, which came from the HP
widget set. Other Motif features, shared with MS-Windows and OS/2
Presentation Manager, are the use of mnemonics (highlighted characters) to
select menu choices and the presence of a Help menu on tlie right-hand side of
the menu bar. In other respects, a Motif program has the features that one
expects from a modem graphical user interface, such as pull-down menus and
other controls that enable the user to interact with the program in a simple and
straightforward manner.

Figure 1.1. Sample Motif program

1 For UI, this system is UNIX System V; for OSF. it is OSF /1.

An Introduction to Motif 3

The Layers of X

One result of the development of X is that an X program is built in layers, as
shown by Figure 1.2. At the top level is the application code, which processes
data and defines the context for user interaction. User-interface functionality
menus, controls, and such - is provided by Motif, which in turn makes use of
the intrinsics and Xlib. Application-level code makes some use of the intrinsics,
such as when it opens a display connection. Some applications may even call
Xlib directly - a CAD program, for example, may need to perform low-level
graphics operations. At the bottom is the X protocol, which is hidden behind the
functions in Xlib.

Figure 1.2. Layers of an X program

Applioation

Motif (Xm)

X Intrin5io5 (Xt)

Xli"

X Protoool

The benefit of this layering is that it minimizes the amount of implementation
that must go into providing each layer. Since Xlib provides an interface to the X
protocol, the intrinsics need not replicate that functionality. Instead, they
provide window-management functionality. Since the intrinsics handle window
management, the implementers of a widget set can concentrate on specific user
interface features. Finally, since the user interface is handled by the widget set,
an application programmer can concentrate on the goals of the application.

2
The Widget

What Is a Widget?
Traditionally, the word "widget" is used for an object that doesn't need a better
name. For example, in economics, you can speak of firms and the widgets that
they produce using principles that work without knowledge of what the widgets
are.

When applied to the X Window System, however, "widget" has a very specific
meaning. It is an object that controls the interaction between an application
program and an X window. Since this definition needs further explanation, read
on.

An Introduction to Object-Oriented Programming

What Is Object-Oriented Programming?

The traditional, "procedural," programming paradigm regards a program as a set
of procedures that manipulates data. Program flow is dependent on the order
that the programmer links the procedures. As an example, an array is sorted
using a "sort" procedure, then printed using a "print" procedure.

Object-Oriented Prograrruning (OO~ is a paradigm in which data drives the
program. An object contains both data and the procedures (methods) that
manipulate that data. These methods are invoked by program requests
(messages). In terms of the array, the program first requests the array to sort
itself, then requests it to print itself.

Although the distinction may seem minor, it has great implications. For example,
an i nt array is handled differently from a float array. If a procedural program is
written to use an i nt array, it must be rewritten to use a float array - while
similar, the procedures are slightly different. More importantly, if a procedural
program uses both types of arrays, it must choose the appropriate procedure for
each array.

5

6 Programming with Motif

Under the object-oriented paradigm, however, the program simply requests the
array to sort or print itself. Although each data type still requires its own sort
and print procedures, these procedures are part of the data type itself. High-level
program code is not dependent on the array's data type and does not select the
procedure used.

This is one of the often-stressed benefits of OOP: data is "hidden" and may be
changed almost at will without affecting program logic. This leads to programs
that are both flexible and maintainable, with both to a greater degree than
programs written under the procedural paradigm.

Separation of Class and Instance

In addition to combining data and methods to form an object, OOP has two other
tenets: separation of class and instance, and inheritance. The first of these,
separation of class and instance, may be explained with a noncomputer
example.

In cars, the Ford Crown Victoria may be viewed as a class. The definition of this
class is a body-on-frame automobile, 212.5 inches long, 77.8 inches wide, 56.7
inches high, and so on. Instances of this class belong to Aunt Sally and the
Massachusetts State Police. While these instances are essentially the same car,
their data - paint, upholstery, engine, etc. - differ.

It is important to remember that methods are part of an object's class definition,
whereas data is part of an object's instance. A method from one class may not be
invoked for an instance of another class - that would be like moving the Crown
Victoria's power-steering components to a Volkswagen Beetle.

Inheritance

The final tenet is inheritance, or the derivation of a new object class (the
subclass) from an existing class (the superclass). Although on the surface
derivation may appear identical to the standard C technique of building complex
data structures from simpler ones, it is radically different: instead of the
superclass(es) being fields of the subclass, they are components of the subclass.
Depending on the needs of the program, an object may be treated as if it were
identical to its superclass. 1

Inheritance provides for reusability of object classes. Consider linked lists. Such
lists are used in many programs to hold many different types of data. However,
the form of all such lists is similar: a series of discrete link entries, each of which
contains a data item and a pointer to the next entry in the list. This is a perfect
place for object-oriented code: create standard "linked list" and "list item" classes
and derive program-specific classes from them.

From here on, this book will often use the terms instance, class, superclass,
subclass, inheritance, and derivation. To minimize wordiness, the term "widget"
always refers to a widget instance; references to a widget's class are explicit.

1 Continuing the automobile metaphor, inheritance is similar to creating a dune buggy
from a Volkswagen - to a mechanic, they're the same car, while to the user they're very
different.

The Widget 7

Widgets as Objects
Widget sets, including Motif, follow the object-oriented paradigm. The widget is
an object: its data is a window, its metfiods are the internal functions that
maintain the appearance of that window, and its resources (described in the next
chapter) are the messages that control the operation of its methods.

One benefit of the object-oriented approach is that an application programmer
can build a program in a very modular fashion. Once the program's general
functionality and layout are determined, a "scaffold" of widgets may be built.
Then, each widget's function may be expanded in isolation, allowing the
programmer to concentrate on program functionality instead of implementation
details.

The Motif Class Tree
Inheritance is central to the implementation of a widget set and is represented
by that set's class tree. Each widget class is represented by a node in the tree; it
inherits· the functionality implemented by widgets in a direct line between it and
the root of the tree.

Some of the classes in a widget class tree are supporting: they exist only to
provide specific functions to their subclasses. Other classes are used directly by
the program and are known as instantiated classes - they are classes for which
a program has instances.

An abbreviated class tree for Motif is shown in Figure 2.1. This tree contains the
major supporting classes in the Motif class tree, some of which come from Xt.
Each widget description in this book contains an excerpt from this tree,
expanded to show the widget(s) being described.2

2 This book's class tree diagrams use heavy boxes to indicate supporting classes, and
regular boxes to indicate instantiated classes.

8 Programming with Motif

Figure 2.1. Motif class tree

Rec;t017J 017Ject

RectObj, Object, Core

These three classes are the root of all widget sets and are defined by the
intrinsics. Core is the root of the widget class tree and combines the functionality
of RectObj, Object, and WindowObj (not shown here). Together these classes
provide the functions of instantiation and basic window maintenance.

Figure 2.1 presents RectObj and Object to show the derivation of XmGadget As
this book does not present gadgets, Core is shown as the root of all subsequent
class trees.

XmPrimitive

The XmPrimitive class is used as the supporting superclass of the "primitive"
widgets. Primitive widgets, such as pushbuttons, are a program's controls. The
name "primitive" is used because these widgets perform single-purpose functions
- they are unable to be the parents of other widgets.

The XmPrimitive class provides appearance details, such as top and bottom
shadow color, and functional details, such as traversal and focus.

The Widget 9

XmGadget

"Gadgets" are one of DEC-Windows' contributions to Motif. In essence, a gadget
is a windowless widget. As such, it is not derived from Core, but from RectObj
and Object In other respects, XmGadget is identical to XmPrimitive, and most
primitive widgets (such as pushbuUons) have corresponding gadgets.

Being windowless means that the appearance of a gadget is completely
controlled by its parent. As an example, consider a dialog box that has a
foreground color of green and a background color of red. The components of this
dialog box may be either widgets or gadgets. If they are gadgets, then they must
use the same colors as the dialog; ifwidgets. their appearance may differ.

The benefit of a gadget vs. a widget is efficiency. A widget has a window, which
must be maintained by the display server. whereas a gadget is simply a region of
its parent's window. This means that both the display server and the application
use less memory. In addition. the display server can perform its operations (such
as event reporting and screen update) more effiCiently because its internal tables
are not as large.

Although a gadget may be used wherever a primitive widget is, they are used
primarily in places where their windowless nature does not present an obstacle.
A prime example is a pull-down menu system. which by its nature should have a
uniform appearance.

This book does not cover gadgets. My belief is that the effiCiency gains from
appropriate use of gadgets do not offset the increased code complexity and
executable size resulting from their use. 3 As this book does not cover gadgets, it
considers Core to be the root of the Motif class tree.

Composite

Composite widgets are those widgets that can be the parents of other widgets.
The Composite widget class is the supporting superclass of all composite wiagets
and provides support for maintaining a list of children. It is defined by Xt and is
present in all widget sets.

Shell

Shells are widgets that provide a link between the program and the root window.
Any widget that appears in a window manager frame nas a shell that exchanges
information with the window manager; widgets that "pop up" over other widgets
also use shells. Different shells serve different purposes: an Application Shell is
the top level shell around a program, whereas a Dialog Shell is the shell around a
movable dialog box.

The Shell widget class is the supporting superclass for all shells. It handles the
basic functions of resizing and moving its child widget (a shell may only have a

3 The increased code complexity and size result from the fact that few programs can use
gadgets alone. Since widget code must therefore be present. adding the equivalent
gadgets simply means that more code is used.

10 Programming with Motif

single child; that child is responsible for any of its own children). Shell, like
Composite, is part of Xt and is therefore provided by all widget sets.

Constraint, XmManager

Both Constraint and XmManager are supporting superclasses for manager
widgets, such as XmFOmL Constraint comes from Xt; it provides basic
functionality for maintaining the position of child widgets. XmManager is defined
by Motif and provides the Motif appearance resources.

Widget Instance Tree
When a widget is created, it is created as the child of another widget (its parentj.
The parent-child relationships produced by this process form a tree structure,
known as the instance tree or management tree. The leaves of this tree are
primitive widgets, and its branches are composite widgets.

It is important to remember that the class tree and instance tree are two
different trees. The class tree is part of Motif; it specifies the way that the widget
set is implemented. The instance tree is unique to a particular program; it
specifies how widgets within the program interact.

The instance tree specifies the "chain of command" applicable to a particular
widget. A parent controls its children's position and size and may control as well
their color scheme and contents. Such controls (constraints) are applied down
each branch of the tree: an XmFonn widget near the root of the tree applies
constraints to its children, one of which might be another XmFOmL This form
then applies constraints to its children based on the constraints applied to it,
and so on down the tree.

The instance tree is closely related to the window tree of X, in which each
window is the child of another window, with the root window as the topmost
ancestor. In fact, the instance tree contains the window tree within it: a widget's
window is the child of its parent's window.

Instance trees are described in depth in the next chapter as they are a key to
understanding the aSSignment of resources and the naming of widgets.

3
Widget Resources

What Are Resources?

Resources are the interfaces between the programmer and the internal code of a
widget. They are used to specify everything trom the widget's background color
to the functions it calls in response to user input. The use of resources reflects
the OOP principle of encapsulation. or shielding the programmer from the
internals of an object.

All resources have an associated value. which is of a specific data type. Resource
values are associated with a widget instance. As a result. two widgets of the
same class can have drastically different appearances. as shown by Figure 3.1.
where six resource values differ between the two widgets.

Figure 3 .1. Two instances of a single widget. using different
resources

World

A typical widget class has dozens of resources. Some of these resources are
specific to the widget class. but many are inherited from the widget's

11

12 Programming with Motif

superclasses. In addition to resources that are defined for a widget class,
Constraint widgets define resources that are imposed on the widget's children
and appear to belong to the child's class.

Resources are identified by name, such as topShadowCol or. You must know a
resource's name to set or examine its value. By convention, these names start
with a lowercase letter, and any imbedded words start with an uppercase letter.

Resource Tables
This book describes the resources of a widget class in a tabular form, as
exampled by Table 3.l. Such tables are excerpted from the OSF / Motif
Programmer's Reference and combine resources specific to the widget class with
those of its superclass(es}. You should note that the resource tables in this book
are targeted at the novice or intermediate Motif programmer. They contain only
those resources that are commonly used. 1

Table 3.1. Excerpts from XmLabel resource list

Name Inheritance Type Default Value

background Core Pi xe 1 dynamic

height Core Dimension 0

width Core Dimension 0

labelString XmLabel XmString NULL

Name is used to identify the resource. As described below, this name is prefixed
by XmN when used in program code, and it is not prefixed when used in a
resource file.

Inheritance specifies where in the class tree the resource is defined. In this
example, one resource is defined by the XmLabel class and the others are
defined by the Core class. This column is labeled Inheritance (and not Class) so
that it will not be confused with resource class, which you will see later in this
chapter.

Type is the resource's data type. In some cases, this is a C type such as
un s i g ned. More often, because of the portability goal, it is an X-or Motif-specific
type.

Default Value is the value used for the resource if you do not explicitly set it.
This value is typically a constant, such as 0, or TRUE, or XmALIGNMENT_CENTER.
Occasionally, it is NULL, indicating that there is no default value (although this
may result in a default behavior). Another possibility is dynami c, which indicates
that the resource defaults to the value of the identically named resource of the
widget's parent.

1 Based on my usage. Your usage may differ, which is why the Programmer's Reference
remains useful.

Widget Resources 13

A Short Note on Resource Naming Conventions
As you will see in this chapter, resources and the values that apply to them may
be referenced both from within program code and from a resource file. Each
resource, and many resource values, are assigned symbolic constants in the
header file Xm/Xm. h.

Constants representing resource names are identical to those names, but are
prefixed by XmN (eg, background is XmNbackgroundj. As the resource names
themselves do not contain a prefIx, this book presents those names without
prefix. If you access such resources from within program code, you must
remember to add the prefIx; it is omitted when used in a resource file.

Constants representing resource values are prefixed with Xm and are composed
entirely of capital letters. This book follows the convention of leaving the prefix
intact: this will help to separate value names from resource names and will also
reinforce the fact that the value name is a symbolic constant representing the
actual value. When used in a resource file, the prefIx is omitted; when used in
program code, it is retained (eg, in a file, use ALIGNMENT_CENTER; in a program,
use XmALIGNMENT_CENTERj.

Resource Files
Resource files, also known as defaults files, are text files that specify initial
resource values for a program's widgets. These specifIcations override the
widgets' default resource values and are themselves overridden by any
"command line" or "hard-wired" resource specifIcations. Several layers of
resource files exist, from system-wide specifIcations for all programs to
specifIcations for a single program when run by a single user.

All resource files associated with a program are read when the program starts,
and the specifIcations in them are stored in a resource database. When a widget
is created, the database is queried for all resources associated with the widget's
name or class.

The primary benefit of resource files is that they increase the flexibility of a
program. If one user wants his word processor to use white text on a black
background, while another wants hers to use black text on a white background,
both can be satisfIed by changing two resource specifIcations. From a
programmer's viewpoint, resource files make layout easy: decide which widgets
to use, write a program that builds the instance tree, then adjust resource
settings until the display looks right.

The Naming of Widgets
Since resource files specify resources by name, it's important to know how
resources are named. And if T.S. Eliot was a Motif programmer, I'm sure he
would have written the following as a memory aid.

The Naming of Widgets is a difficult matter,
It isn't just one of your holiday games;
You may think atfirst I'm as mad as a hatter,
When I tell you, a widget has a MULTIPUCnY OF NAMES.

14 Programming with Motif

First there's the name that the progrwn uses always,
Such as LabeCI, TextWin, or Quit;
Such as MenuBar or TheButton or Save,
Reasonable names, if you think about it.

In addition, a widget has a name that's specific,
Based on its parents, and their parents too;
This name is needed, in the case that is comnwn,
When there's not one Label_I, but two.

Butfor TTWst widgets, this is too much,
It over-specifies, and takes time to say;
For these, a wildcard is enough to suffice,
And TheShell.TextWin can be *TextWin any day.

This poem contains three important facts about widgets. First, each widget has a
"given name," assigned to the widget at the time of its creation. Second, to
uniquely identify a specific widget in a specific program, you must specify all of
that widget's ancestors, including the progrwn class name; if you don't, widgets
on different branches of the instance tree may be considered equa1.2 Finally,
since many widgets may be uniquely identified by their given names, you can
often use wildcards in a name specification.

Figure 3.2 is a widget instance tree that will put this information into practice.
The root of the tree is the program's class name. This name is specified by the
programmer and is used to uniquely identify the program.3

In this example, the program class name is TheProg, and the program contains
six widgets. The topmost is Form_I, which has children Form_2, Label_I, and
Label_2. Form_2 also has children named Label_1 and Label_2.

2 As you will see in Chapter 6, in some cases specifying a widget's full name does not
uniquely identify the widget. It is possible to have two (or more) widgets that are
siblings but have the same given name - meaning that they have the same full name.
In this case, the only way to tell the widgets apart is by their IDs - the resource
manager is unable to do this, so it applies the same specifications to both widgets. This
situation is unusual, however, and will only occur due to programmer choice (or
mistake). In almost all cases, a widget may be uniquely identified by its given name and
ancestors.

3 The relationship between the program's executable name and its class name is fixed by
convention. The class name is built from the executable name, with the first letter of
each embedded word capitalized. For example, the xtenn program has the class name
XTenn.

Widget Resources 15

Figure 3.2. Instance tree for a sample program

TheProg

LabeL1 LabeL2

Listing 3.1 contains the full names of all of the widgets in this instance tree. The
full name of a widget is specified by listing all of its ancestors in order from the
program class name, using a dot (.J to separate each given name. The technical
name of this dot is a tight binding, which indicates that the relationship between
the widgets is explicitly known and is parent to child.

Listing 3.1. Full names of widgets from Figure 3.2

TheProg
TheProg.Form_l
TheProg. Form_I. Label_l
TheProg.Form_1.Label_2
TheProg.Form_1.Form_2
TheProg.Form_1.Form_2.Label_1
TheProg.Form_1.Form_2.Label_2

In many cases, there is no need to specify the widget's complete name, and for
these cases, a star (*) may be used to "wildcard" unneeded portions. The
technical term for this technique is loose binding, indicating that the relationship
between the two widgets is ambiguous. The most common use of this technique
is to wildcard the program class name in a program-specific resource file (or to
specify generic settings in a multiprogram resource file). Listing 3.2 shows
wildcarding in action.

16 Programming with Motif

Listing 3.2. Examples of wildcarded widget names for Figure
3.2

*Form_l
*Label_l
*. LabeLl
TheProg.*.Label_l
*Form_2.LabeLl

The first example specifies "all widgets with a given name of Form_I." Since
Figure 3.2 only has one Form_I, this specification is unique. However, the
program name is wildcarded, which could cause ambiguity in a file used by
several programs.

The second and third specifications do not re&ult in unique widget names, but
specify "all widgets named LabeLl, wherever they are." This could apply to
Form_I. Label_I, or it could apply to Form_I. Form_2. Label_I. Such specifications
are often used to group widgets by name.

The fourth specification is similar to the two previous, but specifies the program
class name. This approach would be used in a multiple-program resource file,
where many programs could contain a widget named Label_I.

The final example specifies the Lab e 1 _1 that is a child of For m_2. Applied to
Figure 3.2, this specification names a single widget.

Two things to note: First, a wildcard will substitute for any number of names.
This could be zero (TheProg. *. Form_l is the same as TheProg. Form_I), or there
could be many names (as in the description of *Label_I). Second, dots are not
needed on either side of the wildcard. I use them to improve readability.4

Format of a Resource Specification
How are these names used in resource files? As stated above, a resource file is
simply a text file that contains resource speCifications - usually lots of
specifications. Each specification uses the format shown in Listing 3.3.

Listing 3.3. Resource file specification format

widget_name. resource_name: resource_va 7 ue

4 This brings up another of my conventions: when a wildcarded specification identifies a
single widget, I do not use a dot-separator. Where it can affect multiple widgets, I note
that possibility by use of the separator.

Widget Resources 17

The first part of this specification, widgeCname, specifies a widget named
according to the conventions described above. The second part, resource_name,
specifies a resource name from the resource table for that widget. A dot (tight
binding) separates the widget name from the resource name. 5

The final part of the resource specification is the resource value, separated from
the widget-name/resource-name combination by a colon. This value is always
expressed in ASCII; the resource manager handles conversion to the data type of
the resource.

Any amount of whitespace (spaces and tabs) may appear between the
widget/resource name and its value. Whitespace is not permitted in the
widget/resource name; it is treated as a literal part of a value. In some cases,
sucn as strings, whites pace makes sense as part of the resource value; in others,
such as numbers, it doesn't.

Sample Resource File
Figure 3.3 is an example of how the widgets of Figure 3.2 might appear in real
life. The boundaries of the various widgets are identified by shading.

Figure 3.3. Instantiation of Figure 3.2

5 The widget name may be wildcarded, in which case the speCification applies to all
widgets with the named resource.

18 Programming with Motif

Listing 3.4 contains an excerpt of the resource file used to produce this output.
For brevity, most of the Kconstraint resources" (those that determine size and
position) are omitted. Other resources have been purposefully omitted to
illustrate default values.

Listing 3.4. Resource file responsible for Figure 3.3

!--

! Sample resource file to produce output of Figure 3.3

!--

*.foreground: Black
*.background: White

TheProg.Form_l.height: 200
TheProg.Form_l.width: 300
TheProg.Form_l.background: Gray25

*Form_2.height: 100
*Form_2.width: 300
*Form_2.background: Gray50

*XmLabel.height: 50
*XmLabel.width: 100

.Label_l.fontList: --times-medium-r-*--*-180-*

Form_l.Label_2.fontList: --times-medium-r-*--*-180-*
*Form_l.Label_l.alignment: ALIGNMENT_BEGINNING
*Form_l.Label_2.alignment: ALIGNMENT_ENO

The fIrst pair of specifications sets default foreground and background colors for
all widgets in the program. To do this, the specifications wildcard all possible
widget names and specify only the resource names.

The second group of specifications sets the size and background color of Form_I,
using an explicit specification. The third set does the same for Form_2,
wild carding the excess parts of the specification. These background color
specifications take precedence over the general specification in the first group
because they more precisely specify the affected widget. Precedence rules are
described in more detail below.

The fourth group of specifications sets the height and width of all labels in the
program by specifying the XmLabel class. This technique is described in detail
below.

Widget Resources 19

The next specification sets the font used for all labels with a given name of
Label_I. As explained above, since more than one widget fits a name
specification, both are changed.

The next three specifications set various resources of the labels that are children
of Form_I. Each specification identifies a unique label by specifying all ancestors
of that label save the program class name.

Setting Resources by Class
Each widget class has a name, such as XmLabel or XmForm You can use this
class name in a resource specification to refer to all instances of the class. This
was used in Listing 3.4 to set the height and width of all of the program's labels.

Resources are also assigned to named classes. Unlike widget classes, a resource
class has nothing to do with inheritance; it is simply a method for grouping
resources. For example, the XmCPosition class includes the x and y resources.
Appendix B identifies the class for each resource; for brevity, it is omitted from
resource tables in the rest of the book.6

Resolution of Wildcarded Widget Names
Consider Listing 3.5 when applied to the instance tree of Figure 3.2. What will
the widgets look like? The answer is that Form_I. Label_1 will have a white
background, and Form_2. Label_1 will have a black background.

Listing 3.5. Seemingly overlapped wildcarded resource
specifications

*.Label_l.background: Black
*.Form_l.Label_l.background: White

Although both name specifications can apply to Form_I. Label_I, the second is
more precise in its identification. Whenever two name specifications resolve to
the same widget, the more precise version takes precedence. As an example,
Listing 3.6 refers to the same widget in two ways. The second, however,
completely specifies the widget (whereas the first omits the application shell
name), so it takes precedence.

6 In my opinion, setting resources by resource class has limited application. In many
cases, such as when the resource class contains many members, using a class name
may have unexpected side effects.

20 Programming with Motif

Listing 3.6. Definitely overlapped wildcarded resource
specifIcations

*.Form_l.Label_l.background: Black
TheProg.Form_l.Label_l.background: White

In the event that two or more specifications are identical in precision, precedence
is given to the one read last. This is important to remember, as specifications
may appear in many resource files.

The Resource not Set
By now you may be thinking "each widget has a dozen or more resources, and
some programs use hundreds of widgets ... that means a lot of specifications I"

Fortunately, you don't need to specify values for all of a widget's resources; most
default to reasonable values. For example, a widget's color resources will default
to those of its parent. An XmLabel's label text will default to the widget's name.
Listing 3.4 made use of this fact to avoid specifying the Xm N 1 a be 1 S t r i n 9 resource
for the label widgets.

On the other hand, a widget's height, width, and pOSition default to zero. This
means that, unless you specify values for these resources, all widgets will be too
small to see (or use) and will be positioned at the top left corner ottheir parents.

Specifications that affect all the children of a manager widget go a long way
toward preventing problems, as do class-wide specifications. However, you will
probably end up writing more resource specifications than you thought possible.

Commenting the Resource File
Comments are used in a resource file for two purposes. The first is for
explanation and grouping of the resource specifications. Resource files can
become large and unwieldy very easily, unless comments are used to break
things up.

The second purpose is to temporarily "turn off" a resource specification. This is
done quite often during program development in order to test certain
combinations of resources.

Comments take two forms: blank lines and lines beginning with an exclamation
point (I). Comments always occupy the complete line; there is no way to specify
an "end-of-line" comment.

It is important to remember that an exclamation point is the only proper way to
identify a comment line. Many people use a pound sign (#), and many resource

Widget Resources 21

managers will properly handle this case. However, this technique is not specified
by the resource file format specification and is not guaranteed to work.

How Many Resource Files Could One Program. Use?
In the beginning of this chapter, it was mentioned that resource files could be
"system wide" or "application- and user-specific." Moreover, it was implied that
there are many steps between these two extremes. Understanding these steps is
the key to customizing a program's appearance and interaction.

As you will see in the next chapter, the function Xtlnitialize is the first x
specific function called by a Motif program. This function is responsible for
making a connection to the server and creating the program's application shell
widget (the root of the widget instance tree). It is also responsible for building the
program's resource database.7

The resource database is built from several sources, ranging from resource files
to command-line resource specifications. These sources are accessed in the
following order, with specifications from higher-numbered sources overriding
those from lower-numbered sources (subject to the precedence rules described
above).

1) System application-defaults file on the local host.8

This is a file in the directory / us r 11 i b/X 11 / a pp - defa ul ts, with the same
name as the program's class name.9 If such a file does not exist, this step
is ignored.

This directory typically contains the "standard settings" for finished
clients. Due to administrative protections, it is usually not available for
general use, and the files it contains may not be writable by users.

2) User application-defaults file on the local host, from XAPPLRESDI R.

This is a file with the same name as the program's class name, found in
the directory specified by the environment variable X A P P L RES D I R. If
X A P P L RES D I R is not defined, this step is ignored.

XAPPLRESDIR has two primary uses. The first is for user "personalization"
of standard clients. Each user can create a directory identified by
XAPPLRESDIR, copy the standard defaults files from /usrllib/Xll/app
de f a u 1 t s, then edit these files. Since X A P P L RES D I R is specific to a host
system, users with many hosts could make a client appear differently
when run from each host.

7 The appres program allows you to preview all of the resource specifications that apply to
a particular program.

8 Local Host refers to the host from which the client application was run. This host mayor
may not be the same host that is running the display server.

9 Although this file (and the file accessed via XAPPLRESDIR) are application-specific, the
resources they specify are not implicitly associated with the program. In other words, a
specification of *. background in a program-specific resource file will be overridden by an
identical specification from the server's resource property (step 3 above).

22 Programming with Motif

The secondary benefit of X A P P L RES D I R is for programmers: it provides an
easy way to specify where the development defaults mes exist. I specify
the current directory (". ") in order to keep the program's source and
defaults me together.

3) Server's resource property/generic user defaults me on local host.

An X display server can store a resource database that is available for all
clients using that server, regardless of their local host. This database is
loaded by running the xrdb program, which typically happens as part of
server startup (it depends on the way that you start the server).

If the server does not hold a resource database, then X tIn i t i ali z e looks
for the me . Xdefaults in the user's home directory on the local host. If
neither is found, this step is ignored.

This step is used for generic specifications, such as *background.
Although client-specific specifications could be stored in either location,
it is not recommended because server memory may be limited (and
therefore shouldn't be filled with resource specifications), and a generic
resource me will get unwieldy if mled with program-specific resources.

It is important to remember that the server's resource database is applied
to all clients, regardless of the host from which they are run. It can thus
be a convenient way to specify a common appearance for all of a user's
client's. Furthermore, it can be initialized or updated at any point using
the xrdb program.

4) Alternate user defaults me, from XENVI RONMENT.

If defined, the environment variable XENVI RONMENT specifies a defaults me
residing on the local host (in any directory). This me, like . Xdefaults, is
primarily used for general resource specifications - it describes the
user's preferred environment.

5) Command-line specifications

The final changes to a client's resource database occur when the user
specifies values on the command line. This process is described in
greater detail below.

Setting Resources from the Command Line
There are two ways to change the resource database from the command line. The
first way is to use a "standard option," such as -fg. Such options provide for
generic resource specifications, such as * for e 9 r 0 u n d. They are not used to
control specific resources.

To set a specific resource value, you must use the - x rm command-line option.
This option takes a complete resource specification, as it would appear in a
resource me, and passes it to the program. Listing 3.7 shows this technique in
use with one of the specifications from Listing 3.4.

Widget Resources 23

Listing 3.7. Example of -xnncommand-line option

theprog -xrm 'TheProg.Form_l.height: 250'

You should note that such a specification is subject to the precedence rules
above (ie. it will be overridden by a more precise specification). However. since
command-line options are loaded last. they will take precedence over equivalent
specifications from resource files. providing a simple way to handle "one-time"
changes.

Setting Resources Programmatically
While resource files provide a very flexible and effective way to set a client's
resources. there are times when they are unusable. Consider. for example. the
text editor shown in Chapter 1. To be useful. such an editor must be able to read
a file in order to edit it. However. the XmText widget treats its text as a resource.
This means that either (1) you must store the text to be edited in a resource fIle.
which is patently absurd. or (2) you must be able to set the text resource while
the program is running.

To programmatically set resources. you first use the XtSetArg macro to load an
argument array with resource name/value pairs. then use the function
X t Set Val u e s to install the new values into the widget instance.

Listing 3.8 contains the relevant definitions. First is the A r 9 data type. used for
the resource name/value array. This data type simply associates a NUL
terminated character string containing the resource name (such as background)
with a value for the resource. The X tA r 9 Val data type is a type sufficient to hold
either a pointer (used to programmatically retrieve resource values) or a 32-bit
signed integer (long).

XtSetArg is a simple macro that stores its arguments in a variable of the Arg
data type. The XtSetVal ues function performs the actual work. It takes a widget
ID. a pointer to an array of Arg values. and a count of arguments. and stores the
resource values in the widget.

The header file X m / X m • h is fIlled with definitions that associate resource names
(such as background) with constants (such as XmNbackground). Although you
could pass the resource name to XtSetArg. the convention is to use the
associated constant.

24 Programming with Motif

Listing 3.8. DefInitions for setting resources programmatically

typedef struct
{

String
XtArgVa 1
}

Arg, *ArgList;

name;
va 1 ue;

'define XtSetArg(arg, name, value) \
((arg).name = name, (arg).value=(XtArgVal)(value)

void XtSetValues(w, args, num_args)
Widget w;
ArgList args;
Cardinal num_args;

Listing 3.9 contains a program fragment wherein XtSetVal ues is used to set the
height and width of a form widget. The three lines in this fragment perform the
same function as two lines in a resource fIle. In all cases, programmatic resource
setting takes more lines of code than a resource fIle. In some cases, it requires
many more because the resource manager handles data conversion
automatically, while the program must perform it explicitly.

Widget
Arg

Listing 3.9. Example of programmatic resource setting

form_I;
argl i st[16];

XtSetArg(arglist[O], XmNheight, 200);
XtSetArg(arglist[I], XmNwidth, 300);
XtSetValues(form_I, arglist, 2);

A note on my coding technique: I explicitly reference the arguments passed to
XtSetArg. This makes changes more difficult (as they may require renumbering
the arguments), but I befieve that it improves readability. An alternative
approach, which you will flnd used in much X code, is to use an index variable
to number the arguments automatically.

Widget Resources 25

"Hard-Wiring" Resource Values
The practice of "hard-wiring" a resource value is used in cases where the
programmer believes that a resource's value is too important to be changed. For
example, the job of a customer-support person is made easier if certain options
(such as a menu chOice) cannot be changed - especially if the person with
problems did not perform the customization.

In practice, hard-wiring is similar to setting resource values during runtime.
Both use an array of Arg data, and both use the XtSetArg macro to store values
into that array. The difference is that run-time resource setting passes that array
to the XtSetVal ues function, whereas hard-wiring passes the array to the widget
creation function. Listing 3.10 shows this in action.

Widget
Arg

Listing 3.10. Setting widget resources at creation

form_I;
argl i st[l6];

XtSetArg(arglist[O], XmNheight. 200);
XtSetArg(arglist[IJ. XmNwidth. 300);
form_1 = XmCreateForm(theShell. "Form_I". arglist. 2);

At this point, I must caution you not to overuse hard-wired resources. The
flexibility of resource files is a major benefit to both program development and
maintenance, in addition to allowing user customization. Plus, setting resource
values at compile time can "bury" the actual creation statements, leading to code
that is more difficult to read and maintain. Finally, as mentioned above, many
resources require special conversion routines, which in themselves add
complexity.

Getting Resources Programmatically
The companion to setting resource values under program control is getting
resource values under program control. In nontrivial programs, you will probably
do this quite often - as an example, the aforementioned text editor needs to
retrieve the XmTextwidget's contents every time the user saves the file.

The process of getting resource values is similar to that for setting them. The
difference is that you store pointers to destination variables in the Arg array, and

26 Programming with Motif

you call the function X t Get Val u e s. prototyped in Listing 3.11. to retrieve the
values. 10

Listing 3.11. Function prototype: XtGetValues

void XtGetValues(w. args. num_args)
Widget w;
ArgList args;
Cardinal

Listing 3.12 shows this process. which is used to retrieve the height and width of
an already-created form widget. Note the use of pointers to destination variables.
which leads to the requirement that the XtArgVal data type be able to hold a
pOinter.

Widget
Arg
Dimension
Dimension

Listing 3.12. Example use of XtGetValues

form_I;
argl i st[16];
height;
width;

XtSetArg(arglist[O]. XmNheight. &height);
XtSetArg(arglist[I]. XmNwidth. &width);
XtGetValues(form_I. arglist. 2);

10 I remember the "pointer or value" difference by equating X t Set Val u e s with p r i n t f. and
XtGetVal ues with scanf.

4
Writing A Motif Program

The Widget Data Type
To this point. widgets have been treated in an abstract manner; the working
definition has been "an object that provides user-interface functionality in a
Motif program." While this is a very good description of a widget's function. it
says nothing about how a widget is actually used by a program.

The Wi dget data type provides the interface between a program's high-level code
and the internals of a widget. A variable of this data type is capable of holding a
widget ID. which is an integer value that uniquely identifies a widget. Most Motif
and Xt functions take widget IDs as arguments and return widget IDs as results.

Although program code treats widget IDs as integer values. at the level of widget
internals a widget ID is a pointer to the widget's instance data. This dichotomy is
a result of the "data hiding" ethos of object-oriented programming. and is
enforced by the design of the C language - a standard Motif program has no
way of accessing the widget's internal data. However. by knowing that a widget
ID is in fact a pointer. you can do such things as comparison with NULL to detect
a failed creation or comparison of one ID with another.

Stages in the Life of a Motif Program.
The life of a typical Motif program has four stages: Initialization. Widget Creation
and Management. Realization. and The Event Loop. Except in rare cases. these
stages occur in the order given and do not overlap.

27

28 Programming with Motif

Initialization

Initialization consists of making a connection to the display server and building
the internal resource tables from the appropriate resource fIles. There is a single
function that does this, Xtlnit; a 1; ze, prototyped in Listing 4.1.1

Listing 4.1. Function prototype: XUnitialize

Widget XtlnitializeC name. class, options, num_opts, argc, argv)
char
char
XrmOptionDescRec
Cardinal
Cardinal
char

*name;
*class;
options[];
num_opts;
*argc;
*argv[];

The name parameter is used to pass the program's executable name, which, as
you will see in Chapter 16, is used to access the program's resources. You
should always pass a r 9 v [0] in this parameter.

The c 1 ass parameter points at the program's class name. This is the name that
is used to identify resources belonging to the program, as described in Chapter
3. By convention, this name is the program's executable name, with the first
letter of each imbedded word (or abbreviated word) capitalized. For example, the
xtenn program has the class name XTe17TL

The opt; ons and opt_count parameters are used to specify additional command
line options for the resource manager. This technique is described fully in
Chapter 16; programs that don't make use of it pass NULL and 0, respectively.

The last two parameters, argc and a rgv, are the program's command-line
arguments. XtI n; t; al; ze recognizes options (such as -fg or -xrm) by examining
the arguments specified by these parameters. When it finds a recognized option,
it physically removes that argument from the argv array (and decrements argc,
which is why it is passed as a pointer). If you wish to perform additional parsing
of the command line, this should occur after X tIn; t; a 1 ; z e has performed its
work.

Widget Creation

X tIn; t; a 1 ; z e returns a widget, the application shell, which is the program's link
to the display server and window manager.2 This widget is the first widget

1 Xtlniti al i ze is used only by programs using Motif 1.0 and XllR3. If you are using
Motif 1.1 or above, you must use XtApplniti al i ze, described in Appendix D.

2 My convention is to name this widget appshell and make it a global variable for ease in
access. This book follows that convention.

Writing A Motif Program 29

created by a program, and all of the program's other widgets are in some way
descended from it - resulting in the program's instance tree.3

Widget creation is performed by a creation function, as prototyped in Listing 4.2.
Motif provides approximately 60 of these functions, one for each class of widget. 4

All such functions are named similarly, all take the same four parameters, and
all return a widget 10.

Widget

Listing 4.2. Function prototype: Generic widget creation
function

funcname(
Widget
String
ArgList
Cardinal

parent. name. arg_list. arg_cnt)
parent;
name;
arg_list;
arg_cnt;

The actual function name - such as XmCreateForm or XmCreateLabel - replaces
funcname. This name always begins with XmCreate, followed by the name of the
widget class being instantiated. Some widget classes, such as XmMessageBox,
have multiple creation functions; in such cases, each function sets different
resource values at time of creation.

The pa rent parameter specifies the widget's parent. This parameter establishes
the parent-child relationships that form the program's instance tree.

The name parameter specifies the widget's given name. As stated previously, any
number of widgets may share the same given name; the widget is identified not
only by its given name, but by its position in the instance tree.

The ar9_1ist and ar9_count parameters are used to programmatically set a
widget's resources at creation time, as described in Chapter 3. If you are not
doing this, pass NUL L and 0, respectively.

Widget Management

Once a widget is created, it must be managed. When a widget is managed, its
parent allocates space for it and makes it visible. This process is described in
detail in Chapter 6. For now, you need only know that widget management is
initiated by the program, by passing the child's 10 to either XtManageChi 1 d or
XtManageChildren.

3 One point to note is that the application shell is permitted to have only one child. The
purpose of the shell is to provide an interface between that child and the window
manager - in essence, it acts as the child's guardian.

4 The toolkit provides a generic widget creation function, XtCreateWi dget. In addition to
the parameters shown in Usting 4.2, this function includes a parameter that specifies
the widget class. This book uses Motifs class-specific functions only, but you may find
a use for the generic function (for example, to localize widget creation).

30 Programming with Motif

Both of these functions are prototyped in Listing 4.3. XtManageChi 1 d is used to
manage a single widget and takes that widget's ID as its sole parameter.
XtManageChi 1 dren manages a group of widgets, all of which must be children of
the same parent. Its first parameter, chi 1 dren, is an array of widget IDs. Its
second parameter, num_chi 1 dren, contains the number of children referenced by
that array.

Listing 4.3. Function prototypes: XtManageChild and
XtManageChildren.

void XtManageChild(w)
Widget w;

void XtManageChildren(children, num_children
Widget children[];
Cardinal num_chi 1 dren;

Widget management is not strictly a part of creation. However, convention is to
manage the widget immediately after creation in order to guarantee that the
widget actually does get managed.5 Neglecting to manage a widget is a
surprisingly common occurrence, with the result that the widget (and its
children, if any) simply do not appear as part of the program's window.

Realization

Widget creation is the process whereby the program allocates space for the
widget's internal data structures. Widget realization is the process whereby the
display server allocates a widget's window. Realization is performed by the
XtRea 1 i zeWi dget function, prototyped in Listing 4.4.

Listing 4.4. Function prototype: XtRealizeWidget

void XtRealizeWidget(w)
Widget w;

XtRea 1 i zeWi dget is usually called after all of a program's widgets have been
created. It takes the application shell widget (appshell) as an argument and
recursively realizes each widget in the instance tree.

This sequence - create all widgets then realize them in one step - is done for
efficiency, not necessity. A widget will be realized at the time of management if

5 The toolkit provides the function X t C rea t e Man age d Wid get, which combines the creation
and management operations into a single function.

Wrtting A Motif Program 31

its parent is realized. This means that you could realize appshell immediately
after creating it, and all of its descendents would be realized as they are
managed. 6 Tfie drawback to this approach is lower efficiency: realizing all
widgets in one step results in less client-server communication than realizing
each widget as it is managed.

The Event Loop

This is the stage where a program spends most of its time. The function
XtMa in Loop, prototyped in Listing 4.5, is typically the last statement in a
program's rna in function. It waits for events to occur, then passes them off to
either a programmer-defined event handler or the widget class's default event
handler.

Listing 4.5. Function prototype: XtMainLoop

void XtMainLoop()

Notice that XtMainLoop does not have any parameters. When you call this
function, you are putting your program into an event-driven state - essentially,
you are giving control of your program to XtMa in Loop. At that point, it is
assumed that the program is ready for event-driven operation, and no more
information is needed.

Widget Destruction

A normal Motif program creates some widgets, does some work, and then
terminates. At the time of program termination, all widgets created by the
program are destroyed, and their memory is returned to the free pool.

Some programs, however, have a need to destroy widgets while the program is
running. An example would be a multiwindow text editor: when the user is
finished with a window, then the widgets for that window should be destroyed
and the memory they used recovered. 7

The function XtDestroyWi dget, prototyped in Listing 4.6, is used to destroy a
widget before program termination. It takes a single parameter, the widget's ID.
Note that, if the passed widget is a manager, all of its children are destroyed at
the same time.

6 Why is this important? It means that you can create widgets while your program is
running (after the realization step), and they will be realized automatically. I made use
of this in a scheduling program: each step in the schedule was assigned to a
pushbutton, which could be pressed to provide more information about that step. Step
information was stored in a data file, which was read while the program was running
and used to create the widgets.

7 In the real world, this desire is blunted by widget implementation - many widgets do
not release all of the memory or other resources that they have allocated. As Motif (and
Xt) become more mature, these "memory leak" bugs will be eliminated.

32 Programming with Motif

Listing 4.6. Function prototype: XtDestroyWidget

void XtDestroyWidget(w)
Widget w;

A Program Template
Listing 4.7 contains a template for Motif programs. containing the steps
described above. Although this template can be compiled (see A Short Note About
Progrwn Size. below). it is not runnable. 8

Listing 4.7. Motif program template

1***

**
**
**
**
**
**

listinLL7.c

This program is a generic template, containing the layout of a
normal Motif program.

**
**
**
**
**
**

***/

#include <Xm/Xm.h> /* Standard Motif definitions */

Wi dget appshell; /* Application Shell */

void main(argc, argv)

8 If you do try to run this program. you will get the error message "X Toolkit Error: Shell
widget a.out has zero width and/or height". This message does not occur because the
application shell needs to have its width and height specified in a resource fIle. Instead.
it occurs because a shell widget determines its height and width from its child - in
other words. a shell must have a child.

Writing A Motif Program 33

Listing 4.7. Continued.

int argc;
char *argv[];

appshell = Xtlnitialize(argv[O], "Listing_4_7", NULL, 0,
&argc, argv);

/*** Creation/Management of instance tree goes here ***/

XtRealizeWidget(appshell);
XtMainLoop();

Note that this program makes use of the header me x m I X m • h. This me contains
common Motif defmitions, ranging from data types to symbolic constants. More
importantly to the sample program, it loads the me x 11 I In t r ins i c . h, which
contains the function prototype for X tIn i t i ali z e. A typical Motif program does
not access Xm/Xm. h directly, but accesses it indirectly via widget-specific header
mes (described below).

The main function is the same as for any C program. The argc parameter
contains a count of the number of command-line arguments, and the a rgv
parameter is an array containing pointers to these arguments.

As stated above, XtIni ti al i ze is the first function called by the program. Note
that " ListinlL 4_7" is the program name, transformed by the crass name
conventions. Note also that a rgc is passed as a pointer - again, this is required
so that recognized command -line options may be physicalry removed from the
argument list in a rgv.

A normal program would create its widgets after the call to X tIn i t i ali z e. Once
its widgets were created, it would call Xt Rea 1 i zeWi dget to assign windows and
then call X tMa i n La a p. At that point, user/program interaction would be handled
by the widgets.

Header Files
In order to have access to the symbolic constants, data types, and functions
provided by Motif, a program must make use of one or more header files. Each
widget class has its own header me, listed in Table 4.1. In addition to class
specific definitions, these files provide access to the common Motif and Xt
definitions. 9

9 Class-specific mes /Ii ncl ude the common file Xm/Xm. h, which in turn /Ii ncl ude's the
common toolkit file Xlliintri ns i c. h.

34 Programming with Motif

The header files from Table 4.1 are found in the directory lusr/include/Xm.
Header files for Xlib and the toolkit (Xl) are found in Ius r lin c 1 ud e I XII.

If you look in the Motif header directory, you will see many files in addition to
those listed in Table 4.1. Most have names similar to those listed, but which end
with "P", or "G", or "GP". Filenames ending with "P" are the "private" header files
for the widget class; they contain data definitions internal to the widget class.
Those files ending with "G" are for gadgets; most primitive widgets (those derived
from XmPrimitive) have an equivalent gadget. Those files ending in "GP" are the
private header files for the gadgets.

Table 4.1. Motif header files

Widget Class I Contents Header File

Common definitions Xm.h

XmArrowButton ArrowB.h

XmBulletinBoard BulletinB.h

XmCascadeButton CascadeB.h
XmConunand Command.h

Clipboard interface CutPaste.h

XmDialogShell DialogS.h

XmDrawingArea DrawingA.h

XmDrawnButton DrawnB.h

XmFileSelectiDnBox FileSB.h

XmForm Form.h

XmFTame Frame.h

XmLa.bel Label. h

XmList List. h

XmMainWindow MainW.h

XmMenuShell MenuShell.h

XmMessageBox MessageB.h

XmPanedWindow PanedW.h

XmPushButton PushB.h

XmRowColumn RowColumn.h

xmScale Scale.h

Writing A Motif Program 35

Table 4.1. Continued.

XmScrollBar ScrollBar.h
XmScroUedWindow ScrolledW.h

XmSe/ectionBox SelectioB.h

XmSeparator Separator.h

XmText Text. h

XmTogg/eButton ToggleB.h

Compilation of a Motif Program
Compilation of a Motifyrogram differs from compilation of a non-Motif program
in that you must specity Motif- and X-specific libraries for linking. Depending on
your system, the specific libraries may vary; Listing 4.8 shows three sample
compilation lines. If none of these command lines work for you, you will need to
contact your system administrator or vendor to learn the proper compiler
invocation.

Listing 4.8. Sample compiler invocations for Motif programs

cc sourcename.c -lXm -lXt -lXll -0 progname

cc sourcename.c -lXm -lXtm -lXll -0 progname

CC sourcename.c -lXm -lXt -lXll -lPW -0 progname

The first example is for a "perfect system." It specifies the Motif library (Xm), the
toolkit library (Xt), and the Xlib library (Xll). For most systems, this command is
sufficient to compile and link a Motif program.

The second variant is specific to Motif as supplied by Integrated Computer
Solutions (ICS) for systems that do not come with Motif. Because Motif requires
changes to the intrinsics, ICS provides Xtm ("Xt for Motif'), which is installed
alongside the standard X t. 10 This allows non-Motif programs to compile and link
normally (using the standard Xt library). 11

10 Sites that use IeS Motif for all program development (to the exclusion of other widget
sets such as Athena) might replace the distributed Xt with Xtm. In this case, the "perfect
system" command will work. Ask your system administrator for details.

11 The primary changes are to the Core widget class. The R3 toolkit does not derive Core
from Object and RectObj; that derivation is specific to Motif. The Xtm library contains
this dertvation, as well as the WindowObj class, and some other Motif-specific changes.
Vendors (such as Hewlett Packard) that supply Motif as an integral part of their X
distribution will make these changes to the distrtbuted Xt.

36 Programming with Motif

The third variant includes the Programmer's Workbench library (PW). This library
contains regular expression code; it is only needed for System-V-based systems
and then only when you are using XmFileSelectionBox, which is described in
Chapter 13. If you are using a BSD-derived system (such as Ultrix), the contents
of this library are part of the standard C library.

The order of library specifications is important because the C compiler will
search libraries in the order specified. As shown in Figure 2.2, Motif relies upon
the X toolkit, which in turn relies upon Xlib. Failure to specify these libraries in
the proper order will result in compilation errors.

A Short Note About Program. Size
It is an axiom of programming that program efficiency and programming ease do
not mix. This is often seen wilen using a "fourth-generation language" to access
a database and finding that it executes more slowly than an equivalent C
program. In the world of Motif, execution speed is rarely a factor (after all, your
programs are simply reacting to events). On the other hand, program size is a
concern.

Listing 4.9 contains a directory listing showing the source fIle from Listing 4.7,
along with the executable file produced from it. All numbers are in bytes, the
fifth column contains the file size, and the number associated with a . 0 u t is not
a typographical error - this source fIle, which contains three executable lines,
generated an executable file of over 300 kilobytes.

total 686
-rwxr-xr-x
-rw-r--r--

Listing 4.9. Directory listing showing sample program of
Listing 4.7, specifically, source and executabfe sizes.

kdg
kdg

users
users

347050 Mar 24 18:57 a.out
951 Mar 24 18:56 listing.4.7.c

To understand the· size of this executable, you must gain an intuitive feel for
Figures 2.1 and 2.2. The application shell (class ApplicationShell) is derived from
the Shell class, which Figure 2.1 shows to be derived from four other classes. Not
coincidentally, these five classes provide much of the functionality implied by
Figure 2.2.

The result is that the program in Listing 4.7 is perhaps the worst example of
program size vs. complexity to be found in the Motif environment (the "Hello
World" program in the next chapter isn't much better). Fortunately, program
complexity grows at a much greater rate than executable size. Each widget class
adds to program size, but the process of derivation means that this added size is
less than wllat would be produced by adding the functionality "from scratch."

The benefit of Motif comes from reduced programmer time since most of the
"hard work" is already done. For example, the text editor shown in Figure 1.1
(and developed in Chapters 11-14) represents hundreds of hours of programmer
time. However, only a few of those hours were mine; the rest were from the Open

Writing A Motif Program 37

Software Foundation. This implementation time represents a single fIxed cost -
the price of a Motif license. Programmers can build complex applications using
widgets without incurring the costs of writing low-level widget code.

What About Standard I/O?

A typical C program uses the standard I/O facility - standard input, standard
output, and standard error - for user interaction. Standard input is used with
the scanf and gets functions; standard output is used with pri ntf and puts
functions; standard error is accessed via fpri ntf or special-purpose functions
such as perror. These three "files" nominally access the user's terminal.
However, they can be "redirected" to any openable character-stream source or
destination - be it a terminal, a fIle, a TCP socket, or / d e v / null.

Although an X client uses its window as the primary means of user interaction,
the standard I/O facility is still available. In fact, the X (and Motif) libraries use
standard error for reporting runtime errors. However, exactly what the standard
fIles are connected to may be a mystery.

If the client is run from a terminal session (such as xterm), then the standard
fIles access that session. This can be quite useful during debugging - as p r i n t f
always has been. Be aware, however, that if you run the client in the
background (as most clients are), the program will stop if you attempt to use
standard input, and wait for the user to bring it to the foreground.

The mystery comes when you run a program from somewhere other than a
terminal session, such as the Motif system menu. In this case, standard output
and standard error go to the "console" terminal session - an xterm started with
the -C argument. Standard input in this case is redirected to / d e v / null, which
means that you lose the use of it.

5
XmLabel

Overview
The XmLabel class provides a basic mechanism for display of static text and
pictures. This mechanism consists of a window and resources that specify the
contents of that window. XmLabel is also used as the superclass of the various
button widgets, which are described in future chapters.

X~IInheritance

XmLabel has a relatively short class tree, shown in Figure 5.1. Core provides the
basic window functionality, XmPrimitive prOvides appearance details, and
XmLabel provides facilities for text or pixmap display.

Figure 5.1. XmLabel class tree

39

40 Programming with Motif

XmLabel Resources

Of the more than 50 resources provided by Core, XmPrimitive, and XmLabel, I
have found those listed in Table 5.1 to be most often used.

Table 5.1. Frequently used resources: XmLabel

Name Inheritance Type Default Value

alignment XmLabel unsigned char XmALIGNMENT_CENTER

fontList XmLabel XmFontL i st "Fixed"

labelPixmap XmLabel Pixmap XmUNSPECIFIED - PIXMAP

labelString XmLabel XmString dynamic

labelType XmLabel unsigned char XmSTRING

recomputeSize XmLabel Boolean TRUE

string XmLabel XmString XmSTRING - DIRECTION L - -
Direction Direction TO_R

foreground XmPrimitive Pixel dynamic

unitType XmPrimitive unsigned char XmPIXELS

background Core Pi xe 1 dynamic

height Core Dimension 0

width Core Dimension 0

x Core Pos it ion 0

y Core Position 0

Usage: labelType

The XmLabel class is capable of displaying two types of labels: text and picture.
The 1 abel Type resource is used to identify which type of data a specific label
instance handles. The two legal values for this resource are XmSTRI NG and
XmPIXMAP, and the default is XmSTRING.

Size and Position: height, width, x, y

The size and position of the widget are specified by the resources he i g h t, wid t h,
x, and y, which are part of the Core class. The values associated with these
resources are typically set by the widget's parent, based on the widget's
constraints and the value of its recomputeSi ze resource. l

1 Constraints are described in Chapter 6.

XmLabel 41

The Dimension and Position data types are unit-independent and hold integer
values (Di mens i on is equivalent to uns i gned, Pos it i on is equivalent to i nt). These
types are unit-independent in that the internal representation of a widget's size
and position may differ from the external representation, depending on the
contents of the unitType resource.

Measurement Control: unitType

Internally, a widget's size and position are stored in terms of screen pixels. This
means that a widget with a wi dth value of 100 will be 1 inch wide on a 100 dpi
screen, but only 3.4 inches wide on a 75 dpi screen. The uni tType resource allows
a program to avoid size discrepancies by providing an external representation of
this data that is not tied to the characteristics of the display.

A complete description of unitType will be deferred until Chapter 6, as it is a
topic that is closely related to management. For the present, the default unit of
screen pixels is sufficient.

Geometry Control: recomputeSize

This resource controls whether or not the widget will change its size to guarantee
that its contents are fully exposed. If the value of recomputeSi ze is TRUE, the
widget will calculate the minimum size sufficient to fully display its contents and
will not permit its actual size to drop below that minimum. If its value is FALSE,
the actual size of the widget may drop below the minimum, with the result that
part of the widget's label may be obscured.

Although this resource may seem innocuous, its effects are anything but. If a
program attempts to change the size of a label. and that new size is less than the
minimum, the change will be ignored - or half-executed (eg, hei ght changes but
wi dth doesn't). Since recomputeSi ze defaults to TRUE, many people run into
problems from this effect. 2

Color Specification: foreground, background

The background color, specified by background, is the color of the widget's
window. The foreground color, specified by foreground, is the color 01 the
widget's text. If you do not specify values for these resources, the widget will
default to the colors used by its parent.

Contents: labelPixmap, labelString, fontList

Pixmap labels use the 1 abel Pi xmap resource to specify the pixmap displayed by
the label. This resource is described in detail in Using XmLabel with Pictures,
below.

2 I first learned about this effect when writing the scheduling program mentioned in
Chapter 4. Several hours were lost while I tried to detennlne why certain labels did not
conform to the sizes dictated by the schedule data. Subsequently, I have heard similar
questions from numerous Motif programmers.

42 Programming with Motif

Text labels use the 1 abel Str; ng resource to specifY the text displayed by the
label. This resource is a compound string. as described in Compound Strings.
below. The default value for this resource is the widget's given name (eg.
"Label_I ").

The font used to display this text is described by the fontL; st resource. the use
of which is described in Setting a Label's Font. below. The default value for this
resource is the "fIxed" font. which is an installation-dependent monospaced font.

Text Format: alignment, strtngDirection

The a 1 ; 9 n me n t and s t r ; n 9 D; r e e t ; 0 n resources determine the way that the label
text is justified within the label's window. Possible values are
XmALIGNMENT_BEGINNING. XmALIGNMENT_CENTER. and XmALIGNMENT_END. The actual
appearance of the label depends on its string direction: for left-to-right labels.
XmALIGNMENT_BEGINNING results in left-alignment. while XmALIGNMENLEND results
in right -alignment.

The s t r; n 9 D; r e e t ; 0 n resource specifIes whether the label string is drawn left -to
right or right-to-Ieft. Its value may be XmSTRING_DIRECTION_L_TO_R for a left-to
right string or XmSTRI NG_D I RECTI ON_R_ TO_L for a right-to-Ieft string. The default
orientation is left-to-right.

You should note that the compound string used for a textual label also contains
information about the direction in which it should be drawn. This imbedded
information takes precedence over that specifIed by the str; ngD; reet; on
resource. As a result. s tr; ngD; reet; on becomes useless when a label's string is
set from the resource file: the resource manager defaults to strings that are
explicitly left-to-right.

Using XmLabel: "Hello, World!"
"Hello. World'" is traditionally the first program one writes when one is
confronted by a new environment. It provides the programmer with a "quick and
dirty" way to see something work. It happens to be the perfect use for an
XmLabel widget. and the output of such a program is shown in Figure 5.2 .

Figure 5.2 . "Hello. World'" usingXmLabel

Hello, !.lor Id!

XmLabel 43

The program that produced this output and its resource file are shown in Listing
5.1. This program is simply an adaptation of the template from Listing 4.6. with
the sole addition being the creation of a label widget. Note that the resource file
specifies the label's height. width. and contents; all other resources take on
default values.3

Listing 5.1. Program and resource file: "Hello. World"

1***

** **
** listin9-5_1.c **
** **
** "Hello World" for Motif. This program demonstrates use of the **
** XmLabel class for displaying text. **
** **
***/

#include <Xm/Label.h>

Widget appshell,
the_l abel;

void main(argc, argv
int argc;
char *argv[];

1* Definitions for XmLabel
(includes Xm.hl

1* Application Shell
1* The one and only label

appshell = Xtlnitialize(argv[DJ. "Listing_5_1", NULL, 0,
&argc. argv l;

the_label = XmCreateLabel(appshell. "TheLabel", NULL, 0 l;
XtManageChild(the_label l;

XtRealizeWidget(appshell l;
XtMai nLoop(l;

*1
*1
*1

3 In particular. foreground and background take on default values. As the label does not
have a parent from which to acquire these values. they come from defaults compiled
into the toolkit - on my system. black for foreground and light blue for background.

44 Programming with Motif

Listing 5.1. Continued.

Re s ource file to produ ce Figure 5. 2

*The La be 1 . hei ght: 50
*TheLabel . width : 100
*TheLabel . labelString : Hello, World!

Setting a Label's Font
Figure 5.2 contained a label using the default "fixed" font. Compare it with
Figure 5.3. which uses l4pt Times Roman. This change was effected via the
label's f 0 n tL i s t resource.

Figure 5.3. "Hello. World" using a different font

Hello) World!

Fonts Then and Now

One of the advances of XII Release 3 was the addition of font families. In
Release 2 and before. fonts had simple names like vg-25 or sans12. The fonts
you had depended on the server you were using: some simply used the MIT
fonts. some used a subset. and some used a superset (due to programmers
stepping into font design) .

For Release 3. several font vendors. including Adobe and Bitstream. prOvided the
X Consortium with families of fonts . such as Courier. Times. and Helvetica.
These families contain sizes ranging from 8 to 24 point. along with various styles
such as boldface and italic (in addition to the roman. or upright. style) .

XmLabel 45

The old fonts are still supported by many servers, and you can continue to use
them.4 The new fonts, however, are significantly more portable. Moreover, this
portability is not limited to the X world: the new fonts are well-known designs
from the world of printing.

Name That Font

Under the old method, fonts were individual entities, not members of families. To
use a larger size or different style of a particular font, you specified a different
name (eg, fg-40 is a larger version offg-30). If the larger size or different style did
not exist, you either did without or implemented it yourself.

For Release 3, the X Logical Font Description Conventions manual presented a
new method of identifying fonts. Under this method, a font is specified by its
family, size, and characteristics, as shown in Listing 5.2.5

Listing 5.2. XII Release 3 font specification format

-foundry-fami7y-weight-s7ant-set_width--pixe7s-points
hres-vres-spacing-avg_width-char_set

Although this specification appears intimidating, most of it can be wildcarded
away, using a star (*) to replace unneeded fields. The specification is extensive in
order to minimize the possibility of yet another standard at some point in the
future.

It is important to note the use of dashes in the specification. Each field is
delimited by a dash, meaning that no field may have an imbedded dash except
char_set, which is the last field. The seCwidth and pixels field are separated by
two dashes.

The foundry field specifies the creator of the font. Examples are ado b e,
bi tstream, dec, and mi sc (which is used for the old-style fonts). This field is only
needed in the case where two foundries produce the same font; it is usually
wildcarded.

The family field specifies the font family; it is one field that is never wildcarded.
As of Release 3, supported families were charter, courier, helvetica, new
centu ry schoolbook, symbo 1, and times. Release 4 added 1 uci da, 1 uci da bri ght,
and 1 uci da typewri ter, but the list is subject to change, depending on your
vendor. Your server may include families not shown here, or it may not contain
all of those shown (although the list given is fairly representative).

The weight field specifies whether the font should be boldfaced or not. Boldfaced
fonts are specified with a weight of bol d, otherwise medi um is used. At some point
in the future, other weights may be provided (such as light or semibold). You
should always specify a value for this field.

4 To see the fonts supported by your server, run the program xl sfonts.
5 This specification is shown on two lines, due to the space available. It is actually a

single line.

46 Programming with Motif

The slant field detennines another stylistic modification to the font. To use the
nonnal, upright version of the font, use the value r (for Roman). For a true italic
font, use the value i. For an oblique style (simply slanting the Roman
characters), use the value o. Fonts tend to have either an oblique or an italic
fonn, but not both; as a result, you should know which style is supported by
your desired font and use it (ie, you should not wildcard this field).

The seCwidth field describes the track kerning of the font: whether the
characters are set closely together, normally, or widely. Although the font
specification supports the values condensed, na rrow, norma 1, and doubl e wi dth,
all current fonts use norma 1 . As a result, this field may be wildcarded.

The pixels field contains the height of the font in tenns of the pixel size of your
display. The older fonts used this method to specifY size (ie, 19-40 meant that
font height was 40 pixels). Since the actual size of the font will depend on your
display, this field is nonportable and should be wildcarded.

The points field also specifies the height of the font. It does so in tenns of point
size, commonly used in the world of printing. One point is equal to 1/72 inch, so
a 12-point font has a 1/6-inch character box. In the font specification, you
multiply the point size by 10, so that a 12-point font would have a points value
of 120. Commonly supported points values are 80, 100, 120, 140, 180, and 240
(corresponding to point sizes of 8, 10, 12, 14, 18, and 24). If your server is
unable to find the specified size, it simply ignores the font specification (and you
get the default "fixed" font).6

You should use either the pixels field or the points field, not both. Since point
size is inherently more portable (as the design of your display does not influence
it), it is the preferred approach. On the other hand, if you specifY all sizes in
tenns of pixels (a bad practice), you will want to use the pixels field.

At this point, all of the "important" fields have been discussed. The fields below
are usually wildcarded, as they provide more infonnation than the server really
needs. For completeness, however, here they are.

The hres and vres fields specifY the characteristics of the display in pixels per
inch. The horizontal resolution is specified by hres, the vertical by vres. Since
your display server should know its own resolution, specifYing values for these
fields is more than a bit redundant.

The spacing field contains m to specifY a monospaced font or p to specifY a
proportional (variable width) font. Font spacing is an inherent part of the font
design (eg, Courier is monospaced, Times is proportional), so this field is also
redundant.

The avg_width field contains the average width, in tenths of a pixel, of all
characters in the font. It is possible that you will have a reason to use this field:
consider the case of a fixed-size entry field, where you want to pick a font that
will "fit" in that field. You could specifY the font by wild carding the point size (or
all other fields, if you don't care what you get), and specifYing a predetennined
avg_width value (eg, a 100 pixel field should be able to hold 10 characters with
an average width of 10 pixels).

6 XII Release 5 includes scalable fonts, courtesy of Bitstream. A server that supports
these fonts will be able to produce a font of any point size from data describing the
shapes of that font's characters.

XmLabel 47

Finally, the char_set field describes the method used to translate numeric
character values into actual characters. The International Standards
Organization (ISO) has specified several such translation tables: for English
speaking countries, the set is ISO Latin 1, a superset of ASCII . This character
set is specified by the value i s 088 5 9 -1. Wildcarding this field indicates the
default character set, which fits well with strings created using XmSTRI NG
DEFAUL T_CHARSET.

Putting Font Specifications to Work

To specify the 14pt Times font used in Figure 5.3, add the contents of Listing 5.3
to the resource file . Notice that the only non-wildcarded fields are family, weight,
slant, and point size. In most cases, these are the only fields that you will need to
specify. Notice also that all fields to the right of pOints are wild carded with a
single wildcard character.

Listing 5.3. Resource specification used to change font for
Figure 5.3

TheLabel.fontList: - -times-medium-r -* --*-140-*

Giving fontList a List of Fonts

In many applications, fantL i st is specified as above: a single font specification,
which mayor may not be associated with a single widget. However, there may
come a time when you will want a single widget to use multiple fonts, as in
Figure 5.4. This ability is present because the fantL i st resource, as its name
implies, can specify a list of fonts, associating each font with a program-usable
name.

Figure 5.4. Multiple fonts in one widget

Hello
World!

48 Programming with Motif

To produce this output, you must do two things. The first is to specify multiple
fonts for fantL i st, using the format of Listing 5.4. The second thing is to set the
label's 1 abel Stri ng resource programmatically, as described below.

Listing 5.4. Specifying multiple fonts in a singlefontList

widget_name.fontList: fontl=charsetl, font2=charset2, ...

In this specification, the fonts - fontl, font2, and so on - are standard font
specifications, as described above. The character sets - charsetl and charset2
in the listing - are programmer-defined names, which are used by program code
when the label's string is created. These names may consist of any number of
characters, but may not contain embedded whitespace.

Fonts are assigned to character sets with an equals sign (=); the font
specification, equals sign, and character set name must be run together, without
whitespace. Individual specifications are separated by commas; any amount of
whitespace may appear between such specifications. If a font specification is
presented without an associated character-set name (and equals sign), it is
associated with the default character set; only one such specification may be
present.

Due to the line-length limitations of a resource file, it may be necessaxy to break
specifications into multiple lines. This is done by placing a backslash (\) at the
end of all nonterminallines. The resource manager, when it reads such lines,
concatenates them until a terminal line is read.

The XmString Data Type
Motif is meant to be a universal user interface and, as a result, has several
features that make internationalization simpler. The compound string,
represented by the XmStri ng data type, is one of these features. A compound
string contains textual data, along with information about the character set used
for that text and the direction (left-to-right or right-to-Ieft) in which the text
should be displayed. A compound string may contain a single text segment, or it
may contain many different segments, each with different instructions. 7

The primaxy usage of the XmS t r i n 9 data type is as the label string for widgets of
the XmLabel class and its subclasses. Its capabilities are largely underutilized in
this role, but it provides the flexibility needed for easy internationalization,
especially where fonts are concerned.

7 Do not confuse 'compound string' with 'compound text' .The former is a creation of OSF
and is used for most output-bound strings in Motif. The latter is a creation of the X
consortium and was designed for data interchange between applications. In actuality,
they are almost identical in content.

XmLabel 49

It is important to remember that the X mS t r i n 9 data type is distinct from the
String data type and the XmSTRING constant. The former, which is simply a
redefinition of char *, is used by the XmText widget and is one of the data
definitions supplied by the X toolkit. The XmSTRI NG constant is specific to the
1 a be lType resource of the XmLabel class; it specifies that the label is textual in
nature.

Internal Structure oj a Compound String

A compound string is made up of individual data segments, as shown by Figure
5.5. Some segments provide contextual information, such as the current
character set, while others contain data - the string to be displayed. The
number of segments in a string is limited only by the computer's addressing
ability. The simplest string has two segments (character set and text), while an
irrationally complex string could have hundreds.

Note that character set and directional information is not associated with a
single text segment, but represents state information. The string is processed
from start to nnish, regardless of the direction of its text, and directional and
character-set specifications remain in effect until explicitly changed.

Figure 5.5. Compound string

Direction CharSet Text

LtoR is08859-1 Hell 0, World

Common XmString Functions

The Programmer's Reference specifies over 30 functions for XmStri ng
manipulation, but a typical program uses only the five prototyped in Listing 5.5.
These five are declared in Xm/Xm. h along with declarations for the other XmStri ng
functions.

50 Programming with Motif

XmString

XmString

void

XmString

Boolean

Listing 5.5. Prototypes of five commonly used xmString
functions

XmStringCreate(text. charset
char *text;
XmStringCharSet charset;

XmStringCreateLtoR(text. charset)
char *text;
XmStringCharSet charset;

XmStringFree(string)
XmString string;

XmStringConcat(string!. string2)
XmString string!;
XmString string2;

XmStringGetLtoR(string. charset. text)
XmString string;
XmStringCharSet charset;
cha r **text;

The functions XmStringCreate and XmStringCreateLtoR both create an XmString
from a normal C string. 8 The first creates a string that contains segments for
character set and text, whereas the second creates segments for character set,
text, and direction (which defaults to left-to-right). In addition,
XmStri ngCreateLtoR can accept strings with imbedded newlines ('\n'); it properly
converts them to multiple-segment strings.

The e h a r 5 et parameter specifies the character set to use for the created string.
You can specify the default character set for your installation (ISO Latin 1 for the
United States) by passing the constant XmSTRING_DEFAULT_CHARSET.9 Other
character sets are identified by NUL-terminated strings defined by the
programmer and associated with fonts via the fontL i 5t resource.

The XmSt ri ng creation functions allocate memory (using ma 11 oe) for the created
string. This memory should be freed when it is no longer needed, which is why
the function XmStri ngFree exists. It takes a string pointer as an argument and
simply calls free on the memory represented by that pointer.

8 Motif Re1ease 1.1 contains an additional function, XmStri ngCreateSimpl e, which
converts a C string to an XmStri ng, using the default character set. If you are working
on a Release 1.1 system, I recommend that you use this function in preference to
XmStri ngCreate.

9 Appendix A contains a chart of ISO Latin 1 characters.

XmLabel 51

The XmStri ngConcat function concatenates two strings, allocates space for the
result, and returns a pointer to that result. This function is useful if you need to
use two character sets in a string: you can create each component with the
appropriate character set, then concatenate them for output. If you use this
technique, remember to call XmStri ngFree on the source strings.

XmStringGetLtoR retrieves a text segment from an XmStri ng. The first two
parameters specify the string and the desired character set. If the function can
find a text segment using that character set, it will allocate memory for the
segment (using ma 11 oc), store the segment's text in the allocated memory as a C
string, and return a pointer to that string via the text parameter. Its return
value will be TRUE if able to do all that, FALSE otherwise. You should remember to
use f r e e if you wish to discard the returned C string.

One obvious limitation of XmSt ri ngGetL toR is that it can only retrieve the first
segment of a mUltiple-segment string. For multiple-segment strings, you must
use the function XmStri ngGetNextSegment, not shown here. Most applications,
however, use strings with a single text segment.

Setting labelString Programmatically
To demonstrate use of the X m S t r i n 9 data type, Listing 5.6 contains a
modification of the "Hello World" program that sets the label's string
programmatically.l0 While this program is quite simple - it creates a widget,
creates a string, and stores the string into the widget - it uses several of the
functions described above.

Listing 5.6. "Hello, World" that sets label string
programmatically

1***

** **
** listing_5_6.c **
** **
** This program demonstrates programmatic setting of an XmLabel's **
** labelString resource. Along the way, it demonstrates use of the **
** XmString data type. **
** **
***/

10 Installing the new label string could also be done at the time it's created, as described
under Hard Wiring Resource Values in Chapter 3. I chose the two-step process for
illustrative purposes.

52 Programming with Motif

Listing 5.6. Continued.

#include <Xm/Label.h> /* Defi nit ions for XmLabel
(includes Xm.h)

Widget appshell. /* Appl i cati on Shell
the_l abel; /* The one and only label

Arg arglist[16]; /* Used to store label
XmString strl, /* Strings for the label

str2,
the_string;

void main(argc, argv
int argc;
char *argv[];

appshell = Xtlnitialize(argv[O], "Listing_5_6", NULL, 0,
&a rgc, a rgv);

the_label = XmCreateLabel(appshell, "TheLabel", NULL. 0);
XtManageChild(the_label);

strl = XmStringCreateLtoR("Hello\n". XmSTRING_DEFAULLCHARSET);
str2 = XmStringCreate("World!". "CharSetl");
the_string = XmStringConcat(strl. str2);
XmStringFree(strl);
XmStringFree(str2);
XtSetArg(arglist[O]. XmNlabelString, the_string);
XtSetValues(the_label. arglist. 1);
XmStringFree(the_string);

XtRealizeWidget(appshell);
XtMainLoop() ;

Resource file for "Hello. World" with programmatic label setting

*/

*/
*/
*/
*/

Listing 5.6. Continued.

50
100
FALSE

XmLabel 53

*TheLabel.height:
*TheLabel.width:
*TheLabel.recomputeSize:
TheLabel.fontList: --times-medium-r-*--*-240-*, \

-*-helvetica-medium-r-*--*-240-*=CharSet1

Instead of creating the string in one step, I decided to do a two-step creation and
use different fonts for the two segments. The first segment was created with
XmStri ngCreateLtoR, because it contains an embedded newline. As the second
did not, it was created with XmStri ngCreate. To join the two halves, I called
XmStringConcat and then called XmStringFree to deallocate the component
strings.

One reason for creating the label string in two pieces was the use of two
character sets. The first piece uses the default character set, represented by the
XmSTRING_DEFAULT_CHARSET constant; the second string uses a named character
set. Both the default character set and the named character set are associated
with fonts in the resource file; the details are described below, under Setting a
Label's Font.

One noteworthy feature of this program is that it illustrates the recomputeSi ze
"problem": although the label's size is specified in the resource file, this
specification is only valid until the new string is loaded. 11 At that time, the label
recomputes its size to accommodate its new string - and the new size happens
to be smaller than the desired size. To avoid this problem, you must expliCitly set
recomputeSi ze to FALSE.

Using XmLabel with Pictures
In addition to displaying textual labels, an XmLabel widget is capable of
displaying graphical labels. This capability is useful for icons, especially in the
case of buttons. As an example, Figure 5.6 shows a pixmap label displaying the
X logo.

11 Remember, if a labelis created without an explicit value for 1 abel Stri ng, it defaults to
its given name.

54 Programming with Motif

Figure 5.6. Sample pixmap label

This example was produced using the program of Listin~ 5.1, along with the
resource file of Listing 5.7. The label's height and width were changed to
accommodate the logo (which is a 64 x 64 bitmap). but the only real changes
were the addition of 1 abelType and 1 abel Pi xmap specifications and the removal of
the 1 abe 1 S t r i n 9 specification.

Listing 5.7. Resource file used to produce Figure 5.6

Resource file to produce Figure 5.6

*TheLabel . hei ght: 100
*TheLabel.width: 100

*TheLabel.labelType: PIXMAP
*TheLabel .1 abel Pi xmap: xlog064

The 1 abel Pi xmap resource requires some explanation. This resource is specified
in a resource file as a filename. If the file is fully identified (ie, with path
information), then it is loaded. If, however, just the filename is specified, then
the resource manager looks for a file in one of the following directories, in the
order given: 12

1) I us r I 1 i b/X 11 I lang/ bi tma ps I image_name/ class_name

2) Ius r /l i bl X 11 /lang/ bi tmaps I image_name

12 In the Programmer's Reference, this sequence is documented under XmGetPi xmap(3X).

XmLabel 55

3} /usr/lib/Xll/bitmaps/bnage_nomne

4} /usr/include/Xll/bitmaps/bnage_nomne

In the above list. lang represents the contents of the LANG environment variable.
bnage_name is the filename specified for the resource. and class_name is the
class name of the program. In Listing 5.7. /usr/i ncl ude/Xll/bi tmaps/xl og064.
was the expanded name of the bitmap file. 13

One caveat about this resource: its name is misleading. Although the name
indicates that the resource is a pixmap. under Motif 1.0 the image must be a
bitmap.14 If you attempt to specify a multicolor pixmap. you will get nothing (the
label's contents will be blank).

13This me is one of the bitmaps released with the standard X distribution. Your system
should have it.

14 A pixmap is an image that uses multiple bits per pixel; it can therefore hold a color
image. A bitmap is an image that uses a single bit per pixel; it can only hold a two-color
(foreground and background) image. Bitmaps may be created using the bi tmap
program. which is part of the standard X distribution.

6
Managers

Overview
Management in the Motif world is similar to management in the business
world. In both, managers exist in hierarchical organizations: the corporation
and instance tree. A business manager is responsible for representing his or
her department to the rest of the corporation and for delegating work to
subordinates. In Motif, a manager widget is responsible for acquiring window
space for its children and then distributing that space among them.

Inheritance
In Motif, manager widgets are subclasses of the XmManager widget class.
Figure 6.1 shows the managers covered in this chapter in the context of the
Motif class tree.

As their names indicate, Composite and Constraint are defined by the X
toolkit, whereas XmManager and its subclasses are specific to Motif.
CompoSite provides the capability for a widget to have children, and Constraint
supports management of child geometry. XmManager provides support for
Motif-specific appearance and action resources, similar to those that
XmPrimitive provides for primitive widgets.

XmBulletinBoard is the simplest of the manager widgets. It simply provides a
window in which children may be placed; in most cases, no geometry
management is performed on these children. XmForm provides extensive
geometry management; it can resize and reposition its children as needed to
suit its allotted space.

XmRowColumn is a manager that packs its children together in rows and
columns, forming a grid. One of the primary uses for an XmRowColumn widget
is menu support: the menu bar is a row of widgets, while pull-down and pop
up menus are columns of widgets. This chapter describes XmRowColumn's
use in simple tabular displays; its use for menus is postponed to Chapter 12.

57

58 Programming with Motif

Figure 6.1. Motif manager class tree

XmPanedWindow arranges its children in a single row, oriented vertically. An
XmPanedWindow forces the same width on all of its children and divides its
total height among them, assigning each a "window pane." While the program
is running, the user may change the space allotted to each pane by dragging
the pane's "sash" with the pOinter.

Constraints: An Overview
Constraints are, as their name suggests, rules that a manager widget imposes
on its children. Traditionally, the word "constraint" refers to per-child
geometry controls, supported by the Constraint superclass. This book expands
that def'mition: the word 'constraint' applies to any rule that a parent uses to
modify its children's resources.

Explicit geometry constraints are resources that are provided by the manager
widget, but that appear to be provided by the child. l Such resources are

1 How is this done? The Core class contains a constraints pointer in its instance
record. A child of a manager that supports explicit geometry constraints will use this
field to point to additional instance data - the explicit constraint resources.

Managers 59

identified by the child's name and are stored in the child's instance data.
However, the child does not use these resources. They are used by the
manager to control the child's geometry resources (x, y, wi dth, and hei ght).

Implicit geometry constraints are resources that are associated with the
manager widget and affect the geometry of its children. An example is the
margin provided by all Motif managers: this margin essentially reduces the
area available to the manager's children. If any child overlaps this margin due
to its preferred geometry settings, its geometry is changed such that it no
longer overlaps (ie, it will be moved into the area bordered by the margin).

Finally, non-geometry constraints are resources associated with the manager
that contain values to be stored in the child's instance data. An example is
XmRowColumn's ability to set the ali gnment resource of any of its children
that are derived from XmLabeL This book does not consider 'dynamic'
resources, such as background, to be non-geometry constraints, because the
child retrieves such values from the parent; constraints are values imposed on
the child by the parent.

Management Revisited
What happens when a child is managed? Chapter 4 stated that management
is where a widget's parent applies constraints to the widget's geometry and
makes it visible. At this point, you understand what these constraints are,
and the process of management may be examined in greater detail.

What Happens when a Widget Is Created, Managed, and Realized

As stated at the beginning of this chapter, only widget classes derived from
Composite may have children, because the Composite class supplies the
mechanisms by which a list of children is maintained. When a widget is
created, the creation function allocates and initializes the structures
associated with the widget instance, then stores a pointer to the instance in
its parent's list of children.

Management is the process by which the parent allocates its window space
among its children, and this allocation can only happen once the parent is
realized and has a window on the server.2 However, you call XtManageChi 1 d
immediately upon widget creation, which occurs (usually) before realization -
what happens then?

Widgets are created unmanaged; a flag in the widget instance data indicates
its state. If, at the time of the call to XtManageChil d, the parent is not realized,
this flag is set to TRUE, but nothing else happens. When the parent is realized
- or ilit is already realized when the child is managed - then the parent

2 This point has important ramifications for debugging. If, for example, you place a
breakpoint before the call to XtRea 1 i zeWi dget, you will not be able to learn any useful
infonnation about actual widget geometry. You must place the breakpoint after the
widget geometry is determined, which happens after the call to XtRea 1 i zeWi dget. As a
practical matter, communication between the client and server must have taken place
also; XtRea 1 i zeWi dget does not do this automatically, so you must either call XSync or
place the breakpoint in the event loop.

60 Programming with Motif

adjusts the geometry of aU children. This is done because each child may
affect the geometry of its siblings; the parent is responsible for resolving such
disputes.

This in part explains why it is better to perform widget creation and
management before realization. If management was performed after
realization, each call to XtManageChi 1 d would result in geometry recalculation
for all existing children, which could result in a huge amount of client -server
interaction.

Geometry Negotiation

The simple term 'geometry management' covers a complex process of
negotiation for window space. Each manager in the instance tree must put in
a space request to its parent, based on the space requests passed to it by its
children. It mayor may not receive the requested space, but must distribute
what it gets to its children. To understand the process, keep the following
rules in mind:

1) The window manager makes the ultimate decision on how much space
is granted to the program. When the program fIrst starts, the window
manager grants space on the root window, based on the size requested
by the application shell.3 If the shell asks for too much space (Eg, a
window larger than the screen), its request will be denied - but it will
be given what space is available. In addition, the user can physically
change a client's size while it is running.

As a result, the shell must be prepared to accept whatever space it is
granted, as well as any changes made by the user. It passes the
allotted (or changed) size to its child, which makes suballotments and
passes them to its children, and so on.

2) X maintains a tree of windows, with the root window as the root of the
tree. No window in this tree may be larger than its parent. This has the
obvious effect in Motif: because a widget's window is the child of its
parent's window, no widget may have a window larger than that of its
parent. Since the application shell is the root of a program's window
tree, and since the shell's window may change under user control, it
follows that each manager in the tree must be prepared to have its
window size changed while the program is running.

3) If able, a manager widget will initially size its window such that all of
its children may be arranged according to their preferred geometry. In
other words, a manager grows to fIt its children, unless prevented from
doing so. It may be prevented by its parent or by an explicit size
speciftcation (ie, a manager that has an explicit size speciftcation of
100xl00 cannot display nve 5Ox50 labels).

4) Each widget in the instance tree has a preferred geometry, reflected by
its x, y, wid t h, and he i 9 h t resources. These resources may be set

3 The specific algortthm depends on the design goals of the window manager. The Motif
window manager (mwm) will almost always give the application shell all the space that
it desires, even if that allotment means that part of the shell's window extends off the
screen.

Managers 61

explicitly by the programmer, implicitly due to widget design (eg, the
recomputeSi ze resource of XmLabeO or as a result of constraints
applied by the widget's manager.

Looking at these rules, you can see that, in general, a manager's children
determine the size of the manager. Taking this idea one step further, you can
see that the size of a program's window is determined by the leaves of the
instance tree - provided the result is acceptable to the window manager and
is not changed by the user. This means that a programmer must design a
program's interface in such a way as to remain consistent, no matter what the
user does.

Unmanagement

Unmanagement is the process by which a widget is removed from its parent's
list of managed children. In the process, the widget is made invisible, and the
geometry of its siblings is recomputed by the parent. 4 Note that
unmanagement does not remove the widget from its parent's list of children -
once the parent-child relationship is established, it cannot be broken without
destrOying the child.

Unmanagement is initiated in one of two ways: either explicitly by the
programmer or implicitly at the time of widget destruction. Explicit
unmanagement is performed with the functions XtUnmanageChi 1 d and
XtUnmanageChi 1 dren, prototyped in Listing 6.1. These functions have the same
parameters as their counterparts for management.

Listing 6.1. Function prototypes: XtUnmanageChild and
XtUnmanageChildren

void XtUnmanageChild(w);
Widget w;

void XtUnmanageChildren(children, num_children
Widget children[];
Cardinal num_children;

Explicit unmanagement is often used when changing the contents of a
manager widget while the program is running. If the widget remains managed
while these changes take place, program efficiency is impaired because each
change requires geometry recalculation, and the user is often able to see the
changes as they are performed.

4 Again, geometxy calculations only take place when the parent is realized.

62 Programming with Motif

Management vs. Mapping

A widget must be managed to be visible, but management does not
automatically make a widget visible. To be visible, a widget must be both
managed and mapped. Normally, mapping occurs during management, based
on the value of the mappedWhenManaged resource.5 The default value of this
resource is TRUE, which means that the widget will always be mapped when it
is managed.

Mapping is separate from management for both efficiency and aesthetic
reasons. The efficiency concerns are easy to understand: managing and
unmanagtng a widget means that the geometry of all of the widget's siblings
must be recalculated. The aesthetic reason is also due to geometry
computation: in many cases, a widget's siblings will "fIll in" the space left by
an unmanaged widget, changing the appearance of the program.

As a general rule, if you simply want to make widgets visible or invisible while
the program is running, use mapping instead of management. If you need to
recompute geometry each time, or II you are making extensive changes to a
manager widget, use management. Listing 6.2 contains prototypes for the
functions that map and unmap a widget; the widget's ID is the sole argument
to both.

Listing 6.2. Function prototypes: XtMapWidget and
XtUnmapWidget

void XtMapWidget(w
Widget w;

void XtUnmapWidget(w);
Widget w;

Measurement: The unitType Resource
As stated in Chapter 5, the default form of measurement in a Motif program is
in terms of screen pixels. This means that program appearance differs
depending on the resolution of the screen: using constant pixel
measurements, objects on a 75 dpi screen are 25% larger than on a 100 dpi
screen. At that time, however, it was mentioned that the un; tType resource
allows other terms for measurement. Specifically, it allows measurements in
terms of screen pixels (the default), millimeters, inches, points, or an abstract
unit based on font size.

The un; tType resource is defined by both the XmPrimitive and the XmManager
classes (as well as the XmGadget class), so it is present in all Motif classes.
Moreover, each child defaults its un; tType value to that of its parent; setting
un; tType at the top of the instance tree will cause it to be set throughout.

5 This resource is defined by the Core class and is present in all widgets.

Managers 63

It is important to note, however, that the resources holding a widget's size and
position are defined by the Core class, which is not part of Motif. This means
that, internally, size and position are held in terms of screen pixels - they are
converted between this representation and the user-specified representation
on an as-needed basis. In some cases, conversion will result in a loss of
accuracy - on a 75 dpi screen, 10 points become 10.4 pixels, which is
rounded to 10.6

Unit Types

The valid values for the uni tType resource are as follows:

• XmPIXELS. The default unit of measure, representing counts of screen
pixels. As described above, this form of measurement is display
dependent - an effect especially noticeable when text is specified by
point size but widgets are specified by pixel size.

• XmlOOTH_MI LLIMETERS. All measurements are in terms of lliooth of a
millimeter, meaning that a measurement of one inch is represented by
the value 2540.

• XmlOOOTH_I NCH. All measurements are in terms of llioooth of an inch,
meaning that a measurement of one inch is represented by the value
1000.

• Xml OOTH_PO I NTS. All measurements are in terms of lliooth of a point,
meaning that a measurement of one inch is represented by the value
7200. This value is especially convenient when working with text, since
text is traditionally identified by point size.

• XmlOOTH_FONT_UNITS. All measurements are in terms of lliooth of the
'quad width' of a specified font. The quad width is the width of the
character 'M,' which is the widest character in any font. 7

The XmConvertUnits Function

The function XmConvertUnits, prototyped in Listing 6.3, allows a program to
convert values between unit types. It takes information about the context for
conversion (the screen resolution and units from- and to-), along with the
value, and returns the converted value.

6 This effect is rarely a problem as far as widget layout is concerned because all
measurements will be changed in the same way. However, if you read-change-wrtte a
widget's size and/or position resources while the program is running, the widget could
"creep."

7 Although this value would appear to be vety useful in text-based applications, its
usefulness is limited by its implementation. First. a single font unit is applied to all
measurements in the program (ie. the font used by an individual widget does not affect
measurements for that widget). Second. the font must be expliCitly set using either the
XmSetFontUnit function call or the font resource (which is separate from fontL i st; font
is used solely to set the conversion size).

64 Programming with Motif

Listing 6.3. Function prototype: XmConvertUnits

int XmConvertUnits(w, orientation, from_units, value, to_units
Widget w;
int orientation;
int from_units;
int value;
int to_units;

The w and 0 r i en tat ion parameters provide information about the screen
resolution. Any widget will suffice for w; the application shell is a good choice.
Ori entati on must contain one of the constants XmHORIZONTAL or XmVERTICAL
if the screen's horizontal resolution is different from its vertical resolution, the
choice is important, otherwise either will do.

The from_uni ts and to_uni ts parameters must be from the list of unit types
above. Since this function is called from program code, you must remember
the Xm prefix. Finally, the val u e argument is the value that you wish to
convert.

If any of the arguments are invalid, XmConvertUnits returns zero. Otherwise, it
returns the converted value.

How to Use uniIType

Unfortunately for the programmer, the Motif design team decided not to
provide direct resource-file support for unit types. As a result, if you !7" to
specify a unitType value in a resource file, you will get an error message. To
make use of the un i tTy P e resource, you must either set it programmatically or
install a resource converter.

The un itT y p e resource may be set programmatically using the technique
described in Chapter 3. You can set it in the ap~lication shell, and this setting
will be propagated to all widgets in the program.

If you plan to use different un i tTy P e settings in different parts of the instance
tree, or if you want to keep all resource specifications in the resource file,
installing a resource converter is the best approach. Resource converters are
functions that translate values specified by a resource file into their internal
representations; they are described in detail in Chapter 16.

8 The specific message is "X Toolkit Warning: No type converter registered for 'String' to
'uniIType' conversion", indicating that the toolkit does not know how to convert the
name of the value (which is an ASCII string in the resource fIle) to its actual value.

9 You may wonder how this can happen, since the ApplicationShell class is defined by the
intrinsics and not Motif. In actuality, ApplicationShell is a Motif widget class - its
purpose is defined by the intrinsics, but its implementation depends on the toolkit in
use.

Managers 65

Motif provides a resource converter for the un itT y p e resource,
XmCvtStringToUnitType. To use it in your program, include the contents of
Listing 6.4 after the call to X tIn it i ali z e but before any other widgets are
created.

Listing 6.4. Installing XmCvtStringToUnitType as a resource
converter

XtAddConverter(XmRString. XmRUnitType.
XmCvtStringToUnitType. NULL. 0);

XmBulie tinBoard

The XmBulletinBoard class is the simplest of the Motif managers. It is very
similar to a real-world bulletin board: it is a location where things can be
placed, without concern for how they are placed. XmBulletinBoard has few
geometry constraints; it will move children that are placed in its "margin," and
it can prevent a child from moving and overlapping another child, but usually
it allows children to have their preferred geometry.

Because of its simplicity, XmBulletinBoard is rarely used in a "stand-alone"
manner as a program's main window. Instead, it is used as the superclass for
other widget classes, such as XmForm, and in dialogs. This chapter examines
XmBulletinBoard as a stand-alone widget; Chapter 13 describes its use in
dialogs.

Resource Table

Table 6.1 contains resources useful with a "stand alone" instance of
XmBulletinBoard. Additional resources are used when the bulletin board is
part of a dialog; they are described in Chapter 13.

66 Programming with Motif

Table 6.1. Frequently used resources: XmBuUetinBoard

Name Inheritance Type Default Value

allowOverlap XmBulletinBoard Boolean TRUE

marginHeight XmBulletinBoard short 10

marginWidth XmBulletinBoard short 10

resizePolicy XmBulletinBoard unsigned XmRESIZE_ANY
char

shadowType XmBulletinBoard unsigned XmSHADOW_OUT
char

bottomShadow XmManager Pi xe 1 dynamic
Color

foreground XmManager Pi xe 1 dynamic

shadowThickness XmManager short 0

topShadowColor XmManager Pi xe 1 dynamic

uni tType XmManager unsigned XmPIXELS
char

background Core Pi xe 1 dynami c

height Core Dimensio 0
n

width Core Dimensio 0
n

x Core Position 0

y Core Position 0

Geometry Resources: height, width, x, y

As with XmLabe~ the size of a bulletin board is specified by its geometry
resources, defined by Core. These resources may be set explicitly or by
parental constraint. As with any widget, constraints take precedence over
explicit settings.

Shadow Border: shadowThickness, topShadowColor,
bottomShadowColor, shadowType

Part of the distinctive appearance of a Motif program comes from its shadow
border, inherited from the HP widget set. This shadow border is drawn inside
the widget using a color scheme that is by default based on the widget's
background color. In all cases, the shadow's "light source" appears to be
coming from the top-left corner of the screen; depending on the shadow type,

Managers 67

the widget may appear to be protruding from the screen. inset into the screen.
or set off from the rest of the screen by a "groove" or "ridge" meant to simulate
the joints in panels.

The thickness of this shadow border is determined by the s had 0 w T hie k n e s s
resource. This resource holds a count of pixels. which is converted according
to the current unit type. The thickness of the border influences the three
dimensional effect: a thin border may be almost unnoticeable. while a too
thick border is distracting.

The shadow's color scheme is specified by the topShadowColor and
bottomShadowColor resources. By default. the values of these resources are
dynamically assigned. based on the background color: topShadowCol or is
lighter than the background. while bottomShadowCol or is darker. Jfyou do not
like the dynamic values. you are free to change them; specifications in a
resource file override the default settings.

The names topShadowCol or and bottomShadowCol or are actually misnomers.
For a protruding shadow. they are accurate: topShadowCol or is used for the
top and left sides of the shadow. while bottomShadowColor is used for the
bottom and right sides. However. for an inset shadow. they are reversed. and
topShadowColor is actually used for the bottom shadow. While this may be
confusing. if their names were truly consistent with their usage. you would
have to change shadow colors depending on the widget; with the current
design. three resource specifications can set a color scheme for an entire
program.

The shadowType resource controls the appearance of the shadow border. As
described above. the border can make the widget appear to be inset or
protruding. or it can simply be a line around the widget that separates it from
the rest of the screen. The constants producing each type of shadow are as
follows:

• XmSHADOW_I N. The bulletin board appears to be inset from the rest of
the screen.

• XmSHADOW_OUT. The bulletin board appears to be protruding from the
rest of the screen. This is the default value.

• XmSHADOW_ETCH ED_I N. The bulletin board appears to be flush with the
rest of the screen. but is separated from the rest of the screen by an
inset border.

• XmSHADOW_ETCHED_OUT. The bulletin board appears to be flush with the
rest of the screen. but is separated from the rest of the screen by a
protruding border.

You should note that shadow borders are not specific to the bulletin-board
class: the shadow resources are defined by XmManager. which means that all
manager widgets can use them. In addition. XmPrimitive defines a shadow
border. although it is more limited than that defined by XmManager. and its
implementation depends on the specific widget: XmLabel does not allow any
shadow border. while XmPushButton uses its border to provide feedback on
"presses."

68 Programming with Motif

Implicit Geometry Constraints: a11owOverlap. marginHeight.
marginWidth

The all owOverl ap resource controls whether a child of the bulletin board is
permitted to request a size or position that overlaps that of another widget.
This only affects widgets that attempt to move or resize after realization; initial
placement is not affected. If this resource contains T RU E, the geometry request
is ignored, and the widget keeps its former geometry.

The resources marginHeight and marginWidth specify a border between the
edge of the bulletin board and its contents. If a child's geometry would make it
overlap the margin, then that child's geometry is changed so that it won't
overlap. 10 The default size of the margin is ten pixels, converted according to
the unit type in effect.

Bulletin Board Geometry Control: resizePolicy

The res i z e Pol i cy resource controls whether or not the bulletin board will
grow or shrink as children are added and removed. Valid values for this
resource are as follows:

• XmRESIZE_NONE. The bulletin board will not grow or shrink as children
are added or removed. Its initial size is set either explicitly or by
parental constraint, and it will grow or shrink as commanded by its
parent.

• X m RES I Z E ANY. The bulletin board determines its initial size from the
preferred-geometry of its children and will grow or shrink depending on
the number of managed children - provided that it is permitted by
parental constraint. This is the default value.

• XmRESIZE_GROW. The bulletin board will attempt to grow as children are
added, but will not shrink if they are removed. Again, size-changes are
subject to parental constraint.

XmBulletinBoard Examples

Three Labels and a Bulletin Board

Figure 6.2 contains a single bulletin board and its three label children. These
children are the same size, but differ in color. The bulletin-board's margin has
been set to zero to permit the children to be arranged as shown.

10 This constraint is applied from the time of realization, unlike allowOvedap.

Managers 69

Figure 6.2. Three labels and a bulletin-board

Label_l

The program and resource file responsible for Figure 6.2 are shown in Listing
6.5. Note that all labels are managed at the same time. using
XtManageChi 1 dren. They could be managed individually. with little decrease in
program efficiency. but I chose the all-at-once method to minimize the number
of lines of code.

Listing 6.5. Program and resource fIle: Three labels and a
bulletin board

1***
**
**
**
**
**
**

Three labels and a Bulletin Board . This program demonstrates the
use of XmBulletinBoard.

**
**
**
**
**
**

*** /

70 Programming with Motif

Listing 6.5. Continued.

#include <Xm/BulletinB.h>
#include <XmlLabel.h>

Widget appshell,
the_bb,
labels[3];

void main(argc, argv
int argc;
char *argv[];

/* Application Shell
/* The Bulletin Board
/* The children

appshell = Xtlnitialize(argv[O], "Listing_6_5", NULL, 0,
&argc, argv);

the_bb = XmCreateBulletinBoard(appshell, "TheBB", NULL, °);
XtManageChild(the_bb);

labels[O] XmCreateLabel(the_bb, "Label_O", NULL, °);
labels[l] XmCreateLabel(the_bb, "Label_I", NULL, °);
labels[2] XmCreateLabel(the_bb, "Label_2", NULL, °);
XtManageChildren(labels, 3);

XtRealizeWidget(appshell);
XtMainLoop();

Resource file used to produce Figure 6.2

*TheBB.marginWidth: ° *TheBB.marginHeight: ° *XmLabel.height: 50*XmLabel.width:

*Label_O.x: ° *Label_O.y: ° *Label _O.background: red

*Label_l.x: 100
*Label _l.y: 50

100

*/
*/
*/

Managers 71

Listing 6.5. Continued.

*Label_1.background: white

*Label_2.x: 200
*Label_2.y: 100
*Label_2.background: blue

Chinese Bulletin Boards

Figure 6 .3 contains an example of each shadow border supported by
XmBulletinBoard. This program uses five bulletin boards, each containing a
single child, much like a set of Chinese boxes. The outermost bulletin board
doesn't have a shadow border; each of the others has a unique border. These
borders are exaggerated by the thickness of the shadows and the width of the
bulletin-boards' margins.

Figure 6.3. Chinese bulletin boards

72 Programming with Motif

The program and resource file are shown in Listing 6.6. Note the class-wide
resource specifications: this program is a perfect example of when to use
them. Note also that the shadow was removed from the topmost bulletin board
by setting its thickness to zero - there is no shadowType value to do this.

Listing 6.6. Program and resource file: Chinese bulletin
boards

/***
**
**
**
**
**
**
**

"Chinese Bulletin Boards". This program demonstrates the shadow
borders provided by XmBulletinBoard (and other managers), using
a series of "stacked" bulletin boards

**
**
**
**
**
**
**

***/

#include <Xm/BulletinB.h>

Widget appshell,
bbO, bb1, bb2, bb3, bb4;

void maine argc, argv
int argc;
char *argv[];

/* Application Shell
/* The Bulletin Boards

appshell = XtInitialize(argv[O], "Listing_6_6", NULL, 0,
&argc, argv);

bbO = XmCreateBulletinBoard(appshell, "BBO", NULL, 0);
XtManageChild(bbO);

bb1 = XmCreateBulletinBoard(bbO, "BB1", NULL, 0);
XtManageChild(bb1);
bb2 = XmCreateBulletinBoard(bb1, "BB2", NULL, 0);
XtManageChild(bb2);

bb3 = XmCreateBulletinBoard(bb2, "BB3", NULL, 0);
XtManageChild(bb3);

*/
*/

Listing 6.6. Continued.

bb4 = XmCreateBulletinBoard(bb3, "BB4", NULL, 0);
XtManageChild(bb4);

XtRealizeWidget(appshell);
XtMainLoop();

Resource file used to produce Figure 6.3

*XmBulletinBoard.marginWidth:
*XmBulletinBoard.marginHeight:
*XmBulletinBoard.background:
*XmBulletinBoard.topShadowColor:
*XmBulletinBoard.bottomShadowColor:
*XmBulletinBoard.shadowThickness:

o

20
20
Gray50
Gray75
Gray25
4

*BBO.shadowThickness:
*BBl.shadowType:
*BB2.shadowType:
*BB3.shadowType:
*BB4.shadowType:

SHADOW_IN
SHADOW_OUT
SHADOW_ETCHED_IN
SHADOW_ETCH ED_OUT

XmRowColumn

Managers 73

XmRowCoZumn is a manager that arranges its children into linear or
rectangular arrays, as shown in Figure 6.4. The primary use of XmRowCoZumn
is in program menus: a horizontally oriented row-column holds the buttons
comprising the menu bar, and vertically oriented row-columns hold the
individual "pull-down" menus. Chapter 12 describes the use of XmRowCoZumn
with menus; this chapter describes its generic use as a means of organizing
children in a tabular layout.

74 Programming with Motif

Figure 6.4. Examples of XmRowColumn widgets

-a-

- b - - c-

Resource Table

Table 6.2 contains resources useful with a "stand-alone" instance of
XmRowColumn. For brevity. those from Core and XmManager are not listed
here. Additionally. description of resources specific to use of XmRowColumn as
a menu is postponed until Chapter 12.

Managers 75

Table 6.2. Frequently used resources: XmRowColwnn

Name Inheritance Type Default
Value

adjustLast XmRowColumn Boolean TRUE

entryAlignment XmRowColumn unsigned dynamic
char

isAligned XmRowColumn Boolean TRUE

marginHeight XmRowColumn Dimension 3

marginWidth XmRowColumn Dimension 3

numColumns XmRowColumn short 1

orientation XmRowColumn unsigned per
char rowColumnTy

pe
packing XmRowColumn unsigned XmPACK_TIGH

char T

radioAlwaysOne XmRowColumn Boolean TRUE

radioBehavior XmRowColumn Boolean FALSE

resizeHeight XmRowColumn Boolean TRUE

resizeWidth XmRowColumn Boolean TRUE

rowColumnType XmRowColumn unsigned XmWORK_AREA
char

spacing XmRowColumn short 1

This resource specifies the way that the widget is used. The default value is
XmWORK_AREA, indicating that it is used as a generic table. The complete set of
values and their meanings is as follows:

•

•

•

XmWORK_AREA. The row-column widget is used as a generic table and
may contain children from any widget class. Its layout is dictated by
the resources numColumns, orientation, and packing.

XmMENU_BAR. The row-column widget is used to hold "pull-down" menu
choices. It is oriented horizontally, is of fIXed width (determined by the
programmer), and contains one or more rows, depending on the
number of children. Children must be of class XmCascadeButton.

XmMENU_PULLDOWN. The row-column widget is used to hold a "pull-down"
menu. It is oriented vertically, its width is dependent on the size of the
longest child, and its height depends on the number of children.
Children may be from any widget class.

76 Programming with Motif

• XmMENU_POPUP. The row-column widget is used to hold a menu
formatted as a table, which will "pop up" under program control. It is
oriented vertically (although this can be changed), and its width and
height are determined by the programmer. Children may be from any
widget class.

• XmMENU_OPTION. The row-column widget is used as an option menu: a
combination of a label identifying the menu, a button that both
displays the current choice and enaoles a submenu of choices, and the
submenu itself. The geometry of the row-column that holds these
children is determined by the width and height of the label and button
children: the submenu appears when invoked and overlaps the option
menu.

Layout: numColumns, orientation, packing

An XmRowColwrm widget arranges its children by order of creation. The first
child is positioned at the top left of the row-column, and the last child is
positioned at the bottom right. The arrangement of intermediate children
depends on the resources ori entati on, packi ng, and numCol umns.

A row-column's 0 r i en tat ion resource specifies whether children are
sequenced in column-major or row-l"Tlqjor order. Figure 6.5 diagrams the
difference: column-major ordering places each widget oelow the preceding one,
starting a new column as needecf, whereas row-major places each child to the
right of the previous, starting a new row as needed. Figure 6.4 shows
examples of both types of ordering: 6.4(a) is an example of row-major ordering,
while (b) and (c) are column-major.

Figure 6.5. Diagram of column-major and row-major
ordering

Column-Major Row-Major

First Fourth First Second

Second Fifth Third Fourth

Third Sixth Fifth Sixth

An ori entat i on value of XmVERTICAL specifies column-major ordering, while
XmHORIZONTAL specifies row-major orderingY The direction specified by
orientation is known as the row-column's l"Tlqjor dimension - the direction in

11 A row-column is nonnally identified by its orientation, rather than the ordering of its
children. The ordering is a result of the orientation.

Managers 77

which it prefers to grow. The minor dimension is the other direction - width
for a vertical row-column, height for a horizontal row-column.

Given an ordering method specified by 0 r i en tat ion, the pac kin 9 resource
specifies how the row-column's available space is divided among its children.
Permissible values are as follows:

• XmPACK_TIGHT. This is the default value and specifies that the row
column attempts to pack its children as tightly as possible. If space is
available, the children will be ordered in a single row or column, as
exampled by Figures 6.4(a) and (b).

In most cases, however, the row-column will not be able to produce
such an ordering - either its parent will not provide it with enough
linear space, or its size will have been set by the programmer. In this
situation, the row-column arranges its children by starting in the top
left comer and adding children as dictated by its orientation. When
lack of space makes it unable to add another child in its major
dimension, it starts a new row or column - a vertical row-column
starts a new column to the right of the first child, a horizontal row
column starts a new row below the first child. Arrangement of children
proceeds in this fashion, with new rows/columns added as needed. If
the row-column runs out of space in its minor dimension, it continues
to place children, but they are not visible unless the row-column is
permitted to grow.

Under tight packing, children are allowed to specify their own
dimension in the major direction, but the row-column sizes each child
identically in the minor direction. Taking the example of a column
major ordering [as in Figure 6.4(b)], each child may specify its own
height, but the row-column widget sets its width. The width used is
that of the widest child; the rest of the children are expanded as
necessary.

• XmPACKJOLUMN. This value specifies that the row-column divides its
available space into identically sized boxes. Each child is placed into
one of these boxes, starting at the top left and proceeding according to
orientation. As the row-column must divide its space into a whole
number of rows and columns, boxes may be left empty, as shown by
Figure 6.4(c).

Each child is expanded or contracted to fit the size of its box. If the
row-column's size has been set explicitly, the size of each box is
calculated from this total size. If, on the other hand, the row-column
sizes itself to fit its children, the size of each box is the size of the
largest child.

• XmPACK_NONE. This value specifies that the row-column will not attempt
to perform any ordering of its children. In such a case, orientation is
ignored, and the row-column essentially becomes a bulletin board.

The numCol umns resource is only applicable to row-columns with packi ng of
XmPACK_COLUMN; for XmPACK_TIGHT and XmPACK_NONE it is ignored. Its purpose is
to specify how the row-column divides its space between rows and columns.

Its name is somewhat misleading: in actuality, its meaning depends on
orientation. If the row-column is vertically oriented (column-major),

78 Programming with Motif

nurnCol urnns specifies the number of columns. For hOrizontally oriented (row
major) row-columns, it specifies the number of rows. Given the division of the
major dimension, the division of the minor dimension may be determined. 12

Row-Column Geometry Controls: resizeHeight, resizeWidth

Under normal circumstances, a row-column widget resizes itself as needed to
display all of its children at their desired sizes, unless prevented from doing so
by its parent. The resources res i z e H e i 9 h t and res i z e Wid t h are responsible for
this behavior: when they contain T RU E (the default), the specified dimension
will resize as children are added or removed. When they contain FALSE, the
specified dimension remains at its initial size (or the size set by its parent). If
this means that the row-column is unable display all of its children in the
allotted space, they are simply not displayed.13

Implicit Geometry Constraints: adjustLast, marginHeight,
marginWidth,spacing

As described above, a row-column modifies its children's geometry as needed
to produce an orderly arrangement. If its packing is XrnPACK_TIGHT, a child's
minor dimension is changed, but its major dimension is left alone. If packing
is XrnPACK_COLUMN, both the major and minor dimensions of a child may be
changed. In addition to these constraints, the row-column applies implicit
constraints specified by the resources adj ustLast, rna rgi nHei ght, rna rgi nWi dth,
and spaci ng.

Like XmBulletinBoard, XmRowColumn supports a margin between its outside
edge and its children. Also like XmBulletinBoard, this margin is specified by
the resources rnarginHeight and rnarginWidth. Unlike XmBulletinBoard, the
default size of this margin is three pixels. Another difference is that, while
XmBulletinBoard merely moves children that would infringe on its border -
and leaves others alone - XmRowColumn explicitly uses its border for child
placement.

The spaci ng resource specifies the number of pixels of "dead space" on each
side of a child. The default value is one pixel, resulting in a two-pixel gap
between children.14 This spacing may be seen quite clearly in Figure 6.4.

The final child constraint resource, adjustLast, is used to eliminate dead
space between the last row or column of children and the side of the row
column. When this resource contains TRUE (the default value), the minor
dimension of the children comprising this row-column is expanded until the
right (or bottom) edge of each child touches the inside of the row-column's
margin.

12 Using Figure 6.4(c) as an example: The number of children is five, the orientation is
vertical, and the number of columns is specified as two. The number of rows is
determined to be three. providing enough space for all children with a minimal amount
of wasted space.

13 But they are placed and will be displayed if the row-column is allowed to grow.
14 Unless the row-column is being used as a menu bar (roweol umnType contains

XmMENU_BAR). in which case the default spacing is 0 pixels (resulting in an uninterrupted
list of menu titles).

Managers 79

Figure 6.6 shows adjustLast in use. In both cases, the row-column was
initially sized based on its children and then expanded. In 6.6(a), adjustLast
was TRUE, and children in the second row were expanded. In 6.6(b),
ad jus tL as twas FA L S E, so the children were left alone - and the new space
was filled with the row-column's background color.

Figure 6.6. Different settings for adjustLast resource

- a - -b-

Imposed Child Label Appearance: entryAlignment. isAligned

To maintain a consistent appearance, XmRowColumn can modify the
ali gnment resource of any children derived from class XmLabel. The isA 1 i gned
resource controls whether this modification takes place: if it contains TRUE
(the default), modification will take place; if it contains FALSE, the label is able
to specify its own alignment.

If i sA 1 i gned contains TRUE, entryA 1 i gnment specifies the value imposed on the
alignment resource of the row-column's children. Like the ali gnment resource
itself, the legal values for entryAlignment are XmALIGNMENT_BEGINNING,
XmALIGNMENT_END, and XmALIGNMENTJENTER. The default entry Alignment value is
X mAL I G N MEN T _ BEG INN I N G, unlike the default label alignment of
XmALIGNMENT_CENTER.

It is important to note that the ent ryA 1 i gnment resource is a non-geometry
constraint. It will take precedence over the children's alignment resource, even
if that resource is set explicitly. While this behavior is reasonable for menus, it
may not be reasonable for a tabular array of labels.

Radio-Button Resources: radioBehavior. radioAlwaysOne

As you will see in the next chapter. a row-column can impart speCial behavior
to its children that are toggle buttons (class XmToggleButton). These resources

80 Programming with Motif

are used to control that behavior. Since they only make sense in the context of
toggle buttons, their description is postponed to Chapter 7.

XmRowColumn Examples
The three examples of Figure 6.4 were produced from a single program, shown
in Listing 6.7. The dramatic differences between the samples are a result of
resource specifications applied to the row-column widget. These resource flles
are described below, with suggested experiments. The section fInishes with a
useful application, modeled aIfer Jifd

Listing 6.7. Sample XmRowColumn program.

1***
**
**
**
**
**
**

Lots of labels and a RowColumn widget. This program is the base
for all of the figures in the section of XmRowColumn.

**
**
**
**
**
**

***/

#include <Xm/RowColumn.h>
f/include <Xm/Label.h>

Widget appshell,
rowcol,
labels[5];

void main(argc, argv
int argc;
char *argv[];

1* Application Shell
1* The RowColumn widget
1* The children

appshell = Xtlnitialize(argv[O], "Listing_6_7", NULL, 0,
&argc, argv);

rowcol = XmCreateRowColumn(appshell, "RowCol", NULL, °);
XtManageChi 1 d(rowcol);

labels[O]
1 abel s[1]
labels[2]

XmCreateLabel (rowcol, "Label_O", NULL, °);
XmCreateLabel(rowcol, "Label_I", NULL, °);
XmCreateLabel (rowcol, "LabeL2", NULL, °);

*1
*1
*1

Listing 6.7. Continued.

labels[3] = XmCreateLabel (rowcol. "LabeL3". NULL. 0);
labels[4] = XmCreateLabel (rowcol. "Label_4". NULL. 0);
XtManageChildren(labels. 5);

XtReal i zeWi dget(appshell);
XtMai nLoop();

A Single Column

Managers 81

The resource file of Listing 6.8 produced the single column of labels of Figure
6.4(b). As you can see. no resource specifications were applied to the
XmRowColumn: a vertical orientation with tight packing is the default
appearance of an XmWORK_AREA row-column. Note that the labels' alignment is
XmALI GNMENT _BEGI NN I NG. imposed by the row-column.

Note also the explicit value for recomputeSi ze. If you remove this specification.
the geometry negotiation between parent and child will result in minimally
sized labels. ignoring the explicit size specification.

Listing 6.8. Resource file to produce a single column of
labels

Resource file used to produce Figure 6.4(b)

*XmLabel.height: 30
*XmLabel.width: 60
*XmLabel . background: Red
*XmLabel . foreground: Bl ack
*XmLabel. recomputeSi ze: FALSE

As an experiment. try changing the row-column's size using the window
frame. Notice how the labels are expanded. due to the adjustLast resource.
Notice also that. if you shrink the window vertically, the labels are arranged
into two columns (parts of which may not be visible). Finally. try expanding
the window horizontally to expand the labels. Then shrink it vertically while
expanding it hOrizontally. You will see the labels form into two columns. but
they will not contract: when adjustLast contains TRUE. a row-column will
expand its children but not shrink them.

82 Programming with Motif

A 8ingleRow

To produce the row of labels from Figure 6.4(a), use the resource file in Listing
6.9. The sole difference is a change to the row-column's ori entati on resource,
but the appearance is dramatically different.

Listing 6.9. Resource file to produce single row of labels

Resource file used to produce Figure 6.4(a)

*XmLabel.height: 30
*XmLabel.width: 60
*XmLabel.background: Red
*XmLabel . foreground: Bl ack
*XmLabel.recomputeSize: FALSE

*RowCol.orientation: HORIZONTAL

For further experimentation, try changing some of the other row-column
defaults. For example, changing i sA 1 i gned to FALSE will permit the labels'
default alignment to appear. The row-column's overall appearance may be
modified with marginWidth, marginHeight, and spacing.

Three Rows, 1Wo Columns

Figure 6.4(c) may be generated with the resource file from Listing 6.10. The
big change is the packing method: using XmPACK_COLUMN means that the row
column will divide its space equally among its children. Specifying a value for
numCol umns resulted in the tabular array.15 Note also that the row-column
grows to contain its children, since the only absolute size specifications are for
the labels - and since the row-column does not have a parent imposing size
constraints upon it.

15 numCol umns defaults to a value of 1, which would produce an output identical to Figure
6.4(b).

Managers 83

Listing 6.10. Resource fIle to produce tabular arrangement
of labels

Resource file used to produce Figure 6.4(c)

*XmLabe1.height: 30

*XmLabe1.width: 60
*XmLabe1 . background: Red

*XmLabe1 . foreground: B1 ack

*XmLabe1.recomputeSize: FALSE

*RowCo1 . packi ng:

*RowCo1 . numCo1 umns:

As an experiment, change adjustLast to FALSE and increase the size of the
window. Note that the labels remain the same size; PACK_COLUMN guarantees
that the children are identically sized, and that guarantee takes precedence
over adjustLast.

Font-Display Program

One of the clients contained in the standard X distribution is xfd, a font
display program. When invoked with the name of a font, it displays a table
containing the 256 characters that comprise that font. This client may be
duplicated in Motif, using an XmRowColumn widget and 256 XmLabel widgets,
as shown in Figure 6.7.

84 Programming with Motif

Figure 6 .7. A font-display program

The implementation of this program. shown in Listing 6.11. is relatively
straightforward but points out techniques often used by nontrivial Motif
programs. In particular. the creation of the labels bears examination.

Managers 85

Listing 6.11. A font-display program

1***

** **
** listing_6_11.c
**
**
**
**

A replacement for the xfd(lX) program, using an XmRowColumn and
lots of labels.

**
**
**
**
**

***/

#include <Xm/RowColumn.h>
#include <Xm/Label.h>

Widget appshell,
rowcol,
labels[256];

Arg arglist[l6];

int 1 bl _num;
char cstr[2];
XmString 1 bl _str;

void main(argc, argv
int argc;
char *argv[];

/* Application Shell
/* The RowColumn widget
/* The children

/* Used to set resources

/* Used to index labels[]
/* Used to buil d labelString
/* Ditto

appshell = XtInitialize(argv[O], "Listing_6_11", NULL, 0,
&argc, argv);

rowcol ~ XmCreateRowColumn(appshell, "RowCol", arglist, 1);
XtManageChild(rowcol);

cs t r [1] = '\ 0' ;
for (lbl_num 0

{

cstr[O]

lbl num < 256

*/
*/
*/

*/

*/
*/
*/

86 Programming with Motif

Listing 6.11. Continued.

lbl_str = XmStringCreate(c_str. XmSTRING_DEFAULT_CHARSET);
XtSetArg(arglist[O]. XmNlabelString. lbl_str);
labels[lbLnum] = XmCreateLabel(rowcol. "Lbl". arglist. 1);
XmStringFree(lbl_str);
}

XtManageChildren(labels. 256);

XtRealizeWidget(appshell);
XtMai nLoop();

Resource file used to produce Figure 6.7

*RowCol.orientation:
*RowCol . packi ng:
*RowCol.numColumns:
*RowCol . background:
*RowCol.isAligned:

*Lbl.foreground:
*Lbl . background:

HORIZONTAL
PACK_COLUMN
16
blue
FALSE

black
white

The first thing to note about the labels is that they all have the same given
name. This means that they also all have the same full name (because they
are siblings). Looking at the resource file listing, you can see the result of this
- a single resource specification is applied to each label. The effect is similar
to a class-wide specification, but is limited to only those labels with the same
name.

The second thing to note is that the 1 abe 1 S t r i n 9 resource is set
programmatically, at the time of the label's creation. As you can see, this is a
complex process: first a C string must be loaded with the character code, then
that C string must be converted to an XmString, then the label must be
created, then the XmString must be freed. I6 However, this process - complex
though it may be - is certainly less complex than individually setting each
label's string in the resource file.

Looking at the resource file, there are four things to note. First, the row
column's packing resource is set to PACK_COLUMN. Along with the numCol umns

16 The value of the XmS t r in 9 has been copied into the label's instance data, so the
program's copy is no longer needed. Forgetting to free XmSt ri ngs when they are no
longer needed is a common bug, and one that causes a program's memory
requirements to grow quickly.

Managers 87

setting of 16, this guarantees that the display will form a 16x16 grid. Second,
note that the orientation resource is set to HORIZONTAL (XmHORIZONTAL). Most
ASCII tables are organized by hexadecimal value: the row value is the leftmost
nibble of the byte, the column number is the rightmost nibble. Row-major
ordering accomplishes this. The third thing to note is that i sA 1 i gned is set to
FA L S E. For this program, I wanted the labels to be centered; leaving i sAl i 9 ned
as T RUE wouldn't allow that. 17

The third and most subtle thing to note is the fact that the labels aren't sized.
Instead, the recomputeSi ze resource is relied upon to set an appropriate size
for the specified font. Unfortunately, as may be seen in Figure 6.7, sometimes
this does not give the label enough space (note especially the top row, fifth box
from the left, where "FF" is only partially displayed). A much more appropriate
technique would be to explicitly set the labels' size, based on the font used -
say, to 150% of the font's quad width. Unfortunately, there is no simple way to
do this under Motif - as stated above, a uni tType setting of
XmlOOTH_FONT_UNITS will not work.

This brings up the question of how to set the font for display. Figure 6.7
shows the default label font ("Fixed"), which will be displayed if no font is
explicitly set. To explicitly set a font, you could either edit the resource file or
use a command line like that shown in Listing 6.12, which specifies a 14pt
Times Roman font using the -xrm command-line option.

Listing 6.12. Sample invocation for font-display program

a.out -xrm '*fontList: -*-times-medium-r-*--*-140-*'

If you experiment with the fonts supplied by your server, you may be
surprised by the following fact: XII Release 4 fonts do not contain a complete
character set! Instead, they contain just the printable ASCII characters -
codes 32 to 126.

XmPanedWindow

XmPanedWindow is a manager that arranges its children in a vertical order,
as shown in Figure 6.8. Children are ordered from top to bottom by creation
order. The initial height of each child may be specified in a resource file or
may be determined by dividing the height of the paned window by the number
of children. The width of each child is expanded to match that of the widest
child.

The user can change a child's height allotment by dragging a window 'sash' -
the small box between windows - up or down with a mouse. Each sash
controls the border between two children: moving the sash up decreases the
size of the upper child, while it increases the size of the lower child.

17 Unless, of course, I also set the entryA 1 i gnment resource. Allowing the labels to use
their default alignment was the easier approach.

88 Programming with Motif

Figure 6.8. Example of XmPanedWindow

Resource Table

Table 6 .3(a) contains those resources defined by XmPanedWindow. For
brevity. resources inherited from XmManager and its superclasses are not
shown; they are identical to those shown for XmBulletinBoard. Table 6.3(b)
describes the explicit constraint resources - those resources associated with
the child but defmed by XmPanedWindow.

Table 6.3a. Frequently used resources: XmPanedWindow

Name Inheritance Type Default
Value

marginHeight XmPanedWindow short 3

marginWidth XmPanedWindow short 3

refigureMode XmPanedWindow Boolean TRUE

sashHeight XmPanedWindow Dimen s ion 10

sash Indent XmPanedWindow Po s ition -10

sashShadowThickness XmPanedWindow int 2

sashW i dth XmPanedWindow Dimension 10

separatorOn XmPanedWindow Boolean TRUE

spacing XmPanedWindow int 8

Managers 89

Table 6.3b. Explicit constraint resources: XmPanedWindow

Name Inheritance Type Default
Value

allowResize XmPanedWindow Boolean TRUE

maximum XmPanedWindow int 1000

minimum XmPanedWindow int 1

skipAdjust XmPanedWindow Boolean FALSE

Implicit Geometry Constraints: marginHeight, marginWidth,
refigureMode, spacing

XmPanedWindow's marginHeight, marginWidth, and spacing resources are
similar to those of XmRowColumn. Like XmRowColumn, margin width is three
pixels. Unlike XmRowColumn, the default spacing refers to the total space
between two children, not the space on each side of a child. Note that the
default value is 8, which gives one pixel of overlap to the default sash height of
10.

The ref i 9 u reM 0 d e resource specifies whether the paned window will maintain
the relative size of its children when its size is changed programmatically.
When TRUE (the default), children will be resized appropriately. When FALSE,
programmatic resizing is performed in the same way as physical resizing: only
those children immediately affected are changed.18

Sash Appearance: sashlndent, sashHeight, sash Width,
sashShadowThickness, separatorOn

The window sash is the box appearing at the right side of the window. The
default size of this box is 10 pixels by 10 pixels, it has a 2-pixel-wide shadow
border, and it is positioned 10 pixels in from the right side of the paned
window. The sash's color scheme (foreground and shadow, background isn't
used) is identical to that of the paned window.

The sa s h H e i 9 h t and s ash Wid t h resources are used to set the sash size - all
sashes are the same size. The sash is placed "above" the paned-window's
children, so if the sash height is greater than the interwindow space defined

18 This is easier to show than to explain and will become apparent when you compile and
run the sample program. While it is running, shrink the window vertically by "pulling
up" on the bottom of the window frame. You will see that only the bottom-most child
shrinks at first. At some point, it will become only 1 pixel high, at which point the
middle child will begin to shrink. When the middle child becomes 1 pixel high, the
topmost child will shrink.

90 Programming with Motif

by spa c i n g, part of the child's window will be obscured. 19 The paned window
will correct any "strange" values - if you try to put a 200-pixel-wide sash on a
100-pixel-wide window, the width of the sash will be decreased to fit the
window.

The sa s hI n den t resource specifies where the sash is to be placed. Positive
values specify the distance between the left edge of the paned window and the
left edge of the sash. Negative values specify the distance between the right
edge of the pane and the right edge of the sash. If the specified value is too
large (magnitude greater than the width of the window), then it is replaced by
zero.

The sashShadowThi ckness resource specifies the width of the sash's shadow
border. This resource is distinct from the shadowThi ckness resource of the
paned window (which comes from the XmManager superclass). However, the
sash shadow and the paned-window shadow both use the same color scheme
- there is no way to change the sash's shadow colors other than changing
those of the window.

The final sash-related resource is sepa ratorOn, which specifies whether a
horizontal "groove" is present in the middle of the interchild space. The
default value is TRUE, with a result as shown in Figure 6.B.

Explicit Geometry Constraints: allowResize, maximum, minimum,
skipAdjust

The first explicit geometry constraint, all owRes i ze, specifies whether or not
the associated child is permitted to resize itself as the program runs. Like the
all owOverl ap resource of XmBulletinBoard, all owResi ze is applied only to
programmatic size changes (via X t Set Val u e s) initiated by the child after
realization. If the size change is initiated by the user (via the sash), or if the
size change is required by tlie paned window (as when it is shrunk), the child
will be resized regardless of the contents of all owRes i ze. The default value of
this resource is FALSE, meaning that the user and parent are the only ways
that a child's size may be changed.

The max i mum and mi n i mum resources set limits on the child's height. Again,
these resources only affect programmatic size changes; user- or parent
initiated size changes ignore these limits.20 The default values are 1000 and I
pixels, respectively; if these values are changed, maximum must remain greater
than minimum (any requests that violate this rule are ignored).

The final explicit constraint is ski pAd jus t, which controls whether or not a
child's size is adjusted automatically when the paned window is resized. If it
contains FALSE (the default), the child's size is adjusted as described

19 This happens with the default settings: the sash is 10 pixels high, but the interchild
spacing is only 8 pixels, so the sash obscures a I-pixel-high portion of the children
above and below it.

20 Note, however, that the absolute minimum height of a child is I pixel. Neither the user
nor the paned window can shrink the child below this height.

Managers 91

previously. If it contains TRUE, the child's size is not adjusted until all children
with ski pAdjust of FALSE are adjusted.21

XmPanedWindow Example: Three Labels and a
Paned Window
Figure 6.8 was produced with the program and resource file shown in Listing
6.13. By now the program should look familiar: it is essentially the same as
that in Listings 6.5 and 6.7; only the manager has changed. The resource file
leaves most of the paned-window's resources with their default values; it does,
however, show the use of explicit geometry constraints, applied to Label_I.

Listing 6.13. Program and resource file: XmPanedWindow
example

/***
**
**
**
** Three labels and a paned-window. This program demonstrates the
** use of XmPanedWindow.
**

**
**
**
**
**
**

***/

#include <Xm/PanedW.h>
#include <XmlLabel.h>
Wi dget appshell,

the_win,
labels[3];

void maine argc, argv
int argc;
char *argv[];

/* Application Shell
/* The Paned-Window
1* The chil dren

appshell = Xtlnitialize(argv[O], "Listing_6_13", NULL, 0,
&argc, argv);

the_win = XmCreatePanedWindow(appshell, "PanedWin", NULL, 0);
XtManageChild(the_win);

*/
*/
*/

21 Again, this is easier to show than describe. Considering the former example, but with
ski pAdj ust set to TRUE for the middle widget: first the bottom child is shrunk, then the
top child, then the middle child. The sample program shows this in action.

92 Programming with Motif

Listing 6.13. Continued.

labels[O] = XmCreateLabel(the_win, "Label_a" , NULL, a) ;

labels[1] = XmCreateLabel(the_win, "Label_I" , NULL, a) ;

labels[2] = XmCreateLabel(the_win, "Label_2", NULL, a) ;

XtManageChildren(labels, 3) ;

XtRealizeWidget(appshell) ;

XtMa in Loop() ;

Resource file used to produce Figure 6.8

*XmLabel.height: 50
*XmLabel.width: 100
*XmLabel.background: red
*XmLabel.foreground: white

*PanedWin.background: Gray50

*Label_l.skipAdjust: TRUE

Since the middle label has ski pA d jus t set to T RUE. you can see how it is the
last to be shrunk when you shrink the window. However. if you also set
skipAdjust to TRUE for the topmost label (LabeCO). the adjustment order will
be the same as if all were FALSE (or TRU E): first LabeC2 is shrunk. then
LabeCI. then LabeCO.

For further experimentation, 1:Iy adjusting the size and position of the sashes.
Notice especially the positioning differences between positive and negative
values. Also, set separatorOn to FALSE to see how the "feel" of the window
changes.

XmForm

XmForm is the most complex - and one of the most used - of Motif
managers. Derived from XmBulletinBoard, it adds the ability to specify
"attacnment" constraints - the ability to specify a child's position in terms of
the sides of the form or other children. As the size of the form changes, it
adjusts the size of its children to maintain the relationships defined by those
constraints.

Managers 93

Resource Table

Table 6.4(a) contains those resources defmed by XmFonn that are associated
with the fonn itself. For brevity, resources inherited from XmManager and its
superclasses are not shown; they are identical to those shown for
XmBulletinBoard. Resources defined by XmBulletinBoard are listed in Table
6.4(a) as a memory aid, but they are not described.

Table 6.4(b) contains the explicit constraint resources defmed by XmForm The
descriptions for both types of resources are mixed together; many of the
resources associated with the fonn modify the explicit constraints applied to
the fonn's children.

Table 6.4a. Frequently used resources: XmFonn

Name Inheritance Type Default
Value

fractionBase XmForm int 100

horizontalSpacing XmForm int 0

rubberPositioning XmForm Boolean FALSE

verticalSpacing XmForm int 0

allowOverlap XmBulletinBoard Boolean TRUE

buttonFontL i st XmBulletinBoard XmFontL i st NULL

labelFontList XmBulletinBoard XmFontList NULL

marginHeight XmBulletinBoard short 0

marginWidth XmBulletinBoard short 0

resizePolicy XmBulletinBoard unsigned XmRESIZE_
char ANY

shadowType XmBulletinBoard unsigned XmSHADOW_
char OUT

textFontL i st XmBulletinBoard XmFontList NULL

94 Programming with Motif

Table 6.4b. Explicit geometry constraints: XmFonn

Name Inheritan Type Default Value
ce

bottomAttachment XmForm unsigned XmATTACH_NONE
char

bottomOffset XmForm int 0

bottomPosition XmForm int 0

bottomWidget XmForm Widget NULL

1 eftAttachment XmForm unsigned XmATTACH NONE -
char

1 eftOffset XmForm int 0

leftPosition XmForm int 0

1 eftWi dget XmForm Widget NULL

rightAttachment XmForm unsigned XmATTACH - NONE
char

rightOffset XmForm int 0

rightPosition XmForm int 0

rightWidget XmForm Widget NULL

topAttachment XmForm unsigned XmATTACH - NONE
char

topOffset XmForm int 0

topPos it ion XmForm int 0

topWidget XmForm Widget NULL

Types of Attachment

Attachment is the method used to specify a child's position in terms of the
form. The form uses this information to determine how to position and size the
child as the form's size is changed. For example, if a child's position and size
are specified as a certain percentage of the size of the form, then that child
will be resized each time the form is - but will maintain a constant position
and size relative to the form's window.

Each side of the child has an attachment resource associated with it, which
describes how that side of the child is attached. These attachment resources
are named topAttachment, bottomAttachment, 1 eftAttachment, and
ri ghtAttachment. Legal values are from the list below:

• XmATTACH_NONE. The associated side of the child is not attached. This
value is often used to maintain a constant size for the child:

Managers 95

topAttachment and 1 eftAttachment are used to set position, wi dth and
hei ght specify size, and bottomAttachment and rightAttachment
contain XmATTACH_NONE - allowing the bottom and right sides to "float."

All four attachment resources have a default value of XmATTACH_NONE.
However, the form will not permit this situation in practice. As
described below, it forces the child to be attached both vertically and
horizontally.

• XmATTACH_SELF. The associated side of the child is permanently
attached to its initial position. This position may be calculated based
on the attachment of another side of the same child or explicitly
specified by the child's x, y. wi dth, and hei ght resources.

If one side of the child is permanently attached (via XmATTACH_SELF),
and the opposite side is attached in a relative manner (via
XmATTACHJORM, XmATTACH_POSITION. etc), then the child will grow and
shrink with the form. but will not maintain a constant relative size. If
all four sides are specified as XmATTACH_SELF. then the form acts as a
bulletin board in respect to that child - the child will maintain a
constant physical size and position.

• XmATTACH_FORM. The associated side of the child remains at a fIxed
offset from the same side of the form. As the form grows or shrinks, the
child remains at this fIxed offset. For example, if the left side of the
child is attached at an offset of 10 pixels from the left side of the form,
and the right side of the child is attached at an offset of 10 pixels from
the right side of the form, then the child's width will always be 20
pixels less than that of the form - and will change each time the form
is resized.

• XmATTACH_OPPOSITE_FORM. The associated side of the child is remains at
a fIxed offset from the opposite side of the form - eg, the left side of
the child is attached to the right side of the form. This attachment
method is often used when a fIxed-size child is needed on one side of a
form - such as a one-line status display at the bottom of the form. In
such a case, the child should not grow or shrink when the form does;
by attaching both sides of the child at a fIxed offset from the same side
of the form, this may be achieved.

• XmATTACH_POSITION. The associated side of the child is attached at a
relative position based on the associated dimension of the form - top
and bottom attachments are based on height, and left and right
attachments are based on width. The associated side of the child
remains at this relative position as the form is resized.

• XmATTACH_WIOGET. The associated side of the child is attached to the
opposite side of another widget - top attaches to bottom, and left
attaches to right. This attachment means that the position of the
associated side is dependent on the position of the attached side of the
attached widget. 22

22 For example, consider a fonn that contains two labels. The top side of the first label is
attached to the top of the fonn, while the bottom side of the second label is attached to
the bottom side of the fonn (both attachments are XmATTACH_FORM). The bottom side of
the first label is attached to the top side of the second label via XmATTACH_WIDGET. If, for
some reason, the second label should move downward (as it could if its topAttachment

96 Programming with Motif

• XmATTACH_OPPOSITE_WIOGET. The associated side of the child is attached
to the same side of another widget - top attaches to top. and so on.
This would typically be used in concert with XmATTACH_WIOGET in the
same way that XmATTACH_OPPOSlTE_FORM is used in concert with
XmATTACH_ FORM: to create a fIXed-size widget that moves in concert with
its sibling.

The attachment specification is only half of the story. Each side of the child
also has resources that modify the attachment: offset. position. and widget.
Depending on the form of attachment. one or more of these associated
resources may be used; unused modifiers are ignored.

Offset (Fonn) Attachment

Offset attachment specifies the position of each child widget in terms of a fIXed
offset from the sides of the form. As shown by Figure 6 .9. when the size of the
form is changed. the children of the form change their size as needed to
maintain the specified offsets.23

Figure 6.9. Example of offset (form) attachment

Label _O

-a-

- b -

Each side of the child has an associated offset resource: topOff set.
bottomOffset. 1 eftOff set. or ri ghtOffset. The offset value is the number of

resource contains XmATTACH_NONE and the fonn grew), the fIrst label would grow - its
bottom side would follow the top side of the second label.

23 Label_O has all four of its sides attached via XmATTACHJORM. so it grows as the fonn
grows. Label_l has its right. left. and bottom sides attached with XmATTACH_FORM. while
its top sides are attached with XmATTACH_OPPOSITEJORM.

Managers 97

pixels between the side of the widget and the side of the fonn.24 If the method
of attachment is XmATTACH_FORM, this offset value is positive; if XmATTACH
_OPPOSITCFORM, the offset value is negative.

Starting Offset: horizontalSpacing. verticalSpacing

Althou~ XmFonn inherits the margin resources of XmBulletinBoard, it does
not make use of them. Instead, it provides the resources h 0 r i z 0 n tal Spa c i n 9
and ve r tic a 1 Spa c i n g, which contain values that are added to all child offsets
- hori zontal Spaci ng is added to 1 eft 0 f f set and rightOffset,
vert i ca 1 Spaci ng is added to topOff s et and bottomOffset. In essence, all
offsets are measured from inside the margin defmed by h 0 r i z 0 n tal Spa c i n 9
and ve r tic a 1 Spa c i n g.

It is important to note that the horizontalSpacing and verticalSpacing
resources are associated with the fonn, whereas the attachment and offset
resources are associated with the fonn's children. Thus, spacing need only be
specified once - for the fonn - while offset must be specified for each child.

Position Attacrunent

Position attachment specifies the position of the child in tenns of a ratio
applied to the fonn's dimensions. The right and left sides are positioned in
tenns of the fonn's width, and the top and bottom are positioned in tenns of
the fonn's height. This ratio is expressed as a percentage by default, but can
be changed as needed via the fonn's fracti onBase resource (see below).

Use of position attachment means that, as the fonn's size changes, the
position of the child will change in absolute tenns, but will remain fixed in
relative tenns. This can be seen in Figure 6.10, where all four sides of both
labels are attached by position. When the fonn grows, the labels grow also,
maintaining relative size and position.

24 If another un i tType setting is in effect, pixel offsets are translated according to that
setting.

98 Programming with Motif

Figure 6.10. Example of position attachment

Label_O
Label_O

- 8-

- b -

Each side of a child has an associated position resource: 1 eft Po s it ion,
rightposition, topPosition, and bottomPosition. When gosition attachment
is used, the side's offset and widget resources are ignored. 5

A position resource always contains a positive integer, ranging from 0 to the
value contained in fract i onBase (nominally 100) . This number represents the
numerator of the position ratio; the value in fracti onBase is the denominator.
The ratio is multiplied by the form's current width or height to determine an
offset. For vertical positions, this offset is from the top of the form; for
horizontal, it's from the left side. 26 Each time the form's size changes, the
positions of all of its children are recalculated.

Position Denominator: fractionBase

As described above, the form's f r act ion Bas e resource is the denominator in
the ratio used to calculate the offset of a child's side. By default, fracti onBase
contains 100, meaning that all ratios are percentages.

25 This is not strictly true. While undocumented, the offset resources are available for
Motif 1.0 and 1.1 and specify that the associated side is actually placed at a flxed offset
from the relative position. While this technique may be useful for some programs, it is
not guaranteed to work in future releases of Motif.

26 For example, in Figure 6.10 (a & b). the left side of both labels is at position 10 (10% of
width), and the right side is at position 90 (90% of width). Similarly, the top of LabeCO
is at position 10 (10% of height), and the bottom of LabeC1 is at position 90 (90% of
height).

Managers 99

Why would you want to change f r act ion Bas e? Consider a fonn that is to be
divided equally among nine labels, where each label must abut its neighbors.
The default fract i onBase value of 100 won't work, since 100 doesn't divide
evenly by three, and positions must be specified in tenns of whole numbers.
Settin~ fractionBase to 90 solves the problem - now the top-left widget
extencfs from position 0 ,0 to 30,30, the top-middle widget goes from 30,0 to
60,30, the top-right goes from 60,0 to 90,30. and so on.

Since f r act ion Bas e is associated with the fonn, the same value is applied to
all children. As a result, you can't measure width by percentage and height by
thirds. You would have to use a fract i onBase that is divisible by both of the
desired measurements - in this case, 300 - and modify the position values
appropriately: 10% is represented by 30, 1,6 by 100.27

Widget Attachment

Widget attachment is the hardest attachment method to understand, perhaps
because it is only used in concert with other attachment methods. For
example. in Figure 6.11, only La be 1_1 uses widget attachment - its top side is
attached to the Label_O, and its bottom side is attached to Label_I. Label_O
and Label_1 use offset attachment. As a result, the top and bottom labels
don't change size when the fonn does, but the middle label does.

Figure 6.11. Example of widget attachment

- b -

When a child's side is positioned by widget attachment. its associated offset
(leftOffset, rightOffset, topOffset, and bottomOffset) and widget

27 In general, fract i onBase should contain the least common multiple of the desired
measurement sizes. If this rule were applied to the above example, its value could be
150 instead of 300.

100 Programming with Motif

(l eftWi dget, ri ghtWi dget, topWi dget, and bottomWi dget) resources are used;
the associated position offset is ignored.

The widget resource specifies the attached widget: it contains the widget ID of
that widget. The offset resource specifies the distance from the attached side
of the attached widget, in the same way that it specifies the distance from the
side of the form for offset attachment.

Widget attachment is difficult to use for two reasons. First, there is no way to
specify the attachment in a resource file - a s~eCification such as
"Label_I. topWi dget: Label_O" will result in an error. 8 Second, and more
importantly, the attached-to widget may not exist when the attaching widget is
created. Since the order of widget creation is dependent on the program code,
the attachment process is inextricably linked to that code - it must occur
after the attached-to widget has been created.

Default Top-Left Attachment: rubberPositioning

Although the resource table indicates a default value of XmATTACH_NONE for all
attachment resources, a form requires that its children establish an initial
horizontal and vertical position or one will be given to them. The vertical
pOSition is dependent on the topAttachment and bottomAttachment resources
- either one is sufficient to determine position. Similarly, the horizontal
pOSition is determined by the 1 eftAttachment and ri ghtAttachment resources.

If vertical pOSition cannot be determined (both topAttachment and
bottomAttachment contain XmATTACH_NONE), the form will impliCitly set the
topAttachment resource. Similarly, if horizontal pOSition cannot be
determined, the form will set the 1 eftAttachment resource. The value used
depends on the contents of the form's rubberPositi oni ng resource.

If rubberPositioning contains FALSE (the default), the child will default to
offset attachment. The value XmATTACH_FORM will be stored in the appropriate
child resources (topAttachment and/or 1 eftAttachment). The offset is
determined from the child's initial x and y resources (which may contain zero).

If rubberPositioning contains TRUE, the child will default to position
attachment. The value XmATTACH_POSITION will be stored in the appropriate
child resources (topAttachment and/or 1 eftAttachment), with the position
determined from the child's initial x and y resources (which are converted
according to the form's dimensions and fracti onBase value).

28 The specific error message is "X Toolkit Warning: No type converter registered for
'String'to 'Window' conversion". As with un; tType, this error message indicates that the
resource manager is unable to convert the ASCII widget name to its internal form - a
widget ID. Additionally, you will get error messages from the form indicating that the
attachment widget is NULL, because the resource manager was unable to perform the
name-to-widget conversion.

Managers 101

XmForm Examples

Form Attac1unent

Figure 6.9 was produced using the program and resource me shown in Listing
6.14. As you can see, the program itself simply creates the form and labels
and is largely identical to the previous sample programs. The resource me is
where all the work takes place, and it is described in detail after the source
listing.

Listing 6.14. Program and resource me to produce Figure
6.9

/***

**
** listing_6_14.c
**
**
**
**

Two labels and a Form. This program demonstrates the use of
XmForm and its applied constraints.

**
**
**
**
**
**

***1

#include <Xm/Form.h>
IIi nc 1 ude <Xm/Label.h>

Widget appshell, 1* Application Shell
theform, 1* The Form
labels[2]; 1* The children

void maine argc, argv
int argc;
char *argv[];

appshell = Xtlnitialize(argv[O], "Listing_6_14", NULL, 0,
&argc, argv);

theform = XmCreateForm(appshell, "TheForm", NULL, 0);
XtManageChild(theform);

*1
*1
*1

102 Programming with Motif

Listing 6.14. Continued.

1 abel s[OJ = XmCreateLabel (theform. "LabeLO". NULL. °);
labels[1J = XmCreateLabel (theform. "Label_I". NULL. °);
XtManageChildren(labels. 2);

XtReal i zeWi dget(appshell);
XtMai nLoop();

Resource file used to produce Figure 6.9

*XmLabel.background:
*XmLabel . foreground:

*TheForm.height:
*TheForm.width:
*Label_O.topAttachment:
*Label_O.topOffset:
*Label_O.bottomAttachment:
*Label_O.bottomOffset:
*Label_O.leftAttachment:
*Label_O.leftOffset:
*Label_O.rightAttachment:
*Label_O.rightOffset:

*Label_1.topAttachment:
*Label_1.topOffset:
*Label_1.bottomAttachment:
*Label_1.bottomOffset:
*Label_1.leftAttachment:
*Label_1.leftOffset:
*Label_1.rightAttachment:
*Label_1.rightOffset:

red
white

100
100
ATTACH FORM
10
ATTACH_FORM
55
ATTACHJORM
10
ATTACH_FORM
10

ATTACH OPPOSITE_FORM
-45
ATTACH_FORM
10
ATTACH_FORM
10
ATTACH_FORM
10

The first point of interest is that the form's he i 9 h t and wid t h resources are
specified explicitly. This must be done because the form has no way of
determining its size from the layout of its children - their layout is dependent
on the size of the form. If you do not explicitly specify a form's size, it will
attempt to determine its size from the layout of its children. Assuming that the
label size was specified above, the form would be just large enough to display
the largest child/offset combination (try it).

Managers 103

The second point of interest is that sides using XmATTACH_OPPOSlTE_FORM
specify a negative offset. This is a requirement that is often forgotten. resulting
in an incorrect arrangement.

Position Attachment

To demonstrate position attachment (Figure 6.10), use the program from
Listing 6.14 but substitute the resource file from Listing 6.15. The key change
to this file is that the offset resources have been replaced by position
resources. which contain ratios - not explicit positions.

Listing 6.15. Resource file to produce Figure 6.10

Resource file used to produce Figure 6.10

*XmLabel.background:
*XmLabel.foreground:

*TheForm.height:
*TheForm.width:

*Label_O.topAttachment:
*Label_O.topPosition:
*Label_O.bottomAttachment:
*Label_O.bottomPosition:
*Label_O.leftAttachment:
*Label_O.leftPosition:
*Label_O.rightAttachment:
*Label_O.rightPosition:

*Label_1.topAttachment:
*Label_1.topPosition:
*Label_1.bottomAttachment:
*Label_1.bottomPosition:
*Label_1.leftAttachment:
*Label_1.leftPosition:
*Label_1.rightAttachment:
*Label_1.rightPosition:

Widget Attachment

red
white

100
100

ATTACH POSITION
10
ATTACH_POSITION
45
ATTACH_POSITION
10
ATTACH_POSITION
90

ATTACH POSITION
55
ATTACH_POSITION
90
ATTACH_POSITION
10
ATTACH_POSITION
90

As indicated above. widget attachment is a complex process. To produce
Figure 6.11. the program and resource file from Listing 6.16 were used. The

104 Programming with Motif

resource specifications for Label_O and Label_2 may be safely ignored; interest
centers around Label 1.

Listing 6.16. Program and resource file to produce Figure
6.11

/***
**
**
**
**
**
**

Three labels and a Form. This program demonstrates the use of
XmForm's "Widget Attachment" constraint.

**
**
**
**
**
**

***/

ffinclude <Xm/Form.h>
ffinclude <Xm/Label.h>

Widget appshell, /* Application Shell
theform, /* The Form
labels[3]; /* The children

Arg arglist[2]; /* Used to set attachment

void main(argc, argv
int argc;
char *argv[];

appshell = Xtlnitialize(argv[O], "Listing_6_l6", NULL, 0,
&a rgc, a rgv);

theform = XmCreateForm(appshell, "TheForm", NULL, °);
XtManageChild(theform);

labels[O] XmCreateLabel(theform, "Label_O", NULL, °);
labels[l] XmCreateLabel(theform, "Label_I", NULL, °);
labels[2] XmCreateLabel(theform, "Label 2" NULL, °);
XtManageChildren(labels, 3);
XtSetArg(arglist[O], XmNtopWidget,
XtSetArg(arglist[l], XmNbottomWidget,
XtSetValues(labels[l], arglist, 2);

labels[O]);
labels[2]);

*/
*/
*/
*/

Listing 6.16. Continued.

XtRealizeWidgetC appshell);
XtMainLoopC);

Resource file used to produce Figure 6.11

*XmLabel . background:
*XmLabel.foreground:

*TheForm.height:
*TheForm.width:

*Label_O.topAttachment:
*Label_O.topOffset:
*Label_O.bottomAttachment:
*Label_O.bottomOffset:
*Label_O.leftAttachment:
*Label_O.leftOffset:
*Label_O.rightAttachment:
*Label_O.rightOffset:

*Label_1.background:
*Label_1.topAttachment:
*Label_1.bottomAttachment:
*Label_1.leftAttachment:
*Label_1.leftOffset:
*Label_1.rightAttachment:
*Label_1.rightOffset:

*Label_2.topAttachment:
*Label_2.topOffset:
*Label_2.bottomAttachment:
*Label_2.bottomOffset:
*Label_2.leftAttachment:
*Label_2.leftOffset:
*Label_2.rightAttachment:
*Label_2.rightOffset:

red
white

95
100

ATTACH FORM
10
ATTACH_OPPOSITE FORM
-35
ATTACH_FORM
10
ATTACH_FORM
10

Blue
ATTACH_WIDGET
ATTACH_WIDGET
ATTACH_FORM
10
ATTACH_FORM
10

ATTACH_OPPOSITE_FORM
-35
ATTACHJORM
10
ATTACHJORM
10
ATTACH_FORM
10

Managers 105

The label creation process is identical to what has gone before. However, right
after the labels are created, the attachments are stored in Label_I. The
attachment to LabeLO could have been performed when LabeLl was created

106 Programming with Motif

- a valid widget ID existed for La be 1_0 at that time. However. I decided to set
the attachments at one point for improved clarity.

In the resource file. the left and right attachments are to the form. which will
allow the label to grow and shrink horizontally. The top and bottom
attachments are set to XmATTACH_WIDGET; these attachments only become valid
when the topWi dget and bottomWi dget resources are filled.29

29 If attachment is set to widget, but the associated widget resource has not been filled
(contains NULL), the attachment acts like XmATTACHJORM, with an offset ofO.

7
Buttons

Overview
Buttons in Motif are varied in appearance and operation and are one of the
primary means by which the user controls a program. Normal pushbuttons
appear throughout a program, most often in dialog boxes. Cascade buttons
(along with normal pushbuttons) are used to build menus. Arrow buttons are
used in scrollbars, toggle buttons are used for "yes/no" choices, and drawn
buttons are used when the program needs to display complex or changing
graphics in a pushbutton.

All Motif buttons present a similar appearance and interaction. The button's
shadow border normally causes it to appear to protrude from the screen. The
user anns the button by moving the pointer over the screen button and pressing
the its button. When armed, the screen button changes its shadow, so that it
appears to be inset into the screen. If the user then releases the pointer button,
the screen button is activated - it notifies the program that it was "pressed,"
and its shadow returns to normal. If the user moves the pointer away from the
screen button, without releasing the pOinter button, it is disanned - its shadow
returns to normal and nothing happens. I A toggle button acts in a slightly
different way: clicking the pointer button while on a tOMle button changes its
status (and shadow) between "on" and "off' - when on, tlie button appears to be
inset; when off, it appears to protrude.

This chapter describes three types of buttons: normal pushbuttons (the
XmPushButton class), arrow buttons (the XmArrowButton class), and toggle
buttons (the XmToggleButton class). Cascade buttons (the XmCascadeButton
class) are described in Chapter 12; drawn buttons (the XmDrawnButton class) do
not appear in this book.

I As you will see in the next chapter, a button actually notifies the program when it is
armed, disarmed, or activated. Most programs, however, act only on button activation.

107

108 Programming with Motif

Inheritance
Buttons are primitive widgets, descended in some way from XmPrimitive. 2 As
shown in Figure 7.1, buttons that display a label are derived from XmLabet
XmArrowButton, which does not display a label, is derived directly from
XmPrimitive.

Figure 7.1. Motif buttons class tree

XmDrawnButton XmT ogg leButton

XmPushButton

Normal pushbuttons, instances of the XmPushButton class, are the most
commonly used buttons in a Motif program. They are used extensively in menus:
cascade buttons are used to "pull down" or "pop up" the menus, but normal
pushbuttons are used for the menu choices. They are also used extensively in
dialog boxes: all dialogs adhering to the style gUide have three buttons named
OK, Cancel, and Help. Aside from these common uses, many programs use
pushbuttons in unique ways, either to control an action or simply as a means of
input.

Derived from XmLabet a pushbutton looks like a label with a shadow border.
Figure 7.2 shows a button as it normally appears (a), and as it appears when

2 As stated in Chapter 2, a "primitive" widget is one that - unlike a manager - cannot
have another widget as its child.

Buttons 109

pressed (b).3 As you can see, the top and bottom shadows reverse when the
button is pressed, giving the illusion that the button is inset rather than
protruding. You might also notice that the background color of 7.2(b) is slightly
darker than that of 7 .2(a) . When a button is pressed, its background color
changes to a shade between the normal background color and the bottom
shadow color, increasing the impression that the button is set into the screen.

Figure 7.2. Sample pushbuttons

Pres~ Het'e F't'ess Het'e

- a - -11-

Resource Table

XmPushButtoris resource table is similar to that of XmLabel - as described
above, much of a button's appearance depends on its derivation from XmLabeL
Table 7.1 lists those resources provided by the XmLabel and XmPushButton
classes. XmLabel's 1 abel In sen s it; YeP; xmap resource, which was not described
in Chapter 5, is part of this list - it exists primarily for buttons. While most of
the resources defined by XmPrimitive and its superclasses are not listed here, the
Core resource sen s ; t; ve and the XmPrimitive shadow resources are because they
are more appropriate to pushbuttons than they are to labels. Finally, callback
resources - those resources used by a pushbutton to signal the program of its
status - are described in the next chapter.

3 This example shows the pushbutton as the child of a bulletin board, not standing on its
own. I used the bulletin board solely for its margin to better show the pushbutton's
shadow.

110 Programming with Motif

Table 7.1. Frequently used resources: XmPushButton

Name Inheritance Type Default Value

armColor XmPushBuUon Pixel dynamic

armPixmap XmPushBuUon Pixmap XmUNSPECIFIED_ PIXMAP

fillOnArm XmPushBuUon Boolean TRUE

showAsDefault XmPushBuUon short 0

alignment XmLabel unsigned XmALIGNMENT_CENTER
char

fontList XmLabel XmFontList "Fixed"

label Insensitive XmLabel Pixmap XmUNSPECIFIED PIXMAP -
Pixmap

labelPixmap XmLabel Pixmap XmUNSPECIFIED_PIXMAP

labelString XmLabel XmString dynamic

labelType XmLabel unsigned XmSTRING
char

recomputeSize XmLabe1 Boolean TRUE

stringDirection XmLabel XmString XmSTRING_ DIRECTION L - -
Direction TO_R

bottomShadow XmPrimitive Pixel dynamic
Color

shadow XmPrimitive short 2

Thickness

topShadowColor XmPrimitive Pixel dynamic

sensitive Core Boolean TRUE

Resources Derivedfrom XmLabel

In all respects other than interaction, a pushbutton behaves like a label.
Pushbuttons may be either textual (in which case al ignment, fontList,
labelString, and stringDirection are used) or graphic (in which case
labelPixmap and labelInsensitivePixmap) are used. As with XmLabel, the
1 abel Type resource determines whether the pushbutton is textual or graphic.

Armed Appearance: armColor, armPixmap, fillOnArm

As stated above, a pushbutton is armed when the user presses the pointer
button while the pointer is positioned over the pushbutton. As shown in Figure
7.2, an armed button changes both its shadow border and its background color.

Buttons III

The fi 11 OnArm resource controls the background change: when it contains TRUE
(the default). the background color changes; when it contains FALSE, the
background color remains the same.

If fi 11 OnArm contains TRUE, the change depends on the label's type. If the label is
graphic (labelType contains XmPIXMAP). the contents of the armPixmap resource
are displayed instead of 1 abel Pi xmap. If the label is textual (l abelType contains
XmS T R I N G), the normal background color is replaced by a rmC 0 lor.

The armCo lor resource may be specified explicitly (for example, change the
button's color from red to green when it is armed), or it may be determined
dynamically. If determined dynamically, the color chosen will be a shade
between the normal background color and the normal bottom shadow color. In
some cases, this change in shade may be so slight as to be unnoticeable.

Default Button Indication: showAsDefault

In many cases - especially dialog boxes - a group of pushbuttons will be
displayed, with one button being the default. Exactly what "default" means
depends on the circumstance: for example, in a normal dialog, the user may
"press" the default button by hitting the Retwn key on the keyboard. The
showAsDefaul t resource specifies that the associated button is to be the default
button, and it specifies the thickness of a "second shadow" that indicates that
the button is a default.4

Sensitivity: sensitive, labelInsensitivePixmap

Sensitivity refers to whether or not a widget accepts input: it does when
sensitive, it doesn't when insensitive. The ability to specify sensitivity is
especially useful in a menu structure: any menus that are not applicable to the
current situation may be set insensitive, prohibiting the user from making the
associated menu choice.

The sen sit i ve resource, defined as part of the Core class, determines the
sensitivity of a button. When it contains T RUE (the default). the button is
sensitive. When it contains FALSE, the button is insensitive. Note that all widgets
have a sens it i ve resource, but it directly affects primitive widgets only.5

Unlike most resources, sens it i ve should not be changed using XtSetVal ues
because sensitivity must propagate up and down the instance tree. Instead, you
should use the function X t Set Sen sit i v e, prototyped in Listing 7. 1. The
parameters of this function are the ID of the widget to be modified (w) and the
new value ofits sensitive resource (va 1 ue) - either TRUE or FALSE.

4 In Motif Release 1.1, showAsDefaul t is used in concert with
defaul tButtonShadowThi ckness - a new resource. If defaul tButtonShadowThi ckness is
zero, then showAsDefaul t works as described above. If, however,
defaul tButtonShadowThi ckness is nonzero, it specifies the actual shadow thickness, and
showAsDefaul t merely specifies the default button. This behavior allows the program to
change the default button without concern for the proper shadow thickness (ie, the
user can specify shadow thickness in the resource file, and the program can specify the
current default simply by putting a nonzero value into showAsDefaul tJ.

5 If a manager is made insensitive. its children become insensitive. The manager.
however. is not affected.

112 Programming with Motif

Listing 7.1. Function prototype: XtSetSensitive

void XtSetSensitive(w, value)
Widget w;
Boolean value;

The appearance of an insensitive button depends on the button's type, textual or
graphic. An insensitive graphic button displays 1 abe 1 I nsens; t; YeP; xmap instead
of 1 abel P; xmap. An insensitive textual button, on the other hand, has its label
"grayed out" as shown in Figure 7.3. The odd appearance of the label results
from this way in which this is done: rather than changing the label's foreground
color, a shadow mask is applied to its contents.

Figure 7.3. Insensitive pushbutton

XmPushButton Example: Press Here
Figure 7.2 was produced using the program and resource me of Listing 7.2. As
described above, the bulletin board exists solely to provide "dead space" to better
illustrate the button's shadow border. It could be removed, resulting in a
program almost identical to Listing 5.1.

Buttons 113

Listing 7.2. Program and resource file: XmPushButton example

1***

**
**
**
**
**
**

Pushbutton and Bulletin Board. This program demonstrates the
appearance and interaction of XmPushButton.

**
**
**
**
**
**

***/

#include <Xm/BulletinB.h>
#include <Xm/PushB.h>

Widget appshell,
the_bb,
the_btn;

1* Application Shell *1
1* A Bulletin Board (border) *1
1* The PushButton

void main(argc, argv
int argc;
char *argv[];

appshell = Xtlnitialize(argv[OJ. "Listing_7_02", NULL, 0,
&argc, argv);

the_bb = XmCreateBulletinBoard(appshell, "TheBB", NULL, 0);
XtManageChild(the_bb);

the_btn = XmCreatePushButton(the_bb, "TheBtn", NULL, 0);
XtManageChild(the_btn);

XtRealizeWidget(appshell);
XtMainLoop() ;

Resource file used to produce Figure 7.2

*1

114 Programming with Motif

Listing 7.2. Continued.

*TheBB.marginWidth:
*TheBB.marginHeight:

*TheBtn.height:
*TheBtn.width:
*TheBtn.foreground:
*TheBtn.background:
*TheBtn . shadowThickness:
*TheBtn.labelString :

10
10

50
100
White
Gray50
4
Press Here

As you can see, this sample program does not make use of any of
XmPushButtoris resources. It simply treats the button like a label. As an
experiment, you should try changing the armCol or resource; the red-to-green
change described above is interesting - the shadow colors remain based on red.
You can also change the sens it i ve resource to produce the display of Figure 7.3
and disable the button.

XmArrowButton

Arrow buttons are directional buttons, as shown in Figure 7.4. While most
people associate arrow buttons with scrollbars, where they are used to "single
step" the slider, they are useful in any place where you want to perform a
directional increment.

Figure 7.4. Sample arrow buttons

Buttons 115

Resource Table

Table 7.2 lists the resources defined by XmArrowButton. This table is extremely
short for three reasons. First. since XmArrowButton is derived from XmPrimitive.
it supports all resources defined by XmPrimitive and its superclasses; these have
been described previously. Second. callback resources are not described until
the next chapter; they are identical to those provided by XmPushButton. Finally.
XmArrowButton is a pretty simple widget. with limited functionality.

Table 7.2. Frequently used resources: XmArrowButton

Name Inheritance Type Default Value

arrowDirection XmArrowButton unsigned XmARROW_UP
char

Arrow Appearance: arrowDirection

The sole resource dermed by the XmArrowButton class describes the orientation
of the arrow. The values for this resource are XmARROW_UP (the default).
XmARROW_DOWN. XmARROW_LEFT. and XmARROW RIGHT. They should be self
explanatory .

XmArrowButton Example
The program and resource fIle of Listing 7.3 were used to produce Figure 7.4.
This program also uses a bulletin board to hold the buttons. In this case. it is
necessary because more than one button is displayed. Note that the "up" button
does not set the a r r ow D ire c t ion resource. but relies upon its default value.

Listing 7.3. Program and resource fIle: XmArrowButton
example

1***

**
** listing_7_3.c
**
** Arrow-Buttons and Bulletin Board. This program demonstrates the
** appearance and interaction of XmArrowButton.
**

**
**
**
**
**
**

***/

#include <Xm/BulletinB.h>
#include <Xm/ArrowB.h>

Widget appshell.
the_bb.

1* Application Shell
1* A Bulletin Board

*1
*1

116 Programming with Motif

Listing 7.3. Continued.

buttons[4]; /* The Arrow Buttons

void maine argc, argv
int argc;
char *argv[];

appshell = XtInitialize(argv[O], "Listing_7_03", NULL, 0,
&argc, argv);

the_bb = XmCreateBulletinBoard(appshell, "TheBB", NULL, 0);
XtManageChild(the_bb);

buttons[O]
buttons[l]
buttons[2]
buttons[3]

XmCreateArrowButton(the_bb, "Up", NULL, 0);
XmCreateArrowButton(the_bb, "Down". NULL, 0);
XmCreateArrowButton(the_bb, "Left", NULL, 0);
XmCreateArrowButton(the_bb, "Right", NULL, 0);

XtManageChildren(buttons, 4);

XtReal i zeWidget(appshell);
XtMainLoop();

Resource file used to produce Figure 7.4

*XmArrowButton.width:
*XmArrowButton.height:
*XmArrowButton.foreground:
*XmArrowButton.background:
*XmArrowButton.shadowThickness:

40
40
black
gray50
4

*Up.x:
*Up.y:

*Down.arrowDirection:
*Down.x:
*Down.y:

*Left.arrowDirection:
*Left.x:
*Left.y:

*Right.arrowDirection:
*Ri ght. x:
*Right.y:

50
10

ARROW_DOWN
50
90

ARROW_LEFT
10
50

ARROW_RIGHT
90
50

*/

Buttons 117

XmToggleButton

Most buttons are used for "one-shot" program notification: the user presses the
button to initiate some action. Toggle buttons, on the other hand, maintain
"on/off' information: the program is notified when the state changes, but it can
access the current state at any time.

As shown in Figure 7.5, toggle buttons can have many different appearances. All
of these examples use a row-column manager to hold the buttons. This is a
common technique, because in most cases toggle buttons are used in groups
that maintain information about related items.6 In fact, as you saw in Chapter 6,
XmRowColumn manager provides resources specifically for maintenance of
groups of toggle buttons.

Figure 7.5(a) shows the toggle buttons in their "check-box" mode. The button's
state is indicated by the box at its left side: an inset appearance means the
button is "on" (set), a protruding appearance means the button is "off' (unset).7
In a check-box layout, any number of buttons in the group may be on - buttons
are not related.

Figure 7.5(b) shows the toggle buttons in their "radio-button" mode. In this
mode, only one button in a group may be on at a time, similar to the tuning
buttons on a radio. When the user clicks on a button that is off, that button
turns itself on and notifies the row-column to turn all other buttons off. Radio
button mode is denoted by the diamond-shaped indicator, instead of the square
indicator of check-box mode.

Figure 7.5(c) shows the buttons without their indicators. In this case, the entire
button remains inset to indicate that it is on. There is no difference in
appearance between radio-button mode and check-box mode in this state.

Figure 7.5(d) shows the buttons in a mode where the indicator disappears when
the button is off. This mode is set by default when a toggle button is held in a
menu; it is used to show the current state of a single item, as opposed to the
state of a group of related items.8

6 For example, a word processing application could use a group of toggle buttons to
indicate the styles applied to the current text selection - bold, italic, underline, etc.

7 "Set" and "unset" are the words commonly used to describe a toggle button's state -
primarily because the name of the associated resource is set. To avoid confUSion with
the resource, this book uses the words on and off.

8 For example, many word processors have an "outlining" mode, which is either on or off.
This mode is typically set from a menu, where the outlining chOice may appear among
other unrelated items. In this case, you would want only to show the indicator to
indicate that outline mode is in effect; when in normal mode, there is no need to display
an indicator.

118 Programming with Motif

Figure 7.5. XmToggleButton examples

- a - -p-

- c- -d-

Resource Table

To support the varied modes shown in Figure 7.5, XmToggleButton has a fairly
long list of resources, shown in Table 7.3. As it is derived from XmLabel, it also
provides a label's resources; these are listed here, but not described. As with
XmPushButton and XmArrowButton, callback resources are postponed until the
next chapter.

Buttons 119

Table 7.3. Frequently used resources: XmToggleButton

Name Inheritance Type Default Value

fillOnSelect XmToggleButton Boolean TRUE

indicatorOn XmToggleButton Boolean TRUE

indicatorType XmToggleButton unsigned XmN OF - MANY -
char

selectColor XmToggleButton Pi xe 1 dynamic

selectInsensitive XmToggleButton Pixmap XmUNSPECIFIED PIXMAP -
Pixmap

selectPixmap XmToggleButton Pixmap XmUNSPECIFIED_PIXMAP

set XmToggleButton Boolean FALSE

spacing XmToggleButton short 4

visibleWhenOff XmToggleButton Boolean TRUE

alignment XmLabel unsigned XmALIGNMENT - CENTER
char

fontList XmLabel XmFontL i st "Fixed"

1 abel Insensi ti ve XmLabel Pixmap XmUNSPECIFIED PIXMAP -
Pixmap

labelPixmap XmLabel Pixmap XmUNSPECIFIED_PIXMAP

labelString XmLabel XmString dynamic

1 abelType XmLabel unsigned XmSTRING
char

recomputeSize XmLabel Boolean TRUE

stringDirection XmLabel XmString XmSTRING - DI RECTI ON L - -
Direction TO_R

sensitive Core Boolean TRUE

Resources from XmLabel

Like XmPushButton, XmToggleButton is derived from XmLabel,and, therefore,
supports all resources defined by XmLabel. When the indicator is present, the
toggle button places the button's label - text or pixmap - to the right of the
indicator; the spa c i n g resource specifies the distance between the indicator and
labe1.9

9 Note that presence of the indicator is separate from display of the indicator. Figure
7.5(c) shows toggle buttons without the indicator present; Figure 7.5(d) shows toggle
buttons without the indicator displayed.

120 Programming with Motif

Sensitivity

Like all widgets, a toggle button may be disabled by setting its sensiti ve
resource to FALSE. The appearance of an insensitive toggle button depends on
whether it is a textual or pixmap button. For a text button, the button's label
area is "grayed out" as in Figure 7.3. For a pixmap button, the pixmap changes,
as described under Pixmap Behavior, below. In both cases, the indicator remains
unaffected.

Status: set

The current status of a toggle button - whether it is on or off - is held in the
resource set. This resource contains TRUE when the button is on, FALSE when
the button is off. A program may read this resource at any time to determine the
current state of the button, and it may change the button's state by installing a
new value. Whenever the set resource is changed, the button updates its
indicator.

The default value of the set resource is FALSE. Changing the value in the
resource file is a good method of providing program configuration in a user
visible fashion.

Indicator Presence/Display: indicatorOn, visibleWhenOff

The i ndi catorOn resource controls the presence or absence of the button's
indicator. When i ndi catorOn contains TRUE (the default). the button's indicator is
used. When it contains FALSE, the button's status is shown by the appearance of
the entire button, as in Figure 7.5(c).

The presence or absence of the indicator should not be confused with an
indicator that simply isn't disPlared, as in Figure 7.5(d). The vi si bl eWhenOff
resource controls the display 0 the indicator: when it contains TRUE, the
indicator is displayed at all times, regardless of the button's status. When
vis i b 1 e W hen 0 ff contains FA L S E, the indicator is only displayed when the button
is on (set contains TRUE).

The default value for visibleWhenOff depends on the button's parent; in most
cases, the default value is TRUE. When the parent is a menu, however, the default
value is FALSE. This behavior allows the program to display the condition of
modal menu choices. You should be aware that a menu parent will force the
value of vi si bl eWhenOff to FALSE, even if it is explicitly set in a resource file. If
you wish the value to be T RUE, you must programmatically set it after widget
creation.

Indicator Appearance: indicatotrype, spacing

When the toggle button is used as a check box, its indicator is a square. When
used as a radio button, its indicator is a diamond. 10 The i n die a tor Ty p e resource
controls this appearance: a value of XmN_OF _MANY (the default), specifies a square,

10 The radio-button indicator is a diamond only on a color display. On a monochrome
display, it is a circle.

Buttons 121

a value of XmONE_OF _MANY specifies a diamond. If the towe button is the child of
a row-column, this value may be set automatically, as described below.
Otherwise, it may be set in the resource file.

Note that this resource does not control the behavior: a towe button by itself
can use any type of indicator and will always act as a checkbox. Radio-button
behavior is provided by the row-column parent.

The spa c i n 9 resource specifies how many pixels separate the indicator from the
button's label. By default, this spacing is four pixels. This resource is ignored
when the indicator is not used (i ndi catorOn contains FALSE). It is used, however,
when the indicator is simply not displayed - in that case, the label is at all
times positioned as if the indicator were displayed.

Selection Behavior: flllOnSelect. selectColor

The fi 11 OnSel ect and sel ectCol or resources of XmToggleButton perform the
same function as the fi 11 OnArm and armCol or resources of XmPushButton. When
the toggle button is on (set contains TRUE) and fi 11 OnSel ect contains TRUE (the
default), the indicator's top and bottom shadows are swapped to give it an inset
appearance, and its background color is replaced by the color in the sel ectCol or
resource. 11

Pixmap Behavior: selectPixmap. selectInsensitivePixmap

For toggle buttons that display a pixmap, the sel ectPi xmap and
selectlnsensitivePixmap resources are used. The selectpixmap resource
contains a pixmap that is displayed when the button is on (set contains TRUE).
The default value of this resource is the unspecified pixmap, which means that
the normal pixmap (1 abel Pi xmap) is displayed, and only the indicator changes. 12

The sel ectlnsensit i vePi xmap resource is displayed when the button is on but is
insensitive (the user can't change its state). This resource also defaults to the
unspecified pixmap, so the default action is to display the contents of the
XmLabel resource 1 abel Insens i ti vePi xmap. If neither of these resources contain
a value, then the label is left completely blank - without even an indicator.

Related XmRowColumn Resources: radioBehavior. radioAlwaysOne

As described above, radio-button behavior is actually provided by the
XmRowColumn widget class. The XmRowColumn resource radi oBehavi or
controls this behavior: when it contains TRUE, all toggle-button children of the
row-column act as radio buttons - only one may be on at a time. The default
value of radi oBehavi or is FALSE, which causes toggle-button children to be
treated as check boxes.

11 Note that. if the indicator is not present (i ndi catorOn contains FALSE), the background
color and shadow changes are applied to the whole button; otheIWise, they just affect
the indicator.

12 The indicator changes even if sel ectPi xmap identifies a valid pixmap.

122 Programming with Motif

Not only does the radi oBehavi or resource cause the row-column to manage the
status of its toggle-button children, it also causes it to change their
i ndi catorType resource. When the row-column is being used for radio buttons
(radi oBehavi or contains TRUE), it will set the i ndi catorType resource of its
toggle-button children to XmONE_OF _MANY. When radi oBehavi or contains FALSE,
the row-column sets its children's i nd i ca to rType resource to XmN_O F _MANY.

The XmRowColumn resource r a d i oA 1 way s On e further refines the behavior of
radio-button children. When radi oA 1 waysOne contains TRUE (the default), the row
column guarantees that the user will be unable to tum off one radio button
without turning another one on. If the user tries to do so (by clicking the current
"on" button), the row-column keeps the button on. If radi oA 1 waysOne contains
FALSE, the user may tum off the current "on" button, resulting in all buttons
being off (at no time, however, is more than one button permitted to be on).

You should note that radioAlwaysOne does not guarantee that one button will
always be on, only that the user cannot cause all buttons to be off. If the
program does not select an initial "on" button, none of the buttons will be on.
Moreover, if the program unmanages or unmaps the current "on" button, none of
the buttons will be on. 13

XmToggleButton Examples
As with many of the figures in this book, the four configurations of Figure 7.5
were produced using a single program, shown in Listing 7.4; the resource file is
responsible for the differences between the configurations. This program is the
by now familiar "create a manager, create its children, and let things run."
Resource files for the simple check-box and simple radio-button configurations
are described below; the configurations of Figures 7.5 (c) and (d) are feft as an
exercise for the reader.

Listing 7.4. Program and resource file: XmToggleButton
example

1***

** **
** listing_7_4.c
**
** Toggle-buttons and Row-Column. This program demonstrates the
** appearance and interaction of XmToggleButton. both as a check
** box and as a radio button.
**

**
**
**
**
**
**

13 However, if the program attempts to programmatically tum off the currently on button,
the row-column will tum it back on. In this case, programmatic control is equivalent to
user control.

Buttons 123

Listing 7.4. Continued.

***/

#include <Xm/RowColumn.h>
#include <Xm/ToggleB.h>

Wi dget appshell,
row_col,
buttons[3J;

void main(argc, argv
int argc;
char *argv[J;

/* Application Shell
/* The parent
/* The Toggle Buttons

appshell - XtInitialize(argv[OJ, "Listing_7_04", NULL, 0,
&argc, argv);

row_col - XmCreateRowCol umn(appshell, "RowCol", NULL, °);
XtManageChild(row_col);

buttons[OJ XmCreateToggleButton(
buttons [1 J XmCreateToggleButton(
buttons [2J XmCreateToggleButton(
XtManageChildren(buttons, 3) ;

XtRealizeWidget(appshell);
XtMainLoop() ;

Radio Buttons

row_col, "Btn_O" , NULL,
row_co 1 , "Btn 1" NULL,
row_co 1 , "Btn_2" , NULL,

°) ; °) ; °) ;

*/
*/
*/

The resource file of Listing 7.5 is responsible for Figure 7.5(a). As you can see,
the row-column was left with its default settings, as were the toggle buttons
(excepting appearance resources). Note again the need to explicitly set the
recomputeS i ze resource; if left at its default setting. the labels shrink to their
minimum necessary size.

124 Programming with Motif

Listing 7.5. Resource file to produce Figure 7.5(a)

Resource file used to produce Figure 7.5a

*XmToggleButton.recomputeSize:
*XmToggleButton.height:
*XmToggleButton.width:
*XmToggleButton.foreground:
*XmToggleButton.background:
*XmToggleButton.shadowThickness:

Check Boxes

FALSE
30
90
black
gray50
4

To produce the configuration of Figure 7.5(b), the resource file of Listing 7.6 was
used. The only change was to the row-column's radi oBehavi or resource. Setting
this to TRUE changed the appearance of the toggle buttons' indicators and
imposed the radio-button behavior.

Listing 7.6. Resource file to produce Figure 7.5(b)

Resource file used to produce Figure 7.5b

*XmToggleButton.recomputeSize:
*XmToggleButton.height:
*XmToggleButton.width:
*XmToggleButton.foreground:
*XmToggleButton.background:
*XmToggleButton.shadowThickness:

*RowCol.radioBehavior:

FALSE
30
90
black
gray50
4

TRUE

8
Events and Callbacks

Overview
To this point, all of the programs in this book have been output-only. Once the
XtMa in Loop function is called, the programmer loses control of the program.

This chapter describes the event mechanism, by which the program is notified of
changes in its environment. Each action of the user, from pointer movement to
changing the size of a window, results in an event. A client may also send and
receive an interclient communication event to or from another client.

Event-Driven Programming

The processing of a traditional program is linear in nature: the program is given
input, performs some operations on that input, and produces output. This
programming style, when applied to a user-oriented task, gives rise to decidedly
user-unfriendly programs - which for decades have been the only programs
available.

A user-oriented program, on the other hand, waits for user input, processes that
input, then comes back for more. This results in a circular program structure,
with no clear endpoint. In short, this is event-driven programming: user input is
an event, the program determines what sort of processing to perform based on
that event, and when it's done, it waits for another event.

In a Motif program, the programmer does not need to handle such events
directly. Instead, the programmer specifies functions to be performed as a result
of an event (such as the pressing of a button), and the widget is responsible for
calling these functions when the event happens. The XtMainLoop function
handles the dispatch of events to the proper widget, and the widget then passes
the event to the proper piece of code - internal or programmer-written.

125

126 Programming with Motif

What Is an Event?

An event is the notification to a client program of some change in its
environment. As described above, this could result from the user moving the
pointer, from the window manager resizing the program's window, or from a
multitude of other actions - some initiated by the user, and some initiated by
the server or another client.

Events are associated with an X window. If the user clicks the pOinter button
while positioned over one program's window, the associated event is sent only to
the affected program; other windows on the same server do not receive the event.
In a Motif program, where each widget has its own window, the event is sent to
the affected widget. Thus, clicking the pointer button while the pointer is over a
pushbutton activates that pushbutton and not any others.

How the Server Handles Events

All events are processed in some way by the display server. User-input events,
such as pOinter movement, are generated directly by the server - the event
comes from the server's hardware. Events generated by another client, such as
the window manager, also pass through the server, which acts as a "traffic cop."

When the server receives an event - from another client or its own hardware -
it determines which window should receive the event. For client-generated
events, this is simple: the client specifies the destination window. For pointer
events (such as a button press), the server sends the event to the smallest
window that contains the pOinter. 1 A keyboard event is sent to the window that
currently has the inputJocus (described in the next chapter).

Once the correct window is determined, the server determines whether the
window actually wants to receive the event. This is done by means of an event
mask, sent to the server by the client. Events enabled by the mask are sent to
the client over the network connection. Those that are disabled are discarded by
the server. Some events, as you will see below, cannot be masked and are always
sent to the client - although it may choose not to process them.

Events are sent to the client in the order in which they were generated, and each
event is timestamped when it is handled by the server.2 Due to network delays,
events may arrive at the client long after they were handled by the server.3

1 This rule becomes more understandable when applied to an actual Situation, such as
the pushbutton-in-bulletin board of Figure 7.2. Assume that the user presses the
pOinter button while the pointer is inside the pushbutton's window. In this case, the
pointer is also inside the bulletin board's window, and inside the shell's window, and
inside the frame window (which belongs to the window manager). However, since the
pushbutton'S window is the smallest window of these, the button event is sent to it.

2 This timestamp is a count of milliseconds since the seIVer was started. It is a 32-bit
unsigned value, which wraps to zero every 49.71 days.

3 "Long" in this case is a relative term. If the client and seIVer are running on the same
machine, the delay could be less than a millisecond. If the client and seIVer are on
opposite ends of the continent, the delay could be several seconds. It is important to
note, however, that there is always a delay. If this delay is suffiCiently long, it will be
noticed by the user.

Events and Callbacks 127

How the Client Handles Events

The client's connection to the seIVer is maintained by low-level code in Xlib. This
connection is always watched: when the seIVer sends an event to the client, that
event is read and stored into the client's event queue.

The client's program-level code is responsible for reading the event queue on a
regular basis. When an event is read, it is dispatched to the proper processing
code based on its type (pointer movement, resize, etc.) and source window. In a
toolkit-based program, this operation is performed by X tM a i n Lo 0 p; in an Xlib
based program, it must be performed expliCitly.

Handling X Events
In a Motif program, most events are handled directly by the widget. For example,
when a label widget is resized, its internal code is responsible for redrawing its
contents to fit the new size. On the other hand, some programs could
conceivably want to know the new size (for example, a spreadsheet might replace
the label's contents with stars if it became too small to display a complete
number).

A program receives events by registering an event handler with the widget. The
type of event is specified, along with a function to be called when the event is
received. The widget maintains a list of event handlers for each event type,
including its internal event handlers. For any given event, a multitude of event
handlers could be called - all of which must finish processing before the next
event, if the user is not to notice their presence.

Types of Events

The events that may be received by a widget are listed in Table 8.1 and described
below. Due to the relatively large number of events, and the fact that each has
its own peCUliarities, this chapter concentrates on two only: pointer motion and
button presses. Appendix C describes all X events, in detail.

128 Programming with Motif

Table 8.1. X event types

Category Events

Client Communication ClientMessage
PropertyNotify
SelectionClear
SelectionNotify
SelectionRequest

Colormap State ColormapNotify

Exposure Expose
GraphicsExpose
No Expose

Keyboard Focus Focusln
FocusOut

Keyboard Input KeyPress
KeyRel ease

Keymap State KeymapNotify

Pointer jButton ButtonPress
ButtonRelease
EnterNotify
LeaveNotify
MotionNotify

Structure Control CirculateRequest
ConfigureRequest
MapRequest
ResizeRequest

Window State CirculateNotify
ConfigureNotify
CreateNotify
Des t royNot ify
GravityNotify
MapNotify
MappingNotify
ReparentNotify
UnmapNotify
VisibilityNotify

Client communication events allow one client to send data to another. They are
described in detail in Chapter 17.

The colormap state event, Col ormapNotify, indicates that a window's colormap
has changed. This event is almost always left to the widget; in most cases, the

Events and Callbacks 129

program is responsible for changing the colormap, so it does not need to be
alerted to the change.4

Exposure events occur when a window - or portion of a window - must be
redrawn. This often happens due to the stacking of windows on the server: when
a window is moved, those that it previously covered must be redrawn. Although
most widgets handle exposure internally, some - XmDrawnButton and
XmDrawingArea - require the program to explicitly redraw their contents.5 In
some cases, a window does not need to be redrawn when exposed: if the server
has backing store, it will maintain the contents of obscured windows.

Input focus events occur when a window gains or loses the focus. This is
described in detail in the next chapter. Also described there are keyboard-input
events, which are sent from the server when the user presses or releases a key.

The keymap state event, KeymapNotify, is sent to the program when it gains the
focus. It contains an indication of which keys were pressed when the focus
changed and is handled internally by those widgets that use it.

POinter/button events notify the program of the/.ointer's actions. When the
pointer moves, a MotionNotify event is generate. When a pointer button is
pressed, a ButtonPress event is generated; its release generates a ButtonRel ease
event. Finally, when the pointer moves into or out of a window's area,
EnterNotifyand LeaveNotify events are generated. This chapter describes these
events in detail.

Structure control and window state events are used to notify the client about
changes in its windows. These events are typically handled by the widget; they
are described in Appendix C.

The XEvent Union

Events are delivered to the client via the XEvent union, defined in Listing 8.1.
This union contains a member for each event type; the first member, type,
specifies the event type. Its value comes from a list of constants corresponding to
the event names in Table 8.1, found in the header me X . h.

4 Chapter 15 descrtbes colonnaps and why they would be changed.
5 As you will see in Chapter 15, these widgets actually provide a callback for exposure, so

the program does not need to handle the raw exposure event.

130 Programming with Motif

Listing 8.1. Type definition: XEvent

typedef union

int type;
XAnyEvent xany;
XKeyEvent xkey;
XButtonEvent xbutton;
XMotionEvent xmotion;
XCrossingEvent xcrossing;
XFocusChangeEvent xfocus;
XExposeEvent xexpose;
XGraphicsExposeEvent xgraphicsexpose;
XNoExposeEvent xnoexpose;
XVisibilityEvent xvisibility;
XCreateWindowEvent xcreatewindow;
XDestroyWindowEvent xdestroywindow;
XUnmapEvent xunmap;
XMapEvent xmap;
XMapRequestEvent xmaprequest;
XReparentEvent xreparent;
XConfigureEvent xconfigure;
XGravityEvent xgravity;
XResizeRequestEvent xresizerequest;
XConfigureRequestEvent xconfigurerequest;
XCirculateEvent xcirculate;
XCirculateRequestEvent xcirculaterequest;
XPropertyEvent xproperty;
XSelectionClearEvent xselectionclear;
XSelectionRequestEvent xselectionrequest;
XSelectionEvent xselection;
XColormapEvent xcolormap;
XClientMessageEvent xclient;
XMappingEvent xmapping;
XErrorEvent xerror;
XKeymapEvent xkeymap;
long pad[24];
}

XEvent;

The xany member bears special notice. It is a structure that contains the fields
common to all X events. It is shown in Listing 8.2 and described below.

Events and Callbacks 131

Listing 8.2. Type defInition: XAnyEvent

typedef struct
{

int
unsigned long
Boolean
Display
Window
}

XAnyEvent;

type;
seri a 1 ;
send_event;
*display;
window;

The type member is as in XEvent. Due to the way a union works, type is the fIrst
member of all event structures.

The s e ria 1 member contains the serial number of the last request processed by
the server for this window. This fIeld is occasionally used for debugging under
Xlib, where the order of requests is often known; it serves little purpose under
Motif.

The send_event member is used to identifY whether the event was generated by
the server or another client (using the XSendEvent function). If it contains TRUE,
the event came from a client; if FALSE, from the server.

Finally, the di spl ay and wi ndow members serve to identify the source of the
event. The dis play member identifIes the server connection; its contents are
defIned in the header fIle Xli b. h. The wi ndow member contains the ID of the
window that frrst received the event; in most cases, this is the window associated
with the widget where the event was registered.6

Registering an Event

Events are registered with a widget using the XtAddEventHandl er function,
prototyped in Listing 8.3. As described above, this function adds the specifIed
event handler to the list of event handlers associated with the widget. It may be
called multiple times for the same widget and event; if multiple event handlers
are registered for the same event, they are called in an indeterminate order.

6 But not always. For example, an event could be registered with a manager widget but
not its children. In this case, the event handler attached to the manager would receive
the notification, but the window would be that of the child. This can be useful: for
example, instead of registering an event handler with all of the labels that are children
of a particular manager, it could be registered once with the manager, which could fmd
the widget ID of the child from the window ID in the event.

132 Programming with Motif

Listing 8.3. Function prototype: XtAddEventHandler

void XtAddEventHandler(w, mask, nonmaskable, proc, client_data
Widget W·

EventMask mask;
Boolean nonmaskable;
XtEventHandler proc;
caddr_t client_data;

The w parameter contains the ID of the widget with which the event is registered.
As you will see below, this ID is passed to the event handler.

The rna s k parameter identifies those events that the handler should receive. It is
a bit mask, built by "or-ing" the constants listed in Table 8.2. Since this mask is
a bit mask, setting multiple bits in the mask permits multiple events to be
registered by the same call- each of which is passed to the same handler. This
technique is used in the example program.

The nonrnaskab1 e handler specifies whether nonmaskable events are to be passed
to the handler. These nonmaskable events are those associated with mapping
and interclient communications. If the nonrnaskab1 e parameter contains TRUE,
they will be delivered to the event handler. If it contains FA L S E, they won't. Note
that the widget always receives these events; the nonrnaskab1 e parameter simply
controls whether or not they are sent to program code. You will rarely want to
receive them.

The pro c parameter specifies the function handling the event. This is simply a
function pointer; the X tE v e ntH and 1 e r data type specifies a function prototype as
shown in Listing 8.4.

Finally, the c1 i ent_data parameter points to data that will be passed to the
event handler on each invocation. The contents of this pointer are completely up
to the programmer - it could point at any data item or function in the program,
or it could contain NUL L - it could even contain a constant value. 7 The passed
value is irrevocably associated with this event registration; it cannot be changed
as the program runs. However, the same event handler could be reregistered
with the same (or a different) widget, with a different pointer in c1 i ent_data.

7 The cad d r _ t data type is a C type, nOminally equivalent to v 0 i d *. Many programs take
advantage of the loose type-checking of common C compilers to pass constant values as
cl i ent_data arguments; this book does not recommend the practice.

Events and Callbacks 133

Table 8.2. Event masks

Mask Constant Event(s) Enabled Comments

ButtonMotionMask MotionNotify Notify if any mouse button pressed
while pOinter is moved

ButtonlMotionMask MotionNotify Notify only if mouse button # 1 pressed
while pOinter is moved

Button2MotionMask MotionNotify Notify only if mouse button #2 pressed
while pOinter is moved

Button3MotionMask Mot i onNot ify Notify only if mouse button #3 pressed
while pOinter is moved

Button4MotionMask MotionNotify Notify only if mouse button #4 pressed
while pointer is moved

Button5MotionMask MotionNotify Notify only if mouse button #5 pressed
while pOinter is moved

ButtonPressMask ButtonPress Notify when any mouse button is
pressed

ButtonReleaseMask ButtonRelease Notify when any mouse button is
released

ColormapChange ColormapNotify Notify when colormap changes
Mask

EnterWindowMask EnterNotify Notify when pOinter enters window

ExposureMask Expose Notify when portion of window is
exposed.

FocusChangeMask Focusln Notify when window gains or loses
FocusOut keyboard focus

KeymapStateMask KeymapNotify Describe keyboard state when focus
changes

KeyPressMask KeyPress Notify when any key is pressed

KeyReleaseMask KeyRelease Notify when key is released

LeaveWindowMask Lea veNot ify Notify when pOinter leaves window

PointerMotionHint Modifies Poi nte rMot i onMa s k, so that
Mask the number of motion events is

minimized; Poi nterMot i onMas k must
be specified too

PointerMotionMask MotionNotify Notify when pOinter moves

PropertyChangeMask PropertyNotify Notify when window property changes

ResizeRedirectMask ResizeRequest Capture size-change requests from
children of associated window

134 Programming with Motif

Table 8.2. Continued.

StructureNotify CirculateNotify NotifY when window structure changes
Mask ConfigureNotify

DestroyNotify
GravityNotify
MapNotify
ReparentNotify
UnmapNotify

SubstructureNotify CirculateNotify NotifY when child window structure
Mask ConfigureNotify changes

CreateNotify
DestroyNotify
GravityNotify
MapNotify
ReparentNotify
UnmapNotify

Substructure CirculateRequest Capture structure-change requests
RedirectMask ConfigureRequest from children of associated window

MapRequest

VisibilityChange VisibilityNotify Notify when window visibility changes
Mask

gc-controlled GraphicsExpose These events are selected with the
NoExpose graphi cs_exposures member of the

graphics context; when selected, they
are non-maskable.

nonmaskable ClientMessage These events are delivered to all
MappingNotify windows; they may be ignored by
SelectionClear passing FALSE in the nonmaskabl e
SelectionNotify parameter of XtAddEventHandl er
SelectionRequest

special error event Protocol errors are passed from server
to client using the X event mechanism;
such events, however, are handled at a
low level in the client code

Event Handler Prototype

All event handlers have the same function prototype, shown in Listing 8.4. The
toolkit defines a type, XtEventHandl er, for pOinters to event-handler functions.

Events and Callbacks 135

Listing 8.4. Function prototype: Event handler

void funcname(w. clienLdata. event)

Widget w;
caddr_t clienLdata;
XEvent *event;

The function's name, funcname, is up to the programmer. The w and c1 i enLdata
parameters are filled from the parameters to XtAddEventHand1 er: the source
widget is identified by w, and c1 i ent_data contains a programmer-specified
pOinter.

The eve n t parameter points at the received event, which is maintained by the
invoking widget. The program should not change the event's contents, as it may
be passed on to another event handler. 8

Sensitivity and Events

What happens when a widget's sen sit i ve resource contains FA LS E? Does it
continue to send events to registered event handlers, or does it ignore them?

The answer is "neither and both." Input events - keyboard and pointer - are
ignored. They are simply discarded, and an event handler will never see them.
Environment events - such as Exposure - are caught and passed on to any
registered event handler.

Event-Handler Example: Mouse Tracker
This program attaches an event handler to a label widget. This function catches
pointer motion and button events and prints information about the event to
standard output. Example output is shown in Listing 8.5: for most events, it
consists of the event type, time of occurrence, and pointer position. For button
events, it adds the number of the pressed (or released) button.

8 The order in which event handlers are called is indeterminate. No event handler should
be written with the assumption that it will always be called before or after another
event handler.

136 Programming with Motif

Listing 8.5. Output from Mouse Tracker program

EnterNotify
Time = 386214898
x,y = 78, 31

Mot i onNot ify
Time = 386214965
x,y = 85, 28

MotionNotify
Time = 386215348
x,y = 85, 29

MotionNotify
Time = 386215381
x,y = 86, 33

ButtonPress
Time = 386215398
x,y = 87, 37
Button = 1

To write this program. it is necessary to understand the event structures
returned for pointer motion and button presses. These structures are
XMotionEvent. which holds information about pointer motion. XCrossingEvent.
which holds information about pointer motion into or out of a window. and
XButtonEvent. which holds information about button presses.

Pointer Motion Notification: XMotionEvent

A MotionNotify event is sent to the client whenever the pOinter moves within a
client window. The data for this event is stored in the XMot i on Event structure.
defmed in Listing 8.6. and accessed via the xmotion member of XEvent. This
eventis selected using PointerMotionMask.

The server generates one or more pointer motion events whenever the pointer is
moved within a window.9 The exact number of events may vary, Although the
server attempts to track the movement closely. it does not guarantee that each
pixel of movement will result in an event.

If the programmer is only interested in pointer movement while the pointer
button is down (ie. a drag operation). then ButtonMotionMask may be specified
instead of Poi n terM ot ion Ma s k. To further refine this limitation. the program may
specify arartiCUlar button or group of buttons (by using ButtonlMoti onMask et a1
instead 0 ButtonMot i onMas k).

9 "Within a window" is an important qualification. The pointer motion must start and end
inside one window. If the motion starts in one window and ends in another.
EnterNotify and LeaveNotify events are generated instead.

Events and Callbacks 137

Listing 8.6. Type definition: XMotionEvent

typedef struct
{

int type;
unsigned long seri al ;
Boolean send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x. y;
int x_root. y_root;
unsigned int state;
cha r is_hint;
Boolean same _screen;
}

XMotionEvent;

Like all event structures, the members type, seri al, send_event, di spl ay, and
wi ndow overlap those of the XAnyEvent structure. They are described above.

The root and s ubwi ndow members, in concert with the wi ndow member, fully
identify the event source. The root member contains the window ID of the root
window for the screen where the event occurred. The subwi ndow member is used
only if the window reporting the event was not the window where the event
occurred; in that case, it contains the window ID where the event occurred. 10

The time member contains the event's server timestamp. This is the count of
milliseconds between server startup and event occurrence.

The x and y members contain the pointer's location relative to the window
reporting the event. The x_root and y_root members contain the pointer's
location relative to the root window.

The state member contains the state of the pointer buttons and keyboard
modifier keys at the time the event occurred. This state information is
maintained as a set of bit flags, represented by the constants ButtonlMask,
Button2Mask, Button3Mask, Button4Mask, Button5Mask, ShiftMask, LockMask,
Control Mask, ModlMask, Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask. These
constants are defined in the header file X. h; their meaning should be self
explanatory.

The is_hi nt member indicates whether the notification represents a motion hint.
Motion hints are used to limit the stream of events from a single motion, and are

10 Going back to the example of the manager catching events generated by its children:
the window member contains the ID of the manager's window, and the subwi ndow
member contains the ID of the child.

138 Programming with Motif

enabled by"or-ing" PointerMotionHintMask with PointerMotionMask in the event
mask. Enabling motion hints instructs the server to send only one motion event
during a movement. If this event represents a hint rather than an actual motion
notification, the is_hi nt member contains the constant Noti fyHi nt, otherwise it
contains Not i fyNorma 1.11

The sam e _ s c r e e n member indicates whether the window where the event
occurred resides on the same screen as the root window. If same_screen contains
TRUE, the event window and root window are on the same screen. If same_screen
contains FALSE, they aren't.

Motion Into or Out of a Window: XCrossingEvent

Movement that begins and ends entirely within one window results in a
Mot ion N ot if y event. If the motion begins in one window and ends in another, it
results in an EnterNoti fy event to the new window and a LeaveNoti fy event to
the old window. Both events are reported using the xcross i ng member of
XEvent. This member is of type XCrossi ngEvent and is defined in Listing 8.7. The
EnterNoti fy event is enabled with EnterWindowMask, while LeaveNotify is
enabled with LeaveWi ndowMask.

Listing 8.7. Type definition: XCrossingEvent

typedef struct
{

int
unsigned long
Boolean
Display
Window
Window
Window
Time
int
int
int
int
Boolean
Boolean
unsigned int

XCrossingEvent;

type;
seri al ;
send_event;
*display;
window;
root;
subwindow;
time;
x. y;
x_root. y_root;
mode;
detai 1 ;
same_screen;
focus;
state;

11 While hints minimize the number of events that a widget must process, they almost
never report the correct pOinter position - the program must explicitly retrieve this
position with XQueryPointer.

Events and Callbacks 139

Most of the members of XCrossi ngEvent are identical to members of
XMoti onEvent. The new members are as follows.

The mode member describes how the event was generated. A normal crossing
event has a mode value of NotifyNormal. If the event was generated as a result of
a "pointer grab," the mode member will contain either NotifyGrab or
Noti fyUngrab. This chapter is only concerned with normal crossing events.

The deta i 1 member describes how the previous and new windows are related.
The contents of this member are described in detail in Appendix C. It is not
important to this chapter.

The final new member, focus, indicates whether the window where the event
occurred had the input focus at the time of event. If focus contains TRUE, the
event window or one of its children had the focus. If it contains FALSE, another
window had the focus. This member too may be ignored for the purposes of this
chapter.

Pointer Button Press and Release: XBuUonEvent

When the user presses or releases a pointer button, that action is reported by a
ButtonPress or ButtonRelease event, enabled by the ButtonPressMask and
ButtonRel easeMask constants, respectively. Both events are reported in the
xbutton member of XEvent, which contains an XButtonEvent structure, defined in
Listing B.B.

Listing B.B. Type definition: XButtonEvent

typedef struct
(

int type;
unsigned long seri a 1 ;
Boolean send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x. y;
int x_root. y_root;
unsigned int state;
unsigned int button;
Boolean same_screen;

XButtonEvent;

140 Programming with Motif

Again, many of the members of XButtonEvent are identical to those of
XMoti onEvent. In fact, the only difference is the button member, which identifies
the pressed button. The constants Buttonl, Button2, Button3, Button4, and
Button5, defined in the header file X. h, are used to identify the button. 12

The Program

The program of Listing 8.9 was used to produce the output of Listing 8.5. This
program is identical to that of Listing 5.1, except that it includes an event
handler. 13 When you run it, pointer movement and button presses will be
reported on the standard output device.

Listing 8.9. Program: Mouse tracker

1***

**
** listing_B_9.c
**
**
**
**

"Mouse Tracker". This program demonstrates the use of an event
handler.

**
**
**
**
**
**

***/

1/include <Xm/Label.h>

void EvtHandler();

Wi dget appshell,
the_label;

void main(argc, argv
int argc;
char *argv[];

/* FORWARD definition */

/* The 1 abel and its shell */

12 These constants are generally equal to the values 1, 2, 3, 4, and 5. Since this may
change depending on the server, your programs should always compare to the
constants, instead of literal values.

13 The resource file, being identical to that of Usting 5.1, is not shown here.

Events and Callbacks 141

Listing 8.9. Continued.

appshell XtInitial ize(argv[O]' "Listing_8_9", NULL, 0,
&a rgc, a rgv);

the_label = XmCreateLabel(appshell, "TheLabel", NULL, 0);
XtManageChild(the_label);

XtAddEventHandler(the_label,
(PointerMotionMask I ButtonPressMask
EnterWindowMask I LeaveWindowMask),
FALSE, EvtHandl er, NULL);

XtRealizeWidget(appshell);
XtMainLoop() ;

void EvtHandler(w, client_data, evt_ptr)
Widget w;
caddr_t client_data;
XEvent

switch(evt_ptr->type
{

case ButtonPress:
printf("\nButtonPress\n");
printf(" Time %d\n",
printf(" x,y = %d, %d\n",

evt_ptr->xbutton.time);
evt_ptr->xbutton.x,
evt_ptr->xbutton.y);

printf(" Button
brea k;

%d\n", evt_ptr->xbutton.button);

case EnterNotify:
printf("\nEnterNotify\n");
printf(" Time %d\n", evt_ptr->xcrossing.time);
printf(" x,y = %d, %d\n", evt_ptr->xcrossing.x,

evt_ptr->xcrossing.y);
break;

case LeaveNotify:
printf("\nLeaveNotify\n");

142 Programming with Motif

Listing 8.9. Continued.

printf("
printf("

Time
x,y

= %d\n", evt_ptr->xcrossing.time 1;
= %d, %d\n", evt_ptr->xcrossing.x,

evt_ptr->xcrossing.y 1;
break;

case MotionNotify:
printf("\nMotionNotify\n" 1;
printf(" Time = %d\n",
printf(" x,y = %d, %d\n",

break;
default :

break;

evt_ptr->xmotion.time 1;
evt_ptr->xmotion.x,
evt_ptr->xmotion.y 1;

In the main part of the program, the only difference between Listings 8.9 and 5.1
is the call to XtAddEventHandl er. Note that a single call registers four events by
specifying four masks. Note also that the nonmaskable events are ignored.

The event handler is straightfOlward. It is called each time a motion, crossing, or
button-press event occurs, as specified by the mask at registration time. Inside
the event handler, a swi tch statement determines the event type, usin~ the type
member of XEvent. Each case of the switch prints appropriate infOrmation.
Although each case appears to print the same information, note that each uses a
different member of the XEvent structure.

You might wonder why a label was chosen as the program's widget - a
pushbutton would seem a more logical choice. The reason was that I wanted to
illustrate the ability of all widgets to receive events, even those that would not
normally be used for input.

Callbacks
While events are the means by which a program receives all of its input, event
handling can be tedious. Consider a pushbutton: it must handle button-down
and button-motion events for arming, button-up events for activation and
disarming, and window-crossing events for determining whether activation is
part of disarming. One of the difficulties of writing an Xlib-based client is that
the program must handle all such events by itself.

X toolkits provide a higher level of program notification, the callback, which may
be thought of as an "expected event." The widget handles low-level event
processing internally and only notifies the program when it receives an event or

Events and Callbacks 143

series of events relating to its primary purpose. In the case of the pushbutton,
these "expected events" are arming, disarming, and activation. 14

The use of callbacks varies from widget class to widget class, and from program
to program. Some callbacks, such as arming and disarming a pushbutton, are
used by very few programs. Others, such as pushbutton activation, are used by
almost all programs that use the widget.

Registering a Callback

Widget callbacks are associated with a resource. Unlike most resources,
however, callbacks cannot be set in a resource file or by X t Set Val u e s - and they
shouldn't be read by X t Get Val u e s. Instead, callback resources are modified by
program code, using a registration function similar to that for an event handler.

For callbacks, the registration function is XtAddCa11 back, prototyped in Listing
8.10. As with event handlers, a particular callback could have many called
procedures, or it could have none: each call to XtAddCa11 back adds a function to
the named callback list.

Listing 8.10. Function prototype: XtAddCallback

void XtAddCallback(w, callback_name, proc, client_data
Widget w;
String callback_name;
XtCallbackProc proc;
caddr_t client_data;

The w, proc, and c 1 i en t_d a t a parameters are identical to those of
XtAddEventHand1 er: w specifies the widget, proc specifies the called function, and
c1 i enLdata is a pointer to program-specific data (it may be NULL).

The call b a c k_n a me parameter specifies the name of the callback resource. As
with any programmatically set resource, this name is prefixed by IXmN". An
example, as you will see below, is XmPushButtons armCa11 back resource, which
is identified as XmNarmCa11 back.

Callback Function Prototype

All callback functions have the same prototype, as shown in Listing B.11. This
prototype is represented by the data type XtCa11 backProc.

14 Internally, the pushbutton processes an enonnous number of events. For example, it
must handle the Expose event in order to redraw its contents, in addition to the button
and movement events described above. This is one of the reasons that Motif programs
are so large: there's a lot of work going on Hbehind the scenes." However, since this
event-handling code is in a single place (the class code), instead of multiple places as in
an Xlib program, a complex program actually uses code very efficiently.

144 Programming with Motif

Listing B.ll. Function prototype: Callback function

void funcname(w. client_data. call_data
Widget w;
caddr_t client_data;
caddr_t call_data;

As with an event handler, the w parameter is passed the ID of the widget
generating the callback, and the c1; enLdata parameter is passed the value
specified when the callback was registered.15

The c a 11_d a t a parameter contains information specific to the callback type. This
data is specific to the widget class and callback, although many callbacks use
the default structure, XmAnyCa11 backStruct, defined in Listing B.12. The header
file X m • h dermes data types for each callback.

typedef struct
[

Listing B.12. Type definition: XmAnyCaZlbackStruct

int reason;
XEvent *event;
}

XmAnyCallbackStruct;

The reason member, which is the first member of all callback structures,
identifies the callback using a constant from the header file X m • h. This
identification allows multiple callbacks to be served by a single function.

The event member points to the event that generated the callback. This may be
used by the program to provide additional information, but must not be
changed, as other functions may be registered for the same callback. 16 In some
cases, the callback is not generated as the result of an event, in which case the
event member contains NULL.

Removing a Callback

Most programs install a callback and leave it installed for the life of the program.
In some cases, however, a callback might need to be installed for a short time,
then removed. The function XtRemoveCa11 back, prototyped in Listing B.13,
performs this function.

15 As with an event handler, one callback function may serve multiple widgets; the
invoking widget is identified by the w parameter.

16 As with event handlers, the order in which callback functions are called is
indeterminate, so a program should not be designed around an expected order.

Events and Callbacks 145

Listing 8.13. Function prototype: XtRemoveCaUback

void XtRemoveCallback(w, callback_name, proc, client_data
Widget w;
String callback_name;
XtCallbackProc proc;
caddr_t client_data;

This function removes the callback function identified by proc and c1 i ent_data
from the callback list identified by ca 11 bacLname for the widget identified by w. It
does not affect other functions in the callback listY Note that both the function
address and the data pointer are used to identify the callback: the same function
could be registered many times, with different data for each registration, and
XtRemoveCa11 back must unlink the proper call.

Button Callbacks
Buttons - XmPushButton, XmArrowButton, and XmToggleButton - have
callbacks to notify the program when they are armed, activated, and disarmed.
Table 8.3 lists these callbacks. Unlike a normal resource table, the Inheritance
column identifies which classes support the callback, instead of where the
callback is defined.

Table 8.3. Button callbacks

Name Inheritance Type Default Value

activateCa11back XmArrowButton XtCa11backList NULL
XmPushButton

armCallback XmArrowButton XtCa11backList NULL
XmPushButton

XmToggleButton

disarmCa11back XmArrowButton XtCa11 backL i st NULL
XmPushButton

XmToggleButton

va1ueChangedCa11back XmToggleButton XtCallbackList NULL

17 Another function, XtRemoveAll Call backs, exists that removes all callbacks from a
particular callback list. It should not be used, however, because Motif may add internal
callbacks to a widget.

146 Programming with Motif

XmArrowButton and XmPushButton Callbacks

The callbacks for XmArrowButton and XmPushButton are identical. Activation is,
as described before, the process of clicking the pointer button while inside the
area of the screen button. Anning is the process of pressing the pointer button
while inside the area of the screen button, and disarming happens when the
pointer button is released. Activation is comprised of both arming and
disarming, but an arm-disarm sequence can occur without activation (if the
pointer is moved out of the button's window before the button is released).

Both XmArrowButton and XmPushButtonpass a pointer to XmAnyCall backStruct.
The reason member contains the value XmCR_ACTIVATE to indicate activation,
XmCR_ARM to indicate arming, and XmCR_DISARM to indicate disarming.

XmToggleButton Callbacks

Like the other buttons, XmToggleButton supports the arm and disarm callbacks,
but does not support activation. Instead, it provides a callback to indicate that
its value has changed. The XmToggleButton callbacks do not use
XmAnyCall backStruct, but instead use the structure defined in Listing 8.14.

typedef struct
{

Listing 8.14. Type deflnition: XmToggleButtonCaUbackStruct

int reason;
XEvent *event;
Boolean set;
}

XmToggleButtonCallbackStruct;

The reason and event members identical to those of XmAnyCall backStruct. Valid
reasons are XmCR_ARM for arming, XmCR_DISARM for disarming, and
XmCR_VALUCCHANGED for toggle. The set member contains the new value of the
button's set resource.

XmPushButton Callback Example: Press Here
The callback example program, shown in Listing 8.15, simply catches all of the
XmPushButton callbacks and reports which were received, along with the types
of events that generated them. 1 It is similar to the program of Listing 8.9, but
substitutes a pushbutton for the label and traps callbacks instead of events.
When you run this program, you will get a much better understanding of how a

18 As you see, I took the easy way out and merely prtnt the event's type. I felt that adding
a swi t c h statement to convert the type into a string would obscure the purpose of the
program.

Events and Callbacks 147

pushbutton works - especially the differences between anning, activation, and
disarming.

Listing 8.15. Callback example: "Press Here"

/***

** **
** **
** **
** "Press Here". An example of pushbutton callbacks. **
** **
***/

#include <Xm/PushB.h>

void ButtonCB(); 1* FORWARD Definition

Widget appshell, 1* Application Shell
the_btn; 1* The one and only label

void maine argc. argv
int argc;
char *argv[];

appshell = Xtlniti al i ze(argv[O], "L i sting_8_IS", NULL, 0,
&argc, argv);

the btn = XmCreatePushButton(appshell, "TheBtn", NULL, 0);
XtManageChild(the_btn);

XtAddCallback(the_btn, XmNarmCallback. ButtonCB, NULL);
XtAddCallback(the_btn, XmNdisarmCallback. ButtonCB, NULL);
XtAddCallback(the_btn, XmNactivateCallback, ButtonCB, NULL);

XtRealizeWidget(appshell);
XtMai nLoop();

*1

*1
*1

148 Programming with Motif

Listing B.1S. Continued.

void ButtonCB(w, client_data, call_data
Widget w;
caddr_t client_data;
XmAnyCallbackStruct *call_data;

printf("\nCallback Reason = %d" call_data->reason);
switch (call_data->reason)

{

case XmCR_ARM :
printf("(Arm)\n");
break;

case XmCR_DISARM :
printf("(Disarm)\n");
break;

case XmCR_ACTIVATE :
printf("(Activate)\n");
break;

printf("Event Type = %d\n", call_data->event->type);

This program highlights an interesting point, which may not have been obvious
from the text. That is that, while XtAddEventHandl er can specify any number of
events (because it uses an event mask), XtAddCall back can only specify a single
callback (because it specifies a resource name). For this reason, three calls to
XtAddCall back were necessary.

Actions
The mouse on a typical X terminal has three buttons, but XmPushButton only
provides a single activation callback. What do you do if you want to perform
different actions depending on which button was used to activate the
pushbutton? You could look at the event member of the callback data structure,
but that means that the callback code would become more complex, and you
would have to recompile if you decided to swap the actions of buttons #3 and #2.

The answer is to use an action table to identify the program functions and a
translation table to link the events to the actions. An action is similar to a
callback - both are invoked by the widget as the result of "expected events."
However, an action procedure represents a "lower" level of event handling than a
callback - in fact, most callbacks are invoked as part of a built-in action
procedure.

Actions and translations provide a convenient means to enhance the abilities of
an "off-the-shelf' widget. With appropriate action procedures, the programmer
can modify a Motif widget to suit the needs of a particular program, thus

Events and Callbacks 149

foregoing the need to implement a new widget class. 19 Indeed, most existing
widgets gain their functionality from action procedures; it is a rare widget that
actually uses an event handler.

There are caveats to this flexibility. The fIrst is that the translation manager is
rather single-minded: when it matches a sequence of incoming events against a
sequence in its list, it dispatches the appropriate action. If that sequence
happens to be the initial part of another translation, then both are executed.20

A second caveat is that an action procedure receives little information when it is
called: only the widget and event that caused the action to be invoked, along
with constant parameters specifIed in the translation table. The action procedure
does not receive a reason for the invocation (actions and reasons are considered
identical), nor can the program specify a c1 i enLdata pOinter. All client data
must be accessed via global variables.

The Action Table

An action table specifIes a set of one-to-one relationships between program
functions and text strings, which may then be used to identify the function in a
translation table. This means that action functions are accessible to resource
fIles - the function pointers are associated with external names. It also means
that action functions are not associated with specifIc widgets: a given widget's
translation table may specify any of a program's actions.

Action tables are physically stored as an array of XtActionsRec structures,
defIned in Listing 8.16. The 5 t r i n 9 member points to a NUL-terminated
character string; it is the external name of the action.21 The pro c member is a
pointer to the function associated with the action; the format of such a function
is described below. The XtActi onL i st data type is a simple pointer to an action
table; it is used in the prototype of the XtAddAct ions function.

19 As Motif is a commercial product, many programmers do not have access to the source
code and cannot easily implement new widget classes. This is in sharp contrast to
existing "publicly accessible" widget sets, such as Athena, which may be modified at
will.

20 As an example, consider a pushbutton that is to recognize both single and double
clicks. Since a single click is the initial part of the double click, both the single-click
and the double-click action are executed: one after the first click, and one after the
second.

21 There is no convention for action names, even within Motif. This book uses the same
conventions as for function names: words run together, with the first letter of each
word capitalized.

150 Programming with Motif

Listing 8.16. Type definitions: XtActionsRec, XtActionList

typedef struct
{

char *string;
XtActionsProc proc;
}

XtActionsRec;

typedef XtActionsRec *XtActionList;

Installing an Action Table

Once an action table is built - the sample program shows what one looks like -
it must be installed. The function XtAddAct; ons, prototyped in Listing 8.17,
installs the action table. This function takes as parameters a pointer to the
action table (act; on_l; st) and the number of actions specified by the table
(num_act; ons).

Listing 8.17. Function prototype: XtAddActions

void XtAddActions(action_list, num_actions
XtActionList action_list;
Cardinal

Action Function Prototype

An action function is similar to an event handler or callback function. Listing
8.18 contains the prototype of a generic action function.

Listing 8.18. Function prototype: Action function

void funcname(w, event, params, num_params)
Widget w;
XEvent *event;
char *params[];
int *num_params;

Events and Callbacks 151

The w and eve n t parameters should by now be familiar: w is the ID of the widget
invoking the action. and event is a pointer to the event that caused the action to
be invoked. As with events and callbacks. an action procedure should not modify
the event structure. nor should it expect to be called in a particular order
relative to other action procedures or callbacks. 22

The pa rams and num_params parameters are used to pass character-string
arguments to the action procedure. These arguments are defined in the
translation table and as a result are read-only. The params and num_params
parameters serve an identical purpose to a rgv and a rgc of the program's rna in
function: params is an array of string pointers. and num_params contains the
number of pointers in that array.

Due to the constant nature of such action arguments. they would not seem to be
very useful. However. their use is similar to the reason member of a callback
structure: a single-action procedure may be used for multiple translations. with
the specific reason passed as an action argument. In addition. action arguments
may be used during program debugging to provide a record of how ana why an
action procedure was invoked.

Translations
Action functions. and the table that identifies them. form one-half of a
partnership. The other half is the translation table. which links an action to a
specific set of events. Each widget instance has its own translation table. which
may be changed in the resource file. Each widget class has a default translation
table. used to invoke the widget's internal code; this table may be replaced or
extended by the programmer.

The translations Resource

A widget's translation table is specified by the transl ati ons resource. defined by
Core and shown in Table 8.4. As the translation table is defined by Core. all
widget classes support translations. As it is a resource. each widget instance
may have its own set of translations.

Table 8.4. Resource specification: translations

Name Inheritance Type Default Value

translations Core XtTranslations NULL

To the programmer. a translation table is a NUL-terminated ASCII string.
Internally. it exists in a "compiled" form for quick access by the translation
manager. It may be set programmatically or via a resource file. Although the
resource fIle is the simpler approach. a qUirk in the Motif resource manager
means that some changes may only be performed programmatically.

22 An action associated with a callback - such as the Act i va te action of XmPushButton
- will. however. be called before the associated callback function.

152 Programming with Motif

Translation Format

As stated above, the programmer's view of a translation table is as an ASCII
string. This table contains one or more translations, with newlines ('\n') to
separate translations. Each translation specifies a one-to-one mapping between
an event sequence and an action sequence. The format of a translation is shown
in Listing 8.19.23

Listing 8.19. Translation syntax

event -sequence: act i on(arguments) facti on(arguments) ...]

The event -sequence is a comma -separated list of events terminated by a colon.
The action is one of the names dermed by the action table. Action arguments are
optional; if used, they are character strings, with each argument separated by
whitespace.24 Multiple actions may be defined in a single translation; they are
executed in order. If multiple actions are specified, they must be separated by
whitespace.

The translation's event-sequence consists of one or more event specifications,
formatted as in Listing 8.20. If multiple specifications are used, they must be
separated by commas.

Listing 8.20. Event-sequence syntax

[modifiers]<event>[(count)][detai7]

The TTWdifiers item is equivalent to the state member of an event structure: it
indicates which pointer button is down or whether the shift (or control, etc) key
is pressed. Table 8.5 contains a list of supported modifier names.

The event item is the name of the event and must be delimited by angle brackets
("<", ">"). This name may be one of the defined X events listed in Table 8.1, or it
may be one of the names listed in Table 8.6. This table includes abbreviations
such as Key (which is equivalent to KeyPress) and event-modifier combinations
such as BtnlDown (which is equivalent to Buttonl<ButtonPress».

The count item represents the number of times the event occurs. This item
allows repetitive events to be specified without use of a comma-separated list. If

23 This specification, like others in this chapter, makes use of the following conventions:
(1) Roman (upright) text is used for literal characters, (2) italics are used for
"placeholders" - symbolic names that are replaced by situation-specific text, (3)
italicized brackets ("I" and ")") are used to delimit optional components, and (4) an
ellipSiS (" ... ") is used to represent repetition of the preceding component(s).

24 The translation manager decomposes the arguments string into multiple arguments
based on this whitespace. There is no way to pass a multiple-word argument.

Events and Callbacks 153

used. it must be enclosed in parentheses. A plus sign (+) may immediately follow
the numerical count to indicate that any number of events greater than or equal
to the specified count will be accepted. For example. if the count item contains
(5+). it indicates that five or more repetitions of the event/modifier are required
for a match.

The detail item specifies additional information about the event. For example. in
a KeyPress event. the detail item specifies the pressed key. The header file
Xll/keysymdef. h may be referenced for key names - this is especially important
for function keys. which are not represented directly by ASCII characters.

Table 8.5. Translation event modifiers

Uteral Description
Code

! Allow listed modifiers only. This code must be the first one
in the modifier list. It specifies that the event will be
recognized only if the specified modifiers and no others are
in effect.

If the exclamation point is not used. the modifiers in use
must match those in the event specification. but any other
modifiers may be present - they are ignored.

~ Negate next modifier. Whereas a normal modifier specifies
"match this event if this modifier is present," the tilde
specifies "match this event only when this modifier is not
present."

: Translate keys according to modifiers. This code applies only
to <Key> events and must precede any other modifier (except
for the exclamation pOint).

For example: "<Key>A" matches any press of the "A" key.
whether or not any modifiers keys are pressed - meaning
that both 'A' and 'a' match the event. However": <Key>A"
means that only the uppercase letter is accepted.

Any Any modifier permitted. This code is optional.

None No modifiers permitted.

Ct rl Control key pressed during event (may be abbreviated as c).

Shift Shift key pressed during event (may be abbreviated as s).

Lock Shift-lock in effect during event (may be abbreviated as 1).

Meta Meta key pressed during event (may be abbreviated as m).

Hyper Hyper key pressed during event (may be abbreviated as h).

Super Super key pressed during event (may be abbreviated as s u).

Alt Alt key pressed during event (may be abbreviated as a).

154 Programming with Motif

Table B.S. Continued.

ModI Modifier Key # 1 pressed during event.

Mod2 Modifier Key #2 pressed during event.

Mod3 Modifier Key #3 pressed during event.

Mod4 Modifier Key #4 pressed during event.

Mod5 Modifier Key #5 pressed during event.

Buttonl Pointer button # 1 pressed during event.

Button2 Pointer button #2 pressed during event.

Button3 Pointer button #3 pressed during event.

Button4 Pointer button #4 pressed during event.

Button5 Pointer button #5 pressed during event.

Table B.6. Translation event names

Name Description

BtnlDown Equivalent to ButtonPress with Buttonl modifier.

BtnlMotion Equivalent to Mot i on Not i fy with Buttonl modifier.

BtnlUp Equivalent to ButtonRel ease with Buttonl modifier.

Btn2Down Equivalent to ButtonPress with Button2 modifier.

Table B.6. Continued.

Btn2Motion Equivalent to Moti onNoti fy with Button2 modifier.

Btn2Up Equivalent to ButtonRel ease with Button2 modifier.

Btn3Down Equivalent to ButtonPress with Button3 modifier.

Btn3Motion Equivalent to Moti onNoti fy with Button3 modifier.

Btn3Up Equivalent to ButtonRel ease with Button3 modifier.

Btn4Down Equivalent to ButtonPress with Button4 modifier.

Btn4Motion Equivalent to Mot i on Not i fy with Button4 modifier.

Btn4Up Equivalent to ButtonRel ease with Button4 modifier.

Btn5Down Equivalent to ButtonPress with Button5 modifier.

Btn5Motion Equivalent to Mot i onNot ify with Button5 modifier.

Btn5Up Equivalent to ButtonRel ease with Button5 modifier.

Events and Callbacks 155

Table B.6. Continued.

BtnDown Equivalent to ButtonPress.

BtnMotion Equivalent to Mot i onNot i fy with any button modifier (ie,
notify of motion only while button is down).

BtnUp Equivalent to ButtonRel ease.

Cire Equivalent to Ci reul ateNoti fy.

Ci reReq Equivalent to Ci reul ateRequest.

Clrmap Equivalent to Co 1 ormapNot i fy.

Configure Equivalent to Confi gu reNot i fy.

ConfigureRe Equivalent to Confi gu reRequest.
q

Create Equivalent to CreateNotify.

Ctrl Equivalent to KeyPress with Ctrl modifier.

Destroy Equivalent to Dest royNot i fy.

Enter Equivalent to EnterNotify.

EnterWindow EqUivalent to Ente rNot i fy.

Grav Equivalent to GravityNot ify.

GrExp Equivalent to Graphi es Expose.

Key Equivalent to KeyPress.

KeyDown Equivalent to KeyPress.

Keymap Equivalent to Keyma pNot i fy.

KeyUp Equivalent to KeyRel ease.

Visible Equivalent to Vi si bi 1 i tyNoti fy.

Translation Examples

To put the above format specifications into more concrete terms, Listing B.21
contains example translation specifications. The first example specifies a c1ick of
pOinter button #2: a press followed immediately by a release. The second
example is identical, but uses modifier-event specifications instead of
abbreviations. The third example specifies a "shift-click" of button #2: it uses a
modifier along with abbreviated events and calls two actions as a result of the
events. The third example handles keyboard input: it specifies that the action is
called when a capital "g" is pressed, and shows the use of the "detail"

156 Programming with Motif

component. The final example handles the identical event - a capital "Q" - but
specifies it in tenns of a modified key.25

Listing 8.21. Example translations

<Btn2Down>.<Btn2Up>: ActivateTwo()
Button2<ButtonPress>. Button2<ButtonRelease>: ActivateTwo()
Shift<Btn2Down>. Shift<Btn2Up>: ActivateTwo() Clear()
:<Key>Q: Quit()
Shift<Key>q: Quit()

Translation Installation: Replace, Augment, or Override

Each widget has a default set of translations defined by the widget class. In most
cases, the programmer will want to change some translations, while leaving
others in their default state. To this end, translations may be installed in three
ways: to replace the existing translations, to augment the existing translations,
and to override the existing translations. 26

Replacement is, as its name suggests, a complete replacement of the default
translations by those the programmer specifies. Augmentation is the non
destructive addition of translations to those already supported by the widget: if
an event sequence in the new table matches one in the existing table, the new
translation is ignored. Overriding is the destructive addition of translations: the
existing translations are maintained, but if an existing event sequence matches a
new event sequence, the new translation replaces the existing translation.

Installing Translations Programmatically

Programmatic installation of translations is a two-step process. First, the new
translation table must be converted from a NUL-tenninated string into its
compiled fonn, then the compiled table must be installed into the widget. The
function xtParseTransl at; onTabl e, prototyped in Listing 8.22, perfonns the
compilation.

25 Note that the key is specified by a lowercase character. This is a quirk of the
translation manager: while it would accept both uppercase and lowercase for a
specification of <Key>Q, it accepts neither for a specification of Shi ft<Key>Q.

26 XIIR5 splits a widget's translations into two parts: the base translations, defined by
the widget class and accessed by the baseTransl ati ons resource, and user translations,
accessed by the transl ati ons resource.

Events and Callbacks 157

Listing 8.22. Function prototype: XtParseTTanslationTable

XtTranslations XtParseTranslationTable(table)
String table;

xt Par seT ran s 1 at ion Tab 1 e takes a single parameter, the NUL-terminated C string
containing the table. This string consists of one or more substrings, formatted as
described above, with new lines separating each substring. The returned value is
a pointer to the compiled table. This compiled table may be installed in multiple
widgets, and cannot be freed by the program.

Once the ASCII translation table is compiled into internal form, it may be
installed in a widget using either XtAugmentTranslations or
XtOverri deTransl ati ons, both of which are prototyped in Listing 8.23. The
parameters to both functions are the same: the ID of the widget to receive the
new translations (w) and the compiled translation table (t ran s 1 at ion s).

Listing 8.23. Function prototypes: XtAugmenITranslations,
XtOverrideTranslations

void XtAugmentTranslations(w. translations
Widget w;
XtTranslations translations;

void XtOverrideTranslations(w. translations
Widget w;
XtTranslations translations;

While the above functions directly support the augment and override methods of
translation installation, the replace method is supported indirectly. To
completely replace a widget's default translations, you must first call
XtUni nstall Transl ati ons, prototyped in Listing 8.24. This function removes any
existing translations from the specified widget; you may then use either
XtAugmentTrans 1 at ions or XtOve r ri deTra ns 1 at ions to install a new translation
table.

Listing 8.24. Function prototype: XtUninstallTTanslations

void XtUninstallTranslations(w)
Widget w;

158 Programming with Motif

Installing Translations via Resource File

As with most resources, installation of a translation table via resource file is
simpler than programmatic installation.27 Listing 8.25 shows the format used to
specify a translation table in a resource file.

Listing 8.25. Translation table resource specification

widget_name. translations: directive \n \
first_translation \n \
second_translation \n \
lasLtranslation

The "directive" specifies how the translation table is to be added to the widget.
The standard resource manager permits values of #repl ace, #augment, and
Ifoverri de, corresponding the identically named installation method. However,
the Motif resource manager only supports Ifrepl ace. As a result, the directive
may be omitted from the table (and often is - see the sample program).28

Each line in the table, except the last, is terminated with a backslash ("\"). This
indicates to the resource manager that the resource specification is continued on
multiple lines.29 Each line - again except the last - also contains a newline
character ('\n'). As stated above, this is required to delimit the translations.

Translation Table Ordering

When the translation manager attempts to match an event sequence to a
widget's translations, it does so by sequentially scanning the widget's translation
table and using the fIrst matching translation. This means that a sequence of
translations such as that shown in Listing 8.26 will not work - the translation
manager always applies the fIrst translation, whether or not the shift key is
pressed. To make these translations work, they must be reversed: in general,
more specific translations should appear before their less-specific brethren.

27 Unfortunately, the Motif resource manager, up through Release 1.1, does not support
the augment and override installation methods. As a result, resource files cannot be
used for "fine tuning" a widget's translation table - only for completely replacing that
table.

28 There is a "story behind the story" here. Motif maintains default translations in a
manner that does not use the trans 1 at ions resource. If trans 1 at ions contains NU LL -
the default - then this other table is used. If transl ati ons pOints at a translation table,
then that table is used. This is why the Motif resource manager is unable to handle the
ffoverri de and ffaugment directives. However, the functions XtOverri deTransl ati ons and
XtAugmentTransl ati ons do work as expected, modifying whichever table is in use.

29 You have already seen this technique, in Listing 5.3, to specify multiple fonts for a
label.

Events and Callbacks 159

Listing 8.26. Poorly structured translations

<ButtonPress>:
Shift<ButtonPress>:

ActionOne()
ActionTwo()

Interaction oj Events, Callbacks, and Translations

What happens if a widget traps events, has callbacks registered, and uses
actions? The answer depends to a great deal on just how the widget is built and
how you specified the translation table.

In any case, events are completely separate from translations and callbacks. You
can have an XmPushButton widget with an event handler registered for button
press events and a callback function on the arm callback, and both will be
called. A program's event handler is completely separate from that of the widget
- both receive the same events.

Actions and callbacks, on the other hand, are very closely related - most
callbacks are invoked as the result of actions specified by the class's default
translations. As a result, if you replace the default action table, you disable
normal callback invocation.

To avoid this problem, if you plan to add translations to a widget but wish to
maintain its normal callbacks, you must either augment its translations
(programmatically) or include the default translations in your resource file. This
book specifies the default translations for XmPushButton and XmText; for other
widgets, refer to the Programmer's Reference.

Action/Translation Example: Multibutton Pushbutton
The program and resource file of Listing 8.27 handle the case where one
pushbutton is to have two actions associated with it. In this program, both
action functions are identical - they print their name and arguments. The
function Acti onOne is invoked by clicking pOinter button #1; Acti onTwo invoked
by clicking pointer button #2.

160 Programming with Motif

Listing 8.27. Program and resource fIle: Actions and
translations example

/***

** **
** **
** **
** Demonstration of actions and translations, using a pushbutton. **
** **
***/

#include <Xm/PushB.h>

void ActionOne();
void ActionTwo();

Widget appshell,
the_btn;

XtActionsRec

void main(argc, argv
int argc;
char *argv[];

/* FORWARD definitions

"ActionOne", ActionOne I,
I "ActionTwo", ActionTwo I
I;

appshell = XtIniti al i ze(argv[O], "L i stinLB_27", NULL, 0,
&argc, argv);

XtAddActions(action_tab, XtNumber(action_tab));

the_btn = XmCreatePushButton(appshell, "TheBtn", NULL, 0);
XtManageChild(the_btn);
XtRealizeWidget(appshell);

*/

Listing 8.27. Continued.

XtMainLoop();

void ActionOne(w. event. params. num_params)
Widget w;
XEvent *event;
char *params[];
int

int i;

printf("\nAction 1 Invoked\n");
printf(" %d Params:". *num_params);
for (i = 0; i < *num_params; i++)

printf(• %s". params[i]);
printf("\n");

void ActionTwo(w. event. params. num_params)
Widget w;
XEvent *event;
char *params[];
int

int i;

printf("\nAction 2 Invoked\n");
printf(" %d Params:". *num_params);
for (i = 0; i < *num_params; i++)

printf(" %s". params[i]);
printf("\n");

Events and Callbacks 161

Resource file for Actions/Translations demonstrator

*TheBtn.height:
*TheBtn.width:
*TheBtn.labelString:

50
100
Press Here

*TheBtn.translations: \
<BtnlDown>.<BtnlUp>:
<Btn2Down>.<Btn2Up>:

ActionOne(Act One) \n \
ActionTwo()

162 Programming with Motif

This program is straightforward: it defines the table of actions, then calls
XtAddAct ions to install them. The XtNumber macro deserves note: it calculates the
number of entries in an array, allowing the array to be expanded at will without
changes to the XtAddActi ons call. 30

The action procedures are as described above. They make use of the pa rams and
num_pa rams parameters, and the translation table specifies arguments to be
decomposed.

The translation table itself is the interesting thing. The button click is specified
as two events, button-down and button-up. Whenever the translation manager
detects these two events in the event stream without any intervening events, it
calls the associated action. The table uses the combined button event names; it
could use a button modifier along with <BtnDown> and <BtnUp> events (or
<Button Press> and <ButtonRel ease».

Again, note the newline and backslash at the end of each line. The backslash by
itself signals the resource manager that the resource specification is continued
on the next line. The newline is converted by the resource manager, and the
translation manager uses that newline to separate the transactions.

Finally, note that the table does not specify a directive - it uses the default
it rep 1 ace directive. When the directive is missing, the first translation is the fIrst
line of the resource.

XmPushButton Default Translations
XmPushButton uses the translation manager to invoke all of its callbacks. Listing
8.28 contains the translation table for a standalone pushbutton.31 If you decide
to add a new translation table to a pushbutton, including lines from this listing
will enable the existing callbacks.

Listing 8.28. XmPushButton default translation table

<BtnlDown>: Arm()
<BtnlUp>: Activate() Disarm()
<Key>Return: ArmAndActivate()
<Key>space: ArmAndActivate()
<EnterWindow>: Enter()
<LeaveWindow>: Leave()

30 The definition of this macro is (s i zeof (x) / s i zeof (x [OJ)). It is also used quite often
with calls to XtManageChi 1 dren.

31 When a pushbutton is in a menu, it uses a different translation table. As an in-depth
presentation of Motif translations is beyond the scope of this book, the reader is
referred to the OSF / Motif Programmers Reference.

Events and Callbacks 163

As you can see, pressing the pointer button arms the pushbutton, while
releasing the pOinter button (while inside the pushbutton's window) both
activates and disarms the pushbutton. In addition, pressing the Return or Space
keys on the keyboard (providing, of course, that the pushbutton has input focus)
will also activate the button. Finally, note that the window crossing events are
also trapped - leaving the window while the button is armed changes the
appearance of the window.

9
Keyboard Input

Overview
While some programs do not require the use of a keyboard, most do. Programs
that receive all input from button presses, pOinter movement, and data fIles are
rare; usually, the user must enter some data by typing. Even if the user does not
use the keyboard to input data, it may be used in many cases to substitute for a
mouse, due to traversal, accelerators, and translations.

This chapter begins with a description of how keyboard input is handled by X:
how the keys are identified, how the server determines which window gets
keyboard input, and how the client program handles such input. This is followed
by a description of the traversal facility, by which the keyboard can in many
cases substitute for the pOinter. The rest of the chapter is devoted to the XmText
widget class, a generic text input/edit widget that may be configured for
purposes ranging from a simple input field to a text editor.

Input Focus
The list of X events may be divided into two classes: those generated by another
client and those generated directly by the user. User-generated events represent
interaction with the server and may be further subdivided into pointer and
keyboard events.

The handling of a pointer event is simple: the pointer's location determines the
window that receives the event. The keyboard, however, cannot be so directly
associated with a window: one keyboard serves all windows. For this reason, the
server considers one window to have the inputjocus, and all keyboard events are
sent to that window.

The window manager is responsible for assigning input focus in response to user
events. 1 The Motif window manager (mwm) has two modes of assigning input

1 It is possible for a client to grab the focus. Except in very specific cases, however, doing
so does not follow the principle of giving the user complete control of his/her
environment and should be avoided.

165

166 Programming with Motif

focus: pointer and explicit.2 In pointer mode, input focus follows the pointer:
focus is changed by moving the pointer over the window that is to receive focus.
In explicit mode, the user must select the window to receive focus by clicking
with the pointer button anywhere in the window frame or client area. When a
window has focus, mwm indicates that fact by changing the color of the
window's frame. 3

When the focus changes, two informational events are sent by the window
manager. Focus In is sent to the window receiving the focus, and FocusOut is sent
to the window losing the focus. 4 Mter the focus changes, all subsequent
keyboard events are delivered to the new window. A Motif client maintains its
own internal focus information, allowing it to transfer the focus to a particular
widget.

Keyboard Events

Each time the user presses a key, a KeyPress event is sent to the window that
has the input focus. When the user releases the key, the server sends a
KeyRel ease event.5 Both of these events use the same event structure, XKeyEvent,
represented by the xkey member of XEvent. 6 This event structure identifies the
window where the event occurred (the window that had the focus), the time the
event occurred (in milliseconds since server startup), the state of the modifier
keys and pointer buttons, the position of the pointer, and a code representing
the key.

The key code returned by a KeyPress or KeyRel ease event is system-dependent: it
represents the server's internal key mapping. Before the key code can be used by
the pro~am, it must be converted into the system-independent form known as a
keysym.7 The "universe" of keysyms may be found in the header file
Xlllkeysymdef. h; a given server will support some subset of this universe. Since
you must use keysyms in translation tables, a printed copy of this file is helpful.

2 The mode is controlled by mwm's keyboardFocusPol; cy resource setting, which can take
values of XmEXPLICIT (the default) or XmPOINTER.

3 The specific color scheme is controlled by a two sets of mwm resources:
act; veForeground, act; veBackground, act; veTopShadowCol or, and
act; veBottomShadowCol or for the window with the focus, and foreground, background,
topShadowCol or, and bottomShadow color for all other windows.

4 These events are informational in that a window cannot prevent the focus change from
occurring; the focus-change event merely notes the state change. Depending on the
program, this notification mayor may not be useful- for example, a word processor
could catch the FocusOut event and repaginate the document while the user is working
on something else.

5 Not all servers send Key Re 1 e a 5 e events; relying upon their presence may be dangerous.
Another feature that is supported by many (but not all) servers is the ability to detect
when a "modifier" key, such as Shift, is pressed; servers supporting this functionality
send a separate event when the modifier key is pressed by itself.

6 This structure is defmed in Appendix C; this chapter does not cover direct keyboard
event processing.

7 This conversion is performed automatically inside the widget by the translation
manager. lfyou use an event handler, you must perform this conversion explicitly. The
function X Loo ku pS t r; ng converts a raw key code into both a keysym and its ASCII
equivalent.

Keyboard Input 167

How the keysym is used depends on the translations of the active widget. For
XmPushButton., the Space and Return keys activate the button (they call the
ArmAndAct i vate action), the arrow and Tab keys initiate a traversal action (see
below), and all other keys are ignored. XmText, on the other hand, inserts
printable characters into its butler, and performs special functions for many
nonprlntable key combinations (Control-LejtArrow, for example, moves the cursor
left one word).

Traversal
Consider a data entry screen consisting of a dozen entry fields. If the pointer
were the only way to move between these fields, the user would have to remove
his/her hands from the keyboard for each field. Instead, Motif allows the use of
the keyboard to "traverse" the fields.

Traversal is implemented as a set of actions and translations. XmPrimitive
provides the basic traversal functionality; other widget classes may modify or
extend this functionality.8 In the standard set of functions, the arrow keys
change focus between widgets in the same tab group, the Tab and Shift-Tab key
combinations change focus between tab groups, and the Home key changes
focus to the first widget in the current tab group.

The traversalOn Resource

Support for traversal is built into a widget's default translations. The
traversal On resource, defined by XmPrimitive and shown in Table 9.1, specifies
whether the widget makes use of these translations. If t r a ve r salOn contains
FALSE (the default), traversal is not supported by the widget; if traversal On
contains TRUE, traversal is supported.9

Table 9.1. The traversalOn resource

Name Inheritance Type Default Value

traversalOn XmPrimitive Boolean FALSE

Tab Groups

Tab groups allow the programmer to group widgets with related functions. As
stated above, the Tab and Shift-Tab keys are used to move between groups, and

8 For example, while the arrow keys are part of the standard traversal functionality, a
multiline XmText widget uses them for its own purposes, and therefore, does not
provide the standard functionality.

9 The traversal On resource is actually more far-reaching: it determines whether or not
the widget will accept keyboard focus. For most primitive widgets, accepting focus is
equivalent to enabling traversal - keyboard input is only used for traversal. For
XmText, however, the default behavior is to accept focus; to achieve this behavior in the
context of the traversal On resource, XmText - unlike other primitive widgets
defaults traversal On to TRUE.

168 Programming with Motif

the arrow keys (and Home key) are used to move between widgets in the same
tab group. Tab groups are identified by a single widget ID - if that widget is a
primitive widget. it is the sole member of the group; if it is a manager. its
children are the members of the group.

Tab groups are maintained in a circular list; the function XmAddTabGroup.
prototyped in Listing 9.1. adds groups to this list. The ordering of the groups in
the list is identical to the ordering of calls to XmAddTabGroup; each time it is
called. a new group is added to the end of the list. The list is circular. in that the
last tab group is logically connected to the first: pressing Tab while in the last
tab group shifts focus to the first group.

Also shown in Listing 9.1 is the function. This function takes a widget (manager
or primitive) out of the list of tab groups; if that widget was not in the tab group
list. the call is ignored. Note that. once a tab group is removed from the list. it
cannot be reinserted at the same location: the list "closes up." If the widget is
added again. it is placed at the end of the list.

Listing 9.1. Function prototypes: XmAddTabGroup.
XmRemoveTabGroup

void XmAddTabGroup(w)
Widget w;

void XmRemoveTabGroup(w)
Widget w;

Both XmAddTabGroup and XmRemoveTabGroup take a single parameter: the ID of the
widget to add or remove a tab group. As described above. if this widget is a
primitive. it is the sole occupant of the group; if it is a manager. its children
occupy the group.

The tab group list is "flat." Two widgets may be greatly separated in the instance
tree. but if both are tab groups then they are treated identically in terms of
traversal. To put this in more concrete terms: if the children of a manager form
one tab group. and one of those children is also placed in its own tab group. in
the context of traversal. that child is identical to its parent.

Highlighting the Active Widget

To indicate that it has the input focus. a widget may draw a highlight border
around itself. This border is controlled by the resources of Table 9.2:
highlightColor is the color used to draw the highlight border. and
hi ghl i ghtThi ckness is the thickness of that border.1O The default value of
hi ghl i ghtThi ckness - zero - means that no border is drawn.

JO The highlight border may also be drawn from a pixmap. using the hi ghl i ghtPi xmap
resource. This book only considers the "normal" case of a Single-color highlight border.

Keyboard Input 169

Table 9.2. Highlight resources

Name Inheritance Type Default Value

highlightColor XmPrimitive Pixel Black

highlightThickness XmPrimitive short 0

Traversal Example: Three Tab Groups
Figure 9.1 contains an example of three tab groups. each containing one or more
buttons. An XmFonn widget holds all of the other widgets; it is used to provide
positioning. The fIrst tab group is the pushbutton at the top of the picture. The
second tab group is the row-column at the bottom left. which holds three button
children. Its second child has the focus. as denoted by its highlight border. The
third tab group is the row-column at the lower right. with its button childrenY

In the context of this example. it is important to note that XmPushButton
provides a keyboard translation for its activation action. If a button has the
focus. pressing either Space or Return will arm and activate the button. This
means that the button may be "pressed" without the need for the user to use the
mouse.

Figure 9.1. Traversal example

11 As a side note. notice that the row-columns are both larger than they need to be. This
Is because their size is determined by the form. using attachment constraints. The size
of their children. however. is determined by the recomputeS; ze - each child is only as
high as it needs to be to display its label.

170 Programming with Motif

To produce this example. the program and resource file of Listing 9.2 were used.
The widget creation process should by now be familiar; the interesting parts of
this program are the calls to XmAddTabGroup. These calls are grouped here for
clarity; each call could have been made immediately after the associated widget
was created. 12

Listing 9.2. Program and resource file: Traversal example

1***

** **
** **
** **
** Demonstration of tab groups. This program uses one parent form
**
** with 3 children: two row-columns (each containing 3 buttons)
**

** and a pushbutton. Each of the form's children is a tab group.
**
**
**
***/

#include <Xm/Form.h>
#include <Xm/RowColumn.h>
#include <Xm/PushB.h>

Widget appshell,
the_form,
rc_O, rc_l,
the_btn,
btns_O[3], btns_l[3];

void maine argc, argv)
int argc;
char *argv[];

1* Application Shell
1* The parent form
1* The row-column children
1* The button child
1* Children of the rowcols

appshell = Xtlnitialize(argv[O], "Listing_9_02", NULL, 0,
&argc, argv);

*1
*1
*1
*1
*1

12 However. such placement would make the calls hard to find. Placing all such calls in a
single group makes the tab-group layout explicit to a person reading the code.

Keyboard Input 171

Listing 9.2. Continued.

the_form = XmCreateForm(appshell, "TheForm". NULL, °);
XtManageChild(the_form);

the_btn = XmCreatePushButton(the_form, "TheBtn", NULL, °);
XtManageChild(the_btn);

rc_O = XmCreateRowColumn(the_form, "RowColO", NULL, °);
XtManageChild(rc_O);
btns_O[O] XmCreatePushButton(rc_O, "RCO_BtnO", NULL, °);
btns_O[l] = XmCreatePushButton(rc_O, "RCO_Btnl", NULL, °);
btns_0[2] = XmCreatePushButton(rc_O, "RCO_Btn2", NULL, °);
XtManageChildren(btns_O, 3);

rc_l = XmCreateRowColumn(the_form, "RowColl", NULL, °);
XtManageChild(rc_l);
btns_l[O] = XmCreatePushButton(rc_l, "RCl_BtnO", NULL, °);

btns_HI] = XmCreatePushButton(rc_l, "RCLBtnl", NULL, °
btns_H2] = XmCreatePushButton(reI, "RCLBtn2", NULL, °);

XtManageChildren(btns_l, 3);
XmAddTabGroup(the_btn);
XmAddTabGroup(rc_O);
XmAddTabGroup(rc_l);

XtRealizeWidget(appshell);
XtMainLoop() ;

Resource file used to produce Figure 9.1

*.traversalOn:
*. hi ghl i ghtCol or:
*.highlightThickness:
*TheForm.width:
*TheForm.height:
*TheForm.background:

TRUE
White
2
200
150
Black

172 Programming with Motif

Listing 9.2. Continued.

TheForm..topAttachment:
TheForm..bottomAttachment:
TheForm..leftAttachment:
TheForm..rightAttachment:

*XmPushButton.background:
*XmPushButton.foreground:

*TheBtn.topPosition:
*TheBtn.bottomPosition:
*TheBtn.leftPosition:
*TheBtn.rightPosition:

*XmRowColumn.background:

*RowColO.topPosition:
*RowColO.bottomPosition:
*RowColO.leftPosition:
*RowColO.rightPosition:

*RowColl.topPosition:
*RowColl.bottomPosition:
*RowColl.leftPosition:
*RowColl.rightPosition:

A TT ACH_POS ITI ON
ATTACH_POSITION
ATTACH_POSITION
ATTACH_POSITION

Gray25
White

5
20
5
95

Gray50

25
95
5
45

25
95
55
95

The first three specifications in this resource file are the most important:
traversal is enabled, highlighting is enabled (by setting hi 9 h 1 i 9 h tT hie k n e s s to a
nonzero value), and the highlight color is set.

The method of positioning the form's children is also of interest. Since all of the
children are positioned by relative position, it is simpler to specify all attachment
constraints at one time using a loose binding with the form name. The
positioning specifications for the children are therefore minimized: only the
position constraints need be specified.

XmText

XmText is Motifs general-purpose text input/output class. Depending on
configuration, it may be used for purposes ranging from a simple entry field to a
text editor. A text widget's contents - its text - may be modified either
programmatically or via the keyboard. In addition, XmText supports the X

Keyboard Input 173

selection mechanism, allowing part or all of a text widget's contents to be copied
to or from another window. 13

XmText Resources

XmText is a primitive widget, derived as shown by the class tree of Figure 9.2. It
supports the resources defined by Core and XmPrimitive, but redefines the
primitive traversal translations.

Figure 9.2. XmText class tree

The resources defined by XmText are listed in Table 9.3 and described below.
Resources defined by XmPrimitive and Core are not listed here, except for
t r a v e r salOn, which has a different default value for XmText than for other
primitive widgets.

13 This window may be maintained by a different program or by a different widget in the
same program. XmText also supports in-window cut and paste of the selection.

174 Programming with Motif

Table 9.3. Frequently used resources: XmText

Name Inheritance Type Default Value

activateCallback XmText XtCallbackList NULL

autoShowCursor XmText Boolean TRUE
Position

blinkRate XmText int 500

columns XmText short 20

cursorPosition XmText XmTextPosition 0

cursorPositionVisible XmText Boolean TRUE

editabl e XmText Boolean TRUE

editMode XmText int XmSINGLE LINE -
EDIT -

focusCallback XmText XtCall backL i st NULL

fontList XmText XmFontL i st "fixed"

losingFocusCallback XmText XtCallbackList NULL

marginHeight XmText short 3

marginWidth XmText short 3

max Length XmText unsigned max_uns i gned

modifyVerifyCallback XmText XtCallbackList NULL

motionVerifyCallback XmText XtCallbackList NULL

pendingDelete XmText Boolean TRUE

resizeHeight XmText Boolean FALSE

resizeWidth XmText Boolean FALSE

rows XmText short 1

selectionArray XmText Pointer defau 7 t array

selectThreshold XmText int 5

topCharacter XmText XmTextPosition 0

value XmText String ""

valueChangedCallback XmText XtCallbackList NULL

wordWrap XmText Boolean FALSE

traversal On XmPrimitlve Boolean TRUE

Keyboard Input 175

Usage: editMode

An XmText widget may be used in either "single-line" or "multiline" mode. Single
line mode is appropriate for entry fields: the widget's contents are stored (and
displayed) as a single row of text. Multiline mode is appropriate for a text editor:
the widget's contents are displayed as multiple lines and stored with imbedded
newlines.

Single-line mode is the default and is specified by the constant
XmSINGLE_LINE_EDIT. The constant XmMUL TI_LINE_EDIT configures the widget for
multiline mode. Each mode has its own set of translations. as described below.

Contents: value

A text widget's contents are accessed through its val ue resource. which contains
a NUL-terminated C string. If the text widget is configured for multiline mode.
this string may contain embedded newlines.

Important caveats apply to programmatic access of a text widget's contents. You
may use XtGetVal ues and XtSetVal ues to access the resource value. as with
other resources. However. the preferred method is to use the convenience
functions XmTextGetStri ng. XmTextRepl ace. and XmTextSetStri ng.

The reason these functions are preferred is that. while XtSetVal ues will copy the
supplied strin~ into the val ue resource. XtGetVal ues returns a pointer to the
resource itself. 4 This means that. if your Rrogram frees or modifies the returned
string. it damages internal widget data. 5 The convenience functions. on the
other hand. work with copies of strings - the strings your program uses are
separate from the strings the widget uses.

Content Controls: editable, maxLength

In some cases. you will want to prevent the user from changing the contents of a
text widget - this chapter's fIle browser is an example. To make a text widget
read-only. set its editabl e resource to FALSE. The default value ofTRUE allows the
widget's contents to be modified by the user. Although the widget's contents may
not be changed by the user when editable contains FALSE. traversal and
selection are still supported. and the program may change the widget's contents
at will.

The max Length resource contains the upper limit on the amount of text that may
be entered by the user. This resource contains an integer value; by default it is
the maximum value of an unsigned integer. Once the widget contains the
number of characters specified in maxLength. text entry is disabled. as if the
ed ita b 1 e resource were set to FA LS E. This can be quite useful if the program has
a fixed-size buffer in which to process the widget's contents.

14 This is true for Motif 1.0 only. At 1.1 and above. due to changes in the way that the
widget holds its text. XtGetVa 1 ues will retrieve a copy of the string. XmTextGetStri ng is
still easier to write.

15 In addition. since the text widget reallocates its buffer space as needed. if you directly
access the val u e resource. the returned pointer may not remain valid for very long.

176 Programming with Motif

As with edi tabl e. rnaxLength affects user input only. The program may change
the widget's contents at will. regardless of the settings of either resource. In
particular. the maximum amount of text that may be stored in an XmText widget
is limited only by the capabilities of the computer and/or operating system.

Size: columns, resizeHeight, resizeWidth, rows

A text widget's size may be set either absolutely using its width and height
resources. by parental constraint. or by the number of rows and columns in the
text array. The col urnns resource specifies the width of the widget's window in
terms of the average character width. The rows resource - which is only
applicable in multiline mode - specifies the height of the widget's window in
terms of the character height. Both of these measurements are relative: the
absolute size is determined by the widget's font.

The res i zeHei ght and res i zeWi dth resources specify whether or not the widget
attempts to resize itself to display all of its contents. If either of these resources
contains TRUE. the widget will attempt to resize the appropriate dimension so as
to display all of the text in that dimension. This means that if a line of text is 80
characters long. the widget's width is currently 60 columns. and res i zeWi dth
contains TRUE. the widget will attempt to increase its width to display all 80
characters. Correspondingly. if the widget is sized for 10 rows and the user
enters an 11 tho it will attempt to increase its height. 16

The default value of FALSE for both resizeHeight and resizeWidth specify that
the widget is to change its size only under program or parental control. In most
cases. this is the preferred operation: an entry field. for example. should not
arbitrarily resize itself. In other cases. such as the memo pad program below.
resizing - within limits - is a convenience.

In some cases res i z e H e i 9 h t and res i z e Wid t h may have no effect. Height resizing
is disabled if the text widget is the child of a scrolled window (deSCribed below).
Width resizing is disabled if the widget is in multiline mode and the wordWrap
resource contains TRUE; in this case. the widget simply "breaks" lines instead of
increasing its width.

Content Appearance: fontList, marginHeight, marginWidth,
topCharacter, wordWrap

As with XmLabel and its subclasses. XmText uses the fontL i st resource to
specify the font used for its text. Like XmLabel. this resource defaults to the
"fixed" font; unlike XmLabel. only one font may be used at a time. 17 An additional
function of the fontL i st resource is to size the widget's window: if its size is
specified via the rows and col urnns resources. these values must be converted
according to the font used.

The rn a r gin H e i 9 h t and rna r gin Wid t h resources specify the distance between the
sides of the widget's window and its contents: rna rgi nHei ght specifies the top and
bottom margins. and rna rgi nWi dth specifies the right and left margins. These

16 The widget "attempts" to increase its size because any such increases may be denied by
its parent.

17 This is because the XmText widget holds ASCII text. not a compound string.

Keyboard Input 177

resources are necessary because text is hard to read if it is positioned too close
to another object, such as the widget"s border. The default margin size of three
pixels is sufficient for most cases; large text sizes - 24 points and above -
require more space.

The topCha racter resource specifies the position - in terms of the text buffer
of the top line of displayed text. 18 This resource is needed because a text widget
may contain more text than it can display. The to pC h a r a ct e r resource specifies a
character number; the row containing that character is maintained as the top
line of the displayed text. 19

The fmal appearance resource, wordWrap, specifies whether or not the text widget
will insert "soft" newlines to make all lines fit in its assigned width. This
capability is used only in multiline mode. If so, and if wordWrap contains TRUE,
any rows that would exceed the assigned width are "broken" by "soft" newlines.

A row is "broken" by dividing it into segments, each of which is smaller than the
width of the window. "Soft" newlines are the result of this process: the text
appears to be split over two or more rows, but is in reality a single row: althou~
newline characters normally separate rows, there are none between the
segments of a "broken" row. XmText will only break rows at word spaces, defined
as any whitespace that separates printable characters.

The default value of wordWrap is FALSE, meaning that rows may contain more
characters than are displayed. To view hidden text (text that is outside the
widget's display area) the user must "scroll" the display using the arrow keys.

Cursor Appearance: autoShowCursorPosition, blinkRate,
cursorPosition, cursorPosition Visible

The general definition of "cursor" is the marker (or "sprite") that shows the
current pointer position. In reference to an XmText widget, however, "cursor"
specifies the blinking line that indicates where characters are inserted - also
known as the insertion point. 20 The insertion point may be located at any point in
the text buffer and may be moved using the pointer or the arrow keys. When a
key is typed, the associated character is stored after the insertion point and the
insertion point is moved to the right of the newly inserted character.

The cur S 0 r P 0 sit ion resource specifies the position of the insertion point in
terms of a character number. The insertion point is positioned before the
character specified by cur S 0 r Po sit ion: as characters are typed, they are inserted
ahead of the specified character, and the value in cur S 0 r Po sit ion is
incremented. 21

18 OIigtnally, this resource was named topPos it i on and was documented as such in
Release 1.0 of the Progranuner's Reference. However, due to a conflict with the form
constraint of the same name, it was renamed before release.

19 Characters in an XmText widget are numbered from zero; the seventh character is
character number six.

20 To avoid confusion, this book uses the term "pointer" to refer to the mouse cursor and
"insertion point" to refer to the text cursor.

21 This means that the insertion point remains positioned before the same character.
ConSider a text widget that contains 10 characters in its buffer. The insertion point is
positioned before character number 6 (which is the seventh character in the buffer).
When a new character is typed, it becomes the new character 6, the former character 6

178 Programming with Motif

The a utoShowCu rsorPos it i on resource specifies whether the widget will "scroll"
its display in order to keep the insertion point visible. If autoShowCursorPos it ion
contains TRUE, the widget will scroll its display as needed to maintain visibility. If
FALSE, the insertion point may move out of the displayed part of the buffer,
meaning that the user can't see what is being typed. The default value of
autoShowCursorPos iti on is TRUE; very few programs change it.

The physical appearance of the insertion point is a blinking vertical bar, drawn
to the left of the character identified by cur s 0 r Po sit ion. The appearance of this
bar may be modified by the resources blinkRate and cursorPositionVisible.
The cur s 0 r P 0 sit ion Vis i b 1 e resource specifies whether the insertion point is
displayed: if it contains TRUE (the default), the insertion point is displayed; if
FALSE, it isn't displayed.

If the insertion point is visible, the b 1 ink Ra t e resource specifies the frequency of
its blinking. This is expressed as a count of milliseconds, which represents "time
in state" - the time that the cursor is either on or off (both times are identical).
The default value of 500 means that the insertion point marker is on for half a
second, then off for half a second - a cycle time of one second. If bl i nkRate
contains zero, the insertion point does not blink: it remains on at all times.

Selection Control: pendingDelete, selectionArray, selectThreshold

Selection is one of the mechanisms that X provides for interclient
communication. Clients are permitted to take ownership of a selection and
advertise that ownership. Other clients may then request the contents of the
selection, and the owning client then "delivers" the contents of the selection to
the requestor. This process is described in detail in Chapter 17.

For an XmText widget, selection has a different - but related - defmition. In
this definition, selection is the process of identifying text. The user is able to
select this text by a number of means, the most common of which is "dragging"
the pointer, with button #1 down, over the text to be selected. Hidden to the user
- and applications programmer - the widget advertises this text and will
provide it to another client without program intervention.

The selectThreshold resource specifies the number of pixels of "drag distance"
that cause a character to be entered into the selection. If the pointer is moved
that many pixels into a character's area while button #1 is down, the character
is added to the selection. The default value is five, meaning that the pointer must
be dragged almost all the way across a character for it to be entered into the
selection - an accidental drag while positioning the insertion point is unlikely to
initiate a selection.

The selectionArray resource specifies how the widget responds to multiple
clicks of the pointer button - defined as successive clicks, each within a half
second of the previous. This resource is a pointer to an integer array, containing
four items. In a multiple-click situation, each click increments an internal
pointer, and the value at the pOinted-to array item controls the action of the
widget. The value of each item must be a constant from the following list:

becomes the new character 7, the value in cur so r Pos it i on is incremented to 7, and the
buffer contains 11 characters.

Keyboard Input 179

• XmSELECT_POSITIONS. The selection is reset: the current selection is
deselected. and the insertion point is set to the current pointer position.
This is the single-click action.

• XmSELECT_WORD. The current word - identified by pointer position - is
selected. A word is defined as a sequence of nonwhitespace characters.
delimited by any number of whitespace characters (including the start or
end of the text buffer).

• XmSELECT_LINE. The current line - identified by pointer position - is
selected.

• X m S E L E CT _A L L. The entire text buffer is selected.

The default selection array contains the above four values in the order listed. A
single click sets the insertion point and deselects the selection. a double click
selects the current word. a triple click selects the current line. and a quad click
selects the entire buffer. Since this behavior is expected by users. you should not
change it without good reason.

The final selection-related resource. pendi ngDe1 ete. specifies how the text widget
will act when the user types while a selection is active. If pendi ngDe1 ete contains
TRUE (the default). the new text replaces the selection - the selection is deleted.
and the insertion point is positioned between the characters that previously
delimited the selection. If pendi ngDe1 ete contains FALSE. the new text is inserted
after the selection. and the selection remains active.

XmText Callbacks
XmText provides callbacks for activation. focus change. modification. and
insertion-point movement. These callbacks are separated into two groups:
notification and verification. The notification callbacks notify the program that
an operation has happened; they are similar to the button callbacks described in
the previous chapter. A verifICation callback notifies the program that an
operation is about to happen and allows the program to permit or deny that
operation. For XmText. the notification callbacks pass data in
XmAnyCa11 backStruct; the verification callbacks pass data in
XmText Veri fyCa 11 ba c kSt ruct. defmed in Listing 9.3.

typedef struct
{

Listing 9.3. Type definition: XmTextVerifyCallbackStruct

int reason;
XEvent *event;
Boolean doit;
int currlnsert. newlnsert;
int startPos. endPos;
XmTextBlock text;
}

XmTextVerifyCallbackStruct;

180 Programming with Motif

The reason and event members perform the same function as in all callbacks:
reason contains a code identifying the callback. and event points at the event
that invoked the callback.

The do i t member is what separates a verification callback from a notification
callback. Unlike other callback structures. which should never be modified by
the program. the do i t member exists for program modification: it controls
whether or not the widget will perform the operation associated with the
callback. Setting do i t to T RUE instructs the widget to complete the operation.
Setting doi t to FALSE instructs the widget to ignore the operation.22

The currlnsert and newlnsert members are used for motionVerifyCallback.
They contain the position of the insertion point before the attempted movement
along with the potential position after the movement (if it is permitted). As with
other text positions. characters are numbered starting from zero.

The startPos and endPos members are used for modi fyVeri fyCall back. They
contain the starting and ending characters of the text buffer that are slated for
replacement in terms of character pOSitions.

The text member is also used for modifyVerifyCall back. It specifies the text to
be inserted. using the XmTextBl ockRec structure defined in Listing 9.4.

Listing 9.4. Type definition: XmTextBlockRec

typedef struct
{

cha r
int
XmTextFormat
}

XmTextBlockRec.
*XmTextBlock;

*ptr;
1 ength;
format;

The ptr member of XmTextBl ockRec pOints at a text buffer. This buffer is not
NUL-terminated; it is simply a group of bytes. The 1 ength member contains the
number of bytes in that buffer.

The format member specifies the format of the buffer: whether each character
uses eight or sixteen bits. Its value is either FMT8BIT and FMTl6BIT. respectively.
specifying eight- or sixteen-bit encoding. Programs using the ISO Latin 1
character set use 8 bit encoding; some multinational programs may use 16 bit
encodings.23

22 Even though the program is allowed - and expected - to modify do it, such
modifications should be handled with care. The primruy way to ensure such care is to
use only a single callback function for each callback - multiple functions modifying
the same Variable can lead to unexpected results.

23 Sixteen-bit character sets are a part of XII Release 5 and will be supported by Motif
1.2. Until that time, all text widgets use 8-bit characters.

Keyboard Input 181

Activation: activate Callback

The activation callback is invoked as part of the widget's Act i vate action. This
action is performed when the user types the Return key; it is only supported by
widgets in single-line mode. This callback passes data in the
XmAnyCa 11 backStruct structure; the callback reason is XmCR_ACTI VA TE.

Focus Change: focusCallback, losingFocusCallback

An XmText widget signals the program when it gains focus. via focusCall back.
This callback passes data in XmAnyCall backStruct. with a callback reason of
XmCR_FOCUS.

XmText also signals the program when focus is about to be lost via
los i n 9 F 0 c usC all b a c k. This is a verification callback. with a callback reason of
XmCR_LOSING_FOCUS. Since the callback is performed before the actual loss of
focus. the program can deny focus loss by settin~the do; t member to FALSE. If
the program leaves doi t as TRUE. focus will be lost. 4

Modfftcation: modifyVerifyCallback, valueChangedCallback

Modification of an XmText widget's contents involves two callbacks:
modi fyVeri fyCa 11 back and va 1 ueChangedCa 11 back. The first is a verification
callback: it permits the program to control changes of the widget's text. The
second. val ueChangedCall back. notifies the program when the widget's contents
have changed.

The modi fyVeri fyCall back call permits the program to control the text that is
entered into the buffer. It is often used to impose a formatting convention on an
entry field - for example. a phone number field could automatically insert the
parentheses and hyphen that are normally used to segment the number. For
this callback. the reason is XmCR_MOD I FYI NG_TEXT _VALUE.

The va 1 ueChangedCa 11 back call permits the program to access the new contents
of the field. It passes data in XmAnyCall backStruct. with XmCR_VALUE_CHANGED as
the reason.

You should note that each keystroke is considered a modification. If a program
spends much time in a modification callback function. it will impair the
responsiveness of the widget. In addition. if both callbacks are handled. both are
called for a successful modification; the verification callback is always called.
and the notification callback is called if modification is permitted.

Insertion Point Motion: motion VerifyCallback

The finalXmTextcallback. motionVerifyCa11back. allows the program to control
where the user places the insertion point. as well as the extent of a selection.
This callback is called prior to each movement or selection; it is a verification
callback. and the reason member contains XmMOVING_INSERT_CURSOR. If the cursor

24 If doi t is set to FALSE. the text widget grabs focus back. As stated above. this is
considered a "bad habit" - no widget should arbitrarily override the user's actions.

182 Programming with Motif

movement or selection is acceptable, the program should leave doi t as TRUE; if
not acceptable, setting doi t to FALSE will cancel the operation.

XmText Default Translations

Single-Line-Edit Translations

As stated above, XmText defines many translations for special event
combinations, in some cases overriding the traversal translations provided by
XmPrimitive. Table 9.4 lists the translations used for a text widget in single-line
mode along with the actions called and a description of each action's operation.25

Table 9.4. XmText single-line-edit translations

Event Sequence Action Description

<Key>Tab next-tab-group Shift input focus to first widget in
next tab group. "Wrap" from last
group to fIrst if necessary.

Shi ft<Key>Tab prev-tab-group Shift input focus to fIrst widget in
previous tab group. "Wrap" from
fIrst group to last if necessary.

<Key>Home traverse-home Shift input focus to fIrst widget in
current tab group.

<Key>Up traverse-prev Shift input focus to previous widget
in current tab group. "Wrap" from
fIrst widget to last if necessary.

<Key>Oown traverse-next Shift input focus to next widget in
current tab group. "Wrap" from last
widget to fIrst if necessary.

<Key>Left backward-character Move insertion point one character
to left.

Ctrl <Key>Left backward-word Move insertion point to beginning of
previous word.

Shi ft<Key>Left key-select(left) Change selection state of character
to left of insertion point (select if
unselected, unselect if selected».
Move insertion point one character
to left.

<Key>Right forward-character Move insertion point one character
to right.

Ctrl<Key>Right forward-word Move insertion point to beginning of
next word.

25 For brevity, the parentheses associated with each action have been omitted unless a
parameter is passed to the action.

Keyboard Input 183

Table 9.4. Continued.

Shift<Key>Right key-se1ect(right) Change selection state of character
to right of insertion point; move
insertion point one character to
right.

<Key>Backspace de1ete-previous- Delete character to left of insertion
character point.

Shift<Key>Backspa de1ete-previous- Delete word to left of insertion
ce word point.

<Key>Oe1ete de1ete-next- Delete character to right of insertion
character point. If a selection is active. Delete

will delete the entire selection.

Shift<Key>De1ete de1ete-next-word Delete word to right of insertion
point.

<BtnlUp> extend-end ConfIrm current selection. This is
when the widget calls
mot ion Ve rifyCa 11 ba c k; tfiUs
given the "go ahead." it then
advertises the selection as described
in Chapter 17.

<Btn2Up> copy-to Copy current selection to point
specilled by pOinter position. If
current widget does not have
selection. retrieve selection data
from owner. Ignore if no selection is
active.

If the current widget has the
selection. leave selected text
unchanged.

Ctrl<Btn2Up> move-to If current widget has selection.
move selected text to current
insertion point.

This operation removes the text
from its original position and clears
the selection.

<LeaveWindow> leave If focus is set by pOinter position
(rather than explicitly). change
highlighting and initiate focus
change.

<FocusIn> focusIn Invoke callbacks in focusCa 11 back
list.

<FocusOut> focusOut Invoke los i ng F ocusCa 11 ba c k. If
given "go ahead." allow focus
change to happen; if program
denies focus change. grab focus
back.

184 Programming with Motif

Multiline-Edit Translations

When the widget is used in multiline mode, some of the single-line translations
are replaced by the translations of Table 9.5.

Table 9.5. XmText multi-line-edit translation changes

Event Action Description
Sequence

<Key>Tab self-insert Insert Tab character into buffer at current
insertion pOint. Move insertion point right
one character (past tab).

<Key>Home beginning-of- Move insertion point to start of current
line line.

<Key>Up previous-line Move insertion point to same position in
previous line. If previous line is too short,
move insertion point to end of line but
keep track of "real" position.

<Key>Oown next-line Move insertion point to same pOSition in
next line. If next line is too short, move
insertion point to end of line but keep
track of "real" pOSition.

<Key>Return newline Insert Newline character into buffer at
current position. Move insertion point past
newline (ie, to start of new line).

Anomalies in the Default XmText Translations

As you look at these translation tables, you may notice several anomalies - or
at least inconveniences. Most apparent is that a multiline text widget does not
invoke its activation callback; instead, the Return key is used to start a new line.
This means that the value-changed callback is the only way to notify the
program that data entry has been performed.

Another multiline anomaly is that the Tab key inserts a tab character into the
buffer instead of traversing to the next tab group. For a text editor, this is a great
thing; for a data entry field, it isn't. What makes this behavior anomalous is that
Shift-Tab maintains its default action - you can go to the previous tab group
but not the next.26

A final anomaly of note is the use of the Backspace and Delete keys. The default
action for Delete is to delete the character (or word, if shifted) after the insertion
point. The Backspace key deletes the character (or word) before the insertion
point. While this approach is fme for the IBM keyboard, where Backspace is part
of the "normal" keyboard and Delete is part of the keypad, most terminals have

26 This brings up another point: a multiline text widget, because it redefmes the traversal
translations in such a dramatic fashion, must be the sole occupant of a tab group. If it
were placed in the same tab group as other widgets, there would be no way to traverse
to the other widgets.

Keyboard Input 185

Delete as part of the normal keyboard - it's the key at the upper right,
traditionally called "rubout." This means that the normal translations do not act
in the way that most users feel is "correct." The only way to correct this problem
is either to install a new translation table or to change the keyboard mapping
(using the xmodmap client).27

Why You Can't Specify New Translationsjor a Multiline XmText
Widget in the Resource File

If you decide to use a resource file to specify new translations for a multiline
XmText widget - for example, if you want to correct the "tab group anomaly" -
you will find that your changes are not handled as you would expect. In fact,
although new translations replace the default single-line translations, a multi
line widget continues to use the default multiline translations.

To understand why this happens, you must understand the process of widget
initialization. When a widget is initialized, each class initializes its data in the
order of the class' pOSition in the widget's class tree. For XmText, this means that
Core data is initialized first, followed by XmPrimitive data, followed by XmText
data. Part of a class' initialization is the initialization of those resources defined
by the class - the resource file provides initial values.

For XmText, this means that the t ran s 1 at ion s resource is initialized by the Core
superclass. If a resource specification is found, it overrides the default
translations. However, the edi tMode resource is initialized by XmText. As part of
this initialization, the additional translations are installed when editMode is set
to XmMULTI_LINE_EDIT.

The result of this sequencing is that the resource-file-specified translations
override the default single-line translations, meaning that the default
translations are no longer available. However, the translations associated with
multiline edit are installed after those from the resource file, so they override
those resource-file translations that have identical event-sequences.

For this reason, if you wish to install translations in a multiline XmText widget
that override the default multiline translations, you must do so
programmatically. In addition, you must do so after the widget has been created
- if you attempt to install the new translations at the time of widget creation,
you are in the same situation found with a resource file.

XmText Convenience Functions
Unlike most widgets, XmText provides many resources that are constantly
accessed by a typical program. Given the frequency of access, along with the
programmer overhead involved in use of XtSetVal ues and XtGetVal ues, it was
only natural that a set of functions be written to eliminate that overhead. These
functions are described below.

27 This is one of the problems that the "virtual keysyms" of Motif 1.1 were designed to fix.

186 Programming with Motif

XmTextGetString. XmTextSetString

When X t Set Val u e s is used to load the val u e resource, it copies the program's
string into the text widget. However, when XtGet Val ues is used to retrieve this
resource, it simply returns a pointer to the text widget's internal buffer. To avoid
the havoc that would result from a program that haphazardly modifies this
buffer, XmTextGetStri ng exists. To minimize the code involved in storing a new
value, XmTextSetStri ng exists. Both functions are prototyped in Listing 9.5.

Listing 9.5. Function prototypes: XmTextGetString,
XmTextSetString

char *XmTextGetString(w)
Widget w;

void XmTextSetString(w. value)
Widget w;
char *value

XmTextGetString takes a single parameter, the ID of the text widget. It allocates
space for the widget's value and copies that value into the allocated space as a
NUL-terminated string. The program is responsible for deallocating this string -
with XtFree - when it is no longer needed.

X m T ext Set S t r i n 9 takes two parameters. The first is the ID of the text widget, the
second is a pointer to the new value, which must be a NUL-terminated string.
The contents of the passed string are copied into the widget, replacing its
current value.

XmTextReplace

If you wanted to change part of a text widget's contents you could use
XmTextGetStri ng to get the current contents, make the changes, and use
XmTextSetStri ng to install the new value. Or you could use XmTextRepl ace,
prototyped in Listing 9.6.

Listing 9.6. Function prototype: XmTextReplace

void XmTextReplace(w. from. to. value)
Widget w"

int from;
int to;
char *value

Keyboard Input 187

Like XmT ex t S et S t r i n g, the w parameter specifies the text widget, and the val u e
parameter specifies the string to be inserted. The new value must be a NUL
terminated string. It need not be the same length as the replaced string; the
widget's buffer will be expanded or contracted if necessary.

The from and to parameters specify the range of characters to be replaced,
numbered from zero. The from parameter specifies the first character to be
replaced, and the to parameter specifies the character after the last character to
be replaced.28 If both parameters contain the same value, the new string is
inserted after that character position; no text is replaced.

XmTextGetEditable. XmTextSetEditable

While many applications will have text widgets that are either editable or not
editable, some may need to switch the state while the program is running - for
example, a text editor that offers a "read only" capability. To examine the current
state, the function XmTextGetEdi tabl e is used. To set the state,
XmTextSetEditabl e is used. Both of these functions are prototyped in Listing 9.7.

28 So, to replace only the first character, from would passed as 0, and to would passed as
1.

188 Programming with Motif

Listing 9.7. Function prototypes: XmTextGetEditable,
XmTextSetEditable

Boolean XmTextGetEditable(w)
Widget w;

void XmTextSetEditable(w, new_state
Widget w;
Boolean new_state;

For both functions, the w parameter specifies the text widget. X mT ext Get Ed ita b 1 e
returns the current value of the editabl e resource; XmTextSetEditabl e stores the
contents of the new_state parameter in editabl e.

XmTextGetMaxLength, XmTextSetMaxLength

The functions XmTextGetMaxLength and XmTextSetMaxLength, prototyped in
Listing 9.8, are used to examine or change the contents of the max Length
resource. These functions are similar in operation to those for the edi tabl e
resource: XmTextGetMaxLength takes the widget ID as its parameter and returns
the value of maxLength, XmTextSetMaxLength takes the widget ID and new length
as its parameters.

Listing 9.8. Function prototypes: XmTextGetMaxLength,
XmTextSetMaxLength

int XmTextGetMaxLength(w)
Widget w;

void XmTextSetMaxLength(w. new_length
Widget w;
int new_length;

XmTextGetSelection, XmTextGetSelectionPosition,
XmTextSetSelection, XmTextClearSelection

These functions are used to access the widget's current selection. Unlike the
other convenience functions, they do not access widget resources. Instead, they
directly access the widget's internal data. All three are prototyped in Listing 9.9.

Keyboard Input 189

Listing 9.9. Function prototypes: XmTextGetSelection,
XmTextGetSelectionPoisition, XmTextSetSelection,
XmTextClearSelection

char *XmTextGetSelection(w)
Widget w;

Boolean XmTextGetSelectionPosition(w. start. end)
Widget w;
XmTextPosition *start;
XmTextPosition *end;

void XmTextSetSelection(w. start. end. time)
Widget w;
XmTextPosition start;
XmTextPosition end;
Time time;

void XmTextClearSelection(w. time)
Widget w;
Time time;

XmTextGetSe 1 eet i on retrieves the current selection as a NUL-terminated
character string. It takes one parameter, w, which is the ID of the text widget. It
allocates space for the returned text; the program must use XtFree to deallocate
this space when it has finished using it. If the widget does not have an active
selection, XmTextGetSe 1 eet i on returns NU LL.

X m T ext Get S e 1 e e t ion Po 5 i t ion retrieves the position and length of the selection. 29

The widget is passed in w, and the starting and ending positions of the selection
are returned in 5 tar t and end, respectively. 30 The return value is T RUE if the
widget has text selected, FALSE otherwise.

XmTextSetSel eeti on causes the text Widget to select part of its contents. As
expected, this function has parameters that identify the widget (w) and the range
to be selected (sta rt and end). The purpose of the time parameter, however, is
not so clear. It is a server timestamp and is required by the X selection
mechanism for synchronization. The value passed should be from the event that
initiated the selection.31

29 This function is undocumented but present in Motif 1.0. It is documented for Motif 1.1
and above.

30 XmTextPosi ti on is equivalent to long.
31 In almost all cases, an event will initiate a program-controlled selection. For example,

the menu could have a "Select All" choice; the callback for this choice contains an
event, which contains a timestamp. If, for some reason, your program needs to select a
portion of a text widget sans event. you could either generate a dummy event or call the
function XtLastTi mestampProcessed (available with XllR4). Use of the constant

190 Programming with Motif

XmTextC 1 ea rSe 1 ect i on deselects the current selection; the insertion point is
unaffected. The parameters are similar to those of X m T ext Set S e 1 e c t ion: w
identifies the widget, and time is the server timestamp from the event triggering
the operation.

XmText Example: Memo Pad
Figure 9.3 portrays a text widget in multiline mode. Configured in this way, it
serves as a simple memo pad: its contents can be modified at will while the
program is running, but lost at program tennination. Although the window as
shown is only suffiCient to hold 10 rows of 48 characters, it may be expanded as
needed. In addition, the actual text may be larger than the displayed text: if the
insertion point is moved outside the window border (via the arrow keys), the
widget will "scroll" its contents to keep the insertion point visible.

Figure 9.3. XmText example: Memo pad

Resource file to produce Figure 9 . 3

*TheText . foreground :
*TheText . background:
*TheText . fontList :
*TheT ex t . rows :
*TheText . columns :

Black
White
-*-Courier-medium-r-*--*
10
48

Listing 9.10 contains the program and resource file to produce the memo pad.
Both are simple: the program creates and manages the text widget, and it does
everything else. The resource file specifies the appearance, size, and usage of the
widget.

This program truly shows the capabilities of Motif: a program the same size as
"Hello World" provides a simple text editor. The addition of a few more lines of
code would allow it to save and restore from a disk file.

CurrentTi me is not acceptable, because of the possibility of a race condition - two
clients vying for the selection, each with time of Cur r e n tT i me.

Keyboard Input 191

Listing 9.10. Program and resource file: Memo pad

/***

** **
** **
** **
** Memo pad using XmText. **
** **
***/

#include <Xm/Text.h>

Widget appshell.
the_text;

void main(argc, argv
int argc;
char *argv[];

/* Application Shell
/* The text widget

appshell ~ Xtlnitial ize(argv[O], "Listing_9_10", NULL, 0,
&argc, argv);

the_text ~ XmCreateText(appshell, "TheText", NULL, 0);
XtManageChild(the_text);

XtRealizeWidget(appshell);
XtMainLoop() ;

Resource file to produce Figure 9.3

*TheText.foreground:
*TheText.background:
*TheText.fontList:
*TheText.rows:
*TheText.columns:

*TheText.editMode:

Black
White
·*·Courier·medium·r·*··*·100·*
10
48

MULTI LINE EDIT

*/
*/

192 Programming with Motif

XmText Example: Entry Fields
Figure 9.4 presents a slightly more complex example of XmText use. It combines
three text widgets as entry fields, along with three label widgets and a bulletin
board, to produce a simple data entry screen. Addition of an "OK" button - or
using the "Phone" field's activation callback - would tum this sample program
into the front end for an address book database.

Figure 9.4. XmText example: Entry fields

Listing 9.11 contains the program and resource file for the entry fields example.
This program contains three items of interest: it makes use of the uni tType
resource, it uses tab groups, and it augments the default translations of one of
the XmText widgets. These techniques are detailed below the listing.

Keyboard Input 193

Listing 9.11. Program and resource file: Entry fields

1***

**
**
**
**
**
**
**
**

Demonstration of XmText as used for entry fields. Both single
line and multi-line fields are presented. for an address card
entry form. In addition. this program demonstrates the use of
compiled-in translations.

**
**
**
**
**
**
**
**

***/

#include <Xm/BulletinB.h>
#include <XmILabel.h>
#include <Xm/Text.h>

Widget appshell. /* Application Shell
the_bb. /* The parent
labels[3J. /* Labels for the fields
fields[3J; /* The entry fields

Arg argl i st[IJ; /* Used to set unitType
XtTranslations ttab; /* Used to augment field

void main(argc. argv
int argc;
char *argv[J;

a p p she 11 ~ X tI n it i ali z e (a r 9 v [0 J. "L i s tin 9-9 _11 ". NUL L. O.
&argc. argv);

XtSetArg(arglist[OJ. XmNunitType. Xml00TH_POINTS);

the_bb ~ XmCreateBulletinBoard(appshell. "TheBB". arglist. 1);
XtManageChild(the_bb);

1 abel s[OJ
1 abel s[IJ

XmCreateLabel (the_bb. "Name_Lbl". NULL. 0);
XmCreateLabel(the_bb. "Addr _Lbl". NULL. 0);

*/
*/
*/
*/
*/
*/

194 Programming with Motif

Listing 9.11. Continued.

labels[2] = XmCreateLabel(the_bb,
XtManageChildren(labels, 3) ;

fields[O] XmCreateText(the_bb,
fields[l] XmCreateText(the_bb,
fields[2] XmCreateText(the_bb,
XtManageChildren(fields, 3) ;

XmAddTabGroup(fields[O]);
XmAddTabGroup(fields[l]);
XmAddTabGroup(fields[2]);

"Phon _Lbl" ,

"Name_Txt",
"Addr_Txt" ,
"Phon_Txt",

NULL, 0) ;

NULL, 0) ;

NULL, 0) ;

NULL, 0) ;

ttab = XtParseTranslationTable("None(Key>Tab: next-tab-group()");
XtOverrideTranslations(fields[l], ttab);

XtRealizeWidget(appshell);
XtMainLoop() ;

Resource file to produce Figure 9.4

*.background:
*.foreground:
*.traversalOn:
*.fontList:

*TheBB.width:
*TheBB.height:

*.XmLabel.alignment:
*.XmLabel.x:
*. XmLabel . hei ght:
*.XmLabel.width:

*Name_Lbl .1 abel Stri ng:
*Name_Lbl.y:

*Addr _Lbl .1 abel Stri ng:

Black
White
TRUE
-*-helvetica-medium-r-*--*-120-*

26100
13800

ALIGNMENT_BEGINNING
900
1800
5400

Name:
900

Address:

Keyboard Input 195

Listing 9.11. Continued.

*Addr_Lbl.y: 4200

*Phon_Lbl .1 abel Stri ng: Phone:
*Phon_Lbl.y: 10500

*.XmText.background: Gray50
*.XmText.x: 7200
*.XmText.width: 18000
*.XmText.height: 2400

*Name_Txt.y: 900

*Addr_Txt.editMode: MUL TI LINE EDIT -
*Addr _Txt.y: 4200
*Addr_Txt.height: 5400

*Phon_Txt.y: 10500

Measurement by Points

Expressing measurements in pixels does not make a lot of sense for this
program, since it is essentially text-based and the font size is 12 pOints. 32

Instead, the bulletin-board's uni tType resource is programmatically set - at
time of widget creation - to XmlOOTH_POINTS. Each child of the bulletin board
then uses this value for its own uni tType resource.

Using measurement-by-points, the height of text and label fields may be
determined from the font size: 12 points for the font, 6 for top and bottom
margin, 4 for shadow border, and 2 for "slop" in the points-to-pixels conversion.
The result, a line height of 24 points, is actually a bit large - the top margin is
bigger than the bottom margin.32a For a production program, you would adjust
the size until it "looked right."

For other measurements, the ratio of 72 points per inch may be used. Thus, the
lA3-inch space between entry fields (as well as the space between the bulletin
board and its contents) becomes 9 points, the 3f4-inch-wide labels are 54 pOints,
and the 2l;2-inch-wide entry fields are 180 pOints.

One potential drawback to measurement-by-points is that the numbers in the
resource file appear awfully big: 180 points is represented by the value 18,000,
because measurement is actually in terms of 100ths of a point. Althou~ this is
a drawback for most programs, which use only whole points and therefore don't

32 Of course, the font height could be specified in pixels. However, this would result in a
window size that varies by display - and the program would not have a consistent
"look and feel."

32a This size difference is partly due to the space allocated in the font for "decenders,"
about 2 pOints for a 12-point font.

196 Programming with Motif

need the extra zeros on each value, it is useful for a precision drawing
program. 33

Use of Tab Groups

The standard Motif traversal mechanism uses the arrow keys to move between
related widgets, but this program uses the Tab key - implemented by placing
each widget in its own tab group. The reason for this is that the typical user is
familiar with using either the Tab or Return key to move between entry fields -
that's how most traditional programs work.

Since Motif directly supports the use of the Tab key, via tab groups, that is the
logical way to implement the interface. The alternative - using the Return key -
would require changing the default translations for each widget. In addition,
Return is left in its default role of activation - allowing the user to notify the
program of completed entry (should that be implemented).

Changing Multiline Translations

The problem with using tab groups is that the multiline text widget does not
support the necessary translation of the Tab key - instead of traversing to the
next tab group, it enters a Tab character into the text buffer. The solution is to
override the default translation.

As described in the previous chapter, programmatic installation of translations
is a two-step process: first the ASCII translation table must be compiled, then
the compiled table must be installed into the widget. As described in this
chapter, this must be done after the widget is created because of the way that
XmTexfs multiline translations are installed.34

The translation used is .. None<Key>Tab: next - tab- 9 rouR()". The None modifier is
needed to limit translation to the unmodified Tab key.35 The <Key> event could
be replaced by <KeyPress> or <KeyDown>; convention is to use the abbreviation.
Tab is the name of the key, and n ext - tab - 9 r 0 U P is the action name, from Table
9.4.

33 The X output model is based on the abstract entity known as a drawable - an entity
into which a program may draw. Currently, the universe of drawables consists of
windows and pixmaps. However, there is no reason why a printer interface could not be
implemented as a drawable, as it is for the Macintosh, resulting in a need for the
additional resolution.

34 Although translation modification may be performed at any time after widget creation, I
chose to do it just prior to widget realization, for illustrative purposes. I recommend,
however, that you perform all Wtranslation fixups" at one point in the program, and the
point prior to realization is a good time. Doing so keeps compiled translation tables in
plain sight, as well as allowing easier debugging when tracking translation errors.

35 For some reason, my keyboard mapping allowed both Tab and Shift-Tab to invoke the
action with the colon modifier - which was what I originally expected to use. This goes
to highlight a difficulty of portable programming: evetything must be specified (and
tested) in great detail, and nothing may be left to the programmer's expectations.

Keyboard Input 197

Next Step: Change the Delete Translations?

Earlier in this chapter I said that the Delete key is usually used for deleting the
previous character. This is true for keyboards from DEC. Apple. and many other
vendors; it is not true for keyboards from HP and IBM. If your keyboard sends
Delete instead of Backspace. you may want to change the translations on the
text widget.

There are two resource-oriented ways to do this. and both present a quandary.
The fIrst is to change the default translations via the resource me. The quandary
is that you will have to specify the entire list of translations from Table 9.4 or the
text widgets will not behave as expected. The other method is to override the
translations programmatically - you could add the additional translations to
the existing X t Par 5 e T ran 5 1 at ion Tab 1 e call and install that compiled table in each
widget. The quandary from this approach is that users of HP and IBM keyboards
will not have the expected behavior - and cannot modify the behavior via the
resource me.

A third method is to use the xmodmap client to change the key mapping and
leave the widget translations along. This is a better approach. as it allows each
user to set a preferred mapping. which is consistent between applications.36

Scrolled Text
Although a text widget may be confIgured to maintain insertion point visibility by
scrolling the display. this ability is limited at best - expecting a user to
repeatedly press the DownArrow key to scroll through a large text me is not a
sign of good interface design. Instead. Motif provides scrollbars: widgets that
exist to provide positional control.

A sample scrollbar - along with a border - is shown in Figure 9.5. The arrows
on either end of the scrollbar allow incremental movement - equivalent to
repeatedly pressing an arrow key. The black rectangle inside the scrollbar is
known as the "slider." Its pOSition shows the current position of the display.
relative to the entire file; its size shows the size of the displayed area. again
relative to the size of the me - the example indicates that approximately two
thirds of the me is displayed. Finally. the interior of the scrollbar is known as the
"scroll region." If the pointer button is clicked while the pOinter is within the
scroll region. it scrolls the display by one "page" - the width of the slider. In
addition. the slider may be "dragged" through the scroll region to scroll the
display by a large amount.

Figure 9.5. Sample scrollbar

36 The entire problem goes away with Motif 1.1.

198 Programming with Motif

Scrollbars, as a general topic, are presented in the next chapter. This chapter
simply presents the Scrolled Text widget - which is not a true widget, but
actually an XmText widget as the child of an XmScrolledWindow widget. This
chapter will pretend, however, that Scrolled Text is a true widget and thus forego
a complete description of XmScrolledWindow.

A scrolled text widget consists of an XmText widget, along with two optional
scrollbars (and an XmScrolledWindow manager). The two scrollbars allow both
horizontal and vertical scrolling; horizontal scrolling involves moving the current
"page" left or ril!bt, while vertical scrolling involves changing the page position to
another part oIthe me. Both scrollbars are optional; some programs use vertical
scrolling, some use horizontal scrolling, and some use both (using neither is
possible, but is counter to the idea of using scrolled text). By default, both
scrollbars are present.

Creating a Scrolled Text "Widget"
The function XmCreateScroll edText, prototyped in Listing 9.12, is used to create
the widgets supporting scrolled text: an XmScrolledWindow manager, an XmText
child, and horizontal and vertical XmScrollBar children. On the surface, it
appears to create a single widget, just like any other widget creation function; it
takes the same parameters and returns a widget ID.

Listing 9.12. Function prototype: XmCreateScrolledText

Widget XmCreateScrolledText(parent, name, arg_list, arg_count)
Widget parent;
char
ArgList
Cardinal

*name;
arg_list;
arg_count;

The ID returned by XmCreateScroll edText bears closer examination. Since this
function creates several widgets, which ID is returned? The answer is that it
returns the ID of the text widget. To get the ID of the scrolled window, you must
use the function X t Par e n t. The text widget is created as the child of the scrolled
window, and the scrolled window is created as the child of the widget specified
by parent.

The use of the name parameter also requires more examination. As with most
widget-creation functions, name specifies the name of the associated with the
returned widget ID - in this case, the name of the XmText widget. But what is
the name of the scrolled window? It is the same as the name of the text widget,
but with "sw' appended - if the text widget is named TheText, then the scrolled
window is named TheTextSW.

Why is the scrolled window's name important? Because the position and size of
the scrolled text widget must be specified via the scrolled window - that window
then divides its area between its children. As with most managers, the scrolled
window will attempt to size itself based on its children's size - so it is possible
to specify size in terms of the XmText child. However, this approach does not

Keyboard Input 199

work when the scrolled text widget is the child of a form: applying the form's
constraints to the text child does nothing; they must be applied to the scrolled
window.

Scrolled Text Resources
As the scrolled text widget is actually a combination of XmScrolledWindow,
XmScrolLBar, and XmText, it provides the resources defined by all of these
classes - albeit in a roundabout manner. This chapter, however, covers only
those resources defined by the XmText class for use with scrolled text. These
resources are listed in Table 9.6 and described below.

Table 9.6. Additional resources: Scrolled Text

Name Inheritance Type Default Value

scrollHorizontal XmText Boolean TRUE

scroll LeftSi de XmText Boolean FALSE

scrollTopSide XmText Boolean FALSE

scrollVertical XmText Boolean TRUE

Usage: editMode

Although you would expect Scrolled Text to default to multiline mode, it doesn't.
This means that, for most purposes, you will need to set the editMode resource
to XmMULTI_LINE_EDIT, as well as remember the interaction of multiline
initialization and translations.

There are cases where a single-line scrollable text field is useful. If, for example,
a program has a need for a very long text field - the variable-display component
of a C++ debugger comes to mind - then use of a scroll bar may be better than
the default (arrow key) method of scrolling.

Scrollbar Usage: scrollHorizontal. scrollVertical

Depending on the application, you may want both horizontal and vertical
scrollbars or one but not the other. The scroll Hori zontal resource controls the
presence or absence of a vertical scrollbar: if it contains TRUE (the default) the
scrollbar is present; if it contains FALSE, the scrollbar is absent. The
s c roll Ve r tic a 1 resource performs the same function for the vertical scrollbar;
its default value is also TRUE.

You should note that these resources may be set impliCitly based on the widget's
use. One such modification is the result of the e d i t Mod e resource: if the text
widget is configured for single-line mode, the s c roll Ve r tic a 1 resource is forced
to FA L S E. Another modification happens if the scrolled window has its

200 Programming with Motif

scroll ingPol icy resource (described in the next chapter) set to XmAUTOMATIC, in
which case both s c ro 11 Ho ri zonta 1 and s c ro 11 Vert i ca 1 are forced to FALSE. 37

Scrollbar Placement: scrollLeftSide, scrollTopSide

By default, scrollbars are placed on the bottom and right sides of a scrolled text
widget. If your application requires different placement, the s c roll Le ft Sid e and
s c roll Top Sid e resources are used to change this behavior.38

The s c roll Le ft Sid e resource controls the position of the vertical scrollbar: when
it contains FALSE (the default), the scrollbar is positioned to the right of the text
widget; when it contains TRUE, the scrollbar is positioned to the left of the text.
The s c roll Top Sid e resource performs the same function for the horizontal
scrollbar: when FALSE (the default), the scrollbar is placed below the text widget;
when TRU E, the scrollbar is positioned above the text.

Scrolled Text Example: File Browser
Figure 9.6 presents a Motif replacement for the more file browser.39 It is invoked
using a command line of the form" xmore fi 7 ename", where.filename is the name
of the file to be displayed. It reads that file, then displays it in a scrolled-text
widget. The user is then able to page forward or backward through the file (a
decided improvement over more), as well as select portions of the file to copy into
another window, using X's selection mechanism. There is no ability to save or
modify the file; like more, this program is read-only.

37 This behavior is not the default for a scrolled window. It is noted here, however, in
expectation that you will refer to the &rolled Text section first if you run into any
problems with text in a scrolled window.

38 To maintain the "Motif Look," you should give great consideration to your reasons for
nonstandard scrollbar placement.

39 This program is not yet a replacement for nwre, as it is incapable of accepting text from
Standard Input. In Chapter 17, that feature is added.

Keyboard Input 201

Figure 9.6. File browser

/***
**
**
**
**
**
**
**
**

Pile Browser, Edition 1. This program uses a
widget to replace more(l). It accepts a sing
command line, and displays the contents of t
text widget.

**

~include < stdio. h>
~include <xm/Text.h>

The file browser program and resource file are shown in Listing 9.13. The
program is similar to the memo pad program of Listing 9.10, but adds code to
read the input file. The resource file is also similar to that of Listing 9.13, but
increases the height of the text widget, sets edi tabl e to FALSE, and adds a
background color specification for the scrolled window manager.

The file browser was written with the assumption that it would be invoked with
some number of X-specific arguments and a single filename. The X-specific
arguments are removed from the command line by X tIn i t i ali z e, leaving a single
argument - the name of the input file. The function LoadFi 1 e opens this file,
reads its contents, and calls XmTextSetStri ng to store the text in the widget.

Listing 9.13. Program and resource file: File browser

1***
**
**
**
**
**
**
**
**

File Browser. Edition 1. This program uses a Scrolled Text
widget to replace more(l). It accepts a single file on the
command line, and displays the contents of that file in the
text widget.

**
**
**
**
**
**
**
**

***/

202 Programming with Motif

Listing 9.13. Continued.

1/include <stdio.h>
1/include <Xm/Text.h>

void LoadFile(); /* FORWARD Definition

Widget appshell, /* Application Shell
the_text; /* The text widget

void main(argc, argv
int argc;
char *argv[];

appshell = Xtlniti al i ze(argv[O]' "L i sting_9_13" , NULL, 0,
&argc, argv);

/**

if (argc != 2)

(

fprintf(stderr, "\nbrowser: Usage:\n");
fprintf(stderr, " browser FILENAME\n");
ex it (1);
}

the_text = XmCreateScrolledText(appshell, "TheText", NULL, 0);
XtManageChild(the_text);

LoadFile(argv[l]);

XtRealizeWidget(appshell);
XtMainLoop() ;

*** LoadFile(fname)

*** This function opens the file and loads it into the text widget.
**/

void LoadFile(fname)
char *fname;

*/

*/.
*/

Listing 9.13. Continued.

FILE *infile;
long fsize;
char *lclptr;

infile fopen(fname. Or");
if (infile ~~ NULL)

(

perror("browser: unable to open input file");
exit(2);
}

fseek(infile. O. 2);
fsize ~ ftell(infile);
rewind(infile);

lclptr ~ (char *)XtMalloc(fsize + 1);
fread(lclptr. sizeof(char). fsize. infile);
lclptr[fsize] ~ '\0';

XmTextSetString(the_text. lclptr);

XtFree(lclptr);
fclose(infile);

Resource file to produce Figure 9.6

*TheTextSW.background: Gray50

*TheText.foreground: Black
*TheText.background: White
TheText.fontList: --Courier-medium-r-*--*-100-*
*TheText.rows: 15
*TheText. col umns: 48

*TheText.editMode: MULTI LINE_EDIT
*TheText.editable: FALSE

Keyboard Input 203

10
Scrollbars

Overview
Scrollbars. implemented by the XmScrollBar class. are a "position" control. They
were presented in the previous chapter to control the position of text displayed
by an XmText widget. This chapter presents scrollbars as discrete entities and as
children of the XmScroUedWindow manager. It also presents the XmScale class.
a "magnitude" control similar to a scrollbar.

Scrollbar Components and Terminology
The previous chapter listed the components of a scrollbar along with a
description of how these components apply to a scrolled-text application. Those
definitions are refined and expanded here. using Figure 10.1 as a visual aid.

Figure 10.1 . Scrollbar components

Stepper
Arrow

Slider Stepper
Arrow

... _------------~
Scroll Region

205

206 Programming with Motif

Minimum, Maximum, and Current Values

To the program, a scrollbar's scroll region represents the set of integer values
between two points: the minimum and the maximum. The position 01 the slider
represents the scrollbar's current value. The convention is to make the top or left
side of the scrollbar represent the minimum value and the bottom or right side
represent the maximum value but this can be changed by the program.

When the scrollbar's slider is moved - via the stepper arrows, the scroll region,
or a direct drag - the scrollbar reports its new value to the program. The
program then performs whatever actions are needed to make its display react to
the scrollbar. A scrolled window - such as a scrolled-text widget -
automatically translates scrollbar movement into display movement.

Stepper Arrows

Stepper arrows allow the user to incrementally shift the scrolled object. In terms
of the scrollbar's value, each time a stepper arrow is activated it increments the
current value, bounded by the maximum and minimum values.

A stepper arrow's interaction is similar to that of an arrow button. Like an arrow
button, it is activated by clicking pointer button # 1 while the pOinter is
positioned over the arrow. Also like an arrow button, it signals its activation by
changing its shadow color, so that it appears to recede into the screen. Unlike an
arrow button, a stepper arrow has a "repeat " capability: if the user holds the
pOinter button down while over the arrow, it will - after a short delay -
repeatedly activate, until the user releases the pOinter button. This allows a
"smooth scrolling" effect: each activation changes the current value, and
activations happen relatively frequently.

Slider

The slider provides visual feedback of the scrollbar's current value and the
amount of data displayed. The left side of the slider shows the scrollbar's value;
the relative size of the displayed data is shown by the slider's width (for a
horizontal scrollbar) or height (for a vertical scrollbar).1

Not only does the slider provide visual feedback on the scrollbar's current value,
it allows the user to change that value by an arbitrary amount. The user can
"drag" the slider by pressing and holding pointer button # 1 while the pointer is
positioned over the slider and then moving the pOinter. By dragging, the
scrollbar's value may be set to any value - up to the maximum value minus the
slider's width. A properly behaving application - such as a scrolled window -
then scrolls the display to match the new slider position.

1 Actually, slider width is under program control. The Motif style gUide specifies that the
ratio of the slider to the scroll region show the proportion of displayed data relative to
the entire object, and a scrolled window enforces this behavior. However, a programmer
could implement the Macintosh approach: a flxed-size slider that Simply shows relative
position.

Scrollbars 207

Scroll Region

The scroU regiDn is the "background" of the scrollbar and provides context for the
feedback supplied by the slider. It also allows the user to change the current
value a "page" at a time by clicking pointer button # 1 while the pointer is
positioned over the scroll region. This causes the slider to move toward the
pOinter, and like the stepper arrows, this operation is repeated for as long as the
pointer button is held down.

XmScrolledWindow

XmScroUedWindow is a manager widget, derived as showri by the class tree of
Figure 10.2. Unlike the manager widgets of Chapter 6, XmScrolledWindow does
not provide management for an indefmite number of children. Instead, it has
four: horizontal and vertical scrollbars, a work window, and a clip window. 2

Figure 10.2. XmScrolledWindow class tree

The work window is the object being scrolled. It may be any type of widget,
manager or primitive. In a scrolled-text application, it is an XmText widget. The
program is responsible for maintaining its contents; the scrolled window is
simply responsible for its geometry and display. In a departure from the normal
parent-child window relationship, the work window may be bigger than the
scrolled window - in fact, this is the entire reason for the existence of the
scrolled-window class.

2 The actual term for these "children" is sub-area. Although in almost every program the
sub-areas are children of the scrolled window, this is not a requirement.

208 Programming with Motif

The clip window represents a view into the work window as diagrammed by
Figure 10.3. It is controlled by the scrolled window and is responsible for
displaying the appropriate contents of the work window. The term "clip window"
comes from the fact that only that part of the work window that is currently
"under" the clip window is shown - in effect, the excess is "clipped off' as if by a
pair of scissors.

Figure 10.3. Clip window vs. work window

- I Clip Window

Work Window

When a scrolled window is initialized, the clip window is positioned at the top
left of the work window. Its position is controlled by the scrollbars: as their
values change - under either user or program control - the scrolled-window
widget changes the position of the clip window.

XmScrolledWindow Resources

As it is descended from XmManager, XmScrollBar provides all resources defined
by that class, as well as its superclasses. In addition, XmScrollBar provides the
resources listed in Table 10.1 and described below.

Table 10.1. Frequently used resources: XmScrolledWindow

Name Inheritance Type Default Value

clipWindow XmScrolledWindow Widget NULL

horizontalScrollBar XmScrolledWindow Widget NULL

scrollBarD i splayPol i cy XmScrolledWindow un s igned XmSTATIC
char

scrollBarPlacement XmScrolledWindow unsigned XmBOTTOM -
char RIGHT

scrolledWindowMargin XmScrolledWindow Dimension 0
Height

Scrollbars 209

Table 10.1. Continued.

scrolledWindowMargin XmScrolledWindow Dimension 0
Width

scrollingPolicy XmScrolledWindow unsigned XmAPPLICATION
char DEFINED

spacing XmScrolledWindow Dimension 4

verticalScrollBar XmScrolledWindow Widget NULL

visual Policy XmScrolledWindow unsigned XmVARIABLE
char

workWindow XmScrolledWindow Widget NULL

Appearance: scrollBarPlacement, scrolledWindowMarginHeight,
scrolledWindowMarginWidth, spacing

-

A scrolled window supports two scrollbars: horizontal and vertical. The
horizontal scrollbar may be placed on either the top or the bottom of the window;
the vertical scrollbar may be placed on either the left or the right side. The
scroll BarPl acement resource specifies the scrollbar placement; it can contain
one of the following constants:

• XmTOP _LEFT. The horizontal scrollbar is placed at the top of the window.
and the vertical scrollbar is placed on the left side.

• XmBOTTOM_LEFT. The horizontal scrollbar is placed at the bottom of the
window. and the vertical scrollbar is placed on the left side.

• XmTOP _RIGHT. The horizontal scrollbar is placed at the top of the window.
and the vertical scrollbar is placed on the right side.

• XmBOTTOM_RIGHT. The horizontal scrollbar is placed at the bottom of the
window. and the vertical scrollbar is placed on the ri.l!b.t side. This is the
default value and is what users expect from a Moti.l program; it should
only be changed after great consideration.

The distance between the scrollbars and the work window is specified by the
spaci ng resource. This resource contains a count of pixels; the default of four
pixels should be sufficient for most programs.

Like other managers. XmScrolledWindow provides an optional margin between
its sides and its contents. This margin is specified by the resources
scrolledWindowMarginHeight. which specffies the top and bottom margin. and
scrolledWindowMarginWidth. which specifies the left and right margins. The
default value for both resources is zero.

210 Programming with Motif

Behavior: scrollBarDisplayPolicy, visualPolicy

The scroll BarDi spl ayPol icy resource allows the scrolled window to exercise
discretion over the presence or absence of its scrollbars. If it contains the value
XmAS_NEEDED (the default), the scrolled window will only display the scrollbars
when the size of the work window exceeds the size of the clip window. If it
contains the value XmSTATIC, the scrollbars are always displayed - provided, of
course, that they are not unmapped or unmanaged by the program.3

The vis u alP 0 1 i cy resource controls whether the scrolled window attempts to
grow to enclose the entire work window. If vi sual Pol icy contains XmVARIABLE
(the default), the scrolled window will attempt to grow or shrink to fit the work
window, unless prevented by its parent. If vis u alP 0 1 i cy contains the value
XmCONSTANT, the scrolled window remains at its initial size - unless that size is
changed by its parent - and the clip window provides a view into the work
window.

The vis u alP 0 1 i cy resource must be set at the time of the scrolled window's
creation; it controls the way that the widget is initialized. In addition, if
vis ua 1 Po 1 icy is XmV A R I AB L E, the s c ro 11 Ba rD is play Po 1 i cy resource is forced to
XmSTATIC and may not be changed to XmAS_NEEDED.

Interaction: scrollingPolicy

In most programs, XrnScroUedWindow is used for its primary purpose: providing
a convenient method of maintaining a "view" into a larger window. However,
some applications may be too complex to take advantage of this ability - a CAD
program, for example, may need to explicitly redraw its window's contents when
scrolled. Even in this case, XmScrolledWindow may be used, as a convenient
blend of a manager and automatically positioned scrollbars.

The scroll i ngPol i cy resource controls whether the scrolled window or the
program is responsible for scrolling. If it contains XmAPPLICATION_DEFINED (the
default), the program is responsible for maintaining the appearance of the work
window - it must directly handle the callbacks from the scrollbars. If
scroll ingPol i cy contains XmAUTOMATIC, the scrolled window uses the clip window
to provide a view into the work window.

This resource may only be set at the time of widget creation as it controls
initialization of not only the scrolled window, but also of the scrollbars and clip
window - these children are created along with the scrolled window if
scro 11 i ngPo 1 icy contains XmAUTOMA TI C. The s c ro 11 in 9 Po 1 icy resource also
controls the contents of the scroll BarDi spl ayPol icy resource: if
scrollingPolicy is XmAPPLICATION_DEFINED, then scrollBarDisplayPolicy is
forced to XmSTATIC.

3 For example, if the scrolled window contains a text widget, and scroll BarD; spl ayPol; cy
contains XmAS_NEEDED, the scrollbars are only displayed when the contents of the text
widget exceed its displayable area. In addition, only that scrollbar which is needed is
displayed - if the text widget is sized for lO rows and 48 columns and contains 5 rows
of text with the longest row having 60 characters, only the horizontal scrollbar is
displayed.

Scrollbars 211

Sub-Areas: clipWindow, horizontalScrollBar, verticalScrollBar,
work Window

A scrolled window manages four sub-areas: horizontal and vertical scrollbars, a
clip window, and a work window. Each of these areas is a widget; the resources
horizontalScrollBar, verticalScrollBar, clipWindow, and workWindow hold the
respective IDs of these widgets. 4

If the scrollingPolicy resource is set to XmAUTOMATIC, the scrollbars and clip
window are created along with with the scrolled window and are automatically
maintained by it. 5 If scroll i ngpo 1 icy contains XmAPP LICA TION_DEFI NED, the
program must explicitly create all of the children - except the clip window,
which is not used in this mode.

Creating and Initializing a Scrolled Window
A scrolled window is created using the XmCreateScroll edWi ndow convenience
function, prototyped in Listing 10.1. This function creates an instance of
XmScroUedWindow and returns the ID of that instance. Additionally, if the
scro 11 i ngPol icy resource is specified as XmAUTOMA TI C, XmCreateScro 11 edWi ndow
also creates two XmScrollBar widgets and an XmDrawingArea widget (the clip
window). XmCreateScroll edWi ndow does not create the work window; the program
is responsible for its creation.

Listing 10.1. Function prototype: XmCreateScroUedWindow

Widget XmCreateScrolledWindow(parent. name. arg_list. arg_count)
Widget parent;
char
ArgList
Cardinal

*name;
arg_list;
arg_count;

If the scrolled-window's sub-areas are not created with the scrolled window - or
specified as resources at the time of its creation - they may be specified at any
time afterward using the XmScroll edWi ndowSetAreas function, prototyped in
Listing 10.2. This function takes four parameters: the ID of the scrolled window
widget (w), the IDs of the horizontal and vertical scrollbars (h s c r 0 1 1 and v s c r 0 1 1),

4 Although this book refers to these widgets as the Mchildren" of the scrolled window, this
need not be the case. In fact, each of these widgets may be at any level of the instance
tree relative to the scrolled window. However, in keeping with common manager usage,
this book does make scrolled-window sub-areas children of the scrolled window.

5 When created along with the scrolled window, using the XmCreateScroll edWi ndow
function. the name of the hOrizontal scrollbar is h S c roll Bar. the name of the vertical
scrollbar is vScroll Ba r. and the name of the clip window is scroll edWi ndowCl i pWi ndow.
When created with XmCreateScro 11 edText. the horizontal scrollbar is named hba r. the
vertical scrollbar is named v ba r, and the clipping window is not used. If you wish to
change the appearance of these widgets via the resource file, you must use these
names.

212 Programming with Motif

and the ID of the work window (work). Any of these parameters may be passed
NULL; such parameters are ignored. 6 XmScroll edWi ndowSetAreas may be called
multiple times; each call reconfigures the scrolled window.

Listing 10.2. Function prototype: XmScrolledWindowSetAreas

Widget XmScrolledWindowSetAreas(w, hscroll, vscroll, work)
Widget w;
Widget hscroll;
Widget vscroll;
Widget workwidget;

XmScrolledWindow Example: Scrolling Row-Column
Figure 10.4 presents a row-column widget - which contains multiple label
children - encased in a scrolled window. The program and resource file follow in
Listing 10.3.

Figure 10.4. Row-column inside scrolled-window

This program creates a scrolled window as the child of the application shell.
creates a row-column manager as the child of the scrolled window. and creates
ten labels as children of the row-column. It relies upon the

6 Passing NULL does not disable the sub-area. To do that. you must explicitly set the
associated resource to NU LL with XtSetVa 1 ues .

Scrollbars 213

XmCreateScro11 edWi ndow function to create the scrolled window's clip window
and scrollbars, which are automatically installed as sub-areas. The row-column
is installed as a sub-area via the XmScro11 edWi ndowSetAreas function.

Of special note is the unmanagement of the horizontal scrollbar. Since it is not
needed for this program - the scrolled window is sufficiently wide to display the
entire row-column - its presence would be a distraction. However, by default it
is created and managed. The program must therefore get its widget ID and
explicitly unmanage it. An alternative - and simpler - approach would be to set
the s c ro 11 Ba rDi s p 1 ayPo 1 icy resource to XmAS_N E EDED. 7

lAsting 10.3. Program and resource file: Row-column inside
scrolled window

1***

**
**
**

**
**
**

**
**
**

Scrolled-Window Demo. This program uses a scrolled-window to hold **
a row-column, which in turn holds ten label widgets. **

**
***/

f/include <Xm/ScrolledW.h>
flinclude <Xm/ScrollBar.h>
f/include <Xm/RowColumn.h>
ffinclude <Xm/Label.h>

Widget appshell, 1* Application Shell *1
scroller. 1* The scrolled-window *1
rowcol. 1* The row-column *1
1 abel s[10]; 1* The children *1

Widget temp; 1* Used to unmanage HScroll *1
Arg arglist[1]; 1* Ditto *1

7 I consider the "sometimes there, sometimes not" behavior of the as-needed display
policy to be very distracting. For this reason, I took the trouble to explicitly unmanage
the scrollbar. I didn't take the additional step of destroying the widget. which would
have recovered some program memory.

214 Programming with Motif

Listing 10.3. Continued.

void main(argc. argv
int argc;
char *argv[];

appshell = XtInitialize(argv[O], "Listing_IO_3", NULL, 0,
&argc, argv);

scroller = XmCreateScrolledWindow(appshell, "Scroller", NULL, 0);
XtManageChild(scroller);

rowcol = XmCreateRowColumn(scroller, "RowCol", NULL, 0);
XtManageChild(rowcol);

XmScrolledWindowSetAreas(scroller, NULL, NULL, rowcol);

XtSetArg(arglist[O], XmNhorizontalScrollBar, &temp);
XtGetValues(scroller, arglist, I);
XtUnmanageChild(temp);

labels[O] XmCreateLabel(rowcol,
labels[l] XmCreateLabel(rowcol,
labels[2] XmCreateLabel(rowcol,
labels[3] XmCreateLabel(rowcol,
labels[4] XmCreateLabel(rowcol ,
labels[5] XmCreateLabel(rowcol ,
labels[6] XmCreateLabel(rowcol ,
1 abel s[7] XmCreateLabel(rowcol,
labels[8] XmCreateLabel(rowcol ,
labels[9] XmCreateLabel(rowcol ,
XtManageChildren(labels, 10);

XtRealizeWidget(appshell);
XtMainLoop();

Resource file to produce Figure 10.4

"Labe 1 _0" t

"Label_I",
"Label 2"
"Label 3" - ,
"Label 4"
"Label_5",
"Label_6" ,
"Label_7" ,
"Label 8"
"Label_9" ,

*Scroller.visualPolicy: CONSTANT

NULL, 0
NULL, 0
NULL, 0
NULL, 0
NULL, 0
NULL, 0
NULL, 0
NULL, 0
NULL, 0
NULL, 0

) ;

) ;

) ;

) ;

);

);

);

);

);

);

Listing 10.3. Continued.

*Scroller.scrollingPolicy:
*Scroller.scrollBarDisplayPolicy:
*Scroller.height:
*Scroller.width:

*XmScrolledWindow.background:
*XmScrolledWindow.foreground:
*XmScrollBar.background:
*XmScrollBar.foreground:

*RowCol . background:

*XmLabel.height:
*XmLabel.width:
*XmLabel . background:
*XmLabel . foreground:
*XmLabel . recomputeSi ze:

AUTOMATIC
STATIC
150
129

Gray50
Gray75
Gray50
Gray75

Red

50
100
Gray50
White
FALSE

Scrollbars 215

The resource file seems straightforward: it essentially changes the default
settings for all of the scrolled-window policy resources and sets widget colors.
However, the scrolled-window wi dth resource - and how I arrived at its value
deserves special note.

A scrolled window divides its assigned area among its children, with spaces
between those children as specified by the spa c i n 9 resource. Immediately inside
the scrolled window is its margin, which defaults to zero pixels. In a normal
scrolled window (as specified by a scroll BarPl acernent value of XrnBOTTOM
_RIGHT), the scrollbars are on the bottom and right sides, and the work window
is positioned at the top left. An undocumented fact is that the width of the
vertical scrollbar (and the height of the horizontal scrollbar) is 15 pixels. Adding
this width to the size of the margin and the four pixels defmed by the spa c i n 9
resource, I got a "width adder" of 19.

This "width adder" is then added to the width of the work window. This width is
the sum of the maximum child width (100 pixels). the row-column's rna rgi nWi dth
resource (three pixels on each side). and the width of the row-column's shadow
border (two pixels on each side). The width of the row-column is therefore 110
pixels, which when combined with the "width adder" gives a scrolled-window
width of 129 pixels - give it less than this width and it doesn't display the full
child, give it more, and it simply increases the size of the clip window (the work
window, remember, has a fixed width determined from its children).

XmScrollBar

Scrollbars, as discrete entities, are defined by the XmScrollBar class.
XmScrollBar is a primitive widget, derived as shown by the class tree in Figure

216 Programming with Motif

10.5. It does not provide direct support for scrolling, but notifies the program -
via callbacks - of the user's interaction. The program is then expected to
respond to the user's actions.

Figure 10.5. XmScrollBar class tree

XmScrollBar Resources

Table 10.2 lists the resources defined by the XmScrollBar class. XmScrollBar also
supports all resources defined by XmPrimitive and Core; these resources are not
listed or described here.

Table 10.2. Frequently used resources: XmScrollBar

Name Inheritance Type Default Value

decrementCallback XmScrollBar xtCallbackList NULL

dragCallback XmScrollBar xtCall backL i st NULL

increment XmScrollBar int 1

incrementCallback XmScrollBar xtCall backL i st NULL

in it i a 1 De 1 ay XmScrollBar int 250

maximum XmScrollBar int 100

minimum XmScrollBar int a
orientation XmScrollBar unsigned char XmVERTICAL

pageDecrementCallback XmScrollBar xtCallbackList NULL

Scrollbars 217

Table 10.2. Continued.

pagelncrement XmScrollBar int 10

pagelncrementCallback XmScrollBar XtCallbackList NULL

processingDirection XmScrollBar unsigned char XmMAX_ON
- BOTTOM

repeatDelay XmScrollBar int 50

showArrows XmScrollBar Boolean TRUE

sliderSize XmScrollBar int 10

toBottomCallback XmScrollBar XtCall backL i st NULL

toTopCallback XmScrollBar XtCallbackList NULL

value XmScrollBar int 0

valueChangedCallback XmScrollBar XtCallbackList NULL

Appearance:ortentatlon,showAJrows

Scrollbars may be oriented hOrizontally or vertically; this orientation is controlled
by the scrollbar's 0 r i en tat ion resource. When 0 r i en tat ion contains the value
XmVERTICAL (the default), the scrollbar is oriented vertically; when it contains
XmHORIZONTAL, the scrollbar is oriented horizontally.

The showArrows resource controls whether or not the scrollbar contains stepper
arrows. If it contains T RUE (the default), stepper arrows are provided. If it
contains FALSE, stepper arrows are omitted; the user is unable to perform
smooth scrolling (the slider and scroll region are the only ways to scroll in the
absence of stepper arrows).8

Range and Current Value: minimum, maximum, value

As stated above, a scrollbar's scroll region represents the continuous set of
integers between some minimum and maximum values, and the position of its
slider represents a value in this set. The scrollbar's minimum value is specified
by the mi ni mum resource, its maximum value is specified by the maximum resource,
and its current value is contained in the val u e resource. The default values are a
minimum value of zero, a maximum value of 100, and a current value of zero.

Value-Based Appearance: processingDirectlon, sliderSize

The range of values represented by the scroll region may either increase or
decrease from left to right (top to bottom), depending on the contents of the

8 The primary reason for the existence of this resource is the XmScale widget, described
below.

218 Programming with Motif

processi ngDi recti on resource. To specify that the scrollbar values increase from
left to right (top to bottom), this resource must contain either XmMACON_RIGHT or
XmMACON_BOTTOM.9 To specify that values decrease from left to right,
processi ngDi recti on must contain either XmMACON_LEFT or XmMACON_TOP. The
default value is XmMACON_RI GHT (XmMAX_ON_BOTTOM).

The sl i derSi ze resource controls the displayed size of the slider, relative to the
maximum and minimum values. This resource can take on values from zero,
meaning that the slider is not shown, to the difference between maximum and
mi ni mum, meaning that the slider occupies the entire scroll region. To meet the
Motif style criteria, the program must maintain the slider size to show the
amount of data displayed. A scrolled window in "automatic" mode does this
transparently.

By default, the slider size is ten pixels. If the maxi mum and/or mi ni mum resource is
changed from its default value, the slider size remains ten pixels or the value
maximum - minimum, if that value is less than 10 pixels.

Interaction: increment. pageIncrement

As stated above, the stepper arrows exist to "smoothly" change the current value
- for example, by one line of text at a time. The actual change is specified by the
increment resource: it contains the amount added or subtracted from the
current value for each click of the appropriate stepper button.

Similarly, the pagelncrement resource controls scrolling via the scroll region. If
the pOinter is positioned "below" the slider, pagelncrement is subtracted from
va 1 ue; if it is positioned "above" the slider, page I ncrement is added to va 1 ue.lO

Timing: initialDelay. repeatDelay

Both the stepper arrows and the scroll region will "repeat activate" if the user
holds the pointer button down. The in it i a 1 De 1 ay resource specifies the amount
of time that the pointer button must be held down for repeat to occur - the time
between initial activation and first repeat. This resource contains a count of
milliseconds; the default value is 250 (lA second). The repeatDe1 ay resource
specifies the elapsed time between repeat activations. It also holds a count of
milliseconds and has a default value of 50 Pho second).

9 The values of these constants are identical, as are XmMACON_TOP and XmMACON_LEFT.
Which constant to use depends on the scrollbar's orientation - and your desire to
match constants to that orientation.

10 "Above" and "below" depend on the scrollbar's pro c e s sin gO; r e c t ; 0 n resource. In a
horizontal scrollbarwith XmMAX_ON_RIGHT, "below" means "to the left," and "above"
means "to the right." If process; ngD; recti on contains XmMACON_LEFT, these directions
are reversed.

Scrollbars 219

XmScrollBar Callbacks
The interaction between a scrollbar and a program is quite simple: each time the
user interacts with the scrollbar, the scrollbar invokes a callback. Due to the
large number of ways that the user can interact with the scrollbar, there are a
large number of callbacks. All callbacks pass data in
XmScroll BarCall backStruct, defined in Listing 10.4.

typedef struct
{

Listing 10.4. Type defInition: XmScrollBarCallbackStruct

int reason;
XEvent *event;
int value;
int pixel;
}

XmScrollBarCallbackStruct;

As with other callbacks, the reason and event members provide information
about the call: the type of callback, and the event triggering the callback. The
val ue member contains the scrollbar's new value - it is updated before the
callback is called. The pixel member is used only for toTopCallback and
to Bot tom Call b a c k; it contains the position of the pointer - x for horizontal
scrollbars, y for vertical scrollbars - when the user fIrst pressed the buttonY

Single Step: incrementCallback, decrementCallback

The incrementCallback anddecrementCallback functions handle activation of
the stepper arrows. The appropriate callback is called when the user fIrst
presses the arrow, as well as for each repeat activation. The scrollbar's val ue
resource is changed by the contents of the inc reme n t resource prior to invocation
of the callback.

The reason member contains either XmCR_INCREMENT or XmCR_DECREMENT.

Page Step: pageIncrementCallback, pageDecrementCallback

The pagelncrementCall back and pageDecrementCallback functions handle
activation of the scroll region. The appropriate callback is called when the user
fIrst presses the pointer button, as well as for each repeat activation. The

11 This may be used to identify whether the to-top or to-bottom movement occurred as the
result of a drag (for which pix e l's value would refer to the middle of the scroll region) or
as a result of holding the Shift key while clicking in one of the stepper arrows (for which
pi xe l's value would refer to and end of the scroll region). As Motif 1.0 only invokes this
callback in the second case, pi xe 1 may be ignored.

220 Programming with Motif

scrollbar's val ue resource is changed by the contents of the pagelncrement
resource prior to invocation of the callback.

The reason member contains either XmCR_PAGE_INCREMENT or XmCR_PAGE
DECREMENT.

Drag: dragCallback

The d rag Call b a c k function is invoked whenever the user changes the scrollbar's
value by dragging the scrollbar slider. The scrollbar's val u e resource contains
the new value, as does the val ue member of the call data structure. The
callback's reason is XmCR_DRAG.

This callback is not invoked only when the drag completes, but at regular
intervals during the drag. This allows the program to smoothly update the
display in response to the drag. 12

Begin/End: toTopCallback. toBottomCallback

These callbacks are invoked when the user perfonns the "to end" action: clicking
on a stepper arrow while holding the Shift key down. 13 The callback reason is
XmCR_TO_BOTTOM for toBottomCall back, XmCR_TO_TOP for toTopCall back.

Note that, if the user perfonns a "to end" click, the scrollbar's val ue resource is
not changed, even though the callback structure contains the new value. This
means that the program must explicitly change the scrollbar's val ue resource. It
does, however, allow optional implementation of the "to end" action.

Generic Movement: valueChangedCallback

If a program does not need the level of detail provided by separate callbacks for
each action of the user, it can instead handle val u e C han 9 e d Call b a c k. This
callback is invoked whenever the scrollbar's value changes and no other callback
would be called (ie, the appropriate callback resource contains NULL). It is also
invoked at the completion of a slider drag. 14 The reason for this callback is
XmCR_VALUE_CHANGED.

12 Scrolled text makes use of this functionality. As the slider is dragged, the text window
is continually updated to show the new position.

13 Under Motif 1.1, these callbacks are invoked any time the slider is moved to an end of
the scrollbar, whatever the reason - drag, scroll region click, normal stepper arrow
click, or "to end" stepper arrow click.

14 While the drag is occurring, dragCa11 back is continually invoked. When the drag
completes - the user releases the pointer button - va 1 ueChangedCa 11 back is invoked.

Getting and Setting a Scrollbar's Values
Programmatically

Scrollbars 221

While you can use XtGetVal ues and XtSetVal ues to access a scrollbar's value
resources, Motif provides convenience functions to access the most-used of these
resources. The function XmScroll BarGetVal ues retrieves a scrollbar's values, and
XmScroll BarSetVal ues sets its values. Both functions are prototyped in Listing
10.5.

Listing 10.5. Function prototypes: XmScrollBarGetValues,
XmScrollBarSetValues

void XmScrollBarGetValues(w, value, slider_size, incr, page_incr
Widget w;
int *value;
int *slider_size;
int *incr;
int *page_incr;

void XmScrollBarSetValues(w, value, slider_size, incr, page_incr,

Widget
int
int
int
int
Boolean

not ify)
W;
value;
slider_size;
incr;
page_incr;
notify;

For both functions, the w parameter identifies the scrollbar widget. The
parameters of XmScroll BarGetVal ues specify pointer to variables to receive the
existing values; for XmScroll BarSetVal ues, the parameters specify new values.
When new values are installed into a scrollbar, the scrollbar appearance is
updated to match the new values.

The val u e parameter represents the scrollbar's val u e resource. The s 1 ide r _s i z e
parameter represents the scrollbar's sl i derSi ze resource. The inc rand
page_incr parameters, respectively, represent the scrollbar's increment and
pagelncrement resources.

The noti fy parameter, specific to XmScroll Ba rSetVa 1 ues, specifies whether or not
the scrollbar's val ueChangedCall back should be invoked. If it is set to TRUE, the
callback is invoked; otherwise it isn't.

XmScrollBar Example
As scrollbars are almost always used in concert with another widget - typically
a scrolled-window widget - an example scrollbar program must be

222 Programming with Motif

"manufactured." This sample program shown in Listing 10.6 is no exception; it
simply displays a scrollbar 'in its own window and reports on the user's
interaction with that scrollbar. Reporting is performed by attaching a callback
function to all of the scrollbar's callbacks - note that the same function is used
for all callbacks, with a swi tch to report the callback reason.

Listing 10.6. Program and resource file: XmScroUBar example

1***
**
**
**
**
**
**

Scrollbar Demo. This program simply displays a scrollbar, and
catches all of that scrollbar's callbacks.

**
**
**
**
**
**

***/

#include <Xm/ScrollBar.h>

void ScrollCB();

Widget appshell.
scroller;

void maine argc, argv
int argc;
char *argv[];

/* FORWARD Definition

/* Application Shell
/* The scroll bar

appshell = Xtlnitialize(argv[O], "Listing_lO_6", NULL, 0,
&a rgc, a rgv);

scroller = XmCreateScrollBar(appshell, "Scroller", NULL, 0);
XtManageChild(scroller);

XtAddCallback(scroller, XmNdecrementCallback, Scroll CB, NULL
XtAddCallback(scroller, XmNdragCallback, Scroll CB, NULL
XtAddCallback(scroll er, XmNincrementCallback, ScrollCB, NULL
XtAddCallback(scroller, XmNpageDecrementCallback, Scroll CB, NULL
XtAddCall back(scroller, XmNpagelncrementCallback, Scroll CB, NULL
XtAddCa 11 back(scroller, XmNtoBottomCallback, Scro 11 CB, NULL

*/

*/
*/

) ;

) ;

) ;

) ;

) ;

) ;

Listing 10.6. Continued.

XtAddCallback(scroller. XmNtoTopCallback.
XtAddCallback(scroller. XmNvalueChangedCallback.

XtRealizeWidget(appshell);
XtMai nLoop();

void ScrollCB(w. client_data. call_data)
Widget w;
caddr_t client_data;
XmScrollBarCallbackStruct *call_data;

printf("\nCallback ... \n");
switch (call_data-)reason)

{

case XmCR_DECREMENT
printf(" Reason: Decrement\n");
break;

case XmCR_DRAG :
printf(" Reason: Drag\n");
break;

case XmCR_INCREMENT
printf(" Reason: Increment\n");
break;

case XmCR_PAGE_DECREMENT :

Scrollbars 223

ScrollCB. NULL);
ScrollCB. NULL);

printf(" Reason: Page Decrement\n");
break;

case XmCR_PAGE_INCREMENT :
printf(" Reason: Page Increment\n");
brea k;

case XmCR_TO_BOTTOM
printf(" Reason: To Bottom\n");
break;

case XmCR_TO_TOP :
printf(" Reason: To Top\n");
break;

case XmCR_VALUE_CHANGED :
pri ntf(" Reason: Value Changed\n");

224 Programming with Motif

Listing 10.6. Continued.

break;

printf(· New Value: %d\n", call_data->value I;

Resource file for scrollbar example

*Scroller.foreground:
*Scroller.background:
*Scroller.width:
*Scroller.height:
*Scroller.orientation:

Gray75
Gray50
200
20
HORIZONTAL

The resource file essentially sets the appearance resources, but it does have one
specification of note: ori entat i on is set to XmHORI ZONTAL. This was done because
the Motif window manager enforces a minimum width on windows - causing a
vertical scrollbar to be much wider than is desirable. 15

XmScale
A scrollbar provides the user with a "variable magnitude" control, but its
appearance and interaction are targeted to control of a scrolling display - in
essence, it is a "position" control. For this reason, the XmScale class exists; it is
a general-purpose magnitude control.

Figure 10.6 presents a sample scale widget, used as a radio tuning control. The
visible differences between a scale and a scrollbar are: (1) the scale does not
have stepper arrows, (2) the scale's value is indicated by the center of the slider
- specifically, by the line in the center of the slider, (3) the scale indicates its
current value, and (4) the scale has a label. Not visible is the fact that a scale
reverses the default processing direction (it's been changed for this example).
Another difference is that the scale's slider remains a constant size.

15 This minimum is applied to the application shell, which applies it to its child. If the
scrollbar was the child of another widget (such as a bulletin board), there would be no
problem.

Scrollbars 225

Figure 10.6. xmScale example

XmScale Resources
Another difference between XmScale and XmScrolLBar is that XmScale is a
manager class, derived as shown by the class tree of Figure 10.7. It is a manager
class in order to use code already developed for other widget classes -
specifically, XmScrollBar and XmLabelGadget A scale's scale is actually a
scrollbar sans arrows (the slider differences are implemented with hidden
resources); its value is displayed via a label gadget. These children are created
and installed when the scale itself is created; the program can neither change
these children nor add additional children to the scale.

Figure 10.7. XmScale class tree

226 Programming with Motif

The XmScale class provides the resources listed in Table 10.3, as well as those
defined by the Core, Composite, Constraint, and XmManager classes. As the
children of a scale widget are "hidden," the programmer is unable to change
their resources - or access them in any way.

Table 10.3. Frequently used resources: XmScale

Name Inheritance Type Default Value

decimal Points XmScale short 0

dragCallback XmScale XtCallbackList NULL

fontList XmScale XmFontList "Fixed"

highlightOnEnter XmScale Boolean FALSE

highlightThickness XmScale short 0

maximum XmScale int 100

minimum XmScale int 0

orientation XmScale unsigned char XmVERTICAL

processingDirection XmScale unsigned char XmMAX ON TOP - -

scaleHeight XmScale Dimension 0

scaleWidth XmScale Dimension 0

showValue XmScale Boolean FALSE

titleString XmScale XmString NULL

value XmScale int 0

valueChangedCallback XmScale XtCallbackList NULL

Appearance: orientation, scaleHeight, scaleWidth

Like XmScrollBar, a scale's orientation is specified by its 0 r i en tat ion resource.
Also like XmScrollBar, legal values are XmVERTICAL and XmHORIZONTAL, and the
default value is XmVERTICAL.

Like most managers, a scale's dimensions may be determined from the
dimensions of its children. However, since the scale's children are hidden to the
programmer, there is no way to directly change their dimensioning resources.
Instead, XmScale provides the s cal e Wid t h and s cal e H e i 9 h t resources, which
specify the dimensions of its scrollbar child. To these values, the scale adds the
size of its other components and intercomponent spacing, to arrive at its overall
dimensions. 16

16 A scale's dimensions may also be set by parental constraint. However, using the scale's
wid t h and he i 9 h t resources does not work - the scale always gives preference to its
children's dimensions.

Scrollbars 227

Text Appearance: fontList, title String

As with other widgets, the fontL i st resource specifies the font used for text
display. In the case of xmScale, this font is used for both the scale's title and its
label. Like other widgets, the default value of fontL i st is the default fixed
spacing font.

An xmScale widget can optionally display a title at the bottom left of its window.
The contents of this title are specified by the tit 1 eSt r i n 9 resource; as with
XmLabers title, this resource contains a compound string. Unlike XmLabel, the
default value of NUL L causes the scale to simply not display its title.

Interaction: processingDirection, showValue, decimalPoints

Like XmScrollBar, XmScale provides apr 0 c e s sin 9 D ire c t ion resource, which
specifies which side of the scale represents its maximum value. Also like
XmScrollBar, possible values for this resource are XmMACON_TOP,
XmMACON_BOTTOM, XmMAX_ON_RIGHT, and XmMACON_LEFT; top and left are
equivalent, as are bottom and right. Unlike XmScrollBar, the default value is
XmMAX_ON_TOP (XmMACON_LEFT), which means that scales operate in a direction
opposite to scrollbars. 17

The showVal ue resource specifies whether or not the scale displays its current
value. If show Val u e contains T RU E (the default), a label gadget is positioned above
the scale's slider; this label displays the current value and is updated each time
the value changes. If showVal ue contains FALSE, this label gadget is not
maintained, and the value is not displayed.18

If the scale's value is displayed, the deci mal Poi nts resource specifies how many
digits are displayed to the riJilit of the decimal point. This resource is needed
because the scale can only hold integer values, but is often used to display
decimal values - an example is Figure 10.6. The decimal Points value contains
an intel2:er value, representing the number of digits (of val ue) displayed to the
right oIthe decimal point. The default value is zero, meaning that the value is
displayed as an integer value, without a displayed decimal point.

Range and Value: minimum, maximum, value

Like XmScrollBar, the min i m urn and rna x i m urn resources specify the range of values
supported by the scrollbar. Also like XmScrollBar, the val u e resource specifies
the scale's current value.

17 This makes sense when comparing a vertical scrollbar with a vertical scale: the scale
represents values, which naturally increase in an upward direction, whereas the
scrollbar represents the scrollable area - the top of the scrollbar (mi n i mum) is the top of
the scrollable area. However, a hOrizontal scale does not make much sense - most
people expect numbers to increase left-to-right, but the default scale increases right-to
left.

18 Note that no provision is made to display the maximum or minimum values, only the
current value.

228 Programming with Motif

XmScale Callbacks
XmScale handles the callbacks of its XmScrollBar child and translates them into
two program-level callbacks: d ra gCa 11 ba c k and va 1 ueChangedCa 11 back. The
operation of these callbacks is different from the identically named XmScrollBar
callbacks: d rag Call b a c k is called at the end of a slider drag (not during the dr~,
and val u e C han 9 ed Call b a c k is called when the user clicks in the scroll region.19

Both functions pass call data in the structure XmScal eCall backStruct, defined in
Listing 10.7. As with other callback structures, the reason member specifies the
callback type - XmCR_DRAG or XmCR_VALUCCHANGED - and the event member
points at the event responsible for callback invocation. The val ue member
contains the new scale value.

typedef struct
{

Listing 10.7. Type definition: XmScaleCallbackStruct

int reason;
XEvent *event;
int value;
}

XmScaleCallbackStruct;

Getting and Setting a Scale's Value Programmatically
As with XmScrollBar, xmScale has convenience functions for getting and setting
its value resources. Unlike XmScrollBar's convenience functions - which not
only access the scrollbar's current value but also its interaction resources -
xmScal.e's convenience functions only access the scale's current value.

Both functions are prototyped in Listing 10.8. XmScal eGetVal ue returns the
scale's current value; its parameters are the scale's widget ID and a pointer to
the variable that receives the value. XmScaleSetValue sets the scale's current
value; its parameters are the scale's widget ID and the new value.

19 Unless dragCall back contains NULL, in which case val ueChangedCall back is invoked for
any change in the scale's value.

Scrollbars 229

Listing 10.8. Function prototypes: XmScaleGetValue,
XmScaleSetValue

void XmScaleGetValueC w. val_ptr
Widget w;
int *val_ptr;

void XmScaleSetValueC w. value)
Widget w;
int value;

XmScale Example
Listing 10.9 presents the program and resource file responsible for Figure 10.6.
The program is similar to that of Listing 10.6: it creates the scale and attaches a
callback function to each of its callbacks. The callback function simply reports
- by printing to standard output - the callback reason and new value.

The resource file illustrates many of the scale's resources. In particular, it
changes both the default orientation and processing direction in order to present
a display that is more like a real radio. The scale's range is set to the range of
U.S. FM frequencies, and its default value is set to a particular frequency.

Listing 10.9. Program and resource file: Tuning scale

1***

**
**
**
**
**
**

Scale Demo. This program displays a scale. and catches its
callbacks.

**
**
**
**
**
**

***/

#include <Xm/Scale.h>

void Scal eCBC); /* FORWARD Definition */

230 Programming with Motif

Listing 10.9. Continued.

Widget appshell,
thescale;

void main(argc, argv
int argc;
char *argv[];

1* Application Shell
1* The scale

appshell = XtInitialize(argv[O], "Listing_lO_9", NULL, 0,
&argc, argv);

thescale = XmCreateScale(appshell, "TheScale", NULL, 0);
XtManageChild(thescale);
XtAddCallback(thescale, XmNdragCallback, ScaleCB, NULL);
XtAddCallback(thescale, XmNvalueChangedCallback, ScaleCB, NULL);

XtRealizeWidget(appshell);
XtMainLoop();

void ScaleCB(w, client_data, call_data)
Widget
caddr_t
XmScaleCallbackStruct

w;
client_data;
*call_data;

printf("\nCallback ... \n");
switch (call_data->reason)

(

case XmCR_DRAG :
printf(" Reason: Drag\n");
break;

case XmCR_VALUE_CHANGED :
pri ntf("
break;

Reason: Val ue Changed\n");

pri ntf(" New Value: %d\n", call_data->value);

Resource file to produce Figure 10.6

*TheScale.foreground: Gray75

*1
*1

Listing 10.9. Continued.

*TheScale.background:
!*TheScale.width:
!*TheScale.height:

*TheScale.titleString:
*TheScale.minimum:
*TheScale.maximum:
*TheScale.value:
*TheScale.showValue:
*TheScale.decimalPoints:

*TheScale.orientation:
*TheScale.processingDirection:
*TheScale.scaleWidth:
*TheScale.scaleHeight:

Gray50
200
20

Station
879
1079
1025
TRUE
1

HORIZONTAL
MAX_ON_RIGHT
200
20

Scrollbars 231

11
The Motif "Look"

Overview
Chapter 1 presented the idea that a Motif program was instantly recognizable -
that it has a Motif "Look." Three factors contribute to this effect. First, widget
appearance is defined at a low level in the class tree, by XmPrimitive and
XmManager, meaning that the basic stylistic elements of a Motif program such
as color scheme are present in all widgets. The second factor is that higher-level
stylistic elements are consistent throughout Motif - the slider of a scrollbar, for
example, has an appearance almost identical to that of a pushbutton. The third
factor is that the Open Software Foundation has prescribed a standard client
appearance - menu bar at the top, scrollbars (if needed) on left and bottom
sides, etc - and widgets exist solely to support that standard layout.l

This chapter begins with a description of the components of a standard Motif
client - those items that make Motif programs look alike and act alike. The
XmMainWindow widget, which provides direct support for the standard client
features, is presented next. Following XmMainWindow are descriptions of the
XmSeparator and XmFrame widgets, which exist solely for appearance, instead of
function. The chapter ends with a new program template, replacing the template
of Chapter 4. The template is presented and described, then used as the
foundation of a text editor application, which is further developed in subsequent
chapters.

Components of a Motif Client
On an X display, a program's window has two primaxy parts: the window frame
and the client area. The window frame is applied by the window manager, and its
appearance is specific to the window manager in use. Under the Motif window
manager, the window frame provides controls for moving the window, resizing
the window in any direction, maximizing the window to the entire screen size, or

1 The importance of a standard client appearance cannot be overstated. When users feel
that a program will operate in an expected way, they are more willing to use the
program. As simple an item as knowing how to exit a program will break down
resistance to using the program.

233

234 Programming with Motif

minimizing the window to an icon. Additionally, the Motif window frame displays
the name of the program's executable file and a system menu, which provides an
alternative method for window-related actions such as movement.

The client area is everything inside the window frame and as such is maintained
by the application shell and its children. A standard Motif application divides the
client area into the five sub-areas shown in Figure 11.1.2 The menu bar provides
access to the program's pull-down menus; pull-downs are the primary method of
entering commands to the program. The horizontal and vertical scrollbars are
optional; if used, they control the display in the work area. The command area is
also optional; if present, it is used for command-line text entry and/or message
display. The work area is where the program interacts with the user - for a text
editor, it is the editor window, for a CAD program, it is where the drawing is
displayed.

Figure 11.1. Standard Motif client areas

Menu Bar

Command Area

Work Area

In addition to the main window, a Motif client may use dialogs - auxiliary
windows that present information that would be distracting if displayed on the
main screen (eg, error messages). Dialogs are often invoked by menu choices: the
File/Open menu choice, for example, typically displays a dialog that allows the
user to select a file from a list of files. Tliey can - and should - be used in any

2 This figure applies to Motif 1.0 only. For 1.1, the command area is positioned below the
work area. In addition, a sixth sub-area - the message area - is provided below the
command area.

The Motif "Look" 235

situation where the programmer desires to focus the user on a message or
control. Dialogs are described in detail in Chapter 13.

XmMainWindow

To assist the programmer in creating an application that follows the appearance
standards. Motif provides the XmMainWindow class. XmMainWindow is derived
from XmScroUedWindow. as shown by Figure 11.2. This means that support for
scrollbars and a scrolling work window is "built in" and need not be replicated.
In addition. XmMainWindow adds an additional unscrolled work window - the
command area - and direct support for a menu bar. The main-window widget
automatically divides its space between these sub-areas.

Figure 11.2. XmMainWindow class tree

XmMainWindow Resources

The resources provided by XmMainWindow are listed in Table 11.1 and
described below. In addition. Table 11.1 contains some of the resources from
XmScroUedWindow as a reminder that these resources are often used with the
main-window widget.

236 Programming with Motif

Table 11.1. Frequently used resources: XmMainWindow

Name Inheritance Type Default Value

commandWindow XmMainWindow Widget NULL

mainWindowMarginHeight XmMainWindow Dimension 0

mainWindowMarginWidth XmMainWindow Dimension 0

menuBar XmMainWindow Widget NULL

showSeparator XmMainWindow Boolean FALSE

clipWindow XmScrolledWindow Widget NULL

horizontalScrollBar XmScrolledWindow Widget NULL

scrollBarDisplayPolicy XmScrolledWindow unsigned XmSTA TI C
char

scrollBarPlacement XmScrolledWindow unsigned XmBOTTOM
char RIGHT -

scrollingPolicy XmScrolledWindow unsigned XmAPPLICATION
char DEFINED -

verticalScrollBar XmScrolledWindow Widget NULL

workWindow XmScrolledWindow Widget NULL

Sub-Areas: commandWindow, menuBar

In addition to the sub-areas of XmScrolledWindow - cl i pWi ndow,
hori zontal Scroll Bar, verti cal Scroll Bar, and workWi ndow - XmMainWindow
provides a menu bar (menuBar) and a command window (commandWi ndow). These
sub-area resources contain widget IDs and may contain NUL L; if so, the
associated sub-area is not maintained by the main window.

Appearance: mainWindowMarginHeight, mainWindowMarginWidth,
showSeparator

Like XmScrolledWindow - and other managers - XmMainWindow supports an
optional margin between its sides and its contents. The rna i nWi ndowMa rgi nHei ght
resource specifies the height of the top and bottom margins; the
rna i nWi ndowMa rgi nWi dth resource specifies the width of the right and left margins.
These resources take precedence over the equivalent resources defined by
XmScrolledWindow; if the XmMain Window margin resources contain zero (the
default value), then the XmScrolledWindow resources are used.3

The showSeparator resource specifies whether the main window displays
separator widgets (described below) between the menu bar, command window,

3 And since they default to zero, the default action is not to have a margin at all.

The Motif "Look" 237

and work window. 4 If it contains TRUE, the separators are displayed; if FALSE (the
default), they aren't.5 These separators are not accessible via resources; to
change their appearance, you must get the appropriate widget 10 via one of the
convenience functions described below.

XmMainWindow Convenience Functions
Motif provides three convenience functions associated with XmMainWindow. The
first, XmMa i nWi ndowSetAreas, is used to reconfigure the widgets serving as the
main window's sub-areas. The other two are used to access the widget lOs of the
optional separator widgets.

XmMainWindowSetAreas

XmMai nWi ndowSetAreas, prototyped in Listing 11.1, is used to reconfigure the sub
areas of a main-window Widget. It is similar in operation to
XmScroll edWi ndowSetAreas: the parameters specify widget lOs for the sub-areas,
and parameters containing NUL L are ignored.

Listing 11.1. Function prototype: XmMainWindowSetAreas

void XmMainWindowSetAreasC w. menu. command. hscroll. vscroll. work)
Widget w;
Widget menu;
Widget command;
Widget hscroll;
Wi dget vscroll ;
Widget work;

As with XmScroll edWi ndowSetAreas, the w parameter specifies the main-window
widget, the hscroll and vscroll parameters, respectively, specify the horizontal
and vertical scrollbars, and the work parameter specifies the work window.
Additionally, the men u parameter specifies the 10 of the menu bar (described in
the next chapter), and the command parameter specifies the 10 of the command
line widget (typically a single-line XmTerlwidget).

XmMainWindowSep 1, XmMainWindowSep2

If used, the main-window separators are unnamed and cannot be accessed via
the resource file. If the program needs to change a resource value for one of
these separators, it must get the proper widget ID and change the resource

4 If any of these three sub-areas are omitted, the associated separator is not displayed.
5 The default shadow borders around the various main window sub-areas are usually

sufficient to visually separate the areas - Figure 11.1 is an example. However,
separators may be useful if the color scheme eliminates such distinctions.

238 Programming with Motif

programmatically. The functions XmMa i nWi ndowSepl and XmMa i nWi ndowSep2 are
used to get the separator ID; they are prototyped identically, as shown by Listing
1l.2.

Listing 1l.2. Function prototypes: XmMainWindowSepl,
XmMainWindowSep2

Widget XmMainWindowSepn(w)
Widget w;

In the above prototype, the italicized 'n' is either "1" or "2" - it identifies the
separator. The sole parameter is the ID of the main-window widget. The return
value is the ID of the specified separator - the first separator is below the menu
bar, and the second separator is below the command widget.6

XmSeparator
Separators are widgets that exist to divide a window into visually distinct areas.
Separators simply draw a line in one of the seven styles shown in Figure 11.3.
This line bisects the separator's area and may be oriented horizontally or
vertically. Use of separators is the choice of the programmer. They are often used
in pull-down menus to separate groups of choices, and XmMainWindow provides
optional horizontal separators between its major sub-areas.

6 If either the menu bar or the command widget is omitted in a particular main-window
instance, the associated separator is not maintained. The ID returned, therefore, is
NULL.

The Motif "Look" 239

Figure 11.3. Sample separators

XmSeparator Resources

XmSeparator is a primitive widget, derived as shown by the class tree of Figure
11.4. Core contains resources that define a separator's size and position,
XmPrimitive defines its color scheme, and XmSeparator defines and implements
the line styles.

Figure 11.4. XmSeparator class tree

240 Programming with Motif

XmSeparator defines a minimal set of resources, listed in Table 11.2. It also
provides resources from Core and XmPrimitive, XmSeparator's use of the Core
resources wi dth and hei ght deserve special note and are described below.

Table 11.2. Frequently used resources: XmSeparator

Name Inheritance Type Default Value

margin XmSeparator short 0

orientation XmSeparator unsigned XmHORIZONTAL
char

separatorType XmSeparator unsigned XmSHADOW_ETCHED - IN
char

width Core Dimension 0

height Core Dimension 0

Separator Style: separatorType

The type of line displayed by a separator widget is controlled by its
separatorType resource. The possible values for this resource - in order of the
examples in Figure 11.3 - are as follows:

• XmS I NGLE_LI N E. The separator displays a single one-pixel-wide (-high) line,
drawn in the foreground color.

• XmDOUBLE_LINE. The separator displays two one-pixel-wide (-high) lines,
drawn in the foreground color and spaced one pixel apart.

• XmSINGLE_DASHED_LINE. The separator displays a single one-pixel-wide (
high) dashed line, drawn in the foreground color. Dashes consist of
equally sized drawn and undrawn segments.

• XmDOUBLE_DASHED_LI NE. The separator displays two one-pixel-wide (-high)
dashed lines, drawn in the foreground color, and spaced one pixel apart.
Dashes consist of equally sized drawn and undrawn segments.

• XmNO_LI N E. The separator does not display any type of line. Its dimensions
are filled with its background color.

• XmSHADOW_ETCHED_IN. The separator draws a line that appears to be inset
into the screen, using its top and bottom shadow colors. The width of this
line is specified by the separator's s hadowTh i cknes s resource; half of this
width is given to the top shadow color, the other half is given to the
bottom shadow color. As with other widgets, the "light source" is at the
top left comer of the screen. This is the default style.

• XmSHADOW_ETCHED_OUT. The separator draws a line that appears to be
protruding from the screen, using its top and bottom shadow colors. The
width of this line is specified by the separator's shadowThi ckness
resource; half of this width is given to the top shadow color, and the
other half is given to the bottom shadow color.

The Motif "Look" 241

Appearance: height, width, orientation, margin

A separator's hei ght and wi dth resources do not bear mention because they are
different from those of other widgets, but because they are the same: a separator
is not simply a line, it is actually a rectangular window. This window is filled
with the background color specified by its background resource and is bisected
by the actual separation line.

This means two things. First, the appropriate dimension (height for a horizontal
separator, width for a vertical separator) must be sized to contain the drawn line:
one pixel for a single line, three pixels for a double line, and a variable number of
pixels (ie, shadowThi ckness) for an etched line. Second, a separator does occupy
space; this space must be considered in any calculation of window size.

Separators may be oriented either hOrizontally or vertically; the ori entati on
resource specifies the direction. Like XmScrollBar and XmScale, 0 r i en tat ion may
contain either XmHORIZONTAL or XmVERTICAL. Unlike those classes, the default
value is XmHORIZONTAL.

Finally, a separator can draw a line smaller than needed: the ma rgi n resource
specifies the distance between the endpoints of the separator and the endpoints
of its line. This is space on the right and left side of the line for a horizontal
separator and on the top and bottom for a vertical separator. When drawn, a
separator's line always bisects the separator; margin does not apply to space on
either side of the separator line, only its endpoints.

XmSeparator Example
Figure 11.3 was produced using the sample program and resource file of Listing
11.3. The program simply creates seven separators, along with a bulletin board
to hold them. The resource file then specifies the position and style of each
separator.

Listing 11.3. Program and resource file: Separators example

1***
**
**
**
**
**
**

Separator demo. This program displays 7 horizontal separators.
each with a different style.

**
**
**
**
**
**

***/

242 Programming with Motif

Listing 11.3.Continued.

#include <Xm/BulletinB.h>
#include <Xm/Separator.h>

Widget appshell, 1* Application Shell
the_bb, 1* The Bulletin Board
sepa rators [7] ; 1* The children

void main(argc, argv
int argc;
char *argv[];

appshell - Xtlnitialize(argv[O], "Listing_ll_3", NULL, 0,
&argc, argv);

the_bb - XmCreateBulletinBoard(appshell, "TheBB", NULL, 0);
XtManageChild(the_bb);

separators[O] XmCreateSeparator(
separators[l] XmCreateSeparator(
separators[2] XmCreateSeparator(
separators[3] XmCreateSeparator(
separators[4] XmCreateSeparator(
separators[5] XmCreateSeparator(
separators[6] XmCreateSeparator(
XtManageChildren(separators, 7) ;

XtRealizeWidget(appshell) ;

XtMai nLoop();

Resource file to produce Figure 11.3

*.background:
*.foreground:
*.topShadowColor:
*.bottomShadowColor:

Gray50
White
Gray75
Gray25

I

the_bb, "Sep_O" , NULL, 0) ;

the_bb, "Sep_l", NULL, 0) ;

the_bb, "Sep_2" , NULL, 0) ;

the_bb, "Sep_3", NULL, 0) ;

the_bb, "Sep_4" , NULL, 0) ;

the_bb, "Sep_5", NULL, 0) ;

the_bb, "Sep_6", NULL, 0) ;

*1
*1
*1

The Motif "Look" 243

Listing 11.3. Continued.

*.shadowThickness: 4

*TheBB.background: Black
*TheBB.shadowThickness: ° *TheBB.marginWidth: 10
*TheBB.marginHeight: 10

*.XmSeparator.height: 10
*.XmSeparator.width: 200
*.XmSeparator.x: 10

*Sep_O.y: 10
*Sep_O.separatorType: SINGLE LI NE

*Sep_1.y: 30
*Sep_1.separatorType: DOUBLE - LI NE

*Sep_2.y: 50
*Sep_2.separatorType: SINGLE DASHED_LINE

*Sep_3.y: 70
*Sep_3.separatorType: DOUBLE DASHED_LINE

*Sep_4.y: 90
*Sep_4.separatorType: NO_ LINE

*Sep_5.y: 110
*Sep_5.separatorType: SHADOW - ETCHED_IN

*Sep_6.y: 130
*Sep_6.separatorType: SHADOW_ ETCHED_OUT

XmFrame

XmFrame is a manager that is similar in purpose to XmSeparator: it exists to
provide the Motif visual appearance in places where it would not otherwise exist.
In implementation, XmFrame is a manager that is able to hold only a single child
- it may be thought of as a limited type of bulletin board.

Figure 11.5 provides an example of XmFrame's use: each of the four labels is the
child of a frame. This allows the labels to have an "etched in" appearance, which
is not supported by XmPrimitive's shadow border. XmFrame could also be used

244 Programming with Motif

in a program that blends Motif and non-Motif widgets to give the non-Motif
widgets the Motif "100k. .. 7

Figure 11.5. XmFrame example

XmFrame Resources

XmFrame is derived from XmManager, as shown by the class tree of Figure 11.6.
It mimics other managers in its implementation of a shadow border, as well as in
sizing its child - its size is based on its child if possible, otherwise the child's
size is based on the frame.

7 Although it is possible to combine Motif with other toolkits, it is not recommended. One
of the benefits of Motif is that it presents an integrated set of tools; blending Motif with
another widget set destroys this integration and presents possibilities for "toolkit
collision." Moreover, placing non-Motif widgets in a Motif program will almost always
result in an inconsistent appearance, XmFrame notwithstanding.

The Motif "Look" 245

Figure 11.6. XmFrame class tree

Table 11.3 presents XmFrames resources; they are described below. XmFrame
also inherits resources from XmManager. Constraint, Composite. and Core.

Table 11.3. Frequently used resources: XmFrame

Name Inheritance Type Default Value

marginWidth XmFrame short 0

marginHeight XmFrame short 0

shadowType XmFrame unsigned XmSHADOW_ ETCHED_IN
char

Shadow Type: shadowType

As with other managers. XmFrames shadowType resource specifies the
appearance of its shadow border.s Possible values are from the following list:

• XmSHADOW_I N. The shadow is drawn such that the frame and its contents
appear inset into the screen.

S A frame's shadow border is also controlled by the XmManagerresources
s hadowThi ckness, topShadowCo lor, and bottomShadowCo lor. As with all Motif shadows,
the "light sourcefl causing the shadow is positioned at the top left corner of the screen.

246 Programming with Motif

• XmSHADOW_OUT. The shadow is drawn such that the frame and its contents
appear to protrude from the screen.

• XmSHADOW_ETCHED_I N. The shadow is drawn such that the frame and its
contents appear to be on the same plane as the rest of the screen, but
separated by a groove. This is the default value.

• XmSHADOW_ETCHED_OUT. The shadow is drawn such that the frame and its
contents appear to be on the same plane as the rest of the screen, but
separated by a ridge.

Margin: marginHeight. marginWidth

Like other managers, XmFrame can provide a margin between itself and its child.
This margin is specified by the marginHeight and marginWidth resources:
ma rgi nHei ght specifies the distance between the child and the top and bottom
sides of the frame, mar gin Wid t h specifies the distance between the child and the
left and right sides of the frame. This margin is used in geometry computations:
if the child is sized by the frame, its dimensions will be decreased by the margin;
if the frame is sized by the child, its dimensions will be increased by the margin.
The default margin size is zero pixels.

XmFrame Example: Labels in Frames
The program and resource file of Listing 11.4 were used to produce Figure ll.5.
The program simply creates a bulletin board for placement, four frames as
children of the bulletin board, and four labels. Note, however, that each label is
the child of a different frame - although all label widget IDs are stored in the
same array, they belong to different branches of the instance tree, and therefore,
must be managed separately. In the resource file, note that the frames are sized
by their labels, and the labels are positioned by their frames. Both sizing and
positioning could be performed by the frames; like other managers, XmFrame
can impose geometry on its children.

The Motif "Look" 247

Listing 11.4. Program and resource file: Labels in frames

/***

**
**
**
** Frame demo. This program displays four labels inside frames.
**

**
**
**
**
**

***/

#include <Xm/BulletinB.h>
#include <Xm/Frame.h>
#include <Xm/Label.h>

Widget appshell, /* The Application Shell
the_bb, /* The Bulletin Board
frames[4], /* Frames for the Labels
labels[4]; /* The labels themselves

void main(argc, argv
int argc;
char *argv[];

appshell = Xtlnitialize(argv[O], "Listing_11_4", NULL, 0,
&argc, argv);

the_bb = XmCreateBulletinBoard(appshell, "TheBB", NULL, °);
XtManageChild(the_bb);

frames[O] XmCreateFrame(the_bb, "Frame_O", NULL, °) ; frames [1] XmCreateFrame(the_bb, "Frame_I", NULL, °) ; frames[2] XmCreateFrame(the_bb, "Frame_2" , NULL, °);

frames[3] XmCreateFrame(the_bb, "Frame_3", NULL, °);

XtManageChildren(frames, 4);

labels[O] = XmCreateLabel(frames[O], " Lbl 0" NULL, °);

XtManageChil d (labels[O]);

labels[l] = XmCreateLabel(frames[l], "Lb 1 I" NULL, °);

XtManageChild(1 abel s[l]) ;

*/
*/
*/
*/

248 Programming with Motif

Listing 11.4. Continued.

labels[2] = XmCreateLabel(frames[2], "Lbl_2", NULL, °);
XtManageChild(labels[2]);
labels[3] = XmCreateLabel(frames[3], "Lbl_3", NULL, °);
XtManageChild(labels[3]);

XtRealizeWidget(appshell);
XtMainLoop() ;

Resource file to produce Figure 11.5

*.background: Gray50
*.foreground: White
*.topShadowColor: Gray75
*.bottomShadowColor: Gray25
*.shadowThickness: 4

*.XmLabel.height: 50
*.XmLabel.width: 50

*TheBB.marginHeight: 20
*TheBB.marginWidth: 20

*Frame_O.x: 20
*Frame_O.y: 20

*Frame_1.x: 70
*Frame_1.Y: 20

*Frame_2.x: 20
*Frame_2.y: 70

*Frame_3.x: 70
*Frame_3.y: 70

The New Standard Program Template
At this point in the book. programs are beginning to get complex. When a
program creates two or three widgets. the program template of Chapter 4 is
serviceable. However. it becomes almost unreadable for a program that creates a
dozen or more widgets - especially if those widgets have callbacks attached. For

The Motif "Look" 249

that reason, the template of Listing 11.5 will be used for nontrivial programs in
the rest of this book.

The key benefit of this new template is that it modularizes the code associated
with each of a client's components. This code may occupy a single source file or
multiple files. The benefit to this book is that it no longer needs to present
complete program listings, instead, only those functions relevant to a topic need
be presented.

Listing 11.5. The new standard program template

1***

** **
** 1 i sti n9-1L5.c
**
** Sample program template for non-trivial programs.
**

**
**
**
**

***/

#include <Xm/MainW.h>

1***

** **
** FORWARD D E FIN I T ION S **
** **
***1

void InitMainWindow();
void InitMenuBar();
void InitWorkWindow();
void InitOther();

1***
** **
** G LOB A L V A R I A B L E S **
** **
***/

Wi dget appshell.
mainwin.

/* Application Shell
/* XmMainWindow

*/
*/

250 Programming with Motif

Listing ll.5. Continued.

menubar, 1* MainWindow Menu Bar *1
workwi n, 1* MainWindow Work Area *1
horzscroll, 1* MainWindow Horizontal Scrl *1
vertscroll; 1* MainWindow Vertical Scroll *1

Arg argl i st[16]; 1* For programmatic rsrc stuf *1

1***

** **
**
**
**
**
**

main(argc, argv)

Program entry point. Creates shell, calls initialization funcs,
and turns control over to event loop.

**
**
**
**
**

***/

void main(argc, argv
int argc;
char *argv[];

appshell = Xtlnitialize(argv[O]. "ResName", NULL, 0, &argc, argv);

InitMainWindow();
InitMenuBar() ;
InitWorkWindow();

XmMainWindowSetAreas(mainwin, menubar, NULL,

InitOther() ;

XtRealizeWidget(appshell);
XtMainLoop();

horzscroll, vertscroll, workwin);

The Motif "Look" 251

Listing 11.5. Continued.

1***

**
** InitMainWindow()
**
**
**
**
**
**
**
**
**

This function creates the main-window widget and its scrollbars.
The main-window is created as a child of the application shell.
The scrollbars are either created along with the main-window (if
its "scrollingPolicy" resource contains TRUE) or separately.

This function modifies the globals "mainwin", "horzscroll", and
"vertscroll". It accesses "appshell".

**
**
**
**
**
**
**
**
**
**
**

***/

void InitMainWindow()
{

mainwin = XmCreateMainWindow(appshell, "MainWin", NULL, 0);
XtManageChild(mainwin);

/** Use this code to create scrollbars separately

**/

horzscroll = XmCreateScrollBar(mainwin, "HScroll", NULL, 0);
XtManageChild(horzscroll);
vertscroll = XmCreateScrollBar(mainwin, "VScroll", NULL, 0);
XtManageChild(vertscroll);

/** Use this code to access automatically-created
XtSetArg(arglist[O], XmNhorizontalScrollBar,
XtSetArg(arglist[l], XmNverticalScrollBar,
XtGetValues(mainwin, arglist, 2);

scrollbars
&horzscroll);
&vertscroll);

**/

252 Programming with Motif

Listing 11.5. Continued.

1***
**
** InitMenuBar()
**
**
**
**
**
**
**

This function creates the menu bar and all pull-down menus. The
menu bar is created as the child of the main-window.

This function modifies the global "menubar", and accesses the
global "mainwin".

**
**
**
**
**
**
**
**
**

***/

void InitMenuBar()
{

menubar = NULL;

1***
**
** InitWorkWindow()
**

**
**
**

** This function creates the work window and its children. The **
** work window is created as the child of the main-window. **
**
**
**
**

This function modifies the global "workwin", and accesses the
global "mainwin".

**
**
**
**

***/

void InitWorkWindow()
{

}

The Motif "Look" 253

Listing 11.5. Continued.

1***

**
** InitOther()
**
** This function performs other program initialization. such as
** loading any default data.
**

**
**
**
**
**
**

***1

void InitOther()
{

}

The template begins as expected, with its description and inclusion of header
fl1es. Following this is a space for forward function declarations - needed to
avoid warning messages from a compiler that performs type-checking.9 In a
multifl1e program, this is where the program-specific header file is specified.

Next are the declarations of global variables. My philosophy is to use the
minimal number of globals that allow convenient programming and debugging.
To this end, the application shell, main window, and all of the main-wiridow's
sub-areas are globals. With the appropriate "private" header files, it is possible to
use these variables to examine the entire instance tree. I also provide an
argument array (a r 9 1 i s t) as a global; this is in preference to defining one
wherever the program needs to programmatically set resources.

The mai n function creates the application shell directly via XtIniti al i ze. It then
calls other functions to create the main window and its primary sub-areas.
These functions directly modify the main-window' globals; they may also make
use of local variables.

The main-window's sub-areas are installed with XmMainWindowSetAreas, after
which any other program-specific initialization is performed (thiS "other"
initialization mayor may not involve the creation of widgets). Finally, as with the
trivial program template, the application shell is realized and the program passes
control to the event loop.

The function InitMainWindow contains the expected call to XmCreateMainWindow,
but also contains two optional sets of code for scrollbar initialization. The first is
used when the main-window's scrollingPolicy resource contains
XmAPPLICATION_DEFINED (the default); it creates the scrollbars. The second is used
when scrollingPolicy contains XmAUTOMA TI C; since the scrollbars have already
been created, their IDs are simply stored in the appropriate global variables.

9 If you use an ANSI compiler, these declarations should be complete function prototypes.
Subsequent chapters will not expliCitly show this section; remember that fOlWard
declarations must be present to avoid compiler warnings.

254 Programming with Motif

The function In i t Men u Bar creates the menu bar and pull-down menus. It will
become useful in Chapter 12, where the menu bar is presented. For now, it
simply sets the global menubar variable to NUL L so that it may be passed to
XmMainWindowSetArea s .1O

The function I nit W 0 r k Win dow is responsible for creating the branch of the
instance tree that becomes the main-window's work area. Depending on the
application, this function may be complex or simple; for the text editor of this
(and subsequent) chapters, it creates a single widget.

The InitOther function handles "everything else." If a program were to use a
command area, it would be created here. This function might also be used for
initializing libraries and variables not associated with any widgets.

The Text Editor: A Sample Application
Over the next several chapters, this book will develop a text -editor application.
The core of this application is the XmText widget, which provides the basic text
handling capability. To augment the capabilities of the text widget, the program
provides a search-replace facility, runtime-selectable fonts, and - of course -
the ability to load and save files .

At this point, the text editor is quite simple, as shown by Figure 11.7. In fact, it
appears to be identical to the file browser of Chapter 9. In reality, ins closer to
the memo pad: although it scrolls, it doesn't have the ability to load a file (the
displayed text was copied from another window) .

Figure 11.7. Text editor (first revision)

Resource file for Text Editor Edition 1 (Fig

* . background :
* . foreground :
* . topShadowColor:
* .bottomshadowColor :

*WorkWin. foreground :
*WorkWin.background:
*WorkWin. fontList :

Gray50
White
Guy?5
Gray25

Black
White

10 This is an unnecessary step, since - as a global uninitialized variable - menuba r
contains NULL at program startup.

The Motif "Look" 255

To produce this display, the program and resource file of Listing 11.6 were
used. 11 The program is taken from the nontrivial program template; it differs
from the template in that the main-wIndow's scrollbars are not used. The reason
for this divergence is described after the listing.

Listing 11.6. Program and resource file: Text editor (first
revision)

1***
** **
**
**
**
**
**
**

listin9-1L6.c

Text Editor, Edition 1. This program will be built in Chapters
11 to 14. At this point, it consists of an XmMainWindow widget,
as the parent of a scrolled text "widget".

**
**
**
**
**
**

***/

#include <Xm/MainW.h>
#include <Xm/Text.h>

1***
** ****
FORWARD D E FIN I T ION S **
** **
***/

void InitMainWindow();
void InitMenuBar();
void InitWorkWindow();
void InitOther();

11 You might find, when compiling this program or one of its subsequent revisions, that
your compiler runs out of symbol table space - and doesn't complete the compilation.
This is a common occurrence with Motif programs due to the large number of
definitions in the Motif header files. If it happens to you, you will need to increase the
symbol table space, which can be done using a compiler switch. Unfortunately, the
switch used depends on the origin of the compiler - and no two compilers seem to use
the same switches. It is, however, documented in the man pages for your compiler. An
alternative, of course, is to break offending files into one or more pieces, each of which
is sufficiently small that it compiles without problems.

256 Programming with Motif

Listing 11.6. Continued.

1***

** **
** G LOB A L V A R I A B L E S **
** **
***1

Widget appshell , /* Application Shell */
mainwin, /* XmMainWindow */
menubar, /* MainWindow Menu Bar */
workwi n; /* MainWindow Work Area */

Arg arglist[16]; /* For programmatic rsrc stuf */

1***

** **
**
**
**
**
**

main(argc, argv)

Program entry point. Creates shell, calls initialization funcs,
and turns control over to event loop.

**
**
**
**
**

***1

void main(argc, argv
int argc;
char *argv[];

appshell = Xtlnitialize(argv[O], "Listing_II_6", NULL, 0,
&argc, argv);

InitMainWindow();
InitMenuBar() ;
InitWorkWindow();

XmMainWindowSetAreas(mainwin, menubar, NULL, NULL, NULL, workwin);

The Motif "Look" 257

Listing 11.6. Continued.

InitOther() ;

XtRealizeWidget(appshell);
XtMai nLoop();

1***
** **
** InitMainWindow()
**
**
**
**
**
**
**
**

This function creates the main-window widget. No scrollbars are
created for the main-window; they are provided by the scrolled
window holding the text widget (ie, the work window).

This function modifies the global "mainwin", It accesses the
global "appshell".

**
**
**
**
**
**
**
**
**

***1

void InitMainWindow()
(

mainwin = XmCreateMainWindow(appshell, "MainWin", NULL, 0);
XtManageChild(mainwin);

1***

** **
** InitMenuBar()
**
**
**
**
**
**
**

This function creates the menu bar and all pull-down menus. The
menu bar is created as the child of the main-window.

This function modifies the global "menubar", and accesses the
global "mainwin".

**
**
**
**
**
**
**
**

***1

258 Programming with Motif

Listing 11.6. Continued.

void InitMenuBar()

1***

**
** InitWorkWindow()
**
**
**
**
**
**
**

This function creates the work window, which is a scrolled text
"widget."

This function modifies the global ·workwin", and accesses the
global "mainwin".

**
**
**
**
**
**
**
**
**

***/

void InitWorkWindow()
{

Widget txtmp;

txtmp - XmCreateScrolledText(mainwin, "WorkWin", NULL, 0);
XtManageChild(txtmp);

workwin - XtParent(txtmp);

1***

**
** InitOther()
**
**
**
**

This function performs other program initialization, such as
loading any default data.

**
**
**
**
**
**

***/

The Motif "Look" 259

Listing 11.6. Continued.

void InitOther(){
}

Resource file for Text Editor Revision 1 (Fig 11.7)

*.background:
*.foreground:
*.topShadowColor:
*.bottomShadowColor:

*WorkWin.foreground:
*WorkWin.background:
*WorkWin.fontList:
*WorkWin.editMode:
*WorkWin.rows:
*WorkWin.columns:

Gray50
White
Gray75
Gray25

Black
White
-*-Courier-medium-r-*--*-100-*
MULTLLINE_EDIT
12
48

As you can see from I n it W 0 r k Win d ow, the text widget is actually a scrolled text
widget. Why isn't it a simple XmText, with the main window doing the scrolling?
The reason is a result of the way XmScrolledWindow - and therefore,
XmMainWindow - handles automatic scrolling. In automatic mode,
XmScrolledWindow performs its scrolling by displaying a segment of its work
window in its clip window.

The result of that behavior is that the text window must be large enough to
display the entire me. On the other hand, when the scrolled window and text
widgets are created via XmCreateScroll edText, they are intimately related: the
callbacks for the scrolled-window's scrollbars are tied to the text widget's
internal scrolling functions. This is a much more efficient way to handle the
scrolling - and it can't be performed by the main-window widget.

Given that a scrolled window is the appropriate way to handle the scrolling, the
main-window's scrollbars become superfluous. So they're simply not created,
and the scrolled-text window occupies the entire interior of the main window.

12
Menus

Overview
Menus provide the user of a Motif program with the ability to control the
operation of that program in a "point and click" manner. They are the preferred
method of program control: unobtrusive when not in use, they allow the user to
quickly choose from a list of alternate actions.

Motif provides four types of menus. The menu bar is positioned at the top of a
standard Motif program: it provides an always-accessible method of controlling
the program's major functions; these functions are divided into named topics.
Attached to the menu bar, pull-down menus provide a list of functions "sub-"
associated each topic. Pop-up menus are used for context-dependent control,
and are accessed by means other than the menu bar. Finally, option menus are
used in dialog boxes and other context-dependent situations where the program
needs to provide a menu that displays its current choice.

Menus are implemented using the XmRowColumn widget class. The menu bar is
a horizontal row-column, as is an option menu; pull-down and pop-up menus
are vertically oriented. The menu bar can contain only cascade-button widgets
(described below); menu panes may contain any type of child, although most
programs use only labels, separators, and buttons.

XmCascadeButton

The menu bar and its associated pull-down menus are made possible by the
XmCascadeButton class. Unlike other buttons, which exist to be activated, a
cascade button exists to be armed: when one is armed, it maps another widget.
This allows a pull-down menu to remain hidden until the user presses the
pointer button while pOSitioned over its associated cascade button.

Cascade buttons are also unique in that they must be used in a menu. A
cascade-button's parent must be a row-column, and its rowCol umnType resource

261

262 Programming with Motif

must contain XmMENU_BAR. XmMENU_POPUP. or XmMENU_PULLDOWN. Attempting to
create a cascade button as the child of any other widget class causes an error.l

XmCascadeButton is derived from XmLabeZ. as shown by the class tree of Figure
12.1. In appearance. a cascade button more closely resembles a label than a
pushbutton. because it does not normally display a shadow border. When
armed. it does display a shadow border. but one that appears to protrude from
the screen - a behavior opposite to that of an armed pushbutton.

Figure 12.1. XmCascadeButton class tree

XmCascadeButton Resources

The resources defined by XmCascadeButton are listed in Table 12.1 and
described below. XmCascadeButton also provides the resources defined by
XmLabel. XmPrimitive. and Core.

Table 12.1. Frequently used resources: XmCascadeButton

Name Inheritance Type Default Value

activateCallback XmCascadeButton xtCallbackList NULL

cascadePixmap XmCascadeButton Pixmap "menu-cascade"

cascadingCallback XmCascadeButton xtCallbackList NULL

mappingDelay XmCascadeButton int 100

subMenuld XmCascadeButton Widget NULL

1 More correctly. it will result in an error message: a cascade button may be used outside
of a menu. but the program will complain. Given that programs that generate error
messages do not engender confidence. this practice should be avoided.

Menus 263

Appearance:cascadePbrrnap

In most applications, a cascade button resembles a label. However, if a cascade
button is used in a pull-down or pop-up menu pane to invoke a cascading menu
(described below), it indicates that fact with a pixmap positioned to the right of
the label text. This pixmap is identified by the button's cascadePi xmap resource.
The default pixmap is a right-pointing arrow.

Interaction: mappingDelay

On the Macintosh, if you press the mouse button while positioned over a menu
bar topic, and then move the mouse across the menu bar, the pull-down menu
for each topic is displayed. This behavior is provided by Motif - it allows the
user to search for the correct menu choice - but can result in a lot of
communication between the program and the server.

The mappi ngDel ay resource acts to minimize this excess communication: it
contains a count of milliseconds between the time that the pointer enters the
cascade-button and the button maps its associated menu pane. If the user
quickly passes the pointer through the button's area, the menu pane is not
displayed; if the pointer stays within the button's area for longer than the time
specified by mappi ngDel ay, the menu pane is mapped. The default value is 100,
for a one-tenth second delay.

Mapped Widget: subMenuId

A cascade button exists to map a menu pane. This menu pane is a widget, and
the cascade-button's subMenuld resource identifies this widget. The subMenuld
resource must specify a row-column widget configured as a pull-down menu
pane. As the resource manager does not provide a mechanism for widget ID
specification, subMenuld must be set programmatically.

XmCascadeButton Callbacks
XmCascadeButton provides two callbacks: one for button arming (the pointer
button is pressed while the pointer is over the screen button), and one when the
button is activated (the pointer button is released while the pointer is over the
screen button). Both callbacks pass call data in XmAnyCall backStruct.

Arm/Cascade

When the user arms a cascade button - by moving the pointer over the button
with its button pressed, it invokes the callbacks specified by cascadi ngCall back,
then - after the delay specified by mappi ngDel ay - maps its submenu. If the
program needs to perform some action between arm and map - for example, to

264 Programming with Motif

change the content of menu items - it should handle this callback.2 The reason
associated with this callback is XmCR_CASCADING.

Activation

If a cascade button is not associated with a sub-menu - its subMenuld resource
contains NUL L - its act i vat e Call b a c k list is invoked when the user releases the
pointer button while over the cascade button. This callback is often used where
a menu choice invokes a dialog box: it is needed if such a choice is in the menu
bar. which must contain cascade-button children.3

XmRowColumn Menu Resources
XmRowCoZumn provides several resources designed for use with menus. These
resources were not presented in Chapter 6. which described XmRowColumn as a
general-purpose manager. They are described in this chapter. in two places:
those resources associated with all types of menus are listed in Table 12.2 and
described below. while those resources used only with option menus are
described under XmRowCoZumn Resources Specific to Option Menus.

Table 12.2. Menu-specific XmRowCoZumn resources

Name Inheritance Type Default Value

entryCallback XmRowColumn xtCallbackList NULL

entryClass XmRowColumn WidgetClass dynamic

isHomogeneous XmRowColumn Boolean TRUE

menuAccelerator XmRowColumn String dynamic

menuHelpWidget XmRowColumn Widget NULL

mapCallback XmRowColumn XtCall backL i st NULL

rowColumnType XmRowColumn unsigned char dynamic

spacing XmRowColumn short dynamic

unmapCallback XmRowColumn xtCallbackList NULL

whichButton XmRowColumn unsigned dynamic

2 For example. a program might offer a timestamp menu choice. with the current time
displayed. Such a menu choice must therefore be updated each time the associated
pane is mapped.

3 The Help menu topic is often implemented this way - for context-sensitive help. a
dialog box is often more useful than a menu.

Menus 265

The rowCol umnType resource and its possible values were presented in Chapter 6.
It appears again here as a reminder that it specifies the type of menu for which a
row-column instance is configured. Its default value is listed in Table 12.2 as
"dynamic," instead of XmWORK_AREA (its default value in Table 6.2). because each
type of menu has its own creation function, and this function automatically sets
the value of rowCol umnType.

Maintaining Exclusivity: entryClass, isHomogeneous

A row-column can limit the types of children that it can hold. An example is the
menu bar, which may only contain cascade-button children. This limitation is
controlled by the i sHomogeneous resource: if it contains TRUE, all children must
be of the same class; if it contains FALSE, children may be of any class. Like
rowCol umnType, i sHomogeneous is set by the appropriate creation function. 4

If i sHomogeneous contains TRUE, the entryCl ass resource specifies the permitted
widget class. This resource contains the widget's class pointer, part of its internal
definition.5 In most cases, the programmer does not need to make use of this
resource: it is set automatically by the appropriate creation function.

Interaction: menuAccelerator, whichButton

Pop-up menus and the menu bar may be activated by a key sequence as
described below. The menuAccel erator resource is used by these two types of
menus and is ignored if the widget is not configured as a menu bar or pop-up
menu.

The menuAccel erator resource contains a string that specifies a key event in the
format used for translations. Only a single event may be specified, and this event
must be a KeyPress event. Unlike a widget's translations and accelerators, the
menuAccel erator resource is stored as a string, not a translation table.

The default value for menuAccel erator depends on the type of menu. For the
menu bar, the default value is "<Key>FIO": function key #10 activates the menu
bar. For pop-up menus, the default value is "<Key>F4". If a program uses more
than one pop-up menu, it must specify unique menuAccel erator values for each
menu.

The whi chButton resource specifies which pointer button is used to select menu
items. For the menu bar and option menus, the default button is # 1. For pop-up
menus, the default button is #3.

4 The menu bar Is the only homogeneous menu; its children must be cascade buttons.
5 Class record pOinters are available to the program as opaque pOinters. The names of

these pOinters are based on the widget's class name: the "Xm" at the beginning of the
class name Is replaced by "xm", and a suffix of 'WidgetClass" Is added. For example, the
name of XmCascadeButton's class pOinter Is xmCascadeButtonWi dgetCl ass. The name of
a widget's class pOinter Is contained in its class-specific header me, as well as in
Appendix B and the Programmer's Reference.

266 Programming with Motif

Help Menu Specification: menuHelpWidget

As you will see below, while the Motif standard menu bar arranges most of its
topics from left to right - as one would expect from a horizontal row-column -
it has a Help topic on its right side, separated from the other topics. The
menuHelpWidget resource provides this nonstandard behavior: it contains the ID
of the cascade button for the Help menu. This resource is applicable to a row
column configured as a menu bar only; it is ignored by other menus. Its default
value of NULL indicates that no Help topic is present: topics are arranged left-to
right by creation order.

XmRowColumn Callbacks
XmRowColumn provides three callbacks: entryCall back, mapCall back, and
unmapCa 11 back. The fIrst is used to "redirect" the activation callbacks of a menu's
children, allowing a single function - and single callback specifIcation - to
serve for all children. The second and third callbacks notify the program when a
menu appears or disappears, allowing it to update any state-dependent
information.

All three callbacks pass call data in the structure XmRowCol umnCall backStruct,
defIned in Listing 12.1. The reason and event members provide the same
function as for other callback structures: they identify the type of callback and
the event that invoked the callback. The w, cl i enLdata, and call_data members
are used by en try Call b a c k only; they contain the arguments that would have
been passed to the child's activation callback function.

typedef struct
{

int
XEvent
Widget
caddr_t
caddr_t
}

Listing 12.1. Structure defInition:
XmRowColumnCallbackSiruct

reason;
*event;
w;
clienLdata;
call_data;

XmRowColumnCallbackStruct;

Callback Multiplexing: entryCallback

In a complex menu system, the programmer may wish to avoid specifying
callbacks for each of a menu's choices. For this reason, the entryCallback
resource exists: it specifIes a single callback function, which is invoked in place

Menus 267

of the activation callbacks of the menu's children.6 By default, this resource
contains NUL L, which means that the children's callbacks are invoked.

If used, entryCall back must be set at the time of the row-column's creation. It
must be set at this time because the row-column replaces the appropriate child
callbacks at the time of child creation - if and only if en t r yC a 11 b a c k is not NUL L.

The reason value associated with this callback is XmCR_ACTIVATE. The w,
cl i ent_data, and ca ll_data members contain the arguments that would have
been passed to the child's callback function.

Visibility Callbacks: mapCallback, unmapCallback

When a menu is about to be mapped, the callbacks specified by mapCall back are
invoked, allowing the program to modify the contents of the menu with any
context-dependent information.7 The callback reason is XmCR_MAP; the w,
cl i enLdata, and ca ll_data members of the callback structure are not used.

Similarly, the functions specified by unmapCall back are invoked after the menu is
unmapped. For this callback, the reason is XmCR_UNMAP, and the w, cl i ent_data,
and call_data members are not used.

It is important to remember the order in which these callbacks are called,
relative to the physical mapping and unmapping of the menu. The functions
specified by mapCall back are called before the menu is mapped, allowing the
program to make context-dependent changes to the menu. The functions
specified by unmapCa 11 back are called after the menu is unmapped, allowing
retrieval of any state-control information, such as the current values of a menu's
toggle buttons.

The Menu Bar

The menu bar is a horizontally oriented row-column, positioned at the top of a
program's client window. The menu bar contains a series of cascade buttons,
which specify the menu's topics - the high-level groupings of the functions
provided by the menu bar.B Figure 12.2 shows a menu bar and its topics, along
with a pull-down menu.

6 Children must be buttons. For pushbuttons and cascade buttons, the acti vateCall back
resource is replaced, for toggle buttons, the val ueChangedCall back is replaced.

7 This is especially useful with a help facility - if, for example, the user is positioned in a
particular text field, the Help menu could contain choices leading to information about
that field, text entry in general, or the current input screen. This information may be
changed by the program - by changing the labels on the menu choices - just before
the menu is invoked.

B A menu bar's topics are also referred to as the titles of the associated pull-down menus.

268 Programming with Motif

Figure 12.2. Menu bar and pull-down menu

The behavior of the menu bar and its pull-down menus bears further
explanation. Normally, the menu bar simply shows a list of topics, with no visual
borders between the topics. When the user presses pointer button # 1 while the
pointer is positioned over a topic, that topic is armed: it changes its shadow
border so that it appears to protrude from the screen. After a short delay, the
topiC button maps its menu pane. If the user then moves the pOinter - with the
button still down - over one of the choices in that pane, that choice is armed: it
also changes its shadow border to a protruding form. If the user releases the
pointer button while over a menu choice, the button representing that choice is
activated - its activate callbacks are invoked - and the menu pane disappears.
If, instead of selecting a menu choice in this manner, the user - with the
pointer button still pressed - moves over another topic, the original menu is
unmapped and the new menu is mapped.

It is important to note that, once armed, a menu topic remains armed until
explicitly disarmed. Such disarming may occur by selecting a menu choice, by
arming another menu, or by clicking the pointer button anywhere outside of the
menu - in the same program's window, another program's window, or the root
window.

In addition to pOinter-based selection, menus provide a keyboard interface. The
menu bar is armed by pressing the menu accelerator key: by default, flO. If this
happens, the first topic is armed and its menu is displayed. The user can then
traverse through the topics and choices: the Left and Right arrow keys move
between topics, the Up and Down arrow keys move between the choices of a
topic. When a menu choice is armed, pressing the Retum key activates it. At any

Menus 269

point, the Escape key disarms the current menu; it may need to be pressed
multiple times to completely exit menu-selection mode.

Creating the Menu Bar: XmCreateMenuBar

Although the menu bar may be created as a row-column, with the appropriate
resources set, the XmCreateMenuBa r function is simpler. This function acts
identically to the other widget-creation functions: it creates the widget (with the
appropriate resource values), and returns its ID. The main-window widget
should be passed as the menu-bar's parent.

Creating Menu Bar Topics: XmCreateCascadeButton

Menu bar topics must be represented by cascade buttons - the menu bar's
i sHomogeneous resource is set to TRUE, and its entryCl ass resource is set to
x m Cas cad e But ton Wid get C 1 ass. These buttons are created using the
X m C rea t e Cas cad e Butt 0 n function, which is identical to other widget-creation
functions. The menu bar widget must be specified as the parent of its cascade
buttons.

The Standard Motif Menu Bar
The Style Guide specifies a standard configuration for the menu bar, shown in
Figure 12.3(a). This standard configuration may be modified to suit the
application's needs: it is strongly recommended that the File, Edit, and Help
menus be present in every application, but the View and Option menus may not
be applicable. Additional menus may be added if needed. If you do use the
standard menu names, you should not change their meanings from those
described below.

270 Programming with Motif

Figure 12.3. Standard Motif menu bar and pull-downs

-a-

-11- -c-

File Menu

The File menu contains operations that affect the entire file. The Style Guide
divides such operations into four groups: (1) those that load a file, (2) those that
save a file, (3) those that send a file to some output device, and (4) other. This
menu should be present in every program and should be associated with the
leftmost topic in the menu bar.

The standard File menu, shown in Figure 12.3(b), contains six choices, arranged
into the aforementioned groups. New and Open are in the first group: New
clears the program's workspace, and Open reads an existing file into the
workspace. In the second group are Save and Save As ••• : Save saves the
workspace in the same me from which it was loaded, while Save As ••• allows the
user to save the workspace under a new filename. Group three contains a single
member, Print, which sends the file to the system printer. Group four arso
contains a single member, Exit, which terminates the program.

Menus 271

Edit Menu

The Edit menu contains operations that modify the current workspace on a
smaller scale than operations in the File menu. In a standard menu bar, it is the
second menu from the left. Its choices are grouped into three categories: (1)
undo the user's last action, (2) interface with the system clipboard, and (3) other
actions.

A standard Edit menu, exampled by Figure 12.2(c), contains six members. Undo
is the sole member of its category: it "undoes" the user's previous action.9 The
clipboard interface has three parts: Cut, which moves a selected part of the
workspace to the clipboard (deleting it from the workspace), Copy, which copies
a selected part of the workspace to the clipboard, and Paste, which puts the
contents of the clipboard into the workspace. 1o Finally, the Other category
provides Clear and Delete choices, both of which are optional. Both delete a part
of the workspace, but Delete "compresses" the rest of the workspace, while
Clear leaves blank space. 11

View Menu

The View menu controls how the program displays the the workspace. Its use
and contents depend on the application. For example, a spreadsheet might have
Worksheet and Chart choices, while a CAD program might provide
magnification and/or layer choices.

Options Menu

The Options menu is used to set program options. Like the View menu, its use
and contents depend on the program. An example Option menu choice would be
Font, to change the font used by a text editor. Toggle buttons are often used in
option-menus, as they provide a visual representation of the current state of the
program, as well as a way to change that state.

Help Menu

The Help menu topic always resides on the right side of the menu bar.12 It
provides the user with assistance, ranging from instructions on program use to
the expected contents - and purpose - of the current input field. The contents
of a help menu are application-dependent, but should be organized with the
most specific help (eg, field-level help) at the top of the menu and least specific
help (eg, program version number) at the bottom.

9 Implementing an "undo" can be quite time-consuming - your program has to maintain
"the previous state" at all times. However, the ability to correct mistakes is extremely
comforting to the user.

10 Use of the system clipboard is described in Chapter 17.
11 Applied to an XmText widget, Delete would remove a section of the text, while Clear

would replace that section with spaces.
12 The menu bar's menuHel pWi dget resource guarantees this placement.

272 Programming with Motif

Tailoring the Menu Bar to the Application

As indicated previously, the standard menus - or their choices - may not be
applicable to all applications. The programmer should not try to force an
application to fit the menu standard, but should attempt to follow it where
possible. In particular, the File and Edit menus should be present in all
programs and should be the two leftmost menus in the menu bar. The Help
menu should be present and should be positioned on the right side of the menu
bar. The Exit choice should always be the last choice on the File pull-down.
With these "golden rules" in mind, the programmer is free to change the menu
bar to suit the application.

Another "golden rule" is the grouping of items in the File and Edit menus. If new
functions are added to these menus, they should be placed in the proper group
- in the Edit menu, for example, Find and Replace would belong in the "other"
group, not the "undo" group. Using separators between groups of related choices
makes the grouping more apparent to the user.

A final consideration in menu design is to keep choices with devastating effects
away from choices that are invoked often. In some cases, this is inevitabfe - the
standard File menu, for example, has Print and Exit adjacent. If such a
situation is unavoidable, you should present a warning dialog box ("Do you
really want to do this?") to confirm the dangerous menu choice.

Names with an Ellipsis

Looking at the standard fIle menu, you see two menu choices - Open... and
Save As ••• - that have an ellipSiS as part of their name. This ellipSiS indicates
that the user will be presented with a dialog box upon choosing the menu item
- that the program needs more information to perform the task. In the case of
Open ... and Save As ••• , this dialog box presents a list of fIlenames, allowing the
user to choose an existing fIle or enter a new name from the keyboard.

Menu Bar Example: Adding a Menu Bar to the Editor
The text editor application will use the standard Motif menu bar, as shown by
Figure 12.2. At this point, you have only been introduced to the menu bar and
its cascade-button children, so that is the only addition to the program.

Listing 12.2 presents the changes to the program and resource fIle. As you can
see, five new functions have been added: Ini tFil eMenu, Ini tEditMenu,
InitViewMenu, InitOptionMenu, and InitHelpMenu. Each of these functions is
dedicated to a single menu topic, and at this point, merely creates the cascade
button for the topic - as you will see, creating a single menu requires quite a lot
of code. The I nitMenuBa r function, which was part of Listing ll.5, now creates
the menu bar widget and calls the pane-initialization functions. 13

The changes to the text editor's resource fIle simply set the labels used for the
menu topics. In general, labels (and accelerators and mnemonics, described

13 While 11.5 presented the text editor as a single source me, I have modularized it. The
breakdown is essentially along the lines of the major functions: menu bar, work
window, and "other."

Menus 273

below) are the only parts of a menu system that are specified by the resource file
- the structure of the menu is part of the program code.

Listing 12.2. Text editor revision 2: Addition of menu bar

1***

** **
** InitMenuBar()
**
** This function creates the menu bar and all pull-down menus. The
** menu bar is created as the child of the main window.
**
**
**
**

This function modifies the global "menubar", and accesses the
global "mainwin".

**
**
**
**
**
**
**
**

***/

void InitMenuBar()
{

menubar = XmCreateMenuBar(mainwin, "MenuBar", NULL, 0);
XtManageChild(menubar);

InitFil eMenu();
InitEditMenu() ;
InitVi ewMenu();
InitOptionMenu();
InitHelpMenu();

1***

** **
** InitFileMenu()
**
**
**
**

Creates the File menu: cascade-button, pull-down menu pane, and
all menu-pane choices. Attaches callbacks to menu-pane choices.

**
**
**
**
**

***/

void InitFileMenu()

274 Programming with Motif

**
**
**

Listing 12.2. Continued.

Creates the File menu: cascade-button, pull-down menu pane, and
all menu-pane choices. Attaches callbacks to menu-pane choices.

**
**
**

***/

void InitFileMenu()
{

Widget topic;

topic = XmCreateCascadeButton(menubar, "FileTopic", NULL, 0);
XtManageChild(topic);

1***
**
** InitEditMenu()
**
**
**
**

Creates the Edit menu: cascade-button, pull-down menu pane, and
all menu-pane choices. Attaches callbacks to menu-pane choices.

**
**
**
**
**
**

***/

void InitEditMenu()
{

Widget topic;

topic = XmCreateCascadeButton(menubar, "EditTopic", NULL, 0);
XtManageChild(topic);

1***
**
** InitViewMenu()
**
**
**
**

Creates the View menu: cascade-button, pull-down menu pane, and
all menu-pane choices. Attaches callbacks to menu-pane choices.

**
**
**
**
**
**

***/

Menus 275

Listing 12.2. Continued.

void InitViewMenu()

Widget topic;

topic = XmCreateCascadeButton(menubar, "ViewTopic·, NULL, 0);
XtManageChild(topic);

1***

** **
**
**
**
**
**

InitOpti onMenu() **
**

Creates the Option menu: cascade-button, pull-down menu pane, and **
all menu-pane choices. Attaches callbacks to menu-pane choices. **

**
***/

void InitOptionMenu()
(

Widget topic;
topic = XmCreateCascadeButton(menubar, "OptionTopic", NULL, 0);
XtManageChild(topic);

1***
**
**
**
**
**
**

InitHel pMenu()

Creates the Help menu: cascade-button, pull-down menu pane, and
all menu-pane choices. Attaches callbacks to menu-pane choices.

**
**
**
**
**
**

***/

void InitHelpMenu()
{

Widget topic;

276 Programming with Motif

Listing 12.2. Continued.

topiC = XmCreateCascadeButton(menubar, "HelpTopic", NULL, 0 I;
XtManageChild(topic I;

XtSetArg(arglist[OJ, XmNmenuHelpWidget, topic I;
XtSetValues(menubar, arglist, 1 I;

*FileTopic.labelString:
*EditTopic.labelString:
*ViewTopic.labelString:
*OptionTopic.labelString:
*HelpTopic.labelString:

Fi 1 e
Edit
View
Options
Help

XmMenuShell and a Menu Pane's Instance Tree
A program's instance tree is reflected in the server's window tree, which means
that - except in rare cases - a widget's window cannot be larger than its
parent's window. 14 Applying this rule to the menu bar, you may wonder how a
pull-down's window can be not only larger than the menu bar's window, but also
completely separate from it. The answer is that a pull-down menu is not the
child of the menu bar, but is actually the child of an XmMenuSheU widget, which
is the child of the menu bar.

XmMenuSheU is, as its name indicates, a shell widget - an interface between the
program and the server's root window. While the shell widget is a branch of the
program's instance tree, it is the root of a new window subtree. This means that
its size and position are independent of any other window in the instance tree.

Pull-Down Menus
Pull-down menus are vertically oriented row-column widgets, mapped under the
control of a cascade button in the menu bar. 15 A pull-down menu may contain
any type of child, but in practice children are limited to buttons, labels, and
separators.

The relationship between the menu bar, a cascade button (topic), and its
associated pull-down menu is illustrated by Figure 12.4. Both the cascade
button and the menu-shell are children of the menu bar - since
XmCascadeButton is a primitive widget, the menu shell could not be a child of

14 The work area of an XmScrolledWindow in automatic mode is one of these exceptions.
15 As you will see, pull-down menu panes are not always associated with the menu bar;

for the present time, however, pretending this association Simplifies the explanation.

Menus 277

the cascade-button. The pull-down menu pane is a child of the menu shell, and
it's linked to the cascade-button via that widget's subMenuld resource.

Figure 12.4. Relationships between menu bar, cascade
button, and pull-down menu

Menu Bar

I
I

Cascade Button Menu Shell
(Topic) I

Pull-Down

Creating a Menu Pane: XmCreatePulldownMenu

While the program could create its pull-down menus by fIrst creating the menu
shell and then creating the associated row-column, the XmCreatePull downMenu
convenience function does all of this in one step and returns the ID of the menu
pane. 16 XmCreatePull downMenu has the same parameters as other widget-creation
functions: the menu bar should be specilled as the pa rent, the widget's name is
up to the programmer, and the ar9_1ist and ar9_count parameters specify
resources for the menu pane.

Attaching a Pull-Down to the Menu Bar

Once the menu pane has been created, it must be attached to the proper
cascade button by storing its widget ID in the cascade-button's subMenuld
resource; this must be done programmatically. It may be done either at the time
of cascade-button creation or afterward, depending on the order in which
cascade button and pane are created. 17

Adding Functionality

A pull-down menu - or any other type of menu - achieves its functionality
from its children's callbacks. There are two ways to add such callbacks:
individual callbacks on each choice or use of the pane's entryCall back resource.

16 While menu shell is the parent of the menu pane, its presence may be ignored by the
programmer: it has no resources of interest, and performs its job without program
intervention.

17 As you will see in the sample code, my preference is to create the pane fIrst, then the
cascade button - it means one less function call.

278 Programming with Motif

The proper approach depends on the situation: while individual callbacks take
up more code, a multiplexed callback can be harder to read. I8

In either case, callbacks should be invoked on button activation only. If
callbacks are invoked on arming, the action of "dragging" the pointer down a
menu will invoke each of the choices passed.

Disabling Menu Choices

In some Situations, you will want to prevent the user from accessing a particular
menu choice. For example, the text editor should disable its File/Save menu
choice when there is no current filename.

While this could be done simply by removing the associated callback, the
preferred method is to set its sen s it i ve resource to FA LS E, using the
XtSetSensitive function. This method has the benefit that it provides a visual
cue that the menu choice is disabled.

Pull-Down Example: Adding Pull-Down Menus
to the Editor
The text editor will use the standard menu bar configuration, with sub-menus
organized as shown in Table 12.3. This table also provides a description of the
purpose of each menu choice. These descriptions represent the design goals of
the editor - but they are not implemented in their entirety in this book.

Topic

File

Table 12.3. Text editor menu configuration

Choice

New
Open ...

Description

Clears workspace and current filename.
Displays dialog box, allowing user to select a
filename from a list of existing files or enter it via
the keyboard.

Save Saves workspace, using current filename.
This choice is disabled when current filename is
blank or when the workspace has not been
modified.

Save As... Displays dialog box, allowing user to enter a new
filename or select the name of an existing file. Saves
file under specified name and stores specified name
as the current filename.

separator Separates file-manipulation choices from program
exit choice.

18 This book uses a single callback function for all of a menu's choices, but invokes that
function with individual callbacks.

Edit

Options

Menus 279

Table 12.3. Continued.

Exit Tenninates program.

Cut

Copy

Paste

Delete
separator

Font ...

If the contents of the workspace have been modified
but not saved, this function displays a dialog box
asking the user if he/ she really wants to quit
without saving.
Sends selected text to the system clipboard,
removing it from the workspace.
Copies selected text to the system clipboard, but
does not change it in the workspace.
Copies text from the system clipboard to the
workspace, inserting it at current insertion point.

Deletes selected text from the workspace.
Separates selection-related choices from
find/replace.
Presents dialog box that allows user to change font
for text display.

The program segment of Listing 12.3 presents the changes to the Ini tFi 1 eMenu
function and resource me to add the File pull-down; addition of the other menus
is left as an exercise for the reader (the resource-me segment lists the additional
widgets). In addition to the changes to InitFileMenu, Listing 12.3 also presents
the Fi 1 eMenuCB function, which handles the menu's choices. Both are described
in detail below the listing.

Listing 12.3. Text editor revision 3: Addition of me menu

1***

**
** InitFileMenu()
**
** Creates the File menu: cascade-button, pull-down menu pane, and

all menu-pane choices. Attaches callbacks to menu-pane choices. **
**

**
**
**
**
**
**

***/

void InitFileMenu()
{

Widget topic,
pane,
choices[6];

pane XmCreatePulldownMenu(menubar, "FilePane", NULL, 0);

280 Programming with Motif

Listing 12.3. Continued.

choices[O] XmCreatePushButton(pane, "File_New", NULL, 0) ;

choi ces [1] XmCreatePushButton(pane, "File_Open", NULL, 0) ;

choices[2] XmCreatePushButton(pane, "File_Save" , NULL, 0);

choices[3] XmCreatePushButton(pane, "File_SaveAs", NULL, 0) ;

choices[4] XmCreateSeparator(pane, "Fi 1 e_Sepl" • NULL. 0);

choices[5] XmCreatePushButton(pane. "Fil e_Exit" • NULL. 0);

XtManageChildren(choices. 6);

XtSetArg(arglist[O]. XmNsubMenuId. pane);
topic = XmCreateCascadeButton(menubar. "FileTopic", arglist. 1);
XtManageChild(topic);

XtAddCallback(choi ces [0]. XmNactivateCallback,
XtAddCallback(choi ces [1]. XmNactivateCallback.
XtAddCallback(choi ces [2]. XmNactivateCallback.
XtAddCallback(choi ces [3]. XmNactivateCallback.
XtAddCallback(choices[5]. XmNactivateCallback.

XtSetSensitive(choices[l]. FALSE);
XtSetSensitive(choices[2]. FALSE);
XtSetSensitive(choices[3]. FALSE);

FileMenuCB, "New"
FileMenuCB. "Opn"
FileMenuCB, "Sav"
FileMenuCB. "SAs"
FileMenuCB. "Ext"

) ;

);

) ;

) ;

);

1***

**
** FileMenuCB(w. client_data. call_data)
**
**
**
**
**
**
**
**
**
**

Callback procedure for the "File" pull-down. This function is
called when any of the file menu buttons are activated. The
particular operation is identified by a string accessed by the
"client_data" paramo

Note: This callback is only invoked on Activate, so the call
data (which describes the reason) is superfluous. It is
therefore not declared as a specific type in the func hdr.

**
**
**
**
**
**
**
**
**
**
**
**

***/

void FileMenuCB(w. client_data. call_data
Widget w;
cha r
caddr_t

*client_data;
calLdata;

if (!strcmp(clienLdata, "New"))

Listing 12.3. Continued.

XmTextSetString(textwin. "");
}

else if (!strcmp(clienLdata. "Opn"))
{

}

else if (!strcmp(client_data. "Sav"))
{

}

else if (!strcmp(client_data. "SAs"))
{

}

else if (!strcmp(clienLdata. "Ext"))
{

exit(0); _
}

*FileTopic.labelString:
*File_New.labelString:
*File_Open.labelString:
*File_Save.labelString:
*File_SaveAs.labelString:
*File_Exit.labelString:

*EditTopic.labelString:
*Edit_Cut.labelString:
*Edit_Copy.labelString:
*Edit_Paste.labelString:
*Edit_Oelete.labelString:
*Edit_Find.labelString:
*Edit_Repl.labelString:

*ViewTopic.labelString:
*View_Top.labelString:
*View_Bot.labelString:
*View_Page.labelString:

*OptionTopic.labelString:
*Option_Font.labelString:

File
New
Open ...
Save
Save As ...
Exit

Edit
Cut
Copy
Paste
Delete
Fi nd ...
Replace ...

View
Top
Bottom
Page ...

Options
Font. ..

Menus 281

The changes to I n it Fi 1 eMen u include the creation of the pull-down menu pane,
the creation of the menu choices, attaching callbacks to those choices, and
setting unused choices insensitive. The first part - creating the menu pane and

282 Programming with Motif

choices - is straightforward: the pane and its shell are created with
XmCreatePull downMenu, and the choices are simply pushbuttons (along with one
separator).

You should note that the cascade-button representing the menu topic is created
after the menu pane. As stated above, this is done simply to minimize code:
instead of setting the cascade button's subMenuld resource with XtSetVal ues, it is
set at the time the button is created.

The callback setup also bears notice. Instead of using the entryCall back
resource in the menu pane, I chose to use discrete calls to XtAddCall back. This
was done so that I could pass identification data - a three-character ASCII
string - in the cl i enLdata parameter. 19 These strings are then used in a string
comparison by the Fi 1 eMenuCB function.

The final action of In i t F i 1 eM e n u - setting unused menu choices insensitive - is
done as a service for the user. As support for menu choices is added, the calls to
XtSetSensitive are removed.

The function Fi 1 eMenuCB handles the activation callbacks for all items in the File
menu. At this point, it handles only two: New clears the contents of the text
window, and Exit quits the program. The other choices are enabled in future
chapters.

The resource fIle segment simply sets labels for each of the menu choices. It also
presents the names I've chosen for the choices on the Edit, View, and Options
menu.

Mnemonics

What Are Mnemonics?

In addition to pointer-based activation, a menu system should provide a
keyboard interface - for those users that dislike removing their hands from the
keyboard, as well as those that do not have a mouse. One way to implement
keyboard input is via mnemonics, which allow the user to select a menu choice
with a series of keystrokes.

Figure 12.5 presents the text editor menu bar and File menu, with mnemonics
enabled. Each menu topic or choice has a single character underlined; that
character is the mnemonic associated with the menu choice.

19 This is my preferred method of passing identification data, since it helps identify the
code used to process the menu choice. I refuse to use the common technique of passing
constants as client data, although most compilers accept it.

Menus 283

Figure 12.5. Text editor mnemonics

How Are Mnemonics Used?

To make use of the mnemonic associated with a menu choice, that menu must
be active - it must have the keyboard focus. There are two ways to activate a
menu: the fIrst is to press the key specifIed by the menu bar's menuAccel erator
resource - by default, 110. This activates the menu bar and allows the user to
activate a menu by pressing the mnemonic associated with its topic. An
alternative method of menu activation is to type the topic's mnemonic while
pressing the Meta key.

Once a menu is activated, a choice on that menu may be activated by pressing
its associated mnemonic. Mnemonics are applied only to the currently active
level of a menu system - in Figure 12.5, where the File menu is active, pressing
E will exit the program; it won't activate the edit menu. If a menu is active,
pressing the Escape key deactivates it.

How Are Mnemonics Specified?

Mnemonics are specifIed by the mnemoni c resource, shown in Table 12.4. This
resource is defIned by the XmLabel class, but is only applicable to the buttons
derived from XmLabel: XmPushButton, XmToggleButton, and XmCascadeButton.
This resource contains a single character, the mnemonic character; the default
value of . \ O· specifies that no mnemonic is present. If a mnemonic is specifIed,
the button underlines the fIrst occurrence of the mnemonic character in its
1 abel Stri ng. If the mnemonic character is not found in 1 abel Stri ng, then it is
displayed to the right of the string, in parentheses.

284 Programming with Motif

Table 12.4. Resource specification: mnemonic

Name Inheritance Type Default Value

mnemonic XmLabel char '\0'

Adding Mnemonics to the Text Editor's Menus

Listing 12.4 is an excerpt from the text editor's resource file, showing the
mnemonics for each of the menu topics and choices. While most of the
mnemonics are obvious - they're the first letter of the menu choice - one in
particular stands out: Edit/Delete. The character 'D' would seem appropriate
for this mnemonic, because it isn't used by any other on that menu, but I chose
'1'.20 The reason is that Delete is a destructive action, and I did not want an
accidental keystroke to invoke it. Thus, the '1' mnemonic, which is positioned
away from all of the other mnemonics (except 'P' - Paste - which is also a
destructive action).

Listing 12.4. Text editor mnemonic resource specifications

*FileTopic.mnemonic: F
*Fi 1 e New.mnemonic: N -

*Fi 1 e _Open.mnemonic: 0
*Fi 1 e Save.mnemonic: S -

*Fi 1 e _SaveAs.mnemonic: A
*Fi 1 e Exit.mnemonic: E -

*EditTopic.mnemonic: E
*Edit Cut.mnemonic: t -
*Edit _Copy.mnemonic: C
*Edit Paste.mnemonic: P -
*Edit Delete.mnemonic: 1 -

*Edit Find.mnemonic: F -
*Edit_Repl.mnemonic: R

*ViewTopic.mnemonic: V
*View _Top.mnemonic: T
*View Bot.mnemonic: B -

*View _Page.mnemonic: P

20 I should note that the standard mnemonic for the Delete choice is D.'

Listing 12.4. Continued.

*OptionTopic.mnemonic:
*Option_Font.mnemonic:

*HelpTopic.mnemonic:

Menu Accelerators

What Are Menu Accelerators?

o
F

H

Menus 285

Another way to implement keyboard activation of menu items is via menu
accelerators. Menu accelerators allow events occurring in one widget - the
widget with the input focus - to invoke actions in another - a button in a
menu. Where menu accelerators differ from generic accelerators is that they are
more specific: menu accelerators are used only with buttons that are children of
pop-up or pull-down menu panes.

The benefit of menu accelerators is that they allow instantaneous keyboard
activation of a menu choice - unlike mnemonics, which require that the user
first activate the proper menu, then press the key corresponding to the menu
function. Instead, accelerators are handled directly by the program's translation
manager, and thus bypass the focus mechanism.

Their drawback is that - unless the menu is displayed - there is no clue to
their presence. As a result, accelerators are most often used by sophisticated
users, who are intimately familiar with the program's operation.

How Are Menu Accelerators Used?

Figure 12.6 presents an example of menu accelerators, applied to the text
editor's File menu. The accelerator's key sequence is displayed to the right of the
choice name, providing the user with a visual indication of the accelerator's
presence.

286 Programming with Motif

Figure 12.6. Text editor menu accelerators

The use and naming of accelerators depends on the program.21 The accelerators
in Figure 12.6 are named according to the first letter of the associated menu
choice - except for Exit. This change was necessary because the Alt-E
combination - in the guise of Meta-E - is used as a mnemonic to activate the
Edit menu.

How Are Menu Accelerators Specffi.ed?

Like mnemonics, menu accelerators are defmed by the XmLabel class in order to
be available to all button classes derived from XmLabeL Accelerators are
implemented using two resources, listed in Table 12.5 and described below.22

Name

accelerator

Table 12.5. Resource specifications: accelerator,
acceleratorText

Inheritance Type Default Value

XmLabel String NULL

acceleratorText XmLabel XmString NULL

21 The Style Guide specifies four standard accelerators. all for the Edit menu: Alt
Backspace for Undo, Shift-Delete for Cut, Control-Insert for Copy, and Shift-Insert for
Paste.

22 Note that, since menu accelerators are controlled by resources, their use is in reality
the prerogative of the user. A knowledgeable user may completely reconfigure a
program's accelerators to suit his/her tastes - or configure a program that by default
does not use accelerators.

Menus 287

The accel era tor resource - not to be confused with the accel erators resource
defined by Core - specifies the key combination that invokes the accelerator.
This key combination is specified using the same format as a translation table,
with the caveat that only a single event may be specified, and that event must be
a KeyPress event. Note that, unlike the accel erators resource, accel erator is
saved as an ASCII string. The widget transparently converts and installs the
appropriate translations.

The accel eratorText resource contains a user-friendly representation of the key
combination, such as "Alt+Q". This text is displayed to the ris:!ht of the button's
label; like the label itself, it is a compound string. Note that the accelerator text
is the responsibility of the programmer or user: the program does not
automatically produce a string from the contents of ace e 1 era tor.

Adding Menu Accelerators to the Text Editor

Listing 12.5 presents the segment of the text editor's resource file responsible for
Figure 12.6. Note again that the resource file is the place where menu
accelerators are specified, not the program itself. Note also the difference
between the modifier key in the event specification and in the accelerator text -
the event uses Meta, the text uses Alt.

Listing 12.5. Text editor accelerator and acceleratorText
resource specifications

*File_New.accelerator:
*File_Open.accelerator:
*File_Save.accelerator:
*File_Exit.accelerator:

*File_New.acceleratorText:
*File_Open.acceleratorText:
*File_Save.acceleratorText:
*File_Exit.acceleratorText:

Cascading Pull-Downs

Meta<KeyPress>n
Meta<KeyPress>o
Meta<KeyPress>s
Meta<KeyPress>q

Alt+N
Alt+O
Alt+S
Alt+Q

A pull-down menu pane may contain any type of widget, including cascade
buttons. This leads to a menu structure shown in Figure 12.7, known as a
cascading pull-down. This structure uses a cascade button to link one menu
pane with another, providing additional detail for a menu choice. It is often used
instead of a dialog box to provide the user with a convenient method of
performing detailed actions. If a cascade button is used in this manner, it
displays the contents ofits cascadePi xmap resource - by default a right-pointing
arrow - on its right side.

288 Programming with Motif

Figure 12.7. Cascading pull-down

Cascading Pull-Down Example
Listing 12.6 presents the code segment responsible for Figure 12.7.23 Both of the
choices in the Option pane are cascading menus; the code segment contains
only that code used for the Font choice.

Listing 12.6. Cascading pull-down code

void InitOptionMenu()
{

Widget topic, 5ubtopl, 5ubtop2,
pane, 5ubpanel, subpane2,
choices[2J. subchoicel[3J. subchoice2[5J:

pane = XmCreatePulldownMenu(menubar, "Option_Pane" . NULL. 0):
XtSetArg(arglist[OJ . XmNsubMenuld. pane):

23 This code represents an "alternate implementation" of the text editor's Ini tOpt i onMenu
function. It is presented for illustrative purposes only and will not remain a part of the
editor program.

Menus 289

Listing 12.6. Continued.

topic = XmCreateCascadeButton(menubar, "OptionTopic", arglist, 1);
XtManageChild(topic);

subpanel = XmCreatePulldownMenu(pane, ·Opt_Font_Fonts" , NULL, 0
) ;

subchoi cel[O]
subchoi cel[l]
subchoi ce1[2]

XmCreatePushButton(subpanel, "Opt_FnLCour", NULL, 0);
XmCreatePushButton(subpanel, "Opt_Fnt_Helv" , NULL, 0);
XmCreatePushButton(subpanel, "OpLFnLTime", NULL, 0);

XtManageChildren(subchoicel, 3);

XtSetArg(arglist[O], XmNsubMenuld, subpanel);
choices[O] = XmCreateCascadeButton(pane, "Option_Font", arglist, 1);

XtManageChildren(choices, 2);
}

In this code segment, the Option pane is created and attached to the cascade
button that represents the Option topic. Another pane is then created for the
font selection submenu. This new pane is then linked to a cascade-button child
of the original (Option) pane. The same calls are repeated to create the Size
submenu, and then the cascade-button children of the Option pane are
managed.

This process could be repeated, with a sub-submenu attached to the Font
submenu. The usefulness of more than one level of cascading menus is
questionable: the convenience gained by a single cascading menu is lost when
the user has to navigate through multiple levels of menus (a dialog box is often
more appropriate).

Pop-Up Menus

Pop-up menus are so named because they "pop up" onto the screen, unlike
menus that must be "pulled down" from the menu bar. The benefit of a pop-up
menu is immediacy: they are invoked either with a keyboard accelerator or the
"menu button" (pointer button #3), and they appear under the pointer, ready to
be used. A primary purpose of pop-up menus is to provide context-sensitive
operations. For example, a data entry program could have several "defaults"
menus, each associated with a particular input field. The user could then press
pointer button #3 while the pointer is over a field, and the proper menu would
appear, allowing rapid input of default data.

In implementation, a pop-up menu is similar to a pull-down menu. Both are
vertically oriented row-columns, both must be children of an XmMenuSheU
widget, and both contain buttons that activate program functions. Pop-up

290 Programming with Motif

menus are created with the function XmCreatePopupMenu, which is similar in
operation to XmCreatePull downMenu.

The big difference between pop-up and pull-down menus is the way that they are
made visible: pull-down menus are mapped automatically by a cascade button,
whereas pop-up menus must be managed explicitly by the program. 24 This is
best explained by example, provided below.

Pop-up Menu Example: Color Selection Menu
In a painting program, one of the most often performed operations is changing
the active color. Figure 12.8 presents a representation of such a program, along
with a pop-up Colors menu. This menu is accessed by pressing the "menu"
pointer button (button #3) while over the program's work area or by pressing the
appropriate accelerator key (by default,J4).

Figure 12.8. Pop-up menu

The sample code does not present an actual drawing program because such a
program uses techniques described later in this book. Instead, a simple bulletin

24 They may also be managed by Motif, when the user presses the key specified by the
menu pane's menuAccel erator resource.

Menus 291

board simulates the work area of the drawing program, and the example is
implemented with the trivial program template in Listing 12.7.

Listing 12.7. Program and resource file: Pop-up menu example

/***

** **
** **
** **
** Demonstration of pop-up menus. **

XtAdd EventHa nd 1 er (the_bb. Button P res sMa s k, FALSE. PopPopup. NU LL);

InitPopup() ;
** **
***1

#include <Xm/BulletinB.h>
#include <Xm/RowColumn.h>
#i ncl ude <Xm/Label. h>
#include <Xm/PushB.h>
#include <Xm/Separator.h>

void
void

InitPopup() ;
PopPopup();

Widget appshell.
the_bb.
popup.
pop_lbl.
pop_sep.
pop_btn[6];

void maine argc, argv
int argc;
char *argv[];

1* FORWARD Definitions *1

1* Appl i cati on Shell *1
1* The work area */
/* The pop-up menu pane *1
1* The pop-up's title */
1* Seps title from choices *1
/* Choices on the pop-up */

292 Programming with Motif

appshell

Listing 12.7. Continued.

Xtlnitialize(argv[OJ, "Listing_12_7", NULL, 0,
&argc, argv);

the_bb - XmCreateBulletinBoard(appshell, "TheBB", NULL, 0);
XtManageChild(the_bb);
XtRealizeWidget(appshell);
XtMai nLoop();

/***

** **
** InitPopup() **
** **
** Creates the pop-up menu pane and its children. **
** **
***/

void InitPopup()

popup - XmCreatePopupMenu(the_bb, "Popup", NULL, 0);

pop_l bl - XmCreateLabel (popup, "Pop_Titl e", NULL, 0);
XtManageChild(pop_lbl);

pop_sep - XmCreateSeparator(popup, "Pop_Sep", NULL, 0);
XtManageChild(pop_sep);

pop_btn[OJ XmCreatePushButton(popup, "Pop_Black", NULL,
pop_btn [1 J XmCreatePushButton(popup, "Pop_Gray" , NULL,
pop_btn[2J XmCreatePushButton(popup, "Pop_Wh ite" , NULL,
pop_btn[3J XmCreatePushButton(popup, "Pop_Red" , NULL,
pop_btn[4J XmCreatePushButton(popup, "Pop_Green", NULL,
pop_btn[5J XmCreatePushButton(popup, "Pop_Blue", NULL,
XtManageChildren(pop_btn, 6) ;

0) ;

0) ;

0) ;

0) ;

0) ;

0) ;

Menus 293

Listing 12.7. Continued.

/***

**
**
**
**
**

PopPopup(w, client_data. event)

Button event handler. Manages popup on button #3.

**
**
**
**
**

***/

void PopPopup(w, client_data, event)
Widget w;
caddr_t client_data;
XButtonEvent *event;

if (event-)button != Button3)
return;

XmMenuPosition(popup, event);
XtManageChild(popup);

Resource file for Pop-up Menu Demo (Fig 12.8)

*.foreground:
*.background:
*.topShadowColor:
*.bottomShadowColor:

*TheBB.width:
*TheBB.height:
*TheBB.background:

*Pop_Title.labelString:

*Popup.XmPushButton.width:
*Popup.XmPushButton.height:
*Popup.XmPushButton.labelString:
*Popup.XmPushButton.recomputeSize:

White
Gray25
Gray50
Black

300
200
White

Colors

25
20

FALSE

294 Programming with Motif

Listing 12.7. Continued.

*Pop_Black.background:
*Pop_Gray.background:
*Pop_White.background:
*Pop_Red.background:
*Pop_Green.background:
*Pop_Blue.background:

Black
Gray50
White
Red
Green
Blue

The core of this program is comprised of two functions: InitPopup and Pop Popup.
InitPopup creates the pop-up menu and is similar to the InitFi 1 eMenu function
of the text editor. The primary difference is that the pop-up menu pane is not
linked to a cascade button.

The linking occurs in the call to XtAddEventHandl er in the main program, which
invokes the Pop Popup function on any button press. In Pop Popup, the button is
checked, and nothing happens unless it is button #3.

If button #3 is pressed, Pop Popup first calls the function XmMenuPos it i on. This
function sets the pOSition of the pop-up menu pane, using the pointer pOSition
as reported in the event structure.25 Once the menu pane has been pOSitioned, it
is managed. It is important to remember that pull-down menus are mapped, but
pop-ups must be managed - the menu-shell must assimilate the changes
specified by the call to XmMenuPos it ion.

While this has been happening, the pointer button remains pressed. The menu
appears under the pointer, and the user is able to select one of the pushbuttons
contained in the menu pane. Once a choice is selected - by releasing the
pointer button - its associated activation callback is invoked (none are used
here), and the menu pane is automatically unmanaged.26

Like pull-down menus, pop-ups may contain children from any widget class.
This includes cascade buttons, which may be attached to pull-down menu
panes, resulting in cascading menus from a pop-up. This technique is often used
when a context -sensitive menu must allow multiple sets of actions - for
example, the drawing program's pop-up might have a cascading pull-down for
colors and another for brush size.

Option Menus
An option menu is used in a situation where the program needs to provide a list
of choices, but window space is limited, or in situations where the programmer
desires to provide a visual indication of the current menu choice. In its normal
state, an option menu takes up only the space needed to display its title and

25 This positioning is perfonned by modifying the x and y resources of the menu shell. The
top left corner of the shell is positioned under the pOinter.

26 Motif unmanages the pane when the pOinter button is released.

Menus 295

current value, but when activated it displays a menu pane from which the user
is able to choose a new value. To provide this functionality, an option-menu
links a label (for the menu title), a cascade button (to invoke the menu pane),
and a pull-down menu pane (to display the choices). The option-menu widget
itself is a row-column, with its rowCo 1 umnType resource set to XmMENU_OPTI ON.

Figure 12.9 presents a common usage for option menus: selection of a font's
family and size. In Figure 12.9(a), both option menus are in their normal state.
In Figure 12.9(b), the size menu is active. One point of interest is that the
option-menu's pane is positioned such that the current choice is aligned with
the menu's label. Note also that the cascade button always presents its "armed"
appearance, even though it isn't armed.

Figure 12.9. Option menu example

FOtit~

- a -

-1;>-

XmRowColumn Resources Specific to Option Menus
An option menu is implemented as a hOrizontally oriented row-column, with a
label gadget and a cascade-button gadget as "hidden" children. To support this
implementation, XmRowColumn contains resources that are used solely for
option menus. These resources are listed in Table 12.6 and described below.

Name

labelString

menuHistory

mnemonic

subMenuld

Table 12.6. Resource specifications: XmRowColumn option
menu resources

Inheritance Type Default Value

XmRowColumn XmString NULL

XmRowColumn Widget NULL

XmRowColumn char '\0'

XmRowColumn Widget NULL

296 Programming with Motif

Menu Title: labelStrtng

XmRowColumn's 1 abe 1 S t r i n 9 resource exists solely for the title of an option
menu. An option-menu widget uses this resource as an interface to the
1 abe 1 S t r i n 9 resource of its hidden label gadget: the program can set and read
the label's 1 a be 1 S t r i n 9 resource via the menu's. As with any label's 1 a be 1 S t r i n 9
resource, this resource contains a compound string, which defaults to the name
of the label gadget.

Keyboard Access: mnemonic

Like pull-down menus accessed from the menu bar, an option menu supports
the use of keyboard mnemonics: if the option menu is visible, pressing the
mnemonic will activate it and display its menu pane. If a mnemonic is specified
- using the mnemoni c resource - then the mnemonic character is underlined in
the menu's title; if the character is not found in the title string, it is displayed in
parentheses to the right of the title.

Pane Linkage: subMenuId

An option menu uses its cascade-button gadget child to link a pull-down menu
pane to the option menu. XmRowColumn's subMenuld resource is used to provide
this link: like the row-column labelStringresource, subMenuld is a "pass
through" to the option-menu's hidden child.

Unlike a normal cascade button, which can have its subMenuld resource set at
any time, an option menu must have sub Men u I d set at the fime of its creation;
attempts to set it after creation are ignored. One result of this requirement is
that the menu pane must be created before the option menu.

Current Choice: menuHisto:ry

The menuHi story resource is not used solely for option menus: it is also used by
row-columns holding radio buttons (ie, with the radi oBehavi or resource set to
TRUE). In both cases, this resource holds the ID of the most recently activated
child. For an option menu, this is a child of its menu pane; for a radio box, it's
the last toggle button to be selected.

As used by an option menu, the menuHi story resource controls the position of
the mapped menu pane. When the pane is mapped, menuHi story is queried to
find the current choice. The menu pane is then positioned so that that choice is
aligned with the menu title. Once a new choice is made, the ID of the button
representing that choice is stored into menuHi story, and its label is stored in the
menu's hidden cascade button.

A common use of the menuHi story resource is to set a default current value by
storing the ID of one of the pane's buttons in menuHi story when the option menu
is created. This technique is used in the sample program to provide a default
font size of 14 points and family of Courier.

Menus 297

Option Menu Example: Font Family and Size
Figure 12.9 was produced with the program and resource file of Listing 12.8.
This example uses a bulletin board to hold the option menus; in a practical
application, they would typically be used in a dialog box. As this example exists
solely to present option menus, it is based on the trivial program template.

Listing 12.8. Program and resource file: Option-menu example

1***

** **
** **
** **
** Demonstration of option-menus. **
** **
***/

Ifinclude <Xm/BulletinB.h>
Ifinclude <Xm/RowColumn.h>
Ifinclude <Xm/PushB.h>

void InitFontMenu() ; /* FORWARD Definitions
void InitSi zeMenu();

Widget appshell, /* Application Shell
the_bb; /* The work area

Arg argl i st[16]; /* Used to set resources

void maine argc. argv
int argc;
char *argv[];

appshell = Xtlnitialize(argv[O], "Listin9_1Z_B", NULL, 0,
&argc, argv);

the_bb = XmCreateBulletinBoard(appshell, "TheBB", NULL, 0);
XtManageChild(the_bb);

InitFontMenu() ;

*/

*/
*/
*/

298 Programming with Motif

Listing 12.8. Continued.

InitSizeMenu() ;

XtRealizeWidget(appshell);
XtMai nLoop();

1***

** **
** InitFontMenu()
**
** Creates the option-menu for font selection.
**

**
**
**
**

***/

void InitFontMenu()
(

Widget menu,
pane,
choices[3];

pane = XmCreatePulldownMenu< the_bb, "Font_Pane" , NULL, 0

choices[O] XmCreatePushButton(pane, "Font_Cour",
choi ces [1] XmCreatePushButton(pane, "Font_Helv",
choices[2] XmCreatePushButton(pane, "Font_Time",
XtManageChildren(choices, 3);

XtSetArg(arglist[O], XmNsubMenuld, pane);
XtSetArg(arglist[l], XmNmenuHistory, choices[O]);

NULL,
NULL.
NULL,

) ;

0) ;

0) ;

0);

menu = XmCreateOptionMenu(the_bb, "Font_Menu", arglist. 2);
XtManageChild(menu);

Menus 299

Listing 12.8. Continued.

1***

** **
** InitSizeMenu()
**
** Creates the option-menu for font size selection.
**

**
**
**
**

***/

void InitSizeMenu()
{

Widget menu,
pane,
choices[5];

pane = XmCreatePulldownMenu(the_bb, "Size_Pane",

choices[O] XmCreatePushButton(pane, "Size_IO",
choices[l] XmCreatePushButton(pane, "Size_12",
choices[2] XmCreatePushButton(pane, "Size_14",
choices[3] XmCreatePushButton(pane, "Size_IS",
choices[4] XmCreatePushButton(pane, "Size_24",
XtManageChildren(choices, 5) ;

XtSetArg(arglist[O], XmNsubMenuld, pane);

NULL,

NULL,
NULL,
NULL,
NULL,
NULL,

XtSetArg(arglist[l], XmNmenuHistory, choices[2]);

0) ;

0);

0);

0);

0);

0) ;

menu = XmCreateOptionMenu(the_bb, "Size_Menu", arglist, 2);
XtManageChild(menu);

Resource file for Option Menu demo (Fig 12.

*.foreground:
*.background:
*.topShadowColor:
*.bottomShadowColor:

White
Gray50
Gray75
Gray25

300 Programming with Motif

Listing 12.8. Continued.

*TheBB.marginWidth:
*TheBB.marginHeight:
*TheBB.foreground:
*TheBB.background:

*Font_Menu.x:

10
20
Black
White

10
*Font_Menu.y: 20
*Font_Menu.labelString: Font

*Font_Cour.labelString: Courier
*Font_Helv.labelString: Helvetica
*Font_Time.labelString: Times

*Size_Menu.x: 10
*Size_Menu.y: 60
*Size_Menu.labelString: Size

*Size_l0.labelString: 10
*Size_12.1abelString: 12
*Size_14.labelString: 14
*Size_18.labelString: 18
*Size_24.1abelString: 24

The Ini tFontMenu and Ini tSi zeMenu functions are the core of this program. As
they are almost identical in content, Ini tFontMenu is described here.

The In i t F 0 n t Men u function appears similar to the I nit F i 1 eM e n u function of the
text editor. Both create a pull-down menu pane and fill it with button children.
The difference is that InitFi 1 eMenu attaches the menu pane directly to a cascade
button, and InitFontMenu attaches it to the option menu. Both use the
appropriate widget's subMenuId resource to specify the linkage.

Another difference is that an option menu is managed after it is created. This is
because an option menu - like the menu bar - is a part of the program's
window tree, whereas pop-up and pull-down menu panes exist in separate
window trees.

Finally, note that the menu panes are not children of their associated option
menus. Instead, they must be children of the option-menu's parent.

Menu Summary
The following list presents a summary of the information presented in this
chapter.

Menus 301

• Menus are implemented using the XmRowColurrm widget class.

The menu bar and option menus are horizontally oriented row-columns,
pop-up and pull-down menus are vertically oriented row-columns. The
particular type of menu is specified by the row-column's rowCol umnType
resource. XmRowColurrm provides other resources dedicated to menu
support.

The XmRowColurrm resources i sHomogeneous and entryCl ass specify the
type of widgets that may be children of a menu. These resources are only
used for the menu bar, which is restricted to children of class
XmCascadeButton; pop-up and pull-down menu panes may have any
type of child. Althou,gh menu panes typically have only labels, separators,
and buttons as children, some programs may use other types of children
- for example, another row-column, to implement a set of radio buttons.

• Each type of menu has its own creation function.

Although menus are implemented using XmRowColurrm, creating a menu
system using XmCreateRowCol umn is inefficient, primarily because of the
default resource values used by the various types of menus (not to
mention the fact that pop-up and pull-down menu panes require a
menu-shell parent). For this reason, Motif provides the following creation
nwnctions: XmCreateMenuBar, XmCreateOptionMenu. XmCreatePopupMenu, and
XmCreatePull downMenu. These functions set the appropriate
XmRowColurrm resources and create additional widgets where needed.

• A pop-up or pull-down menu pane must be the child of an XmMenuSheU
widget.

Pop-up and pull-down menu panes might need to exceed the bounds of
the program's window (note Figure 12.9). For this reason, they are
created as the child of an XmMenuSheU widget. which is the root of a new
window subtree - completely separate from the subtree formed by the
windows of the program's other widgets.

• Option menus and the menu bar are managed when created, pull-down
menu panes are mapped when used, and pop-up menu panes are
managed when used.

The windows of option menus and the menu bar exist in the program's
normal window subtree, meaning that they are positioned (and sized) by
the menu's parents. For this reason, they must be managed when they
are created.

The window of a pull-down menu pane exists in a separate subtree,
rooted by the window of the menu shell. A pull-down is managed by its
creation function. and need only be mapped to be used. This mapping
happens automatically as a result of the activation of a cascade button.

The window of a pop-up menu pane also exists in a separate subtree,
under control of a menu shell. However, the position of a pop-up menu
may change between its uses, because it follows the pointer. For this
reason, it must be managed when used. so that its parent properly
adjusts its size and position. The program specifies this position before
management, by calling the XmMen u Pos it i on function (passing it the event

302 Programming with Motif

responsible for the menu's appearance). Pop-up menu panes may also be
managed automatically, as the result of a keyboard accelerator.

• Menus and their choices may be accessed by the keyboard, using either
mnemonics and traversal or accelerators.

XmRowColumn provides the menuAccel erator resource used by the menu
bar and pop-up menu panes. This resource specifies a key combination
- in the format used for a translation specification - which will activate
the menu. The default value of this resource depends on the type of
menu: "<Key>FIO" for the menu bar, "<Key>F4" for a pop-up. Once
activated, the arrow keys may be used for traversal: the Up and Down
keys traverse between choices on a menu, and the Right and Left keys
traverse between menu bar topics (and activate/deactivate the associated
pull-down menu). The Return key activates the currently active menu
choice, and the Escape key deactivates the menu.

The topics on a menu bar may have a single-character mnemonic,
specified by the mnemoni c resource of XmLabel. Once the menu bar is
activated, a pull-down menu may be activated by typing its associated
mnemonic. Alternately, a pull-down may be activated without menu bar
activation, by pressing the Meta (or Al6 key while typing the mnemonic.

Single-character mnemonics are also used by the pushbuttons, toggle
buttons, and cascade buttons residing in menu panes. These mnemonics
are also specified by the button's mnemoni c resource. A button may be
activated by pressing the associated mnemonic key while its menu pane
is active.

Menu choices may also have accelerators, which are key sequences that
activate the menu choice without the need for activating the associated
menu. Menu accelerators are specified by XmLabefs accel era tor and
accel eratorText resources; these resources are applicable only to
pushbuttons, cascade buttons, and towe buttons that reside in a menu.
The accel erator resource should not be confused with the accel erators
resource, defined by the Core class: accel era tor provides a simpler
method of implementing a keyboard accelerator than ace e 1 era tor s.

• Pull-down menus are not limited to the menu bar.

While the term "pull-down menu" implies that the menu is pulled down
from the menu bar, a Motif pull-down may be used in other
circumstances as well. Cascading pull-downs are implemented by linking
a pull-down menu pane to a cascade button in another menu pane; this
linkage may be repeated, resulting in an infinite number of sub-[sub
... lmenus. Pull-downs may also be linked with a cascade button in a pop
up menu pane. Finally, pull-downs are used to implement an option
menu's list of choices.

The one requirement for use of a pull-down menu is that it must be
mapped by a cascade button - the program does not expliCitly control its
presence or absence.

• The parent of a pull-down menu pane depends on that menu's use.

If a pull-down menu pane is associated with the menu bar, the menu bar
is the parent of the pane. If it is associated with a pop-up or pull-down

Menus 303

menu pane (eg, cascading pull-downs), then its parent is the associated
menu pane. If it is associated with an option menu, its parent is the
option-menu's parent.

• Each type of menu has its own purpose.

The menu bar resides at the top of every program's display, and its
associated pull-downs are always accessible. A pop-up menu provides
"instantaneous" context-sensitive operations. Option menus are used
where space is limited, but the list of choices is long, or where the
programmer desires to provide a visual indication of the menu's state.

13
Dialogs

Overview
A dialog box is a secondary window, managed by the program, but distinct from
the program's main window. Dialog boxes exist for tasks that are tangential to
the program's main purpose, to present information or allow user input. An
example of this use, shown in Figure 13.1, is the text editor's Find dialog. While
fmding and selecting text is an action that is often performed by a text editor
user, it is not the primary function of the editor - and should not, therefore,
have a permanently dedicated space on the editor's main window.

Dialogs can serve a wide range of purposes. The Find dialog is an example of a
task dialog: a dialog box that exists for a particular task and is present only
while that task is being performed. Other dialogs are tool palettes: they provide
often-used functions, and remain on screen tor as long as the user requires
those functions - often for as long as the program is running. Message boxes
form a third class: they present a short message to the user and allow an
immediate Yes/No response. Finally, input dialogs prompt the user for required
input - an example is a "Open File" dialog.

Dialog Modality

One of the tenets of graphical user-interface design is that programs should be
modeless: the user should be able to perform any appropriate function at any
time. However, many dialog boxes are modal: they force the user to perform a
specific action and do not permit any other actions until that action is complete.
There are various levels of modality, each applicable to specific situations.

Modeless dialogs do not affect a user's interaction with the program; they are
simply additional windows maintained by the program. Tool palettes are always
modeless: they are designed to coexist with the program, not supersede it. Task
dialogs are occasionally modeless: a nonmodal Find, for example, would allow
the user to repeatedly search for an item, while editing between searches.

305

306 Programming with Motif

Figure 13.1. Find dialog

**
**

statio widget

statio XmS

.------

te::::::

Application-modal dialogs prevent the user from performing any other actions in
the same program until the dialog's purpose is fulfilled. He/she can, however,
switch to another program. Message boxes are application-modal: they present
information pertaining to the current situation and require a response while that
situation exists. Input dialogs are often application-modal: the file-selection
dialog, for example, is an integral part of the file-saVing process and must not be
bypassed.

System-modal dialogs prevent the user from performing any other actions in any
window until the dialog's purpose is fulfilled . As such dialogs essentially take
control of the system from the user, they should only be used in urgent
circumstances, such as reporting a full filesystem.

Dialog Design and Components
A dialog is divided into two areas: the presentation area and the confirmation
area. 1 The presentation area is at the top of the dialog box and contains the
controls, tools, information, etc., presented by the dialog. In the Find dialog of
Figure 13.1. the presentation area contains the entry field and its label ("Find:").
The confirmation area is at the bottom of the dialog and contains pushbuttons

1 These tenns are not "official" Motif tenns.

Dialogs 307

that confirm - and act on - the content of the presentation area. In the Find
dialog, the Find button confirms the text and initiates the search, while the
Cancel button unmanages the dialog. The two areas are typically divided
visually by a separator.

The pushbuttons in the confirmation area represent actions relating to the
dialog. They should be organized with affirming choices on the left, negating
choices on the right, and Help (if it is used) as the rightmost choice. Button
labels should refer to specific actions: Find instead of Go. Dialog boxes should
present a default operation, invoked by pressing the Return key. This default
button is identified by a special shadow border (like the Find button in Figure
13.1).

XmDialogShell

As dialogs exist as separate program windows, outside of the program's normal
window tree, they must have a shell between themselves and the root window.
This shell is XmDialogShell, derived as shown by the class tree of Figure 13.2.

Figure 13.2. XmDialogShell class tree

308 Programming with Motif

The Shell class is defined by Xt and provides the basic interface between the
shell and the root window. WMShell is also defined by Xt and provides the
interface between the shell and the window manager.2 VendorShell is defined by
Motif and provides information about the program to the Motif window
manager. 3 The TransientShell class indicates that the shell uses a secondary
window - it is an extension of the program's main window and is not iconifted
separately.4

XmDialogShell Resources

As a result of the many nodes in its class tree, most of the resources used with
XmDialogShell are inherited. Table 13.1 presents a selection of these resources,
with the defining class identified; they are described below.

Table 13.1. Frequently used resources: XmDialogShell

Name Inheritance Type Default Value

allowShellResize Shell Boolean FALSE

overrideRedirect Shell Boolean FALSE

maxHeight WMShell int -1

maxWidth WMShell int -1

minHeight WMShell int -1

minWidth WMShell int -1

deleteResponse VendorShell unsigned XmUNMAP
char

keyboardFocusPolicy VendorShell unsigned XmEXPLICIT
char

Programmatic Size Changes: allowShellResize

One of the functions of a shell is to respond to size-change requests from its
child by passing the request on to the window manager. The all owShell Resi ze
resource controls this process: if it contains FALSE, the shell ignores such
requests from its child and maintains its original size. If it contains TRUE, the
shell attempts to grow or shrink to match the desired size of its child. For a

2 This interface specifies the general information about the program: its preferred size,
minimum and maximum sizes, etc. Unlike resources defined by VendorShel~ this
information is the sort that would be used by any window manager; VendorSheU
provides information specific to a particular vendor's window manager.

3 If VendorSheU is defined by Motif, why doesn't it begin with "Xm"? The answer is that
VendorShe~ as an abstract class, is defined by Xt. Its purpose, however, is to provide
an interface to window-manager-specific features, so it is implemented as part of Motif.

4 ApplicationShell replaces TrWlSientShell with TopLevelShel~ so a program window may
be iconified on its own.

Dialogs 309

dialog box, the default value of allowShellResize box is FALSE: the dialog
maintains its initial size, unless that size is changed by the user.

Size Limits: minHeight, minWidth, maxHeight, max Width

When the user changes the size of a shell via the window frame resize controls,
the shell must recalculate the geometry of its child - which must recalculate the
geometry of its children, and so on. In some cases, the new size may be too small
to display the entire dialog or too large to be useful (eg, a form dialog that
expands its children excessively).

To limit such size changes, a shell provides specifications for minimum and
maximum size. The mi nHei ght and mi nWi dth resources specify the desired
minimum dimensions; maxHei ght and maxWi dth specify the desired maximum
dimensions. You should note that these specifications are desired - the window
manager has ultimate control over the size and position of a window. The default
value of -1 indicates that there is no desired limit.

Window Manager Control: overrideRedirect, deleteResponse

The 0 v err ide Re d ire c t resource specifies whether the window manager should
actively control the shell's size and position.5 If it contains FALSE, tne window
manager is responsible for the size and position of the shell; if it contains T RUE,
the shell is responsible for managing its own position and dimensions. For
XmDialogShell and ApplicationShell, overri deRedi rect contains FALSE; for
XmMenuShell, it contains TRUE.

For shells managed by the window manager, the del eteResponse resource
controls how the shell responds to a user double-clicking in the "window menu
box" (the button at the top left corner of the window frame).6 This resource may
contain one of three values: XmDESTROY indicates that the display connection
should be closed, XmUNMAP indicates that the shell should be unmapped, and
XmDO_NOTH I NG indicates that the action should be ignored. For XmDialogShell, the
default is XmUNMAP. Dialogs that should be ever-present use XmDO_NOTH I NG; no
dialog should use XmDESTROY because it will terminate the main program.

Focus:keyboardFocusPolicy

As stated in Chapter 9, Motif provides two methods of controlling focus: explicit,
in which the user must click on the window to receive focus, and pointer, in
which the window where the pointer resides has focus. This behavior is
controlled at the shell level - determining which widget of the shell's
descendents has the focus - by the keyboardFocusPolicy resource. If this
resource contains XmEXPLICIT, subwindow focus is assigned by traversal and
pointer clicks; if it contains XmPO I NTE R, subwindow focus is assigned by the
pointer's position.

5 The overri deRedi rect resource should never be modified by the program. It is presented
here in explanation of the difference between a menu shell and a dialog shell.

6 Selecting Close from the window menu performs the same action.

310 Programming with Motif

Dialog Management and Unmanagement
To be used, a dialog must be present on the screen. Once the user is done with
it, it should disappear. As you might guess, XtManageChi 1 d is used to make the
dialog appear, and XtUnmanageChi 1 d makes it disappear. What might not be
obvious is that your program manages and unmanages the dialog's child - not
the dialog shell itself.

If you reflect on previous experience with shells, you will see that this is a
common technique. The application shell isn't managed, its child - the main
window - is. Similarly, a pop-up menu's shell isn't managed, the menu-pane
row-column is.

The reason for this is that a shell provides an interface to the root window: it
requests a subwindow on the root, which is under the control of the window
manager, not another widget. Management, however, is the process of a parent
widget allocating its space between its children, initiated by a child's request for
management. Thus, when you manage the child of a shell, it requests space from
the shell, which requests space from the window manager.

XmBulletinBoard Dialog Resources
Most dialogs are built on bulletin board and form widgets - they are more
appropriate for positioning controls, labels, and fields than managers such as
XmRowColumn. For this reason, XmBulletinBoard defines a set of resources that
are specifically designed for dialog support. 7 These resources are listed in Table
13.2 and described below.

Table 13.2. Dialog-specific resources: XmBulletinBoard

Name Inheritance Type Default Value

autoUnmanage XmBulletinBoard Boolean TRUE

cancel Button XmBulletinBoard Widget NU LL

defaultButton XmBulletinBoard Widget NULL

defaultPosition XmBulletinBoard Boolean TRUE

dialogStyle XmBulletinBoard unsigned char dynamic

dialogTitle XmBulletinBoard XmString NU LL

mapCallback XmBulletinBoard XtCallbackList NU LL

noResize XmBulletinBoard Boolean FALSE

unmapCallback XmBulletinBoard XtCallbackList NU LL

7 As XmFonn is derived from XmBuUetinBoard, these resources are also present in form
based dialogs.

Dialogs 311

Usage/Modality: dialogStyle

A bulletin board may be the child of a dialog shell, or it may be used as a work
area within another manager. The di a 1 ogStyl e resource specifies this usage. In
addition, if the bulletin board is the child of a dialog shell, d i a 1 og S ty 1 e specifies
its modality. Legal values are as follows:

• XmDIALOG_WORK_AREA. The bulletin board is used as a child of another
manager or the application shell.

• XmDIALOG_MODELESS. The bulletin board is used as a modeless dialog: it
resides on the screen with the application's main window, but does not
accept input or preempt program control unless explicitly given the focus.

• XmDIALOG_APPLICATION_MODAL. The bulletin board is used as an
application-modal dialog: it preempts access to all other windows
maintained by the same program.

• XmDIALOG_SYSTEM_MODAL. The bulletin board is used as a system-modal
dialog: it preempts access to any other window on the server.8

The di a 1 ogStyl e resource has a dynamic default value in that its default value is
set by the function that creates the bulletin board. If the bulletin board is
created as the child of a dialog shell, the default value is XmDIALOG_MODELESS. If it
is created as the child of another manager, the default value is XmDIALOG_
WORK_AREA.

Title: dialogTitle

The window manager provides a title for each framed window, which is displayed
in the top portion of the window frame. XmBulletinBoarcfs d i a 1 ogTi t 1 e resource
specifies this title; it is a compound string and defaults to the bulletin board's
widget name.

You should note that the contents of d i a 1 ogTi t 1 e are not directly passed to the
window manager. Instead, the bulletin board uses this resource to set the tit 1 e
resource of its shell, and the shell presents the contents of that resource to the
window manager. A common error is to set tit 1 e directly - the bulletin board
overwrites it.

Size/Position Control: defaultPosition, noResize

When a dialog is managed, its desired initial size is the size of the bulletin board,
which is determined from the aggregate size of the bulletin-board's children. This
desired size is presented to the window manager, which mayor may not grant
it.9

8 System-modal dialogs are only supported (at this time) by the Motif window manager. If
you run a Motif program under another window manager, you cannot guarantee
system-modality.

9 In practice, the size request is almost always granted.

312 Programming with Motif

A normal client window frame includes controls that allow the user to expand or
shrink the window. The presence or absence of these controls is determined by
the noResi ze resource: if it contains FALSE (the default), the controls are present;
if it contains TRUE, then they are absent. lO

The initial position of the dialog is also controlled by the window manager and
determined in part by the contents of the defaultPosition resource. If
defaul tPositi on contains TRUE (the default), the dialog is positioned such that it
is centered in its parent's window. If it contains FALSE, the dialog is positioned
according to the window manager's positioning algorithm - the initial position is
indeterminate.

Interaction: autoUnmanage, defaultButton

The normal operation of a dialog is to unmanage itself when any of its child
buttons are activated. While this may be a convenience for a message box or
input dialog, it is certainly an inconvenience for a tool palette. The autoUnmanage
resource controls this behavior. When it contains TRUE (the default), the bulletin
board adds an "unmanage me" callback to the activation callback list of each of
its button children. When autoUnmanage contains FALSE, no such callback is
present, and the program must explicitly unmanage the dialog when it is no
longer needed. II

Some dialogs use a default button, which is activated when the user presses the
Return key while the dialog is displayed. The defaul tButton resource specifies
such a button: it contains the widget ID of that button. The default value, NUL L,
indicates that there is no default button. When a default button is used, the
bulletin board installs an accelerator, which redirects the the Return key to that
button.

You should note that the defaul tButton resource does not cause a visual
indication of the button's status. To provide such an indication, you must set
the button's own showAsDefaul t resource, described in Chapter 7.

10 The use of this resource is not limited to dialogs. It is also effective if the bulletin
board's parent is the application shell.

II Note, however, that the dialog may also be unmanaged in reaction to the user, if the
shell's del eteResponse resource contains XmUNMAP.

Dialogs 313

Standard Children: cancelButton

Every dialog should have a Cancel button - a way for the user to say "I don't
want to do this." In light of this, XmBulletinBoard provides the cancel Button
resource, which contains the widget ID of such a button. The bulletin board does
not, however, defme any special actions associated with that resource, nor does
it require that the program make use of it.12

Callbacks: mapCallback. unmapCallback

Like the identically named XmRowColumn resources, map Call b a c k and
unmapCallback allow the program to intercept the management or
unmanagement ofa dialog. The mapCall back list is invoked just before the dialog
appears; its reason is XmCR_MAP. The unmapCallback list is invoked just after the
dialog disappears; its reason is XmCR_UNMAP. Both callbacks pass call data in
XmAnyCallbackStruct.

Building and Using a Dialog
Building and using a bulletin board or form dialog involves four steps: creating
the dialog shell and manager, creating and managing the dialog's children,
managing the dialog when it is needed, and unmanaging the dialog when it is no
longer needed.

To create the dialog, you can create the shell and bulletin board separately or
use one of the convenience functions shown in Listing 13.1: the first creates a
bulletin board as the child of the dialog shell, the second creates a form. These
functions take the same parameters as other widget -creation functions; the main
window is a good choice for the pa rent parameter. They return the ID of the
manager widget; the dialog shell is automatically created as the parent of this
widget.

12 The cancel Button resource exists primarily for subclasses of XmBulletinBoard, such as
XmMessageBox

314 Programming with Motif

Listing 13.1. Function prototypes:
XmCreateBulletinBoarciDialog, XmCreateFormDialog

Widget XmCreateBulletinBoardDialog(parent, name, arg_list, arg_cnt
Widget parent;
String name;
ArgList arg_list;
Cardinal arg_cnt;

Widget XmCreateFormDialog(parent, name, arg_list, arg_cnt)
Widget parent;
String name;
ArgList arg_list;
Cardinal arg_cnt;

The dialog's manager widget is not managed after it is created. However, the
children of that manager are. The manager itself is managed when the program
needs to display the dialog; it must be explicitly unmanaged when no longer
useful. 13

Bulletin-Board Dialog Example: Find
Almost every text editor offers a "find string" operation, and the one in this book
is no exception. As you might have guessed, this function is implemented using
a bulletin-board dialog. Figure 13.3 presents the two faces of this dialog: 13.3(a)
is its initial state, and 13.3(b) is its "in process" state.

The distinction between "initial" and "in process" was first presented in the text
editor's menu specification in Chapter 12. When the Find dialog flrst appears
as a result of choosing the Find ... chOice from the Edit menu - it presents Find
and Cancel buttons. To send the dialog away without doing anything, the user
presses Cancel. To fmd a string, the user types the string in the entry fleld and
presses Find.

The code behind the dialog box then searches for the flrst occurrence of the
search string in the text buffer. Assuming that it finds one, it selects that portion
of the buffer and presents the dialog's second face - 13.3(b). In this second face,
the dialog presents Next and Done buttons: Next searches for the next
occurrence of the string, Done unmanages the dialog, leaving the current string
selected.

13 Unless, of course, it is unmanaged automatically as a result of the autoUnmanage
resource or the shell's deletion response (determined by the value of its del eteResponse
resource).

Dialogs 315

If at any point the dialog code is unable to find the search string, it simply
unmanages the dialog. A more elegant solution would be to have it display a
message, such as "Search string not found."

Figure 13.3. "Find" dialog: As managed and after first location

-b- ~======~~============~

Implementing this dialog requires several changes to the text editor program,
presented in Listing 13.2. The first change is to the InitOther function: it now
calls a function to create the find dialog. The second change is to the Edit
menu's callback function, EditMenuCB: it now manages the dialog box when the
Find choice is selected. The third change is to implement the functions that
support the dialog; these are described below the listing. The fourth change is to
add a utility function, StrFi nd, which searches for a substring within another
string: it is used to locate the search string in the text widget's buffer. 14 Finally,
the resource me must be changed; this also is described below the source listing.

14 This function is equivalent to the ANSI C function 5 t r 5 t r; if you have an ANSI
compiler, you should use strstr and not implement StrFi nd.

316 Programming with Motif

Listing 13.2. Program and resource file excerpts: Text editor
revision 6 (Find dialog)

void InitOther()
(

InitFindDB() ;

static void EditMenuCB(w. client_data. call_data
Widget w;
char *client_data;
caddr t call_data;

if (!strcmp(client_data. "Cut"»
{

}

else if (!strcmp(clienLdata. "Cpy"»
{

}

else if (!strcmp(client_data. "Pst"»
{

}

else if (!strcmp(client_data. "Del"»
{

}

else if (!strcmp(client_data. "Fnd"»
(

ManageFindDB() ;
}

else if (!strcmp(clienLdata. "Rpl"»
{

}

1***

** **
** FOR WAR 0 DEFINITIONS **
** **
***/

static void
static void

FindCB();
Fi ndCanCB();

Dialogs 317

Listing 13.2. Continued.

/***

** **
** L 0 CAL V A R I A B L E S **
** **
***/

static Widget

static XmString

static int

find_db,
fi nd_l bl ,
find_txt,
find_sep,
find_btn_l,
find_btn 2'
find_str,
can_str,
next_str,
done_str;
finding;

/* The dialog box
/* Label: "Find:"
/* Find-string Entry Field
/* Sep between pres & conf
/* Action pushbutton
/* Go-away pushbutton
/* XmString for "Find"
/* XmString for "Cancel"
/* XmString for "Next"
/* XmString for "Done"
/* Flag for FindCB()

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

1***

**
** InitFindDBC)
**
**
**
**
**
**
**

Creates the "Find" dialog box, which is controlled by the
Edit/Find ... pull-down menu choice.

Modifies the global variable "find_db", and local variables
"find_txt", "find_ok_btn", and "find_nxt_btn".

**
**
**
**
**
**
**
**

**
***/

void InitFindDB()
{

find db - XmCreateBulletinBoardDialog(mainwin, "FindDB", NULL, 0);

318 Programming with Motif

Listing 13.2. Continued.

find_lbl = XmCreateLabel (find_db, "Find_Lbl", NULL, 0);
XtManageChild(find_lbl);
find_txt = XmCreateText(find_db, "FinLTxt", NULL, 0);
XtManageChild(find_txt);

find_sep = XmCreateSeparator(find_db, "Find_Sep", NULL, 0);
XtManageChild(find_sep);

find_btn_l = XmCreatePushButton(find_db, "Find_Btnl", NULL,
XtManageChil d (find_btn - 1) ;

find_btn_2 = XmCreatePushButton(find_db, "Find_Btn2", NULL,
XtManageChild(find_btn_2) ;

0);

0) ;

XtAddCallback(find_btn_l, XmNactivateCallback, FindCB, NULL);
XtAddCallback(find_btn_2, XmNactivateCallback, FindCanCB, NULL);

XtSetArg(arglist[OJ, XmNdefaultButton, find_btn_l);
XtSetValues(find_db, arglist, 1);

find str
can_str
next_str
done_str

XmStringCreate("Find", XmSTRING_DEFAULT_CHARSET);
XmStringCreate("Cancel", XmSTRING_DEFAULT_CHARSET);
XmStringCreate("Next", XmSTRING_DEFAULLCHARSET);
XmStringCreate("Done", XmSTRING_DEFAULLCHARSET);

1***

** **
** ManageFindDB()
**
**
**
**
**
**

Called when the dialog box is first presented, this function
manages the DB and sets the labels of its buttons to "Find"
and "Cancel". It also sets the "finding" flag FALSE, for the
first call to FindCB.

**
**
**
**
**
**
**

***/

Listing 13.2. Continued.

void ManageFindDB()
{

XtManageChild(find_db);
_XmGrabTheFocus(find_txt);

XtSetArg(arglist[OJ. XmNlabelString. find_str);
XtSetValues(find_btn_l. arglist. 1);
XtSetArg(arglist[OJ. XmNlabelString. can_str);
XtSetValues(find_btn_2. arglist. 1);
finding = FALSE;

Dialogs 319

1***

** **
** FindCB(w. client_data. call_data)
**

**
**

** Called from the "Find" or "Next" buttons of the Find DB. This **
** function searches for the first/next occurrence of the search **
** string. and selects it. **
** **
***/

static void FindCB(w. client_data. call_data
Widget
char

w;
*client_data;

XmAnyCallbackStruct *call_data;

static int
char

int

if (! fi nd i ng)

curpos;
*findstr.
*txtbuf.
*txtptr;
start.
end;

320 Programming with Motif

Listing 13.2. Continued.

finding TRUE;
curpos 0;
XtSetArg(arglist[OJ. XmNlabelString. next_str);
XtSetValues(find_btn_1. arglist. 1);
XtSetArg(arglist[OJ. XmNlabelString. done_str);
XtSetValues(find_btn_2. arglist. 1);
}

findstr XmTextGetString(find_txt);
txtbuf XmTextGetString(textwin);
txtptr StrFind((txtbuf + curpos). findstr);
if (txtptr == NULL)

XtUnmanageChild(find_db);
else

(

start = txtptr - txtbuf;
end = start + strlen(findstr);
XtSetArg(arglist[OJ. XmNcursorPosition. end);
XtSetValues(textwin. arglist. 1);
XmTextSetSelection(textwin. start. end.

curpos = start + 1;
}

XtFree(txtbuf);
XtFree(findstr);

call_data-)event-)xbutton.time);

1***

** **
** FindCanCB(w. client_data. call_data)
**
**
**
**

Called from the 'Cancel" or "OK" buttons of the Find DB. This
simply unmanages the DB.

**
**
**
**
**

***/

Listing 13.2. Continued.

static void FindCanCB(w. client_data. call_data
Widget
char

w;
*clienLdata;

XmAnyCallbackStruct *call_data;

XtUnmanageChild(find db);

Dialogs 321

1***

**
** StrFind(s1. s2)
**
**
**
**

Returns a pointer to the first occurrence of string s2 in
string s1. Returns NULL is s2 does not occur in s1.

**
**
**
**
**
**

***/

char *StrFind(s1. s2
char
char

cha r
cha r

*s1;
*s2;

*tmps1;
*tmps2;

for ; *s1 != '\0'
*s2)

s1++)
if (*s1

{

tmps1
tmps2
for (

s1 ;
s2;
(*s1 == *tmps2) && (*s1 != '\0')

if (*tmps2 == '\0')
return(tmps1);

return(NULL);

*s1++. *tmps2++)

322 Programming with Motif

Listing 13.2. Continued.

! Find Dialog Resources

*FindDB.width:
*FindDB.autoUnmanage:
*FindDB.dialogTitle:
*FindDB.marginWidth:

FindDB..background:
FindDB..foreground:
FindDB..topShadowColor:
FindDB..bottomShadowColor:

*Find_Lbl.x:
*Find_Lbl.y:
*Find_Lbl.width:
*Find_Lbl.labelString:

*Find_Txt.x:
*Find_Txt.y:
*Find_Txt.width:

*Find_Sep.x:
*Find_Sep.y:
*Find_Sep.width:

*Find_Btnl.x:
*Find_Btn1.y:
*Find_Btn1.width:
*Find_Btn1.recomputeSize:
*Find_Btn1.showAsDefault:

*Find_Btn2.x:
*Find_Btn2.y:
*Find_Btn2.width:
*Find_Btn2.recomputeSize:

InitFindDB

180
FALSE
Fi nd ...
o

Gray75
Black
White
Gray50

10
12
40
Find:

50
10
120

o
40
180

10
50
60
FALSE
1

llO
54
60
FALSE

The In i t Fin d 0 B function initializes the dialog box and its five children: one label.
one text field. one separator. and two buttons. Widget creation is

Dialogs 323

straightforward, using the appropriate function for each child. Note again that
the bulletin board is not managed after creation, but its children are.

r ni tFi ndDB gets interesting after all of the widgets have been created. By design,
the left button performs an action - Find or Next - and the right button makes
the dialog box disappear. Thus, there are two callback functions: one performs a
search, the other unmanages the dialog. Since Find/Next is going to be the one
most often used, I explicitly make it the default button, by setting the bulletin
board's defaul tButton resource.

Finally, I create four compound strings, containing possible labels for the two
buttons. Since the four tasks of this dialog box - Find, Next, Cancel, and Done
- are really two tasks - Find and Cancel - I decided to use two button
widgets and install the appropriate string into each button's 1 abel Stri ng
resource. The alternative, four pushbuttons, would mean managing the
appropriate buttons for the situation. That method would result in more work for
the program, as well as increased communication between the program and
server. Its benefit would be that the button labels would reside in the resource
file, where they could be easily changed.

ManageFindDB

The ManageFi ndDB function is called from the Edit menu callback function. It
manages the dialog and initializes it for a new search. This initialization has two
parts: setting the labels on the pushbuttons (to Find and Cancel) and setting a
flag variable. This flag variable is then used to control the operations performed
by the Fin d C B function.

A third part is the call to _XmGrabTheFocus. 15 When the dialog is managed, it
becomes the topmost window and automatically receives focus. However, it has
no way of determining which child is to receive focus; this must be done by the
program.

FindCB

Fi ndCB is the callback function attached to the dialog's left pushbutton - it is
called for the Find and Next operations. The fi ndi ng flag indicates whether or
not the dialog has just been managed - whether this is a Find or Next
operation. If it is a Find, the search position must be initialized to the first
character of the text buffer. 16 In addition, the pushbutton labels must be
changed to Next and Done, in preparation for future user interaction.

15 This function is undocumented and specific to Motif 1.0. In Motif 1.1, it is replaced by
the function XmProcessTraversal.

16 Most editors "find" from the current insertion point. When I use such an editor, I
almost always go to the first line before starting the search. As a result, this editor
starts its searches from the beginning of the text buffer. To change this operation,
merely get the contents of the text widget's cursorPos it i on resource, and use that value
to initialize curpos.

324 Programming with Motif

The next step is to retrieve the search strin~ and the contents of the editor's text
buffer, both of which are XmText widgets. You may wonder why both strings
are retrieved on each call of the callback function - why not just maintain a
static pOinter? In the case of the text buffer, the answer is that the contents of
the text buffer might change between invocations of the callback function: as
implemented, this dialog is modeless, meaning that the user can edit the text
between successive searches. 18 The search string is retrieved every time because
maintenance of a static pointer would involve freeing the contents of the pOinter
when - and where - the dialog is unmanaged. In the current implementation,
both strings are retrieved and then disposed of inside the function - no need to
be concerned with floating pointers.

The search operation happens next. The current position - which is zero for
Find and nonzero for Next - is added to the start of the text buffer to produce
the unsearched substring. The StrFind function (or strstr, if you use ANSI C)
searches that substring for the search string. If it returns NUL L, the search string
was not found - and the dialog is unmanaged, because it is no longer useful.

If, on the other hand, the search string was found, it must be selected. This is a
two step process: flrst the insertion point is positioned, then the actual text is
selected. The insertion point movement is required because XmText does not
force it to follow the selection. It must be done before the selection operation,
however, because movement of the insertion point clears the selection.

The selection operation itself is performed by XmTextSetSe 1 ect i on. This function
requires a server timestamp, which is retrieved from the event passed in the
callback structure. The bounds of the selection are found from the start position
and the length of the search string.

The flnal operation is cleanup. If the search string was found, the search
position (curpos) must be updated to point to the unsearched portion of the
buffer. In any case, the memory allocated by XmTextGetStri ng must be freed to
prevent this operation from leaking memory.

FindCanCB

The Fin de a nCB function - Find Cancel Callback - simply unmanages the
dialog. It is invoked by the dialog's right pushbutton (Cancel/Done).

Resource File Changes

Most of the resource me changes are straightforward: they establish the size and
position of the dialog's elements. The color scheme changes are important,
because they visually distinguish the dialog from the parent program. The
explicit change to the bulletin-board's autoUnmanage resource is also important: if
this dialog is to be truly modeless - operating in cooperation with the program,
not instead of it - it must not disappear when the user presses a button.

17 For illustrative purposes only, this function directly accesses the editors text buffer. In
a real program, I would hide textwi n in another source me and provide interface
functions for access.

18 So if the user changes the size of the text buffer, and the find function uses a static
copy of the buffer, then the positions it determines will be inaccurate - and the user
will wonder why seemingly random parts of the text are being selected.

Dialogs 325

Summary

The most important point of this example is that program actions are invoked in
response to events, and the program must treat each invocation in isolation.
Whereas a traditional program would treat the user's interaction - manage,
make choice, act on choice, etc. - as a linear sequence of operations, which
could be handled in a single function, a Motif program cannot be implemented in
that way. Instead, each callback function must be implemented without
assumptions on what has (or has not) been previously invoked. The use of flags
and static variables provides the only means of maintaining state information.

The use of a bulletin board as the base of this dialog limits the dialog in one very
important way: the bounds of its usable area are fiXed. Thus, if the user desires
a larger entry field, the resource file must be changed - although the dialog has
resize controls, these don't expand the fields. Building the dialog from XmForm
instead of XmBulletinBoard would eliminate this problem; appropriate
attachments would cause the dialog components to grow or shrink with the
dialog. 19

Finally, the abnormal exit case - not finding the string when instructed to
search - is handled very poorly by this program: the dialog box simply
disappears, without any indication of why it did so. This shortCOming could be
solved by displaying a message dialog when the search fails, leading to the next
topic.

Message Boxes

The Find dialog would be more user-friendly if it were to display a message when
unable to find the search string. The Exit menu choice would be more user
friendly if it displayed a warning when the user attempted to quit without saving
the workspace. Both of these problems can be solved with a message box: a
dialog that exists to alert the user to a situation and allow him or her to react to
it.

Figure 13.4 presents a sample message box, in this case, designed to warn the
user about quitting without saving the workspace. Like other dialogs, a message
box is split into two areas: the presentation area contains the message, and the
confirmation area contains buttons that allow the user to react to the message.
For this dialog, pressing the OK button would quit without saving the program,
pressing the Cancel button - or the Return key, since it's the default button
would abort the quit, and pressing the Help button would provide an
explanation of the message - perhaps an explanation of how to use the Save
function.

19 When a dialog's size has been changed by the user, that size change is stored by the
shell. Whenever the dialog is subsequently managed, it will use the most-recently
specified size values - whether set by the program or by user interaction.

326 Programming with Motif

Figure 13.4. Sample message box

The exclamation point on the left side of the presentation area identifies this
message box as a warning message. Motif provides a set of message icons,
presented in Figure 13.5. Each icon represents a particular type of message, as
described below.

Figure 13.5. Message-box icons

- a - - b - -c- - d - - e -

An error dialog - also known as an action dialog - presents the icon of Figure
13.5(a). This type of dialog is used when the program has encountered an error
and requires the user to correct that error. An example would be "File System
Full."

An informational dialog presents the icon of Figure 13.5(b). This type of dialog is
used to present information that does not require user action. An example would
be "234 records found" .

A question dialog, represented by the icon of Figure 13.5(c), is presented when
the program needs the user to answer a simple yes/no question . A
communications program could use this type of dialog to indicate a busy line
and ask whether it should redial.

A warning dialog, presenting the exclamation point icon of Figure 13.5(d), is a
more urgent version of a question dialog. It is used where the user's response

Dialogs 327

may have devastating effects - as when pressin~ the OK button will allow the
program to quit without saving work in progress.2

A work-in-progress dialog, which uses the icon of Figure 13.5(e), is used before
and while the program is performing a time-consuming task such as a database
search. It gives the user a visual reminder that the program is in fact doing
something - not just "sitting there." A work-in-progress dialog should allow the
user to abort the operation, although this may not always be possible after the
operation commences. If the program displays work-in-progress dialogs while the
operation is being performed, it should - if possible - present an indication of
how much work has been done ("Searching database ... 50% complete").

A final type of message box - the generic message box - by default does not
display an icon. It is used where the program has information to present that
does not fall into one of the above categories.

XmMessageBox

Message boxes could be implemented as custom dialogs, using a bulletin board,
two labels (one for the message, one for the icon), a separator, and three
buttons. However, since they are used so often, Motif provides a prebuilt
message-box class, XmMessageBox

As you might expect, XmMessageBox is derived from XmBulletinBoard, as shown
by the class tree of Figure 13.6. It provides the labels, buttons, and separators
as "hidden" children, along with resources to access those children. In addition,
it provides resources specific to message-box configuration.

20 This brings up a point about default buttons. The expected response to a question
dialog is OK, while the expected response to an error dialog is Cancel. The programmer
should be very careful to set the appropriate default button - a warning dialog should
never default to OK.

328 Programming with Motif

Figure 13.6. XmMessageBoxclass tree

XmMessageBox Resources

XmMessageBox provides the resources listed in Table 13.3. along with resources
defmed by XmBulletinBoard and its superclasses. Note that Table 13.3 also
includes the XmManager resource he 1 pC all b a c k; this resource is used only by
XmMessageBox and other "prebuilt" dialogs.

Table 13.3. Frequently used resources: XmMessageBox

Name Inheritance Type Default Value

cancelCallback XmMessageBox xtCallbackList NULL

cancelLabelString XmMessageBox XmString "Cancel"

defaultButtonType XmMessageBox unsigned char XmDIALOG_OK_BUTTON

dialogType XmMessageBox unsigned char XmDIALOG_MESSAGE

helpLabelString XmMessageBox XmString "Help"

Dialogs 329

messageAlignment XmMessageBox unsigned char XmALIGNMENT -
BEGINNING

messageString XmMessageBox XmString NULL

minimizeButtons XmMessageBox Boolean FALSE

okCallback XmMessageBox xtCallbackList NULL

okLabelString XmMessageBox XmString "OK"

symbolPixmap XmMessageBox Pixmap dynamic

helpCallback XmManager XtCallbackList NULL

Use: dialogType

The d i a 1 ogType resource specifies the message-box's purpose and is used by the
dialog's internal code to select an appropriate icon to indicate purpose. This
resource can hold one of the following constants:

• XmDIALOG_ERROR. The message box is used as an error (action) dialog.

• XmDIALOG_INFORMATION. The message box is used as an information dialog.

• XmDIALOG_MESSAGE. The message box is used as a generic message dialog
(no icon).

• XmDIALOG_QUESTION. The message box is used as a question dialog.

• X mD I A L 0 G_WA RN I N G. The message box is used as a warning dialog.

• XmDIALOG_WORKING. The message box is used as a work-in-progress dialog.

Contents: messageString, symbolPixmap

The dialog's message string is held in the me s sag eSt r i n 9 resource. This resource
is a "pass-through" to the message label's 1 abel Stri ng resource. Its default value
is "No Message".

The symbol Pixmap resource is another pass-through, to the icon label's
1 abe 1 Pix map resource. The default value of this resource depends on the
configuration of the message box, as specified by the d i a 1 ogType resource. 21

Appearance: messageAlignment, minimizeButtons

The message-box's messageA 1 i gnment resource is a pass-through to the message
label's all gnment resource. Unlike a normal label, the default value is
XmALI GNMENT _BEGI NN I NG, for a left-aligned message.

21 If the symbol Pi xmap resource is explicitly specified, it takes precedence over the default
pixmap. This allows the programmer to develop custom alerts based on a generic
message box.

330 Programming with Motif

The minimizeButtons resource controls the size and position of the message-box
buttons. If it contains FALSE (the default), all buttons are the same size - their
preferred size. In essence, minimizeButtons is both a pass-through to the
buttons' recomputeSi ze resource and a control for the message-box's button
size/position code.

Behavior: defaultButtonType

A normal message box holds three buttons in the presentation area, known as
the OK, Cancel, and Help buttons. One of these buttons may be defined as the
default button, activated simply by pressing the Return key. The defaul tButton
type resource specifies which button is the default: valid constants are
XmDIALOG_OK_BUTTON, XmDIALOG_CANCEL_BUTTON, and XmDIALOG_HELP_BUTTON. By
default, the OK (leftmost) button is the default button.

This resource controls the content of both the defaul tButton resource of
XmBulletinBoardand the showAsDefault resource ofXmPushButtoTL

Button Labels: cancelLabelString, helpLabelString, okLabelString

These resources are pass-throughs to the buttons' 1 abel Stri ng resources. By
default, they contain the button's name: "OK", "Cancer', or "Help". If these names
are inappropriate to the dialog's purpose, they should be changed - for
example, in Figure 13.4, "Quit" would be better than "OK".

Callbacks: okCa11back, cancel Callback, helpCa11back

These resources are pass-throughs to the act i vat e Call b a c k resources of the
message-box's buttons. If your message box has actions associated with it -
such as saving the workspace - you should attach the callbacks to these
resources, not to the buttons themselves. 22

XmMessageBox Convenience Functions

Creation

Like other dialogs, a message box consists of two parts: a dialog shell and an
XmMessageBox widget as its child. While these widgets may be created with
discrete calls - XmCreateDi al ogShell followed by XmCreateMessageBox - Motif
provides a creation function for each type of message.

These functions XmCreateErrorDi al og, XmCreatelnformationDialog,
XmCreateMessageDi al og, XmCreateQuesti onDi al og, XmCreateWarni ngDi al og, and
XmCreateWork i ngDi a log - are similar to XmC rea teBu 11 et i nBoa rdDi a log in that
they create an unmanaged widget as the child of a "hidden" dialog shell and

22 You should note the XmBulletinBoard aut 0 U n man age resource is in effect and attaches
callbacks directly to the buttons.

Dialogs 331

return the ID of that widget. The message-box creation functions are more
complex, however, in that they automatically set the di al ogType resource and
create the dialog's hidden children.

XmMessageBoxGetChild

While a message-box's children are normally hidden from the program, and
accessed via pass-through resources, there are occasions when they must be
directly accessed by the program. An example of this need is the "Can't Find"
message box: the user does not need Cancel or Help buttons, so they are
unmanaged as soon as the dialog is created.

To access the child of a message box, you must use the XmMessageBoxGetChi 1 d
function, prototyped in Listing 13.3. This function returns the ID of the child
widget; its parameters are the ID of the message box (w) and a code indicating
the desired child (c h i 1 d). This code must be one of the following constants:

• XmDIALOG_MESSAGE_LABEL. Returns the ID of the label responsible for
displaying the message.

• X mOl A L 0 G_ 5 Y M B 0 L_ LAB E L. Returns the ID of the label responsible for
displaying the message-box's icon.

• XmDIALOG_SEPARATOR. Returns the ID of the separator between the
presentation and confirmation areas.

• XmDIALOG_OK_BUTTON. Returns the ID of the OK button.

• XmDIALOG_CANCEL_BUTTON. Returns the ID of the Cancel button.

• XmDIALOG_HELP _BUTTON. Returns the ID of the Help button.

• XmDIALOG_DEFAULT_BUTTON. Returns the ID of the default button
determined from the contents of the defaul tButtonType resource.

Listing 13.3. Function prototype: XmMessageBoxGetChild

Widget XmMessageBoxGetChild(w, child)
Widget w;
unsigned char child;

XmMessageBox Example: "Can't Find" Alert
The text editor's method of terminating a search operation - simply
unmanaging the dialog box - is an example of poor user-interface design. A
user familiar with the program will know what has happened, but a novice will
wonder if it has somehow crashed. To fIx this problem, the search operation
should display a message box indicating that the search was completed. Figure

332 Programming with Motif

13.7 presents such a message box. In operation, the user simpl¥: clicks the OK
button or presses the Return key to make the message disappear. 3

Figure 13.7. "Search Complete" message

*pind Lbl.wid
*I''''''.labe
*P ind_Txt . x :
*p ind_Txt . y :
*p ind_TX t . wid

This message box was implemented using the code fragments of Listing 13.4. All
changes are local to the find-dialog module. The first is at the end of the
I nit Fin d 0 B function: it is the creation of the message box. The second is in
Fin deB: it manages the message box. The third segment contains the additional
resources. Not shown here is the declaration of cantfi nd_db, a variable of type
Wi dget.

23 This brings up another element of user-interface design: a sophisticated user will be
inconvenienced by the need to explicitly send the dialog away. Optimally, the program
should have a resource that controls the presence or absence of the "Search Complete"
message.

Dialogs 333

Listing 13.4. Text editor revision 7: "Search Complete" dialog

void InitFindDB()
{

cantfind_db = XmCreateMessageDialog(mainwin, "CantFind", NULL, 0);
temp = XmMessageBoxGetChild(cantfind_db, XmDIALOG_CANCEL_BUTTON);
XtUnmanageChild(temp);
temp = XmMessageBoxGetChild(cantfind_db, XmDIALOG_HELP_BUTTON);
XtUnmanageChild(temp);

static void FindCB(w, client_data, call_data
Widget w;
char *client_data;
XmAnyCallbackStruct *call_data;

if (txtptr == NULL)
{

XtUnmanageChild(find_db);
XtManageChild(cantfind_db);
}

! "Can't Find" Alert Resources

*CantFind.dialogTitle:
*CantFind.messageString:

Fi nd ...
Search Complete

334 Programming with Motif

The major change is to InitFindDB: it now creates both the fmd dialog and its
fmd-complete message box.24 Note that the Cancel and Help buttons are
retrieved from the message box and then unmanaged. As they would serve no
purpose to the dialog - the user's only choice is to acknowledge it - they would
be a distraction.

The second change, to Fi ndCB, is straightforward. You may wonder, however,
why the Find dialog was unmanaged - shouldn't it remain on-screen until the
user acknowledges the alert? The answer is that doing so would require another
callback, attached to the message-box's OK button, that would unmanage the
Find dialog - a result of the asynchronous nature of a Motif program.25

The resource file segment illustrates one of my naming conventions: the title of
the message box duplicates the title of the dialog box and menu choice with
which it is associated. My belief is that this presents the user with a more
consistent interface.

Grabbing and Assigning Input Focus
Early in this book it was mentioned that grabbing the input focus is an impolite
action, one that causes the user to distrust a program. In this chapter, however,
you saw where a grab was necessruy, to properly assign the focus within a dialog
box.

In a normal toolkit-based program, you would use the function
XtSetKeyboardFocus to perform a grab. However, this function should not be
used in a Motif program because it interferes with the traversal mechanism -
the traversal mechanism considers a particular widget to have the focus, when
in reality another does.

The problem is solved with a Motif-specific function. For Motif 1.0, this is the
undocumented function _XmGrabTheFocus, for 1.1 and above, it is
XmProcessTraversal. Both functions are prototyped in Listing 13.5 and described
below.

Listing 13.5. Function prototypes: _XmGrab111eFocus,
X~ocessTraversai

Boolean _XmGrabTheFocus(w)
Widget w;

Boolean XmProcessTraversal(w. direction)
Widget w;
int direction;

24 The creation of this message box is sufficiently trivial that I decided to create it as part
of the "Find Module" initialization. In the completed editor, it is part of the "Alerts
Module."

Dialogs 335

Both functions take the widget that is to receive the focus as an argument, and
both return a boolean value indicating whether or not the operation was
successful. XmProcessTraversa 1 takes an additional parameter, which indicates
the traversal operation to be performed. This operation is identified by one of the
following constants:

•

•

•

•

•

•

XmTRAVERSE_CURRENT. Set focus to the specified widget. If specified widget
is a manager that is also a tab group, give focus to the first item in that
tab group.

XmTRAVERSE_HOME. In the tab group that contains the specified widget, give
focus to the fIrst widget.

XmTRAVERSE_NEXT, XmTRAVERSE_DOWN, XmTRAVERSE_RIGHT. In the tab group
that contains the specifIed widget, give focus to the widget after the
specified widget.

XmTRAVERSE_PREV, XmTRAVERSE_UP, XmTRAVERSE_LEFT. In the tab group that
contains the specified widget, give focus to the widget before the specified
widget.

XmTRAVERSCNEXT_TAB_GROUP. Set focus to the first widget in the tab group
following the tab group that contains the specified widget.

XmTRAVERSE_PRELTAB_GROUP. Set focus to the fIrst widget in the tab group
preceding the tab group that contains the specified widget.

25 This is also a matter of personal preference. My feeling is that once the fmd completes,
the dialog has no reason to remain on the screen.

14
Lists

Overview
Lists are an ubiquitous element of programs built with a graphical user interface
and are used for purposes ranging from file selection to command history. They
are so widely used because they provide the user with an easy method of
selecting one or more related items. acting as a middle ground - in terms of
flexibility and immediacy of input - between menus and entry fields.

This chapter begins with the basic Motif list widget. XmList. It then presents the
scrolled list. XmList as a child of XmScrolledWindow. and uses it to allow
selection of e-mail addresses. Following this is XmSelectionBox. a combination of
a scrolled list. text field. and buttons. used for list-based dialogs. Next is
XmFileSelectionBox. a "pre-built" xmSelectionBox-based dialog. used to select
files; it is used to implement the Open .•. and Save As ..• menu choices for the
text editor. The chapter closes with XmCommand, an xmSelectionBox-based
widget that allows textual data entry and maintains a history of previously
entered strings.

XmList

Figure 14.1 presents an example of lists in use to select addresses for an e-mail
program. This example contains two lists: the top list provides a catalog of e-mail
addresses. and the bottom list contains selected addresses. One item in the top
list is selected - the mouse button was clicked while the pointer was positioned
over the item. The program then copied this item into the second list to join an
existing member.

337

338 Programming with Motif

Figure 14.1 . XmList example: E-mail address book

XmList is a primitive widget, derived as shown by the class tree of Figure 14.2. It
is similar to the XmText widget in that it maintains textual data, organized in a
rectangular array. Unlike XmText, XmList does not treat its contents as discrete
characters, nor does it permit the user to change its contents. Instead, XmList
maintains its contents as an array of XmStri ngs, which the program may modify.

Figure 14.2. XmList class tree

Usts 339

In operation. an XmList widget actually maintains two lists: the fIrst is the list of
selectable items: the widget's contents. The second is the list of selected items:
those items that the user has chosen from the fIrst list.

Selection is performed by clicking the mouse's Select button (button # 1) while
the pOinter is positioned over a list item. If that item is not already selected. it
becomes selected; if it is already selected. it is deselected. A selected item is
indicated by "inverse video:" reversal of its foreground and background colors.

Depending on the widget's confIguration. it may permit the user to select a single
item or any number of items - up to the number of items in the list. In Single
Selection mode. the user is permitted to select only one item at a time; selecting
an item deselects the previously selected item (if any). Browse Selection mode is
a refinement of single-selection mode: only one item may be selected. but the
user may drag the pointer over the items in the list; each item is temporarily
highlighted while the pointer is over it. and when the button is released. the item
under the pOinter is selected. 1 In Multiple Selection mode. the widget allows the
user to select multiple items by clicking on each one. In Extended Selection
mode. the widget permits the user to select multiple contiguous items. either by
dragging the pointer over them or bi' clicking on one item. then clicking on
another while the Shift key is pressed.

A list may also be traversed and selected using the keyboard. if traversal is on.
In this case. the Up and Down arrow keys move between items in the list. For
extended selection. the Shift and Ctrl keys act as they do for mouse-oriented
selection. 3

XmList Resources

XmList provides the resources listed in Table 14.1 and described below. In
addition. it provides those resources defIned by Core and XmPrimitive.

Table 14.1. Frequently used resources: XmList

Name Inheritance Type Default Value

automaticSelection XmUst Boolean FALSE

browseSelection XmUst xtCallbackList NULL
Callback

defaultAction XmUst xtCallbackList NULL
Callback

doubleClicklnterval XmUst int 250

1 Browse Selection is equivalent to the way that a menu choice is highlighted when the
user drags the pointer over it.

2 Additional noncontiguous groups may be added by pressing the Ctrl key while starting a
new selection.

3 Because XmList changes the default traversal functions of the Up and Down arrow keys.
a list must be the sole occupant of a tab group.

340 Programming with Motif

Table 14.1. Continued.

extendedSelection XmList XtCall backL i st NULL
Callback

fontList XmList XmFontList "fixed"

itemCount XmList int 0

items XmList XmStringTable NULL

listMarginHeight XmList Dimension 0

listMarginWidth XmList Dimension 0

listSpacing XmList short 0

multipleSelection XmList XtCallbackList NULL
Call back

selectedltemCount XmList int 0

s elected Items XmList XmStringTable NULL

selectionPolicy XmList unsigned char XmBROWSE - SELECT

singleSelection XmList XtCallbackList NULL
Callback

stringDirection XmList XmString- XmSTRING
Direction D I RECTI ON_L_ TO_

visibleltemCount XmList int 1

Appearance: fontList. listMarginHeight. listMargin Width.
listSpacing. stringDirection. visibleitemCount

R

Like XmText, XmList provides a margin between its borders and its contents to
improve readability. For XmList, this margin is specified by the resources
1 is tMa rgi nHei ght and 1 i stMa rgi nWi dth: 1 i stMa rgi nHei ght specifies the mar~
between the contents and the top and bottom sides; 1 i stMa rgi nWi dth specifies
the margin between the contents and the left and right sides. Also, for
readability, XmList provides the 1 i s t Spa c i n 9 resource, which specifies the
distance between items in the list. All of these resources contain pixel counts,
converted according to un i tTy P e.

Also, like XmText, the height of an XmList may be determined from the number
of rows it displays. XmText uses the rows resource for this purpose, XmList uses
the vi si bl eItemCount resource. This resource is used in a calculation involving
the height of the widget's font, the interitem spacing, and the top and bottom
margins. The default value of one guarantees that the list is visible. The height
determined from the vi sib 1 e ItemCount resource is superseded by an explicit
height specification or parental constraint.

As an XmList widget displays compound strings, it needs resources to control
the way in which it displays such strings. Like XmLabel, it provides fontL i st

Lists 341

and 5tringDirection resources: fontLi5t specifies the font for display. while
5 t r i n 9 D ire c t ion specifies the default output direction for strings that do not
have a direction component. Like XmLabel, the default values for these resources
are the "fixed" font (fontL i 5t) and left-to-right (5tri ngDi recti on).

Selection Model: selectionPolicy

As stated above. a list widget provides four selection models. The
5 e 1 e c t ion Pol i cy resource controls this behavior; it may contain one of the
following constants:

•

•

•

•

XmSI NGLE_SELECT. The list widget is configured for single selection mode:
each click of the mouse button selects one item and deselects any
previously selected item.

XmBROWSE_SELECT. The list widget is configured for browse selection mode:
when the pointer is dragged (with the button down) over each list item. it
is highlighted; when thelmtton is released. the currently highlighted item
is selected. replacing any previous selection.

XmMULTIPLE_SELECT. The list widget is configured for multiple selection
mode: each click of the mouse Dutton adds the clicked-on item to the
selected-items list. If the item was previously selected. it is removed from
the selected-items list.

XmEXTENDED_SELECT. The list widget is configured for extended selection
mode: multiple contiguous items may be added to (or removed from) the
selected-items list by dragging the pointer over the items.

Behavior: automaticSelection, doubleClicklnterval

As you will see below. XmList provides a callback for each selection mode.
Normally. only the callback appropriate to the current mode is called. and it is
only called when the user releases the mouse button. However. if the
automaticSelection resource contains TRUE. the callback for single selection
mode will be called in browse selection or extended selection mode. If these
conditions are met - 5el ecti onPol i cy contains XmBROWSE_SELECT or XmEXTENDED_
SELECT. and automaticSelection contains TRUE- then the single selection
callback is invoked whenever the pointer passes over an item while the button is
down.

An XmList widget provides a "default action" callback. called when the user
double-clicks on a list item. This callback is often used in a dialog box to select a
single item and then invoke the callback(s) associated with the dialog's OK
button. The do u b 1 e C 1 i c kIn t e r val resource controls the list's recognition of
double clicks: it specifies the maximum time interval. in milliseconds. that may
elapse between two successive clicks if they are to be considered a double click.
The default value is 250 for a maximum elapsed time of 14 second.

342 Programming with Motif

Contents: itemCount, items

The items presented by an XmList widget are accessed br its items resource,
which contains an array of pOinters to compound strings. This array and the
strings to which it points are maintained by the widget and are part of the
widget's internal data. The array represented by the items resource contains all
items maintained by the list, selected or unselected.

The i temCount resource specifies the number of items in the list. If the program
installs items using the XtSetVal ues function, it must specify the number of
items as well as the array itself. If, however, the program manages the list using
the convenience functions described below, it need not explicitly change either
items or i temCount: the convenience functions handle all needed changes.

Selected Items: selectedItemCount, selectedItems

An XmList widget actually maintains two lists: a list of items and a list of
selected items. The resources selectedItems and selectedItemCount represent
this second list: selectedItems is an array of XmString pointers, while
sel ectedItemCount specifies the number of items in this array.

These resources exist for reading only. They are maintained by the widget in
response to user (and program) selection operations.

XmList Callbacks
XmList provides a callback resource for each selection mode and invokes the
function(s) specified by that resource whenever an item is selected. It also
provides a "default action" callback, which is invoked when the user double
clicks a list item. All of these callbacks use the XmL i stCall backStruct structure
for their call data; it is defmed in Listing 14.1 and described below.

Listing 14.1. Type definition: XmListCallbackStruct

typedef struct
{

int
XEvent
XmString
int
int
XmString
int
int
}

reason;
*event;
item;
item_l ength;
item_position;
*selected_items;
selected_item_count;
selection_type;

XmListCallbackStruct;

4 The XmStri ngTabl e data type is defined as follows:
typedef XmString *XmStringTable;

As XmSt ri ng is a pointer, this definition is equivalent to XmStri ng a r ray [J ;

lists 343

As with other callback structures, the rea son member specifies the type of
callback, and the event member is a pointer to the event that caused the
callback to be invoked. The i tern member is a pointer to the selected item, and
the itern_l ength member contains the number of bytes occupied by the item's
compound strtng.5 The i tem_pos it i on member specifles the item's position in the
array represented by the items resource. Unlike most array indices, list position
values start at one.

The selected_items, selected_item_count, and selection_type members are
used only when the selection model allows multiple items to be selected
(sel ecti onPol icy contains XmMUL TIPLE_SELECT or XmEXTENDED_SELECT). The
selected_items member contains a pointer to an array of XmString pointers,
equivalent to the sel ectedItems resource. 6 The sel ected_i tem_count resource
contains the number of items in this array; it is equivalent to the
sel ectedItemCount resource.

The se 1 ect i on_type member provides additional detail about the conditions at
the time the callback was invoked. It may contain the constants XmINITIAL,
XmMODIFICATION, or XmADDITION. XmINITIAL specifies that this callback contains
the first item(s) selected, XmMODIFICATION indicates a change to the selection list,
and XmADDITION indicates that the change is a noncontiguous addition.

Selection: browseSelectionCa11back, extendedSelectionCa11back,
multipleSelectionCa11back, singleSelectionCa11back

Each of these callbacks is associated with a particular list configuration and is
invoked when a list item is selected. Each presents a different callback reason:
browseSelectionCallback uses XmCR_BROWSE_SELECT, extendedSelectionCallback
uses XmCR_EXTENDED_SELECT, multi pl eSel ecti onCall back uses XmC R_MU L TI P LE
_SELECT, and si ngl eSel ecti onCall back uses XmCR_SINGLE_SELECT.

Double-Click: defaultActionCa11back

In some situations, such as a flle-selection dialog, the user is expected to select
an item from a list, then confirm the selection by performing some other action,
such as pressing a button. In these cases, a sophisticated user could be better
served by combining the selection and confirmation actions, which is why
de f a u 1 t Act ion Cal 1 b a c k exists. It is called when the user double-clicks on a list
item.

As with other list callbacks, this callback passes call data in
XmL i stCa 11 backSt ruct; the valid members for this callback are rea s on, even t,
item, item_l ength, and item_pos it i on. The reason associated with this callback
is XmCR_DEFAULT_ACTION.

5 The string accessed by i tern is allocated prior to callback invocation and destroyed when
the callback completes. If the program needs to preserve this string, it must make a
local copy.

6 It pOints at a copy of the sel ectedlterns resource, which is allocated before the list of
callbacks is invoked and destroyed after the callback functions are finished. If the
program needs to preserve strings from this list, it must make a local copy.

344 Programming with Motif

XmList Convenience Functions
Programs typically perform extensive manipulation of the items in a list. To
simplify these operations - and minimize direct access to the list's resources -
Motif provides a set of convenience functions, prototyped in Listing 14.2 and
described below.

Listing 14.2. Function prototypes: XmList convenience
functions

void XmListAddltem(w, item, position)
Widget w;
XmString item;
int position;

void XmListAddltemUnselected(w, item, position)
Widget
XmString
int

W;
item;
position;

void XmListDeleteltem(w, item)
Widget w;
XmString item;

void XmListDeletePos(w, position
Widget w;
int position;

void XmListDeselectAllltems(W)

Widget w;

void XmListDeselectltem(w, item)
Widget w;
XmString item;

void XmListDeselectPos(w, position)

Widget
int

Listing 14.2. Continued.

w;
position;

Boolean XmListltemExists(w, item)
Widget w;
XmString item;

void XmListSelectltem(w, item, notify)
Widget w;
XmString item;
Boolean notify;

void XmListSelectpos(w, position, notify)
Widget w;
int position;
Boolean notify;

void XmListSetBottomltem(w, item)
Widget w;
XmString item;

void XmListSetBottomPos(w, position)
Widget w;
int position;

void XmListSetltem(w, item
Widget w;
XmString item;

void XmListSetPos(w, position
Widget w;
int position;

Lists 345

All of the convenience functions use some combination of the parameters w,
i tern, and pos it i on. The w parameter is the ID of the list widget and is required
by all functions. The i tern parameter is used by those functions that identify a
list item by content. Such functions operate on the fIrst item in the list that
matches the passed string. The pos it i on parameter is used by those functions
that identify an item by its position. Position values start at one, with zero used
to indicate the last item in the list - whatever its absolute position may be.

346 Programming with Motif

Adding Items: XmListAddItem, XmListAddItemUnselected

XmListAddItem and XmListAddltemUnselected both add an item to the list. Both
specify the ID of the list widget, the string to add, and the position that the new
item is to occupy. The difference between these functions is that XmL i stAddItem
compares the new item with the list of items in the selectedItems resource; if
the new item matches an existing selected item, it is selected when added to the
list. XmListAddItemUnselected ooes not perform this comparison, and the new
item is not selected.

Deleting Items: XmListDeleteItem, XmListDeletePos

To remove items from a list, use XmL i stDel eteItem or XmL i stDel etePos. The item
is specified by content for XmL i stDel eteItem, by position for XmL i stDel etePos.
When an item is deleted, it is removed from the list and the 1 is tI tems resource
is decremented. If the item is selected, it is also removed from sel ectedItems.

Selection: XmListSelectItem, XmListSelectPos, XmListDeselectItem,
XmListDeselectpos, XmListDeselecWlItems

These functions select or deselect items in the list. X m Lis t S e 1 e c tIt em selects an
item by content, XmL i stSel ectPos selects an item by position,
XmL i stDesel ectItem deselects an item by content, XmL i stDesel ectPos deselects
an item by position, and XmL i stDesel ectAll Items deselects all items in the list. If
the program attempts to select an item that is already selected, it is deselected;
attempting to deselect an unselected item has no effect.

The list's selection model affects programmatic selection in the same way that it
affects user-controlled selection: if the list is in single-selection or browse
selection mode, the program may not select multiple items. When the program
selects an item from a list configured in either mode, any previously selected
item is deselected.

The XmListSelectItem and XmListSelectPos functions have a third parameter,
not i f y. This parameter controls whether or not the appropriate selection
callback is invoked. If passed TRUE, the callback is invoked; if passed FALSE, the
callback is not invoked. To the callback function, the only difference between
invocation as a result of-programmatic selection is that the event member of the
call data structure contains NULL.

As a final note, remember that those functions that identify a list item by
content pick the first such item in the list. Consider a list that has two items
that are identical, both of which are selected. If the program calls
XmListDeselectItem, it will always act on the first such item - the second will
remain selected, no matter how many calls are made.

Query: ListItemExists

The L i stItemExi sts function s·earches the list for an item identical to the string
passed in its i tern parameter. If it finds such an item, it returns TRUE; if not, it
returns FALSE. There is no way to determine how many items match the
specification: L i stltemExi sts returns when it finds the first match.

Usts 347

Appearance: XmListSetitem, XmListSetPos, XmListSetBottomItem,
XmListSetBottomPos

Like a text widget, a list may contain more items than it can display. In such a
case, the program can set the range of displayed items using these functions:
XmL i stSetItem specifies the first displayed item by content, XmL i stSetpos
specifies the first displayed item by position, XmL i stSetBottomItem specifies the
last displayed item by content, and XmL i stSetBottomPos specifies the last
displayed item by position.

Note that the physical size of the widget is the real determinant of how many
items are displayed. When one of these functions is called, the displayed content
of the list is redetermined, based on the specified top of bottom item.

XmList Example: E-Mail Address Selection
Figure 14.1 was produced using the program and resource file of Listing 14.3.
This program only needs five widgets: a fOrm as the parent, two labels, and two
lists. For that reason, the trivial program template was chosen. Additional
program notes are below the listing.

Listing 14.3. Program and resource file: E-mail address
selector

1***

**
**
**

List example. This program simulates address selection for an
** e-mail program. It presents two lists: the top list contains

all known e-mail addresses. the second contains the addresses
** for the current message. These lists are maintained in a form.
** so they may be expanded as needed.

**

**

**
**
**

In a real program. this code would be in a dialog box. with the
addresses read from a data file.

**
**
**
**
**
**
**
**
**
**
**
**

***/

#include <Xm/Form.h>

348 Programming with Motif

Listing 14.3. Continued.

iii ncl ude <Xm/ Label. h>
,include <Xm/List.h>

void
void

Widget

LoadAddressList();
AddressListCB();

appshell •
the_form.

/* FORWARD Definitions

/* Application Shell
/* Child of the shell

catlist. /* Address Catalog list
*/
caLlbl. /* Address Catalog 1 abel */

sellist. /* Selected Addresses list
sel _lbl; /* Selected Addresses 1 abel

Arg argl i st[16]; /* Used to set resources

'define XMS(s) XmStringCreate(s. XmSTRING_DEFAULT_CHARSET

void main(argc. argv
int argc;
char *argv[];

appshell = Xtlnitialize(argv[O]. "Listing_14_3". NULL. O.
&argc. argv);

the_form = XmCreateForm(appshell. "TheForm". NULL. 0);
XtManageChild(the_form);

cat_lbl = XmCreateLabel(the_form. "CatLbl". NULL. 0);
XtManageChild(caLlbl);
catlist = XmCreateList(the_form. "CatList". NULL. 0);
XtManageChild(catlist);

LoadAddressList();
XtAddCallback(catlist. XmNbrowseSelectionCallback.

AddressListCB. NULL);

*/

*/
*/

*/
*/
*/

/**

Listing 14.3. Continued.

sel_lbl = XmCreateLabel (the_form, "Sel Lbl", NULL, 0);
XtManageChild(sel_lbl);
sellist = XmCreateList(the_form, "SelList", NULL, 0);
XtManageChild(sellist);

XtRealizeWidget(appshell);
XtMainLoop() ;

*** LoadAddressList()

*** Fills the "items" resource of "catlist". In the real world, this
*** function would read the addresses from a data file.
**/

void LoadAddressList()

/**

XmString addresses[9];

addresses[O] XMS("kdg@world.std.com");
addresses[l]
addresses[2]
addresses[3]
addresses[4]
addresses[5]
addresses[6]
addresses [7]

addresses[8]

XMS("postmaster@moscvax.arpa");
XMS("xug@expo.lcs.mit.edu");
XMS("xannounce@expo.lcs.mit.edu");
XMS("xpert@expo.lcs.mit.edu" l;
XMS("motif@alfalfa.com");
XMS("info-c@research.att.com");
XMS("std-unix@uunet.uu.net" l;
XMS("unix-wizards@brl.arpa");

XtSetArg(arglist[O], XmNitems, addresses l;
XtSetArg(arglist[l], XmNitemCount, XtNumber(addressesl);
XtSetValues(catlist, arglist, 2);

Lists 349

350 Programming with Motif

Listing 14.3. Continued.

*** AddressListCB(l

Address List Callback. This function is called whenever an address
in the top list is selected. It adds that address to the bottom
list. if it isn't already there.

**/

void AddressListCB(w. client_data. call_data
Widget w;
caddr_t client_data;
XmListCallbackStruct *call_data;

if (!XmListItemExists(sellist. call_data->itemll
XmListAddItem(sellist. call_data->item. 0 l;

Resource file for List example (Fig 14.1l

*.background:
*.foreground:
*.topShadowColor:
*.bottomShadowColor:

*.XmList.background:
*.XmList.foreground:
*.XmList.topShadowColor:
*.XmList.bottomShadowColor:

.XmForm..topAttachment:
.XmForm..bottomAttachment:
.XmForm..leftAttachment:
.XmForm..rightAttachment:

*TheForm.height:
*TheForm.width:

*CatLbl .1 abel Stri ng:
*CatLbl.alignment:
*CatLbl.topPosition:
*CatLbl.bottomPosition:
*CatLbl.leftPosition:
*CatLbl.rightposition:

Gray50
White
Gray75
Gray25

Gray75
Black
White
Gray50

ATTACH POSITION
ATTACH_POSITION
ATTACH_POSITION
ATTACH_POSITION

200
300

Addresses:
ALIGNMENT_BEGINNING
5
10
2
98

Usts 351

Listing 14.3. Continued.

*CatList.1istMarginWidth: 5
*CatList.topPosition: 15
*CatList.bottomPosition: 50
*CatList.1eftPosition: 10
*CatList.rightPosition: 98

*Se1 Lb1.1abe1String: Send To:
*Se1 Lb1.a1 ignment: ALIGNMENL BEGINNING
*Se1 Lb1 . topPositi on: 55
*Se1Lb1.bottomPosition: 60
*Se1 Lb1 .1 eftPosition: 2
*SelLb1.rightposition: 98

*Se1List.topPosition: 65
*Se1List.bottomPosition: 95
*Se1List.1eftPosition: 10
*Se1List.rightPosition: 98

This program presents three items of interest: the XMS macro, the
LoadAddressList function, and the AddressListCB function. The rest of the
program is straightforward: it simply creates the widgets. The resource file is
also strai~tforward, setting the size and appearance of the widgets. I used a
form in t11is application so that it could be resized at will - some e-mail
addresses can be quite long.

The X M S macro exists to minimize the amount of typing required to create a
compound string - in particular, to eliminate the 24 characters of XmSTRING_
DEFAULT_CHARSET. While the programs in this book - being limited to 72-
character lines - especially benefit from such a device, I fina it useful in any
program that makes extensive use of compound strings.

The LoadAddressList function exists to fill the top list with the "universe" of
addresses . .As noted in the comment, in the real world, the list contents would be
read from a data file and added to the list with XmL i stAddItem. For this example,
I wanted to illustrate the format of the i terns resource. Note that i temCount is
explicitly specified.

The Address L i stCB function is attached to the top list's browse-selection
callback. Its purpose is to add a selected item to the bottom list, if it is not
already present in that list. It accesses the selected item directly from the call
data and uses XmL i stItemExi sts to verify uniqueness.

Scrolled List
If you compare the program of Listing 14.3 with Figure 14.1, you will note that
the top list contains nine items, but only five are displayed. While it is possible

352 Programming with Motif

- if traversal is enabled - to use the arrow keys to select the items, there is no
visible indication that the additional items exist.

To solve this problem, Motif provides the scrolled list, shown in Figure 14.3. Like
scrolled ext, a scrolled list uses an XmList widget as the child of an
XmScrolledWindow. Also, like scrolled-text, this configuration intimately links
the scrolled window and the list - meaning that they must be created at the
same time, using the XmCreateScroll edL i st function.

Figure 14.3. Scrolled list

Scrolled List Resources
As with scrolled text, the name of the list widget is passed to
XmCreateScroll edL i st and is given a suffix of "SW" to produce the scrolled
window's name. The program may set the scrolled-window's resources
programmatically after getting its ID with XtPa rent, or via the resource file.
Table 14.2 presents the default resource values of the scrolled window, along
with XmLis(s 1 i stSi zePol icy resource, which is described below.

Lists 353

Table 14.2. Frequently used resources: XmScrolledList

Name Inheritance Type Default Value

listSizePolicy XmList unsigned XmVARIABLE
char

scrollBarDisplayPolicy XmScrolledWindow unsigned XmAS_NEEDED
char

scrollBarPlacement XmScrolledWindow unsigned XmBOTTOM_RIGHT
char

scrollingPolicy XmScrolledWindow unsigned XmAPP LI CA TI ON
char DEFINED -

Scrolled-List Behavior: listSizePolicy

The 1 i stSi zePol icy resource controls the horizontal growth of the list. It can
contain one of the following constants:

• XmCONSTANT. The list does not attempt to change size. If an item is wider
than the list's width. a horizontal scrollbar is added to the bottom of the
list.

• XmVARIABLE. The list attempts to grow to match the width of its widest
item. If not permitted to do so. it adds a horizontal scrollbar as above.

• XmRES I ZE_I F _POSS I B LE. The list attempts to change its width to that ofits
widest displayed item.7 If not permitted to do so. it adds a horizontal
scrollbar as above.

The 1 i s t S i z e Pol i cy resource must be set at the time the list is created. as it is
used for initialization of the list and scrolled window. It may not be changed at a
later time.

Scrolled List Example: Scrolling E-Mail Addresses
Figure 14.3 required minimal changes to the program and resource file of Listing
14.3: the calls to XmCreateL i st were replaced by XmCreateScroll edL i st. and the
lists' positions were set via their scrolled-window parents. as shown in Listing
14.4. Note that. while both lists are scrolled lists. in Figure 14.3 only the top list
has scrollbars; this is due to the value of XmAS_NEEDED for
scrollBarDisplayPolicy.

7 In this mode. the width of an unconstrained list will change as items are scrolled into
the viewing area.

354 Programming with Motif

Listing 14.4. Program and resource file excerpts: Scrolled list
example

catlist - XmCreateScrolledList(the_form, "CatList", NULL, 0);
XtManageChild(catlist);

sellist - XmCreateScrolledList(the_form, "SelList", NULL, 0);
XtManageChild(sellist);

*CatListSW.topPosition: 15
*CatListSW.bottomPosition: 50
*CatListSW.leftPosition: 10
*CatListSW.rightPosition: 98

*SelListSW.topPosition: 65
*SelListSW.bottomPosition: 95
*Sel ListSW. leftPosition: 10
*SelListSW.rightPosition: 98

XmSelectionBox

Since a primary usage of lists is in selection of a single item - such as an e-mail
address - Motif provides the XmSelectionBox class. XmSelectionBox is a
manager with "prebuilt" children. designed primarily for use in a dialog box. Like
XmMessageBox. it is derived from XmBulletinBoard.

XmSelectionBox has nine standard children: two labels. a scrolled list. a text
field. a separator. and four buttons. Figure 14.4 presents a list containing all but
one of these children: the labels identify the list and text field. the list presents
the possible addresses. the text field displays the currently selected address and
allows it to be modified (or allows direct entry of an unlisted address), and the
buttons invoke the lists actions.

The three buttons shown perform straightforward functions: OK confirms the
address choice. Cancel negates the choice (and typically closes the dialog). and

Lists 355

Help would provide context-sensitive help. An optional fourth button. Apply. is
used in cases where the list could be updated: it perfonns the update operation.

In addition to the nine standard children. an xmSelectionBox may contain a
tenth child: a program-created work area. If used. this child is positioned
between the list and entry field. It may be any type of widget. manager or
primitive.

Figure 14.4. XmSelectionBox example: E-mail address
selection

XmSelectionBox Resources

Like XmMessageBox, XmSelectionBox is derived from XmBulletinBoard. as shown
by the class tree of Figure 14.5.

356 Programming with Motif

Figure 14.5. XmSelectionBox class tree

Table 14.3 lists the resources defined by xmSelectionBox; they are described
below. Table 14.3 also lists the hel pCall back resource, defined by XmManager,
as a reminder that it is used with selection boxes.

Table 14.3. Frequently used resources: xmSelectionBox

Name Inheritance Type Default Value

applyCallback XmSelectionBox XtCallbackList NULL

applyLabelString XmSelectionBox XmString "Apply"

cancelCallback XmSelectionBox XtCallbackList NULL

cancelLabelString XmSelectionBox XmString "Cancel"

dialogType XmSelectionBox unsigned cha r dynamic

helpLabelString XmSelectionBox XmString "Help"

1 i stItemCount XmSelectionBox int 0

listltems XmSelectionBox XmStringTable NULL

listLabelString XmSelectionBox XmString NULL

Lists 357

Table 14.3. Continued.

1 i stVi si bl eItem XmSelectionBox int 8
Count

minimizeButtons XmSelectionBox Boolean FALSE

mustMatch XmSelectionBox Boolean FALSE

noMatchCallback XmSelectionBox XtCallbackList NULL

okCallback XmSelectionBox XtCallbackList NULL

okLabelString XmSelectionBox XmString "OK"

selectionLabel XmSelectionBox XmString "Selection"
String

textColumns XmSelectionBox i nt 20

textString XmSelectionBox XmString " "

helpCallback XmManager XtCallbackList NULL

Use: dialogType

A selection box provides the base for several types of dialogs. A prompt dialog is a
selection box without a list: it simply displays a message and allows the user to
enter a textual reply to that message. A normal selection box is as shown in
Figure 14.4: a list, a text field, and three buttons. A selection box may also be
configured as a work area: a list, a text field, four buttons, and an optional
additional child.

The di al ogType resource controls a selection-box's configuration. Its value may
be one of the constants from the list below. The default value depends on the
selection-box's parent, as well as the function used to create the selection box.

• XmDIALOG_PROMPT. The selection box is used as a prompt dialog. The list
and its label are not created, and the Apply button is created but left
unmanaged. This is the default when the selection box is created by the
XmCreatePromptDi al og function.

• XmDIALOG_SELECTION. The selection box is used as a normal selection-box.
It contains a list, a text field, their labels, and three managed buttons.
The Apply button is created but not managed. This value is the default
when the selection-box's parent is XmDialogShell (ie, when the selection
box is created using XmCreateSel ecti onDi al og).

• XmDIALOG WORK AREA. The selection box is used as a work area. It contains
a list, an -entry-field, and four buttons. An additional child may be added

358 Programming with Motif

after creation.s This value is the default when the selection-box is created
using XmC rea teSe 1 ect i onBox but its parent is not a dialog shell.

The d i a 1 ogType resource controls the initialization of the selection box. It must
be set at the time of the selection-box's creation and may not be changed after
creation.

Appearance: listVisibleItemCount, minimizeButtons, textColumns

A selection box determines its preferred size from the aggregate sizes of its
children, modified by internally specified interchild spacing. As the children are
"hidden," the only way to set their preferred sizes via a resource file is to use the
resources 1 i s t Vi sib 1 e ItemCount, mi n i mi zeBut ton s, and textCo 1 umns.

The listVisibleItemCount resource is a pass-through to the list child's
visibleItemCount resource and is used to determine the height of the list. The
list's 1 i stSi zePol icy resource is set to XmVARIABLE, meaning that the list will
grow to match its widest displayed item.

As with XmMessageBox, the mi ni mi zeButtons resource controls the size of the
selection-box's buttons. It acts as both a pass-through to the buttons'
recomputeSi ze resource and as a control for the selection-box's button
size/position code. Ifmi nimi zeButtons contains TRUE, the selection-box's buttons
are sized at their minimal size, controlled by recomputeSi ze. If mi nimi zeButtons
contains FALSE (the default), the buttons are sized equally, at the preferred
dimensions of the largest button.

The textCol umns resource is a pass-through to the entIy-field's col umns resource.
In practice, either the list or the entIy-field controls the width of the selection
box, not both. This is because both widgets are set to the same width - the
width of the wider widget.

Labels: applyLabelStrtng, cancelLabelStrtng, helpLabelStrtng,
listLabelStrtng, okLabelStrtng, selectionLabelStrtng

The selection-box's list and entIy field both have associated labels, to provide the
user with information regarding their use. The selection-box's 1 is tLa be 1St r in 9
resource is a pass-through to the 1 a be 1St r i n 9 resource for the label associated
with the list, while selection Labe 1St ri ng is a pass-through for the label
associated with the entIy field. While 1 i s tL abe 1St r i n 9 does not have a default
value, sel ecti onLabel Stri ng defaults to "Selection".

The resources a pp 1 y La be 1St ri ng, cance 1 Labe 1St ri ng, he 1 pLabe 1 Stri ng, and
okLabelString are pass-throughs to the labelString resource of the selection
box's buttons. Each of these strings defaults to the name of the button: "Apply",
"Cancer', "Help", and "OK".

S This additional child is created and managed under program control, but is positioned
under control of the selection box. Attempting to add more than one additional child
results in an error.

Lists 359

Contents: listItemCount, listItems, textString

The 1 i stItemCount and 1 i stI tems resources are pass-throughs to the i temCount
and items resources of the selection-box's list. No pass-through is provided for
the list's sel ectedltems resource; the selected item is automatically presented in
the selection-box's entry field.

The contents of the entIy field are accessed via the textStri ng resource. This
resource is not a pass-through to the val u e resource of the selection-box's text
field. Instead, it contains a compound string, which is the format used by list
items. The selection box converts between the compound string maintained in
textStri ng and the ASCII string held in the entry field.

Interaction: mustMatch

The mustMatch resource specifies whether the selection box verifies the contents
of the entry field against the list when the user presses the OK or Apply buttons.
If it contains TRU E, the entry-field's contents are compared against the list, using
XmL i stItemExi sts. If a match is found, the appropriate activation callback
applyCallback or okCallback - is invoked. If the entry-field's contents do not
match a list item, noMatchCall back is invoked. If mustMatch contains FALSE, no
such check is performed, and noMatchCa 11 back is never invoked.

XmSelectionBox Callbacks
Like XmMessageBox, XmSelectionBox provides callbacks linked to the activation
callback list of each of the selection-box's buttons. In addition, xmSelectionBox
provides a verification callback, which is only invoked when the user presses the
OK or Apply button, the mustMatch resource contains TRUE, and the entry-field's
contents do not match any of the list's items. All of these callbacks pass call data
in the XmSe 1 ect i onBoxCa 11 backSt ruct structure, defined in Listing 14.5.

Listing 14.5. Type defmition: XmSelectionBoxCaUbackStruct

typedef struct
{

int
XEvent
XmString
int
}

reason;
*event;
value;
length;

XmSelectionBoxCallbackStruct;

The reason member identifies the callback: applyCallback uses XmCR_APPLY,
cancelCallback uses XmCR_CANCEL, hel pCall back uses XmCR_HELP,
noMatchCa 11 back uses XmCR_NO_MATCH, and okCa 11 ba ck uses XmC R_OK. The event
member points at the event that invoked the callback. The val ue member

360 Programming with Motif

contains the contents of the entry field (textString); it isn't used by
cance 1 Ca 11 back or hel pCa 11 back. Finally, the 1 en gt h member contains the
number of bytes occupied by val ue; it is needed if the program is to copy the
selected item. 9

Creating and Using a Selection Box
The function XmC reateSe 1 ect i onBox creates a stand-alone selection box, and the
function XmCreateSel ect i onDi a log creates a selection-box dialog. lO Both
functions take the same parameters as other widget-creation functions, and both
return the 10 of the selection box. XmCreateSel ecti onDi al og, however, creates a
dialog shell as the "hidden" parent of the selection-box.

The selection-box creation functions create and manage the children specified by
the contents of the d i a 1 ogType resource. If you want to add the optional work
area, you must create and manage it explicitly. It will be automatically sized and
positioned by the selection box.

As with other dialogs, a selection box is managed when needed and unmanaged
when the user is done with it. The autoUnmanage resource defaults to TRUE, so
there is often no need to attach a callback function to the Cancel button. The
program should attach a callback to the OK and/or Apply buttons and retrieve
the entry-field's contents from the call data.

Accessing a Selection-Box's Children
Like XmMessageBox, xmSelectionBox provides a function - XmS e 1 e c t ion B ox Get -
Chi 1 d, prototyped in Listing 14.6 - to access its "prebuilt" children. This
function is the only way to directly access these children.

Listing 14.6. Function prototype: xmSelectionBoxGetChild

Widget XmSelectionBoxGetChild(w, child)
Widget w;
unsigned char child;

XmSel ecti onBoxGetChil d returns the ID of the child and takes two parameters:
the ID of the selection-box (w) and a code representing the child (chi 1 d). This
code must be one of the constants from the following list:

• XmDIALOG_LIST. Returns the ID of the selection-box's list.

9 As with the XmList callbacks, the value in the callback structure is allocated before the
callback and deallocated afterward. If the program needs to maintain the value, it must
be copied.

10 The function XmCreatePromptDi al og creates a selection-box sans list.

Usts 361

• XmDIALOG_LIST_LABEL. Returns the ID of the label associated with (and
positioned above) the list.

• XmDIALOG_TEXT. Returns the ID of the selection-box's entry field (an
XmText widget).

• XmDIALOG_SELECTION_LABEL. Returns the ID of the label associated with
(and positioned above) the entry field.

• XmDIALOG_WORK_AREA. Returns the ID of the selection-box's additional
work area widget. The creation of this widget is the responsibility of the
program; if used, the widget class is program-dependent.

• XmDIALOG_SEPARATOR. Returns the ID of the separator between the
selection-box's presentation and confirmation areas.

• XmDIALOG_OK_BUTTON. Returns the ID of the OK button.

• XmDIALOG_APPLY_BUTTON. Returns the ID of the Apply button.

• XmDIALOG_CANCEL_BUTTON. Returns the ID of the Cancel button.

• XmDIALOG_HELP _BUTTON. Returns the ID of the Help button.

• XmDIALOG_DEFAULT_BUTTON. Returns the ID of the default button,
determined from the contents of the defaul tButton resource.

XmSelectionBox Example: E-Mail Addresses
Listing 14.7 presents the program and resource me used to produce Figure 14.4.
The selection box is displayed as the program's main window, rather than in a
dialog box, allowing use of the trivial program template.

This program is almost identical in flow to that of Listing 14.3: first the widget is
created, then it is filled, using the function LoadAddress List. The primary change
is that the lists and labels of the former program are replaced by a single widget;
the selection box. Even the LoadAddressList function is almost unchanged,
except that it now installs the list via pass-through resources.

Listing 14.7. Program and resource me: E-mail address
selection-box

1***
** **
** listin9_14_7.c **
** **
** Selection-Box Example_ E-mail address selection. **
** **
***/

362 Programming with Motif

Listing 14.7. Continued.

#include <Xm/SelectioB.h>

void LoadAddressList();

Widget appshell,
the_sb;

Arg arglist[16];

/* FORWARD Definitions

/* Application Shell
/* The selection-box
/* Used to set resources

#define XMS(s) XmStringCreate(s, XmSTRING_DEFAULT_CHARSET

void maine argc, argv

/**

int argc;
char *argv[];

appshell = Xtlnitialize(argv[O], "Listing_14_7", NULL, 0,
&argc, argv);

the_sb = XmCreateSelectionBox(appshell, "TheSB", NULL, 0);
XtManageChild(the_sb);

LoadAddressList();

XtRealizeWidget(appshell);
XtMainLoop();

*** LoadAddressList()

*** Fills the selection-box's list of addresses.
**/

void LoadAddressList()

*/

*/
*/
*/

Listing 14.7. Continued.

XmString addresses[9];

addresses[O] XMS("kdg@world.std.com") ;

addresses [1] XMS("postmaster@moscvax.arpa");

addresses[2] XMS("xug@expo.lcs.mit.edu");

addresses[3] XMS("xannounce@expo.lcs.mit.edu") ;

addresses[4] XMS("xpert@expo.lcs.mit.edu·) ;

addresses[5] XMS("motif@alfalfa.com") ;

addresses[6] XMS("info-c@research.att.com");

addresses [7] XMS("std-unix@uunet.uu.net") ;

addresses[8] XMS("unix-wizards@brl.arpa") ;

XtSetArg(arglist[O]. XmNlistItems. addresses);
XtSetArg(arglist[l]. XmNlistItemCount. XtNumber(addresses));
XtSetValues(the_sb. arglist. 2);

Resource file for Selection-Box example (Fig 14.4)

*.background:
*.foreground:
*.topShadowColor:
*.bottomShadowColor:

*TheSB.dialogType:
*TheSB.listVisibleItemCount:
*TheSB.listLabelString:
*TheSB.selectionLabelString:

XmFileSelectionBox

Gray50
White
Gray75
Gray25

DIALOG_SELECTION
5
Addresses:
Send To:

Lists 363

One common use of a selection box is selection of a file from the list of files in a
directory. Since this operation is so often used. Motif provides a dedicated widget
class: XmFileSelectionBox. To the "prebuilt" children of xmSelectionBox,
XmFileSelectionBox adds two more: another entry field and an associated label.

364 Programming with Motif

Figure 14.6 presents an example of a file-selection-box. ll The additional entry
field - the file filter - is positioned above the list. This entry field allows the
user to specify a directory and filename mask for the search, using standard
UNIX wildcard specification. By default, the field contains "*", specifying all files
in the current directory.

The Apply button is managed in a file-selection-box, but is named Filter; it
invokes the directory search. The other buttons have the same function as in
other selection boxes: OK confirms the file selection, Cancel unmanages the
dialog and ignores any selection, and Help invokes context-sensitive help if it is
present.

Figure 14.6. File-selection-box example

Files
itlfiler.c
it/find.c
it/globals.c

Selection
ITextEdit/~enu.c

II The layout of a fIle-selection-box changed slightly for Motif 1.1. Instead of a single list,
containing both fIle and directory names, there are now two lists: one for directories. In
addition, whereas Motif 1.0 used fully specified names (showing all directories), Motif
1.1 lists names relative to the current directory.

Lists 365

XmFileSelectionBox Resources

To those resources defined by XmSelectionBox, XmFileSelectionBox adds the
resources shown in Table 14.4 and described below. Table 14.4 also contains the
aut 0 U n ma nag e resource, which is handled differently by XmFileSelectionBox than
by other XmBulletinBoard-derived classes.

Table 14.4. Frequently used resources: XmFileSelectionBox

Name Inheritance Type Default Value

dirMask XmFileSelectionBox XmString "*"

dirSpec XmFileSelectionBox XmString lilt

filterLabel XmFileSelectionBox XmString "Fil e Fi Her"
String

autoUnmanage XmBulletinBoard Boolean FALSE

Contents: dirMask, dirSpec

The di rMask resource specifies the search parameters. It may contain a complete
or partial path specification. Partial specifications - those that do not begin with
"I" - are rooted at the current directory. File matching is performed using
UNIX's wildcard characters, meaning that the specification can be constructed to
include or ignore certain files. The default value of "*" matches all files in the
current directory.

The di rSpec resource specifies the name of the selected file. It is a pass-through
to the textStri ng resource and overrides the value in that resource. It maintains
its value between invocations and may be used to specify a default filename. The
text editor uses this capability in the Save As ... dialog.

Behavior: autoUnmanage

Unlike the other dialogs based on XmBulletinBoard, XmFUeSelectionBox sets the
aut 0 U n man age resource to FA L S E and does not permit the program to change it to
T RU E. This is done so that the dialog will not disappear when the user presses
the Filter (Apply) button. As a result, the program must attach callbacks to
each of the other buttons - if only to unmanage the dialog.

Labels: filterLabelString

The f i 1 t e r Lab e 1 S t r i n 9 resource is a pass-through to the 1 abe 1 S t r i n 9 resource
of the label associated with the "File Filter" entry field. By default, it contains the
string "File Filter".

366 Programming with Motif

Creating And Using XmFileSelectionBox

Creation

A file-selection-box may be created using either XmCreateFi 1 eSel ecti onBox or
XmCreateFi 1 eSel ecti onDi al og. The former simply creates the selection box and
its children. while the second creates a dialog shell as the parent of the selection
box. Both functions take the same parameters as other widget-creation
functions. and both return the ID of the selection box.

Mter the file-selection-box is created. one additional child may be created; if
used. it must be managed when it is created. As with xmSelectionBox, this child
is positioned between the list and the file-specification entry field.

Like other dialogs. a file-selection-box is created unmanaged and is managed
and unmanaged as needed. Also like other dialogs. its children - "prebuilt" and
additional - are managed at the time of creation.

Retrieving Child Widget IDs

Like xmSelectionBox and XmMessageBox. XmFileSelectionBox provides a
function to retrieve the IDs of its children. This function is X m F i 1 e S e 1 e c t ion Box -
GetChi 1 d. prototyped in Listing 14.8.

Listing 14.8. Function prototype: XmFileSelectionBoxGetChild

Widget XmFileSelectionBoxGetChild(w. child)
Widget w;
unsigned char child;

XmFileSelectionBoxGet(hild takes two parameters: the ID of the selection box
(w) and a code representing the child (chi 1 d). It returns the ID of the child. Child
selection codes are from the following list:

• XmDIALOGJI LTER_TEXT. Returns the ID of the fIlter entry field.

• XmDIALOG_FIL TER_LABEL. Returns the ID of the label associated with (and
positioned above) the filter entry field.

• XmDIALOG_LIST. Returns the ID of the fIle list.

• XmDIALOG_LIST_LABEL. Returns the ID of the label associated with (and
positioned above) the file list.

• XmDIALOG_TEXT. Returns the ID of the fIlename entry field.

• XmDIALOG_SELECTION_LABEL. Returns the ID of the label associated with
(and positioned above) the filename entry field.

Lists 367

• XmDIALOG_WORK_AREA. Returns the ID of the selection-box's additional
work area child. The creation of this widget is the responsibility of the
program; if used. the widget class is program-dependent.

• XmDIALOG_SEPARATOR. Returns the ID of the separator between the
selection-box's presentation and conflnnation areas.

• XmDIALOG_OK_BUTTON. Returns the ID of the OK button.

• XmDIALOG_APPLY_BUTTON. Returns the ID of the Filter (Apply) button.

• XmDIALOG_CANCEL_BUTTON. Returns the ID of the Cancel button.

• XmDIALOG_HELP _BUTTON. Returns the ID of the Help button.

• XmDIALOG_DEFAULT_BUTTON. Returns the ID of the default button -
detennined from the contents of the defaul tButton resource. This is by
default Filter/Apply.

Initiating a Search

A rue-selection-box perfonns a directoxy search when any of the following actions
take place: (1) the selection box is created; (2) the di rMask resource is set via
XtSetVa 1 ues; (3) the program calls the XmFil eSe 1 ect i onDoSea rch function; (4) the
user presses the Filter button; or (5) the user presses the Return key while the
rue-filter entry fleld has the focus. When one of these events happens. the
selection box invokes the function specifled by its f i 1 e Sea r c h Pro c resource.

Of these initiators. the XmFileSelectionDoSearch function is most important to
the program. It should be called whenever the current directoxy's contents have
changed. In practical tenns. since rues can be created or deleted at random. it
shoufd be called whenever the selection box is managed.

Listing 14.9 presents the prototype of XmFi 1 eSe 1 ect i onDoSea rch. It takes two
parameters: the ID of the selection box (w) and a search mask (rna s k). This mask
is installed in the di rMask resource; if it is passed as NULL. the selection-box
maintains its existing mask. This function does not return any value; its
operation is conflned to the selection-box's contents.

Listing 14.9. Function prototype: XmFUeSelectiDnDoSearch

void XmFileSelectionDoSearch(w, mask)
Widget W;
XmString mask;

368 Programming with Motif

Callbacks

XmFi.leSelectionBox provides the same callbacks as XmSelectionBox. However, it
passes call data in XmFil eSe 1 ect i onBoxCa 11 backSt ruct, instead of
XmSel ecti onBoxCall backStruct. This structure is defmed in Listing 14.10.

Listing 14.10. Type definition:
XmFileSelectionBoxCallbackStruct

typedef struct
{

int
XEvent
XmString
int
XmString
int
}

reason;
*event;
value;
length;
mask;
mask_length;

XmFileSelectionBoxCallbackStruct;

The reason and event members serve the same purpose as in other callbacks;
file-selection-box callbacks use the same reasons as their selection-box
counterparts. The val ue and 1 ength members are identical to the same members
of XmSelectionBoxCallbackStruct: value contains the filename, and length
contains the number of bytes that are occupied by that name. The rna 5 k and
mas k_l ength member are unique to the fIle-selection-box callback: mask contains
the contents of the di rMask resource, and mask_l ength contains the number of
bytes occupied by the mask.

XmFileSelectionBox Example: Open/Save As

The text editor program uses a fIle-selection-box to support its Open ... and Save
As ••• menu choices. The addition of this selection box is part of the
implementation of the "filer" module, presented in Listing 14.11 P This
implementation consists of five changes: calling the fIler's initialization function
from InitOther, linking the fIler functions to Fi 1 eMenuCB, implementing the fIler
functions, and adding new resources to the resource file. These changes are
detailed after the listing.

12 XmFUeSelectionBox makes use of the regular-expression functions. If you are using a
UNIX based on System V you will need to specify the PW library when linking. If you do
not do this, the linker will report that regcmp and regex are undefmed externals.

Usts 369

Listing 14.11. Text editor revision 8: Addition of "mer" module

void InitOther()
{

InitFi 1 er();
InitFindDB() ;

static void
Widget
char
caddr_t

FileMenuCB(w. client_data. call_data
w;
*client_data;
cal Ldata;

if (!strcmp(client_data. "New"))
FileNew();

else if (!strcmp(client_data. "Opn"))
FileOpen();

else if (!strcmp(client_data. "Sav"))
FileSave();

else if (!strcmp(client_data. "SAs"))
FileSaveAs();

else if (!strcmp(client_data. "Ext"))
{

ex it (0);
}

/***

**
** filer.c
**
** Text Editor -- File Open/Save Module
**

**
**
**
**
**

***/

'include <stdio.h>
'include <string.h>

'include <Xm/FileSB.h>

370 Programming with Motif

Listing 14.11. Continued.

,include <Xm/Text.h>

,include "textedit.h"

1***

** **
** FOR WAR 0 o E FIN I TID N S **
** **
***/

static void InitStdFi 1 e();
static void ManageStdFi 1 e();
static void UnmanageStdFile();

static void SFProc();
static void ReadProc();
static void WriteProc() ;

1***

** **
** L 0 CAL V A R I A B L E S **
** **
***/

char
Widget

void

*curfile = NULL;
stdfile_db;

(*fi leproc) ();

/* The current filename
/* The Standard File dialog

/* The Read/Write function

*/
*/

*/

Lists 371

Listing 14.11. Continued.

1***

**
** InitFiler()
**
** This function initializes the filer module: it clears the
** filename, disables the File/Save menu choice, and creates
** Standard File dialog.
**

**
**
**

current **
the **

**
**

***/

void InitFiler()
{

) ;

Widget temp;

stdfile_db = XmCreateFileSelectionDialog(mainwin, ·StdFile", NULL, 0

XtAddCallback(stdfile_db, XmNokCallback, SFProc, NULL);
XtAddCallback(stdfile_db, XmNcancelCallback, UnmanageStdFile, NULL);
XtAddCallback(stdfile_db, XmNhelpCallback, UnmanageStdFile, NULL);

1***

** **
**
**
**
**
**
**
**
**

ManageStdFile(title, proc, defspec)

This function manages the Standard File dialog. It sets the
dialog's title to the string passed as "title", installs the
function passed as "procH in the "fileproc" variable (it gets
called by the StdFile callback handler), and stores the string
passed in "defspec" in the "dirSpec" resource.

**
**
**
**
**
**
**
**

***/

static void ManageStdFile(title, proc, defspec)
cha r
xtCallbackProc
char

*titl e;
proc;
*defspec;

372 Programming with Motif

Listing 14.11. Continued.

XmString tempI. temp2;

tempI = XmStringCreate(title. XmSTRING_DEFAULT_CHARSET l;
if (defspec == NULLl

temp2 XmStringCreate(XmSTRING_DEFAULT_CHARSET l;
else

temp2 XmStringCreate(defspec. XmSTRING_DEFAULT_CHARSET l;

XtSetArg(arglist[OJ. XmNdialogTitle. tempI l;
XtSetArg(arglist[IJ. XmNdirSpec. temp2 l;
XtSetValues(stdfile_db. arglist. 2 l;

XmStringFree(tempI l;
XmStringFree(temp2 l;

XmFileSelectionDoSearch(stdfile_db. NULL l;

XtManageChild(stdfile_db l;

fileproc = proc;

1***
**
**
**
**
**
**
**
**

UnmanageStdFile(l

This function unmanages the Standard File dialog. It is attached
to the "Cancel" and "Help" buttons. because XmFileSelectionBox
does not handle the "autoUnmanage" resource.

**
**

**
**
**
**

***/

static void UnmanageStdFile(l

Lists 373

Listing 14.11. Continued.

XtUnmanageChildC stdfile db);

/***

**
** SFProc(w, client_data, call_data)
**
**
**
**
**

This function is the callback procedure for the Standard File
dialog. It stores the chosen filename in "curfile", and then
calls the function pointed-to by "fileproc".

**
**
**
**
**
**
**

***/

static void SFProc(w, client_data, call_data)
Widget w;
caddr t client_data;
XmFileSelectionBoxCallbackStruct

if (curfile != NULL)
XtFree(curfile);

XmStringGetLtoR(call_data->value, XmSTRING_DEFAULT_CHARSET, &curfile
) ;

UnmanageStdFile();

(*fileproc)();

/***

**
** ReadProc()
**
**
**
**

This function reads the file specified by "curfile" into the
editor's text buffer.

**
**
**
**
**
**

***/

374 Programming with Motif

Listing 14.11. Continued.

static
(

void ReadProc()

FILE
cha r
long

*infile - fopen(curfile, Or");
*txtbuf;
size;

if (infile -- NULL)
/* Should display error */
return;

fseek(infile, OL, 2) ;

size-ftell(infile) ;

rewind(infile) ;

txtbuf - XtMalloc(size+l);

fread(txtbuf, sizeof(char), size, infile);
XmTextSetString(textwin, txtbuf);

XtFree(txtbuf);

1***

**
** WriteProc()
**
**
**
**

This function writes the editor's text buffer into a file named
by"curfile".

**
**
**
**
**
**

***/

static
(

FILE
char
long

void WriteProc()

*outfile;
*txtbuf;
size;

Listing 14.11. Continued.

outfile = fopenC curfile. Ow");
if Coutfile == NULL)

/* Should display error */
return;

txtbuf
size

XmTextGetStringC textwin);
strlenCtxtbuf) ;

fwriteC txtbuf. sizeofCchar). size. outfile);
fcloseC outfile);

XtFreeC txtbuf);

Usts 375

1***

** **
** Fil eNewC) **
** **
** This function is ca 11 ed from the File/New menu choice. It clears **
** the text buffer. resets the current file. and disables the File/ **
** Save menu choice. **
** **
***/

void FileNewC)
{

XmTextSetStringC textwin. "");

if Ccurfile 1= NULL)
XtFreeC curfile);

curfile = NULL;

376 Programming with Motif

Listing 14.11. Continued.

1***
**
** FileOpen()
**
** This function is called from the File/Open menu choice. All it
** does is invoke the Standard File dialog -- SFProc and ReadProc
** do the real work.
**

**
**
**
**
**
**
**

***/

void FileOpen()
(

ManageStdFil e("Open ... ". ReadProc. NULL);

1***
** **
** FileSave()
**

**
**

** This function is a link to WriteProc(). which writes the text **
** buffer into a file using the current filename. **
** **
***/

void FileSave()
{

if (curfile == NULL)
Fil eSaveAs ();

else
WriteProc() ;

Usts 377

Listing 14.1l. Continued.

1***

**
** FileSaveAs()
**
** This function is called from the File/Save-As menu choice. It
** invokes the Standard File dialog, and links it to WriteProc.
**

**
**
**
**
**
**

***/

void FileSaveAs()
{

ManageStdFile("Save As ... ", WriteProc, curfile);
}

!###

! Standard File Dialog Resources

!###

StdFile..background: Gray75
StdFile..foreground: Black
StdFile..topShadowColor: White
StdFile..bottomShadowColor: Gray50

*StdFile.listVisibleItemCount: 5

File-Menu Callbacks

The first change is to add functionality to the file menu by changing the
Fi 1 eMenuCB functionY In keeping with the modularization scheme, menu
functionality is placed in the filer module. Thus, the only changes to Fi 1 eMenuCB
are the addition of calls to functions in filer: Fi 1 eNew for the New menu choice,
Fi 1 eOpen for Open ... , Fi 1 eSave for Save, and Fi 1 eSaveAs for Save As

Filer Variables and Initialization

The "filer" module contains all of the program's file input/output code. It
provides a dialog box - "Standard File" - to get a filename from the user and
functions to load that file into the text buffer and write the text buffer to the

13 Note also that the menu items must be enabled by removing the calls to
XmSetSensitive from InitFi 1 eMenu.

378 Programming with Motif

fIle. 14 It also contains "glue" functions: functions called from other modules,
which hide details of the fIler module from those other modules.

The fIler module contains three module-wide variables: curfi 1 e, stdfi 1 e_db, and
fi 1 eproc. The curfi 1 e variable points to the name of the current fIle; when there
is no current fIle, it is NULL. The stdfi 1 e_db variable holds the widget ID of the
fIle-selection-box; it is the only widget ID maintained by this module - the fIle
selection-box maintains all of its children.

The third variable, fi 1 eproc, is used to allow one dialog box to serve two
functions. The Open •.• and Save As .•. functions are almost identical in user
interface - both present a fIle-selection-box to get the fIlename - but radically
different in operation: one reads the file, the other writes it. They could be
implemented with two dialog boxes, each of which calls the appropriate
input/output function. However, to save code, I make both operations use the
same dialog. This dialog's "OK" callback function retrieves the selected name and
calls the approprtate input/output function, using fi 1 eproc as a pointer to that
function.

This design is carried out in the InitFi 1 er function. One file-selection-box is
created, and the SFProc function is attached to its "OK" callback. The "Cancel"
and "Help" callbacks do not perfonn any function in this program, so they are
simply linked to a function that unmanages the dialog. In i t F i 1 e r also perfonns
other startup time operations - at this time, clearing the current filename.

ManageStdFlle

The split personality of the standard-file dialog is also present in the
Man age S td F i 1 e function. Since my convention is to have dialog titles mimic their
associated menu choice, the d i a log Tit 1 e resource must be changed for each
invocation - with the approprtate title passed from the glue function.

Also passed from the glue function is the default filename. On Open .•. , the
filename should be blank - the user must choose a file to open. On Save As ••• ,
however, the filename is the current filename, allowing the default operation of
Save As ••• to be equivalent to Save.

Another point of interest in ManageStdFi 1 e is the call to
XmFi 1 eSel ecti onDoSearch. In a multiuser computer system, the contents of a
directory' may change randomly. For this reason, the dialog's fIle list is updated
before it is presented to the user.

SFProc

SFProc is the function attached to the dialog's OK button and is called whenever
the user has selected a file. Its purpose is to retrieve the filename (passed in the
call data), convert it from a compound strtng to a simple text strtng.' store it as
the current filename variable (c u r f i 1 e), and call the approprtate input/output
function. In addition, it unmanages the dialog.

14 "Standard File" is a name that comes from the Macintosh world.

Lists 379

ReadProc and WriteProc

These functions perform the actual file read/write operation. They are called
from SFProc, using the fi 1 eproc pointer variable. Both get the filename from the
curfi 1 e variable. ReadProc then opens the file for reading and stores its contents
in the text buffer, while WriteProc creates the file and writes the text buffer's
contents to it. As noted in the code, both functions should display a message box
if any error occurs during their operation - although they don't as written.

Glue Functions: FileNew, FileOpen, FileSave, FileSaveAs

To hide filer functionality, I used these functions to "glue" the menu module to
the filer module. For the most part, they simply call other filer functions; Fi 1 eNew
and Fi 1 eSave are different, however, and deserve further note.

Fi 1 eNew is responsible for clearing the text buffer. At the present time, it does
that and also clears the current filename. For a production program, however, it
should present a message box before doing any of this: the user should be
notified before clearing an unsaved program.

F i 1 e 5 a ve is also notable in that it determines whether the filename is known. If it
is, then the simple save function - Wri teProc - is called. If not, Fi 1 eSaveAs is
invoked, to query the user for a filename. This behavior - forcing Save As ••• if
the filename isn't known - is standard in many applications but is not a Motif
standard.

Resources

The resource-file support for the file-selection-box is primarily concentrated on
the secondary color scheme. In addition, the 1 i stVi si bl eItemCount is decreased
- its default value (8) made Figure 14.6 too large.

XmCommand
Another subclass of xmSelectionBox is XmCommand, shown in Figure 14.7.
XmCommand provides the normal selection-box interaction, allowing the user to
select items from the list or directly fill the ent:ry field. Unlike a normal-selection
box, however, a command's list is filled from its entry field - it maintains a
history of the user's interaction with the widget. Each time that the user enters a
command via the ent:ry field or changes an item selected from the list, the new
item is added to the end of the list, and in the future, may be selected instead of
retyped.

Also, unlike a selection box, a command widget does not provide a confirmation
area. One reason for this omission is that a command widget is not necessarily
used in a dialog - it is often presented in a program's main window as the
command sub-area.

380 Programming with Motif

Figure 14.7. XmCommandexample

A common use for a command widget is to allow shell escapes in a program. For
example, the text editor could support sorting by a shell escape: the user selects
text, uses a shell escape to pass that text to the sort program, and the editor
replaces the selection by the sorted text. 15

XmCommand Resources

XmCommand is derived directly from xmSelectionBox To the resources of
xmSelectionBox and its superclasses, XmCommand adds the resources listed in
Table 14.5 and described below. It also eliminates those xmSelectionBox
resources associated with a selection-box's buttons and separator.

15 While useful, this is not implemented as sample code because the mechanics of linking
an X client to a normal program far overshadow the implementation of a command
dialog.

Lists 381

Table 14.5. Frequently used resources: XmCommand

Name Inheritance Type Default Value

command XmCommand XmString NULL

commandChangedCallback XmCommand xtCallbackList NULL

commandEnteredCallback XmCommand xtCallbackList NULL

hi story Items XmCommand XmStringTable NULL

historyltemCount XmCommand int a
hi storyMaxItems XmCommand int 100

historyVisibleltemCount XmCommand int 8

promptString XmCommand XmString ">"

Current Command: command

The command resource is a pass-through to the XmSelectionBox textStri ng
resource. It is a compound string and defaults to an empty string. The user may
modify this value either by typing in the entry field or selecting an item from the
history list.

Previous Commands: historyltems, historyItemCount,
history~~tems

As the user executes each command, it is added to the end of the history list,
provided it is not already in the list. This list is accessed by the his tor y I t ems
and his tor y I t em C 0 u n t resources, which are pass-throughs to the
xmSelectionBox resources items and itemCount.

If this growth of the history list was unrestricted, it could grow to an enormous
length - losing much of its utility. The hi storyMaxItems resource exists to
prevent this problem: when the list contains the maximum number of items, the
item at the top of the list is removed when a new item is added at the bottom.

Appearance: historyVisibleItemCount, promptString

Like a selection box, the height of a command widget is dependent on the
number of list items displayed. The his tor y Vis i b 1 e I t emC 0 u n t resource controls
this number; it is a pass-through to the XmSelectionBox resource
listVisibleltemCount.

The promptStri ng resource specifies the label displayed above the entry field. It
is a pass-through to the xmSelectionBox resource s e 1 e c t ion Lab e 1 S t r i n g. The
default value of this resource is ">". While that string mimics many users' shell

382 Programming with Motif

prompt. it is not intuitive for the nonsophisticated user and should be replaced
(eg. by "Command:").

Callbacks: commandChangedCallback, commandEnteredCallback

XmCommnnd provides two callbacks: commandChangedCall back is invoked
whenever the contents of the entry field change. and commandEnteredCall back is
invoked when the user executes a command (by pressing the Return key). 16 Both
callbacks pass data in the same structure. XmCommandCall backStruct. which is
identical to XmSel ecti onBoxCall backStruct. The reason for
commandChangedCall back is XmCR_COMMAND_CHANGED. and for
commandEnteredCall back. it is XmCR_COMMAND_ENTERED.

XmCommand Convenience Functions

Creation

Unlike XmSelectionBox and XmFileSelectionBox. XmCommnnd has only one
creation function: XmCreateCommand. This function creates the command widget
and its "prebuilt" children. The command widget is created unmanaged. its
children are created managed. Unless used in a dialog. the command widget
should be managed once it is created.

If you do wish to use XmCorrunand in a dialog. you must first create the dialog
shell. using the function XmCreateDi al ogShell. You can then call
XmCreateCommand. passing the ID of the shell in the pa rent parameter. Once this
is done. you can make the dialog appear by managing the command widget.

Child Access

Like xmSelectionBox and XmFileSelectionBox. XmCommnnd provides a function
to access its prebuilt children. That function is XmCommandGetChi 1 d. prototyped in
Listing 14.12. The chi 1 d parameter is limited to three constants:
XmDIALOG_HISTORCLIST returns the ID of the list. XmDIALOG_PROMPT_LABEL returns
the ID of the entry-field's label. and XmDIALOG_COMMAND_TEXT returns the ID of the
entry field.

16 The commandChangedCa 11 back is linked to XmTexfs val ueChangedCall back. meaning that
it is called on every keystroke. while commandEnteredCall back is linked to
act; vateCall back. On activation. both callbacks are invoked - commandChangedCall back
followed by commandEnteredCa 11 back.

Lists 383

Listing 14.12. Function prototype: XmCommandGetChild

Widget XmCommandGetChildC w, child
Widget w;
unsigned char child;

Value Manipulation

The functions XmCommandSetVal ue and XmCommandAppendVal ue, prototyped in
Listing 14.13, may be used to fill the command widget's entry field. Both
functions take as parameters the ID of the command widget (w) and a compound
string (stri ng). XmCommandAppendVal ue appends the specified string to the
contents of the entry field, while XmCommandSetVal ue replaces the contents of the
entry field with the string.

Listing 14.13. Function prototypes:
XmCommandAppendVaZue, XmCommandSetValue

void XmCommandAppendValueC w, string)
Widget W;
XmString string;

void XmCommandSetValueC w, string)
Widget
XmString

Error Reporting

W;
string;

In some applications, a program may need to display an error associated with a
command widget. While this could be accomplished with a message box,
XmCommand provides a built-in error-display capability.

This capability is provided by the function XmCommandError function, prototyped
in Listing 14.14. This function takes two parameters: the ID of the command
widget (w) and a compound string containing the error message (s t r i n g). It
displays this string at the bottom of the history list, separated from the rest of
the list by a blank line. The message is not actually entered into the history list
and is erased when the user enters the next command.

384 Programming with Motif

Listing 14.14. Function prototype: XmCommandError

void XmCommandError(w, string
Widget w;
XmString string;

XmCommand Example
Figure 14.7 was produced using the program and resource file of Listing 14.15.
This program is based on the trivial program template; it simply creates and
manages the command widget.

Listing 14.15. Program and resource file: XmCommand
Example

/***

** **
** **
** **
** XmCommand Example. **
** **
***/

#include <Xm/Command.h>

Wi dget appshell,
the_cb;

Arg arglist[16J;

void maine argc, argv
int argc;

char *argv[J;

/* Application Shell
/* The command box
/* Used to set resources

*/
*/
*/

Lists 385

Listing 14.15. Continued.

appshell Xtlnitialize(argv[OJ, "Listing_14_15", NULL, 0,
&argc, argv);

the_cb = XmCreateCommand(appshell, "TheCmd", NULL, 0);
XtManageChild(the_cb);
XtRealizeWidget(appshell);
XtMai nLoop();

Resource file for Command example (Fig 14.7)

*.background:
*.foreground:
*.topShadowColor:
*.bottomShadowColor:

*TheCmd.historyVisibleltemCount:
*TheCmd.promptString:
*TheCmd.fontList:
*TheCmd.width:

Gray50
White
Gray75
Gray25

5
Command:
-*-Courier-medium-r-*--*-100-*
200

15
Using Xlib With Motif

Overview
Xlib may be viewed as an "assembly language" for X. Physically, Xlib is a library
of C functions, many of which translate directly into one or more protocol
requests. Like a program written in assembly language, an Xlib program
contains many lines of code, each of which has minimal effect. For this reason,
most programmers use C instead of assembly and Motif instead of Xlib.

There are, however, times when one needs to use Xlib calls in a Motif program.
While Motif provides widgets that directly support higher-order interface objects,
such as menus, it does not provide functions for lower-order operations, such as
drawing a line. Instead, the program must call Xlib functions to draw within the
window of a Motif widget.

This chapter does not present a complete view of Xlib - that would require a
book of its own. Instead, it provides a basic understanding of Xlib, including a
detailed look at how the server displays images. It then presents the
XmDrawingArea widget, a Motif widget that gives the programmer a "canvas" in
which to place Xlib drawings. The chapter concludes with an example of
XmDrawingArea in use, a "doodle" program.

The X Server

How Images Are Made

X is designed to use a raster display - a display that builds images out of
distinct dots on the screen. 1 These dots are called pixels, a contraction of
"picture element." On a monochrome display, pixels are either on or off - white

1 This is as opposed to a "vector" display, which builds images out of lines, or vectors,
caused by moving the electron beam. Older video games used vector displays, because
they require less CPU power; the images, however, must be relatively Simple line
drawings.

387

388 Programming with Motif

or black. On a color display, pixels can take on any color. By combining enou/lh
pixels, any image can be made: a line, for example, is simply a row of identically
colored pixels.

A raster display is often referred to as a "bit-mapped" display. This term
indicates the way that images are stored in the display: each pixel occupies one
or more bits in a memory cliip. The display hardware scans the memory, one line
of pixels at a time, and sends control signals to the electron beam, which paints
the image on the display's screen. This scanning is repeated constantly - 70
times a second for a quality display - meaning that the image on the screen
changes as the contents of the display's memory changes.

The X protocol specifies a set of commands - graphics primitives - which
instruct the server to change the display's memory. These commands are known
as "primitives" because they draw simple objects: dots, lines, arcs, rectangles,
and circles. From such primitive objects, more complex objects - such as labels
- may be produced.

Windows and Other Drawables

An X server does not permit a client to draw randomly on the screen. Instead,
the client must perform its drawing in a drawable, which an abstract object
maintained by the server. In practice, there are two types of drawables: windows
and ptxmaps.

A window represents an area of the display screen and displays what is drawn
into it - if it is not obscured by another window. A pixmap is an object
maintained entirely within the server's memory, which must be copied into a
window for display. A program can prepare complex graphics in a pixmap, then
put the finished drawing into a window.

The link between widgets and windows is intimate: each widget has an
associated window, which has the pOSition and dimensions specified by the
widget's x, y, wid t h, and he i 9 h t resources. The widget uses this window to
display its contents, and the program can use it as the target of Xlib calls.

Exposure

At any point in its life, a window may be covered by another window. When this
happens, the bits corresponding to the covered part of the bottom window are
lost - they are replaced by the bits corresponding to the topmost window.

If the top window is then moved, uncovering the bottom window, those lost bits
must be replaced. To do this, the server sends the window an exposure event,
which specifies the part of the window that must be redrawn. The program is
then expected to issue the appropriate drawing commands.

For most widgets, exposure is handled transparently by the widget's internal
code. A label, for example, redraws its string. In the case of a widget that
displays Xlib graphics, however, the window must be redrawn expliCitly because
the widget does not maintain a record of the graphics calls made to its window.
The details of this procedure are described below as part of XmDrawingArecis
exposeCall back description.

Using Xlib with Motif 389

Some servers provide backing store. a region of server memory that is used to
hold the contents of obscured windows. 'these servers do not generate exposure
events; instead. they fill exposed areas of a window from backing store. This
capability represents a trade-off between server memory and network load. and
its presence depends on the design goals of the server - in other words. no
program should assume that its server has backing store.

Server Resources

An X server does not simply display graphics. It also maintains data items
known as server resources. not to be confused with the program resources
described previously. Server resources contain data that is herd on the server
but used by the program. In some cases. this data is used and maintained by
the server - one example is the window structure. In others. it is data that is
presented by one client for access by another - such as a text widget's selection.

Such data is held on the server for two reasons. The first is accessibility: since
clients may be running on different computer systems. the only guaranteed
method of interprocess communication is via the server. The other reason is
efficiency: many of the structures held as server resources - such as the GC.
described below - would have to be sent with each Xlib call if held by the client.
Even in cases where the client and server make roughly equal use of a resource's
contents. efficiency can be improved by sending only the necessary parts "over
the wire."

For a particular server. a resource is identified by its server resource [D. a 32-bit
integer value. For the program. resources must additionally be identified by their
server - a single program may have connections to two or more servers.

You have already seen two examples of resource IDs in use: windows and
pixmaps. Both of these objects occupy server memory. and both have associated
control structures that also occupy server memory. The graphics context.
described below. is another example of a server resource.

Color in a Digital World

The RGB Color Model

If you look closely at a color television. you will note that it too is a raster
display. Furthermore. you can see that each pixel is comprised of three
components: red. green. and blue. 2 These pixel components emit varying
amounts of Ught. depending on the intensity of the electron beam when it shines
on them. Blended together. these varying amounts of red. green. and blue light
can create any visible color.

For a television. the intensity of each pixel component is specified by the video
signal. which is fed to the electron beam as it shines on each pixel - and pixel

2 You can see the pixels in a color 1V more clearly than in a computer monitor because
the monitor has higher resolution than a 1V - and usually has a smaller screen. The
television offers more shades per pixel. however. making it better able to represent a
photographic image.

390 Programming with Motif

component - in turn. In the memory of a bit-mapped computer display. the
intensity of each component is represented by a numerical value. In a typical
system. eight bits are assigned to each color: the value 0 means the color
component is off. while 255 means that it is as bright as possible. The display
hardware reads these values and changes the beam intensity accordingly.

Colormaps

Although most color displays represent colors using 24 bits of information.
pixels themselves are rarely stored in 24 bits of memory. If they were. a
1024x1024 pixel display would need three megabytes for its memory map.
Moreover. although 24 bits of information means that the display can physically
represent 16.777.216 colors. it has only 1.048.576 pixels.

For this reason. most color displays make use of a colormap. a table containing
24-bit color values. 3 To represent any color in the table. all that is needed is the
index of the color's entry; the display hardware can then use the table to display
the full 24 bits of color information. The drawback to a colormap is that the
number of colors that may be Simultaneously displayed is limited by the size of
the table - most displays allow 256 entries.

There are two types of colormaps: the hardware colormap is used by the server to
translate its screen memory into the displayed image. while each window has a
virtual colormap that defines its own mapping. Virtual colormaps are server
resources. while the hardware colormap is part of the server. When a window is
topmost. its virtual colormap is copied into the hardware colormap.

Since virtual colormaps are server resources and are identified by resource ID.
windows can share colormaps simply by using the same ID. This ability is used
to great extent: not only do all of a client's windows use the same colormap.
most clients share the same colormap. the default colormap.

This sharing is possible because most clients use a relatively small number of
colors. and most users prefer that clients use the same color scheme. Thus. of
the 256 cells available in a normal colormap. two dozen might be shared by all
clients. while each client might have one or two unique colors. While sharing
colormaps makes efficient use of the server's memory. it also means that the
server does not need to continually swap virtual colormaps into or out of the
hardware colormap.

In some cases. however. a client will need to allocate a large number of colormap
cells and will not be able to use the default colormap. An example is a CAD
program with three-dimensional shading. Such a program must allocate a
unique virtual colormap and fill it with the necessary color cells. When it
becomes the topmost window. its colormap is copied into the hardware
colormap. temporarily changing the color scheme of all clients.

3 Some high-end displays do in fact assign 24 bits to each pixel. allowing "photorealistic"
images. Such displays are more expensive than their brethren; in most cases. they are
also slower because more memory must be accessed for each operation.

Using Xlib with Motif 391

The Pixel Data Type

Motif programmers rarely modify colormaps directly. Instead, the resource
manager translates named colors into RGB values, and then allocates colormap
entries for these colors.4 The program then accesses the colors using their
colormap indices, which are stored in the Pix e 1 data type.

The Pix e 1 type is a 32-bit unsigned integer. While most servers are limited to 8-
bit colormaps, the size of Pi xel allows it to be used even in those cases where
the server supports 24-bit color - in these cases, the Pi xe 1 value is identical to
the 24-bit RGB value.

The Color Database

The link between named colors and their RGB equivalents is provided by the
color database. On a UNIX system, the file lusrllib/Xll/rgb.txt contains a
human-readable version of this database, an excerpt from which is shown in
Listing 15.1.5

112 219 147
50 204 153
50 204 153
000
o 0 255

Listing 15.1. Color database (jusrjlibjXlljrgb.txfj extract

aquamarine
medium aquamarine
MediumAquamarine
black
blue

The first three fields in each line contain 8-bit values for the color's red, green,
and blue components. The fourth field is the color name, which may be specified
in a resource file. Note that some colors - such as medium aquamarine - have
multiple spellings, all of which represent the same color combination.6

The Standard Xlib Parameters
To send a drawing command to the server, an Xlib function needs to know three
things: the display (server), the ID of the destination window, and the ID of a
graphics context. The first two are associated with the widget and may be
retrieved with the functions prototyped in Listing 15.2: XtDi spl ay returns a
pointer to the widget's display record, and XtWi ndow returns its window ID. Both
functions take the widget's ID as their sole parameter.

4 Whenever possible - which is almost always - these entries are allocated from the
default colormap and shared among clients.

5 If your server is running on a UNIX system, the me / us r /l i b / X 11 / r 9 b . p a 9 contains a
computer-readable version of the color database.

6 Such multiply named colors exist because rgb. txt has been built by accretion - each
vendor adds its own colors and spelling, and these changes make their way through the
X community.

392 Programming with Motif

Listing 15.2. Function prototypes: XtDisplay, XtWindow

Display *XtDisplay(w)
Widget w;

Window XtWindow(w)
Widget w;

Whereas a widget's display and window infonnation may be retrieved from the
widget itself, a graphics context is a server resource and must be allocated. The
approach taken by a toolkit-based program is different from that of a native Xlib
program: while the latter creates and destroys GCs as needed, the fonner
attempts to share a GC with other clients. This is accomplished with the
functions prototyped in Listing 15.3.

Listing 15.3. Function prototypes: XtGetGC, XtReleaseGC

GC XtGetGC(w. mask. values)
Widget w;
XtGCMask mask;
XGCValues *values;

void XtReleaseGC(w. gc)
Widget w;
GC gc;

The function XtGetGC attempts to fmd a graphics context on the server which
contains the values desired; it will create one if necessary? XtRel easeGC
indicates to the server that this client is no longer using the GC. If no other
client is using it, it is destroyed; otherwise, it remains in the server's memory.

The rna s k and val ues parameters of XtGetGC specify which members of the GC
interest the client. The mask parameter contains a bit-mask, with each bit
corresponding to one of the GC members. The val u e s parameter points at an
XGCVal ues structure, described below, with the desired members set to the
desired values.

7 This GC is read-only. While Xlib provides a set of functions that modify a read-wrtte GC,
such functions may not be used with a GC allocated by XtGetGC; instead, a new GC
must be allocated.

Using Xlib with Motif 393

The Graphics Context

What Is the Graphics Context?

The graphics context (GC) is a seIVer resource that modifies the actions of the
Xlib primitives. Its purpose is best explained by example. in this case. the
drawing of a line.

Xlib provides a primitive function. X 0 raw Lin e. which draws a line between two
points. While the operation seems to be simple. there are a host of questions
that must be resolved before it can be performed. For example. what color
should the line be?

The graphics context. which is passed as an argument to the X 0 raw Lin e function.
contains the answer to that question. It also specifies whether the line is solid or
dashed. the appearance of the ends of the line. and the way that the line is
joined to any existing lines - as well as many other controls related and
unrelated to line drawing.

Each graphics primitive requires a GC to be passed as one of its arguments.
These GCs are allocated by the program as needed. using XtGetGC.

The Graphics Context in Detail

The graphics context is maintained by the seIVer. and its exact contents are
dependent on the seIVer implementation - in some cases. a seIVer may add of
change fields to increase its performance. The standard GC fields. however. are
represented by the structure XGCVal ues. defined in Listing 15.4 and described
below. 8

8 The X GC Va 1 u e s structure is defined in the header me XII / Xli b . h. The constants used for
various fields. as well as the mask constants for XtGCMask. are defined in the header me
Xll/X.h.

394 Programming with Motif

Listing 15.4. Type definition: XGCValues

typedef struct
{

int
unsigned long

function;
plane_mask;
foreground;
background;
line_width;
line_style;
cap_style;
join_style;

Pixel
Pixel
int
int
int
int
int
int
int
Pixmap
Pixmap
int
int
Font
int
Boolean
int
int
Pixmap
int
char
}

XGCValues;

fil Lstyl e;
fil Lrul e;
arc_mode;
tile;
stipple;
ts_x_origin;
ts-y_origin;
font;
subwindow_mode;
graphics_exposures;
clip_x_origin;
clip-y_origin;
clip_mask;
dash_offset;
dashes;

Effect of the Drawing Operation: function

The fun c t ion member controls the way in which a drawing function is applied to
the window. To understand this, you must remember that the action of a
drawing function is to change the contents of a window's memory map. When
the window is blank, its memory map is not blank: it is filled with bits
representing the window's background color. A drawing function changes parts
of the memory map to the bits representing the window's foreground color.
Exactly how these bits are changed depends on the contents of funct i on. By
default, fun c t ion contains the value G Xc 0 p y, which instructs the server to
overwrite the current contents of the window.

Using Xlib with Motif 395

What Parts of the Memory Map Are Affected: plane_mask

The p 1 an e_ma s k member is used with servers that divide display memory into
multiple planes. to specify which planes are affected by a drawing operation. On
such servers. a program can draw into one set of a window's planes. while
another set is displayed; when drawing is complete. the displayed set of planes
may be changed. By default. pl ane_mask specifies all planes; there is rarely a
need to change it.

Foreground and Background Colors: foreground, background

The foreground and background members specify colors to use when drawing
into a window. The foreground color is the color used to draw lines and other
objects; the background color is used when clearing parts of the window. You
should note that these members are not the same as the widget's foreground
and background resources: the program can use any colors for the GC's
foreground and background. 9

Line Attributes: line_width, line_style, cap_style, dashes,
dash_offset

The 1 i ne_wi dth member simply specifies the width of any lines drawn on the
screen and contains a count of pixels. Since Xlib is not part of MOtif. width
values specified by 1 i ne_wi dth are not affected by the uni tType resource. Note
that ''width'' is a misleading term: for a horizontal line. 1 i n e_w i d t h actually refers
to height.

The 1 i ne_styl e member. in concert with the dashes and dash_offset members.
allows the programmer to specify whether lines are solid or dashed. The legal
values for 1 i ne_styl e are as follows:

• L i neSo 1 i d specifies that the line is drawn using the foreground color.
This is the default.

• L i neOn Off Dash specifies that line segments of the foreground color
alternate with equal-length undrawn segments.

• L i neDoubl eDash specifies that line segments of the foreground color
alternate with equal-length segments of the background color.

For dashed lines. the d ash e s member specifies the length in pixels of each
segment. and the dash_offset member specifies how many pixels into the cycle a
line starts. This is best shown by example: Figure 15.1 shows a line drawn in
LineDoubleDash style. with a dashes value of 4 and dash_offset of 2. For
illustrative purposes. the individual pixels are shown as blocks: black for
foreground. gray for background.

9 The widget's internal code. however. does use a GC with its foreground and background
members set to the values of the widget's foreground and background resources.

396 Progr?Jl1Il1ing with Motif

Figure 15.1. Line-style example

• • ••
The cap_styl e member specifies how the ends of each line are drawn. It can
contain values from the following list:

• CapButt specifies that lines are to be drawn with square ends. This is the
default value.

• CapRound specifies that lines are to be drawn with round ends. The radius
of the rounded end is equal to one-half of the line's width.

• CapNotLast specifies that the line is to have a square end. However, if the
line width is 0 or 1, the line length is shortened by one pixel. This allows
for smoother joints.

• CapProjecting also indicates a square end, but specifies that the line is
to be extended by an amount equal to one-half of its width.

Meeting of the Lines: join_style

The j 0 i n_s ty 1 e member controls how the drawing function attaches two lines -
this happens when the starting point of one line is at the same location as the
end point of another line. Legal values are as follows:

• Joi nRound specifies that the meeting point is drawn as a circle - even if
the line ends are square.

• Joi nMi ter (the default) specifies that the outside edges of the lines are
extended, forming an acute angle at the meeting pOint.

• Joi nBevel specifies that the meeting point is filled by connecting the
outside edges of the lines.

The differences between these styles may not be apparent from the descriptions,
so Figure 15.2 presents them graphically. Figure 15.2(a) shows Joi nRound,
15.2(b) shows JoinMiter, and 15.2(c) shows JoinBevel. In these diagrams, the
solid rectangles indicate the drawn lines, while the gray areas indicate the
jOints. 10

10 Note that the Join style really doesn't matter when the linewidths are small - all styles
appear the same. Once the lines become larger than 4 pixels or so, the different styles
become apparent.

Using Xlib with Motif 397

Figure 15.2. Joint styles

- ~- - c-

Shape Fill Controls, mCstyle, tile, stipple, ts_x_origin, ts-y_origin,
fill_rule

The fill_style member. in concert with the tile. stipple. ts_x_origin . and
ts_y_ori gi n members. specifies how filled objects are drawn. Shapes may be
ftlled with a solid color or "tiled." by repeating the contents of a pixmap through
the shape. The legal values for fi ll_sty l e are as follows:

•
•

•

F ill Sol i d. The object is completely filled with the foreground color.

Fi llTi 1 ed . The object is filled using the pixmap specified by til e. The
first tile is placed at a position (within the window) specified by the
t s_x_o rig i n and t s_y _0 rig in members. Subsequent tiles are placed
adjacent to the first tile. until the shape is completely filled. If any tile
extends beyond the boundary of the shape. that tile is trimmed to fit the
shape. Figure 15.3 shows this in action.

Fi 11 St i pp 1 ed. Fi 11 OpaqueSt i pp 1 ed. The object is ftlled using the bitmap
specified by the s t i pp 1 e member. Unlike tiling. this bitmap is drawn
using the foreground and background colors of the GC (tiles contain their
own colors) . The difference between Fi 11 St i pp 1 ed and
Fi 11 OpaqueSt i ppl ed is that the former applies only the foreground bits to
the window (so that the existing bits show through the "background"
color). while the latter completely covers the window.

398 Programming with Motif

Figure 15.3. Tiling

Tile

ts_x_origin
tS""y_origin

Tiled Rectangle

The fi ll_rul e member controls how polygons are filled. For simple polygons,
such as a square or hexagon, it isn't needed. However, an X polygon can be an
irregular shape, with lines crossing and recrossing each other. The two fill
methods are even-odd and winding and are illustrated by Figure 15.4: 15.4(a) is
the polygon, 15.4(b) is the polygon filled according to the even-odd rule, and
15.4(c) is the polygon fIlled according to the winding rule.

The even-odd rule, enabled by the constant EvenOddRul e, specifies that if a line
drawn from a point within the polygon would cross an odd number of polygon
lines on its way out of the polygon, then that point is inside the polygon. The
winding rule, enabled by the constant Win din 9 R u 1 e, specifies that a point is
inside the polygon if a line from that point crosses an unequal number of
clockwise and counter-clockwise line segments on its way out of the polygon. In
this case, the "direction" of a line segment is determined by starting at an
arbitrary vertex and following the lines of the polygon: a segment is clockwise if
it crosses the imaginary line from left to right; counterclockwise if it crosses from
right to left.

Figure 15.4. Fill rules

r- r--

I

- a - - 17 - -c-

Using Xlib with Motif 399

Arc Fill Control: arc_mode

The a remode member is used only when drawing filled arcs and specifies how
the endpoints of the arcs are to be connected. Two values are allowed: ArcChord
and ArcPi eSl ice. Figure 15.5 shows the result of these values: 15.5(a) uses
ArcPi eSl ice (the default), while 15.5(b) uses ArcChord.

Figure 15.5. Arc fill modes

-a- - 11-

Text Drawing: font

The font member contains the ID of the font to use for text output. II It is only
needed for Xlib text-drawing functions; if you use XmSt ri ngDraw or equivalent,
the proper font is loaded as needed.

Generation oj the GraphicsExpose Event: graphics_exposures

The graphi cs_exposures member is a flag, which comes into use only when
copying data from one window to another. If graphi cs_exposures contains TRUE
(the default), such a copy will result in either a GraphicsExpose or NoExpose
event: Graphi csExpose indicates that the source was obscured and the
destination must be drawn manually; NoExpose indicates that the source was not
obscured and the copy completed. If graphi cs_exposures contains FALSE, these
events are masked.

It is possible, when executing a drawing function, to specify that part of the
drawing is to be clipped - drawing does not take place in the clipped area. The
c 1 i p_ma s k member specifies a bitmap that controls clipping: a set bit in this
mask permits the function to modify the corresponding window pixel, an unset
bit causes the drawing function to skip the pixel. The members c 1 i p_x_o rig in
and c 1 i PJ _0 rig in specify the position of the clipping mask with respect to the

11 Fonts are server resources. They may be loaded into the server with the Xlib functions
XLoadFont and XQueryFont.

400 Programming with Motif

destination window. By default. the c 1 ; p_ma s k member contains the value Nan e.
which indicates that drawing operations are not clipped.

Most programs do not create complex clipping masks. Instead. they create a
mask that exactly matches a window and use functions such as
XSetCl i pRectangl es to add large pieces to the mask - for example. in
response to an exposure event with a nonzero count.

How Children Affect Drawing: subwindow _mode

The sub w; n d a w _m a d e member specifies how a window's children affect the
operation of functions that draw into that window. If it contains C1; pByCh; 1 dren
(the default). any drawing operations that would be obscured by a child window
are clipped - the child window is opaque. If. however. subw; ndaw_made contains
Inc 1 u del n fer; a r s. the drawing operation is not clipped and writes into the
screen memory occupied by the child - the child appears to be transparent.

Specifying Desired Values to XtGetGC: XtGCMask

The X G C Val u e s structure contains many members that are not applicable to
particular types of drawing. For example. when drawing a line. the contents of
a remade may be indeterminate - they are not pertinent to the operation. For
this reason. the X t Ge t GC function has the ma s k parameter. which specifies which
fields are useful. The server attempts to fmd a GC with those fields set as desired
and creates one if necessary.

Table 15.1 presents the list of constants that may be used in this mask. and the
members to which they correspond. These constants are contained in the header
fIle Xll/X. h.

Using Xlib with Motif 401

Table 15.1. XtGCMask constants

Constant Corresponding Member(s)

GCFunction function

GCPlaneMask plane_mask

GCForeground foreground

GCBackground background

GCLineWidth line_width

GCLineStyle line_style

GCCapStyle cap_style

GCJoinStyle join_style

GCFi 11 Styl e fi 11 _style

GCFi 11 Rul e fi 11 rule -

GCTile tile

GCStipple stipple

GCTileStipXOrigin ts_x_origin

GCTileStipYOrigin ts-.y-origin

GCFont font

GCSubwindowMode subwindow_mode

GCGraphicsExposures graphics_exposures

GCClipXOrigin clip_x_origin

GCClipMask clip_mask

GCDashList dashes

GCArcMode arc_mode

XmDrawingArea

All widgets are associated with windows, so a program could conceivably draw
into any widget. In practice, however, the internal exposure processing of a
widget would overwrite whatever the program had drawn into its window. For
this reason, Motif provides the XmDrawingArea class, which provides the
program a "canvas" in which to draw with Xlib graphics calls.

XmDrawingArea is derived from XmManager, as shown by the class tree of
Figure 15.6. While this derivation may seem strange - XmPrimitivewould seem
a more appropriate superclass - it actually gives a drawing-area widget great
flexibility. One benefit is the presence of XmManagers shadow border. Another is

402 Programming with Motif

the ability to hold a child: an XmDrawingArea widget could provide an ornate
border around a program window.

Figure 15.6. XmDrawingArea class tree

XmDrawingArea Resources

In addition to the resources of XmManager and its superclasses, XmDrawingArea
defines the resources listed in Table 15.2. Aside from the callback lists, these
resources control child management and are identical to the XmBulletinBoard
resources with the same names. 12

12 The rnargi nHei ght and rna rgi nWi dth resources specify a margin between the sides of the
drawing area and its children; the resi zePol icy resource controls how the drawing area
changes size as children are added or removed.

Using Xlib with Motif 403

Table IS.2. Frequently used resources: XmDrawingArea

Name Inheritance Type Default Value

exposeCa11back XmDrawingArea XtCa11backList NULL

inputCallback XmDrawingArea XtCa11backList NULL

marginHeight XmDrawingArea Dimension 10

marginWidth XmDrawingArea Dimension 10

resizeCa11back XmDrawingArea XtCa11backList NULL

resizePo1icy XmDrawingArea unsigned char XmRESIZE_ANY

XmDrawingArea Callbacks
XmDrawingArea invokes callbacks when it is exposed, when the user causes a
key or button event to occur within its borders (user input), and when it is
resized. All three callbacks pass data in the same structure, XmDrawi ngArea -
Ca 11 backStruct, defined in Listing IS.S.

typedef struct
{

Listing IS.S. Type definition: XmDrawingAreaCallbackStruct

int reason;
XEvent *event;
Window window;
}

XmDrawingAreaCallbackStruct;

The rea s on member of XmDrawi ngAreaCa 11 backSt ruct identifies the reason that
the callback was invoked: exposure uses a reason of XmCR_EXPOSE, user input
uses XmCR_INPUT, and size change uses XmCR_RESIZE. The event member points
at the event that initiated the callback. Unlike most callback, the eve n t member
provides essential details to a drawing-area callback handler. The final member,
wi ndow, contains the ID of the window where the event occurred; if the drawing
area has children, this may be the window of a child.

Exposure: expose Callback

When portions of a drawing-area are exposed, the server sends an Expose event
to the widget's internal event handler. It then passes that event to the callback
functions specified by the exposeCa11 back resource; they are responsible for
redrawing the contents of the window. If no callbacks are registered, the
drawing-area simply repaints the exposed window area with its background
color.

404 Programming with Motif

Exposure events are contained in the x e x p 0 s e member of the X Eve n t union. This
member is of the type XExposeEvent, defined in Listing 15.6. As with other
events, the type member contains the event type (Expose), the seri al member
contains a server sequence number, the send_event member indicates whether
the event was server- or client-generated, and the di spl ay and wi ndow members
identify the source of the event. The other members are specific to an exposure
event and are described below.

Listing 15.6. Type definition: XExposeEvent

typedef struct
{

int
unsigned long
Boolean
Display
Window
int
int
int
}

XExposeEvent;

type;
seri al ;
send_event;
*display;
window;
x, y;
width, height;
count;

An exposure event indicates to the client that a rectangular portion of a window
needs to be redrawn. The x and y members of XExposeEvent specify the position
of this rectangle relative to the window; its dimensions are specified by the wid t h
and hei ght members.

In a simple case, exposure results from a situation such as Figure 15.7(a).
Window B covers window A; when it is moved, a rectangular portion of A
becomes exposed. A more complex case is portrayed in Figure 15.7(b). In this
case, two windows cover window A; if it is then made the topmost window
("shuffled up"), two rectangular areas of A become exposed - a situation that
cannot be handled by the basic exposure event.

The only possible solution within the framework of XExposeEvent is to indicate
the exposure with multiple events. Unfortunately, this can cause excessive work
on the part of the program: if a line in window A passes through both exposed
rectangles, it must be redrawn twice - one segment per event.

The count member provides a solution to this problem: it contains the number of
events yet to be received as a result of this exposure. A value of zero means that
this is the last event, and the program should redraw the window. A nonzero
value indicates that the program should simply maintain a record of the exposed
area, until the last event is received. 13

13 Xlib provides the ability to maintain a clipping region in a GC, composed of the
rectangles that are reported in exposure events. The program can then simply redraw
the entire window, and the GC will cause the selVer to ignore those commands that fall
outside the clipping region. While this is a very elegant solution, in most cases, it is
easier - and more effiCient - to simply redraw the entire window on the last expose
event (when count contains zero) and ignore all preceding events.

Using Xlib with Motif 405

Figure 15.7. Two cases of exposure

-a-

-b-

c

User Input: inputCallback

The functions specified by i n put Call b a c k are invoked whenever the user causes
a button or keyboard event to occur within the window - KeyPress, KeyRel ease,
ButtonPress, or ButtonRel ease. It is not invoked, however, for pOinter movement.
To capture movement events, the program must add an event handler.

Depending on the event type, the event member pOints at either an XKeyEvent or
XButtonEvent structure. The event type may be determined using the xany
member of XEvent.

Size Change: resizeCallback

The resi zeCall back resource specifies a list off unctions that are called when the
drawing-area's window is resized.14 This resize can occur for any reason - user
size change, parental constraint, or programmatic size change. No event is
passed for this callback; the program must get its new size from the widget's
resources.

14 Enlarging a window also results in exposure events.

406 Programming with Motif

XmDrawingArea Example: Doodle
Figure 15.8 presents an example of XmDrawingArea in use: the "Doodle"
program. This program is a very simple example of a "paint" program: it allows
the user to draw with the pointer in a selection of colors and pen sizes. No
provision is made for saving the image or for loading an already drawn image
into the program.

Figure 15.8. XmDrawingArea example: "Doodle"

Listing 15.7 presents the program and resource file for the doodle program. It is
based on the complex program template and is split into multiple modules. Tying
these modules together is a program header file, doodl e. h.

The fIrst module, ma in. C, initializes the main window and calls the functions that
initialize the rest of the program. It also contains the program's global variables
and initiates the event loop.

The second module, menu. C, is almost identical in structure to the menu module
of the text editor. 15 It presents a much smaller menu structure, however, the File
menu contains options to clear the workspace (New) and terminate the program
(Exit); the Pen menu allows the user to change the drawing color (Color) and the

15 It was, in fact, copied from the text editor.

Using Xlib with Motif 407

width of the lines (Size); the Help menu does nothing. 16 One interesting feature
of this module is its use of cascading pull-downs for the Pen/Color and
Pen/Size menu choices. Also note that the callbacks for these two menus are
not in the menu module - instead, they are in the work-window module.

The third module, workwin.c, is where this program is unique. This module
creates the work window, which is an XmDrawingArea widget. It also handles
the various callbacks and events that affect this window. It, and the resource
file, are described in more detail below the listing.

Listing 15.7. Program and resource file: Doodle

1***

** **
** doodle.h
**
** Doodle -- Inter-Module Header File
**
**
**
**

Contains external declarations for all functions and interesting
variables_

**
**
**
**
**
**
**

***/

1***

** **
** EXTERNAL FUN C T ION REF ERE N C E S **
** **
***/

extern void InitMenuBar() ; /* menu.c */

extern void InitWorkWindow(); /* workwin.c */
extern void ClearWin();
extern void PenColorCB();
extern void PenSizeCB();

16 Note that, aside from File and Help, this program does not follow the standard menu
structure. It is an example where the standard menus do not apply to the problem
being solved.

408 Programming with Motif

Listing 15.7. Continued.

1***

** **
** G LOB A L V A R I A B L E S **
** **
***/

extern Widget appshell. /* Appl ication Shell */

mainwin. /* XmMainWindow */

menubar. /* MainWindow Menu Bar */

workwin; /* MainWindow Work Area */

extern Arg arglist[16]; /* For programmatic rsrc stuf */

1***

**
** main.c
**
** Doodle -- Main Module
**

**
**
**
**
**

***/

#include <Xm/MainW.h>

#include "doodle.h"

1***

** **
** G LOB A L V A R I A B L E S **
** **
***/

Widget appshell. /* Application Shell */

mainwin. /* XmMainWindow */

menubar. /* MainWindow Menu Bar */

workwin. /* MainWindow Work Area */

textwin; /* Work Window XmText widget */

Arg argl i st[16]; /* For programmatic rsrc stuf */

Using Xlib with Motif 409

Listing 15.7. Continued.

1***

** **
** FORWARD D E FIN I T ION 5 **
** **
***/

static void
static void

InitMainWindow();
InitOther() ;

1***
**
**
**
**
**
**

main(argc, argv)

Program entry point. Creates shell, calls initialization funcs,
and turns control over to event loop.

**
**
**
**
**
**

***/

void main(argc, argv
int argc;
char *argv[];

appshell = Xtlnitialize(argv[O], "Doodle", NULL, 0, &argc, argv);

InitMainWindow();
InitMenuBar() ;
InitWorkWindow();

XmMainWindowSetAreas(mainwin, menubar, NULL, NULL, NULL, workwin);

InitOther() ;

XtRealizeWidget(appshell);
XtMainLoop();

410 Programming with Motif

Listing 15.7. Continued.

1***

**
** InitMainWindow()
**
**
**
**
**
**
**
**
**

This function creates the main window widget and its scrollbars.
The main window is created as a child of the application shell.
The scrollbars are either created along with the main-window (if
its "scrollingPolicy" resource contains TRUE) or separately.

This function modifies the global "mainwin", and accesses the
global "appshell".

**
**
**
**
**
**
**
**
**
**
**

***/

static void InitMainWindowC)
{

mainwin ~ XmCreateMainWindowC appshell, "MainWin", NULL, 0);
XtManageChildC mainwin);

1***

**
** InitOtherC)
**
**
**
**

This function currently does not do anything. It would be used
to initialize dialog boxes and the like.

**
**
**
**
**
**

***/

static void InitOther()
{

)

Using Xllb with Motif 411

Listing 15.7. Continued.

1***

** **
** menu.c
**
** Doodle -- Menubar Module
**

**
**
**
**

***1

Ifinclude <string.h>

/finclude <Xm/RowColumn.h>
Ifinclude <Xm/CascadeB.h>
Ifinclude <Xm/Label.h>
/finclude <Xm/PushB.h>
Ifinclude <Xm/Separator.h>

Ifi ncl ude "doodle.h"

1***
**
**
**

FOR WAR D D E FIN I T ION S
**
**
**

***1

static void InitFileMenu();
static void I ni tPenMenu () ;
static void InitPenColorMenu();
static void InitPenSizeMenu();
static void InitHel pMenu();

static void Fi 1 eMenuCB();

1***
** **
** InitMenuBar()
**
**
**
**
**
**
**

This function creates the menu bar and all pull-down menus. The
menu bar is created as the child of the main window.

This function modifies the global "menubar", and accesses the
global "mainwin".

**
**
**
**
**
**
**
**

***/

412 Programming with Motif

Listing 15.7. Continued.

void InitMenuBar()
(

menubar - XmCreateMenuBar(mainwin, "MenuBar", NULL, 0);
XtManageChild(menubar);

Ini tFi 1 eMenu();
InitPenMenu() ;
InitHel pMenu();

1***
**
** InitFileMenu()
**
**
**
**

Creates the File menu: cascade button, pull-down menu pane, and
all menu-pane choices. Attaches callbacks to menu-pane choices.

**
**
**
**
**
**

***1

static void InitFileMenu()
(

Widget topic.
pane,
choices[3];

pane - XmCreatePulldownMenu(menubar, "FilePane", NULL, 0);

choices[O] = XmCreatePushButton(pane, "File_Clear", NULL, 0);
choices[l] - XmCreateSeparator(pane, "File_Sep", NULL, 0);
choices[2] - XmCreatePushButton(pane, "File_Exit", NULL, 0);
XtManageChildren(choices, 3);

XtSetArg(arglist[O], XmNsubMenuld, pane);
topic - XmCreateCascadeButton(menubar, "FileTopic", arglist, 1);
XtManageChild(topic);

XtAddCallback(choices[O], XmNactivateCallback, FileMenuCB, "New");
XtAddCallback(choices[2], XmNactivateCallback, FileMenuCB, "Ext");

Using Xllb with Motif 413

Listing 15.7. Continued.

1***
**
** InitPenMenu()
**
**
**
**

Creates the Pen menu: cascade button, pull-down menu pane, and
all menu-pane choices. Attaches callbacks to menu-pane choices.

**
**
**
**
**
**

***/

static void InitPenMenu()
(

Widget topic,
pane,
choices[2];

pane - XmCreatePulldownMenu(menubar, "Pen_Pane", NULL, 0);

choices[O] - XmCreateCascadeButton(pane, "Pen_Color", NULL, 0);
choices[l] - XmCreateCascadeButton(pane, "Pen_Size", NULL, 0);
XtManageChildren(choices, 2);

XtSetArg(arglist[O], XmNsubMenuld, pane);
topic - XmCreateCascadeButton(menubar, "PenTopic", arglist, 1);
XtManageChild(topic);

InitPenColorMenu(pane, choices[O]);
InitPenSizeMenu(pane, choices[l]);

414 Programming with Motif

Listing 15.7. Continued.

1***
** **
** InitPenColorMenu()
**

**
**

**
**
**

Creates the cascading pull-down for pen colors.
The attached callback is in the file "mainwin.c"

**
**
**

***/

static void InitPenColorMenu(parent, button)
Widget parent;
Widget button;

Widget pane,
choices[6];

pane = XmCreatePulldownMenu(parent, "PenColor_Pane" , NULL, °);
choices[O]
choi ces [1]

choices[2]
choices[3]
choices[4]
choices[5]

XmCreatePushButton(pane, "PenColor_O", NULL, °);
XmCreatePushButton(pane, "PenColor_l", NULL, °);
XmCreatePushButton(pane, "PenColor_2", NULL, °);
XmCreatePushButton(pane, "PenColor_3", NULL, °);
XmCreatePushButton(pane, "PenColor_4", NULL, °);
XmCreatePushButton(pane, "PenColor_5", NULL, °);

XtManageChildren(choices, 6);

XtSetArg(arglist[O], XmNsubMenuld, pane);
XtSetValues(button, arglist, 1);

XtAddCallback(choices[O], XmNactivateCallback, PenColorCB, NULL);
XtAddCallback(choices[l], XmNactivateCallback, PenColorCB, NULL);
XtAddCallback(choices[2], XmNactivateCallback, PenColorCB, NULL);
XtAddCallback(choices[3], XmNactivateCallback, PenColorCB, NULL);
XtAddCallback(choices[4], XmNactivateCallback, PenColorCB, NULL);
XtAddCallback(choices[5], XmNactivateCallback, PenColorCB, NULL);

Using Xlib with Motif 415

Listing 15.7. Continued.

1***

** **
** InitPenSizeMenu() **
** **
** Creates the cascading pull-down for pen sizes. **
** The attached callback is in the fi le "mainwin.c" **
** **
***/

static void InitPenSizeMenu(parent. button)
Widget parent;
Widget button;

Widget pane.
choices[5];

pane = XmCreatePulldownMenu(parent. "PenSize_Pane". NULL. 0);

choices[O]
choi ces [1]

choices[2]
choices[3]
choices[4]

XmCreatePushButton(pane. "PenSize_1". NULL. 0);
XmCreatePushButton(pane. "PenSize_2". NULL. 0);
XmCreatePushButton(pane. "PenSizc3". NULL, 0);
XmCreatePushButton(pane. "PenSize_4". NULL. 0);
XmCreatePushButton(pane. ·PenSize_8". NULL. 0);

XtManageChildren(choices. 5);

XtSetArg(arglist[O]. XmNsubMenuld. pane);
XtSetValues(button. arglist. 1);

XtAddCallback(choices[O]. XmNactivateCallback. PenSizeCB. "1");
XtAddCallback(choices[1]. XmNactivateCallback. PenSizeCB. "2");
XtAddCallback(choices[2]. XmNactivateCallback. PenSizeCB. "3");
XtAddCallback(choices[3]. XmNactivateCallback. PenSizeCB. "4");
XtAddCallback(choices[4]. XmNactivateCallback. PenSizeCB. "8");

416 Programming with Motif

Listing 15.7. Continued.

1***

**
**
**
**
**
**

InitHel pMenu()

Creates the Help menu: cascade button, pull-down menu pane, and
all menu-pane choices. Attaches callbacks to menu-pane choices.

**
**
**
**
**
**

***/

static void InitHelpMenu()

Widget topic,
pane,
choi ces [1];

pane = XmCreatePulldownMenu(menubar, "Help_Pane", NULL, 0);

choices[O] = XmCreateLabel(pane, "Help_Lbl", NULL, 0);
XtManageChildren(choices, 1);

XtSetArg(arglist[O], XmNsubMenuld, pane);
topic = XmCreateCascadeButton(menubar, "HelpTopic", arglist, 1);
XtManageChild(topic);

XtSetArg(arglist[O], XmNmenuHelpWidget, topic);
XtSetValues(menubar, arglist, 1);

Using Xlib with Motif 417

Listing 15.7. Continued.

1***

**
** FileMenuCB(w. client_data. call_data)
**
**
**
**
**
**
**
**
**
**

Callback procedure for the "File" pull-down. This function is
called when any of the file menu buttons are activated. The
particular operation is identified by a string accessed by the
"client_data" paramo

Note: This callback is only invoked on Activate. so the call
data (which describes the reason) is superfluous. It is
therefore not declared as a specific type in the func hdr.

**
**
**
**
**
**
**
**
**
**
**
**

***/

static void FileMenuCB(w. client_data. call_data
Widget w;
char
caddr_t

*clienLdata;
call_data;

if (!strcmp(client_data. "New"))
ClearWin();

else if (!strcmp(client_data. "Ext"))
exit(0);

1***
**
** workwin.c
**
** Doodle -- Work Window Module
**

**
**
**
**
**

***/

418 Programming with Motif

Listing 15.7. Continued.

#include <Xm/DrawingA.h>

#include "doodle.h"

1***

** **
** FORWARD D E FIN I T ION 5 **
** **
***/

static void
static void

InitGC();
DrawEvt() ;

1***

** **
** L 0 CAL V A R I A B L E 5 **
** **
***/

static GC the_gc; /* Current GC for drawing */
static XGCValues gc_values; /* Values for allocating GCs */
static XtGCMask gc_mask; /* Mask for allocating GCs */
static int last_x. lasLy; /* Last pointer position */

1***

**
** InitWorkWindow()
**

**
**
**

** This function creates the drawing area used as the work window. **
** It also allocates the initial (default) GC for drawing in that **
** window. and attaches callbacks and event handlers. **
** **
***/

Using Xlib with Motif 419

Listing 15.7. Continued.

void InitWorkWindow()
(

workwin = XmCreateDrawingArea(mainwin, "WorkWin", NULL, 0);
XtManageChild(workwin);

InitGC();

XtAddEventHandler(workwin, (ButtonPressMask I ButtonMotionMask),
FALSE, DrawEvt, NULL);

1***

**
** InitGC()
**
**
**
**
**
**
**
**

Initializes the graphics context used for drawing. This function
stores default values in the variable "gc_values", which is used
to tell the server about the GC we want. It also sets bits in
"gc_mask", which is used to tell the server what values we have
set. Finally, it gets the work window's color scheme, sets the
line width to I, and allocates a GC.

**
**
**
**
**
**
**
**
**
**

***/

static void InitGC()
(

Pixel foreground,
background;

XtSetArg(arglist[OJ, XmNforeground, &foreground);
XtSetArg(arglist[lJ, XmNbackground, &background);
XtGetValues(workwin, arglist, 2);

gc_values.foreground
gc_values.background
gc_values.line_width
gc_values.line_style

foreground;
background;
1 ;
LineSolid;

420 Programming with Motif

Listing 15.7. Continued.

gc_values.cap_style
gc_values.join_style

GCForeground
GCLi neStyl e

CapRound;
JoinRound;

GCBackground
GCCapStyle

GCLineWidth I
GCJoinStyle;

XtGetGC(workwin, gc_mask, &gc_values);

1***

**
** DrawEvt(w, client_data, event)
**
**
**
**
**
**

This function is attached to button-press and button-motion
events. On button press, it initializes the stored position
variables. On button-motion, it draws a line from the stored
position to the new position, then stores the new position.

**
**
**
**
**
**
**
**

***/

static void DrawEvt(w, client_data, event)
Widget w;
caddr t client_data;
XEvent *event;

int

switch (event->type)
(

case ButtonPress
last_x event->xbutton.x;
last-y = event->xbutton.y;
break;

case MotionNotify ;
new_x = event->xmotion.x;
new-y = event->xmotion.y;
XDrawLine(XtDisplay(w), XtWindow(w), the_gc,

Using Xlib with Motif 421

default

Listing 15.7. Continued.

last_x
lastJ
break;

break;

last_x, lastJ, new_x, newJ);
new_x;
newJ;

1***

** **
** ClearWin() **
** **
** This function clears the work window. It is attached to the **
** File/New menu choice. **
** **
***/

voi d Cl earWi n()
(

XClearWindow(XtDisplay(workwin), XtWindow(workwin));

1***

** **
** PenColorCB(w, client_data, call_data)
**
** This function is attached to each of the buttons in the Pen
** menu's Color submenu. It takes the foreground color from the
** invoking button, and allocates a GC using that color.
**

**
**
**
**
**
**

***/

void PenColorCB(w, client_data, call_data
Widget w;

422 Programming with Motif

caddr_t
caddr t

Pi xel

Listing 15.7. Continued.

clienLdata;
calLdata;

XtReleaseGC(workwin. the_gc);

XtSetArg(arglist[OJ. XmNbackground. &new color);
XtGetValues(w. arglist. 1);

gc_values.foreground = new_color;
the_gc = XtGetGC(workwin. gc_mask. &gc_values);

/***

**
** PenSizeCB(w. client_data. call_data
**
**
**
**
**
**

This function is attached to each of the buttons in the Pen
menu's Size submenu. It is passed a string as its client data.
which specifies the new pen width. It then allocates a GC
that uses that width.

** Note: A more elegant approach to line widths would use the
** button's labelString resource to specify the width.
**

**
**
**
**
**
**
**
**
**
**
**

***/

void PenSizeCB(w. client_data. call data
Widget w;
char *client_data;
caddr_t call_data;

XtReleaseGC(workwin. the_gc);

if (!strcmp(client_data. "1"))
gc_values.line_width = 1;

Listing 15.7. Continued.

else if (!strcmp(client_data. "2"))
gc_values.line_width = 2;

else if (!strcmp(client_data. "3"))
gc_values.line_width = 3;

else if (!strcmp(client_data. "4"))
gc_values.line_width = 4;

else if (!strcmp(client_data. "8"))
gc_values.line_width = 8;

Using Xlib with Motif 423

the_gc = XtGetGC(workwin. gc_mask. &gc_values);

Resource file for Doodle program (Fig 15.8)

! #fNNNNf#fNf##fNf##fNNf#fNNNNNNNNNf###ff######fNNNNNNNNNNNNNNNNf#fNNNNNNNf#fNNNNf
!
! General Resources

*.background:
*.foreground:
*.topShadowColor:
*.bottomShadowColor:

! Work Window Resources

Gray50
White
Gray75
Gray25

! ##fN/#4f###iNf#4f#4f4f4f#4f4f#if4f4f#iNNf#iNf##if#4f4f#iNNf4f#iNf#4f4f#4f4f#4f4f4f#ff#4f#4f4f4f#fNNf4f#4f#

*WorkWin.width:
*WorkWin.height:
*WorkWin.foreground:
*WorkWin.background:

300
200
Black
White

424 Programming with Motif

Listing 15.7. Continued.

! Main Menu Resources

*FileTopic.labelString:
*File_Clear.labelString:
*File_Exit.labelString:

*File_Exit.accelerator:
*File_Exit.acceleratorText:

*PenTopic.labelString:
*Pen_Color.labelString:
*Pen_Size.labelString:

Fi 1 e
New
Exit

Meta<KeyPress>q
A It-O

Pen
Color
Size

*PenColor_Pane.XmPushButton.width: 50
*PenColor_Pane.XmPushButton.height: 25
*PenColor_Pane.XmPushButton.recomputeSize: FALSE
*PenColor_Pane.XmPushButton.labelString:

*PenColor_O.background:
*PenColor_l.background:
*PenColor_2.background:
*PenColor_3.background:
*PenColor_4.background:
*PenColor_5.background:

*PenSize_l.labelString:
*PenSize_2.1abelString:
*PenSize_3.1abelString:
*PenSize_4.1abelString:
*PenSize_8.1abelString:

*HelpTopic.labelString:
*Hel p_Lbl .1 abel Stri ng:

Black
White
Gray50
Red
Green
Bl ue

2
3
4
8

Help
No Help Available

Initializing the Work Window: InitWorkWindow. InitGC

Work window initialization involves creating the XmDrawingArea widget, adding
an event handler for button presses and pointer movement, and creating the
default graphics context. The first two operations are straightforward:

Using Xlib with Motif 425

XmCreateDrawingArea creates the widget, and XtAddEventHand1 er registers the
event -handling function.

Initialization of the GC is slightly more complex and takes place in the function
I nit G C. Since a GC is required for every drawing operation, the program
maintains a "current" GC in the variable the_gc; this GC is used for every
drawing operation. In i tGC retrieves the initial GC, configured in a standard
manner.

I nit G C makes the following assumptions about the initial drawing state: the
foreground and background colors will come from the widget itself, and the pen
will be a single pixel wide. An additional assumption is the appearance of the
lines, controlled by the 1 i ne_sty1 e, cap_sty1 e, and j oi n_sty1 e members. These
specifications are constant and may not be changed by the user.

Using these assumptions, In i tGC retrieves the foreground and background
colors from the widget and installs them in a module-wide XGCVa 1 ues structure. 17

It also sets the other default values in that structure, then builds a mask
identifying these values. It then allocates a GC with the desired values, using
XtGetGC. Note that this GC is allocated on the basis of its line-drawing
components only, as specified by the flags passed to XtGetGC.

Drawing: DrawEvt

The drawing process is simple: when the pointer moves with a button pressed,
the program draws a line from the current pOSition to the previous pOSition. The
"previous position" is maintained in the variables 1 ast_x and 1 ast---y; these are
set when the button is first pressed.

One important thing to note is that all pointer movement is reported in a
Moti anNoti fy event, whether or not the button is down. Since this program only
wants button-down motion, it must specify ButtonMotionMask when the event
handler is registered.

The drawing operation itself is performed with the Xlib function XDrawL i ne. The
parameters to this function should be obvious: the display pointer and window
ID, the graphics context, and the old and new positions. Note that the display
pointer and window IDs are retrieved from the widget passed to the event
handler. They could be retrieved using the workwi n global, but this is a more
transportable method (it works if the event handler is attached to multiple
windows).

Clearing the Work Window: Clear Win

The C1 ea rWi n function introduces the Xlib function XC1 earWi ndow. It identifies the
window by its display and window ID; both are retrieved from the workwi n
widget. Unlike other functions, XC 1 ear Win dow does not require a graphics
context. Instead, it fills the window with the background color established at the
time of window creation.

17 This extract-and-store operation could have been perfonned in one step, specifying the
relevant XGCVal ues members in the XtSetArg operation. I separated the steps for
illustrative purposes.

426 Programming with Motif

Changing Pen Color: PenColorCB

The Pen Col orCB function is attached to each of the buttons in the Pen/Color
submenu. This function changes the graphics context by releasing the current
context and allocating a new context - after changing the foreground member. IS

It is located in this module - instead of the menu module - precisely because it
changes the graphics context.

The way in which this function changes the color is in itself interesting. Each of
the labels in the Pen/Color submenu are blank. but have a different
background color. Pen Col orCB retrieves this background color - using the
passed widget ID - and installs it in the graphics context. By doing this. it
eliminates the need for a search of the color database and allows the user to
easily configure the set of available colors.

Changing Pen Size: PenSizeCB

The PenS; zeCB function is attached to each of the buttons in the Pen/Size
submenu. It too changes the GC in use by releasing the old GC and allocating a
new one. It is passed a new pen width as a string in its cl; enLdata parameter.19

The Resource File

The resource fIle is straightforward: it assigns a default color scheme. sizes the
work window. assigns a color scheme to the work window. and specifies the
contents of the menu. It does contain one item of interest: the definitions for the
Pen/Color submenu.

As described above. this submenu contains a list of blank buttons - the
buttons' background color is what's important. To make such buttons. you set
the 1 abe 1 S t r; n g resource to a blank string. However. doing so eliminates the
button's method of determining its preferred size. So. the buttons must be sized
explicitly. and recomputeS; ze must be set to FA LS E - otherwise the buttons
would attempt to size themselves at minimum size.

IS Note for experienced Xlib programmers: since the graphics context is allocated read
only. the function XSetForeground cannot be used.

19 As stated in the function header. this is not a very elegant way to handle size changes.
A better way would be to retrieve an ASCII representation of the size from the
1 abe 1 St ri ng resource. then convert it to a numeric value.

16
Resources Revisited

Overview
Chapter 3 presented resources and resource files: what they were and how to
use them. This chapter extends that presentation, with some of the more
esoteric uses of resources and their relations.

It begins with the use of program instance names, a method by which a resource
file can contain two (or more) sets of specifications for a single program, with the
user able to choose a set at runtime. This is followed by a description of
command-line options, which are used to change resource values at runtime.

The next topic is resource conversion, also known as type conversion. This is a
mechanism by which the toolkit converts data from one type to another; it is
primarily used to convert the ASCII text of a resource file to the internal format
of a resource. There are two parts to this description: the first is how to write
and install a resource converter; the second is how to call an existing converter
from within application code.

The chapter finishes with a description of application resources: program
variables that can be set at runtime via the resource mechanism.

Program Instance Names
A user may use the same program in two or more environments and desire a
unique appearance for each. For example, the appearance resources used with a
color screen may not be suitable for a monochrome screen.

This customization could be performed by editing the resource file, but that
process is tedious and not easy to reverse. It could also be performed by
maintaining two resource files, with the XENVIRONMENT or XAPPLRESDIR variable
used to select the proper one. Unfortunately, that would mean that a user must
maintain duplicates of many files and be continually changing the variable's
value.

427

428 Programming with Motif

a program class, while running programs are instances of that class. By
identifYing resources with a particular instance - by the instance's invocation
name, for example - a single resource file can contain multiple sets of
resources.

How the Resource Manager Finds Resource Specifications

One of the responsibilities of X tIn i t i ali z e is the creation of a resource database.
This database is compiled from several sources, ranging from program-specific
resource fIles to system-wide defaults fIles. When this compilation process is
complete, the resource database holds a large number of complete and partial
widget-name/resource-name specifications, with associated values.

To find the specification that applies to a particular widget and resource, the
resource manager builds two completely speCified strings, as shown in Listing
16.1.1 The first string is made from object names, starting with the name of the
program as passed to X tIn i t i ali z e and ending with the resource name. The
second string is made from class names, starting with the program's class name
as passed to X tIn i t i ali z e and ending with the class name of the resource.

The resource manager then searches for all resource specifications that match a
union of the two fully specified strings. In Listing 16.1, "*.editMode" matches, as
does "* .XmText.editMode", but "* .Ix.editMode" doesn't ("Ix" may be assumed to be
the name of another widget, in some other program). From this list of possible
specifications, the resource manager selects the best match - the single
specification that most explicitly specifies the widget. If two specifications are
equally expliCit, the resource manager selects the last one read.

Listing 16.1. Resource manager name templates

edit.MainWin.WorkWinSW.WorkWin.editMode

TextEdit.XmMainWindow.XmScrolledWindow.XmText.EditMode

Program Instance Names

From the above description, you can see that the name parameter of
XtInitia1ize specifies the program name used to construct the object-name
search string, while the c1 ass parameter is used to construct the object-class
search string. You can also see that, if the program is invoked under different
names, it can use different sets of resources. This is demonstrated below, where
a single program's resource fIle contains one set of resources identified by the
program class name and another identified by a particular invocation name.

One point that may not be clear, but which is vitally important, is that the
default name of a. out can cause the resource search to fail. Listing 16.2

1 This example is the text editor's main window. Note that the program name is "edit", not
"a.out".

Resources Revisited 429

presents the problem: with the default program name, the object-name string
appears to have six components, while the object-class string has five. This
difference is because the resource manager has no way to distinguish between a
program named "a. out" and a program named "a" that has a main-window
widget named "out". In many cases, this is not a problem - the default program
name has been used throughout this book without confusing the resource
manager. However, in cases such as command-line options, whicb are impliCitly
prefixed by the program name, a program name of a. out will result in resource
lookup failure.

Listing 16.2. Name templates, with error arising from program
name a.out

a.out.MainWin.WorkWinSW.WorkWin.editMode

TextEdit.XmMainWindow.XmScrolledWindow.XmText.EditMode

The -name Command-Line Option

While the ability to invoke a program under a different name to use different
resources seems useful, in practice, it isn't. This is because a user typically
cannot change the name of a production program - it is stored in a read-only
directory. While the user could copy the original program or simply attach a link
to it (under UNIX), such operations are inelegant. Instead, the toolkit provides
the - n a me command-line option, which changes the effective invocation name of
the program. Listing 16.3 presents the format of this option, along with one of its
more common uses: selecting the black-and-white resource set for the Motif
window manager.

Listing 16.3. Use of the -name command-line option

progname -name instance_name

mwm -name 'mwm-bw'

Example: Two Sets of Resources for One Program

Figure 16.1 presents two examples of a label widget, with different resources
specified by instance names. Notice that the window frame's title bar contains
the instance name: 16.l(a) was invoked under the default name (a. out), while
16. 1 (b) was invoked with the name 16_04.

430 Programming with Motif

Figure 16.1. Two labels with different instance names

World
- 8 -

- b-

Listing 16.4 presents the program and resource file used to produce Figure 16.1:
the program simply creates a label. In the resource file, one set of resources is
identified by the pro~ram's class name ("Listing,...16_04"l, while the other is
named using "16_04". The fIrst set is effective for any invocation - the resource
manager win always be able to match the class name. The second set is only
effective when the program is invoked with the name "16_04" - whether by use
of the -name command-line option or by an actual executable name.

2 Note also that there is no "*" at the beginning of the resource specifications - these
specifications fully identify the widgets.

Resources Revisited 431

Listing 16.4. Program and resource fIle: Instance name
example

1***
**
** listing_16_04.c
**
**
**
**
**

Example of program instance names. This program simply creates a
label. Its resource file, however, contains resources for both
its class name ("Listing_16_04") and an instance name ("16_04").

**
**
**
**
**
**
**

***/

Ifi ncl ude <Xm/Label. h>

Widget appshell,
thclbl;

void main(argc, argv
int argc;
char *argv[];

/* Application Shell
/* The Label

appshell = XtInitialize(argv[O], "Listing_16_04", NULL, 0,
&argc, argv);

the_lbl = XmCreateLabel(appshell, "TheLbl", NULL, 0);
XtManageChild(the_lbl);

XtReal i zeWidget(appshell);
XtMainLoop();

Resource file for Instance Name example (Fig 16.1)

Listing_16_04.TheLbl.width:
Listin9-1L04.TheLbl.height:
Listing_16_04.TheLbl.foreground:
Listing_16_04.TheLbl.background:
Listing_16_04.TheLbl.fontList:
L i sti ng_1L04. TheLbl .1 abel Stri ng:

100
50
White
Black
-*-helvetica-medium-o-*--*-140-*
Hello

*/
*/

432 Programming with Motif

Listing 16.4. Continued.

16 04. TheLbl.width:
16_04.TheLbl.height:
16_04.TheLbl.foreground:
16_04.TheLbl.background:
16_04. TheLbl . fontL i st:
16_04. TheLbl .1 abel Stri ng:

Command-Line Options

50
100
Black
White
-*-times-medium-r-*--*-140-*
World

One of the ways that a user conveys information to a program is by the use of
command-line arguments: the C compiler. for example. accepts arguments for
everything from the name of the file to macro defmitions. In a typical C program.
these command-line arguments are accessed by the a rgc and a rgv parameters of
ma in. While this mechanism is available to a Motif program. the toolkit provides
another: a list of options that are recognized by X tIn i t i ali z e.

An X program has a long list of standard options. ranging from -dis P 1 a y to - f g.
These options are recognized by X tIn i t i ali z e and are used to initialize
application or widget resources. A program may specify a list of additional
options to Xt I nit i ali ze. thus adding application-specific options to the standard
set.

The usefulness of this capability depends on the program. If. for example. users
are constantly changing resource values with the -x rm command-line option.
they will almost certainTy appreciate a resource-specific option (eg. - f 0 n t 1 i s t).
On the other hand. it is easy to produce a long list of options that are never
used.

Another Look at XtInitialize

As you will recall from Chapter 4. the prototype of X tIn i t i ali z e is as shown in
Listing 16.5. The opti ons and num_opts parameters have not yet been used in
this book and have been passed as NULL and zero. respectively. They exist for
programs that provide additional command-line options and specify an option
description array.

Resources Revisited 433

Listing 16.5. Function prototype: Xtlnitialize

Widget Xtlnitialize(name, class, options, opt_count, argc, argv)
char
char
XrmOptionDescRec
Cardinal
Cardinal
cha r

*name;
*class;
options[];
num_opts;
*argc;
*argv[] ;

Option Description Array

The option description array is an array of XrmOptionDescRec structures. as
defined in Listing 16.6. Each item in this array links an option string with a
resource specification. which may identify either a program or widget resource.
When the option string is encountered on the command line. the associated
resource is set; the description record specifies the way that the resource is set
(ie. does the option alone set the resource. or does it have an associated value).

Listing 16.6. Type definitions: XrmOptionDescRec,
XrmOptionDescList

typedef struct
(

String
String
XrmOptionKind
caddr_t
}

XrmOptionDescRec,
*XrmOptionDescList;

option;
specifier;
argKind;
va 1 ue;

The 0 p t ion member specifies the string used to invoke the option. This string
may be any length and use any printable characters. but it should follow the
UNIX convention of starting with a hyphen (" -"). X tI nit i ali z e will recognize any
unique abbreviation ofthe option (eg. -di sp for -di spl ay). but contracted names
(eg. -fg for -foreground) must be specified expliCitly. Note also that a program
specified option may not have the same name as one of the standard options; if
this is attempted. the standard option takes precedence.

The s pe c if i e r member identifies the resource changed by the option. It is
identical to the widget-name/resource-name specification of a resource file and
may contain wildcards or class names. The resource manager prefixes this
specification with the program's instance name. If the specification begins with a

434 Programming with Motif

star, it is applied to any matching widget; if it begins with a dot, it is applied to
the application shell only.

The argKind member describes how the option's value is specified. It must be
one of the following constants:

•

•

•

•

•

•

•

Xrmopti onNoArg. The option's value may not be specified on the command
line. Instead, it is specified by the value member of XrmOptionDescRec.
This mode is typically used for Bool ean options.

XrmoptionIsArg. The option string is itself the argument. This type of
option is rarely used because it must serve both as identifier and value.
Even the case of an option such as -deb u 9 may be better handled with
XrmoptionNoArg.

XrmoptionStickyArg. The option's argument is appended to the option.
This method of option specification is often used by UNIX programs (for
example, the C compiler's -1 flag: -1 Xm).

Xrmopti onSepArg. The option's argument is the next argument on the
command line. This is the most common method of specifying arguments
(eg, "-fg Black").

Xrmopti onResArg. The option's argument is a complete resource
specification. This mode exists for the implementation of the -x rm option;
it is rarely used elsewhere.

Xrmopt i onSki pArg. This mode specifies that both the option and the next
argument are to be ignored. It is often used in development testing: by
changing a real option to a dummy "ignore" option, the program may be
tested both with and without the option, without extensive cJianges to the
command line.

XrmoptionSkipLine. This mode specifies that the option and the rest of
the command line is to be ignored. It is often used for the same reason as
XrmoptionSkipArg.

The val u e member specifies a default value for the option. It is a pOinter to
program data, which must be of the proper type (ie, no conversions are
performed on this value). If this member contains NULL, the resource value
defaults to that specified by the resource fIle.

Example: Height and Width by Command-Line Option

Listing 16.7 presents a program that makes use of command-line options. It is
simply another copy of the "Hello World" program, which allows for - hei ght and
- wid t h options. These options store the next command-line argument in the
label's hei ght or width resource. They are defined at the beginning of the
program and installed by the call to X tIn i t i ali z e.

Resources Revisited 435

Listing 16.7. Program and resource fIle: Command-line
options example

1***

**
**
**
**
**
**

listin9-1L07.c

Command-line Options example. This program accepts options to
change the width and height of its label.

**
**
**
**
**
**

***/

1/include <Xm/Label.h>

Widget

XrmOptionDescRec

appshell,
the_label;

cmd_options[]
{

} ;

"-height",
"*TheLabel.height",
XrmoptionSepArg,
NULL
} ,
{

"-width",
"*TheLabel.width" ,
XrmoptionSepArg,
NULL
}

436 Programming with Motif

Listing 16.7. Continued.

void maine argc. argv
int argc;
char *argv[];

appshell = Xtlnitialize(argv[O], "Listing_16_07",
cmd_options, XtNumber(cmd_options),
&argc, argv);

the_label = XmCreateLabel(appshell, "TheLabel", NULL, °);
XtManageChild(the_label);

XtRealizeWidget(appshell);
XtMainLoop();

Resource Converters
A Pi xel value is a 32-bit unsigned integer, but colors are specified in the
resource me by name. How, then, does the resource manager convert from string
to colormap index? The answer is that it uses a resource converter, which is
passed an ASCII string holding the color name. This converter searches the color
database for the entry corresponding to that name, allocates a colormap cell for
the color, and stores the cell index in the specified widget resource.

In most cases, the resource conversion process is transparent to the
programmer and user: the resource manager comes "preloaded" with converters
for most data types. In some cases, such as with the unitType resource, the
converter exists but is not loaded into the resource manager. In this case, the
programmer must explicitly load the resource converter to allow the specification
of such resources in the resource me.

In still other cases, the existing converters may not be sufficient for the job. For
example, the converter used to set XmSt ri ng resources only accepts a single-line
string, while compound strings can contain multiple lines. If a program uses
widgets with multiline strings, the programmer must write and install an
appropriate converter. 3

Representation Types

Each resource converter converts a value of one type to a value of another type
- for example, an ASCII string (S t r i n g) to a colormap index (P i x e 1). These data

3 This is true under Motif 1.0 only. Motif 1.1 has an installed converter for multiline
strings.

Resources Revisited 437

types are identified to the resource manager by representation types: strings that
uniquely identify a particular data type. In many cases, the representation type
name identifies the data type: XmRXmStri ng represents compound strings. In
others, the representation type name identifies the context in whicn the
underlying type is used: XmREditMode represents an unsigned char used with the
XmText edi tMode resource.

Like resource names, each representation-type string is identified by a constant,
prefixed by "XmR", and defined in the header file Xm/Xm.h.4 Table 16.1 lists the
representation-type constants from Xm. h, with their corresponding data types
and any usage comments. 5

Table 16.1. Representation types

Constant Data Type Comment

XmRAccelerator XtAccelerator Core: accel era tors
Table Table X~~ctionBac textAccelerators

XmRAlignment unsigned char XmLabel: ali gnment
X~essageBac messageAlignment
XmRowColwnn: entryA 1 i gnment

XmRArrow unsigned char XmArrowButton: a rrowDi rect ion
Direction

XmRBool Boolean Boo 1 is the Xlib version of Boo 1 ea n.

XmRBoolean Boolean

XmRCallback XtCall backL i st Callbacks may not be specified in a
resource fIle; this type exists primarily
for internal conversions

XmRCallProc Special Indicates that the associated value is a
pOinter to a function, which will
supply the correct value when called at
runtime.

XmRChar char

XmRColor XColor Contains RGB specification for a color;
intermediate step in conversion of a
named color to a Pixel value

XmRCursor Cursor Cursors are selVer resources; this type
is a selVer resource ID

4 For Xt-based programs, these constants are defined in Xll/Stri ngdefs. h and begin with
"XtR" instead of "XmR".

5 Many of these representation types are specific to a particular widget resource (or
identical resources for multiple widgets). Where this is the case, the Comment entry
contains KXXX: YYY" - KXXX" is the widget class name, and KYYY" is the resource
name. Some types may be used for more than one widget; each of the widget/resource
pairs is listed.

438 Programming with Motif

Table 16.1. Continued.

XmRDefaultButton unsigned char X~essageBox defaultButtonType
Type

XmRDialogStyle unsigned char XmBulletinBoard: d i a log Sty 1 e

XmRDialogType unsigned char XmSelectionBox d i a log T y P e

XmRDimension Dimension Equivalent to uns i gned

XmRDisplay Display* Used by Xlib drawing functions

XmREditMode unsigned char XmText edi tMode

XmRFile FILE* Used by C's buffered I/O library

XmRFont Font Xlib-Ievel fonts, not font-lists

XmRFontList XmFontList

XmRFontStruct XFontStruct* Used for Xlib text handling

XmRFunction (*) () Genertc function pOinter, used for
internal conversions

XmRGeometry String Strtng representation of window
geometry; used by XGeometry and
XPa rseGeomet ry functions

XmRlmmediate Special Indicates that the associated value is
to be used

XmRlndicatorType unsigned char XmToggleButton: i ndi catorType

XmRlnt int

XmRJustify Specia7 Defmed by Intrtnsics but not used

XmRLabelType unsigned char XmLabel: 1 a be 1 Type

XmRListSize unsigned char XmList: 1 i stSi zePol icy
Policy

XmRLongBoolean long A boolean value stored in a C long
integer

XmRMenuWidget Widget XmCascadeButton: subMenuld
XmRowColumn: various

XmROrientation unsigned char XmRowColumn: ori entat ion
XmScale: orientation
XmScrollBar: ori entat ion
XmSeparator: ori entati on

XmRPacking unsigned char XmRowColumn: pac kin g

XmRPixel Pixel Colormap index

Resources Revisited 439

Table 16.1. Continued.

XmRPixmap Pixmap Server resource ID; pixmap
characteristics (eg, depth) depend on
screen

XmRPointer Xtpointer Generic data pOinter

XmRPosition Posit ion

XmRProcessing unsigned char X~~ processingDirection
Direction X~rollBar: process i ngDi rect ion

XmRResizePolicy unsigned char ~ul~tinBoard: resizePolicy
XrnCo~ resizePolicy
XmDrawingArea: resi zePol i cy

XmRRowColumn unsigned char XmRowColunm: rowCol umnType
Type

XmRSeparatorType unsigned char XmSeparator: separatorType

XmRShadowType unsigned char XmBul~tinBoard: shadowType
XmDrawnButton: s had owTy p e
X~ame: shadowType

XmRShort short

XmRString String NUL-terminated ASCII string; the type
for all conversions from a resource file

XmRString unsigned char XmBul~tinBoard: stringDirection
Direction XmLabel: stri ngDi recti on

XmList stri ngDi rect ion

XmRStringTable StringTable Array of NUL-terminated ASCII strings;
Don't confuse with XmStri ngTab 1 e

XmRTranslation XtTranslations Core: translations
Table XmBul~tinBoard: textTranslations

XmRUni tType unsigned char XmManager: un i tTy P e
XnU1inUtive: unitType

XmRUnsignedChar unsigned char

XmRVisualPolicy unsigned char XmScro~dWindow: vi sual Pol icy

XmRWhichButton unsigned int XmRowColunm: w hi c h Butt 0 n

XmRWindow Window Server resource ID

XmRXmString XmString Compound string

XmRXmStringTable XmStringTable Array of compound strings

Preinstalled Conversions

Motif provides a set of resource converters that are installed at the time a
program starts. Many of these converters are defmed by the toolkit; others are

440 Programming with Motif

specific to Motif. Table 16.2 lists these default conversions by their
representation types.6

From Type

XmRColor

XmRlnt

XmRPixel

XmRString

Table 16.2. Preinstalled conversions

To Type

XmRPixel

XmRBool

XmRBoolean
XmRColor
XmRFont
XmRPi xel

XmRPixmap

XmRColor

XmRAcceleratorTable
XmRAlignment
XmRArrowDirection
XmRAttachment
XmRBool
XmRBoolean
XmRChar
XmRCursor
XmRDefaultButtonType
XmRDeleteResponse
XmRDialogStyle
XmRDialogType

XmRDimension

XmRDisplay

XmREditMode

XmRFile
XmRFont

6 There are actually more conversions than those shown: the additional conversions store
values into particular widget resources and are used internally by the widgets that
define them.

Table 16.2. Continued.

XmRFontList
XmRFontStruct

XmRlndicatorType

XmRlnt
XmRKeyboardFocusPolicy

XmRLabelType

XmRListSizePolicy

XmROrientation

XmRPacking

XmRPixel

XmRPixmap

XmRPositi on

XmRProcessingDirection

XmRResizePolicy

XmRRowColumnType

XmRScrollBarDisplayPolicy
XmRScrollBarPlacement

XmRScrollingPolicy

XmRSelectionPolicy

XmRSeparatorType
XmRShadowType
XmRShellUnitType

XmRShort

XmRStringDirection

XmRTranslationTable

XmRUnsignedChar

XmRVisualPolicy

XmRWhichButton

XmRXmString

XmRXmStringTable

Resources Revisited 441

442 Programming with Motif

Installing a Converter

While Motif provides a large number of installed converters, you may need to
explicitly install a converter. One such converter is the function
XmC vtSt r in gTo U nit Type, introduced in Chapter 6. If you write your own
converter, it also must be explicitly installed.

To install a converter, the program calls the function X tAd d Con v e r t e r, prototyped
in Listing 16.8. 7 This function takes as parameters the representation types that
the converter converts between (from_type, to_type) a pointer to the converter
function (proc) and an optional array of arguments (args, with num_args
containing the number of items in this array).

Listing 16.8. Function prototype: XtAddConverter

void XtAddConverter(from_type, to_type, proc, args, num_args)
String from_type;
String to_type;
XtConverter proc;
XtConvertArgRec args[];
Cardinal num_args;

The a r 9 s array is used when the converter requires contextual information to
perform the conversion. For example, a String-to-Pixel converter needs access
to the widget's window to access its colormap. For such a conversion, a r 9 s would
contain references to the appropriate widget resources. For a different
conversion, it might contain references to program variables.

If args is used, it is an array of XtConvertArgRec structures, defined in Listing
16.9; if not used, pass NU LL. Each converter uses a particular set of arguments,
which must be presented in an expected order. As you will see below, converters
access their arguments by position only, and XtConvertArgRec contains no
identification data.

7 For XllR4. use the functions XtSetTypeConverter or XtAppSetTypeConverter.

Resources Revisited 443

Listing 16.9. Type definitions: XtConvertArgRec,
XtConvertArgList

typedef struct
(

XtAddressMode address_mode;
caddr_t address_id;
Cardinal size;
)

XtConvertArgRec.
*XtConvertArgList;

The address_id member contains the value of the argument. It is either a
pointer, an offset, or an immediate value, depending on the contents of
address_mode. The size member specifies the size of the argument data, in bytes.
The add ress_mode member specifies how the contents of address_ i d are used. It
contains one of the following constants:

• XtAddress. The argument value exists in program memory, and
address_ i d contains a pointer to that value. The pOinted-to data must be
a static variable; address_i d must not point at something that can move
while the program is running.

• XtBaseOffset. The argument is part of a widget's internal data, and
address_id contains an offset from the base of a widget. This type of
argument is used by widget writers only. Applications programs should
instead use XtResourceStri ng.

• Xtlmmedi ate. The address_i d member contains the value itself. Note that
such items are limited to the size of a data pointer - on most systems,
four bytes.

• XtResourceString. The address_id member contains a pointer to a NUL
terminated character string, which specifies the name of a widget
resource. This name is converted into an offset by the resource manager.
Note that the s i z e member does not specify the size of the name string,
but the size of the resource.

• XtResourceOuark. The address_id member contains a quark ID that
represents the name of a widget resource. As with XtResourceStri ng, the
resource manager converts the quark into an offset; the s i z e member
specifies the size of the resource.8

8 Quarks are integer values associated with character strings. They exist so that string
comparisons may be replaced by integer value comparisons and are described in detail
below.

444 Programming with Motif

As an example, Listing 16.10 contains a code fragment that registers a string-to
pixel converter.9 This conversion requires the widget's screen and colormap
resources as context, and these are retrieved from the widget itself by way of
conversion arguments. The code fragment sets up an argument list, then installs
a converter using those arguments.

Listing 16.10. Converter installation

static XtConvertArgRec string_to_pixel_args[] =

(

XtResourceString, XmNscreen, sizeof(Screen*) },
XtResourceString, XmNcolormap. sizeof(Colormap)

XtAddConverter(XmRString. XmRPixel. CvtStringToPixel.
string_to_pixel_args. 2);

Writing a Converter
While Motif provides a large number of prebuilt conversions - and the Xmu
library provides more - there may be times when you need a conversion that
does not exist. An example is the ability to specify a multiline compound string
in a resource file - the converter provided with Motif 1.0 does not do this. In
such a case, you must write and install your own converter.

Converter Function Prototype

Conversion functions all follow the same prototype, shown in Listing 16.11.10 Its
parameters represent the argument array passed to X teo n v e r t e r (a rg s,
num_a rgs), the source object (from), and the destination object (to). The converter
reads the contents of the source object, performs the conversion, and returns a
pointer to the converted value. The resource manager is responsible for setting
up the source and copying the converted value into the destinationY

9 This converter is, in fact, the preinstalled string-to-pixel converter defined by Xt. Since it
is installed at program startup, there would be no need for a real program to install it
explicitly.

10 This function prototype has changed for X11R4. The new prototype takes a display
pOinter, as well as a pOinter to space that the converter can use for the conversion. In
addition, R4 conversion provides a more elegant method of memory' allocation and
deallocation.

11 An important point of this process is that the resource manager does not give the
converter a pOinter to the destination object. This minimizes the possibility that a
converter will damage the destination, and it allows an intelligent resource manager -
which does not yet exist - to perform a complex conversion by invoking several
converters (eg, the Stri ng-to-Pi xel conversion could be performed as Stri ng-to-XCol or,
followed by XCol or-to-Pi xel).

Resources Revisited 445

Listing 16.11. Function prototype: Resource converter

void funcname(args, num_args, from, to)

XrmValuePtr args;
Cardinal *num_args;
XrmValueptr from;
XrmValueptr to;

Note that the parameters args, from, and to are of type XrmVal uePtr, defined
with XrmVal ue in Listing 16.12. The XrmVal ue type is used because the resource
manager resolves all references before calling the converter function. These
resolved references may be then be accessed by their address (a d d r) and size
(s i ze) - there is no need for the converter function to perform address
resolution itself.

typedef struct
{

Listing 16.12. Type defInitions: XnnValue, XnnValuePrr

unsigned int size
caddr_t addr;
}

XrmValue,
*XrmValuePtr;

Example: Multiline xmStrings

Figure 16.2 presents a label that displays a two-line compound string. As stated
above, Motifs built-in St ri ng-to-XmSt ri ng conversion does not permit such a
string to be specifled in the resource fIle. To provide such functionality, a new
converter is needed.

446 Programming with Motif

Figure 16.2. Multiline label

Hello
World!

This new converter - and the program that uses it - is presented in Listing
16.13. A complete description follows the listing.

Listing 16.13. Program and resource fIle: Multiline label
example

1***

**
**
**
**
**
**
**

String-to-XmString converter example . This converter allows a
program to specify multi-line XmStrings in a resource file. It
is used in the context of "Hello. World".

**
**
**
**
**
**
**

*** /

IIi ncl ude <Xm / Label. h)

void CvtStringToXmString();

Widget appshell.
a_l abel.
the_label;

/ * FORWARD Definition

/ * Application Shell
/ * Dummy label
/ * The real 1 abel

* /

* /
* /
*/

Resources Revisited 447

Listing 16.13. Continued.

void main(argc, argv

/**

**/

int argc;
char *argv[J;

appshell = XtInitialize(argv[OJ, "Listing_16_13", NULL, 0,
&argc, argv);

a_label = XmCreateLabel(appshell, "ALabel", NULL, 0);
XtDestroyWidget(a_l abel);

XtAddConverter(XmRString, XmRXmString, CvtStringToXmString,
NULL, 0);

the_label = XmCreateLabel(appshell, "TheLabel", NULL, 0);
XtManageChild(the_label);

XtRealizeWidget(appshell);
XtMai nLoop();

CvtStringToXmString(args, num_args, from, to)

Converts ·String" data (NUL-terminated ASCII strings) to
"XmString" data (compound strings). Recognizes the sequence
"\n" as an embedded newline, allowing the compound string
to have multiple lines.

Notes:
The parameters "args" and "num_args" are not used by this
conversion.

- The maximum size of the compound string is 1024 bytes. This
limit is imposed by the fact that the string is copied into
a 1 oca 1 buffer.

void CvtStringToXmString(args, num_args, from, to)
XrmValue *args;

448 Programming with Motif

Listing 16.13. Continued.

Cardi nal
XrmValue
XrmValue

*num_args;
*from;
*to;

static char lcl_buf[1024];
static XmString lcl_ptr = lcl_buf;
XmString xms;
String str;
int siz;

str (String)from->addr;
xms XmStringCreateLtoR(str. XmSTRING DEFAULT_CHARSET);
siz XmStringLength(xms);
if (siz < 1024)

{

memcpy(lcl_buf, xms, siz);
to->addr (caddr_t)&lcl_ptr;
to->size = sizeof(XmString);

else
{

to->addr NULL;
to->size 0;
)

XmStringFree(xms);

Resource file·to produce Figure 16.2

*TheLabel . hei ght: 50
*TheLabel.width: 100
*TheLabel . background: White
*TheLabel . foreground: Bl ack
TheLabel . fontL i st: --times-medi um-r-*- -*-140-*

*TheLabel.labelString: Hello\nWorld!

The first point of interest is the creation of a dummy label. a_l a be 1. This is
required because converters are installed by the initialization function of first
widget class that uses the type. In the case of XmStri ng, this installation happens
in the initialization function of XmLabel. If the program simply installed its
converter and created t h e_l abe 1, the default converter would replace the
program's converter. By creating the dummy label first, the class is initialized

Resources Revisited 449

and its converter is installed. The program can then install its own converter in
place of the default converter and have it available for creation of the "real"
label. 12

Once the default converter has been installed by the XmLabel initialization code,
the program can install its own converter. Each call to XtAddConverter
supersedes the previous call, so the program's own converter replaces the
default converter. Note that no additional arguments are passed to the converter
- this conversion does not require context aata.

While Stri ng-to-XmStri ng conversion would seem straightforward -
XmStri ngCreateLtoR does the actual work - it actually manages to demonstrate
many of the quirks in the XIIR3 resource manager. The function
C v t S t r i n 9 T 0 XmS t r i n 9 performs this operation, and it will be examined in detail.

The first point to note is the static buffer, 1 cl_buf. This buffer is required
because the function is responsible for deallocating all memory that it allocates
- if it doesn't, that memory is simply 10st. 13 As a result; instead of simply
returning the string produced by XmStringCreateLtoR, this function must copy
that string into a local buffer, then explicitly deallocate it. If it is too big to fit in
the local buffer, the converter fails. Note that, once the string has been copied to
the static buffer, it is deallocated.

The resource converter is responsible for returning a pointer to the converted
value. For a compound string, this value is an XmStri ng Variable, which is itself a
pointer. Thus, the static variable 1 cl_ptr is used to point at the compound
string data.14

When the converter returns, the resource manager essentially calls XtSetVa 1 ues.
The widget then makes a copy the compound-string data, using the returned
pointer. Subsequent calls to the converter can therefore reuse the static buffer.

Displaying Error Messages

A conversion may fail for any number of reasons. In the example above, it will
fail if the string is too long to fit in the static buffer. In the case of a symbolic
constant conversion, it could fail if the user misspelled the constant. To alert the
user to such errors, the toolkit provides the functions XtWarningMsg and
XtStringConversionWarning, both of which are prototyped in Listing 16.14.15 The
first is a generic warning message; the second is used by converters that convert
from X mRS t r i n 9 to another type and produces "boilerplate" output. Both
functions are simply warnings; they send text to standard error, but do not
terminate execution of the program

12 Most of the preinstalled converters are installed by X tIn i t i ali z e as part of the
AppUcationSheU class initialization.

13 One of the primary complaints about X as a whole is the fact that such memory leaks
are prevalent. One of the major improvements in the XIIR4 resource conversion
process is the ability to register a destructor function, which deallocates memory
allocated by the converter.

14 Note, however, that for a Stri ng variable, a converter must return a pOinter to the
actual NUL-terminated string.

15 XIIR4 uses XtAppWa rn i ngMsg and XtDi sp 1 ayStri ngConvers i onWa rni ng.

450 Programming with Motif

Listing 16.14. Function prototypes: XtWamingMsg,
XtStringConversionWaming

void XtWarningMsg(name. type. class. default. params. num_params)
String name;
String type;
String class;
String default;
String *params;
Cardinal *num_params;

void XtStringConversionWarning(src. dst_type)
String src;
String dst_type;

XtWarni ngMsg provides a general error-output facility. The name, type, and c1 ass
parameters are used to identify a message within the error database. 16 The
de f au 1 t parameter specifies a default string, to be used when the error database
does not contain a string. This string is output with p r i n t f and may contain
string-output placeholders ("%s"); the pa rams parameter points at an array of
strings to be output in these placeholders. The number of items in the pa rams
array is pointed to by the num_params parameter.

The X t S t r i n gC 0 n v e r s ion Wa r n i n 9 function is a convenience function, used only by
resource converters that have a source of XmRString. It prints a standard error
message into which is inserted the strings pointed to by the src and dst_type
parameters: src contains the input string (from-)addr), and dst_type contains
the name of the destination type (eg, "XmString").

Listing 16.15 contains a modification to the CvtStri ngToXmStri ng function, to
produce an error message when the converted string is too long to fit into the
static buffer. The first part of this listing contains the call to X tWa rn i n 9 M s g, while
the second contains the message.

16 On a UNIX system. this database is stored in the file /usrll i b/Xll/XtErrorDB. It is a
text file. containing error strings identified by class, name, and type (in that order). The
default class for toolkit warnings is "XffoolkitError"; the name and type depend on the
specific function and are listed in the document X Toolkit Intrinsics - C Langunge
Interface. This file may be modified for site-specific applications; such modifications
should be appended to the supplied file (note. however. that many sites do not have an
XtErrorDB file).

/**

**/

Resources Revisited 451

Listing 16.15. Error-output modification to
CvtStrlngToXmString, with output

CvtStringToXmString(args. num_args, from, to)

Converts ·String" data (NUL-terminated ASCII strings) to
"XmString" data (compound strings). Recognizes the sequence
"\n" as an embedded newline, allowing the compound string
to have multiple lines.

Notes:
- The parameters "args" and "num_args" are not used by this

conversion.
- The maximum size of the compound string is 1024 bytes. This

limit is imposed by the fact that the string is copied into
a 1 oca 1 buffer.

void CvtStringToXmString(args, num_args, from, to)
XrmValue *args;
Cardinal *num_args;
XrmValue
XrmValue

*from;
*to;

static char lcl_buf[1024];
static XmString lcl_ptr = lcl_buf;
XmString
String
int
String
Cardinal

xms;
str;
siz;
params[1];
num_params;

str (String)from->addr;
xms XmStringCreateLtoR(str, XmSTRING_DEFAULT_CHARSET);
siz XmStringLength(xms);
if (siz < 32)

else

{

memcpy(lcl_buf, xms, siz);
to->addr (caddr_t)&lcl_ptr;
to->size sizeof(XmString);
}

452 Programming with Motif

Listing 16.15. Continued.

params[O] = str;
XtWarningMsg("conversionError", "cvtStringToXmString",

"ApplicationError",
·String \"%s\" too long to convert to compound string\n",
params, &num_params);

to->addr NULL;
to->size = 0;
l

XmStringFree(xms);

X Tool kit Warning: String "Hello
World!" too long to convert to compound string

The primary change is the addition of a call to XtWarningMsgY Since I wanted
the warrling to display the invalid string, variables (params and num_params) were
defined in order to pass the string to the message. Note that the warning
message is broken into two lines as a result of the newline in the original string.
Note also my choices for the name and type parameters: they follow the
convention used by the toolkit functions and documented by the intrinsics
reference manual.

You may be wondering why I used XtWarningMsg instead of
XtStringConversionWarning. The reason is that I wanted to provide more
information about the error (that the string was too long), but
XtSt ri ngConvers i onWa rni ng does not allow that level of detaiI,18

Quarks
Most of the conversions performed by the resource manager involve translating
an ASCII string into a constant value - for example, converting the string
"ATIACH_FORM" into the constant XmATTACHJORM. While this conversion may be
performed using string comparisons, such comparisons tend to be inefficient -
especially if all applicable strings are similar (as the form attachment constraints
are). For this reason, the X resource manager provides quarks, integer values
that represent NUL-terminated ASCII strings.

To use quarks instead of string comparisons, the program must first "quarkify"
the acceptable strings and store the quark values. To make a comparison, the
program converts the test string to a quark and compares that quark against the

17 An additional change, required to make the warning appear with the existing resource
file, was reducing the allowed string size from 1024 bytes to 32.

18 It Simply prints the message "Carmot convert string ''YYY'' to type XXX."

Resources Revisited 453

saved values. Thus, the process of comparing individual string bytes is reduced
to a process of comparing integer values - along with a single lookup to
"quarkify" the test string. 19

Two functions are provided to convert between strings and quarks:
XrmStri ngToQua rk and XrmQua rkToStri ng, both of which are prototyped in Listing
16.16. The first takes a string pointer as its parameter and returns a quark
value; it is the function used most often. The second takes a quark as its
parameter and returns a pointer to its associated string; it is used primarily for
debugging and runtime error messages.20

XrmQuark

String

Listing 16.16. Function prototypes: XrmStringToQuark,
XrmQuarkToString

XrmStringToQuark(str)
String str;

XrmQuarkToString(quark
XrmQuark quark;

Example: Unit-Type Conversion

While Motif already provides a Stri ng-to-Uni tType conversion, such a conversion
presents a good example of the use of quarks. Listing 16.17 contains such a
converter; it is described in detail below the listing.

19 According to Asente & Swick (X Window System Toolkit, The Complete Programmer's
Guide and Specification, Digital Press), the process of converting a string to a quark
takes approximately twice as long as a string comparison. If the initial cost of
determining quark values for the legal strings is justified by the number of times the
converter is called, use of quarks can result in a relatively high time savings.

20 This string is stored in internal toolkit memory. If the program needs to modify it - or
use it over a long period of time - it should make a copy.

454 Programming with Motif

/**

**/

Listing 16.17. Resource converter that uses quarks

CvtStringToUnitType(args, num_args, from, to)

Converts "String" data (NUL-terminated ASCII strings) to
UnitType data. Recognizes five unit-type specifications:

PIXELS, lOOTH_MILLIMETERS, lOOOTH_INCHES, lOOTH_POINTS,
and lOOTH_FONT_UNITS.

Does not recognize any spellings other than those listed.

void CvtStringToUnitType(args, num_args, from, to)
XrmValue *args:
Cardinal
XrmValue
XrmValue

*num_args:
*from:
*to:

static unsigned char
static Boolean
static XrmQuark
XrmQuark

if (!inited)
(

TRUE:

val:
inited FALSE:
q_pixel, q_mm, q_inch,
q_test:

XrmStringToQuark("PIXELS"):

q_pt, q_font:

i nited
q_pixel
q_mm
q_inch
q_pt
q_font
}

XrmStringToQuark("IOOTH_MILLIMETERS"):
XrmStringToQuark("lOOOTH_INCHES"):
XrmStringToQuark("IOOTH_POINTS"):
XrmStringToQuark("IOOTH_FONT_UNITS"):

q_test = XrmStringToQuark((char*)from-)addr):
if (q_test == q_pixel)

val = XmPIXELS:
else if (q_test == q_mm)

val = XmlOOTH_MILLIMETERS:
else if (q_test == q_inch)

val = XmlOOOTH_INCHES:
else if (q_test == q_pt)

val = XmlOOTH_POINTS:
else if (q_test == q_font)

val = XmlOOTH_FONT_UNITS:
else

(

val = XmPIXELS:
XtStringConversionWarning((char*)from-)addr, "UnitType"):
}

Listing 16.17. Continued.

to->addr ~ (caddr_t)&val;
to->size ~ sizeof(unsigned char);

Resources Revisited 455

While the heading of this function is similar to that of CvtStri ngToXmStri ng, the
rest is quite different, starting with the initialization code. Such code is required
for any converter that uses quarks because the valid strings must be converted
to quarks before use. This is done the fIrst time that the function is called, and
the quark values are stored in static variables for later use.

Following the initialization code is the heart of the function. In a
fullyimplemented converter, the input string would be converted to uppercase
before "quarkffication" - this would give the user leeway in the actual resource
specmcation. For simplicity, that step is ignored here, which means that only the
specmed spellings are permitted.

If a match is found, the appropriate constant is stored in the value. If no match
is found, a warning message is displayed, and the value defaults to XmPIXELS.
Listing 16.18 contains such a warning, resulting from improper use of case in
the resource me. Notice again that the converted value is stored in a static
Variable, and the converter returns a pointer to that variable.

Listing 16.18. Sample output from XtStringConverswnWaming

X Toolkit Warning: Cannot convert string "IOOOTH_inches" to type UnitType

Using CODverters Outside the Resource Manager
Although this book - and common usage - uses the term resource converter,
that is not the correct term. The correct term is type converter, which avoids the
connotation that such converters are used only within the resource manager. In
fact, an installed converter may be used at any place within a program.

The benefIt of converter use is in hiding the details of a data type. In some cases,
such as Stri ng-to-XmStri ng conversion, this hiding is not needed: Motif already
provides conversion functions. In others, such as Stri ng-to-Pi xel, the converter
hides an enormous amount of detail (database lookup and colorcell allocation).

456 Programming with Motif

The XtConvert Function

To invoke a converter directly, a program calls the XtConvert function,
prototyped in Listing 16.19.21 The parameters to this function include a widget
(w), the representation types of the source and destination (from_type, to_type),
and pOinters to XrmVal ue structures for the source and destination (from, to).
The passed widget provides the resource manager with any contextual
information needed for argument resolution. In most .cases, the program can
pass the application shell.

Listing 16.19. Function prototype: XtConvert

void XtConvert< w, from_type, from, to_type, to)
Widget w;
String from_type;
XrmValue
String
XrmValue

*from;
to_type;
*to;

XtConvert invokes the appropriate resource converter, which is responsible for
performing the conversion. If conversion fails for any reason (eg, XtConvert
couldn't fmd an appropriate converter), an error message is output and to->addr
is set to NULL.

If conversion succeeds, the program must copy the value addressed by to -> add r .
if necessary using the size information in to->size. The program must not
attempt to modify the pointed-to value; as you have seen, it is part of the
converter's internal memory space.

Example: Color by Name

Listing 16.20 presents an example of direct invocation of the String-to-Pixel
conversion. The program itself is unexceptional: it creates a pushbutton and
attaches a function to its activation callback. The callback function, however, is
interesting: it changes the button's background color to a named color.

This conversion process is invoked from the function SetBackground, which is
called by the callback function. This function is responsible for preparing the
arguments and calling the converter. Once the conversion has taken place, it
uses XtSetVal ues to install the new color.

21 XllR4 replaces XtConvert by XtCall Converter.

Resources Revisited 457

Listing 16.20. Conversion example: Changing a pushbutton's
color in a callback

1***

**
**
**
**
Example of explicit converter calls. This program presents a
** pushbutton. Each time the button is pushed, its background
** color changes.
**

**
**

**
**

**
**
**

***/

#include <string.h>
#include <Xm/PushB.h>

void ButtonCB () ;
void SetBackground();

Widget appshell,
the_btn;

void maine argc, argv
int argc;
char *argv[];

1* FORWARD Definitions

appshell = XtInitialize(argv[O], "Listing_16_20", NULL, 0,
&a rgc, a rgv);

the_btn = XmCreatePushButton(appshell, "TheBtn", NULL, 0);
XtManageChild(the_btn);

XtAddCallback(the_btn, XmNactivateCallback, ButtonCB, NULL);

XtRealizeWidget(appshell);

*1

458 Programming with Motif

Listing 16.20. Continued.

XtMai nLoop();

void ButtonCB(w. client_data. call_data

/**

**/

Widget w;
caddr_t client_data;
caddr_t call_data;

static int cnum = 0;

switch (cnum++)
{

case 0

case 1

case 2

case 3

SetBackground(w. "Red");
break;

SetBackground(w. "Green");
break;

SetBackground(w. "Blue");
break;

SetBackground(w. "Black");
cnum = 0;
break;

SetBackground(w. cname)

Sets the "background" resource of widget "w" to the color
named by "cname",

void SetBackground(w. cname)
Widget w;
String cname;

XrmValue
Arg

from, addr

from. to;
a rg;

cname;

from.size
to.addr
to.size

Listing 16.20. Continued.

strlen(cname);
NULL;
0;

XtConvert(w. XmRString. &from. XmRPixel. &to);
if (to.addr !~ NULL)

{

Resources Revisited 459

XtSetArg(arg, XmNbackground, *(Pixel*)to.addr);
XtSetValues(w, &arg, 1);
}

Resource file for Color Conversion example

*TheBtn.height:
*TheBtn.width:
*TheBtn.background:
*TheBtn.foreground:
*TheBtn.fontList:
*TheBtn.labelString:

50
100
Black
White
-*-times-medium-r-*--*-140-*
Press Here

The Conversion Cache
While many conversions are simple in nature, others require extensive
processing or server communication. An example is the Stri ng-to-Pi xel
conversion: not only must it search for a name in the color database, but it must
also request a colorcell allocation from the server.

To prevent the loss of efficiency that would result from repetitive conversion of
the same data, the toolkit provides a conversion cache: a place where the
conversion results are stored. When the program or resource manager requests a
conversion, the cache is checked first. If the conversion has already been
performed, the cached result is returned; otherwise, the appropriate converter is
called, and its results are stored in the cache.

Under XII Release 3, conversion caching was an automatic process: when a
conversion was performed, the result was stored in the cache. This led to
inefficient use of the cache: in most cases, the conversion would either not be
repeated or was of such a simple nature that the result did not need to be
cached. Moreover, items were never removed from the cache, so the cache would
grow without limit.

460 Programming with Motif

Under Release 4, this situation was improved dramatically as part of the
complete redesign of the conversion mechanism. When registering a converter
under R4, the program can specify how its results are cached. Options include
permanent caching, caching until the associated display connection closes,
caching until the item is no longer used, and not caching the item.

Application Resources
Not only does the resource file provide an effective and easily modified method of
setting the initial state of a program's widgets, it may also be used to set
program variables. This is done with application resources, a technique whereby
program variables are identified to the resource manager, and it attempts to
initialize them.

Specifying Application Resources in the Resource File

Application resources are specified Similarly to widget resources, except that
they do not have an associated widget name. This results in a specification like
that in Listing 16.21, which specifies a value for the reverseVi deo resource of
the program MyProg.22 Note that, if the program name is not specified, it must be
wildcarded.

Listing 16.21. Sample application resource specification

MyProg.reverseVideo: TRUE

The Resource Structure

The resource manager is designed to access a widget's resources by their
location within the widget's internal data structure. To allow this behavior to
work with a program's variables, those variables must be contained in a data
structure that mimics a widget's internal data.

While this structure may be in any scope - global, static, or automatic - it is
most often global (or at least global to its source file). This is because the
resource description array, described below, must be initialized with addresses
derived from the resource structure.23

A program may have multiple application resource structures, each of which is
initialized by a separate call to XtGetApplicationResources. In fact, even if a

22 This is an application resource defined by the resource manager and used to control
the default values for the foreground and background resources of all of a program's
widgets.

23 The C compiler permits such allocation only when both data structures are statically
allocated, so that it can resolve offsets.

Resources Revisited 461

program defmes only one such structure, it actually uses multiple structures:
the toolkit and resource manager define their own application resources.

The Resource Description Array

Resources are declared as members of a data structure. They are identified to
the resource manager an as array of XtResource structures, defiried in Listing
16.22. Each element of this array describes a single resource: it specifies the
resource's name, class, and type, its position within the resource structure, and
its default value. As this array must be initialized before use, it is almost always
in global scope (but may be a static global).

Listing 16.22. Type definition: XtResource, XtResourceList

typedef struct

String
String
String
Cardinal
Cardinal
String
xtPoi nter
}

XtResource,
*XtResourceList;

resource_name;
resource_class;
resource_type;
resource_size;
resource_offset;
defaulLtype;
defaulLaddr;

The resource_name and resource_cl ass fields specify the name and class of the
resource. If the resource fits into one of the existing classes, you may find class
specification useful; if not, the resource's class may be specified as an empty
string.

The resource_type field is used to select an appropriate resource converter. It
must contain a valid representation type - one that is associated with a
registered converter. This may be one of the predefmed representation types, or
it may be an application-defined type (in which case the call to
XtGetApp 1 i cat i onResources must occur after the converter is registered).

The resource_s i ze and resource_offset fields are used to identify the resource,
relative to its structure: resource_offset contains the byte offset of the member,
and resource_si ze contains its size. Xll Release 3 provides the macro XtOffset
to calculate the offset; Release 4 provides X t 0 ff set 0 f .24

The default_type and default_addr members specify a default value for the
resource; this value is installed when the resource manager cannot fmd an

24 XtOffset takes a type pOinter, along with the member name (eg .. XtOffset((struct*),
mbr)); XtOffsetOf takes the name of the structure with the member name (eg,
XtOffsetOf(str, mbr lJ. ANSI compilers provide the offsetof directive, which I prefer to
either.

462 Programming with Motif

explicit specification. The defaul t_type member specifies the representation type
of the default value; if it differs from resource_type, the appropriate converter is
invoked. The defaul t_addr member contains an absolute pointer to a value of
that type.

Loading the Resource Structure: XtGetApplicationResources

The program loads its application resources by calling the
XtGetAppl i cati on Resources function, prototyped in Listing 16.23. This call must
occur after the call to X tIn i t i ali z e (which loads the resource database); it must
also occur after any needed converters have been registered. It will allocate any
memory needed for a resource (as for a compound string) and will install the
specified default values if resources cannot be found.

Listing 16.23. Function prototype: XtGetApplicationResources

void XtGetApplicationResources(w. base. resources. num_resources.
args. num_args)

Widget w'
XtPointer base;
XtResourceList resources;
Cardinal num_resources;
ArgList args;
Cardinal num_args;

The w parameter specifies a widget used to access the resource database. It is
needed because the databases associated with different servers may differ due to
the server's resource property. The application shell is a good widget to pass in
this parameter.

The base parameter specifies the address of the program's resource structure.
The address of its description array is passed in res 0 u r c e s, and the number of
items in that array is passed in num_resources.

Finally, a rgs and num_args specify an argument list containing "hard-wired"
values for any or all of the application's resources. As with widget resources, any
values specified in this list take precedence over values in the resource file. If
you use such arguments (which defeat the purpose of application resources),
remember that you specify the application resource name as a string.

Example: Debugging Flag

It seems that programmers separate into two schools regarding debugging: those
who rely on debugging tools such as adb or xdb, and those who insert pri ntf
statements into their code. Of the second school, some use conditional
compilation to control this output Wi fdef DEBUG), while others use a runtime

Resources Revisited 463

test (if (debug)). The program in Listing 16.24 uses a runtime test, controlled
by the debugOn application resource.25

Listing 16.24. Program and resource file: Application
resources example

/**********************************~************************************

**
**
**
**
**
**

Application Resource example. This program provides a "debugOn"
resource. which may be set to TRUE to enable runtime logging.

**
**
**
**
**
**

***/

#include <Xm/Label.h>

Widget appshell.
the_l abel;

struct ResList
{

Boolean

/* The application resources */

/* "debugOn"

app_resources,
def_resources =

XtResource app_res_list[J
FALSE);

(

} ;

"debugOn".
"OebugOn".
XmRBoolean.
sizeofCapp_resources.db_flag).
XtOffsetCstruct ResList *. db_flag).
XmRBoolean.
&def_resources.db_flag
}

*/

25 My habit is to place such debugging code flush against the left margin. While this
makes for an ugly source listing, it is easier to remove the calls for "production" code.

464 Programming with Motif

Listing 16.24. Continued.

void main(argc, argv
int argc;
char *argv[];

appshell = XtInitialize(argv[O], "Listing_16_24", NULL, 0,
&a rgc, a rgv);

XtGetApplicationResources(appshell, &app_resources,
app_res_list, XtNumber(app_res_list),
NULL, 0);

the_label = XmCreateLabel(appshell, "TheLabel", NULL, 0);
XtManageChild(the_label);

/* Debug */
if (app_resources.db_flag)
{

if (the_label == NULL)
printf("Debug: Creation of \"TheLabel\" failed\n");

else
printf("Debug: \"TheLabel\" created, ID = %d\n", the_label);

XtRealizeWidget(appshell);

/* Debug */
if (app_resources.db_flag)

printf("Debug: XtReal i zeWidget call ed\n");

XtMainLoop() ;

Resource file for Debugging Flag example

*TheLabel.height: 50
*TheLabel.width: 100
*TheLabel.background: White
*TheLabel.foreground: Black
*TheLabel .1 abel Stri ng: Hello World!

*debugOn: TRUE
!Listing_16_24.debugOn: TRUE

Resources Revisited 465

The application resources are specified in the structure app_resources, with
default values specified in the structure def _resources. Both structures use a
program-defmed structure type, which allows the use of XtOffset. Declaring and
initializing a default -values structure simplifies initialization of the de f au 1 t_a d d r
member of the resource description array.

The resource description array itself is represented by app_res_l i st, initialized
as part of its declaration. Things to note include the use of XtOffset and the
name chosen for the resource's class. This name follows the convention that
resource classes with one member use the name of that member, with the first
letter capitalized.

The call to XtGetApplicationResources is straightforward; note the use of the
XtNumber macro to specify the size of the resource description list. Note also that,
as described above, this call is performed immediately after the call to
XtInitialize.

The resource file extract shows the two methods of specifying the debugOn
resource value. The first form wildcards the program name, while the second
specifies it explicitly. I tend to prefer the first, although it will affect any widget
resources that have the same name.

17
Interclient Communication

Overview
The event -driven. asynchronous nature of an X program presents challenges in
interprocess communications. The traditional UNIX methods. pipes and sockets.
do not fit this environment well - the file I/O functions that they use are
inherently synchronous. The simplest X-specific method. sending events
between client windows. is limited both in the amount of data that may be
transferred and in the fact that both clients must have connections to the same
server.

For the most part. these challenges have been surmounted. Since the link
between client and server uses the filesystem. a program can link its own file.
pipe. or socket to the client's low-level I/O code. allowing asynchronous
notification of input. While events themselves may be limited in the amount of
information they can carry. window properties allow a client to attach larger
amounts of data to its window - data that may be retrieved by another client
using the same server. This method is formalized in the selection mechanism.
Finally. timeouts and workprocs allow a program to perform non-event-driven
operations in the context of the event loop.

This chapter presents each of the above mechanisms in order from the
traditional (file I/O. timeouts. and workprocs) to those specific to the X
environment (interclient events. window properties. and selection). Along the
way. the file browser of Chapter 9 is updated to read standard input. and the
text editor is updated with clipboard cut and paste functions.

File I/O
The traditional methods of interprocess communication under UNIX are pipes
and sockets. both of which are layered on the filesystem. A pipe is a one-way
connection between processes running on the same machine: one process opens
the pipe for output. another opens it for input. 1 A socket is similar but uses the

1 The most common use of pipes is in programs run from the shell: the user pipes the
output of one program to another (eg, "1 s -1 I more"). In this case, the shell opens the

467

468 Programming with Motif

network mechanism, meaning that the processes may be running on different
machines; additionally, a socket connection is bidirectional.

While sockets and pipes present an elegant method of interprocess
communication - they are almost identical to disk files - they have one big
disadvantage in the X environment: file I/O is synchronous in nature, while an X
client operates asynchronously. When a program reads from a file, data may not
be immediately available: it mi~t have to be read from the disk, or in the case of
a pipe or socket, it might not have been sent from the other process. In such a
situation, a UNIX process blocks: it waits for the data to be available. This is
unacceptable for an X client: while it is blocked waiting for input, many -
hundreds, if not thousands - of events could accumulate in its input queue.

The solution to this problem comes from the implementation of X client-server
communication - as a socket connection - and the need of a client to
potentially communicate with multiple servers. This requirement must be
satisfied for the X environment to function; for UNIX, it is satisfied by the s e 1 e c t
system call. This call allows a program to block on multiple files - it returns
when one of the files has data for input.2 By adding the program's files to the list
of files monitored by Xlib, the program can be alerted when data is present.

Registering a File: XtAddlnput

To register a file - either input or outRut - with the toolkit, use the function
XtAddlnput, prototyped in Listing 17.1.3 This function adds the file deSCriptor
represented by sou r c e to the list monitored by Xlib. When the condition
represented by con d it ion is present - the file is ready for reading or writing or
has an exception pending - the function specified by proc is invoked. As with
callback registration, XtAddlnput allows the program to pass a data pointer in
c1 i ent_data. It returns an input-callback ID, which may be used to identify the
callback.

Listing 17.1. Function prototype: XtAddlnput

Xtlnputld XtAddlnput(source. condition. proc. client_data
int
caddr_t
XtlnputCallbackProc
caddr_t

source;
condit ion;
proc;
clienLdata;

The condition codes require further explanation. Each condition is represented
by a constant: XtInputReadMask, XtInputWriteMask, or XtInputExceptMask.
XtlnputReadMask causes the callback to be invoked when data is available from
the file. This is only useful, however, for files that represent pipes, sockets, or a

pipe, assigns the output side to the standard output of the first program, and the input
side to the standard input of the second program; the programs themselves act as
though I/O involved a terminal.

2 It also provides a timeout capability, described below.
3 For XllR4, use XtAppAddlnput.

Interclient Communication 469

device: disk files always indicate that they have input. XtlnputWriteMask
indicates that the me may be written without blocking - again, this is primarily
of use for pipes and sockets. The final condition constant, XtlnputExceptMask, is
used only with socket connections and indicates the receipt of "out-of-band"
(urgent) data.

The sou r c e parameter also requires further explanation. The s e 1 e c t call is part
of the low-level me interface, which means that it uses 'me descriptors.' Most
programs, on the other hand, work with the high-level, buffered interface, which
maKes use of 'me pointers.' To use XtAddlnput with a high-level me, you must
use fi 1 enD to retrieve the me descriptor from the me pOinter.4

The Input Callback Procedure

While "input callback" is the term used to describe the linkage established by
XtAddlnput, the called function does not follow the format of other callbacks.
Instead, its prototype is as shown in Listing 17.2: it receives the passed data
pointer (c1 i ent_data), a pointer to the me descriptor for which the callback was
invoked (source), and a pointer to the callback ID (i d). This callback does not
provide a call data structure, nor does it specify a widget (since mes are not
associated with widgets).

Listing 17.2. Function prototype: Input callback procedure

void funcname(client_data. source. id)
caddr_t client_data;
int *source;
XtInputId *id;

Removing an Input Callback

A program that accepts input from multiple me sources may need to disable the
callbacks attached to one or more of these sources. To do this, it calls the
function XtRemovelnput, prototyped in Listing 17.3. This function takes a single
parameter: the callback ID returned by XtAddlnput.

4 Example:
FILE *fp;
int fd;

fd = fileno(fp);

470 Programming with Motif

Listing 17.3. Function prototype: XtRemovelnput

void XtRemoveInput(id
XtInputId id;

Example: Adding Standard Input to the File Browser

The file browser application of Chapter 9 was meant as a replacement for the
more program. However, while it was able to read and display a named file, it
was unaole to display data piped to its standard input - one of the most
common uses of more. Listing 17.4 presents a version of the file browser that
adds this capability: if no filename is specified on invocation, it attaches an
input callback to Stdln.

Listing 17.4. File browser, revision 2: Addition of standard
input capability

1***

** **
** listin9_17_04.c
**
** File Browser. Edition 2. The file browser of Chapter 9. with
** the capability to read StdIn if no file is specified. It uses
** an input callback to provide this capability.
**

**
**
**
**
**
**

***/

#include <stdio.h>
#include <Xm/Text.h>

void
void
void

LoadFi 1 e();
UseStdIn();
InputCB();

1* FORWARD Definitions *1

Interclient Communication 471

Usting 17.4. Continued.

Widget appshell .
the_text;
texLcnt 0;

/* Application Shell */
/* The text widget */

long /* Number of bytes in buffer */

void main(argc. argv

/**

int argc;
char *argv[];

appshell = XtInitialize(argv[O]. "Listing_17_04". NULL. O.
&argc. argv);

the_text = XmCreateScroll edText(appshell. "TheText". NULL. 0);
XtManageChild(the_text);

if (argc > 2)
{

fprintf(stderr. "\nbrowser: Usage:\n");
fprintf(stderr. " browser FILENAME\n");
fprintf(stderr. " (or)\n");
fprintf(stderr. " ??? I browser\n");
exit(1);
}

else if (argc 2)
LoadFile(argv[l]);

else
UseStdIn();

XtRealizeWidget(appshell);
XtMai nLoop();

*** LoadFile(fname

*** Called when the text is to come from a file. this function
*** opens the file and loads it into the text widget.
**/

472 Programming with Motif

Listing 17.4. Continued.

void LoadFile(fname)

/**

char *fname;

FILE *infile;
long fsize;
char *lclptr;

infile fopen(fname, "r");
if (infile == NULL)

(

perror("browser: unable to open input file");
exit(2);
}

fseek(infile, 0, 2);
fsize = ftell (infile);
rewind(infile);

lclptr = (char *)XtMalloc(fsize + 1);
fread(lclptr, sizeof(char), fsize, infile);
lclptr[fsize] = '\0';

XmTextSetString(the_text, lclptr);

XtFree(lclptr);
fclose(infile);

*** UseStdln()

**/

This function is called when input is to come from StdIn. It
simply attaches an input callback.

void UseStdln()
(

XtAddInput(fileno(stdin), XtInputReadMask, InputCB, NULL);

/**

Interclient Communication 473

Listing 17.4. Continued.

InputCB(client_data. source. id)

Called whenever data is present on Stdln. This function
reads a single character. and appends it to the text buffer.

**/

void InputCB(client_data. source. id)
caddr_t client_data;
int
Xtlnputld

*source;
*id;

char
int

1 cLbuf[2];
in_char;

if ((in_char - getchar()) !- EOF)
(

lcl_buf[O] - in_char;
1 c l_b u f[1] - . \ 0 . ; ;
XmTextReplace(the_text. text_cnt. text_cnt. lcl_buf);
text_cnt++;
}

else
XtRemovelnput(*id);

Resource file for File Browser

*TheTextSW.foreground:
*TheTextSW.background:

*TheText.foreground:
*TheText.background:
*TheText.fontList:
*TheText.rows:
*TheText.columns:

*TheText.editMode:
*TheText.editable:

Gray25
Gray50

Black
White
-*-Courier-medium-r-*--*-100-*
15
4B

MULTI LINE_EDIT
FALSE

474 Programming with Motif

The initial part of this program is almost identical to that of Listing 9.13, except
that the invocation test is perfonned after the text widget is created, not before.
This was done because this test now does more work: it determines whether to
read a file, use standard input, or display an error.

Note the presence of the text_cnt variable. Although Motif 1.1 provides a
function to retrieve the number of characters in a text widget
(XmTextGetLastPosi ti on), this value must be maintained locally by a Motif 1.0
program. 5

If the program's input comes from standard input, then the input callback must
be attached; this is done in the function UseStdln. The callback function,
InputCB, is invoked whenever data is available on standard input. It reads this
data in the traditional way, using the getcha r macro. It then adds this character
to the end of the text buffer, using XmTextRep1 ace.

While traditional, this method is also extremely slow. The input callback must be
called for each character added to the buffer. When running this program, you
can watch each character being added to the buffer - at typing speed. To
eliminate this problem, you can retrieve the number of available characters from
the file control structure, then read that many characters in a single operation.

Finally, note that the input callback is removed once the EOF character is read.
This is done due to the nature of UNIX pipe I/O: once the sender closes the pipe,
the reader will always be able to read from it - with the read returning EO F. If
the input callback were left in place, it would be called continually, without
actually indicating the availability of data.

Timeouts
As stated above, the se1 ect system call allows for a timeout. The toolkit uses
this capability to allow a program to perfonn operations at regular intervals.
Timeouts are installed using the function XtAddTimeOut, and they invoke a
timeout callback when activated.

Adding and Removing Timeouts

Timeouts are registered using the function XtAddTimeOut, prototyped in Listing
17.5. This function takes the timeout length (i n t e r val), a pointer to the timeout
function (proc), and a pointer to program-specific data (c1 i enLdata). The
timeout interval is a count of milliseconds between the time the timeout is
registered and the time the timeout procedure is invoked.6 As with XtAddlnput,
XtAddTi meOut returns an ID that identifies the timeout.

5 It could be determined by retrieving the widget's contents and using strl en, but that is
extremely inefficient.

6 While the timeout interval is specified as a count of milliseconds, it is only an
approximation of the actual timeout time. Due to the way that timeout alarms are
actually implemented, the true interval will be about a tenth of a second above or below
the specified interval - on some systems, it can be as much as a whole second.

Interclient Communication 475

Listing 17.5. Function prototype: XtAddTimeOut

XtIntervalld XtAddTi meOut (i nterva 1. proc. cl i ent_data
uns i gned long i nterva 1 ;
XtTimerCallbackProc proc;
caddr_t client_data;

If the program determines that a timeout is no longer needed, it may remove the
timeout with the function XtRemoveTimeOut, prototyped in Listing 17.6. This
function takes the timeout ID as its sole parameter.

Listing 17.6. Function prototype: XtRemoveTimeOut

void XtRemoveTimeOut(id
XtlntervalId id;

The TImeout Callback

Like an input callback, a timeout callback does not use the standard callback
prototype. Instead, it uses the prototype shown in Listing 17.7. The callback
function is given the client data as registered with XtAddTi meOut (el i enLdata),
as well as a pointer to the ID associated with the timeout (i d).

Listing 17.7. Function prototype: Timeout callback
function

void funcname(clienLdata. id)
caddr_t client_data;
XtIntervalId *id;

You should note that the timeouts are activated only once: fart of the activation
process is removal of the activated timeout from the list 0 those installed. If a
program needs a timeout to occur on a regular interval, it must explicitly
reinstall the timeout each time it is activated. This also means that the ID
passed to the timeout function is used only for identification: when the callback
is invoked, the ID does not actually refer to a timeout.

476 Programming with Motif

Example: Digital Clock

One obvious use for timeouts is a clock program, as shown in Figure 17.1. Such
a clock could be used in a stand-alone manner, or as part of a program such as
an appointment manager.

Figure 17.1. Timeout example: Digital clock

Listing 17.8 presents the program and resource file for this clock application.
The clock itself is a label widget, and the timeout callback installs the current
time in its 1 abe 1 S t r i n 9 resource. Note that the timeout is first installed
immediately after the label is created and is reinstalled by the callback function.
Note also the technique of passing the label widget's ID as the timeout's client
data.

Listing 17.8. Program and resource file: Digital clock

1***

**
** listing_17_0B.c
**
**
**
**

Digital clock program. implemented using a label updated by a
timeout callback.

**
**
**
**
**
**

***/

#include <time.h>
#include <X mlLabel.h >

void TimeoutCB(); /* FORWARD Definitions */

Interclient Communication 477

Listing 17.8. Continued.

Widget appshell,
the_label;

void maine argc, argv
int argc;
char *argv[];

appshell = XtInitialize(argv[O], "Listing_17_08", NULL, 0,
&argc, argv);

the_l abel = XmCreateLabel (appshell, "TheLabel", NULL, °);
XtManageChild(the_label);

XtAddTimeOut(1000, TimeoutCB, the_label);

XtRealizeWidget(appshell);
XtMai nLoop();

void TimeoutCB(w, id)

Widget w;
XtIntervalId *id;

long clock;

/* Note implicit
/* Ignored

/* The raw time

caddr_t

val ue ...

cast

struct tm *the_time; /* Converted to localtime ...
char lcl_str[256]; /* Converted
XmString xms; /* Converted
Arg the_arg;

XtAddTimeOut(1000, TimeoutCB, the_label);
clock = timet NULL);
the_time = localtime(&clock);

to text. ..
for the widget

sprintf(lcLstr, "%02d:%02d:%02d", the_time->tm_hour,
the_time->tm_min,
the_time->tm_sec);

*/
*/

*/
*/
*/
*/

478 Programming with Motif

Listing 17.8. Continued.

xms = XmStringCreate(lcl_str. XmSTRING_DEFAULT_CHARSET);
XtSetArg(the_argo XmNlabelString. xms);
XtSetValues(w. &the_arg. 1);

XmStringFree(xms);

Resource file for Digital Clock (Fig 17.1)

*TheLabel.height: 50
*TheLabel.width: 100
*TheLabel.foreground: Black
*TheLabel.background: Gray75
TheLabel. fontLi st: --times-medi um-r-*- -*-140-*

Background Processing: WorkProcs

A workproc is a function that is called from XtMa in Loop, whenever the program is
waiting for an event. Workprocs provide a limited degree of background
processing and are typically used in three situations.

The first situation is polling for input from a non-X, non-file source, such as
shared memory. Workprocs should not be used in a time-critical polling
situation, because their invocation is directly related to the number of events
being received - and the time taken to process those events. However, if polling
may be performed on a "catch as catch can" basis, workprocs are easier to use
than timeouts - primarily because they don't need to be reinstalled on each
invocation.

The second situation occurs when a function needs to be "continued" after user
interaction. As an example, consider a function that manages a dialog box and
must perform some processing after data is entered into that dialog. While such
operations are normally performed with a dedicated callback, there are cases
where that is not practical.7 Instead, the invoking function could install a
workproc that waits until dialog interaction is complete, then performs the
additional processing.

The final use of workprocs is due to the non-reentrant nature of Motif and the
toolbox. This is not normally a problem, because toolbox functions are invoked

7 This could happen if the same dialog were to be invoked from two locations, with one
performing additional processing on the results. You will see this later in the chapter,
where the text editor's Save As ••• dialog is invoked during program exit.

Interclient Communication 479

in a linear fashion. in response to events. It becomes a problem when the
program is interrupted. as with a UNIX signal.

A signal may arrive at any time and results in the invocation of a signal handler.
If a signal is received while in a widget's internal code. and the signal handler
attempts to access that widget. its internal state could be inconsistent. To avoid
this problem. the signal handler should install a workproc to perform the widget
access. Since workprocs are invoked from the event loop. the widget would be
guaranteed to be in a consistent state.

Registering and Removing WorkProcs

Workprocs are installed using the function XtAddWorkProe and removed with the
function X t Rem 0 v e W 0 r k Pro e. both of which are prototyped in Listing 17.9.
XtAddWorkProe takes two parameters: a pointer to the workproc function itself
(proc). and a pointer to program-specific data (el i enLdata); it returns an ID
that identifies the workproc. XtRemoveWorkProe takes one parameter. the ID of
the workproc to be removed (i d) •

XtWorkProcld

void

Listing 17.9. Function prototypes: XtAddWorkProc.
XtRemoveWorkProc

XtAddWorkProc(proc. client_data
XtWorkProc
caddr_t

proc;
client_data;

XtRemoveWorkProc(id);
XtWorkProcld id;

Each call to XtAddWorkProe adds a new workproc to the list maintained by the
toolkit. This list is prioritized: each time the event loop is able to call a workproc.
it invokes the workproc with the highest priority. then sets that workproc's
priority to the lowest value (ie. it will not be called again until all other workprocs
have been called). New workprocs are given the highest priority; when a series of
workprocs are added. each workproc has a higher priority than the one added
before it (and all have higher priority than any outstanding workprocs).

The WorkProc Function

A workproc function follows the prototype of Listing 17.10. It has a single
parameter in which is passed the client data pointer from XtAddWorkProe. When
a workproc completes. it must return a Bool ean value to the event loop: if this
value contains T RUE. the workproc is removed from the workproc list; if it
contains FALSE. the workproc remains in the list and is set to the lowest priority.

480 Programming with Motif

Listing 17.10. Function prototype: WorkProc

Boolean funcname(client_data);
caddr_t client_data;

WorkProc Example

Listing 17.11 contains an example of a workproc used in a polling manner. Each
second, the program prints the number of times the workproc was invoked in
that second, and the average number of calls per second since the program
started. By feeding it events - such as moving its window - you will see the
capabilities and limits of a workproc.

Listing 17.11. Program and resource file: Workproc
example

/***
** **
** 1 i s tin g_17 _11. c **
** **
** Workproc example. This program presents a simpl e 1 abel. just to **
** provide a window. Its real operation is a workproc. which counts **
** the number of times it's called each second. and prints both the **
** immediate count and an average. **
** **
***/

ffi ncl ude <Xm/Label. h>

Boolean WorkProc(); 1* FORWARD Definitions */

Widget appshell.
the_label;

Interclient Communication 481

Listing 17.11. Continued.

void maine argc, argv
int argc;
char *argv[];

appshell = XtInitialize(argv[O], "Listing_17_11", NULL, 0,
&argc, argv);

the_l abel = XmCreateLabel (appshell, "TheLabel", NULL, 0);
XtManageChil d (the_l abel);

XtAddWorkProc(WorkProc, NULL);

XtRealizeWidget(appshell);
XtMainLoop();

Boolean WorkProc(ignore
caddr_t ignore;

static int tot_calls
toLtime
calls_sec
last_time

int this_time
if (last_time == 0)

0,
0,
0,
0;
time(NULLl ;

last_time = this_time;
else if (last_time == this_time)

{

else

tot_calls++;
calls_sec++;
}

{

toLtime++;

/*
/*
/*
/*

printf("Second %d\n", tot_time);

Total calls
Total time running
Calls this second
Time of last call

printf(" Calls = %6d\n", calls_sec);

*/
*/
*/
*/

482 Programming with Motif

Listing 17.11. Continued.

printf(" Avg Calls = %6.1f\n", «floatltot_callsl/tot_time 1;

calls_sec = 0;
last_time = this_time;
)

return(FALSE 1;

Sending Events Between Clients
Within the event-driven paradigm of X, the most appropriate method of
communication would seem to be the event mechanism: every client, after all,
must be watching for events directed to itself. This is true, with three caveats: (1)
events have a limited capacity, (2) clients that use events must have windows on
the same server, and (3) for one client to send an event to another, it must know
the other's window ID.

The first caveat arises from the design of the X protocol: events are 32-byte
datagrams. If the programs can perform communication in small pieces, they
can use events directly. If not, they.must use events as a means of
communicating that data is available from some other source - as you will see
below, the other source is often a window property.

The second caveat also arises from the X protocol design: servers are completely
independent. A client may be connected to two or more servers and pass
messages between them, but that operation is dependent on the client design -
outside of that client, the servers themselves are not logically connected. In
practical use, this is not a problem: most interclient communication occurs
under the user's control, between clients on the user's server.

The third caveat requires the most consideration: communicating clients must
have some way of discovering each other. One common method of learning
another window's ID is from the user; this technique is used by the standard
clients xwd and xwinirifO.8 An alternate method is to use the selection
mechanism (described below), with an application-specific selection type. Yet
another method, which could be used by programs that have other
communication options available, is to exchange this information outside the X
environment. 9

8 In this technique, the user is asked to pOSition the pOinter over the desired window and
press a button. The original client "grabs" the button prior to this request, meaning
that the button press event is sent to it. From the button press event, the client
determines what window the pOinter was in when its button was pressed.

9 If another communication method is available, why use events at all? One reason is that
events can be used to alert the receiver when data is available; an example would be
the use of shared memory, which cannot be associated with a callback.

Interclient Communication 483

Sending Events: XSendEvent

When one client has the window ID of another, it can send events to that client
with the XSendEvent function, prototyped in Listing 17.12. These events must be
filled by the sender; the server modifies the event's send_event member only. 10 If
XSendEvent can send the event to the server (the server handles sending it to the
other client), it returns TRUE; ifnot, it returns FALSE.

Listing 17.12. Function prototype: XSendEvent

Status XSendEvent(display. win. propagate. mask. event)
Display *display;
Window win;
Boolean propagate;
EventMask mask;
XEvent *event;

The dis P 1 a y and win parameters identify the destination window: dis P 1 a y
specifies the destination window's server, while wi n is the window's server
resource ID. The destination display must be a display to which the application
is connected; it may be retrieved from an appropriate widget via XtDi spl ay. In
addition to an actual window ID, two constants are allowed for the wi n
parameter: Poi nterWi ndow specifies the window that currently contains the
pointer, and InputFocus specifies the window that currently has the input focus.

The pro p a gat e parameter specifies which clients receive the event. If pro p a gat e
contains FALSE, the event is sent to all clients that have attached an event
handler to the destination window for one of the events specified by mas k. If
propagate contains FALSE, and no clients have selected an appropriate event,
then the event is not sent. However, if propagate contains TRUE, and no clients
have attached an event handler to the window, the event is passed up the
window tree, until some client receives it. 11

The mask parameter contains one or more event masks, as described in Chapter
8. It is used to select the clients that will receive the event. If it contains zero (no
masks specified), the event is sent to the creator of the destination window; if
that client no longer exists, the event is 10st.12 Ifmask contains one or more event
masks, the event is set to those clients that have the appropriate event handler
attached to the window.

The event parameter points to the actual event data. Any type of event structure
is allowed. The server does not change any members of this structure, save the
send_event flag. It does, however, perform "byte-swapping," so that events may

10 Without the senLevent member, a client-generated event would be indistinguishable
from a user-generated event, meaning that a client could be "spoofed." In the case of
xterm, for example, a user's password could be changed from events generated by
another user.

11 An exception is if the win parameter was passed as In p u tF oc us, in which case the event
is not propagated, even if propagate contains TRUE.

12 Nonmaskable events, such as Cl i entMessage (see below) , are sent with a mask
parameter of zero.

484 Programming with Motif

be sent transparently between systems that use different byte ordeIing (eg, Intel
and Motorola).

The ClientMessage Event

While the XSendEvent function allows a client to send any type of event to
another client, it is most often used to send a C1 i entMessage event. The
XC1 i entMessageEvent structure, defined in Listing 17.13, is used to hold events
of this type. Other than the common (XAnyEvent) fields, all of the event's fields
are available for the program to be used as described below.

Listing 17.13. Type definition: XClientMessageEvent

typedef struct
{

int
unsigned long
Boolean
Display
Window
Atom
int
union

XClientMessageEvent;

type;
seri al ;
send_event;
*display;
window;
message_type;
format;
{

char
short

long
}

data;

b[20J;
s [10J;

1 [5 J ;

The message_type member provides the receiver with an indication of how to
treat the event data. The contents of message_type are left to the discretion of the
programmer; the server does not make use of it. By convention, however, it
contains an atom (see below) that specifies the event's contents.

The event's data area is represented by the data member, which is a union that
can represent the data in bytes (b), short integers (s), or long integers (1). The
specific data format depends on the program; any given program may use all or
none of the data space. The one requirement is that the event data must be
organized as bytes, short integers, or long integers, and the format member must
contain 8, 16, or 32, respectively. This requirement allows the server to perform
the byte-swapping described above. 13

13 If you do not need to worry about this architecture-dependent conversion, specify the
value 8 for the format member; when the data is merely a collection of bytes, the server
does not convert it.

Interclient Communication 485

Atoms
Atoms are server resource IDs that uniquely identify strings. They are thus
identical in concept to quarks, but different in scope: quark associations are
local to a program, while atoms are server-wide. They also differ from quarks in
purpose: quarks exist,to maximize the efficiency of multiple string comparisons,
while atoms exist to maximize the efficiency of client-server communications. 14

As with strings and quarks, the string-to-atom relationship is one-to-one. Once
an atom is associated with a string, that association remains in effect until the
server is shut down. This results in long-term consumption of server resources,
so you should not create unnecessary atoms.

Converting Strings to Atoms

Atoms are associated with strings using the function XlnternAtom, prototyped in
Listing 17.14. If an atom is already associated with the string, the ID of that
atom is returned; if no atom exists, one is created (subject to the if_exists
parameter, see below).

Listing 17.14. Function prototype: XIntemAtom

Atom XlnternAtom(display, name, if_exists
Display *display;
String name;
Boolean if_exists;

The dis play parameter specifies the server on which the atom association is
valid. The name parameter specifies a NUL-terminated string of arbitrary length,
which is associated with the atom 10 by the server. 15 The i f _e xis t s parameter
controls whether an atom will be created if one is not already associated with the
string: if it contains FALSE, a new atom is created; if it contains TRUE, the server
does not create an atom. In this case, XlnternAtom returns the constant None.

Motif provides the function Xm I n t ern A tom, prototyped identically to X I n t ern A tom.
It provides atom caching, meaning that it may be called multiple times but will
make only one request of the server. While this would seem superfluous - most
programs call XlnternAtom only once - some Motif macros use it extensively.16 If
you decide to use XmlnternAtom instead of XlnternAtom, you must include the
headerfHe Xll/AtomMgr.h.

14 An atom, which occupies 32 bits, may be more efficiently communicated than an
arbitrarily long string. In addition to this size savings, use of a fixed-size string
identifier allows for fixed-size datagrams, eliminating the need for a length specification
and its associated processing.

15 This string is not limited to the printable ASCII character set; it may contain any eight
bit value other than '\0'. By convention, printable strings are used, with the ISO Latin 1
encoding.

16 In particular, the macros supporting the window manager protocol interface make
extensive use of XmlnternAtom.

486 Programming with Motif

Converting Atoms to Strings

The conversion of an atom ID to a NUL-terminated C string is performed by
XGetAtomName, prototyped in Listing 17.15. The di spl ay parameter specifies the
display on which the atom exists, while the atom parameter specifies the atom's
ID. If an atom exists with that name, its associated string is returned; this string
is allocated in the program's data space and should be fr~ed (with XtFree) when
no longer needed. If no such association exists, XGetAtomName returns NULL.17

Listing 17.15. Function prototype: XGetAtomName

String XGetAtomName(display. atom)
Display *display;
Atom atom;

Predefined Atoms

Some atoms are used so frequently that they have predefined IDs. Examples
include the atoms representing selection types, window manager properties, and
property data types, all of which are described below. The predefmed IDs for
these atoms represented by constants in the header file XIllXatom. h; each
constant has the prefIx "XA_".

The X Registry and Atom Naming Conventions

One problem with program-specific atoms is that you never know whether
another programmer will use the same atom name. If this happens, your
program and the other program will collide - sometimes with no effect,
sometimes with devastating effect.

While this is rarely a problem in programs under development, no production
program should use random atom names - no matter how unique you may
think they are. Instead, you should register your atoms with the X Registry, a
service of the X consortium. 18 While registration may not guarantee that another
programmer won't use your atom name, it at least guarantees that a
conscientious programmer won't in production code.

Prior to registering your atom names, you will minimize the chances of collision
if you follow the registry's naming conventions. These conventions are quite
simple: an atom may have any name, but should be prefixed with an
organization identifIer. This organization identifIer is an arbitrarily long string,
prefIxed and suffixed by underscores. For example, "_KDG_" might be such an
identifIer, giving rise to atom names such as "_KDG_MY_ATOM".

17 Motif also provides a caching version of XGetAtomName called XmGetAtomName. The two
functions are prototyped identically.

18 Appendix E contains infonnation on the X RegtsUy.

Interclient Communication 487

Window Properties
Window properties are data buffers on the server associated with a particular
window and identified by name - this name being represented by an atom. To
the program. a property contains a particular data structure. To the server. a
property is an arbitrarilylong data buffer. containing 8-. 16-. or 32-bit data
items.

Theoretically. the size of a window property is unlimited. In practice. it is limited
both by the design of the server and the amount of memory available to the
server at any given time. For this reason. a programmer should IVve careful
consideration to the question of whether a property is the best solution for a
particular problem. 19 Consideration should also be given to the fact that storing
data into a property involves client-server communication. which may be a
problem on a network with limited available bandwidth.

Properties are used for two common purposes: (1) exchanging data with the
window manager. and (2) exchanging data with another application. Properties
are commonly associated with the client's application shell window. although
they may be associated with any window. For window manager communication.
the property must be associated with the shell window.

Property Creation and Modification

Properties are created and modified with the XChangeProperty function.
prototyped in Listing 17.16. This function identifies the property by the atom
representing its name. If the given name is on the window's list of properties. it
is changed according to the function parameters. If it does not already exist. it is
added.

Listing 17.16. Function prototype: XChangeProperty

int XChangeProperty(display, win, prop, type, format, mode,
data, datasize)

Display *display;
Window win;
Atom prop;
Atom type;
int format;
int mode;
caddr t data;
int n_items;

19 Note. however. that within the X paradigm. a window property is the only server-based
mechanism for data storage, and it is often the most convenient (given the limited size
of events) for data interchange.

488 Programming with Motif

The property is identified by the di spl ay, wi n, and prop parameters: di spl ay
specifies the display on which the window resides, wi n specifies the ID of the
window, and prop is the atom representing the property name.

The type parameter specifies the data type of the property's contents. This value
is simply stored with the property; it does not have any effect on the property's
contents. The retrieving program may - or may not - use this value to convert
the property data upon retrieval.

As you can see, data types are represented by atoms. Common data types, such
as i nt, have predefined atoms; a program must define atoms for its own types.

The format parameter specifies the data type of the property's contents in the
context of the server. In this context, the property contains an arbitrarily long
array of 8-, 16-, or 32-bit data items, which must be converted appropriately for
the clients' architectures. This data item size is stored in format, and legal
values are 8, 16, and 32.

The mode parameter specifies how the passed data is to be added to an existing
property. If mode contains PropModeRepl ace, the passed data replaces the existing
contents of the property. If it contains PropModePrepend, the new data is stored
before any existing data. PropModeAppend specifies that the new data is to be
appended to the old. For prepend and append, the type and format values must
match those already associated with the property. If not, the data is not saved,
and an error is reported.

The fmal parameters, data and n_items, represent the data to be added to the
property. The data parameter is a pointer to the data. while n_items contains the
number of items in the buffer. This value depends on the format parameter: a
12-byte array may have 12, 6, or 3 items corresponding to format values of 8,
16, or 32.

Retrieving Property Contents

To retrieve the contents of a property, use the function XGetWi ndowProperty,
prototyped in Listing 17.17. As with XChangeProperty, the property is identified
by the display, win, and prop parameters. It is additionally identified by data
type, as described below.

Interclient Communication 489

Listing 17.17. Function prototype: XGetWindowProperty

int XGetWindowProperty(display. win. prop. offset. length.
delete. req_type. act_type. act_format.
n_items. bytes_after. data);

Display *display;
Window win;
Atom prop;
long offset;
long length;
Boolean delete;
Atom req_type;
Atom *act_type;
int *act_format;
long n_items;
long bytes_after;
caddr_t *data;

The offset parameter specifies an offset from the beginning of the property data
and is used to select part of a property. This value is an index of 32-bit
quantities, starting at zero.

The 1 ength parameter specifies the number of 32-bit quantities to retrieve. The
retrieval length must be specified explicitly. To indicate "all of it," you must
simply pass a large value.

The del e t e parameter specifies whether the property is to be deleted after the
retrieval. If de 1 ete contains TRU E, and the function retrieves all of the property's
data, the property will be deleted. If de 1 ete contains FA LS E, or if the call did not
retrieve all of the property's data (1 ength was less than the actual data size), the
property remains unchanged.

The req_type parameter is used to specify the type of data desired. This value is
matched against the atom associated with the property by XChangeProperty; if
the type requested does not match the type associated with the property, the
request fails. To avoid such a comparison, use the constant AnyPropertyType.

The act_type and act_format parameters are used to return the actual data type
and format, as specified by XChangeProperty. The returned type will match that
passed in req_type, unless the latter contains AnyPropertyType.

The n_ items parameter is used to return the actual number of 8-, 16-, or 32-bit
items retrieved from the property. If 1 ength specified a value that was larger than
the actual property size, the actual property size is returned in num_items.

The bytes_after parameter is used to return the number of bytes remaining in
the property. This value only considers bytes physically positioned after the
retrieved data; if an offset was used, those bytes skipped by the offset are not
reported in by t e s _ aft e r. One use of this field is in determining the size of a
property by performing a zero-length retrieval.

490 Programming with Motif

Finally, the prop parameter is used to return a pointer to the property data.
XGetWi ndowProperty allocates a buffer for the retrieved data and stores a pointer
to this buffer in pro p. This buffer must be freed by the program when it is no
longer needed.

Property Destruction

When a property is no longer needed, it should be destroyed. Server memory
space is not an infInite resource, and unused properties can quickly consume
the available memory. To destroy a property, call the function XDel eteProperty,
prototyped in Listing 17.1B. This function uses the display, wi n, and prop
parameters to identity the property. It returns zero to indicate success, and a
nonzero value to indicate failure.

Listing 17 .IB. Function prototype: XDeleteProperty

int XDeleteProperty(display. win. prop);
Display *display;
Window win;
Atom prop;

Discovering Available Properties

To learn what properties are associated with a window, use the function
XL i s t Pro per tie s, prototyped in Listing 17. 19. This function identifies the
window with the di spl ay and wi n parameters. The function returns a pointer to
an array of property atoms, and it returns the number of items in this array in
the num_props parameter. This array should be freed by the program when no
longer needed.

Listing 17.19. Function prototype: XListProperties

Atom *XListProperties(display. win. num_props);
Display *display;
Window win;
int *num_props;

Property Data Types

Window properties are identified by data type. This type is specified by
XChangeProperty and is used by XGetWi ndowProperty to control property retrieval.
A property's data type does not affect the server's treatment of the property - to

Interclient Communication 491

it, a property is merely a collection of bytes, words, or longwords. Instead, a
property's data type exists as information for the program that reads the
property. It is primarily of use for the selection mechanism, where one program
may need to convert another program's data into a usable format.

Property data types are predefined atoms. Table 17.1 lists the constants
representing these atoms, the strings that they are associated with, and the C
data type that they represent.20 Note that programs are not limited to these
predefriied types: cooperating programs can defme their own types (or set of
types), but will not be able to use those types to exchange that data with other
clients.

Table 17.1. Predefined property types

Constant String Description

XA_ARC "ARC" XArc (12 bytes, as six 2-byte integers)

XA_ATOM "ATOM" Atom (4 byte Server ID)

XA_BITMAP "BITMAP" Bitmap (4 byte Server ID)

XA_CARDINAL "CARDINAL" unsigned (4 bytes)

XA_COLORMAP "COLORMAP" Colormap (4 byte Server ID)

XA_CURSOR "CURSOR" Cursor (4 byte Server ID)

XA_DRAWABLE "DRAWABLE" Drawable (4 byte Server ID)

XA_FONT "FONT" Font (4 byte Server ID)

XA_INTEGER "INTEGER" int (4 bytes)

XA_PIXMAP "PIXMAP" Pixmap (4 byte Server ID)

XA_POINT "POINT" XPoint (4 bytes, as two 2-byte integers)

XA_RGB_COLOR " RGB_COLOR Colormap (4 byte Server ID)
_MAP - MAP"

XA_RECTANGLE "RECTANGLE" XRectangle (8 bytes, as four 2-byte integers)

20 These descriptions include the data type's size, but the actual size may differ - either
due to a change in X or due to hardware considerations. A program should always use
the s i zeaf operator.

492 Programming with Motif

Table 17.1. Continued.

XA_STRING "STRING" String (variable length NUL-tenninated
ASCII string)

XA_VISUALID "VISUALID" VisualID (4 byte Server ID)

XA_WINDOW "WINDOW" Window (4 byte Server ID)

XA_WM_HINTS "WM_HINTS" XWMHints (32 byte structure)

XA_WM_SIZE "WM_SIZE XSizeHints (60 byte structure)
HINTS HINTS" - -

The PropertyNotify Event

Whenever a property is modified, the server sends a PropertyNoti fy event to the
window creator. This event is selected with PropertyNotifyMask; its contents are
contained in the x pro per ty member of XE v e nt, defined as shown in Listing 17.20.

Listing 17.20. Type definition: XPropertyEvent

typedef struct
{

int
unsigned long
Boolean
Display
Window
Atom
Time
int
}

XPropertyEvent;

type;
serial;
send_event;
*display;
window;
atom;
time;
state;

Most of the members of XPropertyEvent should by now be familiar: type contains
the event type (Property Event), s e ria 1 contains the number of requests
processed by the server, send_event indicates whether the event was generated
by another client, di spl ay and wi ndow identify the source of the event, and time
contains the current server time.

The new members are atom, which specifies the property that was changed, and
state, which indicates what was changed. There are two values for state:

Interclient CommunIcation 493

NewVa 1 ue indicates that the contents of the property were in some way changed,
and De 1 eted indicates that the property was deleted.21

Window Manager Protocols
One use of properties is to communicate with the window manager: a program
places data in specific properties on its shell window, and the window manager
reads those properties on a regular basis and acts on the information. A
program's title, for example, is specified with the WM_NAME property. Most such
communication is handled automatically by the application shell.

Window manager protocols, however, are an area where the program is often
directly involved in the communication: they are a set of conventions by which
the window manager notifies the client of changes in its environment. These
notifications range from requesting that the client take the input focus, to
notifying the client that the user has selected Close from the window menu.

The WM_PROTOCOLS Property

Window manager protocols are controlled by the WM_PROTOCOLS property on the
application shell window.22 This property contains an array of atoms: if an atom
is present, it indicates that the program supports the associated protocol. If the
client does not wish to participate in any protocols, it signals that fact by
absence ofa WM_PROTOCOLS property.

At the present time, the set of protocols is limited. The ICCCM specifies three
protocols and Motif adds a fourth, identified by the strings listed below. Notice
that these strings are not associated with predefmed atoms; the program must
explicitly retrieve the associated atom value.

When a client partiCipates in this protocol, the window manager notifies
it that it has been given the focus and should assign it to a subwindow.
The application shell handles this protocol automatically - setting focus
to whatever widget had it last. If, however, you wish to reassign the focus
to a different widget, you can trap this protocol and call_XmGrabTheFocus
(or XmProcessTraversal).

The window manager notifies those clients participating in this protocol
of situations that may cause the client to be terminated. The client is
then expected to save its state and update the WM_COMMAND property on its
shell with a command line that will retrieve the saved state. It is not
permitted to interact with the user while this is happening.

21 Property changes can take several forms: creation of a new property, changing the
contents of an existing property, or a zero-length append to an existing property (which
does not change the property's contents, but does generate an event - and is often
used to get the current server time).

22 'WM_PROTOCOLS" is the property name; it is not associated with a predefined atom.

494 Programming with Motif

At the present time, WM_SAVE_YOURSELF is of little use since window
managers have no way to restart a program. It was designed for use with
session managers, programs that are responsible for controlling the
execution of other programs.23

• WM_DELETE_WINDOW

Those clients that request participation in the WM_D E L ETE_W I N DOW protocol
are notified if the user terminates the display connection via the window
menu - by selecting Close or double-clicking the menu's invocation
button.

This protocol permits the client to control its demise. If it is not in effect,
the window manager terminates the session by destrOying the client
shell's window. If in effect, the window manager notifies the client of the
request, but does not directly terminate the client.

In a Motif program, this protocol is always in effect and is handled by the
application shell. The shell then uses the contents of its del eteResponse
resource to determine its action: the default value of XmDESTROY causes
the shell to terminate the program. If the program is to handle this
protocol by other means, it must set del eteResponse to XmDO_NOTHING.

• _MOTIF_WM_MESSAGES

This protocol is specific to Motif and allows the client to trap f. send_msg
functions invoked from the window menu. These messages permit the
use of the window menu to provide program-specific functions - such as
an "on the fly" debug switch.

Protocol Callbacks

The window manager gives the client a protocol notification using a
Cl i entMessage event. This event's message_type member contains the atom
associated with the string WM_PROTOCOLS. Its other fields depend on the specific
protocol.

While a program could perform the two-step process of adding a particular
protocol atom to the WM_PROTOCOLS property and registering an event for the
protocol, Motif provides a protocol callback, registered with the function
XmAddWMProtocol Ca 11 back. This function is prototyped in Listing 17.21; note that
to use it, you must ih ncl ude the header file Xm/Protocol s. h.

23 The purpose and use of a session manager is still vague - at least in the X
documentation. An example of its use would be in an integrated program development
environment: the session manager would control execution of the various programs
(editor, compiler, etc), as well as manage the exchange of data between these programs.
HP's VUE environment is another example.

Interclient Communication 495

Listing 17.21. Function prototype:
XmAdCiWMProtocolCaUback

voi d XmAddWMProtocol Call back(shell. protocol. proc. cl i enLdata
Widget shell;
Atom protocol;
XtCallbackProc proc;
caddr_t client_data;

XmAddWMProtocol Call back takes as parameters the application shell widget
(shell). the atom representing the protocol (protocol). a pointer to the callback
procedure (proc). and a client data pointer (cl i ent_data). It adds the protocol
atom to the WM_P ROTOCO LS property of the shell. provided it is not already there. It
then associates the callback procedure with an internal event handler: the shell
receives the Cl i entMessage event and invokes the callback.

To remove a program from protocol participation. three options are available.
The first is XmRemoveWMProtocol Call back. which removes a particular callback
from the list maintained by the shell for a given protocol. The protocol remains in
WM_PROTOCOLS. however. and the shell will continue to receive protocol events.
The second method is to remove the protocol atom from the WM_PROTOCOLS
property. and this is done with the function XmRemoveWMProtocol s. The final
option is to deactivate the protocol, with the function XmDeacti vateWMProtocol.
This function simply instructs the shell to ignore protocol events; they may be
reactivated at a later time with the function XmActivateWMProtocol. All four of
these functions are prototyped in Listing 17.22; their parameters are described
below.

496 Programming with Motif

Listing 17.22. Function prototypes:
XmRemoveWMProtocolCallback, XmRemoveWMProtocols,
XmActivateWMProtoco~ XmDeactivateWMProtocol

void XmRemoveWMProtocolCallback(shell, protocol, proc, clienLdata
Widget shell;
Atom protocol;
XtCa11backProc proc;
caddr_t client_data;

voi d XmRemoveWMProtoco 1 s (she 11 , protocol s, num_protoco1 s)
Widget shell;
Atom protoco1s[];
Cardinal num_protocols;

void XmActivateWMProtocol(shell, protocol)
Widget shell;
Atom protocol;

void XmDeactivateWMProtoco1 (shell, protocol)
Widget shell;
Atom protocol;

The parameters of XmRemoveWMProtocolCallback are identical to those of
XmAddWMProtocol Call back. The shell's protocol callback list is searched, and the
callback corresponding to the passed protocol, proc, and cl i ent_data values is
removed. If another callback is registered for the same protocol, it is left in place.

XmRemoveWMProtocol s allows the program to remove one or more protocols in one
step. Its fIrst parameter, as expectea. is the ID of the application shell. Its second
parameter is an array of atoms: each atom in that array is removed from the
WM_PROTOCOLS property, if present. Finally, the num_protocol s parameter specifIes
the number of atoms in the passed array.

XmActi vateWMProtocol and XmDeacti vateWMProtocol are prototyped identically.
They act on a single protocol at a time specifIed by the protocol parameter. All
callbacks associated with that protocol are activated or deactivated, but the
protocol remains active - the shell simply ignores any associated protocol
events.

Example: Trapping WM_DELETE_ WINDOW in the Text Editor

Listing 17.23 presents a text editor module that traps the WM_DELETE_WINDOW
protocol. It gives the user the option to terminate the program, save the
workspace and terminate the program, or ignore the close request. The save
option is implemented using existing iller code, with a workproc to sequence the

Interclient Communication 497

save and termination options. The program is described in detail below the
source listing.

Listing 17.23. Adding a window-manager protocol interface
to the text editor

1***

**
** saveproto.c
**

**
**
**

** Text Editor -- WM DELETE_WINDOW Protocol Interface
**

**
**

***1

#include <stdio.h>
#include <Xm/MessageB.h>
#include <XII/Protocols.h>

#include "textedit.h"

1***

** **
** FORWARD D E FIN I T ION S **
** **
***/

static
static
static
static

void
void
void
Boolean

SaveProtoCB();
InitSaveAl ert();
Al ertSaveCB();
AlertSaveWP();

/***

** **
** L 0 CAL V A R I A B L E S **
** **
***/

static Widget save_alert;
static Atom a_del_win;

/* Warning Dialog */
/* Atom for WM DELETE_WINDOW */

498 Programming with Motif

Listing 17.23. Continued.

1***

**
** InitSaveProto()
**
**
**
**
**

This function sets up the callback for the WM_DELETE_WINDOW
protocol. To make this work. it must also modify the shell's
deleteResponse resource -- otherwise the shell kills the job.

**
**
**
**
**
**
**

***/

void InitSaveProto()
(

a_del_win = XlnternAtom(XtDisplay(appshell).
"WM_DELETE_WINDOW", FALSE);

XmAddWMProtocolCallback(appshell, a_del_win, SaveProtoCB. NULL);

XtSetArg(arglist[OJ. XmNdeleteResponse. XmDO_NOTHING);
XtSetValues(appshell. arglist. 1);

InitSaveAlert();

1***

**
** InitSaveAlert()
**
** Creates the "Quit without Saving?" message box.
**
** Note: The "Help" button is changed to "Quit" for this dialog.
**

**
**
**
**
**
**
**

***/

static void InitSaveAlert()

Interclient Communication 499

Listing 17.23. Continued.

Widget temp;

save_alert = XmCreateWarningDialog(mainwin. "SaveAlert". NULL. 0);

temp = XmMessageBoxGetChild(save_alert. XmDIALOG_OK_BUTTON);
XtAddCallback(temp. XmNactivateCallback. AlertSaveCB. "Save");
temp = XmMessageBoxGetChild(save_alert. XmDIALOG_HELP_BUTTON);
XtAddCallback(temp. XmNactivateCallback. AlertSaveCB. "Quit");

/***

**
** SaveProtoCB(w. client_data. call_data
**
**
**
**
**

This function handles the callback for the WM_DELETE_WINDOW
protocol. It displays a dialog. which queries whether or not
the workspace should be saved.

**
**
**
**
**
**
**

***/

static void SaveProtoCB(w. client_data. call_data
Widget w;
caddr_t client_data;
XmAnyCallbackStruct *call_data;

XtManageChild(save alert);

500 Programming with Motif

Listing 17.23. Continued.

1***
**
** AlertSaveCB(w. client_data. call_data)
**
**
**
**

Callback for the "Ouit without Saving?" message box.
This function either quits or saves then quits.

**
**
**
**
**
**

***/

static void
Widget
char
caddr_t

AlertSaveCB(w. client_data. call_data
w;
*client_data;
calLdata;

if (!strcmp(clienLdata. "Save"))
{

else

saved = FALSE;
XtAddWorkProc(AlertSaveWP. NULL);
Fil eSave();
}

exit(0);

1***

** **
** AlertSaveWP(client_data)
**
**
**
**

Workproc to handle wait while user saves file. This function
simply waits until the global variable "saved" becomes TRUE.

**
**
**
**
**

***/

static Boolean AlertSaveWP(client_data
caddr_t client_data;

Listing 17.23. Continued.

if (saved)
exit(0);

else
return(FALSE);

Interclient Communication 501

The first function, InitSaveProto, is called from InitOther. It performs two
actions: adding a callback for WM_DELETE_WINDOW and disabling the shell's default
action. Note that it must retrieve the atom associated with the string
"WM_DELETE_WINDOW' .

The second initialization function, In itS a v e Ale r t, creates the dialog box that is
presented to the user by the callback. This dialog is built from a standard
warning dialog (message box), but note that the Help button is used to
implement a Quit function. For this application, I wanted to give the user three
choices, and a message box only has three buttons. Since the dialog presents the
user with a simple choice, Help was not needed for its original purpose.24

The next function is SaveProtoCB, called when the shell receives the WM_DELETE
_WINDOW event. Since the actual functionality revolves around the message box,
this function simply manages 1?at dialog.

The function Ale r t S a v e C B is called from both the Save and Quit choices of the
message box; the Cancel choice simply unmanages the dialog. The Quit action
is Simple: it terminates the program. The Save action, however, is more complex
due to the fact that it makes use of existing filer functions.

The problem occurs because Save implies Quit. If Fi 1 eSave operated in a linear
fashion, there would be no problem: Ale r t S a v e C B could simply terminate the
program after Fi 1 eSave returned. However, Fi 1 eSave does not operate in a linear
fashion: it may in turn call Fi 1 eSaveAs, which manages a dialog box then returns
- while the dialog box invokes the actual save operation. If Ale rt S a v e C B were to
exit immediately ruter calling F i 1 e S a ve, the program could terminate without
saving the file.

Obviously, the program must remain alive until the file is saved, and this is the
purpose of Ale r t S a v eW P. This function is registered as a workproc before the call
to F i 1 e S a v e and is responsible for program termination. It determines the time of
termination by examining the global variable saved: when this variable contains
TRUE, SaveProc has completed its work and the program may be terminated.25

Note that the workproc must indicate that it hasn't fmished its operation by
returning FALSE.

24 It also follows the idea of confirming buttons to the left, negating buttons to the right:
Quit has the most negative effect, while Save has the most positive effect. cancel is
neutral.

25 The saved Variable is a new global Variable. A 1 ertSaveCB sets it to FALSE before initiating
work, and SaveProc simply sets it to TRUE when done.

502 Programming with Motif

A final note about this dialog is that it is inelegant: the user is asked to save,
whether or not the editor's buffer has been changed. To add this missing bit of
elegance, you would add another global variable - needs_save - that would be
set to TRUE by the text widget's value-changed callback and set to FALSE by
SaveProc. SaveProtoCB would then check this variable to determine whether it
needed to invoke the message box.26

Selection
The selection mechanism has already been presented from the user's perspective
in Chapter 9. This was in the context of the text widget, where pieces of text
could be selected, then copied into another widget. This type of text-based
selection is provided by other programs, such as xterm, allowing text to be copied
freely between such programs under user control.

The text widget provides data exchange using the pri.mary selection.27 The user
controls the selection process: both what is selected and the clients between
which it is copied. The text widget handles the user's selection operations in its
internal code, and in most cases, the program is not involved - it is, however,
given access to the selection via the functions XmTextGetSel ecti onPosi ti on,
XmTextGetSe 1 ect ion, XmTextSetSe 1 ect i on, and XmTextC 1 ea rSe 1 ect ion.

In most programs, this is how things should be: a widget should not require the
program to provide any of its functionality, including data interchange with other
widgets or programs. However, the selection mechanism does provide a method
of interclient communication, and for this reason, you should be familiar with its
workings.28

The Selection Process

The selection process is performed in three steps: (1) a client acquires ownership
of a selection and advertises that ownership; (2) another client determines the
identity of the selection owner and requests the selection contents; and (3) the
selection owner sends the selection contents to the requestor.

In the case of a text widget, step one occurs when the user or program sets the
selection range. Step two occurs when the user moves the pointer over another
text widget and presses pOinter button #2. Step three is handled transparently
by the widgets themselves, and the text is copied from the source to the
destination

The Inter-Client Communications Conventions Manual specifies two standard
selections: primary and secondary, identified by the predefined atoms

26 If this were implemented, it could also be called by the File/Exit menu choice.
27 X provides two standard selections: the primary selection and the secondary selection.

By allowing two selections, a user can leave one selection active while transferring data
using the other selection. Most users only use the primary selection, in part, because
very few applications support the secondary selection (XmText, for example, does not at
Release 1.0, but does at 1.1).

28 Perhaps most importantly, it provides the simplest method by which clients can learn
of each other. As you have seen, this knowledge is essential if clients are to
communicate using X events.

Interclient Communication 503

XA_PRIMARY and XA_SECONDARy.29 While these are the standard selection types,
cooperating programs can define and use their own selection types, such as
_KDG_PRIVATE_SELECTION. By using such a selection type, these programs can
use the selection mechanism for communication, without using the standard
selections (which should always be under user control).

You should note that Xlib and Xt provide functions to greatly simplify data
exchange under the selection mechanism. The process described below should
be considered a "behind the scenes" approach, unsuitable for actual data
exchange. Unless you are writing a widget, however, you should not need to
exchange data using selection - but you might need to learn of another client's
existence.3o

Acquiring and Advertising the Selection

To acquire a named selection, a program calls the function XSetSel ecti onOwner,
prototyped in Listing 17.24.31 This function acquires the ownership of the named
selection. The selection is identified by an atom, passed in the sel_name
parameter. The window is identified by the di spl ay and wi n parameters. The
value Non e may be used instead of a valid window ID to cause the current owner
to give up the selection - this is how XmTextCl earSel ecti on works.

The time parameter is used to arbitrate between competing requests for the
same selection: the request with the latest time gets ownership. This time is a
server time value and should be retrieved from the event that initiated the call to
XSetSel ect i onOwner. You should never use the CurrentTi me constant here; such
usage could easily cause a race condition.

Listing 17.24. Function prototype: XSetSelectionOwner

int XSetSelectionOwner(display. sel_name. win. time)
Display *display;
Atom sel_name;
Window win;
Time time;

XSetSelectionOwner performs two operations: it notifies the server that the
named selection is now owned by the calling client, and it sends a
Sel ecti onCl ear event to the previous selection owner (if any). If it fails in these
actions, it returns a nonzero value to the program; otherwise, it returns zero.

29 The ICCCM also specifies a standard cUpboard selection. Motif, however, provides a
simpler interface to the clipboard, which is described below.

30 If you do plan to exchange data via selections, it is imperative that you read the
ICCCM. There is more to the selection mechanism than the events documented here:
you must also know of the standard data types and when to use them.

31 When using a program-specific selection, you must first create an atom corresponding
to the selection name.

504 Programming with Motif

Identifying the Selection Owner

To determine the current owner of a selection, a program calls X Get S e 1 e c t ion -
Own e r, prototyped in Listing 17.25. The selection is identified by its display and
atom, passed in the di spl ay and sel_name parameters. If the named selection
has an owner, then XGetSel ecti onOwner returns the ID of the owning window; if
not, it returns the value Non e.

Listing 17.25. Function prototype: XGetSelectionOwner

Window XGetSelectionOwner(display, sel_name
Display *display;
Atom sel_name;

Requesting Selected Data

To request the data associated with a selection, the requestor sends a
SelectionRequest event to the selection owner. This event is contained in the
xse 1 ect i on request member of X Event; it uses the structure XSe 1 ect i on Request -
Event, defined in Listing 17.26.

Listing 17.26. Type definition: XSelectionRequestEvent

typedef struct
{

int
unsigned long
Boolean
Display
Window
Window
Atom
Atom
Atom
Time
}

XSelectionRequestEvent;

type;
seri al ;
send_event;
*display;
owner;
requestor;
selection;
target;
property;
time;

The unique members of this event structure are owner, requestor, sel ecti on,
target, and property. The type, serial, send_event, and display members are
for identification, while time is used to check the request validity - it is
described below.

Interclient Communication 505

The owner and requestor members identify the windows involved in the
exchange: owner is the selection owner, while requestor is the event sender.
While specification of the selection owner may seem superfluous, it actually
allows the owner to verify the request: if the requestor is expecting to receive the
selection from a different owner, there is a problem.32

The s e 1 e c t ion member identifies the requested selection - it allows the owner of
multiple selection types to return the proper data.

The ta rget and property members together identify the destination of the
selection data. The selection mechanism specifies that selection data is to be
stored as a property attached to the requestor's window; the property member
identifies the desired property.33

The ta rget member specifies the requestor's preferred data type for the selection
data. If the owner is unable to provide the data in that format, it should refuse
the request.

Finally, the time member is used as another check on the request Validity. The
selection owner should check each request against the time that it received
selection ownership. If the request was sent prior to that time, it should be
refused.

Responding to a Selection Request

When a client receives a SelectionRequest event, it should do two things: store
the requested data as a property on the requestor's window, and send a
SelectionNotify event to indicate this action. If unable to fulml the request
for example, if the request had an improper owner member - the
Sel ecti onNoti fy event should still be sent to alert the requestor to this fact.

SelectionNotify events are reported in the xselection member of XEvent. The
relevant structure is XSe 1 ect i on Event, prototyped in Listing 17.27.

32 This problem can arise because of the asynchronous nature of selection ownership. If
the requestor has been exchanging data with another client and the selection changes
in the middle of this interchange, the request could be sent to the wrong client.

33 Clients following an older version of the ICCCM may pass None in the property
member. If this is the case, the selection owner should store the selection value in a
property named from the ta rget member. While this is obsolete behavior, it is possible.

506 Programming with Motif

Listing 17.27. Type defmition: xSelectionEvent

typedef struct
{

int
unsigned long
Boolean
Display
Window
Atom
Atom
Atom
Time
)

XSelectionEvent;

type;
serial;
send_event;
*display;
requestor;
selection;
target;
property;
time;

The requestor member identifies the client requesting the selection. It is filled by
the selection owner and checked by the selection requester. Similarly. the
sel ecti on and ta rget members are copied from the Sel ecti on Request event and
identify the desired selection and its data type.

The property member identifies the property where the selection contents are
stored. If the selection owner is unable to fulfIll the selection request. it should
still send the requestor a S e 1 e c t ion Not i f y event. but should pass Non e in the
property member.

The time member contains the server timestamp of when the selection was
attached to the requestor's window. The owner may fill this member with either
an existing timestamp (taken from the SelectionRequest) or the constant
Cu r rentTi me. 34

The Selection Clear Event

When selection ownership changes hands. the server sends a SelectionClear
event to the previous owner. This event is informational only; a client should not
use it as a signal to take back selection ownership.35

A Se 1 ect i onCl ea r event is delivered in the xse 1 ect ion c 1 ea r member of XEvent;
this member is of type XSel ect i onCl ea rEvent. prototyped in Listing 17.28. This
event contains three unique members: wi ndow identifies the recipient of the event
(and is used for validity checking). s e 1 e c t ion identifies the selection type. and
time specifies the time that the event recipient gained selection ownership - not
the current time.

34 This is one of the few cases where Cur r e n tT i me may be used safely.
35 This rule applies to the primary and secondary selections. which are changed under

user control. If the program is using a private selection. it may react to S e 1 e c t ion C 1 ear
events in any way desired.

Interclient Communication 507

Listing 17.28. Type definition: XSelectionClearEvent

typedef struct
{

int
unsigned long
Boolean
Display
Window
Atom
Time
}

XSelectionClearEvent;

type;
seri al ;
send_event;
*display;
window;
selection;
time;

Example: Exchanging Window IDs

As indicated above, the primary and secondary selections are handled
automatically by widget internal code. Unless you write a widget, you will
probably not need to implement the complete selection interface. However, the
selection advertisement mechanism provides a simple way for clients to
exchange window IDs.

As an example of this technique, the programs below exchange their window lOs
under user control; Figure 17.2 presents their appearance both before and after
the exchange. Both programs are built around pushbuttons. When started, they
appear as shown in 17.2(a): one program advertises the selection, the other
allows the user to respond. When the advertiser's button is pressed, its program
acqUires the ownership of a unique selection. When the responder's button is
pressed, its program determines the selection owner. The responder then
changes its label to the owner's window ID and sends its window ID, in a
C1 i entMessage event, to that window.36 On receipt of the message, the first
program changes its label's text to the window ID of the sender. Figure 17.2(b)
presents the labels after this exchange has occurred.

36 Note: not a Sel ecti onRequest event: these programs do not actually transfer data
between themselves.

508 Programming with Motif

Figure 17.2. Communicating clients

- a -

29360140 25165836

Listing 17.29 presents the programs. As stated above. both are built around
pushbutton widgets to allow user control of their communication. The first
program (26_A) acquires and advertises ownership of the selection
3DG_PRIVATE_SELECTION when the user presses its button. The second searches
for the selection owner when its button is pressed. sends a client message to
that owner. and changes its own label string.

Note in 29_A that there is no mask specified for the C1; entMessage event. It is
one of the nonmaskable events and is processed if the nanmaskab 1 e parameter of
XtAddEventHand1 er contains TRUE. Note also that since there is no way to fIlter
out unwanted nonmaskable events (such as Se1 ect; anNat; fy) before they get to
the event handler. the handler itself must perform the fIltering. using the event's
type member.

Interclient Communication 509

Listing 17.29. Program and resource file: Communicating
clients

1***

**
**
**
**
**
**

Selection example, advertiser. This program acquires ownership
of the sel ecti on " KDG_PRIVATE SELECTION" when its button is
pressed. It also responds to client message events with a data

**
**
**
**
**
**

** type of "WINDOW" (XA_WINDOW), by displaying the passed window 10. **
** **
***/

#include <Xm/PushB.h>
#include <Xll/Xatom.h>

void ButtonCB() ;
void ClientEvt();

Widget appshell,
the_btn;

Atom a_sel_name;

void main(argc, argv
int argc;
char *argv[];

/* FORWARD Definitions

appshell = XtInitialize(argv[O], "Listing_17_29", NULL, 0,
&argc, argv);

a sel name XInternAtom(XtDisplay(appshell),
"_KDG_PRIVATE_SELECTION", FALSE);

*/

510 Programming with Motif

Listing 17.29. Continued.

the_btn - XmCreatePushButton(appshell, "TheBtn", NULL, 0);
XtManageChild(the_btn);

XtAddCallback(the_btn, XmNactivateCallback, ButtonCB, NULL);
XtAddEventHandler(the_btn, 0, TRUE, ClientEvt, NULL);

XtRealizeWidget(appshell);
XtMainLoop() ;

void ButtonCB(w, client_data, call_data
Widget
caddr_t

w;
client_data;

XmAnyCallbackStruct *call_data;

XSetSelectionOwner(XtDisplay(w), a_sel_name, XtWindow(w),
call_data->event->xbutton.time);

void ClientEvt(w, client_data, event
Widget w;
caddr_t client_data;
XClientMessageEvent *event;

cha r
XmString
Arg

Icl_str[3ZJ;
xms;
the_arg;

if «event->type !- ClientMessage) I I
(event->message_type !- XA_WINDOW»
return;

sprintf(lcl_str, "%d", event->data.l [OJ);
xms - XmStringCreate(lcl_str, XmSTRING_DEFAULT_CHARSET);
XtSetArg(the_arg, XmNlabelString, xms);
XtSetValues(w, &the_arg, 1);
XmStringFree(xms);

Interclient Communication 511

Listing 17.29. Continued.

/************'***
** **
** **

**
Selection example, responder. This program requests the owner of **

**
**
** the selection" KDG_PRIVATE_SELECTION" when its button is pushed. **
**
**
**

It displays the window 10 of the selection owner, then sends its
window 10 in a client message.

**
**
**

***/

#include <Xm/PushB.h>
#include <XII/Xatom.h>

void ButtonCB();

Widget appshell,
the_btn;

Atom a_sel_name;

void maine argc, argv
int argc;
char *argv[];

1* FORWARD Definitions

appshell = XtInitialize(argv[O], "Listing_17_29", NULL, O.
&argc, argv);

a sel name XInternAtom(XtDisplay(appshell),
"_KDG_PRIVATE_SELECTION", FALSE);

*1

512 Programming with Motif

Listing 17.29. Continued.

the_btn = XmCreatePushButton(appshell, "TheBtn", NULL, 0);
XtManageChild(the_btn);

XtAddCallback(the_btn, XmNactivateCallback, ButtonCB, NULL);

XtRealizeWidget(appshell);
XtMai nLoop();

void ButtonCB(w, client_data, call_data
Widget w;
caddr_t client_data;
XmAnyCallbackStruct *call_data;

char lcl_str[32J;
XmString xms;
Arg the_arg;
Window owner;
XClientMessageEvent evt;

owner = XGetSelectionOwner(XtOisplay(w), a_sel_name);
if (owner == None)

{

printf("17 29 B: No owner yet\n");
return;
}

sprintf(lcl_str, "%d", owner);
xms = XmStringCreate(lcl_str, XmSTRING_OEFAULT_CHARSET);
XtSetArg(the_arg, XmNlabelString, xms);
XtSetValues(w, &the_arg, 1);
XmStringFree(xms);

evt.type
evt. di sp 1 ay
evt. wi ndow
evt.message_type
evt.format
evt.data.l [OJ

ClientMessage;
XtOi spl ay(w);
owner;
XA_WINOOW;
32;
XtWindow(w) ;

XSendEvent(XtOisplay(w), owner, TRUE, 0, &evt);

Interclient Communication 513

Listing 17.29. Continued.

Resource file for Selection Example (Figure 17.2)

Note that both files use the same resource file: the only difference
is the buttons' labels, and these are identified by invocation name.

*TheBtn.foreground:
*TheBtn.background:
*TheBtn.height:
*TheBtn.width:

26_A.TheBtn.labelString:
26_B.TheBtn.labelString:

The CUpboard

Black
Gray75
50
100

Advertise
Respond

The selection mechanism described above allows communication of data
between two clients. both of which must be active. While the selection
mechanism allows a nearly infinite number of selections. each with its own
name. in practice it is used with the predefmed primary selection. Moreover.
manipulation of the primary selection is usually handled transparently by a
client's widgets - the program itself is not involved.

In addition to the primary and secondary selections. X provides another
standard selection: the clipboard. The clipboard extends the user interface of the
selection mechanism by providing a temporary storage location for selections. A
selection may be copied into the clipboard. held in the clipboard for an
arbitrarily long time. then "pasted" into another client - the original client need
not be running at the time of the paste.

The clipboard is implemented as an X client and is normally executed at the
same time as the window manager. This client presents a text window. which
displays a "page" of its current contents. The user is able to copy text to and
from this window using the standard selection mechanism. but a more
sophisticated mechanism exists: clipboard copy and paste. which are performed
under program control.

There is one caveat to use of the clipboard: it doesn't work under Motif 1.0.
While the functions are present. they do not properly exchange data with the
standard X clipboard. If you need to use the clipboard with a 1.0 program. you
must transfer data using the selection mechanism; this process is described in
the Inter-Client Communicatinns Conventinns Manual.

514 Programming with Motif

The xclipboard Application

As described above. the clipboard is an X client. xclipboard. It is typically started
as part of session initialization and remains on the root in iconified form. When
it starts. it acquires ownership of the standard selection CLIPBOARD.37 The
clipboard window - with text - is shown in Figure 17.3.

]

Figure 17.3. xclipboard program window

"Shuffle Do"n"
"Refresh"
no-label
"J,lindo" To TIFF"
"Root To TIFF"
no-label
.. Rest.art.

A program uses the selection mechanism. described above. to exchange data
with the clipboard client. Unlike data exchange using the primary selection.
which is handled transparently by the widget. clipboard data exchange is
performed explicitly by the program. However. instead of using the event
sequence described above. it is performed using a set of convenience functions.
described below.

Clipboard Copy

Copying data to the clipboard is a three-step process. The fIrst step is to initialize
the clipboard interface; this must be done for each copy. as it sets up data
structures used by Motif to handle the particular copy. The second step is to
store data into these data structures. The third step is the actual
communication. in which the stored data is transferred to the clipboard.

37 This selection is represented by a predefined atom. X A_eLI P BOA RD .

Interclient Communication 515

Listing 17.30. Function prototype: XmClipboardStartCopy

int XmClipboardStartCopy(display. window. clip_label. time.

Display
Window
XmString
Time
Widget
VoidProc
long

widget. callback. item_id)
*display;
window;
clip_label;
time;
widget;
call back;
*item_id;

The first step is perfonned by the function XmC 1 i P boa r d S tart Copy, prototyped in
Listing 17.30.38 This function prepares the communications link and sets up
internal buffers to handle the transfer.

The di spl ay and wi ndow parameters are used to initialize the communications
interface: they specify the window used for actual communication between the
client and the clipboard. Since clipboard data exchange is handled
transparently, the program need not register a selection event handler for this
window. More importantly, it must not register such an event handler - it would
interfere with the clipboard interface.

The c 1 i p_l a be 1 parameter contains a compound string that is associated with
the data. It exists for user infonnation, and would be displayed in association
with the data by a Motif-based clipboard application. By convention, it is passed
the name of the program.

The time parameter is passed through to the selection mechanism as described
above. It is used to arbitrate competing ownership requests, as well as for
Validity checking.

The wi dget and call back parameters are used for Motifs named copy and paste.
With this technique, the rrogram simply identifies data to the clipboard - the
data is transferred only i another client requests it. Since this technique is in
essence nonnal selection and does not use the "store and forward" nature of the
clipboard, it is not described here. You should pass NULL for both of these
parameters.

The fmal parameter, it em_ i d, is used to return an identifier for the operation's
data space. It is used by all other clipboard functions to identify the particular
data being transferred.

38 This function and the other clipboard-related functions require the header me
Xm/Cutpaste.h.

516 Programming with Motif

Listing 17.31. Function prototype: XmClipboardCopy

int XmClipboardCopy(display. window. item_id. format_name. buffer.

Display
Window
long
char
char
unsigned long
int
int

length. private_id. data_id)
*display;
window;
item_i d;
*format_name;
*buffer;
length;
private_id;
*data_id;

The second step, copying data into the local storage area, is performed by
XmCl i pboardCopy, prototyped in Listing 17.31. A program may make multiple
calls to this function; each call appends data to that already in the storage area.
Note that this function does not actually copy data into the clipboard - that is
the third step.

As with XmCl i pboardSta rtCopy, the di spl ay and wi ndow parameters identify the
window associated with the operation. The i tem_ i d parameter identifies the
particular operation; its contents were returned by XmC 1 i pboa rdSta rtCopy.

The format_name parameter contains a string representing the data's format.
(Note that this parameter is not an atom.) This may be one of the standard
format names of Table 17.1, or it may be a program-specific name. As in other
forms of selection, this information has meaning only to the programs that
actually use the exchanged information - it is simply stored with the data.

The buffer parameter is a pOinter to the outgoing data buffer, and the 1 ength
parameter contains the number of bytes in that buffer.

The private_id parameter is used to store a program-specific identifier for the
data segment, and the d a t a _ i d parameter is used to return a Motif-specific
identifier for that segment. Each call to X m C 1 i P boa r d Cop y stores a single data
segment in the local storage area; if a program supports copy-by-name, the
clipboard requests each segment individually, identified by their pri vate_ i d and
data_i d values.

Listing 17.32. Function prototype: XmClipboardEndCopy

int XmClipboardEndCopy(display. window. item_id
Display *display;
Window window;
long item_id;

Interclient Communication 517

Once all of the data has been stored in the local storage area, it must be
transferred to the clipboard. This is performed by the function
XmCl i pboa rdEndCopy, prototyped in Listing 17.32. This function uses the di spl ay,
wi ndow, and i tem_ i d parameters to identify the local clip buffer. It performs the
actual transfer without program intervention.

Aborting a Clipboard Copy

If, in the middle of a clipboard transfer, the program needs to abort the transfer,
it calls the function X m C 1 i P boa r d Can eel Cop y. This function is prototyped in
Listing 17.33 and identifies the local clip buffer by its display, window, and
i tem_ i d parameters.

Listing 17.33. Function prototype:
XmClipboardCancelCopy

int XmClipboardCancelCopy(display, window. item_id
Display *display;
Window window;
long item_id;

Clipboard Paste

Pasting data from the clipboard to the application is a five-step process. The first
step is locking the clipboard, so that another application will not interrupt the
transfer. 39 Once it is locked, the program should determine whether or not
appropriate data is in the clipboard, and if so, how much space it occupies.
Finally, the data is retrieved from the clipboard, a three-step process similar to
that of copying data to the clipboard.

39 The clipboard is automatically locked by the actual retrieval operation
(StartRet1ieve ... EndRet1ieve), but the inquiry step requires an explicit lock. Note that no
lock is needed while copying to the clipboard, because the data is stored in a local
buffer then copied in one step.

518 Programming with Motif

Listing 17.34. Function prototypes: XmClipboardLock,
XmClipboardUnlock

int XmClipboardLock(display. window
Display *display;
Window window;

int XmClipboardUnlock(display. window. remove_all
Display *display;
Window window;
Boolean remove_all;

The first step, locking the clipboard, is performed by XmC1 i pboardLock,
prototyped in Listing 17.34. The clipboard remains locked until explicitly
unlocked by the program or until a copy or paste operation is completed. To
explicitly unlock the clipboard, the program calls the function
XmC1ipboardUn1ock, also prototyped in Listing 17.34. Clipboard lock calls must
be balanced by explicit unlock calls, unless the unlock call specifies that all
locks are to be removed.40

Both XmC1 i pboardLock and XmC1 i pboardUn1 ock identify the window that is
acquiring the lock, with their di sp1 ay and wi ndow parameters. XmC1 i pboa rdUn1 ock
has a third parameter, remove_a 11, which specifies whether the unlock operation
removes all locks by the specified window; if it contains T RUE, all locks are
removed, if not, only the matching lock is removed.

Once the clipboard is locked, the program determines the existence and size of
the desired data with the function XmC1 i pboardlnqui reLength, prototyped in
Listing 17.35. It identifies the requesting window with the dis play and wi ndow
parameters and the desired data type by the formaLname parameter.41 If a data
item of the desired type is found on the clipboard, the length of that item is
returned by the 1 ength parameter. If no such item is present in the clipboard,
then XmC1 ipboardlnqui reLength returns an error code and a length value of zero.

40 If the program calls XmCl i pboardLock five times, it must call XmCl i pboardUnl ock five
times - or call XmCl ipboardUnl ock once, with its remove_all parameter containing TRUE.

41 Again, this parameter specifies the string name of the data type. This string should be
retrieved from a predefined atom if possible.

Interclient Communication 519

Listing 17.35. Function prototypes:
XmClipboardInquireLength

int XmClipboardlnquireLength(display, window, format_name, length)
Display *display;
Window window;
char *format_name;
unsigned long *length;

Once the existence and length of a clipboard data item is detennined, the actual
item is retrieved by a three-step sequence similar to that used for copying an
item into the clipboard. The first step is calling XmCl i pboa rdSta rtRetri eve,
prototyped in Listing 17.36. This function initializes the local interface and locks
the clipboard; its dis P 1 a y and win dow parameters identify the destination
window, and its time parameter is used for the selection mechanism.

Listing 17.36. Function prototypes:
XmClipboardStartRetrieve

int XmClipboardStartRetrieve(display, window, time)
Display *display;
Window window;
Time time;

Once the local interface has been initialized, the program makes one or more
calls to XmClipboardRetrieve, prototyped in Listing 17.37. This function
identifies the destination window with its dis P 1 a y and win d ow parameters and
the desired clipboard item with its formaLname parameter. The buffer and
1 eng t h parameters identify a local buffer for the retrieval: b u f fer is a pointer to
the buffer, and 1 ength is the size of that buffer. The actual amount of data
copied is returned via the num_bytes parameter; in most cases, this value will
equal the buffer length. Finally, the p r i vat e_ i d parameter is used to retrieve the
integer value associated with the clipboard buffer by XmCl i pboa rdCopy; if not
needed, NUL L may be passed.

520 Programming with Motif

Listing 17.37. Function prototypes: XmClipboardRetrieve

int XmClipboardRetrieve(display. window. buffer. length. num_bytes.
private_id)

Display *display;
Window window;
cha r
cha r
unsigned long
unsigned long
int

*format_name;
*buffer;
length;
*num_bytes;
*private_id;

Once the entire item has been retrieved from the clipboard - this may require
multiple calls to XmC1 ipboardRetrieve - the operation is finished with a call to
XmC1 i pboa rdEndCopy, prototyped in Listing 17.38. This function puts the local
interface in an idle state and unlocks the clipboard. It identifies the associated
window by the di sp1 ay and wi ndow parameters.

Listing 17.38. Function prototypes:
XmClipboardEndRetrieve

int XmClipboardEndRetrieve(display, window
Display *display;
Window window;

Clipboard Interface Return Values

Each of the clipboard functions described above returns an integer value. This
value gives the status of the cl¥>board operation, and each return value has an
associated constant, as below. 4

• C 1 i P boa r d Fa i 1 u r e indicates that the operation could not be performed,
due to an internal error. The program should do whatever it can to clean
up (such as unlocking the clipboard), but it may not continue with the
operation.

• C 1 i P boa r d S u c c e s s indicates that the operation was performed without
error.

• C1 i pboa rd Locked indicates that the operation could not be performed
because the clipboard was locked by another application. The program

42 Note that these constants do not have an 'Xm' prefix.

Interclient Communication 521

can attempt to gerform the operation again. but some sort of timeout
should be used.

• ClipboardTruncate is returned by XmClipboardRetrieve. and indicates
that the passed buffer was too small to contain the entire data item. The
program should continue to call XmCl i pboa rdRetri eve until the entire
item has been retrieved.

• ClipboardNoData is returned by both XmClipboardlnquireLength and
XmCl i pboa rdRetri eve. and indicates that the clipboard does not hold data
of the desired type.

Example: Adding Cut, Copy, and Paste
to the Text Editor
Listing 17.39 contains the code of the "clipper" module. which supports
clipboard operations for the text editor. This module allows the user to select
text in the normal manner. then cut or copy that text into the clipboard. or copy
the clipboard's contents into the work window. using choices from the Edit
menu.

This code segment should be viewed as a demonstration of the clipboard
interface. not as an example of code that would actually be put into a text editor.
The reason for this disclaimer. as you will see below. is that Motif 1.1 contains a
direct clipboard interface for XmText - and this code must use 1.1 in order to
run. 44

43 This is a potential use for a workproc. especially when copying to the clipboard: the
program would store the data in a local buffer. and the workproc would continually try
to send it to the clipboard. It should. however. display a warning message if unable to
do so within a few seconds. lest the user try to retrieve nonexistent data.

44 If you are using Motif 1.0. you will be able to compile this code and it will appear to
work. You will find. however. that data is not actually exchanged with the clipboard.

522 Programming with Motif

Listing 17.39. Text editor clipboard interface

1***

** **
**
**
**
**

clipper.c

Text Editor -- Clipboard Interface Module

**
**
**
**

***1

#include <stdio.h>
#include <Xm/Text.h>
#include <Xm/CutPaste.h>
#include <XII/Xatom.h>

#include "textedit.h"

1***

** **
**
**

FORWARD D E FIN I T ION S **
**

***/

static char
static void

*GetTextSelection();
RplTextSelection();

1***

** **
** L 0 CAL V A R I A B L E S **
** **
***/

static XmString prog_name; 1* Name of application *1
static Display *clip_disp; 1* Our display connection *1
static Window clip_win; 1* Window associated with cpy *1
static char *data_type; 1* String for XA_STRING *1

Interclient Communication 523

Listing 17.39. Continued.

1***

** **
**
**
**
**
**

InitCl i pper()

This function creates some module-static variables, which hold
identification information needed by all clipboard calls.

**
**
**
**
**

***/

void InitClipper()
(

prog_name
clip_disp
clip_win
data_type

XmStringCreate("TextEdit", XmSTRING DEFAULLCHARSET);
XtDisplay(appshell);
None;
XGetAtomName(clip_disp, XA_STRING);

1***

** **
**
**
**
**
**
**

ClipCut(time)

Called from the Edit/Cut menu item, this function copies the
current work window selection to the clipboard, then deletes
it. To perform the copy, it calls ClipCopy().

** The "time" parameter comes from the invoking event, and is used
** by the selection mechanism.
**

**
**
**
**
**
**
**
**
**

***1

void ClipCut(time)
Time time;

ClipCopy(time);
RplTextSelection(.");

524 Programming with Motif

Listing 17.39. Continued.

1***

** **
**
**
**
**
**
**
**
**
**

Cl ipCopy(time)

Called from the Edit/Cut menu item, this function copies the
current work window selection to the clipboard. It is also
called by the function ClipCut, to localize clipboard access.

The "time" parameter comes from the invoking event, and is used
by the selection mechanism.

**
**
**
**
**
**
**
**
**

***/

void ClipCopy(time)
Time time;

char *txtsel;
int txtlen;
int clipstat;
long clip_id;
int tries;

if (clip_win == None)
clip_win = XtWindow(appshell);

txtsel
txtlen

GetTextSelection();
strlen(txtsel) + I;

tries = 0;
do

clipstat = XmClipboardStartCopy(clip_disp, clip_win, prog_name,
time, NULL, NULL, &clip_id);

while «clipstat != ClipboardSuccess) && (tries++ < 8));

if (tries == 8)

Interclient Communication 525

Listing 17.39. Continued.

/* Display alert here */
XtFree(txtsel);
return;
}

XmClipboardCopy(clip_disp. clip_win. clip_id. data_type.
txtsel. txtl en. O. NULL);

clipstat = XmClipboardEndCopy(clip_disp. clip_win. clip_id);

XtFree(txtsel);

1***

**
**
**
**
**
**
**
**
**
**
**

Cl ipPaste(time

Called from the Edit/Paste menu item. this function copies the
contents of the clipboard into the work window. at the current
insertion point. If there is a current selection. it is replaced
or not. depending on the contents of "pendingDelete".

The "time" parameter comes from the invoking event. and is used
by the selection mechanism.

**
**
**
**
**
**
**
**
**
**
**

***/

void ClipPaste(time)
Time

int
long
long
char
long
int

time;

clipstat;
data_len;
real_len;
*databuf;
text_pos;
tries;

526 Programming with Motif

Listing 17.39. Continued.

if (clip_win == None)
clip_win = XtWindow(appshell);

tries = 0;
do

clipstat = XmClipboardLock(clip_disp, clip_win);
while ((clipstat == ClipboardLocked) && (tries++ < 8));

if (tries == 8)

{

/* Display alert here */
XmClipboardUnlock(clip_disp, clip_win. TRUE);
return;

clipstat = XmClipboardlnquireLength(clip_disp, clip_win,
data_type. &data_len);

if (clipstat == ClipboardNoData)
return;

XmCl ipboardEndRetrieve(cl ip_disp, cl ip_win);
databuf = XtMalloc(data_len+l);

XmClipboardStartRetrieve(clip_disp, clip_win, time);
clipstat = XmClipboardRetrieve(clip_disp, clip_win, data_type,

databuf, data_len, &real_len,
NU LL);

databuf[data_lenJ = '\0';

RplTextSelection(databuf);
XtFree(databuf);

Interclient Communication 527

Listing 17.39. Continued.

1***

** **
** GetTextSelection()
**

**
**

** This function retrieves the current text selection -- or NULL. **
** if there is no selection. **
** **
***/

static char *GetTextSelection()
{

return(XmTextGetSelection(textwin));

1***

**
**
**
**
**
**
**

RplTextSelection(newtext)

This function replaces the current text selection with newtext.
If there is no selection. newtext is inserted at the current
insertion point.

**
**
**
**
**
**
**

***/

static void RplTextSelection(newtext)
char

Boolean

int

*newtext;

stest.
pende 1 ;
insertion.
seLstart.
seLend;

528 Programming with Motif

Listing 17.39. Continued.

XtSetArg(arglist[OJ. XmNcursorPosition. &insertion);
XtSetArg(arglist[lJ. XmNpendingDelete. &pendel);
XtGetValues(textwin. arglist. 2);

stest = XmTextGetSelectionPosition(textwin. &sel_start. &sel_end);
if (! stest II ! pendel)

sel_end = sel_start = insertion;

XmTextReplace(textwin. sel_start. sel_end. newtext);

Initialization

The initialization function. InitC1 ipper, is called from InitOther and initializes
the static data items with data that must be determined at runtime. It exists
primarily so that such assignments do not need to be performed inside the
actual clipboard functions.

One point of note is the assignment of Non e to eli p_w in, the variable that
contains the window ID used for data exchange. The actual assignment of a
window ID cannot be performed at the time this function is called, because the
program's widgets have not yet been realized - there are no valid window IDs.
Instead, this variable is initialized by the first clipboard function that uses it;
None is simply a flag value.

Clipboard Cut and Copy

Both the cut and copy operations are performed by the same function, C1 i pCopy.
Cutting, however, is invoked from the function C1 i pCut, which performs the
additional step of deleting the current selection.

The beginning of C1 i pCopy retrieves the selected text and determines its length.45
It also sets the transfer window ID, if needed. Note that I chose the application
shell. This is actually a questionable technique, because I mi~t want to use the
shell to handle other selection events; the work window would have been a better
choice. '

The rest of C 1 i pC 0 P y simply implements the three steps described above. It
initiates the data exchange using XmCl i pboa rdSta rtCopy, which is called in a
loop so that it has multiple chances to avoid a locked clipboard. If the operation
is successfully initiated, C 1 i pCopy then makes a single call to XmC 1 i pboa rdCopy,

45 Note that the NUL-terminator is included in the length calculation. The ICCCM
specifies that strings require such termination.

Interclient Communication 529

storing the entire selection. Finally, a call to XmC 1 i pboa rd EndCopy moves that data
to the clipboard.

This function does have several failings as production code. First, the
initialization loop is questionable: in aIr likelihood, all eight attempts will
complete before the clipboard becomes unlocked - again, a workproc would be
a better solution to this problem. The other main failing is that it provides error
checking on initialization only: if XmC1 i pboa rdStartCopy succeeds, this function
assumes that XmC1 i pboardCopy and XmC1 i pboardEndCopy will succeed. This is a
flawed assumption, and each call should be checked for a return of
C1ipboardFai1ure.

Clipboard Paste

The operation of pasting from the clipboard to the work window is performed by
C1 i pPaste. As with C1 i pCopy, this function is structured according to the
operations described above.

As with XmC1 i pboa rdSta rtCopy, XmC1 i pboa rd Lock is enclosed in a loop, allowing
the program several attempts to acquire the lock. In this case, a workproc would
not be acceptable: the user expects to see data pasted immediately upon
selection of the action - not several seconds afterward. If another program has
the clipboard locked, the user should be alerted to this fact.

Once the clipboard is locked, C1 i pCopy determines whether data is available. If
not, it returns - after unlocking the clipboard. Forgetting to perform the unlock
would essentially shut down the clipboard because no client would be able to
exchange data with it.

Assuming that data is aVailable, it is retrieved with XmC1 ipboardStartRetrieve
and XmC1 i pboardRetri eve. Note that the entire buffer is retrieved in one step
even if multiple data exchanges must be made due to limited server memory,
XmC 1 i pboa rd Ret ri eve hides them from the program. Once the data is retrieved, it
is stored in the text buffer and the space allocated for it is recovered.

Utility Functions

I decided to use utility functions to encapSUlate access to the text window. There
were two reasons for this decision: (1) such operations would detract from the
illustration of the clipboard interface, and (2) these functions should actually be
part of a "work window" module - the clipboard module should not have direct
access to the text widget.

The first function, GetTextSe1 ecti on, retrieves the current selection from the text
widget. If no text is selected, it returns NUL L. To do this, it simply calls
XmTextGetSe1ection.

The second function, RplTextSe1 ecti on, is more complex, in that it must handle
both cases where the text widget has a selection range, as well as cases where it
doesn't. In the latter case, Rp1 TextSe1 ecti on simply inserts the passed string at
the current insertion point. In the former case, it either replaces the current
selection or inserts the string, depending on the contents of the widget's
pendi ngDe 1 ete resource.

530 Programming with Motif

XmText Direct Clipboard Interface
While the above example illustrated the use of the clipboard interface - which is
not limited to text alone. it was unnecessary. The reason is that Motif 1.1
contains three functions that provide a direct clipboard interface for an XmText
widget. These functions are prototyped in Listing 17.40 and described below.

Listing 17.40. Function prototypes: XmTextCopy.
XmTextCut. XmTextPaste

Boolean XmTextCopy(w, time
Widget w;
Time time;

Boolean XmTextCut(w, time
Widget w;
Time time;

Boolean XmTextPaste(w
Widget w;

All three functions take the ID of the widget and return a flag indicating whether
or not the operation was successful. XmTextCopy and XmTextCut take an
additional parameter. time. used for the selection mechanism. All act identically
to the functions of the "clipper" module above.

Example: Using XmText Clipboard Functions with the Text Editor

Use of these functions means that the "clipper" module is no longer necessary.
Instead. these functions are called directly from the Edit menu callback
function. as shown in Listing 17.41.

Interclient Communication 531

Listing 17.41. Changes to EditMenuCB to support XmText
clipboard interface

static void EditMenuCB(w. client_data. call_data
Widget
char

w;
*clienLdata;

XmAnyCallbackStruct *call_data;

XButton Event *event = (XButtonEvent *)call_data->event;

if (!strcmp(clienLdata. "Cut"))
XmTextCut(textwin. event->time);

else if (!strcmp(client_data. "Cpy"))
XmTextCopy(textwin. event->time);

else if (!strcmp(client_data. "Pst"))
XmTextPaste(textwin);

else if (!strcmp(clienLdata. "Del"))
{

}

else if (!strcmp(clienLdata. "Fnd"))
ManageFindDB();

else if (!strcmp(client_data. "Rpl"))
{

}

Appendix A
ISO Latin 1 Character Set

Hex 00 01 02 03 04 05 06 07 08 09 OA OB oc OD OE OF
Dec 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

00
0 NUL SOH SIX E1X Ear ENQ ACK BEL BS fIT IF VT FF CR SO SI

10
16 DLE IXI IX2 DC3 IX4 NAK SYN E1B CAN EM SUB ESC FS GS RS US

20
" # $ % I () * / 32 ! & + I -

30
0 1 2 3 4 5 6 48 7 8 9 : i < = > ?

40
@ 64 A B C D E F G H I J K L M N 0

50
[\ J "-

80 P Q R S T U V W X Y Z -
60 ,

b d f h i j k 1 96 a c e g m n 0

70
{ I } 112 P q r s t u v w x y z -

80
128

90
144

AO
¢ £ I .. il -

160 i 0 ¥ I § © « -. - ®

BO
0 2 3 , 1 Q 7i Y:! % 176 ± II '3l » C-

eo A A A A A A E E E E j: i I t 192 JE C;

DO
N- O 6 0 0 6 0 U 6 U U Y JS 208 D x P

EO a a a 224 a a a CE <;: e e e e i i 1. i

FO
<5 fi 0 240 6 (; 6 6 (/) 1.1 11 Q U y- o y

- 533-

Appendix B
Widget Class Summary

Overview

This appendix provides a summary of each class provided by Motif. A summary
includes the class's derivation. the external name of the class pointer. and a
resource table. Unlike the tables presented in the body of the book. these
resource tables list all of a widget's resources. They also list the resource class
and representation type constants for each resource - replacing the
"Inheritance" and "Default Value" listings.

These class summaries do not provide any additional information. such as
deSCriptions of the resources. In addition. some of the "Data Type" entries refer
to types not described in this book - they come from the widget definition code.

ApplicationShell

Class Pointer:

Derivation:

Name

argc

argv

applicationShellWidgetClass

Core» Composite» Shell» WMShell» VendorShell»
TopLevelShell » ApplicationShell

Class Data Type Rep Type

XmCArgc int XmRlnt

XmCArgv String * XmRPointer

535

536 Programming with Motif

Composite
Class Pointer:

Derivation:

Name

insertposition

Constraint
Class Pointer:

Derivation:

compositeWidgetClass

Core» Composite

Class Data Type

XmClnsertPosition xtProc

constraintWidgetClass

Core» Composite» Constraint

This class does not define additional resources.

Rep Type

XmRFunction

Appendix B: Widget Class Summary 537

Core

Class Pointer: widgetClass

Derivation: Object» RectObj » WindowObj» Core

Name Class Data Type Rep Type

accelerators XmCAccelerators XtTranslations XmRAccelerator
Table

ancestor XmCSensitive Boolean XmRBoolean
Sensitive

background XmCBackground Pixel XmRPixel

background XmCPixmap Pixmap XmRPixmap
Pixmap

borderColor XmCBorderColor Pixel XmRPixel

borderPixmap XmCPixmap Pixmap XmRPixmap

borderWidth XmCBorderWidth Dimension XmRDimension

colormap XmCColormap Colormap XmRPointer

depth XmCDepth int XmRlnt

destroyCallback XmCCallback xtCallbackList XmRCallback

height XmCHeight Dimension XmRDimension

mappedWhen XmCMappedWhen Boolean XmRBoolean
Managed Managed

screen XmCScreen Pointer XmRPointer

sensitive XmCSensitive Boolean XmRBoolean

translations XmCTranslations XtTranslations XmRTranslation
Table

width XmCWidth Dimension XmRDimension

x XmC Pos it ion Positi on XmRPosition

y XmCPositi on Pos it ion XmRPos it ion

538 Programming with Motif

OverrideShell
Class Pointer: overrideShellWidgetClass

Derivation: Core» Composite» SheU » OverrideSheU

Name Class Data Type Rep Type

overrideRedirect XmCOverrideRedirect Boolean XmRBoolean

saveUnder XmCSaveUnder Boolean XmRBoolean

Shell
Class Pointer: shellWidgetClass

Derivation: Core» Composite» Shell

Name Class Data Type Rep Type

allowShellResize XmCAllowShellResize Boolean XmRBoolean

createPopupChild XmCCreatePopupChild XtProc XmRFunction
Proc Proc

geometry XmCGeometry String XmRString

overrideRedirect XmCOverrideRedirect Boolean XmRBoolean

popdownCallback XmCCallback xtCall backL i st XmRCallback

popupCallback XmCCallback XtCall backL i st XmRCallback

saveUnder XmCSaveUnder Boolean XmRBoolean

Appendix B: Widget Class Summary 539

TopLevelShell

Class Pointer:
Derivation:

Name

iconic

iconName

topLevelShellWidgetClass
Core. Composite. Shell. WMSheZZ» VendorShell.
TopLevelShell

Class Data Type Rep Type

XmClconic Boolean XmRBoolean

XmClconName String XmRString

TransientShell

Class Pointer:
Derivation:

Name

saveUnder

transient

VendorShell

Class Pointer:
Derivation:

Name

deleteResponse

focusPolicy
Changed

keyboardFocus
Policy

mwmDecorations

mwmFunctions

mwmlnputMode

mwmMenu

she 11 Un i tType

transientShellWidgetClass
Core. Composite» Shell. WMShell» VendorShell»
TransientShell

Class Data Type Rep Type

XmCSaveUnder Boolean XmRBoolean

XmCTransient Boolean XmRBoolean

vendorShellWidgetClass
Core. Composite. Shell» WMShell. VendorShell

Class Data Type Rep Type

XmCDeleteResponse unsigned XmRDeleteResponse
char

XmCCallback XtCa11back XmRCa11back
List

XmCKeyboardFocus unsigned XmRKeyboardFocus
Policy char Policy

XmCMwmDecorations int XmRlnt

XmCMwmFunctions int XmRlnt

XmCMwmlnputMode int XmRlnt

XmCMwmMenu String XmRString

XmCShellUnitType unsigned XmRShellUnitType
char

540 Programming with Motif

WMShell

Class Pointer: wmShellWidgetClass

Derivation: Core» Composite» Shell» WMShell

Name Class Data Type Rep Type

heightlnc XmCHeightlnc int XmRlnt

iconMask XmClconMask Pixmap XmRPixmap

iconPixmap XmClconPixmap Pixmap XmRPixmap

iconWindow XmClconWindow Window XmRWindow

iconX XmCiconX int XmRlnt

iconY XmCiconY int XmRlnt

initial XmClnitialState int XmRlnt
State

input XmClnput Boolean XmRBool

maxAspectX XmCMaxAspectX int XmRlnt

maxAspectY XmCMaxAspectY int XmRlnt

maxHeight XmCMaxHeight int XmRlnt

maxWidth XffiCMaxWidth int XmRlnt

minAspectx XmCMinAspectx int XmRlnt

minAspectY XmCMinAspectY int XmRlnt

minHeight XmCMinHeight int XmRlnt

minWidth XmCMinWidth int XmRlnt

title XmCTitle String XmRString

transient XmCTransient Boolean XmRBoolean

waitforwm XmCWaitForWm Boolean XmRBoolean

widthlnc XmCWidthlnc int XmRlnt

windowGroup XmCWindowGroup XID XmRWindow

wmTimeout XmCWmTimeout int XmRlnt

Appendix B: Widget Class Summary 541

XmArrowButton

Class Pointer: xmArrowButtonWidgetClass

Derivation: Core» XmPrimitive » XmArrowButton

Name Class Data Type Rep Type

activate XmCCallback XtCallbackList XmRCallback
Callback

armCallback XmCCallback XtCallbackList XmRCallback

arrowDirection XmCArrowDirection unsigned char XmRArrow
Direction

disarmCallback XmCCallback xtCall backL i st XmRCallback

542 Programming with Motif

XmBulletinBoard

Class Pointer:

Derivation:

Name

allowOverlap

autoUnmanage

buttonFontL i st

cancel Button

defaultButton

default
Position

dialogStyle

di al ogTitl e

focusCallback

labelFontList

mapCallback

marginHeight

marginWidth

noResize

resizePolicy

shadowType

string
Direction

textFontL i st

text
Translations

unmapCallback

xmBulletinBoardWidgetClass

Core» Composite» Constraint» XmManager»
XmBulletinBoard

Class Data Type Rep Type

XmCAllowOverlap Boolean XmRBoolean

XmCAutoUnmanage Boolean XmRBoolean

XmCButtonFontList XmFontL i st XmRFontList

XmCWidget Widget XmRWindow

XmCWidget Widget XmRWindow

XmCDefaultPosition Boolean XmRBoolean

XmCDialogStyle unsigned char XmRDialogStyle

XmCDialogTitle XmString XmRXmString

XmCCallback XtCallbackList XmRCallback

XmCLabelFontList XmFontL i st XmRFontL i st

XmCCallback XtCallbackList XmRCallback

XmCMarginHeight short XmRShort

XmCMarginWidth short XmRShort

XmCNoResize Boolean XmRBoolean

XmCResizePolicy unsigned char XmRResize
Policy

XmCShadowType unsigned char XmRShadowType

XmCStringDirection XmString- XmRString
Direction Direction

XmCTextFontList XmFontL i st XmRFontList

XmCTranslations XtTranslations XmRTranslation
Table

XmCCallback XtCallbackList XmRCallback

Appendix B: Widget Class Summary 543

XmCascadeButton

Class Pointer:

Derivation:

Name

activateCallback

cascadePixmap

cascading
Callback

mappingDelay

shadowThickness

subMenuld

XmCommand

Class Pointer:

Derivation:

Name

command

commandChanged
Callback

command Entered
Callback

historyltemCount

hi story Items

hi storyMaxItems

historyVisible
ItemCount

promptString

xmCascadeButtonWidgetClass

Core» XmPrimitive » XmLabel » XmCascad.eButton

Class Data Type Rep Type

XmCCallback xtCall back XmRCallback
List

XmCPixmap Pixmap XmRPrimForeground
Pixmap

XmCCallback xtCall back XmRCallback
List

XmCMappingDelay int XmRlnt

XmCShadowThickness short XmRShort

XmCMenuWidget Widget XmRMenuWidget

xmCommandWidgetClass

Core» Composite» Constraint» XmManager »
XmBulletinBoard » XmSelectionBox» XmCommand

Class Data Type Rep Type

XmCTextString XmString XmRXmString

XmCCallback XtCallback XmRCallback
List

XmCCallback xtCallback XmRCallback
List

XmCItemCount int XmRlnt

XmCltems XmStringTable XmRXmString
Table

XmCMaxItems int XmRlnt

XmCVisibleltemCount int XmRlnt

XmCPromptString XmString XmRXmString

544 Programming with Motif

XmDialogShell

Class Pointer:

Derivation:

Name

deleteResponse

xmDialogShellWidgetClass

Core» Composite» SheU» WMShell» VendorShell»
TransientSheU » XmDialogSheU

Class Data Type Rep Type

XmCDeleteResponse unsigned char XmRDeleteResponse

XmDrawingArea

Class Pointer:

Derivation:

Name

exposeCallback

inputCallback

marginHeight

marginWidth

resizeCallback

resizePolicy

xmDrawingAreaWidgetClass

Core» Composite» Constraint» XmManager»
XmDrawingArea

Class Data Type Rep Type

XmCCallback XtCall backL i st XmRCallback

XmCCallback XtCallbackList XmRCallback

XmCMarginHeight short XmRShort

XmCMarginWidth short XmRShort

XmCCallback XtCallbackList XmRCallback

XmCResizePolicy unsigned char XmRResizePolicy

Appendix B: Widget Class Summruy 545

XmDrawnButton

Class Pointer: xmDrawnButtonWidgetClass

Derivation: Core» XmPrimitive » XmLabel » XmDrawnButton

Name Class Data Type Rep Type

activateCallback XmCCallback XtCall backL i st XmRCallback

armCallback XmCCallback XtCallbackList XmRCallback

disarmCallback XmCCallback XtCall backL i st XmRCallback

exposeCallback XmCCallback XtCallbackList XmRCallback

pushButtonEnabled XmCPushButton Boolean XmRBoolean
Enabled

resizeCallback XmCCallback XtCallbackList XmRCallback

shadowType XmCShadowType unsigned char XmRShadowType

XmFileSelectionBox

Class Pointer:

Derivation:

Name

dirMask

dirSpec

fileSearchProc

fi 1 terLabel
String

listUpdated

xmFileSelectionBoxWidgetClass

Core» Composite» Constraint» XmManager»
XmBulletinBoard » xmSelectionBox» XmFi1eSelectionBox

Class Data Type Rep Type

XmCDirMask XmString XmRXmString

XmCDirSpec XmString XmRXmString

XmCFileSearchProc XtProc XmRProc

XmCFilterLabelString XmString XmRXmString

XmCL i stUpdated Boolean XmRBool ean

546 Programming with Motif

XmFonn

Class Pointer: xnifornnVVidgetClass

Derivation: Core» Composite» Constraint» XmManager»
XmBulletinBoard » XmFonn

Name Class Data Type Rep Type

fractionBase XmCMaxValue int XmRlnt

horizontalSpacing XmCSpacing int XmRlnt

rubberPositioning XmCRubberPositioning Boolean XmRBoolean

verticalSpacing XmCSpacing int XmRlnt

Name Class Data Type Rep Type

bottomAttachment XmCAttachment unsigned char XmRAttachment

bottomOffset XmCOffset int XmRlnt

bottomPosition XmCAttachment int XmRlnt

bottomWidget XmCWidget Widget XmRWindow

1 eftAttachment XmCAttachment unsigned char XmRA tta chment

1 eftOffset XmCOffset int XmRlnt

leftPosition XmCAttachment int XmRlnt

leftWidget XmCWidget Widget XmRWindow

resizable XmCBoolean Boolean XmRBoolean

rightAttachment XmCAttachment unsigned char XmRAttachment

rightOffset XmCOffset int XmRlnt

rightposition XmCAttachment int XmRlnt

rightWidget XmCWidget Widget XmRWindow

topAttachment XmCAttachment unsigned char XmRAttachment

topOffset XmCOffset int XmRlnt

topPos it ion XmCAttachment int XmRlnt

topWidget XmCWidget Widget XmRWindow

Appendix B: Widget Class Summary 547

XmFrame

Class Pointer: xmFrameWidgetClass

Derivation: Core» Composite» Constraint» XmManager» XmFrame

Name Class Data Type Rep Type

marginHeight XmCMarginHeight short XmRShort

marginWidth XmCMarginWidth short XmRShort

shadowType XmCShadowType unsigned char XmRShadowType

XmLabel
Class Pointer: xniLabelWidgetClass
Derivation: Core» XmPrimitive » XmLabel

Name Class Data Type Rep Type

accelerator XmCAccelerator String XmRString

acceleratorText XmCAccelerator- XmString XmRXmString
Text

alignment XmCAlignment unsigned char XmRAlignment

fontList XmCFontL i st XmFontL i st XmRFontList

labellnsens XmCLabel Pixmap XmRPixmap
iti vePi xmap InsensitivePixmap

labelPixmap XmCLabelPixmap Pixmap XmRPrimForeground
Pixmap

labelString XmCXmString XmString XmRXmString

1 abeHype XmCLabelType unsigned char XmRLa be Hype

marginBottom XmCMarginBottom short XmRShort

marginHeight XmCMarginHeight short XmRShort

marginLeft XmCMa rg in Left short XmRShort

marginRight XmCMarginRight short XmRShort

marginTop XmCMarginTop short XmRShort

marginWidth XmCMarginWidth short XmRShort

mnemonic XmCMnemonic char XmRChar

recomputeSize XmCRecomputeSize Boolean XmRBoolean

stringDirection XmCString XmString XmRStringDirection
Direction Direction

548 Programming with Motif

XmList
Class Pointer: xmListWidgetClass
Derivation: Core» XmPrimitive » XmList

Name Class Data Type Rep Type

automatic XmCAutomatic Boolean XmRBoolean
Selection Selection

browseSelection XmCCallback XtCallbackList XmRCallback
Callback

def a u ltAct ion XmCCallback xtCall backL i st XmRCallback
Callback

doubleClick XmCDoubleClick int XmRInt
Interval Interval

extendedSelect XmCCallback xtCallbackList XmRCallback
ionCallback

fontList XmCFontList XmFontList XmRFontList

itemCount XmCItemCount int XmRInt

items XmC Items XmStringTable XmRXmStringTable

listMargin XmCListMargin short XmRShort
Height Height

listMarginWidth XmCListMarginWidth short XmRShort

listSizePolicy XmCListSizePolicy unsigned char XmRListSizePolicy

listSpacing XmCListSpacing short XmRShort

multipleSelec XmCCallback xtCallbackList XmRCallback
tionCallback

se 1 ected Item XmCSe 1 ected Item int XmRInt
Count Count

se 1 ected Items XmCSelectedItems XmStringTable XmRXmStringTable

selectionPolicy XmCSelectionPolicy unsigned char XmRSelection
Policy

singleSelection XmCCallback xtCallbackList XmRCallback
Callback

stringDirection XmCStringDirection XmString- XmRString-
Direction Direction

visibleItem XmCVi si bl eItem int XmRInt
Count Count

Appendix B: Widget Class Summary 549

XmMainWindow
Class Pointer:

Derivation:

Name

commandWindow

mainWindowMargin
Height

xmMainWindowWidgetClass

Core» Composite» Constraint» XmManager»
XmScroUedWindow » XmMainWindow

Class Data Type

XmCCommandWindow Widget

XmCMainWindow short
MarginHeight

Rep Type

XmRWindow

XmRShort

mainWindowMarginWidth XmCMainWindow short XmRShort
MarginWidth

menuBar XmCMenuBar Widget XmRWindow

showSeparator XmCShowSeparator Boolean XmRBoolean

XmManager

Class Pointer: xmManagerWidgetClass

Derivation: Core» Composite» Constraint» XmManager

Name Class Data Type Rep Type

bottomShadowColor XmCForeground Pixel XmRPi xel

bottomShadow- XmCBottomShadow Pixmap XmRManBottom
Pixmap Pixmap ShadowPixmap

foreground XmCForeground Pixel XmRPixel

helpCallback XmCCallback XtCallback- XmRCallback
List

highlightColor XmCForeground Pixel XmRPixel

highlightPixmap XmCHighlightPixmap Pixmap XmRManHigh
lightPixmap

shadowThickness XmCShadowThickness short XmRShort

topShadowColor XmCBackground Pixel XmRPixel

topShadowPixmap XmCTopShadowPixmap Pixmap XmRManTop
ShadowPixmap

unitType XmCUnitType unsigned char XmRUni tType

userOata XmCUserOata xtPoi nter XmRPointer

550 Programming with Motif

XmMenuShell

Class Pointer: xmMenuShellWidgetClass

Derivation: Core» Composite» Shell» OverrideShell » XmMenuShell

Name Class Data Type Rep Type

allowShellResize XmCAllowShellResize Boolean XmRBoolean

saveUnder XmCSaveUnder Boolean XmRBoolean

XmMessageBox

Class Pointer: xmMessageBoxWidgetClass

Derivation: Core» Composite» Constraint» XmManager»
XmBulletinBoard » XmMessageBox

Name Class Data Type Rep Type

cancelCallback XmCCallback XtCallbackList XmRCallback

cancelLabelString XmCXmString XmString XmRXmString

defaultButtonType XmCDefaultButton unsigned char XmRDefault
Type ButtonType

dialogType XmCDialogType unsigned char XmRDialogType

helpLabelString XmCXmString XmString XmRXmString

messageAlignment XmCAlignment unsigned char XmRAlignment

messageString XmCXmString XmString XmRXmString

minimizeButtons XmCMinimizeButtons Boolean XmRBoolean

okCallback XmCCallback XtCallbackList XmRCallback

okLabelString XmCXmString XmString XmRXmString

symbolPixmap XmCPixmap Pixmap XmRManFore
groundPixmap

Appendix B: Widget Class Summary 551

XmPanedWindow

Class Pointer:

Derivation:

Name

marginHeight

marginWidth

refigureMode

sashHeight

sash Indent

xniPanedVVindovvVVidgetClass

Core» Composite» Constraint» XmManager »
XmPanedWindow

Class Data Type Rep Type

XmCMarginHeight short XmRShort

XmCMarginWidth short XmRShort

XmCBoolean Boolean XmRBoolean

XmCSashHeight Dimension XmRDimension

XmCSashIndent Positi on XmRPosition

sashShadowThickness XmCShadowThickness int XmRInt

sashWidth XmCSashWidth Dimension XmRDimension

separatorOn XmCSeparatorOn Boolean XmRBoolean

spacing XmCSpacing int XmRInt

Name Class Data Type Rep Type

allowResize XmCBoolean Boolean XmRBoolean

paneMaximum XmCPaneMaximum int XmRInt

paneMinimum XmCPaneMinimum int XmRInt

skipAdjust XmCBoolean Boolean XmRBoolean

552 Programming with Motif

XmPrimitive

Class Pointer:

Derivation:

Name

xmPrimitiveWidgetClass

Core» XmPrimitive

Class

bottomShadowColor XmCForeground

bottomShadow XmCBottomShadow
Pixmap Pixmap

foreground XmCForeground

helpCallback XmCCallback

highlightColor XmCForeground

highlightOnEnter XmCHighlightOnEnter

highlightPixmap XmCHighlightPixmap

highlight XmCHighlight
Thickness Thickness

shadowThickness XmCShadowThickness

topShadowColor XmCBackground

topShadowPixmap XmCTopShadowPixmap

traversalOn XmCTraversalOn

uni tType XmCUnitType

userData XmCUserData

Data Type Rep Type

Pixel XmRPixel

Pixmap XmRBottom
ShadowPixmap

Pixel XmRPixel

xtCallback XmRCallback
List

Pixel XmRPixel

Boolean XmRBoolean

Pixmap XmRHighlight
Pixmap

short XmRShort

short XmRShort

Pixel XmRPixel

Pixmap XmRTopShadow-
Pixmap

Boolean XmRBoolean

unsigned XmRUni tType
char

XtPointer XmRPointer

Appendix B: Widget Class Summary 553

XmPushButton
Class Pointer: xmPushButtonWidgetClass

Derivation: Core» XmPrimitive» XmLabel » XmPushButton

Name Class Data Type Rep Type

activateCallback XmCCallback xtCall backL i st XmRCallback

armCallback XmCCallback xtCallbackList XmRCa11back

armColor XmCArmColor Pixel XmRPixel

armPixmap XmCArmPixmap Pixmap XmRPrimForeground
Pixmap

disarmCallback XmCCallback XtCallbackList XmRCallback

fi 11 OnArm XmCFillOnArm Boolean XmRBoolean

showAsDefault XmCShowAsDefault short XmRShort

554 Programming with Motif

XmRowColumn

Class Pointer:

Derivation:

Name

adjustLast

adjustMargin

entryAlignment

entryBorder

entryCallback

entryClass

isAligned

isHomogeneous

labelString

mapCallback

marginHeight

marginWidth

menuAccelerator

menuHelpWidget

menuHistory

mnemonic

numColumns

orientation

packing

popupEnabled

radioAlwaysOne

radioBehavior

resizeHeight

resizeWidth

rowColumnType

spacing

subMenuld

unmapCallback

whichButton

xmRowColumnWidgetClass

Core» Composite» Constraint» XmManager»
XmRowColwnn

Class Data Type Rep Type

XmCAdjustLast Boolean XmRBoolean

XmCAdjustMargin Boolean XmRBoolean

XmCAlignment unsigned char XmRAlignment

XmCEntryBorder Dimension XmRDimension

XmCCallback XtCa 11 backL i st XmRCallback

XmCEntryCl ass WidgetClass XmRlnt

XmCIsAligned Boolean XmRBoolean

XmCIsHomogeneous Boolean XmRBoolean

XmCString XmString XmRXmString

XmCCallback XtCa11 backLi st XmRCa11 back

XmCMarginHeight Dimension XmRDimension

XmCMarginWidth Dimension XmRDimension

XmCAccelerators String XmRString

XmCMenuWidget Widget XmRMenuWidget

XmCMenuWidget Widget XmRMenuWidget

XmCMnemonic cha r XmRChar

XmCNumColumns short XmRShort

XmCDrientation unsigned char XmROrientation

XmCPacking unsigned char XmRPacking

XmCPopupEnabled Boolean XmRBoolean

XmCRadioAlwaysOne Boolean XmRBoolean

XmCRadioBehavior Boolean XmRBoolean

XmCResizeHeight Boolean XmRBoolean

XmCResizeWidth Boolean XmRBoolean

XmCRowColumnType unsigned char XmRRowColumnType

XmCSpacing Dimension XmRDimension

XmCMenuWidget Widget XmRMenuWidget

XmCCallback XtCall backLi st XmRCallback

XmCWhichButton unsigned int XmRWhichButton

Appendix B: Widget Class Summary 555

XmScale

Class Pointer: xmScaleWidgetClass

Derivation: Core» Composite» Constraint» XmManager» Xm&ale

Name Class Data Type Rep Type

decimalPoints XmCDecimalPoints short XmRShort

dragCallback XmCCallback XtCallback XmRCall back
List

fontList XmCFontL i st XmFontList XmRFontList

highlightOnEnter XmCHighlightOnEnter Boolean XmRBoolean

highlight XmCHighlightThickness short XmRShort
Thickness

maximum XmCMaximum int XmRlnt

minimum XmCMinimum int XmRlnt

orientation XmCOrientation unsigned XmROrientation
char

processing XmCProcessing unsigned XmRProcessing
Direction Direction char Direction

scaleHeight XmCScaleHeight Dimension XmRDimension

scaleWidth XmCScaleWidth Dimension XmRDimension

showValue XmCShowValue Boolean XmRBoolean

titleString XmCTit 1 eSt ri ng XmString XmRXmString

traversalOn XmCTraversalOn Boolean XmRBoolean

value XmCValue int XmRlnt

valueChanged XmCCallback XtCallback XmRCallback
Callback List

556 Programming with Motif

XmScroI lBar

Class Pointer: xmScrollBarWidgetClass

Derivation: Core» XmPrimitive » XmScrollBar

Name Class Data Type Rep Type

decrementCallback XmCCallback XtCallbackList XmRCallback

dragCallback XmCCallback XtCallbackList XmRCa11back

increment XmCIncrement int XmRInt

incrementCallback XmCCallback XtCallbackList XmRCallback

initialDelay XmCInitialDelay int XmRInt

maximum XmCMaximum int XmRInt

minimum XmCMinimum int XmRInt

orientation XmCOrientation unsigned char XmROrientation

pageDecrementCallback XmCCallback XtCallbackList XmRCallback

pageIncrement XmCPage int XmRInt
Increment

pageIncrementCallback XmCCallback XtCallbackList XmRCallback

processingDirection XmCProcessing unsigned char XmRProcessing-
Direction Direction

releaseCallback XmCCallback XtCallbackList XmRCallback

repeatDelay XmCRepeatDelay int XmRInt

showArrows XmCShowArrows Boolean XmRBoolean

sliderSize XmCSliderSize int XmRInt

toBottomCallback XmCCallback XtCallbackList XmRCa 11 ba ck

toTopCallback XmCCallback XtCallbackList XmRCallback

value XmCValue int XmRInt

valueChangedCallback XmCCallback XtCallbackList XmRCallback

Appendix B: Widget Class Summary 557

XmScrolledWindow
Class Pointer:

Derivation:

Name

clipWindow

horizontalScroll
Bar

scrollBarDisplay
Policy

scroll Bar
Placement

scrolledWindow
MarginHeight

scrolledWindow
MarginWidth

scrollingPolicy

spacing

verticalScroll
Ba r

visual Policy

workWindow

xmScrolledWindowWidgetClass

Core» Composite» Constraint» XmManager»
XmScroUedWindow

Class Data Type Rep Type

XmCClipWindow Widget XmRWindow

XmCHorizontalScroll Widget XmRWindow
Ba r

XmCScrollBarDisplay unsigned XmRScrollBar
Policy char DisplayPolicy

XmCScrollBar unsigned XmRScrollBar-
Placement char Placement

XmCScrolledWindow short XmRShort
MarginHeight

XmCScrolledWindow short XmRShort
MarginWidth

XmCScrollingPolicy unsigned XmRScrolling
char Policy

XmCSpacing int XmRlnt

XmCVerticalScrollBar Widget XmRWindow

XmCVisualPolicy unsigned XmRVisualPolicy
char

XmCWorkWindow Widget XmRWindow

558 Programming with Motif

XmSelectionBox

Class Pointer:

Derivation:

Name

appl yCall back

applyLabelString

cancelCallback

cancel Label
String

dialogType

helpLabelString

1 i stItemCount

listItems

listLabelString

1 i stVi si bl eItem
Count

minimizeButtons

mustMatch

noMatchCallback

okCallback

okLabelString

selectionLabel
String

textAccelerators

textColumns

textString

xmSelectionBoxWidgetClass

Core .. Composite .. Constraint .. XmManager ..
XmBulletinBoard » XmSelectionBox

Class Data Type Rep Type

XmCCallback XtCallback XmRCallback
List

XmCApplyLabelString XmString XmRXmString

XmCCallback XtCallback XmRCallback
List

XmCCancelLabelString XmString XmRXmString

XmCDialogType unsigned char XmRDialogType

XmCHelpLabelString XmString XmRXmString

XmC ItemCount int XmRlnt

XmCltems XmStringTable XmRXmString
Table

XmCListLabelString XmString XmRXmString

XmCVisibleltemCount int XmRlnt

XmCMinimizeButtons Boolean XmRBoolean

XmCMustMatch Boolean XmRBoolean

XmCCallback XtCallback XmRCallback
List

XmCCallback XtCallback XmRCallback
List

XmCOkLabelString XmString XmRXmString

XmCSelectionLabel XmString XmRXmString
String

XmCAccelerators Xt XmRAccelerator
Translations Table

XmCColumns short XmRShort

XmCTextString XmString XmRXmString

Appendix B: Widget Class SUIllIIlaIY 559

XmSeparator
Class Pointer: xmSeparatorWidgetClass

Derivation: Core» XmPrimitive » XmSeparator

Name Class Data Type Rep Type

margin XmCMargin short XmRShort

orientation XmCOrientation unsigned char XmROrientation

separatorType XmCSeparatorType unsigned char XmRSeparatorType

560 Programming with Motif

XmText
Class Pointer: XTIaTextVVidgetClass
Derivation: Core» XmPrimitive » XmText

Name Class Data Type Rep Type

activateCallback XmCCallback XtCa 11 backL i st XmRCallback

autoShowCursor XmCAutoShowCursor Boolean XmRBoolean
Position Positi on

blinkRate XmCBlinkRate int XmRlnt

columns XmCColumns short XmRShort

cursorPositi on XmCCursorPosition XmTextPosition XmRlnt

cursorPosition XmCCursorPosition Boolean XmRBoolean
Visible Visible

editable XmCEditable Boolean XmRBoolean

editMode XmCEditMode unsigned cha r XmREd itMode

focusCallback XmCCallback XtCa 11 backLi st XmRCa 11 back

fontList XmCFontList XmFontList XmRFontList

losingFocusCallback XmCCallback XtCa 11 backL i st XmRCallback

marginHeight XmCMarginHeight short XmRShort

marginWidth XmCMarginWidth short XmRShort

maxLength XmCMaxLength int XmRI nt

modi fyVeri fy XmCCallback XtCa 11 backL i st XmRCallback
Callback

motionVerify XmCCallback XtCa 11 backLi st XmRCallback
Callback

pendingDelete XmCPendingDelete Boolean XmRBoolean

resizeHeight XmCResizeHeight Boolean XmRBoolean

resizeWidth XmCResizeWidth Boolean XmRBoolean

rows XmCRows short XmRShort

selectionArray XmCSelectionArray XtPoi nter XmRPointer

selectThreshold XmCSelectThreshold int XmRI nt

source XmCSource XtPoi nter XmRPointer

topCharacter XmCTextPosition XmTextPosition XmRlnt

value XmCValue String XmRString

valueChanged XmCCallback XtCa 11 backL i st XmRCallback
Callback

wordWrap XmCWordWrap Boolean XmRBoolean

Appendix B: Widget Class Summary 561

XmToggleButton

Class Pointer: xmToggleButton WidgetClass

Derivation: Core» XmPrimitive » XmLabel » XmToggleButton

Name Class Data Type Rep Type

armCallback XmCArmCallback XtCall backL i st XmRCallback

disarmCallback XmCDisarmCallback XtCall backL i st XmRCallback

fillOnSelect XmCFillOnSelect Boolean XmRBoolean

indicatorOn XmClndicatorOn Boolean XmRBoolean

indicatorType XmClndicatorType unsigned char XmRlndicatorType

selectColor XmCForeground Pixel XmRPi xel

sel ectInsens XmCSelect Pixmap XmRPixmap
iti vePi xmap InsensitivePixmap

selectpixmap XmCSelectpixmap Pixmap XmRPrimForeground
Pixmap

set XmCSet Boolean XmRBoolean

spacing XmCSpacing short XmRShort

valueChanged XmCValueChanged XtCallbackList XmRCallback
Callback Callback

visibleWhenOff XmCVisibleWhenOff Boolean XmRBoolean

Appendix C
X Event Reference

Overview

This appendix details the structures comprising the X Eve n t union. It begins with
tables, taken from Chapter B, listing all X events and the masks used to select
those events. Following these tables, each member of the XEvent union is
presented individually and described in detail.

Event Types

X provides 33 distinct events, which are divided into nine categories. Table C.l,
also presented as Table B.l, lists these events in alphabetical order by category.
The names in the "Events" column correspond to constants defined in the
header file X 11 / X . h.

563

564 Programming with Motif

Table C.l. X event types

Category Events

Client Communication ClientMessage
PropertyNotify
SelectionClear
SelectionNotify
SelectionRequest

Colormap State ColormapNotify

Exposure Expose
GraphicsExpose
NoExpose

Keyboard Focus FocusIn
FocusOut

Keyboard Input KeyPress
KeyRel ease

Keymap State KeymapNotify

Pointer/Button ButtonPress
ButtonRelease
EnterNotify
LeaveNotify
Mot i on Not ify

Structure Control CirculateRequest
ConfigureRequest
MapRequest
ResizeRequest

Window State CirculateNotify
ConfigureNotify
CreateNotify
DestroyNotify
GravityNotify
MapNotify
Mappi ngNotify
ReparentNotify
UnmapNot ify
VisibilityNotify

Appendix C: X Event Reference 565

Event Masks

To select an event, a program must use one of the masks in Table C.2, also
presented as Table 8.2. These masks are bit masks and may be "or'd" together to
select multiple events. They are defined in the header fIle XII / X . h.

Table C.2. X event masks

Mask Constant Event(s) Comments
Enabled

ButtonMotionMask MotionNotify Notify if any mouse button pressed while
pOinter is moved

ButtonlMotionMask MotionNotify Notify only if mouse button # 1 pressed
while pointer is moved

Button2MotionMask MotionNotify Notify only if mouse button #2 pressed
while pointer is moved

Button3MotionMask MotionNotify Notify only if mouse button #3 pressed
while pOinter is moved

Button4MotionMask Moti onNoti fy Notify only if mouse button #4 pressed
while pOinter is moved

Button5MotionMask MotionNotify Notify only if mouse button #5 pressed
while pointer is moved

ButtonPressMask ButtonPress Notify when any mouse button is pressed

ButtonReleaseMask ButtonRelease Notify when any mouse button is released

ColormapChangeMask ColormapNotify Notify when colormap changes

EnterWindowMask EnterNotify Notify when pointer enters window

ExposureMask Expose Notify when portion of window is
exposed.

FocusChangeMask Focusln Notify when window gains or loses
FocusOut keyboard focus

KeymapStateMask KeymapNotify Describe keyboard state when focus
changes

KeyPressMask KeyPress Notify when any key is pressed

KeyReleaseMask KeyRel ease Notify when key is released

LeaveWindowMask LeaveNotify Notify when pOinter leaves window

PointerMotion Modifies Po i nte rMot i onMa s k, so that the
HintMask number of motion events is minimized;

Poi nterMoti onMask must be specified
too

PointerMotionMask MotionNotify Notify when pOinter moves

566 Programming with Motif

Table C.2. Continued.

PropertyChangeMask PropertyNotify Notify when window property changes

ResizeRedirectMask ResizeRequest Capture size-change requests from
children of associated window

StructureNotify CirculateNotify Notify when window structure changes
Mask ConfigureNotify

DestroyNotify
GravityNotify
MapNotify
ReparentNotify
Unma pNot ify

SubstructureNotify Ci rcul ateNotify Notify when child window structure
Mask Confi gureNot ify changes

CreateNotify
DestroyNotify
GravityNotify
MapNotify
ReparentNotify
UnmapNotify

Substructure CirculateRequest Capture structure-change requests
RedirectMask ConfigureRequest from children of associated window

MapRequest

VisibilityChange VisibilityNotify Notify when window visibility changes
Mask
gc-contro77ed GraphicsExpose These events are selected with the

NoExpose 9 raphi cs_exposures member of the
graphics context; when selected, they
are nonmaskable_

nonmaskab7e ClientMessage These events are delivered to all
Mappi ngNotify windows; they may be ignored by
SelectionClear passing FALSE in the nonmaskabl e
SelectionNotify parameter of XtAddEventHandl er
SelectionRequest

specia7 error event Protocol errors are passed from server
to client using the X event mechanism;
such events, however, are handled at a
low level in the client code

Appendix C: X Event Reference 567

XEvent

The X Eve n t union provides a convenient representation of the range of events
sent to an X client. Each member corresponds to one or more of the events listed
in the tables above; the purpose of each is described below the listing. XEvent
and all of its member types are defIned in the header flle Xli b . h.

Listing C.I. Type deflnition: XEvent

typedef union

int type:
XAnyEvent xany:
XKeyEvent xkey:
XButtonEvent xbutton:
XMotionEvent xmotion:
XCrossingEvent xcrossing:
XFocusChangeEvent xfocus:
XExposeEvent xexpose:
XGraphicsExposeEvent xgraphicsexpose:
XNoExposeEvent xnoexpose:
XVi sibil ityEvent xvisibil ity:
XCreateWindowEvent xcreatewindow:
XDestroyWindowEvent xdestroywindow:
XUnmapEvent xunmap:
XMapEvent xmap:
XMapRequestEvent xmaprequest:
XReparentEvent xreparent:
XConfigureEvent xconfigure:
XGravityEvent xgravi ty:
XResizeRequestEvent xresizerequest:
XConfigureRequestEvent xconfigurerequest:
XCirculateEvent xcirculate:
XCirculateRequestEvent xcirculaterequest:
XPropertyEvent xproperty:
XSelectionClearEvent xselectionclear:
XSelectionRequestEvent xselectionrequest:
XSelectionEvent xselection:
XColormapEvent xcolormap:
XClientMessageEvent xclient:
XMappingEvent xmapping:
XErrorEvent xerror:
XKeymapEvent xkeymap:
long pad[24J:
}

XEvent:

568 Programming with Motif

type_________________________________ Identification of the event type; this member
contains one of the constants listed in Table C.I.

xany_________________________________ Fields common to all events. This member is used
for nonspecific event handling (eg, determining
the source display).

xkey_________________________________ Data for KeyPress and KeyRel ease events,
enabled, respectively, by KeyPressMask and
KeyRel easeMask.

xbut t on ___________________________ _

xmot i on ___________________________ _

Data for ButtonPress and ButtonRel ease events,
enabled, respectively, by ButtonPressMask and
ButtonReleaseMask.

Data for Mot i onNot ify events, enabled by
PointerMotionMask, ButtonMotionMask and its
various "relatives," such as ButtonlMot i onMas k.

xcross i ng________________________ Data for EnterNot i fy and LeaveNot i fy events,
enabled, respectively, by EnterWindowMask and
LeaveWi ndowMask.

x f oc u s _____________________________ _ Data for Focusln and FocusOut events, enabled by
F ocusCha ngeMa s k.

xexpose ____________________________ Data for Expose events, enabled by ExposureMask.

xgraphi csexpose_____________ Data for Graphi csExpose events, enabled by the
graphi cs_exposures member of the graphics
context.

xnoexpose________________________ Data for NoExpose events, enabled by the
graphi cs_exposures member of the graphics
context.

xvi s i bi 1 i ty_____________________ Data for Vi s i bi 1 i tyNot i fy events, enabled by
VisibilityChangeMask.

xcreatewi ndow_________________ Data for CreateNot i fy, enabled by
SubstructureNotifyMask.

xdestroywi ndow_______________ Data for Dest royNot i fy, enabled by
StructureNotifyMask and
SubstructureNotifyMask.

xunmap ______________________________ Data for UnmapNoti fy, enabled by
StructureNotifyMask and
SubstructureNotifyMask.

Appendix C: X Event Reference 569

xmap Data for MapNoti fy. enabled by
StructureNotifyMask and
Subst ructureNot i fyMas k. Note: this member is not
used for the Map pin 9 Not i f y event; that event uses
xmappi ng.

xmaprequest..................... Data for MapRequest. enabled by
SubstructureRedirectMask.

xrepa rent........................ Data for Repa rentNotify. enabled by
StructureNotifyMask and
SubstructureNotifyMask.

xconfi gure...................... Data for Confi gureNoti fy. enabled by
StructureNotifyMask and
SubstructureNotifyMask.

x res i ze reques t............... Data for Res i zeReques t. enabled by
ResizeRedirectMask.

xconfi gurerequest Data for Confi gureRequest. enabled by
SubstructureRedirectMask.

xci rcu1 ate...................... Data for Ci rcu1 ateNoti fy. enabled by
StructureNotifyMask and
SubstructureNotifyMask.

xci rcu1 ate request.......... Data for Ci rcu1 ateRequest. enabled by
SubstructureRedirectMask.

xproperty Data for PropertyNotify. enabled by
PropertyChangeMask.

xse1 ecti onc1 ear Data for S e 1 e c t ion C 1 ear. a nonmaskable event.

xse 1 ect i onrequest.......... Data for Se 1 ect i on Request. a nonmaskable event.

xse 1 ect ion Data for Se 1 ect i onNot i fy. a nonmaskable event.

xco 1 ormap........................ Data for Co 1 ormapNot i fy. enabled by
Co10rmapChangeMask.

xc1ient Data for C1 i entMessage. a nonmaskable event.

xmappi ng.......................... Data for Mappi ngNot i fy. a nonmaskable event.

570 Programming with Motif

xerror.............................. Data for protocol error events. These events are
handled by the low-level interface and are not
delivered to program-level code by the event
mechanism.

xkeymap Data for KeymapNoti fy, enabled by
Keyma pSta teMa s k.

pad................................... Filler data, to guarantee the size of the XEvent
structure.

XAnyEvent

XAnyEvent contains fields common to all event types. It may be used for high
level event handling, such as determining whether the received event was sent
from another client.

Listing C.2. Type definition: XAnyEvent

typedef struct
{

int
unsigned long
Boolean
Display
Window
}

XAnyEvent;

type;
seri al ;
send_event;
*display;
window;

type................................. Identification of the event type; this member
contains one of the constants listed in Table C.I.

s e ria 1. A count of the number of protocol requests
processed by the server before this event was sent
to the client.

send_event...................... A flag indicating whether another client sent the
event: it is TRUE if the event was sent with
XSendEvent, FALSE if the event was sent directly
from the server.

Appendix C: X Event Reference 571

di spl ay Identification of the server that sent this event;
this is a pointer to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

wi ndow The ID of the window that handled the event. In
most cases, this is the ID of the window where
the event was received. Some events, however,
are propagated up the window tree until handled.

ButtonPress, ButtonRelease

But ton Pre s s events are sent whenever the user presses a mouse button; a
ButtonRel ease event is sent when the user releases that button. The server
determines the receiving window from the pointer position: it is the smallest
window that contains the pOinter. If this window does not have an appropriate
event handler attached, the event is sent to its parent - and so on, up the tree,
until some window does handle the event (or it reaches the root window, in
which case it is discarded).

Listing C.3. Type defInition: XButtonEvent

typedef struct
{

int type;
unsigned long seri al ;
Boolean send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x. y;
int x_root. y_root;
unsigned int state;
unsigned int button;
Boolean same_screen;

XButtonEvent;

type................................. Identification of the event type: ButtonPress or
Button Re 1 ea se.

572 Programming with Motif

seri al

send_event

A count of the number of protocol requests
processed by the server before this event was sent
to the client.

A flag indicating whether another client sent the
event: it is T RU E if the event was sent with
XSendEvent, FALSE if the event was sent directly
from the server.

dis play........................ Identification of the server that sent this event;
this is a pOinter to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

win dow.............................. The ID of the window that handled the event. Due
to propagation, this mayor may not be the
window where the event was fIrst received

root

subwindow

time

(subwi ndow).

The ID of the root window of the screen where the
event occurred.

The ID of the window where the event actually
occurred.

The event's server timestamp - a count of
milliseconds between the server start time and
the time the event was sent to the client.

x, y................................. The pointer position within the window receiving
the event (wi ndow), measured in pixels. If the
receiving window is not on the same screen as the
window specifIed in root (same_screen contains
FALSE), both x and y contain zero.

x_root, y_root............... The pointer's position relative to the root window
at the time of the event. If the root window and
the receiving window are not on the same screen,
both x_root and y_root contain zero.

state............................... The state of the modifIer keys and pointer
buttons at the time of the event. This member is a
bit mask, built from one or more of the following
constants:

ButtonlMask, Button2Mask, Button3Mask,
Button4Mask, Button5Mask, ShiftMask,
Control Mask, LockMask, ModlMask,
Mod2Mask, Mod3Mask, Mod4Mask, Mod5Mask

Appendix C: X Event Reference 573

button ______________________________ The mouse button that invoked this event. This is
a logical button number and should be compared
against one of the following constants:

Buttonl, Button2, Button3, Button4,
Button5

same_screen_____________________ A flag indicating whether the receiving window

CirculateNotify

(wi ndow) is on the same screen as the root window
(root). This member will contain FALSE as the
result ofa pointer grab; usually, it contains TRUE.

Ci rcul ateNotify events are generated when a window's position changes to the
top or bottom of the stacking order, due to a call to XCi rcul ateSubwi ndows,
XCirculateSubwindowsUp, or XCirculateSubwindowsDown. CirculateNotify events
are sent to the new top and bottom windows only.

Note that a more general notification is ConfigureNotify; the CirculateNotify
event is most useful to internal widget code.

Listing C.4. Type definition: XCirculateEvent

typedef struct

int type:
unsigned long seri a 1 ;
Boolean send_event;
Display *display;
Window event;
Window window;
int place;

XCirculateEvent;

type_________________________________ Identification of the event type: Ci rcu 1 a teNot i fy.

s e ria 1. ____________________________ _ A count of the number of protocol requests
processed by the seITer before this event was sent
to the client.

574 Programming with Motif

send_event...................... A flag indicating whether another client sent the
event: it is TRUE if the event was sent with
XSendEvent, FALSE if the event was sent directly
from the server.

di spl ay Identification of the server that sent this event;
this is a pointer to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

event The ID of the window that handled the event. This
mayor may not be the window being restacked.

wi ndow The ID of the window that is being restacked.

pl ace............................... The window's new position. The window is either
on the top of or beneath all of its siblings, as
specified by the following constants:

Pl aceOnTop, Pl aceOnBottom

CirculateRequest

Ci rcul ate Request events are used primarily by the window manager to control
the stacking of client windows. They are generated when
SubstructureRedi rectMask is in effect for a given window and a client attempts to
change the stacking order of children of that window.

When SubstructureRedi rectMask is in effect, the circulate operation is not
performed by the original call. Instead, the event handler must perform the call
again - or, to deny the request, Simply ignore the event.

Listing C.S. Type definition: XCirculateRequestEvent

typedef struct
{

int
unsigned long
Boolean
Display
Window
Window
int
}

XCirculateRequestEvent;

type;
seri al ;
send_event;
*display;
parent;
window;
place;

Appendix C: X Event Reference 575

type................................. Identification of the event type: Ci rcu1 ateRequest.

seri a 1. A count of the number of protocol requests
processed by the server before this event was sent
to the client.

send_event...................... A flag indicating whether another client sent the
event: it is TRUE if the event was sent with
XSendEvent, FALSE if the event was sent directly
from the server.

di sp1 ay Identification of the server that sent this event;
this is a pointer to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

pa rent.............................. The ID of the window receiving the event - the
parent of the window for which the request is
made. This is typically the root window.

wi ndow The ID of the window that is being restacked.

p1 ace............................... The desired location for the window. Either
P1 aceOnTop or P1 aceOnBottom.

ClientMessage

C1 i entMessage events are used for interclient communication, as described in
Chapter 17. Subject to requirements described below, its contents depend solely
on the sending client.

Note: All fields must be filled by the sending client. The server does not touch
this event in any way, save to set the send_event member and byte-swap the
contents (if needed).

576 Programming with Motif

Listing C.6. Type defInition: XClientMessageEvent

typedef struct
{

int
unsigned long
Boolean
Display
Window
Atom
int
union

XClientMessageEvent;

type;
seri al ;
send_event;
*display;
window;
message_type;
format;
{

char
short

long
}

data;

b[2D];
s[10] ;

1 [5] ;

type_________________________________ Identification of the event type: C1 i entMes sage.

s e ria 1 _____________________________ _

send_even t _____________________ _

A count of the number of protocol requests
processed by the server before this event was sent
to the receiving client.

A flag indicating whether another client sent the
event; this member always contains TRUE.

di sp1 ay ____________________________ Identification of the server that sent this event;
this is a pointer to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

wi ndow ______________________________ The ID of the window that receives the event.
When sent by a client, this fIeld must specify the
window passed to X Se n dE v e n t; if not, the event
isn't delivered.

message_type___________________ An atom that specilles the type of data contained
in d a t a. This member exists solely for the usage
of the two clients; it may contain one of the
predefIned type atoms, an atom unique to the
clients, or any 32-bit value known to both of the
clients.

Appendix C: X Event Reference 577

fonnat... A specification of the type of data in data used by
the seIVer to perfonn byte-swapping (if needed).
This contains the value 8 if the data is a
collection of bytes, 16 if it is a collection of words,
and 32 if it is a collection of longwords. No other
values are allowed.

data................................. The event data itself. This member is a 20-byte
buffer. For convenience, it is defined as a union of
a 20-element character array (b), a lO-element
short-integer array (5), or a 5-element long
integer array (1). The program may use or ignore
these defInitions; note, however, that the seIVer
perfonns byte-swapping based on the format
member - so a data item spanning two elements
may be improperly swapped.

ColormapNotify

Colo rma p Not i f y events are generated whenever a window's colonnap is changed.
In a shared-colonnap environment (the X nonn), colonnap changes may occur
whenever a program starts (and initializes its color scheme from the resource
fIle).

Listing C.7. Type defInition: XColormapElJent

typedef struct
{

int
unsigned long
Boolean
Display
Window
Colormap
Boolean
int
}

XColormapEvent;

type;
seri al ;
send_event;
*display;
window;
colormap;
new;
state;

type IdentifIcation of the event type: Col ormapNotify.

5eri a 1 A count of the number of protocol requests
processed by the seIVer before this event was sent
to the receiving client.

578 Programming with Motif

send_event A flag indicating whether another client sent the
event: it is T RU E if the event was sent with
XSendEvent, FALSE if the event was sent directly
from the server.

di spl ay Identification of the server that sent this event;
this is a pointer to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

win dow.............................. The ID of the window that undetwent a colormap
change.

colormap.......................... The ID of the changed colormap. If the colormap
was deleted, this member contains the value
None.

new................................... If this member contains TRUE, the existing
colormap was changed. If it contains FALSE, the
colormap was installed or uninstalled.

state............................... If new contains FALSE, this member indicates the
operation and contains one of the following
constants:

Col ormaplnstall ed, Col ormapUni nstall ed

ConjigureNotify

Con fig u r e Not i f y events indicate that part of a window's configuration - its size,
position, border, or stacking order - has changed. While the primary consumer
of such events is a widget's internal code, some programs may use these events
to alter their operation depending on available space.

Appendix C: X Event Reference 579

Listing C.B. Type definition: XConfigureEvent

typedef struct
{

int
unsigned
Boolean
Display
Window
Window
int
int
int
Window
Boolean
}

XConfigureEvent:

long
type;
seri al ;
send_event:
*display:
event;
window:
x. y;
width. height:
border_width:
above:
override_redirect;

type_________________________________ Identification of the event type: Confi gu reNot i fy.

s e ria 1. ____________________________ _

s end_ev ent _____________________ _

A count of the number of protocol requests
processed by the server before this event was sent
to the receiving client.

A flag indicating whether another client sent the
event: it is TRUE if the event was sent with
XSendEvent, FALSE is the event was sent directly
from the server.

di spl ay ____________________________ Identification of the server that sent this event;
this is a pointer to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

wi ndow ______________________________ The ID of the window that underwent
configuration change.

X. y_ _ _ ____ _ _ _ _ _ _ _ _ _ _ _ ______ _ _ _ _ _ _ _ _ _ The new position of the top-left comer of the
window border, relative to window's parent. Note
that the actual window position differs from this
by border_wi dth pixels.

wi dth. hei ght_________________ The new dimensions of the window, not including
the border.

580 Programming with Motif

border_wi dth __________________ _ The width (height). in pixels. of the border
surrounding the window.

above_______________________________ The ID of the [sibling] window that this window is
immediately above. If at the bottom of the stack.
this member contains the value Non e.

overri de_redi rect The overri de_red i rect attribute of the
reconfigured window. Only useful for shells. this
value is identical to the overri deRedi rect
resource.

ConjigureRequest

Confi gureRequest events are used primarily by the window manager. to control
the configuration of client windows. They are generated when
SubstructureRedi rectMask is in effect for a given window and a client attempts to
change the size. position. border width. or stacking order for children of that
window.

When SubstructureRedi rectMask is in effect. the configuration operation is not
performed by the original call. Instead. the event handler must perform the call
again - or ignore the event. to deny the request.

Listlng C.g. Type definition: XConfigureRequestEvent

typedef struct
{

int type;
unsigned long seri al ;
Boolean send_event;
Display *display;
Window parent;
Window window;
int x, y;
int width, height;
int border_width;
Window above;
int detai 1 ;
unsigned long value_mask;
}

XConfigureRequestEvent;

type__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ __ _ _ _ _ _ _ _ _ _ _ _ Identification of the event type: Con fig u re Req ue s t.

s e ria 1

Appendix C: X Event Reference 581

A count of the number of protocol requests
processed by the server before this event was sent
to the receiving client.

send_event...................... A flag indicating whether another client sent the
event: it is T RU E if the event was sent with
XSendEvent, FALSE if the event was sent directly
from the server.

di spl ay............................ Identification of the server that sent this event;
this is a pointer to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

par e n t.............................. The ID of the window receiving the event - the
parent of the window for which the request is
made.

wi ndow The ID of the window for which the change is
requested.

x, y The desired top-left position of the window. This
position actually references the window border,
so the actual window position is offset by
border_wi dth.

wi dth, hei ght................. The desired dimensions of the window, not
including the border.

border_wi dth The desired width (height), in pixels, of the
window border.

above............................... Used with detai 1 to specify the window's position
in the stacking order, relative to its siblings.
Contains the ID of one of the sibling windows.
May contain Non e, which modifies the usage of
the deta i 1 member.

deta i 1. Specifies the relationship of the reconfigured
window, relative to that of the sibling specified by
abo v e or the entire window stack. May contain
one of the following constants:

Above, Below, Toplf, BottomIf, Opposite

582 Programming with Motif

If above contains a valid window ID, the actions
are:

Above: The reconfigured window should be
placed just above its sibling.

Below: The reconfigured window should be
placed just below its sibling.

Top If: The reconfigured window should be
placed at the top of the stack if it is
obscured by the sibling.

BottomIf: The reconfigured window
should be placed at the bottom of the
stack if it obscures the sibling.

Opposite: A combination of Top If and
BottomIf: if the reconfigured window
obscures the sibling, it is placed at the
bottom of the stack; if it is obscured by
the sibling, then it is placed at the top of
the stack.

If above contains the value None, the actions are:

Above: The reconfigured window should be
placed at the top of the stack.

Be low: The reconfigured window should be
placed at the bottom of the stack.

Top If: The reconfigured window should be
placed at the top of the stack if it would
be obscured by any other window.

BottomIf: The reconfigured window
should be placed at the bottom of the
stack if it would obscure any other
window.

Oppos i te: Does not make sense in this
situation.

val ue_mask...................... A bit mask that specifies what configuration
information should be changed. The following
constants represent bits in this mask:

CWX, CWY, CWWi dth, CWHei ght,
CWBorderWi dth, CWSi bl i ng, CWStackMode

Appendix C: X Event Reference 583

CreateNotify

CreateNoti fy events are generated when a window is created and may be
received by any ancestor of the newly created window. Note that - unlike the
other "notify" events - this event is only enabled by SubstructureNoti fyMask; for
the obvious reason, a window can't receive the event indicating its own creation.

Listing C.lO. Type defInition: XCreateWindowEvent

typedef struct
{

int
unsigned
Boolean
Display
Window
Window
int
int
int
Boolean
}

long

XCreateWindowEvent;

type;
serial;
send_event;
*display;
parent;
window;
x, y;
width, height;
border_width;
override_redirect;

type_____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___ _ _ _ _ _ _ _ _ _ IdentifIcation of the event type: C rea teNot ify.

seri a 1 ______ .. _____________________ _

s end_event _____________________ _

A count of the number of protocol requests
processed by the server before this event was sent
to the receiving client.

A flag indicating whether another client sent the
event: it is TRUE if the event was sent with
XSendEvent, FALSE if the event was sent directly
from the server,

di sp1 ay____________________________ IdentifIcation of the server that sent this event;
this is a pointer to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

parent ______________________________ The ID of the window receiving the event.

wi ndow ______________________________ The ID of the newly created window.

584 Programming with Motif

x. y................................. The position of the top-left corner of the new
window's border.

wid t h. he i 9 h t................. The new dimensions of the window, not including
the border.

border_wi dth

override_redirect

DestroyNotify

The width (height), in pixels, of the border
surrounding the window.

The overri de_redi rect attribute of the
reconfigured window. Only useful for shells, this
value is identical to the overrideRedi rect
resource.

DestroyNotify events are sent just before a window is destroyed. They may be
received either by the window itself or its parent. Note that the event handler can
not prevent destruction of the window - by the time the program receives this
event, the window is already gone.

Listing C.II. Type defmition: XDestroyWindowEvent

typedef struct
{

int
unsigned long
Boolean
Display
Window
Window
}

XDestroyWindowEvent;

type;
seri al;
send_event;
*display;
event;
window;

type................................. Identification of the event type: Dest royNot i fy.

serial

send_event

A count of the number of protocol requests
processed by the server before this event was sent
to the receiving client.

A flag indicating whether another client sent the
event: it is T RU E if the event was sent with
XSendEvent, FALSE if the event was sent directly
from the server.

Appendix C: X Event Reference 585

di sp1 ay Identification of the server that sent this event;
this is a pointer to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

wi ndow The ID of the window that was destroyed.

EnterNotify, LeaveNotify

En t erN 0 t i f y events are sent to a window when the pointer enters its area;
Lea v e Not i f y events are sent when the pointer leaves its area. Each time the
pointer crosses a window border, both events are sent: LeaveNotify to the old
window and EnterNot i fy to the new window.

Listing C.12. Type defInition: XCrossingEvent

typedef struct
[

int
unsigned long
Boolean
Display
Window
Window
Window
Time
int
int
int
int
Boolean
Boolean
unsigned int

XCrossingEvent;

type;
serial;
send_event;
*display;
window;
root;
subwindow;
time;
x. y;
x_root. y_root;
mode;
detai 1 ;
same_screen;
focus;
state;

type................................. Identification of the event type: EnterNoti fy or
LeaveNotify.

s e ria 1 A count of the number of protocol requests
processed by the server before this event was sent
to the client.

586 Programming with Motif

send_event A flag indicating whether another client sent the
event: it is TRUE if the event was sent with
XSendEvent, FALSE if the event was sent directly
from the server.

dis play.. Identification of the server that sent this event;
this is a pointer to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

wi ndow The ID of the window that handled the event. Due
to propagation, this mayor may not be the
window where the event was fIrst received

root

subwi ndow

ti me

(subwi ndow).

The ID of the root window of the screen where the
event occurred.

The ID of the window where the event actually
occurred.

The event's server timestamp - a count of
milliseconds between the server start time and
the time the event was sent to the client.

x. y.................................. The pointer position within the window receiving
the event (wi ndow), measured in pixels. If the
receiving window is not on the same screen as the
window specilled in root (same_screen contains
FALSE), both x and y contain zero.

x_root. y_root............... The pointer's position relative to the root window
at the time of the event. If the root window and
the receiving window are not on the same screen,
both x_root and y_root contain zero.

mode An indication of whether the event was generated
as the result of user interaction or due to a grab
or ungrab operation. Values are as below:

Noti fyNormal: The event was generated
due to user action.

Noti fyGrab: The event was generated due
to a grab.

Noti fyUngrab: The event was generated
due to release of a grab.

detai 1

Appendix C: X Event Reference 587

An indication of the relationship between the old
and new windows. Values are as below:

Noti fyAncestor: The other window is a
direct-line ancestor of the window
receiving the event.

Notifylnferi or: The other window is a
direct-line descendent of the window
receiving the event.

Not i fyVi rtua 1: The window receiving the
event is a direct-line relative of the
windows involved in the crossing (but is
not directly involved the crossing).

Not i fyNon 1 i nea r: The windows involved in
the crossing (including the event
recipient) are on different branches of the
window tree.

NotifyNonl i nearVi rtual: The window
receiving the event is one of the relatives
of the windows involved in the crossing,
and those windows are on different
branches of the window tree.

same_screen..................... A flag indicating whether the receiving window

focus

state

(wi ndow) is on the same screen as the root window
(root). This member will contain FALSE as the
result of a pOinter grab; usually it contains TRUE.

If TRUE, specifies that the receiving window had
the focus (or has a child that had the focus) at
the time of the event.

The state of the modifier keys and pointer
buttons, at the time of the event. This member is
a bit mask, containing one or more of the
following constants:

ButtonlMask, Button2Mask, Button3Mask,
Button4Mask, Button5Mask, Shi ftMask,
Control Mask, LockMask, ModlMask,
Mod2Mask, Mod3Mask, Mod4Mask, Mod5Mask

588 Programming with Motif

Expose

Expose events are sent to a window when portions of that window are no longer
obscured by another window. They identify the rectangular window portion that
must be redrawn. A single exposure may result in one or more Ex p 0 s e events,
each of which identifies one portion of the exposed window.

Listing C.13. Type definition: XExposeEvent

typedef struct
{

int type;
unsigned long serial;
Boolean send_event;
Display *display;
Window window;
int
int
int
}

XExposeEvent;

x, y;
width. height;
count;

type................................. Identification of the event type: Expose.

seri a 1

send_event

A count of the number of protocol requests
processed by the server before this event was sent
to the client.

A flag indicating whether another client sent the
event: it is TRUE if the event was sent with
XSendEvent, FALSE if the event was sent directly
from the server.

di sp1 ay Identification of the server that sent this event;
this is a pointer to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

wi ndow The 10 of the window that was exposed.

x. y................................. The top-left corner of the exposed rectangle,
relative to the window.

Appendix C: X Event Reference 589

wi dth. hei ght................. The dimensions of the area that must be
redrawn.

count............................... The number of Expose events yet to be received
for this exposure. When this member contains
zero, the client has received all events associated
with this exposure. An optimized client will
redraw only those areas that require redrawing
and will wait until count contains zero to do so.

FocusIn, FocusOut

Focus events are sent to a window to report gain or loss of focus: FocusOut is
sent to the window losing focus at that same time that F 0 c u sIn is sent to the
window gaining focus. Note that these events simply report the change - they do
not permit the program to confIrm or deny it.

Listing C.14. Type defInition: XFocusChangeEvent

typedef struct
{

int
unsigned long
Boolean
Display
Window
int
int
}

XFocusChangeEvent;

type;
seri al ;
send_event;
*display;
window;
mode;
detai 1 ;

type................................. IdentifIcation of the event type: Focusln or
FocusOut.

s e ria 1 A count of the number of protocol requests
processed by the server before this event was sent
to the client.

send_event...................... A flag indicating whether another client sent the
event: it is TRUE if the event was sent with
XSendEvent, FALSE if the event was sent directly
from the server.

590 Programming with Motif

d; spl ay____________________________ Identification of the server that sent this event;
this is a pointer to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

w; ndow ______________________________ The ID of the window that received the event. This
mayor may not be the window that gained or lost
focus. If not, the de t a; 1 member specifies the
relationship of the receiving window to the
windows involved in the focus change.

mode ________________________________ _ An indication of whether focus was gained/lost as
the result of user interaction from a grab or
ungrab operation. Values are as below:

Not; fyNormal: The focus change was due
to user action.

Not; fyGrab: The focus change was due to
a grab.

Not; fyUngrab: The focus change was due
to release of a grab.

deta i 1

Appendix C: X Event Reference 591

An indication of the relationship between the
window gaining the focus and that losing the
focus. Values are as below:

Not; fyAncestor: The other window is a
direct -line ancestor of the window
receiving the event.

Not i fylnferi or: The other window is a
direct-line descendent of the window
receiving the event.

Not; fyVi rtua1: The window receiving the
event neither gains nor loses the focus,
but is a direct-line relative of the windows
involved in the focus change.

Not i fyNon 1 i nea r: The windows involved in
the focus change (including the event
recipient) are on different branches of the
window tree.

NotifyNon1 i nearVi rtua1: The window
receiving the event neither gains nor loses
the focus, but is a relative of the windows
that do - and those windows are on
different branches of the window tree.

Noti fyPoi nter: The receiving window
neither gains nor loses the focus, but
happens to contain the pOinter. This value
only appears due to a grab.

NotifyPoi nterRoot: Identical to
NotifyPointer, used when the focus
changes to or from the root window.

NotifyNone: The focus has been set to
Non e (no window). All windows receive a
FocusOut event.

592 Programming with Motif

Graphics~pose,No~pose

These events are generated during a call to the functions XCopyArea and
XCopyPl ane, and then only when the graphi cs_exposures flag (in the GC)
contains TRUE. Graphi csExpose indicates that the source drawable was obscured
and that the program should explicitly draw into the destination. No Expose
indicates that the copy was performed without a problem. As with Expose, one or
more G rap hie sEx P 0 s e events are generated, one for each area that could not be
copied. If the copy was successful, only one No Ex po s e event is sent.

Note that these events are generated only if graphi cs_exposures contains TRUE. If
this is the case, they are treated as nonmaskable events: they are passed to the
window's event handler if it was registered with the nonmaskabl e parameter (of
XtAddEventHandl er) set to TRUE.

Listing C.15. Type defInitions: XGraphicsExposeEvent,
XNoExposeEvent

typedef struct
{

int
unsigned long
Boolean
Display
Drawable
int
int
int
int
int
}

XGraphicsExposeEvent;

typedef struct
{

int
unsigned long
Boolean
Display
Drawable
int
int
}

XNoExposeEvent;

type;
seri al ;
send_event;
*display;
drawable;
x. y;
width. height;
count;
major_code;
minor_code;

type;
serial;
send_event;
*display;
drawable;
major_code;
minor_code;

Appendix C: X Event Reference 593

type................................. Identification of the event type: Graphi csExpose or
NoExpose.

seri a 1 A count of the number of protocol requests
processed by the server before this event was sent
to the client.

send_event...................... A flag indicating whether another client sent the
event: it is TRUE if the event was sent with
XSendEvent, FALSE if the event was sent directly
from the server.

di sp1 ay............................ Identification of the server that sent this event;
this is a pointer to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

drawabl e.......................... ID of the copy destination (window or pixmap).

x, y The top-left comer of the exposed rectangle,
relative to the area being copied. Note that these
values are not necessarily relative to the source
or destination, and must be translated
appropriately.

wi dth. hei ght................. The dimensions of the area that must be
explicitly drawn.

cou nt The number of Graphi csExpose events yet to be
received for this exposure. When this member
contains zero, the client has received all events
associated with this exposure. An optimized client
will draw only those areas that require it, and will
wait until count contains zero to do so.

major _code...................... The major code for the X protocol request that
resulted in the event. Unless an extension has
been loaded into the server, this value will be one
of the constants CopyArea or CopyPl ane. An
extension may generate this event for other
requests, and will use another value.

mi nor _code...................... The minor code for the X protocol request that
resulted in the event. Unless an extension has
been loaded into the server, this value will be
zero. An extension may generate this event for
other requests and may make use of nonzero
values.

594 Programming with Motif

GravityNotify

GravityNotify events are sent to windows when their parents have been resized.
They report the window's new position due to gravity-induced movement. This
event is primarily of use to widget writers.

Listing C.16. Type definition: XGraviiyEvent

typedef struct
{

int
unsigned long
Boolean
Display
Window
Window
int
}

XGravityEvent;

type;
serial;
send_event;
*display;
event;
window;
x, y;

type_________________________________ Identification of the event type: Gra v i tyNot i fy.

s e ria 1 _____________________________ _ A count of the number of protocol requests
processed by the server before this event was sent
to the client.

send_event______________________ A flag indicating whether another client sent the
event: it is TRUE if the event was sent with
XSendEvent, FALSE if the event was sent directly
from the server.

di sp1 ay ____________________________ Identification of the server that sent this event;
this is a pointer to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

event_______________________________ The ID of the window that received the event.

wi ndow ______________________________ The ID of the window that was moved.

x, y_________________________________ The new pOSition of the child (wi ndow), relative to
its parent.

Appendix C: X Event Reference 595

KeymapNotify

KeymapNotify events are sent to a window immediately after EnterNotify and
F 0 c u sIn events and contain the state of the keyboard - what keys are pressed -
at the time of focus change or window crossing. This information may also be
retrieved with the XQueryKeymap function.

Listing C.I 7. Type defInition: XKeymapEvent

typedef struct
{

int
unsigned long
Boolean
Display
Window
cha r
}

XKeymapEvent;

type;
seri al ;
send_event;
*display;
window;
key-vector[32];

type................................. IdentifIcation of the event type: Keyma pNot i fy.

seri al

send_event

A count of the number of protocol requests
processed by the server before this event was sent
to the client. The contents of this member are
identical to the preceding EnterNot i fy or Focus In
event.

A flag indicating whether another client sent the
event: it is TRUE if the event was sent with
XSendEvent, FALSE if the event was sent directly
from the server.

di spl ay IdentifIcation of the server that sent this event;
this is a pointer to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

wi ndow The ID of the window that received the focus or
now contains the pointer.

596 Programming with Motif

key_vector...................... A bit-map of the keyboard in which each set bit
indicates a pressed key; the 256 bits in this map
correspond to the 256 possible key codes. Each
element of the array corresponds to key codes 8N
(where N is the element number) to 8M-7. Bits
within a byte are numbered from least significant
(0) to most significant (7).

As an example, key code 23 (decimal)
corresponds to array element 2 and is accessed
with a mask ofOx80 (1«7).

Key codes must be translated to keysyms before
use.

KeyPress, KeyRelease

KeyPress events are generated whenever a key is pressed; a KeyRel ease event is
generated when that key is released. Both events are always sent to the window
that currently has the focus. All keys generate such events, including modifier
keys such as Shift. Note, however, that some servers do not support KeyRel ease
events: programs should not rely on their presence.

Listing C.18. Type definition: XKeyEvent

typedef struct
{

int type;
unsigned long seri al ;
Boolean send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x. y;
int x_root. y_root;
unsigned int state;
unsigned int keycode;
Boolean same_screen;
}

XKeyEvent;

Appendix C: X Event Reference 597

type................................. Identification of the event type: KeyPress or
KeyRe1 ease.

s e ria 1

send_even t

A count of the number of protocol requests
processed by the server before this event was sent
to the client.

A flag indicating whether another client sent the
event: it is T RU E if the event was sent with
XSendEvent, FALSE if the event was sent directly
from the server.

di sp1 ay Identification of the server that sent this event;
this is a pointer to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

wi ndow The ID of the window that handled the event. Due
to propagation, this mayor may not be the
window where the event was fIrst received

root

s ubwi ndow

time

(subwi ndow).

The ID of the root window of the screen where the
event occurred.

The ID of the window where the event actually
occurred - this is the window that has the input
focus.

The event's server timestamp - a count of
milliseconds between the server start time and
the time the event was sent to the client.

x, y................................. The pointer position within the window receiving
the event (wi ndow), measured in pixels. If the
receiving window is not on the same screen as the
window specifIed in root (same_screen contains
FALSE), both x and y contain zero.

x_root, y_root............... The pointer's position relative to the root window
at the time of the event. If the root window and
the receiving window are not on the same screen,
both x_root and y_root contain zero.

598 Programming with Motif

s tat e............................... The state of the modifier keys and pointer
buttons at the time of the event. This member is a
bit mask containing one or more of the following
constants:

ButtonlMask, Button2Mask, Button3Mask,
Button4Mask, Button5Mask, Shi ftMask,
Control Mask, LockMask, ModlMask,
Mod2Mask, Mod3Mask, Mod4Mask, Mod5Mask

keycode The keycode of the key that was pressed
(released). This is a server-dependent value and
must be converted to a keysym before use.

same_screen..................... A flag indicating whether the receiving window
(wi ndow) is on the same screen as the root window
(root). This member will contain FALSE as the
result of a pointer grab; usually it contains TRUE.

MapNotify, UnmapNotify

MapNotify events are generated when a window is mapped; UnmapNotify events
are generated when it is unmapped. These events are sent to the window that is
mapped/unmapped and are propagated up the window tree until handled - or
until they reach the root window, where they are discarded.

Appendix C: X Event Reference 599

Listing C.19. Type defInition: XMapEvent

typedef struct
{

int
unsigned long
Boolean
Display
Window
Window
Boolean
}

XMapEvent:

typedef struct
{

int
unsigned long
Boolean
Display
Window
Window
Boolean
}

XUnmapEvent:

type:
seri al :
send_event:
*display:
event:
window:
override_redirect:

type: •
seri a 1 :
send_event:
*display:
event:
window:
from_confi gure:

type................................. IdentifIcation of the event type: MapNotify or
UnmapNotify.

s e ria 1.

send_event

A count of the number of protocol requests
processed by the server before this event was sent
to the client.

A flag indicating whether another client sent the
event: it is TRUE if the event was sent with
XSendEvent, FALSE if the event was sent directly
from the server.

di spl ay IdentifIcation of the server that sent this event;
this is a pointer to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

600 Programming with Motif

event............................... The ID of the window that received the event. Due
to propagation, this mayor may not be the same
as the window being mapped or unmapped
(window).

win dow.............................. The ID of the window that is being mapped or
unmapped.

overri de_redi rect (MapNot i fy only) The value of the
overri de_redi rect attribute of the newly mapped
window - only useful for shells, it is identical to
the overri deRed i rect resource.

from_confi gure............... (UnmapNot i fy only) Used to indicate whether the
window was unmapped because its wi n_g r a v i ty
attribute was UnmapGravi ty (and its parent was
resized). If so, this member will contain TRUE; it
usually contains FALSE.

MappingNotify

Mappi ngNoti fy is sent to all windows when one of the server's internal physical
to-logical mappings (keycode to keysym, keycode to modifier, or button) is
changed. Such changes occur due to calls to XChangeKeyboa rdMappi ng,
XSetModifi erMappi ng, or XSetpoi nterMappi ng; the xmod.map client is a prime
generator of such calls.

Note that this event is not generated due to window mappingjunmapping. Note
also that it is sent to all windows, is nonmaskable, but is rarely of use to
program level code (it is, however, of interest to widget internal code).

Listing C.20. Type definition: XMappingEvent

typedef struct
{

int
unsigned long
Boolean
Display
Window
int
int
int
}

XMappingEvent;

type;
seri al ;
send_event;
*display;
window;
request;
first_keycode;
count;

Appendix C: X Event Reference 601

type................................. Identification of the event type: Ma ppi ngNot i fy.

s e ria 1

s end_event

A count of the number of protocol requests
processed by the server before this event was sent
to the client.

A flag indicating whether another client sent the
event: it is TRUE if the event was sent with
XSendEvent, FALSE if the event was sent directly
from the server.

di sp1 ay Identification of the server that sent this event;
this is a pOinter to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

wi ndow The ID of the window receiving this event. Every
window receives this event, so this member may
be ignored.

request Identifies the type of remapping that generated
this event. May contain one of the following
constants:

Mappi ngKeyboard, Mappi ngModifi er,
MappingPointer

fi rst_keycode................. For keyboard and modifier mapping, this member
specifies the fIrst keycode affected by the remap.
It is not used for pointer remapping.

count............................... For keyboard and modifier mapping, this member
specifies the number of keycodes - starting with
fi rsLkeycode - affected by the remap. It is not
used for pointer remapping.

MapRequest

MapRequest events are used primarily by the window manager to control the
mapping of client windows. They are generated when SubstructureRedi rectMask
is in effect for a given window and a client attempts to map a child of that
window.

When SubstructureRedi rectMask is in effect, the map operation is not performed
by the original call. Instead, the event handler must perform the call again - or
ignore the event, to deny the request.

602 Programming with Motif

Listing C.2l. Type definition: XMapRequestEvent

typedef struct
{

int
unsigned long
Boolean
Display
Window
Window
}

XMapRequestEvent;

type;
seri al ;
send_event;
*display;
parent;
window;

type................................. Identification of the event type: MapRequest.

seri a 1

send_event

A count of the number of protocol requests
processed by the server before this event was sent
to the client.

A flag indicating whether another client sent the
event: it is TRUE if the event was sent with
XSendEvent, FALSE if the event was sent directly
from the server.

di spl ay Identification of the server that sent this event;
this is a pointer to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

parent The ID of the window receiving the event - the
parent of the window for which the request is
made.

wi ndow The ID of the window requesting to be mapped.

MotionNotify

Moti onNotify events are generated whenever the pointer moves within a window
and are sent to the window in which the pointer moved. If not handled by that
window, they are propagated up the window tree and discarded at the root
window. MotionNotify events are also generated by a pointer "warp" - pointer
movement resulting from a call to XWarpPoi nter.

Appendix C: X Event Reference 603

The server attempts to closely track the motion: sending an event for each pixel
moved by the pOinter. If the client performs a large amount of processing for
each motion event. its response time would be degraded by a long movement.
which generates lots of events. To avoid this problem. it may request that
movement be reported as "hints" instead of discrete motion events.

Motion hints are enabled by specifying an event mask that contains both
Poi nterMoti onMask and Poi nterMoti onHi ntMask. When hints are enabled. pOinter
motion is reported by a single event. "Pointer motion" in this case means a series
of Mot ion Not if y events. without other intervening events: motion starts with the
first MotionNotify and ends with the fIrst nonmotion event. The motion hint is
sent at the end of the motion. but will not necessarily contain the correct pointer
position; the program must call X Que r y Poi n t e r to determine the correct position.

Note that MotionNotify events are generated only when movement begins and
ends within a single window. If the motion begins in one window and ends in
another. EnterNoti fy and LeaveNoti fy events are generated instead.

Listing C.22. Type defInition: XMotionEvent

typedef struct
{

int type;
unsigned long seri a 1 ;
Boolean send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x. y;
int x_root. y_root;
unsigned int state;
char is_hint;
Boolean same_screen;
}

XMotionEvent;

type................................. Identiflcation of the event type: Moti onNoti fy.

seri al A count of the number of protocol requests
processed by the server before this event was sent
to the client.

604 Programming with Motif

send_event...................... A flag indicating whether another client sent the
event: it is TRUE if the event was sent with
XSendEvent, FALSE if the event was sent directly
from the server.

di spl ay Identification of the server that sent this event;
this is a pointer to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

wi ndow The ID of the window that handled the event. Due
to propagation, this mayor may not be the
window where the event was first received

root

(s ubwi ndow).

The ID of the root window of the screen where the
event occurred.

subwi ndow........................ The ID of the window where the event actually
occurred.

ti me The event's server timestamp - a count of
milliseconds between the server start time and
the time the event was sent to the client.

x, y................................. The pointer position within the window receiving
the event (wi ndow). measured in pixels. Note that,
if this event is a hint, the position is that at the
time of the event - the program must query the
server to get the actual position.

x_root, y_root............... The pointer's position relative to the root window.

state............................... The state of the modifier keys and pointer
buttons, at the time of the event. This member is
a bit mask, containing one or more of the
following constants:

is hi nt

Button IMa s k, Button2Ma s k, But ton3Ma s k,
Button4Mask, Button5Mask, ShiftMask.
Control Mask. LockMask. ModlMask.
Mod2Mask. Mod3Mask. Mod4Mask. Mod5Mask

A flag indicating whether this event is a hint or
an actual motion event. It may be one of the
following constants:

NotifyNormal. NotifyHi nt

same_screen

PropertyNotify

Appendix C: X Event Reference 605

A flag indicating whether the receiving window
(wi ndow) is on the same screen as the root window
(root). This member will contain FALSE as the
result of a pOinter grab; usually it contains TRU E.

PropertyNot i fy events are sent to a window to indicate that a property attached
to that window has been changed or deleted. If not handled by the window itself,
they are propagated up the window tree and discarded at the root window.

Note that, prior to XllR4, PropertyNotify events were often used to determine
the current server time. This was accomplished by performing a zero-length
append on a property, which would not change the property but would generate
an event. As of R4, the toolkit stores the timestamp from the most recently
received event.

Listing C.23. Type definition: XPropertyEvent

typedef struct
{

int type;
unsigned long seri al ;
Boolean send _event;
Display *display;
Window window;
Atom atom;
Time time;
int state;

XPropertyEvent;

type................................. Identification of the event type: PropertyNot i fy.

seri al

send_event

A count of the number of protocol requests
processed by the server before this event was sent
to the client.

A flag indicating whether another client sent the
event: it is T RU E if the event was sent with
XSendEvent, FALSE if the event was sent directly
from the server.

606 Programming with Motif

di spl ay............................ Identification of the server that sent this event;
this is a pointer to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

wi ndow The ID of the window to which the changed
property belongs. Note that this may not be the
window that received the event - unlike most
other events, this event does not explicitly identify
the rec~iver.

atom................................. An atom identifying the changed property.

ti me The event's server timestamp - a count of
milliseconds between the server start time and
the time the event was sent to the client.

state............................... Indication of the type of change. May be NewVa 1 ue,
indicating that the property was created,
changed, or appended-to; or Del eted, indicating
that the property was removed from the window.

ReparentNotify

Repa rentNot i fy events are generated when a window's parent changes: when the
window is moved to a new point in the window tree. This most often happens
when the window manager takes a client window under its control by making it
the child of a frame window.

Usting C.24. Type defInition: XReparentEvent

typedef struct
{

int type;
unsigned long seri al ;
Boolean
Display
Window
Window
Window
int
Boolean
}

XReparentEvent;

send_event;
*display;
event;
window;
parent;
x, y;
override_redirect;

Appendix C: X Event Reference 607

type Identification of the event type: ReparentNotify.

seri al A count of the number of protocol requests
processed by the server before this event was sent
to the client.

send_event...................... A flag indicating whether another client sent the
event: it is TRUE if the event was sent with
XSendEvent, FALSE if the event was sent directly
from the server.

di spl ay Identification of the server that sent this event;
this is a pointer to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

wi ndow The ID of the window that was reparented

pa re n t.............................. The ID of the new parent window.

X, y. The position of the reparented window, relative to
its new parent.

override_redirect

ResizeRequest

The overri de_redi rect attribute of the
reparented window. This should always contain
FALSE - if it contains TRUE, the window was
incorrectly reparented (it should have been left
alone).

Resi zeRequest events are used primarily by the window manager to control the
size of client windows. They are generated when SubstructureRedi rectMask is in
effect for a given window and a client attempts to change the size of a child of
that window.

When Sub s t r u c t u r e Red ire c tM ask is in effect, the resize operation is not
performed by the original call. Instead, the event handler must perform the call
again - or ignore the event to deny the request.

608 Programming with Motif

Listing C.25. Type defInition: XResizeRequestEvent

typedef struct
{

int
unsigned long
Boolean
Display
Window
int

XResizeRequestEvent;

type;
seri al ;
send_event;
*display;
window;
width, height;

type. IdentifIcation of the event type: Res; ze Req ues t.

s e r; a 1 A count of the number of protocol requests
processed by the server before this event was sent
to the client.

send_event...................... A flag indicating whether another client sent the
event: it is TRUE if the event was sent with
XSendEvent, FALSE if the event was sent directly
from the server.

d; sp1 ay Identification of the server that sent this event;
this is a pointer to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

w; ndow The ID of the window to be resized.

w; dth, he; ght................. The desired dimensions of this window.

SelectionClear

Se 1 e c t ; 0 n C 1 ear events are sent to a selection owner by the server to indicate that
selection ownership has changed. They are automatically generated by calls to
XtOwn Se 1 ect; on and XSetSe 1 ect; onOwne r.

Note that, although the receiving window has lost the selection, any pending
transfer must be completed.

Appendix C: X Event Reference 609

Listing C.27. Type definition: XSelectinnClearEvent

typedef struct

int
unsigned long
Boolean
Display
Window
Atom
Time
}

XSelectionClearEvent;

type;
serial;
send_event;
*display;
window;
selection;
time;

type................................. Identification of the event type: Se 1 ect i onC1 ea r.

s e ria 1 A count of the number of protocol requests
processed by the server before this event was sent
to the client.

send_event...................... A flag indicating whether another client sent the
event: it is TRUE if the event was sent with
XSendEvent, FALSE if the event was sent directly
from the server.

di sp1 ay Identification of the server that sent this event;
this is a pointer to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

wi ndow.............................. The ID of the window that is losing the selection
(the receiver of this event).

se 1 ect ion

time

SelectionNotify

An atom identifying the selection type.

The server time when the receiver lost the
selection.

Se1 ecti onNoti fy events indicate that a selection has been delivered to a
requestor. They are always sent from one client to another, never from the server
to a client. This event is nonmaskable and is always delivered to the window
requesting a selection.

610 Programming with Motif

This event is always sent as part of a selection transfer, and certain members are
filled from the SelectionRequest event that initiated the transfer. Specifically:
selection, target, and property.

Note that this event is sent after the data has been successfully stored. To
confirm storage, the sender should accept PropertyNotify events on the
destination window. This rule is modified for the incremental transfer protocol,
specified by the ICCCM to avoid large data exchanges.

Listing C.26. Type definition: XSelectiDnEvent

typedef struct
{

int
unsigned long
Boolean
Display
Window
Atom
Atom
Atom
Time
}

XSelectionEvent;

type;
seri al ;
send_event;
*display;
requestor;
selection;
target;
property;
time;

type................................. Identification of the event type: Sel ecti onNoti fy.

seri al A count of the number of protocol requests
processed by the server before this event was sent
to the client.

send_event...................... A flag indicating whether another client sent the
event. It always contains TRUE.

dis play...................... Identification of the server through which this
event was sent; this is a pointer to the server's
display structure. It is primarily useful when a
client has connections open to more than one
display.

r e que s tor........................ The ID of the window that requested the
selection. This should be the ID of the event
receiver.

selection An atom identifying the selection type.

Appendix C: X Event Reference 611

target ______________________________ An atom identifying the data type of the stored
selection.

property__________________________ An atom identifying the property in which the
selection data was stored.

t i me ________________________________ _

SelectionRequest

While this member is usually filled from the
corresponding Sel ecti on Request event. there are
several cases where it may contain None. The first
is if the selection owner could not provide the
selection data as the desired type (as specified by
ta rget). The second is if the selection owner was
unable to store the property. due to a server error
(such as lack of memory). The third is that the
requestor sent its request to an invalid owner (ie.
the request time was outside the range in which
the owner owned the selection).

Note that the receiver is responsible for deleting
the data when it is no longer needed. Once the
data is delivered. the selection owner no longer
touches it.

The time that the selection was stored in the
destination. This is often sent as Cur r e n tT i me -
it is one of the few places where use of
CurrentTime is acceptable.

5 e 1 e c t ion R e que s t events are sent from one client to another to request the
contents of a named selection. They are nonmaskable. and are typically sent
from the XConvertSel ecti on function.

612 Programming with Motif

Listing C.28. Type definition: XSelectionRequestEvent

typedef struct
{

int
unsigned long
Boolean
Display
Window
Window
Atom
Atom
Atom
Time
}

XSelectionRequestEvent;

type;
seri al ;
send_event;
*display;
owner;
requestor;
selection;
target;
property;
time;

type................................. Identification of the event type: Se 1 ect i on Request.

seri al

send_event

A count of the number of protocol requests
processed by the server before this event was sent
to the client.

A flag indicating whether another client sent the
event: it is always TRUE for this event.

dis play........................ Identification of the server through which this
event was sent; this is a pointer to the server's
display structure. It is primarily useful when a
client has connections open to more than one
display.

owner............................... The 10 of the window that owns the selection.
This must be set by the sender or the event will
not be delivered; it is set automatically by
XConvertSelection.

requestor........................ The 10 of the window requesting the selection.

selection An atom identifying the selection type.

Appendix C: X Event Reference 613

target An atom identifying the desired data type for the
selection data. This is used by the owner to
convert from its internal format to a format that
the requestor can use. If unable to perform this
conversion, the sender may refuse to send the
selection data.

property.......................... An atom identifying the property in which the
selection data should be stored.

time

VisibilityNotify

An obsolete convention is to use tar get to
identify the property, and to pass None in
property. Clients are encouraged to support this
convention, but such support is not required.

The time that the requestor sent this event. This
is a server timestamp and should be used by the
selection owner to verify that the requestor sent
the request to the correct owner (ie, it should
check the send time against the time that it
received the selection).

Vis i b i 1 i ty Not i f y events are sent to a window whenever its visibility status
changes. Such changes happen because the window is obscured (or was
obscured) by another window, not because the window was mapped or
unmapped.

Listing C.30. Type definition: XVisibUityEvent

typedef struct
{

int
unsigned long
Boolean
Display
Window
int
}

XVisibilityEvent;

type;
serial;
send_event;
*display;
window;
state;

type................................. Identification of the event type: Vi s i bi 1 i tyNot i fy.

614 Programming with Motif

s e ria 1 _____________________________ _ A count of the number of protocol requests
processed by the server before this event was sent
to the client.

send_event______________________ A flag indicating whether another client sent the
event: it is TRUE if the event was sent with
XSendEvent, FALSE if the event was sent directly
from the server.

di spl ay____________________________ Identification of the server that sent this event;
this is a pointer to the server's display structure.
It is primarily useful when a client has
connections open to more than one display.

wi ndow ______________________________ ID of the window that underwent a visibility
change.

state_______________________________ The current visibility state. Values as below:

Vi si bi 1 ityUnobscured: The window was
partially or completely obscured; now it is
unobscured.

Visibi1ityPartial1yObscured:The
window is now partially obscured, due to
movement of another window. It may have
been unobscured, partially obscured, or
completely obscured prior to this
movement.

Vi s i bi 1 i tyFu11 yObscured: The window is
completely obscured. It may have been
unobscured, partially obscured, or
completely obscured previously by a
window other than the one that
completely obscures it now.

Appendix D
Changes In X And Motif

Overview
While this book was written for XII Release 3 and Motif 1.0, the fact remains
that these versions are obsolete. This appendix, therefore, provides a selection of
the improvements that were added for XII Releases 4 and 5, and Motif 1.1 -
the versions that were current as this book went into production.

From Motif 1.0 to 1.1

Lots of Bug Fixes

While this topic may seem to be in questionable taste, it is important to
recognize. While Motif 1.0 did not have an inordinate amount of bugs for a
software project of its size, Motif 1.1 has significantly fewer. For this reason
alone, you should upgrade to 1.1 if possible.

If not, be aware that "memory leaks" are especially prevalent in 1.0 - some the
fault of Motif, some the fault of X. Note also that not all functions act as
advertised - the clipboard interface is a prime example.

New Widget Class: XmTextField

The XmTextField class is a single-line text widget designed for entry fields. It
contains much of the XmText single-line functionality, without the overhead
needed to support multiline editing and scrollbars.

Changes to Existing Widget Classes

Many existing widget classes have been changed - some slightly, others
drastically. Most of these changes have been to appearance (eg,

615

616 Programming with Motif

XmFileSelectionBox) or to default resource values. A few of the changes have
been the addition or deletion of resources (eg, addition of the XmPushButton
resource defau1 tButtonShadowThi ckness).

In general, this book is not affected by such changes. In some cases, however, it
may not describe the best possible technique due to concerns of backward
compatibility.

New Library Functions

The Motif 1.0 Programmer's Reference contains 930 pages, while the 1.1 edition
contains 1,212 pages. While some of these pages represent revised
documentation and some are dedicated to the XmTextField widget class, the
majority are devoted to new library functions.

Many of the new functions are convenience functions for existing widgets: XmList
provided 15 convenience functions for 1.0 but 25 in 1.1, while XmTextwent from
10 to 31. It should be noted that some of these functions - particularly those
associated with XmText- were present in 1.0, but simply not documented.

Another area of increase is functions dedicated to menu creation. The functions
XmC reateS imp 1 eMenuBa r, XmC rea teS imp 1 ePu 11 downMenu, XmC reateS imp 1 ePopupMen u,
XmCreateSi mp1 eOpti onMenu, and their varargs counterparts allow the programmer
to create a complete menu structure - buttons and all - with a few function
calls.

Virtual Event Bindings

If you are working with 1.1, you might have been confused in Chapters 8 and 9,
where the default translations for XmPushButton and XmText were presented -
this book bears no relationship to the 1.1 Programmer's Reference. Instead of
event sequences like < B t n 1 Up>, the Programmer's Reference uses sequences like
BSe1 ect Press.

The latter is a virtual binding and provides an additional level of indirection
between a widget's actions and the events that invoke those actions. The Motif
translation manager automatically translates virtual bindings into physical event
bindings at runtime.

Motif is configured with bindings appropriate to each vendor's equipment, but
these bindings may be overridden in one of two ways. The fIrst is with the fIle
. mo t i fbi n d, which contains mappings between virtual and physical events. If
used, this fIle must be present in the user's home directory; it is read whenever a
Motif client starts.

The second method is with the application resource de fa u lt Vir t u alB i n din 9 s.
This resource, if used, contains a set of virtual-to-physical mappings exampled
by Listing 0.1. Note that, like the t ran s 1 at ion s resource, each mapping occupies
its own line, and lines are separated by newline characters.

Appendix D: Changes in X and Motif 617

Listing 0.1. Example settings for deJaultVirtualBindings
resource

*defaultVirtualBindings: \
\n\ KBackTab

KTab
Shi ft<Key>Tab
<Key>Tab

Program-ControUed Traversal

As described in Chapter 13, under Grabbing and Assigning the Input Focus, Motif
1.0 had a limited mechanism for assigning input focus: _XmGrabTheFocus. With
1.1, a program has complete access to the traversal mechanism via
XmProcessTraversal. This technique is described in Chapter 13.

Conversion Between Compound Strings and Compound Text

The Motif compound string is a method of encapsulating character-set
information along with the text to which it applies. The ICCCM makes use of a
similar compound-text format, defined in the document Compound Text
Encoding. The primary use of this format is interclient data exchange: for
maximum portability, each client should be able to convert between compound
text and its internal text format.

The X miscellaneous utilities library provides functions to convert between
normal strings and compound text, and Motif prOvides functions to convert
between Motif compound strings and compound text. These functions are
prototyped in Listing 0.2: XmCvtCTToXmStri ng converts compound-text data to a
compound string, and XmCvtxmStri ngToCT converts a compound string to
compound text. In both cases, the compound-text data is accessed with a
normal character pointer.

XmString

Listing 0.2. Function prototypes: XmCvtCIToXmString,
XmCvtXmStringToCT

XmCvtCTToXmString(ctext
char *ctext;

char *XmCvtXmStringToCT(xms)
XmString xms;

618 Programming with Motif

From XII Release 3 to Release 4

Derivation of Core from Object, RectObj, and WindowObj

Core is the root of the R3 intrinsics class tree. Motif, with its use of gadgets,
breaks Core into three parts: Object, RectObj, and WindowObj. Widgets are
derived from all three components, while gadgets are derived from Object and
RectObj only.

R4 incorporates this new derivation of Core, providing direct support for
"nonwidget objects" - but doesn't itself define any such objects. The result is
that Motif will now peacefully coexist with other widget sets: it uses the same Xt
library, and programs can mix Motif widgets with non-Motif widgets.

Interclient Communications Conventions

As of R3, the ICCCM was a proposed standard. While many clients honored its
conventions, they were not required to do so. For R4, not only is the ICCCM a
true standard, it has been revised and expanded, with more thought given to
areas such as client/window-manager communication.

Shared Libraries

Release 4 marked the use of shared libraries, by which multiple applications can
share a single copy of a library function. This reduces the size of programs both
on-disk and in-memory: instead of actual library code, programs using a shared
library simply contain references to that library.

There are two drawbacks to the use of shared libraries. The first is that the
library must be installed for a program to run - it's no longer self-contained.
This problem is often discovered at a large installation, typically when new
machines are purchased.

The second problem with a shared library occurs if a shared function uses static
data. Some shared library implementations share this static data, meaning that
each program attempts to use - and modify - a single data item. This is
especially a problem with the toolkit for the reason described below.

Use of Application Context Now Required

The application context is a data structure internal to the intrinsics, which
contains program-level information. This information includes a list of the open
display connections, program-level callback lists (eg, timeouts), program-specific
resource converters, pointers to the various error handlers, and other
information used by the intrinsics to maintain a program.

The application context structure has been a part of the intrinsics since Release
3, but was largely ignored by R3 programs. This happened primarily because the

Appendix D: Changes in X and Motif 619

Xt library contains a default application context structure, which is all that was
needed by most programs.! This book follows that habit.

With Release 4 and shared libraries, however, this default application context
structure could no longer be used: the default structure is a static data item,
which would be used and modified by all programs using the library. For those
installations that do not use shared libraries, portability concerns still make the
use of a program-specific application context a high priority.

Many programs require only two changes: replacement of X tIn i t i ali z e by
XtApplni ti al i ze and replacement of XtMai nLoop by XtAppMai nLoop. Both of these
functions are prototyped below in Listing 0.3.

The primary change to the initialization function is the replacement of the
program name by a pointer to an XtAppContext variable. XtApplniti al i ze creates
a unique application context and stores a pointer to this context in the
referenced variable. It retrieves the program name from the argument list, so it
does not need to be passed explicitly.

Listing 0.3. Function prototype: XtApplnitialize
XtAppMainLoop

Widget XtApplnitialize(context, class, options, num_opts, argc, argv)
XtAppContext *context;
char *class;
XrmOptionOescRec options[];
Cardinal num_opts;
Cardinal *argc;
char *argv[];

void XtAppMainLoop(context)
XtAppContext context;

As stated above, these functions are the only two that must be changed in a
typical program. All widgets are associated with an application context at time of
creation, so widget-related functions can determine the application context -
default or unique - from the widget's internal data.2

Since the application context is used for most toolkit operations, those functions
that do not work with widgets must have their context explicitly specified. Such
functions include those to register timeouts and workprocs, as well as resource
converters. In this book, such functions have used the default application
context. As with X tIn i t i ali z e, however, each such function has a version -

! A disincentive to use of a program-specific application context was that a program
couldn't use X tI nit i ali z e. Instead, it had to perform the job of X tI n it i ali ze and
explicitly call the various initialization functions. For R4, XtApplni ti al i ze is present.

2 When a widget is created, it is associated with the same application context as its
parent. The application shell is associated with an application context by
XtApplniti al i ze, meaning that that context is used for all widgets in the instance tree.

620 Programming with Motif

identified by "App" in its name - that makes use of an explicit application
context.

Table D.I lists the explicit-application-context functions identified by their
"default" versions; due to space constraints. it does not provide detail
information. Note also that some of these functions were not covered in this book
(eg. XtErrorjXtAppError). and some are called by other functions. not by
program code (eg. XtCreateShelljXtAppCreateShell. which is called by
X tI nit i ali ze jXtApp I nit i ali ze).

Table D.I. List of functions that require application context

"Default" Function App-Context Function

XtAddActions XtAppAddActions

XtAddConverter XtAppAddConverter

XtAddlnput XtAppAddlnput

XtAddTimeOut XtAppAddTimeOut

XtAddWorkProc XtAppAddWorkProc

XtCreateShell XtAppCreateShell

XtError XtAppError

XtErrorMsg XtAppErrorMsg

XtGetErrorDatabase XtAppGetErrorDatabase

XtGetErrorDatabaseText XtAppGetErrorDatabaseText

XtGetSelectionTimeout XtAppGetSelectionTimeout

XtMainLoop XtAppMainLoop

XtNextEvent XtAppNextEvent

XtPeekEvent XtAppPeekEvent

xtPendi ng XtAppPending

XtProcessEvent XtAppProcessEvent

XtSetErrorHandler XtAppSetErrorHandler

XtSetErrorMsgHandler XtAppSetErrorMsgHandler

XtSetSelectionTimeout XtAppSetSelectionTimeout

XtSetWarningHandler XtAppSetWarningHandler

XtSetWarningMsgHandler XtAppSetWarningMsgHandler

XtWarning XtAppWarning

XtWarningMsg XtAppWarningMsg

Appendix D: Changes in X and Motif 621

Resource Conversion Mechanism

The Release 4 resource conversion mechanism represents a giant leap forward
from Release 3. As indicated in Chapter 16, its most obvious new features are a
new cache mechanism and the ability to allocate memory inside a converter -
and have that memory properly deallocated by the resource manager.

Items not noted in Chapter 16 include the fact that resource converters now
return a Boo1 ean result to indicate whether or not the conversion could be
performed. Also, converters now take a Di sp1 ay pOinter as their first parameter;
it is used to retrieve the appropriate application context. Finally, the method of
direct invocation has changed: XtConvert has been replaced by XtCa 11 Converter.

Fallback Resource Values

An additional step has been added to the task of building a resource database:
loading fallback resources from program code. Unlike "hard-wired" resources,
fallback resources are defaults used only when no other speCification is
applicable. In essence, they are equivalent to a program-specific defaults fIle that
is encoded into the program. Fallback resources may be specified in the call to
XtApplni ti a1 i ze or with the function XtAppSetFa11 backResources.

Variable-Argument Functions

ANSI C codifies a technique long used by C hackers: using the addressing
capabilities of C to allow a function to have a variable argument list. An example
of such a function is p r i n t f, which can accept an unlimited number of
arguments; the format string specifies the number and type of each argument.

The Release 4 toolkit uses this 'varargs' capability to allow specification of
resource values in a function call, replacing the argument arrays used by this
book. Such functions are identified by a name that starts with "XtVa", rather
than "Xt". They are best explained by example: Listing 0.4 shows the use of
XtV aSetV a 1 ues, a replacement for XtSetVa 1 ues.

Listing 0.4. Use of XtVaSetValues

Widget w; /* XmText widget */

XtVaSetValues(w. XmNheight. 50. XmNwidth. 100. NULL);

As you can see, this function specifies resources as a list of name/value pairs
terminated by NUL L. Any varargs function needs to determine the end of its list;
p r i n tf uses its format string, while the toolkit functions use NUL L. If you omit
the NULL entry, the function will continue to access "arguments" from essentially

622 Programming with Motif

random memory locations - stopping when it by chance finds a memory
location that contains NU LL.

You should note that varargs interfaces are not fully supported by Motif. While
the Intrinsics provide a varargs widget creation function (XtVaCreateWidget),
Motif does not provide such functions (ie, there is no XmVaCreateText). Motif
does, however, make use of varargs functions for one-step menu creation, with
XmVaCreateSimpl eMenuBar and its relatives.

New Function: XtLastTimestampProcessed

While many operations - such as acquiring selection ownership - require a
server timestamp, versions of X prior to Release 4 had no simple way to retrieve
such a timestamp. If a callback happened to contain a timestamped event, you
were in luck. If not, you would have to find some way to retrieve one: a classic
method was performing a zero-length property append, and trapping the
resulting PropertyNotify event.

Release 4 provides the function XtLastTimestampProcessed, prototyped in Listing
0.5. When a timestamped event - such as a button or movement event - is
received, its timestamp is stored. It is retrieved with XtLastTimestampProcessed,
which uses a display pointer to identify the timestamp source.3 You should note
that there is no guarantee that the returned timestamp will be up to date: if the
program has not received a timestamp-bearing event in three seconds, the
returned timestamp value is three seconds old.

Listing 0.5. Function prototype: XtLasfIimestampProcessed

Time XtLastTimestampProcessedC display)
Display *display;

From XII Release 4 to Release 5

Intemationalization

Release 5 includes features to simplify the internationalization of programs,
allowing them to be configured for different countries with minimal effort. The
primary effect on the programmer is that characters may now occupy 16 bits,
rather than 8. This was described in Chapter 9, in reference to the XmText
callback structures. This feature is not yet implemented in Motif.

3 Different displays will have different timestamps for the same point in time, due to
different start times.

Appendix D: Changes in X and Motif 623

Addition of Font Server and Font Scaling

These items are of primary interest to users and administrators; neither affect
the programmer directly. The addition of a font server means that physical font
data need not be stored permanently on a display server: it will retrieve fonts
from the font server as needed. Font scaling is a method for describing a font
mathematically, allowing the server to produce any size "on the fly." It means
that a user is not limited in the selection of font sizes to those bitmaps
supported by the server.

Changes to Resource Search Path

While Motif has supported an internationalized resource search path - using
the LANG environment variable - for some time, this path is now part of the
intrinsics. In addition, the user is now allowed greater flexibility in specifying a
unique search path via the XFI LESEARCHPATH and XUSERFI LESEARCHPATH
environment variables.

A final - somewhat esoteric - change is that the resource manager now
associates resources with a particular screen of a display, allowing separate
resource specifications on a per-screen basis. This feature is most useful with
software such as Apple's Mac-X, which uses screen numbers to control window
attributes: one screen is for monochrome windows, one is for color. In this
environment, program that makes extensive changes to the resource database (a
topic not covered in this book) must explicitly identify the screen. Again, for most
programs, this is handled automatically by XtApplni ti ali ze.

New Resource Component: '?'

In most resource files, a loose binding is used to wildcard the program's class
name. However, since a loose binding substitutes for zero or more components
in a resource specification, if two widgets have the same name, it will have
greater effect than desired - the same specification is applied to both.

For Release 5, the resource manager recognizes a question mark as substituting
for a single component in the resource specification. This is illustrated by Listing
0.6, in which it is used to represent the program class name (with a loose
binding for comparison).

Listing 0.6. Example use of '?' resource component

?TheLabel.background: White
*.TheLabel.background: Black

624 Programming with Motif

Use of #include in Resource Files

Resource files may now incorporate other named files, using the If; ncl ude
notation shown in Listing D.7. Unlike the If; ncl ude directive of the C
preprocessor, there is no default search path for the resource manager: the
included fIle's name must be completely specified, or it is assumed to be located
relative to the current directory. If the resource manager finds the file, its
contents replace the line containing the If; ncl ude specification.

Listing D.7. Example use of '?' resource component

! Get the test resources
#include testresources.TextEdit

Other notes about the If; ncl ude specification are that whitespace may appear
between "#" and "include", that "#" must be the first character on the line, and
that "include" must be specified in lowercase. The first two notes are interesting
in that they indicate that "#" may become a general directive specification -
providing an additional incentive not to use it for a comment.

New Resource: baseTranslations

To add flexibility to widget translation modification, the baseTranslat;ons
psuedo-resource has been added. This resource takes precedence over the
widget's class translations, but is subordinate to an explicit specification for the
t ran s 1 at; 0 n s resource. It is designed for use in system-wide application defaults
fIles, leaving t ran s 1 at; 0 n s available for a user's changes.

Appendix E
Where To Go For More
Information

Overview
While this book has tried to present most of what you need to know to write a
Motif program, there's always more to learn. The X book market is growing daily,
and while my editor will not permit me to mention competitors' books, some of
them are quite good - after you've bought and read this book. In addition to
"how to" books, both the Open Software Foundation and the X Consortium have
manuals that are indispensable to a full-time X programmer. Finally, there are
various support groups, filled with people who will console you when things
don't go right - and then help you to make them go right.

Documentation

X Documentation

There is an enormous amount of documentation that comes as part of the X
window system. At the risk of offending those who have spent the last several
years working on it, I must say that it varies from very good to not-so-good.
However, it is filled with valuable information and is, in my opinion, an
indispensable reference.

The following documents are a selection of those available. As stated above, they
are part of the X source distribution and are present as both troIf source fIles
and PostScript output. If your vendor did not provide you with X source, you
might have to retrieve them as described below.

• Inter-Client Communications Conventions Manual

This document describes the mechanisms by which X clients are
expected to interact. Most of its contents are of interest to widget writers,
but some topics are of interest to all programmers. It is certainly not a

625

626 Programming with Motif

book to read in one sitting. and most topics require some meditation
before use.

• Xlib - C Language X Interface

As you might expect. this document describes the Xlib programming
interface. It is targeted at those who are writing applications in Xlib. but
also contains information (such as event processing) useful to all
programmers. If you plan to use Xlib with Motif. it is a good reference.
although you might have to look in several places for information. It has
been rewritten for Release 5. with the goal of logical presentation. 1

• X Toolkit Intrinsics - C Language Interface

This document describes the X toolkit and the internal structure of
widgets. It is more useful to a widget writer than an application
programmer. but does describe those toolkit functions used by client
programs.

• X Logical Font Description Conventions

This document describes the font naming conventions. Chapter 5 of this
book presented these conventions from an application programmer's
perspective; the XLFD is more of a rigorous specification.

• Manual Pages
The X manual pages essentially provide an extract of information from
the above documents. They do have the benefit of gathering information
that may be distributed in the source volume. Unfortunately. they are not
distributed in PostScript form; you will have to run troif to produce
printed output.

Motif Documentation

The Open Software Foundation has published several books about Motif. Of
these. I consider the following two to be indispensable.

• OSFjMoti! Programmer's Reference

This is the authoritative book on the Motif programming environment. It
describes each widget class. its resources. default translations. callbacks.
and any related convenience functions. While it is occasionally
inaccurate. it is certainly the most definitive reference available.

• OSFjMoti!Style Guide

This book specifies how a Motif client should appear and describes the
techniques used to achieve that appearance. Be certain that you buy the
1.1 edition (or later): it is significantly improved from the 1.0 version.

1 As I am still working with Release 4. I have not spent much time with the new book.
From its table of contents. however. I believe that it is indeed organized in a more
logical fashion than the R4 version.

Appendix E: Where to Go for More Information 627

Mailing Lists/NetNews
A network mailing list is like a large user group that communicates via e-mail,
containing members from allover the world. Mailing-list members range from
novices to the people responsible for writing the software - people from OSF and
the X Consortium are regular contributors to the X mailing lists.

As denoted by the heading, the general topic of mailing lists has two faces:
actual mailing lists and NetNews. True mailing lists are implemented with mail
"repeaters": central mailboxes that rebroadcast all received messages to the
people on the list. This method is costly in both disk space and network
bandwidth because a copy of each message is sent to each recipient. NetNews is
a refinement of the mailing list: messages are stored on a site-wide basis and are
read from that central repository by interested people.

There are three "newsgroups" that will be of interest to readers of this book:
comp.windows.x, comp.windows.x.motij and comp.windows.x.annoW1Ce. The
first two are general discussion groups: comp.windows.x is concerned with all
areas of X, wliile comp.windows.x.motifis limited to discussion of Motif-specific
items. Both groups have a high message traffic: 100+ messages per day for
comp.windows.x.motij and over 250 per day for comp.windows.x. The final
newsgroup, comp.windows.x.announce, is used solely by the X Consortium to
announce important information about the X software - such as the date of a
new release.

While most midsize and larger sites have a NetNews "feed," smaller sites may
have to rely on mailing lists. If this is the case with your site, you should ask
your system administrator to set up local redistribution. Assuming that you're
not the only interested reader, this will minimize the number of messages sent
from the central mailbox to your site.2

The newsgroups listed above are "gatewayed" to mailing lists: each message
posted to the newsgroup is passed on to the list, and vice versa. The
comp.windows.x newsgroup is associated with the xpert mailing list, the
comp.windows.x.motijnewsgroup is associated with the motifmailing list, and
comp.windows.x.announce is associated with xannounce. Other lists are
available for topics ranging from X and the Amiga to Open Look.

Each of these lists handles subscription requests in the same way: you send a
mail message to a subscription mailbox, and you are added to the list. The
subject line of this message contains the list name in capital letters, followed by
"addition request". The body of the message must contain the mailbox address of
your local distribution node. The mailing list and subscription addresses are
shown in Table E.l. Note that you do not send subSCription requests to the
mailing list address. Note also that the xannounce list does not permit individual
recipients; you must provide a local distribution address.

2 You might also learn that a local distribution facility is already in place.

628 Programming with Motif

Table E.l. Mailing lists, with subscription addresses

List List Address Subscription Address

xpert xpert@expo.lcs.mit.edu xpert-request@expo.lcs.mit.edu

motif motif@alfalfa.com motif-request@alfalfa.com

xannounce xannounce@expo.lcs.mit.edu xannounce-request@expo.lcs.mit.edu

TheFAQs
"FAQ" stands for "Frequently Asked Questions," and The FAQs are monthly
publications in the comp.windows.x and comp.windows.x.motijnewsgroups.
These publications contain a collection of questions, ranging from simple to
complex, along with suggested answers from experienced users. They are
designed to both minimize the repetition of such questions and to provide a
communal reference.

Both publications are released on or about the fIrst of each month; each month
they are updated with material collected during that month. Since the volume of
newsgroup traffic is so high, they are typically removed from a site's news
directory within a week. If you have Internet FfP access, you can retrieve copies
of both from export. 1 cs.mit.edu.3 Both are found in the /contrib directory; the
Motif FAQ is named Mot if - FA Q, while the general X FAQ is simply named F AQ
(F AQ . Z is compressed and is one-half the size of the uncompressed version).

Getting X and Motif Software
The X software is copyrighted but publicly available. Motif, on the other hand, is
commercial software. Most UNIX computer systems come with a binary version
of X, and systems from OSF members usually come with a binary version of
Motif.

X Sources

If you desire the X sources, you have several options. The fIrst and easiest is to
copy them from someone you know. The second, available if you have network
access, is to download them from an archive server. These servers store the
distribution in compressed TAR fIles, occupying about 45 megabytes while
compressed, and 130 uncompres~ed. 4 Two of the better-known archive servers
are export.lcs.mit.edu (18.24.0.12) and ftp.uu.net (137.39.1.9).

3 Note: not expo. 1 cs. mi t. edu.
4 These numbers are for R4, and include both the core distIibution and contIibuted

programs. The R5 core distIibution alone occupies 32 megabytes compressed.

Appendix E: Where to Go for More Information 629

The final option for X distribution software is to contact the X Consortium
directly, at the address below. Distribution is available in a limited selection
formats - primarily 9-track magnetic tape.

Bob Scheifler
MIT X Consortium
Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139

Motif

Motif is a commercial product, but OSF members typically provide binary
licenses with their eqUipment. If your computer maker is not a member of OSF
- or doesn't provide you with a copy of Motif - you may be able to get a version
from Integrated Computer Solutions, at the address listed below. As of this
writing, they offer Motif for Apple Macintosh, Sun 3 and 4, DECStation/RISC,
Sony NEWS, and Silicon Graphics Iris.

Integrated Computer Solutions
201 Broadway
Cambridge,MA 02139

E-mail: injo@ics.com

If, on the other hand, you desire Motif source, you will have to contact the Open
Software Foundation directly, at the address below.

Open Software Foundation
11 Cambridge Center
Cambridge,MA 02142

Getting this Book's Sample Programs
If you don't like to type and have a network connection, you can retrieve this
book's sample programs from the following sources. They examples are stored in
a compressed TAR file, which occupies about lOOk in compressed and 300k in
uncompressed form.

From export.lcs. mit. edu: In the / con t rib directory, under the name pwm
xmp 1 . ta r . Z.

From uunet. uu. net: In the /published directory, under the name pwm
examples.tar.Z.

Glossary

accelerator

action

action dialog

action table

activation

application context

An event that is received by one widget but processed
by another. In the common usage, menu choices are
associated with accelerator keys; when the
appropriate key sequence is entered, the menu choice
is invoked.

Note that the X toolkit provides one accelerator
mechanism, while Motif provides another. The X
mechanism is more general, allowing any event to be
piped from one widget to another, but requires these
pipes to be specified by program code. The Motif
method applies to menu choices only and is limited to
key events, but may be specified in a resource fIle.

A program function that is identified by name and
may be linked to an event sequence in a translation
table. Actions may be viewed as an extension of the
callback mechanism, although in practice callbacks
are often invoked by actions.

A type of message box that notifies the user that
intervention is needed by the program. This is also
known as an error dialog.

An array that associates a program's functions with
action names. This table is installed with the function
xtAddActi ons.

The act "pressing" a Motif button - clicking the
pointer button while positioned over the screen
button.

A data structure that contains program-level context
information, such as a list of open display
connections. The intrinsics provides a default
application context, but this should only be used by
programs running under XIIR3 (because it could be
improperly shared by the libraries of R4J.

631

632 Programming with Motif

application modal

application
resource

application shell

arm

atom

attachment

A condition in which the application limits the user to
a limited set of prescribed actions, specifically those
associated with a dialog box. The user is, however,
able to work with a different application.

A program variable that is set via the resource file.
Application resources are specified in the program
code, and loaded using the mechanism provided for
widget resources.

The root of a program's instance tree. It is a top-level
shell and is responsible for negotiating with the
window manager to determine the size of the
program's client area.

The act of "pressing and holding" a Motif button -
pressing but not releasing the pointer button while
positioned over the screen button.

Arming is the first half of activation, but the button
may be disarmed without activating the button.

A server resource ID that represents a text string.

Atoms provide the basis for interclient
communication via the server: when a client registers
a character string with the server, that string is
permanently associated with an atom ID; any other
client that registers the same string will be given the
same ID.

One of the primary benefits of atoms is that they
reduce the client-server communication load by
replacing an arbitrarily long text string with a 32-bit
resource ID.

The method used to pOSition the child of an XmForm
widget.

Each side of the child has an associated attachment
constraint. That constraint may specify that the
child's side is to be attached to the same or opposite
side of the parent, to the same or opposite side of
another widget, at a relative position based on the
form's size, to a fixed position, or not at all (no
attachment).

backing store

bitmap

blocking

browse selection

callback

Glossary 633

A region of server memory that is used to store
obscured portions of windows.

When the windows are exposed, their contents are
fllled from the backing store; the program does not
receive Expose events. While the use of backing store
reduces client-server communication (and client
processing time), it is not supported by all servers
and is a fmite resource when supported. For this
reason, no client should be written with the
assumption that exposure processing will be obviated
by backing store.

A rectangular array of monochrome pixels. Since
each pixel is either on or off, it may be represented by
a single bit.

Bitmaps may be contained in fIles created using the
xbitmap client, or as an array defined in the program.
Data in a bitmap is stored in row-major order: the
first byte of the bitmap corresponds to the leftmost
eight pixels of the top row of the image. Bits are
represented in a byte from most significant to least
significant: the high-order bit of the first byte of the
bitmap corresponds to the top-left pixel in the image.

The condition in which an I/O function (such as
read) waits for I/O to commence. For reading, this is
the wait for a buffer to fill'; for writing, the wait for
previous buffers to be physically written. When a
program blocks, its execution is suspended until it
can perform the operation - an X client in this state
does not process events.

See list selection modes.

A program function invoked by a widget - a "call
back into program code." Also refers to the situation
responsible for invocation of this function (eg,
"activation callback").

Callbacks may be viewed as "expected events,"
representing the primary functions of a widget. A
pushbutton, for example, has callbacks for arming,
disarming, and activation. It does not have callbacks
for other events, such as button motion, because
these events are not part of the pushbutton's
function.

634 Programming with Motif

callback Ust

cascading menu

check box

chUd

class

The list of functions maintained by a widget for a
particular callback.

A widget provides a resource for each for its
callbacks. This resource holds a list of functions, all
of which are called whenever the callback action
occurs. Functions are added to this list with
XtAddCall back and removed with XtRemoveCall back or
XtRemoveAllCallbacks.

A pull-down menu that is invoked from another pull
down menu, providing additional detail.

A toggle button used to indicate onloff data.
Connotes a group of toggle buttons, representing
related but individual data items; any number of
buttons in group may be on, as contrasted to radio
buttons.

Applies to a widget in an instance tree: that widget's
children are the widgets that are immediately
connected but at a lower level in the tree (farther
from the root).

The deflnition of an object, as opposed to its instance.
Class connotes general appearance and action,
whereas instance connotes specillcs.

In a typical object-oriented language, an object's class
consists of its data deflnition and methods. Widgets
follow this deflnition: a widget class deflnes the
capabilities of the widget, along with the internal data
structures that support those capabilities.

Programs are also classed (see program class name).
A program's class indicates its executable fIle; an
instance of the program is the code and data as they
appear in memory while running.

Finally, class may be used to group things with
similar data and use, as with resources. Although
resources are not objects, classing is a way to
distinguish between an abstract resource type (eg,
"pixmap") and the specillc uses of that type of
resource (backgroundPi xmap and topShadowPi xmap).

class pointer

class record

class tree

client

client area

clip window

Glossary 635

The pointer to a widget's class record.

This pOinter is used to identify a widget's class. It is
used in places such as the XmRowColumn resource
i sHomogeneous, which limits the children of a row
column to a particular class.

Each widget class has a predefmed class-pointer
variable, declared by its class-specific header file.
This name of this variable is typically formed by
changing the initial "X" of the widget's class name to
"x" and adding the SuffIX 'WidgetClass" (eg, the name
of the class pointer for XmPushButton is
xmPushButtonWi dgetCl ass).

An internal widget data structure that contains
information common to all instances of a class. This
information consists of a widget's resource
descriptions. as well as pointers to its internal
functions.

A representation of the derivation of a group of
objects. The root of the tree is the most basic object
class. Each class represents either a branch or a leaf
in the tree: if the class is subclassed. it is a branch.
otherwise it is a leaf.

The RectObj and Object widget classes together form
the root of the Motif class tree. The Core class is the
trunk. with the XmGadget class a branch that
diverges at the roots. Classes such as XmPrimitive
and XmManager form the branches. with the leaves
being classes such as XmArrowButton.

A program that uses the X Protocol for
communication with a server.

That part of a client's top-level window that is
maintained by the client. It is surrounded by the
window frame. which is maintained by the window
manager.

Part of a scrolled window (XmScroUedWindo~. The
clip window holds the currently displayed part of the
work window.

636 Programming with Motif

clipboard

colormap

column-major

command area

command line

A standard X client (xclipboard) that holds data for
use by other clients.

The clipboard is an extension to the selection
mechanism. Normally, two clients exchange the
contents of a selection in real time. The clipboard is a
third client: the first client sends data to the
clipboard, then the second client reads that data from
the clipboard. This allows the data to be held over a
long period of time and means that the first client
does not need to be running for the data to be
retrieved by the second client.

Whereas widgets typically handle the primary and
secondary selections transparently, the program
must explicitly interact with the clipboard.

An array containing RGB values used to minimize the
amount of space consumed by a display's memory
map.

Instead of specifying each pixel by its 24-bit RGB
value, a colormap-based system identifies colors by
their colormap index - in most cases, this is an 8-bit
value. The colormap trade-off is reduced memory
usage vs limited color selection (256 colors for an 8-
bit colormap).

Colormaps are stored on the server and accessed by
server resource ID. In most cases, widget-based
programs do not need to handle colormaps directly:
such operations are performed by the widget's
internal code.

A method of accessing a rectangular array in which a
linear list of items is placed into the array by
columns: the first item is in the top left position, the
second item is below the first, and so on.

In Motif, "column-major" is typically used to describe
a vertically oriented XmRowColumn widget.

That part of a Motif client's top-level window that is
used for direct command input. It is supported by the
XmMainWindow widget, but many programs do not
use it.

The command entered by a user to execute a
program, which specifies the program's name and its
arguments. Under C, the command line is referenced
via the rna in function's a rgc and a rgv parameters.

compound string

confirmation area

constraint

control

conversion cache

Motifs implementation of character strings,
represented by the XmStri ng data type.

Glossary 637

Compound strings consist of segments that specify
text, character set, and directional information. A
single string may have many such segments, or it
may have only two (text and character set).

The part of a dialog that allows the user to confirm
his/her actions, usually by pressing a button. See
also presentation area.

Any rule that a manager widget uses to impose
resource values on its children.

Explicit Geometry Constraints are resources defined
by the manager but accessed as if defined by the
child. Such resources directly affect the contents of
the child's x, y, wi dth, and hei ght resources. An
example is the topAttachment resource ofXmForm.

Implicit Geometry Constraints are resources defined
by the manager that indirectly affect the size and
position of the child. An example is the mar gin H e i 9 h t
resource of XmBulletinBoard - only those children
that would overlap the margin are affected by the
constraint.

Nongeometry Constraints are resources defined by the
manager that affect the values of child resources
other than x, y, wi dth, and hei ght. An example is the
1 a be 1 F 0 n t Lis t resource of XmBulletinBoard, which
imposes a value on the fontL i st resource of any
children derived from XmLabeL

Note that dynamic resources, such as background, are
not considered constraints. In the case of dynamic
resources, the child retrieves the value stored in the
parent's identical resource; the parent does not
impose a value on the child.

A widget, such as a pushbutton, that allows a user to
invoke a program action via a physical action (in the
case of the pushbutton, by clicking).

A cache maintained by the resource manager to hold
converted resource values.

Use of this cache improves the speed both of
conversions that must be performed many times, as
well as conversions that are performed few times but
require a long time to perform (such as those that
require communication with the server).

638 Programming with Motif

default colormap

defaults file

derivation

destructor

dialog

dialog modality

dialog shell

A colormap that is by default given to windows
created on a particular screen. If all clients use the
default colormap, then the appearance of the screen
need not change when a client becomes topmost -
something that does happen when clients use
individual colormaps.

Another name for resource file. The term "defaults
file" connotes that the resources specified by the file
are default values and may be overridden by
command-line specifications or other resource files.

The process of creating one class from another class.
The created class incorporates all data and code of
the existing class, treating such as its own. Also
known as subclassing.

A function that is responsible for deallocating
memory associated with an object.

The resource manager of XIIR4 allows resource
converters to have associated destructors, meaning
that they may freely allocate memory for the
conversion. The destructor is called when the
associated widget is destroyed to destroy the memory
allocated by the converter.

An auxiliary window, which allows a program to
present information that is not appropriate in its
main window.

An example of such information is a warning
message, which could be "lost" if presented in the
program's main window. Another would be a special
purpose operation, such as a text editor's "find"
command, which would not be in constant use.

A way of referring to the impact that a dialog has on
the user. It may be modeless, indicating that it
coexists with the other windows on the screen;
application modal, indicating that it prevents
interaction with other windows associated with its
client; or system modal, which indicates that it takes
control of the user's display and prevents interaction
with any other screen windows.

A shell widget used to provide a link between a
program dialog and the root window. Dialog shells are
similar to application shells in their interaction with
the window manager.

disarm

drawable

encapsulation

error dialog

event

Glossary 639

Applies to Motif buttons. The act of releasing the
pointer button after the screen button has been
anned. If the pointer is within the area of the screen
button when the pOinter button is released, the
screen button is both disanned and activated. If the
pOinter is outside the area of the screen button, the
button is disanned without activation.

An object to which the program may direct Xlib
drawing commands. A drawable is an abstract object:
at present, the only real drawables are windows and
pixmaps.

The technique of "hiding" an object's internal data
and code. Access to this hidden data and code is
provided by the object's methods - its external
interface.

Applied to Motif, a widget encapsulates the code and
data used to maintain its appearance and interaction,
with access provided by the widget's resources.

A message box used to inform the user of a program
error. Also known as an action dialog.

The method by which an X client receives input.

The server sends each client a steady stream of
events, generated either by the user or by another
client. The client is expected to respond to each type
of event in an appropriate manner: an Expose event
prompts the client to redraw its window, while a
KeyPress event provides the client with typed input.

event handler A program function that is tasked to receive and
process a particular set of events.

event mask A bit-mask that selects the event types processed by
a particular event handler.

event queue The set of events that have been sent from the server
to the client but have not yet been processed by the
client. Each client has its own event queue, which
may contain few or many events (depending on how
often it is read and how many events are being sent).
Each event is delivered to the client in the order in
which it occurs.

expUcit geometry See constraint.
constraint

extended selection See list selection modes.

me filter A partial path specification, which defines the search
parameters for a ft1e selection box.

640 Programming with Motif

focus See inputjocus.

font family

grab

graphical user
fnterface

graphics context

A set of character designs based on common
characteristics. Also known as a typejace.

For example: Times is a font family, Times Roman and
Times Italic are fonts from that family.

The act of redirecting the pointer or focus from one
client to another.

In some cases, this may be very useful: xwd, for
example, grabs the pointer so that it receives input
when the user clicks on another window. In most
cases, however, grabs are not expected by the user
and should be avoided.

A user interface implemented using graphics, as
opposed to a user interface implemented using
characters (textual user interface).

The primary advantage of a GUI is that it looks better
than a TUI. This advantage exists because the
interface designer is able to focus the user's attention
using graphical techniques. For example: a word
processor is able to visually separate its menu bar
from its input area by making the menu appear as a
series of buttons. In a textual user interface, even
with different colors to differentiate the menu bar
from the text area, the uniform size of the characters
tends to leave the user's eye without direction.

Second, a graphical user interface usually provides a
"what you see is what you get" (WYSIWYG)
appearance. Again using a word processor as an
example: the user's productivity is increased (and the
number of test pages is decreased) if the text appears
on screen in its final form.

Finally, a graphical user interface is typically
designed to make the user interact with the program.
Users have a "pointing device," such as a mouse, and
most programs require usage of the mouse for
program input (such as selecting a menu item).

A data structure used by the server to control the
operation of Xlib graphics primitives. It contains
information common to many primitives, such as the
foreground color, minimizing the parameters that
must be passed to a specific primitive.

Glossary 641

graphics primitive A command used to draw a "low-level" graphical
figure, such as a line or an arc. These commands are
known as "primitives" because all complex objects
may be drawn with a combination of these
commands (for example, a decagon is simply a set of
ten lines).

QUI See graphical user inteljace.

hardware colormap The colormap used by the actual display hardware, to
convert Pi xel values into RGB tuples. In many cases,
its contents are identical to the default colormap.

implicit geometry See constraint.
constraint

information dialog A message box used to provide the user with
information of a noncritical nature. Unlike an action
dialog or a question dialog, it does not normally
provide the user with the ability to control program
flow (ie, its buttons do not invoke actions other than
to close the dialog).

inheritance A description of the derivation of a class.

input focus The method used by the server to direct keyboard
events to a single window. The server keeps track of
which window has the focus and sends all key events
to that window. Clients may be assigned the focus as
the result of user interaction, or they may explicitly
grab the focus.

insertion point For an XmText widget, the blinking line that indicates
where characters are to be inserted.

instance An example of a class. A class consists of data
definitions and code. An instance of that class is the
in~memory data associated with those definitions. A
class may have multiple instances, and each instance
may contain different data.

instance tree A representation of the parent-child relationships
between a program's widgets. The application shell is
the root of the tree, managers with children are the
branches, and primitive widgets (and managers
without children) are the leaves. Also known as the
management tree.

instantiation The process of creating an instance of a class.

intrlnsics

In Motif, instantiation of a widget class is performed
by calling the class' creation function (eg,
XmC rea te La be 1).

See X intrinsics.

642 Programming with Motif

ISO Latin 1

keysym

A character set defined by the International
Standards Organization (ISO), containing the
characters in use in the United States. It is a
superset of the ASCII character set.

See Appendix A.

A symbolic representation of a keyboard key.
Keysyms are required because each server identifies
physical keys by different methods. By referring to
keys by symbolic names, the program is not tied to a
particular vendor's keyboard.

list selection modes The method in which items may be selected from an
XmList widget.

loose binding

major dimension

management

Single selection specifies that only one item may be
selected at any time. When an item is selected, any
previous item is deselected.

Browse selection is a refinement of single selection
that allows the user to "drag" over several items in
the list. Each item is highlighted when the pointer
passes over it; the item highlighted when the button
is released is selected. Like single-selection mode,
only one item may be selected at a time; dragging,
however, does not deselect the currently selected
item.

Multiple selection allows the user to select multiple
items, by clicking on each in turn. Items must be
explicitly deselected.

Extended selection is a refinement of multiple
selection, and allows the user to select contiguous
items by dragging the pOinter. Additionally, it allows
the selection of noncontiguous blocks, by holding the
Shift key down while making a selection.

A method of wild carding widget or class names in
resource files. A loose binding, represented in the
resource file by a star (*) separating two parts of a
widget's name, indicates an ancestor-descendent
relationship with any number (zero to infinite) of
relatives in the middle.

The dimension in which a row-column widget
"prefers" to grow.

This "preference" is a result of the row-column's
orientation: a vertical row-column prefers to grow
vertically, whereas a horizontal row-column prefers to
grow hOrizontally.

The process by which a child's geometry is brought
under control of its parent.

management tree

manager

mapping

maximize

menu

menu accelerator

menu bar

menu shell

Glossary 643

See instance tree.

A widget capable of having children and managing
the geometry of those children. In general. managers
are subclasses of Composite; in the Motif
environment. they are also subclasses of XmManager.

The process by which a widget is made visible.

The process of increasing a window to the full size of
the screen. The Motif window frame contains a
button that allows the user to do this (it is also a
choice on the window menu). See also minimize.

A user-interface construct that permits the user to
select a single chOice from several provided. typically
using the pOinter.

The Motif environment supports four types of menus.
all of which use buttons to select actions. The menu
bar is a horizontal row of buttons at the top of the
screen; arming one of these buttons causes a "pull
down" menu to appear. A pull-down menu is a
vertical column of menu chOices. attached physically
and logically to one of the choices in the menu bar. A
pop up menu is a vertical or horizontal set of buttons.
which is invoked by another widget and which
appears at the current pointer pOSition. An option
menu presents a label, a current value. and a vertical
selection of pushbuttons that appear when the user
presses the pOinter button while the pOinter is
positioned over the current value.

A key sequence that invokes a menu item from
anywhere in the program. This key sequence is
specified by a resource of that menu item. and is
automatically handled by the Motif resource
manager.

The menu accelerator mechanism is both easier to
use and more specific in operation than the standard
X accelerator mechanism.

A horizontally oriented set of buttons. located at the
top of a client's client area. Each button. when
pressed. activates a pull-down menu pane.

The primary- benefit of a menu bar is that it is always
available to the user - choices may be selected from
the menu bar in a modeless manner.

A type of sheU that provides an interface between a
pull-down or pop-up menu pane and the root
window.

644 Programming with Motif

message

message box

method

minimize

minor dimension

mnemonic

modeless

multiple selection

nongeometry
constraint

object

The method by which an object's methods are
invoked.

A dialog box used to display a message, which allows
for a yes/no reply to that message. Such dialogs are
built with the XmMessageBox class.

The code that manipulates an object's data. Methods
are internal to the object, are defined as part of the
object's class, and are invoked by messages.

To iconifY a client's window. Minimization, like
maximization, is invoked by the user via either a
button on the window frame or a choice in the
window menu.

The dimension in which a row-column widget does
not "prefer" to grow.

This "preference" is a result of the row-column's
orientation: a vertical row-column prefers to grow
vertically, whereas a horizontal row-column prefers to
grow hOrizontally. However, if the row-column is
prevented from growing in its preferred direction
(major dimension), it must grow in its nonpreferred
direction: a vertical row-column adds another
column, a horizontal row-column adds another row.

A one-character code used to activate a menu choice.
A mnemonic is only active when the associated menu
choice is visible, unlike a menu accelerator.

In general, "modelessness" is a condition in which the
user may perform one of many relevant actions. It is
the antonym of modal, the condition in which the
user must perform a specific action. One of the
design goals of a good user interface is that it be
modeless.

See also dialog modality.

See list selection modes.

See constraint.

An abstract programming entity consisting of both
data and code.

An object's class defines the structure of the object's
data, as well as the program code that manages that
data. An instance of the object is an actual
embodiment of the object data in the program's
memory space. The object's code, being part of the
class definition, is shared among all instances of the
class.

object-oriented
programming

OOP

Open Software
Foundation

option menu

OSF

parent

pipe

pixel

pixmap

Glossary 645

A programming paradigm in which data structures
combine data and functions (methods). These
functions are invoked by messages, and the object's
interface is represented by the set of messages that it
is designed to interpret. Normal program code is not
permitted direct access to an object's internal data.

One tenet of object-oriented is the separation of class
and instance: a class is the object's data defmition
and associated code, while an instance of the class is
a particular set of data. Another is inheritance, or
derivation, by which new objects are built from
existing objects.

See object-oriented programming.

A consortium of vendors dedicated to producing a
standard version of the UNIX Operating System,
named OSF /1. Motif is the graphical user interface
for this operating system.

A menu used to set a single data item. An option
menu consists of a label identifying the data item, a
cascade-button that both invokes the menu's pull
down pane and displays the current value of the
item, and a pull-down pane that allows the user to
set the item's value.

See Open Software Foundation.

Applies to a widget in an instance tree: that widget's
parent is the widget that is immediately connected
but at a higher level in the tree (closer to the root).

A unidirectional method of interprocess
communication, in which the file interface is used to
connect two processes running on the same system.
Data written at one end of the pipe is read from the
other.

The unit subdivision of a display screen or image. All
screen images are comprised of one or more pixels.
On a black-and-white monitor, pixels are either "on"
or "off'; on a color monitor, pixels are a set color. The
size of a pixel depends on the resolution of the
screen; common sizes provide resolution of 75 dots
per-inch and 100 dots-per-inch.

Pixels are addressed by their position on the screen;
the top-left pixel is assigned a pOSition of 0,0.

An object maintained by the server that can accept
drawing commands, but that does not display its
contents. A pixmap may be thought of as a hidden
window that does not generate events.

646 Programming with Motif

point size

pointer

pop-up menu

presentation area

primary selection

primitive

program class
name

prompt dialog

propagate

property

A method of measurement, traditionally applied to
text. One point is roughly equal to 1;72 inch.

The X term for a mouse or any similar pointing
device. The pointer provides a client with position
specific information; it also provides up to five
buttons, used to trigger program actions.

Note that the pOinter is both a physical device and an
abstract user-interface object.

A menu that appears under the pointer, allowing
immediate access. It is typically (when supported)
invoked by pressing pOinter button #3.

That part of a dialog that presents information and
allows for user input. See also confirmation area.

One of the standard X selections. Used by the XmText
widget for exchange of textual data with other
clients/widgets.

Widgets: A widget that acts on its own and cannot
contain children - any widget derived from
XmPrimitive. XmLabel, XmPushButton, and XmText
are all examples of primitive widgets.

Graphics operations: A simple graphics call, such as
that to draw a line. Complex graphics tasks - such
as drawing a box - may be built from primitives.

A name used to identify the resources belonging to a
particular client. This name is used to identify
program-specific resource files as well as in the
selection of a widget's resource specifications.

A limited selection box, which provides the user with
a message, a place in which to enter a textual reply to
that message, and buttons with which to select an
action associated with the reply.

A description of the method used to handle events
received by a window that does not have a registered
event handler.

If an event (such as a button press) occurs in a
window that does not have an appropriate event
handler, it is passed (propagated) to the window's
parent. It makes its way up the window tree in this
fashion, until it is either handled by a window or
passes to the root window (where it is discarded).

See window property.

pull-down menu

quad width

quark

question dialog

radio buttons

raster display

realization

Glossary 647

A type of menu that is invoked in response to the
user's interaction with a cascade button. Pull-down
menus are used in conjunction with the menu bar, as
well as with option menus. They may also be invoked
from other pull-down and pop-up menus, a technique
known as cascading pull-downs.

The width of the widest character in a font. This is
also known as the em-width. since the widest
character in a standard font is the capital 'M'.

A 32-bit integer that uniquely identifies a character
string, within the context of a particular client.
Quarks are used primarily by the resource manager
to minimize the time spent in comparing resource
(and widget) name strings.

See also atom

A type of message box, used to present the user with
a simple yes/no question and accept his/her reply.

A group of buttons, related such that only one may
be "on" at any given time. The XmRowColumn and
XmToggleButton classes together provide support for
radio buttons.

A display technology that forms images out of
discrete pixels.

The process of creating a window for a widget. Before
realization, the widget exists solely within the client;
after realization, it lias both client and seIVer
components.

representation type A name associated with a data type, used by the
resource manager to identify the source and
destination types for conversion.

Representation type names are represented by
constants dermed in the header me Xm/Xm. h. Each of
these constants begins with the prefix "XmN". While
most data types have a one-to-one relationship with a
representation type name, some (such as un s i 9 ned
c h a r) may have multiple associated representation
types - each providing context for a particular
conversion.

648 Programming with Motif

resource A widget data value that is accessible to the program
and is used to control the appearance and/or
operation of its widget.

Resources are defined by the widget class, but are
associated with a particular instance. They may be
set at the time of widget creation using a resource file,
or changed/examined at any time during a program's
operation, using the functions X t Ge t Val u e s and
XtSetVal ues.

resource class A method of grouping individual widget resources so
that related resources may be set using a single
reference.

resource converter A function that converts data from one type to
another (also known as a type converter). Used by the
resource manager, primarily to convert the ASCII text
of a resource file into a resource's internal data type.

resource database The collection of resource specifications that apply to
a particular program. This database is built from
multiple resource files, ranging in scope from those
that affect all clients to those particular to a client. It
is used to set the initial value of a widget's resources.

resource file An ASCII file that contains resource specifications,
which are loaded into the resource database at the
time of program startup.

root window

row-major

sash

scroll region

The use of resource files allows a program to be
customized easily, by means of changes to the
appropriate file - there is no need for recompilation.

The root of a server's window tree, owned by the
window manager.

A method of accessing a rectangular array in which a
linear list of items is placed into the array by rows:
the first item is in the top left pOSition, the second
item is to the right of the first, and so on.

In Motif, "row-major" is typically used to describe a
hOrizontally oriented XmRowColumn widget.

A control used to adjust the pane size of a paned
window. A sash is a square control, similar to a
pushbutton; one is placed between every two children
of the paned window.

The "background" of a scrollbar. The scroll region is
the area in which the slider moves, and represents
the total scrollable area of the viewed data.

scrollbar

Glossary 649

A control used to provide "position" interaction. Used
primarily in cases where all of a program's output will
not fit in the allocated window; scrollbars allow the
user to move pieces of the data into or out of the
window.

secondary selection One of the X standard selections.

secondary window A window that contains information that is auxiliary
to that presented in a program's main window.
Secondary windows are under control of the window
manager. they have window frwnes and may be
moved and resized (by the user) independently of the
program's main window. They are built using a dialog
sheU.

selection Selection mechanism: A method of interclient
communication, whereby one client advertises the
availability of data, and another requests that data by
sending the first a request. Such transfers are
typically initiated by the user.

selection box

sensitivity

separator

Named selection: A particular communications path
within the selection mechanism. When a client
advertises the availability of a selection, it names that
data; other clients can discover the advertiser of a
particular name. X specifies three "standard" names:
primary, secondary, and clipboard, which must be
used according to a fixed set of rules. Cooperating
clients, however, may select any name for a "private"
selection.

Applied to XmText: A text widget allows the user to
select text, by dragging the pointer over the desired
text (with button # 1 down). It highlights this text and
also advertises it as the primary selection

A dialog that presents the user with a list of items, a
text field that displays an item selected from that list
(and which allows entry of a new item), and buttons
that act on the selected item.

The way in which a widget handles input events
(keyboard and pointer). An insensitive widget discards
such events, a sensitive widget processes them.

A widget's sensitivity state is most often used to "tum
off' buttons, especially in menus, when they are not
applicable to the current program context.

A widget that exists to provide visual separation
between areas of a window. They are often used in
pull-down menus to visually group related menu
choices.

650 Programming with Motif

server The user's workstation; a computer/terminal that
provides the user with a bit-mapped display and
input devices (keyboard and pointer), and
communicates with client programs using the X
protocol.

server resource A generic name for objects maintained by the server,
such as windows, pixmaps, fonts, etc. Server
resources are identified by server resource IDs.

server resource m A 32-bit unsigned integer value that identifies a
server resource. Resource IDs are unique for a
particular resource type and server.

shell An interface between the program and the root
window; the root of a window subtree.

sibUngs

single selection

sUder

socket

standard error

standard input

Two types of shells exist: Transient shells are not
registered with the window manager; they simply
provide a new window subtree, wnich is separate
from - and may obscure parts of - the other
windows maintained by a program. A top-level shell.
on the other hand, provides the program with a base
for a secondary window - it has a window frame
and may be moved or resized by the user.

Widgets that are children of the same parent Siblings
compete with each other for shares of the parent's
available space; management is the process of
allocating this space between them.

See list selection modes.

That part of a scroUbar that both indicates the size
and position of the currently visible data (relative to
the total amount of data) and allows the user to
quickly change that pOSition.

A bidirectional method of interprocess
communication that uses the file mechanism.
Sockets typically represent network connections, and
the communicating processes may reside on different
machines.

One of the files that are provided to every program:
standard error is used to report error messages. It is
accessed by the stderr variable and is by default
attached to the user's terminal.

One of the files that are provided to every program:
standard input is used to provide the program with
input; It is accessed by the s t din variable and is by
default attached to the user's keyboard.

standard output

stepper arrow

sub-area

subclass

superclass

supporting
superclass

system-modal

tab group

tight binding

top-level shell

Glossary 651

One of the files that are provided to every program:
standard output is used for general program output.
It is accessed by the stdout variable and is by default
attached to the user's terminal.

That part of a scroUbar that allows the user to
incrementally change the position of the slider.
Stepper arrows are provided to both increase and
decrease the position of the slider, relative to the
scroll region.

Another name for the children of certain widgets (eg,
XmMainWindow). The term "sub-area" connotes that
such children occupy predefined areas of the parent's
window.

A class that is built (derived) from another class (the
superclass) .

A class that provides the base upon which another
class (the subclass) is built (derived).

A superclass that exists solely to provide the base for
another class and is not in itself instantiated.

Applied to Motif, Core is a supporting superclass: it is
used to provide all widget classes with basic window
manipulation functions, but is not itself used by a
program.

A state in which an application allows the user to
perform only a limited set of actions and does not
permit the user to perform any actions outside of that
set - in any application.

A grouping of widgets that allows traversal between
group members by use of the arrow keys. Traversal
oetween tab groups is provided by use of the Tab and
ShUt-Tab key combinations.

Tab groups may contain a single primitive widget or
they may contain all children of a single manager
widget. A single tab group may not contain widgets
from different parts of the instance tree.

A method of specifying widget and class names in
resource files. A tight binding, represented in the
resource file by a dot (.) separating two parts of a
widget's name, indicates an explicit parent-child
relationship.

A sheU that is actively managed by the window
manager, with a window frame that allows the user
to change its size and position.

Examples are application shell and dialog shell.

652 Programming with Motif

transient shell

translation

translation
manager

translation table

traversal

type conversion

unmanage

unmap

verification
callback

virtual binding

A sheU that is not actively managed by the window
manager. It exists to provide a root for a temporary
window subtree, which may overlap parts of a client's
other subtrees.

An example is a menu shell.

A linkage between an event sequence and a program
action.

Part of a client's event processing code. The
translation manager matches each event received
against the translation table for the receiving widget.
When the event-sequence of a recognized translation
is detected, the action associated with that
translation is invoked.

The list of translations associated with a particular
widget.

The ability to change focus from one widget to
another by use of the keyboard - via the arrow keys
and Tab key.

This ability is particular to Motif; it is not provided by
the standard toolkit. As a result, standard methods
for changing focus do not work reliably under Motif.

See resource conversion.

The process of removing a widget's geometry from the
control of its parent. At this time, it is also
unmapped.

The process of making a widget invisible - hiding its
window. UJlless it is simultaneously unmanaged,
however, the space it occupies is not redivided among
its siblin,gs.

A type of callback specific to the XmText widget,
which allows the program to confirm or deny a
proposed action.

A Motif-specific method of defming event sequences
for translation tables. Virtual bindings provide a level
of indirection between event sequences and the
translation that uses those sequences.

As an example, a widget might use the virtual binding
KBackSpace to delete the previously entered character.
The actual event sequence represented by this virtual
binding may be changed, using the file
$HOME/.moti fbi nd, without changing the widget's
translations. In addition, changing the binding in this
way affects all widgets, whereas a translation table
change would affect a single widget only.

virtual coiormap

warning dialog

widget

widgetID

window

window frame

window manager

window property

window tree

work area

Glossary 653

The colonnap associated with a window. This
colonnap is "virtual" because it is not necessarily the
same as the hardware colonnap - when a window is
brought to the front of the display, its virtual
colonnap is installed as the hardware colonnap.

A type of message box that exists to warn the user of
a problem and accept a yes/no response to that
warning. It is of more import than an inJonnation
dialog, but less than an error dialog or action dialog.

The basic user-interface element of a Motif-based
program: a widget is responsible for the content and
interaction of an X window.

A value that represents a widget and is passed-to or
returned-from functions that manipulate widgets.

Client window: The client's area on the screen. This
may actually contain many X windows.

X window: A rectangular area of the screen that can
display output and accept input.

A frame placed around a client window by the
window manager. This frame contains the client's
name, controls for moving and sizing the client
window, and a window menu providing other
operations.

A client that controls the position and size of other
clients' windows. Only one window manager runs at a
time, and it controls the root window.

Data that is stored on the server and associated with
a window. Properties are the primary means of
interclient communication involving large amounts of
data.

The tree fonned by the parent-child relationships of
all windows on a particular server. The root window
is the root of this tree, and shells are the roots of
subtrees, which belong to clients. Note that each
widget is associated with a window, and a program's
instance tree reflects - with slight differences due to
menus and dialogs - that client's window tree.

That part of a standard Motif client where most of the
interaction with the user occurs. The work area
usually occupies almost all of the client area; it is
bordered by the menu bar on the top and scrollbars
on the right and bottom.

654 Programming with Motif

work window

work-in-progress
dialog

workproc

X Intrlnsics

X Protocol

Xlib

Xt

For scrolled windows and main windows, the sub
area where actual work takes place, differentiated
from control sub-areas such as scrollbars. In a main
window, the work window is identical to the client's
work area.

A type of message box that alerts the user to the
onset or status of a time-consuming operation. This
message box may optionally provide buttons to
confirm or deny (terminate) the operation.

A function that is called while the client is waiting for
events.

The workproc facility provides for a limited amount of
"background" client processing. It is often used in
conjunction with signals to guarantee that operations
invoked by a signal do not interrupt a widget's
internal code (which is not reentrant).

The name of the Xt library, which provides the basic
code for widget manipulation and the supporting
superclasses used by all widget sets.

The speCification for communication between client
and server.

A set of functions that provide low-level access to the
X Protocol for a C program. The functions provided by
Xlib include those to open and maintain a display
connection and maintain and interact with a window
via that connection.

See X Intrinsics. This name comes from "X Toolkit."

Index:

accelerator 631
action 148.631
action dialog 631
action table 148. 149. 152. 631
activation 631
application context 618.631
application modal 632
application resource 460. 632
application shell 28.535.632
arm 632
Athena 1
attachment 94. 532

form 101
position 97.103
widget 99. 103

atom 485. 497. 632

backing store 129.389.633
baseTranslations 624
bitmap 633
blocking 633
Boolean XmUstItemExists 345
browse selection 633
buttons 107

activate 107
arms 107
arrow 107. 114
cascade 261
disarm 107
pushbuttons 107. 108
toggle 107. 11 7

check boxes 124
radio buttons 117. 123

callback list 143.634
callbacks 142.633

browseSelectionCallback 343
cancelCallback 330
cascadingCallback 263
decrementCallback 219
dragCallback 220. 228
entryCallback 266
extendedSelectionCallback 343
helpCallback 330
incrementCallback 219

655

input 469
inputCallback 405
mapCallback 266. 267. 313
multipleSelectionCallback 343
okCallback 330
pageDecrementCallback 219
pagelncrementCallback 219
resizeCallback 405
singleSelectionCallback 343
timeout 475
toBottomCallback 219.220
toTopCallback 219.220
unmapCallback 266.267.313
valueChangedCallback 181, 220. 228
XmAnyCallbackStruct 144
XmScaleCallbackStruct 228
XmScaleCallbacks 228
XmScrollBarCallbacks 219
XmScrollBarCallbackStruct 219
XmText 179

activateCallback 181
focusCallback 181
losingFocusCallback 181
modifyVerifYCallback 181
motion VerifYCallback 181

XmToggleButtonCallbackStruct 146
XtRemoveCallback. 144
XtRemoveCallbacks 145

call_data 144. 148. 280
cascading menu 634
check box 117. 634
child 10.634
class 634

resource. 19
class pointer 265. 635
class record 635
class tree 7. 635
client 635
client area 233. 234. 535
clienCdata 132. 135. 141. 143. 148. 280.

468
clipboard 513. 636

copy 514
paste 517
xclipboard 514

clip window 207. 208. 211. 635
color database 391

656 Programming with Motif

colormap 390, 636
default 390
hardware 390
virtual 390

column-major 76, 636
command area 234, 636
command line 636
comp.windows.x 627
compo windows.x.announce 627
compo windows.x.motif 627
composite 9,58,59, 536
compound string 637
compound strings 617
compound text 617
confirmation area 637
constants

atom
XA_ARC 491
XA_ATOM 491
XA_BITMAP 491
XA_CARDINAL 491
XA_CLIPBOARD 514
XA_COLORMAP 491
XA_CURSOR 491
XA_DRAWABLE 491
XA]ONT491
XA_INTEGER 491
XA_PIXMAP 491
XA_POINT 491
XA_PRlMARY 503
XA_RECTANGLE 491
XA_RGB_COLOR _MAP 491
XA_SECONDARY 503
XA_STRlNG 492
XAYISUALID 492
XA_ WINDOW 492
XA_WM_HINTS 492
XA_ WM_SIZE _HINTS 492

clipboard
ClipboardFailure 520
ClipboardLocked 520
ClipboardNoData 521
ClipboardSuccess 520
ClipboardTruncate 521

events
Deleted 493
NewValue 493

property
AnyPropertyType 489
PropModeAppend 488
PropModePrepend 488
PropModeReplace 488

resource conversion
XtAddress 443
XtBaseOffset 443
XtImmediate 443
XtResourceQuark 443
XtResourceString 443

resource manager
XrmoptionIsArg 434
XrmoptionNoArg 434
XrmoptionResArg 434
XrmoptionSepArg 434
XrmoptionSkipArg 434

XrmoptionSkipLine 434
XrmoptionStickyArg 434

XLib
ArcChord 399
ArcPieSlice 399
CapButt 396
CapNotLast 396
CapProjecting 396
CapRound 396
ClipByChildren 400
EvenOddRule 398
FillOpaqueStippled 397
FillSolid 397
FillStippled 397
FillTiled 397
InciudeInferiors 400
InputFocus 483
JoinBevel 396
JoinMiter 396
JoinRound 396
LineDoubleDash 395
LineOnOffDash 395
LineSolid 395
PointerWindow 483
WindingRule 398
XtGCMask

GCArcMode 401
GCBackground 401
GCCapStyie 401
GCClipMask 401
GCClipXOrigin 401
GCDashList 401
GCFillRule 401
GCFillStyie 401
GCFont 401
GCForeground 401
GCFunction 401
GCGraphicsExposures 401
GCJoinStyle 401
GCLineStyie 401
GCLineWidth 401
GCPlaneMask 401
GCStipple 401
GCSubwindowMode 401
GCTile 401
GCTileStipXOrigin 401
GCTileStipYOrigin 401

Xml00TH_POINTS 195
Xm1OOTH]ONT_UNITS 64
Xm1OOTH_MILLIMETERS 64
Xm1OOTH_POINTS 64
Xml000TH_INCH 64
XmADDITION 343
XmAPPLICATION_DEFINED 210
XmALIGNMENT_BEGINNING 42, 79
XmALIGNMENT_CENTER 42, 79
XmALIGNMENT_END 42, 79
XmAS_NEEDED 210
XmARROW _DOWN 115
XmARROW_LEFT 115
XmARROW_RlGHT 115
XmARROW_UP 115
XmATTACH]ORM 95, 97
XmATTACH_NONE 94

XmATIACH_OPPOSlTE]ORM 95.97
XmATIACH_ OPPOSITE_WIDGET 96
XmATIACH_POSITION 95
XmATIACH_SELF 95
XmATIACH_WIDGET 95
XmAUTOMATIC 210
XmBOTIOM_LEFT 209
XmBOTIOM_RIGHT 209
XmBROWSE_SELECT 341
XmCONSTANT 210.353
XmCR_ACTlVATE 146. 181.267
XmCR_APPLY 359
XmCR_ARM 146
XmCR_BROWSE_SELECT 343
XmCR_CANCEL 359
XmCR_CASCADING 264
XmCR_COMMAND_CHANGED 382
XmCR_COMMAND_ENTERED 382
XmCR_DECREMENT 219
XmCR_DEFAULT_ACTION 343
XmCR_DISARM 146
XmCR_DRAG 220. 228
XmCR_EXPOSE 403
XmCR_EXTENDED_SELECT 343
XmCR]OCUS 181
XmCR_HELP 359
XmCR_INCREMENT 219
XmCR_INPUT 403
XmCR_LOSING]OCUS 181
XmCR_MAP 267.313
XmCR_MODIFYING_TEXT3ALUE 181
XmCR_MULTIPLE _SELECT 343
XmCR_NO_MATCH 359
XmCR_OK359
XmCR_PAGE _DECREMENT 220
XmCR_PAGE_INCREMENT 220
XmCR_RESIZE 403
XmCR_SINGLE_SELECT 343
XmCR_TO_BOTIOM 220
XmCR_TO_TOP 220
XmCR_UNMAP 267.313
XmCR_VALUE_CHANGED 146. 181.

220.228
XmDESTROY 309
XmDlALOG_APPLICATION_MODAL 311
XmDlALOG_APPLY_BUTION 361.367
XmDIALOG_CANCEL_BUTION 330.

331.361. 367
XmDIALOG_COMMAND_TEXT 382
XmDlALOG_DEFAULT_BUTION 331.

361. 367
XmDlALOG]ILTER_LABEL 366
XmDlALOG]ILTER_TEXT 366
XmDlALOG_ERROR 329
XmDlALOG_HELP_BUTION 330.331.

361. 367
XmDIALOG_HISTORY_LIST 382
XmDlALOG_INFORMATION 329
XmDlALOG_LIST 360. 366
XmDIALOG_LIST_LABEL 361.366
XmDlALOG_MESSAGE 329
XmDlALOG_MESSAGE_LABEL 331
XmDIALOG_MODELESS 311

Index 657

XmDIALOG_OK_BUTION 330.331.361.
367

XmDIALOG_PROMPT 357
XmDlALOG_PROMPT _LABEL 382
XmDIALOG_QUESTION 329
XmDIALOG_SELECTION 357
XmDIALOG_SELECTION_LABEL 361.

366
XmDIALOG_SEPARATOR 331.361. 367
XmDIALOG_SYMBOL_LABEL 331
XmDIALOG_SYSTEM_MODAL 311
XmDIALOG_TEXT 361.366
XmDIALOG_WARNING 329
XmDlALOG_ WORKING 329
XmDIALOG_WORK_AREA 311.357.361.

367
XmDO_NOTHING 309
XmDOUBLE_DASHED_LINE 240
XmDOUBLE_LINE 240
XmEXPLICIT 166. 308
XmEXTENDED_SELECT 341
XmHORIZONTAL 64.77.217.226.241
XmINITIAL 343
XmMNCON_BOTIOM 218.227
XmMAX_ON_LEFT 218.227
XmMAX_ON_RIGHT 218.227
XmMAX_ON_TOP 218.227
XmMENU_BAR 75.262
XmMENU_OPTION 76. 295
XmMENU_POPUP 76.262
XmMENU_PULLDOWN 75.262
XmMODIFICATION 343
XmMOVING_INSERT_CURSOR 181
XmMULTCLINE_EDIT 175
XmMULTIPLE_SELECT 341
XmN_OF_MANY 120.122
XmNO_LINE 240
XmONE_OF_MANY 121. 122
XmPACK_COLUMN 77.78.82
XmPACK_NONE 77
XmPACK_TIGHT 77. 78
XmPIXELS 63
XmPIXMAP 40. III
XmPOINTER 166. 309
XmRESIZE ANY 68
XmRESIZE=GROW 68
XmRESIZE_IF _POSSIBLE 353
XmRESIZE_NONE 68
XmSELECT_ALL 179
XmSELECT_LINE 179
XmSELECT_POSITIONS 179
XmSELECT_ WORD 179
XmSHADOW_ETCHED_IN 66.240.246
XmSHADOW_ETCHED_OUT 66. 240.

246
XmSHADOW _IN 66. 245
XmSHADOW_OUT66.246
XmSINGLE_DASHED_LINE 240
XmSINGLE_LINE 240
XmSINGLE_LINE_EDIT 175
XmSTATIC 210
XmSTRING 40. 49. III
XmSTRINGDEFAULT_CHARSET 50. 53

658 Programming with Motif

constants (continued)
XmSTRINGDIRECTION_L_TO_R 42
XmSTRINGDlRECTION_R_TO_L 42
XmTOP _LEFf 209
XmTOP _RIGHT 209
XmTRAVERSE_CURRENT 335
XmTRAVERSE_DOWN 335
XmTRAVERSE_HOME 335
XmTRAVERSE_LEFf 335
XmTRAVERSE_NEXT 335
XmTRAVERSE_NEXT_TAB_GROUP 335
XmTRAVERSE_PREV 335
XmTRAVERSE_PREV_TAB_GROUP 335
XmTRAVERSE_RIGHT 335
XmTRAVERSE_UP 335
XmUNMAP309
XmVARIABLE 210.353
XmVERTICAL64. 77. 217. 226. 241
XmWORK_AREA 75
XtAddlnput

XtInputExceptMask 468
XtInputReadMask 468
XtInputWriteMask 468

constraints 10. 58. 59. 65. 536. 637
explicit 59. 93
implicit 59
non-geometry 59

control 637
conversion cache 459. 637
core 8.39.40.63. 537. 618

defaultActionCallback 343
default colormap 638
default files 13. 638
derivation 6. 638
destructor 638
dialog box 305
dialogs 234. 305. 638

confirmation area 306. 325
file selection box 363

file filter 364
management 310
message boxes 325

action dialog 326
error dialog 326
informational dialog 326
question dialog 326
warning dialog 326
work-in-progress 327

modality 305. 638
application-modal 306
system-modal 306

presentation area 306. 325
unmanagement 310
selection box 357

prompt dialog 357
XmSelectionBox 354

dialog shell 638
dimension 41
disarm 639
drawable 388. 639
dynamic 12

encapsulation 11. 639
error dialog 639
error. standard 37
events 126.482.539

ButtonPress 128. 129. 139. 141. 405
ButtonRelease 129. 139.406
CirculateNotifY 128
CirculateRequest 128
ClientMessage 128. 484
ColormapNotity 128
EnterNotifY 129. 136. 138
Expose 403
Focusln 128. 166
FocusOut 166
KeymapNotifY 128. 129
KeyPress 128. 166. 406
KeyRelease 166.406
LeaveNotifY 129. 136. 138
MotionNotity 129. 136
PropertyNotifY 492
Selection Clear 503. 506
SelectionNotity 505
SelectionRequest 504
XButtonEvent 405
XKeyEvent 406

event handler 127. 639
event mask 126. 133. 639
event queue 127. 639
event-driven programming 125
explicit geometry constraint 639
export.lcs.mit.edu 628
Expose 128
exposeCallback 403
exposure 129.388
extended selection 639

fallback resources 621
FAQ 628
file filter 639
fileno 469
FMT16BIT 180
FMT8BIT 180
focus 640

grabbing 334
input focus 129. 165

font families 44. 640
form 96
ftp.uu.net 628

GetTextSelection 524
grab 640
graphical user interface (GUn 640. 641
graphics context 391, 392. 393. 640

arc_mode 399
background 395
cap_style 395
clip_mask 399
clip_x_origin 399
clips_origin 399
dashes 395
dash_offset 395
fill_rule 397. 398

fill_style 397
font 399
foreground 395
function 394
graphics_exposures 399
join_style 396
line_style 395
line_width 395
plane_mask 395
subwindow_mode 400
tile 397
ts_x_origin 397
tss_origin 397

graphics primitives 388,641
GraphicsExpose 399

header files 34

implicit geometry constraint 641
information dialog 641
inheritance 641
input focus 641
input, standard 37
insertion point 177, 641
instance 641
instance names 427
instance tree 10, 14,61,276,641
instantiation 641
Inter-Client Communications Conventions

618
Inter-Client Communications Conventions

AfanuaI502,513,625
intrinsics 3, 641
ISO Latin 1 45, 642

keys
Alt 287,302
Ctrl339
Down 268, 302, 339
Escape 269, 283, 302
flO 268
Left 268, 302
Meta 283, 287,302
Return 268,302,307,312
Right 268, 302
Shift 339
Up 268, 302, 339

keysym 166,642

ListItemExists 346
list selection modes 642
loose binding 15,642

major dimension 77, 642
management 59, 60, 62, 642
management tree 10, 643
manager 643
mapping 62,643
maximize 643

Index 659

menu accelerators 285,287,643
menus 643

edit 271
cascading 287
file 270
help 271
option 261,271,294
pop-up 261,289
pull-down 261, 268, 276
view 271

menu bar 234,261,267,268,269,643
menu shell 643
message 644
message area 234
message box 325, 644
method 644
minimize 644
minor dimension 77, 644
mnemonics 2, 282, 644
modality, dialogs 305
modeless 305, 644
Motif 2, 3
multiple selection 644

-name 429
NoExpose 399
nongeometry constraint 644

object 8, 644
OOP (Object-Oriented Programming) 5, 645

inheritance 6
messages 5
methods 5
separation of class and instance 6

Open Look 2
Open Software Foundation (OSF) 2, 645
option menu 645
OSF/AfotifProgrammer's Reference vii, 12,

162,626
OSF / Afotif Style Guide 626
output, standard 37
OverrideShell 538

parent 10,645
pipes 467,645
pixel 387,645

data type 391
pixmap 388, 645
point size 646
pOinter 646
pop-up menu 646
pOSition 41
precedence, widget naming 19
presentation area 646
primary selection 646
primitive 646
program class name 14, 15,27,646
prompt dialog 646
propagate 646
property 487,646

WM_PROTOCOLS 493

660 Programming with Motif

pull-down menu 647

quad width 647
quark 452.647
question dialog 647

radio buttons 647
raster display 387.647
realization 647
RectObj 8.
representation type 437.647
resources 11. 648

accelerator 287. 302
acceleratorrext 287.302
active Background 166
activeBottomShadowColor 166
activeForeground 166
activeTopShadowColor 166
adjustLast 79.82
allowOverlap 68
allowResize 90
allowShellResize 308
alignment. 42
applyLabe1String 358
armColor III
armPixmap III
arrowDirection 115
automaticSelection 341
autoShowCursorPosition 177
autoUnmanage 312. 365
background 41. 166
blinkRate 177
bottomAttachment 94
bottomOffset 96.99
bottomPosition 98
bottomShadow 166
bottomShadowColor 66
bottomWidget 100
canceLButton 313
cancelLabelString 330. 358
cascadePixmap 263. 287
clipWindow 211. 236
columns 176
command 381
command Changed Callback 382
command Entered Callback 382
commandWindow 236
cursorPosition 177
cursorPositionVisible 177
decimalPoints 227
defaultButton 312. 323
defaultButtonShadowThickness. III
defaultButtonType 330
defaultPosition 311
deleteResponse 309
dialogStyle 3ll
dialogTitle 311
dialogType 329.357
dirMask 365. 367
dirSpec 365
doubleClicklnterval 341
editable 175. 188

editMode 175. 185. 199
entryAlignment 79
entryClass 265.301
fillOnArm III
fillOnSelect 121
filterLabelString 365
fontlist 44.47.176.227.340
foreground 41. 166
fractionBase 98
height 40.61.65.241
he1pLabe1String 330. 365
highlightColor 168
highlightPixmap 168
highlightThickness 168
historyItemCount 381
historyItems 381
historyMaxitems 381
historyVisibleItemCount 381
hOrizontalScrollBar 211. 236
increment 218.221
indicatorOn 120
indicatorType 120. 122
initialDe1ay 218
isAligned 79.87
isHomogeneous 265. 301
item Count 342
items 342
keyboardFocusPolicy 166.309
labelInsensitivePixmap 112
labelPixmap 41, 54. lll, ll2
labelString 86. 296
labe1Type 40. 54. III
leftAttachment 94
leftOffset 96. 99
leftPosition 98
leftWidget 100
listltemCount 359
listltems 359
listLabelString 358
listMarginHeight 340
listMarginWidth 340
listSizePolicy 353
listSpacing 340
listVisibleItemCount 358
mainWindowMarginHeight 236
mainWindowMarginWidth 236
mappedWbenManaged 62
mappingDelay 263
margin 241
marginHeight 68. 78. 89. 176. 246
marginWidth 68.78.89. 176.215.246
maxHeight 309
maxLength 175. 188
maximum 90. 217. 227
maxWidth 309
menuAccelerator 265. 283. 302
menuBar236
menuHelpWidget 266
menuHistory 296
messageAlignment 329
minHeight 309
minimizeButtons 329. 358
minimum 90.217.227
minWidth 309

mnemonic 283. 296. 302
mustMatch 359
noResize 311
numColumns 78. 82. 86
okLabelStrtng 358
orientation 76.82.87.217.226.241
overrideRedirect 309
packing 77. 86
pageIncrement 218.221
pendingDelete 178
processingDirection 217. 227
promptStrtng 381
radioAlwaysOne 122
radioBehavior 121. 124
recomputeSize 41, 53.81, 87. 123
refigureMode 89
repeatDelay 218
resizeHeight 78. 176
resizePolicy 68
resizeWidth 78. 176
rightAttachment 94
rightOffset 96. 99
rightPosition 98
rightWidget 100
rowColumnType 75. 261, 265. 301
rows 176
rubberPositioning 100
sashHeight 89
sashIndent 90
sashShadowTIlickness 90
sashWidth 89
scaleHeight 226
scaleWidth 226
scrollBarDisplayPolicy 210
scrollBarPlacement 209
scrolledWindowMarginHeight 209
scrolledWindowMarginWidth 209
scrollingPolicy 210
scrollHorizontal 199
scrollLeftSide 200
scrollTopSide 200
scrollVertical 199
selectColor 121
selecteditemCount 342
selecteditems 342
selectinsensitivePixmap 121
selectionArray 178
selectionLabelStrtng 358
selectionPolicy 341
selectPixmap 121
selectThreshold 178
sensitive Ill, 120. 135. 278
separatorOn 90
separatorrype 240
set 120
shadowTIlickness. 66
shadowType 66. 245
show Arrows 217
showAsDefault lll. 312
showSeparator 236
showValue 227
skipAdjust 90
sliderSize 217.218.221
spacing 78.89. ll9. 121.209.215

Index 661

strtngDirection 42.340.341
subMenuId 263. 277. 282. 296
textColumns 358
textString 359
title 3ll
titleString 227
topAttachment 94
topCharacter 176
topOffset 96.99
topPosition 98
topShadowColor 66. 166
topWidget 100
traversalOn 167. 173
unitType 41. 63. 65. 195
value 175.186.217.221.227
verticalScrollBar 2ll. 236
visibleitemCount 340
visibleWhenOff 120
visualPolicy 210
whichButton 265
width 40. 61, 65
wordWrap 176
workWindow 211. 236
x 40. 61. 65
Y 40.61.65

resource class 19.648
resource converter 65. 436. 445. 455. 648
resource database 13.20.428.648
resource file 13. 20. 648
resource tables 12
root window 648
row-major 76. 648

sash 87.89.648
scale 224
scrollbars 197.205.215.234

scroll region 197.206.207
slider 197. 206. 649
stepper arrows 206

scrolled list 352
scrolled yext 197. 198
scroll region 648
secondary selection 649
secondary window 305. 649
selection 173. 502. 649

acquiring and advertising 503
clipboard 513
identifying the owner 504
primary 502
requesting selected data 504
responding to a request 505
secondary 502

selection box 649
sensitivity lll. ll2. 120. 649
separators 238. 649
server 650
server resource 389.650
server resource ID. 389. 650
shadow 71
shadow border 66
shared libraries 618
shell 9. 308. 538. 650
siblings 650

662 Programming with Motif

single selection 650
slider 650
socket 650
sockets 467
standard error 650
standard input 650
standard output 651
stepper arrow 651
stipple 397
string 49
sub-area 207,211,236,651
subclass 6,651
superclass 6, 651
supporting superclass 651
system menu 234
system-modal 651

tab groups 167, 196, 339, 651
tight binding 15, 651
tlmeouts 474
timestamp 126
top-level shell 651
TopLevelShell 539
transient shell 652
TransientShell 308, 539
translations 151, 652

XmPushButton 162
XmText 184, 196

translation manager 149, 652
translation table 148, 151, 152, 162, 652

in resource me 158
installation 156
ordering 158

traversal 165, 167, 169, 652
type conversion 652
type converter 455

UNIX International 2
unmanage 652
unmanagement 61
unmap652

varargs 621
VendorShell308,539
verification callback 652
virtual binding 652
virtual display 653

warning dialog 653
window properties 487, 653
widget 1, 5, 7, 653

composite 10
creation of 29
data type 27
destruction of 31
manager 10
management of 29
primitive 10

widget class 19
instantiated 7

supporting 7
widgetiD 27,653
widget set

HP 2
width 241
window 388, 653
window frame 233, 653
window manager 653
window manager protocols 493

MOTIF _ WM_MESSAGES 494
WM_DELETE_ WINDOW 494
WM_SAVE]OURSELF 493
WM_TAKE]OCUS 493

WindowObj 8
window tree 10, 60, 653
WMShell 308, 540
work area 234, 653
work-in-progress dialog 654
workproc 478,654
WorkProcs 478
work window 207, 208, 654

xany 130
XAnyEvent 131
XAPPLESDIR 21, 22, 427
XButtonEvent 136, 139
XChangeProperty 487
XClearWindow 421, 425
XClientMessageEvent 484,510,512
X Consortium 1
.xdefaults 22
XDe1eteProperty 490
XDrawLine 420, 425
XENVIRONMENT 22, 427
XEvent 129, 141, 161
XExposeEvent 404
XFILESEARCHPATH 623
XGCValues 394,418
XGetAtomName 486, 523
XGetSelection-Owner 504
XGetSelectionOwner 512
XGetWindowProperty 488, 489
X Intrinsics 1, 654
XIntemAtom 485, 498, 509, 511
XKeyEvent 166
XIib 3, 387, 654
Xlib - C Language X Interface 626
XListProperties 490
XLoadFont 399
X Logical Font Description Conventions 45,

626
xlsfont 45
XmActivateWMProtocol 495, 496
XmActivateWMProtocol 496
XmAddTabGroup 168,170,171,194
XmAddWMProtocolCallback 494, 495, 498
XmAnyCallbackStruct 148
XmArrowButton 107, 114, 115, 145, 541
XmBulletinBoard 58, 65, 542
XmCascadeButton 543

callbacks 263
XmClipboardCancelCopy 517
XmClipboardCopy 516,525

XmClipboardEndCopy 516,517,525
XmClipboardlnquireLength 518, 519
XmClipboardLock 518, 526
XmClipboardRetrieve 519,520, 526
XmClipboardStartCopy 515, 524
XmClipboardStartRetrieve 519, 526
XmClipboardUnlock 518, 526
XmCommand 379, 543
XmCommandCallbackStruct 382
XmCommandError 383, 384
XmCommandGetChild 382, 383
XmCreateArrowButton 116
XmCreateBulletinBoardDialog 314, 317
XmCreateBulletinBoard 70
XmCreateCascadeButton 269,274,280,

289
XmCreateCommand 385
XmCreateDialogShell 330
XmCreateDrawingArea 419
XmCreateErrorDialog 330
XmCreateFileSelectionBox 366
XmCreateFileSelectionDialog 366,371
XmCreateForm 101
XmCreateFormDialog 314
XmCreateFrame 247
XmCreatelnformationDialog 330
XmCreateLabel43,318
XmCreateList 348
XmCreateMainWindow 251, 253
XmCreateMenuBar 269, 273, 301
XmCreateMessageBox 330
XmCreateMessageDialog 330,333
XmCreateOptionMenu 298, 301
XmCreatePanedWindow 91
XmCreatePopupMenu 290,292,301
XmCreatePulldownMenu 277,279,289,

301
XmCreatePushButton 113, 318
XmCreateQuestionDialog 330
XmCreateRowColumn 80
XmCreateScale 230
XmCreateScrollBar 222, 251
XmCreateScrolledList 352, 354
XmCreateScrolledText 198, 202, 258, 259
XmCreateScrolledWindow 211, 214
XmCreateSelectionBox 360, 362
XmCreateSelectionDialog 360
XmCreateSeparator 242,318
XmCreateText 191, 318
XmCreateToggleButton 123
XmCreateWamingDialog 330, 499
XmCreateWorkingDialog 330
XmCvtCTToXmString 617
XmCvtStringToUnitType 65, 442
XmCvtXmStringToCT 617
XmDialogShell 307, 544
XmDrawingArea 401, 544
XmDrawingAreaCallbackStruct 403
XmDrawnButton 545
XmDeactivateWMProtocol 495, 496
XmFileSelectionBox 363, 545
XmFileSelectionBoxCallbackStruct 368,373
XmFileSelectionBoxGetChild 366
XmFileSelectionDoSearch 367,372,378

Index 663

XmForm 58, 92,546
XmFrame 243, 547
XmGadget 9
XmGetAtomName 486
XmGrabTheFocus 319,323,334
XmlnternAtom 485
XmLabe139,547
XmList 337, 338, 548

selection modes
Browse 339
Extended 339
Multiple 339
Single 339

XmListAddItem 344, 346, 350
XmListAddItemUnselected 344, 346
XmListCallbackStruct 342,350
XmListDeleteItem 344, 346
XmListDeletePos 344, 346
XmListDeselectAllItems 344, 346
XmListDeselectItem 344, 346
XmListDeselectPos 344, 346
XmListItemExists 350
XmListSelectItem 345, 346
XmListSelectPos 345, 346
XmListSetBottomItem 345, 347
XmListSetBottomPos 345,347
XmListSetItem 345,347
XmListSetPos 345, 347
XmMainWindow 235, 549
XmMainWindowSep1 237, 238
XmMainWindowSep2 237,238
XmMainWindowSetAreas 237,250,253
XmManager 10, 57, 58,63,66,549
XmMenuPosition 293,294,301
XmMenuShe1l276, 301,550
XmMessageBox 327,550
XmMessageBoxGetChild 331, 333, 499
XMotionEvent 136, 137
XmPanedWindow 58,87,551
XmPrimitive 39, 63, 66, 108, 552
XmProcessTraversal 323, 334
XmPushButtorr 107, 108, 113, 145, 553
XmRemoveTabGroup 168
XmRemoveWMProtocolCallback 495, 496
XmRemoveWMProtocols 495, 496
XmRemoveWMProtocols, 496
XmRowColumn 58,73,261, 554

callbacks 266
XmRowColumnCallbackStruct 266
XmScale 224, 555
XmScaleGetValue 228
XmScaleGetValue, 229
XmScaleSetValue 228, 229
XmScrollBar 205,215, 556
XmScrollBarGetValues 221
XmScrollBarSetValues 221
XmScrolledWindow 198, 207, 557
XmScrolledWindowSetAreas 211,212,

214
XmSelectionBox 558
XmSelectionBoxCallbackStruct 359
XmSelectionBoxGetChild 360
XmSeparator 238, 559
XmSINGLE_SELECT 341

664 Programming with Motif

XmString. 49
XmStringConcat.50. 51.52. 53
XmStringCreate. 50. 52. 53. 318
XmStringCreateLtoR, 50. 52. 53
XmStringCreateSimple. 50
XmStringDraw 399
XmStringFree. 50. 51. 53
XmStringGetLtoR, 51. 373
XmStringTable 342
XmTe~. 172. 173. 182.560

scrolling 197
selection 324
translations 196

XmTextBlockRec 180
XmTextClearSelection 188. 189. 190
XmTextCopy 530.531
XmTextCut 530.531
XmTextField 615
XmTextGetEditable 187. 188
XmTextGetLastPosition 474
XmTextGetMaxLength 188
XmTextGetSelection 188. 189.320.324.

527
XmTextGetSelectionPoisition 189. 188. 189
XmTextGetString 320.324
XmTextSetSelection 320. 324
XmTextGetString 175. 186
XmTextGetString. 186
XmTextPaste 530. 531
XmTextReplace 175. 186
XmTextSetEditable 187. 188
XmTextSetMaxLength 188
XmTextSetSelection 188. 189
XmTextSetString 175. 186. 203. 374
XmTextVerityCallbackStruct 179
XmToggleButton 107. 117. 145. 561
Xm/XM.h 23. 33
X Primitive 8
XPropertyEvent492
X Protocol 3. 654
XQueryFont 399
XQueryPointer 137
xrdb 22
X Registry 486
xrm 22. 23. 87. 432
XrmOptionDescList 433
XrmOptionDescRec 435
XrmOptionDescRec 433
XrmQuark 454
XrmQuarkToString 453
XrmStringToQuark 453. 454
XrmValue 445.447,458
XrmValuePtr 445
XSelectionClearEvent 507
XSelectionEvent 506
XSelectionRequestEvent 504
XSendEvent483,512
XSetSelectionOwner 503,510
Xt654
XtActionList 149, 150
XtActionsRec 149,150, 160
XtAddActions 149, 150, 162, 160

XtAddCallback 143. 147, 148, 318
XtAddConverter442,447
XtAddEventHandler 131, 132, 142, 148,

419,510
XtAddInput468,469.472
XtAddTimeOut 474,475,477
XtAddWorkProc 479, 481,500
XtAppAddInput 468
XtAppContext 619
XtAppInitialize 619
XtAppMainLoop 619
XtAppSetTypeConverter 442
XtArgVal26
XtAugmentTranslations 157
XtCallbackProc. 143
XtCallConverter 456
XtConvert 456, 459
XtConvertArgList 443
XtConvertArgRec 442, 443
XtDestroyWidget 31,32,447
XtDisplay 391,392,420,483
XtEventHandler 134, 141
XtFree 320
XtGCMask 400,401,418
XtGetApplicationResources 460, 462, 464
XtGetGC 392, 400. 420, 422
XtGetValues 26,214,251
XtInitialize 28, 33, 43, 253, 428, 432, 619
XtIntervalId 475
XtLastTimestampProcessed 189,622
XtMainLoop 31, 33, 43
XtMalloc 374
XtManageChild 29,30,43,60,318
XtManageChildren 29, 30, 69, 70
XtMapWidget 63
XtNumber 162
XtOffset 463
X Toolkit Intrinsics - C Language Interface

626
XtOverrideTranslations 157, 194
XtParent 198,258
XtParseTranslationTable 156, 157, 194
XtReleaseGC 392, 422
XtRealizeWidget 30,33,43,60
XtRemoveInput 470,473
XtRemoveTimeOut 475
XtRemoveWorkProc 479
XtResource 461, 463
XtResourceList 461
XtSetArg 23,52,24,214,318
XtSetKeyboardFocus 334
XtSetSensitive 112, 280
XtSetTypeConverter 442
XtSetVlaues 23,24, 52, 90, 318
XtStringConversionWarning 450,452,454
XtUninstallTranslations 157
XtUnmanageChild 61,62,321
XtUnmanageChildren 61, 62
XtUnmapWidget 63
XtWarningMsg 450,452
XtWindow 391, 392, 420
XUSERFILESEARCHPATH 623

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

