
GLADE User’s Guide
GLADE, GNAT Library for Ada Distributed Environment

GLADE Version glade-gpl-2006

Laurent Pautet, Samuel Tardieu
Document revision level $Revision: 1.54.2.1 $

Date: $Date: 2006/06/23 10:51:49 $

Copyright c© 1997-2006, Free Software Foundation

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with the Invariant Sections being “GNU Free Documentation
License”, with the Front-Cover Texts being “GLADE User’s Guide / GNAT Library for
Ada Distributed Environment”, and with no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

About This Guide 1

About This Guide

What This Guide Contains

This guide contains the following chapters:

• 〈undefined〉 [Introduction to Distributed Systems], page 〈undefined〉, describes different
ways to develop systems that must run on networks of computers.

• 〈undefined〉 [The Distributed Systems Annex], page 〈undefined〉, discusses the features
presented in Annex E of the Ada 95 language reference. This chapter provides a tutorial
for beginners and includes several useful examples for more advanced programmers.

• 〈undefined〉 [Getting Started With GLADE], page 〈undefined〉, describes how to use the
configuration tool gnatdist. It also describes in detail the default GLADE Partition
Communication Subsystem, GARLIC.

• 〈undefined〉 [DSA and CORBA], page 〈undefined〉, is a detailed comparison between
the capabilities of CORBA and those of the Distributed System Annex.

• 〈undefined〉 [GNU Free Documentation License], page 〈undefined〉, contains the text of
the license under which this document is being distributed.

2 GLADE User’s Guide

Chapter 1: Introduction to Distributed Systems 3

1 Introduction to Distributed Systems

A distributed system architecture comprises a network of computers and the software
components that execute on those computers. Such architectures are commonly used to
improve the performance, reliability, and reusability of complex applications. Typically,
there is no shared address space available to remotely-located components (that is to say,
components running on different nodes of the network), and therefore these components
must communicate using some form of message-passing.

1.1 Using OS Network Services

There are several programming techniques for developing distributed applications. These
applications have traditionally been developed using network programming interfaces such
as sockets. Programmers explicitly have to perform calls to operating system services,
a task that can be tedious and error-prone. This includes initializing socket connection
and determining peer location, marshaling and unmarshaling data structures, sending and
receiving messages, debugging and testing several programs at the same time, and porting
the application to several platforms to uncover subtle differences between various network
interfaces.

Of course, this communication code can be encapsulated in wrappers to reduce its com-
plexity, but it is clear that most of it can be automatically generated. Message passing
diverts developer’s attention from the application domain. The query and reply scenario is
a classical scheme in distributed applications; using message passing for such a scheme can
be compared to using a “goto” mechanism in a non-distributed application. This is consid-
ered unacceptable methodology in modern software engineering. A more robust design is
be to use a structured approach based on procedure calls.

In some respects, network programming can be compared to the multi-threading pro-
gramming issue. The user can decide to split his code into several pieces and to multiplex
the thread executions himself, using a table-driven model. The scheduling code ends up
embedded into the user code. This solution is error-prone and fragile in regard to any
future modification. Relying on an implementation of threads such as provided in POSIX
is a better solution. Relying on language primitives that support concurrency, such as Ada
tasks, is best.

1.2 Using a Middleware Environment

A middleware environment is intended to provide high level abstractions in order to
easily develop user applications. Environments like CORBA or Distributed Computing
Environment (DCE) provide a framework to develop client/server applications based on
the Remote Procedure Call model (RPC). The RPC model is inspired from the query and
reply scheme. In rough analogy with a regular procedure call, arguments are pushed onto a
stream, along with some data specifying the remote procedure to be executed. The stream
is transmitted over the network to the server. The server decodes the stream, performs the
regular subprogram call locally, and then puts the output parameters into another stream,
along with the exception (if any) raised by the subprogram execution. The server then

4 GLADE User’s Guide

sends this stream back to the caller. The caller decodes the stream and raises locally the
exception if needed.

CORBA provides the same enhancements to the remote procedure model that object-
oriented languages provide to classical procedural languages. These enhancements in-
clude encapsulation, inheritance, type checking, and exceptions. These features are offered
through an Interface Definition Language (IDL).

The middleware communication framework provides all the machinery to perform, some-
what transparently, remote procedure calls or remote object method invocations. For in-
stance, each CORBA interface communicates through an Object Request Broker (ORB). A
communication subsystem such as an ORB is intended to allow applications to use objects
without being aware of their underlying message-passing implementation. In addition. the
user may also require a number of more complex services to develop his distributed appli-
cation. Some of these services are indispensable, for example a location service that allows
clients to reference remote services via higher level names, instead of a traditional scheme
for addressing remote services that use Internet host addresses and communication port
numbers. Other services provide domain-independent interfaces that are frequently used by
distributed applications.

If we return to the multi-thread programming comparison, the middleware solution is
close to what a POSIX library or a language like Esterel1 would provide for developing
concurrent applications. A middleware framework like DCE is close to a POSIX library in
terms of abstraction levels. Functionalities are very low-level and very complex. CORBA
is closer to Esterel in terms of development process. The control part of the application
can be specified in a description language. The developer then has to fill-in automatically
generated source code templates (stub and skeletons) to build the computational part of the
application. The distribution is a pre-compilation process and the distributed boundaries
are always explicit. Using CORBA, the distributed part is written in IDL and the core of
the application is written in a host language such as C++.

1.3 Using a Distributed Language

Rather than defining a new language like the CORBA IDL, an alternative is to extend an
existing programming language with the addition of distributed features. The distributed
object paradigm provides a more object-oriented approach to programming distributed
systems. The notion of a distributed object is an extension to the abstract data type that
allows the services provided in the type interface to be called independently of where the
actual service is executed. When combined with object-oriented features such as inheritance
and polymorphism, distributed objects offer a more dynamic and structured computational
environment for distributed applications.

The Distributed Systems Annex (DSA) of Ada95 defines several extensions that allow
the user to write a distributed system entirely in Ada. The types of distributed objects, the
services they provide, and the bodies of the remote methods to be executed are all defined in
conventional Ada packages. The Ada95 model is analogous the Java/RMI model. In both
languages, the IDL is replaced by well-defined language constructs. Therefore, the language

1 ESTEREL is an imperative synchronous language designed for the specification and the
development of reactive systems.

Chapter 1: Introduction to Distributed Systems 5

supports both remote procedure calls and remote object method invocations transparently,
and the semantics of distribution are consistent with the rest of the language.

A program written in such a language is intended to communicate with a program written
in the same language, but this apparent restriction has several useful consequences. The
language can provide more powerful features because it is not constrained by the common
features available in all host languages. In Ada95, the user will define a specification of
remote services and implement them exactly as he would for ordinary, non-distributed
services. His Ada95 environment will compile them to produce a stub file (on the caller
side) and a skeleton file that automatically includes the body of the services (on the receiver
side). Creating objects, obtaining or registering object references or adapting the object
skeleton to the user object implementation are made transparent because the language
environment has a full control on the development process.

Comparing with multi-thread programming once again, the language extension solution
is equivalent to the solution adopted for tasking facilities in Ada. Writing a distributed
application is as simple as writing a concurrent application: there is no binding consideration
and no code to wrap. The language and its run-time system take care of most issues that
would divert the programmer’s attention from the application domain.

6 GLADE User’s Guide

Chapter 2: The Distributed Systems Annex 7

2 The Distributed Systems Annex

A critical feature of the Distributed Systems Annex (DSA) is that it allows the user
to develop his application the same way whether this application is going to be executed
as several programs on a distributed system, or as a single program on a non-distributed
system. The DSA has been designed to minimize the source changes needed to convert an
ordinary non-distributed program into a distributed program.

The simplest way to start with DSA is to develop the application on a non-distributed
system. Of course, the design of the application should take into account the fact that some
units are going to be accessed remotely. In order to write an Ada95 distributed program, it
is necessary for the user to label by means of categorization pragmas some of library level
compilation units of the application program. The units which require categorization are
typically those that are called remotely, and those that provide the types used in remote
invocations.

In order to insure that distributed execution is possible, these units are restricted to
contain only a limited set of Ada constructs. For instance, if the distributed system has
no shared memory, shared variables must be forbidden. To specify the nature of these
restrictions, the DSA provides different categorization pragmas, each of which excludes
some language constructs from the categorized package.

Of course, the user can develop the non-distributed application with his usual software
engineering environment. It is critical to note that the user needs no specialized tools to
develop his/her distributed application. For instance, he can debug his application with
the usual debugger. Note that a non-distributed program is not to be confused with a
distributed application composed of only one program. The later is built with the help of
the configuration tool and includes the communication library.

Once the non-distributed version of the program is complete, it has to be configured
into separate partitions, This step is surprisingly simple, compared to that of developing
the application itself. The configuration step consists in mapping sets of compilation units
into individual partitions, and specifying the mapping between partitions and nodes in the
computer network. This mapping is specified and managed by means of GLADE.

The distributed version of the user application should work as is, but even when a pro-
gram can be built both as a non-distributed or a distributed program using the same source
code, there may still be differences in program execution between the distributed and non-
distributed versions. These differences are discussed in subsequent sections (see 〈undefined〉
[Pragma Asynchronous], page 〈undefined〉 and 〈undefined〉 [Pragma All Calls Remote],
page 〈undefined〉).

Developing a non-distributed application in order to distribute it later is the natural
approach for a novice. Of course, it is not always possible to write a distributed application
as a non-distributed application. For instance, a client/server application does not belong
to this category because several instances of the client can be active at the same time. It
is very easy to develop such an application using GLADE; we shall describe how to do this
in the following sections.

8 GLADE User’s Guide

2.1 Architecture of a Distributed Ada95 Application

A distributed system is an interconnection of one or more processing nodes and zero or
more storage nodes. A distributed program comprises one or more partitions. A partition
is an aggregate of library units. Partitions communicate through shared data or RPCs.
A passive partition has no thread of control. Only a passive partition can be configured
on a storage node. An active partition has zero or more threads of control and has to be
configured on a processing node.

The library unit is the core component of an Ada95 distributed application. The user
can explicitly assign library units to a partition. Partitioning is a post-compilation process.
The user identifies interface packages at compile-time. These packages are categorized using
pragmas. Each of these pragmas supports the use of one of the following classical paradigms:

• Remote subprograms: For the programmer, a remote subprogram call is similar to a
regular subprogram call. Run-time binding using access-to-subprogram types can also
be used with remote subprograms. These remote subprograms are mostly declared in
library units categorized as remote call interface (RCI).

• Distributed objects: Special-purpose access types can be defined which designate re-
mote objects. When a primitive dispatching operation is invoked on an object desig-
nated by such a remote access, a remote call is performed transparently on the partition
on which the object resides. The types of these distributed objects are declared in li-
brary units categorized as remote types (RT).

• Shared objects: Global data can be shared between active partitions, providing a repos-
itory similar to a shared memory, a shared file system or a database. Entry-less pro-
tected objects allow safe concurrent access and update shared objects. This feature
is orthogonal to the notion of distributed objects, which are only accessed through
exported services. These shared objects are declared in library units categorized as
shared passive (SP).

The remotely-called subprograms declared in a library unit categorized as remote call
interface (RCI) or remote types (RT) may be either statically or dynamically bound. The
partition on which a statically bound remote subprogram is executed can be determined
before the call. This is a static remote subprogram call. In contrast, A remote method or a
dereference of an access to remote subprogram are dynamically bound remote calls, because
the partition on which the remote subprogram is executed is determined at runtime, by the
actuals of the call.

In the following example, Data 1 and Data 2 are shared passive (SP) library units.
Data 1 is configured on a passive partition mapped on a storage node. Partition 1 and
Partition 2 are active partitions. Note that under some circumstances, a partition, for
instance Partition 2, can be duplicated. To be duplicated, Unit 2 and Unit 3 which are
configured on Partition 2 have to provide only dynamically bound remote subprograms.
Otherwise, a partition calling a remote subprogram on Unit 2 would not be able to statically
determine where to perform the remote call between the two instances of Unit 2.

xe-arch.fig.pdf

Chapter 2: The Distributed Systems Annex 9

2.2 Categorization Pragmas

Library units can be categorized according to the role they play in a distributed program.
A categorization pragma is a library unit pragma that restricts the kinds of declarations
that can appear in a library unit and possibly in its child units, as well as the legal semantic
dependences that the categorized unit can have. There are several categorization pragmas
:

• Remote Call Interface

• Remote Types

• Shared Passive

• Pure

The following paragraphs do not present the detailed semantics of these pragmas (formal
details will be found in the Ada95 Reference Manual). Their purpose is to give the reader
an intuitive overview of the purpose of these pragmas. If a library unit is not categorized,
this unit is called a normal unit and plays no special role in the distributed application.
Such a unit is duplicated on any partition in which it is mentioned.

A parenthetical remark: to avoid the need for specific run-time libraries for the DSA, the
notion of remote rendezvous has not been introduced in Ada95: tasks cannot be invoked
directly from one partition to another. Therefore, declarations of task types and general
protected types with entries are not allowed in categorized Ada library units.

2.3 Pragma Declared Pure

This pragma is not specific to the Distributed Systems Annex. A pure package can
appear in the context of any package, categorized or not. A pure package is a preelaborable
package that does not contain the declaration of any variable or named access type. It is
particularly useful to define types, constants and subprograms shared by several categorized
packages. In contrast, normal packages cannot appear in the context of categorized package
declarations. Because a pure package has no state, it can be duplicated on several partitions.

2.4 Pragma Remote Call Interface

2.4.1 Overview of Pragma Remote Call Interface

Library units categorized with this pragma declare subprograms that can be called and
executed remotely. An RCI unit acts as a server for remote calls. There is no memory space
shared between server and clients. A subprogram call that invokes one such subprogram
is a classical RPC operation; it is a statically bound operation, because the compiler can
determine the identity of the subprogram being called.

Dynamically bound calls are provided through two mechanisms:

• The dereference of an access to subprogram value, i.e. a value whose type is a re-
mote access to subprogram (RAS).

• A dispatching call whose controlling argument is an access-to-class-wide operand, (re-
mote access on class wide types - RACW). These remote access types can be declared
in a RCI package as well.

10 GLADE User’s Guide

A remote access type (RAS or RACW) can be viewed as a fat pointer, that is to
say a structure with a remote address and a local address (like an URL: <protocol>://-
<remote-machine>/<local-directory>). The remote address must denote the host of the
partition on which the entity has been created; the local address describes the local memory
address within the host.

It is very unlikely that RCI units can be duplicated in the distributed system. An
implementation may allow separate copies of a RCI unit as long as it ensures that the
copies present a consistent state to all clients. In the general case, preserving consistency
is very costly. For this reason, the implementation may require a RCI unit to be unique in
the distributed system.

2.4.2 Regular Remote Subprograms (RCI)

In the following example, a RCIBank offers several remote services: Balance, Transfer,
Deposit and Withdraw. On the caller side, the bank client uses the stub files of unit
RCIBank. On the receiver side, the bank receiver uses the skeleton files of unit RCIBank
including the body of this package.

package Types is
pragma Pure;

type Customer_Type is new String;
type Password_Type is new String;

end Types;

with Types; use Types;
package RCIBank is

pragma Remote_Call_Interface;

function Balance
(Customer : in Customer_Type;
Password : in Password_Type)
return Integer;

procedure Transfer
(Payer : in Customer_Type;
Password : in Password_Type;
Amount : in Positive;
Payee : in Customer_Type);

procedure Deposit
(Customer : in Customer_Type;
Amount : in Positive);

procedure Withdraw
(Customer : in Customer_Type;
Password : in Password_Type;

Chapter 2: The Distributed Systems Annex 11

Amount : in out Positive);
end RCIBank;

with Types; use Types;
with RCIBank; use RCIBank;
procedure RCIClient is

B : Integer;
C : Customer_Type := "rich";
P : Password_Type := "xxxx";

begin
B := Balance (C, P);

end RCIClient;

2.4.3 Remote Access to Subprograms (RAS)

In the following example, several mirroring banks offer their services through the same
database. Each bank registers a reference to each of its services with a central bank. A client
of the central bank requests a service from one of the mirroring banks. To satisfy requests,
the RCI unit RASBank defines Balance Type, a remote access to subprogram (Recall that
an access type declared in a remote unit has to be either remote access to subprogram or
remote access to class wide type).

Note that to obtain a remote access to subprogram, the subprogram that delivers the
remote access must be remote itself. Therefore, MirrorBank is a RCI library unit.

with Types; use Types;
package RASBank is

pragma Remote_Call_Interface;

type Balance_Type is access function
(Customer : in Customer_Type;
Password : in Password_Type)
return Integer;

procedure Register
(Balance : in Balance_Type);

function Get_Balance
return Balance_Type;

-- [...] Other services
end RASBank;

In the code below, a mirroring bank registers its services to the central bank.

with Types; use Types;
package MirrorBank is

12 GLADE User’s Guide

pragma Remote_Call_Interface;

function Balance
(Customer : in Customer_Type;
Password : in Password_Type)
return Integer;

-- [...] Other services
end MirrorBank;

with RASBank, Types; use RASBank, Types;
package body MirrorBank is

function Balance
(Customer : in Customer_Type;
Password : in Password_Type)
return Integer is

begin
return Something;

end Balance;

begin
-- Register a dynamically bound remote subprogram (Balance)
-- through a statically bound remote subprogram (Register)
Register (Balance’Access);
-- [...] Register other services

end MirrorBank;

In the code below, a central bank client asks for a mirroring bank and calls the Balance
service of this bank by dereferencing a remote access type.

with Types; use Types;
with RASBank; use RASBank;
procedure BankClient is

B : Integer;
C : Customer_Type := "rich";
P : Password_Type := "xxxx";

begin
-- Through a statically bound remote subprogram (Get_Balance), get
-- a dynamically bound remote subprogram. Dereference it to
-- perform a dynamic invocation.
B := Get_Balance.all (C, P);

end BankClient;

Chapter 2: The Distributed Systems Annex 13

2.4.4 Remote Access to Class Wide Types (RACW)

A bank client is now connected to a bank through a terminal. The bank wants to notify
a connected client, bu means of a message on its terminal, when another client transfers a
given amount of money to his account. In the following example, a terminal is designed as
a distributed object. Each bank client will register its terminal object to the bank server
for further use. In the code below, Term Type is the root type of the distributed terminal
hierarchy.

with Types; use Types;
package Terminal is

pragma Pure;

type Term_Type is abstract tagged limited private;

procedure Notify
(MyTerm : access Term_Type;
Payer : in Customer_Type;
Amount : in Integer) is abstract;

private
type Term_Type is abstract tagged limited null record;

end Terminal;

In the code below, the RCI unit RACWBank defines Term Access, a remote access
to class wide type. Term Access becomes a reference to a distributed object. In the next
section, we will see how to derive and extend Term Type, how to create a distributed object
and how to use a reference to it.

with Terminal, Types; use Terminal, Types;
package RACWBank is

pragma Remote_Call_Interface;

type Term_Access is access all Term_Type’Class;

procedure Register
(MyTerm : in Term_Access;
Customer : in Customer_Type;
Password : in Password_Type);

-- [...] Other services
end RACWBank;

2.4.5 Summary on Pragma Remote Call Interface

Remote call interface units:

• Allow subprograms to be called and executed remotely

14 GLADE User’s Guide

• Allow statically bound remote calls (remote subprogram)

• Allow dynamically bound remote calls (remote access types)

• Forbid variables and non-remote access types

• Prevent specification from depending on normal units

2.5 Pragma Remote Types

2.5.1 Overview of Pragma Remote Types

Unlike RCI units, library units categorized with this pragma can define distributed
objects and remote methods on them. Both RCI and RT units can define a remote access
type as described above (RACW). A subprogram defined in a RT unit is not a remote
subprogram. Unlike RCI units, a RT unit can be duplicated on several partitions in which
case all its entities are different with each other. This unit is different on each partition in
which it is defined.

2.5.2 Distributed Object

If we want to implement the notification feature proposed in the previous section, we have
to derive Term Type. Such a derivation is possible in a remote types unit like NewTerminal
(see below). Any object of type New Term Type becomes a distributed object and any
reference to such an object becomes a fat pointer or a reference to a distributed object (see
Term Access declaration in 〈undefined〉 [Remote Access to Class Wide Types (RACW)],
page 〈undefined〉).

with Types, Terminal; use Types, Terminal;
package NewTerminal is

pragma Remote_Types;

type New_Term_Type is
new Term_Type with null record;

procedure Notify
(MyTerm : access New_Term_Type;
Payer : in Customer_Type;
Amount : in Integer);

function Current return Term_Access;
end NewTerminal;

In the code below, a client registers his name and his terminal with RACWBank. There-
fore, when any payer transfers some money to him, RACWBank is able to notify the client
of the transfer of funds.

with NewTerminal, RACWBank, Types; use NewTerminal, RACWBank, Types;
procedure Term1Client is

Chapter 2: The Distributed Systems Annex 15

MyTerm : Term_Access := Current;
Customer : Customer_Type := "poor";
Password : Password_Type := "yyyy";

begin
Register (MyTerm, Customer, Password);
-- [...] Execute other things

end Term1Client;

In the code below, a second client, the payer, registers his terminal to the bank and
executes a transfer to the first client.

with NewTerminal, RACWBank, Types; use NewTerminal, RACWBank, Types;
procedure Term2Client is

MyTerm : Term_Access := Current;
Payer : Customer_Type := "rich";
Password : Password_Type := "xxxx";
Payee : Customer_Type := "poor";

begin
Register (MyTerm, Payer, Password);
Transfer (Payer, Password, 100, Payee);

end Term2Client;

In the code below, we describe the general design of Transfer. Classical operations of
Withdraw and Deposit are performed. Then, RACWBank retrieves the terminal of the
payee (if present) and invokes a dispatching operation by dereferencing a distributed object
Term. The reference is examined at run-time, and the execution of this operation takes
place on the partition on which the distributed object resides.

with Types; use Types;
package body RACWBank is

procedure Register
(MyTerm : in Term_Access;
Customer : in Customer_Type;
Password : in Password_Type) is

begin
Insert_In_Local_Table (MyTerm, Customer);

end Register;

procedure Transfer
(Payer : in Customer_Type;
Password : in Password_Type;
Amount : in Positive;
Payee : in Customer_Type)

is
-- Find Customer terminal.
Term : Term_Access

:= Find_In_Local_Table (Payee);
begin

16 GLADE User’s Guide

Withdraw (Payer, Amount);
Deposit (Payee, Amount);
if Term /= null then

-- Notify on Payee terminal.
Notify (Term, Payer, Amount);

end if;
end Transfer;

-- [...] Other services
end RACWBank;

2.5.3 Transmitting Dynamic Structure

with Ada.Streams; use Ada.Streams;
package StringArrayStream is

pragma Remote_Types;

type List is private;
procedure Append (L : access List; O : in String);
function Delete (L : access List) return String;

private
type String_Access is access String;

type Node;
type List is access Node;

type Node is record
Content : String_Access;
Next : List;

end record;

procedure Read
(S : access Root_Stream_Type’Class;
L : out List);

procedure Write
(S : access Root_Stream_Type’Class;
L : in List);

for List’Read use Read;
for List’Write use Write;

end StringArrayStream;

Non-remote access types cannot be declared in the public part of a remote types unit.
However, it is possible to define private non-remote access types as long as the user provides
its marshaling procedures, that is to say the mechanism needed to place a value of the type
into a communication stream. The code below describes how to transmit a linked structure.

Chapter 2: The Distributed Systems Annex 17

The package declaration provides a type definition of single-linked lists of unbounded
strings. An implementation of the marshaling operations could be the following:

package body StringArrayStream is
procedure Read

(S : access Root_Stream_Type’Class;
L : out List) is

begin
if Boolean’Input (S) then

L := new Node;
L.Content := new String’(String’Input (S));
List’Read (S, L.Next);

else
L := null;

end if;
end Read;

procedure Write
(S : access Root_Stream_Type’Class;
L : in List) is

begin
if L = null then

Boolean’Output (S, False);
else

Boolean’Output (S, True);
String’Output (S, L.Content.all);
List’Write (S, L.Next);

end if;
end Write;

-- [...] Other services
end StringArrayStream;

2.5.4 Summary on Remote Types Units

Remote types units:

• Support the definition of distributed objects

• Allow dynamically bound remote calls (via remote access types)

• Allow non-remote access type (with marshaling subprograms)

• Cannot have a specification that depends on normal units

2.6 Pragma Shared Passive

2.6.1 Overview of Pragma Shared Passive

The entities declared in such a categorized library unit are intended to be mapped on
a virtual shared address space (file, memory, database). When two partitions use such a

18 GLADE User’s Guide

library unit, they can communicate by reading or writing the same variable in the shared
unit. This supports the conventional shared variables paradigm. Entryless protected objects
can be declared in these units, to provide an atomic access to shared data, thus implementing
a simple transaction mechanism. When the address space is a file or a database, the user
can take advantage of the persistency features provided by these storage nodes.

2.6.2 Shared and Protected Objects

In the code below, we define two kinds of shared objects. External Synchronization
requires that the different partitions updating this data synchronize to avoid conflicting
operations on shared objects. Internal Synchronization provides a way to get an atomic
operation on shared objects. Note that only entry-less subprograms are allowed in a shared
passive unit.

package SharedObjects is
pragma Shared_Passive;

Max : Positive := 10;
type Index_Type is range 1 .. Max;
type Rate_Type is new Float;

type Rates_Type is array (Index_Type) of Rate_Type;

External_Synchronization : Rates_Type;

protected Internal_Synchronization is
procedure Set

(Index : in Index_Type;
Rate : in Rate_Type);

procedure Get
(Index : in Index_Type;
Rate : out Rate_Type);

private
Rates : Rates_Type;

end Internal_Synchronization;
end SharedObjects;

2.6.3 Summary on Pragma Shared Passive

• Allow direct access to data from different partitions

• Provide support for shared (distributed) memory

• Support memory protection by means of entryless protected objects

• Prevent specification from depending on normal units

2.7 More About Categorization Pragmas

Chapter 2: The Distributed Systems Annex 19

2.7.1 Variables and Non-Remote Access Types

In RT or RCI package declarations, variable declarations are forbidden, and non-remote
access types are allowed as long as their marshaling subprograms are explicitly provided
(see 〈undefined〉 [Transmitting Dynamic Structure], page 〈undefined〉)..

2.7.2 RPC Failures

Calls are executed at most once: they are made exactly one time or they fail with
an exception. When a communication error occurs, System.RPC.Communication Error is
raised.

2.7.3 Exceptions

Any exception raised in a remote method or subprogram call is propagated back to the
caller. Exceptions semantics are preserved in the regular Ada way.

package Internal is
Exc : exception;

end Internal;

package RemPkg2 is
pragma Remote_Call_Interface;

procedure Subprogram;
end RemPkg2;

package RemPkg1 is
pragma Remote_Call_Interface;

procedure Subprogram;
end RemPkg1;

Let us say that RemPkg2, Internal and RemExcMain packages are on the same partition
Partition 1 and that RemPkg1 is on partition Partition 2.

with RemPkg1, Ada.Exceptions; use Ada.Exceptions;
package body RemPkg2 is

procedure Subprogram is
begin

RemPkg1.Subprogram;
exception when E : others =>

Raise_Exception (Exception_Identity (E), Exception_Message (E));
end Subprogram;

end RemPkg2;

20 GLADE User’s Guide

with Internal, Ada.Exceptions; use Ada.Exceptions;
package body RemPkg1 is

procedure Subprogram is
begin

Raise_Exception (Internal.Exc’Identity, "Message");
end Subprogram;

end RemPkg1;

with Ada.Text_IO, Ada.Exceptions; use Ada.Text_IO, Ada.Exceptions;
with RemPkg2, Internal;
procedure RemExcMain is
begin

RemPkg2.Subprogram;
exception when E : Internal.Exc =>

Put_Line (Exception_Message (E)); -- Output "Message"
end RemExcMain;

When RemPkg1.Subprogram on Partition 1 raises Internal.Exc, this exception is prop-
agated back to Partition 2. As Internal.Exc is not defined on Partition 2, it is not possible
to catch this exception without an exception handler when others. When this exception
is reraised in RemPkg1.Subprogram, it is propagated to Partition 1. But this time, Inter-
nal.Exc is visible and can be handled as we would in a single-partition Ada program. Of
course, the exception message is also preserved.

2.7.4 Pragma Asynchronous

By default, a remote call is blocking: the caller waits until the remote call is complete
and the output stream is received. By contrast. a remote subprogram labeled with pragma
Asynchronous allows statically and dynamically bound remote calls to it to be executed
asynchronously. A call to an asynchronous procedure doesn’t wait for the completion of
the remote call, and lets the caller continue its execution. The remote procedure must have
only in parameters, and any exception raised during the execution of the remote procedure
is lost.

When pragma Asynchronous applies to a regular subprogram with in parameters, any
call to this subprogram will be executed asynchronously. The following declaration of
AsynchronousRCI.Asynchronous gives an example.

package AsynchronousRCI is
pragma Remote_Call_Interface;

procedure Asynchronous (X : Integer);
pragma Asynchronous (Asynchronous);

procedure Synchronous (X : Integer);

type AsynchronousRAS is access procedure (X : Integer);

Chapter 2: The Distributed Systems Annex 21

pragma Asynchronous (AsynchronousRAS);
end AsynchronousRCI;

package AsynchronousRT is
pragma Remote_Types;

type Object is tagged limited private;

type AsynchronousRACW is access all Object’Class;
pragma Asynchronous (AsynchronousRACW);

procedure Asynchronous (X : Object);
procedure Synchronous (X : in out Object);
function Create return AsynchronousRACW;

private
type Object is tagged limited null record;

end AsynchronousRT;

A pragma Asynchronous applies to a Remote Access to Subprogram (RAS). An asyn-
chronous RAS can be both asynchronous and synchronous depending on the designated
subprogram. For instance, in the code below, remote call (1) is asynchronous but remote
call (2) is synchronous.

A pragma Asynchronous applies to a RACW as well. In this case, the invocation of any
method with in parameters is always performed asynchronously. Remote method invocation
(3) is asynchronous but remote method invocation (4) is synchronous.

with AsynchronousRCI, AsynchronousRT;
use AsynchronousRCI, AsynchronousRT;
procedure AsynchronousMain is

RAS : AsynchronousRAS;
RACW : AsynchronousRACW := Create;

begin
-- Asynchronous Dynamically Bound Remote Call (1)
RAS := AsynchronousRCI.Asynchronous’Access;
RAS (0); -- Abbrev for RAS.all (0)
-- Synchronous Dynamically Bound Remote Call (2)
RAS := AsynchronousRCI.Synchronous’Access;
RAS (0);
-- Asynchronous Dynamically Bound Remote Call (3)
Asynchronous (RACW.all);
-- Synchronous Dynamically Bound Remote Call (4)
Synchronous (RACW.all);

end AsynchronousMain;

22 GLADE User’s Guide

This feature supports the conventional message passing paradigm. The user must be
aware that this paradigm, and asynchronous remote calls in particular, has several draw-
backs:

• It violates original (remote) procedure semantics

• It allows the equivalent of a remote GOTO mechanism

• It prevents easy development and debugging in a non-distributed context

• It can introduce potential race conditions

To illustrate the latter, let us take the following example:

package Node2 is
pragma Remote_Call_Interface;

procedure Send (X : Integer);
pragma Asynchronous (Send);

end Node2;

package body Node2 is
V : Integer := 0;
procedure Send (X : Integer) is
begin

V := X;
end Send;

end Node2;

package Node1 is
pragma Remote_Call_Interface;

procedure Send (X : Integer);
pragma Asynchronous (Send);

end Node1;

with Node2;
package body Node1 is

procedure Send (X : Integer) is
begin

Node2.Send (X);
end Send;

end Node1;

with Node1, Node2;
procedure NonDeterministic is
begin

Chapter 2: The Distributed Systems Annex 23

Node1.Send (1);
Node2.Send (2);

end NonDeterministic;

Let us say that Main is configured on Partition 0, Node1 on Partition 1 and Node2 on
Partition 2. If Node1.Send and Node2.Send procedures were synchronous or if no latency
was introduced during network communication, we would have the following RPC order:
Main remotely calls Node1.Send which remotely calls Node2.Send which sets V to 1. Then,
Main remotely calls Node2.Send and sets V to 2.

Now, let us assume that both Send procedures are asynchronous and that the connection
between Partition 1 and Partition 2 is very slow. The following scenario can very well
occur. Main remotely calls Node1.Send and is unblocked. Immediately after this call, Main
remotely calls Node2.Send and sets V to 2. Once this is done, the remote call to Node1.Send
completes on Partition 1 and it remotely calls Node2.Send which sets V to 1.

2.7.5 Pragma All Calls Remote

A pragma All Calls Remote in a RCI unit forces remote procedure calls to be routed
through the communication subsystem even for a local call. This eases the debugging of an
application in a non-distributed situation that is very close to the distributed one, because
the communication subsystem (including marshaling and unmarshaling procedures) can be
exercised on a single node.

In some circumstances, a non-distributed application can behave differently than an ap-
plication distributed on only one partition. This can happen when both All Calls Remote
and Asynchronous features are used at the same time (see 〈undefined〉 [Pragma Asyn-
chronous], page 〈undefined〉 for an example). Another circumstance occur when the mar-
shaling operations raise an exception. In the following example, when unit ACRRCI is a
All Calls Remote package, the program raises Program Error. When unit ACRRCI is no
longer a All Calls Remote package, then the program completes silently.

with Ada.Streams; use Ada.Streams;
package ACRRT is

pragma Remote_Types;
type T is private;

private
type T is new Integer;
procedure Read

(S : access Root_Stream_Type’Class;
X : out T);

procedure Write
(S : access Root_Stream_Type’Class;
X : in T);

for T’Read use Read;
for T’Write use Write;

end ACRRT;

24 GLADE User’s Guide

package body ACRRT is
procedure Read

(S : access Root_Stream_Type’Class;
X : out T) is

begin
raise Program_Error;

end Read;

procedure Write
(S : access Root_Stream_Type’Class;
X : in T) is

begin
raise Program_Error;

end Write;
end ACRRT;

with ACRRT; use ACRRT;
package ACRRCI is

pragma Remote_Call_Interface;
pragma All_Calls_Remote;

procedure P (X : T);
end ACRRCI;

package body ACRRCI is
procedure P (X : T) is
begin

null;
end P;

end ACRRCI;

with ACRRCI, ACRRT;
procedure ACRMain is

X : ACRRT.T;
begin

ACRRCI.P (X);
end ACRMain;

2.7.6 Generic Categorized Units

generic
package GenericRCI is

pragma Remote_Call_Interface;

Chapter 2: The Distributed Systems Annex 25

procedure P;
end GenericRCI;

with GenericRCI;
package RCIInstantiation is new GenericRCI;
pragma Remote_Call_Interface (RCIInstantiation);

with GenericRCI;
package NormalInstantiation is new GenericRCI;

Any of these categorized units can be generic. Instances do not automatically inherit
the categorization of their generic units, and they can be categorized explicitly, If they are
not, instances are normal compilation units. Like any other categorized unit, a categorized
instance must be at the library level, and regular restrictions of categorized units apply on
instantiation (in particular on generic formal parameters).

2.7.7 Categorization Unit Dependencies

Each categorization pragma has very specific visibility rules. As a general rule, RCI > RT
> SP > Pure, where the comparison indicates allowed semantic dependencies. This means
that a Remote Types package can make visible in its specification only Remote Types,
Shared Passive and Pure units.

2.8 Partition Communication Subsystem

2.8.1 Marshaling and Unmarshaling Operations

The Partition Communication Subsystem (PCS) is the runtime library for distributed
features. It marshals and unmarshals client and server requests into a data stream suitable
for network transmission.

type Params_Stream_Type
(Initial_Size : Ada.Streams.Stream_Element_Count) is new

Ada.Streams.Root_Stream_Type with private;

This type is a container for the data to be transmitted between partitions. Its root is
Root Stream Type, which defines the basic stream type and two abstract operations, Write
and Read. Its purpose is to insert / remove objects of type Stream Element Array which
are array of bytes representing a particular data.

Streams are read and written using four attributes:

• Write: write an element into a stream, valid only for constrained types

• Read: read a constrained element from a stream

• Output: same as Write, but write bounds and discriminants as well if needed

26 GLADE User’s Guide

• Input: same as Read, but read bounds and discriminants from the stream (the Input
attribute denotes a function)

An Ada compiler provides default ’Read and ’Write operations. But it is up to the
implementation of the PCS to provide default ’Read and ’Write to ensure proper operation
between heterogeneous architectures (see 〈undefined〉 [Heterogeneous System], page 〈unde-
fined〉).

The user can overload these operations, except for predefined types. Overloading with
a textual version provides the user with a way to debug its application (even outside of the
Distributed Systems Annex).

with Ada.Streams; use Ada.Streams;
package New_Integers is

pragma Pure;

type New_Integer is new Integer;

procedure Read
(S : access Root_Stream_Type’Class;
V : out New_Integer);

procedure Write
(S : access Root_Stream_Type’Class;
V : in New_Integer);

for New_Integer’Read use Read;
for New_Integer’Write use Write;

end New_Integers;

package body New_Integers is
procedure Read

(S : access Root_Stream_Type’Class;
V : out New_Integer)

is
B : String := String’Input (S);

begin
V := New_Integer’Value (B);

end Read;

procedure Write
(S : access Root_Stream_Type’Class;
V : in New_Integer)

is
begin

String’Output (S, New_Integer’Image (V));
end Write;

end New_Integers;

Chapter 2: The Distributed Systems Annex 27

The language forces the user to provide read and write operations for non-remote ac-
cess types. Transmitting an access value by dumping its content into a stream makes no
sense when it is going to be transmitted to another partition (different memory spaces).
To transmit non-remote access types see 〈undefined〉 [Transmitting Dynamic Structure],
page 〈undefined〉.

2.8.2 Incorrect Remote Dispatching

When a remote subprogram takes a class wide argument, there is a risk of using an object
of a derived type that will not be clean enough to be transmitted. For example, given a type
called Root Type, if a remote procedure takes a Root Type’Class as an argument, the user
can call it with an instance of Derived Type that is Root Type enriched with a field of a
task type. This will lead to a non-communicable type to be transmitted between partitions.

To prevent this, paragraph E.4(18) of the reference manual explains that any actual type
used as parameter for a remote call whose formal type is a class wide type must be declared
in the visible part of a Pure or Remote Types package. This property also holds for remote
functions returning class wide types. To summarize, the actual type used should have been
eligible for being declared where the root type has been declared. If a ‘bad’ object is given
to a remote subprogram, Program Error will be raised at the point of the call.

2.8.3 Partition Ids

U’Partition ID identifies the partition where the unit U has been elaborated. For this
purpose, the PCS provides an integer type Partition ID to uniquely designate a partition.
Note that a Partition ID is represented as a universal integer, and has no meaning outside
of the PCS. The RM requires that two partitions of a distributed program have different
Partition ID’s at a given time. A Partition ID may or may not be assigned statically (at
compile or link time). A Partition ID may or may not be related to the physical location
of the partition.

Partition ID’s can be used to check whether a RCI package is configured locally.

with RCI;
with Ada.Text_IO;
procedure Check_PID is
begin

if RCI’Partition_ID = Check_PID’Partition_ID then
Ada.Text_IO.Put_Line ("package RCI is configured locally");

else
Ada.Text_IO.Put_Line ("package RCI is configured remotely");

end if;
end Check_PID;

2.8.4 Concurrent Remote Calls

It is not defined by the PCS specification whether one or more threads of control should
be available to process incoming messages and to wait for their completion. But the PCS

28 GLADE User’s Guide

implementation is required to be reentrant, thereby allowing concurrent calls on it to service
concurrent remote subprogram calls into the server partition. This means that at the im-
plementation level the PCS manages a pool of helper tasks. This (apart from performance)
is invisible to the user.

2.8.5 Consistency and Elaboration

A library unit is consistent if the same version of its declaration is used in all units that
reference it. This requirement applies as well to a unit that is referenced in several partitions
of a distributed program. If a shared passive or RCI library unit U is included in some
partition P, It is a bounded error to elaborate another partition P1 of a distributed program
that that depends on a different version of U. As a result of this error, Program Error can
be raised in one or both partitions during elaboration.

U’Version yields a string that identifies the version of the unit declaration and any unit
declaration on which it depends. U’Version Body yields a string that identifies the version
of the unit body. These attributes are used by the PCS to verify the consistency of an
application.

After elaborating the library units, but prior to invoking the main subprogram, the PCS
checks the RCI unit versions, and then accept any incoming RPC. To guarantee that it is
safe to call receiving stubs, any incoming RPC is kept pending until the partition completes
its elaboration.

2.8.6 Abortion and Termination

If a construct containing a remote call is aborted, the remote subprogram call is cancelled.
Whether the execution of the remote subprogram is immediately aborted as a result of the
cancellation is implementation defined.

An active partition terminates when its environment task terminates. In other terms, a
partition cannot terminate before the Ada program itself terminates. The standard termi-
nation mechanism applies, but can be extended with extra rules (see 〈undefined〉 [Partition
Attribute Termination], page 〈undefined〉 for examples).

2.9 Most Features in One Example

The example shown on the following figure highlights most of the features of DSA. The
system is based on a set of factories and workers and a storage. Each entity is a partition
itself. A factory hires a worker from a pool of workers (hire - 1) and assigns a job (query -
2) to him. The worker performs the job and saves the result (reply - 3) in a storage common
to all the factories. The worker notifies the factory of the end of his job (notify - 4).

full-ex.fig.pdf

When a worker has completed his job, the result must be saved in a common storage. To
do this, we define a protected area in SP package Storage (see following code). An entry-less
protected object ensures atomic access to this area.

Chapter 2: The Distributed Systems Annex 29

package Storage is
pragma Shared_Passive;

protected Queue is
procedure Insert (Q, R : Integer);
procedure Remove

(Q : in Integer;
R : out Integer);

private
-- Other declarations

end Queue;
end Storage;

Common is a Remote Types package that defines most of the remote services of the
above system (see following code). First, we define a way for the workers to signal the
completion of his job. This callback mechanism is implemented using RAS Notify.

with Storage; use Storage;
package Common is

pragma Remote_Types;

type Notify is
access procedure (Q : Integer);

pragma Asynchronous (Notify);

type Worker is
abstract tagged limited private;

procedure Assign
(W : access Worker;
Q : in Integer;
N : in Notify) is abstract;

type Any_Worker is
access all Worker’Class;

pragma Asynchronous (Any_Worker);

private
type Worker is abstract tagged limited null record;

end Common;

We define an abstract tagged type Worker which is intended to be the root type of the
whole distributed objects hierarchy. Assign allows a factory to specify a job to a worker
and a way for the worker to signal its employer the completion of this job. Any Worker is a
remote access to class wide type (RACW). In other words, it is a reference to a distributed
object of any derived type from Worker class. Note that the two remote access types
(Any Worker and Notify) are declared as asynchronous. Therefore, any override of Assign

30 GLADE User’s Guide

will be executed asynchronously. To be asynchronous, an object of type Notify has to be a
reference to an asynchronous procedure.

NewWorker is derived from type Worker and Assign is overridden.

with Common, Storage; use Common, Storage;
package NewWorkers is

pragma Remote_Types;

type NewWorker is new Worker with private;

procedure Assign
(W : access NewWorker;
Q : Integer;
N : Notify);

private
type NewWorker is new Worker with record

NewField : Field_Type; -- [...] Other fields
end record;

end NewWorkers;

The following code shows how to derive a second generation of workers NewNewWorker
from the first generation NewWorker. As mentioned above, this RT package can be du-
plicated on several partitions to produce several types of workers and also several remote
workers.

with Common, Storage, NewWorkers; use Common, Storage, NewWorkers;
package NewNewWorkers is

pragma Remote_Types;

type NewNewWorker is new NewWorker with private;

procedure Assign
(W : access NewNewWorker;
Q : Integer;
N : Notify);

private
type NewNewWorker is new NewWorker with record

NewField : Field_Type; -- [...] Other fields
end record;

end NewNewWorkers;

In the following code, we define a unique place where workers wait for jobs. Work-
erCity is a Remote Call Interface package with services to hire and free workers. Unlike
Remote Types packages, Remote Call Interface packages cannot be duplicated, and are as-
signed to one specific partition.

with Common; use Common;

Chapter 2: The Distributed Systems Annex 31

package WorkerCity is
pragma Remote_Call_Interface;

procedure Insert (W : in Any_Worker);
procedure Remove (W : out Any_Worker);

end WorkerCity;

In order to use even more DSA features, Factory is defined as a generic RCI package (see
sample above). Any instantiation defines a new factory (see sample above). To be RCI,
this instantiation has to be categorized once again.

with Storage; use Storage;
generic
package Factory is

pragma Remote_Call_Interface;

procedure Notify (Q : Integer);
pragma Asynchronous (Notify);

end Factory;

with Factory;
package NewFactory is new Factory;
pragma Remote_Call_Interface (NewFactory);

32 GLADE User’s Guide

Chapter 3: Getting Started With GLADE 33

3 Getting Started With GLADE

This chapter describes the usual ways of using GLADE to compile Ada distributed
programs.

3.1 Introduction to GLADE

An Ada 95 distributed application comprises a number of partitions which can be ex-
ecuted concurrently on the same machine or, and this is the interesting part, can be dis-
tributed on a network of machines. The way in which partitions communicate is described
in Annex E of the Ada 95 reference manual.

A partition is a set of compilation units that are linked together to produce an executable
binary. A distributed program comprises two or more communicating partitions.

The Distributed Systems Annex (DSA) does not describe how a distributed application
should be configured. It is up to the user to define what are the partitions in his program
and on which machines they should be executed.

The tool gnatdist and its configuration language allows the user to partition his program
and to specify the machines on which the individual partitions are to execute.

gnatdist reads a configuration file (whose syntax is described in section 〈undefined〉 [The
Configuration Language], page 〈undefined〉) and builds several executables, one for each
partition. It also takes care of launching the different partitions (default) with parameters
that can be specific to each partition.

3.2 How to Configure a Distributed Application

• Write a non-distributed Ada application, to get familiar with the GLADE environment.
Use the categorization pragmas to specify the packages that can be called remotely.

• When this non-distributed application is working, write a configuration file that maps
the user categorized packages onto specific partitions. This concerns particularly remote
call interface and remote types packages. Specify the main procedure of the distributed
application (see 〈undefined〉 [Partition Attribute Main], page 〈undefined〉).

• Type ‘gnatdist <configuration-file>’.

• Start the distributed application by invoking the start-up shell script or default Ada
program (depending on the Starter option, see 〈undefined〉 [Pragma Starter], page 〈un-
defined〉).

3.3 Gnatdist Command Line Options

gnatdist [switches] configuration-file [list-of-partitions]

The switches of gnatdist are, for the time being, exactly the same as those of gnatmake,
with the addition of --PCS, which allows the user to override the default selection of distri-
bution runtime library (PCS). By default gnatdist outputs a configuration report and the

34 GLADE User’s Guide

actions performed. The switch -n allows gnatdist to skip the first stage of recompilation
of the non-distributed application.

The names of all configuration files must have the suffix .cfg. There may be several
configuration files for the same distributed application, as the user may want to use different
distributed configurations depending on load and other characteristics of the computing
environment.

If a list of partitions is provided on the command line of the gnatdist command, only
these partitions will be built. In the following configuration example, the user can type :

gnatdist <configuration> <partition 2> <partition 3>

3.4 Gnatdist Behind the Scenes

Here is what goes on behind the scenes in gnatdist when building a distributed appli-
cation:

• Each compilation unit in the program is compiled into an object module (as for non
distributed applications). This is achieved by calling gnatmake on the sources of the
various partitions.

• Stubs and skeletons are compiled into object modules (these are pieces of code that
allow a partition running on machine A to communicate with a partition running on
machine B). Several timestamp checks are performed to avoid useless code recompila-
tion and stub generation.

• gnatdist performs a number of consistency checks. For instance it checks that all
packages marked as remote call interface (RCI) and shared passive (SP) are mapped
onto partitions. It also checks that a RCI or SP package is mapped onto only one
partition.

• Finally, the executables for each partition in the program are created. The code to
launch partitions is embedded in the main partition except if another option has been
specified (see 〈undefined〉 [Pragma Starter], page 〈undefined〉). In this case, a shell
script (or nothing) is generated to start the partitions on the appropriate machines.
This is specially useful when one wants to write client / server applications where the
number of instances of the partition is unknown.

3.5 The Configuration Language

The configuration language is Ada-like. As the capabilities of GLADE will evolve, so
will this configuration language. Most of the attributes and pragmas can be overloaded at
run-time by command line arguments or environment variables.

3.5.1 Language Keywords

All the Ada keywords are reserved keywords of the GLADE configuration language.
gnatdist generates full Ada code in order to build the different executables. To avoid
naming conflicts between Ada and GLADE configuration language, all the Ada keywords
have been reserved even if they are not used in the configuration language.

Chapter 3: Getting Started With GLADE 35

There are three new keywords:

• configuration to encapsulate a configuration

• Partition that is a predefined type to declare partitions

• Channel that is a predefined type to declare channels between partitions.

3.5.2 Pragmas and Representation Clauses

It is possible to modify the default behavior of the configuration via a pragma definition.

PRAGMA ::=
pragma PRAGMA_NAME [(PRAGMA_ARGUMENTS)];

It is also possible to modify the default behavior of all the partitions (or channels) via
an attribute definition clause applied to the predefined type Partition (or Channel).

REPRESENTATION_CLAUSE ::=
for Partition’ATTRIBUTE_NAME use ATTRIBUTE_ARGUMENTS;

| for Channel’ATTRIBUTE_NAME use ATTRIBUTE_ARGUMENTS;

It is also possible to modify the default behavior of a given partition (or channel) via an
attribute definition clause applied to the partition (or channel) itself.

REPRESENTATION_CLAUSE ::=
for PARTITION_IDENTIFIER’ATTRIBUTE_NAME use ATTRIBUTE_ARGUMENTS;

When an attribute definition clause is applied to a given object of a predefined type, this
overrides any attribute definition of the predefined type. In the next sections, attributes
apply to a given object rather than to the predefined type.

3.5.3 Configuration Declaration

The distribution of one or several Ada programs is described by a single configuration
unit. This configuration unit has a specification part and an optional body part. A con-
figuration unit is declared as an Ada procedure would be. The keyword configuration is
reserved for this purpose.

CONFIGURATION_UNIT ::=
configuration IDENTIFIER is

DECLARATIVE_PART
[begin

SEQUENCE_OF_STATEMENTS]
end [IDENTIFIER];

36 GLADE User’s Guide

3.5.4 Partition Declaration

In the declarative part, the user declares his partitions and can change their default
behavior. gnatdist provides a predefined type Partition. The user can declare a list of
partitions and can also initialize these partitions with an initial list of Ada units.

DECLARATIVE_PART ::= {DECLARATIVE_ITEM}

DECLARATIVE_ITEM ::=
PARTITION_DECLARATION

| CHANNEL_DECLARATION
| REPRESENTATION_CLAUSE
| SUBPROGRAM_DECLARATION
| PRAGMA

SUBPROGRAM_DECLARATION ::=
MAIN_PROCEDURE_DECLARATION

| PROCEDURE_DECLARATION
| FUNCTION_DECLARATION

PARTITION_DECLARATION ::=
DEFINING_IDENTIFIER_LIST : Partition

[:= ENUMERATION_OF_ADA_UNITS];

DEFINING_IDENTIFIER_LIST ::=
DEFINING_IDENTIFIER {, DEFINING_IDENTIFIER}

STATEMENT ::=
IDENTIFIER := ENUMERATION_OF_ADA_UNITS;

SEQUENCE_OF_STATEMENTS ::=
STATEMENT {STATEMENT}

Once declared, a partition is an empty list of Ada units. The operator ":=" adds the
Ada units list on the right side to the current list of Ada units that are already mapped to
the partition. This is a non-destructive operation. Whether a unit is a relevant Ada unit
or not is checked later on by the back-end of gnatdist. These assignments can occur in
the declarative part as well as in the body part.

ENUMERATION_OF_ADA_UNITS ::= ({ADA_UNIT {, ADA_UNIT}});

3.5.5 Location Declaration

There are several kinds of location in the GLADE configuration language. We shall
present them in the next subsections, but here is a short overview of these locations:

• Boot Location defines the network locations to use to communicate with the the boot
server during the boot phase

Chapter 3: Getting Started With GLADE 37

• Self Location defines the network locations to use by others to communicate with the
current partition

• Data Location defines the data storage location used by the current partition to map
its shared passive units

A location is composed of a support name and a specific data for this support. For
instance, a network location is composed of a protocol name like tcp and a protocol data
like <machine>:<port>. A storage location is composed of a storage support name like dfs
(for Distributed File System) and a storage support data like a directory /dfs/glade.

LOCATION ::= ([Support_Name =>] STRING_LITERAL,
[Support_Data =>] STRING_LITERAL)

LOCATION_LIST ::= (LOCATION [,LOCATION)])

Note that a location may have an undefined or incomplete support data. In this case,
the support is free to compute a support data. For instance, ("tcp", "") specifies that the
protocol is used but that the protocol data <machine>:<port> is to be determined by the
protocol itself.

A location or a list of locations can be can be concatenated into a single string to be used
as a command line option or an environment variable (see 〈undefined〉 [Partition Command
Line Options], page 〈undefined〉).

If a partition wants to communicate with another partition once the location list of the
latter is known, the caller will use the first location of the callee whose protocol is locally
available. For instance, if a callee exports three locations ("N1", "D1"), ("N2", "D2") and
("N3", "D3"), a caller with protocols N2 and N3 locally available will try to communicate
with the callee using the protocol of name N2 and of specific data D2.

3.5.6 Partition Attribute Main

Basically, the distributed system annex (DSA) helps the user in building a distributed
application from a non-distributed application (Of course, this is not the only possible
model offered by DSA). The user can design, implement and test his application in a non-
distributed environment, and then should be able to switch from the non-distributed case
to a distributed case. As mentioned before, this two-phase design approach has several
advantages.

In a non-distributed case, the user executes only one main executable possibly with
a name corresponding to the main unit name of his application. With gnatdist, in a
distributed case, a main executable with a name corresponding to the main unit name is
responsible for starting the entire distributed application. Therefore, the user can start his
application the same way he used to do in the non-distributed case.

For this reason, the configuration language provides a way to declare the main procedure
of the non-distributed application.

MAIN_PROCEDURE_DECLARATION ::=
procedure MAIN_PROCEDURE_IDENTIFIER is in PARTITION_IDENTIFIER;

38 GLADE User’s Guide

In this case, the partition in which the main procedure has been mapped is called the
main partition. It includes in its code a call to this main procedure. The main partition
has an additional specific role, because the boot server is located on it (see 〈undefined〉
[GLADE Internals], page 〈undefined〉).

The main procedures for the other partitions have a null body. However, the user can
also modify this behavior by providing an alternate main procedure. To do this, an alternate
main subprogram has to be declared and assigned to the partition Main attribute.

PROCEDURE_DECLARATION ::=
procedure PROCEDURE_IDENTIFIER;

REPRESENTATION_CLAUSE :=
for PARTITION_IDENTIFIER’Main use PROCEDURE_IDENTIFIER;

3.5.7 Pragma Starter

As a default, the main executable is a full Ada starter procedure. That means that it
launches all the other partitions from an Ada program. The pragma Starter allows the user
to ask for one starter or another. When the partition host is not statically defined (see
〈undefined〉 [Partition Attribute Host], page 〈undefined〉), the starter subprogram will ask
for it interactively when it is executed.

CONVENTION_LITERAL ::= Ada |
Shell |
None

PRAGMA ::=
pragma Starter ([Convention =>] CONVENTION_LITERAL);

• The default method consists in launching partitions from the main partition Ada sub-
program using a remote shell (see below).

• The user may ask for a Shell script that starts the different partitions one at a time on
the appropriate remote machines, using a remote shell. As the Ada starter, the Shell
script starter ask for partition hosts interactively when a partition host is not already
defined. Having a textual shell script allows the user to edit it and to modify it easily.

• The user may ask for a None starter. In this case, it is up to the user to launch the
different partitions. The user may have to provide on the command line the boot server
location (see 〈undefined〉 [The GARLIC PCS], page 〈undefined〉).

3.5.8 Pragma Remote Shell

When pragma Starter is Ada or Shell, the main partition launches the other partitions.
The remote shell used as a default is determined during GLADE configuration and installa-
tion. It is either rsh, remsh or the argument passed to –with-rshcmd=[ARG]. The pragma
Remote Shell allows the user to override the default.

Chapter 3: Getting Started With GLADE 39

PRAGMA ::=
pragma Remote_Shell

([Command =>] STRING_LITERAL,
[Options =>] STRING_LITERAL);

The Command parameter indicates the name of the remote shell command name and the
Options parameter corresponds to the additional flags to pass to the remote shell command.

3.5.9 Pragma Boot Location

When a partition starts executing, one of the first steps consists in a connection to
the boot partition where the boot server is located (see 〈undefined〉 [The GARLIC PCS],
page 〈undefined〉). This pragma provides one or several locations in order to get a connection
with the boot partition.

PRAGMA ::=
PRAGMA_WITH_NAME_AND_DATA

| PRAGMA_WITH_LOCATION
| PRAGMA_WITH_LOCATION_LIST

PRAGMA_WITH_NAME_AND_DATA ::=
pragma Boot_Location

([Protocol_Name =>] STRING_LITERAL,
[Protocol_Data =>] STRING_LITERAL);

PRAGMA_WITH_LOCATION ::=
pragma Boot_Location ([Location =>] LOCATION);

PRAGMA_WITH_LOCATION_LIST ::=
pragma Boot_Location ([Locations =>] LOCATION_LIST);

This boot server location can be concatenated into a single string to be used as a com-
mand line option or an environment variable (see 〈undefined〉 [Partition Command Line
Options], page 〈undefined〉).

Note: pragma Boot Server is now obsolete. It is recommended to use pragma
Boot Location. This wording is more consistent with the rest of the configuration lan-
guage (see Self Location 〈undefined〉 [Partition Option self location], page 〈undefined〉 and
Data Location 〈undefined〉 [Partition Option data location], page 〈undefined〉).

3.5.10 Partition Attribute Self Location

Except for the boot partition on which the boot server is located, a partition is reachable
through a dynamically computed location (for instance, the partition looks for a free port
when the protocol is tcp). The user may want such a partition to be reachable from a given
location, especially if the user wants to make this partition a boot mirror. To do so, he can
force the partition location with self location feature.

40 GLADE User’s Guide

REPRESENTATION_CLAUSE ::=
for PARTITION_IDENTIFIER’Self_Location use LOCATION;

| for PARTITION_IDENTIFIER’Self_Location use LOCATION_LIST;

If the attribute definition clause applies to the predefined type Partition, the locations
have to be incomplete. Otherwise, all the partitions would be reachable through the same
locations, which is definitively not recommended.

When an attribute self location definition clause applies to a given partition, the pro-
tocol units needed for this partition are linked in the executable. By default, when the
self location attribute is not redefined, the default protocol used by the partition and loaded
in its executable is the tcp protocol.

3.5.11 Partition Attribute Passive

By default, a partition is an active partition. This attribute allows to define a passive
partition. In this case, gnatdist checks that only shared passive units are mapped on
the partition. As this partition cannot register itself, its location is hard-coded in all the
partitions that depend on its shared passive units.

REPRESENTATION_CLAUSE ::=
for PARTITION_IDENTIFIER’Passive use BOOLEAN_LITERAL;

3.5.12 Partition Attribute Data Location

Shared passive units can be mapped on passive or active partitions. In both cases, it is
possible to choose the data storage support and to configure it with the specific data of a
location.

REPRESENTATION_CLAUSE ::=
for PARTITION_IDENTIFIER’Data_Location use LOCATION;

| for PARTITION_IDENTIFIER’Data_Location use LOCATION_LIST;

When an attribute data location definition clause applies to a given partition, the data
storage support units needed for this partition are linked in the executable. By default,
when the data location attribute is not redefined, the default storage support used by the
partition and loaded in its executable is the dfs support. dfs, Distributed File System, is a
storage support available as soon as files can be shared between partitions.

It is not possible to map the different shared passive units of a given partition on different
data storage locations. GLADE requires all the shared passive units of a given partition
to be mapped on the same storage support. When the attribute data location applied to
a partition is a list of locations, all the storage support units needed for this partition are
linked in the executable. By default, only the first one is activated. The user can choose to
change the activated support by another one specified in the location list. This can be done
using the partition option data location (see 〈undefined〉 [Partition Option data location],
page 〈undefined〉).

Chapter 3: Getting Started With GLADE 41

As passive partitions cannot be activated, it is not possible to provide a location list as
a data location attribute. It is not possible to change dynamically its location either.

3.5.13 Partition Attribute Allow Light PCS

On some circumstances, GLADE can detect that a partition does not need the full PCS
functionalities. This occurs in particular when the partition does use any task, any RCI unit
or any RACW object. Therefore, the partition does not receive any message that is not a
reply to a previous request. In this case, the PCS does not drag in the tasking library and a
light PCS is linked in the partition executable. This specific configuration is automatically
determined by GNATDIST with the ALI file information.

This optimization can be inappropriate especially when the user wants to use the "Dis-
tributed Shared Memory" storage support which runs Li and Hudak’s algorithm. In this
case, messages are exchanged without being replies to previously sent requests and the nor-
mal PCS should be linked instead of the light one. Note also that GNATDIST cannot know
for sure that the DSM storage support assigned at configuration time is used at run-time.
The user can configure this optimization with the following attribute.

REPRESENTATION_CLAUSE ::=
for PARTITION_IDENTIFIER’Allow_Light_PCS use BOOLEAN_LITERAL;

3.5.14 Pragma Priority

It might be necessary for real-time applications to get control over the priority at which
a remote procedure call is executed. By default, the PCS sends the priority of the client to
the server which sets the priority of an anonymous task to this value. The pragma Priority
allows to decide which priority policy should apply in the distributed application.

PRIORITY_POLICY_LITERAL ::= Server_Declared
| Client_Propagated

PRAGMA ::=
pragma Priority ([Policy =>] PRIORITY_POLICY_LITERAL);

• The default policy Client Propagated consists in propagating the client priority to the
server.

• The policy Server Declared consists in executing the remote procedure call at a priority
specific to the partition. This priority can be set using the partition attribute Priority.

3.5.15 Partition Attribute Priority

This attribute allows to set the priority at which level a remote procedure call is executed
on a server when the priority policy is Server Declared. By default, the default priority of
the anonymous task is the default task priority.

REPRESENTATION_CLAUSE ::=

42 GLADE User’s Guide

for PARTITION_IDENTIFIER’Priority use INTEGER_LITERAL;

3.5.16 Partition Attribute Host

Logical nodes (or partitions) can be mapped onto physical nodes. The host-name can
be either a static or dynamic value. In case of a static value, the expression is a string
literal. In case of a dynamic value, the representation clause argument is a function that
accepts a string as parameter and that returns a string value. When the function is called,
the partition name is passed as parameter and the host-name is returned.

FUNCTION_DECLARATION ::=
function FUNCTION_IDENTIFIER

(PARAMETER_IDENTIFIER : [in] String)
return String;

REPRESENTATION_CLAUSE ::=
for PARTITION_IDENTIFIER’Host use STRING_LITERAL;

| for PARTITION_IDENTIFIER’Host use FUNCTION_IDENTIFIER;

The signature of the function must be the following : it takes a string parameter which
corresponds to a partition name. It returns a string parameter which corresponds to the
host-name. The function that returns the host-name can be an Ada function (default) or a
shell script. A pragma Import is used to import a function defined in Ada or in Shell (see
〈undefined〉 [Pragma Import], page 〈undefined〉).

This function is called on the main partition by the GLADE PCS to launch a given
partition on a given logical node. In case of load balancing, the function can return the
most appropriate among a set of hosts.

3.5.17 Pragma Import

Two kinds of subprograms are allowed in the GLADE configuration language. A main
procedure is used as a partition Main attribute and a function is used as a partition Host
attribute.

SUBPROGRAM_DECLARATION ::=
procedure MAIN_PROCEDURE_IDENTIFIER is in PARTITION_NAME;

| procedure PROCEDURE_IDENTIFIER;
| function FUNCTION_IDENTIFIER

(PARAMETER_IDENTIFIER : [in] String)
return String;

The function can be an Ada function (default) or a shell script. To import a shell script,
the pragma Import must be used:

PRAGMA ::=
pragma Import

Chapter 3: Getting Started With GLADE 43

([Entity =>] FUNCTION_IDENTIFIER,
[Convention =>] CONVENTION_LITERAL,
[External_Name =>] STRING_LITERAL);

pragma Import (Best_Node, Shell, "best-node");

In this case, the GLADE PCS invokes the shell script with the partition name as a
command line argument. The shell script is supposed to return the partition host-name
(see 〈undefined〉 [Partition Attribute Host], page 〈undefined〉).

3.5.18 Partition Attribute Directory

Directory allows the user to specify in which directory the partition executable is stored.
This can be useful in heterogeneous systems when the user wants to store executables for
the same target in a given directory. Specifying the directory is also useful if the partition
executable is not directly visible from the user environment. For instance, when a remote
command like rsh is invoked, the executable directory has to be present in the user path.
If the Directory attribute has been specified, the executable full name is used.

REPRESENTATION_CLAUSE ::=
for PARTITION_IDENTIFIER’Directory use STRING_LITERAL;

3.5.19 Partition Attribute Command Line

The user may want to pass arguments on the command line of a partition. However,
when a partition is launched automatically by the main partition, the partition command
line includes only GLADE arguments. To add arguments on the command line, the user
can take advantage of the following attribute.

REPRESENTATION_CLAUSE ::=
for PARTITION_IDENTIFIER’Command_Line use STRING_LITERAL;

3.5.20 Partition Attribute Termination

The Ada95 Reference Manual does not provide any specific rule to handle global termi-
nation of a distributed application (see 〈undefined〉 [Abortion and Termination], page 〈un-
defined〉).

In GLADE, by default, a set of partitions terminates when each partition can terminate
and when no message remains to be delivered. A distributed algorithm that checks for this
global condition is activated periodically by the main boot server.

TERMINATION_LITERAL ::= Global_Termination |
Local_Termination |
Deferred_Termination

REPRESENTATION_CLAUSE ::=

44 GLADE User’s Guide

for PARTITION_IDENTIFIER’Termination use TERMINATION_LITERAL;

• When a partition is configured with the global termination policy, it terminates as
soon as the main boot server sends a signal to do so. The main boot server checks
periodically whether the application can terminate. When all partitions are ready to
terminate, the main boot server sends to each partition a termination request. The
global termination policy is the default policy.

• The deferred termination policy is very similar to the global termination. The only
difference is that when a partition with a deferred termination policy receives a termi-
nation request, it just ignores it. This policy allows a partition to run forever without
preventing a set of partitions from terminating. This policy is not yet implemented.

• When a partition is configured with the local termination policy, it terminates as soon as
the classical Ada termination is detected by the partition. It means that this partition
does not wait for the termination request of the main boot server.

In any case, when the boot partition dies (and when no alternate boot partition can
elected, see 〈undefined〉 [The GARLIC PCS], page 〈undefined〉), all the partitions die, what-
ever their termination policy might be. Note first, that a partition cannot execute without
a boot partition. Second, when the user wants to kill his non-distributed application, he
kills the main program. Enforcing the mechanism described above ensures that killing the
main partition automatically kills all the partitions, that is to say the whole distributed
application.

3.5.21 Partition Attribute Reconnection

When no RCI package is configured on a partition, such a partition can be launched
several times without any problem. When one or more RCI packages are configured on a
partition, such a partition cannot be launched more than once. If this partition were to
be launched repeatedly, it would not be possible to decide which partition instance should
execute a remote procedure call.

When a partition crashes or is stopped, one may want to restart this partition and
possibly restore its state - with Shared Passive packages, for instance. In such a situation,
the partition is already known to other partitions and possibly marked as a dead partition.
Several policies can be selected:

RECONNECTION_LITERAL ::= Reject_On_Restart |
Fail_Until_Restart |
Block_Until_Restart

REPRESENTATION_CLAUSE ::=
for PARTITION_IDENTIFIER’Reconnection use RECONNECTION_LITERAL;

• When this partition is configured with the Reject On Restart reconnection policy, the
dead partition is kept dead and any attempt to restart it fails. Any remote call to a
subprogram located on this partition results in a Communication Error exception. The
Reject On Restart policy is the default policy.

Chapter 3: Getting Started With GLADE 45

• When this partition is configured with the Fail Until Restart reconnection policy, the
dead partition can be restarted. Any remote call to a subprogram located on this
partition results in an exception Communication Error as long as this partition has
not been restarted. As soon as the partition is restarted, remote calls to this partition
are executed normally.

• When this partition is configured with the Block Until Restart reconnection policy, the
dead partition partition can be restarted. Any remote call to a subprogram located on
this partition is suspended until the partition is restarted. As soon as the partition is
restarted, remote calls to this partition are executed normally. The suspended remote
procedure calls to this partition are resumed.

3.5.22 Channel Declaration

The configuration language not only describes partitions, but also the connections be-
tween them. Such a connection is called a Channel and represents a bi-directional link
between two partitions.

CHANNEL_DECLARATION ::=
CHANNEL_IDENTIFIER : Channel

[:= PARTITION_PEER];

PARTITION_PEER ::= (PARTITION_IDENTIFIER, PARTITION_IDENTIFIER);

A partition peer is a pair of distinct partition names. The list order is not important.
Of course, the designated partitions have to be declared prior to the channel itself.

A_Channel : Channel := (Partition_1, Partition_2);

This gives the link between partitions Partition 1 and Partition 2 the name A Channel.
It is not possible to declare more than one channel between the same two partitions.

3.5.23 Partition and Channel Attribute Filter

GLADE contains a transparent extensible filtering mechanism that allows the user to
define various data transformations to be performed on the arguments and return values
of remote calls. One possible application is to compress all data before sending it and to
decompress it on the receiving partition.

With GLADE, it is no longer necessary for the application to take care of such trans-
formations. Instead, users can write their own data transformations and hook them into
GLADE so that they are automatically and transparently applied depending on the config-
uration of the distributed application.

By default, no filtering is performed by GLADE, even though the compression filter is
always available. The user can choose to configure his distributed application to use this
filter.

In order to define filtering, one must first declare the channels between the partitions of
an application. Once a channel is defined, the data transformation that is to be applied on
all data sent through it can be specified:

46 GLADE User’s Guide

A_Channel : Channel := (Partition_1, Partition_2);

for A_Channel’Filter use "ZIP";

This specifies that all data sent over this channel should be transformed by the filter
named ZIP. (There must be a filter with this name, implemented in the package Sys-
tem.Garlic.Filters.Zip.)

It may also be useful to specify that a partition use a certain filter for all remote calls,
regardless of the channel (i.e., regardless of the partition that will receive the remote call).
This can be specified using the attribute ’Filter on a partition:

for Partition_1’Filter use "ZIP";

or

for Partition’Filter use "ZIP";

The latter sets the default filter for all partitions of the application, the former only sets
the default filter for the partition Partition 1. It is also possible to apply a default filter
and to override this default for specific channels:

My_Channel : Channel := (Partition_1, Partition_2);

for My_Channel’Filter use "ZIP";
for Partition_1’Filter use "Some_Other_Filter";

This makes Partition 1 use Some Other Filter for all remote calls except for any com-
munication with Partition 2, where the filter ZIP is applied.

gnatdist takes care of consistency checking of a filter definition. For instance, multiple
filter definitions for the same channel are not allowed. Filtering is only active if specified
explicitly in the configuration file.

REPRESENTATION_CLAUSE ::=
for CHANNEL_IDENTIFIER’Filter use STRING_LITERAL;

| for PARTITION_IDENTIFIER’Filter use STRING_LITERAL;

3.5.24 Pragma Registration Filter

Some filtering algorithms require that some parameters be sent to the receiver first to
enable it to correctly de-filter the data. If this is the case, it may be necessary to filter
these parameters as well. For such purposes, it is possible to install a global filter for all
partitions, which will then be used to filter the parameters of other filters. This filter is
called the registration filter. It can be set by a pragma because a pragma applies to the
configuration:

Chapter 3: Getting Started With GLADE 47

PRAGMA ::=
pragma Registration_Filter ([Filter =>] STRING_LITERAL);

3.5.25 Pragma Version

A library unit is consistent if the same version of its declaration is used throughout (see
〈undefined〉 [Consistency and Elaboration], page 〈undefined〉). It can be useful to deactivate
these checks, especially when the user wants to be able to update a server without updating
a client.

PRAGMA ::=
pragma Version ([Check =>] BOOLEAN_LITERAL);

3.5.26 Partition Attribute Task Pool

When multiple remote subprogram calls occur on the same partition, they are handled by
several anonymous tasks. These tasks can be allocated dynamically or re-used from a pool
of (preallocated) tasks. When a remote subprogram call is completed, the anonymous task
can be deallocated or queued in a pool in order to be re-used for further remote subprogram
calls. The number of tasks in the anonymous tasks pool can be configured by means of three
independent parameters.

• The task pool minimum size indicates the number of anonymous tasks preallocated
and always available in the GLADE PCS. Preallocating anonymous tasks can be useful
in real-time systems to prevent task dynamic allocation.

• The task pool high size is a ceiling. When a remote subprogram call is completed, its
anonymous task is deallocated if the number of tasks already in the pool is greater
than the ceiling. If not, then the task is queued in the pool.

• The task pool maximum size indicates the maximum number of anonymous tasks in
the GLADE PCS. In other words, it provides a way to limit the number of remote calls
in the PCS. When a RPC request is received, if the number of active remote calls is
greater than the task pool maximum size, then the request is kept pending until an
anonymous task completes its own remote call and becomes available.

REPRESENTATION_CLAUSE ::=
for PARTITION_IDENTIFIER’Task_Pool use TASK_POOL_SIZE_ARRAY;

TASK_POOL_SIZE_ARRAY ::=
(NATURAL_LITERAL, – Task Pool Minimum Size
NATURAL_LITERAL, – Task Pool High Size
NATURAL_LITERAL); – Task Pool Maximum Size

In order to have only one active remote call at a time, the task pool configuration is
declared as follows:

48 GLADE User’s Guide

for Partition’Task_Pool use (0, 0, 1);

3.5.27 A Complete Example

Almost every keyword and construct defined in the configuration language has been used
in the following sample configuration file.

01 configuration MyConfig is
02
03 Partition_1 : Partition := ();
04 procedure Master_Procedure is in Partition_1;
05
06 Partition_2, Partition_3 : Partition;
07
08 for Partition_2’Host use "foo.bar.com";
09
10 function Best_Node (Partition_Name : String) return String;
11 pragma Import (Shell, Best_Node, "best-node");
12 for Partition_3’Host use Best_Node;
13
14 Partition_4 : Partition := (RCI_B5);
15
16 for Partition_1’Directory use "/usr/you/test/bin";
17 for Partition’Directory use "bin";
18
19 procedure Another_Main;
20 for Partition_3’Main use Another_Main;
21
22 for Partition_3’Reconnection use Block_Until_Restart;
23 for Partition_4’Command_Line use "-v";
24 for Partition_4’Termination use Local_Termination;
25
26 pragma Starter (Method => Ada);
27
28 pragma Boot_Server
29 (Protocol_Name => "tcp",
30 Protocol_Data => "‘hostname‘:‘unused-port‘");
31
32 pragma Version (False);
33
34 Channel_1 : Channel := (Partition_1, Partition_4);
35 Channel_2 : Channel := (Partition_2, Partition_3);
36
37 for Channel_1’Filter use "ZIP";
38 for Channel_2’Filter use "My_Own_Filter";
39 for Partition’Filter use "ZIP";
40

Chapter 3: Getting Started With GLADE 49

41 pragma Registration_Filter ("Some_Filter");
42
43 begin
44 Partition_2 := (RCI_B2, RCI_B4, Normal);
45 Partition_3 := (RCI_B3);
46 end MyConfig;

1. Line 01 Typically, after having created the following configuration file the user types:

gnatdist myconfig.cfg

If the user wants to build only some partitions then he will list the partitions to build
on the gnatdist command line as follows:

gnatdist myconfig.cfg partition_2 partition_3

The name of the file prefix must be the same as the name of the configuration unit,
in this example myconfig.cfg. The file suffix must be cfg. For a given distributed
application the user can have as many different configuration files as desired.

2. Line 04 Partition 1 contains no RCI package. However, it will contain the main pro-
cedure of the distributed application, called Master Procedure in this example. If the
line procedure Master Procedure is in Partition 1; was missing, Partition 1 would be
completely empty. This is forbidden, because a partition has to contain at least one
library unit.

gnatdist produces an executable with the name of Master Procedure which will start
the various partitions on their host machines in the background. The main partition is
launched in foreground. Note that by killing this main procedure the whole distributed
application is terminated.

3. Line 08 Specify the host on which to run partition 2.

4. Line 12 Use the value returned by a program to figure out at execution time the name
of the host on which partition 3 should execute. For instance, execute the shell script
best-node which takes the partition name as parameter and returns a string giving
the name of the machine on which partition 3 should be launched.

5. Line 14 Partition 4 contains one RCI package RCI B5 No host is specified for this
partition. The startup script will ask for it interactively when it is executed.

6. Line 16 Specify the directory in which the executable of partition partition 1 will be
stored.

7. Line 17 Specify the directory in which all the partition executables will be stored (except
partition 1, see 〈undefined〉 [Pragmas and Representation Clauses], page 〈undefined〉).
Default is the current directory.

8. Line 20 Specify the partition main subprogram to use in a given partition.

9. Line 22 Specify a reconnection policy in case of a crash of Partition 3. Any attempt to
reconnect to Partition 3 when this partition is dead will be blocked until Partition 3
restarts. By default, any restart is rejected (Reject On Restart). Another policy is

50 GLADE User’s Guide

to raise Communication Error on any reconnection attempt until Partition 3 has been
restarted.

10. Line 23 Specify additional arguments to pass on the command line when a given par-
tition is launched.

11. Line 24 Specify a termination mechanism for partition 4. The default is to compute
a global distributed termination. When Local Termination is specified a partition
terminates as soon as local termination is detected (standard Ada termination).

12. Line 26 Specify the kind of startup method the user wants. There are 3 possibilities:
Shell, Ada and None. Specifying Shell builds a shell script. All the partitions will
be launched from a shell script. If Ada is chosen, then the main Ada procedure itself
is used to launch the various partitions. If method None is chosen, then no launch
method is used and the user must start each partition manually.

If no starter is given, then an Ada starter will be used.

In this example, Partition 2, Partitions 3 and Partition 4 will be started from Parti-
tion 1 (ie from the Ada procedure Master Procedure).

13. Line 30 Specify the use of a particular boot server. It is especially useful when the de-
fault port used by the GLADE PCS (randomly computed during GLADE installation)
is already assigned.

14. Line 32 It is a bounded error to elaborate a partition of a distributed program that
contains a compilation unit that depends on a different version of the declaration of
an RCI library unit than the one included in the partition to which the RCI library
unit was assigned. When the pragma Version is set to False, no consistency check is
performed.

15. Line 335 Declare two channels. Other channels between partitions remain unknown.

16. Line 37 Use transparent compression / decompression for the arguments and results of
any remote calls on channel Channel 1, i.e. between Partition 1 and Partition 4.

17. Line 38 Use filter My Own Filter on any declared channel ie Channel 1 amd Channel 2.
As Channel 1 filter attribute is already assigned, this applies only to Channel 2. This
filter must be implemented in a package System.Garlic.Filters.My Own Filter.

18. Line 39 For all data exchanged between partitions, use the filter ZIP. (I.e. for both
arriving remote calls as well as for calls made by a partition.)

19. Line 41 Some Filter will be used to exchange a filter’s parameters between two
partitions. Some Filter itself must be an algorithm that doesn’t need its own pa-
rameters to be filtered again. This filter must be implemented in a package Sys-
tem.Garlic.Filters.Some Filter.

20. Line 43 The configuration body is optional. The user may have fully described his
configuration in the declaration part.

21. Line 44 Partition 2 contains two RCI packages RCI B2 and RCI B4 and a normal
package. A normal package is not categorized.

22. Line 45 Partition 3 contains one RCI package RCI B3

Chapter 3: Getting Started With GLADE 51

3.6 Partition Command Line Options

Most of the previous attributes and pragmas can be modified at run-time. The user
can redefine some of the configuration options by defining shell environment variables or
by passing arguments on the command line of a partition executable. In general, for a
given feature (Aa Bb Cc), there is a corresponding environment variable (AA BB CC) and
a corresponding command line option (--aa bb cc).

The environment variable (AA BB CC) can be set to a value of the expected type.
When a partition is executed from such a shell, the value assigned in the configuration file
is replaced by the value of the environment variable. If the user shell is sh, bash or zsh,
type:

AA_BB_CC=<x>
export AA_BB_CC

If the user shell is csh or tcsh, type:

setenv AA_BB_CC <x>

where <x> is a value of the expected type.

When the partition is launched with a command line option --aa bb cc <x>, the value
assigned in the configuration file or by the shell environment variable is replaced by <x>.

For some environment variables, the value of the environment variable may be irrelevant.
For some command line options, no extra argument is needed. In the following, type
None means that extra information is not needed. The feature is activated as soon as the
environment variable exists or as soon as the option is passed on the command line.

The precedence order for specifying a run-time parameter is as follows: first the the
command line option, then the environment variable and finally the configuration attribute
or pragma.

A location can be concatenated into a single string to be used as a command line
option or an environment variable. The formatted string must conform to the nota-
tion <support name>://<support data>. Most commonly, a network location string is
tcp://<machine>:<port>, that means that the protocol name is tcp, the protocol data which
is specific to the protocol name is <machine>:<port>.

A list of locations can be concatenated into a single string as well. Location strings
are separated by spaces. To be used as a command line option, it is possible to quote
this string. Most commonly, a network locations string is "tcp://<machine>:<port1>
tcp://<machine>:<port2>".

3.6.1 Partition Option boot location

This option sets the boot server location (see 〈undefined〉 [Pragma Boot Location],
page 〈undefined〉 for details).

Environment Variable Command Line Option Type
BOOT LOCATION --boot location Formatted String

52 GLADE User’s Guide

The formatted string must conform to the location notation (see 〈undefined〉 [Loca-
tion Declaration], page 〈undefined〉 and 〈undefined〉 [Partition Command Line Options],
page 〈undefined〉. Most commonly, this would be tcp://<machine>:<port>.

3.6.2 Partition Option self location

This option sets the current partition location (see 〈undefined〉 [Partition Attribute
Self Location], page 〈undefined〉 for details).

Environment Variable Command Line Option Type
SELF LOCATION --self location Formatted String

Environment Variable Command Line Option Type
SELF LOCATION --self location Formatted String

The formatted string must conform to the location notation (see 〈undefined〉 [Loca-
tion Declaration], page 〈undefined〉 and 〈undefined〉 [Partition Command Line Options],
page 〈undefined〉. Most commonly, this would be tcp://<machine>:<port>.

3.6.3 Partition Option data location

This option sets the location of the data storage on which the shared passive units
of the current partition are mapped (see 〈undefined〉 [Partition Attribute Data Location],
page 〈undefined〉 for details). This location has to be compatible with one of locations
provided in the configuration file, that means the partition option data location must have
a support name of one of the storage locations specified in the configuration file.

Environment Variable Command Line Option Type
DATA LOCATION --data location Formatted String

Environment Variable Command Line Option Type
DATA LOCATION --DATA location Formatted String

The formatted string must conform to the location notation (see 〈undefined〉 [Loca-
tion Declaration], page 〈undefined〉 and 〈undefined〉 [Partition Command Line Options],
page 〈undefined〉. Most commonly, this would be dfs://<directory>.

3.6.4 Partition Option nolaunch

This feature is useful when the configuration has been built with an Ada starter. When
this feature is activated, the main partition does not launch the other partitions anymore.
The user has to launch them by hand.

Environment Variable Command Line Option Type
NOLAUNCH --nolaunch None

3.6.5 Partition Option detach

This option is not intended to be specified by the user. When this feature is activated,
the process forks itself and the child closes its standard input, output and error descriptors.
This feature is always activated when a partition is launched from the main partition using
a remote shell (with a starter Ada or Shell).

Chapter 3: Getting Started With GLADE 53

The only case where it can be useful is for a configuration built with a Shell starter. In
this case, the user can edit the shell script to pipe the output of a partition into a file. To
do so, the detach feature has to be removed.

Environment Variable Command Line Option Type
DETACH --detach None

3.6.6 Partition Option slave

This feature is not supposed to be used by the user. When this feature is activated,
this partition cannot be a boot server partition anymore. This is useful when a partition
has been configured as a boot partition and when the user does not want it to be a main
partition anymore.

Environment Variable Command Line Option Type
SLAVE --slave None

3.6.7 Partition Option boot mirror

By default, a partition is not a boot mirror, except for a boot partition on which the
boot server is located. The user can force a partition to be a boot mirror.

Environment Variable Command Line Option Type
BOOT MIRROR --boot mirror None

3.6.8 Partition Option mirror expected

This option suspends the execution of the distributed application until there is at least
one boot mirror partition available, excluding the boot server.

Environment Variable Command Line Option Type
MIRROR EXPECTED --mirror expected None

3.6.9 Partition Option connection hits

This option sets the number of times a partition tries to connect to the boot server
before raising a Communication Error exception.

Environment Variable Command Line Option Type
CONNECTION HITS --connection hits Natural

3.6.10 Partition Option reconnection

This option sets the reconnection policy (see 〈undefined〉 [Partition Attribute Reconnec-
tion], page 〈undefined〉 for details).

Environment Variable Command Line Option Type
RECONNECTION --reconnection Reconnection Type

54 GLADE User’s Guide

3.6.11 Partition Option termination

This option sets the termination policy (see 〈undefined〉 [Partition Attribute Termina-
tion], page 〈undefined〉 for details).

Environment Variable Command Line Option Type
TERMINATION --termination Termination Type

3.6.12 Partition Option trace

GLADE has a facility for trace/replay-based debugging. If trace mode is turned on,
GLADE will record into a trace file all messages received by a partition. The trace file can
then be used to replay the execution of the partition, in isolation.

To get a partition to generate a trace file, it has to be given the command line argument
--trace. This is most easily done by using a command line option (see 〈undefined〉 [Partition
Attribute Command Line], page 〈undefined〉) in the configuration file to add --trace to the
command lines of the partitions whose executions are to be replayed. When the application
has been built, and started using the starter, as usual, the trace files will be generated. It is
also possible to build the distributed application with the None starter and then to include
the --trace argument on the command line.

As a default, the file name of the trace file is the name of the partition’s executable (i.e.
the string returned by the standard procedure Ada.Command Line.Command Name) with
a suffix .ptf. ptf stands for Partition Trace File. It contains all the incoming requests
delivered to the current partition. The file name can be changed with the --trace file
<othername> command line argument.

Note that when a remote partition is launched with rsh under Unix, GLADE invokes
the executable’s name of this partition with its absolute path included. Therefore, when
--trace is passed on the command line, the partition trace file includes the absolute path
as well. If a file name with a relative path is passed on the command line following the
--trace file argument, then the home user’s directory is concatenated to the --trace file
argument.

3.6.13 Partition Option replay

In order to replay a partition whose execution has been previously traced, the command
line argument --replay is required. In addition, the special boot server location "replay://"
has to be specified, i.e. by using the --boot location replay:// command line argument.

To replay a traced execution of partition whose executable is named part, we start it
with the command

% part [--nolaunch] [--slave] --replay --boot_location replay://

possibly under the control of a debugger, such as gdb.

Since the exact contents of the messages received is recorded, differences in input from
external sources (such as standard input) during replay will most likely give unexpected
results. Also, replay of applications whose behavior is inherently non-deterministic - for
example if they use tasking - will be problematic.

Chapter 3: Getting Started With GLADE 55

N.B. It is important that the same executable is used for replay as when the trace file
was generated, otherwise strange behavior can be expected.

3.7 Debugging Facilities

To trace his application, the user sets the following two environment variables to true.
The variable S RPC provides information on what is going on the execution of remote proce-
dure calls (resolved in System.RPC - s-rpc.adb). The variable S PARINT provides informa-
tion on partitions and units status (resolved in System.Partition Interface - s-parint.adb).
For instance, using sh, bash or zsh, type:

S_RPC=true; export S_RPC
S_PARINT=true; export S_PARINT

3.8 GLADE File Hierarchy

All GLADE intermediate files (object files, etc) are stored under a common directory
named "dsa". The user may remove this whole directory and its content when he does not
intend to rebuild his distributed applications.

3.9 GLADE Internals

The default GLADE PCS is called GARLIC, which stands for Generic Ada Reusable
Library for Interpartition Communication. Most of the previous features like filtering, trace
/ replay, termination, reconnection, version consistency and remote launching are provided
via gnatdist specific features. Some of these features are not configurable by the user.

3.9.1 The GARLIC PCS

When a partition starts executing, one of the first elaboration steps is a registration with
the partition id server and with the RCI name server. These two servers are located on a
boot server.

The partition id server is used to allocate a unique partition id when a new partition
registers. The id server also replies to information queries from other partitions. This
information includes the ip address, the port on which the partition is waiting for requests
and all its configuration parameters (termination policy, reconnection policy, filters, ...).

The RCI name server is used to register newly elaborated RCI packages. This RCI
package registration occurs once the partition has been allocated a partition id. The par-
tition registers its RCI and SP packages with their names, their version ids and internal
information.

As described previously, the boot server partition can be replicated on boot mirrors, in
order to prevent this partition from being a single point of failure. A partition has always
to connect to a boot server or a boot mirror in order to get a minimal information set on
the other existing partitions.

56 GLADE User’s Guide

The boot server is the first boot mirror of the system. A new partition declared as a
boot mirror joins the group of boot mirrors. The group of boot mirrors operates as a token
ring: any request from a new partition to a boot mirror is sent on the ring through a token.
A request can traverse the ring once or twice before being approved by all the other boot
mirrors.

When the boot server dies, a new boot server is elected among the remaining boot
mirrors. A boot server is responsible for the global termination detection. That is why a
new boot server has to be elected.

3.9.2 The PolyORB PCS

As an alternative to GARLIC, PolyORB can be used as the PCS for GLADE. This is
achieved using the --PCS=polyorb command line switch for gnatdist. PolyORB can also
be configured as the default PCS at GLADE build time. Using --PCS=polyorb requires a
working PolyORB setup. Please refer to the PolyORB User’s Guide for complete installation
instructions.

3.9.3 Heterogeneous System

The GNAT environment provides default stream attributes, except for non-remote access
types (see 〈undefined〉 [Transmitting Dynamic Structure], page 〈undefined〉 and 〈undefined〉
[Marshaling and Unmarshaling Operations], page 〈undefined〉). The implementation of
the default attributes of predefined types can be found in System.Stream Attributes (s-
stratt.adb).

The GLADE implementation overloads the GNAT default marshaling and unmarshal-
ing subprograms with its own subprograms, which format data according to a XDR-like
protocol. Therefore, any GLADE application will work in an heterogeneous environment.

If the user wants to keep using the GNAT default attributes for performance purposes,
or to use another protocol to marshal and unmarshal predefined types, he can replace
s-stratt.adb by a more appropriate implementation.

3.9.4 Allocating Partition Ids

The Partition ID is allocated dynamically, at run-time. Each partition connects to a
Partition ID Server which is located on the boot server and asks for a free Partition ID.
The advantage of this approach is that it supports easily client / server solution (client
partitions may be duplicated, they will obtain different Partition Ids). There is no need
to recompile or relink all the partitions when a new partition is added to the system. The
Partition ID is not tight in any way to a specific protocol or to a specific location.

3.9.5 Executing Concurrent Remote Calls

When multiple remote subprogram calls occur on the same partition, they are handled
by several anonymous tasks. The number of tasks in the anonymous tasks pool can be con-
figured by three figures (see 〈undefined〉 [Partition Attribute Task Pool], page 〈undefined〉).
Therefore, the user may have to synchronize global data in the Remote Call Interface or
Remote Types unit to preserve concurrent access on data. If the user want to suppress the

Chapter 3: Getting Started With GLADE 57

multiple requests features, he can force the configuration of the anonymous tasks pool to
(0 | 1, 0 | 1, 1). That means that there will be at most one anonymous task running at a
time.

3.9.6 Priority Inheritance

It is compiler-dependent whether the caller priority is preserved during a remote pro-
cedure call. In fact, it can be unsafe to rely on priorities, because two partitions may
have different priority ranges and policies. Nevertheless, GLADE preserves the caller prior-
ity. This priority is marshaled and unmarshaled during the remote procedure call and the
priority of the anonymous task on the server is set to the caller priority.

This default policy can be modified by using pragma Priority 〈undefined〉 [Pragma Pri-
ority], page 〈undefined〉 and partition attribute Priority 〈undefined〉 [Partition Attribute
Priority], page 〈undefined〉.

3.9.7 Remote Call Abortion

When a remote procedure call is aborted, GLADE will abort the calling task on the
caller side. It will also try to abort the remote anonymous task performing the remote call.
This task will be aborted without being requeued in the anonymous tasks pool.

3.9.8 User Filter Implementation

As has been briefly mentioned above, a filter with a name "NAME" must be implemented
in a package called System.Garlic.Filters.Name. The user may write his own filters, which
must implement their filtering of data in the primitive operations of a type derived from the
type System.Garlic.Filters.Filter Type. His filter package must then register an instance of
his newly derived type with GLADE by calling System.Garlic.Filters.Register. From that
on, his filter is ready to be used.

For more information on how to write filter packages see the sample implementation of
a ZIP filter in files s-gafizi.ad[bs] in the distribution. The user might also want to look
at the example in the Filtering directory of the GLADE distribution.

3.10 Remote Shell Notes

To start a partition, the main partition executes a remote shell - except when the dis-
tributed application is built with a None starter. Thus the user has to make sure that he is
authorized to execute a remote shell on the remote machine. In this case, a first step would
be to add into his $HOME/.rhosts file a line like : <remote-machine> <user-name>

If he is not authorized at all, he can bypass this problem. All he has to do is:

• Open a session on each machine listed in his configuration file.

• If MAIN PART is the partition that includes the main procedure and if he wants to
start MAIN PART on host MAIN HOST:

• Choose a TCP port number PORT NUM

• Then for each partition PART, start manually the corresponding executable on
the corresponding host as follows

58 GLADE User’s Guide

% PART [--nolaunch] --boot_location tcp://MAIN_HOST:PORT_NUM

The –nolaunch parameter must be included for the main partition, it means that
this partition is not in charge of launching others.

• If he wants to kill the distributed application before it terminates, kill MAIN PART.

Appendix A: DSA and CORBA 59

Appendix A DSA and CORBA

A.1 CORBA Architecture

CORBA is an industry-sponsored effort to standardize the distributed object paradigm
via the CORBA Interface Definition Language (IDL). The use of IDL makes CORBA more
self-describing than any other client/server middleware. The Common Object Request
Broker: Architecture and Specification, revision 2.2 describes the main features of CORBA
which are Interface Definition Language, Language Mappings, Stubs, Skeletons and Object
Adapters, ORB, Interface Repository, Dynamic Invocation, ORB protocols and CORBA
services.

corba-arch.fig.pdf

The IDL specifies modules, constants, types and interfaces. An object interface defines
the operations, exceptions and public attributes a client can invoke or access. CORBA
offers a model based only on distributed objects. In some respects, it can be compared to
Java as this language provides only an object-oriented programming model, and discards
the classical structured programming model.

An IDL translator generates client stubs and server skeletons in a host language (C++, C,
Java, Smalltalk, Ada95); a language mapping specifies how IDL entities are implemented in
the host language. Depending on the features available in the host language, the mapping
can be more or less straightforward. When an IDL feature is not defined in the host
language, the mapping provides a standardized but complex way of simulating the missing
feature. Although the user works with the generated code, a good understanding of the
language mapping is often necessary.

When the host language does not provide object-oriented features, the user has to deal
with a complex simulation of those functions. A C++ programmer has to follow several
rules related to parameters passed by reference. Defining whether the callee or the caller is
responsible for parameter memory allocation can be regarder as an issue of C++ programming
conventions. The most difficult parts of the Ada mapping, which an Ada programmer should
avoid whenever possible, are multiple inheritance and forward declarations.

The IDL translator produces several host language source files depending on the language
mapping: client files called stubs and server files called skeletons. These files are specific to
a vendor and product, as they make calls to a proprietary communication subsystem, but
their structure and interface are supposed to follow a standard canvas. The client stubs
convert user queries into requests to the ORB, which transmits these requests through an
object adapter to the server skeleton.

A.2 Interface Definition Language

In DSA, the IDL is a subset of Ada95. The user identifies interface packages at com-
pile time. Some library-level packages are categorized using pragmas and these interface
packages have to be library units.

60 GLADE User’s Guide

In CORBA, the IDL is a description language; it supports C++ syntax for constant, type
and operation declarations. From IDL descriptions, a translator can directly generate client
header files and server implementation skeletons.

An IDL file can start by defining a module. This provides a name-space to gather a
set of interfaces. This is a way to introduce a level of hierarchy (<module>::<interface>::-
<operation>). The Ada95 binding maps this element into a (child) package. #include will
make any other namespaces visible.

A module can define interfaces. An interface defines a set of methods that a client can
invoke on an object. An interface can also define exceptions and attributes. An exception
is like a C++ exception: a data component can be attached to it. An attribute is a compo-
nent field. For each Attribute, the implementation automatically creates the subprograms
Get Attribute and Set Attribute. Only Get is provided for readonly attributes. An interface
can derive from one or more interfaces (multiple inheritance).

The Ada95 binding maps this element into a package or a child package. For the client
stub, the implementation will automatically create a tagged type named Ref (which is
derived from CORBA.Object.Ref or from another Ref type defined in another interface)
in a package whose name matches the one of the interface. For the server skeleton, the
implementation will automatically create a tagged type named Object (which is derived
from an implementation defined private tagged type Object) in a package named Impl,
which is a child package of a package named after the interface name (<interface>.Impl).

module CosNaming {
typedef string Istring;
struct NameComponent {

Istring id;
Istring kind;

};
typedef sequence <NameComponent> Name;
enum BindingType {nobject, ncontext};
struct Binding {

Name binding_name;
BindingType binding_type;

};
typedef sequence <Binding> BindingList;

interface BindingIterator;

interface NamingContext {
exception CannotProceed {

NamingContext cxt;
Name rest_of_name;

};
void bind (in Name n, in Object obj)

raises (CannotProceed);
void list

(in unsigned long how_many,
out BindingList bl,

Appendix A: DSA and CORBA 61

out BindingIterator bi);
// Other declarations not shown

};

interface BindingIterator {
boolean next_n

(in unsigned long how_many,
out BindingList bl);

// Other declarations not shown
};

};

A method is defined by a unique name (no overloading is allowed) and its signature (the
types of its formal parameters). Each parameter can be of mode in, out or inout, whose
meanings are comparable to their Ada homonyms. Every exception that can be raised by
a method must also be declared as part of the method signature.

The oneway attribute can be applied to a subprogram, giving it at-most-once semantics
instead of the exactly-once default. This precludes a method from having output param-
eters, a return value, or from raising an exception. It is not portable to assume that the
caller resumes its execution once the input parameters are transmitted.

Most CORBA data types map in a straightforward way onto predefined Ada types, with
the exception of any and sequence. any, that can designate any CORBA type, is mapped
onto a stream type with read and write operations. A sequence holds a list of items of
a given type and is represented in Ada using a pair of lengthy generic packages. One may
note that the CORBA string type is mapped onto the Unbounded_String Ada95 type.
The IDL does not provide an equivalent to unconstrained arrays.

The Ada95 mapping provides special mechanisms to implement two difficult-to-map
CORBA features. First, it provides a translation of multiple inheritance. As described
above, an Ada95 package defines a type derived from the first interface, and extends the list
of its primitive operations to achieve inheritance from other interfaces. Another unnatural
feature of CORBA for an Ada programmer comes from forward declarations. In Ada,
two package specifications cannot “with” each others, but this can occur between two IDL
interfaces. To solve this, the mapping can create “forward” packages. This can result
in a very non-intuitive situation where the client stub does not “with” its usual interface
packages but withs “forward” packages instead.

When developing a distributed application with CORBA, two situations can arise. On
the server side, the programmer is responsible for the IDL file. He has to understand the
Ada95 language mapping in order to avoid structures with a non-trivial implementation
whenever possible, such as forward declaration and multiple inheritance. On both the
server and the client side, the programmer has to deal with the generated code. A good
understanding of the mapping is useful to get back and forth from the IDL file to the
generated code in order to keep an overview of the distributed application. Understanding
this mapping can be a tedious task depending of the host language.

IDL interface information can be stored on-line in a database called Interface Repository
(IR). A CORBA specification describes how the interface repository is organized and how

62 GLADE User’s Guide

to retrieve information from it. The reader will note that this information is close to what
the Ada Semantic Interface Specification (ASIS) can provide.

The interface repository allows a client to discover the signature of a method which it
did not know at compile time. It can subsequently use this knowledge together with values
for the method’s parameters to construct a complete request and invoke the method. The
set of functions that permits the construction of a method invocation request at run time
is the Dynamic Invocation Interface (DII).

The IR API allows the client to explore the repository classes to obtain a module defini-
tion tree. From this tree, the client extracts subtrees defining constants, types, exceptions,
and interfaces. From an interface subtree, the client can select an operation with its list of
parameters (type, name and mode) and exceptions.

A client has then three ways to make a request. As in the static case, he can send it
and wait for the result; he can also do a one-way call and discard the result. With dynamic
requests, a third mechanism is offered: the client can send the request without waiting for
the result, and obtain it later, asynchronously.

The DII has a server-side counterpart, called Dynamic Skeleton Interface (DSI). Both
mechanisms are powerful but very complex and tedious to use. In some respects, they also
violate the Ada95 philosophy, because strong typing is not preserved. Most users will keep
working with static invocations.

A.3 Network Communication Subsystem

The communication subsystem is one of the key points of a distributed system: it offers
basic services such as the capability to transmit a message from one part of the distributed
program to another. Those elementary services are then used by higher level services to
build a fully functional distributed system.

The limit between what belongs to the communication subsystem and what belongs to
an external service may sometimes be difficult to draw. Moreover, something considered as
a service in CORBA may be viewed as purely internal in DSA.

A.3.1 DSA PCS

In the DSA world, everything that is not done by the compiler in regard to the distribu-
tion belongs to the partition communication subsystem (PCS). For example, figuring out
on which partition a package that will be called remotely is located is part of the PCS’s
responsibility.

The PCS entry points are well defined in DSA, and described in the System.RPC package
declaration. By looking at this package, one can notice that there is nothing related to
abortion of remote subprogram calls, although the Annex states that if such a call is aborted,
an abortion message must be sent to the remote partition to cancel remote processing. That
means that the PCS is in charge of detecting that a call to one of its entry points has been
aborted and must send such an abortion message, without any help from the compiler.

Another interesting characteristic of the PCS is its behavior regarding unknown excep-
tions. When an exception is raised as a result of the execution of a remote subprogram call,
it is propagated back to the caller. However, the caller may not have any visibility over the

Appendix A: DSA and CORBA 63

exception declaration, but may still catch it with a when others clause. However, if the
caller does not catch it and let it be propagated upstream (maybe in another partition),
and if the upstream caller has visibility over this exception, it must be able to catch it using
its name. That means that the PCS must recognize that a previously unknown exception
maps onto a locally known one, for example by being able to dynamically register a new
exception into the runtime.

A.3.2 CORBA ORB

In CORBA, a much more fragmented approach to communication services was adopted:
they are essentially defined externally. For example, the naming service (which maps object
names to object references) is a distributed object with a standard IDL interface.

While this approach seems more pure, it has performance drawbacks. Being itself a
distributed object, the naming service cannot be optimized for the needs of a specific ORB.
A special case is also required in the ORB for it to be able to locate the naming service
itself (chicken and egg problem): in order to get a reference on a distributed object (an
IOR, Interface Object Reference) to start with, the programmer needs to have an IOR for
the naming service. This IOR can be retrieved from the command line, from a file or by
invoking the ORB Interface, depending on the CORBA version.

Regarding exception propagation, an ORB is not able to propagate an exception that
has not been declared in the IDL interface. This restriction, although annoying because
it restricts the usage of exceptions, is understandable given the multi-language CORBA
approach: what should be done, for example, when a C++ exception reaches a caller writ-
ten in Ada? Note that an implementation may provide more information in the CORBA
exception message, such as the C++ or Ada exception name.

A.4 Distributed Application Development

A.4.1 DSA Application Development

The DSA does not describe how a distributed application should be configured. It is up
to the user (using a partitioning tool whose specification is outside the scope of the annex)
to define what the partitions in his program are and on which machines they should be
executed.

GLADE provides a Configuration Tool and a Partition Communication Subsystem to
build a distributed application. The gnatdist tool and its configuration language have been
specially designed to let the user partition his program and specify the machines where the
individual partitions will be executing. The Generic Ada Reusable Library for Interparti-
tion Communication (GARLIC) is a high level communication library that implements the
interface between the Partition Communication Subsystem defined in the Reference Manual
and the network communication layer with object-oriented techniques.

A.4.2 CORBA Application Development

The ORB provides a core of basic services. All other services are provided by objects
with IDL. The OMG has standardized a set of useful services like Naming, Trading, Events,

64 GLADE User’s Guide

Licensing, Life Cycle, Events, ... A CORBA vendor is free to provide an implementation of
these services.

The Naming Service allows the association (binding) of an object reference with user-
friendly names. A name binding is always defined relative to a naming context wherein it
is unique. A naming context is an object itself, and so can be bound to a name in another
naming context. One thus creates a naming graph, a directed graph with naming contexts
as vertices and names as edge labels. Given a context in a naming graph, a sequence of
names can thus reference an object. This is very similar to the naming hierarchies that exist
in the Domain Name System and the UNIX file system. A typical scenario to start working
with the Name Service consists in providing a well-known remote reference that defines
the root of a naming and naming context hierarchy. Then, many naming operations can
be executed on this hierarchy. The Trading Service provides a higher level of abstraction
than the Naming Service. If the Naming Service can be compared to the White Pages, the
Trading Service can be compared to the Yellow Pages.

The Events service provides a way for servers and clients to interact through asyn-
chronous events between anonymous objects. A supplier produces events when a consumer
receives notification and data. An event channel is the mediator between consumers and
suppliers. consumer admins and supplier admins are in charge of providing proxies to allow
consumers and suppliers to get access to the event channel. Suppliers and consumers pro-
duce and receive events through their associated proxies. From the event channel point of
view, a proxy supplier (or proxy consumer) is seen as a consumer (or a supplier). Therefore,
a proxy supplier (or proxy consumer) is an extended interface of consumer (or supplier).
The Events service defines push and pull methods to exchange events. This allows to define
four models to exchange events and data.

A.5 Some Elements of Comparison

CORBA provides an outstanding and very popular framework. The IDL syntax is close
to C++. The object model is close to Java: CORBA defines only distributed objects. Fur-
thermore, when using the Ada mapping, the stub and skeleton generated code is close to
Java with two root classes, Ref for clients and Object for servers.

DSA provides a more general model. This includes distributed objects, but also regular
remote subprograms and references to remote subprograms. Shared passive packages can
be defined as an abstraction for a (distributed) shared memory, a persistency support or a
database. Basically, the IDL is a subset of Ada95 and the remote services are defined in
packages categorized by three kinds of pragmas (RCI, RT, SP). The distributed boundaries
are more transparent as the application is not split into IDL and host language sources.

In DSA, any Ada type can be used except access types, but this can be solved by provid-
ing the marshaling operations for such a type. The exception model is entirely preserved.
Overloading is allowed in DSA (not in CORBA). The user can also define generic packages
and use mixin mechanism to obtain some kind of multiple inheritance.

The DSA user can design, implement and test his application in a non-distributed en-
vironment, and then switch to a distributed situation. With this two-phase design ap-
proach, the user always works within his favorite Ada95 environment. The use of pragma
All Calls Remote also facilitates debugging of a distributed application in a non-distributed
context.

Appendix A: DSA and CORBA 65

To work on client stubs or server skeletons, the CORBA user will have to deal with
generated code. In any case, understanding the host language mapping is always very
useful. It can be required for some languages like C++. An Ada programmer should avoid
using forward declaration or multiple inheritance (and in some respects, sequence).

The CORBA user has to re-adapt his code to the code generated by the translator from
the IDL file any time the latter is modified. He also has to use the predefined CORBA
types instead of Ada standard types; he has to call ORB functions or a naming service to
obtain remote object references.

As Ada95 is its own IDL, the user does not deal with any generated stub or skeleton
code. The configuration environment takes care of updating object, stub and skeleton
files when sources have been updated. The system automatically provides some naming
functions like declaring RCI services. It also takes care of aborting remote procedure calls,
detecting distributed termination, checking version consistency between clients and servers,
and preserving and propagating any remote exception. Note that none of these features are
immediately available in CORBA.

The RM does not require a DSA implementation to work on heterogeneous systems
but GLADE, like any reasonable implementation, provides default XDR-like marshaling
operations. This feature can be inhibited for performance reasons. An ORB is required to
implement a Common Data Representation (CDR) to ensure safe communications between
heterogeneous systems.

CORBA is a very rich but very complex standard. Its drawbacks include the high
learning curve for developing and managing CORBA applications effectively, performance
limitations, as well as the lack of portability and security. These drawbacks are the price
to pay for language interoperability, a facility the Ada95-oriented DSA does not provide.

Interoperability between compilers is not yet an issue with DSA because there is only
one implementation available (GLADE). But it is a validation requirement to permit the
user to replace his current PCS with a third-party PCS. We can note this issue was not
resolved in CORBA until revision 2.2. For the same reasons, we can expect future DSA
implementations to ensure PCS compatibility.

Using its IDL, the OMG has described a number of Common Object Services (COS)
that are frequently needed in distributed systems. Unfortunately, these specifications are
limited to IDL descriptions, and most of the semantics are up to the vendor. The DSA
misses such user-level libraries, including basic distributed software components. More
generally, the lack of component libraries has always been a problem for Ada.

Implementing CORBA services as native Ada95 distributed objects, taking advantage of
the standard language features, yields a simpler, easy to understand and use specification.
We have already implemented the Naming service, the Events service and a service close
to the Concurrency one with DSA. Developing the CORBA services was an interesting
experience. We realized that although those services are nicely specified by an IDL file,
their semantics is quite vague in such a way portability is dramatically broken. This work
will be described in a future paper.

Another major goal of the GLADE team is to export DSA services to the CORBA world.

The idea is to translate all DSA features to equivalent IDL features using ASIS. This
would allow the DSA user to connect his DSA server to an ORB. This would also allow

66 GLADE User’s Guide

applications written in other languages to invoke DSA features. We are also seeking to use
this approach to offer a DII mechanism for DSA.

Appendix B: GNU Free Documentation License 67

Appendix B GNU Free Documentation License

Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written docu-
ment “free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially. Sec-
ondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document to
the Document’s overall subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (For example, if the Document is in part a textbook
of mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

68 GLADE User’s Guide

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under this
License.

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, whose contents can be viewed
and edited directly and straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage subsequent modification
by readers is not Transparent. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human modification.
Opaque formats include PostScript, PDF, proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML produced by some
word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the title
page. For works in formats which do not have any title page as such, “Title Page” means
the text near the most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or
distribute. However, you may accept compensation in exchange for copies. If you distribute
a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Doc-
ument’s license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and
Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you
as the publisher of these copies. The front cover must present the full title with all words
of the title equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they preserve the title of

Appendix B: GNU Free Documentation License 69

the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network location
containing a complete Transparent copy of the Document, free of added material, which
the general network-using public has access to download anonymously at no charge using
public-standard network protocols. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one
year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you with
an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has less than
five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

70 GLADE User’s Guide

H. Include an unaltered copy of this License.

I. Preserve the section entitled “History”, and its title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s
title, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but en-
dorsements of your Modified Version by various parties – for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition
of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you include

Appendix B: GNU Free Documentation License 71

in the combination all of the Invariant Sections of all of the original documents, unmodified,
and list them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sections
entitled “Acknowledgements”, and any sections entitled “Dedications”. You must delete all
sections entitled “Endorsements.”

Heading 6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various documents
with a single copy that is included in the collection, provided that you follow the rules of
this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not as a
whole count as a Modified Version of the Document, provided no compilation copyright is
claimed for the compilation. Such a compilation is called an “aggregate”, and this License
does not apply to the other self-contained works thus compiled with the Document, on
account of their being thus compiled, if they are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s Cover
Texts may be placed on covers that surround only the Document within the aggregate.
Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations of
some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License provided that you also include the original
English version of this License. In case of a disagreement between the translation and the
original English version of this License, the original English version will prevail.

72 GLADE User’s Guide

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with the Invariant Sections
being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with
the Back-Cover Texts being LIST. A copy of the license is included in the
section entitled “GNU Free Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

i

Table of Contents

About This Guide. 1
What This Guide Contains . 1

1 Introduction to Distributed Systems 3
1.1 Using OS Network Services . 3
1.2 Using a Middleware Environment . 3
1.3 Using a Distributed Language . 4

2 The Distributed Systems Annex 7
2.1 Architecture of a Distributed Ada95 Application 8
2.2 Categorization Pragmas . 9
2.3 Pragma Declared Pure . 9
2.4 Pragma Remote Call Interface . 9

2.4.1 Overview of Pragma Remote Call Interface 9
2.4.2 Regular Remote Subprograms (RCI) 10
2.4.3 Remote Access to Subprograms (RAS) 11
2.4.4 Remote Access to Class Wide Types (RACW) . . . 13
2.4.5 Summary on Pragma Remote Call Interface 13

2.5 Pragma Remote Types . 14
2.5.1 Overview of Pragma Remote Types 14
2.5.2 Distributed Object. 14
2.5.3 Transmitting Dynamic Structure 16
2.5.4 Summary on Remote Types Units 17

2.6 Pragma Shared Passive . 17
2.6.1 Overview of Pragma Shared Passive 17
2.6.2 Shared and Protected Objects 18
2.6.3 Summary on Pragma Shared Passive 18

2.7 More About Categorization Pragmas . 18
2.7.1 Variables and Non-Remote Access Types 19
2.7.2 RPC Failures . 19
2.7.3 Exceptions . 19
2.7.4 Pragma Asynchronous . 20
2.7.5 Pragma All Calls Remote . 23
2.7.6 Generic Categorized Units . 24
2.7.7 Categorization Unit Dependencies 25

2.8 Partition Communication Subsystem . 25
2.8.1 Marshaling and Unmarshaling Operations 25
2.8.2 Incorrect Remote Dispatching 27
2.8.3 Partition Ids . 27
2.8.4 Concurrent Remote Calls . 27
2.8.5 Consistency and Elaboration 28
2.8.6 Abortion and Termination . 28

2.9 Most Features in One Example . 28

ii GLADE User’s Guide

3 Getting Started With GLADE. 33
3.1 Introduction to GLADE . 33
3.2 How to Configure a Distributed Application 33
3.3 Gnatdist Command Line Options . 33
3.4 Gnatdist Behind the Scenes . 34
3.5 The Configuration Language . 34

3.5.1 Language Keywords . 34
3.5.2 Pragmas and Representation Clauses 35
3.5.3 Configuration Declaration . 35
3.5.4 Partition Declaration . 36
3.5.5 Location Declaration . 36
3.5.6 Partition Attribute Main . 37
3.5.7 Pragma Starter . 38
3.5.8 Pragma Remote Shell . 38
3.5.9 Pragma Boot Location . 39
3.5.10 Partition Attribute Self Location 39
3.5.11 Partition Attribute Passive . 40
3.5.12 Partition Attribute Data Location 40
3.5.13 Partition Attribute Allow Light PCS 41
3.5.14 Pragma Priority . 41
3.5.15 Partition Attribute Priority 41
3.5.16 Partition Attribute Host . 42
3.5.17 Pragma Import . 42
3.5.18 Partition Attribute Directory 43
3.5.19 Partition Attribute Command Line 43
3.5.20 Partition Attribute Termination 43
3.5.21 Partition Attribute Reconnection 44
3.5.22 Channel Declaration . 45
3.5.23 Partition and Channel Attribute Filter 45
3.5.24 Pragma Registration Filter . 46
3.5.25 Pragma Version . 47
3.5.26 Partition Attribute Task Pool 47
3.5.27 A Complete Example . 48

3.6 Partition Command Line Options . 51
3.6.1 Partition Option boot location 51
3.6.2 Partition Option self location 52
3.6.3 Partition Option data location 52
3.6.4 Partition Option nolaunch . 52
3.6.5 Partition Option detach . 52
3.6.6 Partition Option slave . 53
3.6.7 Partition Option boot mirror 53
3.6.8 Partition Option mirror expected 53
3.6.9 Partition Option connection hits 53
3.6.10 Partition Option reconnection 53
3.6.11 Partition Option termination 54
3.6.12 Partition Option trace . 54
3.6.13 Partition Option replay . 54

3.7 Debugging Facilities . 55

iii

3.8 GLADE File Hierarchy . 55
3.9 GLADE Internals . 55

3.9.1 The GARLIC PCS . 55
3.9.2 The PolyORB PCS . 56
3.9.3 Heterogeneous System . 56
3.9.4 Allocating Partition Ids . 56
3.9.5 Executing Concurrent Remote Calls 56
3.9.6 Priority Inheritance . 57
3.9.7 Remote Call Abortion . 57
3.9.8 User Filter Implementation . 57

3.10 Remote Shell Notes . 57

Appendix A DSA and CORBA 59
A.1 CORBA Architecture . 59
A.2 Interface Definition Language . 59
A.3 Network Communication Subsystem. 62

A.3.1 DSA PCS . 62
A.3.2 CORBA ORB . 63

A.4 Distributed Application Development 63
A.4.1 DSA Application Development 63
A.4.2 CORBA Application Development 63

A.5 Some Elements of Comparison . 64

Appendix B GNU Free Documentation License
. 67

