An introduction to programming with

GTK+ and Glade in ISO C, ISO C++ and
Python

Version 1.3.1

Roger Leigh

rleigh@debian.org
20th July 2006
Contents
I__Introduction|
1.1 Whatis GIK+?2|

Designing an application|

3.1 Planning ahead| oo 000
3.2 Introducing ogcalc|. L.
3.3 Designing the interfacel.,
3.4 Creating the interface|

42 Codelisting| o
4.3 Analeis|

52 Codelisting|
0.3 Analysis|

LIST OF FIGURES 2

[6 GTK+ and GObject 30
61 Introductionl 30
6.2 Code listing| 30
6.3 Analysis| 36

7 GTK+ and C++ 38
71 Introduction| 38
2 Codelisting|. 40
3 Analysis| 43

/3.1 ogcalc.hl. 43
........................... 44
[733 ogcalc-main.cc| 45

[Python 45
8.1 Introduction| L 45
8.2 Codelisting| 46
83 Analysis| o 54

[@__Conclusion| 56

(10 Further Reading| 57

List of Figures

1 A selection of GTK+ widgets| 5
2 GIK+ containerslo oo oo 7
3 Atypical signalhandlerf 9
4 Sketching a user interface| 11
5 Widgetpacking| o o o oo 12
6 C/plain/ogcalcinaction| 12
[/ Packing widgets into a GtkHBOX| 22
8 The Glade user interface designer| 26
9 C/glade/ogcalcinaction| 27
[[0"C/gobject/ogcalcinaction]. 30
[T C++/glade/ogcalcinaction]. 39
Listings

1 C/plain/ogcalc.c| 13
P C/glade/ogcalc.clo 25

C/gobject/ogcalc. bo oot 31

C/gobject/ogcalc.cl . . . v v v vv i 32
[C/gobject/ogcalc—main.c|oo.... 35
|6 C++/glade/ogcalc.hf L 40

|Z C++/glade/ogcalc.ccl L 40
B Cri/8lade/ogcalomainocd. -« - o o oo 2
O PYCROR/PLain/ogeald - « « o « v v oeee e e 46
[[0 python/glade/ogcalc| v v v v v v v i e et 52

1 INTRODUCTION 3

1 Introduction

1.1 What is GTK+?

GTK+ is a toolkit used for writing graphical applications. Originally written
for the X11 windowing system, it has now been ported to other systems,
such as Microsoft Windows and the Apple Macintosh, and so may be used
for cross-platform software development. GTK+ was written as a part of the
GNU Image Manipulation Program (GIMP), but has long been a separate project,
used by many other free software projects, one of the most notable being the
GNU Network Object Model Environment (GNOME) Project.

GTK+ is written in C and, because of the ubiquity of the C language,
bindings have been written to allow the development of GTK+ applications in
many other languages. This short tutorial is intended as a simple introduction
to writing GTK+ applications in C, C++ and Python, using the current (2.6)
version of libgtk. It also covers the use of the Glade user interface designer
for rapid application development (RAD).

It is assumed that the reader is familiar with C and C++ programming,
and it would be helpful to work through the “Getting Started” chapter of
the GTK+ tutorial before reading further. The GTK+, GLib, libglade, Gtkmm
and libglademm API references will be useful while working through the
examples. Very little Python knowledge is required, but the Python tutorial
and manual, and the PyGTK and Glade API references, will also be useful.

I hope you find this tutorial informative. Please send any corrections or
suggestions to rleigh@debian.org.

1.2 Building the example code

Several working, commented examples accompany the tutorial. They are also
available from http://people.debian.org/~rleigh/gtk/ogcalc/, To build
them, type:

./configure
make

This will check for the required libraries and build the example code. Each
program may then be run from within its subdirectory.

I have been asked on various occasions to write a tutorial to explain how
the GNU autotools work. While this is not the aim of this tutorial, I have
converted the build to use the autotools as a simple example of their use.

1.3 Legal bit

This tutorial document, the source code and compiled binaries, and all other
files distributed in the source package are copyright (© 2003-2004 Roger Leigh.
These files and binary programs are free software; you can redistribute them
and/or modify them under the terms of the GNU General Public Licence as
published by the Free Software Foundation; either version 2 of the Licence,
or (at your option) any later version.

A copy of the GNU General Public Licence version 2 is provided in the
file COPYING, in the source package from which this document was generated.

http://people.debian.org/~rleigh/gtk/ogcalc/

2 GTK+ BASICS 4

2 GTK+ basics

2.1 Objects

GTK+ is an object-oriented (OO) toolkit. I'm afraid that unless one is aware of
the basic OO concepts (classes, class methods, inheritance, polymorphism),
this tutorial (and GTK+ in general) will seem rather confusing. On my first
attempt at learning GTK+, I didn’t “get’ it, but after I learnt C++, the concepts
GTK+ is built on just ‘clicked” and I understood it quite quickly.

The C language does not natively support classes, and so GTK+ provides
its own object/type system, GObject. GObject provides objects, inheritance,
polymorphism, constructors, destructors and other facilities such as refer-
ence counting and signal emission and handling. Essentially, it provides C++
classes in C. The syntax differs a little from C++ though. As an example, the
following C++

myclass c;
c.add (2);

would be written like this using GObject:

myclass *c = myclass_new();
myclass_add(c, 2);

The difference is due to the lack of a this pointer in the C language (since
objects do not exist). This means that class methods require the object pointer
passing as their first argument. This happens automatically in C++, but it
needs doing ‘manually” in C.

Another difference is seen when dealing with polymorphic objects. All
GTK+ widgets (the controls, such as buttons, checkboxes, labels, etc.) are
derived from GtkWidget. That is to say, a GtkButton is a GtkWidget, which
is a GtkObject, which is a GObject. In C++, one can call member functions
from both the class and the classes it is derived from. With GTK+, the object
needs explicit casting to the required type. For example

GtkButton mybutton;
mybutton.set_label ("Cancel");
mybutton.show ();

would be written as

GtkButton *mybutton = gtk_button_new();
gtk_button_set_label (mybutton, "Cancel");
gtk_widget_show (GTK_WIDGET (mybutton))

In this example, set_label() is a method of GtkButton, whilst show() is a
method of GtkWidget, which requires an explicit cast. The GTK_-WIDGET () cast
is actually a form of run-time type identification (RTTI). This ensures that the
objects are of the correct type when they are used.

Objects and C work well, but there are some issues, such as a lack of
type-safety of callbacks and limited compile-time type checking. Using GOb-
ject, deriving new widgets is complex and error-prone. For these, and other,
reasons, C++ may be a better language to use. libsigc++ provides type-
safe signal handling, and all of the GTK+ (and GLib, Pango et. al.) objects
are available as standard C++ classes. Callbacks may also be class methods,

2 GTK+ BASICS 5

Filename: Heading 1 M
(a) A text label (b) A drop-down selection (combo box)
P OK ‘ [~ Save Preferences
(c) A push button (d) A tick box

File Edit View Help| [Text Entry]

(e) A menu bar (f) A text entry field
Family: Style: Size:
12
Serif Italic
Standard Symbo Bold 13
URW Boockman L Bold Italic 14
URW Chanrarv | |~ 16
[I | 10 [~
Preview:

abcdefghijlk ABCDEFGHIIK

(g) A font selection

Figure 1: A selection of GTK+ widgets.

which makes for cleaner code since the class can contain object data, remov-
ing the need to pass in data as a function argument. These potential problems
will become clearer in the next sections.

2.2 Widgets

A user interface consists of different objects with which the user can interact.
These include buttons which can be pushed, text entry fields, tick boxes, labels
and more complex things such as menus, lists, multiple selections, colour and
font pickers. Some example widgets are shown in Figure

Not all widgets are interactive. For example, the user cannot usually in-
teract with a label, or a framebox. Some widgets, such as containers, boxes
and event boxes are not even visible to the user (there is more about this in
Section [2.3).

Different types of widget have their own unique properties. For example,
a label widget contains the text it displays, and there are functions to get and
set the label text. A checkbox may be ticked or not, and there are functions to
get and set its state. An options menu has functions to set the valid options,
and get the option the user has chosen.

2.3 Containers

The top-level of every GTK+ interface is the window. A window is what one
might expect it to be: it has a title bar, borders (which may allow resizing),
and it contains the rest of the interface.

2 GTK+ BASICS 6

In GTK+, a GtkWindow is a GtkContainer. In English, this means that
the window is a widget that can contain another widget. More precisely, a
GtkContainer can contain exactly one widget. This is usually quite confusing
compared with the behaviour of other graphics toolkits, which allow one to
place the controls on some sort of “form”.

The fact that a GtkWindow can only contain one widget initially seems
quite useless. After all, user interfaces usually consist of more than a single
button. In GTK+, there are other kinds of GtkContainer. The most commonly
used are horizontal boxes, vertical boxes, and tables. The structure of these
containers is shown in Figure

Figure 2| shows the containers as having equal size, but in a real interface,
the containers resize themselves to fit the widgets they contain. In other
cases, widgets may be expanded or shrunk to fit the space allotted to them.
There are several ways to control this behaviour, to give fine control over the
appearance of the interface.

In addition to the containers discussed above, there are more complex
containers available, such are horizontal and vertical panes, tabbed notebooks,
and viewports and scrolled windows. These are out of the scope of this
tutorial, however.

Newcomers to GTK+ may find the concept of containers quite strange.
Users of Microsoft Visual Basic or Visual C++ may be used to the free-form
placement of controls. The placement of controls at fixed positions on a form
has no advantages over automatic positioning and sizing. All decent modern
toolkits use automatic positioning. This fixes several issues with fixed layouts:

e The hours spent laying out forms, particularly when maintaining exist-
ing code.

Windows that are too big for the screen.

Windows that are too small for the form they contain.

Issues with spacing when accommodating translated text.

Bad things happen when changing the font size from the default.

The nesting of containers results in a widget tree, which has many useful
properties, some of which will be used later. One important advantage is
that they can dynamically resize and accommodate different lengths of text,
important for internationalisation when translations in different languages
may vary widely in their size.

The Glade user interface designer can be very instructive when exploring
how containers and widget packing work. It allows easy manipulation of
the interface, and all of the standard GTK+ widgets are available. Modify-
ing an existing interface is trivial, even when doing major reworking. Whole
branches of the widget tree may be cut, copied and pasted at will, and a wid-
get’s properties may be manipulated using the “Properties” dialogue. While
studying the code examples, Glade may be used to interactively build and ma-
nipulate the interface, to visually follow how the code is working. More detail
about Glade is provided in Section [5| where libglade is used to dynamically
load a user interface.

2 GTK+ BASICS 7

(a) Horizontal box: GtkHBox (b) Vertical box: GtkVBox

(c) Table: GtkTable

Figure 2: GTK+ containers. Each container may contain other widgets in
the shaded areas. Containers may contain more containers, allowing them to
nest. Complex interfaces may be constructed by nesting the different types of
container.

2 GTK+ BASICS 8

2.4 Signals

Most graphical toolkits are event-driven, and GTK+ is no exception. Traditional
console applications tend not to be event-driven; these programs follow a fixed
path of execution. A typical program might do something along these lines:

e Prompt the user for some input
e Do some work

e Print the results

This type of program does not give the user any freedom to do things in a
different order. Each of the above steps might be a single function (each of
which might be split into helper functions, and so on).

GTK+ applications differ from this model. The programs must react to
events, such as the user clicking on a button, or pressing Enter in an text
entry field. These widgets emit signals in response to user actions. For each
signal of interest, a function defined by the programmer is called. In these
functions, the programmer can do whatever needed. For example, in the
ogcalc program, when the “Calculate” button is pressed, a function is called
to read the data from entry fields, do some calculations, and then display the
results.

Each event causes a signal to be emitted from the widget handling the event.
The signals are sent to signal handlers. A signal handler is a function which
is called when the signal is emitted. The signal handler is connected to the
signal. In C, these functions are known as callbacks. The process is illustrated
graphically in Figure

A signal may have zero, one or many signal handlers connected (regis-
tered) with it. If there is more than one signal handler, they are called in the
order they were connected in.

Without signals, the user interface would display on the screen, but would
not actually do anything. By associating signal handlers with signals one is
interested in, events triggered by the user interacting with the widgets will
cause things to happen.

2.5 Libraries
GTK+ is comprised of several separate libraries:

atk Accessibility Toolkit, to enable use by disabled people.

gdk GIMP Drawing Kit (XLib abstraction layer—windowing system depen-
dent part).

gdk-pixbuf Image loading and display.

glib Basic datatypes and common algorithms.

gmodule Dynamic module loader (1ibdl portability wrapper).
gobject Object/type system.

gtk GIMP Tool Kit (windowing system independent part).

2 GTK+ BASICS 9

An event
occurs

RWAY
Calculav .~

A signal i

is emitted

clicked

A signal handler
is called

cb calculate ()

Stuftf
Happens

Figure 3: A typical signal handler. When the button is pressed, a signal is
emitted, causing the registered callback function to be called.

pango Typeface layout and rendering.
When using libglade another library is required:
glade User Interface description loader/constructor.
Lastly, when using C++, some additional C++ libraries are also needed:
atkmm C++ ATK wrapper.
gdkmm C++ GDK wrapper.
gtkmm C++ GTK+ wrapper.
glademm C++ Glade wrapper.
pangomm C++ Pango wrapper.
sigct++ Advanced C++ signalling & event handling (wraps GObject signals).

This looks quite intimidating! However, there is no need to worry, since
compiling and linking programs is quite easy. Since the libraries are released
together as a set, there are few library interdependency issues.

3 DESIGNING AN APPLICATION 10

3 Designing an application

3.1 Planning ahead

Before starting to code, it is necessary to plan ahead by thinking about what
the program will do, and how it should do it. When designing a graphical
interface, one should pay attention to how the user will interact with it, to
ensure that it is both easy to understand and efficient to use.

When designing a GTK+ application, it is useful to sketch the interface on
paper, before constructing it. Interface designers such as Glade are helpful
here, but a pen and paper are best for the initial design.

3.2 Introducing ogcalc

As part of the production (and quality control) processes in the brewing
industry, it is necessary to determine the alcohol content of each batch at
several stages during the brewing process. This is calculated using the density
(gravity) in 8/em® and the refractive index. A correction factor is used to
align the calculated value with that determined by distillation, which is the
standard required by HM Customs & Excise. Because alcoholic beverages are
only slightly denser than water, the PG value is the (density —1) x 10000. That
is, 1.0052 would be entered as 52.

Original gravity is the density during fermentation. As alcohol is pro-
duced during fermentation, the density falls. Traditionally, this would be
similar to the PG, but with modern high-gravity brewing (at a higher concen-
tration) it tends to be higher. It is just as important that the OG is within the
set limits of the specification for the product as the ABV.

The ogcalc program performs the following calculation:

O = (R x 2.597) — (P x 1.644) — 34.4165 + C 1)

If O is less than 60, then

A=(0—P)x0.130 @)
otherwise

A=(0-P)x0.134 3)
The symbols have the following meanings:
A Percentage Alcohol By Volume
C Correction Factor
O Original Gravity
P Present Gravity

R Refractive Index

4 GTK+ AND C 11

OG & ABYV Calculator

(_Quit) (_Reset) (Calculate)

Figure 4: Sketching a user interface. The ogcalc main window is drawn
simply, to illustrate its functionality. The top row contains three numeric
entry fields, followed by two result fields on the middle row. The bottom
row contains buttons to quit the program, reset the interface and do the
calculation.

3.3 Designing the interface

The program needs to ask the user for the values of C, P, and R. It must
then display the results, A and O.
A simple sketch of the interface is shown in Figure

3.4 Creating the interface

Due to the need to build up an interface from the bottom up, due to the
containers being nested, the interface is constructed starting with the window,
then the containers that fit in it. The widgets the user will use go in last. This
is illustrated in Figure

Once a widget has been created, signal handlers may be connected to its
signals. After this is completed, the interface can be displayed, and the main
event loop may be entered. The event loop receives events from the keyboard,
mouse and other sources, and causes the widgets to emit signals. To end the
program, the event loop must first be left.

4 GTK+ and C

4.1 Introduction

Many GTK+ applications are written in C alone. This section demonstrates
the C/plain/ogcalc program discussed in the previous section. Figure|]is a
screenshot of the finished application.

This program consists of five functions:

on_button_clicked_reset () Reset the interface to its default state.

on_button_clicked_calculate() Get the values the user has entered, do a
calculation, then display the results.

main() Initialise GTK+, construct the interface, connect the signal handlers,
then enter the GTK+ event loop.

create_spin_entry() A helper function to create a numeric entry with de-
scriptive label and tooltip, used when constructing the interface.

4 GTK+ AND C 12

OG & ABV Calculator OG & ABV Calculator

(a) An empty window (b) Addition of a GtkVBox

OG & ABV Calculator

OG & ABV Calculator

(c) Addition of a second GtkVBox; this has (d) Addition of three GtkHBoxes
uniformly- sized children (it is homogeneous),
unlike the first.

OG & ABV Calculator OG & ABV Calculator

[Quit][Reset]l[CaIcuIate]

(e) Addition of five more GtkHBoxes, used to (f) Addition of all of the user-visible widgets
ensure visually appealing widget placement

Figure 5: Widget packing. The steps taken during the creation of an interface
are shown, demonstrating the use of nested containers to pack widgets.

v B OG & ABV Calculator _ X

PG:[39.57 || R:[6355 [I| cR[IE |3
0G: 65.57 ABV %: 3.48

i Calculate ‘

(1]
1}
11
rt

el Quit

Figure 6: C/plain/ogcalc in action.

24

25

26

27

28

29

31

32

34

35

37

38

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

4 GTK+ AND C 13

create_result_label() A helper function to create a result label with dis-
criptive label and tooltip, used when constructing the interface.

4.2 Code listing

The program code is listed below. The source code is extensively commented,
to explain what is going on.

Listing 1: C/plain/ogcalc.c
#include <gtk/gtk.h>

GtkWidget *

create_spin_entry(const gchar *label_text,
const gchar *tooltip_text,
GtkWidget **spinbutton_pointer,
GtkAdjustment *adjustment,
guint digits);
GtkWidget *
create_result_label (const gchar *label_text,
const gchar *tooltip_text,
GtkWidget x**result_label_pointer);

void on_button_clicked_reset(GtkWidget *widget,
gpointer data);
void on_button_clicked_calculate(GtkWidget *widget,
gpointer data);

/+* This structure holds all of the widgets needed to get all
the values for the calculation. =/
struct calculation_widgets

{
GtkWidget *pg_val; /* PG entry widget =/
GtkWidget *ri_val; /* RI entry widget =/
GtkWidget *cf_val; /+* CF entry widget =/
GtkWidget *og_result; /+« OG result label x/
GtkWidget *abv_result; /x ABV% result label x/
3

/+* The bulk of the program. This is nearly all setting up
of the user interface. If Glade and libglade were used,
this would be under 10 lines only! x/

int main(int argc, char xargv[])

{

/+* These are pointers to widgets used in constructing the
interface , and later used by signal handlers. x/

GtkWidget *window;

GtkWidget *vbox1, *vbox2;
GtkWidget *hbox1, *hbox2;
GtkWidget *buttonl, *button2;
GtkObject *adjustment;
GtkWidget *hsep;

struct calculation_widgets <cb_widgets;

/x Initialise GITK+. %/
gtk_init (&argc, &argv);

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

4 GTK+ AND C 14

/* Create a new top—level window. x/
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
/x Set the window title. x/
gtk_window_set_title (GTK_WINDOW(window),
"0G & ABV Calculator");
/+* Disable window resizing , since there’s no point in this
case. x/
gtk_window_set_resizable (GTK_WINDOW(window), FALSE);
/+* Connect the window close button (”destroy” event) to
gtk_main_quit (). =/
g_signal_connect (G_OBJECT(window),
"destroy",
gtk_main_quit, NULL);

/+* Create a GtkVBox to hold the other widgets. This
contains other widgets , which are packed in to it
vertically . =/

vboxl = gtk_vbox_new (FALSE, 0);

/* Add the VBox to the Window. A GtkWindow /is a/
GtkContainer which /is a/ GtkWidget. GTK.CONTAINER
casts the GtkWidget to a GtkContainer , like a C++
dynamic_cast. x/

gtk_container_add (GTK_CONTAINER (window), vboxl);

/+* Display the VBox. At this point, the Window has not
yet been displayed , so the window isn’'t yet wvisible. x/

gtk_widget_show (vbox1l);

/¥ Create a second GtkVBox. Unlike the previous VBox, the
widgets it will contain will be of uniform size and
separated by a 5 pixel gap. =/

vbox2 = gtk_vbox_new (TRUE, 5);

/+* Set a 10 pixel border width. =/

gtk_container_set_border_width (GTK_CONTAINER (vbox2), 10);

/+* Add this VBox to our first VBox. x/

gtk_box_pack_start (GTK_BOX(vboxl), vbox2,

FALSE, FALSE, 0);
gtk_widget_show(vbox2);

/* Create a GtkHBox. This is identical to a GtkVBox
except that the widgets pack horizontally instead of
vertically . =/

hboxl = gtk_hbox_new (FALSE, 10);

/+* Add to vbox2. The function’'s other arguments mean to
expand into any extra space alloted to it, to fill the
extra space and to add 0 pixels of padding between it
and its mneighbour. x/

gtk_box_pack_start (GTK_BOX(vbox2), hboxl, TRUE, TRUE, 0);

gtk_widget_show (hbox1);

/¥ A GtkAdjustment is used to hold a numeric value: the
initial value , minimum and maximum values , "step” and

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

15

4 GTK+ AND C
"page” increments and the "page size”. It’s used by
spin buttons , scrollbars , sliders etc.. x/

adjustment = gtk_adjustment_new (0.0, 0.0, 10000.0,
0.01, 1.0, 0);

/* Call a helper function to create a GtkSpinButton entry
together with a label and a tooltip. The spin button
is stored in the cb_widgets.pg_-val pointer for later
use. We also specify the adjustment to use and the
number of decimal places to allow. x/

hbox2 = create_spin_entry("PG:",

"Present Gravity (demnsity)",
&cb_widgets.pg_val,
GTK_ADJUSTMENT (adjustment), 2);

/* Pack the returned GtkHBox into the interface. x/

gtk_box_pack_start (GTK_BOX (hbox1), hbox2, TRUE, TRUE, 0);

gtk_widget_show (hbox2);

/* Repeat the above for the next spin button. x/
adjustment = gtk_adjustment_new (0.0, 0.0, 10000.0,
0.01, 1.0, 0);
hbox2 = create_spin_entry("RI:",
"Refractive Index",
&cb_widgets.ri_val,
GTK_ADJUSTMENT (adjustment), 2);
gtk_box_pack_start (GTK_BOX (hbox1l), hbox2, TRUE, TRUE, 0);
gtk_widget_show (hbox2);

/+* Repeat again for the last spin button. x/
adjustment = gtk_adjustment_new (0.0, -50.0, 50.0,
0.1, 1.0, 0);
hbox2 = create_spin_entry("CF:",
"Correction Factor",
&cb_widgets.cf_val,
GTK_ADJUSTMENT (adjustment), 1);
gtk_box_pack_start (GTK_BOX (hbox1), hbox2, TRUE, TRUE, 0);
gtk_widget_show (hbox2);

/+* Now we move to the second "row” of the interface , used
to display the results. =/

/* Firstly , a new GtkHBox to pack the labels into. x/
hboxl = gtk_hbox_new (TRUE, 10);

gtk_box_pack_start (GTK_BOX(vbox2), hboxl, TRUE, TRUE, 0);
gtk_widget_show (hbox1);

/* Create the OG result label , then pack and display. =/
hbox2 = create_result_label ("0G:",
"Original Gravity (demnsity)",
&cb_widgets.og_result);

gtk_box_pack_start (GTK_BOX (hboxl), hbox2, TRUE, TRUE, 0);
gtk_widget_show (hbox2);

/+* Repeat as above for the second result value. x/

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

4 GTK+ AND C

16

hbox2 = create_result_label ("ABV %:",
"Percent Alcohol By Volume",
&cb_widgets.abv_result);
gtk_box_pack_start (GTK_BOX (hbox1), hbox2, TRUE, TRUE, 0);
gtk_widget_show (hbox2);

/* Create a horizontal separator (GtkHSeparator) and add
it to the VBox. x/

hsep = gtk_hseparator_new();

gtk_box_pack_start (GTK_BOX(vboxl), hsep, FALSE, FALSE, 0);

gtk_widget_show (hsep);

/+* Create a GtkHBox to hold the bottom row of buttons. x/
hboxl = gtk_hbox_new(TRUE, 5);
gtk_container_set_border_width (GTK_CONTAINER (hbox1l), 10);
gtk_box_pack_start (GTK_BOX(vboxl), hboxl, TRUE, TRUE, 0);
gtk_widget_show (hbox1);

/x Create the ”"Quit” button. We use a "stock”
button —commonly—used buttons that have a set title and
icon. x/
buttonl = gtk_button_new_from_stock(GTK_STOCK_QUIT);
/* We connect the "clicked” signal to the gtk_main_quit ()
callback which will end the program. x/
g_signal_connect (G_OBJECT (buttonl), "clicked",
gtk_main_quit, NULL);
gtk_box_pack_start (GTK_BOX (hboxl), buttonl,
TRUE, TRUE, 0);
gtk_widget_show(buttonl);

/* This button resets the interface. =/

buttonl = gtk_button_new_with_mnemonic("_Reset");

/* The "clicked” signal is connected to the
on_button_clicked_reset () callback above, and our
"cb_widgets” widget list is passed as the second
argument , cast to a gpointer (void x). =/

g_signal_connect (G_OBJECT (buttonl), "clicked",

G_CALLBACK(on_button_clicked_reset),
(gpointer) &cb_widgets);

/* g_signal_connect_swapped is used to connect a signal
from one widget to the handler of another. The last
argument is the widget that will be passed as the first

argument of the callback. This causes
gtk_widget_grab_focus to switch the focus to the PG
entry. =/

g_signal_connect_swapped

(G_OBJECT (buttonil),

"clicked",

G_CALLBACK (gtk_widget_grab_focus),
(gpointer)GTK_WIDGET (cb_widgets.pg_val));

/+* This lets the default action (Enter) activate this
widget even when the focus is elsewhere. This doesn 't
set the default , it just makes it possible to set.x/

GTK_WIDGET_SET_FLAGS (buttonl, GTK_CAN_DEFAULT);

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

4 GTK+ AND C

17

gtk_box_pack_start (GTK_BOX (hboxl), buttonil,
TRUE, TRUE, 0);
gtk_widget_show(buttonl);

/* The final button is the Calculate button. x/

button2 = gtk_button_new_with_mnemonic("_Calculate");
/* When the button is clicked , call the
on_button_clicked_calculate () function. This is the

same as for the Reset button. =/
g_signal_connect (G_OBJECT (button2), "clicked",
G_CALLBACK (on_button_clicked_calculate),
(gpointer) &cb_widgets);

/+* Switch the focus to the Reset button when the button is
clicked . x/

g_signal_connect_swapped
(G_OBJECT (button2),

"clicked",
G_CALLBACK (gtk_widget_grab_focus),
(gpointer)GTK_WIDGET (buttonl));

/* As before , the button can be the default. =/

GTK_WIDGET_SET_FLAGS (button2, GTK_CAN_DEFAULT);

gtk_box_pack_start (GTK_BOX (hboxl), button2,

TRUE, TRUE, 0);

/* Make this button the default. Note the thicker border
in the interface —this button is activated if you press
enter in the CF entry field. x/

gtk_widget_grab_default (button2);

gtk_widget_show (button2);

/+* Set up data entry focus movement. This makes the
interface work correctly with the keyboard , so that you
can touch—type through the interface with no mouse
usage or tabbing between the fields. x/

/* When Enter is pressed in the PG entry box, focus is
transferred to the RI entry. x/
g_signal_connect_swapped
(G_OBJECT (cb_widgets.pg_val),
"activate",
G_CALLBACK (gtk_widget_grab_focus),
(gpointer) GTK_WIDGET (cb_widgets.ri_val));
/* RI —> CF. x/
g_signal_connect_swapped
(G_OBJECT (cb_widgets.ri_val),
"activate",
G_CALLBACK (gtk_widget_grab_focus),
(gpointer) GTK_WIDGET (cb_widgets.cf_val));
/*+ When Enter is pressed in the RI field , it activates the
Calculate button. =/
g_signal_connect_swapped
(G_OBJECT (cb_widgets.cf_val),
"activate",
G_CALLBACK (gtk_window_activate_default),
(gpointer) GTK_WIDGET (window));

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

4 GTK+ AND C 18

/* The interface is complete, so finally we show the

top—level window. This is done last or else the user
might see the interface drawing itself during the short
time it takes to comstruct. It’s mnicer this way. x/

gtk_widget_show (window);

/* Enter the GTK Event Loop. This is where all the events
are caught and handled. It is exited with
gtk_main_quit (). =/

gtk_main();

return O0;
/* A utility function for Ul construction. It constructs

part of the widget tree , then returns its root. x/
GtkWidget *

create_spin_entry(const gchar *label_text,
const gchar *tooltip_text,
GtkWidget **spinbutton_pointer,
GtkAdjustment *adjustment,
guint digits)

{

GtkWidget *hbox;
GtkWidget *eventbox;
GtkWidget *spinbutton;
GtkWidget *label;
GtkTooltips *tooltip;

/* A GtkHBox to pack the entry child widgets into. x/
hbox = gtk_hbox_new (FALSE, 5);

/* An eventbox. This widget is just a container for
widgets (like labels) that don’t have an associated X
window , and so can’'t receive X events. This is just
used to we can add tooltips to each label. =/

eventbox = gtk_event_box_new();

gtk_widget_show (eventbox);

gtk_box_pack_start (GTK_BOX(hbox), eventbox,

FALSE, FALSE, 0);

/x Create a label. x/

label = gtk_label_new(label_text);

/x Add the label to the eventbox. x/

gtk_container_add (GTK_CONTAINER (eventbox), label);

gtk_widget_show (label);

/+* Create a GtkSpinButton and associate it with the
adjustment . It adds/substracts 0.5 when the spin
buttons are used, and has digits accuracy. =/

spinbutton =
gtk_spin_button_new (adjustment, 0.5, digits);

/* Only numbers can be entered. x/

gtk_spin_button_set_numeric

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

4 GTK+ AND C

(GTK_SPIN_BUTTON (spinbutton), TRUE);
gtk_box_pack_start (GTK_BOX (hbox), spinbutton,
TRUE, TRUE, 0);
gtk_widget_show(spinbutton);

/* Create a tooltip and add it to the EventBox previously
created . x/
tooltip = gtk_tooltips_new();
gtk_tooltips_set_tip(tooltip, eventbox ,
tooltip_text, NULL);

*spinbutton_pointer = spinbutton;
return hbox;
}
/¥ A utility function for Ul construction. It constructs

part of the widget tree , then returns its root. x/
GtkWidget *

create_result_label(const gchar *label_text,
const gchar *tooltip_text,
GtkWidget **result_label_pointer)
{

GtkWidget *hbox;
GtkWidget *eventbox;
GtkWidget *result_label;
GtkWidget *result_value;
GtkTooltips *tooltip;

/* A GtkHBox to pack the entry child widgets into. x/
hbox = gtk_hbox_new (FALSE, 5);

/* As before , a label in an event box with a tooltip. x/
eventbox = gtk_event_box_new();
gtk_widget_show (eventbox);
gtk_box_pack_start (GTK_BOX (hbox), eventbox,

FALSE, FALSE, 0);
result_label = gtk_label_new(label_text);
gtk_container_add (GTK_CONTAINER (eventbox), result_label);
gtk_widget_show(result_label);

/* This is a label , used to display the OG result. x/
result_value = gtk_label_new (NULL);
/+* Because it ’'s a result , it is set "selectable”, to allow

copy/paste of the result, but it’s not modifiable. x/
gtk_label_set_selectable (GTK_LABEL(result_value), TRUE);
gtk_box_pack_start (GTK_BOX(hbox), result_value,

TRUE, TRUE, 0);

gtk_widget_show(result_value);

/¥ Add the tooltip to the event box. x/

tooltip = gtk_tooltips_new();

gtk_tooltips_set_tip(tooltip, eventbox,
tooltip_text, NULL);

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

4 GTK+ AND C 20

*result_label_pointer = result_value;
return hbox;
}
/* This is a callback function. It resets the wvalues of the
entry widgets , and clears the results. “data” is the

calculation_widgets structure , which needs casting back
to its correct type from a gpointer (wvoid x) type. x/
void on_button_clicked_reset(GtkWidget *widget,
gpointer data)
{
/¥ Widgets to manipulate. x/
struct calculation_widgets *w;

w = (struct calculation_widgets *) data;

gtk_spin_button_set_value (GTK_SPIN_BUTTON(w->pg_val),

0.0);
gtk_spin_button_set_value (GTK_SPIN_BUTTON(w->ri_val),
0.0);
gtk_spin_button_set_value (GTK_SPIN_BUTTON(w->cf_val),
0.0);
gtk_label_set_text (GTK_LABEL(w->og_result), "");

gtk_label_set_text (GTK_LABEL(w->abv_result), "");
}

/+* This callback does the actual calculation. Its arguments
are the same as for on_button_clicked_reset (). x/
void on_button_clicked_calculate (GtkWidget *widget,
gpointer data)

{
gdouble pg, ri, cf, og, abv;
gchar *og_string;
gchar *abv_string;

struct calculation_widgets *w;
w = (struct calculation_widgets *) data;

/+* Get the numerical values from the entry widgets. =/
pg = gtk_spin_button_get_value
(GTK_SPIN_BUTTON (w->pg_val));
ri = gtk_spin_button_get_value
(GTK_SPIN_BUTTON (w->ri_val));
cf = gtk_spin_button_get_value
(GTK_SPIN_BUTTON (w->cf_val));

/x Do the sums. x/
og = (ri * 2.597) - (pg * 1.644) - 34.4165 + cf;

if (og < 60)

abv = (og - pg) * 0.130;
else

abv = (og - pg) * 0.134;

447

448

449

450

451

452

453

454

455

456

457

458

459

4 GTK+ AND C 21

/* Display the results. Note the GMarkup tags to
make it display in boldface. x/

og_string = g_strdup_printf ("%0.2f", og);

abv_string = g_strdup_printf ("%0.2f", abv);

gtk_label_set_markup (GTK_LABEL(w->og_result),
og_string);

gtk_label_set_markup (GTK_LABEL(w->abv_result),
abv_string);

g_free (og_string);
g_free (abv_string);

To build the source, do the following:

cd C/plain
cc $(pkg-config --cflags gtk+-2.0) -c ogcalc.c
cc $(pkg-config --1libs gtk+-2.0) -o ogcalc ogcalc.o

4.3 Analysis

The main() function is responsible for constructing the user interface, con-
necting the signals to the signal handlers, and then entering the main event
loop. The more complex aspects of the function are discussed here.

g_signal_connect (G_OBJECT (window),
"destroy",
gtk_main_quit, NULL);

This code connects the “destroy” signal of window to the gtk main_quit ()
function. This signal is emitted by the window when it is to be destroyed, for
example when the “close” button on the titlebar is clicked). The result is that
when the window is closed, the main event loop returns, and the program
then exits.

vboxl = gtk_vbox_new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (window), vbox1l);

vbox1 is a GtkVBox. When constructed using gtk_vboxnew(), it is set to
be non-homogeneous (FALSE), which allows the widgets contained within the
GtkVBox to be of different sizes, and has zero pixels padding space between
the container widgets it will contain. The homogeneity and padding space
are different for the various GtkBoxes used, depending on the visual effect
intended.

gtk_container_add() packs vbox1 into the window (a GtkWindow object is
a GtkContainer).

eventbox = gtk_event_box_new();

gtk_widget_show(eventbox);

gtk_box_pack_start (GTK_BOX(hbox2), eventbox,
FALSE, FALSE, 0);

Some widgets do not receive events from the windowing system, and
hence cannot emit signals. Label widgets are one example of this. If this

4 GTK+ AND C 22

gtk_box_pack_start ()

DW

00— = [0

gtk_box_pack_end()

Figure 7: Packing widgets into a GtkHBox.

is required, for example in order to show a tooltip, they must be put into
a GtkEventBox, which can receive the events. The signals emitted from the
GtkEventBox may then be connected to the appropriate handler.

gtk widget_show() displays a widget. Widgets are hidden by default
when created, and so must be shown before they can be used. It is typical
to show the top-level window last, so that the user does not see the interface
being drawn.

gtk_box_pack_start () packs a widget into a GtkBox, in a similar manner
to gtk_container_add (). This packs eventbox into hbox2. The last three argu-
ments control whether the child widget should expand into an extra space
available, whether it should fill any extra space available (this has no effect if
expand is FALSE), and extra space in pixels to put between its neighbours (or
the edge of the box), respectively. Figure [/]shows how gtk_box_pack_start ()
works.

The create_spin_entry () function is a helper function to create a numeric
entry (spin button) together with a label and tooltip. It is used to create all
three entries.

label = gtk_label_new(label_text);
A new label is created displaying the text label_text.

spinbutton = gtk_spin_button_new (adjustment, 0.5, 2);
gtk_spin_button_set_numeric
(GTK_SPIN_BUTTON (spinbutton), TRUE);

A GtkSpinButton is a numeric entry field. It has up and down buttons to
“spin” the numeric value up and down. It is associated with a GtkAdjustment,
which controls the range allowed, default value, etc.. gtk_adjustment_new()
returns a new GtkAdjustment object. Its arguments are the default value,
minimum value, maximum value, step increment, page increment and page
size, respectively. This is straightforward, apart from the step and page in-
crements and sizes. The step and page increments are the value that will
be added or subtracted when the mouse button 1 or button 2 are clicked on
the up or down buttons, respectively. The page size has no meaning in this
context (GtkAdjustments are also used with scrollbars).

gtk_spin button new() creates a new GtkSpinButton, and associates it
with adjustment. The second and third arguments set the “climb rate” (rate of
change when the spin buttons are pressed) and the number of decimal places
to display.

4 GTK+ AND C 23

Finally, gtk_spin_button_set_numeric() is used to ensure that only num-
bers can be entered.

tooltip = gtk_tooltips_new();
gtk_tooltips_set_tip(tooltip, eventbox,
tooltip_text, NULL);

A tooltip (pop-up help message) is created with gtk_tooltips_new().
gtk_tooltips_set_tip() is used to associate tooltip with the eventbox widget,
also specifying the message it should contain. The fourth argument should
typically be NULL.

The create_result_label () function is a helper function to create a result
label together with a descriptive label and tooltip.

gtk_label_set_selectable (GTK_LABEL(result_value), TRUE);

Normally, labels simply display a text string. The above code allows the
text to be selected and copied, to allow pasting of the text elsewhere. This is
used for the result fields so the user can easily copy them.

Continuing with the main() function:

buttonl = gtk_button_new_from_stock (GTK_STOCK_QUIT);

This code creates a new button, using a stock widget. A stock widget
contains a predefined icon and text. These are available for commonly used
functions, such as “OK”, “Cancel”, “Print”, etc..

button2 = gtk_button_new_with_mnemonic("_Calculate");

g_signal_connect (G_OBJECT (button2), "clicked",
G_CALLBACK (on_button_clicked_calculate),
(gpointer) &cb_widgets);

GTK_WIDGET_SET_FLAGS (button2, GTK_CAN_DEFAULT);

Here, a button is created, with the label “Calculate”. The mnemonic is the
’_C’, which creates an accelerator. This means that when Alt-C is pressed, the
button is activated (i.e. it is a keyboard shortcut). The shortcut is underlined,
in common with other graphical toolkits.

The “clicked” signal (emitted when the button is pressed and released) is
connected to the on_button_clicked_calculate() callback. A pointer to the
cb_widgets structure is passed as the argument to the callback.

Lastly, the GTK_CAN_DEFAULT attribute is set. This attribute allows the but-
ton to be the default widget in the window.

g_signal_connect_swapped
(G_OBJECT (cb_widgets.pg_val),
"activate",
G_CALLBACK (gtk_widget_grab_focus),
(gpointer) GTK_WIDGET (cb_widgets.ri_val));

This code connects signals in the same way as gtk_signal_connect().
The difference is the fourth argument, which is a GtkWidget pointer. This
allows the signal emitted by one widget to be received by the signal handler
for another. Basically, the widget argument of the signal handler is given
cb_widgets.ri_val rather than cb_widgets.pg_val. This allows the focus (where
keyboard input is sent) to be switched to the next entry field when Enter is
pressed in the first.

5 GTK+ AND GLADE 24

g_signal_connect_swapped
(G_OBJECT (cb_widgets.cf_val),
"activate",
G_CALLBACK (gtk_window_activate_default),
(gpointer) GTK_WIDGET (window));

This is identical to the last example, but in this case the callback is the
function gtk_window_activate_default () and the widget to give to the signal
handler is window. When Enter is pressed in the CF entry field, the default
“Calculate” button is activated.

gtk_main ();

This is the GTK+ event loop. It runs until gtk main_quit () is called.

The signal handlers are far simpler than the interface construction. The
function on_button_clicked calculate() reads the user input, performs a
calculation, and then displays the result.

void on_button_clicked_calculate(GtkWidget *widget,
gpointer data)
{
struct calculation_widgets *w;
w = (struct calculation_widgets *) data;

Recall that a pointer to cb_widgets, of type struct calculation_widgets,
was passed to the signal handler, cast to a gpointer. The reverse process is
now applied, casting data to a pointer of type struct calculation widgets.

gdouble pg;
pg = gtk_spin_button_get_value
(GTK_SPIN_BUTTON (w->pg_val));

This code gets the value from the GtkSpinButton.

gchar *og_string;

og_string = g_strdup_printf ("%0.2f", og);

gtk_label_set_markup (GTK_LABEL(w->og_result),
og_string);

g_free (og_string);

Here the result og is printed to the string og_string. This is then set as
the label text using gtk_label_set_markup(). This function sets the label
text using the Pango Markup Format, which uses the ‘" and ‘’ tags to
embolden the text.

gtk_spin_button_set_value (GTK_SPIN_BUTTON(w->pg_val),
0.0);
gtk_label_set_text (GTK_LABEL(w->og_result), "");

on_button_clicked_reset() resets the input fields to their default value,
and blanks the result fields.

5 GTK+ and Glade

5.1 Introduction

In the previous section, the user interface was constructed entirely “by hand”.
This might seem to be rather difficult to do, as well as being messy and time-

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

5 GTK+ AND GLADE 25

consuming. In addition, it also makes for rather unmaintainable code, since
changing the interface, for example to add a new feature, would be rather
hard. As interfaces become more complex, constructing them entirely in code
becomes less feasible.

The Glade user interface designer is an alternative to this. Glade allows
one to design an interface visually, selecting the desired widgets from a palette
and placing them on windows, or in containers, in a similar manner to other
interface designers. Figure [8| shows some screenshots of the various compo-
nents of Glade.

The file C/glade/ogcalc.glade contains the same interface constructed in
C/plain/ogcalc, but designed in Glade. This file can be opened in Glade,
and changed as needed, without needing to touch any code.

Even signal connection is automated. Examine the “Signals” tab in the
“Properties” dialogue box.

The source code is listed below. This is the same as the previous listing,
but with the following changes:

e The main() function does not construct the interface. It merely loads
the ogcalc.glade interface description, auto-connects the signals, and
shows the main window.

e The cb_widgets structure is no longer needed: the callbacks are now
able to query the widget tree through the Glade XML object to locate
the widgets they need. This allows for greater encapsulation of data,
and signal handler connection is simpler.

e The code saving is significant, and there is now separation between the
interface and the callbacks.

The running C/glade/ogcalc application is shown in Figure 9] Notice
that it is identical to C/plain/ogcalc, shown in Figure 6] (No, they are not
the same screenshot!)

5.2 Code listing

Listing 2: C/glade/ogcalc.c

#include <gtk/gtk.h>
#include <glade/glade.h>

void
on_button_clicked_reset(GtkWidget *widget,
gpointer data);
void
on_button_clicked_calculate(GtkWidget *widget,
gpointer data);

/+* The bulk of the program. Since Glade and libglade are
used , this is just 9 lines! x/
int main(int argc, char xargv[])

{
GladeXML =*xml;

5 GTK+ AND GLADE

- “ Glade: ogcalc =im]
Project Edit View Settings Help
Dl @ B R

i New ! Open Save Options Build

[™ogcalc_main_window

Project opened. A

(a) Main window

“ Properties: cf_entry ([

X i Selector

g e [
B
(l

W

GTK+ Basic
GTK+ Additi

Deprecated

o

al
i
o

L
t
L
'n:
o]

Ok EeE e ®E L

(]
[ERICY 4

=

L 12 » ek [

E
G|l @ B = B

L
L
L

ELl=HE @B 0 =

|5

(b) Palette for widget selection

Widgetl Packing | Common | Signalsl &

Name: cf_entry P
Class: GtkSpinButton

Climb Rate|0.2

Digits: 1 Il
Numeric: No

Update Pol Always I:
Snap: No

Wrap: No

Value: 0

Min: -50

Max: 50

Step lnc: |0.1

Page Inc: |1

Page Size: |0 -

- “ Widget Tree O x

<~ [Tlogcalc_main_window el
~=vboxl
~ =vbox2
= |[|hbox1
b [||hbox2
b [[|hbox3
< |l|hbox4
> 41 eventbox3
< |[|hbox5
+ |||hbox6
b 4 eventbox4
A og_result
< |||hbox7 =
+ %1 eventbox5
A label6

(c) Widget properties dialogue

(d) Widget tree

- BT — X |
PG: [0.00] [5] Ri:[0.00 [F] crfoo [
ABV %

#l Quit | Reset | Calculate |

(e) The program being designed

Figure 8: The Glade user interface designer.

26

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

%

2

65

66

67

68

69

70

71

72

73

74

75

76

77

5

GTK+ AND GLADE 27

v B OG & ABV Calculator X

PG:[39.57 [R:[63.55 [} cR[E [3]

0G: 65.57 ABV %: 3.48

ll“""__ ________ | Calculate |

ey
1]
wu
1]
T

el Quit

}

/%

Figure 9: C/glade/ogcalc in action.

GtkWidget *window;

/x Initialise GIK+. x/
gtk_init (&argc, &argv);

/+* Load the interface description. x/
xml = glade_xml_new("ogcalc.glade", NULL, NULL);

/* Set up the signal handlers. =/
glade_xml_signal_autoconnect (xml);

/+* Find the main window (not shown by default , ogcalcmm . cc
needs it to be hidden initially) and then show it. x/
window = glade_xml_get_widget (xml, ”ogcalc_main_window");

gtk_widget_show(window);

/* Enter the GTK Event Loop. This is where all the events
are caught and handled. It is exited with
gtk_main_quit (). =/

gtk_main ();

return 0;

This is a callback. This resets the values of the entry
widgets , and clears the results. x/

void on_button_clicked_reset(GtkWidget *widget,

{

gpointer data)

GtkWidget *pg_val;
GtkWidget *ri_val;
GtkWidget *cf_val;
GtkWidget *og_result;
GtkWidget *abv_result;

GladeXML x*xml;

/* Find the Glade XML tree containing widget. x/
xml = glade_get_widget_tree (GTK_WIDGET (widget));

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

5 GTK+ AND GLADE

/* Pull the other widgets out the the tree. x/

pg_val = glade_xml_get_widget (xml, "pg_entry");
ri_val glade_xml_get_widget (xml, "ri_entry");
cf_val = glade_xml_get_widget (zml, "cf_entry");
og_result = glade_xml_get_widget (xml, "og_result");
abv_result = glade_xml_get_widget (zml, "abv_result");

gtk_spin_button_set_value (GTK_SPIN_BUTTON(pg_val), 0.0);
gtk_spin_button_set_value (GTK_SPIN_BUTTON(ri_val), 0.0);
gtk_spin_button_set_value (GTK_SPIN_BUTTON(cf_val), 0.0);
gtk_label_set_text (GTK_LABEL(og_result), "");
gtk_label_set_text (GTK_LABEL (abv_result), "");

/x This callback does the actual calculation. x*/
void on_button_clicked_calculate (GtkWidget *widget,
gpointer data)

{

GtkWidget *pg_val;

GtkWidget *ri_val;

GtkWidget *cf_val;

GtkWidget *og_result;

GtkWidget *abv_result;

GladeXML =*xml;

gdouble pg, ri, cf, og, abv;
gchar *og_string;
gchar *xabv_string;

/+* Find the Glade XML tree containing widget. =/
xml = glade_get_widget_tree (GTK_WIDGET (widget));

/* Pull the other widgets out the the tree. x/

pg_val = glade_xml_get_widget (xml, "pg_entry");
ri_val glade_xml_get_widget (xml, "ri_entry");
cf_val = glade_xml_get_widget (zml, "cf_entry");
og_result = glade_xml_get_widget (xml, "og_result");
abv_result = glade_xml_get_widget (zml, "abv_result");

/+* Get the numerical values from the entry widgets. =/

pg = gtk_spin_button_get_value (GTK_SPIN_BUTTON(pg_val));
ri = gtk_spin_button_get_value (GTK_SPIN_BUTTON(ri_val));
cf gtk_spin_button_get_value (GTK_SPIN_BUTTON(cf_val));

og (ri * 2.597) - (pg * 1.644) - 34.4165 + cf;
/* Do the sums. x/
if (og < 60)
abv = (og - pg) * 0.130;
else
abv = (og - pg) * 0.134;

132

133

134

135

136

137

138

139

140

141

142

5 GTK+ AND GLADE 29

/* Display the results. Note the GMarkup tags to
make it display in Bold. x/

og_string = g_strdup_printf ("%0.2f", og);

abv_string = g_strdup_printf ("%0.2f", abv);

gtk_label_set_markup (GTK_LABEL(og_result), og_string);
gtk_label_set_markup (GTK_LABEL(abv_result), abv_string);

g_free (og_string);
g_free (abv_string);

To build the source, do the following:
cd C/glade
cc $(pkg-config --cflags libglade-2.0 gmodule-2.0) -c ogcalc.c
cc $(pkg-config --libs libglade-2.0 gmodule-2.0)

-0 ogcalc ogcalc.o

5.3 Analysis

The most obvious difference between this listing and the previous one is the
huge reduction in size. The main() function is reduced to just these lines:

GladeXML =*xml;
GtkWidget *window;

xml = glade_xml_new("ogcalc.glade", NULL, NULL);
glade_xml_signal_autoconnect (xml);

window = glade_xml_get_widget (xml, "ogcalc_main_window");
gtk_widget_show (window);

glade_xml new() reads the interface from the file ogcalc.glade. It returns
the interface as a pointer to a GladeXML object, which will be used later. Next,
the signal handlers are connected with glade_xml_signal_autoconnect().
Windows users may require special linker flags because signal autoconnection
requires the executable to have a dynamic symbol table in order to dynami-
cally find the required functions.

The signal handlers are identical to those in the previous section. The
only difference is that struct calculation_widgets has been removed. No
information needs to be passed to them through the data argument, since the
widgets they need to use may now be found using the GladeXML interface
description.

GtkWidget *pg_val;

GladeXML *xml;

xml = glade_get_widget_tree (GTK_WIDGET (widget));
pg_val = glade_xml_get_widget (xml, "pg_entry");

Firstly, the GladeXML interface is found, by finding the widget tree con-
taining the widget passed as the first argument to the signal handler. Once
xml has been set, glade_xml_get_widget () may be used to obtain pointers to
the GtkWidgets stored in the widget tree.

6 GTK+ AND GOBJECT 30

- — X
PG:(39.57 || RI:[63.55 [CR: [0 |3
OG: 65.57 ABV %: 3.48

el Quit ‘ ll“""ﬂ_és:ét""_ql Calculate ‘

Figure 10: C/gobject/ogcalc in action.

Compared with the pure C GTK+ application, the code is far simpler,
and the signal handlers no longer need to get their data as structures cast to
gpointer, which was ugly. The code is far more understandable, cleaner and
maintainable.

6 GTK+ and GObject

6.1 Introduction

In the previous sections, the user interface was constructed entirely by hand,
or automatically using libglade. The callback functions called in response
to signals were simple C functions. While this mechanism is simple, under-
standable and works well, as a project gets larger the source will become more
difficult to understand and manage. A better way of organising the source is
required.

One very common way of reducing this complexity is object-orientation.
The GTK+ library is already made up of many different objects. By using
the same object mechanism (GObject), the ogcalc code can be made more
understandable and maintainable.

The ogcalc program consists of a GtkWindow which contains a number of
other GtkWidgets and some signal handler functions. If our program was
a class (Ogcalc) which derived from GtkWindow, the widgets the window
contains would be member variables and the signal handlers would be mem-
ber functions (methods). The user of the class wouldn't be required to have
knowledge of these details, they just create a new Ogcalc object and show it.

By using objects one also gains reusability. Previously only one instance of
the object at a time was possible, and main() had explicit knowledge of the
creation and workings of the interface.

This example bears many similarities with the C++ Glade example in Sec-
tion[7} Some of the features offered by C++ may be taken advantage of using
plain C and GObject.

6.2 Code listing

6 GTK+ AND GOBJECT

Listing 3: C/gobject/ogcalc.h

#include <gtk/gtk.h>
#include <glade/glade.h>

/+* The following macros are GObject boilerplate. x/

/+* Return the GType of the Ogcalc class. x/
#define O0GCALC_TYPE \
(ogcalc_get_type ())

/+* Cast an object to type Ogcalc. The object must be of
type Ogcalc, or derived from Ogcalc for this to work.
This is similar to a C++ dynamic_cast <>. */

#define O0GCALC(obj) \

(G_TYPE_CHECK_INSTANCE_CAST ((obj), \
0GCALC_TYPE, \
Ogcalc))

/% Cast a derived class to an OgcalcClass. x/
#define OGCALC_CLASS(klass) \
(G_TYPE_CHECK_CLASS_CAST ((klass), \
0GCALC_TYPE, \
OgcalcClass))

/* Check if an object is an Ogcalc. x/
#define IS_OGCALC(obj) \
(G_TYPE_CHECK_TYPE ((obj), \
0GCALC_TYPE))

/* Check if a class is an OgcalcClass. x/
#define IS_OGCALC_CLASS(klass) \
(G_TYPE_CHECK_CLASS_TYPE ((klass), \
0GCALC_TYPE))

/+* Get the OgcalcClass class. x/
#define OGCALC_GET_CLASS(obj) \
(G_TYPE_INSTANCE_GET_CLASS ((obj), \
0GCALC_TYPE, \
OgcalcClass))

/* The Ogcalc object instance type. x/
typedef struct _0Ogcalc 0Ogcalc;

/+* The Ogcalc class type. =/

typedef struct _0OgcalcClass 0OgcalcClass;

/+* The definition of Ogcalc. */
struct _Ogcalc

{

GtkWindow parent; /x The object derives from GtkWindow.

GladeXML *xml; /¥ The XML interface. x/
/* Widgets contained within the window. =/
GtkSpinButton *pg_val;
GtkSpinButton *ri_val;
GtkSpinButton *cf_val;

31

%/

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

6 GTK+ AND GOBJECT 32

GtkLabel *og_result;

GtkLabel *abv_result;

GtkButton* quit_button;

GtkButton* reset_button;

GtkButton* calculate_button;
};

struct _0OgcalcClass
{
/* The class derives from GtkWindowClass. x/
GtkWindowClass parent;
/¥ No other class properties are required (e.g. virtual
functions). x/
s

/* The following functions are described in ogcalc.c =/
GType ogcalc_get_type (void);

Ogcalc *
ogcalc_new (void);

gboolean

ogcalc_on_delete_event(Ogcalc *xogcalc,
GdkEvent x*event,
gpointer data);

void

ogcalc_reset (Ogcalc *ogcalc,

gpointer data);
void
ogcalc_calculate(Ogcalc xogcalc,

gpointer data);

Listing 4: C/gobject/ogcalc.c

#include "ogcalc.h"

/* Declare class and instance initialisation functions and
an ogcalc_get_type function to get the GType of Ogcalc.
This has the side effect of registering Ogcalc as a new
GType if it has not already been registered. =/

G_DEFINE_TYPE (Ogcalc, ogcalc, GTK_TYPE_WINDOW);

static void
ogcalc_finalize(Ogcalc *self);

/* This is the class initialisation function. It has no
comparable C++ equivalent , since this is done by the
compliler. =/

static void

ogcalc_class_init (OgcalcClass *klass)

{

GObjectClass *gobject_class = G_OBJECT_CLASS (klass);

42

43

46

47

48

49

50

51

52

53

54

55

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

95

6

}

/%

GTK+ AND GOBJECT 33

/* QOuwverride the virtual finalize method in the GObject
class vtable (which is contained in OgcalcClass). x/
gobject_class->finalize = (GObjectFinalizeFunc) ogcalc_finalize;

This is the object initialisation function. It is
comparable to a C++ constructor. Note the similarity
between "self” and the C++ "this” pointer. x/

static void
ogcalc_init (Ogcalc *self)

{

/x Set the window title x/
gtk_window_set_title (GTK_WINDOW (self),
"0G & ABV Calculator");
/* Don’t permit resizing x/
gtk_window_set_resizable (GTK_WINDOW (self), FALSE);

/* Connect the window close button (”destroy—event”) to
a callback. x/
g_signal_connect (G_OBJECT (self), "delete-event",
G_CALLBACK (ogcalc_on_delete_event),
NULL) ;

/+* Load the interface description. x/
self->xml = glade_xml_new("ogcalc.glade",
"ogcalc_main_vbox", NULL);

/+* Get the widgets. x/
self ->pg_val = GTK_SPIN_BUTTON

(glade_xml_get_widget (self->xml, "pg_entry"));
self->ri_val = GTK_SPIN_BUTTON

(glade_xml_get_widget (self->xml, "ri_entry"));
self->cf_val = GTK_SPIN_BUTTON

(glade_xml_get_widget (self->xml, "cf_entry"));
self ->og_result = GTK_LABEL

(glade_xml_get_widget (self->xzml, "og_result"));
self ->abv_result = GTK_LABEL

(glade_xml_get_widget (self->xml, "abv_result"));
self ->quit_button = GTK_BUTTON

(glade_xml_get_widget (self->xml, "quit_button"));
self ->reset_button = GTK_BUTTON

(glade_xml_get_widget (self->xzml, "reset_button"));
self ->calculate_button = GTK_BUTTON

(glade_xml_get_widget (self->xzml, "calculate_button"));

/* Set up the signal handlers. =/
glade_xml_signal_autoconnect (self->xml);

g_signal_connect_swapped
(G_OBJECT (self->cf_val), "activate",
G_CALLBACK (gtk_window_activate_default),
(gpointer) self);

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

6 GTK+ AND GOBJECT 34

g_signal_connect_swapped
(G_OBJECT (self->calculate_button), "clicked",
G_CALLBACK (ogcalc_calculate),
(gpointer) self);

g_signal_connect_swapped
(G_OBJECT (self->reset_button), "clicked",
G_CALLBACK (ogcalc_reset),
(gpointer) self);

g_signal_connect_swapped
(G_OBJECT (self->quit_button), "clicked",
G_CALLBACK (gtk_widget_hide),
(gpointer) self);

/+* Get the interface root and pack it into our window. x/
gtk_container_add
(GTK_CONTAINER (self),
glade_xml_get_widget (self->xml,
"ogcalc_main_vbox"));

/+* Ensure calculate is the default. The Glade default was
* lost since it wasn’t in a window when the default was
* sef. x/

gtk_widget_grab_default

(GTK_WIDGET (self->calculate_button));

/* This is the object initialisation function. It is
comparable to a C++ destructor. Note the similarity
between “self” and the C++ "this” pointer. =/

static void

ogcalc_finalize (Ogcalc *self)

{

/+* Free the Glade XML interface description. x/
g_object_unref (G_OBJECT (self->xml));

}

/+* Create a new instance of the Ogcalc class (i.e. an
x object) and pass it back by reference. x/
Ogcalc *
ogcalc_new (void)
{
return (Ogcalc *) g_object_new (OGCALC_TYPE, NULL);
}

/%
* This function is called when the window is about to be
* destroyed (e.g. if the close button on the window was

x clicked). It is not a destructor.

*/
gboolean
ogcalc_on_delete_event(Ugcalc *ogcalc,

GdkEvent *event,

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

6

GTK+ AND GOBJECT

gpointer wuser_data)

gtk_widget_hide (GTK_WIDGET (ogcalc));

/* We return true because the object should not be
automatically destroyed. x/

return TRUE;

}

/* Reset the interface. x/

void

ogcalc_reset (Ogcalc *ogcalc,
gpointer data)

{

}

/*

gtk_spin_button_set_value (ogcalc->pg_val, 0.0);
gtk_spin_button_set_value (ogcalc->ri_val, 0.0);
gtk_spin_button_set_value (ogcalc->cf_val, 0.0);
gtk_label_set_text (ogcalc->og_result, "");
gtk_label_set_text (ogcalc->abv_result, "");

Peform the calculation. x/

void
ogcalc_calculate (Ogcalc *ogcalc,

{

gpointer data)
gdouble pg, ri, cf, og, abv;
gchar *xog_string;

gchar *xabv_string;

Pg = gtk_spin_button_get_value (ogcalc->pg_val);

ri = gtk_spin_button_get_value (ogcalc->ri_val);
cf = gtk_spin_button_get_value (ogcalc->cf_val);
og = (ri * 2.597) - (pg * 1.644) - 34.4165 + cf;

/* Do the sums. x/
if (og < 60)

abv = (og - pg) * 0.130;
else

abv = (og - pg) * 0.134;

/* Display the results. Note the GMarkup tags to
make it display in Bold. x/

og_string = g_strdup_printf ("%0.2f", og);

abv_string = g_strdup_printf ("%0.2f", abv);

gtk_label_set_markup (ogcalc—>og_result, og_string);
gtk_label_set_markup (ogcalc->abv_result, abv_string);

g_free (og_string);
g_free (abv_string);

35

6 GTK+ AND GOBJECT 36

Listing 5: C/gobject/ogcalc-main.c
#include <gtk/gtk.h>
#include <glade/glade.h>

#include "ogcalc.h"

/* This main function merely instantiates the ogcalc class
and displays its main window. =/

int

main (int argc, char *argv([])

{
/* Initialise GTK+. x/
gtk_init (&argc, &argv);

/* Create an Ogcalc object. x/
Ogcalc *ogcalc = ogcalc_new();
/* When the widget is hidden , quit the GIK+ main loop. x/
g_signal_connect (G_OBJECT (ogcalc), "hide",
G_CALLBACK (gtk_main_quit), NULL);

/* Show the object. x/
gtk_widget_show (GTK_WIDGET (ogcalc));

/* Enter the GTK Event Loop. This is where all the events
are caught and handled. It is exited with
gtk_main_quit (). =/

gtk_main ();

/+* Clean up. x/
gtk_widget_destroy (GTK_WIDGET (ogcalc));

return O0;

To build the source, do the following:

cd C/gobject

cc $(pkg-config --cflags libglade-2.0 gmodule-2.0) \
-c ogcalc.c

cc $(pkg-config --cflags libglade-2.0 gmodule-2.0) \
-c ogcalc-main.c

cc $(pkg-config --libs libglade-2.0 gmodule-2.0) \
-0 ogcalc ogcalc.o ogcalc-main.o

6.3 Analysis

The bulk of the code is the same as in previous sections, and so describing
what the code does will not be repeated here. The Ogcalc class is defined in
C/gobject/ogcalc.h. This header declares the object and class structures and
some macros common to all GObject-based objects and classes. The macros
and internals of GObject are out of the scope of this document, but suffice it
to say that this boilerplate is required, and is identical for all GObject classes
bar the class and object names.

6 GTK+ AND GOBJECT 37

The object structure (_Ogcalc) has the object it derives from as the first
member. This is very important, since it allows casting between types in the
inheritance hierarchy, since all of the object structures start at an offset of 0
from the start address of the object. The other members may be in any or-
der. In this case it contains the Glade XML interface object and the widgets
required to be manipulated after object and interface construction. The class
structure (_OgcalcClass) is identical to that of the derived class (GtkWindow-
Class). For more complex classes, this might contain virtual function pointers.
It has many similarities to a C++ vtable. Finally, the header defines the public
member functions of the class.

The implementation of this class is found in C/gobject/ogcalc.c. The
major difference to previous examples is the class registration and the extra
functions for object construction, initialisation and notification of destruction.
The body of the methods to reset and calculate are identical to previous
examples.

The macro GDEFINE_TYPE is used for convenience. Its parameters are
the class name to register, the prefix used by methods of this class and the
GType of the parent type we are inheriting from. It prototypes the initial-
isation functions defined in the source below, and it defines the function
ogcalc_get_type(), which is used to get the the typeid (GType) of the class.
As a side effect, this function triggers registration of the class with the GType
type system. GType is a dynamic type system. Unlike languages like C++,
where the types of all classes are known at compile-time, the majority of all
the types used with GTK+ are registered on demand, except for the primitive
data types and the base class GObject which are registered as fundamental
types. As a result, in addition to being able to specify constructors and de-
structors for the object (or initialisers and finalisers in GType parlance), it is also
possible to have initialisation and finalisation functions for both the class and
base. For example, the class initialiser could be used to fix up the vtable for
overriding virtual functions in derived classes. In addition, there is also an
instance_init function, which is used in this example to initialise the class. It's
similar to the constructor, but is called after object construction.

All these functions are specified in a GTypeInfo structure which is passed
to g_type_register_static() to register the new type.

ogcalc_class_init () is the class initialisation function. This has no C++
equivalent, since this is taken care of by the compiler. In this case it is used
to override the finalize() virtual function in the GObjectClass base class.
This is used to specify a virtual destructor (it’s not specified in the GTypeInfo
because the destructor cannot be run until after an instance is created, and
so has no place in object construction). With C++, the vtable would be fixed
up automatically; here, it must be done manually. Pure virtual functions and
default implementations are also possible, as with C++.

ogcalc_init () is the object initialisation function (C++ constructor). This
does a similar job to the main() function in previous examples, namely con-
tructing the interface (using Glade) and setting up the few object properties
and signal handlers that could not be done automatically with Glade. In this
example, a second argument is passed to glade_xml _new(); in this case, there
is no need to create the window, since our Ogcalc object is 2 window, and so
only the interface rooted from “ogcalc_main_vbox” is loaded.

ogcalc_finalize() is the object finalisation function (C++ destructor). It’s

7 GTK+ AND C++ 38

used to free resources allocated by the object, in this case the GladeXML in-
terface description. g_object_unref () is used to decrease the reference count
on a GObject. When the reference count reaches zero, the object is destroyed
and its destructor is run. There is also a dispose() function called prior to
finalize (), which may be called multiple times. Its purpose is to safely free
resources when there are cyclic references between objects, but this is not
required in this simple case.

An important difference with earlier examples is that instead of con-
necting the window “destroy” signal to gtkmain_quit() to end the appli-
cation by ending the GTK+ main loop, the “delete” signal is connected to
ogcalc_on_delete_event () instead. This is because the default action of the
“delete” event is to trigger a “destroy” event. The object should not be de-
stroyed, so by handling the “delete” signal and returning TRUE, destruction
is prevented. Both the “Quit” button and the “delete” event end up calling
gtk_widget_hide() to hide the widget rather than gtk main_quit () as before.

Lastly, C/gobject/ogcalc-main.c defines a minimal main(). The sole
purpose of this function is to create an instance of Ogcalc, show it, and then
destroy it. Notice how simple and understandable this has become now that
building the UI is where it belongs—in the object construction process. The
users of Ogcalc need no knowledge of its internal workings, which is the
advantage of encapsulating complexity in classes.

By connecting the “hide” signal of the Ogcalc object to gtkmain_quit()
the GTK+ event loop is ended when the user presses “Quit” or closes the
window. By not doing this directly in the class it is possible to have as many
instances of it as ones likes in the same program, and control over termination
is entirely in the hands of the user of the class—where it should be.

7 GTK+ and C++

7.1 Introduction

In the previous section, it was shown that Glade and GObject could make
programs much simpler, and hence increase their long-term maintainability.
However, some problems remain:

e Much type checking is done at run-time. This might mean errors only
show up when the code is in production use.

o Although object-oriented, using objects in C is a bit clunky. In addition,
it is very difficult (although not impossible) to derive new widgets from
existing ones using GObject, or override a class method or signal. Most
programmers do not bother, or just use “compound widgets”, which
are just a container containing more widgets.

e Signal handlers are not type safe. This could result in undefined be-
haviour, or a crash, if a signal handler does not have a signature com-
patible with the signal it is connected to.

e Signal handlers are functions, and there is often a need to resort to using
global variables and casting structures to type gpointer to pass complex

7 GTK+ AND C++ 39

- — X
PG:(39.57 || RI:[63.55 [CR: [0 |3
OG: 65.57 ABV %: 3.48

el Quit ‘ ll“""ﬂ_és:éf_"_ql Calculate ‘

Figure 11: C++/glade/ogcalc in action.

information to a callback though its data argument. If Glade or GObject
are used, this can be avoided, however.

Gtkmm offers solutions to most of these problems. Firstly, all of the GTK+
objects are available as native C++ classes. The object accessor functions are
now normal C++ class methods, which prevents some of the abuse of objects
that could be accomplished in C. The advantage is less typing, and there is
no need to manually cast between an object’s types to use the methods for
different classes in the inheritance hierarchy.

The Gtkmm classes may be used just like any other C++ class, and this
includes deriving new objects from them through inheritance. This also en-
ables all the type checking to be performed by the compiler, which results in
more robust code, since object type checking is not deferred until run-time.

Signal handling is also more reliable. Gtkmm uses the 1ibsigc++ library,
which provides a templated signalling mechanism for type-safe signal han-
dling. The mem_fun objects allow signal handlers with a different signature
than the signal requires to be bound, which gives greater flexibility than the
C signals allow. Perhaps the most notable feature is that signal handlers may
be class methods, which are recommended over global functions. This results
in further encapsulation of complexity, and allows the signal handlers to ac-
cess the member data of their class. Unlike the Qf library, Gtkmm does not
require any source preprocessing, allowing plain ISO C++ to be used without
extensions.

libglademm is a C++ wrapper around libglade, and may be used to dy-
namically load user interfaces as in the previous section. It provides similar
functionality, the exception being that signals must be connected manually.
This is because the 1ibsigc++ signals, connecting to the methods of individ-
ual objects, cannot be connected automatically.

C++/glade/ogcalc, shown in Figure is identical to the previous ex-
amples, both in appearance and functionality. However, internally there are
some major differences.

Firstly, the main() function no longer knows anything about the user in-
terface. It merely instantiates an instance of the ogcalc class, similarly to
C/gobject/ogcalc.

The ogcalc class is derived from the Gtk::Window class, and so contains
all of the functionality of a Gtk::Window, plus its own additional functions

27

28

29

30

40

41

42

43

45

46

47

48

49

50

51

52

53

54

24

25

26

27

28

7 GTK+ AND C++ 40

and data. ogcalc contains methods called on_button_clicked_calculate()
and on button_clicked reset(). These are the equivalents of the func-
tions on_button_clicked_calculate() and on_button_clicked_reset () used
in the previous examples. Because these functions are class methods, they
have access to the class member data, and as a result are somewhat simpler
than previously.

Two versions are provided, one using the basic C++ classes and methods
to construct the interface, the other using libglademm to load and construct
the interface as for the previous examples using Glade. Only the latter is
discussed here. There are a great many similarities between the C and C++
versions not using Glade, and the C Gobject version and the C++ Glade
version. It is left as an exercise to the reader to compare and contrast them.

7.2 Code Listing

Listing 6: C++/glade/ogcalc.h

#include <gtkmm.h>
#include <libglademm.h>

class ogcalc : public Gtk::Window
{
public:

ogcalc ();

virtual “ogcalc();

protected:
// Calculation signal handler.
virtual void on_button_clicked_calculate();
// Reset signal handler.

virtual void on_button_clicked_reset ();

// The widgets that are manipulated .
Gtk::SpinButton* pg_entry;
Gtk::SpinButton* ri_entry;
Gtk::SpinButton* cf_entry;
Gtk::Label* og_result;

Gtk::Label* abv_result;

Gtk::Button* quit_button;

Gtk ::Button* reset_button;
Gtk::Button* calculate_button;

// Glade interface description.
Glib::RefPtr<Gnome::Glade::Xml> xml_interface;

Listing 7: C++/glade/ogcalc.cc

#include <iomanip>
#include <sstream>

#include <sigc++/retype_return.h>

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

7 GTK+ AND C++

#include "ogcalc.h"

ogcalc::ogcalc ()

{

// Set the window title.
set_title("0OG & ABV Calculator");
// Don’t permit resizing.
set_resizable(false);

// Get the Glade user interface and add it to
xml_interface =
Gnome::Glade::Xml::create("ogcalc.glade",

41

this window.

"ogcalc_main_vbox");

Gtk::VBox *main_vbox;

xml_interface->get_widget ("ogcalc_main_vbox", main_vbox);

add (*main_vbox);

// Pull all of the widgets out of the Glade interface.
xml_interface->get_widget ("pg_entry", pg_entry);

xml_interface->get_widget ("ri_entry", ri_entry);
xml_interface->get_widget ("cf_entry", cf_entry);
xml_interface->get_widget ("og_result", og_result);
xml_interface->get_widget ("abv_result", abv_result);
xml_interface->get_widget ("quit_button", quit_button);
xml_interface->get_widget ("reset_button", reset_button);

xml_interface—>get_widget("calculate_button",
calculate_button);

// Set up signal handers for buttons.
quit_button->signal_clicked().connect

(sigc::mem_fun(*this, &ogcalc::hide));
reset_button->signal_clicked().connect

(sigc::mem_fun (*this, &ogcalc::on_button_clicked_reset));

reset_button->signal_clicked (). connect

(sigc::mem_fun(*pg_entry, &Gtk::Widget::grab_focus));

calculate_button->signal_clicked().connect
(sigc::mem_fun (*this,

&ogcalc::on_button_clicked_calculate));

calculate_button->signal_clicked (). connect

(sigc::mem_fun(*reset_button, &Gtk::Widget:

// Set up signal handlers for numeric entries.
pg_entry->signal_activate (). connect

:grab_focus));

(sigc::mem_fun(*ri_entry, &Gtk::Widget::grab_focus));

ri_entry->signal_activate ().connect

(sigc::mem_fun(*cf_entry, &Gtk::Widget::grab_focus));

cf_entry->signal_activate ().connect
(sigc::hide_return
(sigc::mem_fun (*this,

&Gtk ::Window::activate_default)));

// Ensure calculate is the default. The Glade default was
// lost since it was not packed in a window when set.

calculate_button->grab_default ();

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

24

25

26

27

28

29

7 GTK+ AND C++ 42
}

ogcalc:: " ogcalc ()

{

}

void

ogcalc::on_button_clicked_calculate ()

{

// PG, RI, and CF wvalues.

double pg = pg_entry->get_value();
double ri = ri_entry->get_value();
double cf cf_entry->get_value ();

// Calculate OG.
double og = (ri * 2.597) - (pg * 1.644) - 34.4165 + cf;

// Calculate ABV.
double abv;
if (og < 60)
abv = (og - pg) * 0.130;
else
abv

(og - pg) * 0.134;

std::ostringstream output;

// Use the user’s locale for this stream.

output.imbue(std::locale(""));

output << "" << std::fixed << std::setprecision(2)
<< og << "";

og_result->set_markup (Glib::locale_to_utf8(output.str()));

output.str("");

output << "" << std::fixed << std::setprecision(2)
<< abv << "";

abv_result ->set_markup

(Glib::locale_to_utf8 (output.str()));

void
ogcalc::on_button_clicked_reset ()

{

pg_entry->set_value (0.0);
ri_entry->set_value(0.0);
cf_entry->set_value (0.0);
og_result->set_text("");

abv_result->set_text ("");

Listing 8: C++/glade/ogcalc-main.cc

#include <gtk/gtk.h>
#include <glade/glade.h>

#include "ogcalc.h"

// This main function merely instantiates the ogcalc class

30

32

33

35

36

38

39

40

7 GTK+ AND C++ 43

// and displays it.
int
main (int argc, char *argv[])

{
Gtk::Main kit (argc, argv); // Initialise GTK+.

ogcalc window; // Create an ogcalc object.
kit.run(window); // Show window; return when it’s closed.

return O0;

To build the source, do the following:
cd C++/glade
ct+ $(pkg-config --cflags libglademm-2.4) -c ogcalc.cc
ct+ $(pkg-config --cflags libglademm-2.4) -c ogcalc-main.cc
ct++ $(pkg-config --libs libglademm-2.4) -o ogcalc ogcalc.o \
ogcalc-main.o

Similarly, for the plain C++ version, which is not discussed in the tutorial:

cd C++/plain

ct+ $(pkg-config --cflags gtkmm-2.4) -c ogcalc.cc

ct+ $(pkg-config --cflags gtkmm-2.4) -c ogcalc-main.cc

c++ $(pkg-config --1libs gtkmm-2.4) -o ogcalc ogcalc.o \
ogcalc-main.o

7.3 Analysis
7.3.1 ogcalc.h

The header file declares the ogcalc class.
class ogcalc : public Gtk::Window
ogcalc is derived from Gtk: :Window

virtual void on_button_clicked_calculate();
virtual void on_button_clicked_reset ();

on_button_clicked_calculate() and on_button_clicked reset() are the
signal handling functions, as previously. However, they are now class member
functions, taking no arguments.

Gtk::SpinButton* pg_entry;
Glib::RefPtr<Gnome::Glade::Xml> xml_interface;

The class data members include pointers to the objects needed by the call-
backs (which can access the class members like normal class member func-
tions). Note that Gtk::SpinButton is a native C++ class. It also includes
a pointer to the XML interface description. Glib::RefPtr is a templated,
reference-counted, “smart pointer” class, which will take care of destroying
the pointed-to object when ogcalc is destroyed.

7 GTK+ AND C++ 44

7.3.2 ogcalc.cc

The constructor ogcalc: :ogcalc() takes care of creating the interface when
the class is instantiated.

set_title("0OG & ABV Calculator");
set_resizable (false);

The above code uses member functions of the Gtk::Window class. The
global functions gtk_window_set_title() and gtk window_set_resizable()
were used previously.

xml\ _interface =
Gnome::Glade::Xml::create("ogcalc.glade",
"ogcalc_main_vbox");
Gtk::VBox *main_vbox;
xml_interface->get_widget ("ogcalc_main_vbox", main_vbox);
add (*main\ _vbox);

The Glade interface is loaded using Gnome: :Glade: :Xml: :create(), in a
similar manner to the GObject example, and then the main VBox is added to
the Ogcalc object.

xml_interface->get_widget ("pg_entry", pg_entry);

Individual widgets may be obtained from the widget tree using the static
member function Gnome: :Glade: :Xml: :get_widget ().

Because Gtkmm uses libsigc++ for signal handling, which uses class
member functions as signal handlers (normal functions may also be used, too),
the signals cannot be connected automatically, as in the previous example.

quit_button->signal_clicked (). connect
(sigc::mem_fun(*this, &ogcalc::hide));

This complex-looking code can be broken into several parts.
sigc::mem_fun (*this, &ogcalc::hide)

creates a sigc: :mem_fun (function object) which points to the ogcalc: :hide ()
member function of this object.

quit_button->signal_clicked ()

returns a Glib::SignalProxy0 object (a signal taking no arguments). The
connect () method of the signal proxy is used to connect ogcalc: :hide() to
the “clicked” signal of the Gtk: :Button.

calculate_button->signal_clicked().connect
(sigc::mem_fun (*this,
&ogcalc::on_button_clicked_calculate));
calculate_button->signal_clicked () .connect
(sigc::mem_fun(*reset_button, &Gtk::Widget::grab_focus));

Here two signal handlers are connected to the same signal. When the “Cal-
culate” button is clicked, ogcalc: :on button_clicked calculate() is called
first, followed by Gtk: :Widget: :grab_focus().

cf_entry->signal_activate (). connect
(sigc::hide_return
(sigc::mem_fun (*this,
&Gtk::Window::activate_default)));

8 PYTHON 45

sigc::hide_return is a special sigc: :mem_fun used to mask the boolean
value returned by activate_default (). The mem_fun created is incompatible
with with the mem_fun type required by the signal, and this “glues” them
together.

In the ogcalc: :on_button_clicked calculate() member function,

double pg
Pg = pg_entry->get_value ();

the member function Gtk::SpinButton::get_value() was previously used
as gtk_spin_button_get_value().

std::ostringstream output;
output.imbue(std::locale(""));
output << "" << std::fixed << std::setprecision(2)
<< og << "";
og_result->set_markup(Glib::locale_to_utf8 (output.str()));

This code sets the result field text, using an output stringstream and Pango
markup.
In the ogcalc: :on_button_clicked reset () member function,

pg_entry->set_value (0.0);
og_result->set_text("");
pg_entry->grab_focus ();

class member functions are used to reset and clear the widgets as in previous
examples.

7.3.3 ogcalc-main.cc

This file contains a very simple main() function.

Gtk::Main kit (argc, argv); // Initialise GTK+.
ogcalc window;
kit.run(window) ;

A Gtk::Main object is created, and then an ogcalc class, window, is in-
stantiated. Finally, the interface is run, using kit.run(). This function will
return when window is hidden, and then the program will exit.

8 Python

8.1 Introduction

Python is a popular scripting language, particularly with beginners to pro-
gramming, but also used by many veteran developers. It has a clear and
simple syntax, coupled with decent support for both procedural and object-
oriented programming. Unlike C and C++, Python is an interpreted language,
and so compilation is not necessary. This has some advantages, for example
development is faster, particularly when prototyping new code. There are also
disadvantages, such as programs running much slower than machine code.
Worse, all code paths must be run in order to verify they are syntactically
correct, and simple typing mistakes can result in a syntactically correct, but
dysfunctional, program. A good C or C++ compiler would catch these errors,

26

27

28

29

30

32

33

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

8 PYTHON 46

but Python cannot. There are tools, such as pychecker, which help with this.
The purpose of this document is not to advocate any particular tool, however.
The pros and cons of each language have been discussed at length in many
other places.

Python has a language binding for GTK+, pyGTK, which allows the cre-
ation of GTK+ user interfaces directly, including the ability to derive new
classes from the standard GTK+ classes, and use Python functions and object
methods as callbacks. The functionality provided by libglade in C is also
similarly available.

In the next section, examples show the use of pyGTK to create the ogcalc
interface, using both plain GTK+ and Glade. The author wrote the Python
scripts with only a few hours of Python experience, directly from the original
C source, which demonstrates just how easy Python is to get into.

8.2 Code listing

Listing 9: python/plain/ogcalc
import pygtk
pygtk.require(’2.07)
import gtk

A utility widget for Ul construction .
class OgcalcSpinEntry(gtk.HBox):

def __init__(self, label_text, tooltip_text,
adjustment , digits):
gtk .HBox.__init__(self, False, 5)

An eventbox. This widget is just a container for
widgets (like labels) that don’t have an
associated X window, and so can’'t receive X
events. This is just used to we can add tooltips
to each label.

eventbox = gtk.EventBox ()

eventbox.show ()

self .pack_start (eventbox, False, False)

Create a label.

label = gtk.Label(label_text)

Add the label to the eventbox.
eventbox.add(label)

label.show ()

H FH H HF H*

Create a GtkSpinButton and associate it with the

adjustment. It adds/substracts 0.5 when the spin

buttons are used, and has digits accuracy.

self.spinbutton = gtk.SpinButton(adjustment, 0.5,
digits)

Only numbers can be entered.

self.spinbutton.set_numeric(True)

self .pack_start (self.spinbutton)

self.spinbutton.show ()

61

62

63

64

65

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

8 PYTHON 47

Create a tooltip and add it to the EventBox
previously created.

tooltip = gtk.Tooltips ()
tooltip.set_tip(eventbox, tooltip_text)

A utility widget for Ul construction.

class

OgcalcResult (gtk.HBox):

def init__(self, label_text, tooltip_text):

The

class

H o H H H

gtk.HBox.__init__(self, False, 5)

As before, a label in an event box with a tooltip.
eventbox = gtk.EventBox ()

eventbox.show ()

self .pack_start (eventbox, False, False)

label = gtk.Label(label_text)
eventbox.add (label)
label.show ()

This is a label , used to display the OG result.
self .result_value = gtk.Label()

Because it’s a result, it is set "selectable”, to
allow copy/paste of the result, but it’s not

modifiable .

self .result_value.set_selectable(True)

self .pack_start(self.result_value)
self.result_value.show ()

Add the tooltip to the event box.
tooltip = gtk.Tooltips ()
tooltip.set_tip(eventbox, tooltip_text, None)

main widget (a top—level window).
Ogcalc (gtk.Window):

This is a callback function. It resets the wvalues
of the entry widgets, and clears the results.
“data” is the calculation_widgets structure , which
needs casting back to its correct type from a
gpointer (wvoid =) type.

def on_button_clicked_reset (self, data=None):

self .pg_entry.spinbutton.set_value (0.0)
self .ri_entry.spinbutton.set_value(0.0)
self.cf_entry.spinbutton.set_value (0.0)
self.og_result.result_value.set_text("")
self.abv_result.result_value.set_text("")

This callback does the actual calculation. Its
arguments are the same as for
on_button_clicked_reset ().

def on_button_clicked_calculate(self, data=None):

Get the numerical values from the entry widgets.

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

8 PYTHON

def

48

pg = self.pg_entry.spinbutton.get_value ()
ri self.ri_entry.spinbutton.get_value ()
cf self.cf_entry.spinbutton.get_value ()

Do the sums.
og = (ri * 2.597) - (pg * 1.644) - 34.4165 + cf

if (og < 60):

abv = (og - pg) * 0.130
else:

abv = (og - pg) * 0.134

Display the results. Note the GMarkup
tags to make it display in boldface.
self.og_result.result_value.set_markup \
("%(result)0.2f" %{’result’: ogl)

self .abv_result.result_value.set_markup \
("%(result)0.2f" %{’result’: abvl})

__init__(self):
gtk.Window.__init__(self, gtk.WINDOW_TOPLEVEL)
self.set_title("0G & ABV Calculator")

Disable window resizing , since there’s no point in
this case.
self.set_resizable(False)

Connect the window close button (”destroy” event)
to gtk_main_quit ().
self.connect("destroy", gtk.main_quit, None)

Create a GtkVBox to hold the other widgets. This
contains other widgets , which are packed in to it
vertically .

vboxl = gtk.VBox ()

Add the VBox to the Window. A GtkWindow /is a/
GtkContainer which /is a/ GtkWidget.

GTK_CONTAINER casts the GtkWidget to a

GtkContainer , like a C++ dynamic_cast.
self.add(vbox1)

Display the VBox. At this point, the Window has
not yet been displayed , so the window isn’'t yet
visible .

vbox1.show ()

Create a second GtkVBox. Unlike the previous
VBox, the widgets it will contain will be of
uniform size and separated by a 5 pixel gap.
vbox2 = gtk.VBox(True, 5)

Set a 10 pixel border width.
vbox2.set_border_width (10)

Add this VBox to our first VBox.
vboxl.pack_start(vbox2, False, False)

8 PYTHON 49

169 vbox2.show ()

170

171 # Create a GtkHBox. This is identical to a GtkVBox
172 # except that the widgets pack horizontally instead
173 # of vertically.

174 hboxl = gtk.HBox(False, 10)

175

176 # Add to vbox2. The function’s other arguments mean
177 # to expand into any extra space alloted to it , to
178 # fill the extra space and to add 0 pixels of

179 # padding between it and its neighbour.

180 vbox2.pack_start (hboxl)

181 hbox1.show ()

182

183 # A GtkAdjustment is used to hold a numeric value:
184 # the initial value , minimum and maximum values ,

185 # "step” and "page” increments and the "page size”.
186 # It’s used by spin buttons, scrollbars , sliders

187 # etc..

188 adjustment = gtk.Adjustment (0.0, 0.0, 10000.0,

189 0.01, 1.0, 0)

190

191 # Use a helper widget to create a GtkSpinButton

192 # entry together with a label and a tooltip. The
193 # spin button is stored in the cb_widgets.pg_val
194 # pointer for later use. We also specify the

195 # adjustment to use and the number of decimal places
19 # to allow.

197 self .pg_entry = \

198 OgcalcSpinEntry ("PG:", "Present Gravity (density)",
199 adjustment , 2)

200

201 # Pack the returned widget into the interface.

202 hboxl.pack_start (self.pg_entry)

203 self .pg_entry.show ()

204

205 # Repeat the above for the mnext spin button.

206 adjustment = gtk.Adjustment (0.0, 0.0, 10000.0,

207 0.01, 1.0, 0)

208 self.ri_entry = \

209 OgcalcSpinEntry ("RI:", "Refractive Index",

210 adjustment, 2)

211 hboxl.pack_start(self.ri_entry)

212 self.ri_entry.show()

213

214 # Repeat again for the last spin button.

215 adjustment = gtk.Adjustment (0.0, -50.0, 50.0,

216 0.1, 1.0, 0)

217 self.cf_entry = \

218 OgcalcSpinEntry("CF:", "Correction Factor",

219 adjustment, 1)

220 hbox1l.pack_start(self.cf_entry)

21 self.cf_entry.show()
22

8 PYTHON 50

23 # Now we move to the second "row” of the interface,
24 # used display the results.

225

26 # Firstly , a new GtkHBox to pack the labels into.
227 hbox1l = gtk.HBox(True, 10)

28 vbox2.pack_start (hboxl)

229 hbox1.show ()

230

231 # Create the OG result label , then pack and display.
232 self.og_result = \

233 OgcalcResult ("0G:", "Original Gravity (density)")
234

235 hboxl.pack_start (self.og_result)

236 self.og_result.show()

237

238 # Repeat as above for the second result value.

29 self.abv_result = \

240 OgcalcResult ("ABV %:", "Percent Alcohol By Volume")
241 hboxl.pack_start(self.abv_result)

242 self.abv_result.show()

243

244 # Create a horizontal separator (GtkHSeparator) and
245 # add it to the VBox.

26 hsep = gtk.HSeparator ()

247 vboxl.pack_start (hsep, False, False)

248 hsep.show ()

249

250 # Create a GtkHBox to hold the bottom row of

251 # buttons.

252 hboxl = gtk.HBox(True, 5)

253 hbox1.set_border_width (10)

254 vbox1l.pack_start (hbox1)

255 hbox1.show ()

256

257 # Create the "Quit” button. We use a "stock”

258 # button —commonly—used buttons that have a set

259 # title and icon.

260 buttonl = gtk.Button(None, gtk.STOCK_QUIT, False)
261 # We connect the "clicked” signal to the

262 # gtk_main_quit () callback which will end the

263 # program.

264 buttonl.connect("clicked", gtk.main_quit, None)

265 hboxl.pack_start (buttonl)

266 buttonl.show ()

267

268 # This button resets the interface.

269 buttonl = gtk.Button("_Reset", None, True)

270 # The "clicked” signal is connected to the

271 # on_button_clicked_reset () callback above, and our
7 # 7"cb_widgets” widget list is passed as the second
273 # argument , cast to a gpointer (void =x).

274 buttonl.connect_object("clicked",

275 Ogcalc.on_button_clicked_reset, self)

276 # connect_object is used to connect a signal from

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

8 PYTHON 51

if

one widget to the handler of another. The last

argument is the widget that will be passed as the

first argument of the callback. This causes

gtk_widget_grab_focus to switch the focus to the

PG entry.

buttonl.connect_object(“clicked",
gtk.Widget.grab_focus, self.pg_entry.spinbutton)

This lets the default action (Enter) activate this

widget even when the focus is elsewhere. This

doesn 't set the default , it just makes it possible

to set.

buttonl.set_flags (gtk.CAN_DEFAULT)

hboxl.pack_start (buttonl)

buttonl.show ()

H F* H H H*

H FH H H

The final button is the Calculate button.

button2 = gtk.Button("_Calculate", None, True)

When the button is clicked , call the

on_button_clicked_calculate () function. This is

the same as for the Reset button.

button2.connect_object("clicked",
Ogcalc.on_button_clicked_calculate, self)

Switch the focus to the Reset button when the

button is clicked.

button2.connect_object("clicked",
gtk.Widget.grab_focus, buttonl)

As before , the button can be the default.

button2.set_flags(gtk.CAN_DEFAULT)

hbox1.pack_start (button2)

Make this button the default. Note the thicker

border in the interface —this button is activated

if you press enter in the CF entry field.

button2.grab_default ()

button2.show ()

Set up data entry focus movement. This makes the
interface work correctly with the keyboard , so
that you can touch—type through the interface with
no mouse usage or tabbing between the fields .

H HF H* HF

When Enter is pressed in the PG entry box, focus

is transferred to the RI entry.

self .pg_entry.spinbutton.connect_object("activate",
gtk.Widget.grab_focus, self.ri_entry.spinbutton)

RI — CF.

self.ri_entry.spinbutton.connect_object("activate",
gtk.Widget.grab_focus, self.cf_entry.spinbutton)

When Enter is pressed in the RI field , it

activates the Calculate button.

self.cf_entry.spinbutton.connect_object("activate",
gtk.Window.activate_default, self)

__name__ == "__main__":

331

332

333

26

27

28

29

31

32

34

35

37

38

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

PYTHON

ogcalc = Ogcalc ()
ogcalc.show ()
gtk .main ()

Listing 10: python/glade/ogcalc

import pygtk
pygtk.require(’2.0°)
import gtk

import gtk.glade

class Ogcalc(gtk.Window):

This function is called when the window is about to
destroyed (e.g. if the close button on the window was
clicked). It is not a destructor.

def

on_delete_event (self, event, data=None):
self .hide ()
return True

Reset the interface.

def

reset (self, data=None):

self .pg_val.set_value (0.0)
self.ri_val.set_value (0.0)
self.cf_val.set_value (0.0)
self.og_result.set_text("")
self.abv_result.set_text("")

Peform the calculation .

def

def

calculate(self, data=None):

o self .pg_val.get_value ()
ri = self.ri_val.get_value()
cf = self.cf_val.get_value()

og = (ri * 2.597) - (pg * 1.644) - 34.4165 + cf;

Do the sums.
if og < 60:

abv = (og - pg) * 0.130;
else:

abv = (og - pg) * 0.134;

Display the results. Note the GMarkup
tags to make it display in boldface.
self.og_result.set_markup ("%(result)0.2f"
%{’result’: og})
self.abv_result.set_markup ("%(result)0.2f"
%{’result’: abv})

__init__(self):
gtk.Window.__init__(self, gtk.WINDOW_TOPLEVEL)
self .set_title("0G & ABV Calculator")

Disable window resizing , since there’'s no point
this case.

52

be

in

8 PYTHON

75 self.set_resizable(False)

76

77 self .connect ("delete-event",

78 Ogcalc.on_delete_event, None)

79

80 # Load the interface description.

81 self.xml = gtk.glade.XML("ogcalc.glade",

82 "ogcalc_main_vbox", None);
83

84 # Get the widgets.

85 self .pg_val = self.xml.get_widget("pg_entry");
86 self . ri_val = self.xml.get_widget("ri_entry");
87 self.cf_val = self.xml.get_widget("cf_entry");
88 self.og_result = self.xml.get_widget("og_result");
89 self.abv_result = self.xml.get_widget("abv_result");
90 self.quit_button = \

91 self .xml.get_widget ("quit_button");

% self.reset_button = \

93 self.xml.get_widget("reset_button");

94 self.calculate_button = \

%5 self .xml.get_widget("calculate_button");

96

97 self.cf_val.connect_object("activate",

98 gtk.Window.activate_default, self)

9 self.calculate_button.connect_object("clicked",
100 Ogcalc.calculate, self)

101 self.calculate_button.connect_object("clicked",
102 gtk.Widget.grab_focus, self.reset_button)
103 self.reset_button.connect_object("clicked”,

104 Ogcalc.reset, self)

105 self .reset_button.connect_object("clicked",

106 gtk.Widget.grab_focus, self.pg_val)

107 self.quit_button.connect_object(”clicked",

108 gtk.Widget.hide, self)

109

110 # Set up signal handlers for numeric entries.
11 self .pg_val.connect_object("activate",

112 gtk.Widget.grab_focus, self.ri_val)

113 self.ri_val.connect_object("activate",

114 gtk.Widget.grab_focus, self.cf_val)

115 self.cf_val.connect_object("activate",

116 gtk.Window.activate_default, self)

117

18 # Get the interface root and pack it into our
119 # window .

120 self.add(self.xml.get_widget ("ogcalc_main_vbox"))
121

122 # Ensure calculate is the default. The Glade
123 # default was lost since it wasn’t in a window when
124 # the default was set.

125 self.calculate_button.grab_default ()

126

127 if name == " main__":

128 ogcalc = 0Ogcalc()

129

130

131

8 PYTHON 54

ogcalc.connect("hide", gtk.main_quit, None)
ogcalc.show ()
gtk .main ()

8.3 Analysis

What the GTK+ classes and methods do here will not be discussed, having
been covered in the previous sections. Instead, the Python-specific differences
will be examined.

import pygtk
pygtk.require(’2.07)
import gtk

This preamble imports the pyGTK modules for us, and checks that the
GTK+ version is correct.

class OgcalcSpinEntry (gtk.HBox):
def __init__(self, label_text, tooltip_text,
adjustment , digits):
gtk.HBox.__init__(self, False, 5)

class OgcalcResult (gtk.HBox):
def init__(self, label_text, tooltip_text):

gtk.HBox.__init__(self, False, 5)

These two simple classes derive from GtkHBox. They are the Python
equivalents of the create_spin_entry() and create_result_label() func-
tions in Section @ They are mostly identical to the C code in terms of
the objects created and the object methods used. The main difference is
that create_spin_entry() has a spinbutton_pointer argument which has been
dropped here. The same difference applies to create_result_label() for re-
sult_label_pointer. In Python, we can’t pass pointers as easily as in C, however
we can access the spinbutton as a member of the OgcalcSpinEntry object
instead (object.spinbutton).

Note that because the object is derived, the __init__() initialiser (construc-
tor) has to manually chain up to the parent initialiser in order to correctly
initialise the class instance.

class Ogcalc(gtk.Window):
is our main application object. It derives from gtk.Window.
def on_button_clicked_reset (self, data=None):
self .pg_entry.spinbutton.set_value (0.0)
self.abv_result.result_value.set_text("")

This function resets the interface to its initial state. Note that all the mem-
ber variables are accessed through self, which is the class instance, and that
the spinbutton and value label to be manipulated are contained within the
helper objects defined above.

def on_button_clicked_calculate(self, data=None):

8 PYTHON 55

self.og_result.result_value.set_markup \
("%(result)0.2f" %{’result’: ogl})

This function does the calculation. Note the substitution of the result value
into the string, which is rather simpler than both the C and the C++ code used
to construct the result string.

def __init__(self):

gtk.Window.__init__(self, gtk.WINDOW_TOPLEVEL)
self.set_title("0G & ABV Calculator")

This is the initialiser for the Ogcalc class. It starts by chaining up the
gtk.Window initialiser, and then calls the set_title() gtk.Window method to
set the window title.

self.connect("destroy", gtk.main_quit, None)

This connects the “destroy” signal to the gtk.main_quit () function. There’s
far less to type than the C and C++ equivalents, and hence it’s rather more
readable.

self .pg_entry = \
OgcalcSpinEntry ("PG:", "Present Gravity (density)",
adjustment, 2)

Here we create a helper object for entering the PG value.

self.abv_result = \
OgcalcResult ("ABV %:", "Percent Alcohol By Volume")

Here we create a helper object for displaying the ABV result.

buttonl = gtk.Button(None, gtk.STOCK_QUIT, False)
buttonl = gtk.Button("_Reset", None, True)
button2 = gtk.Button("_Calculate", None, True)

This code creates the buttons. Unlike C and C++, where different func-
tions or overloaded constructors were used to create an object with different
parameters, Python only has a single initialiser function, which is used for
both stock and non-stock widgets. Depending on whether a stock or non-
stock widget is being created, the first and third, or the second arguments are
redundant, respectively.

buttonl.connect_object("clicked",
Ogcalc.on_button_clicked_reset, self)

This connects the “clicked” signal to the Ogcalc on_button_clicked_reset ()
method of the self object.

self .pg_entry.spinbutton.connect_object("activate",
gtk.Widget.grab_focus, self.ri_entry.spinbutton)

This connects the “activate” signal to the Ogcalc grab_focus() method of
the self.ri_entry.spinbutton object.

if __name__ == "__main__":
ogcalc = 0Ogcalc()
ogcalc.show ()

gtk .main ()

9 CONCLUSION 56

The classes are intended for use as a module in a larger program. When
run as a standalone script from the command-line, we “run” the class by
creating an instance of it, showing it, and then run the GTK+ main loop.

The Glade code is identical, except for loading the Glade interface:

self .xml = gtk.glade.XML("ogcalc.glade",
"ogcalc_main_vbox", None);

Here the Glade interface is loaded, rooted at the “ogcalc_main_vbox” wid-
get,
self .pg_val = self.xml.get_widget("pg_entry");

and now a specific widget is pulled out of the XML interface description.

9 Conclusion

Which method of programming one chooses is dependent on many different
factors, such as:

e The languages one is familiar with.
e The size and nature of the program to be written.
e The need for long-term maintainability.

e The need for code reuse.

For simple programs, such as C/plain/ogcalc, there is no problem with
writing in plain C, but as programs become more complex, Glade can greatly
ease the effort needed to develop and maintain the code. The code reduction
and de-uglification achieved through conversion to Glade/libglade is bene-
ficial even for small programs, however, so I would recommend that Glade
be used for all but the most trivial code.

The C++ code using Gtkmm is slightly more complex than the code us-
ing Glade. However, the benefits of type and signal safety, encapsulation
of complexity and the ability to re-use code through the derivation of new
widgets make Gtkmm and libglademm an even better choice. Although it
is possible to write perfectly good code in C, Gtkmm gives the programmer
security through compiler type checking that plain GTK+ cannot offer. In
addition, improved code organisation is possible, because inheritance allows
encapsulation.

GObject provides similar facilities to C++ in terms of providing classes,
objects, inheritance, constructors and destructors etc., and is certainly very
capable (it is, after all, the basis of the whole of GTK+!). The code using
GObiject is very similar to the corresponding C++ code in terms of its structure.
However, C++ still provides facilities such as RAII (Resource Acquisition is
Initialisation) and automatic destruction when an object goes out of scope
that C cannot provide.

Depending on whether the speed and safety tradeoffs are acceptable,
Python may also be a valid choice. While Python code is certainly clearer
and simpler, the speed of execution and lack of compile-time type checking
are a concern.

10 FURTHER READING 57

There is no “best solution” for everyone. Choose based on your own
preferences and capabilities. In addition, Glade is not the solution for every
problem. The author typically uses a mixture of custom widgets and Glade
interfaces (and your custom widgets can contain Glade interfaces!). Really
dynamic interfaces must be coded by hand, since Glade interfaces are not
sufficiently flexible. Use what is best for each situation.

10 Further Reading

The GTK+ Tutorial, and the GTK+ documentation are highly recommended.
These are available from http://www.gtk.org/ The Gtkmm documentation
is available from www.gtkmm.org. Unfortunately, some parts of these manuals
are as yet incomplete. I hope that they will be fully documented in the
future, since without good documentation, it will not be possible to write
programs that take advantage of all the capabilities of GTK+ and Gtkmm,
without having to read the original source code. While there is nothing
wrong with reading the source, having good documentation is essential for
widespread adoption of GTK+.

Documentation and examples of GObject are scarce, but Mathieu Lacage
has written an excellent tutorial which is available from http://le-hacker.
org/papers/gobject/\

http://www.gtk.org/
www.gtkmm.org
http://le-hacker.org/papers/gobject/
http://le-hacker.org/papers/gobject/

	Introduction
	What is GTK+?
	Building the example code
	Legal bit

	GTK+ basics
	Objects
	Widgets
	Containers
	Signals
	Libraries

	Designing an application
	Planning ahead
	Introducing ogcalc
	Designing the interface
	Creating the interface

	GTK+ and C
	Introduction
	Code listing
	Analysis

	GTK+ and Glade
	Introduction
	Code listing
	Analysis

	GTK+ and GObject
	Introduction
	Code listing
	Analysis

	GTK+ and C++
	Introduction
	Code Listing
	Analysis
	ogcalc.h
	ogcalc.cc
	ogcalc-main.cc

	Python
	Introduction
	Code listing
	Analysis

	Conclusion
	Further Reading

