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Preface 

This book is about learning to compose music using the SAL programming 
language and the compositional environment Nyquist developed by Roger B. 
Dannenberg. 

The motivation for writing this book comes from several years of 
teaching music and engineering students the fundamentals of algorithmic 
composition. Algorithmic composition, for the purposes of this book, is 
defined as the use of computers to implement procedures that result in the 
generation of music. The idea of applying algorithms during the composition 
of music is pervasive throughout music history. The intent of this book is to 
give the reader the fundamentals of SAL and Nyquist accompanied by 
examples of algorithmically based compositions. Although not every aspect 
of SAL and Nyquist is covered in this book, readers will be well equipped to 
develop their own algorithms for composition. The Nyquist Reference 
Manual (part of the open-source Nyquist system) provides in-depth 
documentation of the Nyquist system. 

As we wrote this book, we kept the needs of several kinds of readers 
foremost in mind: 

 Musicians—These readers know the fundamentals of tonal music 
theory and have had formal instruction in music performance and 
composition. They may or may not have studied a programming 
language. 

 Engineers—These readers have significant experience in designing 
and implementing algorithms but not necessarily for music. They 
have some knowledge of tonal music theory but have not likely had 
formal instruction in music performance or composition. 

 Researchers—These readers have experience in both music and 
engineering and are interested in quickly and efficiently learning the 
fundamentals of SAL as a composition language. 

This book is organized into three sections. Section I, comprised of 
Chapters 1 through 4, introduces the fundamentals of programming in SAL 
and Nyquist. Section I also includes a historical survey of algorithmic 
composition. Section II, comprised of Chapters 5 through 12, is the core 
content of the book. These chapters contain detailed information on the 
integration of SAL and Nyquist with an emphasis on music composition. 
Some readers may choose to reverse their study of recursion (Chapter 11) 
and iteration (Chapter 12). Readers with less programming experience 



    

xii Preface 

generally find it easier to understand recursion if they have first studied 
iteration. Chapter 11 and Chapter 12 have many parallel examples designed 
to help the reader understand the differences between iteration and recursion 
through direct comparison. Section III, comprised of Chapter 13 through 
Chapter 16, may be regarded as advanced topics in algorithmic composition. 

The reader is expected to be familiar with computers in general, creating, 
moving, naming, and opening files, editing text, setting up a personal 
computer to play audio files, and using a web browser. Beginners may need 
the assistance of an instructor or additional guides to general computing and 
computer music. 
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Chapter 1 Introduction 

This book describes techniques for algorithmic composition using Nyquist, a 
computer language for sound synthesis and composition. The purpose of the 
book is to assist readers who are interested in composing music using com-
puters. The best way of learning about algorithmic composition is by doing, 
so this book includes numerous carefully documented examples. 
Accompanying electronic media (http://www.algocompbook.com) include a 
full implementation of the Nyquist system for several operating systems as 
well as files containing most of the program examples in this book. This 
material and a personal computer are all the reader will need to start making 
music. The authors assume that the reader has very little experience with 
Nyquist (or SAL, a language on which Nyquist is based). For this reason, 
SAL and Nyquist are explained in the first four chapters. The authors assume 
the reader has an understanding of tonal music theory. Readers may find 
knowledge of MIDI (The Musical Instrument Digital Interface) (International 
MIDI Association, 1983; Rothstein, 1992) to be helpful, although most of the 
examples use Nyquist to generate sound directly. 

Many wonderful compositions have been written over the years using 
Nyquist. By making the concepts of algorithmic composition and the details 
of Nyquist more approachable, the authors hope more people will be enticed 
to explore the potential of composition by computer. Nyquist is not the only 
computer music language or system, and any programming language can be 
used for music composition. Just as the concepts of this book could be 
expressed in French or Mandarin, the programming concepts you learn here 
can be transferred to other programming languages. However, the examples 
in this book wil use one language: Nyquist. 

Nyquist offers two programming languages, at least on the surface. The 
first of these languages, SAL, is related to popular programming languages 
such as Basic and Pascal, but underneath, the semantics of SAL are based on 
Lisp. Lisp is the second language available to Nyquist programmers. Propo-
nents regard Lisp as simple, elegant, and powerful, while detractors claim 
that Lisp is confusing. For casual users and novice programmers, SAL is 
probably simpler, and this book uses SAL. 

1.1 SAL 
The SAL language used in Nyquist is based on, and almost identical 
to, the SAL implementation in Common Music (Taube 2005). Like 
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Nyquist, Common Music was originally based on Lisp, and SAL was 
designed and implemented to provide an alternative, perhaps more 
familiar and easy-to-use syntax for Common Music users. SAL is 
based on commands containing expressions. The expression “12 + 
3” means “the sum of 12 and 3,” and the command “print 12 + 3” 
means “print the value of the expression ‘12 + 3’.” 

1.2 Lisp 
SAL programs and commands are translated automatically by Ny-
quist into Lisp, making it easy to mix Lisp programs with SAL pro-
grams. The programming language Lisp derives its name from List 
Processing (Winston, 1989). List processing was developed in 1956 
by artificial intelligence researchers Allen Newell, J. C. Shaw, and 
Herbert Simon, and the Lisp language was invented by John 
McCarthy (Touretzky, 1990). Since the early days of Lisp, research-
ers have discovered the power of Lisp’s processing capabilities for 
music. Music, a time-based art form, oftentimes is conceived as a 
succession of events. The events may be a series of pitches, articula-
tion patterns, or a succession of rhythms. Figure 1.2.1 depicts a pitch 
series that is accompanied by a list representation of that series. Each 
item in the list representation is called an element. 

 
Figure 1.2.1: Pitch series represented by (C E D F) 

Once musical events are described as elements of a list, Lisp 
functions may be applied to each element of the list to transform the 
elements. One such example might be to transpose every element of 
the list in Figure 1.2.1 up a major second returning the list (D F-
sharp E G).  

1.3 Nyquist 
Nyquist is an extensible programming environment for sound syn-
thesis and computer-based composition. The development of Nyquist 
began in 1990 by Roger Dannenberg (1997), and it has evolved with 
contributions by many people. Nyquist is based on a small imple-
mentation of Lisp called XLISP, which was designed and imple-
mented by David Betz in the 1980’s. To support efficient sound 
synthesis, Nyquist includes some fundamental extensions to XLISP, 
and this modified XLISP is fully contained within the Nyquist sys-
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tem. For SAL users, an XLISP program translates SAL programs 
into XLISP. Nyquist runs on Macintosh, Windows, and Unix oper-
ating systems. The software and accompanying electronic documen-
tation are available as free, open source software at SourceForge.net 
(Dannenberg, 2005) and also in the electronic material that accom-
panies this book. You may think of Figure 1.3.1 when conceptualiz-
ing the software layers used by Nyquist. 

 

 
Figure 1.3.1: Software layers of Nyquist 

The main task of Nyquist is to compute audio from programs. 
Normally, Nyquist can play audio immediately as it is computed, but 
Nyquist can also save sounds to sound files. It is also possible to use 
Standard MIDI Files for both input and output to Nyquist. Using 
MIDI Files, it is possible to output music to other programs such as 
Finale (Purse, 2005) and Sibelius (Rudolph and Leonard, 2007) that 
can display common music notation. 

1.4 The Nyquist Integrated Development Environment 

 
Figure 1.4.1: Software layers including Nyquist and the Nyquist 

IDE 

While Nyquist can be run as a stand-alone program, it is much more 
convenient to use the Nyquist Integrated Development Environment 
(IDE) that supports program editing, on-line documentation, a sound 
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browser, and graphical interfaces for some sound design tasks. The 
IDE is written in Java, yet another programming language. Java was 
created by James Gosling and his team at Sun Microsystems and first 
released in 1995. Java is a general purpose language with cross-plat-
form support for graphical user interfaces, making it a good choice 
for the Nyquist IDE. The Java language is not normally visible to 
Nyquist users. Figure 1.4.1 elaborates on Figure 1.3.1 to include the 
Nyquist IDE. Note that the IDE uses Nyquist, but provides access to 
Nyquist only indirectly through the IDE interface. 

1.5 Algorithmic Composition 
An algorithm is defined as a set of rules or a sequence of operations 
designed to accomplish some task or solve a problem. Human beings 
are very good at designing and implementing algorithms. From get-
ting dressed in the morning to cooking dinner, we are continuously 
developing algorithms to solve life’s everyday problems. 

Gareth Loy describes algorithms from a musical perspective. 
(Loy, 1989). An algorithm, by definition, must have a finite number 
of steps; have both input to and output from the algorithm; yield a re-
sult in a finite period of time; and have a precise definition for each 
step of the algorithm. Donald Knuth explains that there are also aes-
thetic criteria for the evaluation of an algorithm (Knuth, 1973). 
These aesthetic criteria include simplicity, parsimony, elegance, and 
tractability. Ideally, musical algorithms should strive to meet these 
criteria. 

Composition is the process of creating a musical work (Apel, 
1979). The term composition literally means to “put together” parts 
into a unified whole. The process of composing music is oftentimes 
characterized by trial and error. The composer tries something, lis-
tens, and determines if revisions are necessary. The composer is 
continually evaluating the effectiveness of a part in relation to the 
whole. 

We combine the terms algorithm and composition to derive the 
term algorithmic composition. Algorithmic composition, in the sim-
plest sense, occurs when a composer uses an algorithm to put to-
gether a piece of music. Since the mid-twentieth century, the com-
puter has become a key partner in implementing algorithms that gen-
erate music. Because of the increased role of the computer in the 
compositional process, algorithmic composition has come to mean 
the use of computers to implement compositional procedures that re-
sult in the generation of music. 
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1.6 Additional References 
Although this book provides the fundamentals of algorithmic com-
position using Nyquist, you may wish to augment your reading with 
additional references. This book focuses almost exclusively on the 
SAL language and syntax, but SAL is translated in a very direct way 
into the language Lisp. A knowledge of Lisp is useful to under-
standing SAL. Two excellent Lisp references include LISP by Pat-
rick Henry Winston and Bertold Klaus Paul Horn (1989) and Com-
mon LISP – The Language by Guy L. Steele (1990). (Unfortunately, 
Common LISP is not fully compatible with XLISP, but the basic 
language concepts are the same, and if anything, XLISP is smaller 
and easier to master.) Nyquist is accompanied by volumous elec-
tronic documentation in HTML and printable PDF files. For detailed 
information on MIDI, consult the MIDI specification and supporting 
documents published by the International MIDI Association (1983) 
or a textbook on MIDI such as MIDI: A Comprehensive Introduction 
by Joseph Rothstein (1992). For additional information on strategies 
for algorithmic composition, refer to Formalized Music by Iannis 
Xenakis (1971, 1992), Using the AC Toolbox: A Tutorial by Paul 
Berg (2008), Chapter 19 of The Computer Music Tutorial by Curtis 
Roads (1996), Chapter 11 of Computer Music: Synthesis, Composi-
tion, and Performance by Charles Dodge and Thomas Jerse (1997), 
or Notes from the Metalevel: An Introduction to Algorithmic Music 
Composition by Heinrich Taube (2004). 

The web site www.algorithmic.net by Chris Ariza is an excel-
lent source for additional references, software, and discussion. 

There are other automated compositional systems that use Lisp 
besides Nyquist. Among these are the AC Toolbox (Berg, 1996),  
Common Music, which also supports the SAL syntax (Taube, 1989), 
MIDI-LISP (Boynton, 1986), Lisp Kernel (Rahn, 1990), Patchwork 
(Laurson, 1989; Malt, 1993), Symbolic Composer (Tonality Sys-
tems, 1993), FORMES (Rodet, 1984), CompScheme (Döbereiner, 
2008), and Impromptu (Sorenson, 2005). 

Of course Lisp and SAL are not the only languages used for algo-
rithmic composition. Chris Ariza’s thesis (2005a) describes an ap-
proach using the language Python (Lutz, 2007). Another popular 
language and environment for algorithmic composition, especially in 
real-time interactive systems, is MAX, as described by Robert Rowe 
(1994) and Todd Winkler (2001). Other interesting languages and 
systems include Paul Hudak’s Haskore system (2000) based on the 
language Haskel, and ChucK, a language and system for real-time 
music programs by Ge Wang and Perry Cook (2003). 
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Chapter 2 The History and 
Philosophy of Algorithmic 
Composition 

In Chapter 1, we defined algorithmic composition as the use of a rule or 
procedure to put together a piece of music. This chapter will give you a 
broader understanding of algorithmic composition, how algorithms have 
been used throughout music history, and an introduction to the aesthetic is-
sues of algorithmic composition. 

2.1 The Process of Algorithmic Composition
A very simple example of using a procedure to generate a piece of 
music is to use a 12-sided die (numbered 1–12) to determine the or-
der of pitches in a composition. An association, or mapping is made 
to correlate each pitch in a twelve-tone equal tempered scale with 
each number on the die. Figure 2.1.1 demonstrates the mapping of 
pitches to numbers. 

Figure 2.1.1: Mapping between pitches and numbers 

Say that we decide to roll the die six times. Our six tosses return 
the numbers 2, 5, 3, 9, 3, and 12. The music that results from our 
rolls of the die is found in Figure 2.1.2. 

 
Figure 2.1.2: Random pitch sequence 

Can such a simple algorithm produce interesting music? How do 
we determine the other aspects of the composition such as rhythm, 
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timbre, loudness, register, etc.? Composers throughout music history 
have explored these questions. 

2.2 A Brief History of Algorithmic Processes Applied to 
Music Composition 
The Greek philosopher, mathematician, and music theorist Py-
thagoras (ca. 500 B.C.) documented the relationship between music 
and mathematics that laid the foundation for our modern study of 
music theory and acoustics. The Greeks believed that the under-
standing of numbers was key to understanding the universe. Their 
educational system, the quadrivium, was based on the study of mu-
sic, arithmetic, geometry, and astronomy. Although we have numer-
ous treatises on music theory dating from Greek antiquity, the 
Greeks left no clues as to whether they applied mathematical proce-
dures to the composition of music. 

Over a thousand years later, the work of music theorists such as 
Guido d’Arezzo established the framework for our conventional sys-
tem of music notation. His system employed a staff accompanied by 
a clef making it possible for a composer to notate a score so that it 
could be performed by someone other than the composer. Prior to the 
development of the score, music was learned by rote and generally 
improvised and embellished by the performing musician. By the 
thirteenth century, formalized music composition began to replace 
improvisation and the roles of composer and performer became in-
creasingly distinct. 

The music theorist Franco of Cologne established rules for the 
time values of single notes, ligatures, and rests in his treatise Arts 
canus mensurabilis (ca. 1250). By the early fourteenth century, com-
posers began to treat rhythm independently of pitch and text. French 
composers of the ars nova, such as Phillipe de Vitry and Guillaume 
de Machaut, used isorhythm as a means of unifying their composi-
tions. Iso means “same” so isorhythm means literally “same 
rhythm.” Isorhythm is the practice of mapping a rhythmic sequence, 
named the talea, onto a pitch sequence called the color. Figure 2.2.1
depicts the talea from the motet De bon espoir-Puisque la douce-
Speravi by Guillaume de Machaut. 

Figure 2.2.1: Talea of the isorhythmic motet De bon espoir-
Puisque la douce-Speravi by Guillaume de Machaut 

The next figure shows the color of the same motet. 
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Figure 2.2.2: Color of the isorhythmic motet De bon espoir-

Puisque la douce-Speravi by Guillaume de Machaut 

The tenor of De bon espoir-Puisque la douce-Speravi was de-
rived by mapping the color onto the talea as shown in Figure 2.2.3. 

Figure 2.2.3: The tenor of De bon espoir-Puisque la douce-Speravi 
by Guillaume de Machaut 

Phillipe de Vitry used a palindrome in the construction of the 
talea for his isorhythmic motet Garrit gallus – In nova fert. A 
palindrome is a pattern that reads the same forwards as it does 
backwards. Figure 2.2.4 shows the organization of the palindrome by 
measure. Measure 1 compares to measure 9, measure 2 compares to 
measure 8, etc. 

Figure 2.2.4: The talea of Garrit gallus – In nova fert by Phillipe 
de Vitry 

The Renaissance period witnessed the rise of polyphonic sacred 
and secular musical forms. By the Baroque period (1601–1750), 
highly developed contrapuntal forms such as the canon and fugue
flourished. One of the great masters of contrapuntal forms was Jo-
hann Sebastian Bach. During the final years of his life, J.S. Bach
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composed such didactic contrapuntal works such as the Musical Of-
fering and The Art of the Fugue (Bach, 1752). The Art of the Fugue 
is a brilliant pedagogical tool for the study of counterpoint that sys-
tematically documents the procedure of fugal and canonic composi-
tion. 

The canon is a highly procedural contrapuntal form. The com-
poser begins with a melody, called the leader, which is strictly fol-
lowed at a delayed time interval by another voice, called the fol-
lower. Sometimes, the follower may present a variation of the leader 
through transposition, augmentation, or inversion. Figure 2.2.5
shows an excerpt from The Art of the Fugue by J.S. Bach that is a 
canon in both augmentation (note durations are stretched) and inver-
sion (the up-down direction of intervals is reversed). 

Figure 2.2.5: Canone I from The Art of the Fugue by J.S. Bach 
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In the final fugue of The Art of the Fugue, Fuga XV, J.S. Bach
uses his own name, B-A-C-H, as the subject of the fugue: B-flat, A, 
C, and H. (H is the German letter for B.) His name is embedded in 
one of the most masterful contrapuntal works of all time.  

 
Figure 2.2.6: Excerpt from Fuga XV from The Art of the Fugue 

by J.S. Bach

One of the most often cited examples of algorithmic music in the 
Classical period (1750–1827) is Musikalisches Würfelspiel by Wolf-
gang Amadeus Mozart (1756–1791). In this composition, Mozart (or 
perhaps someone using his name) composed discrete musical ex-
cerpts that could be combined to form a waltz. The order of musical 
excerpts was determined by rolling two six-sided dice. The person 
assembling the waltz would refer to a table created by Mozart that 
showed which music should be used for the values of 2–12 on the 
dice. 

Romanticism pushed the harmonic vocabulary into the extreme 
use of chromaticism. After Richard Wagner (1813–1883), there was 
very little a composer could do that would be considered novel using 
tonal music theory. Arnold Schoenberg, and his pupils Anton We-
bern and Alban Berg, established new procedures for composition 
called serial composition. 

In serial composition, the composer works with a series of twelve 
chromatic tones of equal importance. In strict serial composition, no 
tone may be repeated until all twelve have been used. The total num-
ber of twelve-note series is 479,001,600 (Brindle, 1969), which 
greatly expands the melodic and harmonic vocabulary of the late 
Romantic period. Because of the equal importance of the twelve
chromatic tones, serial composition eroded tonality and gave rise to 
atonality. 

Algorithmic procedures lend themselves well to serial composi-
tion. To introduce variation into a serial composition, the composer 
may use transformations of the tone row derived from transposition, 
inversion, retrograde, or retrograde inversion of the row. (This, how-
ever, leaves the composer with a mere 9,980,160 rows that are 
unique under these transformations.) Figure 2.2.7 shows the tone row 
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used by Alban Berg in the Lyric Suite for string quartet composed in 
1926. 

 
Figure 2.2.7: The tone row for the Lyric Suite by Alban Berg 

Figure 2.2.8 shows a matrix that was constructed based on the 
tone row from Alban Berg’s Lyric Suite. The rows are numbered 1–
12 and the columns are labeled A–L. The original form of the tone 
row is found in Row 1, Columns A–L, reading from left to right. The 
retrograde form of the tone row is found by reading Row 1, Columns 
A–L, reading from right to left. The inversion of the tone row is 
found in Column A reading Row 1 to Row 12 and the retrograde in-
version is found in Column A reading from Row 12 to Row 1. Each 
Row and Column is further labeled with T followed by a value in the 
range 0–11. The T stands for transposition and the number is the 
level of transposition measured in half steps from the original tone 
row. For example, T5 means the tone row has been transposed up 
five half steps from the original form (e.g. a Perfect Fourth). 

A B C D E F G H I J K L
T0 T11 T7 T4 T2 T9 T3 T8 T10 T1 T5 T6

1 T0 F E C A G D Ab Db Eb Gb Bb B

2 T1 Gb F Db Bb Ab Eb A D E G B C

3 T5 Bb A F D C G Db Gb Ab B Eb E

4 T8 Db C Ab F Eb Bb E A B D Gb G

5 T10 Eb D Bb G F C Gb B Db E Ab A

6 T3 Ab G Eb C Bb F B E Gb A Db D

7 T9 D Db A Gb E B F Bb C Eb G Ab

8 T4 A Ab E Db B Gb C F G Bb D Eb

9 T2 G Gb D B A E Bb Eb F Ab C Db

10 T11 E Eb B Ab Gb Db G C D F A Bb

11 T7 C B G E D A Eb Ab Bb Db F Gb
12 T6 B Bb Gb Eb Db Ab D G A C E F  

Figure 2.2.8: Tone row matrix for Alban Berg’s Lyric Suite 
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About the same time Alban Berg completed the Lyric Suite, Ian-
nis Xenakis (1922–2001) began to make his way in the world. 
Xenakis received an engineering degree from the Athens Polytechnic 
School and studied music composition with Honegger, Milhaud, and 
Messiaen and architecture with Le Corbusier. Xenakis was keenly 
interested in the application of mathematics to music composition. In 
1966, Xenakis founded the School of Mathematical and Automated 
Music in Paris. His music is described as stochastic music, meaning 
he uses probability theory in the selection of musical parameters. 
Xenakis exploited probability theory in his search for new musical 
form and structure. One of Xenakis’ well-known works, Pithoprakta 
(1955–1956), creates dense sound masses determined by 
probabilistic methods. 

The music of Karlheinz Stockhausen (1928–2007) stands in sharp 
contrast to that of Iannis Xenakis. Stockhausen developed serial 
composition to its extreme by applying serial methods not only to 
pitch, but also to rhythm, dynamics, timbre, and density. Stock-
hausen was influenced by the German philosopher Hegel and his 
doctrine on the unity of opposites. Stockhausen applied Hegelian 
philosophy by using calculations to pre-compose his music while 
integrating chance operations into the performance. A stunning 
example of his work is the Klavierstück XI (1956) composed for pi-
ano. The score, measuring about thirty-seven inches by twenty-one 
inches, consists of nineteen carefully composed segments that the pi-
anist performs in whatever order his or her eye happens to fall upon 
the score. Stockhausen employed chance operations similar to those 
explored by Mozart in his Musikalisches Würfelspiel almost two 
hundred years earlier. 

About the same time Stockhausen composed the Klavierstück XI, 
Lejaren Hiller and Leonard Isaacson were preparing to significantly 
alter the course of music history. Ada Augusta, Countess of Love-
lace, worked with Charles Babbage on the development of a 
mechanical computer called the Analytical Engine. In 1842, she de-
scribed the use of the computer in the creation of music and foretold 
the era of computer-assisted composition heralded by Hiller and 
Isaacson: 

 The operating mechanism [of the Analytical En-
gine] … might act upon other things … whose mu-
tual fundamental relations could be expressed by 
those of the abstract science of operations, and 
which should be also susceptible of adaptations to 
the action of the operating notation and mechanism 
of the Engine. Supposing, for instance, that the fun-
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damental relations of pitched sounds in the science 
of harmony and of musical composition were sus-
ceptible of such expression and adaptations, the En-
gine might compose and elaborate scientific pieces 
of music of any degree of complexity or extent. 
(Roads, 1996) 

It was 1957 when Lejaren Hiller and Leonard Isaacson pro-
grammed the ILLIAC computer at the University of Illinois to algo-
rithmically generate music. The output of their software created The 
ILLIAC Suite scored for string quartet. The work of Hiller and Isaac-
son is documented in the book Experimental Music (Hiller, 1959). 
By 1962, Xenakis began to use the computer to assist in the cal-
culations for his compositions Amorsima-Morsima and Strategie, Jeu 
pour deux orchestres. 

John Cage (1912–1992) was a self-declared indeterminist. Cage 
integrated Eastern philosophies, especially Zen Buddhism, and the I 
Ching Book of Changes, into his compositions. A landmark 
collaboration between Cage and Hiller resulted in the multi-media 
composition HPSCHD (1967–1969). The composition uses computer 
printouts, excerpts of traditional music, and visual elements depict-
ing space and rocket technology. The traditional music is derived 
from Mozart’s Musikalisches Würfelspiel and his piano Sonatas. 
Cage’s statement, “it is the machine that will help us to know 
whether we understand our own thinking processes,” demonstrates 
his philosophical comradeship with Lejaren Hiller. HPSCHD re-
quires up to seven harpsichords and fifty-one electronic tapes that are 
combined in any possible way to achieve unique performances. The 
composition received its world premiere before an audience of nine 
thousand at the University of Illinois on May 16, 1969. The perform-
ance included all seven harpsichords, fifty-one computer-generated 
tapes, eighty slide projectors, and seven film projectors. 

For over two thousand years, composers have used algorithms to 
assist in the creation of new works. Algorithms for music composi-
tion have evolved into several categories: aleatoric (or chance) meth-
ods (e.g. Cage); determinacy (e.g. Schoenberg, Webern, and Berg); 
and stochastic (or probabilistic) methods (e.g. Xenakis and Hiller). 
Composers are applying not only mathematical models but also bio-
logical paradigms to the creation of music. Since almost any process 
may be modeled using a computer, almost any model may be used 
for music composition. 

The principal questions facing composers who use algorithmic 
processes are rooted in aesthetics and philosophy. Why use algo-
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rithms in the composition of music? What is more important—the al-
gorithm or the composition? How does a composer or listener decide 
if an algorithmic composition is successful? 

2.3 Aesthetics of Algorithmic Composition 
Aesthetics is a branch of philosophy that describes the theories and 
forms of beauty in the fine arts. It is our unique set of experiences, 
and our perception of those experiences, that shape our personal 
aesthetic. Our personal aesthetic is integrally intertwined with our 
personality as an artist. Each work of art is some manifestation of the 
artist’s aesthetic. 

In Chapter 1, we discussed Knuth’s principles for determining the 
aesthetic merit of an algorithm. How do we decide if a composition 
that uses algorithms has aesthetic merit? 

To answer this question, one must separate the process of compo-
sition from the product of composition, e.g. the music. Some algo-
rithmic composers would argue that the aesthetic merit of an algo-
rithmic composition should be based solely on the algorithm used to 
create the music. Other composers assert that both the algorithms 
used to create the composition and the composition itself should be 
assessed when determining aesthetic merit. There are still others who 
would argue that the algorithms used in algorithmic composition are 
simply a means to an end and for that reason, the algorithms them-
selves are not worthy of artistic scrutiny. These composers may be-
lieve that their success or failure as a composer is based on the lis-
tener’s response, and therefore they have the right to throw away or 
modify the output of an algorithm to achieve their aesthetic goal. 

All of these responses to the process and product of algorithmic 
composition are valid as each view is simply a manifestation of a 
personal aesthetic. Unfortunately, composers of algorithmic music 
have not been formally surveyed regarding their views on the aes-
thetics of algorithmic composition, so we do not know how many 
composers fall into which category at any given time or if there are 
more categories to consider. 

In the absence of a formal survey, we let the repertoire of algo-
rithmic composition speak for itself. In reviewing algorithmic proc-
esses throughout the twentieth century, the number of compositions 
that are supported by documented algorithms is dwarfed by those 
that are not. In fact, when asking composers to provide algorithms 
accompanied by software implementation for this book, many com-
posers confided that their code is not up to Knuth’s standards of sim-
plicity, elegance, parsimony, and tractability. With rapid advances in 
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automated music composition systems, and the tendency to embed 
the process in a technology, it is inherently more difficult to preserve 
the process than the product. 

A group of visual and sonic artists developed their own criteria 
for determining the aesthetic merit of electronic art, including com-
puter music (Mandelbrojt, 1999). These artists felt the criteria should 
be based on the poetic quality of the artist’s vision; a successful re-
lationship between the artist’s idea and its realization, especially 
when the idea cannot be materialized through simpler traditional 
means; the efficiency with which the artist’s idea is conveyed; and 
the originality of the idea or its realization. The evaluation of each of 
these criteria is not simply a “yes” or “no” as in the case of Knuth’s 
criteria. On the contrary, the criteria summarized by Mandelbrojt re-
quire a graded continuum for each criterion to render an aesthetic 
judgment about a work. These criteria also presuppose that the per-
son performing the evaluation knows something of the artist’s intent. 
Unfortunately, such is not always the case. 

Algorithmic composers need aesthetic criteria that are neither as 
limiting as Knuth’s nor as assumptive as those described by Mandel-
brojt. Composers of algorithmic music are obliged to carefully exam-
ine the quality of their artistic ideas and the efficiency with which 
their ideas are presented. Composers must create successful relation-
ships between the artistic ideas and the technological media in which 
they work. The work must demonstrate originality or significant re-
finement of an existing idea and maintain the highest quality of tech-
nical production. 

2.4 Suggested Listening 
Garrit gallus – In nova fert by Phillipe de Vitry 
Musical Offering and The Art of the Fugue by J.S. Bach 
Musikalisches Würfelspiel by Wolfgang Amadeus Mozart 
Lyric Suite by Alban Berg 
Klavierstück XI by Karlheinz Stockhausen 
The ILLIAC Suite by Lejaren Hiller and Leonard Isaacson 
Amorsima-Morsima and Strategie, Jeu pour deux orchestres by Ian-

nis Xenakis 
HPSCHD by John Cage 
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Chapter 3 Introduction to SAL 

Chapter 3 introduces you to the fundamentals of SAL and programming. You 
will learn about some of the various data types that SAL supports and many 
of its built-in functions called primitives. You will learn how to write your 
own functions and become familiar with typical error messages.  

3.1 Data 
Data means information. SAL supports many data types, including 
numbers, symbols, strings, and lists. Numbers include integers (or 
whole numbers) and floating point numbers. Floating point numbers 
are approximations of real numbers. 

Example 3.1.1: Numbers 

Integers: −3, 0, 23, 8987 
Floating Point Numbers: −3.222, 3.1459, 0.0 

 
Another data type in SAL is a symbol. Symbols look like words 

and may contain any combination of letters and numbers along with 
some special characters such as the hyphen (-), underscore (_), plus 
(+), and star (*). 

Example 3.1.2: Symbols 

Symbols: scale, f7-chord, b-flat_major, *transpose* 
 

Two special symbols in SAL are #t and #f. #t represents true or 
yes, and #f represents false, no, or nothing. In XLISP, these values 
are usually named t and nil, and even within SAL, t and nil may 
be used in place of #t and #f. Except for a few built-in symbols 
such as #t and #f, the hash character (#) is not allowed in symbol 
names. 

A string data type is a sequence of characters enclosed in double 
quotes.  

Example 3.1.3: Strings 

Strings: "A string: anything within double quotes!" 
 "Is this a string?" 
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Another SAL data type is the list. A list is a collection of one or 
more things enclosed in braces. If the list includes more than one 
thing, they are separated by spaces. (Spaces include the space char-
acter, tab, and newline.) Each thing in the list is called an element. 
Therefore the list {c-major d-major f-major} has three elements, 
and the list {4.5 238 .0007 –23 glub} has 5 elements. 

Lists are represented in the computer’s memory as a chain of 
structures called list cells. You may think of a list cell as having two 
parts. The left part is referred to as the first and the right part is re-
ferred to as the rest. We often think of the cell as containing two 
things, the first part of a list and the rest of the list. It is more correct 
to realize that each of these two parts is really a pointer to (a memory 
address for) other locations in the computer’s memory. The first 
pointer points to an element in a list and the rest points to the next 
cell in the list. Figure 3.1.1 is a list cell representation of the list {c-
major d-major f-major}. Notice that the list cell chain ends in nil.  

 
Figure 3.1.1: A list with three elements 

Lists can be defined recursively: A list is either nil or a list cell 
whose first is an element and whose rest is a list. Often, algorithms 
that process lists have a similar recursive structure. For example, to 
play all notes in a list, play the first note (the first of the list), then 
apply the algorithm recursively to rest of the notes (the rest of the 
list). We will return to this idea in Chapter 11. You may recall that 
nil is a representation for false, so (curiously) a list with no elements 
can be written as nil, {}, or #f. 

Lists that consist of one level of a list cell chain are called flat 
lists. When a list contains another list, it is referred to as a nested list. 
An example of a nested list is {c-major {c e g}}. The top-level of the 
chain of list cells contains two elements: the symbol c-major and 
the list {c e g}. This second top-level element contains three ele-
ments, namely the symbols c, e, and g. Figure 3.1.2 is a list cell rep-
resentation of the nested list {c-major {c e g}}. 

List expressions that have matching left and right braces are 
called well-formed lists. Both {c-major d-major f-major} and {c-
major {c e g}} are well-formed lists. 

SAL programs use braces to denote lists, and we generally use the 
same convention in this text; however, the Lisp programming lan-
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guage uses parentheses. For example, the Lisp print function prints 
the list {a b c} as (a b c). Occasionally, you may call a Lisp function 
from SAL that prints data using Lisp conventions, so do not be too 
surprised to see lists printed with parentheses. 

 
Figure 3.1.2: A nested list 

3.2 Running Nyquist 

 
Figure 3.2.1: The Nyquist IDE 

If you have not already done so, you should install Nyquist on your 
computer so that you can try out the examples that follow. Installa-
tion instructions and other electronic resources can be found at 
http://www.algocompbook.com. For most people, the preferred way 
to run Nyquist is to use the interactive development environment 
(IDE), a program written in Java named jnyqide. When you run 
jnyqide, you should see a screen similar to that in Figure 3.2.1. No-
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tice that the Output window shows output from Nyquist, which is 
running in a separate process controlled by jnyqide. To send input to 
Nyquist, type into the text area in the upper left region. When you 
type the ENTER key, the text is sent to Nyquist to be evaluated. Try 
typing play osc(c4) followed by the ENTER key. You should hear a 
1-second-long sine tone. 

In the following sections, continue typing examples into the text 
area followed by the ENTER key. The input you type will be echoed 
in the Output window followed by the output generated by Nyquist. 
Notice the row of labeled buttons just below the text input area. If 
you make an error, you can reset Nyquist for more input by clicking 
on the button named Top, which resets the system to Lisp mode, 
followed by clicking the button named SAL, which tells the system 
to accept SAL commands. 

 

3.3 SAL Expressions 
Expressions combine terms such as numbers, variables, and strings, 
using operators such as + and *, to denote computation. This section 
demonstrates how to form and evaluate SAL expressions. The next 
three sections describe how to use functions, which extend the range 
of computations you can write with expressions. 

The best way to learn about how expressions and functions work 
in SAL is to use it. Follow along by typing these examples into Ny-
quist. Before you start, make sure that the output window in the 
lower left of the IDE has the prompt: “SAL>”. If not, click on the 
SAL button on the row of buttons to switch to SAL mode. 

Example 3.3.1: Printing expression values 

The reader enters the bold text into the input window. The 
information following the bold text is the output generated by 
Nyquist. Some commentary appears in italics. 
SAL> print 3 + 5.6 
8.6 
 
SAL> print 1 + 2 + 3 
6 
 
SAL> print 7 - 5 
2 

The quotient of two integers is an integer. Fractional parts are 
rounded toward zero: 
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SAL> print 23 / 8 
2  

Expressions can use parentheses: 
SAL> print 3 + (3 - 2) 
4 
 
SAL> print 8 * 15 / 3 * (1 + 1) 
80 

 
In Example 3.3.1, each input to SAL is a print command, which 

tells SAL to evaluate one or more expressions and print the results. A 
general template for the print command is: 

print expression, expression, … 
Notice that spaces around operators in expressions are required in 
SAL.  The expression “x + 2” means “the sum of the value of the 
variable named ‘x’ and two,” but the expression “x+2” means “the 
value of the variable named ‘x+2’”! 

Table 3.3.1: Operators 

Precedence Operator Symbol Operator Function 
1 ! Not 
2 @ Time shift 
2 @@ Absolute time shift 
2 ~ Time stretch 
2 ~~ Absolute time stretch 
3 ^ Exponentiation 
4 * Multiplication 
4 / Division 
5 + Addition 
5 - Subtraction 
5 % Remainder (Modulus) 
6 = Equal 
6 ~= General equality 
6 != Not equal 
6 < Less than 
6 > Greater than 
6 <= Less than or equal 
6 >= Greater than or equal 
7 & And 
8 | Or 
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With infix operators, evaluation order is not obvious. Does “1 + 2 
* 3” mean “(1 + 2) * 3” or “1 + (2 * 3)”? To resolve the potential 
ambiguity, SAL uses two rules. First, operators have different priori-
ties, so multiplication and division take precedence over addition and 
subtraction. Second, operators that share the same priority are evalu-
ated left-to-right. When in doubt, it is always a good idea to use pa-
rentheses to make the evaluation order explicit. 

The complete list of operators appears in Table 3.3.1 listed in or-
der of their precedence. 

3.4 Functions 
Operators are convenient for common operations because we are in 
the habit of reading expressions such as “1 + 2,” but there are many 
more operations than we have symbols for. We call these operations 
functions, give them symbolic names, and invoke them using a 
special syntax. The syntax for applying a function to data is illus-
trated by this template: 

function(expression, expression, …) 
You may think of functions as procedures that (usually) operate on 
data and (usually) compute a result value. The template describes a 
function call where the expressions are evaluated from left to right, 
the resulting values are passed as inputs to the function, and the 
value returned by the function is the value of the overall expression. 
SAL functions may be categorized as either primitives or user-de-
fined functions.  

A primitive is a built-in function or simply put, a function that 
SAL already knows about. SAL has many primitives that operate on 
numbers, symbols, sounds, and lists. Example 3.4.1 illustrates some 
primitives that take numbers as inputs and produce numbers as re-
sults. 

 

Example 3.4.1: Arithmetic primitives 

The abs function takes the absolute value of an integer or float-
ing point number.  

SAL> print abs(-7.2) 
7.2 
 
SAL> print abs(14.5) 
14.5 

The sqrt function takes the square root of a floating point 
number, but raises an error and quits if given an integer. The 
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square root of a negative number is undefined and raises a 
different kind of error. 
SAL> print sqrt(25.0) 
5 
SAL> print sqrt(25) 
error: bad integer operation 
Call traceback: 
    SAL top-level command interpreter 
 
SAL> print sqrt(-25.0) 
error: square root of a negative number 
Call traceback: 
    SAL top-level command interpreter 

The primitive round returns the integer nearest to its input. If 
the input is halfway between two integers (for example 3.5), 
round to the next higher integer. 

SAL> print round(3.5) 
4 
 
SAL> print round(2.49) 
2 
 
SAL> print round(2.875) 
3 

The primitive float returns a floating-point number. Note that 
floating point numbers are printed without a decimal point if the 
digits to the right of the decimal point are all zeros. 
SAL> print float(4) 
4 

Trigonometric functions such as sin (for sine) work with radians 
(not degrees) and do not accept integers. 

SAL> print sin(1.0) 
0.841471 
 

Function calls may be nested. SAL evaluates nested function calls 
by evaluating the innermost functions first to obtain values for more 
outer functions. To be more precise, function input expressions are 
evaluated from left to right, and then the function is applied to the re-
sulting values. The result of this recursion is that the innermost ex-
pressions are evaluated first. This rule applies to functions. In addi-
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tion to functions and operators, some expressions look like functions 
but use a different rule for evaluation. We will see examples later. 

Infix operators, such as “+” and “*,” are just an alternate syntax 
for function calls. You can think of “1 + 2” as a convenient way to 
write “sum(1, 2)” after which the normal rule for function 
evaluation can be applied. Example 3.4.2 illustrates some nested 
function and operator expressions. 

Example 3.4.2: Nested function calls 
SAL> print sqrt(23.0 / 8) 
1.69558 
 
SAL> print sqrt(abs(-9.0)) 
3 
 
SAL> print max(sin(float(1)), sqrt(1.0 / 2)) 
0.841471 

 
SAL has many primitives that function on lists. A useful function 

is length, which returns the number of elements found on the top-
level of a list. 

Example 3.4.3: length 

SAL> print length({16 2 5}) 
3 
 
SAL> print length( 
       {c-major {c e g} d-major {d f-sharp a}}) 
4 
 

Notice the use of parentheses () and braces {}. The parentheses 
are an essential part of the function call syntax, and the braces are 
needed to denote a list value.  

Also notice that commands can take more than one line of text. 
When you type commands into the Nyquist IDE, nothing is sent to 
Nyquist for evaluation until you complete a command followed by 
the ENTER key. For example, the second command in Example 3.4.3 
is completed when you type the final closing parenthesis. 

SAL may have a list of no elements. A list of no elements is re-
ferred to as the empty list or nil. Thus, nil is both a symbol and a list. 

Example 3.4.4: length of empty lists 
SAL> print length(nil) 
0 
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SAL> print length({}) 
0 
 

You may access different elements in a list. The primitive first 
returns the first element of a list. (The function car is, for historical 
reasons, another name for first.) 

Example 3.4.5: first 
SAL> print first( 
       {c-major {c e g} d-major {d f-sharp a}}) 
C-MAJOR 

 
Try entering some of the elements in the list using a combination 

of upper-case and lower-case letters. You will notice that SAL is not 
case sensitive. 

The primitive rest returns all but the first element of a list as a 
list. (And cdr is another name for rest.) 

Example 3.4.6: rest 
SAL> print rest( 
       {c-major {c e g} d-major {d f-sharp a}}) 
{{C E G} D-MAJOR {D F-SHARP A}} 
 

The first and rest of nil are defined as nil, but since nil also rep-
resents false, SAL prints nil as #f. 

Example 3.4.7: first and rest of nil 
SAL> print first(nil) 
#f 
 
SAL> print rest({}) 
#f 

 
Other SAL primitives can be used to select other elements of a 

list such as second, third, and fourth. 

Example 3.4.8: second and third 

SAL> print second( 
       {c-major {c e g} d-major {d f-sharp a}}) 
{C E G} 
 
SAL> print third( 
       {c-major {c e g} d-major {d f-sharp a}}) 
D-MAJOR 
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The primitive last returns the last element of a list as a list. 
The primitive nth returns the nth element of a list, numbering 

from zero. The first input to nth is the number, and the second input 
is the list. 

The primitive nthcdr returns all but the first n elements of a list. 
The first input to nthcdr is the number, and the second input is the 
list. 

Example 3.4.9: last 
SAL> print last({c e g}) 
{G} 
 
SAL> print last( 
       {c-major {c e g} d-major {d f-sharp a}}) 
{{D F-SHARP A}} 

Example 3.4.10: nth and nthcdr 

SAL> print nth(0, {c e g b-flat}) 
C 
 
SAL> print nth(2, {c e g b-flat}) 
G 
 
SAL> print nthcdr(0, {c e g b-flat}) 
{C E G B-FLAT} 
 
SAL> print nthcdr(4,  
       {c-major {c e g} d-major {d f-sharp a}}) 
#f 
 

The primitive reverse reverses the elements in a list such that 
what was first is now last and vice-versa. reverse operates only on 
the top-level of the list. 

Example 3.4.11: reverse 

SAL> print reverse({c e g b-flat}) 
{B-FLAT G E C} 
 
SAL> print reverse( 
       {c-major {c e g} d-major {d f-sharp a}}) 
{{D F-SHARP A} D-MAJOR {C E G} C-MAJOR} 
 

The cons primitive may be used to construct lists. The cons 
function creates a list cell. Often, list cells in Lisp are called cons 
cells. The cons function requires two inputs and returns a pointer to 
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a new list cell whose first points to the first input and whose rest 
points to the second. 

Example 3.4.12: cons 

SAL> print cons(quote(a), {d e-flat}) 
{A D E-FLAT} 
 

You might have expected the expression cons(a, {d e-flat}), but 
SAL would start the evaluation of this expression by evaluating a, 
which is assumed to be a variable. We will discuss variables later, 
but for now, the point is that we want the symbol a to be used liter-
ally. To prevent any interpretation of the expression a and to use it 
directly as a symbol, we must enclose it in the special form quote(). 
This is a special form, not a function, because it does not automati-
cally evaluate its input expression. 

Braces imply that the list elements are to be used literally, so no 
quote() is necessary for the second input to cons in Example 3.4.12. 
The cons function may be used to create lists by cons’ing a symbol 
to nil. If Example 3.4.13 is confusing, you should draw pictures as in 
Figure 3.1.1 and Figure 3.1.2, remembering that cons simply creates 
and returns one new list cell. 

Example 3.4.13: cons with nil 
SAL> print cons(quote(c-flat), nil) 
{C-FLAT} 
 
SAL> print cons({c e g}, nil) 
{{C E G}} 
 
SAL> print cons(nil, nil) 
{#f} 
 

The list primitive creates lists from inputs by making a list from 
them. list takes any number of inputs.  

Example 3.4.14: list 

SAL> print list( 
       {c-major {c e g} d-major {d f-sharp a}}) 
{{C-MAJOR {C E G} D-MAJOR {D F-SHARP A}}} 
 
SAL> print list(quote(a), {d e-flat}) 
{A {D E-FLAT}} 
 
SAL> print list(quote(c-flat), nil) 
{C-FLAT #f} 
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The primitive append accepts two (or more) inputs. When 
append is given two lists as its inputs, it returns a list that contains 
all of the elements of both lists as a list. 

Example 3.4.15: append 

SAL> print append({c e g}, {b-flat d}) 
{C E G B-FLAT D} 
 

When append is given a list followed by a non-list, the result is 
not a well-formed list. This is printed with a warning as follows. 

Example 3.4.16: append with ill-formed list 
SAL> append({c e g}, quote(b-flat)) 
{C E G <list not well-formed> B-FLAT} 

 
The list cell representation of this looks like Figure 3.4.1. 

 
Figure 3.4.1: The list formed in Example 3.4.16 

Lists like this are rarely used and should be avoided. Now that 
you know what they are and how to recognize them, let us hope you 
never see them again. 

The primitives cons, list, and append seem very similar. Let’s 
carefully examine how Lisp evaluates these primitives when they are 
given two lists as input. Figure 3.4.2 shows list cell representations 
that serve as example inputs to cons, list, and append. Figure 3.4.3 
shows the results of applying cons, list, and append to these same 
inputs. The SAL text output is followed by a list cell representation 
of the output. 

 
Figure 3.4.2: List cell representation of inputs to cons, list, and 

append: {c e}, {g b-flat} 
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SAL> print cons({c e}, {g b-flat}) 
{{C E} G B-FLAT} 

 
 

SAL> print list({c e}, {g b-flat}) 
{{C E} {G B-FLAT}} 

 
 

SAL> print append({c e}, {g b-flat}) 
{C E G B-FLAT} 

 

Figure 3.4.3: Compare and contrast cons, list, and append 

The primitive random returns a random number. random ex-
pects an integer as its input. random returns a random integer be-
tween 0 (inclusive) and the value of its input (exclusive). 

Example 3.4.17: random 

SAL> print random(5) 
0 
 
SAL> print random(5) 
2 
 
SAL> print random(5) 
3 
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Sometimes, we need a random real number as opposed to a ran-
dom integer. rrandom returns a random real number between 0 and 
1. 

Example 3.4.18: rrandom 

SAL> print rrandom() 
0.583565 
 
SAL> print rrandom() 
0.808741 
 

real-random returns a random floating point number uniformly 
distributed in the range given by the two inputs. The name of this 
function indicates the result is a real number (represented by a float-
ing point value) as opposed to an integer. The result is not “really” 
random but pseudo-random. In fact, all of these random number gen-
erators will return exactly the same sequence of “random” values 
every time Nyquist is restarted. 

Example 3.4.19: real-random 

SAL> print real-random(1, 10) 
6.26508 
 
SAL> print real-random(1, 10) 
5.31886 
 
SAL> print real-random(0.1, 0.2) 
0.135029 

3.5 Predicates 
Predicates are functions that return true or false. True in SAL is 
represented by the symbol #t and false in SAL is represented by the 
symbol #f. 

An example of a simple predicate is symbolp. symbolp returns 
#t if the data passed to the function is a symbol and #f if it is not. 

Example 3.5.1: symbolp 

SAL> print symbolp(nil) 
#t 
 
SAL> print symbolp(.435) 
#f 
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Another predicate is numberp. It returns #t if the data passed to 
it is a number and #f if it is not. 

Example 3.5.2: numberp 

SAL> print numberp(nil) 
#f 
 
SAL> print numberp(.435) 
#t 
 

The predicate floatp expects a number as input and returns #t if 
its input is a floating point number (called a FLONUM in SAL) and 
#f if it is not. 

Example 3.5.3: floatp 

SAL> print floatp(.324) 
#t 
 
SAL> print floatp(23) 
#f 

 

The predicate integerp expects any value as input and returns #t 
if its input is an integer and #f if it is not. 

Example 3.5.4: integerp 

SAL> print integerp(#t) 
#f 
 
SAL> print integerp(.324) 
#f 
 
SAL> print integerp(-7) 
#t 
 

Other predicates include oddp and evenp. These predicates ex-
pect an integer as input and return a #t or #f value if the input is an 
odd or even number. 

Example 3.5.5: oddp 

SAL> print oddp(5) 
#t 
 
SAL> print oddp(2) 
#f 
 
SAL> print evenp(5) 
#f 
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SAL> print evenp(2.0) 
error: bad floating point operation 
 

The predicate zerop expects a number as input and returns a #t if 
its input is 0 and #f if its input is not zero. 

Example 3.5.6: zerop 

SAL> print zerop(5) 
#f 
 
SAL> print zerop(0) 
#t 
 

The predicate plusp expects a number as input and returns #t if 
the number is greater than zero and #f if the number is less than or 
equal to zero. 

Example 3.5.7: plusp 
SAL> print plusp(3.245) 
#t 
 
SAL> print plusp(0) 
#f 
 
SAL> print plusp(-76) 
#f 

 
The predicate minusp expects a number as input and returns #t 

if the number is less than zero. 

Example 3.5.8: minusp 

SAL> print minusp(3.245) 
#f 
 
SAL> print minusp(0) 
#f 
 
SAL> print minusp(-76) 
#t 
 

The relational operators <, >, <=, >=, =, != (not equal to) com-
pare two or more numbers and return the result. Note that these are 
infix operators, so you write “1 < 2” rather than “<(1, 2)”. Never-
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theless, you should think of these operators as predicate functions 
that take values in and return true or false. 

Example 3.5.9: Relational operators 

SAL> print 67 < 34.5 
#f 
 
SAL> print 76 >= 68 
#t 
 
SAL> print 67 = 90 
#f 
 
SAL > print 4 != 5 
#t 
 

The operator “~=” should be used to compare strings or lists. Do 
not use the “=” operator to compare strings or lists. 

Example 3.5.10: string comparison 
SAL> print "a string" ~= "B String" 
#f 
 
SAL> print "a string" = "a string" 
#f 
 
SAL> print "a string" ~= "a string" 
#t 
 

SAL> print {{a b} c} = {{a b} c} 
#f 
 

SAL> print {{a b} c} ~= {{a b} c} 
#t 
 

SAL> print {a {b c}} ~= {{a b} c} 
#f 

 
The predicate listp returns #t if its input is a list and #f if its in-

put is not a list. 

Example 3.5.11: listp 
SAL> print listp({c e g}) 
#t 
 
SAL> print listp(nil) 
#t 
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SAL> print listp(4) 
#f 
 

The predicate endp expects a list as input. endp returns #t if its 
input is the empty list and #f if its input is not an empty list. 

Example 3.5.12: endp 

SAL> print endp(nil) 
#t 
 
SAL> print endp({c e g}) 
#f 
 
SAL> print endp(cons(quote(c), quote(d))) 
#f 

 
Notice that many of the predicates presented thus far have ended 

in the letter P. There are some predicates that do not follow this 
naming convention. 

The predicate atom returns #t if its input is not a list cell. Other-
wise, atom returns #f. Generally, anything that is not a list is an 
atom. The one exception is the empty list, which is both a list and an 
atom. 

Example 3.5.13: atom 

SAL> print atom(-4) 
#t 
 
SAL> print atom(quote(c)) 
#t 
 
SAL> print atom({c e g}) 
#f 
 
SAL> print atom(nil) 
#t 
 

The predicate null returns #t if its input is the empty list, other-
wise null returns #f. 

Example 3.5.14: null 
SAL> print null(nil) 
#t 
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SAL> print null(4) 
#f 
 
SAL> print null({c e g}) 
#f 
 
SAL> print null({}) 
#t 
 

null is similar to endp in that both predicates check for the empty 
list. The primary difference between the two predicates is that endp 
does not accept numbers as input. 

Example 3.5.15: null vs. endp 

SAL> print null(4) 
#f 
 
SAL> print endp(4) 
error: bad argument type - 4 
 

The value of an input is also called an actual parameter or an 
argument, so the error message in Example 3.5.15 means that the 
value (4) passed as an input is not valid for the function endp. 

The logical operators & (“and”) and | (“or”) may be used to con-
join two or more forms. In SAL, when a logical value (true or false) 
is required, #f or nil is considered to mean false, and anything else 
(numbers, lists, symbols) is considered to mean true. Evaluation of & 
and | is based on the truth tables in Figure 3.5.1. 
 
& (and) 

Input 1 Input 2 Result 
T T T 
T F F 
F T F 
F F F 

 
| (or) 

Input 1 Input 2 Result 
T T T 
T F T 
F T T 
F F F 

Figure 3.5.1: Truth tables for & and | 
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Unlike functions or operators, & and | are called special forms and 
do not evaluate their input expressions in the normal manner. The & 
(“and”) form evaluates input expressions one-at-a-time from left to 
right until an expression evaluates to #f (false) at which point & re-
turns #f. If both expressions evaluate to non-nil (true), & returns #t. 
Similarly, | (“or”) evaluates input expressions one-at-a-time from left 
to right until an expression evaluates to #t (true) at which point | 
(“or”) returns #t. If both expressions evaluate to #f (false), | (“or”) 
returns #f.  

Example 3.5.16: & and | 

SAL> print numberp(quote(c-major)) & 
           symbolp(quote(d-major)) 
#f 
 
SAL> print numberp(quote(c-major)) | 
           symbolp(quote(d-major)) 
#t 
 

The predicates “!” (an operator) and NULL (a function) return the 
same results. NULL is generally used to check specifically for the 
symbol NIL, and ! is used to reverse a logical (true or false) value. 
Choosing the appropriate function name can help make your pro-
grams easier to understand. Note that “!” takes precedence over 
many other operators, so the expression “! 4 = 5” means the same 
as “(! 4) = 5”, which might not be the intended computation! 
Also, notice that, while in some languages 0 (zero) means “false,” in 
SAL, “0” is not nil (or false), so “! 0” is false. Finally, remember 
that even the ! operator needs to be separated from the following ex-
pression by at least one space. 

Example 3.5.17: The ! operator 

SAL> print ! 4 = 5 
#f 
 
SAL> print ! (4 = 5) 
#t 
 
SAL> print ! 1 
#f 
 
SAL> print ! 0 
#f 
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SAL> print null(4 = 5) 
#t 
 
SAL> print null(1) 
#f 
 
SAL> print null(0) 
#f 
 
SAL> print null(nil) 
#t 
 

3.6 User-Defined Functions 
To build programs that solve complex problems, it is necessary to 
write your own functions. User-defined functions may be used just 
like the SAL primitives. 

The template to define a function is: 
define function function-name(optional-inputs) 
   begin 
       commands 
   end 

Note: the word define is optional, but we use it throughout this book 
to remind the reader that this is a function definition. To call or 
invoke a function, evaluate an expression based on this template: 

function-name(optional-inputs) 
In Example 3.6.1, we define a function named my-c-chord that 

creates a list of the pitches C, E, and G. 

Example 3.6.1: Defining a function 
SAL> define function my-c-chord() 
       begin 
         return {c e g} 
       end 

Call the function. 

SAL> print my-c-chord() 
{C E G} 

 
The function name is my-c-chord. The function does not expect 

any inputs, indicated by the empty input list “()”. The function defi-
nition consists of a single command to return a list of the atoms c, e, 
and g. The return command causes an immediate exit from the 
containing function. After defining the function my-c-chord, we call 
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it with no inputs. The value returned by the function is the list {C E 
G}. 

In Example 3.6.2, we define a function that transposes a given 
key-number by a given interval. The function name is transpose-
midi-note. The function expects two inputs, key-number and 
interval. The value returned by the function is the sum of these two 
inputs. Following the function definition, we call transpose-midi-
note to transpose key-number 60 up by 12 half steps and down by 5 
half steps. 

Example 3.6.2: A transpose function 

SAL> define function transpose-midi-note( 
                       key-number, interval) 
       begin 
         return key-number + interval 
       end 

Transpose key-number 60 up 12 half steps. 

SAL> print transpose-midi-note(60, 12) 
72 

Transpose key-number 60 down 5 half steps. 

SAL> print transpose-midi-note(60, -5) 
55 

 
In Example 3.6.3, we define a predicate function rangep that de-

termines if its input is a valid MIDI key number, e.g. an integer in 
the range 0–127. 

Example 3.6.3: Definition and use of rangep 
SAL> define function rangep(keynumber) 
       begin 
         return integerp(keynumber) &  
                (keynumber <= 127) &  
                (keynumber >= 0) 
       end  
 
SAL> print rangep(128) 
#f 
 
SAL> print rangep(-23.5) 
#f 
 
SAL> print rangep(64) 
#t 
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The function rangep expects a number as input. The compare op-
erators <= and >= will cause a run-time error if one of their inputs is 
not a number. Therefore, the first test is integerp(keynumber). If 
this is false, the remaining tests are not performed (recall that & 
evaluates expressions from left to right until false is encountered). 
The value returned by the function is #t or #f. In the example, 
rangep is tested with several inputs. 

3.7 Getting Help 
Lisp and Nyquist functions are all described in the Nyquist manual, 
which is installed along with the Nyquist programs and available in 
HTML, PDF, and ASCII text formats. Related functions tend to be 
grouped together in different chapters, and all functions are listed in 
the index. 

3.8 Programming Errors 
Beginning programmers soon discover that programs are much more 
likely to contain errors than not. There are many kinds of errors. 
Syntax errors occur when the program text does not express a valid 
program. For example, a string beginning with a quote (") but not 
ending in a matching quote is not valid. Also, a function call with 
extra commas, e.g. null(,,), is not valid. Run-time errors occur when 
a program tries to perform an operation that is not allowed, such as 
adding two values that are not numbers, or calling a function with the 
wrong number of input values. Finally, some programs run but pro-
duce the wrong answer. In some sense, this is the most difficult type 
of error because no problem is detected automatically. 

3.9 Error Messages 
Error messages are printed when a syntax error or run-time error oc-
curs. Although it is annoying to discover that your program has an 
error, careful attention to error messages will help you to find and fix 
the problem. 

When a syntax error occurs, the error output contains the line 
number where the problem was found, the line itself, and an indica-
tion of where to look for the problem. SAL cannot guess the intended 
meaning of the faulty program, so the error location is usually the 
point at which the program stops being valid. This may not be the 
exact location of the actual problem, but it is usually close. 
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Example 3.9.1: Unbound variable 
SAL> print atom(b-flat) 
error: unbound variable - B-FLAT 
Call traceback: 
    SAL top-level command interpreter 

 
When a run-time error occurs, the error output contains an error 

description and a call traceback as shown in Example 3.9.1. The 
“Call traceback:” part of the error message describes the context of 
the error. In these examples, the context is obvious: the command 
you just typed, but later we will see more interesting cases. 

We will also learn what variables are and what it means for them 
to be unbound. For now, if you see the error shown in Example 
3.9.1, you probably forgot to quote a symbol or expression so that 
SAL will not try to evaluate it. A corrected version of the command 
is shown in Example 3.9.2. 

Example 3.9.2: Quoting a symbol 

SAL> print atom(quote(b-flat)) 
#t 

 
Another common error is to pass the wrong data type to a func-

tion, as shown in the next example. 

Example 3.9.3: Input is wrong data type 
SAL> print zerop({c e g}) 
error: bad argument type - (C E G) 
Call traceback: 
    SAL top-level command interpreter 
 
SAL> print first(4) 
error: bad argument type - 4 
Call traceback: 
    SAL top-level command interpreter 
 

Yet another common error is to pass the wrong number of inputs 
to a function. 

Example 3.9.4: Passing the wrong number of inputs to a function 
SAL> print cons(quote(a), quote(b), quote(c)) 
error: too many arguments  
Call traceback: 
    SAL top-level command interpreter 
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SAL> print transpose-midi-note(60) 
error: too few arguments 
Call traceback: 
    SAL top-level command interpreter 
 

3.10 Stack Traces 
When expressions are nested and when user-defined functions are 
evaluated, the SAL evaluation process can be nested hundreds of 
levels deep. The top-level command can call a function, which calls 
another function, which calls another, and so on. Often, an error 
message has no immediate connection to the top-level expression 
you typed. The traceback facility lets you see exactly what the SAL 
evaluator was doing leading up to the error condition. Stack traces 
require careful study, but this can pay off handsomely when you 
need to know how an error occurred.  

There are actually two traceback facilities offering different levels 
of detail. The first is the “SAL traceback” that we have already seen 
hints of. To illustrate the SAL traceback, consider the user-defined 
transpose-midi-note function and an expression that calls it with an 
incorrect input: 

Example 3.10.1: Define and call transpose-midi-note 
SAL> define function transpose-midi-note( 
                       key-number, interval) 
       begin 
         return key-number + interval 
       end 
 
SAL> print transpose-midi-note(quote(c4), 4) 
error: bad argument type - C4 
Call traceback: 
    TRANSPOSE-MIDI-NOTE( 
        KEY-NUMBER = C4, 
        INTERVAL = 4) at line 4 
    SAL top-level command interpreter  

 
At this point, it is pretty clear that C4 is a bad input (the values of 

input expressions are called arguments; notice the output text: 
“error: bad argument type – C4”), but what function generated the 
error message? Reading further, the Call traceback shows that the er-
ror occurred in transpose-midi-note, with inputs key-number = 
C4, and interval = 4. Furthermore, the error occurred at line 4 of the 
function (at the return statement). Why was transpose-midi-note 
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called? The next line of the traceback says transpose-midi-note 
was called from the SAL top-level command interpreter. In other 
words, the user typed in a command. 

The Call traceback tells you about SAL program evaluation, but 
sometimes more detail is useful. Recall that SAL works by translat-
ing programs into Lisp, so errors are actually detected in the process 
of Lisp evaluation. The Lisp evaluation system has its own stack 
trace mechanism. To enable this, set the “Print Stack Trace on Error” 
option in the Preferences dialog box (opened using the Preferences 
menu item). With this option, try the same call to transpose-midi-
note: 

Example 3.10.2: XLISP traceback 

SAL> print transpose-midi-note(quote(c4), 4) 
error: bad argument type - C4 
Function: #<Subr-SND-OFFSET: #71c788> 
Arguments: 
  C4 
  4 
Function: #<FSubr-COND: #71fc50> 
Arguments: 
  ((NUMBERP S1) (COND ((NUMBERP S2) (+ S1 S2 … 
  ((NUMBERP S2) (SND-OFFSET S1 S2)) 
  (T (LET ((S1SR (SND-SRATE S1)) … 
Function: #<Closure-NYQ:ADD-2-SOUNDS: #736a50> 
Arguments: 
  C4 
  4 
Function: #<FSubr-COND: #71fc50> 
Arguments: 
  … 
…many more function/argument pairs elided… 
Function: #<Closure-SAL-COMPILE: #790864> 
Arguments: 
  "print transpose-midi-note(quote(c4), 4)" 
  T 
  NIL 
  "<console>" 
…more function/argument pairs elided… 
1> 

 
The full stack trace is over 100 lines long. It shows in detail how the 
program arrived at the error. A full understanding of the stack trace 
requires a good knowledge of Lisp, but a look at the stack trace can 
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be helpful even without a complete understanding. The general for-
mat of the XLISP stack trace is just like the SAL stack trace: both 
give a list of functions and arguments (input values). Here, we see 
that the error occurred in SND-OFFSET, a Lisp primitive. (Lisp 
primitives are indicated by the “Subr-” prefix.) Looking down a bit 
further, we see that SND-OFFSET was called indirectly from 
NYQ:ADD-2-SOUNDS, which has inputs C4 and 4. This may seem a 
bit unrelated to the SAL program, but it should be clear that C4 and 
4 come from the SAL command, and at least the word “ADD” 
should indicate that execution is related to the “+” in transpose-
midi-note. Looking further down the stack trace, you can find a call 
to SAL-COMPILE, and one of the inputs is the SAL command repre-
sented as a string. This gives a bit of insight into how SAL programs 
are converted to Lisp and evaluated. 

After the stack trace is printed, the prompt “1>” appears. The user 
can enter additional commands in Lisp, or return to SAL input mode. 
To resume working in SAL, click on the Top button of the IDE, then 
click on the SAL button. The output will look like this: 

1> (top) 
 [ back to top level ] 
> (sal) 
Entering SAL mode ... 
SAL> 

 
To conclude, SAL automatically prints a stack trace that tells you 

where an error occurred, including the chain of calls from the com-
mand line to the function raising the error. If the nature of the error is 
still unclear, it can be helpful to take out the “magnifying glass” by 
enabling the “Print Stack Trace on Error” option and running the 
program again. The resulting stack trace has more detail, but the de-
tail is expressed in terms of the underlying Lisp system, which may 
be less familiar. To resume work in SAL, push the Top and SAL 
buttons in the IDE. 

3.11 Printing 
The print command is also very useful for understanding and de-
bugging programs. When functions and expressions are deeply 
nested, the print function allows you to insert check points and con-
firm that evaluation is proceeding as planned. In fact, print’ing is 
such a useful aid to debugging that SAL has a special command, 
display, that is especially designed for debugging. We will return to 
this topic after a discussion of programming concepts in the next 
chapter. 
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Chapter 4 Programming and Nyquist 

In Chapter 3, we looked at data types (including numbers, symbols, and 
lists), expressions, and functions. In this chapter, we will learn how to write 
programs and make sounds. 

4.1 Getting Started 
The normal way to write a program is to type code into a file. The 
file is then loaded into Nyquist. Loading means that the expressions 
in the file are evaluated. Usually, most of the expressions in a file de-
fine functions. Files are convenient because, if there is an error, you 
can simply edit the file and reload it rather than retyping everything. 

Using the jnyqide program, click on the New File button below 
the text input area. A new window will appear. Save the empty 
window to “simple.sal” so the editor will display the file using SAL 
syntax. Now, you can type a program into this window. Try typing 
the following text.  

Example 4.1.1: simple.sal 

;; a simple program 
define function my-program() 
  begin 
    print "this is a test" 
    play pluck(c4) 
  end 
 
Note: examples labeled with a filename as in Example 4.1.1 are 
included in the accompanying electronic media. (See page 1.) 
 

This program begins with a comment. A comment is text that is 
not evaluated. Comments begin with a semicolon and extend to the 
end of the line. Sometimes, programmers use two or more semico-
lons to make comments stand out, but you could just as well write “; 
hey you! – a simple program” as long as the first character is a 
semicolon. Use comments to describe your programs, intentions, and 
details that you might forget when you (and others) read the pro-
gram. 

Following the comment is a function definition. The print 
command prints a line of text to the Nyquist output to confirm that 
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the function has been called. The pluck function generates a plucked 
string sound, and play plays the sound as audio. For now, do not 
worry about how pluck and play work because we just want to cre-
ate and run any Nyquist program using files. 

Notice that my-program has two commands (print and play). 
When a function definition has multiple expressions, they are evalu-
ated sequentially. 

Figure 4.1.1: The Nyquist IDE (Macintosh version) 

The screen should look something like Figure 4.1.1. When the 
program is ready, click on the Load button. Nyquist will then load 
the file and generate output similar to the following: 

Example 4.1.2: Output from loading simple.sal 
SAL> exec setdir("/Users/rbd/temp") 

SAL> load "/Users/rbd/temp/simple.sal" 

SAL> 

Notice that you do not need to type anything to the text area. In-
stead, jnyqide automatically types a command to set Nyquist’s cur-
rent directory to wherever you saved the file and then a command to 
load the file. 
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After the file is loaded, my-program will be defined and avail-
able for use. To evaluate an expression (such as a function call), use 
the command exec as shown in Example 4.1.3. 

Example 4.1.3: Using exec to call a function 

SAL> exec my-program() 
this is a test 
Saving sound file to temp.wav 
 
total samples: 44100 
AutoNorm: peak was 1.24552, 
     peak after normalization was 0.9, 
     suggested normalization factor is 0.722587 
SAL> 
 

The print command in my-program generates the output line 
“this is a test”. Next, the pluck sound is generated and played by the 
play function. Some information is printed by play. First, play nor-
mally saves a copy of the sound to a file, in this case “temp.wav.” 
(You can replay the sound from this file by clicking on the Replay 
button in jnyqide.) Next, play tells us that it performed 44100 
samples of audio. The line beginning with “Autonorm” tells us the 
peak audio level of the original sound was 1.24552. Normally, audio 
samples should be in the range from −1 to +1. If necessary, Nyquist 
tries to adjust the output level to avoid clipping. As indicated in the 
printout, the sound was scaled to achieve a peak of 0.9. Based on the 
final outcome, the “suggested” normalization factor of 0.722587 is 
the value that one might use to scale the sound manually. If you run 
my-program again, these numbers will change because the pluck 
sound is initialized with random numbers and produces different 
peak values each time. 

Now go back to the program and change the c4 to f4. Add a new 
line at the end of the file to call my-program. The file should look 
like Example 4.1.4. 

Now, click the Load button in jnyqide. The file is automatically 
saved and reloaded into Nyquist. Nyquist evaluates the expressions 
in the file one-by-one. The first expression redefines my-program. 
The next expression calls my-program. You should hear another 
plucked string sound on the new pitch f4. 
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Example 4.1.4: Using define function in simple2.sal 
;; a simple program 
define function my-program () 
  begin 
    print "this is a test" 
    play pluck(f4) 
  end 
 
exec my-program() 
 

You have now been through two iterations of the standard cycle 
for program development:  

1. create a text file defining functions and calling them 
2. load the text file into Nyquist 
3. observe and listen to the program behavior 
4. edit the program to fix problems or add new features 
5. jump to step 2 

In the remainder of this chapter, we will first learn how to repre-
sent note lists, or scores, in Nyquist. Then we will learn how to turn 
scores into sounds. 

4.2 Nyquist Instruments 
Nyquist uses ordinary functions to define “instruments” that play 

notes in scores. Although the topic of sound synthesis could fill an-
other book, we will look at the definition of note as an example of 
how instruments can be defined (see Example 4.2.1). 

The next line uses the same define function as Section 3.6, but 
adds some new notation. The inputs list here is (pitch: 60, vel: 
100). The trailing colons in the input names indicate that these are 
keywords. In previous functions, input values are associated with 
names in the function definition by position, that is, values are bound 
to symbols from left to right. With keywords, the expression that 
invokes the function lists keywords and associated values in pairs. 
The keywords in the calling expression end with a colon (:) to 
distinguish them from ordinary symbols. In the function body, the 
colons are omitted, so for example, pitch in the return command of 
Example 4.2.1 refers to the value associated with the pitch: key-
word. We call these inputs keyword parameters. 
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Example 4.2.1: Defining an instrument in note.sal 
load "pianosyn.lsp" ; load piano library 
 
define function note(pitch: 60, vel: 100) 
  begin 
    return piano-note-2(pitch, vel) 
  end 
 

Keyword parameters are paired with default values, so pitch: 60 
means the keyword pitch: can be used to provide a value for the 
pitch parameter, but if no such keyword is provided, the value will 
be 60. 

In this example, the load "pianosyn" command is necessary to 
load the definition of piano-note-2 – it must be loaded before the 
first call to note. The load command has a similar effect to clicking 
on the Nyquist “Load” button. The value of note is computed by 
passing the pitch and vel parameters to piano-note-2, a Nyquist 
library function that makes a piano sound. You can try out note as 
follows. 

Example 4.2.2: Using the note function 

play note(pitch: 48) ; play a piano note 
play note(pitch: 36) ~ 4 ; play a longer, 
                         ; lower note 
play note(pitch: 48, vel: 90) ; all  
         ; parameters are specified 
play note(vel: 90, pitch: 48) ; keyword 
         ; parameters can be in any order 
 

In fact, this note function is pre-defined in Nyquist. Rather than 
(re)defining note as in Example 4.2.1, you can simply use the built-
in note function. 

The next example defines another instrument based on Nyquist’s 
pluck function. Because pluck uses positional parameters, we will 
not use it in scores but rather define a new function with keyword pa-
rameters. This new function will serve as a “wrapper,” in other 
words just a bit of re-packaging, that calls pluck to do most of the 
work. Since we are defining a new function, we will add some new 
twists: an amplitude control based on the vel parameter and a low-
pass filter with a variable cutoff frequency to control brightness. 

The function plucked-string in Example 4.2.3 defines three key-
word parameters, pitch, vel, and cutoff. The body of the function is 
just a return command that evaluates and returns a sound. The first 
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line of the expression converts the “velocity” parameter vel, with a 
nominal range from 1 to 127, into a linear scale factor from 0.001 to 
1.0. (We will revisit this in detail later.) This scale factor is multi-
plied by the next line, which computes a sound. The sound is just 
pluck processed by a low-pass filter (lp) tuned to the cutoff pa-
rameter. Frequencies above cutoff (in Hertz, or cycles-per-second) 
will be attenuated. Lower values of cutoff make the sound less 
bright. 

Example 4.2.3: plucked-string.sal 

define function plucked-string(pitch: 60,  
                  vel: 100, cutoff: 10000) 
  begin 
    return ((0.00768553 * vel + 0.0239372) ^ 
            2) * lp(pluck(pitch), cutoff) 
  end 

4.3 Nyquist Scores 
The examples above define a couple of functions, note and plucked-
string, that produce sounds. How are these combined to make mu-
sic? Nyquist uses lists to represent scores or note lists. A score is a 
list of notes or sound events, and a note is a list of three elements: a 
time, a duration, and a sound expression. Example 4.3.1 contains a 
score with 3 notes of the C-major scale. 

Example 4.3.1: A score 
{{0.0 1.0 {note pitch: 60 vel: 100}} 
 {1.0 1.0 {note pitch: 62 vel: 110}} 
 {2.0 1.0 {note pitch: 64 vel: 120}}} 
 

Notice the overall form of this example. The score is a list of lists. 
The top-level list is a list of notes, or more generally, a list of sound 
events. The term note is often frowned upon in computer music cir-
cles because it implies many traditional assumptions about music. A 
note implies pitch, rhythm, and instrumentation, whereas a computer 
music score could just as well contain a recording of footsteps, a 
conversation, and a four-part chorale as three sound events. Since 
most of our examples in fact deal with notes, we will generally use 
that term when it is applicable. In this example, each line contains 
one note, expressed as a list.  

Each list expressing a note starts with a starting time followed by 
a duration (or stretch factor). These notes start at times 0.0, 1.0, and 
2.0. All have a duration of 1.0. Technically, the duration is really a 
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time-scaling factor that “stretches” the normal duration of the note. 
Most notes have a nominal duration of 1, so the time-scaling factor, 
or stretch factor, becomes the duration, but it is possible for sound 
events to have any nominal duration. 

The third element of each line is the sound expression, which tells 
how to create a sound. Notice that the sound expression does not 
follow the SAL syntax for function calls because the expression must 
be represented within a list structure, not as a textual program. To 
accomplish this, sound expressions within scores use Lisp syntax, 
which is convenient because SAL is implemented in Lisp and be-
cause Lisp programs are represented by lists. In Lisp notation, the 
first item in a list is a function name, and the remaining items are pa-
rameters to pass to the function. Thus, {note pitch: 60 vel: 100} is 
Lisp notation for note(pitch: 60, vel: 100). To complete the story, 
it should be mentioned that while lists in SAL are written with braces 
{}, lists in Lisp are written with parentheses (), and while keywords 
in SAL are written with a trailing colon (pitch:), keywords in Lisp 
are preceded with a colon (:pitch). If you stick to writing programs 
in SAL, these details should only rarely be visible. 

Pitches are given by numbers consistent with MIDI: 60 is middle-
C, 61 is C-sharp, and so on. In the example, pitches are middle-C, D, 
and E. Input values here are indicated by alternating keywords 
(pitch: and vel:) with values (e.g. 60 and 100).  

As a slight extension to the score representation, scores can have 
an explicit starting time and ending time, indicated by a “pseudo-
sound-expression” using the name score-begin-end. 

Example 4.3.2: A score with begin and end times 

{{0.0 0.0 {score-begin-end 0.0 4.0}} 
 {0.0 1.0 {note pitch: 60 vel: 100}} 
 {1.0 1.0 {note pitch: 62 vel: 110}} 
 {2.0 1.0 {note pitch: 64 vel: 120}}} 
 

In this case, the score begins at time 0.0 and ends at 4.0. If this 
score is spliced onto another one, the second score will start at time 
4.0, even though the last note of the first score ends at time 3. 

To convert a score into sound, use the score-play function. No-
tice that the play command requires an expression that results in a 
sound, so it cannot be used with a score. The score-play function 
converts a score to a sound, and since it also plays the sound, we do 
not want to invoke it with the play command. Instead, we simply 
evaluate (call) the score-play function using the exec command. 
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Example 4.3.3: Using score-play 
exec score-play( 
  {{0.0 0.0 {score-begin-end 0.0 4.0}} 
   {0.0 1.0 {note pitch: 60 vel: 100}} 
   {1.0 1.0 {note pitch: 62 vel: 110}} 
   {2.0 1.0 {note pitch: 64 vel: 120}}}) 
 

When score-play interprets a score, it uses the score to determine 
the start time and duration of each note. For each note, at the appro-
priate time, Nyquist then evaluates the (Lisp syntax) expression to 
compute a sound. All resulting sounds are added together and played 
using the play command described earlier. 

Nyquist has a special way to express chords. If the pitch: 
parameter is a list, the overall event expression is expanded into a set 
of expressions, one for each element of the pitch: list. Thus {0.0 
1.0 {note pitch: {60 67}}} is equivalent to the two notes 
{0.0 1.0 {note pitch: 60}} and {0.0 1.0 {note pitch: 
67}}. 

It follows that if the pitch parameter is nil or the empty list, then 
this is a chord with zero notes and represents nothing (in musical 
terms, a rest). 

Example 4.3.4: score-sort.sal 
exec score-play(score-sort(  
  {{0.0 0.5 {plucked-string pitch: 67 vel: 90 cutoff: 4000}} 
   {0.5 0.5 {plucked-string pitch: 69 vel: 95 cutoff: 5000}} 
   {1.0 0.5 {plucked-string pitch: 71 vel: 100 cutoff: 6000}} 
   {1.5 0.5 {plucked-string pitch: 72 vel: 105 cutoff: 7000}} 
   {2.0 0.5 {plucked-string pitch: 71 vel: 100 cutoff: 6000}} 
   {2.5 0.5 {plucked-string pitch: 69 vel: 95 cutoff: 5000}} 
   {3.0 1.0 {plucked-string pitch: 67 vel: 90 cutoff: 4000}} 
   {0.0 1.0 {note pitch: 59 vel: 100}} 
   {1.0 1.0 {note pitch: 55 vel: 100}} 
   {2.0 1.0 {note pitch: 55 vel: 100}} 
   {3.0 1.0 {note pitch: 59 vel: 100}}})) 

 

 
Figure 4.3.1: Score from Example 4.3.4 
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Example 4.3.4 contains a short score with two instruments. 
score-play requires that scores be sorted, but in this case it is con-
venient to group the score notes by instrument. The notes are not 
sorted in time, but the score-sort function sorts the score into time 
order. Listen for the changes in the pluck sound due to the changing 
cutoff frequencies. The score in common music notation is shown in 
Figure 4.3.1. 

4.4 Variables 
Lisp symbols can be used to represent values. We have already seen 
in function definitions how symbols called parameters represent in-
put values. It is also possible to associate any value with any symbol. 
The symbol is then called a variable.  

Example 4.4.1: Variables 
SAL> set a = 23 ; set variable A to value 23 
SAL> print a ; print the value of A 
23 

 
SAL> print a + 5 ; use A in an expression 
28 

 
SAL> set a = 7 ; variables can be changed 
SAL> print a 
7 

 
SAL> print a + 5 
12  
 

One use of variables is to represent scores. It is easier to type a 
variable name than to retype an entire score. Notice in Example 4.4.2 
that the variable my-score is set once but used several times. (In this 
example, only user input is shown to save space.) 

Variables and functions are different even though both are 
denoted by symbols. In fact the same symbol can represent both a 
variable and a function as shown in Example 4.4.3. To access the 
variable, just write the symbol’s name. A symbol is an expression 
that evaluates to the current value of the variable denoted by the 
symbol. To denote the value returned by a call to a function, put a 
list of input expressions in parentheses after the symbol that names 
the function. This function call expression is evaluated as follows: 
First, the function associated with the symbol is found. Second, the 
input expressions are evaluated from left to right. Third, the resulting 
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input values are passed to the function, the function body is 
evaluated, and a value is returned. 

Example 4.4.2: Saving scores in variables in score-variables.sal 
set my-score = 
  {{0.0 0.5 {plucked-string pitch: 67  
                   vel: 90 cutoff: 4000}} 
   {0.5 0.5 {plucked-string pitch: 69  
                   vel: 95 cutoff: 5000}} 
   {1.0 0.5 {plucked-string pitch: 71  
                   vel: 100 cutoff: 6000}} 
   {1.5 0.5 {plucked-string pitch: 72  
                   vel: 105 cutoff: 7000}} 
   {2.0 0.5 {plucked-string pitch: 71  
                   vel: 100 cutoff: 6000}} 
   {2.5 0.5 {plucked-string pitch: 69  
                   vel: 95 cutoff: 5000}} 
   {3.0 1.0 {plucked-string pitch: 67  
                   vel: 90 cutoff: 4000}}} 
exec score-play(my-score)  ; play the score 
exec score-print(my-score) ; neatly print score 
; play at half speed  
exec score-play(score-stretch(my-score, 2))  

Example 4.4.3: Functions and Variables 

SAL> define function foo() 
       begin ; define foo as a function 
         print "hi there"  
         return "hi there" 
       end 
SAL> ; define foo as a variable:  
     set foo = " goodbye "  
SAL> exec foo() ; call foo as a function 
hi there 
SAL> print foo ; evaluate foo as a variable 
 goodbye  
SAL> ; concatenate strings: 
     print strcat(foo(), foo, foo())  
hi there 
hi there 
hi there goodbye hi there 

4.5 Score Processing 
SAL offers many functions for manipulating scores. Like score-sort 
in Example 4.3.4, all of these functions are named score-
something, and all of these functions take a score as the first input. 
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Score functions do not modify the input score. Instead, they make a 
new score, so assign the result to a variable if you want to retain the 
changes. 

Example 4.5.1: Using score-shift 
SAL> set my-score = {{0.0 2.0 {note pitch: 60}}} 
SAL> print score-shift(my-score, 3.0) 
{{0 0 {SCORE-BEGIN-END 0 5}}  
 {3 2 {NOTE pitch: 60}}} 
 

The function score-shift adds a time offset to the times of notes. 
Notice that score-shift added a score-begin-end expression to the 
score. Almost all score functions add default begin and end times 
unless they are already specified. The main effect of the score-shift 
function is to change the starting time of the note from 0.0 to 3. 

Most score functions can operate on a range of notes. The default 
range includes all notes, but keyword parameters can be used to 
specify a narrower range. The from-index: and to-index: keywords 
specify a range of notes by index. For example, to select only the 1st 
through 7th notes, you would use the keyword/value pairs from-
index: 1, to-index: 7. 

Another pair of keywords, from-time: and to-time:, can also be 
used to specify a range. For example, to select notes with start times 
greater than or equal to 5 seconds and less than 10 seconds, use 
from-time: 5, to-time: 10. 

Example 4.5.2: Using score-shift 

; add 3 seconds to all start times  
print score-shift(my-score, 3.0)  
; insert 3s rest at time 10 
print score-shift(my-score, 3.0, from-time: 10)  
 

The function score-transpose adds an offset to some parameter 
of every note. If the note does not have the parameter, the note is un-
changed. To indicate which parameter to offset, the second parame-
ter of score-transpose is a keyword symbol. You might expect to 
simply write a keyword symbol, e.g. pitch:, but when SAL sees a 
keyword (any symbol ending in a colon), it expects to see a follow-
ing expression which is evaluated and passed as the value of a key-
word parameter. Alternatively, you might think to write 
quote(pitch:), which is the normal way to write an expression that 
returns a symbol, but again, SAL looks for a following expression. 
For example, quote(pitch: c4) would satisfy the SAL compiler, but 
it does not express what we want and it would generate a run-time 
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exception. The solution is a special form, keyword, that works 
something like quote, but converts an ordinary symbol into a key-
word. 

Example 4.5.3 uses the special keyword form to pass the symbols 
pitch: and cutoff: as inputs to score-transpose. Note that when 
using keyword, you omit the colon from the keyword symbol. 
Alternatively, one can write the symbol with a colon (:) prefix, e.g. 
:pitch, instead of keyword(pitch). The colon prefix receives no 
special treatment by the SAL compiler but in Lisp, it indicates a 
keyword. Lisp keywords (with colon prefix) are automatically 
initialized to their own symbol name, so you do not have to use 
quote. The value of :foo is quote(:foo)! 

In Example 4.5.4, the function score-scale multiplies a selected 
parameter by some scaling. If the note does not have the parameter, 
the note is unchanged. 

Example 4.5.3: Using score-transpose 
; transpose pitch up one octave: 
print score-transpose(my-score, keyword(pitch), 12) 
; increase cutoff freq. by 1000: 
print score-transpose(my-score, keyword(cutoff), 
                                1000) 

Example 4.5.4: Increase cutoff frequencies by 50% 
print score-scale(my-score, keyword(cutoff), 1.5) 

  
The function score-sustain multiplies durations by a scale factor. 

The starting times of notes are not changed, so the effect is to make 
notes more legato or staccato without changing the rhythm or tempo. 

Example 4.5.5: Using score-sustain 

; increase durations by 25% in the time 
; interval from 1 to 3 seconds 
print score-sustain(my-score, 1.25,  
                    from-time: 1, to-time: 3)  
 

The function score-voice is used to change the instrument, or 
function symbol, in note expressions. The inputs are the score and a 
replacement list. The replacement list is of the form {{old1 new1} 
{old2 new2}}, where old1, old2, … are existing instruments, and 
new1, new2, … are the replacements. 
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Example 4.5.6: Using score-voice 
; turn plucked-string into note and note into 
; plucked-string 
print score-voice(my-score,  
                  {{note plucked-string} 
                  {plucked-string note}}) 
 

The function score-merge combines any number of scores, pre-
serving the notes and their times. score-merge accepts any number 
of scores as inputs. In Example 4.5.7, we combine a score with a 
copy of itself transposed up one octave. (Also known as octave dou-
bling.) Then we produce an echo effect by copying the same score 
twice with slight delays, then combining the copies with the original.  

score-append, illustrated in Example 4.5.8, joins scores sequen-
tially – each score is started at the end of the previous score. If scores 
contain score-begin-end expressions, the begin time of each score 
is shifted to the end time of the previous score. If not, a score-begin-
end expression is inserted with default start and end times based on 
the time of the first note and the time + duration of the last note. Like 
score-merge, score-append accepts and appends any number of 
scores. 

Example 4.5.7: Using score-merge 
; double every note an octave higher 
print score-merge(my-score,  
          score-transpose(my-score,  
                          keyword(pitch), 12)) 
; make my-score with 2 echoes 
print score-merge(my-score, 
          score-shift(my-score, 0.1), 
          score-shift(my-score, 0.2)) 

Example 4.5.8: Using score-append 

; play my-score as is, then transposed  
; up 1 step, then up another step 
print score-append(my-score, 
            score-transpose(my-score,       
                            keyword(pitch), 2), 
            score-transpose(my-score,  
                            keyword(pitch), 4)) 
 

score-select is used to form a new score with only selected 
notes. To specify which notes are selected, you provide a predicate 
function with three inputs: the time, the duration, and the sound ex-
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pression. These are the three elements of note or sound events in 
SAL scores. (You might expect the predicate to just accept a whole 
sound event as input, but since nearly every predicate would first 
extract the three elements from the event, score-select does that for 
you and passes the three values separately.) 

In Example 4.5.9, a predicate is defined that is true when the 
pitch is less than 70. The predicate uses expr-get-attr, which 
searches for a keyword in the sound expression. If the keyword is 
found, the associated value is returned. If not, the third input (100) is 
returned as a default value. In this case, 100 was chosen to be greater 
than 70 so that the predicate will be false if no pitch is given. Notice 
that we need to pass a keyword symbol as the second input to expr-
get-attr. As described for Example 4.5.3, we use keyword(pitch) to 
denote the value pitch:.  

The following expression, beginning with score-select, then se-
lects all notes in my-score that satisfy the predicate. Notice that we 
are passing a function (not-very-high) as a parameter. This is ac-
complished by passing the name of the function, which must be 
quoted; otherwise, SAL will evaluate not-very-high as a variable. 

Example 4.5.9: Using score-select 
; a predicate that returns true when pitch  
; is less than 70 
define function not-very-high(time, dur, expression) 
  return expr-get-attr(expression, keyword(pitch),  
                       100) < 70 
; select all notes with pitch < 70 and time >= 2 
print score-select(my-score, quote(not-very-high),  
                   from-time: 2) 
 

score-filter-length removes notes that extend beyond a given 
cut-off time. This is similar to using the to-time: parameter to limit 
the selected notes in a score function, but while to-time: compares 
note starting times, score-filter-length selects notes that end before 
the specified time. The end of a note is the start time plus duration. 

Example 4.5.10: Using score-filter-length 
; result will not extend beyond 2.4s 
print score-filter-length(my-score, 2.4)  

 
score-stretch-to-length stretches a score to a given length. 
 

Example 4.5.11: Using score-stretch-to-length 
print score-stretch-to-length(my-score, 5.0) 
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score-filter-overlap can be used to reduce a score to a mono-

phonic texture. Wherever two notes overlap in time, the first note is 
kept, and the second is removed. As always, the original score is not 
modified, and a new monophonic score is returned. 

Example 4.5.12: Using score-filter-overlap 
print score-filter-overlap(my-score) 

 

score-apply replaces each note by a function of the note. For 
example, you can add new keywords and values to each note in the 
score or you can change the duration of each note. In Example 
4.5.13, the attribute/value pair accent: 100 is added to every note 
whose pitch is greater than 70. (Of course, this will only have an ef-
fect if the affected instruments define and use the accent: keyword 
parameter.) This example introduces the if command, which in its 
simplest form looks like 

if expression then command 
The if command first evaluates expression. If it is true, then com-
mand is performed. In this case the command sets sound to a new 
value with accent: 100. If expression is false, then command is 
skipped and the program continues with the next command (a return 
in this case). We consider the if command in greater depth in 
Chapter 8.  

Example 4.5.13: Using score-apply in add-accents.sal 
define function add-accents(time, dur, sound) 
  begin 
    ; if the pitch: attribute of the sound is 
    ; greater than 70 ... 
    ; ... then modify sound to have :accent 100 
    if expr-get-attr(sound,  
                     keyword(pitch), 70) > 70 then 
      set sound =  
      expr-set-attr(sound, keyword(accent), 100) 
    ; whether or not sound was changed, form a 
    ; new note to return by combining time, dur, and  
    ; sound into a list 
    return list(time, dur, sound) 
  end 

 
; now apply the function to a score 
print score-apply(my-score, quote(add-accents)) 
 

Example 4.5.14 uses a longer form of the if command, which 
looks like this: 

if expression then command-1 else command-2 
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This works just like the shorter form described above, except if ex-
pression is true,  command-1 is performed, but if expression is false, 
command-2 is performed. The program normally continues with the 
command following the if. However, in this case, both command-1 
and command-2 are return commands, which cause the function to 
return a value immediately. No further commands are performed 
(nor do any exist in this case). 

score-adjacent-events is a general function that helps transform 
notes in context. For example, notes can be adjusted to eliminate in-
tervals greater than an octave or to make each note extend to the start 
time of the next note. The specific process is defined by a function 
passed as a parameter. The function takes three inputs, the previous 
note, the current note, and the next note. The resulting score is the 
collection of all notes returned by the function. 

So if the pitch is “not very high” (less than 72), a modified ver-
sion of current is returned, otherwise; current is returned as is. To 
change the duration, one could use the list manipulation primitives 
first, rest, and list, but there are some predefined functions that 
make the job simpler. Here, event-set-dur is used to construct a 
copy of current with a modified duration. The duration is computed 
by taking the time difference between next and current. Although 
the time of a note is simply first(note), using the function event-
time helps to make it clear to readers the intention of the expression. 

Example 4.5.14: Using score-adjacent-events in adjust-dur.sal 
; a predicate that returns true when pitch is 
; less than 72 
define function not-very-high(sound) 
  return expr-get-attr(sound, 
                       keyword(pitch), 100) < 72 
 
; a function of 3 notes – extend duration of current 
; note to the starting time of the next note 
define function adjust-durations( 
                             previous, current, next) 
  begin 
    if not-very-high(event-expression(current)) & 
       next then 
      return event-set-dur(current,  
              event-time(next) - event-time(current)) 
    else return current 
  end 
 
exec score-play(score-adjacent-events( 
                  my-score, quote(adjust-durations))) 
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Not every note has a previous or a next note. When processing 
the first and last notes of a score, the previous and next values are 
#f. To prevent adjust-durations from trying to access the time of 
next, the if condition requires that next is not #f before accessing 
its time. 

There are still more score functions available. Rather then con-
tinue with detailed explanations of each, we will offer just a brief 
synopsis and leave it to the reader to find details in the Nyquist man-
ual. 

 score-sort(score, optional-copy-flag) – sort elements of 
score into proper time order. 

 score-repeat(score, n) – make a new score from n repeti-
tions of score. 

 score-index-of(score, predicate) – find the index of the first 
note that makes predicate true. 

 score-last-index-of(score, predicate) – find the last note 
that makes predicate true. 

 score-randomize-start(score, amount) – add or subtract 
random time offsets to notes. 

 score-read-smf(filename) – read a standard MIDI file into a 
score. 

 score-write-smf(filename) – write a standard MIDI file from 
a score. 

There are also many helpful functions for accessing attributes of 
scores, note events, and expressions. By convention, the names of 
these functions are prefixed by an indicator of the data type that the 
function expects as the first input:  

 score – functions operate on scores, which have the form  
{event1 event2 … eventn}. 

 event – functions operate on events which we also refer to as 
notes. Events have the form {time duration expression}. 

 expr – functions operate on event expressions, which have 
the form {instrument keyword1: value1 keyword2: value2 … 
keywordn: valuen}. 

A few of the score access functions are 
 score-get-begin(score) – get the begin time of score. 
 score-set-begin(score, time) – construct  a copy of  score 

with the begin time changed to time. 
 score-get-end(score) – get the end time of  score. 
 score-set-end(score, time) – construct a copy of score with 

the end time changed to time. 
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Functions to access events include the following: 
 event-time(note) – get the time of note. 
 event-set-time(note, time) – construct a copy of note with a 

different start time. 
 event-dur(note) – get the duration of note. 
 event-set-dur(note, dur) – construct a copy of note with a 

different duration. 
 event-expression(note) – get the expression from note. 
 event-set-expression(note, expr) – construct a copy of note 

with a different expression. 
 event-has-attr(note, attribute) – does the note’s expression 

have attribute? 
 event-get-attr(note, attribute, optional-default-value) – get 

value of attribute from note. 
 event-set-attr(note, attribute, value) – construct a copy of 

note with attribute changed or set to value. 
Finally, we present access functions for sound expressions: 

 expr-has-attr(expression, attribute) – test if expression has 
attribute. 

 expr-get-attr(expression, attribute, optional-default-value) 
– get value of attribute. 

 expr-set-attr(expression, attribute, value) – construct a copy 
of expression with attribute changed or set to value. 
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Chapter 5 Introduction to 
Algorithmic Composition 

In Chapter 4, we learned how to use Nyquist to create, modify, and play 
scores. In principle, these functions can be used to create any score, but the 
work is tedious because so much must be specified by hand. In this chapter, 
we will learn new ways to create scores by writing programs. Programs can 
automate many tasks and allow the composer to focus on only the details that 
are of particular interest. Other details can be relegated to programs. 

5.1 Getting Started 
Since scores are just lists, it is perfectly possible to create them di-
rectly using SAL primitives including cons and list. However, a 
more structured and in many cases simpler approach is to use a spe-
cial form called score-gen. Example 5.1.1 shows how you can write 
a program that uses score-gen to create a score with two notes. 

Example 5.1.1: my-first-score.sal 

set my-first-score = 
      score-gen(score-len: 2, 
                pitch: 60, 
                vel: 100, 
                ioi: 0.7, 
                name: quote(note)) 
exec score-print(my-first-score) 
exec score-play(my-first-score) 

 
What does this code say? set is going to create and set the global 

variable my-first-score to the value of the score-gen expression. 
score-gen creates a score according to keyword parameters. Some 
of these parameters control the generation of notes, and some pro-
vide the actual contents of the note expressions.  In this case, only 
score-len: controls the generation, saying to generate two notes. The 
rest of the parameters specify note contents. 

To construct the notes, the pitch: and vel: parameters are entered 
directly into the note expression. The ioi: parameter specifies the in-
ter-onset interval, the time between note start times. Since no time: 
parameter was specified, the default time of 0.0 is used for the first 
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note. Since no dur: parameter was specified, the duration defaults to 
the inter-onset interval. The resulting note is {0 0.7 {note pitch: 
60 vel: 100}}. The second note starts when the first note ends: {0.7 
1.4 {note pitch: 60 vel: 100}}.  

It may seem boring that all notes are alike. We will soon study 
many ways to achieve variation, but for now, we need to learn a little 
more about the mechanics of scores and score representation. 

When you work by writing programs in files, your work is al-
ready saved as programs, but anything you compute exists only until 
you exit from Nyquist. Often, scores are computed and saved as 
global variables. If random numbers are used to generate the score, 
or if you make changes to the score or to the program that generated 
it, you may not be able to regenerate the score at a later date. It is a 
good idea to save any score that you may want later.  

Example 5.1.2: Using the Nyquist workspace functions 
SAL> ; add my-first-score to the "workspace" 
   exec add-to-workspace(quote(my-first-score)) 
 
SAL> ; write the workspace variables and  
     ; values to workspace.lsp 
     exec save-workspace() 
 
SAL> ; to test, first destroy my-first-score 
     set my-first-score = nil 
 
SAL> ; now see if we can restore my-first-score 
     load "workspace" ; loads workspace.lsp 
     ; loading "workspace.lsp" 
     workspace loaded 
 
SAL> ; score-print is implemented in Lisp and  
     ; uses Lisp conventions (parentheses) for  
     ; lists 
     exec score-print(my-first-score) 
((0 0 (SCORE-BEGIN-END 0 NIL)) 
(0 0.7 (NOTE vel: 100 pitch: 60)) 
(0.7 1.4 (NOTE vel: 100 pitch: 60)) 
) 
 
SAL> ; my-first-score was restored! 

 
Example 5.1.2 illustrates how to save and restore my-first-score, 

which was computed in Example 5.1.1. The idea is that a list of 
global variables constitutes a “workspace” that can be saved to a file, 
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workspace.lsp, and restored from that file. (The .lsp extension indi-
cates that the workspace file is written in Lisp.) The add-to-
workspace function adds a global variable to the workspace. You 
can have as many variables in the workspace as you like. Notice that 
the input parameter is normally quoted: You are adding the variable 
name to the workspace, and without the quote you will get the vari-
able value. The save-workspace function writes all variables and 
their values to the file workspace.lsp. Later, if you load this file, the 
values of all the workspace variables will be restored. (This will also 
replace any current values that exist, so be careful not to overwrite 
values you want to keep.) 

In addition to saving the program that generated the score, or 
saving the score itself in the workspace, you may wish to save a 
score to a MIDI file (.mid). Saving a Nyquist score as a standard 
MIDI file means you can readily combine the power of Nyquist with 
the functionality of a MIDI sequencer. Use the score-write-smf 
function to write a MIDI file as shown in Example 5.1.3. The file 
my-first-score.mid will be saved in the current directory, which you 
can discover by evaluating print setdir("."). 

Example 5.1.3: Calling score-write-smf 

SAL> exec score-write-smf(my-first-score, 
                       "my-first-score.mid") 
 

Table 5.1.1 gives an overview of the file formats discussed in 
Section 5.1. 

Table 5.1.1 File formats 

File Type 
File 

Suffix Description 

Command(s) 
Associated with 
File Creation 

Nyquist/SAL 
source .sal 

File contains Nyquist 
(SAL syntax)  
program code 

Use the jnyqide 
program to edit and 
save programs 

Nyquist/XLISP 
source .lsp 

File contains Nyquist 
(XLISP syntax)  
program code 

Use the jnyqide 
program to edit and 
save programs 

Nyquist 
workspace file .lsp 

File contains XLISP 
code to restore variable 
values 

add-to-workspace 
save-workspace 

MIDI file .mid 
File contains MIDI data 
generated from a score score-write-smf 
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5.2 Pitch and Rhythm Notation 
Nyquist provides pre-defined variables so that programmers can use 
symbolic names for common pitches and rhythmic durations. Pitch 
names have the form <pitch-letter><flat-or-sharp><octave>, where 
the pitch letter is a through g. This is followed by an optional f or s 
to denote flat or sharp, and the last character is an octave number 
from 0 to 7. These pitch names are initialized to floating point 
numbers using the MIDI numbers for pitch (c4 = 60). 

Rythmic durations are denoted by w, h, q, i, and s for whole, half, 
quarter, eighth, and sixteenth, followed by an optional d for dotted, 
or t for triplet. Again, these are ordinary variables initialized with 
floating point values. The values represent duration in quarter notes. 
It is often convenient to express durations in terms of these  
variables, then scale durations or stretch scores by some factor 
representing tempo, expressed in seconds per quarter note. 

Example 5.2.1: Pitch and rhythm variables 

SAL> print c0, bf4, b4, c5, cs5, b7 
12 70 71 72 73 107 

 
SAL> print w, h, q, i, s, hd, qt, st 
4 2 1 0.5 0.25 3 0.666667 0.166667 

 

5.3 Pattern Objects and Item Streams 
In order to do something musically interesting, we certainly need to 
produce scores that have more than one pitch!  The easiest way to 
create scores that have more than one pitch is to use item streams.  
Item streams are sequences of values generated by pattern objects. 
Pattern objects are created by functions to be described below. Once 
created, the next function causes a pattern object to generate the next 
item in an infinite sequence. 

Example 5.3.1: pitch-cycle.sal 
set pitch-cycle = make-cycle(list(c4, d4, e4, f4)) 
set pitch-cycle-score = 
      score-gen(score-len: 8,  
                pitch: next(pitch-cycle), 
                dur: 0.4) 
 

In Example 5.3.1, we use make-cycle to make a cycle pattern. 
The cycle pattern circularly selects items from the list, reading left to 
right for as many items are required. The cycle is assigned to the 



    

5.3 Pattern Objects and Item Streams 65 

global variable pitch-cycle using set. score-gen is then used to 
build a score. Notice the value for pitch: is an expression to retrieve 
the next item of pitch-cycle. This expression is evaluated once for 
each note in sequence, so each note will have a new pitch value. Try 
printing and playing the result. Manipulating patterns using item 
streams is a simple yet very powerful approach to algorithmic com-
position. 

Let’s consider another example. 

Example 5.3.2: item-streams.sal 

set pitch-cycle = make-cycle(list(c4, c6, nil)) 
set   vel-cycle = make-cycle({75 100 125}) 
set   dur-cycle = make-cycle({0.3 0.5 0.7}) 
exec score-gen(save: quote(item-streams), 
               score-len: 10, 
               pitch: next(pitch-cycle), 
               vel:  next(vel-cycle), 
               ioi:  next(dur-cycle)) 
 

This example introduces the save: keyword, which means set the 
following variable (which is quoted because we want the variable 
name, not its value) to the computed score. This is equivalent to us-
ing set as in the previous example. After evaluating these expres-
sions, the value of item-streams is the following: 

Example 5.3.3: Output from item-streams.sal 

SAL> exec score-print(item-streams) 
((0 0 (SCORE-BEGIN-END 0 NIL)) 
 (0 0.3 (NOTE vel: 75 pitch: 60)) 
 (0.3 0.5 (NOTE vel: 100 pitch: 84)) 
 (0.8 0.7 (NOTE vel: 125 pitch: NIL)) 
 (1.5 0.3 (NOTE vel: 75 pitch: 60)) 
 (1.8 0.5 (NOTE vel: 100 pitch: 84)) 
 (2.3 0.7 (NOTE vel: 125 pitch: NIL)) 
 (3 0.3 (NOTE vel: 75 pitch: 60)) 
 (3.3 0.5 (NOTE vel: 100 pitch: 84)) 
 (3.8 0.7 (NOTE vel: 125 pitch: NIL)) 
 (4.5 0.3 (NOTE vel: 75 pitch: 60)) 
 ) 

 
Notice that the pitch: keyword parameter is an expression that 

gets the next item from pitch-cycle.  The expression is evaluated for 
every note and the cyclic pattern continues for the ten events speci-
fied by the score-len: slot. When the pitch: is nil, no note is per-
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formed, so in musical terms, this is a rest. Even when the pitch: is 
nil, the other parameters, vel: and dur:, are computed from their cy-
cles. The rest gets a duration of .7 seconds from the dur-cycle pat-
tern.  Since time: is not specified explicitly, it defaults to the end 
time of the previous note. 

Table 5.3.1 and Table 5.3.2 describe the different pattern classes. 
In each case, you make a pattern object with a function make-
patternclass and store the pattern object in a variable with set. 
Then, you access successive items from the pattern with the expres-
sion next(patternobject). The pattern classes in Table 5.2.1 all take a 
list of items as a parameter and deliver the items according to dif-
ferent rules. 

Other pattern objects operate on the stream of items retrieved 
from another pattern. Pattern objects of this type are created by a 
function of the form make-patternclass, which takes another pat-
tern object as input.  

Often, these pattern objects operate on groups of items. Items re-
trieved from pattern objects are grouped into periods. For example, 
each repetition of a cycle pattern is one period. In a heap pattern, one 
period is some permutation of all the items of the input list. The pe-
riod length can also be specified by the for: keyword parameter, 
which we will see in later examples. 
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Table 5.3.1 : Pattern objects that take item lists as input 

Pattern Class Description 

Example in 
Accompanying 

Media Notes 

cycle 
Circles through the 
data items provided 
in a list parameter. 

cycle.sal  

heap 

Plays through the 
data items in 
random order but 
will not repeat an 
item until all items 
have been played. 

heap.sal  

palindrome 

Plays through the 
data item list 
forwards and 
backwards. 

palindrome. 
sal 

The keyword 
parameter elide: may 
have a value of first:, 
last:, #t, or #f and 
determines if events 
are repeated when the 
pattern changes 
direction.  

random 

Each successive 
item is selected 
randomly from the 
input list. 

random.sal 

Items may be paired 
with weights for a 
weighted random 
selection. 

line 

Iterates through a 
list and repeats the 
last element until 
no more events are 
required. 

line.sal  

markov 
Generate items 
from a Markov 
model. 

markov-
graph.sal 

The markov pattern is 
covered in a later 
chapter. 

accumulation 

For each item in the 
input list, output all 
the items up to and 
including the item 

accumulation. 
sal 

Example: (a b c) 
generates a a b a b c, 
and then repeats. 
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Table 5.3.2: Pattern objects that take pattern objects as input 

Pattern Class Description 

Example in 
Accompanying 

Media Notes 

accumulate 

Each output item 
is the sum of the 
previous output 
item and the next 
item of an input 
stream. 

accumulate. 
sal 

Items from the input 
stream must be 
numbers. 

copier 

Copies periods of 
the input stream 
to the output 
stream. 

copier.sal 

The repeat: 
parameter tells how 
many copies to make. 
The merge: 
parameter tells 
whether repeated 
periods should be 
output as one period 
(#t) or separate 
periods (#f). 

length 

Regroups items 
from the input 
stream into 
periods of a 
specified length. 

length.sal 

The first parameter is 
the input pattern, the 
second is the period 
length. 

window 
Outputs items in a 
sliding window 
over input items. 

window.sal 
Parameters are input 
pattern, window size 
and window skip. 

eval 
Re-evaluates 
expression for 
each item. 

pwl-pat-fm.sal 
Parameter is a Lisp 
expression. 

 
 

5.4 A Complete Example 
Example 5.4.1 uses score-merge to combine 6 scores. The merge is 
preceded by 6 generators producing scores 1, 2, 3a, 3b, 3c, and 3d.  
The merge is based on the octatonic scale, initially presented in se-
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ries.  The octatonic scale is a series of eight pitches that alternate 
whole and half steps for one octave. Permutations of the octatonic 
scale form the pitch material of the remaining generators as a means 
of creating pitch homogeneity. 

Example 5.4.1: my-first-merge.sal 
; Compute and merge 6 different scores:  
;   1, 2, 3a, 3b, 3c and 3d. 
 
; Score-1 is the "melody", derived from an octatonic  
; scale emitted by a palindrome pattern. 
set pitch-1 = make-palindrome( 
               list(ef3, e3, fs3, g3, a3, bf3, c4, cs4)) 
set rhythm-1 = make-accumulation( 
                   {.22 .23 .25 .26 .28 .29 .31}) 
 
define function score-1-helper(count) 
  set vel-1 = interpolate(count, 0, 40, 47, 125), 
      ioi-1 = next(rhythm-1) 
 
exec score-gen(save: quote(score-1), score-len: 48, 
               pre: score-1-helper(sg:count), 
               pitch: next(pitch-1), 
               ioi: ioi-1, 
               vel: vel-1, 
               dur: vel-1 * 0.01 * ioi-1) 
 
; Score-2: chords that punctuate the melodic material 
 
set pitch-2 = make-random( 
                list(list(list(c2, d3, ef4, f5)), 
                     list(nil), 
                     list(list(cs1, ds2, e3, fs4)), 
                     list(gs5))) 
set rhythm-2 = make-random( 
          list(i, id, list(s, keyword(weight), .5), sd)) 
set vel-2 = make-heap({80 90 100}) 
 
define function score-2-helper() 
  set vel-2-item = next(vel-2) 
 
exec score-gen(save: quote(score-2), begin: 7,  
               score-dur: 4.5, 
               pre: score-2-helper(), 
               pitch: next(pitch-2), 
               ioi: next(rhythm-2), 
               vel: vel-2-item, 
               dur: vel-2-item * 0.005) 
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; Scores 3a-3d: an accompaniment to pitch material 
 
set pitch-3a = make-cycle(list(c4, d5, ef6, f6)) 
set rhythm-3a = make-heap({0.01 0.035 0.048}) 
exec score-gen(save: quote(score-3a), begin: 2.8,  
               score-len: 4, 
               pitch: next(pitch-3a), 
               vel: interpolate(sg:count, 0, 60, 3, 80), 
               ioi: next(rhythm-3a), 
               dur: 0.1) 
 
set pitch-3b = make-cycle(list(cs3, ds4, e5, fs6, gs7)) 
set rhythm-3b = make-heap({0.01 0.035 0.048}) 
exec score-gen(save: quote(score-3b), begin: 3.75,  
               score-len: 5, 
               pitch: next(pitch-3b), 
               vel: interpolate(sg:count, 0, 60, 4, 80), 
               ioi: next(rhythm-3b), 
               dur: 0.1) 
 
set pitch-3c = make-cycle(list(c4, d5, ef6, f6)) 
set rhythm-3c = make-heap({0.01 0.035 0.048}) 
exec score-gen(save: quote(score-3c), begin: 4.1,  
               score-len: 4, 
               pitch: next(pitch-3c), 
               vel: interpolate(sg:count, 0, 60, 3, 80), 
               ioi: next(rhythm-3c), 
               dur: 0.1) 
 
; 3d generates chords 
set pitch-3d = make-cycle(list(list(cs2, ds3, e4), 
                               nil, 
                               list(ds3, e4, fs5), 
                               list(e4, fs5, g6), 
                               list(fs5, g6, gs7), 
                               list(g6, a7, as7))) 
set rhythm-3d =  
            make-heap({0.12 0.124 0.126 0.128 0.132}) 
exec score-gen(save: quote(score-3d), begin: 4.1,  
               score-len: 6, 
               pitch: next(pitch-3d), 
               vel: interpolate(sg:count, 0, 40, 5, 70), 
               ioi: next(rhythm-3d), 
               dur: 0.1) 
 
;; now merge the scores 
set the-score = score-merge(score-1, score-2, score-3a,  
                          score-3b, score-3c, score-3d) 
 

Notice how each score is generated: first, various pattern objects 
are created and assigned to global variables. Variable names are cho-
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sen to avoid duplication. Trying to use the same variable for two dif-
ferent purposes is called “name collision,” and is one of the hazards 
of using global variables. There are more sophisticated programming 
techniques to avoid this problem, but for now, we will take a simple 
approach and just be careful with name choices.  

After creating the pattern objects to be used, score-gen is used to 
create a score. Again, global variables retain the scores (the save: 
keyword provides the variable name). At the very end, score-merge 
is used to combine all the score parts into one score. 

Most note parameters such as pitch: are generated independently 
with the expression next(pattern-object), which just takes the next 
item from the pattern. In this example, ioi: and dur: in score-1 de-
pend on the value of next(rhythm-1), but if we simply evaluated this 
expression twice (once for ioi: and once for dur:) we would get two 
different items from the rhythm-1 pattern. Instead, we evaluate 
next(rhythm-1) just once per generated note and use set to store the 
value in the variable ioi-1. Then, we use ioi-1 in two different ex-
pressions to specify the ioi: and dur: parameters. Similarly, dur: de-
pends on vel:, so we introduce the variable vel-1 and use it in two 
places.  

To compute ioi-1 and vel-1 once for every note, we use the pre: 
keyword. The expression following pre: is evaluated once before 
each note. (There is also an optional post: keyword to evaluate an 
expression after each note.) Notice that pre: (and all keywords) must 
be followed by an expression, but set is a command, so we cannot 
say something like pre: set ioi-1 = next(rhythm-1). However, we 
can call a function, so we define score-1-helper to do the assign-
ments. Again, there are more sophisticated ways to do this, but we 
opt for the approach that uses concepts we have already seen. 

Now that we understand how the score-1 generator is structured, 
let us look more closely at what it computes. The rhythm-1 pattern 
is the accumulate pattern applied to a list of durations. It returns the 
sequence .22, .22, .23, .22, .23, .25, .22, .23, .25, .26, etc. score-1 
will have a length of 48 notes, as indicated by the :score-len pa-
rameter.  

The variable vel-1 is computed by 
set vel-1 = interpolate(sg:count, 0, 40, 47, 125) 

The interpolate function has parameters x, x1, y1, x2, y2. It com-
putes the y value at x on the line from point (x1, y1) to (x2, y2). In 
this case, sg:count is an index that starts at 0 and increments after 
each note is generated. Thus, sg:count takes on the values 0 through 
47 for the 48 notes of score-1. The remaining parameters say that 
when sg:count is 0, the output (y) should be 40, and when sg:count 
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is 47, the output should be 125. The output is interpolated (or ex-
trapolated) for other values of sg:count. Thus, the result values will 
increase smoothly from 40 to 125 over the 48 notes in score-1. The 
variable ioi-1 is simply the next item from the rhythm-1 pattern. 

The ioi: and vel: parameters are specified by very simple expres-
sions: just an unquoted symbol. Recall that a symbol evaluates to the 
value of the indicated variable. The dur: expression scales the dura-
tion by the velocity so that louder notes are also longer. Since veloc-
ity values range (normally) from 1 to 127, an extra scale factor of 
0.01 is used so that the scale factor is between 0.01 and 1.27. 

score-2 uses chords. Notice how the pattern object for pitch 
(stored in the variable pitch-2) is created. make-random chooses 
between items in a list, and in this case, the items themselves are 
lists: (c2, d3, ef4, f5), nil, (cs1, ds2, e3, fs4), and gs5. You might 
think the input to make-random should therefore be something like 
{{c2 d3 ef4 f5} {} {cs1 ds2 e3 fs4} gs5}; however, when 
make-random sees a list as an item, it expects to find an item fol-
lowed by keywords weight:, min:, or max:. To tell make-random 
that the items themselves are lists, an additional level of nesting must 
be used, so the input is actually {{{c2 d3 ef4 f5}} {{}} {{cs1 
ds2 e3 fs4}} gs5}. Instead of braces {}, the program uses list to 
construct lists so that the pitch names, which are global variables, 
will be evaluated to produce numbers. (Note that {c4} is a list con-
taining the symbol c4, whereas list(c4) is equivalent to {60}.)  

To finish this discussion on lists of pitches, remember that when a 
score is played, if the pitch: keyword contains a list, the note expres-
sion is expanded into one note for each element of the list. Thus, the 
generated “notes” will be chords. The empty list “expands” into no 
notes, so it is effectively a rest.  

Previously, it was stated that the parameter expressions are evalu-
ated once for each note. To be more precise, we should say the ex-
pressions are evaluated once for each score event, which may be a 
note, a chord, or a rest. Similarly, the score-len: parameter is the 
number of score events, so chords and rests count the same as a sin-
gle note. 

To listen to the-score, use jnyqide to open “my-first-merge.sal” 
and push the load button. To see the score, type exec score-
print(the-score), or to hear the score, type exec score-play(the-
score). 
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5.5 Suggested Listening 
“U” (The Cormorant) for violin, computer, and quadraphonic sound 
composed by Mari Kimura is motivated by the blight of the oil-cov-
ered cormorants in the Persian Gulf. The formal structure of the 
composition is quasi-palindromic, imitating the shape of the letter 
“U” (Kimura, 1992). 

Phasing by John Woodruff  is included in the electronic materials 
in its original version for Common Lisp (phasing-woodruff.lsp), 
translated to SAL (phasing-woodruff.sal), and as a sound file 
(phasing.wav). 
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Chapter 6 Printing, Reading, and 
Debugging 

This chapter introduces you to writing output, reading data from the 
computer keyboard, and debugging programs. Displaying information on 
your monitor is very helpful in locating problems in your programs. 

6.1 print Command 
We have already seen the print command, which causes expressions 
to be evaluated and printed. The print template is 

print expression1, expression2, … 
print will print a constant, symbol, string, or the value of a variable 
or expression. A newline is printed first; then each value is printed 
followed by a space. 

Example 6.1.1: The print command 

SAL> print 45 
45  
 
SAL> print quote(a-symbol) 
A-SYMBOL  
 
SAL> print "hello world!" 
hello world! 
 
SAL> print *default-sound-srate* 
44100 
 
SAL> print 2 + 3 + 4 
9  

6.2 format Command 
The function format allows you greater control of the formatting of 
your output. The format template is 

format(#t, format-control-string, things-to-print) 
format is followed by true (#t) to indicate that we want to print to 
the monitor. (Later we will see how to direct output to a file.) A 
string is used as the format-control-string. Since format is a 
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function, we use an exec command to call it. format is not a 
command like print. 

Example 6.2.1: format 

SAL> exec format(#t, "I love Nyquist!") 
I love Nyquist! 

 
The format-control-string is always enclosed in double quotes. 

The format-control-string may include format directives – special 
characters in the format-control-string that cause output to appear in 
certain ways. format directives always begin with the tilde (~). 
Table 6.2.1 gives an overview of the most useful format directives. 

Table 6.2.1: format directives 

format Directive Result 
~% Move to a new line 
~A Print the value of a variable or expression    

~S 
Print the value of a variable or expression 
using quotes around strings 

~~ Print the tilde character 
 

Example 6.2.2: The ~% format directive 
SAL> exec format(#t, 
"~%this is the first line ~%and this is the second") 
this is the first line  
and this is the second 
 

Example 6.2.3: The ~A format directive 
SAL> set count = 43 
SAL> exec format(#t, "The count is ~A~%", count) 
The count is 43 
 

Notice that in Example 6.2.3 the characters “~A” in the format 
string are replaced by the value of count which appears as an input 
to format. 

In Example 6.2.4, “~A” appears twice in the format string, so 
there are a total of four input parameters. Also, note that error-msg 
is inserted into the formatted output without quotation marks. 

Example 6.2.5 is identical to 7.2.4 except that “~S” is used in the 
format string. Notice the output is similar, but the printed version of 
error-msg includes quotation marks. 
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Example 6.2.4: format multiple items 
SAL> set error-msg = 
             "you entered a negative number" 
SAL> set error-value = -7 
SAL> exec format(#t, "Error: ~A, ~A",  
                 error-msg, error-value) 
Error: you entered a negative number, -7 
 

Example 6.2.5: ~S  format directive 

SAL> set error-msg =  
             "you entered a negative number" 
SAL> set error-value = -7 
SAL> exec format(#t, "Error: ~S, ~A",  
                 error-msg, error-value) 
Error: "you entered a negative number", -7 
 

6.3 display Command 
 “Debugging” is the process of finding errors (bugs) in your 
programs. When debugging, it often helps to print out values of 
variables and expressions to confirm that the program is operating as 
expected. Printing makes the computation process more observable. 
Although format is a perfectly usable function for debugging, a 
special command, display, can be even easier. The first input to 
display is a string that is simply printed. After that, any expression is 
printed along with its value. 
 

Example 6.3.1: display 
SAL> display "display example",  
             *default-sound-srate*, count 
Display example : *DEFAULT-SAMPLE-RATE* = 44100 COUNT = -7 
SAL> exec format(#t,  
"Format example : *default-sound-srate* = ~A count = ~A~%",  
                 *default-sound-srate*, count) 
Format  example:: *default-sample-rate* = 44100 count = -7 
 

In Example 6.3.1, equivalent output is generated using display 
and format. Notice the display version is more compact. 
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6.4 Debugging with #display and #print 
Sometimes, it may be useful to monitor the values of one or more 
expressions. SAL has a function, #print, that accepts one input, 
prints it, and returns the same value as the input. Thus, you can con-
vert any expression x into #print(x) without changing the behavior of 
your program except for the fact that the value of x will be printed 
each time expression x is evaluated.  

The “#” part of #print has a special meaning in SAL. Recall that 
SAL programs are evaluated by first translating them into Lisp. 
Ordinarily, any function name or variable name in SAL is translated 
to the same name in Lisp, making it easy to call Lisp functions from 
SAL and vice-versa. However, in this case, the desired Lisp function 
is named print, which is in conflict with the print command in SAL. 
In SAL, if you try to call print as a function (rather than a 
command), SAL merely reports a syntax error. To work around 
problems like this, SAL translates symbols prefixed with “#” into the 
Lisp symbol without the prefix. Thus, #print in SAL means print in 
Lisp, and this avoids the naming conflict with SAL’s print 
command. 

Another use of the “#” prefix is to access the Lisp display 
function. The Lisp display function is essentially identical to the 
SAL display command, but it can be used where expressions are 
required. See Example 7.3.1 for an example.  

There are a few exceptions to the “#” prefix rule: In particular, 
we have already seen that #t and #f are special values in SAL. The 
variable t does happen to be the Lisp name for “true,” but the 
variable f does not normally have any value at all. 

To illustrate the use of #print, let’s say you’d like to learn more 
about the Nyquist functions score-gen and exponential-dist. We 
will use #print to print a number to the display whenever 
exponential-dist is evaluated within a score-gen expression. 
exponential-dist is used to compute note durations. 

From the printout, we can see the printed duration values that are 
computed by exponential-dist and we can confirm that these values 
are used for durations in the score. Also, since these numbers appear 
before the score, we can surmise that the score is completely 
evaluated immediately resulting in a list. This may seem obvious to 
some, but it is conceivable that duration computation could be 
deferred until the score is accessed or even until the duration of each 
note is read. You might also wonder whether durations are 
recomputed each time the score is played, but since the same random 
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numbers printed when the score is computed appear in the score, it 
should be clear that the numbers are computed just once. 

Example 6.4.1: print.sal 
SAL> load "distributions" ; defines exponential-dist 
SAL> exec score-print( 
            score-gen(save: quote(score-exp-dist),  
                      score-dur: 10, 
                      dur:  
                       #print(exponential-dist(0.5)), 
                      pitch: 72, vel: 100)) 
1.53382 
0.121667 
5.98811 
0.544893 
0.522198 
0.377926 
4.15305 
8.28694 
0.74661 
0.282558 
((0 0 (SCORE-BEGIN-END 0 9.28256)) 
(0 1.53382 (NOTE :VEL 100 :PITCH 72)) 
(1 0.121667 (NOTE :VEL 100 :PITCH 72)) 
(2 5.98811 (NOTE :VEL 100 :PITCH 72)) 
(3 0.544893 (NOTE :VEL 100 :PITCH 72)) 
(4 0.522198 (NOTE :VEL 100 :PITCH 72)) 
(5 0.377926 (NOTE :VEL 100 :PITCH 72)) 
(6 4.15305 (NOTE :VEL 100 :PITCH 72)) 
(7 8.28694 (NOTE :VEL 100 :PITCH 72)) 
(8 0.74661 (NOTE :VEL 100 :PITCH 72)) 
(9 0.282558 (NOTE :VEL 100 :PITCH 72)) 
) 
SAL> 
 

6.5 Tracing Pattern Evaluation 
Patterns are a very powerful way to generate data, but pattern 

behavior can be confusing, especially with complex, nested pattern 
expressions. To help debug programs with patterns, patterns have a 
built-in facility for monitoring their evaluation. The following 
example uses the window pattern: 

Example 6.5.1: Pattern evaluation 
SAL> set winpat = make-window( 
                   make-cycle({a b c d}), 6, 1) 
SAL> print next(winpat, t) 
(A B C D A B) 
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SAL> print next(winpat, t) 
(B C D A B C) 
 

With these nested patterns, make-cycle produces the sequence A 
B C D A B C D A B C D …, and make-window regroups these into 
periods of length 6 with a sliding window that is advanced by one 
item each period. To illustrate the step-by-step computation in both 
cycles, use trace: and name: keyword parameters as shown in the 
next example: 

Example 6.5.2: Tracing evaluation 
SAL> set winpat =  
       make-window( 
         make-cycle({a b c d}, trace: t,  
                               name: "cycle"),  
         6, 1, trace: t, name: "window") 
SAL> print next(winpat, t) 
pattern cycle advanced to A 
pattern cycle advanced to B 
pattern cycle advanced to C 
pattern cycle advanced to D 
pattern cycle advanced to +EOP+ 
pattern cycle advanced to A 
pattern cycle advanced to B 
pattern window advanced to A 
pattern window advanced to B 
pattern window advanced to C 
pattern window advanced to D 
pattern window advanced to A 
pattern window advanced to B 
pattern window advanced to +EOP+ 
(A B C D A B) 
 
SAL> print next(winpat t) 
pattern cycle advanced to C 
pattern window advanced to B 
pattern window advanced to C 
pattern window advanced to D 
pattern window advanced to A 
pattern window advanced to B 
pattern window advanced to C 
pattern window advanced to +EOP+ 
(B C D A B C) 
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The trace shows the order of evaluation of the patterns. Notice 
that patterns generate an explicit marker +EOP+ that indicates the 
end of a period. This marker is not returned by next, but it is printed 
by the trace facility. You can see that periods are obtained by 
repeatedly generating the next item until +EOP+ is returned. To 
generate the first period of the window pattern, cycle is called to fill 
the 6-item window. Then, window can return the six items to next. 
For the next period, the window slides forward one item by dropping 
the first item (A) and calling cycle for a new item (C). It then returns 
a new period of 6 items. 

Later, we will see more advanced uses of patterns where patterns 
are used to control other patterns. Along with expressive power 
comes the potential for great confusion. The pattern trace facility is 
one way to get detailed information that can help you understand 
pattern evaluation. 

6.6 Reading Data from the Computer Keyboard 
The function read accepts input from the computer keyboard. 
Generally, read is used to assign a variable. The read template is 

read() 
We can allow the user to enter data from the computer keyboard 
during the evaluation of an algorithm or generator.  Because of the 
looping behavior of algorithms and generators, Nyquist  evaluates 
the read function as many times as the generator or algorithm loops. 
Consider the following example that assigns the pitch atribute using 
read. 

This score-gen creates 5 notes. The vel:, dur:, ioi:, and name: 
properties are simple values. The pitch: property is given by a 
function that prints a prompt and reads a value. When evaluated, the 
user is prompted for each of 5 pitch numbers, which are incorporated 
into the score.  

When using the Nyquist IDE, be sure to type all input into the 
text entry box at the upper left. The input will appear automatically 
in the Output window. (You cannot type directly into the Output 
window where the prompt appears.) 
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Example 6.6.1: Read pitches from user 
SAL> define function enter-note-number() 
       begin 
         exec format(#t, "Enter a note number: ") 
         return read() 
       end 
 
SAL> set my-score =  
           score-gen(name: quote(note),  
                     score-len: 5, vel: 100,  
                     dur: 0.25, ioi: 0.5, 
                     pitch: enter-note-number()) 
Enter a note number: 60 
Enter a note number: 62 
Enter a note number: 64 
Enter a note number: 66 
Enter a note number: 68 
 
SAL> exec score-print(my-score) 
((0 0 (SCORE-BEGIN-END 0 2.25)) 
(0 0.25 (NOTE :PITCH 60 :VEL 100)) 
(0.5 0.25 (NOTE :PITCH 62 :VEL 100)) 
(1 0.25 (NOTE :PITCH 64 :VEL 100)) 
(1.5 0.25 (NOTE :PITCH 66 :VEL 100)) 
(2 0.25 (NOTE :PITCH 68 :VEL 100)) 
) 
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Chapter 7 Variable Assignment and 
Scoping 

This chapter introduces you to how to assign and reference variables in SAL 
(and Nyquist). Variables save values for reuse, avoiding the need to recom-
pute them. Variables also offer a way to name values, making programs eas-
ier to understand. You will become familiar with several more SAL functions 
and the concept of the scope of a variable. 

7.1 set Command 
In Chapter 4, we used the set command to assign a list (a Nyquist 

score) to the variable my-score. The association between a variable 
and its value is called a binding. In addition to the assignment opera-
tion denoted by set, bindings are created by parameter passing, with, 
and other commands. We say the scope of the variable my-score is 
global because the variable and its value are valid everywhere in the 
program. The scope of a variable is the region in which a variable’s 
value is known. 

The general set command template is 
set variable1 = value1, variable2 = value2, …  
     variablen = valuen 

For example, set a = 1, b = 2, c = 3 will assign the variable a the 
value of 1, b the value of 2, and c the value of 3. 

Example 7.1.1 shows the variable a4 evaluates to 69. We define a 
function transp that adds an interval to a pitch number.  The body of 
the function returns the sum of the pitch and the interval. When we 
call the function with an input of a4 and 5, a4 is evaluated to obtain 
69, which is passed to transp along with 5. The sum, which is 74, is 
returned. Printing the value of a4 indicates that the global variable 
has not been reassigned. Printing the value of pitch indicates that the 
variable pitch has no value.  What does this mean? 

This example demonstrates some of the differences between local 
and global variables. The parameter pitch in the function transp acts 
as a local variable. pitch is considered a local variable because its 
value is known only within the scope of its function. We demonstrate 
the scope of pitch by calling the function transp where pitch is 
bound to the value 69 and used to compute the result value 74. But 
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pitch is local to the function transp, demonstrated by trying to 
evaluate it outside of the transp function.  

Example 7.1.1: Local and global variables 

SAL> print a4 
69 
 
SAL> define function transp(pitch, interval) 
       begin 
         return pitch + interval 
       end 
 
SAL> print transp(60, 3) 
63 
 
SAL> print transp(a4, 5) 
74 
 
SAL> print a4 
69 
 
SAL> print pitch 
error: unbound variable - PITCH 
Call traceback: 
    SAL top-level command interpreter 
 
SAL> 
 

When we call the function transp with an input of a4, the func-
tion returns the transposed value of the global variable a4.  A subse-
quent access of a4 indicates its value is unchanged. The global vari-
able a4 is unchanged because it was not explicitly reassigned using 
set. It is the value of a4, not a4 itself, that is associated with the 
pitch parameter in transp. a4 is not affected by the function, and 
even pitch is unchanged from its initial value, because there is no 
set. 

Example 7.1.2 uses set in the body of the function definition to 
reassign the value of a4. A function call followed by a print demon-
strates that set reassigns the value of the global variable a4. 
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Example 7.1.2: Global variable 
SAL> define function transp-a4-with-set(interval) 
       begin 
         set a4 = a4 + interval 
         return a4 
       end 
 
SAL> print transp-a4-with-set(0.1) 
69.1 
 
SAL> print a4 
69.1 
 

Local and global variables of the same name can exist at the same 
time without interference. In Example 7.1.3, the variable v is used as 
both a global and a local. When both are active (inside the function), 
v refers to the local variable, but outside of the function body, v re-
fers to the global. 

Example 7.1.3: Local variable 
SAL> define function my-fn(v) 
       begin 
         display "inside my-fn", v 
       end 
 
SAL> set v = "v is a global" 
SAL> exec my-fn("v is a local") 
inside my-fn : V = v is a local 
 
SAL> display "outside my-fn", v 
outside my-fn : V = v is a global 
 
SAL>  

7.2 begin, end, and with 
Until now, we have mostly used begin-end to enclose the body of a 
function without any explanation. The more complete story is this: 
SAL expects a single command as the function body. Wherever SAL 
allows a command, you can instead write a begin-end block con-
taining any number of commands. Function definitions do not actu-
ally require a begin-end block; but since they expect a single com-
mand, it is usually a good idea to use begin and end so that you can 
write any number of commands. 
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The same is true of the if-then-else command introduced in 
Section 4.5 and described more fully in Chapter 8. After then and 
else, SAL expects a single command, but a begin-end block can be 
used to contain several commands. 

Besides its role in packaging multiple commands into a single 
command, another function of the begin-end block is to create local 
variables. So far, we have created local variables in the input list of a 
user-defined function. You can also create local variables in a begin-
end block using with. with creates local variables and initializes 
them to the value of an expression (or nil by default). The template 
for a begin-end block with local variables is 

begin 
  with variable1 = expression1, 
      variable2 = expression2, … 
  command1 
  command2 
  … 
end 

The introduction of a local variable is called a declaration. The “= 
expressionn” part of each local variable declaration is optional; if it is 
missing, then the variable is initialized to nil (false). 

In Example 7.2.1, the user-defined function average-of-three 
uses with to calculate the average (mean value) of three numbers 
passed as inputs to the function. 

Example 7.2.1: average-of-three.sal 
SAL> define function average-of-three(n1, n2, n3) 
       begin 
         with sum = (n1 + n2 + n3) 
         return list(quote(the), quote(average), 
                quote(of), 
                n1, n2, n3, quote(is), sum / 3.0) 
       end 
 
SAL> print average-of-three(1, 2.5, 4) 
{THE AVERAGE OF 1 2.5 4 IS 2.5} 
 

We enter the body of the function with three inputs.  A with is 
used to create the local variable sum and initialize it to the sum of 
the three inputs. list is used to construct a list by combining the 
quoted symbols the, average, of and is with the values of the input 
parameters and the value of the expression sum / 3.0. 

When multiple variables are declared after with, they are created 
and initialized in order. Example 7.2.2 illustrates this point. The 
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user-defined function more-averaging computes the average of 
three numbers in two steps. The first step computes sum as before, 
and the second step computes average as sum / 3.0. 

Example 7.2.2: more-averaging.sal 
SAL> define function more-averaging(n1, n2, n3) 
       begin 
         with sum = n1 + n2 + n3, 
              average = sum / 3.0 
         return list(quote(the),  
                     quote(average), quote(is), 
                     average) 
       end 
 
SAL> print more-averaging(1, 2.5, 4) 
{THE AVERAGE IS 2.5}  

7.3 score-gen and Local Variables 
When computing scores with score-gen, local variables are cre-

ated and updated automatically. Sometimes, it is useful to write ex-
pressions that depend on these variables. These variables are pre-
fixed by “sg:”. Note that the colon (:) within a variable name has no 
specific meaning; in SAL and Lisp; a colon can be used like any let-
ter within a variable name. (SAL uses a colon suffix to indicate key-
words, and Lisp uses a colon prefix to indicate keywords, so you 
should avoid variable names like :foo and bar: in any Nyquist pro-
gram.) 

sg:score-len is the maximum length of the score (in notes) speci-
fied by the score-len: keyword parameter, and sg:count is the num-
ber of notes generated so far. 

sg:score-dur is the maximum length of the score (in seconds) 
specified by the score-dur: keyword parameter, and sg:start is the 
starting time of the current note. 

sg:dur is the duration of the current note, and sg:ioi is the time 
from sg:start to the start of the next note. 

Example 7.3.1 illustrates the use of sg:count and sg:start by 
printing these values as the score is computed. In Example 7.3.1, we 
call score-gen to create a score of 5 notes. Recall that in score-gen, 
expressions after keywords are evaluated for each note. Before each 
note, the pre: expression (not present in this example) is evaluated, 
and after each note, the post: expression is evaluated. In this exam-
ple #display is used to print the values of sg:count and sg:start. 
Recall that #display is the functional form of the command display. 
SAL syntax rules say that an expression (not a command) must fol-
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low a keyword in an input list, so we must use #display rather than 
the command display. As you can see in the output, the printed val-
ues change for each note. 

 

Example 7.3.1: monitoring-count-and-start.sal 
SAL> define function monitoring-count-and-start() 
       begin 
         return score-gen( 
           vel: 100, pitch: 60, ioi: 0.2,  
           dur: 0.1, save: quote(myscore), 
           score-len: 5, 
           post:  
           #display("show-count-and-start", 
                    sg:count, sg:start)) 
       end 
 
SAL> exec score-print( 
            monitoring-count-and-start()) 
show-count-and-start : SG:COUNT = 0  SG:START = 0 
show-count-and-start : SG:COUNT = 1  SG:START = 0.2 
show-count-and-start : SG:COUNT = 2  SG:START = 0.4 
show-count-and-start : SG:COUNT = 3  SG:START = 0.6 
show-count-and-start : SG:COUNT = 4  SG:START = 0.8 
((0 0 (SCORE-BEGIN-END 0 0.9)) 
(0 0.1 (NOTE :PITCH 60 :VEL 100)) 
(0.2 0.1 (NOTE :PITCH 60 :VEL 100)) 
(0.4 0.1 (NOTE :PITCH 60 :VEL 100)) 
(0.6 0.1 (NOTE :PITCH 60 :VEL 100)) 
(0.8 0.1 (NOTE :PITCH 60 :VEL 100)) 
) 

 

7.4 Combining with and score-gen 
Why are local variables important? In most cases, you can substitute 
global variables for locals, omit with expressions, and programs will 
compute exactly the same results. We saw, for example, the use of 
many globals in Chapter 5; we assigned pattern objects to global 
variables and used them in score-gen expressions.  This is fine for 
small examples, but there can be problems when programs get larger. 
How can you be sure that you do not try to use the same global vari-
able for two different purposes? 

In general, if you only need a variable within a limited scope, you 
should use a local variable instead. The advantages of local variables 
are (1) programs are easier to read and understand – a global can be 
read or modified anywhere in the program, whereas a local is only 
visible within a limited range of program text, and (2) since local 
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variables are invisible to code outside of their scope, future modifi-
cations to your program are unlikely to affect local variables – exten-
sive use of global variables is asking for trouble and confusion. 

Example 7.4.1 illustrates how to use with with score-gen so that 
pattern objects are held by local variables. This example is derived 
from Example 5.2.2, with globals converted to locals using with. 
Notice that the with cannot be embedded in score-gen. Among 
other problems, we want the with to compute and initialize the pat-
terns one time only, whereas expressions within score-gen are re-
evaluated for every note.  

Example 7.4.1: with-example.sal 
SAL> begin 
       with pitch-cycle =  
              make-cycle(list(c4, c6, nil)), 
            vel-cycle =  
              make-cycle({75 100 125}), 
            dur-cycle =  
              make-cycle({0.3 0.5 0.7}) 
       exec score-gen( 
                save: quote(item-streams),  
                score-len: 10, 
                pitch: next(pitch-cycle), 
                vel: next(vel-cycle), 
                dur: next(dur-cycle)) 
       exec score-print(item-streams) 
     end  
((0 0 (SCORE-BEGIN-END 0 9.3)) 
(0 0.3 (NOTE :VEL 75 :PITCH 60)) 
(1 0.5 (NOTE :VEL 100 :PITCH 84)) 
(2 0.7 (NOTE :VEL 125 :PITCH NIL)) 
(3 0.3 (NOTE :VEL 75 :PITCH 60)) 
(4 0.5 (NOTE :VEL 100 :PITCH 84)) 
(5 0.7 (NOTE :VEL 125 :PITCH NIL)) 
(6 0.3 (NOTE :VEL 75 :PITCH 60)) 
(7 0.5 (NOTE :VEL 100 :PITCH 84)) 
(8 0.7 (NOTE :VEL 125 :PITCH NIL)) 
(9 0.3 (NOTE :VEL 75 :PITCH 60)) 
) 

 
When local variables are used, it is safe to use generic-sounding 

names like pitch-cycle because local variables will not affect or in-
teract with other parts of the program. If there is a global variable 
named pitch-cycle defined elsewhere in the program, it will be in-
visible inside the scope of the with expression, and assignments 
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within this scope (from the declaration to the end token) will have 
no effect on the global with the same name. 

Locals can also be useful for computing coordinated values using 
score-gen. Consider that score-gen ordinarily computes each note 
attribute independently. To coordinate the computation of parame-
ters, compute a value for a local variable, and then compute note at-
tributes from the local variable.  

Example 7.4.2: with-example-2.sal 
SAL> begin 
       with pitch-pattern =  
              make-random( 
               list(c4, d4, e4, f4, g4, a4, b4)), 
            octave-pattern =  
              make-random({0 12 24}), 
            pitch 
       exec score-gen( 
              save: quote(let-example-2), 
              score-len: 10, 
              pre: setf(pitch, next(pitch-pattern) + 
                               next(octave-pattern)), 
              pitch: pitch, 
              vel: pitch + 20, 
              dur: step-to-hz(c3) /  
                   step-to-hz(pitch)) 
       exec score-print(let-example-2) 
     end 
 
((0 0 (SCORE-BEGIN-END 0 9.44545)) 
(0 0.0834275 (NOTE :VEL 111 :PITCH 91)) 
(1 0.0743254 (NOTE :VEL 113 :PITCH 93)) 
(2 0.264866 (NOTE :VEL 91 :PITCH 71)) 
(3 0.198425 (NOTE :VEL 96 :PITCH 76)) 
(4 0.187288 (NOTE :VEL 97 :PITCH 77)) 
(5 0.148651 (NOTE :VEL 101 :PITCH 81)) 
(6 0.297302 (NOTE :VEL 89 :PITCH 69)) 
(7 0.198425 (NOTE :VEL 96 :PITCH 76)) 
(8 0.374577 (NOTE :VEL 85 :PITCH 65)) 
(9 0.445449 (NOTE :VEL 82 :PITCH 62)) 
) 
 

Example 7.4.2 demonstrates this approach. pitch, a local variable, 
is computed from a pattern generator in the pre: expression. As in 
Example 6.4.1 and Example 7.3.1, here we have another case where 
we would like to use a command, “set pitch = next(pitch-pattern) 
+ next(octave-pattern),” in a list of (keyword) parameters for 
score-gen, but this is syntactically not allowed. As before, the solu-
tion is to use a Lisp function that accomplishes the equivalent of a 
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SAL command. In this case, we use Lisp’s setf function, which is 
actually a special form (not a true function) that sets the first input 
(usually a variable name) to a value. 

This pre: expression that sets pitch is evaluated before any note 
attributes. Then, the pitch: and dur: and vel: attributes are computed 
from the value of pitch. 

In Example 7.4.2, pitch is the sum of a pitch pattern and an oc-
tave pattern. The pitch pattern randomly chooses from a scale, and 
the octave pattern randomly chooses from an octave offset. Before 
each note is computed, the pre: expression sets pitch to a value 
based on the pitch and octave patterns. This computed value (a local 
variable created in the with command) is used directly for the note 
pitch (pitch:), and it is incremented by 20 to form the note velocity 
(vel:). The note duration (dur:) depends inversely on the fundamen-
tal frequency of the note, as determined by step-to-hz. The lowest 
pitch, C4, will have a duration of 0.5, and the duration will be cut in 
half for each additional octave. Try exec score-play(let-example-2) 
to hear the result. 

7.5 Understanding Variable Scope in SAL 
The scope of a variable is the region in which its value is known. We 
have seen variables that have both local and global scope. 

There are two ways to create variables with global scope. So far, 
we have seen implicit creation – just mentioning a variable name 
creates a global variable, but it is an error to access the variable’s 
value until it is set, normally by using a set command. The second 
way to create a global is explicit creation using define variable.  
Example 7.5.1 shows a problem with implicit creation and Example 
7.5.2 shows how to create global variables explicitly. 

Before going any further, why would anyone include operators 
such as “*” and “+” in variable names? Asterisks surrounding a 
global variable name are merely a programming convention in Lisp, 
where there are no infix operators. While this may not be the best 
convention for SAL programs, many global variables in Nyquist 
(meaning they are common to XLISP and SAL) use this convention.  

Since SAL function and variable names can contain operator 
characters, “a*b” is a variable name, but “a * b” is an expression. 
Even experienced programmers can be very confused if they intend 
to multiply a times b but instead get an error that a*b is uninitialized. 
To help avoid this problem, SAL checks all variables for embedded 
operator symbols and generates a warning if the variable is unknown. 
The warning does not prevent the initialization of the global, but it 
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can be annoying to see these warnings when the program is actually 
correct. In fact, these warnings would be so common with hyphen-
ated names, that SAL does not give warnings for variables with em-
bedded “-” characters. In Example 7.5.1, the attempt to initialize an 
implicitly declared global variable with set generates a warning 
message because of the asterisks in the name. 

Example 7.5.1: Implicitly defined variable 

SAL> set *my-global* = 50 
>>> parse warning: Identifier contains operator 
character(s). 
        Perhaps you omitted spaces around an 
operator. 
>>> in <console>, line 1, col 5. 
 
set *my-global* = 50 
    ^ 
 
SAL> print *my-global* 
50 
 

To avoid warning messages, you can declare variables explicitly 
with the define variable command. The syntax for this command is 
similar to with, but the command should not be embedded in a 
begin-end block. Notice that the warning that appeared in Example 
7.5.1 does not appear in Example 7.5.2. Also, notice that multiple 
variables can be declared and initialized with one statement. Initiali-
zation is optional, and nil (false) is the default initial value. Unlike 
set, define variable does not change a variable that already has a 
value. Therefore, initialization only takes effect once, even if a file 
containing define variable is reloaded. 

Example 7.5.2: define variable 

SAL> define variable *my-global* = 50,  
                     motive = {60 61 72 71} 
 

Declaring a variable using with creates a local variable. The with 
is always the first command of a begin-end pair, and the with must 
be followed by one or more non-with commands. The local variables 
introduced by with are only visible from the point of declaration up 
to the matching end. This region is called the scope or the lexical 
context of the variable. 

Local variables including function parameters are independent of 
any global with the same name. In Example 7.5.3, with creates vari-
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able b. b is initialized to 2 and then set to a new value. Notice how 
the variable b is not known or visible outside the begin-end com-
mand where it was created. 

Example 7.5.3: Limited scope of a local variable 

SAL> begin with b = 2 
       set b = b * 2 
       print b 
     end 
4 
 
SAL> print b 
SAL> error: unbound variable - B 
Call traceback: 
    SAL top-level command interpreter 
 

Example 7.5.4 demonstrates again how local variables are inde-
pendent of any global variables that might share the same name. 
Within a begin-end command, we create a local variable a initial-
ized to the value 3.  The body of the begin-end contains a set that 
increments the value of the local variable a by one and a print com-
mand that prints the value of a. The result is “4” as expected. Now 
that the begin-end command has finished, the local variable a no 
longer exists. What has happened to the global variable named a? 
We query the value of a at the “SAL>” prompt and see that the 
global variable a has retained its value of 0. Example 7.5.4 demon-
strates how two variables of the same name have different lexical 
contexts. When scopes overlap, the innermost scope takes prece-
dence and “hides” any other variable definitions. This is an impor-
tant language feature because it can reduce interference between 
different sections of programs. 

Example 7.5.4: Locals and globals that share a name 
SAL> set a = 0 ; initialize global variable a 
SAL> begin with a = 3 ; create local a 
       set a = a + 1 
       print a 
     end 
4 
 
SAL> print a 
0 
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7.6 Increment, Decrement, and Other Operators 
The assignment operators += and -= can be used to increment 

and decrement a variable by some value. In the case of Example 
7.6.1, += and -= increment and decrement the global variable a. 

Example 7.6.1: Shortcuts to increment and decrement variables 

SAL> set a = 1 
SAL> set a += 1 
SAL> print a 
2 
 
SAL> set a -= 2 
SAL> print a 
0 
 

Another useful assignment operator is @=, which uses cons to 
insert a new element at the beginning of a list. The command “set 
var @= expression” is equivalent to the command “set var = 
cons(expression, var).” 

Example 7.6.2: Using set and @= 

SAL> set the-list = {b c} 
SAL> set the-list @= quote(a) 
SAL> print the-list 
{a b c} 

 
In Example 7.6.3, a global variable c is assigned a value of 0. We 

define a function increase that increases the value of c by a user-
specified amount signified by the input x. 

Example 7.6.3: Changing globals in functions 

SAL> set c = 0 
 
SAL> define function increase(x) 
       set c += x 
 

In Example 7.6.4, the function call to increase increases the 
value of c by 3.  

Example 7.6.4: Testing the increase function 

SAL> exec increase(3) 
 
SAL> print c 
3 
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A function definition that modifies a global variable is usually 

considered to be in poor style. If functions change global variables, 
then the behavior of the program as a whole depends upon the inter-
nal details of every function. It is usually better if functions compute 
a value and return it without any “side effects” that change global 
variables. Changing a global variable in a function is also an indica-
tion that the programmer may not fully understand how programs 
can be written more clearly using local variables. Example 7.6.5 
shows an improvement of the definition of the function increase. 

Example 7.6.5: Eliminating a global variable 
SAL> define function increase(c, x) 
       return c + x 
 

In Example 7.6.6, we call the function increase with inputs of c and 
3.  The value of the global variable c (currently 3) is used in the 
evaluation. 

Example 7.6.6: Calling the new increase function 
SAL> print increase(c, 3) 
6 
 

A query shows that the global variable c still has a value of 3.  The 
global variable c has not been reassigned; we merely computed the 
sum of c and x. 

Example 7.6.7: The global has not changed 

SAL> print c 
3 
 

In order to reassign the global variable c, we need to assign it using 
set as seen in Example 8.6.11. 

Example 7.6.8: Updating a global 

SAL> set c = increase(c, 3) 
 
SAL> print c 
6 
 

While this version is slightly longer than the code in Example 7.6.3 
and Example 7.6.4, the advantage here is that you can see clearly that 
we are changing the value of c. You might be thinking: “But what if 
this code (Example 7.6.8) is contained within another function? Isn’t 
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this just another case of a function modifying a global variable?” 
This is absolutely true. One solution would be to declare c as a local 
variable to the function that calls increase. This would avoid using a 
global entirely. 

7.7 Assigning Local Variables Interactively 
In Section 6.6, we learned how SAL accepts data from the computer 
keyboard using the function read. We can use read in conjunction 
with with to interactively assign local variables. 

Example 7.7.1 is a SAL user-defined function, simple-add, that 
accepts two numbers from the computer keyboard and assigns those 
numbers to local variables using the with command. simple-add 
returns the sum of the two numbers. 

Example 7.7.1: Reading into variables in simple-add.sal 
SAL> define function simple-add() 
       begin 
         exec format(#t,  
                   "Please enter a number ") 
         begin 
           with x = read() 
           exec format(#t,  
             "Please enter another number ") 
           begin 
             with y = read() 
             exec format(#t,  
                   "~A plus ~A equals ~A~%", 
                    x,      y,        x + y) 
           end 
         end 
       end 
 
SAL> exec simple-add() 
 
Please enter a number 6 
 
Please enter another number 8 
 
6 plus 8 equals 14 

 
Notice that there are begin commands nested to three levels deep. 

Variables must be declared immediately after begin, but in this case, 
we want to alternate the creation and initialization of local variables 
with the printing of prompts. This is a good illustration of how 
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begin-end commands can be nested, but the program becomes 
rather cluttered, so a cleaner version using set to bind local variables 
is shown in Example 7.7.2. Warning: Any program that prompts the 
user for input should test for valid entries and give the user a chance 
to confirm, reenter, or cancel the operation. We leave this as an exer-
cise for the reader. 

Example 7.7.2: An alternative implementation, simple-add-2.sal 

SAL> define function simple-add() 
       begin with x, y 
         exec format(#t,  
                   "Please enter a number ") 
         set x = read() 
         exec format(#t, 
             "Please enter another number ") 
         set y = read() 
         exec format(#t, 
                   "~A plus ~A equals ~A~%", 
                    x,      y,        x + y) 
     end 
 

Example 7.7.3 uses local variables and read in a score generator. 
We use with to create the local variables the-pitch and the-
amplitude. We use a pre: expression to prompt for and assign the 
values of these local variables. The program must use something of 
the form 

pre: expression, pitch: the-note, vel: the-amplitude 

where expression reads the-note and the-amplitude. 
A complication with this plan is that, first of all, SAL does not 

normally allow assignments as expressions, so we need a slight 
“trick” to bind the-pitch using an expression. We saw the solution to 
this problem in Example 7.4.2: call the function setf in place of the 
command set.  

The second problem is that we want to assign two variables rather 
than one. Why not call a function to read and initialize the variables? 
Since these are local variables, they are not in the scope of another 
function, so they cannot be manipulated outside of their enclosing 
begin-end block. We could use global variables instead, but this 
practice is frowned upon as discussed earlier. 

The simplest solution uses the fact that setf can take any number 
of inputs, alternating variables with the expressions to be evaluated 
to determine the variables’ new values. We could write this expres-
sion: 
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setf(the-pitch, read(), the-amplitude, read()) 

to initialize both variables with one expression. This would work, but 
what if we want to prompt the user for input?  

A more general solution is required. The Lisp form, progn, 
evaluates any number of expressions in sequence and returns the 
value of the last one. Although not recommended for SAL program-
ming in general, it can be a useful way to obtain sequential behavior 
in an expression as opposed to using a sequence of commands sur-
rounded by begin-end. Within the progn expression, we can use the 
format function to print prompts, and the setf function to set local 
variables. Compare Example 7.7.3 to Example 6.6.1. 

Example 7.7.3: interactive-assign.sal 

SAL> begin with the-note, the-amplitude 
       exec score-gen( 
         save: quote(interactive-assign), 
         score-len: 3, ioi: .5, dur: .35, 
         pre: progn(format(#t,  
               "Please enter a note number: "), 
            setf(the-note, read()), 
            format(#t,  
                "Please enter an amplitude: "), 
            setf(the-amplitude, read())), 
         pitch: the-note,  
         vel: the-amplitude) 
     end 
Please enter a note number: 60 
Please enter an amplitude: 75 
Please enter a note number: 48 
Please enter an amplitude: 80 
Please enter a note number: 36 
Please enter an amplitude: 90 
 
SAL> exec score-print(interactive-assign) 
((0 0 (SCORE-BEGIN-END 0 1.35)) 
(0 0.35 (NOTE :VEL 75 :PITCH 60)) 
(0.5 0.35 (NOTE :VEL 80 :PITCH 48)) 
(1 0.35 (NOTE :VEL 90 :PITCH 36)) 
) 

7.8 Suggested Listening 
Systems Management is a composition by tENTATIVELY, a 
cONVENIENCE (2009). Systems Management was performed by 
HiTEC (Histrionic Thought Experiment Cooperative) on several 
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occasions in Pittsburgh. In Systems Management, a giant “wheel of 
fortune” is spun to select a number, which corresponds to a system. 
A system is a set of directions or a musical thought experiment for 
the orchestra members, called systems managers. (An example can 
be viewed online: http://www.youtube.com/watch?v= 
tMpa9VMyWmU.) Each system is like a computer program for 
musicians to follow. In computational terms, you can think of 
spinning the wheel as assigning a random number to a variable called 
system-number. In the next chapter, we will see how computers can 
perform actions that depend upon the values of variables. 
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Chapter 8 Conditionals 

Evaluating data and making decisions is an important part of describing mu-
sic algorithmically. In this chapter, we will learn how to make decisions us-
ing SAL’s if statement and the special function #? (no, we’re not cursing, 
that’s really the name of the function). Programming constructs that choose 
an action based on a value are called conditionals. For example, make notes 
shorter if they are above C5. Using conditionals, we can write programs that 
create music based on a condition or set of conditions. 

8.1 if Command 
The if command has a test expression that is evaluated to obtain a 
true or false value (anything other than nil – the same as #f – is con-
sidered to represent true). When the test-clause evaluates to true, the 
true-consequent command is evaluated.  When the test-clause evalu-
ates to false (#f), an optional false-consequent command is evalu-
ated.  If the false-consequent command is omitted, the program con-
tinues with the next command. 
 

The templates for if are: 
if test-expression then true-consequent 
if test-expression then true-consequent else false-
consequent 

 
In Example 8.1.1, we use define variable at the “SAL>” prompt 

to create global variables *pitch* with a value of 60 and *vel*, ini-
tially nil. We would like to assign a global variable *vel* a value of 
90 if *pitch* is less than 60.  Otherwise, we will assign *vel* a value 
of 50. Example 8.1.1 illustrates the conditional assignment of the 
variable *vel*. 

Example 8.1.1: Using if 

SAL> define variable *pitch* = 60, *vel* 
 
SAL> if *pitch* < 60 then set *vel* = 90  
                     else set *vel* = 50 
 
SAL> print *vel* 
50 
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In Example 8.1.1, the test-clause *pitch* < 60 uses the relational 

operator < to see if the current value of *pitch* is less than 60.  Be-
cause *pitch* was initialized with a value of 60, the test-expression 
evaluates to #f and the false-consequent, “set *vel* = 50,” is per-
formed.  The effect can be seen by printing the new value of *vel*. 

SAL if commands may be nested to make more complex deci-
sions.  The nesting of if is accomplished when another if takes the 
role of a true-consequent or false-consequent. Typically, programs 
are more readable if only the false-consequent is another if com-
mand. 

The template for a nested if using the false-consequent command 
is 

if test-expression1 then true-consequent1 
else  
  if test-expression2 then true-consequent2 
  else false-consequent 

 
In Example 8.1.2, we write a SAL function test-range that uses a 

nested if to determine if the variable a-note is within the range of the 
MIDI specification. 

Example 8.1.2: nested-if.sal 

define function test-range(a-note) 
  begin 
    if a-note < 0 then 
      return quote(too-low) 
    else 
      if a-note > 127 then 
        return quote(too-high) 
      else 
        return quote(in-range) 
  end 
 

Given an input of −5, the function test-range evaluates the test-
expression “is −5 less than 0?”  The test-expression evaluates to true 
and the symbol too-low is returned by the function. (Recall that too-
low is quoted to indicate the symbol itself should be returned rather 
than being evaluated as a variable.) 

Given a MIDI note input of 129, the function test-range 
evaluates the test-expression “is 129 less than 0?”  The test-
expression evaluates to #f and program control transfers to the next 
test clause “is 129 greater than 127?”  This test-expression evaluates 
to true and the symbol too-high is returned by the function. 
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Given an input of 60, the function test-range evaluates the test-
expression “is 60 less than 0?”  The test-expression evaluates to #f 
and program control transfers to the next test “is 60 greater than 
127?”  This test-expression also evaluates to #f and the symbol in-
range is returned by the function. 

8.2 #? Special Form        
While if is a command, #? can be used to create a conditional expres-
sion. Just as if takes a test and one or two consequent commands, the 
#? form takes a conditional expression and one or two consequent 
expressions. 

We can use #? to rewrite Example 8.1.1 in a slightly more com-
pact form. Example 8.2.1 uses #? to select which value (90 or 50) to 
assign to *vel*: 

Example 8.2.1: Using #? 

SAL> define variable *pitch* = 60, *vel* 
 
SAL> set *vel* = #?(*pitch* < 60, 90, 50) 
 
SAL> print *vel* 
50 
 

#? is a “special form” – an operation that is written in the form of 
a function but uses special rules to control the evaluation of its input 
parameters. The evaluation of a #? form is similar to the evaluation 
of an if command. Evaluation begins with the first input, the test-
expression. Depending upon whether this is true or false, #? evalu-
ates the first or the second expression (but not both). Note that if this 
were a true function, all inputs would be evaluated. 

As with any form of expression, #? can be nested to form more 
complex conditionals. In Example 8.2.2, we rewrite the test-range 
function to use #? instead of if commands.  

Example 8.2.2: Nested #? in nested-if-2.sal 

define function test-range(pitch) 
  begin 
    return #?(pitch < 0, quote(too-low), 
                         #?(pitch > 127, 
                            quote(too-high), 
                            quote(in-range))) 
  end 
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8.3 Using if with begin-end 
In the examples presented so far, the consequent statements of if 
have been single commands, or in the case of the nested if, one con-
sequent was another if command. In general, you may need to per-
form multiple actions based on a single test. This can be accom-
plished by calling a function containing many commands, or you can 
enclose the commands in a begin-end block, which is syntactically 
equivalent to a single command. 

In Example 8.3.1, we use if to write a function make-valid-pitch 
that simply returns pitch numbers that fall within the range of 0 to 
127, but otherwise prints “out of range” and returns 60.  

Example 8.3.1: if-then-begin-end.sal 

define function make-valid-pitch(pitch) 
  begin 
    if test-range(pitch) != quote(in-range) 
    then 
      begin 
        print "out of range" 
        set pitch = 60 
      end 
    return pitch 
  end 
 

First, make-valid-pitch calls test-range to obtain one of too-
low, in-range, or too-high. This value is compared to in-range. If 
the two values are not equal (!=) , the if performs the begin-end 
command that follows “then.” This prints a message and changes 
pitch to 60. Regardless of the outcome of the conditional, pitch is 
returned. Consider an alternative implementation that replaces “set 
pitch = 60” with “return 60”. Convince yourself that both produce 
the same result values and output. 

8.4 Using Conditionals in Algorithmic Composition 
Conditionals offer a powerful way to delineate form and sculpt mu-
sical events in the realization of a compositional algorithm.  In 
Example 8.4.1, we create a musical gesture of 99 note events that 
change their pitch content during each third of the score.  To achieve 
continuity, we maintain the same intervallic distances between the 
pitches in each set.  We use a pitch set that follows the intervallic 
succession M2 m3 M2 M2.  To achieve variety, we transpose the 
pitch set up a M2 for the second third of the container and down a 
M2 for the last third of the container. 
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Example 8.4.1: Conditional in composition 
begin 
  with notes = make-heap( 
                   list(c4, d4, f4, g4, a4)), 
       vels = make-heap({20 40 60}), 
       durs = make-heap(list(s, sd, i)) 
  exec score-gen( 
       save: quote(cond), score-len: 99, 
       pitch: next(notes) + #?(sg:count < 33, 0,  
                               #?(sg:count < 66, 2, 
                                                -2)), 
       vel: #?(sg:count < 49, next(vels), 
                              next(vels) + 60), 
       ioi: next(durs)) 
end 
 

The score cond has 99 notes. A #? is used to test the value of 
sg:count which increments from 0 to 98.  The total number of 
events is divided into three cases.  In the first case, if sg:count is 
less than 33, the pitch attribute will be assigned a value from the 
pitch set {c4, d4, f4, g4, a4} using the heap pattern type. In the sec-
ond case, where sg:count is between 34 and 65 inclusive, the pitch 
attribute will be based on the same pitch set but transposed up a ma-
jor second.  The third case, where sg:count is greater than or equal 
to 66, calculates the pitch transposed down a major second from the 
original set. 

A #? is also used to determine the set of amplitudes for any par-
ticular note.  The value of the variable sg:count is tested and if we 
are in the first half of the score, an amplitude from the set {20, 40, 
60} is picked.  If we are in the second half of the score (sg:count is 
50 or more), an amplitude is selected from the same set and incre-
mented by 60.  This algorithm allows the musical material to grow in 
amplitude as the number of note events increases. You can play it us-
ing the command “exec score-play(cond)”. How would you make 
the average amplitude grow steadily instead of making one change at 
the midpoint of the score? 

Notice that in this example, both pitch: and vel: are computed as 
the sum of an item from a pattern and some offset. For pitch:, we 
“factored out” the call to next(notes) and use the nested conditional 
to compute the offset (0, 2, or –2). For vel:, we wrote the entire 
computation in each consequence, so “next(vels)” appears twice. 
Either approach is “correct,” but unless you are trying to demonstrate 
different possibilities, it would be better to be consistent. 
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In Example 8.4.2, we create a musical gesture for a duration of 
ten seconds that changes pitch content and amplitude during each 
second. 

Example 8.4.2: Ascending melody in ascent.sal 
begin  
  with pitch-a = make-heap(list(c4, d4, e4)), 
       pitch-b = make-heap(list(cs4, ds4, f4)), 
       pitch-c = make-heap(list(d4, e4, fs4)), 
       pitch-d = make-heap(list(ds4, f4, g4)), 
       pitch-e = make-heap(list(e4, fs4, gs4)), 
       pitch-f = make-heap(list(f4, g4, a4)), 
       pitch-g = make-heap(list(fs4, gs4, as4)), 
       pitch-h = make-heap(list(g4, a4, b4)), 
       pitch-i = make-heap(list(gs4, as4, c5)), 
       pitch-j = make-heap(list(a4, b4, cs5)), 
       vel-a = make-cycle({20 40 60}), 
       vel-b = make-cycle({40 75 80}), 
       vel-c = make-cycle({60 80 100}), 
       vel-d = make-cycle({80 100 120}), 
       vel-e = make-cycle({100 120 127}), 
       pitch, vel, s ;; s = note start time 
    exec score-gen( 
       save: quote(ascent), score-dur: 10, 
       ioi: .2, 
       pre: progn(setf(s, round(sg:start)), 
              #?(s < 2, setf(pitch, next(pitch-a),  
                             vel, next(vel-a))), 
              #?(s = 2, setf(pitch, next(pitch-b), 
                             vel, next(vel-b))), 
              #?(s = 3, setf(pitch, next(pitch-c), 
                             vel, next(vel-c))), 
              #?(s = 4, setf(pitch, next(pitch-d), 
                             vel, next(vel-c))), 
              #?(s = 5, setf(pitch, next(pitch-e), 
                             vel, next(vel-d))), 
              #?(s = 6, setf(pitch, next(pitch-f), 
                             vel, next(vel-d))), 
              #?(s = 7, setf(pitch, next(pitch-g), 
                             vel, next(vel-d))), 
              #?(s = 8, setf(pitch, next(pitch-h), 
                             vel, next(vel-e))), 
              #?(s = 9, setf(pitch, next(pitch-i), 
                             vel, next(vel-e))), 
              #?(s > 9, setf(pitch, next(pitch-j), 
                             vel, next(vel-e)))), 
       pitch: pitch, vel: vel) 
  end 
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This call to score-gen is nested within a begin-end command 
that creates stream objects for pitch and velocity. The long progn 
expression uses many #? expressions to determine which stream ob-
jects are used for each note. Recall that sg:start is the starting time 
of the note whose attributes are being computed. This start time is 
rounded to an integer s, and each different value of s selects a pair of 
patterns for pitch and velocity. In every case, variables pitch and vel 
are set, and these are then used as the values for keyword parameters 
pitch: and vel:.  In this particular example, the resultant music cre-
ates a gradually rising chromatic figure that increases in pitch and 
loudness as time progresses. Play it with “exec score-play( 
ascent)”. 

In this example, a series of conditionals is used to select changing 
patterns as time passes. Often, a long list of nearly identical program 
statements like these is an indication that the program could be ex-
pressed more cleanly some other way. In this case, the variable s acts 
as a selector among many choices. The primitive nth uses an integer 
to select an element from a list. How would you rewrite Example 
8.4.2 to use nth? In this program, it happens that there are exactly 5 
notes per second, so with one small exception, each pattern is ac-
cessed 5 times. Earlier, we saw how patterns can be composed. How 
would you rewrite this example to draw pitches and velocities from 
nested patterns to yield the same result without the long series of 
conditionals? 

8.5 Conditionals vs. Formulas 
Example 8.4.2 uses a rather elaborate scheme to spell out the 
computation in great detail. The previous paragraph hinted at some 
possible simplifications. We can also observe that the general trend 
is a chromatically rising pitch center and increasing loudness. In the 
next example, we replace the conditionals with a more numerical ap-
proach, using formulas to calculate the change in pitch and velocity. 
We will use the same “trick” of rounding the note time to obtain an 
integer, but rather than select an expression with the integer, we will 
use the integer directly to compute pitch and velocity. 

This example is not exactly equivalent to Example 8.4.2, but it 
does generate similar output, and it is certainly much more compact. 
It is worth considering the advantages and disadvantages of these 
two approaches. The first approach is more amenable to fine tuning. 
It would be simple to change just one or two pitch patterns to include 
a half step or a large interval, whereas the formula example only has 
one fixed pitch pattern. It would also be simple to vary the amplitude 
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patterns in Example 8.4.2, for example to make a very quiet section 
just before a loud ending. On the other hand, the #? expressions are 
awkward to extend to greater durations. Each additional second re-
quires another expression. In contrast, the formula approach can run 
for any duration with only slight changes necessary to limit velocity 
and pitch values. It is also possible to vary the overall shape of the 
pitch or velocity contour in Example 8.5.1 by editing a single expres-
sion rather than editing every pitch or velocity pattern. For example, 
the pitch pattern will go down if you just subtract the rounded start 
time rather than add it. 

Example 8.5.1: formula.sal 
begin 
  with pitch-stream =  
           make-heap(list(c4, d4, e4)), 
       vel-stream =  
           make-cycle(list(20, 40, 60)) 
  exec score-gen(save: quote(formula),  
                 score-dur: 10, ioi: .2, 
                 pitch: next(pitch-stream) + 
                        round(sg:start), 
                 vel: next(vel-stream) +  
                      round(sg:start) * 10) 
end 
 

At a deeper level, this discussion is really about abstraction, one 
of the central concepts of algorithmic composition. We use algo-
rithms to make music in order to shift the focus (and labor!) from the 
detailed specification of each note to more general, more abstract 
notions such as contour, texture, duration, and temporal evolution. 
An important task for the composer is to design algorithms that af-
ford the “right” kind of control, depending on individual musical 
goals and expressive needs. 

The last two examples illustrate two very different algorithms that 
yield similar music. The question is not which one is faster, better, 
simpler, or smaller. The important question is: Which approach best 
lends itself to the musical goals of the composer? Programs rarely if 
ever produce masterpieces or even good material without a signifi-
cant amount of experimentation and refinement. Part of the process 
of algorithmic composition is designing programs that represent mu-
sical decisions in a way that supports musical exploration. 



    

8.6 Suggested Listening 107 

8.6 Suggested Listening 
Matices Coincidentes (converging colors) composed by Pablo Fur-
man was inspired by the use of perspective in art and architectural 
design. Pablo Furman explores the convergence and blending of tone 
colors using electronics (Furman, 1998). 

British group Halal Kebab Hut uses various algorithmic 
techniques to generate music from everyday “junk.” The piece 
Variazioni con Shish No.4 uses inputs (in the form of surrounding 
sounds) in a set of rules for the performer to follow (http://www. 
halalkebab.co.uk/download/MP3s/Kebabish/ 
02%20Variazioni%20con%20Shish.mp3). 
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Chapter 9 Sets and Tables 

A set is a collection of objects. In SAL, we can represent finite sets as lists. 
Each object in a set is called an element or a member. In algorithmic compo-
sition, sets may be manipulated to achieve a compositional result. 

9.1 Introduction to Set Theory 
The analysis of atonal music using mathematical set theory was codi-
fied by Allen Forte in his landmark book, The Structure of Atonal 
Music (1973). His theory of atonal music develops a comprehensive 
framework for the organization of collections of pitches referred to 
as pitch class sets. We will introduce the concept of pitch class, and 
then describe Forte’s concept of pitch class set. 

Since SAL uses braces {} to denote lists and mathematicians use 
braces to denote sets, we need to be careful with notation. Here, 
braces with comma-separated items, all in this font (Times New Ro-
man), are used to denote sets. Lists are denoted by parentheses () and 
comma-separated items, also in this font. If we use SAL’s notation 
for lists, it will always be with the Lucinda Sans font and without 
commas: 

{this, is, a, set, of, words} 
(this, is, a, list, of, words) 
{this is a list of words too} 

A pitch class is a set of pitches, one from each octave, that have 
the same note names. Informally, we are just saying that the pitch 
classes are all the A’s, the B-flat’s, the B’s, etc. There are 12 pitch 
classes. Mathematicians are not happy with informal definitions, so 
“all the A’s” is represented more precisely by a set. For example, 
{A0, A1, A2, …} is a pitch class (here, A4 denotes the A above mid-
dle C, A3 is an octave lower, etc.), and {B0, B1, B2, …} is another. In 
mathematics, these pitch classes are examples of equivalence 
classes. Members of the classes are equivalent in the sense that they 
have the same note names. There are other equivalence relations that 
induce other equivalence classes; for example, the “white keys” and 
“black keys” are equivalence classes. We say that equivalence 
classes form a partition over the set of all pitches, dividing the 
pitches into subsets. 
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Pitch classes could be named “A,” “B-flat,” “B,” etc., but Forte 
names them with integers in the range 0 to 11. Pitch class assignment 
in twelve-tone equal temperament is as follows: C (or its enharmonic 
equivalent) is 0, C-sharp (or its enharmonic equivalent) is 1, D (or its 
enharmonic equivalent) is 2, and so on. Notice that in terms of MIDI 
pitches (key numbers), the pitch class is just the remainder of divid-
ing the key number by 12. An aside: the integers are also a set, and 
the equivalence relation “has the same remainder after division by 
12” forms equivalence classes over the integers that correspond to 
musical pitch classes. We represent pitches as integers rather than 
symbols to facilitate this kind of pitch manipulation and computa-
tion. 

A pitch class set, or pc set, is a collection of pitch classes. Thus, a 
pc set is really a set of sets, but it is less confusing to think of a pc set 
as all the note names that occur in a collection of pitches. Intuitively, 
this amounts to removing all the octave names and octave doublings 
from a collection of pitches. What’s left is a set of pitch classes. How 
many pitch class sets are there? Consider that there are 12 pitch 
classes, and each pitch class offers two choices: it can be in the set or 
not in the set. Thus, there are 2×2×2×2×2×2×2×2×2×2×2×2, or 212, 
or 4096 possible sets (including the empty set). In keeping with 
Forte’s naming scheme, we represent pitch class sets as sets of the 
integers from 0 to 11. 

Forte names each pc set based on its prime form. To understand 
the prime form, think of the pitch classes 0-11 organized around a 
circle. The pitch class structure is circular because a minor second 
above 11 (B) is 0 (C). To generate the prime form from a pc set, we 
list the pitch classes in clockwise order, starting at any pitch class.  
For example, the D-minor triad {D, F, A} or {2, 5, 9} in clockwise 
order generates the lists (2, 5, 9), (5, 9, 2), and (9, 2, 5). Next, we 
transpose the lists to begin at zero. Remember that these numbers 
represent pitch classes without octaves, so 1 (D-flat) transposed 
down by 3 (a minor third) is 10 (B-flat), not −2 (also B-flat, but not 
in the range 0-11).  After transposition, our lists are (0, 3, 7), (0, 4, 
9), and (0, 5, 8). Next, we also generate the inversions of these lists 
by subtracting each pitch class from 12. The effect is to exchange de-
scending intervals for ascending ones. The results in our example are 
(0, 9, 5), (0, 8, 3), (0, 7, 4), and these are sorted into increasing order 
to get (0, 5, 9), (0, 3, 8), (0, 4, 7).  Finally, the prime form is the list 
from among the original and inverted lists that is “most compact,” 
meaning that the last element is smallest. In this case, there is a tie 
between (0, 3, 7) and (0, 4, 7), so we break the tie by taking the list 
with the smallest next-to-last element, (0, 3, 7). 
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Notice that two pc sets may have the same form. For example, all 
transpositions of minor triads have the prime form (0, 3, 7), and be-
cause inversions are considered equivalent, all major triads have the 
same prime form as all minor triads. Thus, prime forms are equiva-
lence classes of pitch class sets: two pitch class sets are considered 
equivalent if they have the same prime form. Forte names prime 
forms with two numbers. The first number is the length of the prime 
form, which is also the number of elements in the corresponding pc 
sets. (The number of elements in a set is called the cardinality of the 
set.) The second part is derived by listing all prime forms from most 
to least compact. For example, set 4-1 is comprised of pitch classes 
(0 1 2 3). The 4 in the pc set name represents the cardinality of the 
set. The 1 is the unique integer identifier associated with that set. 
Only pc-sets with a succession of three minor seconds will have the 
Forte number 4-1. 

The prime form is only one of many equivalence relations that 
can partition the 4096 pitch class sets. For example, if Forte had not 
considered inversions to be equivalent, then major and minor triads 
would not have the same prime form, and a different kind of equiva-
lence relation would be obtained. Another interesting equivalence 
relation is obtained from the interval vector, which is a tally of all 
pair-wise intervals in a pitch class set. For example, the pitch class 
set {G, B, D, F} or {7, 11, 2, 5} has the following pairs: (7, 11), (7, 
2), (7, 5), (11, 2), (11, 5), (2, 5). The corresponding intervals are 4, 5, 
2, 3, 6, 3. Note that “interval” is defined as the smallest number of 
half steps from one pitch class to the other without regard for direc-
tion. For example, the interval from 7 to 2 is 5 (not −5), and the inter-
val from 11 to 2 (B to D) is 3 because D lies 3 half steps above B. 
The interval vector is an ordered list of the number of intervals of 
size 1, size 2, size 3, and so on up to size 6, the largest interval. This 
example contains one interval of size 2, two intervals of size 3, and 
one each of sizes 4, 5, and 6, so the interval vector is 012111. This is 
the interval vector of all dominant seventh and half diminished 
chords, corresponding exactly to the prime form 4-27. 

Not all prime forms have a unique interval vector. For example, 
the prime form (0, 1, 3, 5, 6), number 5-12, and prime form (0, 1, 2, 
4, 7), number 5-36, have the same interval vector: 222121. Forte 
calls prime forms with the same interval vector “Z-related sets,” or 
“Z correspondents,” and he adds the letter Z to the designation, so 
these prime forms are actually named 5-Z12 and 5-Z36. You will see 
the letter Z in the names of some of the prime forms used in exam-
ples below. 
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9.2 List and Set Operations 
Nyquist provides a number of functions that perform operations on 
lists or sets.  These primitives are helpful in analyzing or composing 
music that is based on sets.  

append, which was first discussed in Chapter 3, is very helpful in 
manipulating sets. append may take two or more lists as input and 
return a list of all of the elements of the first list followed by all of 
the elements of the second. When appending lists, the template for 
append is 

append(list-1, list-2) 
In the following example, we assign pitch class sets to two global 
variables s6-1 and s5-2.  We use append to create a list of the two 
pc sets in succession. 

Example 9.2.1: append with pitch class sets (as lists) 

SAL> set s6-1 = {0 1 2 3 4 5} 
 
SAL> set s5-2 = {0 1 2 3 5} 
 
SAL> print append(s6-1, s5-2) 
(0 1 2 3 4 5 0 1 2 3 5) 
 

Example 9.2.2: append.sal 
begin 
  with c-major = list(c4, e4, g4), 
       f-major = list(f4, a4, c5), 
       g-major = list(g4, b4, d5), 
       pitch-pattern = make-cycle( 
                   append(c-major, f-major,  
                          g-major, list(c5))), 
       ioi-pattern = make-heap({0.2 0.3 0.45}), 
       rhythm 
 
  exec score-gen(score-len: 10,  
                 save: quote(append-example), 
                 pre: setf(rhythm,  
                           next(ioi-pattern)), 
                 pitch: next(pitch-pattern), 
                 ioi: rhythm, 
                 dur: rhythm * 2, 
                 amp: interpolate(sg:count,  
                                0, 10, 9, 120)) 
end 
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In Example 9.2.2, we use major triads on C, F and G as sets. Lo-

cal variables are created and initialized to lists that represent these 
triads. The variables that represent the lists are appended and con-
verted into a cyclic item stream using make-cycle. 

The functions reverse and nth were introduced in Chapter 3. 
Example 9.2.3 uses reverse in a score generator. 

Example 9.2.3: reverse.sal 

begin 
  with c-major = list(c4, e4, g4), 
       f-major = list(f4, a4, c5), 
       g-major = list(g4, b4, d5), 
       pitch-pattern = make-cycle( 
         append(g-major,  
                reverse(f-major), c-major)), 
       rhythm-pattern = make-heap( 
                            {0.2 0.3 0.35}), 
       rhythm 
  exec score-gen( 
            save: quote(reverse-example),  
            score-len: 9, 
            pitch: next(pitch-pattern), 
            pre: setf(rhythm, 
                      next(rhythm-pattern)), 
            ioi: rhythm, 
            dur: rhythm * 2, 
            amp: interpolate(sg:count,  
                             0, 10, 8, 120)) 
end 
 

In Example 9.2.4, we use nth to randomly access elements in a 
set. with is used to assign the local variables s6-z36 and amp-
pattern and to create index, pitch, and octave.  These variables are 
used in score-gen. This example could also be written using make-
random to select random elements rather than using nth and 
random. 
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Example 9.2.4: nth.sal 
begin 
  with s6-Z36 = {0 1 2 3 4 7}, 
  ;;; 0 1 2 3 4 7 is set 6-Z36 according to 
  ;;; Allen Forte's "Structure of Atonal Music" 
       amp-pattern = make-heap( 
                            {20 30 40 50 100}), 
       index, pitch, octave 
  exec score-gen( 
    save: quote(nth-example), 
    score-len: 25, 
    pre: setf(index, random(6), 
              pitch, nth(index, s6-Z36), 
              octave, nth(random(2), {36 48})), 
    pitch: octave + pitch, 
    amp: next(amp-pattern), 
    ioi: 0.2, dur: 0.3) 
end 
    

The predicate member checks to see if an element is included in 
a list.  If the element is not found in the list, member returns nil.  If 
the element is found, member returns the remainder of the list 
beginning with the found member. 
 

Example 9.2.5: Using member 

SAL> print member(6, {0 1 2 3 5}) 
#f 
 
SAL> print member(3, {0 1 2 3 5}) 
{3 5} 
 

Why is member considered a predicate if it returns a list? Recall 
that in SAL, any non-nil value is considered to mean “true.” 

Example 9.2.6 creates a melody, accompaniment, and final-chord 
using three calls to score-gen. In the melody, certain pitch classes 
(2, 4, 5, and 7) are emphasized by giving them a high amplitude. 
member is used to test whether the pitch class is in the list (2, 4, 5, 
7). If so, the #? test expression is true, so an amplitude value between 
100 and 119 is computed. Otherwise, an amplitude value between 10 
and 39 is computed.  
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Example 9.2.6: member.sal 
;; melody is drawn from pitches in 6-Z3, 6-Z36,  
;; 5-Z38 and 7-Z38 (first two pitches, 0 and 1, 
;; in these sets are omitted 
begin 
  with notes-1 = make-heap({2 3 4 7}),   ;; 6-Z3 
       notes-2 = make-heap({2 3 5 6}),   ;; 6-Z36 
       notes-3 = make-heap({2 5 8}),     ;; 5-Z38 
       notes-4 = make-heap({2 4 5 7 8}), ;; 7-Z38 
       amp-pattern = make-cycle( 
           {10 20 30 40 50 60 70 80 90 
            10 20 30 40 50 60 70 80 90  
            10 20 30 40 50 10 20 30 40 50 
            10 20 30 40 50 10 20 30 40 50 
            10 20 30 40 50 60 70}), 
       rhythm-pattern =  
           make-heap(list(q, qd, h, hd)), 
       pitch 
  
  ;; The first score is member-melody: select a  
  ;; pattern and shift by 2 to 5 octaves depending on  
  ;; the starting time 
  exec score-gen(save: quote(member-melody),  
         score-dur: 20, 
         pre: setf(pitch,  
                   #?(sg:start < 5,  
                      24 + next(notes-1), 
                      #?(sg:start < 10,  
                         36 + next(notes-2), 
                         #?(sg:start < 15, 
                            48 + next(notes-3), 
                            60 + next(notes-4))))), 
         pitch: pitch, 
         ;; emphasize certain pitch classes with high 
         ;; amplitude; pitch class is remainder of  
         ;; pitch divided by 12. "%" is the remainder 
         ;; operator. 
         ;; Use member to test if pitch class is one 
         ;; of 2, 4, 5, or 7: 
         vel: #?(member(pitch % 12, {2 4 5 7}), 
                 100 + random(20), ;; pick 100 to 119 
                 10 + random(30)), ;; pick 10 to 39 
         ioi: 0.1) 
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  ;; a second score is computed called member-accomp. 
  ;; When the pitch: parameter is a list, a chord is 
  ;; generated, so this creates 5- to 7-note chords. 
  exec score-gen(save: quote(member-accomp),  
         score-dur: 20, 
         pre: setf(pitch, 
                 #?(sg:start < 5,  
                    {50 51 52 53 54 57}, 
                    #?(sg:start < 10, 
                       {60 61 62 63 65 66}, 
                       #?(sg:start < 15,  
                          {70 71 72 75 78}, 
                          {80 81 82 84 85 87 88})))), 
         pitch: pitch, 
         vel: next(amp-pattern), 
         ioi: next(rhythm-pattern), 
         dur: 0.15) 
 
  ;; the third score is a final chord 
  exec score-gen(save: quote(member-final),  
         score-len: 1, 
         pitch: {24 25 38 51 64 77 90 103 104}, 
         ;; chord is based on union of all four sets: 
         ;; (0 1 2 3 4 5 6 7 8) or set 9-1. Each 
         ;; pitch class is transposed up a successive 
         ;; octave. (the lowest and highest pitches  
         ;; are adjusted up to fall into the range of  
         ;; the piano) 
         vel: 120, dur: 2) 
 
  ;; combine all the scores  
  set member-example =  
    score-merge(member-melody, member-accomp, 
                score-shift(member-final, 20)) 
end 
 

Further explanation of the program is included in the program as 
comments. The program sets global variables to scores representing 
each part (member-melody, member-accomp, member-final) as 
well as their combination in member-example. It would be good 
programming practice to at least make member-melody, member-
accomp, and member-final local variables by declaring them in the 
with command, but they are left as globals here so that they can still 
be printed and played after the begin-end command exits. You can 
play any of the scores with score-play. 

The function intersection takes two lists as input and returns a 
list of the elements that are common to both lists, corresponding to 
set intersection. 
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In Example 9.2.7, we take the intersection of pc sets 6-Z3 and 6-
Z36. Note that in sets, the order of the elements does not matter. 

Example 9.2.7: Using intersection 

SAL> print intersection({0 1 2 3 5 6},  
                        {0 1 2 3 4 7}) 
{3 2 1 0} 
       

The function union takes two lists as input and returns a list of the 
elements that are found in either set. 

Example 9.2.8: Using union 

SAL> print union({0 1 2 3 5 6}, {0 1 2 3 4 7}) 
{7 4 6 5 3 2 1 0} 
 

Example 9.2.9 demonstrates how the set operations intersection 
and union may be used in algorithmic composition. We use with to 
define some pc sets and then take the intersection and union of set 
combinations. The resulting sets are converted to item streams which 
are then used in score-gen to compute various note attributes. 

Example 9.2.9: sets.sal 

begin 
  with s6-Z36 = {0 1 2 3 4 7}, 
       s6-Z3 = {0 1 2 3 5 6}, 
       s5-Z38 = {0 1 2 5 8}, 
       s7-Z38 = {0 1 2 4 5 7 8}, 
       common-set1 = make-heap( 
           intersection(s6-Z36, s6-Z3)), 
       common-set2 = make-heap( 
           intersection(s5-Z38, s7-Z38)), 
       inclusive-set1 = make-cycle( 
           union(s6-Z36, s6-Z3)), 
       inclusive-set2 = make-cycle( 
           union(s5-Z38, s7-Z38)) 
  exec score-gen(save: quote(sets-example),  
    score-len: 15, 
    pitch: next(common-set1) + 60, 
    vel: 10 + next(inclusive-set1) * 10, 
    ioi: max(next(common-set2) * 0.5, 0.05), 
    dur: max(next(inclusive-set2) * 0.5, 0.05)) 
end 

 
The function set-difference performs set subtraction. set-
difference takes two lists as input and returns a list consisting of all 
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the elements in the first list that are not also in the second list. set-
difference returns a new list and does not change either of the two 
input lists. Notice that the empty list prints as #f. 

Example 9.2.10: Using set-difference 

SAL> print set-difference({0 1 2 3 5 6},  
                          {0 1 2 3 4 7}) 
{5 6} 
 
SAL> print set-difference({0 1 2 3 4 7},  
                          {0 1 2 3 5 6}) 
{4 7} 
 
SAL> print set-difference({0 1 2 3}, {4 5 6 7}) 
{0 1 2 3} 
 
SAL> print set-difference({0 1 2 3}, {0 1 2 3}) 
#f 
 

The predicate subsetp accepts two lists as input and returns true 
if the first list is a subset of the second and false if not. 

Example 9.2.11: Using subsetp 

SAL> print subsetp({0 1 2 3 4 7},  
                   {0 1 2 3 4 5 6 7 8}) 
#t 
 
SAL> print subsetp({0 1 2 3 4 7}, {0 1 2 5 8}) 
#f 

9.3 Tables 
Tables can be built in SAL by making lists of lists. In fact, a table 
can be thought of as a nested indexed list.  In SAL or Lisp, 
sometimes tables are referred to as association lists or simply a-lists.  
Consider the table in Table 9.3.1 that makes a correspondence 
between pitch class name and number. 

Table 9.3.1: A simple table 

Name Number 
C 0 
C-sharp 1 
D 2 
D-sharp 3 
E 4 
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In Table 9.3.1, we refer to the pitch class name as the key to the 

table and the note number as its value.  For example, key C-sharp has 
a value of 1. 

We represent tables or a-lists in SAL or Lisp as nested lists. 
Example 9.3.1 converts the table representation of Table 9.3.1 to a 
nested list and uses it to initialize the global variable *simple-table*. 

Example 9.3.1: Creating a table 
SAL> define variable *simple-table* = 
      {{C 0} 
       {C-sharp 1} 
       {D 2} 
       {D-sharp 3} 
       {E 4}} 
 

Now that we have a table stored in memory, we can look up 
things in the table.  SAL performs table lookup using the function 
assoc. When assoc is given a key in a table, it returns a list 
comprised of the key and its corresponding value(s).  It may be 
helpful to think of assoc as returning a specified row in a table as a 
list. 

Example 9.3.2: Using assoc 

SAL> print assoc(quote(D), *simple-table*) 
{D 2} 

 
If we want to find the value associated with a particular key, we 

simply use list functions to point to the element of interest. 

Example 9.3.3: Accessing a table value 

SAL> print second(assoc(quote(D),  
                        *simple-table*)) 
2 

 
Performing table lookup is such a common occurrence, we define 

a function table-lookup in Example 9.3.4 to simplify the procedure. 

Example 9.3.4: table-lookup function 

define function table-lookup(key, table) 
  return second(assoc(key, table)) 
 

In the next example, we demonstrate calling this function to per-
form a lookup in *simple-table*. 
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Example 9.3.5: Using table-lookup 

SAL> print table-lookup(quote(D),  
                        *simple-table*) 
2 
 

Example 9.3.6 demonstrates how you can use tables in Nyquist. 
This example generates music from text by mapping letters to 
pitches. The length of the score is the length of the text string. Each 
letter of the string is mapped to a pitch number using a table lookup. 
The function char-to-symbol is defined to take a string and an index 
as inputs. It returns a symbol corresponding to the character at the 
given position in the string. The first step here is to take the substring 
from index to index + 1 using the subseq function. The resulting 
single-letter string is converted to upper case using the string-
upcase function. This upper-cased string is converted to a symbol 
using the intern function. (Note that strings are not symbols, so 
intern is necessary.) The reason for the upper case conversion is that 
SAL automatically converts program text to upper case, so symbol 
names in the table will use upper case, but the intern function will 
not automatically convert to upper case. We must convert the case or 
else table lookups will not work. 

Instead of converting each character to a symbol to match the 
symbol keys in the table, we could have used strings as keys in the 
table and called table-lookup with strings. Unfortunately, the assoc 
function does not ordinarily work with strings as keys. We could fix 
this by adding the keyword parameter “test: quote(equal)” to tell 
assoc to use a slightly more expensive key-comparison function. It 
is normal that there are several ways to solve programming 
problems. 

Not all characters are letters.  Characters that are not letters will 
not be found in the table, so in table-lookup, assoc returns nil, and 
second(nil) returns nil. Conveniently, a pitch value of nil is 
interpreted as a rest, so the spaces and any non-alphabetic characters 
in the text are converted to rests. We will revisit the idea of text to 
music in Section 16.3. 
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Example 9.3.6: table.sal 

;; table to map letters to pitches 
;; in this mapping, consonants are chromatic 
;; from 40 to 60 
;; vowels are pitches 35, 67, 78, 89, and 100 
define variable *letter-to-pitch* =  
 {{a 35} {b 40} 
  {c 41} {d 42} {e 67} {f 43} {g 44} {h 45}  
  {i 78} {j 46} {k 47} {l 48} {m 49} {n 50}  
  {o 89} {p 51} {q 52} {r 53} {s 54} {t 55}  
  {u 100} {v 56} {w 57} {x 58} {y 59} {z 60}} 
 
define function table-lookup(key, table) 
  return second(assoc(key, table)) 
 
define function char-to-symbol(text, index) 
  return intern(string-upcase( 
               subseq(text, index, index + 1))) 
 
begin 
  with text = "This text is the source data for 
music generation", 
       pitch 
  exec score-gen(save: quote(table-example), 
    score-len: length(text), 
    pitch: table-lookup(char-to-symbol( 
                               text, sg:count), 
                        *letter-to-pitch*), 
    dur: 0.3, ioi: 0.2) 
end 
 

Example 9.3.7 integrates many of the concepts we have learned in 
this chapter and applies them using SAL. This example uses four 
techniques to select random values: 

1. A table of pitch-class sets maps random integers to values.  
2. nth maps random integers to pitch classes stored in a list. 
3. #? translates ranges of values of sg:count into different 

expressions to compute pitch:. (Admittedly, sg:count is not 
random, but the same technique could be used with random 
values.) 

4. ioi-pattern and amp-pattern are used to select random 
values from lists (in this case, make-heap does not reuse a 
selection until all values have been selected). 
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Example 9.3.7: table-with-sets.sal 
define function table-lookup(key, table) 
  return second(assoc(key, table)) 
 
; Generator table-with-sets defines a table of the 
; first four pitch-class sets of cardinality 6. A  
; random number selects one of four keys in the range  
; 0-3 that corresponds to sets 6-1, 6-2, 6-Z3 and  
; 6-Z4.  Use the table-lookup to return the pitch  
; classes associated with the key. Assign a pitch 
; to the note slot by picking a random element of the  
; selected list, accessed using nth. 
 
begin 
  with table-cardinal6 = {{0 {0 1 2 3 4 5} s6-1} 
                          {1 {0 1 2 3 4 6} s6-2} 
                          {2 {0 1 2 3 5 6} s6-Z3} 
                          {3 {0 1 2 4 5 6} s6-Z4}}, 
       key1 = random(4), 
       key2 = random(4), 
       key3 = random(4), 
       key4 = random(4), 
       set1 = table-lookup(key1, table-cardinal6), 
       set2 = table-lookup(key2, table-cardinal6), 
       set3 = table-lookup(key3, table-cardinal6), 
       set4 = table-lookup(key4, table-cardinal6), 
       ioi-pattern = make-heap({.2 .4 .5}), 
       amp-pattern = make-heap({20 30 40 100}), 
       index 
  exec score-gen(save: quote(table-with-sets-score), 
                 score-len: 60, 
                 pre: setf(index, random(6)), 
                 pitch: #?(sg:count < 15,  
                           nth(index, set1) + 40, 
                         #?(sg:count < 30, 
                            nth(index, set2) + 50, 
                          #?(sg:count < 45, 
                              nth(index, set3) + 60, 
                           nth(index, set4) + 70))), 
                 ioi: next(ioi-pattern), 
                 dur: 0.1, 
                 amp: next(amp-pattern)) 
end 
 

Since algorithmic composing often uses constrained random 
selection, you should check your understanding of each of these four 
techniques by reviewing Example 9.3.7. 
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In Example 9.3.8, we rewrite Example 9.3.7 using patterns for all 
random selection. The result is more compact, but at least for many 
readers, it will be harder to understand because the behavior of 
nested patterns can be rather subtle. The “correct” way to make 
random selections is really a matter of taste and programming 
expertise. 

Example 9.3.8: all-patterns.sal 
begin 
  with period = 15, 
       pitch-pattern = make-heap( 
       list(make-random({0 1 2 3 4 5}, for: period), 
            make-random({0 1 2 3 4 6}, for: period), 
            make-random({0 1 2 3 5 6}, for: period), 
            make-random({0 1 2 4 5 6}, for: period) 
           )), 
       offset-pattern = 
        make-copier(make-line({40 50 60 70}, for: 1), 
                    repeat: period, trace: t), 
       ioi-pattern = make-heap({.2 .4 .5}), 
       amp-pattern = make-heap({20 30 40 100}) 
  exec score-gen(save: quote(all-patterns-example),  
                 score-len: period * 4, 
                 pitch: next(pitch-pattern) +  
                        next(offset-pattern), 
                 ioi: next(ioi-pattern), 
                 dur: 0.1, 
                 amp: next(amp-pattern)) 
end 
 

In this example, the pitch-pattern is a heap that selects from four 
pitch class sets. In Example 9.3.7, the selection is random and a 
given pitch class set might be selected more than once. To get this 
behavior, use make-random rather than make-heap. With make-
heap, each of the four pitch class sets will be used one time. In 
Example 9.3.7, the nested #? expression determines that 15 pitches 
are selected from each pitch class set. Here, we make a variable 
period and initialize it to 15, and we represent each pitch class set by 
a make-random pattern that randomly selects an element from the 
pitch class set. These patterns have a period length of period, so 15 
pitches will be generated in sequence before the next pitch class set 
pattern is selected. 

Example 9.3.7 also offsets each group of 15 pitch class set values 
by a different value. These values are generated here by offset-
pattern, which uses make-copier to make 15 copies each of the 
offset values 40, 50, 60, and 70. Notice that make-copier copies 
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whole pattern periods rather than individual items, so the period 
length of make-line must be set to 1 using the for: keyword 
parameter. 

Finally, notice how many patterns in this implementation and the 
score length (score-len:) all depend on the variable period, 
representing one quarter of the length of the score. To make the score 
longer, all you need to do is replace 15 with a different value. In 
contrast, to get the same effect in Example 9.3.7, you would need to 
study the program to find and replace the numbers 60, 15, 30, and 45 
with appropriate new values. In general, numerical constants like 15 
are frowned upon by good programmers, especially when the same 
number is used two or more times in different places. Programs are 
usually more readable if the numerical constant is used only once to 
initialize a variable that is used throughout the program. In the 
future, if the “constant” value changes, it is easier to change the 
variable initialization than to track down and change all the 
occurrences of the number. On the other hand, compositions are full 
of numbers, and part of the art of algorithmic composition is 
judiciously deciding what values are truly fixed and what values 
might be adjusted. To paraphrase Alan J. Perlis, “One composer’s 
constant is another composer’s variable.” 

9.4 Arrays 
Both SAL and Lisp implement a data structure called an array. 

An array is a container that holds other values. Each value is stored 
at a location within the array, and locations are indexed by an integer 
starting at zero. Arrays, as one-dimensional sequences of values, are 
similar to lists, and both SAL and Lisp emphasize lists, so we will 
not work with arrays in this book. In some cases, arrays can allow 
more compact representations and faster processing, so advanced 
programmers should certainly learn about them. Arrays are generally 
used to implement tables that are accessed via an integer index. 

9.5 Suggested Listening 
Late August by Paul Lansky is one in a series of his pieces that 
explores the conversations of everyday life. In this composition, Paul 
Lansky recorded a conversation between two Chinese students 
sometime in late August, 1989. Their processed speech, in 
conjunction with pitch material motivated by set theory, became the 
foundation for this composition (Lansky, 1990; Simoni, 1999). 

Norman Megill developed an algorithm to convert mathematical 
proofs to music. The algorithm converts the proof by the depth of its 
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proof tree into a series of values. These values are then scaled to a 
range of notes and a MIDI file is created with the corresponding 
output (http://us.metamath.org/mpegif/mmmusic.html#algorithm). 
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Chapter 10 Functional Programming 

Functional programming is a programming style that emphasizes the combi-
nation of functions to produce values as opposed to the sequential evaluation 
of commands and the modification of variables. One advantage of functional 
programming is that functional programs are often easier to reason about 
than non-functional alternatives. This chapter introduces some functional 
programming concepts and illustrates their use in computing scores. 

10.1 Introduction to Functional Programming 
Lisp was one of the first languages to support functional program-
ming, and by encouraging functional programming, Lisp has had a 
tremendous impact on many modern languages such as Java, Python, 
and ML. The main attraction of functional programming is that be-
haviors of functional expressions do not depend upon the changeable 
and hidden values of variables or the sequential order of assignment 
statements. Often, functional programs enjoy the good qualities of 
mathematical equations, which are designed for communication and 
expressiveness. 

Proponents of other styles of programming, particularly Object-
Oriented Programming, argue that variables and assignment state-
ments are actually features that allow programs to more naturally 
model real-world objects that do in fact change over time. In our ex-
perience, functional programming, object-oriented programming, 
and other programming paradigms all have advantages and disad-
vantages. The best approach often depends on the problem at hand. 

SAL is a bit of a compromise. It is built above a Lisp implemen-
tation and therefore has access to the functional programming fea-
tures of Lisp. However, SAL has a much greater emphasis on se-
quential execution and assignment to variables, so it does not 
strongly encourage functional programming. The occasional need to 
access special Lisp forms such as progn and setf could be seen as a 
weakness of SAL. 

10.2 Mapping a Function over a List 
One powerful concept of functional programming is the use of func-
tions as parameters. In other words, we can have functions of func-
tions, also called higher-order functions. The primitive mapcar al-



    

126 Chapter 10 ⋅ Functional Programming 

lows you to apply a function to each element of a list. The applied 
function may be another primitive or a user-defined function. 
mapcar is thus a higher-order function. In SAL, when you pass a 
function to a function, the passed function is normally a quoted 
symbol. The template for mapcar is 

mapcar(quote(function), list) 
Recall that the primitive sqrt returns the square root of its input. 

Example 10.2.1: sqrt function 
SAL> print sqrt(25.0) 
5 
 

Since mapcar allows you to map a function onto a list, we can 
take the square root of each element of a list by passing sqrt to 
mapcar. 

Example 10.2.2: mapcar and sqrt 

SAL> print mapcar(quote(sqrt),  
                  {25.0 36.0 81.0}) 
{5 6 9} 
 

Notice the syntax of mapcar. The function passed to mapcar 
must be quoted. The inputs to the passed function are given as a list. 

Recall in Example 8.2.2, we wrote a user-defined function that 
used #? to determine if a MIDI note is within the range of the MIDI 
specification. 

Example 10.2.3: test-range (as presented in Chapter 8) 

define function test-range(pitch) 
  begin 
    return #?(pitch < 0, quote(too-low), 
              #?(pitch > 127, quote(too-high), 
                 quote(in-range))) 
  end 
 

Using mapcar, we can determine if an entire list of MIDI notes is 
in range. 

Example 10.2.4: mapcar and test-range 

SAL> print mapcar(quote(test-range),  
                  {0 -5 129 127 54}) 
{IN-RANGE TOO-LOW TOO-HIGH IN-RANGE IN-RANGE} 
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Since returning a list that describes the range status of a list of 
MIDI notes may not be helpful in composing music, we alter our 
function in Example 10.2.4. Any MIDI note outside the range of the 
MIDI specification is recalculated to fall in range.  The new function, 
called rangify, is defined in Example 10.2.5. 

Example 10.2.5: rangify 

define function rangify(note) 
  begin 
     return #?(note < 0, 0,  
               #?(note > 127, 127, note)) 
  end 
 

The function rangify uses an algorithm that returns 0 for all MIDI 
notes less than 0 and 127 for all MIDI notes greater than 127. 
rangify is one of many algorithms that may be used to correct for 
values that fall outside of the range of the MIDI specification. 

In Example 10.2.6, we map the function rangify onto a list of val-
ues. Notice all values less than 0 return 0 and all values greater than 
127 return 127. 

Example 10.2.6: mapcar and rangify 
SAL> print mapcar(quote(rangify),  
                  {0 -5 129 127 54}) 
{0 0 127 127 54} 
 

So far, the functions that we’ve passed to mapcar only have one 
input. It is possible to pass mapcar functions that have more than 
one input. Consider the function definition and function call in 
Example 10.2.7. 

Example 10.2.7: my-transpose 

SAL> define function my-transpose( 
                                note, interval) 
       return note + interval 
 
SAL> print my-transpose(60, -12) 
48 
 
SAL> print my-transpose(72, 6) 
78 
 

The function my-transpose requires two inputs: a note and an 
interval. my-transpose transposes the note by the specified interval. 



    

128 Chapter 10 ⋅ Functional Programming 

In Example 10.2.8, we use mapcar to transpose a list of notes by a 
list of specified intervals. mapcar returns a list of the transposed 
notes.  

Example 10.2.8: mapcar over two lists 

SAL> print mapcar(quote(my-transpose), 
                  {20 30 40 50}, {-5 5 -10 10}) 
{15 35 30 60} 

 

10.3 Using the score-apply Function 
Now that you have a taste of passing functions as parameters to 

modify the behavior of another function (in this case, mapcar), let’s 
look at a higher-order function for editing and transforming scores. 
score-apply, introduced in Chapter 4, applies a function to each note 
in a score. Since the function to be applied is provided by the caller, 
you can tailor score-apply to solve many tasks. The template for 
score-apply is 

score-apply(score, quote(function),  
            from-index: index1, to-index: index2,  
            from-time: time1, to-time: time2) 

As with other “score-” functions, all the keyword parameters, 
starting with from-index, are optional, so to apply a function to 
every note in a score, you would write something like 

score-apply(score, quote(function)) 
The function input is a symbol – the name of a function that must 

accept three parameters: the start time of the note, the duration of the 
note, and the note expression. So if the score is 

{{0 0 {score-begin-end 0 3}} 
 {0 2 {flute pitch: 74 vel: 100}} 
 {2 1 {flute pitch: 75 vel: 90 }}} 

then the function will be called once with the parameters 
0, 2, {flute pitch: 74 vel: 100} 

and once with the parameters 
2, 1, {flute pitch: 75 vel: 90} 

Example 10.3.1 demonstrates the use of score-apply to transform 
a score. In this example, notes that have pitch classes 1, 3, 6, 8, and 
10 are transposed up an octave and played using the function violin. 
Other notes are unchanged. 

Essentially all of the work in this example is in the definition of 
transform-accidentals. As described earlier, this function takes 
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three parameters: the start time, duration, and sound expression. 
There are two cases, handled by the if-then-else construct. The first 
case applies when the pitch class is in the set {1, 3, 6, 8, 10}, so the 
first problem is to extract the pitch from the note expression. The 
function expr-get-attr (described in Example 4.5.9) is used to find 
the value for any given keyword. Once we have the pitch, we use 
member to test for membership in the set, represented by a list. If 
that condition is true, we need to transform the current note into one 
with violin as the instrument and pitch raised one octave. The tech-
nique is to construct a new note in terms of the old note. The form of 
a note is 

{start-time duration expression} 

so we can use list to construct a list of these three elements. We use 
the same start time and duration as the original note, and these are 
just the parameters start and dur, so the note expression begins with 
list(start, dur, …). Now we just need to construct the note expres-
sion. Take a moment to think about what is going on here. We are 
going to write a SAL expression that, when evaluated, returns a Lisp 
expression that will eventually be evaluated again to compute a note. 
This idea that Lisp programs can be both data and programs is very 
powerful and one of the big attractions of Lisp. 

Example 10.3.1: score-apply.sal 
define function transform-accidentals( 
                                    start, dur, expr) 
  begin 
    if member(expr-get-attr(expr,  
                            keyword(pitch)) % 12, 
              {1 3 6 8 10}) then 
       return list(start, dur,  
                   cons(quote(violin),  
                        params-transpose(rest(expr),  
                            keyword(pitch), 12))) 
    else 
      return list(start, dur, expr) 
  end 
 
set new-score = score-apply(my-score,  
                        quote(transform-accidentals)) 
 

Getting back to our problem, the note expression is a list starting 
with violin and followed by a list of alternating keywords and val-
ues. To just replace the first item in a list, we can write 

cons(quote(violin), rest(expr)) 
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where expr is the original note expression. rest is used to get the 
“rest” of the expression (a list) after the first item, and cons is used 
to insert a new item at the head of the list. Effectively, this replaces 
the head of the list with violin.  

However, we need to do more than this. We also want to trans-
pose the pitch: attribute by 12.  For this, we use another convenient 
function, params-transpose, that can be used to add a numerical 
offset to the value of any keyword parameter: 

params-transpose(parameter-list, keyword(attribute), offset) 
The parameter-list is just a list of alternating attribute symbols 
(keywords) and values. This should not be a complete note expres-
sion with an initial function symbol. That’s why we pass in 
rest(expr) in Example 10.3.1.  For the attribute, we pass in 
keyword(pitch) because that is what we want to transpose, and the 
offset is 12 (semitones) to get one octave. 

Putting all this together, the expression to compute a new note 
with the function changed to violin and the pitch transposed up one 
octave is 

list(start, dur,  
     cons(quote(violin),  
          params-transpose( 
              rest(expr), keyword(pitch), 12))) 

The rest of Example 10.3.1 handles the second case where the 
pitch is not in the set {1, 3, 6, 8, 10}. This case merely reconstructs 
the original note using list: 

list(start, dur, expr) 

and returns this value from the if command. This completes the defi-
nition of transform-accidentals. 

Finally, we pass transform-accidentals to score-apply to apply 
the function to each note and return a new score. Notice how quote 
is used so that transform-accidentals is not treated as a variable.  

There is no set or other data-altering expression in Example 
10.3.1. This is typical in functional programming: there is input data, 
often consisting of a complex structure such as a score, there is a 
function that “walks” through the data, either extracting useful 
information or rebuilding a transformed version of the data, and 
finally a completely new data structure is returned. In this case, the 
value of my-score (the input data) is unaltered, so unless we do 
something with the result of score-apply, this whole program has no 
real effect. In practice, you might want to play the outcome: 

exec score-play(score-apply(my-score,  
                 quote(transform-accidentals))) 
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Or, while functional purists might object to the use of set, you 
might want to save the final result as a variable: 

set my-new-score = score-apply(my-score,  
                 quote(transform-accidentals))) 

You have now seen a rather detailed example of functional pro-
gramming used to perform a customized operation on score data. In 
this example, notes that met a certain condition were transformed in 
a couple of ways. While there are many built-in functions for ma-
nipulating scores, it is important for a composer to have the power to 
create whatever comes from the imagination. You should not be lim-
ited to a fixed palette of editing operations. The transformations you 
apply can include various uses of random numbers to select notes 
and control how they are changed. The possibilities are endless! 
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Chapter 11 Recursion 

Recursion is an important concept in computer science. In this chapter, we 
will explore what it means for a function to call itself and why that might be 
a good idea. 

11.1 Introduction to Recursion 
Recursion occurs when something refers to itself. For example, a re-
cursive definition uses the term being defined within the definition. 
A recursive function is a function that calls itself. A classic example 
of a recursive process is generating the Fibonacci series. In the Fibo-
nacci series, the first two terms are defined as 0 and 1.  Thereafter, 
the next term is calculated as the sum of the previous two terms. The 
mathematical relationship between terms may be stated as 

next-term = current-term + previous-term 
For example, the six terms followed by the initial two terms of 0 and 
1 are 

0 1 1 2 3 5 8 13 . . . 
Another example of a recursive process is decrementing a given 

starting value by 1 until it is equal to 0. We calculate the value of the 
next term as 

next-term = current-term – 1 
Given a starting value of 4, the resultant series is 

4 3 2 1 
Notice in both cases, recursion reduces the current problem to a 

simpler one that can be solved by the same function (with different 
inputs). Typically, the process eventually terminates in a special 
case. (The second example terminates at zero.) 

Perhaps the easiest way to begin writing recursive functions is to 
study recursive functions. After studying several examples, patterns 
emerge for different kinds of recursive conditions. This chapter in-
troduces templates for recursion and gives examples of their use. 

11.2 Single-Test Tail Recursion 
Single-test tail recursion is a method of recursion when a condition 
terminates processing and the recursive function call occurs as the 
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default case of an if-then-else statement (e.g. the “tail end” of an if-
then-else). Example 11.2.1 shows the template for single-test tail re-
cursion. 

Example 11.2.1: Template for single-test tail recursion 

define function function-name(input) 
  begin 
    if end-test then 
      return end-value 
    else 
      return function-name(reduced-input) 
  end 
 

In addition to referencing a template when writing a recursive func-
tion, it is important to understand how a recursive process works. 
Here are some guidelines for writing a recursive function: 

1. What is the test that terminates the recursion? (e.g. end-test) 
2. What do you want the function to return? (e.g. end-value) 
3. How do you take one step? (e.g. reduced-input) 

Consider the example of decrementing a given number by 1 until it is 
equal to 0. Let’s say that our starting number is 4. Our recursive 
function should output the values 4, 3, 2, 1, and done as seen in 
Example 11.2.2. 

Example 11.2.2: Recursive function output 

4 
3 
2 
1 
DONE 

 
Consider the guidelines for writing a recursive function in rela-

tion to this output. We stop the recursion when the number is equal 
to 0 so the end-test is x = 0. Our recursive function returns done 
when it is completed so the end-value is quote(done). Each step in 
the process subtracts one from the previous term so the reduced-in-
put is x - 1. 

Now that we’ve sketched some guidelines, we’re ready to apply 
the template and write the function. 
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Example 11.2.3: recursive-dotimes.sal 
define function recursive-dotimes(x) 
  begin 
    if x = 0 then 
      return quote(done) 
    else 
      begin 
        print x 
        return recursive-dotimes(x - 1) 
      end 
  end 
 

Example 11.2.4: Output from recursive-dotimes 

SAL> load "recursive-dotimes.sal" 
 
SAL> exec recursive-dotimes(4) 
4 
3 
2 
1 
DONE 
 

11.3 List-Cons’ing Recursion 
List-cons’ing recursion is a recursive process that creates lists by 
cons’ing a new element onto a list. Example 11.3.1 shows a 
template for list-cons’ing recursion. 

Example 11.3.1: Template for list-cons’ing recursion 

define function function-name(inputs) 
  begin 
    if end-test then 
      return nil ; return the empty list 
    else 
      return cons(new-element,  
                  function-name(reduced-inputs)) 
  end 
 

Consider the example of creating a list that starts at a particular 
value and ends after a certain number of elements have been gener-
ated.  For example, we want to write a function that starts at MIDI 
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note 60 and generates a list of 6 pitch numbers that ascend chromati-
cally. Our recursive function should return 

{60 61 62 63 64 65} 

The recursive way to think about this problem is to note that the 
solution is just 60 followed by a list of 5 notes starting at 61. This is 
in turn just 61 followed by a list of 4 notes starting at 62, and so on. 
Once you can think of the problem in these terms, the programming 
task is almost a direct translation of the problem statement. 

The function requires two inputs: a starting MIDI note value and 
the number of notes to generate. Let’s call these start and number-
of-notes. From the template, notice that the if returns nil if the end 
test is met. Under what condition should the function return nil? nil 
represents an empty list, i.e. there are zero notes, so the condition is 
number-of-notes = 0. If there are more than zero notes, the second 
else command uses cons to add new-element to the front of the list 
returned by a recursive call. The new-element becomes the first ele-
ment of the list, so it must be start. The reduced-inputs for the recur-
sive call will be the next start value, which is start + 1, and the re-
maining number of notes, which is number-of-notes - 1. Now we 
can more-or-less just plug these expressions into the template to pro-
duce a solution, shown in Example 11.3.2. Example 11.3.3 shows an 
example application of the function. 

Example 11.3.2: recursive-make-chromatic-lick.sal 
define function  
  recursive-make-a-chromatic-lick(start,  
                                  number-of-notes) 
    begin 
      if number-of-notes = 0 then 
        return nil 
      else 
        return cons(start, 
          recursive-make-a-chromatic-lick(start + 1, 
                                number-of-notes - 1)) 
    end 
 

Example 11.3.3: Output from recursive-make-a-chromatic-lick 
SAL> load "recursive-make-chromatic-lick.sal" 
 
SAL> print recursive-make-a-chromatic-lick(60, 6) 
{60 61 62 63 64 65} 
 

Sometimes, adding a display command to a recursive process 
helps clarify what is going on.  Example 11.3.4 is the same function 
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as Example 11.3.2 with a display command prior to the recursive 
call. 

Example 11.3.4: recursive-make-chromatic-lick-display.sal 
define function  
  recursive-make-a-chromatic-lick(start,  
                                  number-of-notes) 
    begin 
      if number-of-notes = 0 then 
        return nil 
      else 
        begin 
          display "recursion", start, number-of-notes 
          return cons(start, 
           recursive-make-a-chromatic-lick(start + 1, 
                                number-of-notes - 1)) 
        end 
    end 
  

Example 11.3.5: Output from recursive-make-chromatic-lick 
SAL> print recursive-make-a-chromatic-lick(60, 6) 
recursion: START = 60, NUMBER-OF-NOTES = 6 
recursion: START = 61, NUMBER-OF-NOTES = 5 
recursion: START = 62, NUMBER-OF-NOTES = 4 
recursion: START = 63, NUMBER-OF-NOTES = 3 
recursion: START = 64, NUMBER-OF-NOTES = 2 
recursion: START = 65, NUMBER-OF-NOTES = 1 
{60 61 62 63 64 65} 
 

11.4 Conditional Augmenting Tail Recursion 
Conditional augmenting tail recursion is used to examine the ele-
ments of a list and perform some operation when list elements satisfy 
some condition. A simple example is counting the number of things 
that meet a certain test. Example 11.4.1 shows the template for 
conditional augmenting tail recursion. 

Consider the example of counting the number of MIDI notes that 
exceed the range of the MIDI specification.  Given the list of MIDI 
notes {87 67 129 776 43}, the function should return 2. 

Let’s think about this in recursive terms. If the list is empty, the 
count is zero. If the first value is out of range, the count is one plus 
the number of out-of-range elements in the rest of the list. If the first 
value is in range, the count is just the number of out-of-range ele-
ments in the rest of the list. 

The function requires two inputs: a list of MIDI notes and a vari-
able to count the number of MIDI notes outside of the range. We will 
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use the-list and result for the parameter names. The recursion stops 
when we receive an empty list, so the end-test is null(the-list). If the 
list is not empty, there are two more cases, depending on whether the 
first element is out-of-range or in-range. The augment-condition is 
this test, and the augment-command should increment result, e.g. 
set result += 1. The reduced-inputs are rest(the-list) and result. A 
solution is found in Example 11.4.2, and Example 11.4.3 is an ex-
ample application of the function. 

Example 11.4.1: Template for conditional augmenting tail 
recursion 

define function function-name(inputs) 
  begin 
    if end-test then 
      return end-value 
    else  
      if augment-condition then 
        begin 
          augment-command 
          return function-name(reduced-inputs) 
        end 
      else 
        return function-name(reduced-inputs) 

 

Example 11.4.2: recursive-count-outliers.sal 

define function recursive-count-outliers( 
                              the-list, result) 
  begin 
    if null(the-list) then 
      return result 
    else  
      if (first(the-list) < 0) |  
         (first(the-list) > 127) 
      then 
        begin 
          set result += 1 
          return recursive-count-outliers( 
                     rest(the-list), result) 
        end 
      else 
        return recursive-count-outliers( 
                   rest(the-list), result) 
  end 
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Example 11.4.3: Output from recursive-count-outliers 
SAL> print recursive-count-outliers( 
               {87 67 129 776 43}, 0) 
2 
 

Sometimes, it is helpful to insert display commands prior to the re-
cursive calls to track the changing values of the variables as seen in 
Example 11.4.4. You should test your understanding of this example 
by predicting the printed output and then compare your predictions 
to the output shown in Example 11.4.5. 

Example 11.4.4: recursive-count-outliers-2.sal (with print) 
define function recursive-count-outliers( 
                              the-list, result) 
  begin 
    if null(the-list) then 
      return result 
    else  
      if (first(the-list) < 0) |  
         (first(the-list) > 127) 
      then 
        begin 
          set result += 1 
          display "outlier", result, the-list 
          return recursive-count-outliers( 
                     rest(the-list), result) 
        end 
      else 
        begin 
          display "no outlier", result, the-list 
          return recursive-count-outliers( 
                     rest(the-list), result) 
        end 
  end 
 

Example 11.4.5: Output from Example 11.4.4 
SAL> exec recursive-count-outliers( 
              {87 67 129 776 43}, 0) 
no outlier: RESULT = 0, THE-LIST = (87 67 129 776 43) 
no outlier: RESULT = 0, THE-LIST = (67 129 776 43) 
outlier: RESULT = 1, THE-LIST = (129 776 43) 
outlier: RESULT = 2, THE-LIST = (776 43) 
no outlier: RESULT = 2, THE-LIST = (43) 
2 
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11.5 Double-Test Tail Recursion 
Double-test tail recursion terminates based on one of two conditions. 
Example 11.5.1 shows the template for double-test tail recursion. 

Example 11.5.1: Template for double-test tail recursion 

define function function-name(input) 
  begin 
    if end-test1 then 
      return end-value1 
    else if end-test2 then 
      return end-value2 
    else 
      return function-name(reduced-input) 
 

Let’s modify recursive-count-outliers in Example 11.4.2 so that the 
function returns the first occurrence of a MIDI note number outside 
of the range of the MIDI specification. Given the list of MIDI notes 
{87 67 129 776 43}, the function should return 129.  If no MIDI 
notes are outside the range of the MIDI specification, the function 
returns nil. 

The function requires a list of MIDI notes as input. We stop re-
cursion when we reach the end of the list. Recursive processing can 
also stop if we find a MIDI note outside of the range of the MIDI 
specification. Since there are two ways that processing terminates, 
we have two end tests. The first is null(midi-note-list) with an end 
value of nil. The second test is first(midi-note-list) < 0 | first(midi-
note-list) > 127 with an end value of first(midi-note-list). That is 
why this technique is called double-test tail recursion.  

As in the previous examples, we look at this problem from a re-
cursive point of view. If the input list is nil, the result is nil. Other-
wise, if the first note is out of range, we return the first note. If nei-
ther test is true, we recursively apply the function to the sub-problem 
consisting of the rest of the list. An implementation of this function 
is found in Example 11.5.2, and Example 11.5.3 gives an example 
application of the function. 
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Example 11.5.2: recursive-find-first-outlier.sal 
define function recursive-find-first-outlier( 
                                midi-note-list) 
  begin 
    if null(midi-note-list) then 
      return nil 
    else  
      begin 
        if first(midi-note-list) < 0 |  
           first(midi-note-list) > 127 then 
          return first(midi-note-list) 
        else 
          return recursive-find-first-outlier( 
                          rest(midi-note-list)) 
      end 
  end 
 

Example 11.5.3: Output from Example 11.5.2 
SAL> print recursive-find-first-outlier( 
                            {87 67 129 776 43}) 
129 
 

Example 11.5.4: recursive-find-first-outlier-2.sal (with print) 
define function recursive-find-first-outlier( 
                                midi-note-list) 
  begin 
    if null(midi-note-list) then 
      return nil 
    else  
      begin 
        if first(midi-note-list) < 0 |  
           first(midi-note-list) > 127 then 
          return first(midi-note-list) 
        else 
          begin 
            display "recursive", midi-note-list 
            return recursive-find-first-outlier( 
                             rest(midi-note-list)) 
          end 
      end 
  end 
 

As we saw before, it is helpful to insert a display command prior to 
the recursive call. The modified function appears in Example 11.5.4. 
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Again, predict what will be printed when this function is run on the 
data in Example 11.5.3 above; then compare your answer to 
Example 11.5.5. 

Example 11.5.5: Output from Example 11.5.4 
SAL> exec recursive-find-first-outlier( 
                            {87 67 129 776 43}) 
recursive: MIDI-NOTE-LIST = (87 67 129 776 43) 
recursive: MIDI-NOTE-LIST = (67 129 776 43) 
129 

11.6 Multiple Recursion 
A function uses multiple recursion if it makes more than one recur-
sive call at each pass of the function. Generating the Fibonacci series 
requires multiple recursion because the next term is derived by the 
sum of the previous two terms: 

fib(n) = fib(n - 2) + fib(n - 1) 
Example 11.6.1 shows the template for multiple recursion. 

Example 11.6.1: Template for multiple recursion 

define function function-name(input) 
  begin 
    if end-test1 then 
      return end-value1 
    else 
      begin 
        if end-test2 then 
          return end-value2 
        else 
          return combiner( 
                  function-name(first-reduced-input, 
                  function-name(second-reduced-input)) 
      end 
  end 
 

The Fibonacci function requires a number as input that corre-
sponds to the number of the desired term. Two conditions terminate 
the recursion: when the input number is 0 and when it is equal to 1. 
These conditions allow us to return the first two terms. The final else 
establishes the relationship between terms by multiple recursion: 
fibonacci(x - 1) + fibonacci(x - 2). The function returns the nth 
element of the Fibonacci sequence beyond the initial term of 0.  An 
implementation with a display command for execution tracing is 
found in Example 11.6.2. 
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Example 11.6.2: fibonacci.sal 
define function fibonacci(n) 
  begin 
    display "Fibonacci", n 
    if n = 0 then 
      return 0 
    else 
      if n = 1 then 
        return 1 
      else 
        return fibonacci(n - 1) +  
               fibonacci(n - 2) 
  end 
 

Example 11.6.3: Output from Example 11.6.2 

sal> print fibonacci(5) 
fibonacci: N = 5 
fibonacci: N = 4 
fibonacci: N = 3 
fibonacci: N = 2 
fibonacci: N = 1 
fibonacci: N = 0 
fibonacci: N = 1 
fibonacci: N = 2 
fibonacci: N = 1 
fibonacci: N = 0 
fibonacci: N = 3 
fibonacci: N = 2 
fibonacci: N = 1 
fibonacci: N = 0 
fibonacci: N = 1 
5 
 

The output from multiple recursion can at first glance appear baf-
fling. Figure 11.6.1 helps make sense of what SAL is doing when it 
is given the function call fibonacci(5). The solid arrows indicate 
recursive calls, and the dashed arrows with numbers indicate the re-
turn value. The circled numbers indicate the order in which the value 
of the input is printed.  At the deepest levels of recursion (at the bot-
tom of the figure), “Fibonacci” is abbreviated as “Fib” to make the 
figure layout more compact. Incidentally, the output sequence shown 
in Example 11.6.3 has some interesting compositional possibilities. 
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Figure 11.6.1: Graphic representation of fibonacci(5), the order 
of evaluation indicated by numbers in circles 

11.7 Tracing Function Evaluation 
In Example 11.6.2, we used display to follow the recursive evalua-
tion of fibonacci. XLISP has a built-in facility for this called trace
that we can use on SAL functions. When a function is traced, the 
function and its inputs are printed when the function is entered, and 
the return value is printed when the function exits. Nested functions 
are indented to help keep track of recursive calls, and you can trace 
as many different functions as you wish. 

To trace a function, call trace with the function you want to trace. 
Call untrace with the function name to stop tracing. trace and 
untrace are special functions that automatically quote their inputs, 
so you should not use “quote.” trace and untrace return a list of 
functions currently being traced. Example 11.7.1 shows how to use 
trace to trace the evaluation of fibonacci(5). The display statement 
is not included in this definition of fibonacci as in Example 11.6.2, 
so only output from trace is printed here. 
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Example 11.7.1: The use of trace on fibonacci from Example 
11.6.2, indentation produced by trace output exaggerated 
here for greater readability 
SAL> print trace(fibonacci) 
{FIBONACCI} 
 
SAL> print fibonacci(5) 
Entering: FIBONACCI, Argument list: (5) 
   Entering: FIBONACCI, Argument list: (4) 
      Entering: FIBONACCI, Argument list: (3) 
         Entering: FIBONACCI, Argument list: (2) 
            Entering: FIBONACCI, Argument list: (1) 
            Exiting: FIBONACCI, Value: 1 
            Entering: FIBONACCI, Argument list: (0) 
            Exiting: FIBONACCI, Value: 0 
         Exiting: FIBONACCI, Value: 1 
         Entering: FIBONACCI, Argument list: (1) 
         Exiting: FIBONACCI, Value: 1 
      Exiting: FIBONACCI, Value: 2 
      Entering: FIBONACCI, Argument list: (2) 
         Entering: FIBONACCI, Argument list: (1) 
         Exiting: FIBONACCI, Value: 1 
         Entering: FIBONACCI, Argument list: (0) 
         Exiting: FIBONACCI, Value: 0 
      Exiting: FIBONACCI, Value: 1 
   Exiting: FIBONACCI, Value: 3 
   Entering: FIBONACCI, Argument list: (3) 
      Entering: FIBONACCI, Argument list: (2) 
         Entering: FIBONACCI, Argument list: (1) 
         Exiting: FIBONACCI, Value: 1 
         Entering: FIBONACCI, Argument list: (0) 
         Exiting: FIBONACCI, Value: 0 
      Exiting: FIBONACCI, Value: 1 
      Entering: FIBONACCI, Argument list: (1) 
      Exiting: FIBONACCI, Value: 1 
   Exiting: FIBONACCI, Value: 2 
Exiting: FIBONACCI, Value: 5 
5 

11.8 SAL Is Recursive 
Recursion is fundamental to SAL (and to most other program-

ming languages).  While we have not described the meaning of a 
SAL program in any formal sense, programming languages are often 
defined recursively. To evaluate a normal SAL expression (we will 
discuss special forms separately), we first evaluate each input ex-
pression in order. This is where recursion comes into play: the 
evaluator for each input expression is the same as the evaluator for 
the whole expression. In other words, the evaluator is recursive. Spe-
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cial forms, such as quote, trace, and setf, are handled by passing 
the inputs to the functions as expressions or atoms without evaluating 
them. In most cases, the special form does eventually evaluate at 
least some of the inputs by calling the built-in evaluator function. 
Since the call to the special form is already within an instance of the 
evaluator function, the evaluation of input expressions by a special 
form also uses recursive calls to the evaluator. 

To keep track of recursive calls, a stack is used. The stack is a 
mostly hidden structure used internally by Lisp to store functions, 
input values, and local variables for the duration of a function 
evaluation. The stack supports two operations: a new item can be 
pushed on top of the stack, causing the stack to grow, and an item 
can be popped from the stack, causing the stack to shrink. Items are 
only added or removed from the top of the stack. The stack traces 
described in Section 3.10 are representations of the stack. 

When a function is called, the function name and its input values 
are pushed onto the stack where they remain until the function re-
turns. While the function is being evaluated, it may make calls to 
other functions or even recursively to itself. When that happens, the 
new function and its input values are pushed onto the stack, and this 
may happen many more times before the evaluation eventually gets 
back to the original function call. Thus, the stack is an inherently re-
cursive structure: a stack is a top-most item sitting on top of a stack! 

Local variables are created on the stack and popped from the 
stack when the program leaves the scope of the variables. Just as the 
stack helps to manage multiple invocations of recursive functions, it 
also helps manage multiple instances of local variables. 

Full coverage of Lisp evaluation and semantics could easily fill a 
book (Allen 1978), and it is a fascinating subject. For composers us-
ing Lisp or SAL, the most important thing is to understand that re-
cursive functions are really just an interesting case of nested function 
calls that are pervasive in programs.  

11.9 Using Recursive Forms in Nyquist 
Example 11.9.1 integrates many of the recursive techniques de-
scribed in this chapter. The function rec-make-chrom-lick uses list-
cons’ing recursion to generate a specified number of chromatic 
notes. The function random-in-range uses tail recursion to generate 
a specified number of random numbers in a user-specified range. The 
function select-in-range uses double-test tail recursion to select the 
notes that fall within a user-specified range (lower and upper bound 
inclusive). 
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These SAL functions are used within a call to score-gen to gen-
erate the score recursion-etude. The function rec-make-chrom-lick 
is used to generate the pitches, which are then used to create a heap 
pattern. The function random-in-range is used to generate a list of 
15 random numbers in the range 0.25 to 0.98. The list is assigned to 
the variable ioi-list that is used to create a cyclic pattern called ioi-
pattern. The variable ioi-list is also used as input to the function 
select-in-range as we look for values between 0.5 and 0.8 inclusive. 
The result is used to form a cycle pattern for the note velocities. 
What happens if there are no values between 0.5 and 0.8? (Hint: this 
is a bug!) How would you fix the program to avoid this problem? 

Example 11.9.1: recursion-etude.sal 
;; Make a chromatic lick for note events 
;; 
define function rec-make-chrom-lick( 
                              start, number-of-notes) 
  if number-of-notes = 0 then return nil 
  else return cons(start, 
                   rec-make-chrom-lick(start + 1, 
                                number-of-notes - 1)) 
 
;; Define a recursive function that generates a  
;; prescribed number of random values in a user- 
;; specified range 
;; 
define function random-in-range( 
                           lowest, highest, how-many) 
  if how-many = 0 then return nil 
  else return cons(real-random(lowest, highest), 
                   random-in-range(lowest, 
                              highest, how-many - 1)) 
 
;; Define a recursive function that returns a list of 
;; elements inside a user-specified range 
;; 
define function select-in-range( 
                           the-list, lowest, highest) 
  if null(the-list) then return nil 
  else  
    if first(the-list) >= lowest &  
       first(the-list) <= highest then  
      return cons(first(the-list),  
                  select-in-range(rest(the-list),  
                                  lowest, highest)) 
    else 
      return select-in-range(rest(the-list),  
                             lowest, highest) 
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;; Create a score that uses the three recursive  
;; functions: rec-make-chrom-lick, random-in-range,  
;; and select-in-range. These three functions  
;; highlight three recursive processes: list-cons’ing  
;; recursion, single-test tail recursion, and double- 
;; test tail recursion. 
;; 
begin 
  with pitch-pattern =  
           make-heap(rec-make-chrom-lick(60, 12)), 
       ioi-list = random-in-range(0.25, 0.98, 15), 
       ioi-pattern = make-cycle(ioi-list), 
       vel-pattern = make-cycle( 
           select-in-range(ioi-list, 0.5, 0.8)) 
  exec score-gen(save: quote(recursion-etude),  
                 score-len: 15, 
                 pitch: next(pitch-pattern), 
                 ioi:  next(ioi-pattern), 
                 vel:  next(vel-pattern) * 100) 
  exec score-play(recursion-etude) 
end 
 

11.10 Suggested Listening 
On Growth and Form by Bruno Degazio for mixed ensemble and 
electronic sounds explores the recursive structure of fractals. As the 
composer states, “Drawing on the chaotic energy of fractal proc-
esses, On Growth and Form is a sort of ritual dance of life, the by-
product of a recursive explosion of musical events” (Degazio, 1992). 

Profile for tape by Charles Dodge is a three-voice composition in 
which the choice of pitch, timing, and amplitude is determined by 
application of a 1/f algorithm. The structure of the work is like a 
fractal in that recursive processes are used to determine multiple lev-
els of scale and self-similarity (Dodge, 1988). 
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Chapter 12 Iteration 

Iteration in programming means repeated evaluation. In SAL, iteration is 
accomplished through loops. Loops evaluate a set of expressions over and 
over again. A loop should terminate after a specified number of repetitions or 
when a condition is met. SAL has several iterative forms, including a loop 
command with many variations. This chapter will show how to solve many 
of the same problems presented in Chapter 11, only using iteration instead of 
recursion, so the reader can easily compare recursive and iterative forms. 

12.1 The loop Command with a for-below Clause 
The most general iterative form in SAL is the loop command, which 
like a begin-end block organizes a set of commands, but unlike 
begin-end, the commands are repeated. Loop commands can in-
clude clauses that create, initialize, and update local variables for 
each repetition. Loop commands can also include clauses that stop 
the repetition when certain conditions are met. For now, we will start 
with a simple form of loop, using a for clause to control the number 
of iterations. 

The template for this simple form of loop is 
loop 
  for counter below count-expression 
  commands 
end 
 

This loop is evaluated as follows: First, counter (a variable) is ini-
tialized to zero, and count-expression is evaluated to obtain a number 
we will call limit. If counter is less than limit, commands (any num-
ber of commands) are evaluated. Then counter is incremented by 1, 
and the loop repeats by again comparing counter to limit and evalu-
ating commands again. When counter reaches or exceeds limit, the 
loop ends. 

In Example 12.1.1, we use a loop to increment the counter count. 
As we enter the loop, the variable count starts counting at 0. We 
enter the body of the loop and print the value of count. count is then 
incremented (to 1). Because the new value of count is less than the 
count expression (4), the body of the loop is executed again. The it-
erative process stops when count equals 4. The number of iterations 
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is given by the limit (4), and the values of the count range from 0 to 
limit - 1. 

Example 12.1.1: A simple loop 
SAL> loop 
       for count below 4 
       display “loop”, count 
     end 
loop : COUNT = 0  
loop : COUNT = 1  
loop : COUNT = 2  
loop : COUNT = 3 
 

In Example 12.1.2, we define a function make-a-chromatic-lick 
using iteration rather than recursion. The purpose of the function is 
to create a list that generates a specified number of half steps from a 
starting key number. The begin statement first initializes the variable 
the-list (to nil). The notes we generate will be collected into the-list. 
The body of the begin contains a loop. The loop counter is index, 
and the count-expression is the number-of-notes we need to create. 
When the list ends, we return the-list of notes. In the body of the 
loop, we use set with @= to cons the sum of starting-note and the 
index onto the-list. The list cons’ing process continues until the 
variable index is equal to the number-of-notes. The list is returned. 
To help understand the iterative process, a display statement has 
been inserted into the loop body. 

Example 12.1.2: make-a-chromatic-lick.sal 

define function make-a-chromatic-lick( 
                starting-note, number-of-notes) 
  begin 
    with the-list 
    loop 
      for index below number-of-notes 
      set the-list @= starting-note + index 
      display "make-a-lick", index, the-list 
    end 
    return the-list 
  end 
 

When we call the function, we get the following results: 
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Example 12.1.3: output from make-a-chromatic-lick 
SAL> print make-a-chromatic-lick(60, 6) 
make-a-lick : INDEX = 0  THE-LIST = (60) 
make-a-lick : INDEX = 1  THE-LIST = (61 60) 
make-a-lick : INDEX = 2  THE-LIST = (62 61 60) 
make-a-lick : INDEX = 3  THE-LIST = (63 62 61 60) 
make-a-lick : INDEX = 4  THE-LIST = (64 63 62 61 60) 
make-a-lick : INDEX = 5  the-list = (65 64 63 62 61 
60) 
{65 64 63 62 61 60} 
 

Why does the list go from largest to smallest? Because we 
cons’ed the newly created element onto the front of the list (using 
@=). If we want a list in ascending order, we could use the reverse 
function on the-list. Alternatively, we could use the &= operator to 
put the newly created elements at the end of the list. Note that 
extending lists at the end takes longer than cons’ing to the front 
because the computer must first find the end of the list. Because it is 
more efficient, cons’ing followed by a list reversal is a common 
coding pattern. (Unless lists are very long, you are unlikely to notice 
any difference in evaluation time.)  

Example 12.1.4: make-a-chromatic-lick-2.sal, a revision 
SAL> define function make-a-chromatic-lick( 
                      starting-note, number-of-notes) 
       begin 
         loop 
           with the-list 
           for index below number-of-notes 
           set the-list @= starting-note + index 
           display "make-a-lick", index, the-list 
           finally return reverse(the-list) 
         end 
       end 
 
SAL> print make-a-chromatic-lick(60, 6) 
make-a-lick : index = 0  the-list = (60) 
make-a-lick : index = 1  the-list = (61 60) 
make-a-lick : index = 2  the-list = (62 61 60) 
make-a-lick : index = 3  the-list = (63 62 61 60) 
make-a-lick : index = 4  the-list = (64 63 62 61 60) 
make-a-lick : index = 5  the-list = (65 64 63 62 61 
60) 
{60 61 62 63 64 65} 
 

In Example 12.1.2, we created the-list in a begin-end block so 
that it would still be in scope after the loop terminated, allowing us 
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to return the final value from the function. It turns out that the with 
clause is also allowed in the loop statement, which seems like a bet-
ter place to create a variable that is mainly associated with the loop. 
However, variables declared inside the loop are local to the loop, so 
how can we access one to return from the function? Another loop 
clause is finally followed by a command to be performed when the 
loop exits. The finally command is within the scope of all loop vari-
ables, so we can write finally return the-list. Putting this all to-
gether in Example 12.1.4, compare this iterative approach to the 
recursive solution found in Example 11.3.2. 

12.2 The Full Story of for-below 
The for-below clause has many variations. The full template is 

for counter from from-expr term to-expr by step-expr 
The from part specifies the initial value of counter. If this part is 
omitted as in our examples above, the initial value is zero. The next 
word, term, tells when the loop will end. While the examples above 
use below to specify the number of iterations, any one of the words 
below, to, above, or downto may be used for term. below means 
that the loop ends when counter, after it is incremented, is equal or 
greater than the value of to-expr. The word to means stop when 
counter is greater than to-expr. above means stop when counter is 
less than or equal to to-expr, and downto means stop when counter 
is less than to-expr. Finally, the step-expr is evaluated once to obtain 
the value that is added to counter at the end of each iteration. The de-
fault value for step-expr is 1 when the count is increasing (implied 
by below and to) and −1 when the count is decreasing (implied by 
above and downto). With all these options, it is easy to generate a 
variety of sequences. For example, rather than looping from 0 to 
number-of-notes – 1, as in Example 12.1.4, one could start the 
count at starting-note by writing 

for index from starting-note 
          below starting-note + number-of-notes 

Or, one could generate a whole-tone scale rather than a chromatic 
one by writing something like 
  for index from starting-note to ending-note by 2 

12.3 Iterating over the Elements of a List 
In Section 10.2, we used mapcar to iterate over elements of a list, 
apply a function to each element, and construct a list of result values. 
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Iterating over lists is a frequent task, and loop supports this opera-
tion with a variant of the for clause. 

The template for iterating over a list using loop is 
loop 
  for element in list 
  commands 
end 

Example 12.3.1 shows a simple application of this template. 

Example 12.3.1: Printing elements of a list 

SAL> loop  
       for item in {60 61 62 63} 
       print item 
     end 
60  
61  
62  
63  

Example 12.3.2: count-outliers.sal 

define function count-outliers(midi-note-list) 
  begin 
    loop 
      with result = 0, lower-bound = 0,  
           upper-bound = 127 
      for element in midi-note-list 
      if element < lower-bound |  
         element > upper-bound then 
        set result += 1 
      display "count-outliers", element, result 
      finally return result 
    end 
  end 
 

Example 12.3.2 defines a function count-outliers that counts the 
number of notes in a list that are outside of the range of the MIDI 
specification. We enter a loop and initialize the variable result to 0. 
result is incremented when a note exceeds the range of the MIDI 
specification. We initialize the lower and upper bounds of the MIDI 
specification to 0 and 127, respectively. The loop is controlled by a 
for-in clause that binds the variable element to each member of a 
list. We use if to compare the value of each element of the list to the 
upper and lower bounds. If the element exceeds either the lower 
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bound or the upper bound, we increment the variable result. When 
the loop completes processing, it returns the value of the variable 
result from the function. A display statement is added to the body of 
the loop to track the values of the variables element and result. 
Compare Example 12.3.2 with the recursive solution found in 
Example 11.4.4. 

When we call the function, we get the following results: 

Example 12.3.3: Output from count-outliers 
sal> print count-outliers({189 -5 129 78 64}) 
count-outliers : ELEMENT = 189  RESULT = 1 
count-outliers : ELEMENT = -5  RESULT = 2 
count-outliers : ELEMENT = 129  RESULT = 3 
count-outliers : ELEMENT = 78  RESULT = 3 
count-outliers : ELEMENT = 64  RESULT = 3 
3 
 

12.4 Using return in a loop 
Sometimes, it is necessary to exit an iterative process before a loop 
has repeated a prescribed number of times. The way to force an early 
exit from a loop is through the return statement. In previous exam-
ples, we used return in a finally clause to return a function value 
after the last iteration of the loop. return can also be used in the or-
dinary loop body. When return is encountered, the loop computation 
ends immediately and the value is returned from the function to the 
caller. 

return is generally preceded by a condition that forces an early 
exit from the loop. If a return-value is not specified, the loop returns 
nil. 

Example 12.4.1: return-first-outlier.sal 

define function return-first-outlier( 
                                midi-note-list) 
  begin 
    loop 
      with lower-bound = 0, 
           upper-bound = 127 
      for element in midi-note-list 
      if element < lower-bound | 
         element > upper-bound then 
        return element 
      finally return quote(none-found) 
    end 
  end 
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Example 12.4.1 is a modification of Example 12.3.2. Instead of 

counting the notes that fall outside of the MIDI specification, the 
function returns the first occurrence of a note outside of the range. If 
no notes in the list exceed the range of the MIDI specification, the 
symbol none-found is returned. 

When we call the function, we get the following results: 

Example 12.4.2: Output from return-first-outlier 

SAL> print return-first-outlier({0 98 -5 129}) 
-5 

12.5 The for-then Clause 
So far we have seen three ways to introduce variables into a loop: 
The with clause creates and initializes variables before iteration 
starts, the for-below creates a counter that increments on each 
iteration of the loop, and for-in iterates over a list. A more general 
for clause initializes a variable to the value of an expression and then 
re-evaluates an expression to obtain a new value for each iteration. 
The for-then clause looks like this: 

for variable = expression1 then expression2 

The first time the loop is evaluated, expression1 is evaluated and the 
value is assigned to variable. At the beginning of each new iteration, 
expression2 is evaluated and the value is assigned to variable. The 
then expression2 part is optional; if omitted, the expression1 is 
evaluated before each iteration. 

Example 12.5.1: for-then.sal, using for-then in a loop 

define function make-a-chromatic-lick-for-then( 
                starting-note, number-of-notes) 
  begin 
    loop 
      with the-list 
      for index below number-of-notes 
      for pitch = starting-note then pitch + 1 
      set the-list @= pitch 
      finally return the-list 
    end 
  end 
 

In Example 12.5.1, we modify the function in Example 12.1.2, 
make-a-chromatic-lick, to use a for-then clause. Then, in Example 
12.5.2, we call the function make-a-chromatic-lick-for-then with 
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inputs of 60 and 6. The function returns a list of six pitch numbers 
starting on 65 and descending by half steps. Modify the code to put 
the list in order using three different methods: (1) use the reverse 
function, (2) change the set command, and (3) change the for-then 
command. 

Example 12.5.2: Calling make-a-chromatic-lick-for-then 
SAL> print make-a-chromatic-lick-for-then(60, 6) 
{65 64 63 62 61 60} 
 

You might think that it would be a good idea to use a for-then clause 
to update the-list in Example 12.5.1, e.g. “for the-list = cons(pitch, 
the-list)” could be used instead of the set command. This almost 
works, but for clauses are evaluated before determining if it is time 
for the loop to terminate. Thus, for clauses run once before each it-
eration and once after the last iteration when it is determined that the 
loop should exit. If the-list is updated in a for-then clause, it will 
have number-of-notes + 1 elements, which is one too many. It is 
worth the effort to try this for yourself and to experiment with differ-
ent loop configurations. The loop command is very powerful, but it 
is easy to fall into the trap of expecting a loop to “do the right thing” 
without careful design and testing. 

12.6 Loops with while and until 
Sometimes, we need a loop to repeat until some condition is met. 
Example 12.4.1 used return to exit a loop “early” and return from a 
function. Alternatively, loops can use while and until clauses to exit 
the loop (but not return from a function) when a condition is met. In 
Example 12.6.1, we once again make a chromatic lick as we did in 
Example 12.1.2 and Example 12.5.2. This time, we use until. 

Example 12.6.1: make-a-chromatic-lick-until.sal 

define function make-a-chromatic-lick-until( 
                starting-note, number-of-notes) 
  begin 
    with the-list 
    loop 
      with index = 0 
      until index = number-of-notes 
      set the-list @= index + starting-note 
      set index += 1 
    end 
    return reverse(the-list) 
  end 
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We create the-list, initially nil, in the begin block. In the loop, we 
initialize the variable index to 0. The loop immediately evaluates a 
condition where the value of index is compared to the variable 
number-of-notes. If the condition is true, the loop exits and the-list 
is returned. Otherwise, the remainder of the loop body is evaluated 
and we cons a note onto the-list using set. The index variable is in-
cremented using another set. The iterative process continues until 
the index equals the number-of-notes.  

When thinking about loops, it is sometimes helpful to think about 
loop invariants, predicates that are true each time through the loop. 
In this case, a loop invariant at the beginning of the until clause is 

the number of notes in the-list is equal to index. 

Since the loop body grows the-list by one and increments index by 
one, then if the invariant is true on one iteration, it is true on the next. 
You can see that this is initially true (index is 0 and the-list is nil), 
so it must always be true. The loop exits when the until expression is 
true, so at the end of the loop, we know the invariant is true: the 
number of notes in the-list is equal to index, and we know index = 
number-of-notes. Putting these together, we know the number of 
notes in the-list is equal to number-of-notes. Think about what 
invariant would help you to prove that the final list is a sequence of 
consecutive integers. 

Next, we call the function to demonstrate that it works as ex-
pected: 

Example 12.6.2: Calling make-a-chromatic-lick-until 
SAL> print make-a-chromatic-lick-until(60, 6) 
{60 61 62 63 64 65} 

 
In Example 12.6.3, once again we search for MIDI note numbers 

that are outside the range of the MIDI specification as we did in 
Example 11.4.2 and Example 12.3.2. This time, we use loop with a 
while clause. 

In the body of the function, we use with to create the variables 
element and result. The latter is initialized to 0 and used to count 
outliers. A loop is used to examine the elements of midi-note-list. 
On each iteration, the first element of midi-note-list is tested to see 
if it is an outlier. If the note is too high or too low, the variable result 
is incremented. Then the first element is removed from the list to 
prepare for the next iteration. The condition that terminates iterative 
processing uses while. The loop continues “while” there are list ele-
ments to examine, but when the list is empty, it is nil, which means 
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“false,” and the loop exits. The value of the variable result is re-
turned. 

Example 12.6.3: count-outliers-loop.sal 

define function count-outliers-loop( 
                                midi-note-list) 
  begin 
    with element, result = 0 
    loop 
      while midi-note-list 
      set element = first(midi-note-list) 
      if element < 0 | element > 127 then 
        set result += 1 
      set midi-note-list = rest(midi-note-list) 
    end 
    return result 
  end 
 

We call the function: 

Example 12.6.4: Calling count-outliers-loop 
SAL> print count-outliers-loop({189 -5 129 78 64}) 
3 

12.7 Reading and Writing Records Using Iteration 
In Chapter 6, we learned how to input data into a program from the 
computer keyboard using the primitive read. SAL also allows you to 
read data from a file. To read data from a file, you must 

 Open the file, creating a file-stream; 
 Save the file-stream in a variable; 
 Read from the file-stream; 
 Close the file-stream. 

These steps are illustrated in the next example. Assume that the 
contents of the ASCII (plain text) file midi.dat look like this: 

60 98 0 
34 87 1 
98 78 2 

In Example 12.7.1, we define a function get-midi-data that 
opens the file midi.dat, reads data from the file, and outputs what 
it has read using format. 

We use with to create and assign the variables my-data, the-
note, the-velocity, and the-channel. my-data is initialized with the 
file-stream returned by open. The input passed to open is a path to 
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the file. This string can be a path relative to the current directory or a 
full, absolute path. The exact specification of the path depends on 
your operating system. open returns nil if the file cannot be opened 
(or does not exist), and it is a good idea to test the return value to see 
if the open was successful. The test is omitted here to keep the 
example small. 

Example 12.7.1: get-midi-data.sal 
define function get-midi-data() 
  begin 
    with my-data =  
           open("/Users/rbd/Desktop/midi.dat"), 
         the-note = read(my-data), 
         the-velocity = read(my-data), 
         the-channel = read(my-data) 
    exec format(#t,  
                "The midi note ~a has velocity ~a ",  
              the-note, the-velocity) 
    exec format(#t, "on channel ~a~%", the-channel) 
    exec close(my-data) 
  end 
 

After opening midi.dat, data is read from the file. Each call to 
read reads one token from the file, skipping over white space and 
newlines. The body of the begin uses a format to print the data read 
from the file. Finally, the file-stream is closed by calling close. The 
input to close must be an open file-stream.  

In Example 12.7.2, we call the function get-midi-data. 

Example 12.7.2: Calling get-midi-data 
SAL> exec get-midi-data() 
The midi note 60 has velocity 98 on channel 0 
 

As you can see, the function get-midi-data only retrieved the first 
line of data from the file. We can use an iterative process to retrieve 
more than one line of data. Example 12.7.3 defines a function read-
multiple-records. The function uses a loop to repeatedly process 
data from the file. The loop assigns the variables midi-note, 
velocity, and channel using a for-then clause (without the optional 
then part). read returns nil when it encounters the end of the file. 
The loop uses “while midi-note” so that when read returns nil, the 
loop will exit. Each time through the loop after data are read from 
the file, a format function prints the data. 

Note that the file-stream assigned to my-data is opened before 
the loop and checked to make sure it is valid. If the file cannot be 
found or opened, my-data will be nil, the then part of the if state-
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ment will be evaluated, a message will be printed and the function 
will return. Also, notice that the file-stream is closed after the loop 
exits.  

Example 12.7.3: read-multiple-records.sal 
define function read-multiple-records() 
  begin 
    with filename = "/Users/rbd/Desktop/midi.dat", 
         my-data = open(filename) 
    if ! my-data then 
      begin 
        exec format(t,  
           "read-mulitple-records: cannot open ~A~%", 
           filename) 
        return #t 
      end 
    loop 
      for midi-note = read(my-data) 
      for velocity = read(my-data) 
      for channel = read(my-data) 
      while midi-note 
      exec format(t, "The midi note ~A has ", 
                   midi-note) 
      exec format(t, "velocity ~A on channel ~A~%", 
                      velocity,     channel) 
    end 
    exec close(my-data) 
  end 
 

In  Example 12.7.4, we call the function read-multiple-records. 
Note that this function depends upon having a file to read. The file 
data is formatted and printed. 

Example 12.7.5 opens two files: one for input (midi.dat) and one 
for output (midi-out.dat). To open a file for output, pass the key-
word direction: with value keyword(output) to open. (You can 
also pass the value keyword(input), but that is the default, so it is 
unnecessary when reading a file.) We use a loop to iteratively read 
from the input file. We use format in the body of the loop to write 
to the output file. Notice that format does not use #t to write to the 
terminal, but instead uses the variable out-data to direct printing to 
the output file. 

Example 12.7.4: Calling read-multiple-records 

SAL> exec read-multiple-records() 
The midi note 60 has velocity 98 on channel 0 
The midi note 34 has velocity 87 on channel 1 
The midi note 98 has velocity 78 on channel 2 
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Example 12.7.5: write-multiple-records.sal 
define function write-multiple-records() 
  begin 
    with in-data = open( 
                "/Users/rbd/Desktop/midi.dat"), 
         out-data = open( 
             "/Users/rbd/Desktop/midi-out.dat", 
             direction: keyword(output)) 
    if ! in-data | ! out-data then 
      begin 
        display "error", in-data, out-data 
        if in-data  then exec close(in-data) 
        if out-data then exec close(out-data) 
        return #t 
      end 
    loop 
      for midi-note = read(in-data) 
      for velocity = read(in-data) 
      for channel = read(in-data) 
      while midi-note 
      exec format(out-data, "midi-note = ~a ", 
                            midi-note) 
      exec format(out-data,  
                  "velocity = ~a channel ~a~%", 
                  velocity,   channel) 
    end 
    exec close(in-data) 
    exec close(out-data) 
  end 
 

If open fails to open either file, then in-data or out-data will be 
nil. This is caught and reported by an if statement. Notice that even if 
one file fails to open, the other file might be open and should be 
closed. We cannot just call close with an input of nil (this would 
raise an exception), so we use two more if statements to close each 
file-stream if the file-stream exists (is not nil). If no open error oc-
curs, the files are closed after the loop near the end of the function. 
No tests are necessary here because we know that both files were 
opened successfully and need to be closed. 

In Example 12.7.6, we call the function write-multiple-records. 
Since the format expression sends output to the out-data file-
stream, nothing is printed to the standard output. 
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Example 12.7.6: Calling write-multiple-records 
SAL> exec write-multiple-records() 
 

All of the output from the function has been directed to the file midi-
out.dat. When we view the contents of midi-out.dat (for example, 
you can use the File:Open command in the Nyquist IDE or open the 
file with any text editor) we see 

midi-note = 60 velocity = 98 channel 0 
midi-note = 34 velocity = 87 channel 1 
midi-note = 98 velocity = 78 channel 2 

12.8 score-gen as Iteration 
We have already seen and used the score-gen function, and it should 
now be clear that some sort of iteration is involved in the implemen-
tation of score-gen. In score-gen, the body is iterated to compute 
notes in a score. One of the keyword parameters score-len: or 
score-dur: is used to determine when the iteration terminates. One 
thing that is different about score-gen is that it can only be used to 
compute a score. score-gen automatically accumulates notes (one 
note per iteration) into a list. This is similar to the expression in 
Example 12.1.4 that accumulates pitches into a list to make a chro-
matic scale: 

set the-list @= starting-note + index  

In score-gen, however, this accumulation step is performed auto-
matically, and rather than just forming a list of pitches, score-gen 
creates a list of events, each with a start time, a duration, and a sound 
expression. 

As a final exercise on iteration, we will construct a version of the 
“chromatic-lick” functions that returns a playable score. We will 
start with a score-gen version, and then write a version that is based 
directly on loop for comparison. The score-gen version is quite 
simple, as shown in Example 12.8.1. 

Example 12.8.1: chromatic-lick-score-gen.sal 

define function chromatic-lick-score-gen( 
                starting-note, number-of-notes) 
  begin 
    return score-gen( 
               score-len: number-of-notes, 
               pitch: starting-note + sg:count, 
               ioi: 0.5, vel: 100) 
  end 
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While it would be possible to generate pitches from a pattern, it 
seems easier to use sg:count, which starts at zero and automatically 
increments by one after each note is computed. 

Example 12.8.2 generates a score using loop. Notice that in this 
version, there is an explicit variable, score, to accumulate the list of 
notes, and an explicit loop that performs one iteration for each note. 
Each note is explicitly constructed using nested calls to list, and each 
note is cons’ed onto the front of score. Since this constructs a score 
in reverse time order, the last line reverses the score. It also sets the 
begin time and end time of the score so that it will be in the proper 
form. 

Example 12.8.2: chromatic-lick-loop.sal 

define function chromatic-lick-loop( 
                starting-note, number-of-notes) 
  begin 
    loop 
      with score, dur = 0.5 
      for i below number-of-notes 
      for start = 0 then start + dur 
      set score @=  
          list(start, dur,  
             list(quote(note),  
             keyword(pitch), starting-note + i, 
             keyword(vel), 100)) 
      finally  
        return  
          score-set-end( 
            score-set-begin(reverse(score), 0), 
            start) 
    end 
   

Use score-print to print the scores returned by these two functions. 
Do you see any difference? Use score-play to play the scores. Do 
you hear any difference? 

12.9 Suggested Listening 
Functions to read files are introduced in this chapter, allowing 
programs to read data from various sources and use the data in 
compositions. Atlas Eclipticalis, by John Cage is based on an atlas of 
stars. Cage superimposed musical staves over the star chart, 
translating brightness into amplitudes. This piece also inspired the 
cover of this book. 
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Jem Finer’s Longplayer is a 1000-year-long composition (Finer, 
et al. 2003). The work is based on cycles or iterations of musical 
sequences of different lengths that, like planets, come into alignment 
only rarely. In the case of Longplayer, the system will not repeat for 
1000 years. Longplayer is currently streaming over the Internet from 
a synthesized source, but portions and variations of it have also been 
performed by live musicians. Details, sounds, and the ongoing piece 
itself are available at: http://longplayer.org. 
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Chapter 13 Algorithmic Composition 
Using Probabilistic 
Methods 

Chapter 5 introduced the random item stream pattern type. Using the random 
item stream pattern type, we were able to select randomly among sets of 
values. In music, we often want some choices to be more likely than others, 
or a choice might depend upon the previous choice. In this chapter, we will 
explore probability theory and ways to make biased (and hopefully more 
musical) choices. 

13.1 Introduction to Probability 
Probability is a branch of mathematics that studies the chance or 
likelihood that an event will occur. A probability is expressed as a 
ratio – the number of times a given event is expected to occur di-
vided by the total number of outcomes. If all outcomes are equally 
likely, the probability of some event is simply the number of out-
comes in which the event is present divided by the total number of 
outcomes. For example, consider a six-sided die where each side is 
uniquely identified 1, 2, 3, 4, 5, and 6. The probability that a 1 will 
be rolled is 1:6. The ratio 1:6 may also be expressed as a real number 
between 0 and 1. Considering the example of the six-sided die, the 
sum of all possible outcomes is 6/6 or 1.0 (100%). 

13.2 The random Pattern 
A random pattern is created by calling make-random. The first in-
put is a list of items to choose among. In the simplest case, a call to 
make-random might look like 

make-random({2, 3, 5, 7, 11, 13, 17}) 

which generates a stream of small prime numbers chosen randomly 
from the list. In this case, the probability of choosing any particular 
number is 1/7. 

To make some elements more likely than others, we can specify a 
weight. To associate a weight with an item, the item is replaced by a 
list containing the item, the keyword weight:, and the weight, a 
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numerical value that defaults to 1. Example 13.2.1 illustrates a ran-
dom pattern where the first element is assigned a weight. 

Example 13.2.1: Random pattern with weights 
set note = make-random({{c4 weight: 0.5} d4 e4}) 

 
Notice that while weight: has the appearance of a keyword in a pa-
rameter list, here it is just a symbol in a list, and since the list is con-
structed with braces, there are no commas separating any of the list 
elements. Because the weight for c4 is 0.5, c4 is 1/2 as likely to be 
selected as d4 or e4, which have default weights of 1. Given that 
there are 3 notes and the sum of their probabilities must equal 1 (or 
100%), and c4 is 1/2 as likely to be selected as d4 or e4, Table 
13.2.1 shows the probabilities of the note events. 

Table 13.2.1: Note probabilities for Example 13.2.1 

Note Name C4 D4 E4 
Weight 0.2 0.4 0.4 

 
To compute these probabilities, divide the weight of an element 

(e.g. 0.5 for c4) by the sum of all weights (e.g. 0.5 + 1 + 1, or 2.5). 
Thus the weight for c4 is 0.5/2.5 = 0.2, and the weight for d4 is 1/2.5 
= 0.4. 

If no weights are specified, the probabilities of all events are 
equal. The term “white” is often used informally to describe equal 
probability. This terminology comes from natural white light, which 
is light in which all visible frequencies (or colors) are present in 
equal strength. By analogy, we can describe audio as “white noise” 
when all audible frequencies are equally intense. It turns out that 
each individual audio sample value of digitized white noise is 
equally likely and unrelated to other samples, as if sample values 
were chosen by rolling a die. (Admittedly, it would be hard to find a 
die with 65,536 sides to represent all the different sample values in 
16-bit digital audio!) Thus, a sequence of random outcomes from a 
die or any other random process with equally probable outcomes can 
be called “white noise.” In Example 13.2.2, the range of events is the 
rhythms for a quarter, sixteenth, and eighth note.  

Example 13.2.2: Random rhythm pattern 

set rhythm-pattern = make-random(list(q, s, i)) 
 

Table 13.2.2 shows the selection of rhythms based on equal prob-
ability. 
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Table 13.2.2: Rhythm probability table 

Rhythm Quarter Sixteenth eIghth 
Weight .333 .333 .333 

 
With random events such as flipping coins, rolling dice, or getting 
the next item from rhythm-pattern, the next outcome is completely 
independent of all previous outcomes. This can be counterintuitive: 
most people feel that after a coin toss yields “heads” four times in a 
row, the next toss is more likely to be “tails.” This is known as the 
gambler’s fallacy. The probability of the next toss coming up heads 
is always 0.5, regardless of what happened in the past. 

Perhaps because we feel that an uninterrupted run of heads or 
tails is particularly unlikely, these runs stand out. Similarly, a melody 
may not sound “random” if pitches are repeated, and these repeti-
tions may sound wrong or out-of-place. The random pattern is nor-
mally like a coin toss. To generate each item, the next function se-
lects an item at random according to the weights. This may result in 
runs where the same item is chosen several times in a row. 

To avoid this behavior, the option max: sets a maximum value an 
element may be repeated before a different element must be selected. 
Alternatively, the min: keyword forces a number of direct repetitions 
before a different element is selected. If min: or max: is used with 
make-random, it is possible that the generated sequence of items 
will not be in proportion to the specified weights. You can think of 
starting with a random sequence that is constructed according to the 
weights and then removing items that violate the max: constraints 
and inserting items to satisfy the min: constraints. 

Example 13.2.3 indicates that 0.1 and 0.2 can repeat at most one 
time before a new (and different) event must be selected. 0.3 and 0.4 
must repeat at least 2 times before a different event is selected. 

Example 13.2.3: Using max: and min: in random pattern 

set amplitude-pattern = 
       make-random({{0.1 max: 1} {0.2 max: 1}  
                    {0.3 min: 2} {0.4 min: 2}}) 
 

Example 13.2.4 illustrates a simple score with random pitch, 
duration, and velocity. The patterns are constructed first and bound 
to variables in the with expression. The body of the begin-end is a 
call to score-gen, which uses these patterns to construct successive 
notes. Patterns are constructed with make-random, which takes a 
list of items.  
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score-print is used to print the result. In this case there are 1 C4 
(60), 5 D4s (62), and 6 E4s (64). There are 5 quarter notes (1), 6 
eighth notes (0.5), and 1 sixteenth note (0.25). The vel: parameter 
does not have successive values of 70 or 80 (where max: is 1), and 
values of 90 and 100 (where min: is 2) always occur at least twice in 
succession. 

Example 13.2.4: random.sal 
SAL> begin 
       with pitch-pattern = 
         make-random(list(list(c4, weight: 0.5), 
                          d4, e4)), 
         rhythm-pattern = 
           make-random(list(q, s, i)), 
         velocity-pattern = 
           make-random({{70 max: 1} {80  max: 1}  
                        {90 min: 2} {100 min: 2}}) 
       exec score-gen(save: quote(random-score),  
                      score-len: 12, 
                      pitch: next(pitch-pattern), 
                      ioi:  next(rhythm-pattern), 
                      vel:  next(velocity-pattern)) 
     end 
 
SAL> exec score-print(random-score) 
((0 0 (SCORE-BEGIN-END 0 8.25)) 
(0    0.25 (NOTE vel: 70 pitch: 62)) 
(0.25 0.5  (NOTE vel: 90 pitch: 64)) 
(0.75 0.5  (NOTE vel: 90 pitch: 62)) 
(1.25 1    (NOTE vel: 90 pitch: 62)) 
(2.25 0.5  (NOTE vel: 100 pitch: 64)) 
(2.75 1    (NOTE vel: 100 pitch: 60)) 
(3.75 0.5  (NOTE vel: 80 pitch: 64)) 
(4.25 0.5  (NOTE vel: 100 pitch: 62)) 
(4.75 1    (NOTE vel: 100 pitch: 64)) 
(5.75 0.5  (NOTE vel: 100 pitch: 64)) 
(6.25 1    (NOTE vel: 90 pitch: 64)) 
(7.25 1    (NOTE vel: 90 pitch: 62)) 
) 
 

In Example 13.2.4, notice that pitch-pattern and rhythm-
pattern are specified using calls to list, but velocity-pattern is 
specified using braces {}. Most of the previous examples use braces 
because the syntax is simpler and easier to read. However, braces 
implicitly quote all of the list elements. This is fine when elements 
are numbers and/or symbols, but not good when we want to use the 
values of variables.  
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In Example 13.2.5, similar lists are formed using list and braces. 
Notice in the first two cases, using list, that the variable c4 is 
evaluated to obtain 60, but in the third case, c4 in braces is an 
unevaluated symbol, and the printout shows that the list contains the 
symbol c4. Use list to form lists when you want the values of 
variables such as symbolic pitches (c4) or durations (q). 

This example also illustrates two ways to introduce a keyword 
into a list. The first uses keyword(name) to construct a symbol. The 
second uses weight: without a subsequent comma. This only works 
when the keyword is followed by another expression. (This notation 
is also used in Example 13.2.4).  

Example 13.2.5: Comparing the list function to brace notation 

SAL> print list(c4, keyword(weight), 0.5), 
           list(c4, weight: 0.5), 
           {c4 weight: 0.5} 
{60 :WEIGHT 0.5} {60 :WEIGHT 0.5} {C4 :WEIGHT 0.5} 
 

13.3 Graphs and Patterns 
Graphs are often used to describe behaviors including music. In 
mathematics and computer science, a graph is a set of nodes and a 
set of edges. We will consider directed graphs, which are graphs 
with directed edges.  

The graph in Figure 13.3.1 has three nodes – C4, E4, and DS4.  
Each node represents a symbolic note name.  The arrows connecting 
the nodes specify the direction in which the graph may be traversed. 
For example, from node E4, we can go to C4 or DS4.  From node 
C4, we can only go to E4. 

 
Figure 13.3.1: A directed graph 

One way to model this graph is to represent each node with a 
pattern that selects the next node. Consider the program in Example 

  C4

E4DS4
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13.3.1. The variables c4-pattern, ds4-pattern, and e4-pattern 
represent nodes and contain pattern generators that generate the next 
node to visit. For example, the ds4-pattern will alternately generate 
c4-pattern and e4-pattern, corresponding to the edges from ds4 to 
c4 and e4. The variable current-node keeps track of the current lo-
cation on the graph, and the function get-next-node traverses an 
edge as follows: (1) the value of current-node is a symbol. The eval 
function is applied to get the value of the symbol. (2) next is applied 
to the pattern to get the next item. (3) The item is stored in current-
node. Finally, a table is used to translate the value of current-node 
(a symbol) into a pitch number. 

The use of eval deserves further comment. We represent nodes 
with patterns that choose the next node. Thus, each pattern should 
return another pattern. However, when a pattern is an item of another 
pattern, the next function treats these as nested patterns, and it tries 
to generate a period of items from the nested pattern. (See Chapter 6 
for examples and further explanation.)  To avoid this in Example 
13.3.1, patterns return symbols. Each symbol is the name of a global 
variable containing the associated pattern. eval is used to look up the 
variable’s value. For example, current-node is initialized to the 
symbol c4-pattern. In line 8 (counting the blank line), eval is 
applied to the value of current-node, which is c4-pattern. The 
value of c4-pattern in turn is the cycle pattern created and assigned 
in the first line. This pattern object is assigned to the variable 
pattern and used to select the next value of current-node. Another 
way to implement this graph traversal is described in Section 13.4. 

Example 13.3.1: get-next-node.sal 
set c4-pattern = make-cycle({e4-pattern}) 
set ds4-pattern = make-cycle({c4-pattern e4-pattern}) 
set e4-pattern = make-cycle({c4-pattern ds4-pattern}) 
set current-node = quote(c4-pattern) 
 
define function get-next-node() 
  begin ;; note: current-node is a symbol 
    with pattern = eval(current-node) 
    set current-node = next(pattern) 
    return second(assoc(current-node, 
                        {{c4-pattern 60}  
                         {ds4-pattern 63} 
                         {e4-pattern 64}})) 
  end 
 

Example 13.3.2 calls get-next-node in a loop and prints a se-
quence of pitches that are generated. Note that the transitions from 
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E4 (64) alternate going to C4 (60) and DS4 (63), and DS4 (63) goes 
alternately to C4 (60) and E4 (64). 

Example 13.3.3 incorporates get-next-node from Example 
13.3.1 into a score generator. Listen to the output of this program. It 
is difficult to follow all the workings of the program, but you can 
easily hear, for example that the low note (C4) always makes a tran-
sition to the high note (E4), as shown in the graph of Figure 15.3.1. 

Example 13.3.2 : Calling get-next-node 
SAL> loop  
       repeat 10  
       exec format(#t, "~A ", get-next-node())  
     end 
64 60 64 63 60 64 60 64 63 64  
 

Example 13.3.3: graph.sal 
begin 
  with dur-pattern = make-random({0.2 0.4 0.6}), 
       vel-pattern = make-cycle({60 75 90 105}) 
  exec score-gen(save: quote(graph-score),  
                 score-len: 30, 
                 pitch: get-next-node(), 
                 ioi: next(dur-pattern), 
                 vel: next(vel-pattern)) 
end 
 

13.4 The markov Pattern Generator 
A Markov process is a probability system where the likelihood that 
an event will be selected is based on one or more past events. A first-
order Markov process is one where the next state depends only on 
the current state. Note how a first-order Markov process can be rep-
resented as a directed graph. A node in the graph represents an event, 
and the probability of making a transition to another node (event) is 
represented by edges labeled with probabilities. Typically, only 
edges with non-zero probabilities are included in the graph. 

An alternative to this graphical representation is a transition table 
that shows the probability that a certain event will be selected based 
on one or more past events. A first-order transition table describes 
the probability that an event will be selected given one past event, 
and a second-order transition table describes the probability that an 
event will be selected given two past events. (Higher orders are also 
possible.) The succession from one event to the other is called a 
Markov chain. 
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Table 13.4.1: A first-order transition table 

 C4 D4 E4 
C4 0.10 0.75 0.15 
D4 0.25 0.10 0.65 
E4 0.50 0.30 0.20 

Table 13.4.1 is an example of a first-order transition table. The 
current events are listed in the zeroth column and the possible next 
events are listed in the zeroth row. We interpret the first row of the 
transition table as “if the current event is a C4, there is a 10% chance
that another C4 will be selected, a 75% chance that D4 will be se-
lected, and a 15% chance that E4 will be selected.” Figure 13.4.1
shows a graph that is equivalent to this table. Notice that some edges 
lead from a node back to the same node. 

 

Figure 13.4.1: A first-order Markov process as a graph 

Two frequent errors in constructing transition tables are loops and 
dead ends. The transition table in Table 13.4.2 will quickly fall into a 
loop that generates a chain of alternating D4s and E4s. 

Table 13.4.2: A first-order transition table that loops 

 C4 D4 E4 
C4 — .5 .5 
D4 — — 1.0 
E4 — 1.0 — 
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A dead end occurs in a transition table when an event is specified 

and there is no way to select another event from that event. The tran-
sition table shown as Table 13.4.3 states that “if the current note is a 
C4, there is a 50% chance that D4 will be selected, a 25% chance 
that E4 will be selected, and a 25% chance that F4 is selected.”  If F4 
is selected, it has no next event since there is no row in the transition 
table that considers F4 as a current event.  The Markov chain reaches 
a dead end. 

Table 13.4.3: A first-order transition table that dead-ends 

 C4 D4 E4 F4 
C4 — .5 .25 .25 
D4 — — 1.0 — 
E4 — 1.0 — — 

 
The function make-markov may be used to generate a pattern 

that constructs a Markov chain. To describe a Markov process using 
make-markov, each row of the transition table is specified by a list 
like this: 
 {current -> {next1 weight1} {next2 weight2} … {nextn weightn}} 

where states are symbols. current is the current state and next1 
through nextn are the possible next states, which are listed with their 
associated transition weights. (Weights are relative and do not neces-
sarily sum to 1.) The first input to make-markov is a list of transi-
tion rules.  

Example 13.4.1 uses make-markov to produce a sequence of 
pitches using the first-order transition table described in Table 
13.4.1. Notice that two keyword parameters are passed to make-
markov in addition to the transition rules. The past: keyword gives 
the starting state. If this were a second-order Markov process, the list 
would contain two states: the previous one and the current one. The 
produces: keyword is used to convert the current state into a value. 
In this example, the value keyword(eval) says to evaluate the state 
name as a global variable to get the next value of the pattern genera-
tor. Since our state names are C4, D4, E4, and these happen to be 
Lisp variables that evaluate to 60, 62, and 64, keyword(eval) offers a 
convenient way to return pitch values rather than state names. 

When markov.sal is evaluated, the note series shown in 
Figure 13.4.2 is generated. This series will be different each time the 
program is run. 
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Example 13.4.1: markov.sal 
begin with markov-pattern = make-markov( 
        {{c4 -> {c4 0.1}  {d4 0.75} {e4 0.15}} 
         {d4 -> {c4 0.25} {d4 0.1}  {e4 0.65}} 
         {e4 -> {c4 0.5}  {d4 0.3}  {e4 0.2}}}, 
        past: {c4}, produces: keyword(eval)) 
  exec score-gen(save: quote(markov1),  
                 score-len: 12, 
                 pitch: next(markov-pattern), 
                 vel: 100, ioi: 0.5) 
end 
 

Figure 13.4.2: Output from markov1.sal 

 
 

An alternative version of this program illustrates another way to use 
the produces: parameter. In Example 13.4.2, each state is mapped 
explicitly to a value using a list, which has the form 

 {state1 value1 state2 value2 … staten valuen} 

This example is identical to Example 13.4.1 except for the 
produces: keyword parameter. 

Example 13.4.2: markov2.sal 
begin  
  with markov-pattern = make-markov( 
     {{c4 -> {c4 0.1} {d4 0.75} {e4 0.15}} 
      {d4 -> {c4 0.25} {d4 0.1} {e4 0.65}} 
      {e4 -> {c4 0.5} {d4 0.3} {e4 0.2}}}, 
     past: {c4}, produces: {c4 60 d4 62 e4 64}) 
  exec score-gen(save: quote(markov2),  
                 score-len: 12, 
                 pitch: next(markov-pattern), 
                 vel: 100, ioi: 0.5) 
end 
 

13.5 Patterns Can Specify Next States and Weights 
In the previous example, and in most models of Markov processes, 
the graph is static, meaning that the nodes and weights are fixed. 
However, the markov pattern allows you to specify next states and 
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weights using patterns. When a pattern is used as a weight, the first 
item generated by the pattern is used as the “real” weight. Whenever 
the transition is taken, the weight on that transition is updated to the 
next item returned by the pattern. The next state can also be given by 
a pattern. If a pattern is used to specify a next state, then whenever 
that transition is taken, the next item generated by the pattern be-
comes the next state. It follows that the items generated by the pat-
tern must be symbols that correspond to states. 

Using patterns in rules, we can rewrite Example 13.3.1 using 
make-markov. Example 13.3.1 uses pattern generators to alternately 
choose one of the other two nodes as the next state for ds4 and e4. 
To incorporate these patterns into rules for make-markov, the vari-
ables ds4-pattern, e4-pattern, and markov-pattern are initialized 
in sequence. The rule for make-markov uses list to allow us to in-
sert the values of ds4-pattern and e4-pattern into the rule expres-
sion. What would markov-pattern return if we used braces to form 
the list? 

Example 13.5.1: markov-graph.sal 
begin 
  with ds4-pattern = make-cycle({c4 e4}), 
       e4-pattern = make-cycle({c4 ds4}), 
       markov-pattern = make-markov( 
         list( 
            list(quote(c4), quote(->), quote(e4)), 
            list(quote(ds4), quote(->), ds4-pattern), 
            list(quote(e4), quote(->), e4-pattern)), 
         past: {c4}, produces: keyword(eval)) 
  exec score-gen(save: quote(markov-graph),  
                 score-len: 12, 
                 pitch: next(markov-pattern), 
                 vel: 100, ioi: 0.5) 
end 
 

A true first-order Markov process chooses the next state based 
only on the current state, but Example 13.5.1 maintains some addi-
tional history in the pattern objects. The fact that this is not a true 
Markov process should not deter its use. The next example considers 
further extensions to the basic Markov model. 

Weights can also be specified using patterns. Consider the simple 
Markov process shown in Figure 13.5.1. There are two states. If the 
transitions between states have high weights, then the music will 
tend to alternate states, but if the weights are small, the music will 
tend to “stick” at one state or the other. Example 13.5.2 uses a pat-
tern to specify these weights. The pattern alternates between five 
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high values and five low values. The same pattern is used for the 
weight from C4 to C5 and the weight from C5 to C4 so that 
transition weight changes will be synchronized.

The weight pattern is 0.1, 0.1, 0.1, 0.1, 0.1, 10, 10, 10, 10, 10, 0.1, 
0.1, 0.1, 0.1, 0.1, …. This is created by first making a cycle pattern 
that returns 0.1, 10, 0.1, 10, …, with a period of 1. Then make-
copier is used to repeat each period five times. 

The weight pattern, w-pattern, is used to initialize the second 
pattern, markov-pattern. Notice how we use list again to put the 
value of w-pattern into the transition rules. 

 
Figure 13.5.1: A Markov-like process with variable transition 

weights 

Example 13.5.2: markov-weights.sal 
begin 

with w-pattern =  
make-copier(make-cycle({10 0.1},  

for: 1), repeat: 5), 
markov-pattern = make-markov( 

list( 
list(quote(c4), quote(->), 

quote(c4),  
    list(quote(c5), w-pattern)), 

list(quote(c5), quote(->),  
quote(c5),  
list(quote(c4), w-pattern))), 

past: {c4}, produces: :eval)
exec score-gen(save: quote(markov-weights),  

score-len: 50, 
pitch: next(markov-pattern), 
vel: 100, ioi: 0.2) 

end 
Use score-play(markov-weights) to play the pattern created by 
Example 13.5.2. Can you follow the state transitions? Are they com-
pletely predictable? What happens if the weights are 100 and 0.01 
instead of 10 and 0.1? What happens if the weights are both 1? See if 
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you can predict what the music will sound like before you try 
changes.  

13.6 Learning a Markov Process 
Quite often, Markov processes are used to generate music based on a 
previous composition or set of compositions. It is not possible to de-
termine the “true” transition probabilities from examples, but we can 
estimate the probabilities by counting the relative frequencies of ac-
tual transitions. Consider the folk melody “Aunt Rhody” as notated 
in Example 13.6.1. 

 
Figure 13.6.1: “Aunt Rhody” 

There is one occurrence of the note F5 and it always goes to E5. 
To describe this relationship in a first–order transition table, we 
would say given F5, there is 100% change that E5 will be selected. 

{F5 -> E5} 

There are two occurrences of the note G5. G5 may be followed 
by either another G5 or F5.  To describe this relationship in a first-
order transition table, we would say that given G5, there is a 50% 
chance that another G5 will be selected and a 50% chance that an F5 
will be selected. 

{G5 -> {G5 0.5} {F5 0.5}} 

When a transition table is constructed, the sum of the weights for 
a row equals 1. make-markov can work with transition tables when 
the sum of a row does not equal 1. Under these circumstances, the 
Markov pattern generator scales the probabilities in relation to the 
other events in the row as was noted in the random pattern generator. 
For example, 

{C4 -> {C4 .5} D4 E4) 

means that C4 is 1/2 as likely to be selected as D4 and E4. Given a 
C4, the probability of selecting another C4 is 20%. The likelihood 
that D4 or E4 will be selected is 40% each. 

The function markov-create-rules analyzes a list and returns a 
transition table that can be used as the first input to make-markov. 
markov-create-rules takes two or three inputs: 

markov-create-rules(sequence, order, generalize) 

where sequence is a list of states, order is the order of the Markov 
process (usually 1), and generalize is an optional input to be de-
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scribed below. Example 13.6.1 demonstrates the use of markov-
create-rules using the note list from “Aunt Rhody.”  We request a 
first-order transition table. The rules are difficult to read as a flat list, 
so we call the built-in function pprint (short for “pretty print”) to 
print the list in a nicer format. 

Example 13.6.1: Using markov-create-rules 

SAL> set rules = markov-create-rules( 
           {e5 e5 d5 c5 c5 d5 d5 e5 d5 c5 g5 g5 
            f5 e5 e5 d5 c5 d5 e5 c5}, 1) 
SAL> print rules 
{{E5 -> {E5 2} {D5 3} {C5 1}} {D5 -> {C5 3} {D5 
1} {E5 2}} {C5 -> {C5 1} {D5 2} {G5 1}} {G5 -> 
{G5 1} {F5 1}} {F5 -> {E5 1}}}  
SAL> exec pprint(rules) 
((E5 -> (E5 2) (D5 3) (C5 1)) 
 (D5 -> (C5 3) (D5 1) (E5 2)) 
 (C5 -> (C5 1) (D5 2) (G5 1)) 
 (G5 -> (G5 1) (F5 1)) 
 (F5 -> (E5 1))) 
 

Next, we analyze the rhythm of “Aunt Rhody” using markov-
create-rules. We specify a second-order transition table.  Notice that 
this phrase of “Aunt Rhody” ends with a half note, but there is no 
next state after the half note. For now, we will extend the phrase with 
a quarter note so that there will be at least one transition out of the 
half-note state. 

Example 13.6.2: Creating a second-order transition table 
SAL> set iois = markov-create-rules( 
           {q i i q q q q i i q q i i q q i i i 
            i h q}, 2) 
SAL> exec pprint(iois) 
((Q I -> (I 4)) 
 (I I -> (Q 3) (I 2) (H 1)) 
 (I Q -> (Q 3)) 
 (Q Q -> (Q 2) (I 3)) 
 (I H -> (Q 1))) 
 

The second-order transition table is more complex to read than a 
first order transition table. Consider the third row of the transition ta-
ble in Example 13.6.2. 

 (I Q -> (Q 3)) 



    

178 Chapter 13 ⋅ Algorithmic Composition Using Probabilistic Methods 

The row is interpreted as “if the current rhythm is a Quarter note and 
it was preceded by an eIghth note, return a Quarter note” (there were 
three similar occurrences in the input sequence). 

Given a first-order transition table for the selection of note events 
and a second-order transition table for the selection of rhythmic val-
ues, we can generate a melody that has note and rhythm transitions 
similar to those in “Aunt Rhody.” 

Example 13.6.3: markov-rhody.sal 
begin 
  with pitch-pat = make-markov( 
         rules, past: {C5}, produces: :eval), 
       rhythm-pat = make-markov( 
         iois, past: {Q Q}, produces: :eval) 
  exec score-gen(save: quote(markov-rhody),  
                 score-len: 22, 
                 pitch: next(pitch-pat), 
                 ioi: 0.5 * next(rhythm-pat),  
                 vel: 100) 
end 
 

 
Figure 13.6.2: Output from Example 13.6.3 

All of the rules we have seen so far apply to specific states, but 
rules can also contain “*” which is a “wildcard” that matches any 
state. For example,  the rule 

{* G5 -> {G5 1} {F5 2}} 

matches any pitch followed by G5, and 
{* * -> {G5 1} {F5 2}} 

matches any previous sequence of states. Rules are searched in order, 
so you can put a more general rule with wildcards after more specific 
rules. The rule with wildcards will then only be considered if none of 
the specific rules apply. 

Sometimes, markov-create-rules generates transition tables that 
dead end. These dead ends generate the error message “Error, no 
matching rule found: ...” The error message can be avoided by re-
ducing the order of the transition table or extending the transition ta-
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ble to include possible choices not returned by markov-create-
rules. Another possibility is to specify #t (true) for the third 
(optional) parameter, generalize. generalize adds a rule that matches 
any state or sequence of previous states. The next state is chosen 
according to the estimated overall probability of states without 
considering the state history. Thus, there is always a transition to a 
next state, even though that transition did not appear in the data.  

Example 13.6.4 uses the generalize option to compute transition 
rules from “Aunt Rhody.” In this example, there is no added rhythm 
after the H(alf), thus no specific rule handles this case. Notice the 
last rule uses wildcard notation. This rule will be used in the event 
the Markov process reaches state H. 

Example 13.6.4: Using the generalize option 
SAL> set rules = markov-create-rules( 
           {q i i q q q q i i q q i 
            i q q i i i i h}, 2, #t)  
 
SAL> print rules 
((Q I -> (I 4)) (I I -> (Q 3) (I 2) (H 1)) (I Q 
-> (Q 3)) (Q Q -> (Q 2) (I 3)) (* * -> (H 1) (Q 
8) (I 9))) 
 
SAL> exec pprint(rules) 
((Q I -> (I 4)) 
 (I I -> (Q 3) (I 2) (H 1)) 
 (I Q -> (Q 3)) 
 (Q Q -> (Q 2) (I 3)) 
 (* * -> (H 1) (Q 8) (I 9))) 
 

If you have a large MIDI file you’d like to analyze using 
markov-create-rules, it is easiest to read the MIDI file into SAL 
using score-read-smf.  Example 13.6.5 assumes a MIDI file named 
teribus.mid resides in the current directory. (If you are using the 
Nyquist IDE, the current directory is automatically set to the direc-
tory of the last file you loaded with the “load” button or menu item.) 

Example 13.6.5: Using score-read-smf 

set teribus = score-read-smf("teribus.mid") 
 

We use the newly created score that has been named teribus (i.e. 
the score is bound to the variable teribus) in Example 13.6.6. The 
score-apply function iterates through the score and extracts pitches 
into the variable pitches. It is important that the applied function 
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return an event, so notice the extract-pitch function returns a list 
that simply reconstructs the event from the time, dur, and expr 
parameters. The purpose of calling score-apply is not to construct a 
score, but to accumulate pitches, accomplished using the @= 
operator. Since pitches are accumulated by pushing them onto the 
front of a list, the final value of the list has pitches in reverse order. 
Furthermore, MIDI program changes are encoded into scores with a 
pitch: attribute of nil, causing some occurrences of nil in pitches. 
The third expression in the example reverses pitches and removes 
nil’s from the list. Finally, markov-create-rules is used to generate 
rules. 

Example 13.6.6: markov-create-rules.sal, creating a Markov 
model from MIDI data 
SAL> define variable pitches = nil 
SAL> define function extract-pitch( 
                               time, dur, expr) 
       begin 
         set pitches @=  
            expr-get-attr(expr, keyword(pitch)) 
         return list(time, dur, expr) 
       end 
SAL> exec score-apply(teribus,  
                      quote(extract-pitch)) 
SAL> set pitches =  
         remove(nil, reverse(pitches)) 
SAL> set rules = markov-create-rules(pitches,  
                                     1, t) 
SAL> exec pprint(rules) 
((45 -> (33 1)) 
 (33 -> (57 1)) 
 (57 -> (55 10) (69 1)) 
 (55 -> (62 13) (69 3)) 
 (62 -> (61 18) (64 14) (67 18) (57 1) (55 3)) 
 (61 -> (62 18) (64 8)) 
 (64 -> (57 9) (67 9) (66 8) (62 8) (69 4)) 
 (67 -> (66 46) (64 8) (61 8) (62 4) (69 5)) 
 (66 -> (67 38) (69 8) (62 12) (64 8)) 
 (69 -> (66 12) (67 6) (55 3)) 
 (* -> (69 21) (66 66) (67 71) (64 38) (61 26)  
       (62 55) (55 16) (57 11) (33 1))) 
 

Notice that pitches are all numeric rather than symbolic. The file 
teribus.mid is intended to sound like bagpipes, and includes drones 
at A1 (= 33) and A2 (= 45). Since these are not part of the melody, it 
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would make sense to remove these from pitches before computing 
rules, although in this case, there are no transitions to these states 
from any of the states from 55 to 69.  

13.7 1/f2 Noise or Brownian Motion 
Brownian motion is the observed movement of small particles ran-
domly bombarded by the molecules of the surrounding medium. The 
phenomenon was first observed by the biologist Robert Brown and 
was eventually explained by Albert Einstein. Brownian motion is 
also referred to as 1/f2 noise. 

Brownian motion in one dimension can be described by applying 
a random process to a succession of events in relation to a number 
line.  Consider a seven-sided die that has values of −3, −2, −1, 0, 1, 2, 
and 3. After tossing the die eight times, we derive a number series 

−2, −3, +2, +2, +1, +2, −2, −2 
That number series may be mapped to a number line to describe one-
dimensional motion along the number line. Our number line is as 
follows: 

 
If we assume a starting value of 60, the following number series is 
returned: 

60, 58, 55, 57, 59, 60, 62, 60, 58 
60 − 2 = 58 
58 − 3 = 55 
55 + 2 = 57 
57 + 2 = 59 
59 + 1 = 60 
60 + 2 = 62 
62 − 2 = 60 
60 − 2 = 58 

Example 13.7.1 implements this algorithm for one-dimensional 
Brownian motion. The SAL function brownian-motion accepts two 
inputs: the starting position and how many steps it should simulate. 
We enter a loop, initializing roll-die to a random pattern and the-list 
to nil. The repeat clause controls how many times the loop iterates, 
and each time, the for clause chooses a new value for note. The note 
values are cons’ed onto the head of the-list, and when the loop fin-
ishes, the-list is reverse’d and return’ed.  

Since Example 13.7.1 is essentially just summing a sequence of 
numbers, we can use an accumulate pattern generator instead. In 

51 52 53 54 55 56 57 58 59 60 61 62 63
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Example 13.7.2, we use a line pattern generator to prefix a random 
number pattern with the value of start. (Recall that the line pattern 
returns each item of a list, repeating the last item as necessary.) A 
running total of these items is returned by the accumulate pattern.  

Example 13.7.1: brownian-motion.sal 
define function brownian-motion(start,  
                               number-of-notes) 
  loop 
    with roll-die = make-random( 
                           {-3 -2 -1 0 1 2 3}),  
         the-list 
    repeat number-of-notes 
    for note = start then note + next(roll-die) 
    set the-list @= note 
    finally return reverse(the-list) 
  end 
 

Recall that patterns can return a stream of individual items, ac-
cessed one-at-a-time by calling next on the pattern object alone. 
Patterns can also return items grouped in lists called periods. The 
next period is obtained by calling next with a second, optional pa-
rameter equal to true (#t). Since we want a list of length number-of-
notes, we use the for: keyword parameter to force the outermost 
pattern to return a period of length number-of-notes, and we access 
the period by calling next with a second parameter of #t. This pro-
gramming “trick” eliminates the need to write a loop to accumulate a 
list of items from the pattern. 

Example 13.7.2: brownian-motion-2.sal 
define function brownian-motion(start,  
                               number-of-notes) 
  begin 
    with pat =  
      make-accumulate( 
        make-line(list(start, 
                       make-random( 
                         {-3 -2 -1 0 1 2 3}))), 
        for: number-of-notes) 
    return next(pat, #t) 
  end 
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We can combine this pattern approach with score-gen to create 
Brownian motion–based music, as illustrated by Example 13.7.3, 
which also shows the generated score. 

Example 13.7.3: brownian-music.sal 

SAL> begin  
       with pitch-pat =  
         make-accumulate( 
           make-line(list(60,  
                          make-random( 
                         {-3 -2 -1 0 1 2 3})))) 
       exec score-gen( 
                   save: quote(brownian-music),  
                   score-len: 10, 
                   pitch: next(pitch-pat), 
                   vel: 100, ioi: 0.2) 
     end 
SAL> exec score-print(brownian-music) 
((0  0   (SCORE-BEGIN-END 0 2)) 
(0   0.2 (NOTE vel: 100 pitch: 60)) 
(0.2 0.2 (NOTE vel: 100 pitch: 63)) 
(0.4 0.2 (NOTE vel: 100 pitch: 61)) 
(0.6 0.2 (NOTE vel: 100 pitch: 61)) 
(0.8 0.2 (NOTE vel: 100 pitch: 59)) 
(1   0.2 (NOTE vel: 100 pitch: 58)) 
(1.2 0.2 (NOTE vel: 100 pitch: 59)) 
(1.4 0.2 (NOTE vel: 100 pitch: 61)) 
(1.6 0.2 (NOTE vel: 100 pitch: 64)) 
(1.8 0.2 (NOTE vel: 100 pitch: 61)) 
) 
 

13.8 1/f Noise 
A special class of noise called 1/f Noise has been discovered in many 
natural phenomena including rainfall patterns and sunspot activity. 
Oddly enough, the 1/f relationship has been found by analyzing re-
cordings of non-random music in various styles (Voss, 1978). Num-
ber series generated using a 1/f formula correlate logarithmically 
with past values (Dodge, 1986). Because of this property, 1/f noise 
seems to have a memory for past values, conceptually similar to 
what we’ve seen with Markov processes. This property can be used 
to realize music that has highly-correlated attributes. 

Richard F. Voss developed a simple algorithm to simulate 1/f 
noise (Gardner,  1986). His algorithm uses three six-sided dice: one 
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red, one green, and one blue. The sum of the three dice ranges in 
value from 3 to 18 returning 16 possible values. These 16 values may 
be mapped to any 16 adjacent notes or any 16 musical parameters. 

Voss uses a table similar to that found in Table 13.8.1 to create 
1/f music. The numbers 0 through 7, base 10, are located in the 
leftmost column. The three-digit binary equivalent of the decimal 
value is found in the rightmost three columns. Each binary position 
is associated with a die color noted in the column heading.  

The algorithm commences by rolling all three dice returning a 
value between 3 and 18. This initial action corresponds to Row 0 in 
the table. When comparing Row 0 to Row 1, we note that only the 
red value changes (from 0 to 1). Our corresponding action is to pick 
up the red die and throw it, calculating a new sum for the three dice. 
The new sum is used to select the next note of the composition. We 
are ready to generate a new note, so we compare Row 1 with Row 2 
and find that both the green and red values change. Our correspond-
ing action is to pick up the red and green dice and throw them. The 
dice are summed and the new sum corresponds to another new note. 
This process is repeated until the prescribed number of notes is gen-
erated. If the end of the table is reached, the process continues back 
at the first row. 

Table 13.8.1: Voss-inspired table for 1/f noise 

 Blue Green Red 
010  = 0 0 0 
110  = 0 0 1 
210 = 0 1 0 
310 = 0 1 1 
410 = 1 0 0 
510 = 1 0 1 
610 = 1 1 0 
710 = 1 1 1 

 
Example 13.8.1 is a SAL implementation of a slightly modified 

version of the algorithm by Voss. The principal modification is that 
Example 13.8.1 simulates three five-sided dice. Each die returns the 
values 0, 1, 2, 3, or 4. The sum of the three dice ranges from 0 to 12 
that easily maps to an octave. 

The SAL function 1-over-f accepts as input a number repre-
senting the number of events it should generate. A loop begins the 
iterative process by simulating the initial throw of the three dice rep-
resented by the variables blue, green, and red. The sum of the ran-
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dom process is assigned to the variable total that is cons’ed onto 
the-list. Upon subsequent iterations of the loop, we simulate the toss 
of die only if the variable counter has certain values that correspond 
to the entries in Table 13.8.1. Note that green changes when the 
count is divisible by 2 and blue changes when the count is divisible 
by 4, so these conditions are used to determine when to “roll” the 
green and blue dice. (For the divisibility test, we compare the re-
mainder of division – using the % operator – to zero.) 

Example 13.8.1: one-over-f.sal 

define function 1-over-f(number) 
  loop 
    with the-list 
    for counter from 0 below number 
    for blue = random(5) then  
               #?(counter % 4 = 0,  
                  random(5), blue)  
    for green = random(5) then 
               #?(counter % 2 = 0,  
                  random(5), green) 
    for red = random(5)  
    for total = blue + green + red 
    set the-list @= total 
    finally return the-list 
  end 
 

We can easily apply our function to generate a list of notes based 
on the 1/f algorithm.  Example 13.8.2 creates a pattern generator by 
calling the SAL function 1-over-f inside a score generator. The note 
index, sg:count, indexes into the pitch list to obtain the pitch for 
each note. 

Example 13.8.2: one-over-f-music.sal 
begin 
  with pitches = 1-over-f(10), 
       dur-pattern = make-cycle( 
                         list(q, q, i, i, q)) 
  exec score-gen(save: quote(1-over-f-music), 
                 score-len: length(pitches), 
                 pitch: 40 + nth(sg:count, 
                                 pitches), 
                 vel: 10, 
                 ioi: 0.3 * next(dur-pattern)) 
end 
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13.9 Suggested Listening 
Gloriette for John Cage for mechanical organ was composed by 
Heinrich Taube in 1993. The piece is a tribute to the composer John 
Cage, who died in 1992. As Heinrich Taube states, “In keeping with 
the late composer’s interest in chance music, this work was com-
posed using an algorithmic chance process in which the likelihood of 
the musical notes C-A-G-E being played gradually increases over the 
course of the work, the composer’s name slowly emerges out of the 
harmonic background of G dorian” (Taube, 1993). 

Entropy for computer-controlled piano by Christopher Dobrian 
(Dobrian, 1991) explores the perception of randomness and order 
(entropy and negentropy) in musical structure, and demonstrates the 
use of stochastic methods not only as a model for the distribution of 
sounds in time, but also as a method for variation of a harmonic “or-
der.” The composing algorithm takes as its input a description of 
some beginning and ending characteristics of a musical phrase, and 
outputs the note information necessary to realize a continuous trans-
formation from the beginning to the ending state. The algorithm 
composes melodic phrases of any length by calculating arrays of in-
stantaneous probabilities, and incrementing toward the ending point 
and repeating the process. 

13.10 Suggested Reading 
The chapter “Xmusic and Algorithmic Composition” in The Nyquist 
Reference Manual discusses pattern generators, score generation, and 
score manipulation functions in great detail. The section “Random 
Number Generators” discusses a variety of functions that generate 
random numbers with different probability distributions. 

Karlheinz Essl’s tribute to Anton Webern is based on a twelve-
tone row from Webern's last work. Essl then uses the tone row as the 
basis for an algorithm that randomly generates carillon chimes in real 
time (http://www.essl.at/works/webernuhrwerk/download.html). 
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Chapter 14 Hierarchical and 
Recursive Musical 
Structure 

Most programs are hierarchical. We have already seen many examples of 
nested expressions and function calls. Complex programming problems 
should always be decomposed hierarchically into understandable units that 
can be implemented as functions. Music is often hierarchical. We can de-
compose traditional music into movements, sections, voices, phrases, chords, 
and notes. Musical structures can be reflected in software structures of algo-
rithmic compositions. In this chapter, we look at some of the issues of mov-
ing from “flat” musical structures to hierarchical and recursive ones. 

14.1 Structure from Nested Patterns 
Pattern generators can be nested hierarchically to create interesting 
musical structure. In this section, we present a very simple rhythm 
generator based on nested patterns. Rhythmic patterns can be per-
ceived only if there is repetition involved. Interestingly, almost any 
rhythmic pattern becomes interesting (or at least salient) when it is 
repeated. Thus, to make a rhythmic pattern, we only need to create a 
sequence of rhythmic intervals and then repeat them. 

An interesting way to generate a rhythmic pattern is to divide a 
time span into equal intervals and flip a coin to decide whether each 
interval will contain a sound or not. We can model this as a simple 
random pattern: make-random({#t #f}). Example 14.1.1 uses 
make-random with a for: to keyword parameter to make a rhythmic 
pattern of length 12. 

Example 14.1.1: Rhythmic pattern generation 
SAL> set rp = make-random({#t #f}, for: 12) 
SAL> print next(rp, #t) 
{#f  #t  #t  #f  #f  #f  #t  #f  #f  #t  #t  #f} 
 

If we were to play this pattern once, it would not really sound like 
a pattern since every element is random. However, if we use make-
copier to repeat periods, they become recognizable and suddenly 
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sound very rhythmic. Example 14.1.2 uses make-copier to repeat 
each pattern twice, and a loop prints 6 periods of patterns.  

Example 14.1.2: make-copier repeats patterns 

SAL> set cp = make-copier(rp, repeat: 2) 
SAL> loop repeat 6 print next(cp, t) end 
{#t  #f  #f  #f  #f  #t  #f  #f  #t  #t  #f  #t} 
{#t  #f  #f  #f  #f  #t  #f  #f  #t  #t  #f  #t} 
  
{#t  #t  #t  #t  #t  #f  #f  #t  #f  #f  #f  #t} 
{#t  #t  #t  #t  #t  #f  #f  #t  #f  #f  #f  #t} 
 
{#f  #t  #t  #t  #f  #t  #f  #t  #t  #f  #f  #t} 
{#f  #t  #t  #t  #f  #t  #f  #t  #t  #f  #f  #t} 
 

In this example, a blank line was inserted manually between 
groups to illustrate that that the pattern changes every two periods of 
length 12. Using these ideas, we can make a random, rhythmic drum 
machine. We will use bass drum, snare, and cymbal samples (in-
cluded in Nyquist), each with a different pattern. The patterns will be 
8 time intervals each and the patterns will change every 4 repetitions. 

In Example 14.1.3, one-drum generates a score for one of the 
drum sounds, using copies of periods as described above. The 
drummer function calls one-drum three times for the bass drum, 
snare, and cymbal scores, and merges them. The drum sounds 
themselves are loaded from files, e.g. kit/snare-1.wav contains a 
stereo snare drum sound. The drumsound function appends the file 
name to a path obtained from the global variable *plight-drum-
path* and loads the file using s-read. The *plight-drum-path* is 
set by loading "../demos/plight/drum.lsp", which is part of the 
Nyquist software distribution. 

Experiment with this program. There is no need to make all of the 
patterns the same length. Other sounds can be used. Try latin percus-
sion sounds or record your voice. The patterns generated here tend to 
have “anchor points” where the listener feels a downbeat, but since 
all choices are random, these “anchor points” might not be at the be-
ginning of the cycle. Think about what cues indicate the beginning of 
a repeating pattern. Modify the program to either generate patterns 
that seem to begin on the first beat, or rotate patterns generated by 
make-random so that a good candidate for the first beat is in the 
first beat position. 
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Example 14.1.3: drummer.sal 
load "../demos/plight/drum.lsp" 
 
define function one-drum( 
                   name, beats, copies, phrases, ioi) 
  begin 
    with rp = make-random({#t #f}, for: beats), 
         cp = make-copier(rp, repeat: copies), 
         score 
    return score-gen( 
             name: name,  
             score-len: beats * copies * phrases, 
             pitch: #?(next(cp), 60, nil), 
             vel: real-random(60, 120), 
             ioi: ioi) 
  end 
 
define function drumsound(file, vel) 
  return s-read(strcat(*plight-drum-path*, file)) *  
         (vel / 120) 
          
define function bd(vel: 100) ; bass drum 
  return drumsound("kit/kick-1.wav", vel) 
define function sn(vel: 100) ; snare 
  return drumsound("kit/snare-1.wav", vel) 
define function cy(vel: 100) ; cymbal 
  return drumsound("kit/20-ride-1.wav", vel) 
 
define function drummer(ioi, phrases) 
  begin 
    return timed-seq(score-merge( 
            one-drum(quote(bd), 8, 4, phrases, ioi), 
            one-drum(quote(sn), 8, 4, phrases, ioi), 
            one-drum(quote(cy), 8, 4, phrases, ioi))) 
  end 
 
play drummer(0.15, 4) 
 

14.2 Hierarchy in Scores 
Here is a “toy” problem that illustrates both a conceptual approach to 
music composition and some programming solutions. The problem 
is, given a score, to harmonize C4 and E4 with a C major triad and 
harmonize D4 with a G7 chord. This is a “toy” problem in the sense 
that, while simple, it represents a whole class of programs where a 
score contains an abstract representation of the music. The score 
must somehow be “refined” into a more completely specified com-
position. 
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One simple approach is to use score-apply to transform notes. 
Recall that, by convention, the pitch: attribute of a score event can 
contain a number for a single note or a list of numbers for a chord. 
We can replace C4, D4, and E4 pitches with chords to achieve our 
goal, as shown in Example 14.2.1. In this example, score-apply uses 
add-harmony to check every note and replace pitches as described. 
The final score is saved in harm-out. 

Example 14.2.1: harmonize.sal 
; build a test score 
begin 
  with pitches =  
         list(A3, B3, C4, D4, E4, F4, G4, A4), 
       pitch-pattern = make-line(pitches) 
  exec score-gen(save: quote(harm-in),  
                 score-len: length( pitches), 
                 pitch: next(pitch-pattern), 
                 vel: 100, ioi: 1) 
end ;; global harm-in is now initialized 
 
define function add-harmony(time, dur, expr) 
  begin 
    with pitch =  
           expr-get-attr(expr, keyword(pitch)) 
    if member(pitch, list(c4, e4)) then 
      return list(time, dur,  
                  expr-set-attr(expr, keyword(pitch), 
                            list(pitch, c3, e3, g3))) 
    else  
      begin 
        if pitch = d4 then 
          return list(time, dur, 
                  expr-set-attr(expr, keyword(pitch), 
                           list(d4, b2, d3, f3, g3))) 
        else return list(time, dur, expr) 
      end 
  end 
 
set harm-out = score-apply(harm-in,  
                           quote(add-harmony)) 
 

While this technique is fairly simple, it can only be used to turn 
notes into chords. What if the new notes do not occur at the same 
time? One approach is based on the fact that to play a score, SAL 
evaluates expressions. We can change the name of the function from 
note (the default) to a custom function that generates multiple 
notes. This is illustrated in Example 14.2.2. The first step is to use 
score-voice to change the score events to call harmonize instead of 
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note. score-voice takes a score and a list of substitutions. Here, 
there is just one substitution: a list that specifies a change from note 
to harmonize. The next step is to define harmonize to synthesize 
chords where appropriate. We will learn more about using Nyquist to 
define new synthesis methods later, but the code for harmonize 
should be fairly readable based on your knowledge of SAL and the 
embedded comments. 

Example 14.2.2: harmonize-2.sal 
set harm-out = score-voice(harm-in,  
                           {{note harmonize}}) 
 
define function harmonize(pitch: 60, vel: 100) 
  begin 
    if member(pitch, list(c4, e4)) then 
      return sum(  
        ; synthesize and mix the sounds  
        ; use @ to delay entrances of sounds, 
        ; creating a C-major arpeggio 
        note(pitch: c3, vel: vel) @ 0, 
        note(pitch: e3, vel: vel) @ 0.05, 
        note(pitch: g3, vel: vel) @ 0.1, 
        note(pitch: pitch, vel: vel) @ 0.15) 
    else 
      begin 
        if pitch = d4 then 
          return sum( 
            note(pitch: b2, vel: vel) @ 0, 
            note(pitch: d3, vel: vel) @ 0.05, 
            note(pitch: f3, vel: vel) @ 0.1, 
            note(pitch: g3, vel: vel) @ 0.15, 
            note(pitch: pitch, vel: vel) @ 0.2) 
        else 
          return note(pitch: pitch, vel: vel) 
      end 
  end 
 
exec score-play(harm-out) 
 

Notice that this example does not create a new score; it only expands 
the score into arpeggiated chords when the score is played. If you 
save the score to a MIDI file and play it, for example, you will not 
hear the chords because they are not explicitly represented. This may 
be a feature (you can avoid clutter in the score; you can experiment 
with different renderings of chords without changing the score) or a 
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problem (you cannot see or edit the details in a MIDI editor; you 
cannot transpose the chords using score operations). 

Now, let our goal be to generate a new score where the harmony 
is represented as new notes. For this task, we will use score-apply to 
iterate over the events in the score. Each event will be handled by 
appending notes to a list, forming a new score 

Example 14.2.3 begins by initializing harm-out to nil. This is the 
list that will contain the new score. Next, add-note is defined to 
provide a convenient way to add a note to harm-out.  Most of the 
work is done by harmonize, a function that takes a time, duration, 
and expression. It extracts the pitch: and vel: attributes from the ex-
pression and tests the pitch for the three cases: the note can be har-
monized with a C-major triad, a G7 chord, or just played as is. The 
appropriate notes are added to the score using add-note. score-
apply iterates over the input score, harm-in, applying the harmo-
nize function to each note. harmonize returns well-formed events 
as expected by score-apply. However, the value returned by score-
apply is ignored. The real value of interest is harm-out, which has 
accumulated all the original notes plus the chord notes. To finish the 
processing, harm-out is sorted into time order. 

Notice in this example that the arpeggios precede the note they 
harmonize. One of the advantages of working with scores is that time 
can “run backwards,” allowing notes to cause events to occur earlier 
as well as later. This is not possible using synthesis methods as in 
Example 14.2.2 (although one could delay everything but the arpeg-
gios to achieve a similar effect). 

Example 14.2.3 hints at a more general method of creating scores. 
While it is often convenient to use score-gen, which is basically a 
loop, to construct scores, it is also possible to construct scores ex-
plicitly and directly from list functions. In this example, there was 
really no need to construct the harm-in score. We could have more 
easily just called harmonize from a loop, as shown in Example 
14.2.4. 
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Example 14.2.3: harmonize-3.sal 
set harm-out = nil ;; new score to accumulate events 
 
define function add-note(time, dur, pitch, vel) 
  begin 
    set harm-out @= list(time, dur,  
                         list(quote(note),  
                              keyword(pitch), pitch, 
                              keyword(vel), vel)) 
  end 
 
define function harmonize(time, dur, expr) 
  begin 
    with pitch = expr-get-attr( 
                           expr, keyword(pitch), 60), 
         vel = expr-get-attr(expr, keyword(vel), 100) 
    if member(pitch, list(c4, e4)) then 
      begin 
        exec add-note(time - 0.15, dur, c3, vel) 
        exec add-note(time - 0.10, dur, e3, vel) 
        exec add-note(time - 0.05, dur, g3, vel) 
        exec add-note(time, dur, pitch, vel) 
      end 
    else  
      begin 
        if pitch = d4 then 
          begin 
            exec add-note(time - 0.20, dur, b2, vel) 
            exec add-note(time - 0.15, dur, d3, vel) 
            exec add-note(time - 0.10, dur, f3, vel) 
            exec add-note(time - 0.05, dur, g3, vel) 
            exec add-note(time, dur, pitch, vel) 
          end 
        else 
          exec add-note(time, dur, pitch, vel) 
      end 
    return list(time, dur, expr) 
  end 
 
exec score-apply(harm-in, quote(harmonize)) 
set harm-out = score-sort(harm-out) 
 

Example 14.2.4 uses loop to iterate through the list of pitches, call-
ing harmonize once for each one. The loop also increments the 
time variable so that notes are arranged sequentially in time. 
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Example 14.2.4: harmonize-4.sal 
define variable harm-out ;; new score 
; assume add-note is defined (Example 14.2.3) 
; assume harmonize is defined (Example 14.2.3) 
loop 
  for p in list(A3, B3, C4, D4, E4, F4, G4, A4) 
  for time from 0 
  exec harmonize(time, 1,  
                 list(quote(note),  
                      keyword(pitch), p,  
                      keyword(vel), 100)) 
  finally set harm-out = score-sort(harm-out) 
end 
 

14.3 Encapsulation 
Encapsulation is the act of placing one thing inside another. In pro-
gramming, encapsulation means to place the details of a computation 
or data inside a function, effectively “hiding” them from other parts 
of the program. This separation of concerns is critical when pro-
grams start to become large and complicated. Ideally, programs 
should be modular, allowing sections to be modified or replaced 
without impacting the whole program. In contrast, without encapsu-
lation, a small program change can have consequences throughout 
the program. This would make the program difficult to understand, 
debug, and modify. 

To illustrate encapsulation, we will write a function that generates 
a sequence of notes with a given start time, tempo, and transposition. 
The function, named notes, is shown in Example 14.3.1. Following 
the definition of notes, a loop is used to call notes many times with 
increasing times, tempi, and transpositions, creating a cascade of se-
quences. 

Previously, our scores generated with score-gen started at zero, 
but notice here that score-gen is nested inside a call to score-shift 
that shifts the score in time by the value of the time parameter. The 
tempo parameter is really a time scale factor that is multiplied by 
the durations. The expression exp(i / −6.0) calculates the tempo pa-
rameters, which get exponentially smaller as i increases. Thus, the 
tempo increases each time by a small factor. Notice also how the 
scores returned by notes are accumulated into the variable *score*. 
You can play the result by calling exec score-play(*score*). 
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Example 14.3.1: encapsulation.sal 
define variable *score* 
define function notes(start, tempo, transpose) 
  begin 
    with pitch-pat =  
           make-heap(list(C4, D4, DS4, F4, FS4,  
                          GS4, A4, B4, C5)), 
         dur-pat =  
           make-heap(list(s, s, s, sd, sd, sd,  
                          i, i, id, id, qd)) 
    return score-shift( 
          score-gen(score-len: 9,  
            pitch: transpose + next(pitch-pat), 
            ioi: tempo * next(dur-pat)), 
          start) 
  end 
 
set *score* = nil 
loop  
  for i from 0 below 6 
  set *score* =  
        score-merge(*score*, 
          notes(2 * i, exp(i / -6.0), i * 5)) 
end 
 

Experiment with this program. Try using make-cycle instead of 
make-heap for pitch-pat. Modify the program so that new instances 
of notes enter closer together in time. Modify the program so that 
there is less change in tempo with each instance of notes. Decide 
what you think would make the music sound more interesting, design 
changes to achieve your goal, implement the changes, and test the re-
sults. 

Example 14.3.2 is inspired by a fractal called the Sierpinski trian-
gle and based on a musical version by Rick Taube. This example 
demonstrates recursive encapsulation in the creation of a musical 
fractal. The music is constructed in layers. The first layer is just a 
single note. The second layer consists of three notes that span the du-
ration of the note in the first layer, and these notes are transposed by 
0, 11, and 6 semitones. The third layer takes each of the second layer 
notes, divides the duration by 3, and transposes by 0, 11, and 6 
semitones. Each additional layer continues to subdivide and trans-
pose notes of the previous layer. 

To implement this algorithm, we encapsulate the operation of 
subdividing and transposing using a function. The function calls it-
self recursively to realize successive layers. 
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Example 14.3.2: sierpinski.sal 
define function sierpinski(dur, pitch, layer, tim) 
  begin 
    with score =  
          list(list(tim, dur,  
                    list(quote(note),  
                         keyword(pitch), pitch, 
                         keyword(vel), 100))), 
         transpose-pat 
    if layer > 1 then 
      begin 
        set transpose-pat = make-cycle({0 11 6}) 
        set dur = dur / 3.0 
        loop 
          for i from 0 below 3 
            set score =  
                score-merge(score, 
                  sierpinski(dur,  
                         pitch + next(transpose-pat), 
                         layer - 1, tim + i * dur)) 
        end 
      end 
    return score 
  end 
 
exec score-play(sierpinski(20, c1, 6, 0))  
 

14.4 Compositional Environments 
Quite often, the output of an algorithm does not result in the creation 
of an entire composition. Higher-level compositional environments 
such as MIDI sequencers or multi-track digital audio workstations 
may be used to edit, process, or assemble the output of your algo-
rithms.  Post processing of the output of compositional algorithms 
implies that these algorithms themselves are a part of a whole. For 
this reason, the composer must carefully think about the formal 
structure of a composition and how the output of an algorithm relates 
to the composition as a whole.  

Algorithms that output MIDI data may be positioned onto the 
tracks of a MIDI sequencer.  By positioning the data in a time-do-
main representation, the composer can readily experiment with the 
placement of events in time and the density of those events.  A MIDI 
sequencer allows for graphical editing of MIDI data so small 
changes to the output of an algorithm are simplified. 

Figure 14.4.1 shows an example of the output of two algorithms 
positioned in the time-domain representation of a MIDI sequencer. 
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Figure 14.4.1: A MIDI sequencer display 

Because SAL can output MIDI data from scores (using score-
write-smf) as well as audio (using score-play), the composer may 
wish to assemble a composition using a digital audio workstation 
that works with both MIDI and audio. Similar to Figure 14.4.1, the 
user-interface of a digital audio workstation generally uses a time-
domain representation of audio and MIDI allowing the composer 
great freedom in the organization of musical events. 

14.5 Suggested Listening 
The second movement of American Miniatures by David A. Jaffe 
uses a drum pattern derived from Congolese music, combined with 
an algorithmic drum improvisation. The latter was done by 
systematically performing random perturbations on the drum pattern, 
with the perturbations becoming denser and denser, along with an 
increase in tempo. The output of this program, written in Common 
Music, was a Music Kit scorefile that was used to drive the Music 
Kit “mixsounds” program.  Each “note” in the file was an individual 
drum sample (Jaffe, 1992). 

Eulogy by Mary Simoni integrates processed speech and algo-
rithmic processes to create a tribute commemorating the funeral 
Mass of her father. Csound was used to process the speech written 
and spoken by her siblings. Common Music was used to generate a 
recitative-like accompaniment to the processed speech. The compo-
sition was assembled using a MIDI sequencer that supports digital 
audio (Simoni, 1997). 

Stelios Manousakis has written a thesis and music based on Lin-
denmayer Systems (or L-Systems), which use rules to recursively 
construct fractal-like shapes or sounds from the micro- to the macro-
scale. (L-System music is conceptually similar in many ways to the 
Sierpinski triangle example in this chapter.) Some of Manousakis’s 
music can be heard online at http://www.modularbrains.net/.
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Chapter 15 Composing Sonic 
Microstructure and 
Macrostructure 

Throughout the previous chapters, we have assumed that scores and notes 
form an interface between the world of the composer, who creates the scores 
and notes, and the world of the synthesizer, which turns note specifications 
into sounds. Common music practice, MIDI, and even most music synthesis 
languages promote this idea. In this chapter, however, we will dig below the 
note level to explore the possibilities of pattern generation and algorithmic 
composition at microscopic levels of sonic detail. 

So far, we have relied upon built-in functions, especially note, in Nyquist 
to perform scores. We will have to learn more about Nyquist’s synthesis ca-
pabilities in order to explore further. The next section contains a much-ab-
breviated introduction to Nyquist as a synthesis language. 

After learning about sound synthesis in Nyquist, Section 15.2 presents a 
general function for sound synthesis using pattern generators for sound con-
trol, and Section 15.3 explains how to encapsulate synthesis algorithms so 
they can be invoked from a Nyquist score. 

One of the most important elements of music is the evolution of various 
qualities over time. These include dynamics, tempo, pitch register, harmonic 
tension, and many others. One of the attractions of algorithmic composition 
is that one can specify high-level trends and trajectories, leaving the details to 
be worked out automatically. When the first results are not satisfying, one 
can modify the high-level specification rather than tediously rewriting many 
notes. Section 15.4 shows how you can use high-level controls to guide pat-
tern generators. 

Algorithmic composition is particularly interesting for work at the level in 
between traditional notes and traditional musical sound. It would be humanly 
impossible to perform sounds with elaborate “micro-structure,” but 
computers allow us to approach the synthesis of tones with the same mindset 
we bring to composition. The GENDY programs by Xenakis and colleagues 
(1992) are influential and pioneering work. Sergio Luque surveys this work 
and expands the concept in his thesis (2006). Microsound  by Curtis Roads 
(2004) explores “granular” sound, which refers to sounds and textures cre-
ated by combining many short sound events, usually lasting from 10 to 100 
ms. 



    

15.1 Sound Synthesis in Nyquist 199 

15.1 Sound Synthesis in Nyquist 
We have written programs that deal with numbers, lists, and sym-
bols. Nyquist can also compute sounds. A sound in Nyquist is basi-
cally a function of time that returns a floating point number. Each 
sound has a starting time, ending time (they are not infinite), a sam-
ple rate, and some other properties. Nyquist has many functions that 
return or manipulate sounds. For example pluck(g4, 3.0) returns a 
plucked-string sound with pitch G4 and a duration of 3 seconds. 

play is a special command that evaluates an expression and plays 
the resulting sound. Try evaluating play pluck(g4, 3.0). Typically, 
sounds are constructed by combining many of the built-in functions 
in Nyquist. In Example 15.1.1, we multiply our plucked string sound 
by a low-frequency sinusoid to make a fluttering effect. The “*” 
operator multiplies two sounds together. The lfo function takes two 
inputs—a frequency and a duration. 

The play command prints some information as it works. The first 
line says that the sound is being saved to the file nyquist-temp.wav. 
If you want to keep a sound produced by Nyquist, a simple way is to 
just copy or rename this file so that Nyquist will not overwrite it with 
a new sound. The next line displays sample counts as the sound is 
computed and played. These numbers print about once for every 
second of sound. When the computation completes, play prints the 
total number of samples computed (132300) and some information 
about normalization. Normalization is the process of adjusting the 
overall sound level to avoid distortion. The last thing printed is the 
return value of play, which is the peak amplitude of the sound. If 
things are working normally, this should be about 0.9. Otherwise, 
you might want to consult the Nyquist manual about normalization 
options. 

Example 15.1.1: A tone with rapid amplitude modulation 
SAL> play pluck(g4, 3.0) * lfo(6, 3.0) 
Saving sound file to ./nyquist-temp.wav 
 44880  88740  
total samples: 132300 
AutoNorm: peak was 0.899999, 
     peak after normalization was 0.9, 
     new normalization factor is 1 
0.899999 
 

Figure 15.1.1 illustrates the output of pluck, the output of lfo, and 
the output of mult (the “*” operator) to give a better idea of what is 
going on in this computation. The figure shows only the first 1.5 
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seconds where the amplitude of pluck is relatively high. Notice how 
at each point in time, the amplitude, or height of the product signal, 
is the product of the amplitude of the signal returned by pluck and 
the amplitude of the signal returned by lfo. Thus, “*” performs 
ordinary multiplication, but at every point in time. 

 
 

Figure 15.1.1: The intermediate results returned by pluck, lfo, 
and mult functions 

Nyquist sounds can be “spliced” together in sequence using the seq 
form. seq takes any number of expressions as inputs, evaluates them 
sequentially, and returns a single sound. Example 15.1.2 illustrates 
how seq can be used to play a sequence of pluck sounds. 

Example 15.1.2: Using seq 

play seq(pluck(c4, 0.3), pluck(d4, 0.3), 
         pluck(b4, 0.3), pluck(d5, 2)) 

 
Another very useful Nyquist function is pwl, short for “piece-

wise linear.” This function computes a sound based on a series of 
breakpoints, which give values of the sound at designated times. The 
value of the function is linearly interpolated between these values. 
pwl is not useful for describing audio directly; instead, it offers a 
general way to describe time-varying parameters. 

pwl functions are implicitly 0 at time 0. The first two inputs are 
the time and value of the first breakpoint. The second two inputs are 
the time and value of the second breakpoint, and so on. The last 
breakpoint is specified by a time only—the value is implicitly zero. 
In Nyquist, you can use the s-plot function to display a graph of any 
sound, including the output of pwl functions. Figure 15.1.2 contains 
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images of the plot output for two pwl functions used in Example 
15.1.3. These plots have been annotated to show the connection 
between inputs and the result.

Figure 15.1.2: Graphs of two pwl control functions 

Another way to create pwl functions is using the Nyquist IDE en-
velope editor. You can start this editor by clicking the EnvEdit but-
ton. Details can be found in the on-line Nyquist manual accessed 
using the Help menu. In this book, we will limit ourselves to text-
based specifications of pwl functions which can be edited directly as 
parts of programs. 

In Example 15.1.3, pwl functions control the amplitude and fre-
quency of an oscillator implemented by fmosc. The output of fmosc
is multiplied by the first pwl function to shape the overall amplitude. 
The fmosc function also takes two inputs that control frequency. The 
first is a base pitch specified as a MIDI pitch number. The second 
input (returned by the pwl function) is a sound that gives a frequency 
deviation in Hertz (oscillations per second). Listen to the sound 
while studying the graphs of the pwl control functions in Figure 
15.1.2. 

Example 15.1.3: Using pwl 
play pwl(0.1, 1, 0.3, 0.7, 1.5, 0.5, 2.0) * 

fmosc(c4, pwl(0.3, 0, 0.5, 50, 1.0, -50, 
1.6, 0, 2.0)) 

While these examples present only a small fraction of the func-
tions and capabilities of Nyquist, they should at least introduce how 
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Nyquist performs sound synthesis: functions return sounds that serve 
as both audio signals and time-varying controls, these sounds are 
passed as inputs to other functions that perform further processing, 
and finally a resulting sound is passed to play, which saves the sound 
as a sound file and also plays it. 

15.2 A Pattern-Driven Sound Generator 
pwl is a very general function for control, but it can be very tedious 
to construct elaborate control functions. What would happen if we 
could construct pwl-like controls using pattern generators? This is 
not too difficult in Nyquist, but it requires some detailed knowledge 
of Nyquist functions. Rather than spend a chapter or two presenting 
all the required background knowledge, we will present two “ready-
made” functions and refer the reader to the Nyquist documentation 
for the details. We will use these functions without further modifica-
tion, so a detailed understanding of how they work will not be neces-
sary. 

The first function, pat-ctrl, constructs a control function (which is 
a Nyquist sound) from segments where the duration and amplitude of 
each segment are obtained from patterns.  Consider the code and plot 
in Figure 15.2.1. There are two cycle patterns. The first is used to 
compute segment durations, which are 0.1, 0.2, 0.1, 0.2, …. The sec-
ond computes the amplitude or height of the segments, which are 0, 
1, 2, 0, 1, 2, …. Since any pattern generators can be passed to pat-
ctrl, it becomes a very powerful control mechanism. 

 
Figure 15.2.1: Output from pat-ctrl with simple patterns as in-

put 

The implementation of pat-ctrl is quite compact. The idea is to 
use the Nyquist seq form and to observe that the desired sound can 
be described recursively: “a pat-ctrl is the first segment followed by 
a pat-ctrl.” The segment is generated using another Nyquist func-
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tion, const, which takes, conveniently, a value and a duration as 
inputs. The definition is given in Example 15.2.1: 

Example 15.2.1: pat-ctrl.sal 

define function pat-ctrl(durpat, valpat) 
  return seq(const(next(valpat), next(durpat)), 
             pat-ctrl(durpat, valpat)) 

 
To use pat-ctrl, we need a way to turn a time-varying signal into 

sound. We could listen to pat-ctrl directly, but instead we will use it 
to control the frequency of an oscillator. To keep things simple, we 
will not control amplitude. Example 15.2.2 shows the implementa-
tion of pat-fm, which is based on the synthesis technique of fre-
quency modulation, or FM. The overall pitch is controlled by the 
pitch input which is added to the pitch offsets returned by valpat. 
The overall duration of pat-fm is controlled by the dur input which 
is used to construct a pwl amplitude control for hzosc. 

Example 15.2.2: pat-fm.sal 
define function pat-fm( 
                    durpat, valpat, pitch, dur) 
  begin 
    with hz = step-to-hz( 
                    pitch + pat-ctrl(durpat, valpat)) 
    return pwl(0.01, 1, dur - 0.1, 1, dur) * 
           hzosc(hz + 4.0 * hz * hzosc(hz)) 
  end 
 

The best way to understand pat-fm is with simple examples. 
Example 15.2.3 uses pat-fm and a cycle pattern generator to play a 
C-major scale. The duration pattern input is just 0.2, so every “note” 
is 0.2 seconds long. 

Example 15.2.3: pat-fm-scale.sal 
play pat-fm(0.2,  
            make-cycle({0 2 4 5 7 9 11 12}),  
            c4, 4.8) 
 

Now consider the slight variation in Example 15.2.4, where the 
duration pattern produces a random stream of very small durations 
(from 2 to 4 milliseconds). In this example, the “notes” or pitch off-
sets are so short, they blend to form a timbre rather than distinct 
pitches. 
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Example 15.2.4: pat-fm-fast.sal 
play pat-fm(make-random({0.002 0.004 0.006}),  
            make-cycle({0 2 4 5 7 9 11 12}),  
            c4, 4.8) 

Continuing to experiment, we can make very elaborate patterns, 
still producing very short durations. The resulting sounds blur the 
distinction between timbre and melody. Example 15.2.5 illustrates 
this approach, and endless variations of this example can be created 
by changing input values. 

Example 15.2.5: pat-fm-complex.sal 
set durpat =  
      make-product(  
        make-copier( 
          make-random({0.005 0.01 0.02 0.0025},  
                      for: 1), 
          repeat: 10), 
        1.0) 

 
 set valpat =  
       make-sum(  
         make-copier( ; long-term changes 
           make-accumulate(  
             make-random( 
               {-4 0 1 2 3 {-24 weight: 0.06}}), 
             for: 1, min: -20, :max 20), 
           repeat: make-product( 
                     make-random({1 2 3}), 
                     20)), 
         ; short-term changes for make-sum: 
         make-heap({0 3 5 6 7 9}))  
 
 play pat-fm(durpat, valpat, c4, 40) 
 

The durations are controlled by durpat. The outermost pattern is 
a product of a copier pattern and a number (1.0). This makes it easy 
to scale all durations, just by changing one number. The copier pat-
tern makes 10 copies (using the repeat: keyword parameter) of each 
period returned by the random pattern. Since the default is to return 
periods of 4 random numbers, the for: input of make-random is set 
to 1 so that each period contains just one random number. Thus the 
output might be .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .02 .02 .02 .02 
.02 .02 .02 .02 .02 .02 followed by more random numbers in groups 
of 10. 

The pitch offsets are controlled by valpat, which is the sum of a 
complex pattern and a heap pattern. The heap chooses items from the 
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set {0, 3, 5, 6, 7, 9}. If this set were used alone, the output would be 
a turbulent sound concentrated in a narrow pitch range of 9 semi-
tones. To give more variation over time, the first input to make-sum 
(labeled with the comment “long-term changes”) produces a 
relatively slowly varying pitch offset that is added to the heap pat-
tern. To make this offset vary slowly, make-copier is used to copy 
every value for 10, 20, or 30 times using the repeat: keyword. Al-
though we could just say repeat: 20 to consistently repeat every-
thing 20 times, the code selects a repeat count randomly from the list 
{1 2 3}, and multiplies it by 20. Thus, you can change one number 
(20) to get more or fewer repetitions, and you can change the list {1 
2 3} to get more or less variation in the repetition counts. The long-
term offsets are computed by make-accumulate, which effectively 
produces a random walk by summing integers returned by make-
random. Most of the choices for make-random are small offsets 
(−4, 0, 1, 2, and 3), but there is also a jump of −24 with a very small 
weight. The idea is that the long-term pitch offset tends to drift up-
ward over time in small steps, with an occasional retreat when −4 is 
chosen. However, the long-term offset will occasionally jump 
downward by two octaves (−24 semitones). You can hear these 
events quite clearly in the audio output. To prevent the accumulate 
pattern from getting too high or too low, output values are restricted 
using min: and max: keywords.  

You should experiment with Example 15.2.5 by changing num-
bers to hear their effect. Take out the max: and min: restrictions on 
make-accumulate to hear what happens when the pitch is allowed 
to drift randomly without limit. Adjust the overall durations to be 
much shorter and much longer, and listen to the results. Even when 
pitches last only milliseconds, the offsets labeled “short-term 
changes” have an effect. Try a whole-tone scale {0 2 4 6 8 10}, oc-
taves {0 12 24}, a major triad {0 4 7}, and other pitch sets and listen 
for the differences. 

15.3 Nyquist Sounds and Scores 
The previous example suggests that elaborate patterns could be used 
to specify entire compositions. While this is true, it might become 
very tedious. It might make more sense to write scores to determine 
structure at a higher level. If desired, scores might even be created 
using patterns and other compositional algorithms. In either case, it 
is necessary to invoke instances of functions such as pat-fm from a 
score. That is the topic of this section. 
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Scores contain expressions that are evaluated by XLISP. These 
expressions must satisfy three properties: 

1. The expression must return a sound. 
2. The expression must be a function call with only keyword 

parameters. 
3. The expression must synthesize sound according to the Ny-

quist environment that specifies when a sound should start 
and how long it should last. 

pat-fm satisfies only the first requirement, so we will write a new 
function that satisfies all three properties and calls pat-fm to do the 
actual work. Notice that even though the sound expression is evalu-
ated by XLISP and uses Lisp syntax, the expression can call a func-
tion written in SAL, so we can continue working with SAL. 

Since we are writing a new function, we can decide what input 
parameters to use. There are no right or wrong choices, but obviously 
you should choose parameters that change from one instance to the 
next in the score, and you need not bother making parameters for 
values that always remain the same. We will control pat-fm with the 
following parameters: 

 grain-dur: – the relative duration of the “notes” within a 
sound. This will be a scale factor with a nominal value of 1. 

 spread: – the maximum amount of the long-term pitch 
deviation above and below the base frequency, nominally 
20. 

 pitch: – the base frequency for both long-term and short-
term deviations, nominally 60. 

 fixed-dur: – if true, all durations are the same. If false, dura-
tions are picked at random and repeated 10 times as in 
Example 15.2.5. 

 vel: – an overall loudness control, nominally 100. 
Example 15.3.1 presents a new function, pat-fm-note that can be 

called from a score. Notice that all parameters are declared as key-
word parameters. durpat and valpat are now declared locally in a 
with clause. This is important in case there is more than one copy of 
pat-fm-note invoked from a score—each will have its own local 
copy of durpat and valpat. grain-dur becomes the multiplier in 
make-product to scale durations. fixed-dur is used to select a list of 
durations for make-random—either (0.01), where 0.01 is the only 
choice, or {0.005 0.01 0.02 0.0025}, where there are 4 choices. 
The spread and pitch inputs are passed to pat-fm. The vel input is 
used to scale the output of pat-fm. 
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The third requirement of a score expression is that it follows the 
time and duration specified in the Nyquist environment, which is a 
set of implicit parameters to every sound synthesis function that 
controls time, duration, and other properties. In many cases, sound 
synthesis functions automatically use these parameters and “do the 
right thing,” but in this case, we need to add some explicit control. 
First, pat-fm is embedded in a stretch-abs form – this “turns off” 
any implicit time stretching within the execution of pat-fm, which 
has its own duration control. Second, in the with, we capture the re-
quested duration by calling get-duration(1.0). The result is saved in 
duration and passed on to pat-fm. Details of the Nyquist environ-
ment and transformations are covered in the Nyquist documentation. 

Example 15.3.1: pat-fm-note.sal 
define function pat-fm-note(grain-dur: 1.0,  
                  spread: 20, pitch: c4,  
                  fixed-dur: nil, vel: 100) 
  begin 
    with durpat =  
           make-product( 
             make-copier( 
               make-random( 
                 #?(fixed-dur, {0.01},  
                    {0.005 0.01 0.02 0.0025}), 
                 for: 1), 
               repeat: 10), 
             grain-dur), 
         valpat =  
           make-sum( 
             make-copier( ; long-term changes 
               make-accumulate(  
                 make-random( 
                   {-4 0 1 2 3 {-24 :weight 0.06}}), 
                 for: 1, min: - spread, max: spread), 
               repeat: make-product( 
                         make-random({1 2 3}), 20)), 
             ; short-term changes for make-sum 
             make-heap({0 3 5 6 7 9})),  
         duration = get-duration(1.0) 
    return stretch-abs(1.0, 
             vel * 0.01 * pat-fm(durpat, valpat, 
                                 pitch, duration)) 
  end 
 

Now we are ready to call pat-fm-note from a score. Example 
15.3.2 uses an entirely hand-written score to invoke four instances of 
pat-fm-note that overlap in time. Each instance but the last is gener-
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ally higher in pitch and has shorter grain durations than the one be-
fore. 

Notice that this score is constructed using braces, which implic-
itly quote the list elements. This is one case where using keywords 
(e.g. grain-dur:) as symbols is allowed. SAL translates them 
automatically into the Lisp form with a preceding colon (e.g. :grain-
dur), which is just what we need here. It might be surprising that we 
can use pitch symbols (e.g. c3). Recall that these are global variables 
that normally contain MIDI pitch numbers, e.g. c3 is 48. The reason 
we can pass the symbol c3 after the pitch: keyword rather than the 
value of c3 is that the entire sound expression will be evaluated by 
XLISP to produce a sound. At that time, c3 will be evaluated to 
obtain 48, and this numerical value will be passed to pat-fm-note. 
As always, numbers evaluate to themselves, so numerical inputs are 
unaltered by evaluation. 

Example 15.3.2: pat-fm-score.sal 

exec score-play( 
  {{ 0 30 {pat-fm-note grain-dur: 8 spread: 1  
                       pitch: c3 fixed-dur: t  
                       vel: 50}} 
   {10 20 {pat-fm-note grain-dur: 3 spread: 10 
                       pitch: c4 vel: 75}} 
   {15 18 {pat-fm-note grain-dur: 1 :spread: 20  
                       pitch: c5}} 
   {20 13 {pat-fm-note grain-dur: 1 spread: 10 
                    grain-dur: 20 pitch: c1}}}) 
 

Another option is to generate scores using score-gen or other 
techniques, using algorithmic composition methods to arrange in-
stances of pat-fm-note. Hint: use name: quote(pat-fm-note) in 
score-gen to invoke pat-fm-note (most of our previous examples 
omitted name: and used the default function name note). 

15.4 Nyquist Sounds and Global Control Functions 
Scores offer one way to specify high-level structure in music, but 
they have the limitation that every event in the score generates a new 
instance of some sound generator. What if the sound is supposed to 
evolve according to some continuously varying parameters? In this 
section, we will see how to make pat-fm track a pitch trajectory 
specified by a pwl function. We will also see how a pwl function can 
be used to guide pitch selection in score-gen. 
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In Example 15.2.5, we used a fairly elaborate pattern based on a 
random walk to create an overall pitch trajectory for pat-fm. In 
Example 15.4.1, the value of a pwl function is used instead. The 
variable pitch-contour holds this value, which is of type sound. 
Recall that sounds are just signals that can represent any value that 
changes over time. This sound is a slowly changing one created 
with pwl to represent a slowly varying base pitch. Figure 15.4.1 
shows a graph of pitch-contour that was produced with the com-
mand exec s-plot(pitch-contour, 22, 1000). (The two optional 
inputs say to plot 22 seconds of the sound and to plot 1000 points – 
more than enough to get one point per pixel in the display. Without 
the duration (22), the plot will show only the beginning of the long 
signal.) 

 

Figure 15.4.1: Plot of pitch-contour 

Our goal is to incorporate values from pitch-contour into pattern 
generation; thus we need a way to access a sound at a particular 
time point to obtain a number. The built-in function sref accom-
plishes this task, and to simplify the code, we define a SAL function, 
get-pitch, that returns this value. sref takes two inputs: a sound to 
be accessed, and a time offset. Here, the time offset is zero because 
we want the current time. For anyone with programming experience, 
the notion of current time may seem unusual. Nyquist maintains a 
notion of time when it computes sounds, and we will soon see that 
get-pitch is called in the context of computing a sound, so get-pitch 
will automatically move through pitch-contour, producing a se-
quence of changing pitch values that follow the plan spelled out by 
the pwl breakpoints. 

Example 15.4.1 shows the definition of pitch-contour and get-
pitch and introduces a new type of pattern constructor. The make-
eval pattern evaluates an expression whenever the pattern needs to 
generate a value. The expression must be a Lisp expression, not a 
SAL expression. Recall that sound expressions in scores are also 
Lisp expressions, so we have already seen how to write a function 
call: just put the function name (a symbol) as the first element of a 
list, and place any inputs in the list after the function name. In this 
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case, there are no inputs, so the list contains only the function name. 
The expression to make the pattern is make-eval({get-pitch}). To 
test your understanding, explain the meaning of the following (incor-
rect) expressions: make-eval(get-pitch), make-eval(quote(get-
pitch)), make-eval(list(get-pitch)). In Example 15.4.1, you can see 
that the “long term” pitch changes generated by a random walk in 
Example 15.2.5 are replaced by the make-eval pattern that accesses 
pitch-contour. You can hear the general pitch contour following the 
pwl function, rising by 25, falling to 10 and holding steady for 10 
seconds, and finally rising back to 25. 

Example 15.4.1: pwl-pat-fm.sal 
define variable pitch-contour =  
        pwl(10, 25, 15, 10, 20, 10, 22, 25, 22) 
define function get-pitch() 
  return sref(pitch-contour, 0) 
 
define function pwl-pat-fm() 
  begin 
    with durpat =  
           make-product( 
             make-copier( 
               make-random( 
                 {0.005 0.01 0.02 0.0025}, 
                 for: 1), 
               repeat: 10), 
             1), 
         valpat =  
           make-sum( 
             make-copier( ; long-term changes 
               make-eval({get-pitch}), 
               repeat: make-product( 
                          make-random({1 2 3}), 20)), 
             ; short-term changes for make-sum 
             make-heap({0 3 5 6 7}))  
    return pat-fm(durpat, valpat, c4, 22) 
  end 
 
play pwl-pat-fm() 
 

In this example, pitch-contour functions as a score. More control 
functions can be added to govern the evolution of other parameters 
such as grain duration. Note how small changes to pitch-contour 
can make significant changes to this little composition. In the next 
section, we will see how Nyquist control functions can be used to 
guide score generation. 
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15.5 Scores and Global Control Functions 
Composers often think in terms of overall melodic contour and other 
large-scale structures. Nyquist control functions, specified using pwl 
or other means, can guide the computation of note parameters within 
score-gen.  

In Example 15.5.1, pitch is calculated by using sref to look up the 
current value of pitch-contour. The second input of sref is sg:start, 
the start time of the note. The observant reader may well ask: Why 
specify sg:start here when we specified 0 in Example 15.4.1? A full 
explanation is rather involved, but basically, the input is a relative 
offset from the current time of signal evaluation. In Example 15.4.1, 
sref is invoked during a signal computation, whereas Example 
15.5.1 calls sref before computing any signals, so there the current 
time is always 0 and we need to offset this by sg:start. 

Continuing with Example 15.5.1, the value returned by sref is 
added to c4. In addition, even-numbered notes are transposed down 
5 semitones. Finally, truncate is applied to the pitch value to make it 
an integer. There is nothing that requires integer pitch numbers, and 
it is possible at this point to return whole tones, quarter tones, or 
even map the pitch to the nearest note in a diatonic scale. 

In this example, the duration (dur:) of each note is slightly 
shorter than the inter-onset time (ioi:), and the velocity (vel:) is 100. 

Example 15.5.1: pwl-score.sal 

begin 
  with pitch-contour = pwl(10, 25, 15, 10,  
                           20, 10, 22, 25, 22), 
       ioi-pattern = make-heap({0.2 0.3 0.4}) 
  exec score-gen(save: quote(pwl-score), 
         score-dur: 22, 
         pitch: truncate( 
                  c4 +  
                  sref(pitch-contour, 
                       sg:start) + 
                  #if(oddp(sg:count), 0, -5)), 
         ioi: next(ioi-pattern), 
         dur: sg:ioi - 0.1, 
         vel: 100) 
end 
 
Listen to this example, and try some variations by editing the 

breakpoints that determine pitch-contour. Also, try taking out the 
truncate function. 
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15.6 Further Explorations 
This chapter only scratches the surface of the possibilities of 
combining continuous functions and signal processing techniques 
with discrete event sequences and algorithmic composition 
techniques. We have seen how patterns and algorithmic composition 
techniques can control minute details of sound synthesis. We have 
also seen how signals (sounds) can control or direct large-scale 
musical forms. But these are just an introduction. 

On the synthesis front, algorithmic composition can also be used 
to select digital audio effects, waveforms, and many other details of 
sound generation. Since Nyquist is a sound synthesis system as well 
as a composition system, it offers many ways to easily explore 
connections between algorithmic decision making and sound 
synthesis. 

To control larger forms, the pwl function is just one way to 
compute a control function. Other functions, such as lfo (the low-
frequency oscillator), can be used, and there are many opportunities 
for manipulating control functions with filters and other effects. The 
Nyquist IDE also includes a function editor that can be used to edit 
control functions using a graphical interface. Finally, it should be 
pointed out that Nyquist can extract control signals from audio data. 
Built-in functions such as rms for amplitude analysis, yin for pitch 
analysis, and snd-fft for spectral analysis offer a way to “recycle” 
music data and even non-music audio in interesting ways. 

15.7 Suggested Listening 
Iannis Xenakis used his GENDY-N program to create S.709 (1992), 
an influential work where audio waveforms are constructed 
algorithmically. This piece is recorded on the CD titled Electronic 
Music. 

Christopher Ariza factored form, ostinati, and texture into an 
algorithm where the user sets inputs such as hexachord, octave 
displacements, MIDI assignments, and more. The result is the 
composition guido's windchime (http://www.flexatone.net/cgi-bin/ 
py/flexNet/software/flexatone.cgi?stateNext=1&id=guido&count=0). 
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Chapter 16 Extended Examples 

One of the difficulties of writing about programming of any kind is that real-
istic examples are simply too big and full of uninteresting detail for ordinary 
reading. Consequently, we, as authors, try to distill examples down to their 
essential elements and hope the reader will understand how to apply these 
elements in larger, more realistic contexts. In this chapter, we will present 
“real” examples in the hope that seeing larger programs will help to clarify 
the process of algorithmic composition and prepare the reader to work be-
yond the “toy” examples seen so far. 

The first program describes the development of a piece of music by Roger 
Dannenberg for the soundtrack of a multimedia science show on tissue engi-
neering. The second program is based on the work of Edwin Shao, who de-
veloped algorithms for converting text to music as an undergraduate class 
project at Carnegie Mellon University. 

16.1 Jellyfish Music Example 
This is a personal account of a compositional process, so I will use 
the first person for my description. My task was to create the entire 
soundtrack for a multimedia show on tissue engineering that was de-
signed for presentation in a planetarium. (Although planetaria are de-
signed to project star fields and teach the public about astronomy, 
they are usually equipped with multiple image projectors, multi-
channel sound diffusion, and automated control, making them ideal 
for multimedia presentations of all kinds.) I will describe the music 
for one short scene that included beautiful images of jellyfish. There 
is a voice-over that runs throughout the scene, so one challenge was 
to coordinate the music with the voice, working with it rather than 
competing with it. I used algorithmic composition mainly so that I 
could adjust the structure, harmony, and durations without extensive 
rewriting. That way, if the music, voice, and images did not work 
well together, I could make changes rather easily. 

This music was originally created in Nyquist before the pattern 
generator library (xm.lsp) was available. I have attempted to recreate 
the development process using the methods and software described 
in this book.  
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I began by improvising1 at a synthesizer keyboard. I found a sim-
ple texture that sounded promising, created from a few note choices 
under each hand. I observed that I was mainly alternating left and 
right hands and avoiding note repetitions in either hand. For exam-
ple, if the left hand played an F, it would typically be followed by a 
note in the right hand, and that would likely be followed by a note in 
the left hand that was not an F. 

This led to a more formal description of a generative algorithm: 
Start with two sets of pitches named lh and rh. Construct a melody as 
a sequence of pitches, where each pitch is chosen as follows: First, 
select a set (either lh or rh). Favor the set that has been selected 
fewer times in the past. Next, select a pitch from the set. Do not 
choose the same pitch that was selected last time, and avoid pitches 
that have been selected recently. 

This description is practically calling for pattern generators. Se-
lecting a set (lh or rh) can be accomplished with weighted random 
selection, and pitch selection can use a heap pattern. Let’s create a 
simple test and listen to the results: 

Example 16.1.1: jellyfish-1.sal 

define function j1( 
     beatdur, notes, lh-heap, rh-heap, notedur) 
  begin 
    with lh-pat = make-heap(lh-heap, for: 1), 
         rh-pat = make-heap(rh-heap, for: 1), 
          p-pat = make-random(list(lh-pat,  
                                   rh-pat)) 
    return score-gen(score-len: notes,  
                    save: quote(j1-score), 
                    dur: notedur, ioi: beatdur, 
                    vel: real-random(70, 120), 
                    pitch: next(p-pat)) 
  end 
 
exec score-play(j1(0.35, 20, list(g3, ef4, f4),  
                   list(g4, bf4, c5, d5), 0.5)) 
 

Example 16.1.1 uses make-heap to select from left-hand and 
right-hand pitch sets, and make-random is used to select which 
hand will play the next pitch. Note that for: 1 is used with make-
heap; otherwise, after make-random selected a hand, the hand pat-
tern would be called to play all of its pitches before selecting the next 

                                                        
1 Given my keyboard skills, “noodling” might be a better term. 
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hand to play. Using for: 1 tells the hands to play periods of length 1, 
so a new hand is selected after each pitch. 

Listening to this example, the piano sound is rather bare. I spent a 
lot of time creating synthetic instruments for this music, and we will 
address some of the orchestration issues later. For now, the other 
problem is that this example does not fully meet the specification we 
started with. In particular, you might hear some repeated notes. This 
happens when the same hand is chosen twice in succession and the 
hand exhausts its set of pitches with the first note and after replen-
ishing the set, the heap pattern happens to randomly choose the note 
that was played previously. It is not too likely, but it does happen. 

The heap pattern offers an option (max: 1) to disallow repetitions 
like this, but the reality is that you will always run into situations 
where the desired behavior is not built in. Your choices are either to 
compromise or write programs to do what you want. I chose to add a 
little program complexity. This enabled me, in addition to eliminat-
ing repetitions, to weight the choice of hand based on how many 
times notes had been played by that hand. (I am not sure this part 
really matters, but this is how the music was conceived and imple-
mented.) 

The new solution uses heap patterns, but they are called explicitly 
so that I can throw out repeated notes. This makes it hard to use a 
random pattern to select the next hand that plays, so the weights and 
selection are also explicit in the code. 

In Example 16.1.2, variables are defined to retain pattern genera-
tors (lh-pat and rh-pat), the number of pitches generated from each 
pattern (lh-cnt and rh-cnt), and the previous pitch generated from 
each pattern (lh-prev and rh-prev). Ideally, these should be declared 
in a begin-end block, making them local to one function, but in this 
case, the variables must retain their values between calls to select-
pitch, so they must be globals. The select-pitch function uses lh-cnt 
and rh-cnt to make a weighted selection that favors the hand used 
the least so far. For example, if lh-cnt and rh-cnt are 3 and 4, re-
spectively, then lhw and rhw will be 16 and 25, so lhw / (lhw + 
rhw) is about 0.39. The random number from rrandom() is between 
zero and one, so it has a 39% chance of picking the right hand and a 
61% chance of picking the left hand. 

Once a hand is picked, a loop generates pitches from the heap 
pattern (lh-pat or rh-pat) until the pitch does not match the previous 
pitch (lh-prev or rh-prev). This will take at most two iterations; then 
the selected pitch is returned. 
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Example 16.1.2: jellyfish-2.sal 
define variable  
    lh-heap = list(g3, ef4, f4), 
    rh-heap = list(g4, bf4, c5, d5),  
    lh-pat = make-heap(lh-heap, for: 1), 
    rh-pat = make-heap(rh-heap, for: 1), 
    lh-cnt = 0, ; how many previous lh? 
    rh-cnt = 0, ; how many previous rh? 
    lh-prev, rh-prev ; remember prev pitches 
; choose left or right hand,  
; generate non-duplicate pitch 
define function select-pitch() 
  begin 
    with lhw = 1 + lh-cnt * lh-cnt, 
         rhw = 1 + rh-cnt * rh-cnt ; weights 
         ; favor the hand used the least so far 
    if rrandom() > float(lhw) / (lhw + rhw) 
    then  
      begin ; use left hand 
        set lh-cnt += 1 ; increment use count 
        ; generate left-hand pitch until it’s  
        ; not a duplicate 
        loop  
           for pitch = next(lh-pat) 
           while pitch = lh-prev 
           finally  
             begin ; remember selection 
               set lh-prev = pitch 
               return pitch 
             end 
        end 
      end 
    else ; use right hand 
      begin ; just like the left-hand code  
        set rh-cnt += 1 ; increment use count 
        loop  
          for pitch = next(rh-pat) 
          while pitch = rh-prev 
          finally  
            begin ; remember the selection 
              set rh-prev = pitch 
              return pitch 
            end 
        end 
      end 
  end 
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define function j2(beatdur, notes, notedur) 
  begin 
    return score-gen(score-len: notes,  
                    save: quote(j1-score), 
                    dur: notedur, ioi: beatdur, 
                    vel: real-random(70, 120), 
                    pitch: select-pitch()) 
  end 
 
exec score-play(j2(0.35, 20, 0.5)) 
 

The function j2 builds a score, calling select-pitch to generate 
each pitch. The composition so far seems boring after a short time, 
so I decided to change pitch sets. This part of the work is not algo-
rithmic. I made a list of times where a change in harmony would 
complement the script. The scripted narration was already recorded 
when I started work, so I could write down exact times of phrases. 
Example 16.1.3 has my notes on timing and phrases from the script. 

Example 16.1.3: Excerpt from jellyfish-3.sal 
;; start at 251.5 "bones and a skeleton" 
;; 263 "thank goodness simple fractures" 
;; 269 "these are ancient drawings" 
;; 280 "this simple form of engineering..." 
;; 289 "what about this horribly ..." 
;; 301 "remedy" 
;; 305 "of course" 
;; 312 "basically" 
;; 319 "a scaffold" 
;; 334 "make new bone?" 
;; 344 "scientists" 
;; 351 "...naturally." end 
 

Based on these timings and the mood of the script, I composed 
pitch sets at the keyboard. These pitch sets became inputs to function 
calls that generated scores. The technical difficulty here is that the 
duration of each section does not necessarily span a whole number of 
notes, so I could not simply generate sections and splice them to-
gether. Instead, I needed a way to generate notes until approximately 
the desired time, then start generating the next section where the pre-
vious one left off. (An alternative method would be to work out all 
the times in terms of exact beats, but that would make it difficult to 
change tempos at a later time.) In this case, the problem determined 
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the program structure. I would simply write a function that generates 
notes from the current time until approximately the desired end time. 
Then I would call this function many times with different input val-
ues to build the piece from beginning to end. This approach is similar 
to the one used in Example 14.3.1 (encapsulation.sal). 

Example 16.1.4 is the result of this approach. The main function, 
j3, calls j-sect once for each section of music. j-sect is similar to j2 
in Example 16.1.2 except that it stores the computed score in the 
local variable section and appends it to *score*. Thus, repeated 
calls to j-sect build a complete score. 

One potential problem with this score is that, because independ-
ent sections are spliced together, the last note of one section could be 
repeated at the beginning of the next section.  Fortunately, this never 
happens because the lh-prev and rh-prev variables remember the 
previous pitch across calls to j-sect. In other cases, the Nyquist 
function score-adjacent-events might be useful to do some local 
adjustments of pitches or other parameters (see Example 4.5.14).  

Example 16.1.4: Code from jellyfish-3.sal 
;; uses variable definitions and select-pitch 
;; definition from Example 16.1.2 
define function j-sect( 
               start, dur, beatdur, lh-heap, rh-heap) 
  begin 
    with notes = (start + dur - *time*) / beatdur, 
         section ; result score for this section 
    ;; reset some variables used by select-pitch: 
    set lh-pat = make-heap(lh-heap, for: 1) 
    set rh-pat = make-heap(rh-heap, for: 1) 
    set lh-cnt = 0 ; how many previous lh selections? 
    set rh-cnt = 0 ; how many previous rh selections? 
    set notes = 2 * round(notes / 2) ; even # of nts 
    set section = score-gen(score-len: notes, 
                           begin: *time*,  
                           ioi: beatdur, 
                           vel: real-random(70, 120), 
                           pitch: select-pitch()) 
    ;; merge new notes with previous ones in *score*: 
    set *score*  = score-merge(*score*, section) 
    ;; update time so next section follows this one 
    set *time* += notes * beatdur 
  end 
 
 
define variable *score* = nil, *time* = 251.5 
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define function j3() 
  begin 
    ;;          start  dur beatdur lh-heap/rh-heap 
    exec j-sect(251.5, 11.5, 0.44, {g3 ef4 f4},  
                                   {g4 bf4 c5 d5}) 
    exec j-sect(263  ,  6  , 0.38, {f3 df4 ef4}, 
                                   {f4 af4 c5}) 
    exec j-sect(269  , 11  , 0.33, {fs3 ds4 e4}, 
                                   {g4 af4 df5}) 
    exec j-sect(280  ,  9  , 0.33, {bf2 af3}, 
                                   {d4 gf4 af4 bf4}) 
    exec j-sect(289  , 12  , 0.36, {ef3 c4 df4}, 
                                   {ef4 af4 bf4 df5}) 
    exec j-sect(301  ,  4  , 0.33, {f3 c4}, 
                                   {f4 g4 bf4 c4}) 
    exec j-sect(305  ,  7  , 0.33, {cs3 b3}, 
                                   {fs4 cs5 e5}) 
    exec j-sect(312  ,  7  , 0.33, {cs3 b3}, 
                                   {e4 fs4 b4} ) 
    exec j-sect(319  , 15  , 0.33, {bf3 af3}, 
                                   {ef4 f4 bf4 c5}) 
    exec j-sect(334  , 10  , 0.36, {ef3 af3 df4}, 
                                   {f4 af4 bf4 c5}) 
    exec j-sect(344  , 10  , 0.40, {bf3 f3 c4},  
                                   {af4 bf4 f5 g5}) 
  end 
 
exec j3() 
exec score-play(score-shift(*score*, -251.0)) 
 

16.2 Orchestration 
Now that the pitch and rhythm are taken care of, we can turn our at-
tention to timbre. Originally, I thought I might use one instrument 
sound (but not the piano) for this little piece, but at some point de-
cided I wanted to change the orchestration when I changed pitch sets. 
This can be implemented simply by passing the orchestration infor-
mation to the function that generates each section. 

In Example 16.2.1 you can see that j-sect from Example 16.1.4 
has been renamed to j-orch, and a new parameter, instr, has been 
added. The value of instr is a symbol that names a synthesis func-
tion. The line “name: instr” tells score-gen to use the value of instr 
as the function name for each score event. j-orch is called from 
within j4, which provides synthesis function (instrument) names for 
each section. The synthesis functions are defined in orchestra.sal. 

To finish the piece, I added some reverberation and chorus ef-
fects, as shown below in Example 16.2.2. (Some further processing 
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was done with audio and video editing software to add the voice-
over, refine the levels to make all the narration intelligible, etc.) De-
scribing things from the innermost expression outward, the function 
jrender uses timed-seq to synthesize the score. A few seconds of 
silence are appended to allow for reverb decay. (The seq function 
joins the result of timed-seq with silence generated by s-rest.) Then 
jrender applies chorus and reverb. The output of the reverb is saved 
to the file jellyfish.wav using s-save. Unlike play or score-play, the 
function s-save does not use the “autonorm” facility to automatically 
scale the output amplitude of a sound. If the level is too low, the 
sound will be hard to hear, but if the level is too high, the sound will 
be clipped to lie within the maximum values of +1 and −1, causing 
distortion of the desired waveforms. In this example, we multiply the 
output of my-reverb by 1, so in fact, no scaling was necessary. How 
do we know? The value returned by s-save is the maximum sample 
value. The format function prints a message with this peak value 
returned by s-save. If the value is in a good range, say, between 0.5 
and 1, then the scale factor is fine. If not, you should edit the scale 
factor and try again.  

Example 16.2.1: Excerpts from jellyfish-4.sal 
load "orchestra" ;; definitions of instruments 
define function j-orch( 
        start, dur, beatdur, lh-heap, rh-heap, instr) 
  begin 
    with notes = (start + dur - *time*) / beatdur, 
         section ; result score for this section 
    ;; reset some variables used by select-pitch: 
    set lh-pat = make-heap(lh-heap, for: 1) 
    set rh-pat = make-heap(rh-heap, for: 1) 
    set lh-cnt = 0 ; how many previous lh selections? 
    set rh-cnt = 0 ; how many previous rh selections? 
    set notes = 2 * round(notes / 2) ; even # of nts 
    display "j-orch", instr 
    set section = score-gen(score-len: notes, 
                        name: instr, begin: *time*,  
                        ioi: beatdur, 
                        vel: real-random(70, 120), 
                        pitch: select-pitch()) 
    exec score-print(section) 
    ;; merge new notes with previous ones in *score*: 
    set *score*  = score-merge(*score*, section) 
    ;; update time so next section follows this one 
    set *time* += notes * beatdur 
  end 
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define variable *score* = nil, *time* = 251.5 
define function j4() 
  begin 
    ;;         start  dur  beatdur lh-heap/rh-heap 
   exec j-orch(251.5, 11.5, 0.44, {g3 ef4 f4},  
               {g4 bf4 c5 d5}, quote(sine-bell)) 
   exec j-orch(263  ,  6  , 0.38, {f3 df4 ef4}, 
               {f4 af4 c5}, quote(j1-note)) 
   exec j-orch(269  , 11  , 0.33, {fs3 ds4 e4}, 
               {g4 af4 df5}, quote(ting-tone)) 
   exec j-orch(280  ,  9  , 0.33, {bf2 af3}, 
               {d4 gf4 af4 bf4}, quote(ting-pluck)) 
   exec j-orch(289  , 12  , 0.36, {ef3 c4 df4}, 
               {ef4 af4 bf4 df5}, 
               quote(ting-pluck-mellow)) 
   exec j-orch(301  ,  4  , 0.33, {f3 c4}, 
               {f4 g4 bf4 c4}, 
               quote(flutey-tingy-pno)) 
   exec j-orch(305  ,  7  , 0.33, {cs3 b3}, 
               {fs4 cs5 e5}, 
               quote(flutey-tingy)) 
   exec j-orch(312  ,  7  , 0.33, {cs3 b3}, 
               {e4 fs4 b4}, quote(ting-tone-del)) 
   exec j-orch(319  , 15  , 0.33, {bf3 af3}, 
               {ef4 f4 bf4 c5}, quote(ting-pluck)) 
   exec j-orch(334  , 10  , 0.36, {ef3 af3 df4}, 
              {f4 af4 bf4 c5}, quote(ting-pluck-del)) 
   exec j-orch(344  , 10  , 0.40, {bf3 f3 c4},  
               {af4 bf4 f5 g5}, quote(k-sound)) 
  end 
 
exec j4() 
 

The function play-file plays the file. By using s-save followed by 
play-file, we can compute scores of any complexity and play them 
back smoothly, even if the computer cannot compute the sound in 
real-time. 
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Example 16.2.2: Excerpt from jellyfish-4.sal 

;; MY-REVERB -- reverb effect 
;;    mixes dry signal with reverberated signal 
define function my-reverb(snd, rt, depth) 
  return (1 - depth) * snd + 
         depth * reverb(snd, rt) 
 
define function jrender(score) 
  exec format(#t, "PEAK: ~A~%", 
         s-save(1.0 * my-reverb( 
                       stereo-chorus(  
                        seq(timed-seq(score),  
                            s-rest(3.0))),  
                        1.5, 0.1), 
                ny:all, "jellyfish.wav")) 
 
exec jrender(score-shift(*score*, -251.0)) 
 
exec play-file("jellyfish.wav") 
 

16.3 Text to Music 
Music is often referred to as a language (Minsky, 1981a, 1981b) and 
there are many parallels. The idea of translation from text to music is 
quite natural to the algorithmic musician. In fact, one of the first 
instances of algorithmic composition is a method of translating text 
to pitches in Micrologus by Guido d’Arezzo around 1025. 

The example here is based on a program by Edwin Shao. The ba-
sic idea of this program is to map each letter of a text string to a 
pitch, forming a pitch sequence. To assure “reasonable” pitches, the 
program relies on instrument descriptions that give a range of inte-
gers that can be used to indicate pitch. Each instrument can have a 
unique range, and it is up to the instrument to convert from an inte-
ger in this range to an actual pitch. A list of three values is used to 
represent an instrument. Rather than access these values using ge-
neric functions such as first, second, and third, mnemonic access 
functions are defined (see Example 16.3.1) to make the program 
more readable. instr-make is defined to create an instrument de-
scription from three parameters. 
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Example 16.3.1: Instrument structure excerpt from 
wordmusic.sal 
;; INSTR structure represents instruments as a  
;; list: (name lowest highest) 
;; These are accessor functions. Use them so  
;; that your code is not dependent upon the 
;; exact list layout: 
;; 
define function instr-name(instr)  
  return first(instr) 
define function instr-lowest(instr)  
  return second(instr) 
define function instr-highest (instr)  
  return third(instr) 
define function instr-make( 
                         name, lowest, highest)  
  return list(name, lowest, highest) 
 

The program will convert characters of text to integers (details 
will follow) and then map these integers into the range of an instru-
ment. The function map-pitch performs this task by using % (the 
remainder operator), relying on the property that n % range is a 
number between 0 and range-1. 

Example 16.3.2: map-pitch excerpt from wordmusic.sal 

;; MAP-PITCH -- translate input number into  
;; instrument range  
define function map-pitch(n, instr) 
  return n % (instr-highest(instr) –  
              instr-lowest(instr)) + 
         instr-lowest(instr) 
 

The basic algorithm is as follows: starting with a text string, 
translate each character of text to an integer using the char-code 
function. Then use map-pitch to generate a pitch in the range of the 
desired instrument. A note is generated for each character. 

To make things more interesting, the duration of each note is de-
termined by a variable that is updated when certain punctuation 
characters are encountered.  

Another aspect of the program is instrument selection. The text is 
divided into paragraphs, where two adjacent newline characters indi-
cate a paragraph. An instrument is selected for each paragraph from 
a list of instruments. Instrument selection is based on the length of 
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the paragraph, using the remainder of the length divided by the num-
ber of instruments to index into the instrument list. 

We are now ready to look at the code for the wordmusic pro-
gram. The algorithm is broken into two functions. Example 16.3.3 
shows the first one, wordmusic, which takes input text as a single 
string, and a list of instruments. It returns a score. 

wordmusic uses a loop to find and translate paragraphs in text. 
Initially, score is empty (nil) and text is the complete text to be 
translated. Each iteration of the while loop removes a paragraph 
from text and appends the translated paragraph to score. The test in 
the while loop causes the loop to exit when text is the empty string 
(in other words the last paragraph has been removed). 

Example 16.3.3: Wordmusic excerpt from wordmusic.sal 
define function wordmusic(text, translations) 
  begin with i, ;index of paragraph boundary 
             score, paragraph 
    loop ; iterate through paragraphs of text  
      while length(text) > 0 
      ; find end of paragraph: 
      set i = string-search("\n\n", text))  
      display "wordmusic", i, text 
      if null(i) then  
        ; not found, so go to end of text 
        set i = length(text) 
      else ; found. include newlines in count 
        set i += 2 
      ; i is now the length of the first  
      ; paragraph. Extract it here: 
      set paragraph = subseq(text, 0, i) 
      set text = subseq(text, i) ; remove it 
      set score = score-append(score, 
                    paragraphmusic(paragraph, 
                                 translations)) 
      finally return score 
    end 
  end 
 

To find a paragraph, string-search finds the first location of two 
newlines (a newline is written as “\n”; the backslash is called an es-
cape character and is used as a prefix to change the interpretation of 
“n” from “n” to newline). If a match is not found, string-search re-
turns nil. This case is tested by the if command. If the search results 
in nil, the index i is set to the length of the entire text. In other 
words, we treat the remaining text as a final paragraph. On the other 
hand, if two newlines are found, we increment the index i by 2 so 
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that the newlines are included in the paragraph. Next, subseq is used 
to copy the first i characters of text into paragraph. This has no 
effect on the text string, so the next expression takes the remaining 
text starting at location i and assigns it to text, effectively removing 
the first i characters. Finally, paragraphmusic is used to compute a 
score from paragraph (which saved the characters removed from 
text), and the result is appended to score, which accumulates all the 
notes. 

Example 16.3.4 shows the definition of paragraphmusic, which 
is based on score-gen. Most of the code is in the function new-dur-
pause and deals with the computation of dur and pause from (1) 
the current character, represented as a string of length one, and (2) 
the previous values of dur and pause passed in as a list of the two 
values. A chain of if-then-else commands checks for a match to the 
special characters, including period, comma, question mark, excla-
mation point, colon, semicolon, space, and newline. When a special 
character is matched, dur and pause are updated. Notice that string 
comparison must use the string-equal function rather than “=”. (The 
“~=” operator would also work.) Other characters are ignored, which 
means that dur will hold until the next special character changes it. 
To keep dur positive, it is constrained to be at least 0.025 (seconds). 
At the end of new-dur-pause, dur and pause are packed into a list 
and returned. This is a programming trick that allows us to return 
more than one value from a function. 

In paragraphmusic, the length of the score is the length of the 
text. The instrument is selected by taking the remainder (% operator) 
of the text length divided by the number of instruments: 
length(translations). The pre: keyword is used in score-gen to call 
new-dur-pause. To extract a one character string from the para-
graph, we use subseq, a built-in function. Notice how sg:count, 
which counts the number of notes computed so far, is used to select 
the character. For pitch, we use map-pitch, defined in Example 
16.3.2, which requires a number and an instrument description. The 
number used is the internal (ASCII) code used to represent the cur-
rent character.  

A character is an XLISP data type we have not used so far and 
which is not really supported by SAL. For example, you can write 
#\A in in XLISP to indicate the character “A,” but this is not a valid 
SAL expression. Nevertheless, SAL does not prevent you from call-
ing any XLISP function. We use char to access a character in the 
paragraph string, and char-code to extract the integer representa-
tion of that character: char-code(char(paragraph, sg:count)) re-
turns an integer that we pass to map-pitch. 
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Example 16.3.4: paragraphmusic excerpt from wordmusic.sal 
;; convert a one-character string to a  
;;   duration and pause 
define function new-dur-pause(c, dur-pause) 
  begin 
    with dur = first(dur-pause), 
         pause = 0 ; default is no pause  
    if string-equal(c, ".") then  
      begin 
        set dur -= 0.1 
        set pause = 1 
      end 
    else  
      if string-equal(c, ",") then  
        begin 
          set dur -= 0.05 
          set pause = 0.5 
        end 
      else  
        if string-equal(c,"?") then  
          begin 
            set dur += 0.35 
            set pause = 1 
          end 
        else  
          if string-equal(c, "!") then  
            begin 
              set dur -= 0.3 
              set pause = 0.3 
            end 
          else  
            if string-equal(c, ":") |  
               string-equal(c, ";") then 
              begin 
                set dur -= 0.1 
                set pause = 0.1 
              end 
            else  
              if string-equal(c, " ") then  
                set pause = 0.1 
              else 
                if string-equal(c, "\n") then  
                  begin 
                    set dur -= 0.05 
                    set pause = .25 
                  end 
    ; else default is previous dur and no pause 
    ; make sure dur is now greater than zero 
    set dur = max(dur, 0.025) 
    return list(dur, pause) 
  end 
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define function paragraphmusic(paragraph,  
                               translations) 
  begin 
    with len = length(paragraph),  
         ;; get index into instruments 
         i = len % length(translations), 
         ;; get the ith instrument 
         instr = nth(i, translations), 
         ;; initial beat period and pause 
         dur-pause = {0.3 0}, 
         ;; character from paragraph 
         c 
    return score-gen( 
        score-len: len, 
        pre: setf(dur-pause,  
                  new-dur-pause( 
                    subseq(paragraph, sg:count, 
                                 sg:count + 1), 
                    dur-pause)),  
        name: instr-name(instr), 
        pitch: map-pitch( 
                     char-code(char(paragraph, 
                                    sg:count)), 
                     instr), 
        dur: first(dur-pause), 
        ioi: first(dur-pause) +  
             second(dur-pause)) 
  end 
 

Finally, we are ready to generate some music. We define render-
words in Example 16.3.5 to convert text to sound using wordmusic. 

After computing a score, Example 16.3.5 uses timed-seq to 
synthesize it. Some reverberation is added. Note again the use of seq 
to append some silence before passing the sound to the reverb func-
tion. Also note the result is scaled by 0.5 to avoid audio clipping (in 
this case, the synthesized score exceeds the maximum sample value 
of 1, so scaling is necessary before saving the sound samples). 

The text passed to render-words extends over multiple lines. It is 
acceptable for quoted strings to span many lines, but you must be 
careful to close the string with a double-quote character. Also, any 
embedded double-quote characters must be escaped by prefixing 
them with a back-slash character. (See the word “gong” in the exam-
ple.) What would happen if the double-quotes were not escaped? 

render-words uses the global variable translations, which must 
be a list of instrument descriptors. This variable is set when the file 
instruments.sal is loaded. Each instrument descriptor is created by 
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calling instr-make, and translations is just a list of these descrip-
tors. Details can be found in instruments.sal. 

Example 16.3.5: Excerpt from wordmusic.sal 

define function render-words(text) 
  begin 
    with snd = timed-seq( 
                 wordmusic(text, translations)) 
    return 0.5 * snd +  
           0.1 * reverb(seq(snd, s-rest(5)),  
                        2.0) 
  end 
 
define variable *peak* 
set *peak* = s-save(render-words( 
"This is some text. 
 
How will it sound? Hopefully, it will 
be interesting. 
 
Isn't \"gong\" noticed by this program? 
 
define function paragraphmusic(paragraph,  
                               translations) 
  begin 
    with len = length(paragraph),  
         ;; get index into instruments 
         i = len % length(translations), 
         ;; get the ith instrument 
         instr = nth(i, translations), 
         ;; initial beat period and pause 
         dur-pause = {0.3 0}, 
         ;; character from paragraph 
         c 
    ... 
  end 
 
Hacker Haiku: 
  Three things are certain: 
  Death, taxes, and lost data. 
  Guess which has occurred. 
"), ny:all, "wordmusic.wav") 
 
display "finished rendering sound", *peak* 
 
exec play-file("wordmusic.wav") 



    

16.4 Suggested Listening 229 

 
Try rendering different text strings. You might want to modify 

the program to read text from a file. There are many elaborations 
possible, for example to control dynamics. You might want to invent 
your own algorithms for text-to-music translation. Other instrument 
sounds can be incorporated, using instruments.sal as a guide. 

16.4 Suggested Listening 
Emma Speaks by Mary Simoni and Jason Marchant explores the ap-
plication of Augmented Transition Networks to the development of 
form in choreography and multimedia. Choreography and dance by 
Emma Cotter were captured on video and edited such that the video 
post processing introduced another layer of choreography. Music 
was composed for the edited video using Common Music (refer to 
example on accompanying electronic media) (Simoni & Marchant, 
1998). 
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Chapter 17 Epilogue 

Algorithmic composition is important because it offers new ways of thinking 
about the organization of sound that we call music. In principle, algorithmic 
composition cannot create anything that we could not create by traditional 
methods, but that is like saying that a composer, in principle, could write out 
the ones and zeros of a digital audio recording. In practice, algorithmic 
composition allows us to explore new kinds of music. The very idea that 
music can be generated by automated processes is the beginning of many 
philosophical and aesthetic discussions about the nature of art, beauty, crea-
tivity, and humanity. 

We have seen many techniques of algorithmic composition. In nearly 
every case, the main feature of the algorithm is that music is abstracted from 
the detailed sound or note level to some model of music. Examples include 
patterns from pattern generators, graph models, and transformations of “natu-
ral” data such as text into parameters of music. The importance of models is 
that they shift the focus of composition from notes or sound events to higher-
level structure and control.  

A characteristic of algorithmic composition is that, often, the composer 
has only a vague idea about how the output will sound. However, because the 
process of music generation is highly automated, the composer can adjust 
parameters and algorithmic details again and again to gradually improve the 
work. 

Another characteristic of algorithmic composition is the surprise one gets 
when algorithmic details interact in unexpected ways or when computed 
sounds do not match what was intended or imagined. Even program “bugs” 
can turn out to be useful. This constant surprise can inspire us and lead to 
creative discoveries that might never occur while working at a piano key-
board or with pencil and manuscript paper. It is too easy to fall back on what 
we know and what we have learned. 

Algorithmic composition is hard work. If you think automation will make 
life easy or simple, you will probably be disappointed with the whole ap-
proach. If you read this book, you may also feel that the secret of algorithmic 
composition has been withheld. How can these simple techniques result in 
anything profound and beautiful? Where are the really good algorithms? The 
answer is that good results can be achieved from simple means, but it takes 
careful listening and lots of experimentation. You should not expect to pick 
up some already-written algorithm, plug in a few numbers, and walk away 
with a masterpiece. As with any kind of music making, algorithmic 
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composition requires practice to build skill and experience. On the other 
hand, it should be encouraging that algorithmic composition does not require 
advanced programming techniques, artificial intelligence, machine learning, 
or a sophisticated knowledge of digital signal processing. 

In the future, algorithmic composition seems to be a perfect match for 
interactive technologies including games, cell phones, web sites, and per-
sonal music players. Not only do these devices have the computer power 
needed to generate music algorithmically, but they create a context in which 
it makes sense for music to change and adapt to the state of the world or the 
state of the user. We expect to see algorithmic composition become more 
common as composers explore new application areas. 

We hope that readers will now feel empowered and ready to pursue their 
own creative musical directions. Seek inspiration from the natural world, 
from society, and even from technology. Use your ear and your imagination 
to evaluate your work, and do not be afraid to work hard to make programs 
that behave the way you want. Trying only the easy things is the path to 
mediocrity. Also, do not be afraid to throw away work and start over (but 
always save a backup copy) when the behavior is disappointing. Eventually, 
you will hit upon a procedure that holds promise, and after many iterations of 
refinement and evaluation, you will develop something remarkable. 

Algorithmic compositions rarely sound like “conventional music” or suc-
cessfully imitate a known style. However, it is often possible to incorporate 
some of the theory or characteristics of existing musical forms. Probably the 
most interesting outcome occurs when algorithmic compositions suggest a 
new musical form, structure, and inner organization that could not have been 
imagined or completed without the help of a computer. This is the ultimate 
attraction: to create music that takes us beyond what we know and even be-
yond what we could have imagined. 

17 epilogue
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Appendix SAL Commands and 
Functions 

The following lists summarize commands and functions used in this book. 
For details on command syntax and a complete list of functions, see the 
Nyquist Reference Manual. In some cases optional or keyword parameters 
are not mentioned here to simplify the presentation. 

Commands 
begin-end – execute a sequence of commands. 
define variable – declare and  initialize a variable. 
define function – declare and define a function. 
display – print variable names and values. 
if-then-else – conditionally evaluate commands. 
load – evaluate the commands in a file. 
loop-end – iteratively evaluate commands. 
play – play a sound. 
print – print the values of expressions to the output window. 
return – return a value to the function calling expression. 
set – associate or bind a variable to the value of an expression. 
with – declare local variables. 

Functions 
List Functions 
length(list) – length of a list or string. 
first(list), car(list) – first element of a list. 
second(list) – second element of a list. 
third(list) – third element of a list. 
fourth(list) – fourth element of a list. 
rest(list), cdr(list) – remainder of list after the first element. 
nth(n, list) – get list element at position n. 
nthcdr(n, list) – get remainder of list starting at position n. 
reverse(list) – reverse the order of list. 
cons(head, list) – construct a list of head followed by list. 
list(e1, e2, …) – construct a list from elements. 
append(list1, list2, …) – construct a new list by concatenating lists. 
member(expr, list) – search for expr in list. 
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assoc(expr, alist) – look up expr in an association list. 
intersection(list1, list2) – set intersection, treating lists as sets. 
union(list1, list2) – set union, treating lists as sets. 
set-difference(list1, list2) – set difference, treating lists as sets. 
subsetp(list1, list2) – is list1 a subset of list2? 
mapcar(function, list1) – apply function to each element of list. 

Math Functions 
(See Table 3.3.1 for a list of operators) 
round(x) – round x to an integer. 
truncate(x) – round x down to an integer. 
abs(x) – absolute value of x. 
min(x, y, …) – minimum value of inputs. 
max(x, y, …) – maximum value of inputs. 
interpolate(x, x1, y1, x2, y2) – linear interpolation. 
random(i) – random integer from 0 to i–1. 
rrandom() – random float (real) from 0 to 1. 
real-random(x, y) – random float (real) from x to y. 

Pattern Functions 
(See Table 5.3.1 for a list of pattern generators.) 
next(expr) – get the next item from a pattern object. 

Predicate (Test) Functions 
atom(x) – is x an atom? 
endp(x) – is x the end of a list (nil)? 
evenp(x) – is x even? 
floatp(x) – is x a float (real, floating point, flonum)? 
integerp(x) – is x an integer? 
listp(x) – is x a list? 
minusp(x) – is x negative? 
null(x) – is x nil? 
numberp(x) – is x a number? 
oddp(x) – is x odd? 
plusp(x) – is x positive? 
symbolp(x) – is x a symbol? 
zerop(x) – is x zero? 

Quoting Functions 
quote(s) – returns expression (or symbol) s without evaluation. 
keyword(s) – convert (unevaluated) symbol s to a keyword. 

Score Functions 
timed-seq(score) – render score returning a sound. 

appendix • saL commands and functions
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score-adjacent-events(score, function) – apply function to events. 
score-append(score1, score2, …) – append scores.  
score-apply(score1, function) – apply function to each event.  
score-filter-length(score, cutoff) – remove notes playing past cutoff.  
score-get-begin(score) – get the begin time.  
score-get-end(score) – get the end time.  
score-index-of(score, function) – find first note satisfying function.  
score-last-index-of(score, function) – last note satisfying function.  
score-merge(score1, score2, …) – create score combining all notes.  
score-play(score) – render a score to sound and play it.  
score-randomize-start(score, amt) – perturb note start times.  
score-read-smf(filename) – read standard MIDI file into a score.  
score-repeat(score, n) – repeat a score n times.  
score-scale(score, keyword, x) – scale each keyword’s value by x. 
score-select(score, function) – select notes that satisfy function. 
score-set-begin(score, time) – set score beginning to time. 
score-set-end(score, time) – set score ending to time. 
score-sort(score) – sort events in score into time order. 
score-sustain(score, x) – scale each note duration by x. 
score-transpose(score, keyword, x) – add x to each keyword value. 
score-voice(score, list) – replace event functions according to list. 
score-write-smf(score, filename) – write score to MIDI file. 
 
event-time(note) – get the time of note. 
event-set-time(note, time) – change start time of note. 
event-dur(note) – get the duration of note. 
event-set-dur(note, dur) – change duration of note. 
event-expression(note) – get the expression from note. 
event-set-expression(note, expr) – change expression of note. 
event-has-attr(note, attribute) – does the note have attribute? 
event-get-attr(note, attribute, default) – get attribute from note. 
event-set-attr(note, attribute, value) – set attribute of note to value. 
 
expr-has-attr(expression, attribute) – test if expression has attribute. 
expr-get-attr(expression, attribute, default) – get value of attribute. 
expr-set-attr(expression, attribute, value) – set attribute to value. 

Sound Functions 
const(x, duration) – generate a constant amplitude x for duration. 
fmosc(pitch, modulation) – generate an FM sound. 
hzosc(frequency) – generate a sine with variable frequency (in Hz). 
note(pitch: pitch, dur: duration) – generate a generic sound. 
piano-note-2(pitch, dynamic) – generate a piano sound. 
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pwl(t1, l1, t2, l2,…, tn) – piecewise linear control function. 
pluck(pitch, duration) – generate a plucked string sound. 
reverb(snd, time) – reverberate snd with a given reverberation time. 
s-plot(sound, dur, samples) – plot sound in a Nyquist IDE window. 
s-rest(duration) – generate silence with a given duration. 
seq(expr1, expr2, …) – construct sound sequentially. 

String and Character Functions 
strcat(s1, s2, …) – concatenate strings. 
string-equal(s1, s2) – test strings for equality (case-sensitive). 
string-search(pattern, string) – find pattern in string. 
subseq(string, start, end) – extract a subsequence of string. 
char(string, index) – extract one character from a string. 
char-code(character) – get integer code for character. 
format(output, format, x, y, z, …) – print values using format string. 
#print(expr) – functional form of print command. 
#display(string, expr1, expr2,…) – functional form of display. 

System Functions 
setdir(string) – set and return the current directory (folder). 
open(filepathstring) – open a text file for input. 
open(filepathstring, direction: :output) – open file for output. 
read() – read user input. 
read(file) – read from an opened file. 
close(file) – close an opened file. 
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