

800 East 96th St., Indianapolis, Indiana, 46240 USA

Clayton Walnum

Game
Programming
with Visual Basic

in 21 Days

Teach Yourself

00 067231987x fm 11/6/00 7:15 PM Page i

Sams Teach Yourself Game
Programming with Visual Basic
in 21 Days
Copyright © 2001 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the publish-
er. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-31987-X

Library of Congress Catalog Card Number: 00-103210

Printed in the United States of America

First Printing: December 2000

03 02 01 00 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book or from the use of the CD or
programs accompanying it.

ACQUISITIONS EDITOR

Sharon Cox

DEVELOPMENT EDITOR

Kevin Howard

MANAGING EDITOR

Charlotte Clapp

PROJECT EDITOR

Elizabeth Finney

COPY EDITOR

Sean Medlock

INDEXER

Sandra Henselmeier

PROOFREADER

Tony Reitz

TECHNICAL EDITOR

Andy Indovina

TEAM COORDINATOR

Meggo Barthlow

MEDIA DEVELOPER

Matt Bates

INTERIOR DESIGNER

Gary Adair

COVER DESIGNER

Aren Howell

00 067231987x fm 11/6/00 7:15 PM Page ii

Contents at a Glance
Introduction 1

WEEK 1 At a Glance 5

Day 1 The Art of Game Programming 7

2 Drawing Graphics with Visual Basic 19

3 Creating Game Screens with Fonts and VB Graphics 49

4 Developing Program Code 87

5 Displaying and Manipulating Images 127

6 Graphics Programming with the Windows API 159

7 Programming Real-Time Games 183

WEEK 1 In Review 219

WEEK 2 At a Glance 223

Day 8 Programming Card Games 225

9 Poker Squares 259

10 Programming Computer Opponents 291

11 Adding Sound to a Game 319

12 Playing the Game—The Dragonlord RPG Project 341

13 Programming a Simple RPG 371

14 Creating a Level Editor 411

WEEK 2 In Review 437

WEEK 3 At a Glance 441

Day 15 Game Play and the User Interface: The Moonlord Project 443

16 Tracking Game Information: The Moonlord Project 463

17 Programming the Main Screen: The Moonlord Project 485

18 Programming the Short Range Scan Screen: The Moonlord
Project 509

19 Programming the Status Screen: The Moonlord Project 535

00 067231987x fm 11/6/00 7:15 PM Page iii

20 Adding Animation: The Moonlord Project 541

21 Adding Sound: The Moonlord Project 551

WEEK 3 In Review 557

Appendix A Quiz and Exercise Answers 559

B Designing Computer Game Graphics 591

C Windows API Functions for Game Programmers 603

D Getting Started with DirectX 613

E Game Programming Resources 635

Index 641

00 067231987x fm 11/6/00 7:15 PM Page iv

Contents
Introduction 1

What Should You Already Know about Programming?..1
What Hardware and Software Do You Need? ..2
Conventions Used in This Book ..2
Let the Games Begin! ..3

WEEK 1 At a Glance 5

DAY 1 The Art of Game Programming 7

Complex, But Not Too Complex ..7
The Hidden Benefits of Programming Games ..8
Why Use Visual Basic?..9
Types of Games Best Suited to Visual Basic ..10

Games Using Straight Visual Basic..10
Visual Basic Games that Call the Windows API..11

The Elements of Game Programming ..11
Game Design ..12
Graphic Design ..13
Sound Generation ..13
Controls and Interfaces ..14
Image Handling ..14
Animation ..15
Algorithms ..15
Artificial Intelligence..16
Game Testing..16

Summary ..17
Q&A ..17
Workshop ..18

Quiz ..18
Exercises ..18

DAY 2 Drawing Graphics with Visual Basic 19

Using Colors in Visual Basic ..20
The Color Constants ..20
The System Colors ..21
The RGB Function..22
The QBColor Function ..23
Hexadecimal Numbers ..24

00 067231987x fm 11/6/00 7:15 PM Page v

Drawing Shapes ..24
The Line Method ..24
The Circle Method ..27

Line and Fill Properties ..29
The DrawWidth Property..30
The DrawMode Property..30
The DrawStyle Property ..31
The FillColor and FillStyle Properties ..31

The Graphics Controls ..32
The Line and Shape Controls ..32
The Image and PictureBox Controls ..33

The Face Catch Game..33
Playing Face Catch ..33
Building Face Catch ..34
Understanding Face Catch..42

Summary ..45
Q&A ..46
Workshop ..46

Quiz ..46
Exercises ..47

DAY 3 Creating Game Screens with Fonts and VB Graphics 49

Setting Text Colors ..50
The ForeColor Property ..50
The FontTransparent Property ..50

Working with Fonts ..52
The Font Property ..52
Properties of Fonts..52

The Nightshade Text Adventure Game..53
Playing Nightshade ..53
The Story ..54
Getting Into the Game ..55
Nightshade Hints ..56
Nightshade’s Help Menu ..58
Building Nightshade ..59
Understanding Nightshade ..63

Summary ..84
Q&A ..84
Workshop ..85

Quiz ..85
Exercises ..85

vi Sams Teach Yourself Game Programming with Visual Basic in 21 Days

00 067231987x fm 11/6/00 7:15 PM Page vi

DAY 4 Developing Program Code 87

The Story of Life ..88
The Rules of Life ..88
Life Implementation ..88
The Speed Problem..90
Linked Lists ..91
An Object-Oriented List ..96
Exploring the List Class ..98
A Cell List..100
The Life Program ..102

Playing Life ..102
Building Life ..103
Understanding Life ..113

Summary ..124
Q&A ..124
Workshop ..125

Quiz ..125
Exercises ..125

DAY 5 Displaying and Manipulating Images 127

The Image Control in Detail..128
Important Image Control Properties, Methods, and Events128
Loading Pictures into an Image Control ..129
Sizing Pictures with an Image Control ..130

The PictureBox Control in Detail..131
Important PictureBox Control Properties ..131
Loading Pictures into a PictureBox Control ..133
Sizing Pictures with a PictureBox Control ..133
The PaintPicture Method ..135

The Letter Tiles Puzzle Game ..137
Playing Letter Tiles ..137
Building Letter Tiles ..138
Understanding Letter Tiles ..149

Creating a Game Cheat..156
Summary ..157
Q&A ..157
Workshop ..158

Quiz ..158
Exercise ..158

Contents vii

00 067231987x fm 11/6/00 7:15 PM Page vii

DAY 6 Graphics Programming with the Windows API 159

Calling the Windows API ..160
Provide the Windows API Function Declaration ..160
Provide the Windows API Type Declarations ..162
Call the Windows API Function ..163

Drawing with the Windows API ..164
Drawing Lines with the Windows API ..164
Drawing Shapes with the Windows API ..167

Manipulating a Control’s Picture with the Windows API171
Obtaining Bitmap Information ..172
Manipulating the Bitmap..175
Understanding Pixel Formats ..177

Summary ..180
Q&A ..180
Workshop ..181

Quiz ..181
Exercises ..181

DAY 7 Programming Real-Time Games 183

Playing Battle Bricks ..184
Building Battle Bricks ..185

Creating the Battle Bricks User Interface ..185
Adding the Form Handlers ..186
Adding the Initialization Routines ..188
Adding the General Game Subroutines..189
Adding the FindBrick Function..196
Completing the Game ..198
Understanding Battle Bricks ..199
Performing Actions Triggered by the Ball ..204
Hitting a Brick ..208
Destroying Bricks ..211
Getting Keyboard Input and Moving the Paddle ..213
Tearing Down the Walls ..215

Summary ..216
Q&A ..216
Workshop ..217

Quiz ..217
Exercises ..217

viii Sams Teach Yourself Game Programming with Visual Basic in 21 Days

00 067231987x fm 11/6/00 7:15 PM Page viii

WEEK 1 In Review 219

WEEK 2 At a Glance 223

DAY 8 Programming Card Games 225

Deck-Handling Functions ..226
The clsCard Class ..226
The clsDeck Class ..230
Demonstrating the clsCard and clsDeck Classes ..239

Building the Program ..239
Running the Demo Program ..245
Using the clsDeck Class ..246

Blackjack, Anyone? ..248
Creating Blackjack’s User Interface ..248
Adding the Object Handlers ..250
Completing the Game ..253
Playing Blackjack ..255
Programming Blackjack ..256

Summary ..257
Q&A ..257
Workshop ..258

Quiz ..258
Exercises ..258

DAY 9 Poker Squares 259

Playing Poker Squares ..260
Building Poker Squares ..262

Creating Poker Square’s User Interface ..263
Adding the Object Handlers ..265
Completing the Game ..268
Understanding Poker Squares ..279

High-Score Files ..287
Summary ..287
Q&A ..288
Workshop ..288

Quiz ..288
Exercise ..289

DAY 10 Programming Computer Opponents 291

A Short Introduction to Artificial Intelligence ..292
Introducing Crystals ..292
Playing Crystals ..293

Contents ix

00 067231987x fm 11/6/00 7:15 PM Page ix

Building Crystals ..294
Creating Crystals’ User Interface ..295
Adding the Object Handlers ..296
Completing the Game ..297
Understanding Crystals ..308

Summary ..317
Q&A ..317
Workshop ..318

Quiz ..318

DAY 11 Adding Sound to a Game 319

Recording Sound..320
Editing Sounds..321
Generating Sound Effects ..324

Playing Sound Effects with Visual Basic ..324
The Multimedia Control ..324
Windows API Waveform Functions ..326

Using DirectSound ..330
Adding DirectX to Your Project ..330
Declaring DirectSound Variables ..331
Creating a DirectSound Object ..331
Setting the Priority Level ..331
Creating DirectSoundBuffer Objects ..332
Playing the Sound ..332
The DirectSound Routines ..332

Adding Sound Effects to Battle Bricks ..334
Summary ..338
Q&A ..338
Workshop ..338

Quiz ..339
Exercises ..339

DAY 12 Playing the Game: The Dragonlord RPG Project 341

What’s an RPG? ..342
Playing Dragonlord..343

Shopping for Supplies ..344
Moving Through the Dungeon ..347
Discovering Objects in the Dungeon ..347
Randomizing a Dungeon ..351
Loading a Dungeon ..351

Building Dragonlord ..352
Creating Dragonlord’s Main Form ..352

x Sams Teach Yourself Game Programming with Visual Basic in 21 Days

00 067231987x fm 11/6/00 7:15 PM Page x

Adding Dialog Boxes to the User Interface ..358
Summary ..369
Q&A ..369
Workshop ..370

Quiz ..370
Exercise ..370

DAY 13 Programming a Simple RPG 371

Adding the Object Handlers ..372
Adding General Game Source Code ..375
Adding a Module for Data Types and Subroutines..386
Adding Dialog Box Source Code ..390
Last-Minute Details ..395
Understanding Dragonlord ..396
Dungeon Maps..399
Initializing the Game ..399
Handling Character Stats..400
Moving the Player ..401
Battling Skeletons ..406
Creating Sound Effects ..409

Summary ..409
Q&A ..409
Workshop ..410

Quiz ..410
Exercises ..410

DAY 14 Creating a Level Editor 411

Using the Dragonlord DungeonEditor ..411
Building the Dragonlord DungeonEditor ..413

Creating DungeonEditor’s Main Form ..413
Creating the Menus..419
Adding the About Dialog Box ..420

Adding the Object Handlers ..421
Adding General Source Code ..425
Understanding DungeonEditor ..429
The Toolbox..430
Placing a Room or Item into the Dungeon ..431
Saving and Loading Dungeon Data ..433

Summary ..435
Q&A ..435
Workshop ..436

Quiz ..436
Exercises ..436

Contents xi

00 067231987x fm 11/6/00 7:15 PM Page xi

WEEK 2 In Review 437

WEEK 3 At a Glance 441

DAY 15 Game Play and the User Interface: The Moonlord Project 443

The Story..444
The Rules ..446

The Bridge ..447
Cruise..448
Status ..448
Warp..449
Long-Range Scanners ..449
Short-Range Scanners ..450

Building Moonlord’s User Interface..452
Adding the About Dialog Box ..458
Summary ..460
Q&A ..461
Workshop ..461

Quiz ..461

DAY 16 Tracking Game Information: The Moonlord Project 463

Adding Enumerations, Constants, and Variables to Moonlord464
Adding the Declarations ..464
Adding the Initialization Code ..467

Understanding Moonlord’s Initialization ..471
Moonlord’s Variables and Constants ..471
Initializing the Program Variables ..476
Initializing the Game Variables ..477
Initializing the Game Board ..478
Initializing the Short-Range Scanner Contents ..480

Summary ..482
Workshop ..482

Quiz ..482
Exercises ..483

DAY 17 Programming the Main Screen: The Moonlord Project 485

Adding Graphics for the Main Screen ..486
Updating Object Handlers ..489
Understanding the Source Code ..497

The Button Handlers ..497
The Button Helper Subroutines..499

xii Sams Teach Yourself Game Programming with Visual Basic in 21 Days

00 067231987x fm 11/6/00 7:15 PM Page xii

Getting Mouse Clicks ..501
The Command Subroutines ..501
General Subroutines ..503

Summary ..507

DAY 18 Programming the Short-Range Scanner Screen: The
Moonlord Project 509

Adding Code to the Button Handlers ..510
Command Subroutines ..512
General Subroutines ..517
Game Functions ..521
Odds and Ends ..525
Understanding the Source Code ..526

The DoShortCruise Subroutine..526
The DoRam Subroutine ..527
The TrackPhoton Subroutine..529
The CheckShortCruise Function..530

Summary ..532
Workshop ..533

Quiz ..533
Exercises ..533

DAY 19 Programming the Status Screen: The Moonlord Project 535

Updating the Button Code ..536
Adding Subroutines ..537
Adding a Function ..538
Odds and Ends ..538
Summary ..539
Workshop ..539

Quiz ..539
Exercises ..539

DAY 20 Adding Animation: The Moonlord Project 541

Animation on the Main Screen..541
Animation in the Short-Range Scanner Screen ..544
Adding New Functions ..549
Summary ..549
Workshop ..550

Quiz ..550
Exercises ..550

Contents xiii

00 067231987x fm 11/6/00 7:15 PM Page xiii

DAY 21 Adding Sound: The Moonlord Project 551

Adding DirectSound Code ..552
Playing Sound Effects..554
Summary ..555
Workshop ..556

Quiz ..556
Exercises ..556

WEEK 3 In Review 557

APPENDIX A Quiz Answers 559

Answers for Day 1 ..559
Quiz ..559
Exercises ..560

Answers for Day 2 ..560
Quiz ..560
Exercises ..562

Answers for Day 3 ..563
Quiz ..563
Exercises ..563

Answers for Day 4 ..564
Quiz ..564
Exercises ..564

Answers for Day 5 ..567
Quiz ..567
Exercise ..567

Answers for Day 6 ..568
Quiz ..568
Exercises ..569

Answers for Day 7 ..571
Quiz ..571
Exercises ..572

Answers for Day 8 ..574
Quiz ..574
Exercises ..574

Answers for Day 9 ..576
Quiz ..576
Exercises ..576

Answers for Day 10 ..578
Quiz ..578

Answers for Day 11 ..579
Quiz ..579

xiv Sams Teach Yourself Game Programming with Visual Basic in 21 Days

00 067231987x fm 11/6/00 7:15 PM Page xiv

Exercises ..580
Answers for Day 12 ..581

Quiz ..581
Answers for Day 13 ..581

Quiz ..581
Exercises ..582

Answers for Day 14 ..584
Quiz ..584

Answers for Day 15 ..585
Quiz ..585

Answers for Day 16 ..586
Quiz ..586

Answers for Day 18 ..587
Quiz ..587

Answers for Day 19 ..588
Quiz ..588

Answers for Day 20 ..588
Quiz ..588

Answers for Day 21 ..589
Quiz ..589

APPENDIX B Designing Computer Game Graphics 591

3D Made Simple ..592
How to Make a 2D Square into a 3D Box ..593
Offset Stamping for 3D Results ..595
Special Tips and Tricks..597

Choosing Identifiable Objects ..597
Designing Icons ..598
Drawing Metal..598
Drawing Glass ..599
Drawing Luminous Objects..600
Drawing Drop Shadows ..601
Smoothing Graphics ..601

Summary ..602

APPENDIX C Windows API Functions for Game Programmers 603

AngleArc() ..603
Arc() ..604
BitBlt() ..604
Chord() ..604
CreateBrushIndirect() ..604
CreateDIBSection()..604
CreateHatchBrush()..605

Contents xv

00 067231987x fm 11/6/00 7:15 PM Page xv

CreatePatternBrush() ..605
CreatePen() ..605
CreateSolidBrush()..605
DeleteObject() ..605
Ellipse() ..605
FloodFill() ..606
GetBitmapBits() ..606
GetDC() ..606
GetDIBColorTable()..606
GetDIBits() ..606
GetObject() ..607
GetPixel() ..607
LineTo() ..607
MaskBlt() ..607
MessageBeep() ..607
PatBlt() ..608
Pie() ..608
PolyBezier() ..608
PolyDraw() ..608
Polygon() ..608
Polyline() ..609
PolyPolygon() ..609
PolyPolyline() ..609
Rectangle() ..609
RoundRect() ..609
SelectObject() ..610
SetBitmapBits() ..610
SetDIBColorTable()..610
SetPixel() ..610
SetROP2() ..610
StretchBlt() ..610
StretchDIBits() ..611

Appendix D Getting Started with DirectX 613

Why Game Programmers Need Fast Graphics..614
Enter DirectX ..615
The Components of DirectX..616
Installing the DirectX 7 SDK ..617
Programming with DirectDraw ..617
Creating the DirectX Application ..618

xvi Sams Teach Yourself Game Programming with Visual Basic in 21 Days

00 067231987x fm 11/6/00 7:15 PM Page xvi

Initializing DirectDraw ..625
Creating a DirectDraw Object..626
Requesting the Cooperative Level..626
Creating DirectDrawSurface Objects ..626
Clipping and Transparency ..629
Performing the Animation ..631

Summary ..634

Appendix E Game Programming Resources 635

Game Programming Books..635
VB Game Programming Sites ..636
Advanced Game Programming Sites ..638

Index 641

Contents xvii

00 067231987x fm 11/6/00 7:15 PM Page xvii

About the Author
Award-winning author CLAYTON WALNUM has a degree in computer science and has writ-
ten or co-authored more than 40 books (translated into many languages), covering every-
thing from computer gaming to 3D graphics programming. He’s also written hundreds of
magazine articles and software reviews, as well as countless programs. His books include
Creating Turbo C++ Games, Creating Windows 95 Applications with Visual Basic, The
Windows 95 Game SDK Strategy Guide, and The Complete Idiot’s Guide to Visual Basic
6. Feel free to visit Clay online at www.claytonwalnum.com.

00 067231987x fm 11/6/00 7:15 PM Page xviii

Dedication
To Lynn

Acknowledgments
The author would like to thank all of the many people who contributed, either knowingly
or unknowingly, to this book. Of special note are Sharon Cox for keeping things rolling
and for her patience when things got bogged down, Kevin Howard for helping to shape
the book, Kimberly Campanello, Sean Medlock, and Katie Robinson for their editing
skills, and Andy Indovina for making sure everything worked the way it was
supposed to.

00 067231987x fm 11/6/00 7:15 PM Page xix

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As an Associate Publisher for Sams Publishing, I welcome your comments. You can fax,
email, or write me directly to let me know what you did or didn’t like about this book—
as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or fax number. I will carefully review your comments and share them
with the author and editors who worked on the book.

Fax: 317-581-4770
Email: samsfeedback@macmillanusa.com

Mail: Linda Engelman
Associate Publisher
Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

00 067231987x fm 11/6/00 7:15 PM Page xx

Introduction
If you don’t count the huge number of business packages bought by major corporations,
more game software is sold than any other kind of software. This fact is not surprising
when you consider that a good computer game is almost as effective as a good novel at
drawing you into a fantasy world and making our mundane existence seem as far away
as the next galaxy. Whether you’re a fan of quick-reflex games like Tetris, brain-numbing
puzzles like Lemmings, or spooky treks into magical realms like the Ultima line of role-
playing adventures, you know that once you sit down to play a good game, nothing short
of nuclear war is going to tear you away until you’re good and ready to turn off the com-
puter.

As you were playing your latest computer game late into the night, it may have crossed
your mind that it might be even more fun to write computer games than to play them.
After all, you’d be the one who determined how the computer game’s world worked.
You’d be the wizard who constructed that dungeon and populated it with all manner of
creepy-crawly creatures. You’d be the one with all the answers, watching smugly as your
friends struggled to defeat that final evil demon.

And believe it or not, it’s a blast to sit down at a computer and play a few rounds of your
own game. Along with the fun of playing a good game, you also get that glowing feeling
that comes from producing a significant piece of work. No matter how many days,
weeks, or months you spend honing your game program to perfection, it’ll still be fun for
you to play when you’re done.

What Should You Already Know about
Programming?

This book is not an introductory text for programmers who are interested in learning
Visual Basic programming. To understand the lessons included here, you must have a
working knowledge of Visual Basic and must be comfortable with the Visual Basic
development system.

01 067231987x intro 11/6/00 7:14 PM Page 1

What Hardware and Software Do You Need?
To compile and run the programs that are included on this book’s companion disk and to
get the most out of the upcoming lessons, you must have the following:

• An IBM-compatible with a Pentium processor

• Windows 95 or later

• A CD-ROM drive and hard drive

• A Microsoft-compatible mouse

• Super VGA graphics

• Visual Basic 6.0 Professional Edition

As always, the faster your processor the better. Fast processors mean fast compiles and
zippy programs. This is especially true for many game programs, which tend to push
your hardware to the limit.

Conventions Used in This Book
This book uses different typefaces to differentiate between code and regular English, and
also to help you identify important concepts.

Text that you type and text that should appear on your screen is presented in monospace
type.

It will look like this to mimic the way text looks on your screen.

Placeholders for variables and expressions appear in monospace italic font. You should
replace the placeholder with the specific value it represents.

This arrow (➥) at the beginning of a line of code means that a single line of code is too
long to fit on the printed page. Continue typing all characters after the ➥ as though they
were part of the preceding line.

2 Sams Teach Yourself Game Programming with Visual Basic in 21 Days

A Note presents interesting pieces of information related to the surrounding
discussion.

Note

A Tip offers advice or teaches an easier way to do something.Tip

01 067231987x intro 11/6/00 7:14 PM Page 2

New Term icons provide clear definitions of new, essential terms. The term
appears in italic.

The Input icon identifies code that you can type in yourself. It usually appears
next to a listing.

The Analysis icon alerts you to the author’s line-by-line analysis of a program.

Let the Games Begin!
Now it’s time to start programming games with Visual Basic. You’ll soon discover that
not only is game programming fun, but it’s also a great way to get the most out of both
your computer and Visual Basic.

Clayton Walnum

August, 2000

www.claytonwalnum.com

Introduction 3

A Caution advises you about potential problems and helps you steer clear of
disaster.

Caution

NEW TERM

INPUT

ANALYSIS

01 067231987x intro 11/6/00 7:14 PM Page 3

01 067231987x intro 11/6/00 7:14 PM Page 4

At a Glance
This week you’ll be introduced to some introductory game-
programming concepts, and you’ll get started on program-
ming several simple (and not-so-simple) games of your own.
On Day 1, your introduction to game programming starts with
an overview of the elements of game design, including graph-
ics design, sound effects, user interfaces, animation, and more.
On Day 2, you move into programming by exploring how to
draw graphics with Visual Basic commands and objects. This
discussion continues on Day 3, where you’ll learn how to
draw game screens with Visual Basic graphics and fonts.

Day 4 gets into a bit of computer science as you develop algo-
rithms that make your games run faster and better. Day 5, on
the other hand, explores using images in Visual Basic game
programs. Here you’ll learn about the Image and PictureBox
controls, as well as how to use Visual Basic’s PaintPicture

method. Day 6 covers the important topic of calling Windows
API functions from Visual Basic. Finally, on Day 7, you’ll
study real-time games.

At the end of Week 1, you will have programmed the follow-
ing games:

• Face Catch—A simple game in which you try to tag a
smiley face that bounces around the game’s window.

• Nightshade—An old-fashioned text adventure in which
you try to save the dream world of Nightshade from the
horrible Troll King.

• The Game of Life—A classic simulation in which
single-celled creatures live and die based on the results
of simple mathematical calculations.

WEEK 1 1

2

3

4

5

6

7

02 067231987x Wk1AAG 11/6/00 7:08 PM Page 5

6 Week 1

• Letter Tiles—A popular puzzle game in which you try to place the letters of the
alphabet in the correct order.

• Battle Bricks—An arcade game in which you control a bouncing ball in order to
destroy a wall of bricks.

02 067231987x Wk1AAG 11/6/00 7:08 PM Page 6

DAY 1

WEEK 1

The Art of Game
Programming

On your first day of studying game programming, you’ll examine why you
might want to program games and why you might want to use Visual Basic to
do it. In addition, you’ll take a brief look at the general process of creating a
game. You’ll learn about the many areas of expertise you need to design and
create a computer game. In short, today you’ll learn the following:

• How game programming can make you a better programmer.

• Why Visual Basic is a good language for game programming.

• The many skills needed to create a quality game.

Complex, But Not Too Complex
In my wild-and-wooly youth, I was a guitarist in a semiprofessional rock group.
I’ll never forget the first time I walked into a recording studio to record a demo
song with my band. In the control room was a huge mixing board with more
buttons and switches than there are teeth in a great white shark. To the right

03 067231987x CH01 11/6/00 7:15 PM Page 7

was a patch bay from which snaked dozens of patch cords, each one connecting some
vital piece of equipment to another. Lights blinked. Reels spun. Sound processing equip-
ment with fancy names like phase shifter, digital delay, and multiband equalizer clicked
on and off.

When I looked at all that complex machinery and considered that I was paying $60 an
hour (the equivalent of about $150 an hour today) for the privilege of being there, I
almost turned around and walked out the door. It seemed to me that just learning my way
around this complicated studio would cost me my life savings. I could see myself being
ejected from the premises, penniless, without having recorded even a note.

Luckily, I’d had some studio training, so I at least knew in a general way how a studio
worked. Like everything else in life (well, almost everything), a recording studio isn’t
really as complicated as it looks.

The same thing can be said about computer games. When you sit down at your computer
and play the latest arcade hit or plunge into the newest state-of-the-art adventure game,
you may be in awe of the talent and hard work that went into the glowing pixels that you
see before your eyes. (And you should be.) But just like recording a song in a studio,
writing games isn’t as difficult as you may think.

If you’ve had some programming experience, you already have much of the knowledge
and skills that you need to program a computer game. You need only refine those skills
with an eye toward games. Today you’ll get a quick look at some of the skills required to
develop and write computer games.

The Hidden Benefits of Programming Games
You probably bought this book because you wanted to have a little fun with your com-
puter. There you were in the bookstore, digging through all those very serious program-
ming manuals, when this volume leaped out at you from the stack. But when you were
walking to the cash register with this book in hand, you might have felt a little guilty.
After all, games aren’t serious computing, are they? You should be learning to write
spreadsheet programs, databases, and word processors, right?

Let me tell you a quick story.

Way back in the dark ages of home computing (1981, to be exact), I got my first comput-
er. It was an Atari 400, and like everything Atari made at that time, this powerful little
computer was best known for its game-playing capabilities. After all, 1981 was the
beginning of the golden age of video games, and Atari was the reigning king.

8 Day 1

03 067231987x CH01 11/6/00 7:15 PM Page 8

The Art of Game Programming 9

1
Unfortunately, after a few phenomenally successful years, video games spiraled into
rapid decline and took many companies in the industry down with them. Computers
became serious again. Although Atari managed to survive (barely), it would never be
regarded as the designer and manufacturer of serious computers, thanks to its status as a
game-computer maker. This is a shame, because the Atari 400/800’s successor, the Atari
ST—along with the Macintosh and the Amiga—were way ahead of their time. Certainly,
these products were light years more advanced than the “serious” IBM clones that were
popular at that time.

The problem was that darn gaming image with which Atari had been saddled. Who want-
ed to use a game computer to manage a spreadsheet, balance a bank account, or track an
investment portfolio? That would be kind of dumb, wouldn’t it?

Not really. The irony is that a computer that’s capable of playing sophisticated games is a
computer that’s capable of just about anything. A good computer game taxes your com-
puter to the maximum, including its capability to process data quickly, to generate graph-
ics and animation, and to create realistic sound effects. Only a state-of-the-art computer
can keep up with today’s high-powered games, such as flight simulators and 3D action
games. In fact, there are few business applications in existence that require more comput-
ing power than a sophisticated computer game.

Similarly, a programmer who can write commercial-quality computer games can write just
about any other type of software as well, especially considering today’s focus on graphics
and sound in applications. You may have purchased this book to have a little fun with your
computer, but before you’re done, you’ll learn valuable lessons in software design and
programming—lessons that you can apply to many different kinds of software.

So, why program computer games? Mostly because it’s fun! But remember that your
game-programming experience will help you with every other program that you ever write.

Why Use Visual Basic?
I could probably come up with dozens of reasons why you’d want to use Visual Basic to
learn about game programming. I could also easily come up with reasons why you
wouldn’t. The truth is that there are a lot of factors to consider when you’re choosing a
language for game programming, not the least of which is the types of games you want
to write. You may want to use Visual Basic to learn game programming for the following
reasons:

• It’s one of the easiest languages to learn.

• It features a set of controls that make creating user interfaces quick and easy.

03 067231987x CH01 11/6/00 7:15 PM Page 9

• Visual Basic and its programming environment enable much faster application
development than is possible with a language like C++.

• It’s a powerful language that can handle all but the most complex applications.

• Its drawing commands and tools enable you to create applications with
professional-looking graphical displays.

• It features controls and commands that manage bitmapped images with very little
effort on your part.

• Its extended implementation of the BASIC language allows not only user-definable
data types, but also classes. This enables you to use some features of an object-
oriented language.

• It can call Windows API functions, which puts a huge library of advanced
commands at your fingertips.

Types of Games Best Suited to Visual Basic
Let’s get something out of the way right now. If you want to write the next Quake or
Might and Magic, forget Visual Basic. Such top-shelf games require programming power
that’s very difficult, if not outright impossible, to get out of a language like Visual Basic
(not to mention requiring many man-years of intensive labor). Most games in this class
are written in C or C++ along with a healthy dose of assembly language—and even then,
the programmers employ dozens of tricks to get the most out of the computer’s hard-
ware. The intensive calculations and complex image handling needed in a real-time 3D
game not only require a programmer with a degree in mathematics, but also a much
faster language. What types of games, then, can you write with Visual Basic?

Games Using Straight Visual Basic
Although 3D games like Quake get a lot of attention, they represent only one genre in a
marketplace packed with all types of games. Many other games, particularly those of the
shareware variety, require much less programmer labor and processing power to create
and run. By using straight Visual Basic without making calls to the Windows API or
third-party libraries, you can write puzzle games, strategy games, card games, simple
arcade games, and virtually any other type of game that doesn’t require intensive pro-
cessing or fast frame rates. Many programmers also use VB to write prototypes for
games. If those games turn out to be worthwhile ventures, the programmers will then
develop the final games using C++ or some other language.

A game’s frame rate is the number of times the display is redrawn every second.
Animation at frame rates much less than 30 FPS (frames per second) appears

jerky and disorienting.

10 Day 1

NEW TERM

03 067231987x CH01 11/6/00 7:15 PM Page 10

The Art of Game Programming 11

1
Visual Basic Games that Call the Windows API
As I mentioned previously, Visual Basic can call Windows API functions. Compared to
Visual Basic’s intrinsic commands, in many cases Windows API functions exert extra
power over a computer and allow your program to do things that cannot be duplicated
with straight Visual Basic. For this reason, calls from Visual Basic to the Windows API
may be just the trick to get a game running at its best. Although calls to the Windows
API do not greatly extend the types of games you can write with Visual Basic, they can
add pizzazz to what otherwise might be a lackluster game.

An application programming interface (API) is one or more libraries of functions
that give a programmer access to a programming technology. For example, the

Windows API is a set of libraries for programming Windows applications, whereas the
Direct3D API is a set of libraries for writing graphically intensive applications.

The Elements of Game Programming
As you’ve already discovered, a good computer game pushes your computer to its
limits. In fact, a game must excel in many areas. To write computer games that people
will want to play, then, you must gain some expertise in the related areas of game
programming:

• Game design

• Graphic design

• Sound generation

• Controls and interfaces

• Image handling

• Animation

• Algorithms

• Artificial intelligence

• Game testing

These elements overlap to an extent. For example, to learn graphic design for computer
games, you need to know how a computer handles graphic images. Moreover, game
design draws on all the other elements in the list. After all, you can’t design a game
unless you know how the graphics, sound, controls, and computer algorithms fit together
to form the final product.

NEW TERM

03 067231987x CH01 11/6/00 7:15 PM Page 11

Game Design
Whether your game is a standard shoot-’em-up, in which the player’s only goal is to
blast everything on the screen, or a sophisticated war game, requiring sharp wits and
clever moves, first and foremost your game must be fun. If a game isn’t fun, it doesn’t
matter how great the graphics are, how realistic the sound effects are, or how well you
designed the computer player’s algorithms. A boring game will almost certainly get filed
away in a closet to gather dust.

Many things determine what makes a game fun. The most important thing, of course, is
the game’s concept. Often, a game’s concept is based on some real-world event or cir-
cumstance. For example, chess—one of the most popular board games of all time—is
really a war game. Monopoly, on the other hand, is a financial simulation in which play-
ers try to bankrupt their competition.

Computer games are no different from their real-world cousins. They too must have
some logical goal for the player, and—with rare exceptions—they must be set in some
sort of believable world. This world can be as simple as an onscreen maze or as complex
as an entire planet with continents, countries, and cities. In the insanely addictive com-
puter game Tetris, the world is simply a narrow onscreen channel in which the player
must stack variously shaped objects. On the other hand, in the fabulous Ultima series of
graphic adventures, the player’s world is filled with forests, swamps, cities, monsters,
and the other elements that make up a complete fantasy scenario.

No matter what type of world you envision for your game, it must have consistent rules
that the player can master. For a game to be fun, the player must be able to figure out
how to surmount the various obstacles that you place in his path. When a player loses a
computer game, it should be because he hasn’t mastered the subtleties of the rules yet,
not because some random bolt out of the blue blasted him into digital bits and pieces.

Of course, to build a logical, fair, and effective gaming world, you must draw on all your
skills as a programmer. All the other areas of programming listed earlier come into play
here. Graphics, sound, interface design, computer algorithms, and more can make the
difference between a fun game and just another dime-a-dozen hack job whose disk will
be used as a Frisbee at the next family picnic.

Not only do you need consistent rules for your game, but you also need a consistent
game world. Every element of your game—fonts, graphics, sound, story—contributes to
this goal. For example, if you’re writing a game in which the player must battle zombies
and werewolves, you probably won’t need those cute little bunny characters you drew.
(That is, unless the bunnies suddenly grow fangs and horns and develop an unquenchable
desire to consume human flesh!) Similarly, your zombie game will need suitably eerie
sound effects and spooky music. The “Sugarplum Fairies” theme just ain’t gonna cut it.

12 Day 1

03 067231987x CH01 11/6/00 7:15 PM Page 12

The Art of Game Programming 13

1
Graphic Design
There’s a good reason why so many computer game packages are covered with exciting
illustrations and awe-inspiring screen shots. In spite of how hard people try to make
intelligent buying decisions, everyone is swayed by clever packaging. Although your
smart side may tell you to ignore that fabulous wizard on the box cover, your impulsive
side sees that wizard as just a hint of the excitement that you’ll find in the box. Of
course, reality usually falls far short of packaging. Buyer beware.

The lesson here is not that you should make your games look better than they play, but
rather that how a game looks is often as important as how well it performs. You want
your gaming screens to be neat and uncluttered, logically laid out, and above all exciting
to look at. Your screens should scream “Play me!” to anyone who comes into viewing
distance.

Like anything else, graphic design is a professional skill that takes many years of study
and practice to master. Luckily, though, you don’t have to be a graphic-design whiz to
create attractive game screens. You can look at other games to get design ideas, and you
can experiment with different screen designs to see which are the most attractive and
work best with your game world. Use your favorite paint program to draw different lay-
outs and compare them. Trial and error is not only a powerful technique for devising
improved designs, but it’s also a great learning tool. The more you experiment, the more
you’ll learn about what looks good on a computer screen and what doesn’t.

Sound Generation
The word we live in is a noisy place indeed. There’s hardly a moment in our lives when
we’re not assaulted by hundreds of sounds simultaneously. If your game world is to seem
realistic to the player, it too must provide sound. That’s not to say you have to recreate
the full spectrum of sounds that a player hears in the real world, though. With today’s
computers, that task would be impossible.

Although you shouldn’t fill your player’s ears with unnecessary noise, you should pro-
vide as many sound cues as appropriate. When the player selects an onscreen button, she
should hear the button click. When she slams a home run, she should hear the crack of
the bat and the roar of the crowd.

There’s not a computer game on the planet (or, I’d venture to say, in the universe) that
couldn’t be improved by better sound effects. Luckily, thanks to powerful sound cards,
many of today’s games include fabulous digitized sound effects.

Although music isn’t as important as sound effects, it can also add a lot to a computer
game. The most obvious place for music is at the beginning of the game, usually

03 067231987x CH01 11/6/00 7:15 PM Page 13

accompanying a title screen. You might also want to use music when the player advances
to the next level or accomplishes some other important goal in the game.

To add music to a computer game, however, you must have some knowledge of music
composition. Bad music in a game is worse than none at all. If you have no musical
training, chances are that you have a friend who does. You can work together to compose
the music for your computer game magnum opus. If you’re lucky, she won’t even ask for
a share of the royalties!

Controls and Interfaces
The game programmer must provide some sort of interface to enable the player to play
the game. In a computer game, menus and onscreen buttons enable the user to select
options and commands. In addition, the player uses the keyboard or mouse to move and
otherwise manipulate objects on the screen.

A good game interface makes playing the game as easy as possible. The game com-
mands should be logical and readily available. The more your game works like a real-
world game, the easier it will be for the player to learn its controls. For example, in a
computer chess game, you might enable the player to move a game piece with her mouse
pointer instead of typing in the position of the square where she wants to move the piece.

Image Handling
Every computer game must deal with various types of images. These images may be full-
screen background graphics, icons that represent game commands or game pieces, or
tiles that you use to create a map or some other complex game screen. When you design
your game, you must decide which types of images you need. Should you draw your
game’s background screen at runtime? Or should you create the screen with a paint pro-
gram and just load it in your game? If you need to conserve memory, maybe you should
create your game screens from small tiles?

In game-programming lingo, a tile is a small graphical object that can be used
with other similar objects to assemble a complex game screen. For example, sev-

eral tiles depicting trees can be used to create an entire forest. Various types of tiles—
trees, grass, water, mountains, and so on—can be used to assemble an entire world map.

You must consider questions like these as you design your computer game’s graphics.
You want your game to look as professional as possible (which means that you may need
to find an artist), but you also must consider the amount of memory the graphics will
consume and how long it takes to move graphic images from the disk to the computer’s
memory. Most gamers hate to wait for files to load from the disk. On the other hand,
keeping too much data in memory may make your game clunky on computers that have
smaller amounts of free memory.

14 Day 1

NEW TERM

03 067231987x CH01 11/6/00 7:15 PM Page 14

The Art of Game Programming 15

1
Another important issue is the amount of time it takes to create your game’s graphics.
You can’t spend the next 10 years drawing detailed graphics for every aspect of your
game. You need to use shortcuts (such as tiling) to speed up the graphic design process.
In other words, although every tree in the real world looks different, many trees in a
computer game look identical.

Animation
Once you’ve learned to design and manipulate computer graphic images, you’re ready to
take the next step: animation. This is the process of making objects appear to come to
life and move around the computer screen. By using a series of images, you can make a
chicken waddle across a road, a rock tumble from a cliff side, or a spaceship blast off
from a launch pad.

Animation is the process of moving or changing a graphical game object in some
way. For example, a ball that bounces around the screen is an animation, as is a

game creature that falls to the ground when shot.

For example, when a player moves a game piece, instead of simply having the piece dis-
appear from its current location and reappear at its new one, you might make the piece
dissolve and then reform itself. Or, if the playing piece represents a human being or an
animal, you could make the piece saunter over to its new location.

Such animation effects can make your game much more interesting and even more fun to
play. Although animation requires a lot of work on the programmer’s part, it’s well worth
the effort.

Algorithms
Although the term algorithm sounds like the most horrid technobabble, it’s really a sim-
ple word. An algorithm is nothing more than a series of steps that solves a problem. You
use algorithms every day of your life. When you make pancakes for breakfast, you must
follow an algorithm. When you drive to work, you must follow another algorithm.
Algorithms enable you to solve all of life’s simple (and sometimes not-so-simple) tasks.

Computer algorithms enable you to solve computing problems. In other words, to write
computer games, you need to figure out how to get your computer to do things that you
may not have tried to do on a computer before. For example, how can you determine
who has the best hand in a poker game? Or how do you create a smart computer player?
You must write an algorithm. Once you know how to solve a problem with your comput-
er, you can write the specific code in whatever programming language you’re using.
Throughout this book, you’ll see many algorithms for solving game problems.

NEW TERM

03 067231987x CH01 11/6/00 7:15 PM Page 15

A computer algorithm is a set of program steps that solves a programming prob-
lem. For example, a function that determines whether a player has a full house in

a computer card game uses an algorithm to analyze the cards in the player’s hand.

Artificial Intelligence
Artificial intelligence routines are algorithms that make computers seem smart. By
“smart,” I don’t mean the ability to calculate the player’s score or process his input. I
mean the computer’s ability to act as an opponent. If you want to write a computer game
that features computer-generated players, you must create algorithms that enable the
computer to compete with human players. How involved this algorithm turns out to be
depends on how complex the game is and how well you want the computer to play.

For example, it can be difficult to write good algorithms for creating a computer chess
player because winning a game of chess requires a great deal of strategy. You could sim-
ply have the computer choose a random move each turn, but such a computer player
would be easy to beat. The algorithm that you write can determine the difficulty of your
game.

Game Testing
After you’ve read this book and learned how to design and program your computer
game, you’ll get to work on your own masterpiece (I hope). However, after you write
your game, you then must test it extensively to ensure that it works properly.

The best way to test a game is to give it to a few trusted friends and watch as they play,
taking notes about things that don’t work quite the way you expected. Remember to
watch for not only program bugs that make the program do unexpected things and may
even crash the computer, but also interface bugs that may make your program confusing
to use.

After your friends have played the game for a while, ask them what they liked or didn’t
like. Find out how they think the game could be improved. You don’t have to agree with
everything they say, but always be polite, taking their suggestions seriously and writing
them down so that you can review them later. Don’t be defensive. Your friends aren’t
criticizing your work so much as helping you to make it better. Remember: There’s no
such thing as a perfect computer program. There’s always room for improvement. After
the testing is complete, implement those suggestions that you think are valuable.

The only way to test a game is to have several people play it repeatedly. Of course,
before you pass the game on to a few close friends, you should have already played the
game so much that you would rather read a phone book from cover to cover than see
your opening screen again!

16 Day 1

NEW TERM

03 067231987x CH01 11/6/00 7:15 PM Page 16

The Art of Game Programming 17

1
Summary

Writing a computer game requires you to bring the best of your programming skills into
play. To create a successful game, you must first design it. You must think about the
game’s graphic design and interface, experiment with it, and finally implement it. As you
design your game, you need to consider the types of images and sounds that will bring
the game to life. Animation and smart algorithms can also make your game the next best-
seller.

On Day 2, “Drawing Graphics with Visual Basic,” you’ll learn more about these topics.
Specifically, you’ll learn how to design and create effective computer graphics. With a
few basic techniques and tools at your disposal, you may be surprised at how easy it is to
create competent computer graphics for games—or for any other computer application.

Q&A
Q Visual Basic programs tend to run slower than programs written in a lower-

level language like C++. Does this mean that I can’t use animation and sprites
in my games?

A No, animation and sprites are still available. However, they’re more limited than
they might be in a language like C++ because Visual Basic doesn’t give you access
to the hardware at a near-assembly-language level.

Q Is it hard to call Windows API functions from Visual Basic?

A No, although it can be tricky. You need to code such calls very carefully, and you
must be sure you understand the differences between the data types used in Visual
Basic and those used in a language like C++.

Q How good do I need to be at Visual Basic programming to write game pro-
grams?

A Programming a game isn’t all that different from programming any other type of
application. The biggest difference is that game programs tend to be more graphi-
cally oriented than other types of programs, such as utilities or productivity appli-
cations. This means that you need to know all the ways to deal with graphics in
Visual Basic. This book will teach you those skills.

03 067231987x CH01 11/6/00 7:15 PM Page 17

Workshop
The workshop includes quiz questions to help gauge your grasp of the material. You’ll
find the answers to this quiz in Appendix A. Even if you feel that you totally understand
the concepts presented here, you should work through the quiz anyway. The last section
has an exercise to help reinforce your learning.

Quiz
1. Why does programming games make you a better all-around programmer?

2. Give at least four reasons why Visual Basic is a good language to use for game
programming.

3. Why isn’t Visual Basic a good language for programming real-time 3D games such
as Quake?

4. What’s a computer algorithm?

5. How are artificial intelligence and computer algorithms related in game program-
ming?

Exercises
1. Imagine that you're going to write a computer version of checkers. How would you

create the main game screen? What type of user interface would you use? What
images would you need to design?

18 Day 1

03 067231987x CH01 11/6/00 7:15 PM Page 18

DAY 2

WEEK 1

Drawing Graphics with
Visual Basic

If there’s one thing you can say about most games, it’s that they display a lot of
graphics. The bottom line is that if you can’t draw and manipulate lines, shapes,
and images, you can’t program a modern game, no matter how clever you are
with the Basic language. That’s why, on only your second day of lessons,
you’re going to study Visual Basic’s graphics abilities. Specifically, today you’ll
learn how to do the following:

• Manage colors

• Draw lines and shapes

• Use line styles and fill styles

• Use drawing modes

• Use Visual Basic’s Line and Shape controls

• Use the Image and PictureBox controls

04 067231987x CH02 11/6/00 7:11 PM Page 19

Using Colors in Visual Basic
One of the most important aspects of drawing graphics is, of course, color. Luckily,
Visual Basic is very versatile, providing five ways to specify colors programmatically:

• Using Visual Basic’s predefined color constants

• Using the RGB function

• Using Windows’ system colors

• Using the QBColor function

• Using hexadecimal values

Today you’ll examine these different methods of specifying colors. (Note that you can
also specify colors for some object properties within the Visual Basic IDE.)

The Color Constants
If you’re not too fussy about the colors you have to choose from, you can call upon
Visual Basic’s predefined color constants, which represent the typical colors used in
computer programs. Using these predefined colors is more efficient than using custom
colors, helping Visual Basic to give you exactly the color you request. Moreover, the
color constants yield an easy-to-understand program code because a specific color is rep-
resented by a human-readable symbol, not a hard-to-interpret number. Table 2.1 lists and
describes Visual Basic’s standard color constants.

TABLE 2.1 The Visual Basic Color Constants

Constant Hexadecimal Value

vbBlack &H000000

vbBlue &HFF0000

vbCyan &HFFFF00

vbGreen &H00FF00

vbMagenta &HFF00FF

vbRed &H0000FF

vbWhite &HFFFFFF

vbYellow &H00FFFF

Using the color constants is easy. For example, to set the background color of a form,
you’d write something like this:

Form1.BackColor = vbWhite

20 Day 2

04 067231987x CH02 11/6/00 7:11 PM Page 20

Drawing Graphics with Visual Basic 21

2

Notice how much easier this line is to read than the equivalent that uses a hexadecimal
color value instead:

Form1.BackColor = &HFFFFFF

The System Colors
You’ve undoubtedly noticed that Windows enables the user to set custom colors for the
graphical elements that make up the user interface. For example, a user can specify the
color of button faces, window title bars, menu bars, message boxes, and so on. The user
does this through the Appearance tab on the Display Properties property sheet, as shown
in Figure 2.1.

FIGURE 2.1
The user can change
the Windows system
colors.

If your Visual Basic game needs to incorporate system colors into its displays, you can
use the Visual Basic system-color constants to specify the colors. For example, you
might want a window’s background color to be the same as the menu bar color. If the
user changes his Windows color settings, you want your window’s background color to
change accordingly. Table 2.2 lists and describes the handy color constants that enable
you to handle colors in this way.

TABLE 2.2 The Visual Basic System Color Constants

Constant Description

vb3DDKShadow Darkest 3D shadow color

vb3DFace Text face color

vb3DHighlight 3D highlight color

vb3DLight Second-lightest 3D color

04 067231987x CH02 11/6/00 7:11 PM Page 21

TABLE 2.2 continued

Constant Description

vb3Dshadow Text shadow color

vbActiveBorder Active window’s border color

vbActiveTitleBar Active window’s title bar color

vbApplicationWorkspace Multiple-document interface background color

vbButtonFace Command button face-shading color

vbButtonShadow Command button edge-shading color

vbButtonText Buttons text color

vbDesktop Desktop color

vbGrayText Disabled text color

vbHighlight Background color of selected items

vbHighlightText Text color of selected items

vbInactiveBorder Inactive window border color

vbInactiveCaptionText Inactive caption text color

vbInactiveTitleBar Inactive window title bar color

vbInfoBackground ToolTip background color

vbInfoText ToolTip text color

vbMenuBar Menu background color

vbMenuText Menu text color

vbScrollBars Scroll bar color

vbTitleBarText Caption, size box, and scroll arrow text color

vbWindowBackground Window background color

vbWindowFrame Window frame color

vbWindowText Window text color

The RGB Function
If you can’t get the color you want using one of the predefined constants, you can still
avoid hard-to-interpret hexadecimal numbers by using the RGB function, which takes as
arguments values for the red, green, and blue elements of the color. A value of 0 for a
color element eliminates that element from the resulting color, whereas a value of 255
adds as much of the color element as possible. The three color elements combine to form
the final color, much like mixing paint in a bucket. For example, the following code lines
set a form’s background color to black, bright red, bright green, bright blue, medium pur-
ple, and white, one after the other:

22 Day 2

04 067231987x CH02 11/6/00 7:11 PM Page 22

Drawing Graphics with Visual Basic 23

2

Form1.BackColor = RGB(0, 0, 0) ‘ Black
Form1.BackColor = RGB(255, 0, 0) ‘ Red
Form1.BackColor = RGB(0, 255, 0) ‘ Green
Form1.BackColor = RGB(0, 0, 255) ‘ Blue
Form1.BackColor = RGB(128, 0, 128) ‘ Purple
Form1.BackColor = RGB(255, 255, 255) ‘ White

The QBColor Function
If you’ve used computers long enough, you remember the old VGA displays that could
show only 16 colors at a time. Those 16 colors were stored in a palette. To specify a
color, you’d supply the index of the palette entry you wanted to use. These days, pro-
grammers have little use for such color-limited displays. However, if you have a hanker-
ing to do things the old-fashioned way, Visual Basic provides the QBColor function,
which takes as its single argument the index of the palette color you want. To specify a
white form background with the QBColor function, you might write the following:

Form1.BackColor = QBColor(15)

Table 2.3 lists the standard VGA colors and the palette indexes you use with the QBColor
function.

TABLE 2.3 Color Values for the QBColor Function

Value Color

0 Black

1 Blue

2 Green

3 Cyan

4 Red

5 Magenta

6 Yellow

7 Light Gray

8 Gray

9 Light Blue

10 Light Green

11 Light Cyan

12 Light Red

13 Light Magenta

14 Light Yellow

15 White

04 067231987x CH02 11/6/00 7:11 PM Page 23

Hexadecimal Numbers
You can also use plain hexadecimal values to specify colors, although I don’t suggest this
method because you’ll end up with code that’s hard to read. For example, the following
line sets a form’s background color to green:

Form1.BackColor = &HFF00

As well as being hard to read, hexadecimal numbers are tricky to calculate.

Drawing Shapes
If you were programming your games using assembly language, you’d have to draw
shapes one pixel at a time. This is a laborious process that requires you to create your
own library of graphics routines, or maybe you could purchase such a library from a
third-party vendor. Visual Basic, however, features powerful drawing methods that can
create everything from simple lines to rectangles, circles, and more. This section intro-
duces you to these methods, which are important to game programmers.

The Line Method
Visual Basic’s Line method serves double duty, drawing both lines and “boxes,” which
most programmers call rectangles. Why VB doesn’t have a Rectangle method is beyond
me (in fact, when I was a new VB programmer, I spent quite a long time looking for a
Rectangle method). Unconventional or not, in the following sections, you will master
the Line method.

Drawing Lines
To draw a simple line, you need only a starting point and an ending point. Visual Basic
requires that you provide these points as X,Y coordinates enclosed in parentheses, with
the coordinate sets separated by a hyphen. For example, to draw a line from the point
20,20 to the point 200,350 (see Figure 2.2), call the Line method like this:

Line (20, 20)-(100, 150)

24 Day 2

Coordinate 20,20

Coordinate 100,150

FIGURE 2.2
Drawing a simple line.

04 067231987x CH02 11/6/00 7:11 PM Page 24

Drawing Graphics with Visual Basic 25

2

You can complicate matters a bit by using the Step keyword, which specifies that the
line’s starting and ending coordinates are relative to the value of the CurrentX and
CurrentY properties of the object that you’re drawing. VB always sets the CurrentX and
CurrentY properties to the final coordinates of the last drawing command. For example,
suppose you want to draw a line from 20,20 to 200,350 and then draw a line that starts
10 units to the right and 10 units down from the end of the original line, with the new
line ending at the point 100,50 (see Figure 2.3). You’d write something like this:

Line (20, 20)-(100, 150)
Line Step(10, 10)-(150, 50)

If you try out the code sample here, you should set your form’s ScaleMode
property to pixels. Otherwise, the results will be hard to see.Note

FIGURE 2.3
Drawing lines using
relative coordinates. First line

Second line

If you want the line’s ending point to be relative to the previous line’s starting point, put
the Step keyword in front of the second set of coordinates, like this:

Line (10, 10)-Step(150, 50)

Of course, you can make both points relative by including the Step keyword twice:

Line Step(10, 10)-Step(150, 50)

The coordinates used with the Line method and other drawing methods,
depend upon the ScaleMode property of the object that you’re drawing. For
example, if you have a form’s ScaleMode set to Twip (the default), the units
used for the Line method’s coordinates are twips. Similarly, if ScaleMode is
set to Pixel, the units used are pixels. Most game programmers like to work
with pixels.

Note

04 067231987x CH02 11/6/00 7:11 PM Page 25

A pixel is the smallest dot that a program can display on a computer screen.
When your computer’s screen is set to 800×600 resolution, for example, it can

display 800 pixels horizontally and 600 pixels vertically.

Finally, you can specify a line’s color by adding it as a third argument. For example, to
draw a green line, you might write this:

Line (20, 20)-(100, 150), vbGreen

Drawing Boxes
As mentioned previously, the Line method also draws rectangles, both hollow and filled.
When you use the Line method this way, the first coordinate represents the rectangle’s
upper-left corner and the second coordinate represents the lower-right corner. You must
also include the B flag, which tells VB to use the coordinates to draw a box. For example,
to draw a hollow red rectangle with its upper-left corner at 20,20 and its lower-right cor-
ner at 100,150 (see Figure 2.4), you’d write the following:

Line (20, 20)-(100, 150), vbRed, B

26 Day 2

NEW TERM

FIGURE 2.4
Drawing a hollow
rectangle.

Coordinate 100,150

Coordinate 20,20

Finally, to draw a filled rectangle (see Figure 2.5), just add the F flag to the B flag, like
this:

Line (20, 20)-(100, 150), vbRed, BF

FIGURE 2.5
Drawing a filled
rectangle.

04 067231987x CH02 11/6/00 7:11 PM Page 26

Drawing Graphics with Visual Basic 27

2

The Circle Method
Drawing lines and rectangles is all well and good, but occasionally you’ll want to draw
circles, ellipses, and arcs as well. Not to worry. Visual Basic features the Circle method,
which you’ll examine next.

Drawing Circles
To draw a circle, Visual Basic requires two values: the circle’s center point and its radius.
As with the Line method, the Circle method requires a coordinate’s X,Y pair of values
to be enclosed in parentheses. To draw a circle centered at point 100,75 with a radius of
50 (see Figure 2.6), type this:

Circle (100, 75), 50

FIGURE 2.6
Drawing a circle.

Coordinate 100,75

Easy enough, but the process can get more complicated, of course. For example, you can
use the Step keyword to specify that the circle’s center coordinate is relative to the
CurrentX and CurrentY properties, like this:

Circle Step(100, 75), 50

You can also set the circle’s drawing color:

Circle Step(100, 75), 50, vbBlue

Drawing Ellipses
Drawing an ellipse (an oval) is almost as easy as drawing a circle. You need only add one
argument (the ellipse’s aspect ratio) to the Circle method call. For example, to draw an
oval that’s twice as wide as it is high (see Figure 2.7), you might write the following:

Circle (100, 75), 50, vbRed, , , 0.5

The two extra commas in this line represent two optional arguments that, in this case, the
programmer has not supplied. You’ll learn about these arguments in the following section
on arcs.

04 067231987x CH02 11/6/00 7:11 PM Page 27

FIGURE 2.7
Drawing an ellipse.

28 Day 2

Aspect ratio is the proportion between a shape’s height and width. For example, a
rectangle that’s twice as high as it is wide has an aspect ratio of 2:1, meaning that

for every two units of height there’s only one unit of width. You can express an aspect
ratio by changing the colon to a division symbol and doing the math. That is, an aspect
ratio of 2:1 can be expressed as 2/1 or simply 2, whereas an aspect ratio of 1:4 can be
expressed as 1/4 or 0.25.

Drawing Arcs
Drawing arcs can be tricky because you need to specify starting and ending angles. Even
worse, the angles must be specified in radians, rather than in degrees. For example, to
draw an arc that’s 1/4 of a circle (see Figure 2.8), you might write this:

Circle (150, 125), 100, vbBlack, 0, 1.5708

Coordinate 100,75

������ ���	�
� �� ��������

�	���� ������� � ���	�
� �� ��������

NEW TERM

FIGURE 2.8
Drawing an arc.

If you’re more comfortable working with degrees, a couple of simple formulas will get
you on track. Here are two functions that will help, one that converts radians to degrees
and one that converts degrees to radians:

Function RadiansToDegrees(Radians As Single) As Integer
RadiansToDegrees = Radians * 180 / 3.14159265

04 067231987x CH02 11/6/00 7:11 PM Page 28

Drawing Graphics with Visual Basic 29

2

End Function

Function DegreesToRadians(Degrees As Integer) As Single
DegreesToRadians = Degrees / 180 * 3.14159265

End Function

Using these helper functions, you might write the following to create the arc shown in
Figure 2.8:

Dim Start As Single
Dim Finish As Single
Start = DegreesToRadians(0)
Finish = DegreesToRadians(90)
Circle (150, 125), 100, vbBlack, Start, Finish

Besides supplying the starting and ending angles for your arc, you can also supply the
aspect ratio:

Circle (150, 125), 100, vbBlack, 0, 1.5708

This call to the Circle method produces the arc shown in Figure 2.9.

FIGURE 2.9
Drawing a flattened
arc.

Line and Fill Properties
Visual Basic objects that can display graphics have a set of properties that control how
Visual Basic draws lines and shapes. These properties are as follows:

• DrawWidth—The width of lines

• DrawStyle—The style used when drawing lines

• DrawMode—The drawing mode used to display graphics

• FillColor—The color used to fill shapes

• FillStyle—The style used to fill shapes

04 067231987x CH02 11/6/00 7:11 PM Page 29

The DrawWidth Property
The DrawWidth property determines how thick lines will be. For example, the following
code lines create the image shown in Figure 2.10:

Dim x As Integer
For x = 1 To 10
Form1.DrawWidth = x
Line (20, 20 * x)-(200, 20 * x)

Next x

30 Day 2

FIGURE 2.10
Drawing lines of vary-
ing thickness.

The DrawMode Property
The DrawMode property specifies the drawing mode to use, determining the way that
Visual Basic combines the source and destination colors. There are actually 16 modes,
represented by these predefined VB constants: vbBlackness, vbNotMergePen,
vbMaskNotPen, vbNotCopyPen, vbMaskPenNot, vbInvert, vbXorPen, vbNotMaskPen,
vbMaskPen, vbNotXorPen, vbNop, vbMergeNotPen, vbCopyPen, vbMergePenNot,
vbMergePen, and vbWhiteness. However, only two of these modes—vbCopyPen and
vbInvert—are especially useful to game programmers.

The vbCopyPen mode is the default drawing mode, in which you get what you ask for.
That is, if you draw a red line, you get a red line. The vbInvert mode, on the other hand,
combines the source and destination colors in such a way that performing the same draw-
ing operation a second time returns the display to its original condition, as demonstrated
by the following code lines:

Form1.DrawMode = vbInvert
Line (20, 20)-(200, 20) ‘ Draw the line
Line (20, 20)-(200, 20) ‘ Erase the line

If you try out this example, you will see no lines on the screen. As soon as the first line
of source code draws its line, the line is immediately erased by the second line of source
code.

04 067231987x CH02 11/6/00 7:11 PM Page 30

Drawing Graphics with Visual Basic 31

2

The DrawStyle Property
You can create lines of various styles by setting the DrawStyle property to one of these
values: vbSolid, vbDash, vbDot, vbDashDot, vbDashDotDot, vbInvisible, or
vbInsideSolid. For example, to draw a dashed line (see Figure 2.11), you might write
this:

Form1.DrawStyle = vbDash
Line (20, 50)-(250, 50)

FIGURE 2.11
Drawing a dashed line.

The FillColor and FillStyle Properties
As you can probably guess by its name, the FillColor property determines the color
used to fill shapes. It works hand-in-hand with the FillStyle property, which determines
the style of the fill. For example, to draw a circle with a black outline and a solid-red fill,
you might write this:

Form1.FillColor = vbRed
Form1.FillStyle = vbFSSolid
Circle (100, 100), 50

The FillStyle property can be set to one of eight values, each of which is represented
in VB by a predefined constant. These constants are vbFSSolid, vbFSTransparent,
vbHorizontalLine, vbVerticalLine, vbUpwardDiagonal, vbDownwardDiagonal,
vbCross, and vbDiagonalCross. The vbFSTransparent style, which results in a hollow
shape, is the default. The other styles specify a pattern that VB uses to fill the object. For
example, the following lines create the circle shown in Figure 2.12:

Form1.FillColor = vbRed
Form1.FillStyle = vbUpwardDiagonal
Circle (100, 100), 50

The DrawStyle property only affects lines with a DrawWidth value of 1.Note

04 067231987x CH02 11/6/00 7:11 PM Page 31

FIGURE 2.12
Using fill colors and
styles.

32 Day 2

The Graphics Controls
Visual Basic features several controls that represent graphical objects, anything from a
simple line to a photograph. Like the Form object, one of these controls can provide
drawing surfaces for VB’s graphics methods, such as Line and Circle. In this section,
you’ll get a brief introduction to these handy controls.

The Line and Shape Controls
Previously in this chapter, you learned how to use Visual Basic’s graphics methods to
draw various types of lines and shapes. Another way to add lines and shapes to a display
is to call upon the Line and Shape controls. The Line control features a set of properties
that enable you to set a line’s color, thickness, style, drawing mode, and more.

The Shape control, on the other hand, enables you to easily display six different shapes:
rectangle, square, oval, circle, rounded rectangle, and rounded square. You change the
shape simply by setting the control’s Shape property. Other properties enable you to set
the shape’s color, style, fill color, fill style, height, width, and so on.

Throughout this chapter, you’ve seen a lot of predefined VB constants used
to represent things like colors, line styles, and fill styles. Remember that a
constant is just a symbol that represents a number. That is, you don’t need
to use the constants. You can use their equivalent numbers instead—which
can be very handy when you want to do something like change a property
repeatedly within a loop. You can find the equivalent values for constants in
your Visual Basic documentation.

Tip

If you need a line or shape that you can easily move around your applica-
tion’s display, use the Line or Shape control. This is because the Line and
Shape controls support the Move method. Using the Move method is infinitely
easier than trying to draw, erase, and redraw a shape using graphics meth-
ods such as Line and Circle.

Tip

04 067231987x CH02 11/6/00 7:11 PM Page 32

Drawing Graphics with Visual Basic 33

2

The Image and PictureBox Controls
If you need to display bitmaps or other types of images from files on your disk, the
Image and PictureBox controls fit the bill nicely. The Image control is a kind of stripped-
down version of the PictureBox control with fewer capabilities and properties. Still, dis-
playing a photographic-quality image on your application’s display is as easy as setting
an Image control’s Picture property to the file containing the image.

The PictureBox control can also display image files, but it also acts as a drawing surface,
just as a Form object does, and it can be a container for other controls. In many ways, a
PictureBox control is much like a Form object, except it doesn’t look like a standard
window (that is, it doesn’t have a title bar, menu bar, and so on). When you have com-
plex graphics or collections of controls that you want to manipulate easily, a PictureBox
control is the perfect choice.

You’ll learn more about the Image and PictureBox controls as you use them throughout
the rest of this book.

The Face Catch Game
You’ve learned quite a lot about Visual Basic’s drawing commands and objects in this
chapter, but you haven’t yet seen how this information can help you write a game. In this
section, you’ll write your first Visual Basic game program, a simple little contest affec-
tionately known as Face Catch. In the following sections, you’ll discover how to play and
program this example game.

Playing Face Catch
You can find the Face Catch game in the Chap02\FaceCatch directory on this book’s CD-
ROM. If you’ve installed the CD-ROM onto your hard disk drive, you can find the game
in the same directory there. To run the game, double-click the FaceCatch.exe file. You’ll
see the window shown in Figure 2.13.

As you can see, the game has two menus, Game and Difficulty. The Game menu con-
tains only two commands, Start Game and Exit. The Difficulty menu enables you to set
the game to one of four difficulty levels.

To start playing, select the Start Game command or just press Ctrl+S. The face on the
screen starts jumping from one place to another, leaving a color “footprint” each place it
stops. Your task is to click the face with your mouse as many times as possible before the
game ends. After the face jumps 30 times, the game ends and a message box displays
your score, as shown in Figure 2.14.

04 067231987x CH02 11/6/00 7:11 PM Page 33

FIGURE 2.13
The Face Catch game
when it’s first run.

34 Day 2

FIGURE 2.14
Face Catch at the end
of a game.

Although Face Catch will never win any awards, it’s a cute diversion that you can play
when you get tired of loading numbers into that spreadsheet or while you’re waiting for
Web pages to download. In the next section, you’ll learn how to build the program from
scratch.

Building Face Catch
This section is a fairly simple programming exercise that will show you how to use
Visual Basic’s drawing commands and graphics objects to create a game. In the follow-
ing sections, you’ll build the Face Catch program piece by piece, starting with the user
interface.

04 067231987x CH02 11/6/00 7:11 PM Page 34

Drawing Graphics with Visual Basic 35

2

Building the Face Catch User Interface
To build the game’s user interface, perform the following steps:

1. Start a new Visual Basic Standard EXE project. Save the form as FaceCatch.frm,
and save the project as FaceCatch.vbp.

2. In the VB Properties window, set the following form properties to the values
shown:
AutoRedraw = True
BorderStyle = Fixed Single
Caption = “Face Catch”
Height = 6285
Width = 7995
ScaleMode = Pixel

Setting AutoRedraw to True ensures that the form will repaint its display automati-
cally as needed, whereas the BorderStyle of Fixed Single prevents the user from
changing the size of the window. The ScaleMode setting of Pixel causes positioning
statements and drawing commands to use a measurement of pixels, which is the
smallest dot on the screen.

3. Set the form’s Icon property to the FaceCatch.ico file, which you can find in the
Images\FaceCatch directory on this book’s CD-ROM (or on your hard disk, if you
installed the CD-ROM there).

The icon will appear in the upper-left corner of the window, as well as in Windows
Explorer displays and on the taskbar.

4. Using the menu editor, create menus for the form, as shown in Figure 2.15. (Don’t
forget the Ctrl+S shortcut, also shown in Figure 2.15, for the Start Game com-
mand.) Use the following captions and menu names:

&Game mnuGame

&Start Game mnuStartGame

– mnuSep

E&xit mnuExit

&Difficulty mnuDifficulty

&Easy mnuEasy

&Moderate mnuModerate

&Hard mnuHard

&Impossible mnuImpossible

04 067231987x CH02 11/6/00 7:11 PM Page 35

FIGURE 2.15
Creating the Face
Catch menu bar.

36 Day 2

5. Add a PictureBox control to the form, as shown in Figure 2.16.

This PictureBox will hold the face image.

FIGURE 2.16
Adding the PictureBox
control.

6. In the VB Properties window, set the following PictureBox properties to the values
shown:
AutoRedraw = True
Height = 100
ScaleMode = Pixel
Width = 100

04 067231987x CH02 11/6/00 7:11 PM Page 36

Drawing Graphics with Visual Basic 37

2

7. Add a Timer control to the form, as shown in Figure 2.17.

The Timer control determines how fast the face image jumps around the window.

FIGURE 2.17
Adding the Timer
control.

You’ve now completed the game’s user interface. In the next section, you’ll add the pro-
gram code that gets the game working.

Adding the Program code
To add the game’s program code to the Face Catch project, perform the following steps:

1. Add the following lines to the project’s code window, as shown in Figure 2.18:

LISTING 2.1 Program Options and Variables

1: ‘==
2: ‘ Face Catch for Visual Basic 6
3: ‘ by Clayton Walnum
4: ‘ Copyright 2000 by Macmillan Computer Publishing
5: ‘==
6: Option Explicit
7:
8: ‘==
9: ‘ Global Variables.
10: ‘==
11: Dim Score As Integer
12: Dim MoveCount As Integer
13: Dim Difficulty As Integer
14: Dim OldCheckedMenu As Menu

04 067231987x CH02 11/6/00 7:11 PM Page 37

This code sets the program’s options and declares a set of global variables. As
you’ll see later in this chapter, these global variables hold important game values.

The Option Explicit statement in Line 6 specifies that Visual Basic should warn you
whenever it comes across a variable that hasn’t been declared previously. This option
helps avoid program bugs by enabling you to find misspelled variables easily. The vari-
ables declared in Lines 11 through 14 are global, so they can be shared between subrou-
tines in the program without having to be passed explicitly to a called subroutine or
function.

38 Day 2

ANALYSIS

FIGURE 2.18
Adding global variable
declarations.

2. Add the following form subroutine to the project’s code window, right after the
code you added in Step 1:

LISTING 2.2 The Form_Load Event Handler

1: ‘==
2: ‘ Form subroutines.
3: ‘==
4: Private Sub Form_Load()
5: InitGame
6: End Sub

04 067231987x CH02 11/6/00 7:11 PM Page 38

Drawing Graphics with Visual Basic 39

2

Visual Basic calls this subroutine when it first loads the game’s main form. This
gives your program a chance to perform any initialization it needs to do before

the form becomes visible. In this case, Line 5 calls the InitGame subroutine, which sets
the starting values for the game’s variables.

3. Add the following Picture1 handler subroutine to the project’s code window, right
after the code you added in Step 2:

LISTING 2.3 The Picture1_Click Event Handler

1: ‘==
2: ‘ Picture1 subroutines.
3: ‘==
4: Private Sub Picture1_Click()
5: If Timer1.Interval > 100 Then
6: Beep
7: Score = Score + 1
8: End If
9: End Sub

Visual Basic calls this subroutine whenever the user clicks the Picture1 object.
This event handler increases the player’s score (Line 7) whenever the player

manages to click the face. The If statement in Line 5 ensures that the Timer control is
running, which means that the face image is moving. You don’t want the player to get
points before the game starts!

4. Add the following Timer1 handler subroutine to the project’s code window, right
after the code you added in Step 3:

LISTING 2.4 The Timer Handler

1: ‘==
2: ‘ Timer1 Handler.
3: ‘==
4: Private Sub Timer1_Timer()
5: Dim x As Integer, y As Integer
6: Dim BoxX As Integer, BoxY As Integer
7:
8: x = Int(391 * Rnd + 20)
9: y = Int(231 * Rnd + 20)
10: BoxX = Picture1.Left
11: BoxY = Picture1.Top
12: Form1.ForeColor = RGB(Rnd * 256, Rnd * 256, Rnd * 256)
13: Form1.Line (BoxX, BoxY)-(BoxX + 100, BoxY + 100), , BF
14: Picture1.Move x, y
15:

ANALYSIS

ANALYSIS

04 067231987x CH02 11/6/00 7:11 PM Page 39

LISTING 2.4 continued

16: MoveCount = MoveCount + 1
17: If MoveCount = 30 Then
18: Timer1.Interval = 0
19: MsgBox “Your Score:” & Score
20: End If
21: End Sub

Visual Basic calls this subroutine whenever the Timer1 object reaches its interval
value, which is determined by the control’s Interval property. When the timer is

activated, it moves the face to a new random location. Lines 8 and 9 calculate the new
location, and Lines 10 through 13 draw a rectangle at the face’s current position before
Line 14 moves the face. Lines 16 through 20 count each move and end the game when
the face has moved 30 times.

5. Add the following menu-handler subroutines to the project’s code window, right
after the code you added in Step 4:

LISTING 2.5 The Menu Handlers

1: ‘==
2: ‘ Menu Handlers.
3: ‘==
4: Private Sub mnuEasy_Click()
5: Difficulty = 1000
6: OldCheckedMenu.Checked = False
7: Set OldCheckedMenu = mnuEasy
8: mnuEasy.Checked = True
9: End Sub
10:
11: Private Sub mnuHard_Click()
12: Difficulty = 500
13: OldCheckedMenu.Checked = False
14: Set OldCheckedMenu = mnuHard
15: mnuHard.Checked = True
16: End Sub
17:
18: Private Sub mnuImpossible_Click()
19: Difficulty = 250
20: OldCheckedMenu.Checked = False
21: Set OldCheckedMenu = mnuImpossible
22: mnuImpossible.Checked = True
23: End Sub
24:
25: Private Sub mnuModerate_Click()
26: Difficulty = 700

40 Day 2

ANALYSIS

04 067231987x CH02 11/6/00 7:11 PM Page 40

Drawing Graphics with Visual Basic 41

2

27: OldCheckedMenu.Checked = False
28: Set OldCheckedMenu = mnuModerate
29: mnuModerate.Checked = True
30: End Sub
31:
32: Private Sub mnuStartGame_Click()
33: Form1.Cls
34: DrawScreen
35: Score = 0
36: MoveCount = 0
37: Timer1.Interval = Difficulty
38: End Sub
39:
40: Private Sub mnuExit_Click()
41: Unload Form1
42: End Sub

Visual Basic calls one of these subroutines whenever the user selects a command
from the game’s menu bar. Each of these event procedures performs the tasks

required by its associated menu command. For example, Lines 4 through 8 set the game to
its easy skill level when the player clicks the Difficulty menu’s Easy command. Lines 33
through 37 prepare the program for a new game when the player clicks the Game menu’s
Start Game command.

6. Add the following general game subroutines to the project’s code window, right
after the code you added in Step 5:

LISTING 2.6 The General Subroutines

1: ‘==
2: ‘ Game subroutines.
3: ‘==
4: Sub InitGame()
5: Difficulty = 500
6: mnuModerate.Checked = True
7: Set OldCheckedMenu = mnuModerate
8: Randomize
9: DrawScreen
10: DrawFace
11: End Sub
12:
13: Sub DrawScreen()
14: Form1.ForeColor = vbBlack
15: Form1.Line (10, 10)-(517, 10)
16: Form1.Line (10, 10)-(10, 358)
17: Form1.Line (522, 5)-(522, 362)
18: Form1.Line (522, 362)-(5, 362)
19: Form1.ForeColor = vbWhite

ANALYSIS

04 067231987x CH02 11/6/00 7:11 PM Page 41

LISTING 2.6 continued

20: Form1.Line (5, 5)-(522, 5)
21: Form1.Line (5, 5)-(5, 363)
22: Form1.Line (517, 10)-(517, 358)
23: Form1.Line (517, 358)-(10, 358)
24: End Sub
25:
26: Sub DrawFace()
27: Picture1.FillStyle = vbSolid
28: Picture1.FillColor = vbYellow
29: Picture1.Circle (48, 48), 45
30: Picture1.FillColor = vbBlack
31: Picture1.Circle (30, 35), 10
32: Picture1.Circle (65, 35), 10
33: Picture1.Circle (47, 55), 8
34: Picture1.DrawWidth = 2
35: Picture1.Circle (48, 50), 30, , 3.4, 6, 1#
36: End Sub

These subroutines initialize the game variables and draw the graphics. The sub-
routine in Lines 4 through 11 gets the game ready to play for the first time.

Lines 13 through 24 draw the screen display on the main form, whereas Lines 26
through 36 draw the face image in the PictureBox control.

You’ve now completed the Face Catch game project. You can run the program from with-
in Visual Basic, or you can compile it into an executable file.

Understanding Face Catch
The Face Catch game relies on four global variables, which the program declares near
the top of the program. Table 2.4 lists the variables and their descriptions.

TABLE 2.4 The Face Catch Game Variables

Variable Type Description

Score Integer The player’s current score. The program increments this value
each time the player manages to click on the jumping face.

MoveCount Integer The number of times the face has jumped. When this value
reaches 30, the game is over.

Difficulty Integer The setting for the Timer1 control’s Interval property. This
value starts with an initial value of 500, but the user can change
it by selecting a command on the game’s Difficulty menu.

OldCheckedMenu Menu The Menu object associated with the command (on the Difficulty
menu) that must be unchecked before a new command can be
checked.

42 Day 2

ANALYSIS

04 067231987x CH02 11/6/00 7:11 PM Page 42

Drawing Graphics with Visual Basic 43

2

When the game starts, Visual Basic calls the Form1 object’s Form_Load subroutine, which
does nothing more than call the game subroutine InitGame. InitGame first initializes sev-
eral variables:

Difficulty = 500
mnuModerate.Checked = True
Set OldCheckedMenu = mnuModerate

This initialization sets the game difficulty to 500, which the program uses as the starting
interval for the Timer1 object. That is, when the player first runs the game, the face
image is set to jump every 500 milliseconds. The remaining initialization lines coordinate
the Difficulty menu with the initial difficulty setting when you checkmark the Moderate
command in the menu.

The InitGame subroutine next calls the VB command Randomize, which ensures that the
program can generate a different set of random numbers each time it’s played:

Randomize

Most computer games rely heavily on random numbers. If you forget to call
the Randomize command before acquiring random numbers, the game will
generate the same set of random numbers each time it’s played. This results
in a game that’s entirely predictable.

Caution

Finally, InitGame calls two other general game subroutines, as shown here:

DrawScreen
DrawFace

As you can tell by these subroutine’s names, they draw the main game screen and the face
image, all using the VB drawing commands you learned in this chapter. The DrawScreen
subroutine draws a 3D border around the edge of the form’s display area, like this:

LISTING 2.7 Drawing the Display’s Border

1: Form1.ForeColor = vbBlack
2: Form1.Line (10, 10)-(517, 10)
3: Form1.Line (10, 10)-(10, 358)
4: Form1.Line (522, 5)-(522, 362)
5: Form1.Line (522, 362)-(5, 362)
6: Form1.ForeColor = vbWhite
7: Form1.Line (5, 5)-(522, 5)
8: Form1.Line (5, 5)-(5, 363)
9: Form1.Line (517, 10)-(517, 358)
10: Form1.Line (517, 358)-(10, 358)

04 067231987x CH02 11/6/00 7:11 PM Page 43

The DrawFace subroutine, on the other hand, draws the face image in the Picture1 con-
trol, like this:

LISTING 2.8 Drawing the Face

1: Picture1.FillStyle = vbSolid
2: Picture1.FillColor = vbYellow
3: Picture1.Circle (48, 48), 45
4: Picture1.FillColor = vbBlack
5: Picture1.Circle (30, 35), 10
6: Picture1.Circle (65, 35), 10
7: Picture1.Circle (47, 55), 8
8: Picture1.DrawWidth = 2
9: Picture1.Circle (48, 50), 30, , 3.4, 6, 1#

After reading this chapter, you should understand how these two subroutines draw their
images. If a drawing command or object property doesn’t ring a bell, review the appro-
priate sections of this chapter.

There’s not a lot to be said about the Difficulty menu handlers, except that they set the
Difficulty variable and checkmark the associated menu command. For example, when
the user clicks the Easy menu command, the mnuEasy_Click subroutine handles the
request like this:

Difficulty = 1000
OldCheckedMenu.Checked = False
Set OldCheckedMenu = mnuEasy
mnuEasy.Checked = True

For all intents and purposes, the Timer1_Timer handler manages all the game action.
Every time the Timer1 object counts up to the value contained in its Interval property,
VB calls the Timer1_Timer subroutine. This subroutine first declares a set of local vari-
ables:

Dim x As Integer, y As Integer
Dim BoxX As Integer, BoxY As Integer

The x and y variables represent the coordinates where the face will jump next. The pro-
gram sets these variables’ values by calling the VB Rnd command, which returns a value
between 0 and 1. A little simple math converts these values to integers between 20 and
410 for the x coordinate and between 20 and 230 for the y coordinate:

x = Int(391 * Rnd + 20)
y = Int(231 * Rnd + 20)

44 Day 2

04 067231987x CH02 11/6/00 7:11 PM Page 44

Drawing Graphics with Visual Basic 45

2
After setting the location for the next face jump, the program draws a rectangle on the
form at the face’s current location. Then the program moves the face to its new random
location:

BoxX = Picture1.Left
BoxY = Picture1.Top
Form1.ForeColor = RGB(Rnd * 256, Rnd * 256, Rnd * 256)
Form1.Line (BoxX, BoxY)-(BoxX + 100, BoxY + 100), , BF
Picture1.Move x, y

The last task for the timer handler is to increment the jump count and check whether the
game is over. If the game is over, the timer shuts itself off (by setting its Interval prop-
erty to 0) and displays a message box containing the player’s score:

MoveCount = MoveCount + 1
If MoveCount = 30 Then
Timer1.Interval = 0
MsgBox “Your Score:” & Score

End If

Summary
Writing computer games requires good graphics programming skills. In this, your second
day of study, you learned how to use Visual Basic’s drawing methods Line and Circle to
draw lines, rectangles, circles, ovals, and arcs. You then discovered many properties that
determine how Visual Basic draws its graphics. Finally, you got a quick look at the spe-
cial graphics controls Line and Shape, as well as the very important Form object, Image
control, and PictureBox control.

In Day 3, “Creating Game Screens with Fonts and VB Graphics,” you’ll learn how to
manipulate graphical text to create attractive displays. Because every game combines
graphics and text, these skills will take you a long way toward being the game program-
mer you want to be.

Calculating a range of random numbers can sometimes be tricky. To make
this task easier, remember the following formula: Int((upper - lower
+ 1) * Rnd + lower). The formulas for the x and y coordinates in the Face
Catch game are actually the same formula after they’ve been simplified. For
example, x = Int((410 - 20 + 1) * Rnd + 20) simplifies to x = Int
(391 * Rnd + 20).

Tip

04 067231987x CH02 11/6/00 7:11 PM Page 45

Q&A
Q Is there any compelling reason to use one type of color constant rather than

another, or can I specify colors any way I find comfortable?

A In most cases, you should choose a method that suits your way of working. It’s
always better to use constants (even if you have to define your own) so that your
code is easier to read. However, the predefined system-color constants can be very
important if you want your game program to respond to changes that the user might
make in his current Windows colors. For example, if you draw your own buttons
rather than using Visual Basic’s CommandButton controls, you might want the but-
tons to change colors appropriately when the system’s button colors change. In that
case, use the system-color constants to specify colors for your custom buttons.

Q If I choose to use a ScaleMode setting of Twip, which is the VB default, is there
a way I can convert twip coordinates to pixel coordinates and vice versa?

A Sure is. Visual Basic provides the TwipsPerPixelX (for horizontal screen measure-
ments) and TwipsPerPixelY (for vertical screen measurements) properties, which
return the number of twips per screen pixel. You can use the return values from
these properties to perform conversions between twips and pixels.

Q You said that the DrawStyle property only affects lines with a DrawWidth set-
ting of 1. What if I want to draw a stylized line that’s two or more pixels wide?

A Although you can’t draw a single stylized line with a width greater than 1, there’s
nothing to stop you from drawing several of such lines, one after the other, to cre-
ate a stylized line of the required width. For example, to create a dashed line two
pixels wide, just draw two dashed lines, one on top of the other.

Workshop
The workshop includes quiz questions to help gauge your grasp of the material. You’ll
find the answers to this quiz in Appendix A, “Quiz and Exercise Answers.” Even if you
feel that you totally understand the concepts presented here, you should work through the
quiz anyway. The last section has some exercises that you might work through to rein-
force your learning.

Quiz
1. What are the five ways you can specify a color in a Visual Basic programs?

2. Why might you want to use system colors in your programs?

3. What are the three color elements of an RGB color value, and what are their mini-
mum and maximum values?

46 Day 2

04 067231987x CH02 11/6/00 7:11 PM Page 46

Drawing Graphics with Visual Basic 47

2

4. What shapes can you draw with the Line method?

5. What shapes can you draw with the Circle method?

6. How does the Step keyword affect the coordinates given to the Line and Circle

methods?

7. If you want to draw a shape filled with a predefined pattern, what property will you
set for the object on whose surface you want to draw?

8. What is the purpose of a drawing mode?

9. Why are the vbCopyPen and vbInvert drawing modes especially useful?

10. Which two Visual Basic controls can display shapes without your program having
to draw them by using drawing methods?

11. What Visual Basic object and control can act as drawing surfaces for the drawing
methods?

12. Which two Visual Basic controls can display complex images such as bitmaps
stored in a file?

Exercises
1. Start a new Visual Basic project and draw a blue, two-pixel-wide line on the form

from point 30,50 (measured in pixels) to point 100,75. (Hint: You can perform your
drawing in the form’s Form_Load method, but you must first set the form’s
AutoRedraw property to True.)

2. In the same form, draw a yellow-filled rectangle with corners located at 20,30 and
75,60.

3. Add a PictureBox control to the form, and use the drawing methods to draw a
scene in the PictureBox that includes a simple house on a green lawn and a sun in
a blue sky. (Don’t forget to set the PictureBox’s AutoRedraw property to True.)

04 067231987x CH02 11/6/00 7:11 PM Page 47

04 067231987x CH02 11/6/00 7:11 PM Page 48

DAY 3

WEEK 1

Creating Game Screens
with Fonts and VB
Graphics

Whether it’s something as simple as the player’s score or as large as the status
of a dozen or more characters, most games need to display text. And often, you
won’t want to stick to the default font and its attributes. In the following sec-
tions, you’ll learn all you need to know to use text in your Visual Basic games.
Today you’ll learn the following:

• How to set text colors

• How to display transparent and nontransparent text

• How to set a font’s typeface and size

• How to display italic, bold, underlined, or strikethrough text

• How to combine text and graphics to create a game screen

05 067231987x CH03 11/6/00 7:07 PM Page 49

Setting Text Colors
The most obvious text attribute that affects your game displays is color. You want the text
color to fit in well with the game’s graphics. Color is also a good way to make certain
text stand out more than other text. There are two object properties that determine the
colors used for displaying text: ForeColor and FontTransparent.

The ForeColor Property
An object’s ForeColor property determines the drawing color used by the object when it
displays graphics (in this case, you can consider text to be graphics). For example, if
you set a form’s ForeColor property to the color red, graphics, such as lines, and text
will be drawn in red. To put it simply, to change the text color, set the object’s ForeColor
property. The following lines display the message “This is red text” in red:

Form1.ForeColor = vbRed
Print “This is red text”

The FontTransparent Property
Another property that affects text color is FontTransparent. This property also deter-
mines whether or not background graphics will be blocked out by the text line. By
default, Visual Basic sets the FontTransparent property to True, meaning that back-
ground graphics show through the displayed text. For example, Listing 3.1 draws a black
rectangle in a form and then displays transparent white text over the rectangle. Figure 3.1
shows the result.

LISTING 3.1 Displaying Transparent Text

1: Form1.ScaleMode = vbPixels
2: Form1.Line (40, 40)-(270, 170), vbBlack, BF
3: Form1.FontTransparent = True
4: Form1.ForeColor = vbWhite
5: Form1.CurrentX = 80
6: Form1.CurrentY = 80
7: Form1.Print “This is transparent text”

Line 1 sets measurements in the form to pixels, and Line 2 draws a black, filled
box. Lines 3 and 4 set the text attributes, Lines 5 and 6 set the position for text

output, and Line 7 prints the transparent text.

Listing 3.2 is similar, except that the FontTransparent property is set to False and the
text color is now black. Thus, the area around the text blocks out any graphics beneath.
Figure 3.2 shows the result.

50 Day 3

ANALYSIS

05 067231987x CH03 11/6/00 7:07 PM Page 50

Creating Game Screens with Fonts and VB Graphics 51

3

FIGURE 3.1
Transparent text dis-
played in a form.

LISTING 3.2 Displaying Opaque Text

1: Form1.ScaleMode = vbPixels
2: Form1.Line (40, 40)-(270, 170), vbBlack, BF
3: Form1.FontTransparent = False
4: Form1.ForeColor = vbWhite
5: Form1.CurrentX = 80
6: Form1.CurrentY = 80
7: Form1.Print “This is non-transparent text”

Line 1 sets measurements in the form to pixels, and Line 2 draws a black, filled
box. Lines 3 and 4 set the text attributes, Lines 5 and 6 set the position for text

output, and Line 7 prints the text, this time opaque.

ANALYSIS

FIGURE 3.2
Non-transparent text
displayed in a form.

The background color of non-transparent text is the same as the object’s
background color. For example, whether a form’s background color is white
or not, non-transparent text drawn on the form will also have a white back-
ground. This means that any text not drawn on top of previously drawn
graphics will always look transparent, regardless of the FontTransparent
property’s setting.

Note

05 067231987x CH03 11/6/00 7:07 PM Page 51

Working with Fonts
Besides color, the type of font and the font’s attributes also play a big role in how text
appears on your game’s screen. Each object that can display text has a Font property that
determines the font settings. In the following sections, you’ll discover how to handle
Font objects in your programs.

A font is a set of attributes that determine how text looks on the screen.

The Font Property
As already mentioned, any object that can display text has a Font property that deter-
mines the type of font and its attributes. That is, the Font property determines the type-
face that will be used to display text, as well as the size of the text and whether it will be
italic, bold, underlined, and so on. To access a Font object’s properties, just use the
object name Font followed by a period and the name of the property you want to access.
For example, here’s how you set a form’s font to bold:

Form1.Font.Bold = True

Properties of Fonts
The Font object features eight properties that determine the appearance of the text.
Table 3.1 lists the properties and their descriptions.

TABLE 3.1 Properties of the Font Object

Property Description

Bold A Boolean value that determines whether text will be bold

Charset An integer value that determines the font’s character set

Italic A Boolean value that determines whether text will be italic

Name A string valuethat determines the typeface to use

Size An integer value that determines the size (in points) of the font

Strikethrough A Boolean value that determines whether text will be strikethrough

Underline A Boolean value that determines whether text will be underlined

Weight An integer value that represents the weight (boldness) of the font

Listing 3.3 sets a font to a 24-point, bold, italic, Courier typeface.

52 Day 3

NEW TERM

05 067231987x CH03 11/6/00 7:07 PM Page 52

Creating Game Screens with Fonts and VB Graphics 53

3

LISTING 3.3 Setting Up a Font

1: Form1.ScaleMode = vbPixels
2: Form1.Font.Name = “Courier”
3: Form1.Font.Size = 24
4: Form1.Font.Italic = True
5: Form1.Font.Bold = True
6: Form1.CurrentX = 80
7: Form1.CurrentY = 40
8: Form1.Print “This is Courier text”

Line 2 sets the font object to the Courier type face, and line 3 sets the font’s size
to 24 points. Lines 4 and 5 turn on the italic and bold attributes, Lines 6 and 7 set

the output position, and Line 8 displays a line of text.

Figure 3.3 shows what this font looks like when a program prints text in a form.

ANALYSIS

FIGURE 3.3
Courier text displayed
in a form.

The Nightshade Text Adventure Game
Now that you know how to handle fonts in your Visual Basic games, it’s time to put your
font knowledge to the test. I can’t think of a better example of using text in a game than
a good old-fashioned text adventure.

Playing Nightshade
You can find the Nightshade game in the Chap03\Nightshade directory on this book’s
CD-ROM. If you’ve installed the CD-ROM onto your hard drive, you can find the game
in the same directory there. To run the game, double-click the Nightshade.exe file.
Figure 3.4 shows a game of Nightshade in progress.

Most adventure games start off with some sort of background story. In order to under-
stand your quest in Nightshade, please read the following fairy tale.

05 067231987x CH03 11/6/00 7:07 PM Page 53

FIGURE 3.4
A Nightshade game in
progress.

54 Day 3

The Story
There’s a land that exists in the unconscious flickers passing through a mind embraced
by sleep. It hides in the shadows of dreams and shuns the bright light of reality. It is a
land called Nightshade.

Ten-year-old Denny Wayne first finds Nightshade not in the dark realm of sleep, but in a
book he discovers tucked into a dusty library shelf. Each night, Denny perches on his bed
and reads, turning the pages with trembling fingers, eyes as round as full October moons.

In the story, the Troll King has decided that all of Nightshade should be under his rule.
His armies are even now preparing to march on the Elf capital of Gandolese. The city
will remain under siege until the Elves pledge fealty to the Troll King.

Denny closes the book reluctantly, crawls beneath his blankets and settles back. Soon,
he’s asleep. In his mind’s eye, he relives each moment of the story as if he were there. It
is he who must overthrow the Troll King. In his dreams, Nightshade comes into being,
acting out the script that has been laid down so carefully in the book by some long-for-
gotten author.

The book rests on the bed. Each of Denny’s movements nudge it closer to the edge. What
secrets lay hidden in its final passages? According to the book, the Troll King’s plans are
doomed to failure. On the very last page, the Elf armies banish him from Nightshade for-
ever.

Denny sleeps. Denny dreams. The book falls from the bed to the floor. The pages flutter,
opening to the final paragraphs before coming to rest. Suddenly, a face looms from
Denny’s dream, the face of the Troll King. The King sees the book, reads the words that
spell his downfall, and bellows in fury. He will not be defeated! An idea begins to form…

05 067231987x CH03 11/6/00 7:07 PM Page 54

Creating Game Screens with Fonts and VB Graphics 55

3

Yes! the Troll King thinks. That should work! He will send one of his henchmen from
Nightshade into Denny’s world and steal the last page. If Denny can’t read that page,
his dreams will take another path and he, the Troll King, will be victorious instead of
defeated.

Denny wakes with a start. He scrambles up, looks wildly about. Nothing there. Only a
dream.

His breath whispers past his lips in a quiet sigh as he eases back. His eyelids creep shut.
He remembers seeing the book lying on the floor. Wasn’t there something different?
Something missing, perhaps? Sleep enfolds Denny in its dark arms, and, in his last
moment of wakefulness, his mind focuses on the book. The last page was torn out! It’s up
to him to recover the missing page and place it back in the book. Only then will the Troll
King’s defeat be assured.

Denny sleeps. Nightshade wakes.

Getting Into the Game
Nightshade is a nonviolent fantasy text adventure suitable for the entire family. There’s
no fighting or dying. If you make a “fatal” mistake during play, Denny simply wakes
from his dream. Your job is to guide Denny through the realm of Nightshade, recover the
missing page, and replace it in the book.

Nightshade is open to your communication via two-word commands. These commands
are in a verb/noun format (such as GET BOOK, GO DOOR). There are a few excep-
tions. All directions are abbreviated to a single letter (N, S, E, W, U, D).

If you’ve never played a text adventure before, you might find Nightshade a bit (byte?)
confusing at first. You’ll see messages like “Denny can’t do that!” at times when it seems
completely illogical. For instance, why can’t Denny MOVE BOOK? It’s right there in
plain sight! Is he just stupid? Well, yes and no. It’s important to realize that the game
will respond only to those commands it’s been programmed to accept. There’s no com-
puter in the galaxy that’s big enough to hold all the possible replies to all the possible
commands. Sometimes, rewording your command will yield a result. How about GET
BOOK instead?

Draw a map! That’s the only way you can keep track of your location. The most com-
mon mapping technique for adventure games is to represent each room (every location is
a “room,” even if it’s outside) by a small box. You then write the room’s name, as well as
any items found there, inside the box. Each possible exit is indicated by a small line
leading toward the next room. When you enter a new room, be sure to take note of all
exits. It’s imperative that you try each one, or else you’re likely to miss something
important.

05 067231987x CH03 11/6/00 7:07 PM Page 55

To start your adventure, try eachavailable exit and note any items found. When you can
go no farther, stop and think about everything you’ve discovered. What should Denny do
with the bed? Is the closet significant in some way? How about the clothes? Are they
important? When you solve a puzzle, repeat the process, moving from room to room,
gathering items and information until you get stuck again. Eventually, you’ll find your
way to the game’s solution.

56 Day 3

For you computer history buffs, I should mention that a guy named Scott
Adams was pretty much responsible for bringing text adventures to the
masses. At one point, his series of adventures were on every computer-game
player’s shelf. After Adams, a company named Infocom took over the mar-
ket for text adventures with the famous Zork series, and they continued
with a long line of comedy, mystery, and science fiction adventures that are
still available today.

Back when I was working for an Atari computer magazine, I had the honor
of traveling to the Infocom offices and writing an up-close article on the
whole game-development process. If you’re interested, that article and
interviews with the Infocom staff are available online at http://www.
claytonwalnum.com/infocom.html.

Note

Nightshade Hints
To use the following hints, load up the Translate application in the same directory as the
game. This application translates between Nightshadish and English, and vice versa.
Figure 3.5 shows Translate in action. To use a hint, find the question that relates to your
problem, and then type in the first encrypted hint beneath it. (Click Translate’s
Nightshadish to English button first.) Each line is a separate hint, and some questions
have several hints. After you decode the first one, try to solve the puzzle on your own. If
you’re still stuck, decode the next hint.

FIGURE 3.5
The Translate applica-
tion.

05 067231987x CH03 11/6/00 7:07 PM Page 56

Creating Game Screens with Fonts and VB Graphics 57

3

How can Denny get out of his room?

MPPL!JO!UIF!DMPTFU/

NPWF!UIF!DMPUIFT/

What are the trees for?

FYBNJOF!UIFN/

POF!DBO!CF!DMJNCFE/

POF!IBT!B!EPPS/

How can Denny cross the swamp?

WJTJU!UIF!FMWFT/

UBML!UP!UIF!FMWFT/

How can Denny cross the pond?

EJE!IF!HFU!JO!UIF!CPBU@

MPPL!BU!UIF!NVTJD/

EFOOZ!JT!B!HPPE!TJOHFS/

Where’s the page from the book?

JO!B!TUPOF!SPPN/

VTF!UIF!NJSSPS/

FYBNJOF!GBJOUFE!USPMM/

What about the dwarf?

UBML!UP!IJN/

Troll won’t let Denny leave?

SFGMFDU!PO!UIBU/

IF(T!BXGVMMZ!VHMZ/

HJWF!IJN!UIF!NJSSPS/

How can Denny “survive” the silver door?

IF!DBO(U/!JHOPSF!JU/

05 067231987x CH03 11/6/00 7:07 PM Page 57

How can Denny open the fancy box?

IBWF!UIF!CMVF!TDSPMM@

TFF!XIBU!UIF!CMVF!TDSPMM!TBZT/

TBZ!QSFTUP/

What about the giant?

UBML!UP!IJN/

How can Denny get the hammer?

IF!NVTU!CF!TUSPOHFS/

EPFT!IF!IBWF!UIF!QPUJPO@

FYBNJOF!JU/

ESJOL!UIF!QPUJPO/

What about the stream?

FYBNJOF!JU/

HFU!UIF!BMHBF/

What about the old hag?

UBML!UP!IFS/

CBE!JEFB-!IVI@

TIF!IBT!OPUIJOH!PG!VTF/

What about the boulders?

EFOOZ!OFFET!DSZTUBMT/

CSFBL!UIFN!PQFO/

XJUI!UIF!IBNNFS/

Nightshade’s Help Menu
On Nightshade’s help menu, you can call up the game’s background story and view the
commands that Denny understands. Of course, you can also view the program’s About
dialog box.

58 Day 3

05 067231987x CH03 11/6/00 7:07 PM Page 58

Creating Game Screens with Fonts and VB Graphics 59

3

Building Nightshade
Nightshade is a much larger program than the Face Catch game you built in Day 2. Still,
the game uses conventional programming techniques that you should already know. Keep
in mind that although the entire program listing is lengthy, much of the code performs
similar tasks with different data. That is, the program isn’t as complex as you might first
think. In any case, this program’s main purpose is to demonstrate how to create a simple
game screen using Visual Basic’s drawing commands and fonts. Let’s start with the user
interface.

Building Nightshade’s User Interface
To build the game’s user interface, perform the following steps:

1. Start a new Visual Basic Standard EXE project. Save the form as Nightshade.frm,
and save the project as Nightshade.vbp.

2. In the VB Properties window, set the following form properties to the values
shown:

AutoRedraw = True

BorderStyle = Fixed Single

Caption = “Nightshade”

Height = 6650

ScaleMode = Pixel

Width = 4755

3. Set the form’s Icon property to the Nightshade.ico file, which you can find in the
Images\Nightshade directory on this book’s CD-ROM (or on your hard disk, if you
installed the CD-ROM there).

4. Using the menu editor, create menus for the form, as shown in Figure 3.6&File
mnuFile

&New mnuNew

&Load mnuLoad

&Save mnuSave

– mnuSep

E&xit mnuExit

&Help mnuHelp

The &Story mnuStory

The &Commands mnuCommands

&About Nightshade mnuAbout

05 067231987x CH03 11/6/00 7:07 PM Page 59

FIGURE 3.6
Creating the
Nightshade menu bar.

60 Day 3

5. Add a TextBox control to the form, as shown in Figure 3.7

FIGURE 3.7
Adding the TextBox
control.

6. In the VB Properties window, set the following TextBox properties to the values
shown:

Name = “txtInput”

Height = 20

Left = 27

Text = “”

Top = 300

Width = 260

05 067231987x CH03 11/6/00 7:07 PM Page 60

Creating Game Screens with Fonts and VB Graphics 61

3

7. Add two Label controls to the form, as shown in Figure 3.8

FIGURE 3.8
Adding the Label
controls.

8. In the VB Properties window, set the labels’ properties to the values shown here:

First Label Control:

Caption = “COMMAND:”

Height = 13

Left = 29

Top = 284

Width = 70

Second Label Control:

Name = “lblResult”

BorderStyle = Fixed Single

Caption = “”

Height = 20

Left = 27

Top = 337

Width = 260

05 067231987x CH03 11/6/00 7:07 PM Page 61

9. Add a new form to the project (select the Project menu’s Add Form command) and
set its properties to the following values:

AutoRedraw = True

BorderStyle = Fixed Dialog

Caption = “The Story”

Height = 6630

Width = 5715

10. Add a TextBox control and a CommandButton control to the form, giving them the
following property settings:

TextBox Control:

Font = MS Sans Serif, Regular, 10-point

Height = 5145

Left = 255

MultiLine = True

ScrollBars = Vertical

Text = “”

Top = 390

Width = 5055

CommandButton Control:

Caption = “OK”

Height = 345

Left = 1200

Top = 5715

Width = 3120

You’ve now completed the game’s user interface, which should look like Figure 3.9. In
the next section, you’ll add the program code that makes the game work.

Adding the Program code
Because Nightshade consists of nearly 1,000 lines of source code, it doesn’t make any
sense for you to type it in. Instead, you can find the program code under the name
Nightshade.txt in the Chap03/Code folder of this book’s CD-ROM. To complete the pro-
gram, double-click the Form1 form and copy the contents of the Nightshade.txt file to the

62 Day 3

05 067231987x CH03 11/6/00 7:07 PM Page 62

Creating Game Screens with Fonts and VB Graphics 63

3

form’s code window. Then, double-click the Form2 form and copy the contents of the
Nightshade2.txt file into its code window. Now you can compile the program. Before try-
ing to run your compiled program, however, make sure you copy the Nightshade.dat and
Nightshade2.dat files into the game’s directory. You can find these files in the CD-ROM’s
Chap03/Nightshade folder. The following sections will examine the parts of the source
code that require explaining.

FIGURE 3.9
The complete
Nightshade user inter-
face.

Understanding Nightshade
Nightshade contains a lot of source code, although many of the subroutines are so similar
that once you understand one, you’re on your way to understanding them all.

Nightshade’s Variables
Nightshade relies on two sets of global variables, which the program declares near the
top of the program. There’s nothing special about the first set of global variables.
However, the second set comprises those variables that must be saved to disk by the
game-save routine. Table 3.1 lists the general global variables and their descriptions, and
Table 3.2 lists the second set, the game-save variables.

05 067231987x CH03 11/6/00 7:07 PM Page 63

TABLE 3.1 Nightshade’s General Game Variables

Variable Type Description

CompleteNoun String The complete noun (that is, not abbreviated to three letters)

Directions String The single-letter direction characters: N, S, E, W, U, D

Exits() Integer An array containing the destination room numbers for each
of the six directions in which the player can travel from the
current room

ItemNames() String An array containing the full-length item (noun) names for
display on the screen

Noun String The current noun, abbreviated to three letters

NounIndexes() Integer A companion array to NounNames(); this array contains the
noun numbers that match the noun names

NounNames() String An array containing the abbreviated, three-letter names for
the game’s nouns

RoomDesc String The description of the current room

Verb String The current verb, abbreviated to three letters

TABLE 3.2 Nightshade’s Game-Save Variables

Variable Type Description

ItemLocations() Integer An array containing the location (room number) of
every item in the game

NumGlueIngredients Integer The number of ingredients the player has placed in the
glue jug

NumItemsInInventory Integer The number of items currently in the player’s inventory

PrevBoatRoom Integer The room number where the boat last appeared

Room Integer The number of the current room

TrollFainted Boolean A flag indicating whether the troll has fainted yet

Nightshade’s Constants and Enumerations
When you’re writing large programs like games, I can’t stress enough the importance of
creating easily readable code! Someday, you’ll look at your code and try to remember
what the heck it does. Using lots of constants, as well as self-explanatory variable and
subroutine names, changes your program from indecipherable gobbledygook to some-
thing that’s almost as readable as a newspaper.

That’s why most of the programs in this book, including Nightshade, use constants
instead of literal values. You’ll also see some lengthy variable and subroutine

64 Day 3

05 067231987x CH03 11/6/00 7:07 PM Page 64

Creating Game Screens with Fonts and VB Graphics 65

3

names as well. Do you want to see how well this technique works? How much sense can
you make of the following code fragment?

If NumGI = 3 Then
ItLoc(7) = -1
ItLoc(8) = -4
ItLoc(15) = -19

End If

Now look at how this code appears in Nightshade:

If NumGlueIngredients = 3 Then
ItemLocations(JUGWITHGLUE) = IN_INVENTORY
ItemLocations(JUG) = NOT_IN_GAME
ItemLocations(TROLL) = -19

End If

Even though you haven’t looked at any of Nightshade’s source code yet, you can almost
figure out what’s going on in this code fragment.

This brings us to enumerations, which come in handy when you need to create a set of
related constants. For example, notice the constants JUGWITHGLUE, JUG, and TROLL used in
the previous code example. Those constants are part of Nightshade’s ItemsEnum enumer-
ation, which looks like Listing 3.4.

LISTING 3.4 The ItemsEnum Enumeration

1: Enum ItemsEnum
2: BOOK
3: BED
4: CLOTHES
5: GLOWINGDOOR
6: REDSCROLL
7: TREES
8: WOODENDOOR
9: BLUESCROLL
10: ELFFAMILY
11: WATERSHOES
12: HUT
13: SIGN
14: JUGWITHGLUE
15: FAINTEDTROLL
16: MIRROR
17: JUG
18: BOAT
19: DWARF
20: TUNNEL
21: GOLDDOOR
22: SILVERDOOR
23: BRASSDOOR

05 067231987x CH03 11/6/00 7:07 PM Page 65

LISTING 3.4 continued

24: GLASSDOOR
25: PAGE
26: TROLL
27: STREAM
28: CRYSTALS
29: MUD
30: GIANT
31: HUGEHAMMER
32: BOULDERS
33: FANCYBOX
34: POTION
35: RECIPECARD
36: ALGAE
37: SWAMP
38: SHEETMUSIC
39: BITSOFROCK
40: OLDHAG
41: End Enum

The ItemsEnum enumeration creates a set of constants with values that run consecutively
from 0 to 38. It’s exactly as if the constants were defined in the normal way.

LISTING 3.5 An Alternative Definition for the Constants

1: Const BOOK = 0
2: Const BED = 1
3: Const CLOTHES = 2
4: Const GLOWINGDOOR = 3
5: Const REDSCROLL = 5
6: Const TREES = 6
7: ‘
8: ‘ Some constants not shown for brevity
9: ‘
10: Const OLDHAG = 38

Nightshade defines one other enumeration, ExitEnum. This defines values for the six
directions in which the player can move.

LISTING 3.6 The ExitEnum Enumeration

1: Enum ExitEnum
2: NORTH
3: SOUTH
4: EAST
5: WEST

66 Day 3

05 067231987x CH03 11/6/00 7:07 PM Page 66

Creating Game Screens with Fonts and VB Graphics 67

3

6: UP
7: DOWN
8: End Enum

Nightshade also defines a set of nonenumerated constants (that is, not defined in enumer-
ations), as shown in Table 3.3.

TABLE 3.3 Nightshade’s Constants

Constant Description

ENTER The ASCII value of the Enter key

IN_INVENTORY The value indicating that an item is in the player’s inventory

ITEM_USED The value indicating that an item has been used and is no longer in
the game world

MAX_ITEMS_IN_INVENTORY The maximum number of items that can fit in the player’s inventory

MAX_ITEMS_IN_ROOM The maximum number of items that can fit in a room

NOT_IN_GAME The value indicating that an item isn’t currently in the game world

NOT_VALID The value indicating that the direction selected by the player isn’t
valid for the current room

NUM_NOUN_NAMES The number of three-letter noun names (including aliases for some
items) that the game understands

NUM_NOUNS The number of items in the game

NUM_VERBS The number of verbs the game understands

Starting the Game
Now that you have a handle on what all those variables and constants mean, it’s time to
dig deeper into the program’s source code. As always, when the game starts, Visual Basic
calls the Form1 object’s Form_Load subroutine, which does nothing more than call the
subroutine StartNewGame. StartNewGame, in turn, calls two other subroutines, InitGame
and UpdateGameScreen.

LISTING 3.7 The Form_Load and StartNewGame Subroutines

1: Private Sub Form_Load()
2: StartNewGame
3: End Sub
4:
5: Sub StartNewGame()
6: InitGame
7: UpdateGameScreen
8: End Sub

05 067231987x CH03 11/6/00 7:07 PM Page 67

The InitGame subroutine sets the initial values for all the game’s variables, as shown in
Listing 3.8.

LISTING 3.8 The InitGame Subroutine

1: Sub InitGame()
2: Dim i As Integer
3: Directions = “NSEWUD”
4: Open “Nightshade.dat” For Input As #1
5: For i = 0 To NUM_NOUNS - 1
6: Input #1, ItemNames(i), ItemLocations(i)
7: Next i
8: Close #1
9: Open “Nightshade2.dat” For Input As #1
10: For i = 0 To NUM_NOUN_NAMES - 1
11: Input #1, NounNames(i), NounIndexes(i)
12: Next i
13: Close #1
14: Room = 5
15: PrevBoatRoom = 12
16: NumItemsInInventory = 0
17: NumGlueIngredients = 0
18: TrollFainted = False
19: txtInput.Text = “”
20: lblResult.Caption = “”
21: End Sub

Notice how the game loads values from two files, Nightshade.dat (Lines 4 through 8) and
Nightshade2.dat (Lines 9 through 13). These files must be in the same folder as the
game’s executable file.

The UpdateGameScreen subroutine calls all the other subroutines needed to draw the
game’s display. This task includes drawing the graphics, drawing text labels, and display-
ing the data that represents the player’s current location and status. UpdateGameScreen
looks like Listing 3.9.

LISTING 3.9 The UpdateGameScreen Subroutine

1: Sub UpdateGameScreen()
2: DrawGraphics
3: DrawText
4: ResetExits
5: SetRoomData
6: ShowRoomDescription
7: ShowExits
8: ShowVisibleItems
9: ShowInventory
10: End Sub

68 Day 3

05 067231987x CH03 11/6/00 7:07 PM Page 68

Creating Game Screens with Fonts and VB Graphics 69

3

The DrawGraphics subroutine does nothing more than draw a bunch of black and white
lines on the display, creating the display’s 3D borders. There’s no need to show that sub-
routine here. It’s on the CD if you need a refresher.

However, the DrawText subroutine is where some of the stuff you learned about fonts
gets put to use. In DrawText, the program changes font colors and attributes to create the
display, like Listing 3.10.

LISTING 3.10 The DrawText Subroutine

1: Sub DrawText()
2: Form1.Font.Bold = True
3: Form1.Font.Underline = True
4: Form1.ForeColor = vbBlue
5: Form1.CurrentX = 20
6: Form1.CurrentY = 20
7: Form1.Print “PLACE:”
8: Form1.CurrentX = 20
9: Form1.CurrentY = 70
10: Form1.Print “EXITS:”
11: Form1.CurrentX = 20
12: Form1.CurrentY = 120
13: Form1.Print “DENNY SEES:”
14: Form1.CurrentX = 180
15: Form1.CurrentY = 120
16: Form1.Print “DENNY HAS:”
17: Form1.ForeColor = vbBlack
18: Form1.Font.Underline = False
19: End Sub

Lines 2 through 4 set font attributes, and Lines 5 and 6 set the position for the
text output printed in Line 7. The rest of the listing works similarly.

The ResetExits subroutine (see Listing 3.11) initializes the Exits array, which removes
the room numbers for the old room in preparation for filling the array with the room
numbers for the new room.

LISTING 3.11 The ResetExits Subroutine

1: Sub ResetExits()
2: Dim i As Integer
3: For i = 0 To 5
4: Exits(i) = 0
5: Next i
6: End Sub

ANALYSIS

05 067231987x CH03 11/6/00 7:07 PM Page 69

The SetRoomData subroutine (see Listing 3.12) is where the Exits array gets its new val-
ues. The Exits array has six elements, which are the room numbers for north, south,
east, west, up, and down, respectively. That is, if the player requests to move north, the
array element Exits(NORTH) (notice the use of that handy constant from the ExitEnum
enumeration) contains the room number where the player will move. For example, look
at this abbreviated form of the SetRoomData subroutine.

LISTING 3.12 The SetRoomData Subroutine

1: Sub SetRoomData()
2: Select Case Room
3: Case 5
4: RoomDesc = “In Denny’s bedroom.”
5: Exits(NORTH) = 6
6: Case 6
7: RoomDesc = “In Denny’s stuffy closet.”
8: Exits(SOUTH) = 5
9: ‘
10: ‘ Some statements not shown for brevity
11: ‘
12: Case 30
13: RoomDesc = “On a dusty, well-used trail.”
14: Exits(NORTH) = 25
15: End Select
16: End Sub

The Room variable contains the number of the current room. The program uses
this number in a Select Case statement (Line 2) to jump to the Case clause that

sets the room’s description string, RoomDesc, and the valid exits (Lines 3 through 15). For
example, if Room is 5, the Case 5 clause of the Select Case statement (Line 3) is exe-
cuted. There, the program sets the room’s description to “In Denny’s bedroom” (Line 4)
and sets a valid exit to the north (Line 5), leading to room 6. If you look at Case 6
(Lines 6 through 8), you can see that room 6 has an exit to the south, leading to room 5.
That makes perfect sense because if you go north and then south, you’ll end up back
where you started.

If an element of the Exits array is 0, there’s no exit in the corresponding direction. For
example, room 22 has four exits—north, south, west, and down—as you can see here:

Case 22
RoomDesc = “By a rocky mountainside.”
Exits(NORTH) = 24
Exits(SOUTH) = 25
Exits(WEST) = 19
Exits(DOWN) = 23

70 Day 3

ANALYSIS

05 067231987x CH03 11/6/00 7:07 PM Page 70

Creating Game Screens with Fonts and VB Graphics 71

3

The elements Exits(EAST) and Exits(UP) retain their 0 value, to which the ResetExits
subroutine initialized the Exits array.

The ShowRoomDescription subroutine (see Listing 3.13) simply displays the room-
description string, RoomDesc, at the appropriate location in the Nightshade window.

LISTING 3.13 The ShowRoomDescription Subroutine

1: Sub ShowRoomDescription()
2: Dim Txt As String
3: Form1.CurrentX = 20
4: Form1.CurrentY = 40
5: Form1.Print RoomDesc
6: End Sub

The ShowExits() subroutine (see Listing 3.14) displays the directions that the player
can move from the current room. It does this by checking which elements of the Exits
array are non-zero and printing the equivalent character in the Directions string (which
contains the characters “NSEWUD”) that coincides with the direction, as shown in
Listing 3.14.

LISTING 3.14 The ShowExits Subroutine

1: Sub ShowExits()
2: Dim i As Integer
3: Form1.CurrentX = 20
4: Form1.CurrentY = 90
5: For i = 0 To 5
6: If Exits(i) Then
7: Form1.Print Mid$(Directions, i + 1, 1) & “ “;
8: Else
9: i = i
10: End If
11: Next i
12: End Sub

The next step is to show any items that are visible in the current room. The
ShowVisibleItems subroutine handles this task. This subroutine first declares a set of
local variables:

Dim i As Integer
Dim Txt As String
Dim NothingVisible As Boolean
Dim y As Integer

05 067231987x CH03 11/6/00 7:07 PM Page 71

The subroutine then initializes two of the local variables to their starting values:

NothingVisible = True
y = 0

Next, the subroutine starts a For loop that iterates through the ItemLocations array,
which contains the locations of every item in the game, to find items that are in the cur-
rent room:

For i = 0 To NUM_NOUNS - 1

Inside the loop, the subroutine first sets the display location for the next item to print:

Form1.CurrentX = 20
Form1.CurrentY = 140 + y * 20

The loop then checks the current value in the ItemLocations array (indexed by the loop
variable i):

If Abs(ItemLocations(i)) = Room Then

Notice that before the program compares the ItemLocations element to the current room
number, it gets the absolute value of the array element. This is because items in a room
can have two values: the room number or the negative room number. Items that have a
positive value can be picked up by the player and thus added to her inventory. Items with
a negative value cannot be picked up by the player and are permanent fixtures of the
room.

If the value of the array element matches the room number, that item appears in the cur-
rent room. Therefore, the program sets the NothingVisible flag to False, translates the
item name stored in the ItemNames array, displays the item name on the screen, and
increments the y variable, which keeps track of the current display row:

NothingVisible = False
Txt = TranslateText(ItemNames(i))
Form1.Print Txt
y = y + 1

What’s this bit about translating the item name, you ask? The Nightshade.dat file holds
the complete item names and their associated room numbers. However, because this is
just a plain text file, you don’t want the user to look at the file and see all the item
names. That would ruin the game! For this reason, the item names are encoded. For
example, here are the first two item entries in the Nightshade.dat file:

CPPL
5
CFE
-5

72 Day 3

05 067231987x CH03 11/6/00 7:07 PM Page 72

Creating Game Screens with Fonts and VB Graphics 73

3

The first line is the encoded item name BOOK, which is associated with the room num-
ber 5. (Because 5 is positive, the player can pick up the book, thus adding it to her inven-
tory.) The second item is BED, which is associated with the room number -5. This means
that although the bed is located in room 5, the player cannot add the bed to her inventory.
You might have noticed that all you have to do is move the encoded letter back one posi-
tion in the alphabet to get the decoded letter. That is, C is B, P is O, L is K, and so on.
The TranslateText subroutine accepts these encoded values and returns the actual item
name for display.

Let’s get back to the ShowVisibleItems subroutine. After the For loop, if the
NothingVisible flag retains its False value, there are no visible items in the room. In this
case, the program prints the word “Nothing” where the item names would have appeared:

If NothingVisible Then
Form1.CurrentX = 20
Form1.CurrentY = 140
Form1.Print “Nothing”

End If

The ShowInventory subroutine, shown in Listing 3.15, works similarly to
ShowVisibleItems, except that it checks for the value -1 (represented by the
IN_INVENTORY constant), indicating that the item is in the player’s inventory.

LISTING 3.15 The ShowInventory Subroutine

1: Sub ShowInventory()
2: Dim i As Integer
3: Dim y As Integer
4: Dim Txt As String
5: Dim HasNothing As Boolean
6: HasNothing = True
7: y = 0
8: For i = 0 To NUM_NOUNS - 1
9: Form1.CurrentX = 180
10: Form1.CurrentY = 140 + y * 20
11: If ItemLocations(i) = IN_INVENTORY Then
12: HasNothing = False
13: Txt = TranslateText(ItemNames(i))
14: Form1.Print Txt
15: y = y + 1
16: End If
17: Next i
18: If HasNothing Then
19: Form1.CurrentX = 180
20: Form1.CurrentY = 140
21: Form1.Print “Nothing”
22: End If
23: End Sub

05 067231987x CH03 11/6/00 7:07 PM Page 73

Processing Commands
To enter a command into the game, the player types the command in the TextBox.
Thanks to the txtInput_KeyPress event handler, typing in the TextBox also clears the
previous command’s result from the lblResult Label control:

Private Sub txtInput_Change()
lblResult.Caption = “”

End Sub

When the user presses Enter, the txtInput_KeyPress event handler calls the
ProcessInput subroutine to process the player’s command:

Private Sub txtInput_KeyPress(KeyAscii As Integer)
If KeyAscii = ENTER Then ProcessInput

End Sub

The ProcessInput subroutine first gets the verb and the noun that make up the current
command:

Verb = GetCommandVerb
Noun = GetCommandNoun

The GetCommandVerb and GetCommandNoun functions look like Listing 3.16.

LISTING 3.16 The GetCommandVerb and GetCommandNoun Subroutines

1: Function GetCommandVerb() As String
2: Dim Position As Integer
3: Dim str As String
4: Position = InStr(1, txtInput.Text, “ “)
5: If Position <> 0 Then
6: str = Left$(txtInput.Text, Position - 1)
7: Else
8: str = txtInput.Text
9: End If
10: GetCommandVerb = UCase(str)
11: End Function
12:
13: Function GetCommandNoun() As String
14: Dim Position As Integer
15: Dim str As String
16: Position = InStr(1, txtInput.Text, “ “)
17: If Position <> 0 Then
18: str = Right$(txtInput.Text, _
19: Len(txtInput.Text) - Position)
20: Else
21: str = “”
22: End If
23: GetCommandNoun = UCase(str)
24: End Function

74 Day 3

05 067231987x CH03 11/6/00 7:07 PM Page 74

Creating Game Screens with Fonts and VB Graphics 75

3

These functions work by finding the space that separates the verb from the noun
in the input string (Lines 4 and 16), separating the verb and the noun (Lines 5

through 9 and Lines 17 through 22), and setting them to uppercase (Lines 10 and 23).

ProcessInput then removes all text from the input TextBox:

txtInput.Text = “”

Next, if the length of the verb is only one character, the player must be entering a direc-
tion to move. In this case, the program calls the MovePlayer subroutine:

If Len(Verb) = 1 Then
MovePlayer

If the player has entered a one-word command (that is, the noun is missing), the program
like this:

ElseIf Noun = “” Then
lblResult.Caption = _
“Denny doesn’t understand what you’re saying.”

Next, the program changes the verb and noun into three letters each (after saving the full-
length noun for possible future use) and then calls the ProcessVerb subroutine, which
routes the program to the correct subroutine (ProcessInput) for the verb the player
entered, as shown in Listing 3.17.

LISTING 3.17 Manipulating the Noun and Verb

1: Else
2: CompleteNoun = Noun
3: Noun = Left$(Noun, 3)
4: If Verb = “GO” Then Verb = “GO “
5: Verb = Left$(Verb, 3)
6: ProcessVerb
7: End If
8: End Sub

The ProcessVerb subroutine examines the current three-letter verb and determines which
subroutine to call. ProcessVerb is little more than a big Select Case statement, as you
can see in Listing 3.18.

LISTING 3.18 The ProcessVerb Subroutine

1: Sub ProcessVerb()
2: Select Case Verb
3: Case “EXA”
4: DoExamine
5: Case “LOO”

ANALYSIS

05 067231987x CH03 11/6/00 7:07 PM Page 75

LISTING 3.18 continued

6: DoExamine
7: Case “TAK”
8: DoGet
9: Case “GET”
10: DoGet
11: Case “DRO”
12: DoDrop
13: Case “GIV”
14: DoDrop
15: Case “PUT”
16: DoDrop
17: Case “TAL”
18: DoTalk
19: Case “DRI”
20: DoDrink
21: Case “MOV”
22: DoMove
23: Case “CLI”
24: DoClimb
25: Case “SIN”
26: DoSing
27: Case “GO “
28: DoGo
29: Case “ENT”
30: DoGo
31: Case ”SAY”
32: DoSay
33: Case “HIT”
34: DoHit
35: Case “SMA”
36: DoHit
37: Case “GLU”
38: DoGlue
39: Case Else
40: lblResult.Caption = _
41: “Denny doesn’t know how to do that.”
42: End Select
43: End Sub

Notice how some verbs get directed to the same subroutine. For example,
ProcessVerb routes both EXA (examine, Line 3) and LOO (look, Line 5) to the

subroutine DoExamine (Lines 5 and 6). This method enables the program to accept differ-
ent versions of the same command. Notice also that if the Select Case statement has no
match for the current verb, the program displays “Denny doesn’t know how to do that”
(Lines 39 through 41).

76 Day 3

ANALYSIS

05 067231987x CH03 11/6/00 7:07 PM Page 76

Creating Game Screens with Fonts and VB Graphics 77

3

Moving the Player
If the player enters N, S, E, W, U, or D, she’s trying to move from one room to another.
The MovePlayer subroutine handles this task. First, MovePlayer calls the GetDirection
function to change the command letter to a direction number:

Dim Direction As Integer
Direction = GetDirection(Verb)

If GetDirection returns -1 (represented by the constant NOT_VALID), the player entered a
one-letter command other than a direction. Otherwise, GetDirection returns the direc-
tion as an integer (with 0 meaning north, 1 meaning south, and so on, as you can see in
the ExitEnum enumeration). The program then calls the IsMoveOK function to determine
whether the requested exit exists in the current room:

If Direction <> NOT_VALID Then
If IsMoveOK(Direction) Then

If the direction is invalid or doesn’t exist, the program prints an appropriate response, as
shown in Listing 3.19.

LISTING 3.19 Displaying a Response for an Invalid Direction

1: Else
2: lblResult.Caption = “Denny can’t move that way.”
3: End If
4: Else
5: lblResult.Caption = “Denny doesn’t understand.”
6: EndIf

If all the checks go okay, it’s time to move the player in the requested direction. First, the
program prints a response and sets the current room to the destination room:

lblResult.Caption = “Okay”
Room = Exits(Direction)

At this point, the player has moved to the new room but the screen display doesn’t show
it. In order for the new room data to appear, the program must update and display all data
for the new room:

ResetExits
SetRoomData
UpdateGameScreen

The GetDirection and IsMoveOK functions (see Listing 3.20) aren’t all that interesting,
so I won’t go into any details other than to list them here. You should be able to figure
them out for yourself.

05 067231987x CH03 11/6/00 7:07 PM Page 77

LISTING 3.20 The GetDirection and IsMoveOK Subroutines

1: Function GetDirection(Command As String) As Integer
2: Dim i As Integer
3: Dim Direction As Integer
4: Direction = -1
5: For i = 1 To 6
6: If Mid$(Directions, i, 1) = Command Then _
7: Direction = i - 1
8: Next i
9: GetDirection = Direction
10: End Function
11:
12: Function IsMoveOK(Direction As Integer) As Boolean
13: If Exits(Direction) = 0 Then
14: IsMoveOK = False
15: Else
16: IsMoveOK = True
17: End If
18: EndFunction

Getting and Dropping Items
Nightshade can handle many different commands, but the get and drop commands are
special cases. If the player drops an item, the item must vanish from the player’s inven-
tory and appear in the current room. If the player gets an item, the item must vanish from
the current room and appear in the player’s inventory.

The DoGet subroutine handles the get command. Its first task is to call GetItemNumber to
get the item number that matches the noun that the player entered as the second word in
the command:

Dim ItemNum As Integer
ItemNum = GetItemNumber()

If GetItemNumber returns -1, the program doesn’t recognize the noun the player typed:

If ItemNum = -1 Then
lblResult.Caption = “No such item.”

If the item exists, it must also be in the player’s current room:

ElseIf Room <> Abs(ItemLocations(ItemNum)) Then
lblResult.Caption = “That item isn’t here.”

Next, if the item has a negative room number, it can’t be picked up:

ElseIf ItemLocations(ItemNum) = -Room Then
lblResult.Caption = “Denny can’t pick that up!”

78 Day 3

05 067231987x CH03 11/6/00 7:07 PM Page 78

Creating Game Screens with Fonts and VB Graphics 79

3

Also, if the player’s inventory is full, a new item can’t be picked up:

ElseIf NumItemsInInventory = MAX_ITEMS_IN_INVENTORY Then
lblResult.Caption = “Denny can’t carry anymore.”

Whew! If the requested item makes it past all the checks, it’s okay to add it to the play-
er’s inventory:

Else
ItemLocations(ItemNum) = IN_INVENTORY
NumItemsInInventory = NumItemsInInventory + 1
lblResult.Caption = “Denny got it.”
UpdateGameScreen

End If

Notice that after a new item is added to the player’s inventory, the screen display must be
updated. Otherwise, the new item won’t appear on the screen even though it’s in the
player’s inventory.

There’s one special case of the get command in the game—when the player tries to pick
up the giant’s hammer. To pick up the hammer, the player must have used the strength
potion:

ElseIf Room = 26 And (Noun = “HAM” Or Noun = “HUG”) And _
ItemLocations(POTION) <> ITEM_USED Then

lblResult.Caption = “The hammer’s too heavy.”

The DoDrop subroutine works similarly to the DoGet subroutine, except that it removes
items from the player’s inventory and places them in the current room. Because the
DoDrop subroutine has many special cases and therefore is large, I won’t show it here. A
couple of special cases are worth examining in detail, however. The first (see Listing 3.21)
is when the player drops a glue ingredient into the jug.

LISTING 3.21 Getting Glue into the Jug

1: ElseIf ItemLocations(JUG) = IN_INVENTORY And _
2: (Noun = “CRY” Or Noun = “MUD” Or Noun = “ALG”) Then
3: lblResult.Caption = “In the jug...”
4: ItemLocations(ItemNum) = ITEM_USED
5: NumGlueIngredients = NumGlueIngredients + 1
6: NumItemsInInventory = NumItemsInInventory - 1
7: If NumGlueIngredients = 3 Then
8: ItemLocations(JUGWITHGLUE) = IN_INVENTORY
9: ItemLocations(JUG) = NOT_IN_GAME
10: ItemLocations(TROLL) = -19
11: lblResult.Caption = “Denny made the magical glue!”
12: End If

05 067231987x CH03 11/6/00 7:07 PM Page 79

Here, the program checks whether the jug is in the player’s inventory (Line 1). If
the player has the jug and the current command’s noun is CRY (crystals), MUD

(mud), or ALG (algae) (Line 2), the item goes into the jug instead of into the current
room (Lines 3 and 4). Then the program increments the NumGlueIngredients
variable,(Line 5) which keeps track of how many items are in the jug and decrements the
player’s inventory count (Line 6). If there are three items in the jug (Line 7), the program
removes the jug from the player’s inventory (Line 9) and replaces it with the jug with
glue (Line 8). (Also, at this point in the game, the troll appears in room 19, as you can
see in Line 10.)

Another special case (see Listing 3.22) is when the player drops the mirror in the same
room with the troll, who then sees his own ugly face and faints dead away.

LISTING 3.22 Giving the Mirror to the Troll

1: ElseIf Room = 19 And TrollFainted = False And _
2: Noun = “MIR” And _
3: ItemLocations(MIRROR) = IN_INVENTORY Then
4: lblResult.Caption = _
5: “The troll saw himself in the mirror and fainted!”
6: TrollFainted = True
7: ItemLocations(MIRROR) = Room
8: ItemLocations(FAINTEDTROLL) = -Room
9: ItemLocations(TROLL) = NOT_IN_GAME
10: NumItemsInInventory = NumItemsInInventory - 1

Line 1 checks that the player is in room 19 and the troll hasn’t fainted yet, and
Line 2 makes sure that the noun the player specified is the mirror. Line 3 checks

that the mirror is in the player’s inventory. If all these checks are true, Lines 4 through 9
make the troll faint. Line 10 decrements the player’s inventory count since he no longer
has the mirror.

The last two parts of the get and drop puzzle are the GetItemNumber and
GetNumItemsInRoom subroutines, shown in Listing 3.23.

LISTING 3.23 The GetItemNumber and GetNumItemsInRoom Subroutines

1: Function GetItemNumber()
2: Dim i As Integer
3: Noun = Left$(Noun, 3)
4: GetItemNumber = -1
5: For i = 0 To NUM_NOUN_NAMES - 1
6: If Noun = NounNames(i) Then _
7: GetItemNumber = NounIndexes(i)
8: Next i

80 Day 3

ANALYSIS

ANALYSIS

05 067231987x CH03 11/6/00 7:07 PM Page 80

Creating Game Screens with Fonts and VB Graphics 81

3

9: End Function
10:
11: Function GetNumItemsInRoom() As Integer
12: Dim i As Integer
13: For i = 0 To NUM_NOUNS - 1
14: If ItemLocations(i) = Room Then _
15: GetNumItemsInRoom = GetNumItemsInRoom + 1
16: Next i
17: End Function

Executing the Player’s Commands
A large part of the Nightshade program is made up of the source code needed to execute
the player’s commands. The code for each command works similarly, so there’s no need
to examine the whole lot. The program must carefully evaluate each command, ensuring
that the game’s state is correct for the command to be executed. Often, this means check-
ing the room number, the current noun, the contents of the room, the contents of the
player’s inventory, and other variables that might need to be in a certain state. Some
commands are simple. For example, the code that enables the player to examine the book
(in the DoExamine subroutine) depends upon whether the book is in the current room or
in the player’s inventory:

If Noun = “BOO” And ItemLocations(BOOK) = Room Then
lblResult.Caption = “It looks interesting.”

ElseIf Noun = “BOO” And _
ItemLocations(BOOK) = IN_INVENTORY Then

lblResult.Caption = “The last page is missing.”

Other commands require a little more work. For example, if the player looks at a certain
tree, he’ll notice a wooden door in it. Here’s the code that handles that eventuality:

ElseIf Noun = “TRE” And Room = 10 And _
ItemLocations(WOODENDOOR) = NOT_IN_GAME Then

lblResult.Caption = “There’s a door in it.”
ItemLocations(WOODENDOOR) = -Room

There’s no blueprint you can use for the code that responds to a player’s command. You
need to think about all the requirements for the command’s execution and make sure all
those requirements have been met. It’s in this part of the program that the likelihood of
bugs is very high. For example, if the player drinks a potion, you have to make sure that
he can’t drink it again.

Saving and Loading the Game
Because it takes a long time to complete a text adventure, and because the player isn’t
likely to want to start from the beginning every time, Nightshade requires a game-save
mechanism. The player can save a game by selecting the Save command on the game’s

05 067231987x CH03 11/6/00 7:07 PM Page 81

File menu. This causes Visual Basic to call the mnuSave_Click subroutine. In that sub-
routine, the program first asks if the player really wants to save the game and overwrite
an existing game-save file:

Dim Answer As Integer
Answer = MsgBox(“Are you sure you want” & _

vbCrLf & “to save your game?” & vbCrLf & _
“You may overwrite an existing game.”, _
vbQuestion Or vbYesNo, “Save Game”)

If the player answers yes, the program opens the game-save file and writes all pertinent
variable values to the file, as shown in Listing 3.24.

LISTING 3.24 Saving the Game

1: If Answer = vbYes Then
2: On Error GoTo FileError
3: Open “Nightshade.sav” For Output As #1
4: For i = 0 To NUM_NOUNS - 1
5: Write #1, ItemNames(i), ItemLocations(i)
6: Next i
7: Write #1, Room
8: Write #1, NumItemsInInventory
9: Write #1, NumGlueIngredients
10: Write #1, TrollFainted
11: Write #1, PrevBoatRoom
12: Close #1
13: MsgBox “Game saved.”
14: End If

Line 3 opens the save game file, and Lines 4 through 6 save the contents of the
ItemNames() and ItemLocations() arrays. Lines 7 through 11 save the values of

the remaining game variables.

In order for the game save to be successful (meaning that reloading the data will restore
the game to where the player left off), it’s important that you know which variables in
the game contain data that must be restored. That’s why I created a special section for
declaring variables that need to be saved, as shown in Listing 3.25.

LISTING 3.25 Variables That Need Saving

1: ‘==
2: ‘ Global variables that must be saved in a
3: ‘ game-save file.
4: ‘==
5: Dim Room As Integer
6: Dim ItemLocations(NUM_NOUNS - 1) As Integer

82 Day 3

ANALYSIS

05 067231987x CH03 11/6/00 7:07 PM Page 82

Creating Game Screens with Fonts and VB Graphics 83

3

7: Dim NumItemsInInventory As Integer
8: Dim NumGlueIngredients As Integer
9: Dim TrollFainted As Boolean
10: Dim PrevBoatRoom As Integer

Every time I added a variable to the game, I determined whether that variable would
need to be saved. If not, I declared it in with the general variables. If the variable did
need to be saved, I declared it in the variable declaration section shown previously. If
you don’t handle your variables this way and later you try to find all the variables you
need to save, you’re almost certain to miss some. This will cripple the player’s ability to
save a game. Missing important variables will cause minor side effects at the least, and at
worst it can make the game impossible to complete.

The mnuLoad_Click subroutine is essentially the reverse of mnuSave_Click, reading val-
ues from the file instead of writing them. The important difference is that after reading in
the variables from the file, the program must update the game screen. The
mnuLoadGame_Click subroutine looks like Listing 3.26.

LISTING 3.26 Loading a Game

1: Private Sub mnuLoad_Click()
2: Dim i As Integer
3: Dim Answer As Integer
4: Answer = MsgBox(“Are you sure you want” & _
5: vbCrLf & “to load your previous game?”, _
6: vbQuestion Or vbYesNo, “Save Game”)
7: If Answer = vbYes Then
8: On Error GoTo FileError
9: Open “Nightshade.sav” For Input As #1
10: For i = 0 To NUM_NOUNS - 1
11: Input #1, ItemNames(i), ItemLocations(i)
12: Next i
13: Input #1, Room
14: Input #1, NumItemsInInventory
15: Input #1, NumGlueIngredients
16: Input #1, TrollFainted
17: Input #1, PrevBoatRoom
18: Close #1
19: UpdateGameScreen
20: txtInput.Text = “”
21: lblResult.Caption = “”
22: MsgBox “Game loaded.”
23: End If
24: Exit Sub
25: FileError:
26: MsgBox “File error.”
27: Close #1
28: End Sub

05 067231987x CH03 11/6/00 7:07 PM Page 83

Lines 4 through 6 ask the player if he wants to load a game. If he answers yes
(Line 7), Lines 8 through 18 load the game’s saved data. The program must then

update the game’s display with the new data, which it does in Lines 19 through 22.

Summary
Most games don’t incorporate as much text as an old-fashioned text adventure does
(although some do), but you still need to know how to display text in various colors and
fonts. There will always be data to display for the player, including game scores and
game status values.

Day 4 will examine how to solve computing problems and write effective algorithms.
Often, a good algorithm can make the difference between a game that people want to
play and one that collects dust on a shelf.

Q&A
Q What happens if I set a font to a typeface that doesn’t exist on the computer?

A No matter what typeface you set a Font object’s Name property to, you’ll always get
a font. However, if the typeface you request doesn’t exist on the computer running
the program, you can’t know in advance what typeface Visual Basic will pick. For
this reason, it’s a good idea to use only typefaces that are commonly installed on
all computers. You could also install the correct font along with your program, or
you could tell the player where to get the font.

Q Can I assign the Font object of one control to the Font object of another
control?

A Absolutely. In fact, this is an easy way to set not only a font, but also all the font
properties at the same time. Keep in mind that you must use the Set keyword, as
you do when making any type of object assignment, to assign the font to the
object. For example, to assign a TextBox control’s font to a Label control, you
might write something like Set Label1.Font = Text1.Font.

Q If I assign a size to a font, is that the actual size I’ll get?

A Not necessarily. Not every font can be shown in any size. If you want to know the
exact size font you’ll end up with, check the value of the Font.Size property after
assigning the size. You might very well end up with something slightly different
than you requested.

84 Day 3

ANALYSIS

05 067231987x CH03 11/6/00 7:07 PM Page 84

Creating Game Screens with Fonts and VB Graphics 85

3

Workshop
The workshop includes quiz questions to help gauge your grasp of the material. You’ll
find the answers to this quiz in Appendix A. Even if you feel that you totally understand
the concepts presented here, you should work through the quiz anyway. The last section
contains some exercises to help reinforce your learning.

Quiz
1. Which object property determines text color?

2. Which object property determines whether a line of text enables background
graphics to show through?

3. Which object property holds the attributes of the object’s font?

4. Name four font properties.

5. How does the Weight property affect the appearance of text?

6. Which property enables a program to change the typeface of text?

7. Can you set a single font to display several different attributes, such as bold, italic,
and underline?

Exercises
1. Change the Nightshade text adventure so that all text appears as 10-point Arial.

2. In the DoExamine subroutine, add the code needed to handle the command LOOK
BED. The response to the command will be, "The bed has a blue comforter."

05 067231987x CH03 11/6/00 7:07 PM Page 85

05 067231987x CH03 11/6/00 7:07 PM Page 86

DAY 4

WEEK 1

Developing Program Code
Writing a game program requires a wide range of skills, not the least of which
is the ability to get the computer to do what you need it to do. Moreover, it
should do what you want efficiently so that the game runs at a peppy speed,
rather than crawling along like a slow-motion movie. Designing algorithms is
the skill in question here, a skill that requires you to have thorough knowledge
of the tools at your disposal (the programming language) and the ability to
solve problems with those tools. Today, you’ll study a simulation-type game
called Life and see how algorithms solve some tricky problems. Specifically,
today you will learn the following:

• The mathematical rules of the game of Life

• How to create algorithms that solve complex problems

• How to use advanced data structures when implementing an algorithm

• How to implement linked lists in Visual Basic

• How to use object-oriented programming techniques to improve the
Visual Basic linked-list implementation

• How to write a game loop that shares processor time with other applica-
tions

06 067231987x CH04 11/6/00 7:14 PM Page 87

The Story of Life
About 30 years ago, a fine English fellow by the name of John Conway created a system
that simulated the lives of special one-celled animals. Although the rules of the simula-
tion were simple, the results were fascinating. Before long, every computer scientist
worth his or her diploma had written a version of Life and had spent hours trying differ-
ent combinations of cells to see which patterns might emerge.

Today, people are still fascinated by Conway’s computer simulation. Many computer sci-
ence books at least mention Life, and each year thousands of computer science students
write versions of Life as part of their programming curriculum. The simplest of these
programs accurately portray the simulation, but they run too slowly to be practical. Other
implementations blaze across the screen in wonderfully vivid colors and kaleidoscopic
patterns, hypnotizing any viewer that happens to glance in their direction.

This chapter will show you how to think about and create effective algorithms for your
computer games, and you’ll implement the Life simulation. Warning: After you start dab-
bling with Life, you might find it hard to tear away. The author and publisher cannot be
held responsible for lost productivity!

An algorithm is a set of steps that solves a problem.

The Rules of Life
The Life simulation is played on a grid of any size. Under the original rules the grid is
unbounded, but you can limit it to the screen. Think of the screen display as a petri dish
holding a culture of microscopic cells. Cells are placed randomly on the grid and the
simulation is started. The cells then run through their life cycles for a given number of
generations, living and dying according to the rules set forth by Mr. Conway.

Those rules are simple and elegant: Any live cell with less than two neighbors dies of
loneliness. Any live cell with more than three neighbors dies of crowding. Any dead cell
with exactly three neighbors comes to life. And finally, any live cell with two or three
neighbors lives on, unchanged, to the next generation.

Life Implementation
As you might imagine, a large grid can contain hundreds if not thousands of cells living
and dying every generation. The computer must work furiously, calculating the number
of neighbors for each cell in the grid and then creating or killing cells based on

88 Day 4

NEW TERM

06 067231987x CH04 11/6/00 7:14 PM Page 88

Developing Program Code 89

4

these counts. Keep in mind that counting the neighbors for a single cell requires
checking each adjacent cell—as many as eight.

Suppose that you implement the grid as a two-dimensional array of integers, like this:

Const MAXCOL = 50
Const MAXROW = 28
Dim World(MAXCOL - 1, MAXROW - 1) As Integer

Each element of the world map can be one of two values: 0 if the cell is dead, and 1 if
the cell is alive. The logical way to process this grid is to check each element of the
array, counting its neighbors and marking it as alive or dead.

In the example 50-by-28 array, 1,400 cells must be processed every generation. Each cell
processed must check the status of as many as eight adjacent cells. That’s about 11,000
operations for the entire grid. Worse, this processing must be performed for every gener-
ation of the simulation. A single run of the simulation might have as many as 10,000
generations!

All this calculating wouldn’t be a problem if you planned to let the simulation run all
night. However, to make the simulation interesting, you must update the screen as
quickly as possible, ideally several times a second. Obviously, the amount of processing
required creates a problem in the speed department. You can solve this problem with an
efficient algorithm.

But speed isn’t the only problem. You also must consider the effects of prematurely cre-
ating or killing cells. It’s not enough for your algorithm to scan though the grid, creating
and killing cells as it goes, because the cells that are created or killed might affect cells
not yet processed. Suppose that cell X in a grid has only two neighbors, and that one of
those cells dies as you process the grid. Although this cell has died, cell X should still
remain alive for this generation because it has two neighbors; it won’t be lonely until the
next generation. When you finally process cell X, however, the counting function recog-
nizes cell X as having only one neighbor. As a result, cell X dies prematurely.

Confused? Look at Figure 4.1. There are three cells in the first-generation grid on the
left. In this generation, the uppermost cell must die because it has only one neighbor. The
middle cell must remain alive until the next generation, because it has two neighbors.
The bottom cell must die because, like the top cell, it has only one neighbor. The empty
cells to the left and right of the center cell must be brought to life because both have
exactly three neighbors. After processing the grid, you should have the second-generation
grid, which is on the right.

06 067231987x CH04 11/6/00 7:14 PM Page 89

FIGURE 4.1
Applying the rules of
Life to three cells.

90 Day 4

However, if you start at the top and process the grid by creating and killing cells as you
go, you get incorrect results. First, you kill the top cell, because it has only one neighbor.
Then, when you get to empty cell 1,2, even though it should have come to life, you
determine that it has only two neighbors and leave it alone. When you get to cell 2,2, you
think it has only one neighbor and kill it, even though this cell should have survived to
the next generation. After processing the entire grid, you don’t have the correct second-
generation result. Instead, you have an empty grid!

In short, in each generation, you must determine which cells will live or die without
changing the grid. When you finish, you must simultaneously create and kill the appropri-
ate cells. This requires tricky algorithms, especially when you consider that all these cal-
culations must be performed at a speed that allows fast screen updates. Sound like fun?

0

0

1

2

3

4

5

1 2 3 4 5

First
Generation

0

0

1

2

3

4

5

1 2 3 4 5

Second
Generation

When you’re designing algorithms, there’s usually a tradeoff between code
complexity and speed. That is, the more speed you manage to squeeze out
of an algorithm, the more complex the algorithm tends to become.

Note

The Speed Problem
What can you do to speed things up? First, add another array to keep a running count of
each cell’s neighbors. When the simulation starts, the program does a full update of the
neighbor count. From then on, instead of recalculating the entire grid in each generation,
the program changes neighbor counts for only those cells adjacent to cells that have just
been created or killed. This method cuts processing time significantly: In a given genera-
tion, the program must change the neighbor counts of only a small number of cells rather
than the entire grid.

06 067231987x CH04 11/6/00 7:14 PM Page 90

Developing Program Code 91

4

Then, even though the original map grid records the status of each cell, you add two lists
of cells: one for cells about to be created, and another for cells about to die. These are
the only cells that affect the map, so why check the entire grid every generation?

This brings us to using the tools at your disposal to create an efficient algorithm. Dealing
with algorithms means dealing with data structures. Which type of data structure enables
you to build lists of items—lists that can grow or shrink dynamically? The answer is a
linked list.

A linked list is a data structure composed of data nodes, each of which has a
pointer to the next node in the list.

Linked Lists
To create a linked list, first you must decide which information makes up the items, or
nodes, that will be stored in the list. In the simulation program, you must store enough
data to identify a cell. The only information that you need to identify a cell are its X and
Y coordinates in the grid, so a node could be a Visual Basic class, named Node, that
holds the following data:

Public X As Integer
Public Y As Integer

A node is a data set that’s part of a linked list.

When a cell is born, you can create a node for the cell like this:

Dim n As Node
Set n = New Node
n.X = x
n.Y = y

This code creates a new Node object and sets its X and Y properties to the coordinates of a
cell.

But what good is it to have a bunch of these nodes sitting around in memory? You must
link them into a list. To do this, you must add to your class a reference to a Node. You
can then use this reference to point to the next node in the list. The new Node class, then,
looks like this:

Public X As Integer
Public Y As Integer
Public NextNode As Node

NEW TERM

NEW TERM

06 067231987x CH04 11/6/00 7:14 PM Page 91

In addition to the data structure for a node, you also need a reference to the first node of
the list (a head pointer) and a reference to the end of the list (a tail pointer). Having a
reference to the head of the list is the most important. Without it, you cannot find the list
in memory. A tail pointer is just a convenience. You can use it to add new nodes to the
end of the list quickly, without having to scan the list from the first node. The head and
tail pointers look like this:

Public ListHead As Node
Public ListTail As Node

Figure 4.2 illustrates how a linked list looks in memory. The ListHead pointer points to
the first node in the list. Each node has a pointer that leads to the next node in the list.
The next pointer in the last node is left set to Nothing, which indicates the end of the list.
Finally, the ListTail pointer points to the last node in the list.

92 Day 4

FIGURE 4.2
A linked list in
memory.

Data

List Head

Data Data Data

List Tail

To get a little practice with linked lists, you’ll now construct a program that manipulates
lists using a Visual Basic Node class, which you’ll also create. The first step is to create
the Node class, which you can do by following these steps:

1. Create a new Visual Basic Standard EXE project.

2. From the Project menu, select the Add Class Module command. The Add Class
Module property sheet appears.

A Visual Basic class enables you to encapsulate the data and the functions that
operate on that data in much the same way a C++ class does.

3. Double-click the Class Module icon on the New page of the property sheet. Visual
Basic adds the class module to your project.

4. In the class module’s Properties window, set the Name property to Node.

The class’s name identifies the data type represented by the class. A class is noth-
ing more than a fancy, user-defined data type.

06 067231987x CH04 11/6/00 7:14 PM Page 92

Developing Program Code 93

4

5. Paste the following lines into the class module’s code window:
Public X As Integer
Public Y As Integer
Public NextNode As Node

These lines define the class’s properties, which are the variables controlled by the
class.

6. Save the project files, saving the class file as Node.cls, the form file as Lists.frm,
and the project file as Lists.vbp.

You now have a Visual Basic project that includes a class you can use to represent node
objects in a program. Next, open the form’s code window and add the following source
code lines (see Listing 4.1) to complete the program. If you don’t want to type the source
code (although I suggest that you do because you’ll learn better that way), you can just
paste the contents of the Lists.txt file into the form’s code window. That file is located in
the Chap04\Code folder of this book’s CD-ROM.

LISTING 4.1 Testing the Node Class

1: Option Explicit
2:
3: Private Sub Form_Load()
4: Dim i As Integer
5: Dim n As Node
6: Dim ListHead As Node
7: Dim ListTail As Node
8:
9: For i = 1 To 10
10: Set n = New Node
11: n.X = i
12: n.Y = i * 10
13: If ListHead Is Nothing Then
14: Set ListHead = n
15: Else
16: Set ListTail.NextNode = n
17: End If
18: Set ListTail = n
19: Set ListTail.NextNode = Nothing
20: Next i
21:
22: While Not ListHead Is Nothing
23: Set n = ListHead
24: Set ListHead = ListHead.NextNode
25: Form1.Print n.X & “,” & n.Y
26: Set n = Nothing
27: Wend
28: End Sub

06 067231987x CH04 11/6/00 7:14 PM Page 93

Study this short program carefully to make sure you understand how to create and man-
age a linked list. In this program, the Node class is the type of item stored in the list. This
class contains two data members, as well as a pointer to a Node object. This Node refer-
ence, NextNode, points to the next node in the list.

The program begins with a For loop that creates and links 10 nodes. In the loop, the New
keyword creates a new node, after which the program sets the node’s X and Y properties
to the values of i and i*10. (These values hold no particular significance.) After creating
the node, the program checks whether ListHead is equal to Nothing. If it is, the program
has a new list, so it sets ListHead to point to the node. Then the program sets ListTail
to point to the same Node object (if the list has only one node, the head and tail of the list
are the same), and sets ListTail’s NextNode pointer to Nothing, indicating that there are
no other items in the list.

Getting back to the If statement, if ListHead isn’t Nothing, there’s already at least one
node in the list. In this case, the program shouldn’t change ListHead. Rather, the pro-
gram must add the new node to the end of the list. This is where ListTail comes in
handy. Instead of having to scan through the whole list, looking for Nothing in a
NextNode pointer, the program can use ListTail to tack the new node onto the end of
the list. It does this by setting ListTail’s NextNode pointer so that it points to the new
node and then changing ListTail so that it points to the new last node. Figures 4.3
through 4.6 illustrate this process.

94 Day 4

FIGURE 4.3
Creating a linked list—
step 1.

Next Node

Create new Node

Node
X

Y

Next Node

Set Head and
Tail Pointers

Node
X

Y

List Head List Tail

FIGURE 4.4
Creating a linked list—
step 2.

06 067231987x CH04 11/6/00 7:14 PM Page 94

Developing Program Code 95

4

FIGURE 4.5
Creating a linked list—
step 3.

FIGURE 4.6
Creating a linked list—
step 4.

Next Node

Create another new node

X

Y

List Head List Tail Next Node

Node
X

Y

Next Node

Adjust the head and tail
pointers and link the nodes

X

Y

List Head List Tail

Next Node

X

Y

After the program creates the linked list, a While loop scans the list, printing each node’s
contents before deleting the node. Notice how the temporary node pointer keeps track of
the current node. By setting n to ListHead and then setting ListHead to point to the next
node in the list, you effectively “pop off” the first node. Unless you save the pointer in n,
you cannot access this node. The program’s output looks like this:

1,10
2,20
3,30
4,40
5,50
6,60
7,70
8,80
9,90
10,100

A linked list is just one of many data structures that can help you design
effective and efficient algorithms. Other data structures you should explore
are stacks, queues, and tables, just to mention a few.

Note

06 067231987x CH04 11/6/00 7:14 PM Page 95

An Object-Oriented List
If you think that a linked list might be the perfect candidate for a class, you’d be correct,
especially if you need to use many different lists in a program. For example, let’s convert
the Lists program into a more object-oriented program by adding a List class. Perform
the following steps to create a new version of the Lists project, named Lists2:

1. Create a new Visual Basic Standard EXE project.

2. From the Project menu, select the Add Class Module command. The Add Class
Module property sheet appears.

3. Select the Existing page of the property sheet and double-click the Node.cls file.
Visual Basic adds the Node class module to your project.

You need to add this reference because the List class you’re developing will use
the Node class to represent its nodes.

4. Again, select the Add Class Module command. The Add Class Module property
sheet appears.

5. Double-click the Class Module icon on the New page of the property sheet. Visual
Basic adds the new class module to your project.

6. In the class module’s Properties window, set the Name property to List.

7. Type the following lines (see Listing 4.2) into the class module’s code window (or
paste the code from the ListClass.txt file located in the Chap04\Code folder of this
book’s CD-ROM).

LISTING 4.2 Source Code for the List Class

1: Option Explicit
2:
3: Public ListHead As Node
4: Public ListTail As Node
5:
6: Private Sub Class_Initialize()
7: Set ListHead = Nothing
8: Set ListTail = Nothing
9: End Sub
10:
11: Private Sub Class_Terminate()
12: ClearList
13: End Sub
14:
15: Sub MakeNewNode(n1 As Integer, n2 As Integer)
16: Dim n As Node
17: Set n = New Node
18: n.X = n1

96 Day 4

06 067231987x CH04 11/6/00 7:14 PM Page 96

Developing Program Code 97

4

19: n.Y = n2
20: If ListHead Is Nothing Then
21: Set ListHead = n
22: Else
23: Set ListTail.NextNode = n
24: End If
25: Set ListTail = n
26: Set ListTail.NextNode = Nothing
27: End Sub
28:
29: Sub TransferList(list2 As List)
30: Set list2 = New List
31: Set list2.ListHead = ListHead
32: Set list2.ListTail = ListTail
33: Set ListHead = Nothing
34: Set ListTail = Nothing
35: End Sub
36:
37: Sub GetNode(column As Integer, row As Integer)
38: Dim n As Node
39: If Not ListHead Is Nothing Then
40: Set n = ListHead
41: column = n.X
42: row = n.Y
43: Set ListHead = ListHead.NextNode
44: If ListHead Is Nothing Then Set ListTail = Nothing
45: Set n = Nothing
46: End If
47: End Sub
48:
49: Function HasNodes() As Boolean
50: HasNodes = Not ListHead Is Nothing
51: End Function
52:
53: Sub ClearList()
54: Dim n As Node
55: While Not ListHead Is Nothing
56: Set n = ListHead
57: Set ListHead = ListHead.NextNode
58: Set n = Nothing
59: Wend
60: End Sub
61:
62: Sub DisplayList()
63: Dim n As Node
64: Set n = ListHead
65: While Not n Is Nothing
66: Debug.Print “X:” & n.X & “ Y:” & n.Y
67: Set n = n.NextNode
68: Wend
69: End Sub

06 067231987x CH04 11/6/00 7:14 PM Page 97

This complete class listing includes the definitions for the class’s properties, as
well as its methods, which are the functions that operate on the properties and

give the class its functionality. Notice how the List class creates objects from the Node
class in Lines 3, 4, 16, 38, 54, and 63.

8. Type the following lines (see Listing 4.3) into the form’s code window (or paste
the code from the Lists2.txt file located in the Chap04\Code folder of this book’s
CD-ROM).

LISTING 4.3 Testing the List Class

1: Option Explicit
2:
3: Private Sub Form_Load()
4: Dim TestList As List
5: Dim i As Integer
6:
7: Form1.ScaleMode = vbPixels
8: Form1.AutoRedraw = True
9: Set TestList = New List
10: For i = 1 To 10
11: TestList.MakeNewNode i, i * 10
12: Next i
13: TestList.DisplayList
14: End Sub

This short program shows how using classes can make your main program much
simpler and easier to understand. Only three lines—9, 11, and 13—deal directly

with the List class.

9. Save the project files, saving the List class as List.cls, the form as Lists2.frm, and
the project as Lists2.vbp.

You now have a Visual Basic project that includes classes for both nodes and lists. When
you run the Lists2 program, you’ll see the same output you saw with the Lists program,
except that the output is now routed to Visual Basic’s Immediate window. This is a good
place to display debugging information. However, notice how simple the main program
is when most of the details of handling the list are delegated to the List class.

Exploring the List Class
As you can see, all the list-handling operations have been taken out of Lists2’s main pro-
gram and placed into the List class. The data that defines the list—the node pointers and
declarations—are placed inside the class also. The main program no longer has to know
how a linked list works. It only has to draw on the capabilities of the class.

98 Day 4

ANALYSIS

ANALYSIS

06 067231987x CH04 11/6/00 7:14 PM Page 98

Developing Program Code 99

4

Look at the class’s Initialize method first:

Private Sub Class_Initialize()
Set ListHead = Nothing
Set ListTail = Nothing

End Sub

This method initializes a new list by setting its head and tail pointers to Nothing. This
creates an empty list. Of course, an empty list isn’t particularly useful. Now the class
needs a way to add nodes to the list, as shown in Listing 4.4.

LISTING 4.4 The MakeNewNode Subroutine

1: Sub MakeNewNode(n1 As Integer, n2 As Integer)
2: Dim n As Node
3: Set n = New Node
4: n.X = n1
5: n.Y = n2
6: If ListHead Is Nothing Then
7: Set ListHead = n
8: Else
9: Set ListTail.NextNode = n
10: End If
11: Set ListTail = n
12: Set ListTail.NextNode = Nothing
13: End Sub

This method takes as parameters (Line 1) the values for the new node’s X and Y

members. First, Lines 2 and 3 allocate a new node, after which Lines 4 and 5 set
the X and Y members to their appropriate values. Then, Lines 6 through 12 add the new
node to the list.

To display the contents of the list, you can call the class’s DisplayList method, shown
in Listing 4.5.

LISTING 4.5 The DisplayList Subroutine

1: Sub DisplayList()
2: Dim n As Node
3: Dim LineCount As Integer
4: Set n = ListHead
5: LineCount = 0
6: While Not n Is Nothing
7: Debug.Print “X:” & n.X & “ Y:” & n.Y
8: Set n = n.NextNode
9: Wend
10: End Sub

ANALYSIS

06 067231987x CH04 11/6/00 7:14 PM Page 99

This method simply scans the list (using the temporary n pointer so that it
doesn’t destroy ListHead), printing the contents of X and Y. Unlike the Lists pro-

gram, this program doesn’t delete each node after printing its contents.

Deleting nodes is left for the class’s Terminate and ClearList methods, shown in
Listing 4.6.

LISTING 4.6 The Class_Terminate and ClearList Subroutines

1: Private Sub Class_Terminate()
2: ClearList
3: End Sub
4:
5: Sub ClearList()
6: Dim n As Node
7: While Not ListHead Is Nothing
8: Set n = ListHead
9: Set ListHead = ListHead.NextNode
10: Set n = Nothing
11: Wend
12: End Sub

Visual Basic calls the List class’s Terminate method when a List object goes
out of scope or when it’s set to Nothing, which deletes the object from memory.

Line 2 in the Terminate method then deletes every node in the list by calling the
ClearList subroutine. In Line 6, ClearList defines a Node object that the subroutine
will use as temporary storage. Lines 7 through 11 remove the head node from the list
until there are no nodes left.

A Cell List
There’s a lot more to List, the linked-list class, than the Lists2 program takes advantage
of. The methods you’ve yet to study will help you build lists of cells for the Life pro-
gram. Let’s start by examining the TransferList method (see Listing 4.7).

LISTING 4.7 The TransferList Subroutines

1: Sub TransferList(list2 As List)
2: Set list2 = New List
3: Set list2.ListHead = ListHead
4: Set list2.ListTail = ListTail
5: Set ListHead = Nothing
6: Set ListTail = Nothing
7: End Sub

100 Day 4

ANALYSIS

ANALYSIS

06 067231987x CH04 11/6/00 7:14 PM Page 100

Developing Program Code 101

4

This method enables you to transfer the contents of one list to another.
TransferList doesn’t actually move or copy any data. Instead, it transfers the

contents simply by setting the destination-list pointers to the same values as the source-
list pointers (Lines 3 and 4). The danger here is that after copying the pointers, you’ll
have two sets of pointers to the same data. When one of the lists is deleted, its destructor
deletes all the nodes in the list. That leaves pointers to nodes that have been deleted,
which is a dangerous situation. However, Lines 5 and 6 avoid this problem by setting the
source-list pointers to Nothing after copying them. This way, only one set of pointers to
the nodes is in the list.

You’ll use TransferList often in the Life program to shift the contents of lists. Another
method you’ll use often is GetNode (see Listing 4.8).

LISTING 4.8 The GetNode Subroutines

1: Sub GetNode(column As Integer, row As Integer)
2: Dim n As Node
3: If Not ListHead Is Nothing Then
4: Set n = ListHead
5: column = n.X
6: row = n.Y
7: Set ListHead = ListHead.NextNode
8: If ListHead Is Nothing Then Set ListTail = Nothing
9: Set n = Nothing
10: End If
11: End Sub

Line 4 retrieves the first cell node in a list, Lines 5 and 6 return its contents in the
variables column and row, and then Lines 7 through 9 move the list head forward

one node and delete the old head node from the list. Calling GetNode for every node in a
list results in an empty list.

One handy function is HasNodes, which returns a Boolean value that indicates whether
the list is empty or includes nodes:

Function HasNodes() As Boolean
HasNodes = Not ListHead Is Nothing

End Function

This function is particularly useful with a function such as GetNode. By using HasNodes
as the conditional for a While statement, you can scan an entire list, ending the looping
when the list is empty—that is, when HasNodes returns False.

The last new method in the List class is ClearList, shown in Listing 4.9.

ANALYSIS

ANALYSIS

06 067231987x CH04 11/6/00 7:14 PM Page 101

LISTING 4.9 The ClearList Subroutines

1: Sub ClearList()
2: Dim n As Node
3: While Not ListHead Is Nothing
4: Set n = ListHead
5: Set ListHead = ListHead.NextNode
6: Set n = Nothing
7: Wend
8: End Sub

This method enables you to empty a list at any time. It simply reads through the
list, deleting nodes as it goes. List’s destructor calls this function, but you can

also use it in your programs (and you’ll use it in the Life program).

The Life Program
Now you know how to handle linked lists. You’ve even created a handy cell-list class that
you can use in your program to track cells as they’re created and killed. It’s time to put
your knowledge of linked lists to work by examining the full Life program. But first,
how about playing the completed game?

Playing Life
When you run Life, the main screen appears. Most of the screen consists of the grid in
which your cells will live and die. (Figure 4.7 shows the simulation in progress.) Above
the grid are the command buttons with which the user controls the program. At the top-
right corner of the screen is the generation count. While the simulation is running, the
readout shows the number of the current generation.

102 Day 4

ANALYSIS

FIGURE 4.7
The main screen of
Life.

06 067231987x CH04 11/6/00 7:14 PM Page 102

Developing Program Code 103

4

To get started, you must first seed the grid with cells. Place your mouse pointer where
you want to place a cell and click the left mouse button. A green cell appears there. If
you want to place cells quickly, you can paint them onto the grid by holding down the
left mouse button as you drag the pointer across the screen.

When you’ve placed your cells, activate the simulation by either clicking the Start button
or pressing Alt+S. The simulation springs into action, with cells living and dying as they
speed through their life cycles. To stop the simulation before the generations run out,
click the Stop button or press Alt+T.

Next to the Start button is the Clear button, which removes all cells from the grid.
The Generations button sets the generation count. When you choose this button, the
Generations dialog box appears, as shown in Figure 4.8. To change the generation
setting, type a number from 1 to 10,000. Invalid entries yield the default value of
10000.

FIGURE 4.8
The Generations dia-
log box.

Building Life
Now that you’ve seen Life in action, it’s time to learn to build the program yourself. In
the following sections you’ll build the program, starting with the user interface.

Building Life’s User Interface
To build the game’s user interface, perform the following steps:

1. Start a new Visual Basic Standard EXE project.

06 067231987x CH04 11/6/00 7:14 PM Page 103

2. Set the following form properties in the form’s Properties window:

AutoRedraw = True

Caption = “The Game of Life”

Height = 6900

ScaleMode = Pixels

Width = 9705

3. Add four CommandButton controls to the form, giving them the following pro-
perty settings:

CommandButton #1

Name = cmdStart

Caption = “&Start”

Height = 360

Left = 660

TabIndex = 0

Top = 195

Width = 1140

CommandButton #2

Name = cmdClear

Caption = “&Clear”

Height = 360

Left = 2130

TabIndex = 1

Top = 210

Width = 1140

104 Day 4

06 067231987x CH04 11/6/00 7:14 PM Page 104

Developing Program Code 105

4

CommandButton #3

Name = cmdGenerations

Caption = “&Generations”

Height = 360

Left = 3615

TabIndex = 2

Top = 210

Width = 1140

CommandButton #4

Name = cmdStop

Caption = “S&top”

Height = 360

Left = 5085

TabIndex = 3

Top = 210

Width = 1140

These four buttons will be the objects that make up the game’s control panel. You
can tell what each button does by looking at its name and caption.

4. Add a Label control to the form, giving it the following property settings:

Name = lblGenerations

Caption = “Generation #10000”

Height = 270

Left = 6585

Top = 285

Width = 1500

When you’ve added all the controls, your form should look like Figure 4.9.

06 067231987x CH04 11/6/00 7:14 PM Page 105

FIGURE 4.9
The finished form.

106 Day 4

Adding the Program Code
Now that you’ve completed the program’s user interface, you need to add the source
code that implements the game and the user interface’s actions. The following is the
source code for the Life program. Type it into the form’s code window, or, if you’d rather
not type, paste it from the Life.txt file (found in the Chap04\Code folder of this book’s
CD-ROM) into the form’s code window.

‘==
‘ The Game of Life for Visual Basic 6
‘ by Clayton Walnum
‘ Copyright 2000 by Macmillan Computer Publishing
‘==
Option Explicit

‘==
‘ Constants
‘==
Const DEAD = 0
Const ALIVE = 1
Const CELLWIDTH = 12
Const CELLHEIGHT = 12
Const MAXCOL = 50
Const MAXROW = 28
Const XOFFSET = 20
Const YOFFSET = 56
Const MAXX = MAXCOL * CELLWIDTH + XOFFSET

06 067231987x CH04 11/6/00 7:14 PM Page 106

Developing Program Code 107

4

Const MAXY = MAXROW * CELLHEIGHT + YOFFSET
Const CIRCLERADIUS = 5
Const MAXGENERATIONS = 10000

‘==
‘ Global Variables
‘==
Dim Generations As Integer
Dim Drawing As Boolean
Dim World(MAXCOL - 1, MAXROW - 1) As Integer
Dim Neighbors(MAXCOL - 1, MAXROW - 1)
Dim StopLife As Boolean
Dim LiveList As New List
Dim DieList As New List
Dim NextDieList As New List
Dim NextLiveList As New List

‘==
‘ Form Handler
‘==
Private Sub Form_Load()
InitGame
DrawScreen

End Sub

‘==
‘ CommandButton Handlers
‘==
Private Sub cmdClear_Click()
Dim column As Integer
Dim row As Integer
For column = 0 To MAXCOL - 1
For row = 0 To MAXROW - 1
If World(column, row) = ALIVE Then
World(column, row) = DEAD
Form1.ForeColor = vbButtonFace
Form1.FillStyle = vbSolid
Form1.FillColor = vbButtonFace
Form1.Circle (column * CELLWIDTH + XOFFSET + _

CELLWIDTH / 2, row * CELLHEIGHT + _
YOFFSET + CELLHEIGHT / 2), CIRCLERADIUS

End If
Next row

Next column
ReleaseNodes

End Sub

Private Sub cmdGenerations_Click()
On Error GoTo Inputerror
Generations = InputBox(“Enter number of generations:” & _
vbCrLf & “(Max = “ & MAXGENERATIONS & “)”, _

06 067231987x CH04 11/6/00 7:14 PM Page 107

“Generations”, MAXGENERATIONS)
If Generations < 1 Or Generations > MAXGENERATIONS Then _
Generations = MAXGENERATIONS

Inputerror:
End Sub

Private Sub cmdStop_Click()
StopLife = True

End Sub

Private Sub cmdStart_Click()
cmdStart.Enabled = False
cmdGenerations.Enabled = False
cmdStop.Enabled = True
cmdClear.Enabled = False
RunLife

End Sub

‘==
‘ Mouse Handlers
‘==
Private Sub Form_MouseDown(Button As Integer, _

Shift As Integer, x As Single, Y As Single)
Drawing = True
AddCell x, Y

End Sub

Private Sub Form_MouseMove(Button As Integer, _
Shift As Integer, x As Single, Y As Single)

If Drawing Then AddCell x, Y
End Sub

Private Sub Form_MouseUp(Button As Integer, _
Shift As Integer, x As Single, Y As Single)

Drawing = False
End Sub

‘==
‘ Initialization Subroutines
‘==
Sub InitGame()
Dim row As Integer
Dim column As Integer
For row = 0 To MAXROW - 1
For column = 0 To MAXCOL - 1
World(column, row) = DEAD

Next column
Next row
Generations = 10000
StopLife = False

End Sub

108 Day 4

06 067231987x CH04 11/6/00 7:14 PM Page 108

Developing Program Code 109

4

Sub DrawScreen()
Dim x As Integer
Dim Y As Integer
Form1.ForeColor = vbBlue
For Y = YOFFSET To MAXY Step CELLHEIGHT
Form1.Line (XOFFSET, Y)-(MAXX + 1, Y)

Next Y
For x = XOFFSET To MAXX Step CELLWIDTH
Form1.Line (x, YOFFSET)-(x, MAXY + 1)

Next x
lblGenerations.Caption = “Generation #10000”

End Sub

‘==
‘ General Subroutines
‘==
Sub RunLife()
Dim gen As Integer
For gen = 1 To Generations
CreateLists
If StopLife Then Exit For
lblGenerations.Caption = “Generation #” & gen
SetCellColor gen
Live
Die
AddNeighbors
SubtractNeighbors
NextLiveList.TransferList LiveList
NextDieList.TransferList DieList
DoEvents

Next gen
StopLife = False
cmdStart.Enabled = True
cmdGenerations.Enabled = True
cmdStop.Enabled = False
cmdClear.Enabled = True

End Sub

Sub DisplayNeighbors()
Dim x As Integer
Dim Y As Integer
Debug.Print “NEIGHBORS”
For x = 0 To MAXCOL - 1
For Y = 0 To MAXROW - 1
Debug.Print x & “:” & Y & “ -> “ & Neighbors(x, Y)

Next Y
Next x

End Sub

Sub SetCellColor(Generation As Integer)
Dim ColorNum

06 067231987x CH04 11/6/00 7:14 PM Page 109

ColorNum = Generation Mod 6
Select Case ColorNum
Case 0
Form1.FillColor = vbBlue

Case 1
Form1.FillColor = vbRed

Case 2
Form1.FillColor = vbGreen

Case 3
Form1.FillColor = vbYellow

Case 4
Form1.FillColor = vbMagenta

Case 5
Form1.FillColor = vbCyan

End Select
End Sub

Sub CreateLists()
Dim column As Integer
Dim row As Integer
ReleaseNodes
For column = 0 To MAXCOL - 1
For row = 0 To MAXROW - 1
Neighbors(column, row) = 0
If World(column, row) = ALIVE Then _
LiveList.MakeNewNode column, row

Next row
Next column
AddNeighbors
For column = 0 To MAXCOL - 1
For row = 0 To MAXROW - 1
If (((Neighbors(column, row) < 2) Or _

(Neighbors(column, row) > 3)) And _
(World(column, row) = ALIVE)) Then _

NextDieList.MakeNewNode column, row
Next row

Next column
NextLiveList.TransferList LiveList
NextDieList.TransferList DieList

End Sub

Sub Live()
Dim row As Integer
Dim column As Integer
Dim TempList As List
LiveList.TransferList TempList
While (TempList.HasNodes)
TempList.GetNode column, row
If ((World(column, row) = DEAD) And _

(Neighbors(column, row) = 3)) Then
World(column, row) = ALIVE

110 Day 4

06 067231987x CH04 11/6/00 7:14 PM Page 110

Developing Program Code 111

4

Form1.ForeColor = vbBlack
Form1.FillStyle = vbSolid
Form1.Circle (column * CELLWIDTH + XOFFSET + _

CELLWIDTH / 2, row * CELLHEIGHT + _
YOFFSET + CELLHEIGHT / 2), CIRCLERADIUS

LiveList.MakeNewNode column, row
End If

Wend
End Sub

Sub Die()
Dim temp As List
Dim column As Integer
Dim row As Integer
Dim TempList As List
DieList.TransferList TempList
While (TempList.HasNodes)
TempList.GetNode column, row
If World(column, row) = ALIVE And _

Neighbors(column, row) <> 2 And _
Neighbors(column, row) <> 3 Then

World(column, row) = DEAD
Form1.ForeColor = vbButtonFace
Form1.FillStyle = vbSolid
Form1.FillColor = vbButtonFace
Form1.Circle (column * CELLWIDTH + XOFFSET + _

CELLWIDTH / 2, row * CELLHEIGHT + _
YOFFSET + CELLHEIGHT / 2), CIRCLERADIUS

DieList.MakeNewNode column, row
End If

Wend
End Sub

Sub AddNeighbors()
Dim xLow As Integer, xHigh As Integer
Dim yLow As Integer, yHigh As Integer
Dim column As Integer
Dim row As Integer
Dim x As Integer, Y As Integer
While LiveList.HasNodes
LiveList.GetNode column, row
CalcLimits column, row, xLow, xHigh, yLow, yHigh
For x = xLow To xHigh
For Y = yLow To yHigh
If (x <> column) Or (Y <> row) Then
Neighbors(x, Y) = Neighbors(x, Y) + 1
Select Case Neighbors(x, Y)
Case 3:
If World(x, Y) = DEAD Then _
NextLiveList.MakeNewNode x, Y

Case 4:

06 067231987x CH04 11/6/00 7:14 PM Page 111

If World(x, Y) = ALIVE Then _
NextDieList.MakeNewNode x, Y

End Select
End If

Next Y
Next x

Wend
End Sub

Sub SubtractNeighbors()
Dim xLow As Integer, xHigh As Integer
Dim yLow As Integer, yHigh As Integer
Dim column As Integer
Dim row As Integer
Dim x As Integer, Y As Integer
While (DieList.HasNodes)
DieList.GetNode column, row
CalcLimits column, row, xLow, xHigh, yLow, yHigh
For x = xLow To xHigh
For Y = yLow To yHigh
If (x <> column) Or (Y <> row) Then
Neighbors(x, Y) = Neighbors(x, Y) + 1
Select Case Neighbors(x, Y)
Case 1:
If World(x, Y) = ALIVE Then _
NextDieList.MakeNewNode x, Y

Case 3:
If World(x, Y) = DEAD Then _
NextLiveList.MakeNewNode x, Y

End Select
End If

Next Y
Next x

Wend
End Sub

Sub CalcLimits(c As Integer, r As Integer, _
xLow As Integer, xHigh As Integer, _
yLow As Integer, yHigh As Integer)

If c = 0 Then
xLow = 0

Else
xLow = c - 1

End If
If c = MAXCOL - 1 Then
xHigh = MAXCOL - 1

Else
xHigh = c + 1

End If
If r = 0 Then
yLow = 0

112 Day 4

06 067231987x CH04 11/6/00 7:14 PM Page 112

Developing Program Code 113

4

Else
yLow = r - 1

End If
If r = MAXROW - 1 Then
yHigh = MAXROW - 1

Else
yHigh = r + 1

End If
End Sub

Sub ReleaseNodes()
LiveList.ClearList
DieList.ClearList
NextLiveList.ClearList
NextDieList.ClearList

End Sub

Sub AddCell(x As Single, Y As Single)
Dim column As Integer
Dim row As Integer
If Drawing Then
If x > XOFFSET And x < MAXX And _

Y > YOFFSET And Y < MAXY Then
column = (x - XOFFSET) \ CELLWIDTH
row = (Y - YOFFSET) \ CELLHEIGHT
If Not World(column, row) Then
Form1.ForeColor = vbBlack
Form1.FillStyle = vbSolid
Form1.FillColor = vbGreen
Form1.Circle (column * CELLWIDTH + XOFFSET + _

CELLWIDTH / 2, row * CELLHEIGHT + _
YOFFSET + CELLHEIGHT / 2), CIRCLERADIUS

World(column, row) = ALIVE
End If

End If
End If

End Sub

Finally, use the Add Class Module on the Project menu to add the Node.cls and List.cls
modules to the project. When you’re finished, save the entire project, naming the form
file Life.frm and the project file Life.vbp.

Understanding Life
Now that you know how the program operates, take a look at the code, starting with the
game’s constants and variables.

06 067231987x CH04 11/6/00 7:14 PM Page 113

Life’s Variables and Constants
Life relies on a set of global variables and constants that are declared near the top of the
program. Table 4.1 lists the general global variables and their descriptions, and Table 4.2
lists the constants.

TABLE 4.1 Life’s General Game Variables

Variable Type Description

DieList List A linked list that contains the cells that will die in the current
generation

Drawing Boolean A flag that indicates whether the user is using the mouse to draw
cells on the screen

Generations Integer The number of generations the simulation should run

LiveList List A linked list that contains the cells that will live in the current
generation

Neighbors() Integer An array containing the number of living neighbors for each cell

NextDieList List A linked list that acts as temporary storage for cells that might
die in the next generation

NextLiveList List A linked list that acts as temporary storage for cells that might
live in the next generation

StopLife Boolean A flag that indicates the player has clicked the Stop button

World() Integer An array containing the contents of the entire grid; a value of 0
means the cell is dead, and 1 means the cell is alive

TABLE 4.2 Life’s Constants

Constant Description

ALIVE The value for a living cell

CELLHEIGHT The height of each cell in the display grid

CELLWIDTH The width of each cell in the display grid

CIRCLERADIUS The radius of the circle that represents a living cell

DEAD The value for a dead cell

MAXCOL The maximum number of columns in the cell-world display grid

MAXGENERATIONS The maximum number of generations the simulation should run

MAXROW The maximum number of rows in the cell-world display grid

MAXX The maximum X value the mouse can have when clicking in the grid

114 Day 4

06 067231987x CH04 11/6/00 7:14 PM Page 114

Developing Program Code 115

4

Constant Description

MAXY The maximum Y value the mouse can have when clicking in the grid

XOFFSET The position, from the left of the window, in which to start drawing the world
grid

YOFFSET The position, from the top of the window, in which to start drawing the world
grid

Starting the Game
Now that you know what all those variables and constants mean, it’s time to dig deeper
into the program’s source code. As always, when the game starts, Visual Basic calls the
Form1 object’s Form_Load subroutine, which does nothing more than call the subroutines
InitGame and DrawScreen:

Private Sub Form_Load()
InitGame
DrawScreen

End Sub

The InitGame subroutine sets the initial values for all the game’s variables. First, the
subroutine sets all the cells in the world to DEAD, as shown in 4.10.

LISTING 4.10 Initializing the Cells

1: Dim row As Integer
2: Dim column As Integer
3: For row = 0 To MAXROW - 1
4: For column = 0 To MAXCOL - 1
5: World(column, row) = DEAD
6: Next column
7: Next row

Then, InitGame sets the Generations and StopLife variables to their initial values:

Generations = 10000
StopLife = False

The DrawScreen subroutine draws the game’s display, starting with the horizontal lines:

Form1.ForeColor = vbBlue
For Y = YOFFSET To MAXY Step CELLHEIGHT
Form1.Line (XOFFSET, Y)-(MAXX + 1, Y)

Next Y

06 067231987x CH04 11/6/00 7:14 PM Page 115

Notice how the program uses constants to calculate loop values and drawing locations.
Because of this technique, you can change the size of the game’s world just by changing
the values of the MAXCOL and MAXROW constants. The entire game will then run just fine
with a smaller or larger grid.

After drawing the horizontal lines, DrawScreen draws the vertical lines:

For x = XOFFSET To MAXX Step CELLWIDTH
Form1.Line (x, YOFFSET)-(x, MAXY + 1)

Next x

Finally, DrawScreen draws the caption for the generation count:

lblGenerations.Caption = “Generation #10000”

Processing Commands
Now that the initialization is complete, the program waits for the player to either draw
cells on the screen or click one of the buttons. The player can click in the grid to draw a
single cell or paint cells into the grid by holding down the left mouse button and drag-
ging the mouse. In either case, the Form_MouseDown, Form_MouseMove, and
Form_MouseUp event handlers (see Listing 4.11) perform the task of adding cells by call-
ing the AddCell subroutine with the current location of the mouse pointer.

LISTING 4.11 Handling Mouse Events

1: Private Sub Form_MouseDown(Button As Integer, _
2: Shift As Integer, x As Single, y As Single)
3: Drawing = True
4: AddCell x, y
5: End Sub
6:
7: Private Sub Form_MouseMove(Button As Integer, _
8: Shift As Integer, x As Single, y As Single)
9: If Drawing Then AddCell x, y
10: End Sub
11:
12: Private Sub Form_MouseUp(Button As Integer, _
13: Shift As Integer, x As Single, y As Single)
14: Drawing = False
15: End Sub

The AddCell subroutine checks the mouse position to ensure that the mouse pointer is
over the grid and not over some other part of the window:

If x > XOFFSET And x < MAXX And _
Y > YOFFSET And Y < MAXY Then

116 Day 4

06 067231987x CH04 11/6/00 7:14 PM Page 116

Developing Program Code 117

4

If the mouse is over the grid, the program calculates the column and row of the cell over
which the mouse pointer is positioned:

column = (x - XOFFSET) \ CELLWIDTH
row = (Y - YOFFSET) \ CELLHEIGHT

Then, if the cell over which the mouse is positioned isn’t already alive, the program
draws the cell and adds it to the World array, as shown in Listing 4.12.

LISTING 4.12 Adding a Cell to the Game

1: If Not World(column, row) Then
2: Form1.ForeColor = vbBlack
3: Form1.FillStyle = vbSolid
4: Form1.FillColor = vbGreen
5: Form1.Circle (column * CELLWIDTH + XOFFSET + _
6: CELLWIDTH / 2, row * CELLHEIGHT + _
7: YOFFSET + CELLHEIGHT / 2), CIRCLERADIUS
8: World(column, row) = ALIVE
9: End If

Again, notice the use of constants to calculate cell positions (Lines 5 through 7).
Not only does this make the code more readable, but it also ensures that it will

work with any size grid.

The remaining command handlers are attached to the CommandButton controls. For
example, when the player clicks the Start button, Visual Basic calls the cmdStart_Click
event handler, which looks like Listing 4.13.

LISTING 4.13 The cmdStart_Click Event Handler

1: Private Sub cmdStart_Click()
2: cmdStart.Enabled = False
3: cmdGenerations.Enabled = False
4: cmdStop.Enabled = True
5: cmdClear.Enabled = False
6: RunLife
7: End Sub

The cmdStart_Click event handler disables all buttons except the Stop button,
and then it calls the RunLife subroutine, which starts the simulation.

When the player clicks the Clear button, Visual Basic calls the cmdClear_Click event
handler, which looks like Listing 4.14.

ANALYSIS

ANALYSIS

06 067231987x CH04 11/6/00 7:14 PM Page 117

LISTING 4.14 The cmdClear_Click Event Handler

1: Private Sub cmdClear_Click()
2: Dim column As Integer
3: Dim row As Integer
4: For column = 0 To MAXCOL - 1
5: For row = 0 To MAXROW - 1
6: If World(column, row) = ALIVE Then
7: World(column, row) = DEAD
8: Form1.ForeColor = vbButtonFace
9: Form1.FillStyle = vbSolid
10: Form1.FillColor = vbButtonFace
11: Form1.Circle (column * CELLWIDTH + XOFFSET + _
12: CELLWIDTH / 2, row * CELLHEIGHT + _
13: YOFFSET + CELLHEIGHT / 2), CIRCLERADIUS
14: End If
15: Next row
16: Next column
17: ReleaseNodes
18: End Sub

As you can see, this event handler does nothing more than scan the World array,
killing every living cell (Line 7) and erasing them from the screen (Lines 8

through 11), providing the simulation with a fresh start.

When the player clicks the Generations button, Visual Basic calls the
cmdGenerations_Click event handler (see Listing 4.15). This displays an input box in
order to obtain the new generations setting from the user.

LISTING 4.15 The cmdGenerations_Click Event Handler

1: Private Sub cmdGenerations_Click()
2: On Error GoTo Inputerror
3: Generations = InputBox(“Enter number of generations:” & _
4: vbCrLf & “(Max = “ & MAXGENERATIONS & “)”, _
5: “Generations”, MAXGENERATIONS)
6: If Generations < 1 Or Generations > MAXGENERATIONS Then _
7: Generations = MAXGENERATIONS
8: Inputerror:
9: End Sub

Finally, clicking the Stop button causes the program to set the StopLife flag to true,
which ends the currently running simulation (as you’ll see in the next section):

Private Sub cmdStop_Click()
StopLife = True

End Sub

118 Day 4

ANALYSIS

06 067231987x CH04 11/6/00 7:14 PM Page 118

Developing Program Code 119

4

Processing the Simulation
When the user clicks the Start button, the RunLife subroutine, which is the main simula-
tion loop, takes over. This subroutine performs the simulation by calling the subroutines
that count cell neighbors, create cells, and kill cells. To get started, it calls CreateLists,
which creates the starting lists and neighbor count for the simulation:

CreateLists

When CreateLists (which you’ll examine a little later in this section) finishes initializ-
ing the starting lists, program execution returns to RunLife and enters the main simula-
tion loop. This loop is controlled by a For statement that compares its loop variable to
Generations, which is the number of generations that the simulation will run:

For gen = 1 To Generations

First, the loop checks whether the player has clicked the Stop button. If so, the program
terminates the For loop, which also terminates the current simulation:

If StopLife Then Exit For

If the simulation should continue, the program sets the current onscreen generation count
and the cell color:

lblGenerations.Caption = “Generation #” & gen
SetCellColor gen

Then, it’s time to process the LiveList and DieList lists by calling the Live and Die

subroutines:

Live
Die

The Live subroutine brings to life those cells in LiveList that meet the requirements for
life, whereas Die kills off those cells in DieList that meet the requirements for death.

After processing the lists, the program must update the Neighbors array for all cells
whose neighbor count has changed. The AddNeighbors and SubtractNeighbors subrou-
tines handle this task:

AddNeighbors
SubtractNeighbors

The program then transfers the new lists into LiveList and DieList, where they’ll be for
the next iteration of the loop:

NextLiveList.TransferList LiveList
NextDieList.TransferList DieList

06 067231987x CH04 11/6/00 7:14 PM Page 119

Because the For loop runs for quite a while, the RunLife subroutine must relinquish the
processor now and then so that Windows can handle messages. The program does this by
calling the DoEvents method at the end of each loop:

DoEvents

After the For loop completes its processing or the player forces the loop to exit by click-
ing the Stop button, RunLife resets the StopLife flag and the command buttons to their
normal states:

StopLife = False
cmdStart.Enabled = True
cmdGenerations.Enabled = True
cmdStop.Enabled = False
cmdClear.Enabled = True

The CreateLists subroutine is responsible for initializing LiveList and DieList, the
two linked lists that the simulation needs to get started. Also, it initializes the starting
neighbor counts. The subroutine first calls ReleaseNodes, which simply makes sure that
all lists are empty:

ReleaseNodes

(When the program first starts, the lists are empty. But in subsequent calls to RunLife,
your linked lists probably won’t be empty because it’s rare that every cell onscreen is
dead after the generations run out.)

After clearing the lists, CreateLists scans the newly created World array, creating a new
node for each living cell in the array. As CreateLists scans the World array, it also takes
advantage of the loop to initialize all the neighbor counts in the Neighbors array to 0, as
shown in Listing 4.16.

LISTING 4.16 Initializing Neighbor Counts

1: For column = 0 To MAXCOL - 1
2: For row = 0 To MAXROW - 1
3: Neighbors(column, row) = 0
4: If World(column, row) = ALIVE Then _
5: LiveList.MakeNewNode column, row
6: Next row
7: Next column

After creating the LiveList linked list, the subroutine calls the AddNeighbors
subroutine, which updates the neighbor counts and creates a NextLiveList and
NextDieList list for cells that might (or might not) live or die in the next generation:

AddNeighbors

120 Day 4

06 067231987x CH04 11/6/00 7:14 PM Page 120

Developing Program Code 121

4

After the call to AddNeighbors, the CreateLists subroutine must scan the neighbor
counts, looking for cells with less than two neighbors or more than three neighbors. The
subroutine adds these cells to the NextDieList list that AddNeighbors started, as shown
in Listing 4.17.

LISTING 4.17 Initializing Neighbor Counts

1: For column = 0 To MAXCOL - 1
2: For row = 0 To MAXROW - 1
3: If (((Neighbors(column, row) < 2) Or _
4: (Neighbors(column, row) > 3)) And _
5: (World(column, row) = ALIVE)) Then _
6: NextDieList.MakeNewNode column, row
7: Next row
8: Next column

After building the NextLiveList and NextDieList lists, CreateLists finally transfers
these lists to the LiveList and DieList lists, where RunLife expects to find them:

NextLiveList.TransferList LiveList
NextDieList.TransferList DieList

Calculating Cell Neighbors
Now let’s look at the AddNeighbors subroutine. AddNeighbors scans the LiveList list,
which contains all the cells that have just come to life. The While loop iterates until this
list is empty:

While LiveList.HasNodes

The subroutine first gets the cell’s coordinates by calling the list’s GetNode method:

LiveList.GetNode column, row

(Remember: GetNode also deletes the node.)

It then calls the CalcLimits subroutine, which determines the minimum and maximum
coordinates for cells adjacent to the live cell:

CalcLimits column, row, xLow, xHigh, yLow, yHigh

The program requires this calculation because cells on any edge of the grid do not have
eight adjacent cells.

After calculating the coordinates, nested For loops increment the neighbor count for
every adjacent cell:

For x = xLow To xHigh
For y = yLow To yHigh
If (x <> column) Or (y <> row) Then
Neighbors(x, y) = Neighbors(x, y) + 1

06 067231987x CH04 11/6/00 7:14 PM Page 121

After the loops increment a cell’s neighbor count, the Select Case statement checks the
count, adding new nodes to the NextLiveList or NextDieList list as appropriate, as
shown in Listing 4.18.

LISTING 4.18 Checking Cell Counts

1: Select Case Neighbors(x, y)
2: Case 3:
3: If World(x, y) = DEAD Then _
4: NextLiveList.MakeNewNode x, y
5: Case 4:
6: If World(x, y) = ALIVE Then _
7: NextDieList.MakeNewNode x, y
8: End Select

Keep in mind that the nodes on the list are only “maybes.” That is, when you add nodes
to these two lists, you’re telling the program that when it finishes counting all the neigh-
bors, it should check those cells again to see whether they’ll actually live or die. Not
every cell on the NextLiveList list will come to life, and not every cell on the
NextDieList list will die. Some cells might appear in both lists at the same time. With
these temporary lists, you can keep track of cells that might change without changing the
grid—which, as you’ve learned, can really mess up the simulation.

The SubtractNeighbors routine works similarly to its counterpart, AddNeighbors. The
difference is that it processes the DieList list, adding to the NextLiveList list any cells
that have three neighbors (even though the cells might not keep all three neighbors) and
adding to the NextDieList list any cells with less than two neighbors (even though the
cell’s final neighbor count might not qualify it to die).

Creating and Killing Cells
Next up is the Live subroutine, which checks all the nodes on the LiveList list, bringing
to life only the nodes that meet the requirements for life. The first step in this process is
to transfer the LiveList list to the TempList list:

Dim TempList As List
LiveList.TransferList TempList

The subroutine then starts a While loop that iterates through the entire list:

While (TempList.HasNodes)

The first thing the loop does is remove a node from the list:

TempList.GetNode column, row

122 Day 4

06 067231987x CH04 11/6/00 7:14 PM Page 122

Developing Program Code 123

4

The loop then checks whether the cell should come to life:

If ((World(column, row) = DEAD) And _
(Neighbors(column, row) = 3)) Then

If so, the subroutine adds the cell to the World array and draws the cell on the screen:

World(column, row) = ALIVE
Form1.ForeColor = vbBlack
Form1.FillStyle = vbSolid
Form1.Circle (column * CELLWIDTH + XOFFSET + _

CELLWIDTH / 2, row * CELLHEIGHT + _
YOFFSET + CELLHEIGHT / 2), CIRCLERADIUS

Finally, the subroutine adds any newly alive cells to the NextLiveList list so that they
can be counted in the next generation:

LiveList.MakeNewNode column, row
End If

Wend
End Sub

The Die subroutine (see Listing 4.19) is Live’s counterpart.

LISTING 4.19 The Die Subroutine

1: Sub Die()
2: Dim temp As List
3: Dim column As Integer
4: Dim row As Integer
5: Dim TempList As List
6: DieList.TransferList TempList
7: While (TempList.HasNodes)
8: TempList.GetNode column, row
9: If World(column, row) = ALIVE And _
10: Neighbors(column, row) <> 2 And _
11: Neighbors(column, row) <> 3 Then
12: World(column, row) = DEAD
13: Form1.ForeColor = vbButtonFace
14: Form1.FillStyle = vbSolid
15: Form1.FillColor = vbButtonFace
16: Form1.Circle (column * CELLWIDTH + XOFFSET + _
17: CELLWIDTH / 2, row * CELLHEIGHT + _
18: YOFFSET + CELLHEIGHT / 2), CIRCLERADIUS
19: DieList.MakeNewNode column, row
20: End If
21: Wend
22: End Sub

06 067231987x CH04 11/6/00 7:14 PM Page 123

Die checks the DieList list, killing the cells that meet the requirements for death
and deleting from the list the cells that don’t. (Remember that GetNode deletes a

cell after getting it.) Any cells that die are placed back onto the DieList list so they can
be accounted for in the next generation.

Summary
The Life program is an excellent example of an interactive, event-driven application with
a game loop that continuously updates the game screen while still allowing other
Windows messages to get through to the system. The program also introduces the linked
list, which is a data structure that enables you to build lists of items. But aside from
demonstrating all these features, the program is fun—and addictive. I’ve spent far too
many hours watching little creatures live and die onscreen. Time to get back to work.

Q&A
Q How important are efficient algorithms in a world where computer speeds

double nearly every two years?

A Good question. It’s true that programmers today can get away with a lot more inef-
ficiency than they could back when computers ran at 16MHz or slower. Still, game
programmers like to push computers to their limits. For this reason, efficient algo-
rithms will never go out of style.

Q Is there a way to make a linked list that can be easily traversed both forward
and backward?

A Yep. You’ll need to create something called a doubly-linked list, in which each
node has a pointer to both the previous and next nodes. The two pointers enable a
program to search through the nodes from front to back or back to front.

Q Does the use of so many constants in a program slow it down?

A Not much. When you compile your program, Visual Basic replaces all constants
with the values they represent. The only processing time you might lose is the time
it takes to perform mathematical operations such as addition or subtraction. In most
cases, this is insignificant.

Q I know that the DoEvents method enables my game program to process
Windows messages within a game loop, but does DoEvents also allow other
currently running Windows applications to receive their messages?

A Yes. When you call DoEvents, you’re telling the operating system to process all
pending messages. This ensures that your game program will share processor time
fairly with all other processes that are running.

124 Day 4

ANALYSIS

06 067231987x CH04 11/6/00 7:14 PM Page 124

Developing Program Code 125

4

Q What happens if I forget to call DoEvents from within a game loop?

A The game loop will completely take over the system, leaving you with what
appears to be a lockup. No Windows applications will be able to function, includ-
ing your game.

Workshop
The workshop includes quiz questions to help gauge your grasp of the material. You’ll
find the answers to this quiz in Appendix A. Even if you feel that you totally understand
the concepts presented here, you should work through the quiz anyway. The last section
has an exercise or two that will help reinforce your learning.

Quiz
1. What’s an algorithm?

2. Why do algorithms need to be efficient?

3. How does the complexity of an algorithm relate to its efficiency?

4. How does a program store the location of a linked list in memory?

5. What does the Life program use the LiveList and DieList linked lists for?

6. In the Life program, what’s the World array used for?

7. How does the Neighbors array in the Life program help to speed the simulation’s
algorithm?

8. Why must a program call the DoEvents method within a game loop?

Exercises
1. Come up with an algorithm that completely shuffles an array of 20 values, from 0

to 19. Write a short program that implements your algorithm and displays the shuf-
fled values in the application’s form.

2. Add constants to the program you wrote in Exercise 1 so that you can easily
change the size of the array and the location where the program prints the array
values.

3. Modify the Life program so that it runs in a 30¥18 grid, with cells that are 20
pixels high and 20 pixels wide. Change the size of the cell circles to a radius of 8.
(Hint: Study the program's constants.)

06 067231987x CH04 11/6/00 7:14 PM Page 125

06 067231987x CH04 11/6/00 7:14 PM Page 126

DAY 5

WEEK 1

Displaying and
Manipulating Images

Most computer games are heavily graphical. Luckily, Visual Basic includes two
controls—the Image control and the PictureBox control—that make performing
many graphical operations a snap. These controls enable you to do things with
graphics that only a highly trained programmer can do in another language
such as C++. Previously in this book, you gained a little experience with these
controls. In today’s lesson, you’ll learn everything you need to know to take
full advantage of these graphical powerhouses:

• The main differences between the Image and PictureBox controls

• The properties and methods of Image and PictureBox controls

• How to load picture files into controls

• How to resize a picture in an Image control

• How to combine PictureBox and Image controls

• How to draw images with the PaintPicture method

07 067231987x CH05 11/6/00 7:10 PM Page 127

The Image Control in Detail
The Image control is the simpler of the two graphical controls and is useful when you
don’t need as much control over a picture as you can get with the more powerful
PictureBox. The most significant difference between the Image control and the
PictureBox control is that the PictureBox control can act as a container in the same way
a form can. That is, a PictureBox control can contain other controls (and can act as a
drawing surface), but an Image control cannot. This section will examine the Image con-
trol’s properties and methods, as well as ways to use the control in your programs.

Important Image Control Properties, Methods, and
Events
Table 5.1 lists the most commonly used of the Image control’s 20 properties. These are
the properties that are the most useful to game programmers, and most of them should
already be familiar to you as a Visual Basic programmer.

TABLE 5.1 Most Useful Image Control Properties

Property Description

BorderStyle Determines the type of border that’s drawn around the control

Height Specifies the control’s height

Left Specifies the location of the control’s left edge

Name Specifies the control’s name

Picture Specifies the picture to display in the control

Stretch Determines whether the control changes size to fit the picture or the picture
changes size to fit the control

Top Specifies the location of the control’s top edge

Visible Determines whether the control is visible

Width Specifies the control’s width

The Image control supports the usual set of Visual Basic control methods. However, the
only one of these that’s particularly useful to you as a game programmer is the Move
method, which repositions and resizes the control. Of course, you can also resize or repo-
sition an Image control by setting its Left, Top, Width, and Height properties.

128 Day 5

You can resize an Image control only when its Stretch property is set to True.
If the Stretch property is set to False, the control always takes the size of
the picture it contains, and trying to change its size will have no effect.

Note

07 067231987x CH05 11/6/00 7:10 PM Page 128

Displaying and Manipulating Images 129

5

The Image control also responds to many events, most of which should be familiar to
you. Table 5.2 lists the most commonly used of these events.

TABLE 5.2 The Most Commonly Used Image Control Events

Event Description

Click Occurs when the control is clicked

DblClick Occurs when the control is double-clicked

MouseDown Occurs when a mouse button is pressed and the mouse pointer is over the control

MouseUp Occurs when a mouse button is released and the mouse pointer is over the control

MouseMove Occurs when the mouse pointer moves over the control

Loading Pictures into an Image Control
There are two ways to get a picture into an Image control. First, at design time you can
assign a picture to the Picture property in the control’s Properties window. Visual Basic
then loads the picture into the control at design time, and the picture becomes part of the
program’s executable. The second way is to assign a picture to the control’s Picture

property at runtime by calling the LoadPicture method:

Image1.Picture = LoadPicture(“picture.jpg”)

The type of file you use for your pictures depends on a number of things.
JPEG files (with the .jpg file extension) are best used with photos because
you can control the amount of compression used, which enables you to cre-
ate a small file that still looks good. GIF picture files are good for line draw-
ings and less complex graphics. Bitmap files (with the .bmp file extension)
are perfect reproductions of images because no compression is used.
However, they can take up a lot of disk space.

Note

There are advantages and disadvantages to each of these picture-loading methods. If you
assign a picture to the control at design time, the picture becomes part of the control and
you don’t need to package a separate image file with the program. However, if you do
this, editing the picture becomes a matter of editing the original image, loading the
Visual Basic project, setting the Image control’s Picture property to the new image, and
then recompiling the program. If you load the picture at runtime, you must package the
separate image file with the program, but editing the image doesn’t require recompiling.

07 067231987x CH05 11/6/00 7:10 PM Page 129

Sizing Pictures with an Image Control
The Image control has a Stretch property, which determines whether the control stretch-
es to fit the picture or the picture stretches to fit the control. The Stretch property is one
of the advantages of using an Image control rather than a PictureBox control, which
doesn’t have the Stretch property. If you set the Stretch property to True, whenever
you change the size of the Image control, the picture resizes as well. Scaling pictures has
never been easier!

The Stretch Example program, which you can find on this book’s CD-ROM, demon-
strates this advantage of the Image control. When you first run the program, you see
the window shown in Figure 5.1. Click the Image control (the picture on the left), and the
control and picture get scaled by three. Click the PictureBox control (the picture on the
right), and the control gets scaled by three but the picture stays the same size. Figure 5.2
shows both the controls after they’ve been enlarged.

130 Day 5

FIGURE 5.1
Stretch Example when
it’s first run.

FIGURE 5.2
Both controls after
being scaled by three.

The source code that implements the Stretch Example program is fairly simple, as you
can see in Listing 5.1.

LISTING 5.1 The Stretch Example Program

1: Option Explicit
2:
3: Dim ImageWidth As Integer
4: Dim ImageHeight As Integer
5:

07 067231987x CH05 11/6/00 7:10 PM Page 130

Displaying and Manipulating Images 131

5

6: Private Sub Form_Load()
7: ImageWidth = Image1.Width
8: ImageHeight = Image1.Height
9: Picture1.Width = ImageWidth
10: Picture1.Height = ImageHeight
11: End Sub
12:
13: Private Sub Image1_Click()
14: If Image1.Width = ImageWidth Then
15: Image1.Width = ImageWidth * 3
16: Image1.Height = ImageHeight * 3
17: Else
18: Image1.Width = ImageWidth
19: Image1.Height = ImageHeight
20: End If
21: End Sub
22:
23: Private Sub Picture1_Click()
24: If Picture1.Width = ImageWidth Then
25: Picture1.Width = ImageWidth * 3
26: Picture1.Height = ImageHeight * 3
27: Else
28: Picture1.Width = ImageWidth
29: Picture1.Height = ImageHeight
30: End If
31: End Sub

The Form_Load procedure (Lines 6 through 11), which Visual Basic calls when it
loads the form, sets the size of the PictureBox to control to the size of the image.

The Image1_Click event procedure (Lines 13 through 21) stretches the Image control or
returns the control to its normal size when the user clicks it. The Picture1_Click event
procedure (Lines 23 through 31) does the same thing for the PictureBox control that
Image1_Click does for the Image control.

The PictureBox Control in Detail
When discussing the Image control, it’s almost impossible not to cover some aspects of
the PictureBox control as well. Still, there’s a lot more to this versatile control than what
you might have picked up in the previous section. In this section, you’ll get a closer look
at the PictureBox control, one of the most versatile objects in your Visual Basic toolbox.

Important PictureBox Control Properties
The PictureBox control is a full-fledged container, like a form, so it boasts nearly twice
as many properties as the Image control. These properties give you extra power over
your graphics. Moreover, because the PictureBox is a full-fledged container, you can use

ANALYSIS

07 067231987x CH05 11/6/00 7:10 PM Page 131

it to organize output or sets of controls within the main window represented by a form.
However, all this power comes with a price, because a PictureBox control is more of a
resource hog than an Image control is.

Table 5.3 lists the most commonly used PictureBox properties, most of which should
already be familiar to you as a Visual Basic programmer.

TABLE 5.3 The Most Commonly Used PictureBox Control Properties

Property Description

Appearance Determines whether the control is drawn flat or 3D

AutoRedraw Determines whether Visual Basic keeps a persistent graphic in memory to
refresh the control’s display

AutoSize Determines whether the control automatically sizes itself to the size of the pic-
ture it contains

BorderStyle Specifies the type of border to draw around the control

CurrentX The ending horizontal location of the last drawing operation

CurrentY The ending vertical location of the last drawing operation

DrawMode Specifies the mode to use when combining pixels during drawing operations

DrawStyle Specifies the style of drawing for lines in the control

DrawWidth Specifies the width of lines drawn in the control

FillColor Specifies the color to use for fill operations

FillStyle Specifies the pattern to use for fill operations

Font Specifies the font to use when displaying text in the control

Height Specifies the height of the control

Left Specifies the location of the control’s left edge

Picture Specifies the picture to display in the control

ScaleMode Specifies the type of measurement to use for coordinates within the control

Top Specifies the location of the control’s top edge

Visible Determines whether the control is visible

Width Specifies the width of the control

The PictureBox control supports the usual set of Visual Basic control methods. However,
because a PictureBox control supports drawing, it also implements the complete set of
graphical methods. Table 5.4 lists and describes these methods.

132 Day 5

07 067231987x CH05 11/6/00 7:10 PM Page 132

Displaying and Manipulating Images 133

5

TABLE 5.4 The PictureBox Control’s Graphical Methods

Method Description

Circle Draws a circle, oval, or ellipse

Cls Clears the control’s display area

Line Draws a line or a box

PaintPicture Draws all or part of a picture in the control

Point Gets the RGB value of a point in the control

PSet Draws a point in the control

Scale Sets the control’s scaling to user-defined values

The PictureBox control also responds to many events, most of which should be familiar
to you as a Visual Basic programmer. Table 5.5 lists the most commonly used of these
events.

TABLE 5.5 The Most Useful PictureBox Control Events

Event Description

Change Occurs when the control’s contents change

Click Occurs when the control is clicked

DblClick Occurs when the control is double-clicked

MouseDown Occurs when a mouse button is pressed and the mouse pointer is over the control

MouseUp Occurs when a mouse button is released and the mouse pointer is over the control

MouseMove Occurs when the mouse pointer moves over the control

Paint Occurs when the contents of the control must be repainted

Resize Occurs when the control is resized

Loading Pictures into a PictureBox Control
Loading pictures into a PictureBox control works the same as with an Image control. You
can set the control’s Picture property in the control’s Properties window at design time,
or you can call the LoadPicture method to load a picture into the control at runtime.

Sizing Pictures with a PictureBox Control
You might think that because the PictureBox control doesn’t have a Stretch property,
scaling pictures in the control would require some fancy finagling—but that isn’t really
true. There are actually two fairly easy ways to handle scaling. The first is to combine
the advantages of an Image control with a PictureBox control.

07 067231987x CH05 11/6/00 7:10 PM Page 133

Remember that a PictureBox control is a container, which means that can hold other con-
trols, including an Image control. By placing an Image control inside a PictureBox con-
trol, you can easily scale an image. When you change the size of the PictureBox control,
you also change the size of the Image control. (Just don’t forget to set the Image con-
trol’s Stretch property to True.)

The Stretch2 program, found on this book’s CD-ROM, demonstrates how this technique
works. When you run the program, you see the window shown in Figure 5.3. Click the
picture and it expands to three times its normal size, shown in Figure 5.4. Listing 5.2
contains the source code that accomplishes this bit of trickery.

LISTING 5.2 The Stretch2 Example Program

1: Option Explicit
2:
3: Dim ImageWidth As Integer
4: Dim ImageHeight As Integer
5:
6: Private Sub Form_Load()
7: Image1.Move 0, 0
8: ImageWidth = Image1.Width
9: ImageHeight = Image1.Height
10: Picture1.Width = ImageWidth
11: Picture1.Height = ImageHeight
12: End Sub
13:
14: Private Sub Image1_Click()
15: If Image1.Width = ImageWidth Then
16: Picture1.Width = ImageWidth * 3
17: Picture1.Height = ImageHeight * 3
18: Image1.Width = ImageWidth * 3
19: Image1.Height = ImageHeight * 3
20: Else
21: Picture1.Width = ImageWidth
22: Picture1.Height = ImageHeight
23: Image1.Width = ImageWidth
24: Image1.Height = ImageHeight
25: End If
26: End Sub

The Form_Load procedure (Lines 6 through 12), which Visual Basic calls when it
loads the form, sets the Image control’s position inside the PictureBox control

and sets the size of the PictureBox to control to the size of the image. The Image1_Click
event procedure (Lines 14 through 26) stretches the Image and PictureBox controls or
returns them to their normal sizes when the user clicks the image.

134 Day 5

ANALYSIS

07 067231987x CH05 11/6/00 7:10 PM Page 134

Displaying and Manipulating Images 135

5

FIGURE 5.3
Stretch2 when it’s first
run.

FIGURE 5.4
The control after being
scaled by three.

The second way to scale a picture in a PictureBox control is called the PaintPicture
method, which you’ll examine in the next section.

The PaintPicture Method
The PaintPicture method of the PictureBox control gives you almost total control over
how a picture is displayed. Using this method, you can draw a picture at any size or draw
only parts of a picture. Moreover, you can specify the drawing mode so you can combine
the source and destination pixels. A call to PaintPicture looks like this:

Picture1.PaintPicture picture, x1, y1, _
width1, height1, x2, y2, width2, height2, opcode

The PaintPicture method’s arguments are the following:

• picture—The source picture, which must be an object’s Picture property

• x1—The X coordinate where the picture will be drawn

• y1—The Y coordinate where the picture will be drawn

• width1—The width of the picture

• height1—The height of the picture

• x2—The X coordinate within the source picture from which the destination picture
will be taken

• y2—The Y coordinate within the source picture from which the source picture will
be taken

07 067231987x CH05 11/6/00 7:10 PM Page 135

• width2—The width of the area of the source picture that will be drawn

• height2—The height of the area of the source picture that will be drawn

• opcode—The drawing mode that will be used

All these arguments are optional except picture, x1, and y1. That is, you can draw the
picture simply by supplying a reference to the picture and the coordinate position at
which to draw the picture, like this:

Picture1.PaintPicture Image1.Picture, 10, 10

To scale the picture, use the width1 and height1 arguments. The Stretch3 program, which
you can find on this book’s CD-ROM, demonstrates using the PaintPicture method to
scale a picture. The program’s form contains two controls, an Image control and a
PictureBox control. The Image control holds the picture to be displayed. However, this
control is invisible, so the image can’t be seen until it’s drawn in the PictureBox control.
When you click the PictureBox control, the picture toggles between normal and enlarged
size, as shown in Figures 5.5 and 5.6. The program’s source code looks like Listing 5.3.

LISTING 5.3 The Stretch3 Example Program

1: Option Explicit
2:
3: Dim ImageWidth As Integer
4: Dim ImageHeight As Integer
5: Dim Scaled As Boolean
6:
7: Private Sub Form_Load()
8: Image1.Visible = False
9: ImageWidth = Image1.Width
10: ImageHeight = Image1.Height
11: Picture1.Width = ImageWidth * 3
12: Picture1.Height = ImageHeight * 3
13: Scaled = False
14: Picture1.PaintPicture Image1.Picture, 10, 10
15: End Sub
16:
17: Private Sub Picture1_Click()
18: Picture1.Cls
19: If Scaled Then
20: Picture1.PaintPicture Image1.Picture, 10, 10
21: Else
22: Picture1.PaintPicture Image1.Picture, 10, 10, _
23: ImageWidth * 3, ImageHeight * 3
24: End If
25: Scaled = Not Scaled
26: End Sub

136 Day 5

07 067231987x CH05 11/6/00 7:10 PM Page 136

Displaying and Manipulating Images 137

5

The Form_Load procedure (Lines 7 through 15), which Visual Basic calls when it
loads the form, makes the Image control invisible (Line 8). Then it sets the

PictureBox control to three times the size of the image (Lines 9 through 12), initializes
the Scaled flag to False (Line 13), and paints the contents of the Image control in the
PictureBox control (Line 14). The Picture1_Click event procedure (Lines 17 through 26)
stretches the image (Lines 22 and 23), or returns it to its normal size (Line 20), when the
user clicks the PictureBox control.

ANALYSIS

FIGURE 5.5
The picture at normal
size.

FIGURE 5.6
The picture enlarged.

The Letter Tiles Puzzle Game
The Letter Tiles game is a version of a classic puzzle and is a good example of how easy
Visual Basic makes it to manipulate images. The game incorporates 25 different images,
all created with Microsoft PhotoDraw 2000.

Playing Letter Tiles
To play the game, run the LetterTiles.exe file. You’ll see the window shown in Figure 5.7.
The object of the game is to put the letters in order. To make this task tricky, there’s only
one blank tile in the game. You can swap the blank tile with any adjacent letter tile (no
diagonal moves) by clicking the letter tile you want to move. When you click an adjacent
tile, the blank tile and the letter tile switch places. (When you move a letter into its correct
position, it blinks.) With some skill (not to mention a good helping of luck and a lot of
swearing), eventually you can shuffle the letter tiles into their correct order.

07 067231987x CH05 11/6/00 7:10 PM Page 137

FIGURE 5.7
Letter Tiles when it’s
first run.

138 Day 5

Letter Tiles is easy at first. But as you put more and more tiles in their correct positions,
you have less room to maneuver the remaining tiles. By the time you get to the last row,
you’ll find out just how hard this puzzle can be. If you’re easily frustrated, Letter Tiles
has a secret cheat mode. To activate it, place the mouse pointer over the blank tile, hold
down the Shift and Ctrl keys, and then right-click. A message box appears, telling you
that the cheat mode is active. Now you can swap any letter tile on the board with the
blank tile, not just adjacent tiles. To turn off cheat mode, perform the same actions you
used to turn it on.

When you manage to get the letter tiles in their correct order, the tiles go a little crazy,
shuffling themselves around the grid at breakneck speed.

Building Letter Tiles
Now that you’ve seen Letter Tiles in action, it’s time to build the program yourself. Let’s
start with the user interface.

Building Letter Tiles’ User Interface
To build the game’s user interface, perform the following steps:

1. Start a new Visual Basic Standard EXE project.

2. Set the following form properties in the form’s Properties window:

AutoRedraw = True

BorderStyle = Fixed Single

Caption = “Letter Tiles”

07 067231987x CH05 11/6/00 7:10 PM Page 138

Displaying and Manipulating Images 139

5

Height = 6765

ScaleMode = Pixel

Width = 6045

As you may remember, the AutoRedraw property enables the form to automatically
update its contents as necessary (such as when the form is uncovered by another
window), whereas the Fixed Single BorderStyle creates a window that cannot be
resized by the player. Setting the ScaleMode to Pixel causes all coordinates in the
form to be measured in pixels, which gives program measurements a one-to-one
relationship to screen coordinates.

3. Add an Image control (not a Picture control) to the form, giving it the following
property settings:

Name = imgLetters

BorderStyle = Fixed Single

Height = 68

Left = 17

Top = 23

Width = 68

This Image control, and all the other Image controls you create in the next few
steps, will hold the game’s letter images. Because each letter is contained in its
own Image control, it’s easy for the program to move the letters around the form.

4. With the Image control selected in the form, press Ctrl+C to copy it and then
Ctrl+V to paste the copy into the form. When Visual Basic asks whether you want
to create a control array, answer Yes.

5. Give the second Image control the following property settings:

Left = 91

Top = 23

6. Paste 23 more copies of the Image control into the form, giving them the following
property settings:

Image #3

Left = 165

Top = 23

07 067231987x CH05 11/6/00 7:10 PM Page 139

Image #4

Left = 239

Top = 23

Image #5

Left = 313

Top = 23

Image #6

Left = 17

Top = 97

Image #7

Left = 91

Top = 97

Image #8

Left = 165

Top = 97

Image #9

Left = 239

Top = 97

Image #10

Left = 313

Top = 97

Image #11

Left = 17

Top = 171

Image #12

Left = 91

Top = 171

140 Day 5

07 067231987x CH05 11/6/00 7:10 PM Page 140

Displaying and Manipulating Images 141

5

Image #13

Left = 165

Top = 171

Image #14

Left = 239

Top = 171

Image #15

Left = 313

Top = 171

Image #16

Left = 17

Top = 245

Image #17

Left = 91

Top = 245

Image #18

Left = 165

Top = 245

Image #19

Left = 239

Top = 245

Image #20

Left = 313

Top = 245

Image #21

Left = 17

Top = 319

07 067231987x CH05 11/6/00 7:10 PM Page 141

Image #22

Left = 91

Top = 319

Image #23

Left = 165

Top = 319

Image #24

Left = 239

Top = 319

Image #25

Left = 313

Top = 319

7. Create menus for the form using the menu editor, as shown in Figure 5.8. (Don’t
forget the Ctrl+N shortcut, also shown in Figure 5.8, for the New Game com-
mand.) Use the following captions and menu names:

&File mnuFile

&New Game mnuNewGame

– mnuSep

E&xit mnuExit

&Help mnuHelp

&About Letter Tiles... mnuAbout

142 Day 5

FIGURE 5.8
Creating Letter Tiles’
menu bar.

07 067231987x CH05 11/6/00 7:10 PM Page 142

Displaying and Manipulating Images 143

5

8. Set the Picture properties of the Image controls to the letter graphics files in the
Images\LetterTiles folder of this book’s CD-ROM. Set the first Image control to
the A.jpg file, the second to the B.jpg file, and so on. Set the last Image control to
the Blank.jpg file.

These files contain the actual letter images, which I created using Microsoft
PhotoDraw 2000.

9. Place a Timer control anywhere on the form.

The Timer will control the speed of the blinking letters.

10. Save the project’s form file as LetterTiles.frm and the project file as
LetterTiles.vbp.

You’ve now completed Letter Tiles’ user interface. At this point, your project’s form will
look like Figure 5.9. If you run the program now, the game’s window looks exactly as it
will when you’ve completed the program. The only problem is that nothing works! In the
following sections, you’ll remedy that little oversight.

FIGURE 5.9
Letter Tiles’ completed
form.

Adding the Program code
Type the following source code for the Letter Tiles program into the form’s code win-
dow. If you’d rather not type, paste the source code from the LetterTiles.txt file (found in

07 067231987x CH05 11/6/00 7:10 PM Page 143

the Chap05\Code folder of this book’s CD-ROM. Remember to save the form file often,
if you’re typing it in.

‘==
‘ Letter Tiles for Visual Basic 6
‘ by Clayton Walnum
‘ Copyright 2000 by Macmillan Computer Publishing
‘==
Option Explicit

‘==
‘ Constants.
‘==
Const MAXCOL = 5
Const MAXROW = 5
Const NUMOFTILES = MAXCOL * MAXROW
Const BLANKTILE = 24
Const SPACEBETWEENTILES = 10
Const TILEWIDTH = 64
Const TILEHEIGHT = 64
Const CELLHEIGHT = TILEHEIGHT + SPACEBETWEENTILES
Const CELLWIDTH = TILEWIDTH + SPACEBETWEENTILES
Const XOFFSET = 17
Const YOFFSET = 23
Const RIGHTBUTTON = 2
Const SHIFTANDCTRL = 3

‘==
‘ General Game Variables.
‘==
Dim Cheating As Boolean
Dim BlinkingTile As Integer
Dim GameOver As Boolean

‘==
‘ Form Handlers.
‘==
Private Sub Form_Load()
InitGame

End Sub

‘==
‘ Initialization Routine.
‘==
Sub InitGame()
ShuffleTiles
Cheating = False
GameOver = False

End Sub

144 Day 5

07 067231987x CH05 11/6/00 7:10 PM Page 144

Displaying and Manipulating Images 145

5

‘==
‘ Image Control Handlers.
‘==
Private Sub imgLetters_Click(Index As Integer)
If Not GameOver Then
If CanSwapTiles(Index) Then
Swap imgLetters(Index), imgLetters(BLANKTILE)
If IsInRightPlace(Index) Then
BlinkTile (Index)
WaitForTimer

End If
End If
CheckForEndOfGame

End If
End Sub

Private Sub imgLetters_MouseDown(Index As Integer, _
Button As Integer, Shift As Integer, _
X As Single, Y As Single)

If Index = BLANKTILE And Button = RIGHTBUTTON _
And Shift = SHIFTANDCTRL Then

Cheating = Not Cheating
If Cheating Then
MsgBox “Cheating mode on.”

Else
MsgBox “Cheating mode off.”

End If
End If

End Sub

‘==
‘ Timer Control Handler.
‘==
Private Sub Timer1_Timer()
Static pic As Picture
Static BlinkCount As Integer
If BlinkCount Mod 2 = 0 Then
Set pic = imgLetters(BlinkingTile).Picture
Set imgLetters(BlinkingTile).Picture = _

imgLetters(BLANKTILE).Picture
Else
Set imgLetters(BlinkingTile).Picture = pic

End If
BlinkCount = BlinkCount + 1
If BlinkCount = 6 Then
BlinkCount = 0
Timer1.Interval = 0

End If
End Sub

07 067231987x CH05 11/6/00 7:10 PM Page 145

‘==
‘ Menu Handlers.
‘==
Private Sub mnuNewGame_Click()
InitGame

End Sub

Private Sub mnuExit_Click()
Unload Form1

End Sub

Private Sub mnuAbout_Click()
MsgBox “Letter Tiles” & vbCrLf & “by Clayton Walnum” & _

vbCrLf & vbCrLf & “Copyright 2000” & vbCrLf & _
“by Macmillan Computer Publishing”, vbInformation, _
“About Letter Tiles”

End Sub

‘==
‘ General Game Subroutines.
‘==
Sub Swap(img1 As Image, img2 As Image)
Dim Left As Integer, Top As Integer
Left = img1.Left
Top = img1.Top
img1.Move img2.Left, img2.Top
img2.Left = Left
img2.Top = Top

End Sub

Sub CheckForEndOfGame()
Dim i As Integer
GameOver = True
For i = 0 To NUMOFTILES - 1
If Not IsInRightPlace(i) Then GameOver = False

Next i
If GameOver Then
DoWinningAnimation
MsgBox “You win!”

End If
End Sub

Sub DoWinningAnimation()
Dim i As Integer
For i = 0 To 10
ShuffleTiles
DisplayInOrder

Next i
End Sub

146 Day 5

07 067231987x CH05 11/6/00 7:10 PM Page 146

Displaying and Manipulating Images 147

5

Sub ShuffleTiles()
Dim i As Integer
Dim Index As Integer
Randomize
For i = 0 To NUMOFTILES - 1
Index = Int(Rnd * (NUMOFTILES - 1))
Swap imgLetters(i), imgLetters(Index)

Next i
End Sub

Sub DisplayInOrder()
Dim i As Integer
Dim Top As Integer, Left As Integer
Dim Column As Integer, Row As Integer
For i = 0 To NUMOFTILES - 1
Column = i Mod MAXCOL
Row = i \ MAXCOL
Left = Column * CELLWIDTH + XOFFSET
Top = Row * CELLHEIGHT + YOFFSET
imgLetters(i).Left = Left
imgLetters(i).Top = Top

Next i
End Sub

Sub BlinkTile(Index As Integer)
BlinkingTile = Index
Timer1.Interval = 100

End Sub

Sub WaitForTimer()
While Timer1.Interval <> 0
DoEvents

Wend
End Sub

‘==
‘ Game Functions.
‘==
Function CanSwapTiles(Index As Integer) As Boolean
If BlankIsAbove(Index) Or BlankIsBelow(Index) Or _

BlankIsLeft(Index) Or BlankIsRight(Index) Then
CanSwapTiles = True

Else
CanSwapTiles = False

End If
If Cheating Then CanSwapTiles = True

End Function

Function BlankIsAbove(Index As Integer) As Boolean
If imgLetters(Index).Top = _

imgLetters(BLANKTILE).Top + CELLHEIGHT And _

07 067231987x CH05 11/6/00 7:10 PM Page 147

imgLetters(Index).Left = imgLetters(BLANKTILE).Left Then
BlankIsAbove = True

Else
BlankIsAbove = False

End If
End Function

Function BlankIsBelow(Index As Integer) As Boolean
If imgLetters(Index).Top = _

imgLetters(BLANKTILE).Top - CELLHEIGHT And _
imgLetters(Index).Left = imgLetters(BLANKTILE).Left Then

BlankIsBelow = True
Else
BlankIsBelow = False

End If
End Function

Function BlankIsLeft(Index As Integer) As Boolean
If imgLetters(Index).Left = _

imgLetters(BLANKTILE).Left + CELLWIDTH And _
imgLetters(Index).Top = imgLetters(BLANKTILE).Top Then

BlankIsLeft = True
Else
BlankIsLeft = False

End If
End Function

Function BlankIsRight(Index As Integer) As Boolean
If imgLetters(Index).Left = _

imgLetters(BLANKTILE).Left - CELLWIDTH And _
imgLetters(Index).Top = imgLetters(BLANKTILE).Top Then

BlankIsRight = True
Else
BlankIsRight = False

End If
End Function

Function IsInRightPlace(Index As Integer) As Boolean
Dim Column As Integer, Row As Integer
Dim Left As Integer, Top As Integer
IsInRightPlace = False
Column = Index Mod MAXCOL
Row = Index \ MAXCOL
Left = Column * CELLWIDTH + XOFFSET
Top = Row * CELLHEIGHT + YOFFSET
If imgLetters(Index).Left = Left And _

imgLetters(Index).Top = Top Then _
IsInRightPlace = True

End Function

148 Day 5

07 067231987x CH05 11/6/00 7:10 PM Page 148

Displaying and Manipulating Images 149

5

Understanding Letter Tiles
Now that you know how to the program operates, take a look at the code, starting with
the game’s constants and variables.

Letter Tiles’ Variables and Constants
Letter Tiles relies on a set of global variables and constants that the program declares
near the top of the program. Table 5.6 lists the general global variables and their descrip-
tions, and Table 5.7 lists the constants.

TABLE 5.6 Letter Tiles’ General Game Variables

Variable Type Description

BlinkingTile Integer The index of the image control that is to blink

Cheating Boolean A flag that indicates whether the game is currently in the cheat
mode

GameOver Boolean A flag that indicates whether the current game has ended

TABLE 5.7 Letter Tiles’ Constants

Constant Description

BLANKTILE The index of the image control that displays the blank tile

CELLHEIGHT The height in pixels of each cell in the display grid

CELLWIDTH The width in pixels of each cell in the display grid

MAXCOL The maximum number of columns in the letter-tile grid

MAXROW The maximum number of rows in the letter-tile grid

NUMOFTILES The number of tiles in the grid

RIGHTBUTTON The integer value that represents a right button click

SHIFTANDCTRL The integer value that represents that both the Shift and Ctrl keys are being
held down

SPACEBETWEENTILES The amount of space between tiles in the grid

TILEHEIGHT The height in pixels of a tile

TILEWIDTH The width in pixels of a tile

XOFFSET The position, from the left of the window, of the first tile

YOFFSET The position, from the top of the window, of the first tile

07 067231987x CH05 11/6/00 7:10 PM Page 149

Starting the Game
Now let’s see how all that game source code works. As always, when the game starts,
Visual Basic calls the Form object’s Form_Load subroutine, which does nothing more than
call the subroutine InitGame:

Private Sub Form_Load()
InitGame

End Sub

Listing 5.4 shows the InitGame subroutine.

LISTING 5.4 The InitGame Subroutine

1: Sub InitGame()
2: ShuffleTiles
3: Cheating = False
4: GameOver = False
5: End Sub

The InitGame subroutine simply calls ShuffleTiles (Line 2) to mix the letter
tiles up, and then it sets the Cheating and GameOver flags to false (Lines 3 and 4).

Thanks to the Image controls in which the program displays the letter images, scram-
bling the tiles is just a matter of moving the Image controls themselves around, as shown
in Listing 5.5. You don’t even want to know how tough this little operation would be in a
language like C++!

LISTING 5.5 The ShuffleTiles Subroutine

1: Sub ShuffleTiles()
2: Dim i As Integer
3: Dim Index As Integer
4: Randomize
5: For i = 0 To NUMOFTILES - 1
6: Index = Int(Rnd * (NUMOFTILES - 1))
7: Swap imgLetters(i), imgLetters(Index)
8: Next i
9: End Sub

Line 4 randomizes the random-number generator. Line 5 starts a For loop that
iterates through the Image controls. Line 6 gets a random tile number, and Line 7

swaps the currently indexed control with the randomly indexed control.

Note that it’s actually the Swap subroutine that moves the Image controls. That subroutine
looks like Listing 5.6.

150 Day 5

ANALYSIS

ANALYSIS

07 067231987x CH05 11/6/00 7:10 PM Page 150

Displaying and Manipulating Images 151

5

LISTING 5.6 The Swap Subroutine

1: Sub Swap(img1 As Image, img2 As Image)
2: Dim Left As Integer, Top As Integer
3: Left = img1.Left
4: Top = img1.Top
5: img1.Move img2.Left, img2.Top
6: img2.Left = Left
7: img2.Top = Top
8: End Sub

As you can see here, moving an Image control is as easy as calling its Move
method (Line 5) or setting its Left and Top properties (Lines 6 and 7). Either

method works fine.

Enabling the Player to Move Tiles
Now the game is ready to go. The user can start clicking on tiles in order to swap them
with the blank tile. When the user clicks a tile, Visual Basic calls the imgLetters_Click
event handler, shown in Listing 5.7.

LISTING 5.7 The imgLetters_Click Event Procedure

1: Private Sub imgLetters_Click(Index As Integer)
2: If Not GameOver Then
3: If CanSwapTiles(Index) Then
4: Swap imgLetters(Index), imgLetters(BLANKTILE)
5: If IsInRightPlace(Index) Then
6: BlinkTile (Index)
7: WaitForTimer
8: End If
9: End If
10: CheckForEndOfGame
11: End If
12: End Sub

This subroutine first checks the GameOver flag (Line 2). If GameOver is True, the
game is over and the player isn’t allowed to move tiles until he starts a new

game. If GameOver is False, it’s okay for the player to move a tile but the program must
check whether the clicked tile is able to move (Line 3). Remember that only a tile adja-
cent to the blank tile (not counting diagonals) can move. The CanSwapTiles function
returns True if the move is legal. If CanSwapTiles returns True, the move is legal and a
call to Swap (Line 4) does the deed. Next, the function IsInRightPlace checks whether
the player has moved the tile into its correct position (Line 5). If this function returns

ANALYSIS

ANALYSIS

07 067231987x CH05 11/6/00 7:10 PM Page 151

True, the BlinkTile subroutine blinks the tile and the WaitForTimer subroutine ensures
that the blinking finishes before the program moves on (Lines 6 and 7). Finally, the sub-
routine ends by calling CheckForEndOfGame (Line 10), which ends the game if the player
has positioned all the tiles correctly.

152 Day 5

Because imgLetters is not a single Image control but rather an array of 25
controls, the imgLetters_Click event handler receives as a parameter a
value that specifies the index of the clicked control.

Note

Let’s look at the other functions that are called from within imgLetters_Click. First is
CanSwapTiles (see Listing 5.8), which determines whether the clicked tile is able to move.

LISTING 5.8 The CanSwapTiles Function

1: Function CanSwapTiles(Index As Integer) As Boolean
2: If BlankIsAbove(Index) Or BlankIsBelow(Index) Or _
3: BlankIsLeft(Index) Or BlankIsRight(Index) Then
4: CanSwapTiles = True
5: Else
6: CanSwapTiles = False
7: End If
8: If Cheating Then CanSwapTiles = True
9: End Function

The CanSwapTiles function must figure out whether the clicked tile is above,
below, to the left, or to the right of the blank tile. Although this process isn’t

particularly hard, it does require a messy set of checks. To simplify what would be a
ridiculously complex and completely unreadable If statement, CanSwapTiles calls the
functions BlankIsAbove, BlankIsBelow, BlankIsLeft, and BlankIsRight (Lines 2 and
3). These functions do all the location checking so that CanSwapTiles has a nice, clean,
and understandable If statement. (For now, ignore the If statement with the Cheating
flag.)

The BlankIsAbove, BlankIsBelow, BlankIsLeft, and BlankIsRight functions all work
similarly, so we’ll examine only one, BlankIsAbove, shown in Listing 5.9.

LISTING 5.9 The BlankIsAbove Function

1: Function BlankIsAbove(Index As Integer) As Boolean
2: If imgLetters(Index).Top = _
3: imgLetters(BLANKTILE).Top + CELLHEIGHT And _
4: imgLetters(Index).Left = imgLetters(BLANKTILE).Left Then

ANALYSIS

07 067231987x CH05 11/6/00 7:10 PM Page 152

Displaying and Manipulating Images 153

5

5: BlankIsAbove = True
6: Else
7: BlankIsAbove = False
8: End If
9: End Function

In order to determine whether the blank tile is above the clicked tile,
BlankIsAbove must compare the positions of the two tiles. First, the Left prop-

erties of the blank tile and the clicked tile must be the same (Line 4). Second, the clicked
tile’s Top property must be one grid cell higher than the blank tile’s Top property (Lines
2 and 3). If both of these conditions are true, the blank tile is above the clicked tile.

As you now know, the IsInRightPlace function determines whether the player has
moved a tile into its correct location in the grid. IsInRightPlace looks like Listing 5.10.

LISTING 5.10 The IsInRightPlace Function

1: Function IsInRightPlace(Index As Integer) As Boolean
2: Dim Column As Integer, Row As Integer
3: Dim Left As Integer, Top As Integer
4: IsInRightPlace = False
5: Column = Index Mod MAXCOL
6: Row = Index \ MAXCOL
7: Left = Column * CELLWIDTH + XOFFSET
8: Top = Row * CELLHEIGHT + YOFFSET
9: If imgLetters(Index).Left = Left And _
10: imgLetters(Index).Top = Top Then _
11: IsInRightPlace = True
12: End Function

Because the Image controls in the control array are in alphabetical order, the pro-
gram can use the Image control indexes to calculate where the tiles belong in the

grid. The IsInRightPlace function first calculates the column and row where the tile
belongs (Lines 5 and 6). It then converts the column and row values to pixel coordinates
(Lines 7 and 8). If these pixel coordinates match the Image control’s Left and Top prop-
erties, the image is in its correct position (Lines 9 through 11).

To blink a tile, the BlinkTile subroutine sets the BlinkingTile variable to the tile’s
index and then starts the Timer control ticking:

Sub BlinkTile(Index As Integer)
BlinkingTile = Index
Timer1.Interval = 100

End Sub

It’s the Timer control’s Timer event handler that blinks the tile as shown in Listing 5.11.

ANALYSIS

ANALYSIS

07 067231987x CH05 11/6/00 7:10 PM Page 153

LISTING 5.11 The Timer1_Timer Event Procedure

1: Private Sub Timer1_Timer()
2: Static pic As Picture
3: Static BlinkCount As Integer
4: If BlinkCount Mod 2 = 0 Then
5: Set pic = imgLetters(BlinkingTile).Picture
6: Set imgLetters(BlinkingTile).Picture = _
7: imgLetters(BLANKTILE).Picture
8: Else
9: Set imgLetters(BlinkingTile).Picture = pic
10: End If
11: BlinkCount = BlinkCount + 1
12: If BlinkCount = 6 Then
13: BlinkCount = 0
14: Timer1.Interval = 0
15: End If
16: End Sub

The program declares the pic and BlinkCount variables as Static (Lines 2
and 3) so that they will retain their values even after the Timer1_Timer event

handler exits. Timer1_Timer gets called once every 100 milliseconds, as specified by its
Interval property, which was set by the BlinkTile subroutine. Every time it’s called,
Timer1_Timer checks whether BlinkCount is odd or even (Line 4). If it’s even, the pro-
gram stores the Image control’s picture in the pic variable and sets the Image control’s
picture to the picture contained in the blank tile (Lines 5 through 7). If BlinkCount is
odd, the program restores the Image control’s picture (Line 9). This switching between
the blank picture and the letter picture makes the tile blink. After switching pictures,
Line 11 increments BlinkCount. When BlinkCount reaches 6 (Line 12), the program
resets it to 0 and turns off the timer by setting the Timer control’s Interval property to
0 (Lines 13 and 14).

The WaitForTimer subroutine (see Listing 5.12) puts the program to sleep until the
Timer control has finished blinking the tile.

LISTING 5.12 The WaitForTimer Subroutine

1: Sub WaitForTimer()
2: While Timer1.Interval <> 0
3: DoEvents
4: Wend
5: End Sub

154 Day 5

ANALYSIS

07 067231987x CH05 11/6/00 7:10 PM Page 154

Displaying and Manipulating Images 155

5

WaitForTimer is nothing more than a loop that continually checks the value of
the Timer control’s Interval property. When Interval is 0, the Timer control

has finished its task and the loop ends, enabling the program to continue. Notice the call
to DoEvents in Line 3. Without this call, not only won’t the program be able to receive
timer events, but the entire Windows system will come to a screeching halt.

Ending the Game
Every time the player moves a tile, the program must check whether the game is over. The
game is over when all the tiles are in their correct positions in the grid, of course. And in
case you can’t tell by its name, the CheckForEndOfGame subroutine (see Listing 5.13)
determines when the game is over.

LISTING 5.13 The CheckForEndOfGame Subroutine

1: Sub CheckForEndOfGame()
2: Dim i As Integer
3: GameOver = True
4: For i = 0 To NUMOFTILES - 1
5: If Not IsInRightPlace(i) Then GameOver = False
6: Next i
7: If GameOver Then
8: DoWinningAnimation
9: MsgBox “You win!”
10: End If
11: End Sub

CheckForEndOfGame calls the IsInRightPlace function on behalf of every tile in
the grid (Lines 4 through 6). If all the tiles are in the right place, the GameOver

flag ends up being True. In that case, the DoWinningAnimation subroutine (Line 8) per-
forms a little soft-shoe shuffle with the tiles.

Listing 5.14 shows the DoWinningAnimation and DisplayInOrder subroutines.

LISTING 5.14 The DoWinningAnimation and DisplayInOrder Subroutines

1: Sub DoWinningAnimation()
2: Dim i As Integer
3: For i = 0 To 10
4: ShuffleTiles
5: DisplayInOrder
6: Next i
7: End Sub
8:
9: Sub DisplayInOrder()

ANALYSIS

ANALYSIS

07 067231987x CH05 11/6/00 7:10 PM Page 155

LISTING 5.14 continued

10: Dim i As Integer
11: Dim Top As Integer, Left As Integer
12: Dim Column As Integer, Row As Integer
13: For i = 0 To NUMOFTILES - 1
14: Column = i Mod MAXCOL
15: Row = i \ MAXCOL
16: Left = Column * CELLWIDTH + XOFFSET
17: Top = Row * CELLHEIGHT + YOFFSET
18: imgLetters(i).Left = Left
19: imgLetters(i).Top = Top
20: Next i
21: End Sub

In DoWinningAnimation, Lines 3 through 6 shuffle and unshuffle the letters 11
times, which is all it takes to create the winning animation. The DisplayInOrder

subroutine uses a For loop (Line 13) to iterate through each of the letter images. Inside
the loop, Lines 14 and 15 determine the column and row in which the current letter
belongs, and Lines 16 and 17 convert the column and row to pixel coordinates. Finally,
Lines 18 and 19 move the letter to its correct position.

Creating a Game Cheat
Computer game cheat codes are the latest big thing. You might think that creating game
cheats is just another way for programmers to stir up interest in their products, but that’s
a major oversimplification. The truth is that programmers create game cheats to help
them when they’re programming and testing a game. A programmer doesn’t want to start
a game from the beginning every time just to get to a part that needs testing. He wants to
jump directly to that part, complete with whatever game statistics must be set to enable
him to test a situation.

In case you didn’t notice, Letter Tiles can be a difficult puzzle to solve. Getting that last
row in order is especially tough. For this reason, Letter Tiles includes its very own cheat
code. You can turn the cheat mode on and off by holding down the Shift and Ctrl keys
while right-clicking the blank tile. When the cheat mode is on, any tile in the grid can be
swapped with the blank tile, not just adjacent tiles. The imgLetters_MouseDown event
procedure implements the cheat, as shown in Listing 5.15.

LISTING 5.15 The imgLetters_MouseDown Event Procedure

1: Private Sub imgLetters_MouseDown(Index As Integer, _
2: Button As Integer, Shift As Integer, _
3: X As Single, Y As Single)

156 Day 5

ANALYSIS

07 067231987x CH05 11/6/00 7:10 PM Page 156

Displaying and Manipulating Images 157

5

4: If Index = BLANKTILE And Button = RIGHTBUTTON _
5: And Shift = SHIFTANDCTRL Then
6: Cheating = Not Cheating
7: If Cheating Then
8: MsgBox “Cheating mode on.”
9: Else
10: MsgBox “Cheating mode off.”
11: End If
12: End If
13: End Sub

This subroutine simply checks that the blank tile is being clicked by the right
mouse button and that the Shift and Ctrl keys are held down (Lines 4 and 5). If

the proper conditions have been met, Line 6 toggles the value of the Cheating flag. The
Not operator reverses the value of a Boolean expression. So, if Cheating is False, Not
Cheating is True, and vice versa (see Listing 5.16). The single line Cheating = Not
Cheating replaces this longer If statement.

LISTING 5.16 Toggling a Flag the Long Way

1: If Cheating Then
2: Cheating = False
3: Else
4: Cheating = True
5: End If

If the Cheating flag is True, the CanSwapTiles function always returns True, meaning
that any tile can be swapped with the blank tile. Ain’t cheating fun?

Summary
Visual Basic’s Image and PictureBox controls make manipulating images almost child’s
play. Using these controls, you can easily perform image manipulations that would
require the knowledge of an expert graphics programmer in other languages.

Q&A
Q What if I need to do some kind of image manipulation that can’t be handled

well in Visual Basic with an Image or PictureBox control?

A There’s good news, bad news, and more good news. The good news is that you can
always call upon the Windows API when you want to sidestep Visual Basic for a
complex task. The bad news is that such a sidestep can be difficult if you’re not

ANALYSIS

07 067231987x CH05 11/6/00 7:10 PM Page 157

familiar with Windows programming in C or C++. The other good news is that the
next chapter gives you some hands-on experience with the Windows API’s graphi-
cal functions.

Q If I set a control’s Picture property at runtime by calling LoadPicture, I
understand that I will have to include the picture file to load. Does this mean
that anyone can change the appearance of the program by editing the image
files that the program loads?

A Yep. Giving your game’s players such power might or might not be a good thing.
Players love to customize games, but you have to make sure that they can’t change
graphics that might affect how the game runs or that mess up the basic game display.

Q What’s with these drawing modes that I can use with the PaintPicture method?

A There are really only a few drawing modes that are useful to a games programmer.
You’ll learn about them later in this book when you discover how to animate sprites.

Q Is it possible to use the PaintPicture method to flip a picture upside down or
sideways?

A Sure is. All you have to do is use negative coordinates for the height or width.

Workshop
The workshop includes quiz questions to help gauge your grasp of the material. You’ll
find the answers to this quiz in Appendix A. Even if you feel that you totally understand
the concepts presented here, you should work through the quiz anyway. The last section
is an exercise to help reinforce your learning.

Quiz
1. What is a significant difference between the Image and PictureBox controls?

2. Which Image control property enables the control to scale pictures?

3. What are two ways to move and resize an Image or PictureBox control?

4. When is it impossible to resize an Image control?

5. What are two techniques for loading a picture into a control?

6. Which of the two graphical controls can act as a drawing surface?

7. Is it possible to scale a picture in a PictureBox control?

Exercise
1. Modify the Stretch3 program so that the PictureBox control displays the A.jpg pic-

ture file cut into two equal pieces when the user clicks the control. (Hint: You’ll
need the PaintPicture method.)

158 Day 5

07 067231987x CH05 11/6/00 7:10 PM Page 158

DAY 6

WEEK 1

Graphics Programming
with the Windows API

Although Visual Basic features powerful and flexible graphical objects, such as
the Image and PictureBox controls, there might be times when you want even
more flexibility. For example, Visual Basic provides the PSet and Point

commands for manipulating individual pixels in an image, but these methods
are slow compared with handling images through the Windows API. In this
chapter, you’ll learn to use the Windows API’s graphical functions:

• The steps required to call a Windows API function

• Windows API functions that draw lines

• Windows API functions that draw shapes

• How to modify a Visual Basic object’s bitmap through the Windows API

• How to handle the different bitmap pixel formats

08 067231987x CH06 11/6/00 7:07 PM Page 159

Calling the Windows API
To take advantage of Windows’ graphical functions, you first need to know how to call
Windows API (Application Programming Interface) functions from Visual Basic. This
might seem like a tricky task at first, but thanks to the tools supplied with Visual Basic,
it’s an easy three-step process:

1. Provide a declaration for the Windows API function you want to call.

2. Provide declarations for any data types required by the Windows API function.

3. Call the Windows API function.

In the following sections, you’ll take a closer look at each of these steps.

Provide the Windows API Function Declaration
Visual Basic knows nothing about the Windows API functions—it can process its own
methods, such as PaintPicture and PSet, but it doesn’t know what to do with Windows
functions like GetObject() or GetBitmapBits(). That’s not to say that Visual Basic
can’t call these Windows functions (if that were the case, we wouldn’t be having this dis-
cussion). However, you must give Visual Basic the information it needs to call these
functions by adding their declarations to your program’s source code.

Providing such a declaration can be difficult or easy, depending on your method. The diffi-
cult way requires looking up the function you want in a Windows programming reference,
figuring out how to translate the C argument types into Visual Basic types, and then coding
the function declaration. This process requires a lot of knowledge about both C and Visual
Basic, and it’s prone to errors. The first time you try to run a program with such a function
declaration and call, I’m willing to bet that you’ll see the system come to a crashing halt.

More than likely, you’ll prefer the easy method, which involves using the handy tools
that Microsoft so graciously supplies. (Okay, maybe not graciously; you did pay for
them, after all.) There are two files you need to locate in your Visual Basic installation:
Win32api.txt and Apiload.exe. The default location for these files is Program
Files\Microsoft Visual Studio\Common\Tools\Winapi.

The Win32api.txt file contains ready-to-use Visual Basic declarations for Windows API
functions, data types, and constants. Apiload.exe is the executable file for a handy (that’s
an understatement) program called API Viewer, which enables you to quickly locate and
copy the information you need from the Win32api.txt file. If you’re going to call a lot of
Windows API functions in your programs, you’ll want to create a shortcut to Apiload.exe
on your desktop or taskbar so you have quick access to this invaluable program.

When you run Apiload.exe, you’ll see the window shown in Figure 6.1. To begin, you
must first load the Win32api.txt file into the program by selecting the File menu’s Load

160 Day 6

08 067231987x CH06 11/6/00 7:07 PM Page 160

Graphics Programming with the Windows API 161

6

Text File command and then selecting the Win32api.txt file. The available selections in
the file will appear in API Viewer’s Available Items box. The setting you choose
(Declares, Constants, or Types) from the API Type box will determine what actually
appears in the VAI box.

FIGURE 6.1
The API Viewer
application when
it’s first run.

Suppose that you want to find the Visual Basic declaration of the Windows API function
CreateBitmap(). First, set the API Type box to Declares, and then type the first few let-
ters of the function in the next box down. (This causes the available items list to scroll
down to the location of the desired function.) Highlight the appropriate function and
click the Add button (or just double-click the function’s name). The function’s Visual
Basic declaration appears in the Selected Items box, as shown in Figure 6.2. You can
paste the function into your Visual Basic source code from the Clipboard after clicking
the Copy button to copy the declaration.

FIGURE 6.2
The API Viewer appli-
cation showing a func-
tion declaration.

08 067231987x CH06 11/6/00 7:07 PM Page 161

Provide the Windows API Type Declarations
If you examine the Visual Basic declaration for a Windows API function, you might dis-
cover curious data types such as the GetObject() declaration:

Public Declare Function GetObject Lib “gdi32” Alias “GetObjectA” _
(ByVal hObject As Long, ByVal nCount As Long, lpObject As Any) As Long

The first two arguments are long values. Nothing to be concerned with there. But the
third argument has the data type Any. As a Visual Basic programmer, you know that the
Any keyword means that the function will accept any type of argument without checking
the value passed for it. (This is similar to the C and C++ void pointer type of argument.)
The Windows API function, however, needs a specific data type for this argument,
depending on how the function is being used. For example, to get information about a
bitmap, the GetObject() function’s third argument must be a pointer to a BITMAP struc-
ture, which you can locate using API Viewer. That structure, in Visual Basic form, looks
like Listing 6.1.

LISTING 6.1 The BITMAP Structure

1: Public Type BITMAP ‘14 bytes
2: bmType As Long
3: bmWidth As Long
4: bmHeight As Long
5: bmWidthBytes As Long
6: bmPlanes As Integer
7: bmBitsPixel As Integer
8: bmBits As Long
9: End Type

How do you know the data type for this argument? You have to look up the Windows
API function in a Windows programming reference (a Windows programming book or
the help that comes with Visual Basic). When you look up GetObject(), you’ll then see
that the function requires a pointer to different types of values depending upon the type
of object for which you need information. To get information about a bitmap, you must
supply a pointer to a BITMAP structure.

162 Day 6

You can add as many items as you like to the Selected Items box before
clicking Copy. This makes it easy to copy and paste simultaneously all the
necessary declarations, types, and constants.

Note

08 067231987x CH06 11/6/00 7:07 PM Page 162

Graphics Programming with the Windows API 163

6

Call the Windows API Function
Now that you have all the pieces of the puzzle, you can call the Windows API function.
For example, here’s a short program you can find on this book’s CD-ROM, under the
name GetBitmap. It acquires and displays the width and height of a PictureBox control’s
picture, as shown in Listing 6.2.

LISTING 6.2 Displaying the Width and Height of a Picture

1: Option Explicit
2:
3: Private Type BITMAP ‘14 bytes
4: bmType As Long
5: bmWidth As Long
6: bmHeight As Long
7: bmWidthBytes As Long
8: bmPlanes As Integer
9: bmBitsPixel As Integer
10: bmBits As Long
11: End Type
12:
13: Private Declare Function GetObject Lib “gdi32” _
14: Alias “GetObjectA” (ByVal hObject As Long, _
15: ByVal nCount As Long, lpObject As Any) As Long
16:
17: Private Sub Form_Load()
18: Dim bmp As BITMAP
19:
20: GetObject Picture1.Image, Len(bmp), bmp
21: MsgBox “Width: “ & bmp.bmWidth & vbCrLf & _
22: “Height: “ & bmp.bmHeight
23: End Sub

Lines 3 through 11 declare the BITMAP structure needed by the Windows API
GetObject() function. Lines 13 through 15 declare the GetObject() function,

Line 20 calls the function, and Lines 21 and 22 display values from the BITMAP structure,
which was filled in by the call to GetObject().

You’ll learn more about the GetObject() function and other wonders of the Windows
API throughout the rest of this chapter.

ANALYSIS

You must be comfortable with Windows programming techniques before
you can take advantage of the Windows API. Otherwise, you can use the
examples in this chapter as a starting point, but you still need to pick up a
good Windows programming book for reference.

Note

08 067231987x CH06 11/6/00 7:07 PM Page 163

Drawing with the Windows API
In earlier chapters, you learned how to use Visual Basic’s drawing commands to create
displays for your games. Although these commands are powerful enough for most of the
things you’ll want to do, there may come a time when you wish you had some of the
graphical power of the Windows API. Not to worry! Now that you know how to call
Windows API functions, you can certainly call upon the many graphical ones.

The Windows API is worth bothering with to draw game displays because it offers more
drawing functions than Visual Basic. For example, the Polyline() Windows API func-
tion can draw a whole series of lines with a single function call. Also, many of the API
functions are faster than their Visual Basic counterparts. You might find that the
Windows API is the only way to do more complex drawing. The following sections are a
quick primer on Windows API drawing functions.

Drawing Lines with the Windows API
The most common way to draw straight lines with Windows API is to use the
MoveToEx() and LineTo() functions. Like setting a Visual Basic object’s CurrentX and
CurrentY properties, MoveToEx() determines the starting point of a drawing operation. It
looks like this:

Public Declare Function MoveToEx Lib “gdi32” Alias _
“MoveToEx” (ByVal hdc As Long, ByVal x As Long, _
ByVal y As Long, lpPoint As POINTAPI) As Long

This function requires four arguments. The hdc argument is a handle to the device con-
text for the object. Visual Basic objects that support device contexts have a hDC property,
which is the handle you need for this function. The x and y arguments are the coordi-
nates of the location where the objects move. Finally, the lpPoint argument is a
POINTAPI structure, which is where the function call will store the previous X and Y
points. The structure’s definition looks like this:

Private Type POINTAPI
x As Long
y As Long

End Type

A device context is a collection of attributes that describe a graphical device,
including color depth, image size, pen color, brush type, and so on.

The LineTo() API function actually draws the line. Its Visual Basic declaration looks
like this:

Public Declare Function LineTo Lib “gdi32” Alias _
“LineTo” (ByVal hdc As Long, ByVal x As Long, _
ByVal y As Long) As Long

164 Day 6

NEW TERM

08 067231987x CH06 11/6/00 7:07 PM Page 164

Graphics Programming with the Windows API 165

6

The function’s three arguments are the device context handle and the X and Y coordi-
nates of the line’s ending point. The line’s starting point is the previous line’s ending
point or the location set by a call to MoveToEx().

If you don’t need to receive the previous point from the MoveToEx() func-
tion, declare the fourth argument as Any, rather than as POINTAPI, and pass
vbNullString as the argument’s value.

Note

This book’s CD-ROM contains the WinLines application, which uses the Windows API
MoveToEx() and LineTo() functions to draw lines in a PictureBox control. When you run
the application, you’ll see the window shown in Figure 6.3. The source code looks like
Listing 6.3.

LISTING 6.3 The WinLines Application

1: Option Explicit
2:
3: Private Type POINTAPI
4: x As Long
5: y As Long
6: End Type
7:
8: Private Declare Function MoveToEx Lib “gdi32” _
9: (ByVal hdc As Long, ByVal x As Long, _
10: ByVal y As Long, lpPoint As POINTAPI) As Long
11:
12: Private Declare Function LineTo Lib “gdi32” _
13: (ByVal hdc As Long, ByVal x As Long, _
14: ByVal y As Long) As Long
15:
16: Private Sub Form_Load()
17: Dim PrevPoint As POINTAPI
18: Dim i As Integer
19: Picture1.AutoRedraw = True
20: Picture1.ScaleMode = vbPixels
21: For i = 1 To 90
22: MoveToEx Picture1.hdc, 20, i * 3 + 5, PrevPoint
23: LineTo Picture1.hdc, 400, i * 3 + 5
24: Next i
25: End Sub

Lines 3 through 6 declare the POINTAPI structure needed by the Windows API
MoveToEx() function. Lines 8 through 14 declare the MoveToEx() and LineTo()

Windows API functions, and Lines 22 and 23 call the functions to draw lines on the screen.

ANALYSIS

08 067231987x CH06 11/6/00 7:07 PM Page 165

FIGURE 6.3
The WinLines appli-
cation.

166 Day 6

Another way to draw lines is with the Polyline() function, whose Visual Basic declara-
tion looks like this:

Public Declare Function Polyline Lib “gdi32” Alias _
“Polyline” (ByVal hdc As Long, lpPoint As POINTAPI, _
ByVal nCount As Long) As Long

This function’s arguments are the device context handle, an array of POINTAPI structures,
and the number of points in the array. Each point in the array describes one point in the
set of lines that Polyline() will draw. The drawing starts at the first point in the array,
with a line being drawn between each of the remaining points.

This book’s CD-ROM contains the Polyline application, which uses the Windows API
Polyline() function to draw a design in a PictureBox control. When you run the appli-
cation, you’ll see the window shown in Figure 6.4. The program’s source code looks like
Listing 6.4.

LISTING 6.4 The Polyline Application

1: Option Explicit
2:
3: Const MAXPOINTS = 100
4:
5: Private Type POINTAPI
6: x As Long
7: y As Long
8: End Type
9:
10: Private Declare Function Polyline Lib “gdi32” _
11: (ByVal hdc As Long, lpPoint As POINTAPI, _
12: ByVal nCount As Long) As Long
13:
14: Private Sub Form_Load()
15: Dim Points(1 To MAXPOINTS) As POINTAPI

08 067231987x CH06 11/6/00 7:07 PM Page 166

Graphics Programming with the Windows API 167

6

16: Dim i As Integer
17: Picture1.AutoRedraw = True
18: Picture1.ScaleMode = vbPixels
19: For i = 1 To MAXPOINTS Step 2
20: Points(i).x = i * 4 + 10
21: Points(i).y = 10
22: Points(i + 1).x = i * 2 + 10
23: Points(i + 1).y = 200
24: Next i
25: Polyline Picture1.hdc, Points(1), MAXPOINTS
26: End Sub

Lines 5 through 9 declare the POINTAPI structure needed by the Windows API
Polyline() function. Lines 10 through 12 declare the Polyline() function,

Lines 19 through 24 initialize the Points() array with line coordinates, and Line 25 calls
Polyline() to draw the lines.

ANALYSIS

FIGURE 6.4
The Polyline appli-
cation.

Drawing Shapes with the Windows API
The Windows API also features functions for drawing various types of shapes, including
rectangles, ellipses (ovals and circles), and even polygons. The function that draws rec-
tangles is called Rectangle(), and its Visual Basic declaration looks like this:

Private Declare Function Rectangle Lib “gdi32” _
(ByVal hdc As Long, ByVal X1 As Long, ByVal Y1 As Long, _
ByVal X2 As Long, ByVal Y2 As Long) As Long

This function requires as arguments the device context handle, the X and Y coordinates
of the rectangle’s upper-left corner, and the X and Y coordinates of the rectangle’s lower-
right corner.

This book’s CD-ROM contains the Rectangles application, which uses the Windows API
Rectangle() function to draw a design in a PictureBox control. When you run the appli-
cation, you’ll see the window shown in Figure 6.5. The program’s source code looks like
Listing 6.5.

08 067231987x CH06 11/6/00 7:07 PM Page 167

LISTING 6.5 The Rectangles Application

1: Option Explicit
2:
3: Private Declare Function Rectangle Lib “gdi32” _
4: (ByVal hdc As Long, ByVal X1 As Long, ByVal Y1 As Long, _
5: ByVal X2 As Long, ByVal Y2 As Long) As Long
6:
7: Private Sub Form_Load()
8: Dim i As Integer
9: Picture1.ScaleMode = vbPixels
10: Picture1.AutoRedraw = True
11: For i = 1 To 10
12: Rectangle Picture1.hdc, i * 10 + 5, i * 10 + 5, _
13: i * 5 + 100, i * 5 + 100
14: Next i
15: End Sub

Lines 3 through 5 declare Rectangle() function, and Lines 11 through 14 use
the Rectangle() function to draw 10 rectangles.

168 Day 6

ANALYSIS

FIGURE 6.5
The Rectangles appli-
cation.

To draw a circle or oval, you can use the Windows API Ellipse() function with the fol-
lowing Visual Basic declaration:

Private Declare Function Ellipse Lib “gdi32” _
(ByVal hdc As Long, ByVal X1 As Long, ByVal Y1 As Long, _
ByVal X2 As Long, ByVal Y2 As Long) As Long

This function requires the same arguments as the Rectangle() function: the device con-
text handle, the X and Y coordinates of the rectangle’s upper-left corner, and the X and Y
coordinates of the rectangle’s lower-right corner. The function draws an ellipse that fits
inside the specified rectangle.

This book’s CD-ROM contains the Ellipse application, which uses the Windows API
Ellipse()function to draw a design in a PictureBox control. When you run the appli-
cation, you’ll see the window shown in Figure 6.6. The program’s source code looks
like Listing 6.6.

08 067231987x CH06 11/6/00 7:07 PM Page 168

Graphics Programming with the Windows API 169

6

LISTING 6.6 The Ellipse Application

1: Option Explicit
2:
3: Private Declare Function Ellipse Lib “gdi32” _
4: (ByVal hdc As Long, ByVal X1 As Long, ByVal Y1 As Long, _
5: ByVal X2 As Long, ByVal Y2 As Long) As Long
6:
7: Private Sub Form_Load()
8: Dim i As Integer
9: Picture1.ScaleMode = vbPixels
10: Picture1.AutoRedraw = True
11: For i = 1 To 10
12: Ellipse Picture1.hdc, i * 10 + 5, i * 10 + 5, _
13: i * 5 + 100, i * 5 + 100
14: Next i
15: End Sub

Lines 3 through 5 declare Ellipse() function, and Lines 11 through 14 use the
Ellipse() function to draw 10 ellipses.

ANALYSIS

FIGURE 6.6
The Ellipse appli-
cation.

Another way to draw shapes is with the Polygon() function, whose Visual Basic declara-
tion looks like this:

Public Declare Function Polygon Lib “gdi32” Alias “Polygon” _
(ByVal hdc As Long, lpPoint As POINTAPI, _
ByVal nCount As Long) As Long

This function’s arguments are the same as those in the Polyline() function: the device
context handle, an array of POINTAPI structures, and the number of points in the array.
Each point in the array describes one point in the set of lines that Polygon() will draw.
The drawing starts at the first point in the array, with a line being drawn between each of
the remaining points. The function closes the polygon by drawing a line between the first
and last points.

This book’s CD-ROM contains the Polygon application, which uses the Windows API
Polygon() function to draw a shape in a PictureBox control. When you run the application,
you’ll see the window shown in Figure 6.7. The source code looks like Listing 6.7.

08 067231987x CH06 11/6/00 7:07 PM Page 169

LISTING 6.7 The Polygon Application

1: Option Explicit
2:
3: Private Type POINTAPI
4: x As Long
5: y As Long
6: End Type
7:
8: Private Declare Function Polygon Lib “gdi32” _
9: (ByVal hdc As Long, lpPoint As POINTAPI, _
10: ByVal nCount As Long) As Long
11:
12: Private Sub Form_Load()
13: Dim Points(1 To 5) As POINTAPI
14: Picture1.AutoRedraw = True
15: Picture1.ScaleMode = vbPixels
16: Points(1).x = 20
17: Points(1).y = 20
18: Points(2).x = 300
19: Points(2).y = 30
20: Points(3).x = 280
21: Points(3).y = 200
22: Points(4).x = 200
23: Points(4).y = 150
24: Points(5).x = 40
25: Points(5).y = 100
26: Polygon Picture1.hdc, Points(1), 5
27: End Sub

Lines 3 through 6 declare the POINTAPI data type needed by the Polygon() func-
tion. Lines 8 through 10 declare the Polygon() Windows API function, Lines 16

through 25 initialize the coordinates for the polygon, and Line 26 calls Polygon() to
draw the polygon.

170 Day 6

ANALYSIS

FIGURE 6.7
The Polygon appli-
cation.

For a list of other useful Windows API functions, look at Appendix C, “Resources.”

08 067231987x CH06 11/6/00 7:07 PM Page 170

Graphics Programming with the Windows API 171

6

Manipulating a Control’s Picture with the
Windows API

When you set a form object or PictureBox control’s AutoRedraw property to True,
Windows will create a bitmap in memory. Whenever the form or PictureBox’s display
needs to be redrawn, Visual Basic will simply copy the bitmap from memory. This
process is usually much faster than having to redraw the display command by command.

When Visual Basic creates such a bitmap in memory, it’s called a device-dependent
bitmap (DDB) . This bitmap is device-dependent because it can be displayed correctly
only on the device for which it was created. In the case of Visual Basic forms and con-
trols, the bitmap’s display device is the screen. DDBs are usually found only in a com-
puter’s memory, rather than in the form as a disk file, because it usually doesn’t make
sense to load such an image from a file.

Visual Basic provides access to an object’s bitmap through the object’s Image property.
The Image property is actually a handle to the bitmap. In Windows programming, you
run into many handles, which are really little more than IDs for an object. Identifying an
object with a handle rather than a pointer (a memory address) enables Windows to move
things around in memory.

Once your program has access to an object’s DDB, it can draw directly on the bitmap
using Windows API functions, which are much faster than the Visual Basic equivalents.
(This last statement assumes that Visual Basic even has an equivalent function. One
advantage of using the Windows API is that you have many more graphical functions at
your beck and call. Most of these functions do not have Visual Basic equivalents.)

There are four steps to drawing directly on a bitmap:

1. Obtain information about the bitmap.

2. Retrieve the bitmap data.

3. Modify the bitmap data.

4. Copy the data back to the bitmap.

You have to copy data to and from a bitmap because, as you already
learned, Windows reserves the right to move data objects, including
bitmaps, around in memory without your knowledge. Thus the need for
handles.

Note

08 067231987x CH06 11/6/00 7:07 PM Page 171

Obtaining Bitmap Information
To obtain bitmap information, you must first get information about the bitmap you want
to manipulate by calling the Windows API function GetObject(). (You’ve already had
some experience with this function, but now you’ll explore it in detail.) Here’s the Visual
Basic declaration for GetObject(), as copied from the API Viewer application:

Private Declare Function GetObject Lib “gdi32” _
Alias “GetObjectA” (ByVal hObject As Long, _
ByVal nCount As Long, lpObject As Any) As Long

Looking up GetObject() in your trusty Windows API reference, you discover that this
function’s arguments are described as follows:

• hObject—A handle to the graphical object.

• nCount—The number of bytes that will be written to the buffer given in the
lpObject argument.

• lpObject—A pointer to the structure that will receive information about the object.

In the case of a bitmap, the hObject argument is equivalent to the Visual Basic object’s
Image property. The nCount argument is the size of a BITMAP structure, and lpObject is a
pointer to the BITMAP structure. The BITMAP structure, as obtained from the API Viewer
application, looks like Listing 6.8.

LISTING 6.8 The BITMAP Structure

1: Private Type BITMAP ‘14 bytes
2: bmType As Long
3: bmWidth As Long
4: bmHeight As Long
5: bmWidthBytes As Long
6: bmPlanes As Integer
7: bmBitsPixel As Integer
8: bmBits As Long
9: End Type

Each of the BITMAP structure’s fields (except bmType) contains useful information that
you’ll need to manipulate the bitmap. Here’s a description of each of these fields:

• bmType—Always 0

• bmWidth—The bitmap’s width in pixels

• bmHeight—The bitmap’s height in pixels

• bmWidthBytes—The bitmap’s width in bytes

172 Day 6

08 067231987x CH06 11/6/00 7:07 PM Page 172

Graphics Programming with the Windows API 173

6

• bmPlanes—The number of color planes in the bitmap

• bmBitsPixel—The number of bits required for each pixel of the image

• bmBits—A pointer to the bitmap’s image data

Okay, now that you’re thoroughly confused, let’s examine this information in detail.
First, you might wonder why the BITMAP structure describes the bitmap’s width in two
different ways, using the bmWidth and bmWidthBytes fields. The bmWidth field is the
width of the bitmap in pixels. A pixel, of course, is a single dot of color in an image. If
the bitmap is 35 dots wide, its bmWidth field will be set to 35 after calling GetObject().

Unfortunately, knowing the bitmap’s pixel width isn’t enough information to manipulate
the bitmap. One complication is the graphics mode of the computer. Your system might
be displaying its images in any one of the following common modes:

• 4-bit, 16-color

• 8-bit, 256-color

• 16-bit, High Color

• 24-bit, True Color

• 32-bit, True Color

If your computer is set to 16-bit color mode, each pixel in the image requires 16 bits, or
two bytes. This means that if bmWidth is 35, bmWidthBytes will be 70. And if your com-
puter is set to 24-bit color, each pixel requires 24 bits, or three bytes. So if bmWidth is 35,
bmWidthBytes is 105, right?

Wrong. The last detail is that DDBs must have an even byte width. Therefore, in the case
of the 35-pixel-wide image, the bitmap actually has a bmWidthBytes of 106—an extra
byte is tacked onto each row of pixels in the image.

To demonstrate this little anomaly, set your system’s color mode and run the Modes pro-
gram you can find on this book’s CD-ROM. A window will appear, showing the size of
the application’s PictureBox control and the size of its associated bitmap. For example, if
you set your system to 256 colors and run the Modes program, you’ll see the window
shown in Figure 6.8. If you set your system to 24-bit color mode, you’ll see the window
shown in Figure 6.9.

FIGURE 6.8
The Modes application
in 256-color mode.

08 067231987x CH06 11/6/00 7:07 PM Page 173

FIGURE 6.9
The Modes application
in 24-bit color mode.

174 Day 6

The source code for the Modes program looks like Listing 6.9.

LISTING 6.9 The Modes Program

1: Option Explicit
2:
3: Private Type BITMAP ‘14 bytes
4: bmType As Long
5: bmWidth As Long
6: bmHeight As Long
7: bmWidthBytes As Long
8: bmPlanes As Integer
9: bmBitsPixel As Integer
10: bmBits As Long
11: End Type
12:
13: Private Declare Function GetObject Lib “gdi32” _
14: Alias “GetObjectA” (ByVal hObject As Long, _
15: ByVal nCount As Long, lpObject As Any) As Long
16:
17: Private Sub Form_Load()
18: Dim BitmapWidth As Long
19: Dim BitmapHeight As Long
20: Dim bmp As BITMAP
21:
22: Form1.AutoRedraw = True
23: Form1.ScaleMode = vbPixels
24: Form1.Width = 200 * Screen.TwipsPerPixelX()
25: Form1.Height = 200 * Screen.TwipsPerPixelY()
26: Picture1.AutoRedraw = True
27: Picture1.BorderStyle = vbBSNone
28: Picture1.Width = 35
29: Picture1.Height = 50
30: Picture1.Left = 20
31: Picture1.Top = 100
32: GetObject Picture1.Image, Len(bmp), bmp
33: BitmapWidth = bmp.bmWidthBytes
34: BitmapHeight = bmp.bmHeight
35: Form1.Font.Size = 12
36: Form1.FontTransparent = False
37: Form1.Print “ PictureBox: “ & Picture1.Width & _

08 067231987x CH06 11/6/00 7:07 PM Page 174

Graphics Programming with the Windows API 175

6

38: “ x “ & Picture1.Height & “ “
39: Form1.Print “ Bitmap: “ & BitmapWidth & “ x “ & _
40: BitmapHeight & “ “
41: End Sub

Lines 3 through 11 declare the BITMAP data type needed by the GetObject()
function. Lines 13 through 15 declare the GetObject() Windows API function,

and Line 32 calls GetObject() to obtain information about the Picture control’s bitmap.
Lines 33 through 40 display information about the bitmap.

Manipulating the Bitmap
Now that you have information about the bitmap, you can start doing some cool stuff.
This book’s CD-ROM contains the ImageBits application, which uses the Windows API
to set each pixel of a PictureBox control’s display area to a random color. When you run
the program, click the Modify Pixels button and you’ll see something like Figure 6.10.
Click the button as many times as you like to fill the PictureBox with different sets of
random colors.

FIGURE 6.10
The ImageBits applic-
ation.

Listing 6.10 is the source code for the ImageBits application.

LISTING 6.10 The ImageBits Program

1: Option Explicit
2:
3: Private Type BITMAP ‘14 bytes
4: bmType As Long
5: bmWidth As Long
6: bmHeight As Long
7: bmWidthBytes As Long
8: bmPlanes As Integer
9: bmBitsPixel As Integer
10: bmBits As Long

ANALYSIS

08 067231987x CH06 11/6/00 7:07 PM Page 175

LISTING 6.10 continued

11: End Type
12:
13: Private Declare Function GetObject Lib “gdi32” _
14: Alias “GetObjectA” (ByVal hObject As Long, _
15: ByVal nCount As Long, lpObject As Any) As Long
16: Private Declare Function GetBitmapBits Lib “gdi32” _
17: (ByVal hBitmap As Long, ByVal dwCount As Long, _
18: lpBits As Any) As Long
19: Private Declare Function SetBitmapBits Lib “gdi32” _
20: (ByVal hBitmap As Long, ByVal dwCount As Long, _
21: lpBits As Any) As Long
22:
23: Private Sub Form_Load()
24: Picture1.AutoRedraw = True
25: End Sub
26:
27: Private Sub Command1_Click()
28: Dim BitmapSize As Long
29: Dim BitmapBits() As Byte
30: Dim x As Long
31: Dim y As Integer
32: Dim bmp As BITMAP
33:
34: GetObject Picture1.Image, Len(bmp), bmp
35: BitmapSize = bmp.bmWidthBytes * bmp.bmHeight
36: ReDim BitmapBits(1 To BitmapSize)
37: GetBitmapBits Picture1.Image, BitmapSize, BitmapBits(1)
38: For x = 1 To BitmapSize
39: BitmapBits(x) = Int(Rnd * 256)
40: Next x
41: SetBitmapBits Picture1.Image, BitmapSize, BitmapBits(1)
42: End Sub

Lines 3 through 11 declare the BITMAP data type needed by the GetObject()
function. Lines 13 through 21 declare the GetObject(), GetBitmapBits(), and

SetBitmapBits() Windows API functions, and Line 34 calls GetObject() to obtain
information about the Picture control’s bitmap. Line 37 gets the image’s bitmap data, and
Lines 38 through 41 modify the bitmap data.

As you can see, the ImageBits application calls upon three Windows API functions:
GetObject(), GetBitmapBits(), and SetBitmapBits(). We’ll look first at
GetBitmapBits(). This function’s Visual Basic declaration looks like this:

Private Declare Function GetBitmapBits Lib “gdi32” _
(ByVal hBitmap As Long, ByVal dwCount As Long, _
lpBits As Any) As Long

176 Day 6

ANALYSIS

08 067231987x CH06 11/6/00 7:07 PM Page 176

Graphics Programming with the Windows API 177

6

The declaration shows that GetBitmapBits() requires three arguments. If you look up
the function in your Windows programming reference, you’ll see that the arguments are
as follows:

• hBitmap—A handle to the bitmap

• dwCount—The number of bytes to copy

• lpBits—A pointer to the buffer that will receive the copied bytes

As you already know, the bitmap handle is just a reference to the Visual Basic object’s
Image property. The dwCount argument is just a Long variable, and lpBits is just a two-
dimensional array of bytes. However, before you can supply values for these last two
arguments, you need to know the size of the bitmap. You get that information with the
GetObject() call:

GetObject Picture1.Image, Len(bmp), bmp

Next, you must get the data from the bitmap and store it in your array. First, calculate the
amount of data the array needs to hold:

BitmapSize = bmp.bmWidthBytes * bmp.bmHeight

Then you can change the byte array to the correct size:

ReDim BitmapBits(1 To BitmapSize)

Finally, call GetBitmapBits() to retrieve the data:

GetBitmapBits Picture1.Image, BitmapSize, BitmapBits(1)

Now that you have the bitmap’s image data in your array, you can modify it any way you
like. As a simple example, the ImageBits application simply sets each byte to a random
value. After manipulating the bitmap’s data, you copy it back to the bitmap by calling the
SetBitmapBits() Windows API function:

SetBitmapBits Picture1.Image, BitmapSize, BitmapBits(1)

The Visual Basic declaration for SetBitmapBits() is as follows. Notice that the argu-
ments are exactly the same as those for GetBitmapBits():

Private Declare Function SetBitmapBits Lib “gdi32” _
(ByVal hBitmap As Long, ByVal dwCount As Long, _
lpBits As Any) As Long

Understanding Pixel Formats
Setting each byte of a bitmap to a random value, as you did in the ImageBits applica-
tions, is a bit of a cheat because it oversimplifies an important aspect of working with
bitmaps: pixel formats. Each graphics mode displays its pixels in a different way. In this
section, you’ll see how important pixel formats can be to your applications.

08 067231987x CH06 11/6/00 7:07 PM Page 177

The 8-Bit Pixel Format
An 8-bit value can range from 0 to 255, which is why this pixel format is often referred
to as 256-color mode. In the 8-bit pixel format, each byte in the bitmap specifies an
index to a color palette, which is essentially an array of colors. For example, if a pixel in
the bitmap has a value of 100, Windows sets the pixel to the color found in the 100th
entry in the color palette.

Listing 6.11 handles 8-bit bitmaps, setting the bitmap to either white or black. This code
comes from the 8Bits application that you can find on this book’s CD-ROM.

LISTING 6.11 Handling an 8-Bit Bitmap

1: GetObject Picture1.Image, Len(bmp), bmp
2: If bmp.bmBitsPixel = 8 Then
3: BitmapSize = bmp.bmWidthBytes * bmp.bmHeight
4: ReDim BitmapBits(BitmapSize)
5: GetBitmapBits Picture1.Image, BitmapSize, BitmapBits(1)
6: PaletteIndex = 255
7: If BitmapBits(1) = 255 Then PaletteIndex = 0
8: For x = 1 To BitmapSize
9: BitmapBits(x) = PaletteIndex
10: Next x
11: SetBitmapBits Picture1.Image, BitmapSize, BitmapBits(1)
12: Else
13: MsgBox “Please run this program in 256-color mode.”
14: End If

Line 1 calls GetObject() to obtain information about the Picture control’s
bitmap. Then Line 2 checks that the image is 8-bit. Lines 4 and 5 get the image

data into the BitmapBits() array, and Lines 7 through 11 modify the bitmap data.

The 16-Bit Pixel Format
The 16-bit (or High Color) pixel format can display more than 65,000 different colors.
In this format, each pixel is represented by two bytes of data that contain the color’s
RGB (red, green, and blue) color values. The red and blue color elements get five bits
each, with the green color element getting six bits. There are a couple of variations of
this format. Things get so sticky with the 16-bit pixel format that it’s not often used.

The 24-Bit Pixel Format
Things get a lot simpler with the 24-bit pixel format, which can display millions of col-
ors. Each pixel of the bitmap gets three bytes of data, one byte each for the red, green,
and blue color elements. Thanks to its logical byte layout, handling 24-bit images is a
heck of a lot easier than managing the 16-bit or 8-bit formats.

178 Day 6

ANALYSIS

08 067231987x CH06 11/6/00 7:07 PM Page 178

Graphics Programming with the Windows API 179

6

There is a complication, though. (Isn’t there always?) Because each pixel is represented
by an odd number of bytes, at times you must pad each line of the bitmap with an extra
byte to ensure that the bitmap’s width is always an even number.

Listing 6.12 sets a PictureBox’s image to red when run on a 24-bit display.

LISTING 6.12 Handling a 24-Bit Bitmap

1: GetObject Picture1.Image, Len(bmp), bmp
2: If bmp.bmBitsPixel = 24 Then
3: BitmapSize = bmp.bmWidthBytes * bmp.bmHeight
4: ReDim BitmapBits(BitmapSize)
5: GetBitmapBits Picture1.Image, BitmapSize, BitmapBits(1)
6: For x = 1 To BitmapSize Step 3
7: BitmapBits(x) = 0 ‘ Blue color element
8: BitmapBits(x + 1) = 0 ‘ Green color element
9: BitmapBits(x + 2) = 255 ‘ Red color element
10: Next x
11: SetBitmapBits Picture1.Image, BitmapSize, BitmapBits(1)
12: Else
13: MsgBox “Please run this program in 24-bit color mode.”
14: End If

Line 1 calls GetObject() to obtain information about the Picture control’s
bitmap. Then Line 2 checks to be sure that the image is 24-bit. Lines 4 and 5 get

the image data into the BitmapBits() array, and Lines 6 through 11 modify the bitmap
data.

The 32-Bit Pixel Format
The 32-bit pixel format works virtually identically to the 24-bit format, except each pixel
in the image gets four bytes. Generally, the fourth byte is ignored, but its presence ensures
that every bitmap has an even width. Some advanced graphics applications might use the
fourth byte for alpha information, which specifies a transparency value for a pixel.

Listing 6.13 sets a PictureBox’s image to blue when run on a 32-bit display.

LISTING 6.13 Handling a 32-Bit Bitmap

1: GetObject Picture1.Image, Len(bmp), bmp
2: If bmp.bmBitsPixel = 32 Then
3: BitmapSize = bmp.bmWidthBytes * bmp.bmHeight
4: ReDim BitmapBits(BitmapSize)
5: GetBitmapBits Picture1.Image, BitmapSize, BitmapBits(1)
6: For x = 1 To BitmapSize Step 4
7: BitmapBits(x) = 255 ‘ Blue color element
8: BitmapBits(x + 1) = 0 ‘ Green color element

ANALYSIS

08 067231987x CH06 11/6/00 7:07 PM Page 179

LISTING 6.13 continued

9: BitmapBits(x + 2) = 0 ‘ Red color element
10: BitmapBits(x + 3) = 0 ‘ Alpha color element
11: Next x
12: SetBitmapBits Picture1.Image, BitmapSize, BitmapBits(1)
13: Else
14: MsgBox “Please run this program in 32-bit color mode.”
15: End If

Line 1 calls GetObject() to obtain information about the Picture control’s
bitmap. Then Line 2 checks that the image is 32-bit. Lines 4 and 5 get the image

data into the BitmapBits() array, and Lines 6 through 12 modify the bitmap data.

Summary
Depending upon the kinds of games you write, you might never need the information
covered in this day. Still, it’s good to have some Windows API experience under your
belt because sooner or later you’re likely to need it. However, this chapter has been only
an introduction to some of the things you can do with the Windows API graphical func-
tions. If you’re interested in this stuff, you’ll need to study the Windows API and keep a
good API reference at your side while you’re programming.

Q&A
Q How dangerous is it to call the Windows API from a Visual Basic program?

A It’s no more dangerous than calling such a function from a program in any other
language. However, Windows API functions tend to be more complex than the
Visual Basic methods you’re used to using. If you call an API function with the
wrong types of arguments, you can easily crash the system. Make sure you save
your work before you test API function calls!

Q The Windows API is so overwhelmingly immense—do I need to know all those
functions?

A I doubt that there’s a single programmer on the planet who’s fluent with every sin-
gle function in the Windows API. They all use Windows reference books when
programming to check the types of arguments that functions need and to find just
the right functions. As a Visual Basic programmer, you’ll use the API only to
enhance your VB programs. You’ll need to know only a fraction of the API func-
tions, if you bother with them at all.

180 Day 6

ANALYSIS

08 067231987x CH06 11/6/00 7:07 PM Page 180

Graphics Programming with the Windows API 181

6

Q If a Visual Basic object uses a device-independent bitmap, what are those
bitmaps I see all the time in disk files with the BMP filename extension?

A Those are device-independent bitmaps (DIBs), which carry much more information
than you’ll find in a device-dependent bitmap’s BITMAP structure. DIBs can be
extremely complex, and they require advanced programming skills to manage. Just
be glad that Visual Basic knows how to load them for you!

Workshop
The workshop includes quiz questions to help gauge your grasp of the material. You’ll
find the answers to this quiz in Appendix A. Even if you feel that you totally understand
the concepts presented here, you should work through the quiz anyway. The last section
contains some exercises to help reinforce your learning.

Quiz
1. What are the three steps needed to call a Windows API function from a Visual

Basic program?

2. What’s an easy way to get Windows API function, type, and constant declarations
for your Visual Basic programs?

3. Name three bitmap attributes that you can find in a BITMAP structure.

4. Which two Windows API functions enable you to draw single lines?

5. Which Windows API function enables you to draw a set of lines?

6. Name three Windows API functions that draw shapes.

7. How can you get the handle of a bitmap associated with a Visual Basic object?

8. What does DDB stand for?

9. What Windows API function retrieves information about a bitmap?

10. What are the five most common pixel formats?

11. Why must some bitmaps be padded with extra bytes?

Exercises
1. Modify the 24-bit program so that it displays the color purple rather than red.

(Hint: Purple is a combination of red and blue.)

2. Write a short program that uses the Windows API to draw a circle that fits exactly
inside a rectangle.

3. Write a program that uses the Windows API to set the pixels of a PictureBox con-
trol's bitmap to display alternating lines of black and white. (Hint: Load the
bitmap's data into a two-dimensional array.)

08 067231987x CH06 11/6/00 7:07 PM Page 181

08 067231987x CH06 11/6/00 7:07 PM Page 182

DAY 7

WEEK 1

Programming Real-Time
Games

One of the biggest challenges that you can take on as a game programmer is to
write an action or arcade game. Action games require every ounce of power
that you can extract from your computer. Keeping track of many moving
objects while performing other game-program tasks is enough to bog down all
but the most carefully written programs.

Although Visual Basic is an excellent programming language, it’s not well suit-
ed for writing action games. Its graphics-handling functions are too limited, and
a compiled Visual Basic program is often too slow to handle multiple sprites
(moving objects) on the screen. To write sophisticated action games on your
PC, in many cases you should use a third-party graphics library like
DirectDraw, which is part of DirectX. The good news is that although sophisti-
cated action games are often too much for Visual Basic, you can use the lan-
guage to write simple action games—if you minimize the number of moving
objects.

09 067231987x CH07 11/6/00 7:14 PM Page 183

In this chapter, you’ll design and write a Breakout-type arcade game called Battle Bricks.
This game features only two moving objects, a ball and a paddle, so even a fairly slow
language like Visual Basic is fast enough to handle it. Along the way, you’ll learn the
basics of programming arcade games. Specifically, today you will learn the following:

• How to play Battle Bricks

• How to build Battle Bricks

• How to program a game loop for a real-time game

• How to use the keyboard as a game controller

• How to add simple animation sequences to a game

Playing Battle Bricks
Before examining the programming for Battle Bricks, you should play the game a few
times so that you know how it works from the player’s point of view. Figure 7.1 shows
the game’s main screen.

184 Day 7

FIGURE 7.1
The Battle Bricks main
screen.

To start the game, press F2. A message box asks whether you’re ready. Click OK, and a
ball starts bouncing around the screen. Your task is to keep the ball going by using your
paddle to bounce the ball back at the brick wall. When the ball hits a brick in the wall,

09 067231987x CH07 11/6/00 7:14 PM Page 184

Programming Real-Time Games 185

7

the brick is destroyed. The objective is to destroy the entire wall and make the king sur-
render his castle. To move the paddle, use your keyboard’s left and right arrow keys.

You get 10 points for every brick that you destroy. However, each time you hit a bonus
brick (one of the green bricks that have plus signs on them), the score values double. The
doubling stays in effect until you lose the current ball.

The king near the top of the castle doesn’t affect the game in any way, but he does per-
form a few amusing antics. For example, when the ball manages to get past the last row
in the wall, the king ducks. Also, when you lose a ball, the king (who is not exactly a
good sport) taunts you by sticking out his tongue. Finally, when you manage to destroy
the entire front wall, the king ducks down behind the rear wall and surrenders by waving
a white flag.

You get five balls. After you lose them all, you can play another game or quit.

Note that the game operates at three speeds, which are controlled by the F3, F4, and F5
keys. Select the speed that works best for your computer.

Building Battle Bricks
Now that you’ve had a chance to play Battle Bricks, you’ll learn to build the program
yourself. In the following sections, you’ll build the program one piece at a time.

Creating the Battle Bricks User Interface
The first step is to create the game’s user interface:

1. Start a new Standard EXE Visual Basic project.

2. Set the form’s properties to the values listed here:

AutoRedraw = True

BorderStyle = Fixed Single

Caption = “Battle Bricks”

Height = 7575

ScaleMode = Pixel

Width = 9675

3. Set the form’s Picture property to the Battlebr.gif image that you can find in the
Images\BattleBricks directory of this book’s CD-ROM.

09 067231987x CH07 11/6/00 7:14 PM Page 185

4. Add seven Image (not PictureBox) controls to the form, giving them the property
values listed here:

Image #1

Name = imgBrick

Picture = Images\BattleBricks\Brick.bmp

Image #2

Name = imgBonus2

Picture = Images\BattleBricks\BonusBrick2.bmp

Image #3

Name = imgKing1

Picture = Images\BattleBricks\King1.bmp

Image #4

Name = imgKing2

Picture = Images\BattleBricks\King2.bmp

Image #5

Name = imgKing3

Picture = Images\BattleBricks\King3.bmp

Image #6

Name = imgKing4

Picture = Images\BattleBricks\King4.bmp

Image #7

Name = imgKing5

Picture = Images\BattleBricks\King5.bmp

5. Save your work, giving the main form the filename BattleBricks.frm and the pro-
ject the filename BattleBricks.vbp.

You’ve now completed the Battle Bricks user interface. Figure 7.2 shows what your main
form should look like at this point. In the next section, you’ll add handlers for the main
form.

Adding the Form Handlers
To complete the form’s handlers, add the source code from Listing 7.1 to the project’s
code window. You can either type the code or copy it from the file BattleBricks1.txt,
located in the Chap07\BattleBricks\Code directory of this book’s CD-ROM.

186 Day 7

09 067231987x CH07 11/6/00 7:14 PM Page 186

Programming Real-Time Games 187

7

FIGURE 7.2
The completed Battle
Bricks user interface.

LISTING 7.1 The Form Handlers

1: ‘==
2: ‘ Form Handlers.
3: ‘==
4: Private Sub Form_Load()
5: InitObjects
6: InitGame
7: DrawScoreBoxes
8: End Sub
9:
10: Private Sub Form_KeyDown(KeyCode As Integer, _
11: Shift As Integer)
12: If KeyCode = vbKeyF2 Then
13: GameLoop
14: ElseIf KeyCode = vbKeyF3 Then
15: Speed = SLOW
16: BallVecX = -1
17: BallVecY = -1
18: MsgBox “Set to slow speed.”
19: ElseIf KeyCode = vbKeyF4 Then
20: Speed = MEDIUM
21: BallVecX = -1
22: BallVecY = -1
23: MsgBox “Set to medium speed.”
24: ElseIf KeyCode = vbKeyF5 Then
25: Speed = FAST
26: BallVecX = -2

09 067231987x CH07 11/6/00 7:14 PM Page 187

27: BallVecY = -2
28: MsgBox “Set to fast speed.”
29: Else
30: MovePaddle KeyCode
31: End If
32: End Sub
33:
34: Private Sub Form_Unload(Cancel As Integer)
35: Done = True
36: End Sub

The Form_Load subroutine (Lines 4 to 8) initializes the game, and the
Form_KeyDown subroutine captures and interprets keystrokes for the game.

Adding the Initialization Routines
To complete the game’s initialization routines, add the source code from Listing 7.2 to
the project’s code window, below the form routines you added in the previous section.
You can either type the code or copy it from the file BattleBricks2.txt, located in the
Chap07\BattleBricks\Code directory of this book’s CD-ROM.

LISTING 7.2 The Initialization Routines

1: ‘==
2: ‘ Initialization Routines.
3: ‘==
4: Sub InitObjects()
5: Form1.Height = 7575
6: Form1.Width = 9675
7: Form1.FillColor = vbRed
8: Form1.FillStyle = vbSolid
9: Form1.Font.Bold = True
10: imgBrick.Visible = False
11: imgBonus2.Visible = False
12: imgKing1.Visible = False
13: imgKing2.Visible = False
14: imgKing3.Visible = False
15: imgKing4.Visible = False
16: imgKing5.Visible = False
17: End Sub
18:
19: Sub InitGame()
20: BallX = 300
21: BallY = 300
22: Speed = MEDIUM

188 Day 7

LISTING 7.1 continued

ANALYSIS

09 067231987x CH07 11/6/00 7:14 PM Page 188

Programming Real-Time Games 189

7

23: BallVecX = 1
24: BallVecY = -1
25: PaddleX = 134
26: BallCount = NUMBALLSPERGAME
27: Score = 0
28: Done = False
29: Ducking = False
30: ScoreMultiplier = 1
31: GrassColor = RGB(0, 162, 0)
32: ShadowGrassColor = RGB(0, 112, 0)
33: ScoreBoxColor = RGB(128, 128, 128)
34: DrawPaddle
35: InitBricks
36: End Sub
37:
38: Sub InitBricks()
39: Dim Col As Integer
40: Dim Row As Integer
41: Dim BrickPixelX As Integer
42: Dim BrickPixelY As Integer
43: BrickCount = 72
44: For Col = 0 To COLCOUNT - 1
45: For Row = 0 To ROWCOUNT - 1
46: Bricks(Col, Row) = BRICK
47: BrickPixelX = Col * BRICKWIDTH + OFFSETX
48: BrickPixelY = Row * BRICKHEIGHT + OFFSETY
49: Form1.PaintPicture imgBrick.Picture, _
50: BrickPixelX, BrickPixelY
51: Next Row
52: Next Col
53: Form1.PaintPicture imgBonus2.Picture, 224, 146
54: Form1.PaintPicture imgBonus2.Picture, 384, 146
55: End Sub

The InitObjects subroutine in Lines 4 to 17 initializes properties for the form
and some of the game’s images, and the InitGame subroutine (Lines 19 to 36)

initializes the game’s many variables. Finally, the InitBricks subroutine in Lines 38 to
55 initializes and paints the brick wall.

Adding the General Game Subroutines
Next come the game’s general subroutines. To take care of them, add the source code
from Listing 7.3 to the project’s code window, below the initialization routines you
added in the previous section. You can either type the code or copy it from the file
BattleBricks3.txt, located in the Chap07\BattleBricks\Code directory of this book’s
CD-ROM.

LISTING 7.2 continued

ANALYSIS

09 067231987x CH07 11/6/00 7:14 PM Page 189

LISTING 7.3 The General Game Subroutines

‘==
‘ General Game Subroutines.
‘==
Sub GameLoop()
WaitForReady
Do
MoveBall
If Speed = SLOW Then SlowBall
DoEvents

Loop While Not Done
End Sub

Sub SlowBall()
Dim x As Integer
Dim y As Integer
For x = 1 To 32000
For y = 1 To 10
Next y

Next x
End Sub

Sub MoveBall()
Dim BrickGridX As Integer
Dim BrickGridY As Integer
Dim BrickPixelX As Integer
Dim BrickPixelY As Integer
Dim HitBrick As Boolean
Form1.DrawWidth = 1
Form1.ForeColor = GrassColor
Form1.FillColor = GrassColor
Form1.FillStyle = vbSolid
Form1.Circle (BallX + BALLWIDTH / 2, _

BallY + BALLHEIGHT / 2), BALLHEIGHT / 2
BallX = BallX + BallVecX
BallY = BallY + BallVecY
HandleBallActions
If Not Done Then
If BallY < MAXBRICKY And BallY > MINBRICKY Then
HitBrick = FindBrick(BrickGridX, BrickGridY, _

BrickPixelX, BrickPixelY)
If HitBrick Then DestroyBrick BrickGridX, _

BrickGridY, BrickPixelX, BrickPixelY
End If
Form1.FillColor = vbRed
Form1.ForeColor = vbBlack
Form1.DrawWidth = 1
Form1.Circle (BallX + BALLWIDTH / 2, _

BallY + BALLHEIGHT / 2), BALLHEIGHT / 2

190 Day 7

09 067231987x CH07 11/6/00 7:14 PM Page 190

Programming Real-Time Games 191

7

If BrickCount = 0 Then
KingSurrenders

End If
End If

End Sub

Sub HandleBallActions()
If BallY > PADDLEY Then
StartNewBall

End If
If Not Done Then
CheckWalls
CheckPaddle
CheckKing

End If
End Sub

Sub CheckKing()
If BallY < OFFSETY - 1 And Not Ducking Then
Form1.PaintPicture imgKing2.Picture, 290, 0
Ducking = True

ElseIf BallY > 250 And Ducking Then
Form1.PaintPicture imgKing1.Picture, 290, 0
Ducking = False

End If
End Sub

Sub CheckWalls()
If ((BallX < MINBALLX) Or (BallX > MAXBALLX)) Then
BallVecX = -BallVecX
If BallX < MINBALLX Then

BallX = MINBALLX
Else

BallX = MAXBALLX
End If

End If
If BallY < MINBALLY Then
BallVecY = -BallVecY

End If
End Sub

Sub StartNewBall()
BallCount = BallCount - 1
Form1.Line (5, 375)-(125, 385), ShadowGrassColor, BF
Form1.Line (517, 375)-(635, 385), ShadowGrassColor, BF
Form1.Line (540, 424)-(620, 434), ScoreBoxColor, BF
Form1.ForeColor = vbWhite
Form1.CurrentX = 544

LISTING 7.3 continued

09 067231987x CH07 11/6/00 7:14 PM Page 191

Form1.CurrentY = 424
Form1.Print BallCount
ErasePaddle
If BallCount = 0 Then
GameOver

Else
Form1.PaintPicture imgKing3.Picture, 290, 0
Form1.FillColor = GrassColor
Form1.ForeColor = GrassColor
Form1.Circle (BallX + BALLWIDTH / 2, _

BallY + BALLHEIGHT / 2), BALLHEIGHT / 2
BallY = 300
If Speed = FAST Then
BallVecX = -2
BallVecY = -2

Else
BallVecX = -1
BallVecY = -1

End If
ScoreMultiplier = 1
DrawPaddle
WaitForReady
Form1.PaintPicture imgKing1.Picture, 290, 0

End If
End Sub

Sub DrawPaddle()
Form1.ForeColor = vbBlue
Form1.DrawWidth = 4
Form1.Line (PaddleX, PADDLEY)- _

(PaddleX + PADDLEWIDTH, PADDLEY)
End Sub

Sub ErasePaddle()
Form1.ForeColor = GrassColor
Form1.DrawWidth = 4
Form1.Line (PaddleX, PADDLEY)- _

(PaddleX + PADDLEWIDTH, PADDLEY)
End Sub

Sub MovePaddle(KeyCode As Integer)
If KeyCode = vbKeyLeft Then
If PaddleX > MINPADDLEX Then
ErasePaddle
PaddleX = PaddleX - 12
DrawPaddle

End If
ElseIf KeyCode = vbKeyRight Then

192 Day 7

LISTING 7.3 continued

09 067231987x CH07 11/6/00 7:14 PM Page 192

Programming Real-Time Games 193

7

If PaddleX < MAXPADDLEX Then
ErasePaddle
PaddleX = PaddleX + 12
DrawPaddle

End If
End If

End Sub

Sub DrawScoreBoxes()
Form1.Line (20, 400)-(108, 440), ScoreBoxColor, BF
Form1.ForeColor = vbWhite
Form1.CurrentX = 32
Form1.CurrentY = 408
Form1.Print “SCORE”
Form1.CurrentX = 32
Form1.CurrentY = 424
Form1.Print “0”
Form1.Line (532, 400)-(620, 440), ScoreBoxColor, BF
Form1.CurrentX = 544
Form1.CurrentY = 408
Form1.Print “BALLS”
Form1.CurrentX = 544
Form1.CurrentY = 424
Form1.Print “5”

End Sub

Sub CheckPaddle()
If ((BallY + BALLHEIGHT > PADDLEY - 3) And _

(BallX + BALLWIDTH >= PaddleX) And _
(BallX <= PaddleX + PADDLEWIDTH)) Then

If (BallX + BALLWIDTH < PaddleX + PADDLEWIDTH / 6) Then
If Speed = FAST Then
BallVecX = -4

Else
BallVecX = -2

End If
ElseIf (BallX > PaddleX + PADDLEWIDTH - _

PADDLEWIDTH / 6) Then
If Speed = FAST Then
BallVecX = 4

Else
BallVecX = 2

End If
ElseIf (BallX + BALLWIDTH < PaddleX + _

PADDLEWIDTH / 3) Then
If Speed = FAST Then
BallVecX = -2

Else

LISTING 7.3 continued

09 067231987x CH07 11/6/00 7:14 PM Page 193

BallVecX = -1
End If

ElseIf (BallX > PaddleX + PADDLEWIDTH - _
PADDLEWIDTH / 3) Then

If Speed = FAST Then
BallVecX = 2

Else
BallVecX = 1

End If
End If
BallVecY = -BallVecY

End If
End Sub

Sub DestroyBrick(BrickGridX As Integer, _
BrickGridY As Integer, BrickPixelX As Integer, _
BrickPixelY As Integer)

BallX = BallX - BallVecX
BallY = BallY - BallVecY
Bricks(BrickGridX, BrickGridY) = NOBRICK
BallVecY = -BallVecY
Form1.Line (BrickPixelX, BrickPixelY)- _

(BrickPixelX + BRICKWIDTH - 1, _
BrickPixelY + BRICKHEIGHT - 1), GrassColor, BF

BrickCount = BrickCount - 1
Score = Score + 10 * ScoreMultiplier
Form1.Line (25, 424)-(90, 434), ScoreBoxColor, BF
Form1.ForeColor = vbWhite
Form1.CurrentX = 32
Form1.CurrentY = 424
Form1.Print Score
If ((BrickGridY * COLCOUNT + BrickGridX) = BONUSBRICK1 Or _

(BrickGridY * COLCOUNT + BrickGridX) = BONUSBRICK2) Then
ScoreMultiplier = ScoreMultiplier * 2
Form1.Line (5, 375)-(125, 385), ShadowGrassColor, BF
Form1.Line (517, 375)-(635, 385), ShadowGrassColor, BF
Form1.ForeColor = vbRed
Form1.CurrentX = 30
Form1.CurrentY = 375
Form1.Print “SCORE x “ & ScoreMultiplier
Form1.CurrentX = 542
Form1.CurrentY = 375
Form1.Print “SCORE x “ & ScoreMultiplier

End If
End Sub

Sub KingSurrenders()
Form1.Line (BallX, BallY)-(BallX + BALLWIDTH, _

194 Day 7

LISTING 7.3 continued

09 067231987x CH07 11/6/00 7:14 PM Page 194

Programming Real-Time Games 195

7

BallY + BALLHEIGHT), GrassColor, BF
Dim x As Integer
For x = 0 To 5
Form1.PaintPicture imgKing4.Picture, 290, 0
Delay (0.25)
Form1.PaintPicture imgKing5.Picture, 290, 0
Delay (0.25)

Next x
Form1.Line (290, 0)-(400, 30), ShadowGrassColor, BF
Form1.PaintPicture imgKing1.Picture, 290, 0
WaitForReady
StartNewWall

End Sub

Sub Delay(Amount As Single)
Dim StartTime As Single
Dim CurrentTime As Single
StartTime = Timer
Do
CurrentTime = Timer
DoEvents

Loop While CurrentTime < StartTime + Amount
End Sub

Sub StartNewWall()
BallY = 300
If Speed = FAST Then
BallVecY = -2

Else
BallVecY = -1

End If
InitBricks

End Sub

Sub WaitForReady()
MsgBox “Are you ready?”

End Sub

Sub GameOver()
Dim Response As Integer
ErasePaddle
Response = MsgBox(“Game Over. Do you want to play again?”, _

vbYesNo Or vbQuestion, “Game Over”)
If Response = vbYes Then
InitGame
DrawScoreBoxes
WaitForReady
StartNewWall

LISTING 7.3 continued

09 067231987x CH07 11/6/00 7:14 PM Page 195

Else
Done = True
Unload Form1

End If
End Sub

Adding the FindBrick Function
You’re getting near the end. To complete the game’s functions, of which there is only
one, add the source code from Listing 7.4 to the project’s code window, below the gener-
al subroutines you added in the previous section. You can either type the code or copy it
from the file BattleBricks4.txt, located in the Chap07\BattleBricks\Code directory of this
book’s CD-ROM.

LISTING 7.4 The General Game Functions

‘==
‘ Game Functions.
‘==
Function FindBrick(GridCol As Integer, GridRow As Integer, _

PixelX As Integer, PixelY As Integer) As Boolean
Dim BrickX(4) As Integer
Dim BrickY(4) As Integer
Dim LeftOrRightSide As Integer
Dim OverlapY1 As Integer
Dim OverlapY2 As Integer
Dim OverlapX1 As Integer
Dim OverlapX2 As Integer
Dim x As Integer
Dim GridX As Integer
Dim GridY As Integer

FindBrick = False
BrickX(0) = ((BallX - OFFSETX) \ BRICKWIDTH) * _

BRICKWIDTH + OFFSETX
BrickY(0) = ((BallY - OFFSETY) \ BRICKHEIGHT) * _

BRICKHEIGHT + OFFSETY
BrickX(1) = ((BallX + BALLWIDTH - OFFSETX) \ _

BRICKWIDTH) * BRICKWIDTH + OFFSETX
BrickY(1) = ((BallY - OFFSETY) \ BRICKHEIGHT) * _

BRICKHEIGHT + OFFSETY
BrickX(2) = ((BallX + BALLWIDTH - OFFSETX) \ _

BRICKWIDTH) * BRICKWIDTH + OFFSETX
BrickY(2) = ((BallY + BALLHEIGHT - OFFSETY) \ _

BRICKHEIGHT) * BRICKHEIGHT + OFFSETY

196 Day 7

LISTING 7.3 continued

09 067231987x CH07 11/6/00 7:14 PM Page 196

Programming Real-Time Games 197

7

BrickX(3) = ((BallX - OFFSETX) \ BRICKWIDTH) * _
BRICKWIDTH + OFFSETX

BrickY(3) = ((BallY + BALLHEIGHT - OFFSETY) \ _
BRICKHEIGHT) * BRICKHEIGHT + OFFSETY

If BallVecY < 0 Then
LeftOrRightSide = (BallY - OFFSETY - 1) Mod BRICKHEIGHT

Else
LeftOrRightSide = (BallY + BALLHEIGHT - OFFSETY + 1) _

Mod BRICKHEIGHT
End If

For x = 0 To 3
GridX = (BrickX(x) - OFFSETX) \ BRICKWIDTH
GridY = (BrickY(x) - OFFSETY) \ BRICKHEIGHT
If ((GridX > -1) And (GridX < COLCOUNT) And _

(GridY > -1) And (GridY < ROWCOUNT) And _
(Bricks(GridX, GridY) = BRICK)) Then

If LeftOrRightSide Then
OverlapY1 = BrickY(1) - BallY
OverlapY2 = BALLHEIGHT - OverlapY1
If (((GridY = 5) Or _

(Bricks(GridX, GridY + 1) = NOBRICK)) Or _
((x < 2) And (OverlapY1 > BALLHEIGHT / 2)) Or _
((x > 1) And (OverlapY2 > BALLHEIGHT / 2))) Then

PixelX = BrickX(x)
PixelY = BrickY(x)
GridCol = GridX
GridRow = GridY
FindBrick = True

End If
Else
OverlapX1 = BrickX(1) - BallX
OverlapX2 = BALLWIDTH - OverlapX1
If (GridX = 11 Or Bricks(GridX + 1, GridY) = NOBRICK) Or _

((x = 0 Or x = 3) And OverlapX1 > BALLWIDTH / 2) Or _
((x = 1 Or x = 2) And OverlapX2 > BALLWIDTH / 2) Then

PixelX = BrickX(x)
PixelY = BrickY(x)
GridCol = GridX
GridRow = GridY
FindBrick = True

End If
End If

End If
Next x

End Function

LISTING 7.4 continued

09 067231987x CH07 11/6/00 7:14 PM Page 197

Completing the Game
Finally, you must add the constant and variable declarations to the program. To do this,
add the source code from Listing 7.5 at the top of the project’s code window. You can
either type the code or copy it from the file BattleBricks5.txt, located in the
Chap07\BattleBricks\Code directory of this book’s CD-ROM.

LISTING 7.5 The Declarations

1: ‘==
2: ‘ Battle Bricks for Visual Basic 6
3: ‘ by Clayton Walnum
4: ‘ Copyright 2000 by Macmillan Computer Publishing
5: ‘==
6: Option Explicit
7:
8: ‘==
9: ‘ Constants.
10: ‘==
11: Const COLCOUNT = 12
12: Const ROWCOUNT = 6
13: Const BALLWIDTH = 10
14: Const BALLHEIGHT = 10
15: Const BRICKWIDTH = 32
16: Const BRICKHEIGHT = 16
17: Const PADDLEWIDTH = 120
18: Const PADDLEY = 450
19: Const NUMBALLSPERGAME = 5
20: Const MINBALLX = 130
21: Const MAXBALLX = 509 - BALLWIDTH
22: Const MINBALLY = 100
23: Const MINPADDLEX = 136
24: Const MAXPADDLEX = 380
25: Const MINBRICKY = 113 - BALLHEIGHT
26: Const MAXBRICKY = 210
27: Const OFFSETX = 128
28: Const OFFSETY = 114
29: Const BONUSBRICK1 = 27
30: Const BONUSBRICK2 = 32
31:
32: Enum BrickEnum
33: NOBRICK
34: BRICK
35: End Enum
36:
37: Enum SpeedEnum
38: SLOW
39: MEDIUM

198 Day 7

09 067231987x CH07 11/6/00 7:14 PM Page 198

Programming Real-Time Games 199

7

40: FAST
41: End Enum
42:
43: ‘==
44: ‘ General Game Variables.
45: ‘==
46: Dim BallX As Integer
47: Dim BallY As Integer
48: Dim BallVecX As Integer
49: Dim BallVecY As Integer
50: Dim Ducking As Boolean
51: Dim PaddleX As Integer
52: Dim BrickCount As Integer
53: Dim Done As Boolean
54: Dim Score As Long
55: Dim BallCount As Integer
56: Dim ScoreMultiplier As Integer
57: Dim Bricks(12, 6)
58: Dim GrassColor As Long
59: Dim ShadowGrassColor As Long
60: Dim ScoreBoxColor As Long
61: Dim Speed As Integer

Lines 11 to 30 define the many constants used in the game, and Lines 32 to 41
define the game’s enumerations. Lines 46 to 61 declare the game’s global

variables.

Understanding Battle Bricks
Now that you’ve built your own version of Battle Bricks, it’s time to examine the source
code, starting with the game’s constants and variables.

The Battle Bricks Variables and Constants
Battle Bricks relies on a set of global variables and constants that it declares near the top
of the program. Table 7.1 lists the general global variables and their descriptions, and
Table 7.2 lists the constants.

TABLE 7.1 The Battle Bricks General Game Variables

Variable Type Description

BallCount Integer The number of balls remaining in the current game

BallVecX Integer The direction (left or right) and number of pixels the ball
should move horizontally

LISTING 7.5 continued

ANALYSIS

09 067231987x CH07 11/6/00 7:14 PM Page 199

BallVecY Integer The direction (up or down) and number of pixels the ball
should move vertically

BallX Integer The ball’s current horizontal location

BallY Integer The ball’s current vertical location

BrickCount Integer The total number of bricks in a newly built wall

Bricks() Integer An array that indicates the remaining bricks in the wall

Done Boolean Specifies whether the game is over

Ducking Boolean Indicates whether the king is currently ducking

GrassColor Long The color used to draw grass

PaddleX Integer The paddle’s horizontal position

Score Long The current score

ScoreBoxColor Long The color used to draw the score boxes

ScoreMultiplier Integer The value by which the score value of a brick should be
multiplied

ShadowGrassColor Long The color used to draw the darker grass

Speed Integer The game’s current speed setting

TABLE 7.2 The Battle Bricks Constants

Constant Description

BALLHEIGHT The height of the ball

BALLWIDTH The width of the ball

BONUSBRICK1 The number of the first bonus brick

BONUSBRICK2 The number of the second bonus brick

BRICKHEIGHT The height of a single brick

BRICKWIDTH The width of a single brick

COLCOUNT The number of columns in the wall

MAXBALLX The maximum allowable X coordinate for the ball

MAXBRICKY The Y coordinate of the row of bricks farthest from the king

MAXPADDLEX The maximum allowable X coordinate for the paddle

MINBALLX The minimum allowable X coordinate for the ball

MINBALLY The minimum allowable Y value for the ball

200 Day 7

TABLE 7.1 continued

Variable Type Description

09 067231987x CH07 11/6/00 7:14 PM Page 200

Programming Real-Time Games 201

7

MINBRICKY The Y coordinate of the row of bricks closest to the king

MINPADDLEX The minimum allowable X coordinate for the paddle

NUMBALLSPERGAME The number of balls the player has for each game

OFFSETX The horizontal offset of the left-hand wall

OFFSETY The vertical offset of the brick wall

PADDLEWIDTH The width of the paddle

PADDLEY The vertical position of the paddle

ROWCOUNT The number of rows in the wall

The Battle Bricks program also defines two enumerations. The BrickEnum enumeration
defines the NOBRICK and BRICK constants, and the SpeedEnum enumeration defines the
SLOW, MEDIUM, and FAST constants.

The Game Loop
As you already know, the toughest task in a game like Battle Bricks is to keep everything
moving at a reasonable speed. If the ball moves too slowly, the game will be too easy.
Conversely, if the paddle moves too slowly, the player will be unable to keep the ball in
action.

To keep the game’s actions running smoothly, you must program a loop that continually
updates the ball’s position. The Battle Bricks main game loop looks like Listing 7.6.

LISTING 7.6 The Game Loop

1: Sub GameLoop()
2: WaitForReady
3: Do
4: MoveBall
5: If Speed = SLOW Then SlowBall
6: DoEvents
7: Loop While Not Done
8: End Sub

Here, the call to the function WaitForReady (Line 2) displays the “Are you
ready?” message box, which keeps the game from starting until the player clicks

the OK button or presses Enter on the keyboard. Then the Do loop (Lines 3 to 7) iterates
constantly throughout the entire game, moving the ball and enabling other Windows mes-
sages to get through. The flag Done, which controls the Do loop (Line 7), becomes True

Constant Description

ANALYSIS

09 067231987x CH07 11/6/00 7:14 PM Page 201

only when the player quits the game. The SlowBall routine is a simple set of loops that
helps slow the ball on fast computer systems (Line 5).

Moving the Ball
Another programming challenge in Battle Bricks is to keep the ball moving while at the
same time checking the ball’s position and performing any corresponding actions. Each
time through the game loop, the ball moves horizontally and vertically, after which its
position is compared to the positions that trigger some sort of action, like hitting a wall
or a brick.

The subroutine MoveBall (see Listing 7.7) updates the ball’s position according to its
current X,Y vectors (which are stored in BallVecX and BallVecY) and calls the required
functions to handle any actions initiated by the ball’s position.

LISTING 7.7 The MoveBall Subroutine

1: Sub MoveBall()
2: Dim BrickGridX As Integer
3: Dim BrickGridY As Integer
4: Dim BrickPixelX As Integer
5: Dim BrickPixelY As Integer
6: Dim HitBrick As Boolean
7: Form1.DrawWidth = 1
8: Form1.ForeColor = GrassColor
9: Form1.FillColor = GrassColor
10: Form1.FillStyle = vbSolid
11: Form1.Circle (BallX + BALLWIDTH / 2, _
12: BallY + BALLHEIGHT / 2), BALLHEIGHT / 2
13: BallX = BallX + BallVecX
14: BallY = BallY + BallVecY
15: HandleBallActions
16: If Not Done Then
17: If BallY < MAXBRICKY And BallY > MINBRICKY Then
18: HitBrick = FindBrick(BrickGridX, BrickGridY, _
19: BrickPixelX, BrickPixelY)
20: If HitBrick Then DestroyBrick BrickGridX, _
21: BrickGridY, BrickPixelX, BrickPixelY
22: End If
23: Form1.FillColor = vbRed
24: Form1.ForeColor = vbBlack
25: Form1.DrawWidth = 1
26: Form1.Circle (BallX + BALLWIDTH / 2, _
27: BallY + BALLHEIGHT / 2), BALLHEIGHT / 2
28: If BrickCount = 0 Then
29: KingSurrenders
30: End If
31: EndIf
32: End Sub

202 Day 7

09 067231987x CH07 11/6/00 7:14 PM Page 202

Programming Real-Time Games 203

7

A vector is nothing more than a line that points in a specific direction. In the
case of Battle Bricks, a vector indicates the direction in which the ball should

move.

The function first erases the ball from the screen (Lines 7 to 12). It then calcu-
lates the ball’s new coordinates by adding the values of BallVecX and BallVecY

to BallX and BallY, respectively (Lines 13 and 14). The variables BallX and BallY are
the ball’s current screen coordinates. The variables BallVecX and BallVecY contain val-
ues that change the ball’s position by the number of pixels stored in the variables. For
example, when BallVecX and BallVecY are each -1, the ball moves left and up. This is
because adding BallVecX and BallVecY to BallX and BallY decrements the ball’s X,Y
coordinates. Similarly, if BallVecX is 1 and BallVecY is -1, the ball moves right and up.
Figure 7.3 summarizes the effect of BallVecX and BallVecY on the ball’s movement.

NEW TERM

ANALYSIS

FIGURE 7.3
Vectors and the ball’s
movement.

ballVecX < 0
ballVecY < 0

ballVecX > 0
ballVecY < 0

ballVecX < 0
ballVecY > 0

ballVecX > 0
ballVecY > 0

6390
0

y

479

x

After updating the ball’s position, MoveBall calls HandleBallActions (Line 15), which
compares the ball’s position to certain predetermined locations on the screen and per-
forms any actions that are initiated when the ball is in one of those positions. You’ll
examine HandleBallActions soon. For now, just be aware that this function handles

One way to make an object move faster on the screen is to move it more
than one pixel at a time. However, if you try to move the object too far at
once, the object’s motion will be jerky rather than fluid. Such a jerky motion
can be disorienting to the player and make the game hard to play. To
ensure smooth motion, move your objects in small steps rather than large
ones.

Note

09 067231987x CH07 11/6/00 7:14 PM Page 203

such actions as bouncing the ball off the walls or the paddle and making the king duck
when the ball gets past the wall of bricks.

Next, MoveBall checks whether the ball is in the brick grid area (Line 17). If it is, the
program must determine whether the ball has hit a brick (Line 18). The function
FindBrick handles this task. If the ball hits a brick, FindBrick returns True, with the
brick’s coordinates in the given integer variables. If the ball doesn’t hit a brick,
FindBrick returns False.

If the ball has hit a brick, not only does a call to DestroyBrick remove the brick from
the screen, but it also updates the player’s score, calculates the ball’s new direction, and
checks whether the brick that the ball hit is a score-doubling brick (one of the two green
bricks with plus signs).

After handling all the actions that the ball might initiate, MoveBall draws the ball in its
new location (Lines 23 to 27). After redrawing the ball, MoveBall checks the brick count
to determine whether there are still bricks on the screen (Line 28). If BrickCount equals
0, the player has destroyed the entire wall and the function KingSurrenders shows the
king waving a white flag.

Performing Actions Triggered by the Ball
Everything that happens in Battle Bricks is governed by the ball’s position. For example,
if the ball is about to overlap a wall, the ball must reverse its horizontal or vertical direc-
tion so that it appears to bounce off the wall. Other actions in the game are equally
important. After all, you can’t have the ball passing through bricks or the player’s paddle
any more than you can have it burrowing its way through a wall. Every time the ball
strikes an object, the ball must bounce away so that the object looks solid.

Checking for Actions
As stated previously, the subroutine HandleBallActions (see Listing 7.8) checks the
ball’s location and then initiates any actions that the location specifies.

LISTING 7.8 The HandleBallActions Subroutine

1: Sub HandleBallActions()
2: If BallY > PADDLEY Then StartNewBall
3: If Not Done Then
4: CheckWalls
5: CheckPaddle
6: CheckKing
7: End If
8: End Sub

204 Day 7

09 067231987x CH07 11/6/00 7:14 PM Page 204

Programming Real-Time Games 205

7

HandleBallActions first checks that the ball hasn’t moved beyond the paddle at
the bottom of the screen (Line 2). If it has, HandleBallActions calls

StartNewBall to put a new ball into play (assuming, of course, that the player hasn’t
already used all five balls). HandleBallActions then calls CheckWalls, CheckPaddle,
and CheckKing (Lines 4 to 6) to determine whether the ball has struck a wall, struck the
paddle, or is in a location that makes the king duck.

Bouncing the Ball off the Walls
The subroutine CheckWalls (see Listing 7.9) bounces the ball off a wall.

LISTING 7.9 The CheckWalls Subroutine

1: Sub CheckWalls()
2: If ((BallX < MINBALLX) Or (BallX > MAXBALLX)) Then
3: BallVecX = -BallVecX
4: If BallX < MINBALLX Then
5: BallX = MINBALLX
6: Else
7: BallX = MAXBALLX
8: End If
9: End If
10: If BallY < MINBALLY Then
11: BallVecY = -BallVecY
12: End If
13: End Sub

If the ball’s X coordinate indicates that it’s hitting a side wall (Line 2),
CheckWalls reverses the ball’s X vector (Line 3). For example, if BallVecX is -1

when the ball hits the left wall (and it would have to be -1 because the ball is moving to
the left), CheckWalls changes BallVecX to 1, which starts the ball moving to the right,
away from the wall. After reversing the ball’s horizontal direction, CheckWalls checks
the ball’s X coordinate to ensure that the ball doesn’t get stuck in the left or right wall
(Lines 4 to 8). The function must check this because sometimes the ball moves horizon-
tally more than one pixel at a time.

If the ball reaches the castle’s top wall—that is, if the ball moves as high up as it can
go—CheckWalls reverses the ball’s Y vector (Lines 10 to 12).

ANALYSIS

ANALYSIS

09 067231987x CH07 11/6/00 7:14 PM Page 205

Bouncing the Ball off the Paddle
The program must enable the player to bounce the ball off his paddle so that he can keep
the ball in play. The subroutine CheckPaddle (Listing 7.10) handles this action.

LISTING 7.10 The CheckPaddle Subroutine

1: Sub CheckPaddle()
2: If ((BallY + BALLHEIGHT > PADDLEY - 3) And _
3: (BallX + BALLWIDTH >= PaddleX) And _
4: (BallX <= PaddleX + PADDLEWIDTH)) Then
5: If (BallX + BALLWIDTH < PaddleX + PADDLEWIDTH / 6) Then
6: If Speed = FAST Then
7: BallVecX = -4
8: Else
9: BallVecX = -2
10: End If
11: ElseIf (BallX > PaddleX + PADDLEWIDTH - _
12: PADDLEWIDTH / 6) Then
13: If Speed = FAST Then
14: BallVecX = 4
15: Else
16: BallVecX = 2
17: End If
18: ElseIf (BallX + BALLWIDTH < PaddleX + _
19: PADDLEWIDTH / 3) Then
20: If Speed = FAST Then
21: BallVecX = -2
22: Else
23: BallVecX = -1
24: End If
25: ElseIf (BallX > PaddleX + PADDLEWIDTH - _
26: PADDLEWIDTH / 3) Then

206 Day 7

To keep things simple, the background over which the ball in Battle Bricks
must pass is a solid color. This makes it easy to erase the ball because then
the program needs only a block of background color to replace the ball’s
image. In some games, you may have seen objects that pass over detailed
graphics without disturbing them, in much the same way that your mouse
pointer can move around the screen without changing its display. These
objects are called sprites. To move a sprite over a background image, you
must first save the background image before you draw the sprite, and then
restore the background image after the sprite moves. To keep your program
running fast, you’ll probably need to use a library like DirectX to save and
transfer these images.

Note

09 067231987x CH07 11/6/00 7:14 PM Page 206

Programming Real-Time Games 207

7

27: If Speed = FAST Then
28: BallVecX = 2
29: Else
30: BallVecX = 1
31: End If
32: End If
33: BallVecY = -BallVecY
34: End If
35: End Sub

This subroutine first checks that the ball is just above the paddle (Lines 2 to 4).
If it is, the function must determine exactly which area of the paddle the ball is

about to hit. This determines the ball’s angle and direction. Changing the ball’s angle
with the paddle gives the player more control over where the ball goes, and it also keeps
the ball from getting stuck in boring patterns.

It’s in CheckPaddle that BallVecX may double its current value (Lines 5 to 10). This
happens when the ball strikes the paddle on the left or right end. Figure 7.4 summarizes
the paddle’s effects on the ball.

LISTING 7.10 continued

ANALYSIS

Change only
Y vectorNormal left

X vector
Normal right

X vector

Double left
X vector

Double right
X vector

FIGURE 7.4
How the paddle affects
the ball.

Finally, no matter where the ball strikes the paddle, CheckPaddle reverses the ball’s Y
vector so that the ball reverses direction and moves away from the paddle.

Making the King Duck
The subroutine CheckKing (see Listing 7.11) makes the king duck.

09 067231987x CH07 11/6/00 7:14 PM Page 207

LISTING 7.11 The CheckKing Subroutine

1: Sub CheckKing()
2: If BallY < OFFSETY - 1 And Not Ducking Then
3: Form1.PaintPicture imgKing2.Picture, 290, 0
4: Ducking = True
5: ElseIf BallY > 250 And Ducking Then
6: Form1.PaintPicture imgKing1.Picture, 290, 0
7: Ducking = False
8: End If
9: End Sub

Here, if the ball gets past the castle’s front wall (Line 2), the subroutine displays
an image of the king ducking (Line 3). When the ball returns to the middle of the

screen (Line 5), CheckKing redisplays the normal king graphic (Line 6). Simple, no?

Hitting a Brick
The most complex function in the program is FindBrick, which determines whether the
ball has hit a brick. To make this task a little easier, the program treats the ball as a
square rather than a round object. Trying to calculate whether a round object is overlap-
ping another object is way too difficult to be worth the effort. This is because computers
work best with rectangular areas. Determining whether two rectangles overlap is relative-
ly easy because you need only consider horizontal and vertical coordinates, without
having to do a lot of fancy calculations involving geometry. Such calculations require
knowledge of geometry, and they also perform slowly on computers.

To determine whether the ball has struck a brick, the program first must answer several
questions:

• Which candidate bricks are the ball’s corners overlapping?

• Is the ball striking the side, top, or bottom of a brick?

• Which candidate brick is the ball overlapping the most?

• Is the candidate brick with the most overlap still onscreen?

To understand the preceding questions, you must first know the difference between an
actual brick and a candidate brick. An actual brick is a brick that is currently displayed
onscreen because the ball has not yet struck it. A candidate brick is a location where a
brick may or may not be. In other words, candidate bricks make up the entire brick grid,
as shown in Figure 7.5. However, a candidate brick may or may not contain an actual
brick.

208 Day 7

ANALYSIS

09 067231987x CH07 11/6/00 7:14 PM Page 208

Programming Real-Time Games 209

7

FIGURE 7.5
Candidate bricks and
actual bricks.

Actual Bricks

Candidate Bricks
(All Locations in the grid)

The first step in determining whether the ball has struck a brick is to determine which
candidate bricks the ball’s corners are overlapping. For example, in Figure 7.6 the ball
overlaps four candidate bricks, only one of which is an actual brick.

FIGURE 7.6
The ball overlapping
four candidate bricks,
but only one actual
brick.

The ball is overlapping
these four bricks

The ball always overlaps four candidate bricks, except when the ball is in the first or last
rows of the grid. Therefore, FindBrick() always calculates the X,Y screen coordinates
for four candidate bricks first and handles any exceptions later (see Listing 7.12).

LISTING 7.12 Determining Candidate Bricks

1: BrickX(0) = ((BallX - OFFSETX) \ BRICKWIDTH) * _
2: BRICKWIDTH + OFFSETX
3: BrickY(0) = ((BallY - OFFSETY) \ BRICKHEIGHT) * _
4: BRICKHEIGHT + OFFSETY
5: BrickX(1) = ((BallX + BALLWIDTH - OFFSETX) \ _
6: BRICKWIDTH) * BRICKWIDTH + OFFSETX
7: BrickY(1) = ((BallY - OFFSETY) \ BRICKHEIGHT) * _
8: BRICKHEIGHT + OFFSETY
9: BrickX(2) = ((BallX + BALLWIDTH - OFFSETX) \ _

09 067231987x CH07 11/6/00 7:14 PM Page 209

10: BRICKWIDTH) * BRICKWIDTH + OFFSETX
11: BrickY(2) = ((BallY + BALLHEIGHT - OFFSETY) \ _
12: BRICKHEIGHT) * BRICKHEIGHT + OFFSETY
13: BrickX(3) = ((BallX - OFFSETX) \ BRICKWIDTH) * _
14: BRICKWIDTH + OFFSETX
15: BrickY(3) = ((BallY + BALLHEIGHT - OFFSETY) \ _
16: BRICKHEIGHT) * BRICKHEIGHT + OFFSETY

As you can see, the program stores the X,Y coordinates of the candidate bricks
in the BrickX() and BrickY() arrays, which makes it easy to access the coordi-

nates in a loop.

After calculating these coordinates, FindBrick determines whether the ball’s position
indicates that the ball is hitting a candidate brick’s side or a candidate brick’s top or
bottom:

If BallVecY < 0 Then
LeftOrRightSide = (BallY - OFFSETY - 1) Mod BRICKHEIGHT

Else
LeftOrRightSide = (BallY + BALLHEIGHT - OFFSETY + 1) _

Mod BRICKHEIGHT
End If

If the ball’s upper-left corner is located somewhere between the top and bottom of a can-
didate brick, the modulus division stores a remainder in the flag LeftOrRightSide, mak-
ing it True. Otherwise, LeftOrRightSide ends up set to 0, making it False.

A For loop then iterates through the four sets of coordinates in the BrickX() and
BrickY() arrays, checking whether the candidate bricks in question actually exist and
which candidate brick the ball is overlapping the most. In the loop, the program first cal-
culates the current candidate brick’s grid locations, which are its row and column posi-
tions in the brick grid:

GridX = (BrickX(x) - OFFSETX) \ BRICKWIDTH
GridY = (BrickY(x) - OFFSETY) \ BRICKHEIGHT

You can also use the grid coordinates GridX and GridY as indexes into the global
Bricks() array, which contains values that indicate which bricks are still displayed
onscreen. Two constants, NOBRICK and BRICK, indicate the presence or absence of a brick
in the grid. For example, if Bricks(0,1) is equal to NOBRICK, the first brick in the second
row is no longer displayed onscreen. On the other hand, if Bricks(3,5) is equal to
BRICK, the fourth brick in the sixth row is still displayed onscreen.

210 Day 7

LISTING 7.12 continued

ANALYSIS

09 067231987x CH07 11/6/00 7:14 PM Page 210

Programming Real-Time Games 211

7

The program uses GridX and GridY to determine whether the current candidate brick’s
grid coordinates are valid and whether a brick is actually in that location:

If ((GridX > -1) And (GridX < COLCOUNT) And _
(GridY > -1) And (GridY < ROWCOUNT) And _
(Bricks(GridX, GridY) = BRICK)) Then

If everything checks out okay, the program checks whether the ball is hitting the brick on
one of its sides:

If LeftOrRightSide Then

If it is, the program calculates the amount of overlap for the upper and lower pairs of
candidate bricks:

OverlapY1 = BrickY(1) - BallY
OverlapY2 = BALLHEIGHT - OverlapY1

If one of three sets of conditions is met, FindBrick determines that the ball is hitting an
actual brick. Those conditions are as follows:

• The brick below the current brick does not exist:
If (((GridY = 5) Or _

(Bricks(GridX, GridY + 1) = NOBRICK)) Or _

• The current candidate brick is the upper brick of the pair, and the upper overlap is
larger:

((x < 2) And (OverlapY1 > BALLHEIGHT / 2)) Or _

• The current candidate brick is the lower of the pair, and the lower overlap is the
larger:

((x > 1) And (OverlapY2 > BALLHEIGHT / 2))) Then

If any of the preceding sets of conditions is met, FindBrick sets its return values:

PixelX = BrickX(x)
PixelY = BrickY(x)
GridCol = GridX
GridRow = GridY
FindBrick = True

FindBrick checks horizontal pairs of candidate bricks in almost exactly the same way.

Destroying Bricks
The whole point of Battle Bricks is to destroy the castle’s front wall, so just bouncing the
ball off a brick isn’t good enough. Instead, the ball must both destroy the brick and
bounce away. This extra complication is taken care of in the subroutine DestroyBrick
(see Listing 7.13).

09 067231987x CH07 11/6/00 7:14 PM Page 211

LISTING 7.13 The DestroyBrick Subroutine

1: Sub DestroyBrick(BrickGridX As Integer, _
2: BrickGridY As Integer, BrickPixelX As Integer, _
3: BrickPixelY As Integer)
4: BallX = BallX - BallVecX
5: BallY = BallY - BallVecY
6: Bricks(BrickGridX, BrickGridY) = NOBRICK
7: BallVecY = -BallVecY
8: Form1.Line (BrickPixelX, BrickPixelY)- _
9: (BrickPixelX + BRICKWIDTH - 1, _
10: BrickPixelY + BRICKHEIGHT - 1), GrassColor, BF
11: BrickCount = BrickCount - 1
12: Score = Score + 10 * ScoreMultiplier
13: Form1.Line (25, 424)-(90, 434), ScoreBoxColor, BF
14: Form1.ForeColor = vbWhite
15: Form1.CurrentX = 32
16: Form1.CurrentY = 424
17: Form1.Print Score
18: If ((BrickGridY * COLCOUNT + BrickGridX) = BONUSBRICK1 Or _
19: (BrickGridY * COLCOUNT + BrickGridX) = BONUSBRICK2) Then
20: ScoreMultiplier = ScoreMultiplier * 2
21: Form1.Line (5, 375)-(125, 385), ShadowGrassColor, BF
22: Form1.Line (517, 375)-(635, 385), ShadowGrassColor, BF
23: Form1.ForeColor = vbRed
24: Form1.CurrentX = 30
25: Form1.CurrentY = 375
26: Form1.Print “SCORE x “ & ScoreMultiplier
27: Form1.CurrentX = 542
28: Form1.CurrentY = 375
29: Form1.Print “SCORE x “ & ScoreMultiplier
30: End If
31: End Sub

Because the ball’s coordinates currently overlap those of the brick (which is how
the program knows that the ball is hitting the brick), DestroyBrick first adjusts

the ball’s position to move it off the brick (Lines 4 and 5). The subroutine then sets the
brick’s entry in the Bricks() array to NOBRICK (Line 6) and changes the ball’s direction
(Line 7). Then DestroyBrick erases the brick from the screen, decrements the brick
count, and increments the player’s score (Lines 8 to 12).

The subroutine calculates the score for the brick by multiplying the base score of 10 by
the variable ScoreMultiplier, which is 1 when the score doubler is off and can be any
multiple of 2, depending on how many times the player has hit a bonus brick since he
last lost a ball. After calculating the new score, DestroyBrick displays the score in the

212 Day 7

ANALYSIS

09 067231987x CH07 11/6/00 7:14 PM Page 212

Programming Real-Time Games 213

7

SCORE box (Lines 13 to 17). Finally, DestroyBrick checks whether the brick that the
ball hit was one of the score doublers (Line 18). If it was, the program multiplies
ScoreMultiplier by 2 (Line 20).

Getting Keyboard Input and Moving the Paddle
The player uses the arrow keys to move the paddle, so the program’s form implements
the KeyDown event handler, shown in Listing 7.14.

In Listing 7.14, you’ll see keyboard key names such as vbKeyF3. Visual Basic
defines these key constants, and you can find them in your Visual Basic help
files. Just look for “Key Code Constants.”

Note

LISTING 7.14 The KeyDown Subroutine

1: Private Sub Form_KeyDown(KeyCode As Integer, _
2: Shift As Integer)
3: If KeyCode = vbKeyF2 Then
4: GameLoop
5: ElseIf KeyCode = vbKeyF3 Then
6: Speed = SLOW
7: BallVecX = -1
8: BallVecY = -1
9: MsgBox “Set to slow speed.”
10: ElseIf KeyCode = vbKeyF4 Then
11: Speed = MEDIUM
12: BallVecX = -1
13: BallVecY = -1
14: MsgBox “Set to medium speed.”
15: ElseIf KeyCode = vbKeyF5 Then
16: Speed = FAST
17: BallVecX = -2
18: BallVecY = -2
19: MsgBox “Set to fast speed.”
20: Else
21: MovePaddle KeyCode
22: End If
23: End Sub

KeyDown handles all keyboard input, including the F keys, which the program
uses to start the game and set the ball speed. For example, when the user presses

the F2 key, Lines 3 and 4 start the game, and if the player presses the F3 key, Lines 5 to
9 set the game to the slow speed. To move the paddle, KeyDown passes the key code of
the pressed key to the MovePaddle subroutine (see Listing 7.15).

ANALYSIS

09 067231987x CH07 11/6/00 7:14 PM Page 213

LISTING 7.15 The MovePaddle Subroutine

1: Sub MovePaddle(KeyCode As Integer)
2: If KeyCode = vbKeyLeft Then
3: If PaddleX > MINPADDLEX Then
4: ErasePaddle
5: PaddleX = PaddleX - 12
6: DrawPaddle
7: End If
8: ElseIf KeyCode = vbKeyRight Then
9: If PaddleX < MAXPADDLEX Then
10: ErasePaddle
11: PaddleX = PaddleX + 12
12: DrawPaddle
13: End If
14: End If
15: End Sub

This subroutine checks whether the key code is for the left (Line 2) or right
arrow key (Line 8) and moves the paddle in the appropriate direction, first check-

ing the MINPADDLEX or MAXPADDLEX values to ensure that the paddle doesn’t move out of
its area.

The ErasePaddle subroutine then erases the paddle:

Sub ErasePaddle()
Form1.ForeColor = GrassColor
Form1.DrawWidth = 4
Form1.Line (PaddleX, PADDLEY)- _

(PaddleX + PADDLEWIDTH, PADDLEY)
End Sub

After updating the paddle’s position, the DrawPaddle subroutine redraws the paddle. The
paddle itself is nothing more than a wide line. Visual Basic can draw such a wide line, so
you don’t have to build the line from several smaller ones. To get the wide line, the pro-
gram sets the form’s DrawWidth property to 4. This happens in the DrawPaddle subrou-
tine:

Sub DrawPaddle()
Form1.ForeColor = vbBlue
Form1.DrawWidth = 4
Form1.Line (PaddleX, PADDLEY)- _

(PaddleX + PADDLEWIDTH, PADDLEY)
End Sub

214 Day 7

ANALYSIS

09 067231987x CH07 11/6/00 7:14 PM Page 214

Programming Real-Time Games 215

7

Tearing Down the Walls
When the player manages to destroy all the bricks in the wall, the king surrenders
his castle (at least until the next wall is built). The subroutine that handles this mini-
animation is KingSurrenders (see Listing 7.16).

LISTING 7.16 The KingSurrenders Subroutine

1: Sub KingSurrenders()
2: Form1.Line (BallX, BallY)-(BallX + BALLWIDTH, _
3: BallY + BALLHEIGHT), GrassColor, BF
4: Dim x As Integer
5: For x = 0 To 5
6: Form1.PaintPicture imgKing4.Picture, 290, 0
7: Delay (0.25)
8: Form1.PaintPicture imgKing5.Picture, 290, 0
9: Delay (0.25)
10: Next x
11: Form1.Line (290, 0)-(400, 30), ShadowGrassColor, BF
12: Form1.PaintPicture imgKing1.Picture, 290, 0
13: WaitForReady
14: StartNewWall
15: End Sub

This subroutine first erases the ball from the screen (Lines 2 and 3). It then iter-
ates through a For loop six times (Line 5). In the loop, the program displays the

first frame of the animation (Line 6) and then calls Delay (Line 7) to keep that frame on
the screen for the appropriate amount of time. Then the program displays the second ani-
mation frame (Line 8), also delaying (Line 9) before going on to the next iteration of the
loop. Figure 7.7 shows the two frames in the animation sequence.

After the loop finishes, the program draws a solid bar over the last frame of the anima-
tion and redraws the original king image. The program must first erase the animation
frame because it’s larger than the king image that normally sits in that location on the

Getting mouse input for your games is almost as easy as getting keyboard
input. You need only implement your form’s MouseMove and MouseDown event
procedures. The MouseMove event procedure reports the position of the
mouse as the mouse moves. MouseDown reports the coordinates of a mouse
click, as well as providing the status of the Shift, Alt, and Ctrl keys at the
time of the click.

Note

ANALYSIS

09 067231987x CH07 11/6/00 7:14 PM Page 215

wall. After restoring the regular king on the wall, KingSurrenders calls WaitForReady to
give the player a chance to collect his wits and steel his nerves for the next round. When
the player dismisses the message box that appears, KingSurrenders calls StartNewWall
to build a new wall, after which the game is once again under way.

216 Day 7

FIGURE 7.7
The frames of the sur-
render animation.

The surrender animation sequence consists of only two frames. However, the results are
pretty effective: It really looks as though the king has ducked down behind his wall and
is waving a white flag. This demonstrates how easily you can spice up a program with
simple animation. One short subroutine is all it takes to create such an animation
sequence. If you’re feeling ambitious, you can produce more complex animation
sequences by creating four or more frames.

In some game programs, you may want to combine animation with move-
ment so that a moving object —such as a spinning flying saucer—changes its
form as it moves. You can achieve such an effect fairly easily by displaying
the frames of the animation one after the other as the object moves. The
only extra overhead in the program is a variable to keep track of which
image is currently displayed. However, it’s difficult to perform this type of
animation in a Visual Basic program because in all but the simplest cases, it
requires a lot of processing power.

Note

Summary
Although Visual Basic is too slow and graphically limited for sophisticated, fast-action
games, you just need a little ingenuity and elbow grease to use it to create simple arcade
games. Of course, the better you optimize your code, the faster your program will run.
There are probably several ways that you can make Battle Bricks run faster. Give it a try.

Q&A
Q So, it’s not possible to create fast-action games with Visual Basic?

A You can use Visual Basic for such a game, but you’ll need to call upon a special
library such as Microsoft’s DirectX to handle the graphically intensive parts of the
game. See this book’s Appendix D for an introduction to DirectX.

09 067231987x CH07 11/6/00 7:14 PM Page 216

Programming Real-Time Games 217

7

Q How about the Windows API? Will that help me write action games in Visual
Basic?

A Although you can call Windows API functions from Visual Basic, the API itself
isn’t any better at handling action games than Visual Basic is. That’s not to say that
you won’t come across a few handy and effective functions in the API, but you’ll
still need the graphics power of a library like DirectX.

Workshop
The workshop includes quiz questions to help gauge your grasp of the material. You’ll
find the answers to this quiz in Appendix A. Even if you feel that you totally understand
the concepts presented here, you should work through the quiz anyway. The last section
has an few exercises to help reinforce your learning.

Quiz
1. What’s the purpose of a game loop in a real-time game?

2. Explain how the BallX and BallY variables are used in Battle Bricks.

3. What is a vector, and how is it used to control ball movement in Battle Bricks?

4. How does Battle Bricks finally manage to break out of its game loop?

5. What does the Bricks() array contain?

6. How does the Battle Bricks program determine when to bounce the ball off an
object?

7. What is the difference between candidate bricks and actual bricks?

8. What does the program do to destroy a brick and remove it from the game?

Exercises
1. Modify Battle Bricks so that the paddle is 160 pixels wide.

2. Write a short program that bounces a ball around the display area of a form. Feel
free to steal source code from the Battle Bricks game. Don’t forget to use a game
loop.

09 067231987x CH07 11/6/00 7:14 PM Page 217

09 067231987x CH07 11/6/00 7:14 PM Page 218

In Review
There are several reasons to choose Visual Basic for learning
game programming. First, it’s one of the easiest languages to
learn, and it features a set of controls that make creating user
interfaces quick and easy. Also, Visual Basic and its program-
ming environment enable fast application development. It’s
also a powerful language that’s capable of handling all but the
most complex applications, and its drawing commands and
tools enable applications to create professional-looking graph-
ical displays. Finally, Visual Basic’s extended implementation
of the BASIC language allows not only user-definable data
types, but also classes, which enables you to take advantage
of some features of an object-oriented language.

Using straight Visual Basic (that is, without making calls to
the Windows API or third-party libraries), you can write puz-
zle games, strategy games, card games, simple arcade games,
and virtually any other type of game that doesn’t require
intensive processing or fast framerates. However, because
Visual Basic can call Windows API functions, you can imbue
your program with capabilities that cannot be duplicated with
straight Visual Basic.

To write computer games that people will want to play, you
must gain some expertise in the related areas of program-
ming: game design, graphic design, sound generation, con-
trols and interfaces, image handling, animation, algorithms,
artificial intelligence, and game testing.

One of the most important aspects of drawing graphics is
color. Visual Basic is very versatile when it comes to color,
providing five ways to specify colors. You can use Visual
Basic’s predefined color constants or the RGB function. You

WEEK 1 1

2

3

4

5

6

7

10 067231987x Wk1IR 11/6/00 7:08 PM Page 219

220 Week 1

can also use Windows’ system colors or the QBColor function, or specify a color’s hexa-
decimal value.

Visual Basic features powerful drawing methods that can create everything from simple
lines to rectangles, circles, and more. Visual Basic’s Line method draws lines and boxes,
for example, and the Circle method draws circles, ellipses, and arcs.

Visual Basic objects that can display graphics have a set of properties that control how
Visual Basic draws lines and shapes. These properties are DrawWidth, DrawStyle,
DrawMode, FillColor, and FillStyle.

Visual Basic features several controls that represent graphical objects, from a simple line
to a photograph. Like the Form object, the PictureBox control can provide a drawing sur-
face for VB’s graphics methods such as Line and Circle. The Line control features a set
of properties that enable you to set a line’s color, thickness, style, drawing mode, and
more. The Shape control, on the other hand, enables you to easily display six different
shapes: rectangle, square, oval, circle, rounded rectangle, and rounded square.

If you need to display bitmaps or other types of images from files on your disk, the
Image and PictureBox controls fit the bill nicely. The Image control is a kind of stripped-
down version of the PictureBox control, so it features fewer capabilities and properties.
Still, displaying a photographic-quality image on your application’s display is as easy as
setting an Image control’s Picture property to the file containing the image.

Most games need to display text, and often you won’t want to stick to the default font
and font attributes. The most obvious font attribute that affects your game displays is
color. There are two object properties that determine the colors used for displaying text:
ForeColor and FontTransparent.

Besides color, the type of font and its attributes also play a big role in how text appears
on your game’s screen. Each object that can display text has a Font property that deter-
mines the font settings. The Font object features seven properties: Bold, Charset,
Italic, Name, Strikethrough, Underline, and Weight.

Writing a game program requires a wide range of skills, not the least of which is figuring
out how to get the computer to do what you need it to do. Moreover, you need to get the
game to run at a peppy speed, rather than crawling along like a slow-motion replay.
Designing algorithms requires that you know the tools at your disposal (the program-
ming language) and can apply those tools to solve problems.

When you’re designing algorithms, there’s usually a tradeoff between code complexity
and speed. That is, the more speed you manage to squeeze out of an algorithm, the more
complex the algorithm tends to become.

10 067231987x Wk1IR 11/6/00 7:08 PM Page 220

In Review 221

To design effective algorithms, you need to understand the different types of data struc-
tures you can use to store data in your program. A linked list is just one of these data
structures. Other useful data structures include stacks, queues, and tables.

Although Visual Basic features powerful and flexible graphical objects, such as the
Image and PictureBox controls, there may be times when you want even more flexibility.
In these cases, you can call the Windows API from your Visual Basic program. There are
three steps to calling a Windows API function from Visual Basic. First, you must provide
a declaration for the Windows API function you want to call. Second, you must provide
declarations for any datatypes required by the Windows API function. Finally, you need
to call the Windows API function.

There are a couple of ways to draw straight lines using the Windows API. The most
common way is to use the MoveToEx() and LineTo() functions. The Windows API also
features functions for drawing various types of shapes, including not only rectangles and
ellipses (ovals and circles), but also polygons. The function that draws rectangles is
called (appropriately enough) Rectangle(). To draw a circle or oval, you can use the
Windows API Ellipse() function. Other useful Windows API graphics functions
include Polygon(), Polyline(), Pie(), RoundRect(), and PolyPolygon().

Although Visual Basic is an excellent programming language, it isn’t well suited to writ-
ing action games. Its graphics-handling functions are too limited, and a compiled Visual
Basic program is often too slow to handle multiple sprites (moving objects) on the
screen. Although sophisticated action games are too much for Visual Basic, you can use
it to write simple action games if you minimize the number of moving objects.

To keep the game running smoothly, you must program a loop that continually updates
each object’s position. This is called the game loop. You can make an object move faster
onscreen by moving it more than one pixel at a time. However, if you try to move the
object too far at once, its motion will be jerky rather than fluid. To keep things simple,
you might want to make the background a solid color. This makes it easy to erase and
redraw objects.

10 067231987x Wk1IR 11/6/00 7:08 PM Page 221

10 067231987x Wk1IR 11/6/00 7:08 PM Page 222

At a Glance
In Week 2, you’ll study game-programming topics that are
more advanced than those presented in Week 1. You’ll start off
on Day 8 by learning how to use Visual Basic classes to repre-
sent a real-world object, such as a deck of cards. You’ll also
begin to program your own card game. Day 9 continues with
the card theme as you learn how to use Visual Basic code to
analyze poker hands. Day 10 provides an introduction to the
art of creating intelligent computer players. Here you’ll get an
introduction to artificial intelligence, and then you’ll learn
how to use a “brute force” method of creating a computer
player for a strategy game.

On Day 11, you’ll start adding the finishing touches to your
games by learning how to play sound effects with the
DirectSound component of DirectX. You’ll learn how to cre-
ate, record, and edit sound effects, and you’ll discover the
Visual Basic Multimedia control and the Windows API func-
tions used to play sounds.

Day 12 begins a three-part section in which you design and
program a simple RPG game. On Day 12, you’ll learn some
general information about RPGs, as well as how to play the
Dragonlord RPG included with this book. On Day 13, you’ll
learn how to program Dragonlord from scratch. Finally, on
Day 14, you’ll create a level editor for Dragonlord so that you
and other players can design their own dungeon adventures.

WEEK 2 8

9

10

11

12

13

14

11 067231987x Wk2AAG 11/6/00 7:15 PM Page 223

224 Week 2

At the end of Week 2, you will have programmed the following games:

• Blackjack—A simple version of the classic card game in which you try to get as
close to 21 as you can without going over.

• Poker Squares—This commercial-quality card game challenges you to create the
best poker hands possible in a 5×5 grid of cards.

• Crystals—An ancient strategy game that pits you against the computer as you try
to capture as many crystals as possible.

• Battle Bricks #2—This is the Battle Bricks game from Day 7, except now it’s com-
plete with sound effects.

• Dragonlord—A simple RPG in which you try to locate and tame a dragon hidden
in a dungeon filled with treasures and deadly skeleton creatures.

11 067231987x Wk2AAG 11/6/00 7:15 PM Page 224

DAY 8

WEEK 2

Programming Card Games
Few types of games are more popular than card games. Most households have a
deck of cards, and probably more fortunes are won and lost over a card table
than on a roulette wheel or a slot machine. That popularity crosses over to com-
puter card games as well. The bottom line is that if you’re going to be a Visual
Basic game programmer, you need to know how to use VB to handle a deck of
virtual cards.

Fortunately, Lady Luck is smiling upon you. In this chapter, not only will you
create a class for manipulating a deck of cards, but you’ll also get a full set of
graphical images for your cards. If there’s one thing that discourages most pro-
grammers from creating card games, it’s the daunting challenge of drawing
images for 52 cards—especially the face cards, which are the most graphically
complex cards in the deck.

Specifically, today you’ll learn the following:

• How to write a class to represent a single card

• How to write a class to represent a deck of cards

• How to write card programs using classes

• How to write a simple blackjack game

12 067231987x CH08 11/6/00 7:06 PM Page 225

Deck-Handling Functions
In the following sections, you’ll create a class that you can use to program card games.
Before creating a class, however, you have to consider carefully the different ways that
you must manipulate the data encapsulated in the class. After you’ve analyzed your
game’s needs, you can then write the class’s functions. Unfortunately for programmers,
there are more card games than craters on the moon. This makes creating a complete
card class a nearly impossible task. You can never predict all the different ways that you
might need to manipulate cards in your programs.

Therefore, the best you can do is to write the functions that every card game needs—
such as shuffling a deck and dealing hands—and then add more specific functions as you
need them. That’s the approach this chapter will take with the clsCard class, which will
be used in the next few chapters. After you understand how the clsCard class works,
you’ll be able to add any other functions that you need to create specific card games.

The clsCard Class
The library of routines presented in this chapter actually consists of two classes: clsCard
and clsDeck. The clsCard class includes the data members and methods required to
manipulate a single card, and the clsDeck class draws on the clsCard class to create and
manipulate a deck of 52 cards, each of which is an object of the clsCard class. The
clsDeck class also enables you to group card objects into hands. Listing 8.1 shows the
source code for the clsCard class.

LISTING 8.1 The clsCard Class

1: ‘///
2: ‘// The clsCard Class
3: ‘///
4:
5: Option Explicit
6:
7: Private m_xPosition As Integer
8: Private m_yPosition As Integer
9: Private m_value As Integer
10:
11: ‘///
12: ‘// Class_Initialize
13: ‘///
14: Private Sub Class_Initialize()
15: m_xPosition = -1
16: m_yPosition = -1
17: m_value = 0

226 Day 8

12 067231987x CH08 11/6/00 7:06 PM Page 226

Programming Card Games 227

8
18: End Sub
19:
20: ‘///
21: ‘// Display
22: ‘//
23: ‘// This subroutine displays the card at the coordinates
24: ‘// x,y. The card is displayed face-up or face-down based
25: ‘// on the face parameter.
26: ‘///
27: Sub Display(x As Integer, y As Integer, face As Integer)
28: xPosition = x
29: yPosition = y
30: If face = FaceUp Then
31: ShowFace
32: Else
33: ShowBack
34: End If
35: End Sub
36:
37: ‘///
38: ‘// ShowFace
39: ‘//
40: ‘// This subroutine displays the card’s face. The card must
41: ‘// have been previously displayed with the Display()
42: ‘// subroutine, which sets the card’s screen coordinates.
43: ‘///
44: Sub ShowFace()
45: CardForm.PaintPicture frmCards.Picture1(m_value), _
46: xPosition, yPosition
47: End Sub
48:
49: ‘///
50: ‘// ShowBack
51: ‘//
52: ‘// This subroutine displays the card’s back. The card must
53: ‘// have been previously displayed with the Display()
54: ‘// subroutine function, which sets the card’s screen
55: ‘// coordinates.
56: ‘///
57: Sub ShowBack()
58: CardForm.PaintPicture frmCards.Picture1(52), _
59: xPosition, yPosition
60: End Sub
61:
62: ‘///
63: ‘// EraseCard
64: ‘//
65: ‘// This subroutine erases the card from the CardForm
66: ‘// display.
67: ‘///
68: Sub EraseCard()

12 067231987x CH08 11/6/00 7:06 PM Page 227

LISTING 8.1 continued

69: CardForm.PaintPicture frmCards.Picture1(53), _
70: xPosition, yPosition
71: End Sub
72:
73: ‘///
74: ‘// Get and Let xPosition
75: ‘///
76: Property Get xPosition() As Integer
77: xPosition = m_xPosition
78: End Property
79:
80: Public Property Let xPosition(ByVal vNewValue As Integer)
81: m_xPosition = vNewValue
82: End Property
83:
84: ‘///
85: ‘// Get and Let yPosition
86: ‘///
87: Property Get yPosition() As Integer
88: yPosition = m_yPosition
89: End Property
90:
91: Public Property Let yPosition(ByVal vNewValue As Integer)
92: m_yPosition = vNewValue
93: End Property
94:
95: ‘///
96: ‘// Get and Let value
97: ‘///
98: Public Property Get value() As Integer
99: value = m_value
100: End Property
101:
102: Public Property Let value(ByVal vNewValue As Integer)
103: m_value = vNewValue
104: End Property

The Display method (Lines 27 through 35) displays the card object at the pixel
coordinates given as the method’s x and y parameters. The face parameter deter-

mines whether the card is displayed face-up (by calling the ShowFace method) or face-
down (by calling the ShowBack method). The Display method saves the card’s screen
location in the object’s xPosition and yPosition properties.

The ShowFace method (Lines 44 through 47) displays the card object’s face. The
card must have been previously displayed with the Display method, which sets

the card’s screen coordinates and saves those coordinates in the xPosition and

228 Day 8

ANALYSIS

ANALYSIS

12 067231987x CH08 11/6/00 7:06 PM Page 228

Programming Card Games 229

8
yPosition properties. ShowFace calls the PaintPicture method of the CardForm object
(which should be your program’s main form) to display the card image, which is one of
the images in the Picture1 PictureBox control array.

The ShowBack method (Lines 57 through 60) displays the card’s back. As with
the ShowFace method, the card must have been previously displayed with the

Display method, which sets the card’s screen coordinates and saves them in the
xPosition and yPosition properties. ShowBack calls the PaintPicture method of the
CardForm object (which should be your program’s main form) to display the card-back
image, which is the next-to-last image in the Picture1 PictureBox control array.

The EraseCard method (Lines 68 through 71) erases a card from the screen. As
with the ShowFace method, the card must have been previously displayed with

the Display method, which sets the card’s screen coordinates and saves them in the
xPosition and yPosition properties. EraseCard calls PaintPicture method of the
CardForm object (which should be your program’s main form) to display the blank card
image, which is the last image in the Picture1 PictureBox control array.

The Get and Let methods for each of the properties (Lines 76 through 104)
enable a program to obtain the values of the class object’s properties. You should

use the Let methods with caution because it’s not a good idea to change the property val-
ues unless you’re very sure of what you’re doing. For example, if you change a card’s
xPosition and yPosition properties, a card will be drawn on the screen in one place
while the class object thinks the card is in another place.

In this class, the properties xPosition and yPosition (stored in the m_xPosition and
m_yPosition variables) are the card’s x,y screen coordinates, and value (stored in m_value)
is the card’s value (which is really more an ID than a card value). The m_value property can
be a number from 0 to 51, with the cards numbered as they appear in Figure 8.1.

You can use integer division to determine a card’s suit. The formula is suit = value \
13. This formula results in a value of 0, 1, 2, or 3, which indicates diamonds, clubs,
spades, or hearts, respectively.

Use modulus division to determine a card’s face value, as in the formula faceValue =
value mod 13. This formula yields a result from 0 to 12, with 0 being an ace and 12
being a king. Of course, a specific card program must determine the actual point value of
a card.

The clsCard class includes four methods, which are listed and described in Table 8.1.

ANALYSIS

ANALYSIS

ANALYSIS

12 067231987x CH08 11/6/00 7:06 PM Page 229

FIGURE 8.1
The order of the cards
from ID 0 to 51.

230 Day 8

TABLE 8.1 Methods of the clsCard Class

Method Description

Display(x As Sets the card’s coordinates and displays the card at the x,y coordinates. The
Integer, y As card is displayed face-up or face-down based on the face parameter,
Integer, face which will be the value FaceUp or FaceDown.
As Integer)

EraseCard Erases the card from the CardForm display.

ShowFace Displays the card’s face. The card must have been previously displayed with
the Display method, which sets the card’s screen coordinates.

ShowBack Displays the card’s back. The card must have been previously displayed with
the Display method, which sets the card’s screen coordinates.

The clsDeck Class
Although Table 8.1 explains how the clsCard class works, you probably won’t often
need to access the clsCard class directly because it’s handled mostly by the clsDeck
class. The source code looks like Listing 8.2.

LISTING 8.2 The clsDeck Class

1: ‘///
2: ‘// The clsDeck class
3: ‘///

12 067231987x CH08 11/6/00 7:06 PM Page 230

Programming Card Games 231

8
4:
5: Option Explicit
6:
7: Private m_Hands(MAXHANDS) As hand
8: Private m_Cards(51) As clsCard
9: Private m_PositionInDeck As Integer
10: Private m_NumCardsInHand As Integer
11:
12: ‘///
13: ‘// Class_Initialize
14: ‘///
15: Private Sub Class_Initialize()
16: Dim i As Integer
17:
18: Randomize
19: m_PositionInDeck = 0
20: For i = 0 To 51
21: Set m_Cards(i) = New clsCard
22: m_Cards(i).value = i
23: Next i
24: Init_Hands
25: End Sub
26:
27: ‘///
28: ‘// Shuffle
29: ‘//
30: ‘// This subroutine shuffles the deck, resets the
31: ‘// m_PositionInDeck marker, and initializes the m_Hands.
32: ‘///
33: Sub Shuffle()
34: Dim CardNum As Integer
35: Dim temp As clsCard
36: Dim i As Integer
37:
38: m_PositionInDeck = 0
39: For i = 0 To 51
40: CardNum = Int(Rnd * 52)
41: Set temp = m_Cards(i)
42: Set m_Cards(i) = m_Cards(CardNum)
43: Set m_Cards(CardNum) = temp
44: Next i
45: Init_Hands
46: End Sub
47:
48: ‘///
49: ‘// Deal
50: ‘//
51: ‘// This subroutine deals num cards into the given hand,
52: ‘// displaying the cards on screen starting at x,y and
53: ‘// spacing them each one card width over plus the spacing
54: ‘// parameter. The parameter face controls whether the cards

12 067231987x CH08 11/6/00 7:06 PM Page 231

LISTING 8.2 continued

55: ‘// are dealt face-up or face-down.
56: ‘///
57: Sub Deal(num As Integer, hand As Integer, x As Integer, _
58: y As Integer, spacing As Integer, face As Integer)
59: Dim pos As Integer
60: Dim i As Integer
61:
62: For i = 0 To num - 1
63: pos = m_Hands(hand).PositionInHand
64: Set m_Hands(hand).cards(pos) = m_Cards(m_PositionInDeck)
65: m_Cards(m_PositionInDeck).Display x, y, face
66: m_PositionInDeck = m_PositionInDeck + 1
67: If m_PositionInDeck > 51 Then m_PositionInDeck = 0
68: m_Hands(hand).PositionInHand = _
69: m_Hands(hand).PositionInHand + 1
70: If m_Hands(hand).PositionInHand > 51 Then _
71: m_Hands(hand).PositionInHand = 0
72: x = x + 56 + spacing
73: Next i
74: End Sub
75:
76: ‘///
77: ‘// ShowHand
78: ‘//
79: ‘// This subroutine shows all the cards in the given hand
80: ‘// starting at the screen coordinates x,y and spaced
81: ‘// apart according to the spacing parameter. The cards
82: ‘// are displayed face-up or face-down depending on the
83: ‘// face parameter.
84: ‘///
85: Sub ShowHand(hand As Integer, x As Integer, y As Integer, _
86: spacing As Integer, face As Integer)
87: Dim num As Integer
88: Dim i As Integer
89:
90: num = m_Hands(hand).PositionInHand
91: For i = 0 To num - 1
92: m_Hands(hand).cards(i).Display x, y, face
93: x = x + 56 + spacing
94: Next i
95: End Sub
96:
97: ‘///
98: ‘// DealReplace
99: ‘//
100: ‘// This subroutine deals one card into the given hand,
101: ‘// replacing the card at the position pos. The parameter
102: ‘// face controls whether the card is displayed face-up

232 Day 8

12 067231987x CH08 11/6/00 7:06 PM Page 232

Programming Card Games 233

8
103: ‘// or face-down.
104: ‘///
105: Sub DealReplace(hand As Integer, pos As Integer, _
106: face As Integer)
107: Dim x As Integer
108: Dim y As Integer
109:
110: x = m_Hands(hand).cards(pos).xPosition
111: y = m_Hands(hand).cards(pos).yPosition
112: Set m_Hands(hand).cards(pos) = m_Cards(m_PositionInDeck)
113: m_Cards(m_PositionInDeck).Display x, y, face
114: m_PositionInDeck = m_PositionInDeck + 1
115: If m_PositionInDeck > 51 Then m_PositionInDeck = 0
116: End Sub
117:
118: ‘///
119: ‘// Discard
120: ‘//
121: ‘// This subroutine removes the card at position pos from
122: ‘// the hand specified bt the hand parameter.
123: ‘///
124: Sub Discard(hand As Integer, pos As Integer)
125: Dim x As Integer
126: Dim y As Integer
127: Dim DiscardPos As Integer
128: Dim i As Integer
129:
130: DiscardPos = m_Hands(MAXHANDS - 1).PositionInHand
131: m_Hands(MAXHANDS - 1).PositionInHand = _
132: m_Hands(MAXHANDS - 1).PositionInHand + 1
133: Set m_Hands(MAXHANDS - 1).cards(DiscardPos) = _
134: m_Hands(hand).cards(pos)
135: For i = pos To m_Hands(hand).PositionInHand - 1
136: Set m_Hands(hand).cards(i) = m_Hands(hand).cards(i + 1)
137: Next i
138: m_Hands(hand).PositionInHand = m_Hands(hand).PositionInHand - 1
139: End Sub
140:
141: ‘///
142: ‘// EraseCard
143: ‘//
144: ‘// This subroutine erases the card at position pos in
145: ‘// the hand specified by the hand parameter.
146: ‘///
147: Sub EraseCard(HandNum As Integer, pos As Integer)
148: m_Hands(HandNum).cards(pos).EraseCard
149: End Sub
150:
151: ‘///
152: ‘// ShowHandCard

12 067231987x CH08 11/6/00 7:06 PM Page 233

LISTING 8.2 continued

153: ‘//
154: ‘// This subroutine displays the card at position pos in
155: ‘// the given hand. The parameter face controls whether
156: ‘// the card is displayed face-up or face-down.
157: ‘///
158: Sub ShowHandCard(hand As Integer, pos As Integer, _
159: face As Integer)
160: If face = FaceUp Then
161: m_Hands(hand).cards(pos).ShowFace
162: Else
163: m_Hands(hand).cards(pos).ShowBack
164: End If
165: End Sub
166:
167: ‘///
168: ‘// MoveHandCard
169: ‘//
170: ‘// This subroutine moves the card at position pos in the
171: ‘// given hand to new screen coordinates. The parameter
172: ‘// face controls whether the card is displayed face-up or
173: ‘// face-down.
174: ‘///
175: Sub MoveHandCard(hand As Integer, pos As Integer, _
176: x As Integer, y As Integer, face As Integer)
177: m_Hands(hand).cards(pos).Display x, y, face
178: End Sub
179:
180: ‘///
181: ‘// GetCardValue
182: ‘//
183: ‘// This function returns the value of the card at pos in
184: ‘// the given hand. The value is a number from 0 to 51.
185: ‘///
186: Function GetCardValue(hand As Integer, _
187: pos As Integer) As Integer
188: GetCardValue = m_Hands(hand).cards(pos).value
189: End Function
190:
191: ‘///
192: ‘// Init_Hands
193: ‘//
194: ‘// This subroutine initializes the m_Hands property,
195: ‘// setting all cards in m_Hands to Nothing and setting
196: ‘// each hand’s PositionInHand property to zero.
197: ‘///
198: Sub Init_Hands()
199: Dim i As Integer

234 Day 8

12 067231987x CH08 11/6/00 7:06 PM Page 234

Programming Card Games 235

8
200: Dim j As Integer
201:
202: For i = 0 To MAXHANDS - 1
203: m_Hands(i).PositionInHand = 0
204: For j = 0 To 51
205: Set m_Hands(i).cards(j) = Nothing
206: Next j
207: Next i
208: End Sub
209:
210: ‘///
211: ‘// Restore
212: ‘//
213: ‘// This subroutine sets the position in the deck back to
214: ‘// the beginning of the deck.
215: ‘///
216: Sub Restore()
217: m_PositionInDeck = 0
218: End Sub
219:
220: ‘///
221: ‘// Get NumCardsInHand
222: ‘///
223: Property Get NumCardsInHand(hand As Integer) As Integer
224: If hand < 0 Or hand > MAXHANDS - 1 Then Err.Raise 9
225: NumCardsInHand = m_Hands(hand).PositionInHand
226: End Property

In the class’s Class_Initialize method, Line 18 ensures that the class is capa-
ble of producing a different shuffled deck every time it’s used. Line 19 initializes

the m_PositionInDeck property, and Lines 20 through 23 create 52 objects of the
clsCard class. The Init_Hands call (Line 24) empties all the card hands.

The Shuffle method shuffles the deck (Lines 39 to 44) by swapping each card
with another randomly selected card. The method also resets the

m_PositionInDeck marker (Line 38) to 0, which makes the first card in the deck the next
card to be drawn. Finally, the method empties all hands (Line 45).

The Deal method deals the requested number of cards (specified by the num para-
meter) into the hand specified by the hand parameter. The cards are displayed on

the screen starting at x,y, with each card spaced one card width over plus the spacing
parameter. The parameter face controls whether the cards are dealt face-up or face-
down. Line 62 begins a For statement that iterates once for each card to display. Inside
the For loop, Line 63 gets the position in the hand to which the current card should be

ANALYSIS

ANALYSIS

ANALYSIS

12 067231987x CH08 11/6/00 7:06 PM Page 235

dealt, and Line 64 sets the card in that hand position to the next card in the deck. Line 65
calls the card object’s Display method to paint the card on the screen, and Lines 66 and
67 move the current position in the deck to the next card. Lines 68 to 71 move forward
the location for the next card in the hand. Finally, Line 72 adds the spacing parameter to
the horizontal position for the next card to display.

This ShowHand method shows all the cards in the given hand, starting at the
screen coordinates x,y and spaced apart according to the spacing parameter. The

cards are displayed face-up or face-down depending on the face parameter. Line 90 gets
the number of cards in the hand, and Lines 91 to 94 call each card object’s Display
method to show the card on the screen. Notice how the Display method is a member of
the currently indexed element of the cards() array, which is itself a member of the
m_Hands() array.

The DealReplace method deals one card into the given hand, replacing the card
at the position pos. The parameter face controls whether the card is displayed

face-up or face-down. Lines 110 and 111 get the coordinates of the card to replace, and
Line 112 places the next card in the deck into the given position in the hand. Line 113
then displays the new card on the screen. Finally, Lines 114 and 115 move the position
in the deck to the next card.

The Discard method removes the card at position pos from the hand specified by
the hand parameter. Line 130 gets the current position in the discard hand, and

Lines 131 and 132 move the discard hand’s current position forward one card. Line 133
removes the discarded card from the hand and places it into the discard hand, and then
Lines 135 to 137 move the cards in the hand back one position in order to fill in the posi-
tion where the discarded card used to be. Finally, Line 138 updates the position in the
hand, setting it back one.

The EraseCard method erases the card at position pos in the hand specified by
the hand parameter. Calling the card object’s EraseCard method is all that’s

required to erase the card from the screen.

The ShowHandCard method displays the card at position pos in the given hand.
The parameter face controls whether the card is displayed face-up or face-down.

Lines 160 and 161 display the card’s face if the face parameter is FaceUp, and Lines 162
and 163 display the card face-down if the face parameter is FaceDown.

236 Day 8

ANALYSIS

ANALYSIS

ANALYSIS

ANALYSIS

ANALYSIS

12 067231987x CH08 11/6/00 7:06 PM Page 236

Programming Card Games 237

8
The MoveHandCard method moves the card at position pos in the given hand to
new screen coordinates. The parameter face controls whether the card is dis-

played face-up or face-down. Line 177 calls the card object’s Display method to display
the card in its new position.

The GetCardValue function returns the value of the card at pos in the given
hand. The value is a number from 0 to 51 and is obtained from the card object’s

value property in Line 188.

The Init_Hands method initializes the m_Hands property, setting all cards in
m_Hands to Nothing (Lines 204 to 206) and setting each hand’s PositionInHand

property to zero (Line 203).

The Restore method sets the position in the deck back to the beginning of the
deck. It does this in Line 217 by setting m_PositionInDeck to 0. This method is

handy when you want to reuse the same deck of cards.

In the clsDeck class, the variable m_Cards is a 52-element array of clsCard objects.
These objects make up the deck of cards. The integer m_PositionInDeck keeps track of
the next card to be dealt. That is, at the beginning of a program, m_PositionInDeck is 0,
indicating that the first card in the deck will be dealt next. Each time a card is dealt,
m_PositionInDeck increments. When m_PositionInDeck equals 51, there’s only one
card left to deal in the deck. To avoid array-indexing errors, if your program tries to deal
more than 52 cards before reshuffling the deck, m_PositionInDeck starts back at 0 and
goes through the deck again.

The variable m_Hands is an array of hand objects, which is a user-defined data type
(defined in a module called Cards.bas). The hand data type is as follows:

Public Type hand
PositionInHand As Integer
cards(51) As clsCard

End Type

As you can see, the members of hand are similar to two members of the clsDeck class.
The integer PositionInHand keeps track of the position in the hand where the next card
will be dealt. The array cards holds the clsCard objects that make up the hand.

Although you cannot anticipate all the different ways that you might need to manipulate
a deck of cards, the clsDeck class includes 10 methods that you can call in your pro-
grams. These methods, which are listed in Table 8.2, enable you to program many card
games without adding anything to the class. Study this table now so that you understand
how to use the clsDeck class.

ANALYSIS

ANALYSIS

ANALYSIS

ANALYSIS

12 067231987x CH08 11/6/00 7:06 PM Page 237

TABLE 8.2 Methods of the clsDeck Class

Member Function Description

Shuffle Shuffles the deck and resets the m_PositionInDeck marker. It also
calls the private member function Init_Hands to initialize all eight
hands that the clsDeck class handles.

Deal(num As Integer, Deals num cards into the hand specified by the hand parameter and
hand As Integer, x As displays the cards onscreen, starting at the coordinates x and y and
Integer, y As Integer, spacing the cards each one card-width over plus the spacing para-
spacing As Integer, meter. The parameter face must have the value FaceUp or FaceDown,
face As Integer) which controls whether the cards are dealt face-up or face-down.

ShowHand(hand As Shows all the cards in the hand specified by hand, starting at the
Integer, x As Integer, screen coordinates x and y and spaced apart according to the spacing
y As Integer, spacing parameter. The cards are displayed face-up or face-down depending
As Integer, face As on the face parameter with a value that must be either FaceUp or
Integer) FaceDown.

DealReplace(hand As Deals one card into the given hand, replacing the card at the position
Integer, pos As pos. The parameter face, which must be the value FaceUp or FaceDown
Integer, face As controls whether the cards are displayed face-up or face-down.
Integer)

EraseCard(HandNum As Erases the card at position pos in the hand specified by the HandNum
Integer, pos As parameter.
Integer)

Discard(hand As Removes the card at position pos from hands(hand), placing the card
Integer, pos As into hands(7), which is the discard pile.
Integer)

Sub ShowHandCard(hand Displays the card at position pos in the given hand. The parameter
As Integer, pos As face, which must have the value FaceUp or FaceDown, controls
Integer, face As whether the cards are displayed face-up or face-down.
Integer)

MoveHandCard(hand As Moves the card at position pos in the given hand to the new screen
Integer, pos As coordinates, x and y. The parameter face, which must have the value
Integer, x As Integer, FaceUp or FaceDown, controls whether the card is displayed face-up
y As Integer, face As or face-down.
Integer)

GetCardValue(hand As Returns the value of the card at the position pos in the given hand.
Integer, pos As The value is a number from 0 to 51.
Integer)

Restore Sets the m_PositionInDeck data member back to 0, restoring the deck
to the state it was in before the program dealt the first card.

238 Day 8

12 067231987x CH08 11/6/00 7:06 PM Page 238

Programming Card Games 239

8
Demonstrating the clsCard and clsDeck
Classes

Now that you’ve looked over the classes, you might be a little unsure exactly how to use
them in your own programs. In this section, you’ll build a demo program that puts the
classes to work.

Building the Program
Follow these steps to create the demo program:

1. Start a new Standard EXE Visual Basic project.

2. Set the following form properties to the values shown here. (Note that the form must
be named CardForm because that’s the name the clsDeck class expects it to have.)

Name = CardForm

AutoRedraw = True

BackColor = Black

Height = 7815

ScaleMode = Pixel

Width = 7995

3. Add a CommandButton control to the form, giving it the following properties:

Caption = “Test Cards”

Height = 40

Left = 18

Top = 439

Width = 144

4. Use the Add Form command on the Project menu to add the frmCards.frm form
file to the project. You can find this form in the Classes folder of this book’s CD-
ROM. The frmCards.frm contains the card images, as you can see in Figure 8.2.

You need this form because it contains the card images.

5. Use the Add Class Module command on the Project menu to add the clsCard.cls
and clsDeck.cls class module files to the project. You can find these class modules
in the Classes folder of this book’s CD-ROM.

In order to use the clsCard and clsDeck classes in your program, you must add
their files to your project, which you did in this step.

12 067231987x CH08 11/6/00 7:06 PM Page 239

FIGURE 8.2
The frmCards.frm
form.

240 Day 8

6. Use the Add Module command on the Project menu to add the Cards.bas module
file to the project. You can find this module in the Classes folder of this book’s
CD-ROM.

The Cards.bas module defines the constants, enumerations, and types needed by
the program and the classes, as you can see in Listing 8.3.

LISTING 8.3 The Cards.bas Module

1: Public Const MAXHANDS = 8
2:
3: Public Enum Orientation
4: FaceDown
5: FaceUp
6: End Enum
7:
8: Public Type hand
9: PositionInHand As Integer
10: cards(51) As clsCard
11: End Type
12:
13: Public Enum Suits
14: Diamonds
15: Clubs
16: Spades
17: Hearts
18: End Enum

12 067231987x CH08 11/6/00 7:06 PM Page 240

Programming Card Games 241

8
19:
20: Public Enum CardNames
21: Ace
22: Two
23: Three
24: Four
25: Five
26: Six
27: Seven
28: Eight
29: Nine
30: Ten
31: Jack
32: Queen
33: King
34: End Enum

7. Double-click the project’s form in order to display the code window, and then type
the following lines at the top of the program:

Option Explicit

Dim Deck As clsDeck
Dim TestNumber As Integer

The Deck object will represent the deck of cards in the program.

8. Add to the code window the handlers in Listing 8.4 for the form object. You can
either type them or copy them from the Cards1.txt file, which you can find in the
Chap08\Code directory of this book’s CD-ROM.

LISTING 8.4 The Form Handlers

1: Private Sub Form_Load()
2: TestNumber = 0
3: End Sub
4:
5: Private Sub Form_Unload(Cancel As Integer)
6: Unload frmCards
7: End Sub

The Unload command in the Form_Unload event handler ensures that the
frmCards form will be removed from memory at the same time the main form is.

9. Add to the code window the command button handler for the form object, shown
in Listing 8.5. You can either type the code or copy it from the Cards2.txt file,
which you can find in the Chap08\Code directory of this book’s CD-ROM.

ANALYSIS

12 067231987x CH08 11/6/00 7:06 PM Page 241

LISTING 8.5 The Command1_Click Handler

1: Private Sub Command1_Click()
2: Select Case TestNumber
3: Case 0
4: ShowFullDeck
5: Case 1
6: ShowShuffledDeck
7: Case 2
8: ShowFaceDownDeck
9: Case 3
10: Deal7CardHand
11: Case 4
12: ShowFaceDownHand
13: Case 5
14: ShowFaceUpHand
15: Case 6
16: ReplaceTwoCards
17: Case 7
18: DiscardEachCard
19: Case 8
20: MoveCards
21: End Select
22: TestNumber = TestNumber + 1
23: If TestNumber > 8 Then
24: TestNumber = 0
25: Set Deck = Nothing
26: End If
27: End Sub

The command button handler calls a different subroutine depending upon the
value of the TestNumber variable. This causes the program to cycle through the

various tests of the clsDeck and clsCard classes.

10. Add to the code window the general program subroutines shown in Listing 8.6,
which are the subroutines that actually put the classes to the test. You can either
type the code or copy it from the Cards3.txt file, which you can find in the
Chap08\Code directory of this book’s CD-ROM.

LISTING 8.6 The General Subroutines

1: Sub ShowFullDeck()
2: Set Deck = New clsDeck
3: Cls
4: CurrentX = 250
5: CurrentY = 430
6: Print “Full Unshuffled Deck”
7: Deck.Deal 13, 0, 20, 20, -20, FaceUp

242 Day 8

ANALYSIS

12 067231987x CH08 11/6/00 7:06 PM Page 242

Programming Card Games 243

8
8: Deck.Deal 13, 1, 20, 120, -20, FaceUp
9: Deck.Deal 13, 2, 20, 220, -20, FaceUp
10: Deck.Deal 13, 3, 20, 320, -20, FaceUp
11: End Sub
12:
13: Sub ShowShuffledDeck()
14: Cls
15: CurrentX = 250
16: CurrentY = 430
17: Print “Full Shuffled Deck”
18: Deck.Shuffle
19: Deck.Deal 13, 0, 20, 20, -20, FaceUp
20: Deck.Deal 13, 1, 20, 120, -20, FaceUp
21: Deck.Deal 13, 2, 20, 220, -20, FaceUp
22: Deck.Deal 13, 3, 20, 320, -20, FaceUp
23: End Sub
24:
25: Sub ShowFaceDownDeck()
26: Cls
27: CurrentX = 250
28: CurrentY = 430
29: Print “Full Face Down Deck”
30: Deck.Deal 13, 0, 20, 20, -20, FaceDown
31: Deck.Deal 13, 1, 20, 120, -20, FaceDown
32: Deck.Deal 13, 2, 20, 220, -20, FaceDown
33: Deck.Deal 13, 3, 20, 320, -20, FaceDown
34: End Sub
35:
36: Sub Deal7CardHand()
37: Cls
38: CurrentX = 250
39: CurrentY = 430
40: Print “7-Card Hand”
41: Deck.Shuffle
42: Deck.Deal 7, 0, 20, 20, 10, FaceUp
43: End Sub
44:
45: Sub ShowFaceDownHand()
46: Dim i As Integer
47:
48: Cls
49: CurrentX = 250
50: CurrentY = 430
51: Print “Face Down Hand”
52: For i = 0 To 6
53: Deck.ShowHandCard 0, i, FaceDown
54: Next i
55: End Sub
56:
57: Sub ShowFaceUpHand()
58: Dim i As Integer

12 067231987x CH08 11/6/00 7:06 PM Page 243

LISTING 8.6 continued

59:
60: Cls
61: CurrentX = 250
62: CurrentY = 430
63: Print “Face Up Hand”
64: For i = 0 To 6
65: Deck.ShowHandCard 0, i, FaceUp
66: Next i
67: End Sub
68:
69: Sub ReplaceTwoCards()
70: Dim i As Integer
71:
72: PrepareScreen
73: Print “Replace Two Cards”
74: For i = 0 To 6
75: Deck.ShowHandCard 0, i, FaceUp
76: Next i
77: Deck.DealReplace 0, 2, FaceDown
78: Deck.DealReplace 0, 3, FaceDown
79: End Sub
80:
81: Sub DiscardEachCard()
82: Dim i As Integer
83:
84: PrepareScreen
85: Print “Discard Cards”
86: Deck.ShowHand 0, 20, 20, 10, FaceUp
87: For i = 6 To 0 Step -1
88: MsgBox “Click OK to discard a card”
89: Deck.EraseCard 0, i
90: Deck.Discard 0, 0
91: Deck.ShowHand 0, 20, 20, 10, FaceUp
92: Deck.ShowHand 7, 20, 110, -20, FaceUp
93: Next i
94: End Sub
95:
96: Sub MoveCards()
97: Dim i As Integer
98:
99: PrepareScreen
100: Print “Move Cards”
101: For i = 0 To 6
102: Deck.EraseCard 7, i
103: Deck.MoveHandCard 7, i, i * 20 + 20, 200, FaceUp
104: Next i
105: End Sub
106:

244 Day 8

12 067231987x CH08 11/6/00 7:06 PM Page 244

Programming Card Games 245

8
107: Sub PrepareScreen()
108: Cls
109: CurrentX = 250
110: CurrentY = 430
111: End Sub

These subroutines are the guts of the program. You’ll look at this source code in
detail a little later in this chapter.

11. Save the project’s form file as CardForm.frm and the project file as Cards.vbp.

You’ve now completed the Cards demo program.

Running the Demo Program
When you run this program, you first see the screen shown in Figure 8.3. Here the pro-
gram has dealt four hands of 13 cards each, all before shuffling the deck. As you can see,
all the cards are in order. When you press Enter, the program shuffles the cards and
redeals the four hands, as shown in Figure 8.4. You can see that the cards were indeed
shuffled, so the program deals them randomly. Press Enter again and the program deals
the same cards face-down.

ANALYSIS

FIGURE 8.3
The unshuffled deck.

After showing the entire deck, the program manipulates the hand. Each time that you
press Enter or click the Test Cards button, the program performs a new function on the
current hand. First, it deals a seven-card hand and displays it face-up. The program then
shows the hand face-down and again face-up.

12 067231987x CH08 11/6/00 7:06 PM Page 245

FIGURE 8.4
The deck after shuf-
fling.

246 Day 8

Next, the program deals two new face-down cards into the hand (see Figure 8.5) and then
reveals them by turning them over. Then, each time you press Enter, the program dis-
cards a card from the hand and displays the new discard pile. Finally, the program moves
the discard pile to a new location on the screen.

FIGURE 8.5
Dealing new cards into
a hand.

Using the clsDeck Class
The demonstration program shows most of what you need to know to use the clsDeck
class. Before the program can access the clsDeck class, it must create a Deck object:

Dim Deck As clsDeck

12 067231987x CH08 11/6/00 7:06 PM Page 246

Programming Card Games 247

8
Now, to deal four, 13-card hands from the deck, the program calls the Deal subroutine
four times:

Deck.Deal 13, 0, 20, 20, -20, FaceUp
Deck.Deal 13, 1, 20, 120, -20, FaceUp
Deck.Deal 13, 2, 20, 220, -20, FaceUp
Deck.Deal 13, 3, 20, 320, -20, FaceUp

The Deal method’s arguments are the number of cards to deal, the hand where the cards
will be dealt, the x,y screen coordinates of the first card in the hand, the onscreen dis-
tance between each card in the hand, and the cards’ orientation (either FaceUp or
FaceDown). In the preceding code segment, notice that the distance between the cards is
-20. A negative distance causes the cards to appear overlapped. Positive distances sepa-
rate the right and left edges of adjacent cards by the given number of pixels.

Because the cards in the Deck object are all in order, the deck must be shuffled:

Deck.Shuffle

After the shuffle, the program redeals the 13-card hands in random order:

Deck.Deal 13, 0, 20, 20, -20, FaceUp
Deck.Deal 13, 1, 20, 120, -20, FaceUp
Deck.Deal 13, 2, 20, 220, -20, FaceUp
Deck.Deal 13, 3, 20, 320, -20, FaceUp

Next, the program deals a seven-card hand, which is displayed onscreen first face-up and
then face-down. The program switches the cards’ orientation by using the ShowHandCard
method, which can display any card face-up or face-down:

For i = 0 To 6
Deck.ShowHandCard 0, i, FaceUp

Next I

The arguments for ShowHandCard are the number of the hand where the card is located,
the card’s position in the hand (starting at 0 for the first card), and the card’s new orienta-
tion (either FaceUp or FaceDown).

To replace cards in a hand, the program calls the DealReplace method:

Deck.DealReplace 0, 2, FaceDown
Deck.DealReplace 0, 3, FaceDown

This method’s arguments are the number of the hand where the card to be replaced is
located, the position in the hand of the card to be replaced, and the orientation of the new
card’s display. Note that DealReplace does not add replaced cards to the discard pile. To
add cards to the discard pile, you must call the Discard method. The example program
in Listing 8.7 does this.

12 067231987x CH08 11/6/00 7:06 PM Page 247

LISTING 8.7 Discarding Cards

1: For i = 6 To 0 Step -1
2: MsgBox “Click OK to discard a card”
3: Deck.EraseCard 0, i
4: Deck.Discard 0, 0
5: Deck.ShowHand 0, 20, 20, 10, FaceUp
6: Deck.ShowHand 7, 20, 110, -20, FaceUp
7: Next I

In the For loop, the program discards each card from the hand one at a time
(Lines 3 and 4), displaying the new discard pile after each discard (Lines 5

and 6). The Discard method’s arguments are the number of the hand where cards must
be discarded and the position within the hand of the card to discard. In the preceding
code segment, Discard’s arguments are always 0,0 because the first card in the hand is
always the one being discarded. When a card is discarded, the other cards in the hand
move back to fill in the empty space.

Finally, the example program moves the discard pile to a new screen location by calling
the MoveHandCard method:

For i = 0 To 6
Deck.EraseCard 7, i
Deck.MoveHandCard 7, i, i * 20 + 20, 200, FaceUp

Next I

MoveHandCard moves a single card to a new screen location. Its arguments are the num-
ber of the hand that holds the card to move, the position of the card in the hand, the new
x,y coordinates for the card, and the card’s orientation.

Blackjack, Anyone?
The sample program shows how to call many of the clsDeck methods, but it doesn’t
show them in action in a real game. In the next chapter you’ll design a complete card
game called Poker Squares, but for now, something a little simpler is in order. It’s time to
create a bare-bones version of blackjack.

Creating Blackjack’s User Interface
The first step is to create the game’s user interface. Perform the following steps:

1. Start a new Standard EXE Visual Basic project.

2. Set the form’s properties to the values listed here:

Name = CardForm

AutoRedraw = True

248 Day 8

ANALYSIS

12 067231987x CH08 11/6/00 7:06 PM Page 248

Programming Card Games 249

8
BackColor = Black

Caption = “Blackjack”

Height = 6015

ScaleMode = Pixel

Width = 8250

3. Add three CommandButton controls to the form, giving them the property values
listed here:

CommandButton #1

Name = cmdStartGame

Caption = “&Start Game”

Height = 33

Left = 19

Top = 320

Width = 89

CommandButton #2

Name = cmdHit

Caption = “&Hit”

Height = 33

Left = 341

Top = 320

Width = 89

CommandButton #3

Name = cmdStay

Caption = “S&tay”

Height = 33

Left = 443

Top = 320

Width = 89

4. Add a Timer control to the form.

You’ve now completed blackjack’s user interface. Figure 8.6 shows what your main form
will look like at this point. In the next section, you’ll add handlers for the program’s vari-
ous controls.

12 067231987x CH08 11/6/00 7:06 PM Page 249

FIGURE 8.6
The completed user
interface.

250 Day 8

Adding the Object Handlers
Next, you need to associate code with the various objects—the form, buttons, and timer—
that make up the user interface. To accomplish this task, perform the following steps:

1. Double-click the form to bring up the code window, and add the following form
handlers to it. You can either type the code or copy it from the BlackJack1.txt file,
which you can find in the Chap08\Code directory of this book’s CD-ROM.

LISTING 8.8 The Form Handlers

1: Private Sub Form_Load()
2: cmdHit.Enabled = False
3: cmdStay.Enabled = False
4: cmdStartGame_Click
5: End Sub
6:
7: Private Sub Form_Unload(Cancel As Integer)
8: Unload frmCards
9: End Sub

The Form_Load subroutine, which Visual Basic calls when the user starts the pro-
gram, disables the Hit and Stay buttons (Lines 2 and 4) and the starts a new game

by simulating a click on the Start Game button (Line 4). Line 8 in the Form_Unload sub-
routine removes the frmCards form from memory at the same time the main form closes.

ANALYSIS

12 067231987x CH08 11/6/00 7:06 PM Page 250

Programming Card Games 251

8
2. Add to the code window the CommandButton handlers in Listing 8.9. You can

either type the code or copy it from the BlackJack2.txt file, which you can find in
the Chap08\Code directory of this book’s CD-ROM.

LISTING 8.9 The CommandButton Handlers

1: Private Sub cmdHit_Click()
2: PlayerCardCount = PlayerCardCount + 1
3: Deck.Deal 1, Player, _
4: PlayerCardCount * 80 + 20, 220, 0, FaceUp
5: PlayerTotal = GetCardTotal(Player)
6: If PlayerTotal > 21 Then
7: MsgBox “You busted”
8: DealerTotal = GetCardTotal(Dealer)
9: EndGame
10: End If
11: End Sub
12:
13: Private Sub cmdStartGame_Click()
14: Cls
15: cmdStartGame.Enabled = False
16: cmdHit.Enabled = True
17: cmdStay.Enabled = True
18: Set Deck = New clsDeck
19: Deck.Shuffle
20: DealerCardCount = 1
21: PlayerCardCount = 1
22: CurrentX = 20
23: CurrentY = 20
24: Print “DEALER’S HAND”
25: Deck.Deal 1, Dealer, 20, 60, 0, FaceDown
26: Deck.Deal 1, Dealer, 100, 60, 0, FaceUp
27: CurrentX = 20
28: CurrentY = 180
29: Print “PLAYER’S HAND”
30: Deck.Deal 2, Player, 20, 220, 24, FaceUp
31: End Sub
32:
33: Private Sub cmdStay_Click()
34: cmdHit.Enabled = False
35: cmdStay.Enabled = False
36: Timer1.Interval = 1000
37: End Sub

The cmdHit_Click subroutine responds to the Hit button. Line 2 increases the
player’s card count, and Line 3 deals another card into the player’s hand. A call

to GetCardTotal (Line 5) gets the player’s current score, and if the total is over 21
(Line 6), the game is over (Lines 7 to 9).

ANALYSIS

12 067231987x CH08 11/6/00 7:06 PM Page 251

The cmdStartGame_Click subroutine responds to the Start Game button. Line 14
clears the screen, and Lines 16 and 17 enable the Hit and Stay buttons. Then,

Lines 18 and 19 create a new Deck object and shuffle it. Lines 20 and 21 initialize the
card counts, and Lines 22 to 24 print the “DEALER’S HAND” label. Lines 25 and 26
deal two cards to the dealer, one of them face down, while Line 30 does the same thing
for the player’s hand, except this time both cards are dealt face-up.

The cmdStay_Click subroutine responds to the Stay button. Lines 34 and 35 dis-
able the Hit and Stay buttons in preparation for the dealer’s turn. Line 36 turns

on the timer, which gets the dealer’s turn going.

3. Add to the code window the Timer handler shown in Listing 8.10. You can either
type the code or copy it from the BlackJack3.txt file, which you can find in the
Chap08\Code directory of this book’s CD-ROM.

LISTING 8.10 The Timer Handler

1: Private Sub Timer1_Timer()
2: DealerTotal = GetCardTotal(Dealer)
3: If DealerTotal > 21 Then
4: MsgBox “Dealer busts”
5: Timer1.Interval = 0
6: EndGame
7: ElseIf DealerTotal > 16 Then
8: MsgBox “Dealer stays”
9: Timer1.Interval = 0
10: EndGame
11: Else
12: DealerCardCount = DealerCardCount + 1
13: Deck.Deal 1, Dealer, _
14: DealerCardCount * 80 + 20, 60, 0, FaceUp
15: End If
16: End Sub

The Timer1_Timer subroutine implements the computer player and gets called
for each timer event. Line 2 gets the dealer’s current card total. If the total is

greater than 21, Line 4 notifies the player that the dealer has busted and Line 5 turns off
the timer. If the dealer’s total is greater than 16, the dealer stays (Lines 8 and 9) and the
current game ends (Line 10). Finally, if the dealer’s total is less than or equal to 16,
Lines 12 to 14 add a card to the dealer’s hand.

252 Day 8

ANALYSIS

ANALYSIS

ANALYSIS

12 067231987x CH08 11/6/00 7:06 PM Page 252

Programming Card Games 253

8
Completing the Game
Almost there! After you add the general game subroutines and the required modules,
you’ll be ready to play blackjack. Here are the final steps:

1. Add to the code window the general game subroutines shown in Listing 8.11. You
can either type the code or copy it from the BlackJack4.txt file, which you can find
in the Chap08\Code directory of this book’s CD-ROM.

LISTING 8.11 The General Subroutines

1: Function GetCardTotal(plyer As Integer) As Integer
2: Dim value As Integer
3: Dim total As Integer
4: Dim AceCount As Integer
5: Dim CardCount As Integer
6: Dim i As Integer
7:
8: total = 0
9: AceCount = 0
10: CardCount = Deck.NumCardsInHand(plyer)
11: For i = 0 To CardCount - 1
12: value = Deck.GetCardValue(plyer, i) Mod 13
13: If value > Ten Then
14: value = Ten
15: ElseIf value = Ace Then
16: AceCount = AceCount + 1
17: value = 10
18: End If
19: total = total + value + 1
20: Next i
21:
22: If total > 21 And AceCount > 0 Then _
23: total = total - AceCount * 10
24: GetCardTotal = total
25: End Function
26:
27: Sub EndGame()
28: Dim msg As String
29:
30: Deck.ShowHandCard Dealer, 0, FaceUp
31: DealerTotal = GetCardTotal(Dealer)
32: PlayerTotal = GetCardTotal(Player)
33: Set Deck = Nothing
34: cmdStartGame.Enabled = True
35: cmdHit.Enabled = False
36: cmdStay.Enabled = False
37: msg = “Dealer: “ + CStr(DealerTotal) + _
38: vbCrLf + “Player: “ + CStr(PlayerTotal)

12 067231987x CH08 11/6/00 7:06 PM Page 253

LISTING 8.11 continued

39: If PlayerTotal > 21 Or _
40: (PlayerTotal < DealerTotal And DealerTotal < 22) Then
41: msg = msg + vbCrLf + vbCrLf + “You lose.”
42: Else
43: msg = msg + vbCrLf + vbCrLf + “You win.”
44: End If
45: MsgBox msg
46: End Sub

The GetCardTotal function calculates the card total for the player or dealer,
depending upon the value of the plyer parameter. You’ll study this function in

detail later in this chapter. The EndGame subroutine shows the dealer’s hand (Line 30),
gets the player’s and dealer’s card totals (Lines 31 and 32), deletes the deck (Line 33),
sets the game’s buttons (Lines 34 to 36), and displays a message telling the player who
won (Lines 37 to 45).

2. Add to the top of the code window the variable declarations and enumerations in
Listing 8.12. You can either type the code or copy it from the BlackJack5.txt file,
which you can find in the Chap08\Code directory of this book’s CD-ROM.

LISTING 8.12 The Declarations

1: Option Explicit
2:
3: Private Enum HandIDs
4: Dealer
5: Player
6: End Enum
7:
8: Dim DealerCardCount As Integer
9: Dim PlayerCardCount As Integer
10: Dim Deck As clsDeck
11: Dim PlayerTotal As Integer
12: Dim DealerTotal As Integer

3. Add the Cards.frm form and the clsCard.cls, clsDeck.cls, and Cards.bas modules to
the project, just as you did with the previous demo program.

4. Save the game’s main form as CardForm.frm and the project file as BlackJack.vbp.

You’ve now completed the blackjack program.

254 Day 8

ANALYSIS

12 067231987x CH08 11/6/00 7:06 PM Page 254

Programming Card Games 255

8
Playing Blackjack
When you run the program, you see the screen shown in Figure 8.7. The dealer’s hand is
at the top of the screen, and the player’s hand is at the bottom. The objective of the game
is to get as close to 21 as you can without going over. (The cards 2 through 10 are worth
2–10 points. All face cards count as 10 points, and an ace can count as either 1 or 11
points.)

FIGURE 8.7
The main blackjack
screen.

To draw a card, press Enter or click the Hit button. Continue to draw until you’re ready
to stop, and then click the Stay button. If you haven’t gone over 21, the dealer then
begins to draw cards. The dealer must continue to draw until it reaches 17 or better. The
winning hand is the one that’s closest to 21 without going over (see Figure 8.8).

FIGURE 8.8
Winning at blackjack.

12 067231987x CH08 11/6/00 7:06 PM Page 255

Programming Blackjack
Obviously, this program isn’t a complete blackjack game. Many of the game’s details are
ignored (like doubling-down and insurance), there’s no betting, and each game is only a
single hand. However, the program does demonstrate how you can use the clsDeck and
clsCard classes when programming an actual game. Much of the code in the program
needs no explanation. However, one function, GetCardTotal, is the heart of the game
and worthy of close examination.

GetCardTotal analyzes a blackjack hand and comes up with a total. This might seem
like a trivial task until you recall that an ace can count as either 1 or 11 points. Moreover,
a hand might have as many as four aces, further complicating the point-counting process.

To keep this task simple, GetCardTotal assumes that it will count all aces in a hand as
the same value. The point value that the program chooses depends on the hand’s point
total. (Obviously, the program will never use 11 as an ace point value if the hand has
more than one ace, because two 11-point aces will bring the hand to over 21.)

First, the program determines how many cards are in the hand by calling
NumCardsInHand:

CardCount = Deck.NumCardsInHand(plyer)

This clsDeck method takes as its single parameter the number of the hand to check. The
program uses the value returned from NumCardsInHand to set up a For loop that looks at
each card in the hand. In the loop, the program first calculates the value of the current
card:

value = Deck.GetCardValue(plyer, i) Mod 13

This calculation results in a value from 0 to 12 (ace to king). If the card’s value is greater
than 10, indicating a face card (jack, queen, or king), the program sets the card’s value to
Ten:

If value > Ten Then
value = Ten

(The constants range from Ace, which equals 0, to King, which equals 12. Therefore, Ten
is actually the integer value 9, not 10 as you might think.)

If the card turns out to be an ace, the program increments the number of aces in the hand
and sets value to 10:

ElseIf value = Ace Then
AceCount = AceCount + 1
value = 10

End If

256 Day 8

12 067231987x CH08 11/6/00 7:06 PM Page 256

Programming Card Games 257

8
The program first assumes that it will treat the ace as a high card that is worth one point
more than the face cards.

Next, the program adds the value of the current card to the total so far:

total = total + value + 1

Because the card values range from 0 to 12, the added point value is actually value+1.

After totaling the values of all cards in the hand, the program checks whether the hand is
over 21. If it is, and it contains aces, the program subtracts 10 for each ace in the hand so
that the values of the aces all change to 1:

If total > 21 And AceCount > 0 Then _
total = total - AceCount * 10

The function then returns the total to the calling method:

GetCardTotal = total

That’s all there is to analyzing a blackjack hand (although this is a simplified version of
the game). Now you’re ready to move on to more challenging card games.

Summary
There’s a lot involved in programming card games, simply because there are so many of
them. Each card game has its own set of rules and requires the deck of cards to be han-
dled in a different way. This makes it difficult to create a comprehensive card class. Still,
this day gave you a good start on a class that you can use in your own computer card
games. Feel free to modify this class and add code as you discover different ways to
manipulate cards in your programs.

In Day 9, you’ll put the clsDeck and clsCard classes to a much greater test by creating a
full-featured card game called Poker Squares. Not only will you learn more about using
the clsDeck class, but you’ll also learn to evaluate cards to determine the best poker
hands.

Q&A
Q Do all my card games that use these card images have to be on a black back-

ground?

A Well, the card images look best on a black background because they’re actually
rectangular and use black to get the look of rounded corners. Still, you can use
another color for the background if you don’t mind this little detail. However,
avoid white—it won’t work because the white of the card faces blends right in.

12 067231987x CH08 11/6/00 7:06 PM Page 257

Q What if I don’t want to name my main form CardForm?

A As they stand now, the clsCard and clsDeck classes expect your form to be named
CardForm. However, there’s nothing to stop you from customizing the classes to
expect any form name you want. You actually only need to change the clsCard
class in the ShowFace, ShowBack, and EraseCard methods.

Workshop
The workshop includes quiz questions to help gauge your grasp of the material. You’ll
find the answers to this quiz in an Appendix A. Even if you feel that you completely
understand the concepts presented here, you should work through the quiz anyway. The
last section contains some exercises to help reinforce your learning.

Quiz
1. Which real-world objects do the clsCard and clsDeck classes represent?

2. How does the clsDeck class use the clsCard class?

3. How can you calculate the suit of a card represented by a clsCard object?

4. How can you calculate the card’s suit?

5. Which modules do you need to add to your programs to use the card classes?

6. Which module defines the constants that are used with the card classes?

7. How do you get the cards represented by a clsDeck object into random order?

8. How can you ensure that the frmCards.frm is removed from memory when the
player quits your card game?

Exercises
1. Write a short program that deals four six-card hands. Overlap the cards in each

hand by 10 pixels.

2. Write a short program that shuffles the deck and then deals 10 cards, one each time
the user clicks the form. After the 10th card, reset the deck so that the same 10
cards are dealt again.

258 Day 8

12 067231987x CH08 11/6/00 7:06 PM Page 258

DAY 9

WEEK 2

Poker Squares
Now that you’re a master card-game programmer (all right, maybe a novice
master card-game programmer), it’s time to put your digital card-shark skills to
the test. In the previous chapter, you wrote a simple version of a blackjack pro-
gram. Although this program put the clsCard and clsDeck classes to good use,
it wasn’t exactly a challenging project. Evaluating a blackjack hand is almost as
easy as counting your fingers when compared to evaluating a poker hand.

In this day, not only will you use the clsCard and clsDeck classes to design a
commercial-quality card game, but you’ll also learn how to evaluate poker
hands—a fairly complicated task. Along the way, you’ll also learn to handle a
file that records the highest scores.

(A word of caution, though: Poker Squares, the game presented in this chapter,
is highly addictive. Don’t be surprised if you find yourself stuck in the “just
one more” cycle.)

Specifically, today you’ll learn the following:

• How to play Poker Squares

• How to build Poker Squares

13 067231987x CH09 11/6/00 7:13 PM Page 259

• How to use the clsCard and clsDeck classes in a full-featured game

• How to analyze cards for scoring poker hands

• How to implement a high-score board

Playing Poker Squares
The objective of Poker Squares is to place cards in a five-by-five grid so that you create
the best poker hands possible in both the horizontal and vertical directions. When you
run the program, you’ll see the Number of Players box shown in Figure 9.1. You can
play Poker Squares with one or two players. Choose the number of players by clicking
the Yes or No button.

260 Day 9

FIGURE 9.1
The Number of
Players box.

After you close the Number of Players box, you see the screen shown in Figure 9.2. On
the left side is the card grid in which you place the cards that the program deals to you.
On the right is the card dispenser, which shows the current card to place in the grid. Next
to the card dispenser are the final scores for up to two players, and below the card dis-
penser are the running totals for the current grid. Each time that you place a card in the
grid, the program updates the grid scores. The program updates the final scores only
after you’ve placed all 25 cards in the grid.

Below the grid scores are the game’s control buttons. Select the Start button to begin a
new hand or to start a game over from the beginning (with new cards). At the end of the
first player’s hand in a two-player game, the Start button resets the screen for the second
player, leaving the first player’s total score (not the grid scores) onscreen in the
SCORES box.

In a two-player game of Poker Squares, the program deals both players
exactly the same cards in exactly the same order. This eliminates the element
of chance in the dealing of the cards for both hands, giving both players an
equal chance of scoring. Of course, when the first player is playing his hand,
the second player shouldn’t watch the screen because he’ll see the cards the
program deals to him during his turn.

Note

13 067231987x CH09 11/6/00 7:13 PM Page 260

Poker Squares 261

9

FIGURE 9.2
The Poker Squares
main screen.

Choose the Score button to display the High Scores box (see Figure 9.3), which holds
the highest 15 scores. After you play a hand of Poker Squares and your final score is
higher than a score in the file that maintains a list of the 15 highest scores, the New High
Score box appears (see Figure 9.4) and prompts you to enter your name. Your name and
score are then added to the high-score file, and the High Scores box automatically
appears with the new high score highlighted in blue. When you choose the Score button
to display the High Score box, no score is highlighted.

FIGURE 9.3
The High Scores box.

13 067231987x CH09 11/6/00 7:13 PM Page 261

FIGURE 9.4
Entering a name for
the high-score file.

262 Day 9

To exit from Poker Squares, click the Quit button. The program then asks you to confirm
that you want to exit. Choose Yes to exit Poker Squares or No to cancel the quit com-
mand.

As mentioned previously, your score is based on the best poker hands that you build in
both the horizontal and vertical directions. Table 9.1 describes how the program scores
the eight possible poker hands.

TABLE 9.1 Scoring for Poker Squares

Hand Score Description

One pair 5 Two cards of the same face value (such as two jacks or two
deuces).

Two pair 15 Two sets of two cards of the same face value.

Three of a kind 20 Three cards of the same face value.

Straight 30 Any five cards whose face values can be placed in sequence,
such as 8, 9, 10, jack, queen. The cards need not be displayed
in any particular order in the grid.

Flush 35 Five cards of the same suit.

Full house 45 One pair and one three of a kind.

Four of a kind 60 Four cards of the same face value.

Straight flush 100 A straight that is also a flush.

Building Poker Squares
Now that you’ve had a chance to play some Poker Squares, you’ll learn how to build the
program yourself. In the following sections, you’ll build the program one piece at a time.

13 067231987x CH09 11/6/00 7:13 PM Page 262

Poker Squares 263

9

Creating Poker Square’s User Interface
The first step is to create the game’s user interface:

1. Start a new Standard EXE Visual Basic project.

2. Set the form’s properties to the values listed here:

Name = CardForm

AutoRedraw = True

BorderStyle = Fixed Single

Caption = “Poker Squares”

Height = 7590

ScaleMode = Pixel

Width = 9705

This form is the game’s main screen. It’s important to name the form CardForm
because that’s the name that the card classes expect.

3. Set the form’s Picture property to the screen.gif image that you can find in the
Images\PokerSquares directory of this book’s CD-ROM.

Rather than draw the game’s display using Visual Basic drawing commands, the
program loads a completed screen image into the form.

4. Add three CommandButton controls to the form, giving them the property values
listed here:

CommandButton #1

Name = cmdStart

Caption = “&Start”

Height = 34

Left = 373

Top = 418

Width = 66

13 067231987x CH09 11/6/00 7:13 PM Page 263

CommandButton #2

Name = cmdScore

Caption = “S&core”

Height = 34

Left = 448

Top = 418

Width = 66

CommandButton #3

Name = cmdQuit

Caption = “&Quit”

Height = 34

Left = 523

Top = 418

Width = 66

These are the buttons that enable the player to issue commands to the game.
Specifically, these buttons start a new game, display the high-score board, and quit
the program.

5. Add a form to the project by selecting the Add Form command from the Project
menu. Give the new form the following property settings:

Name = ScoreForm

AutoRedraw = True

BorderStyle = Fixed Single

Caption = “High Scores”

Font = Terminal, Bold, 8-point

Height = 3570

ScaleMode = Pixel

Width = 2610

264 Day 9

13 067231987x CH09 11/6/00 7:13 PM Page 264

Poker Squares 265

9

This form will display the high-score board at the end of a game or when the play-
er clicks the Score button.

6. Save your work, giving the main form the filename CardForm.frm, the project the
filename PokerSquares.vbp, and the second form the filename ScoreForm.frm.

You’ve now completed the Poker Squares user interface. Figure 9.5 shows what your
main form should look like at this point. In the next section, you’ll add handlers for the
program’s various controls.

FIGURE 9.5
The completed Poker
Squares user interface.

Adding the Object Handlers
Next, you need to associate code with the various objects—the forms and buttons—that
make up the user interface:

1. Double-click the form to bring up the code window, and add the form handlers
shown in Listing 9.1. You can either type the code or copy it from the
PokerSquares1.txt file, which you can find in the Chap09\Code directory of this
book’s CD-ROM.

13 067231987x CH09 11/6/00 7:13 PM Page 265

LISTING 9.1 The Form Handlers

1: ‘==
2: ‘ Form Handlers.
3: ‘==
4: Private Sub Form_Load()
5: CardForm.Font.Bold = True
6: CardForm.Height = 7590
7: CardForm.Width = 9705
8: Set Deck = New clsDeck
9: Player = FirstPlayer
10: NumPlayers = GetNumPlayers() - 1
11: InitGame
12: End Sub
13:
14: Private Sub Form_MouseDown(Button As Integer, _
15: Shift As Integer, X As Single, Y As Single)
16: Dim CardNum As Integer
17: Dim CardX As Integer, CardY As Integer
18: Dim CardPosition As Integer
19: If ((X > MINX) And (X < MAXX) And _
20: (Y > MINY) And (Y < MAXY)) Then
21: CardNum = CalcCardNumber(X, Y)
22: If Grid(CardNum) = EMPTYCELL Then
23: GetCardXY CardNum, CardX, CardY
24: CardPosition = Deck.NumCardsInHand(0)
25: Deck.MoveHandCard 0, CardPosition - 1, _
26: CardX, CardY, FaceUp
27: Grid(CardNum) = CardPosition - 1
28: EvaluateHands
29: Deck.Deal 1, 0, DISPENSERX, DISPENSERY, 0, FaceUp
30: CardCount = CardCount + 1
31: If CardCount = 26 Then ShowPlayerScore
32: End If
33: End If
34: End Sub
35:
36: Private Sub Form_Unload(Cancel As Integer)
37: Unload frmCards
38: Unload ScoreForm
39: End Sub

Visual Basic calls the Form_Load event handler in Lines 4 to 12 when the form is
first loaded into memory. In that subroutine, the form sets a few of its own prop-

erties (Lines 5 to 7), creates a deck of cards (Line 8), and initializes game variables
(Lines 9 to 11). Visual Basic calls the Form_MouseDown event procedure (Lines 14 to 34)
when the player clicks the form. This procedure determines which cell in the grid that
the player clicked, if any. In Lines 19 and 20, the program checks that the mouse click is

266 Day 9

ANALYSIS

13 067231987x CH09 11/6/00 7:13 PM Page 266

Poker Squares 267

9

within the boundaries of the grid. Then Line 21 calculates the cell on which the player
clicked. If the clicked cell is empty, Lines 22 to 32 move the current card into the grid,
checking for scoring poker hands and the end of the game. Finally, Visual Basic calls the
Form_Unload event procedure in Lines 36 to 39 when the form is unloaded from memo-
ry. This subroutine ensures that the other forms are also unloaded.

2. Add the CommandButton handlers (see Listing 9.2) to the code window. You can
either type the code or copy it from the PokerSqaures2.txt file, which you can find
in the Chap09\Code directory of this book’s CD-ROM.

LISTING 9.2 The Button Handlers

1: ‘==
2: ‘ Button Handlers.
3: ‘==
4: Private Sub cmdQuit_Click()
5: Dim Answer As Integer
6: Answer = MsgBox(“Are you sure you want to quit?”, _
7: vbYesNo Or vbQuestion, “Quit”)
8: If Answer = vbYes Then Unload CardForm
9: End Sub
10:
11: Private Sub cmdScore_Click()
12: ShowScoreFile -1
13: End Sub
14:
15: Private Sub cmdStart_Click()
16: Dim Answer As Integer
17: Answer = MsgBox(“Restart the game?”, _
18: vbYesNo Or vbQuestion, “Start Game”)
19: If Answer = vbYes Then
20: If CardCount = 26 Then
21: Player = Player + 1
22: If Player > NumPlayers Then Player = FirstPlayer
23: Else
24: Player = FirstPlayer
25: End If
26: DrawNewCardsInGrid
27: InitGame
28: End If
29: End Sub

These are the event procedures that respond when the player clicks one of the
command buttons. The cmdQuit_Click event procedure in Lines 4 to 9 ends the

game when the player clicks the Quit button, and the cmdScore_Click event procedure
(Lines 11 to 13) displays the high-score board when the player clicks the Score button.

ANALYSIS

13 067231987x CH09 11/6/00 7:13 PM Page 267

Finally, the cmdStart_Click event procedure in Lines 15 to 29 starts a new game when
the player clicks the Start button, taking into account whether the game is a one- or two-
player game.

Completing the Game
Now, add the general game subroutines, functions, constants, and variables:

1. Add the initialization subroutines (see Listing 9.3) to the code window. You can
either type the code or copy it from the PokerSquares3.txt file, which you can find
in the Chap09\Code directory of this book’s CD-ROM.

LISTING 9.3 The Button Handlers

1: ‘==
2: ‘ Initialization Routines.
3: ‘==
4: Sub InitGame()
5: Dim j As Integer
6: If Player = FirstPlayer Or CardCount < 26 Then
7: Deck.Shuffle
8: Else
9: Deck.Restore
10: End If
11: Deck.Deal 1, 0, DISPENSERX, DISPENSERY, 0, FaceUp
12: For j = 0 To CELLCOUNT - 1
13: Grid(j) = EMPTYCELL
14: Next j
15: CardCount = 1
16: End Sub
17:
18: Function GetNumPlayers() As Integer
19: Dim Answer As Integer
20: Answer = MsgBox(“Is this a two-player game?”, _
21: vbYesNo Or vbQuestion, “Poker Squares”)
22: GetNumPlayers = 1
23: If Answer = vbYes Then GetNumPlayers = 2
24: End Function

The InitGame subroutine (Lines 4 to 16) initialize the deck of cards (Lines 6 to
11) and the game grid (Lines 12 to 14). This subroutine also initializes the

CardCount variable (Line 15). The GetNumPlayers function (Lines 18 to 24) retrieves the
number of players from the user.

268 Day 9

ANALYSIS

13 067231987x CH09 11/6/00 7:13 PM Page 268

Poker Squares 269

9

2. Add the general subroutines (see Listing 9.4) to the code window. You can either
type the code or copy it from the PokerSquares4.txt file, which you can find in the
Chap09\Code directory of this book’s CD-ROM.

LISTING 9.4 The General Subroutines

1: ‘==
2: ‘ General Game Subroutines.
3: ‘==
4: Sub GetCardXY(Card As Integer, PixelX As Integer, _
5: PixelY As Integer)
6: PixelX = (Card Mod COLUMNCOUNT) * CELLWIDTH + MINX
7: PixelY = (Card \ COLUMNCOUNT) * CELLHEIGHT + MINY
8: End Sub
9:
10: Sub EvaluateHands()
11: PlayerScores(Player) = 0
12: EraseScores
13: PlayerScores(Player) = _
14: PlayerScores(Player) + GetRowScores
15: PlayerScores(Player) = _
16: PlayerScores(Player) + GetColumnScores
17: ShowTotalScore
18: End Sub
19:
20: Sub EraseScores()
21: CardForm.ForeColor = RGB(172, 172, 172)
22: CardForm.Line (ROWSCORESX, SCOREOFFSETY)- _
23: (ROWSCORESX + 40, SCOREOFFSETY + 60), , BF
24: CardForm.ForeColor = RGB(160, 0, 0)
25: CardForm.ForeColor = RGB(172, 172, 172)
26: CardForm.Line (COLSCORESX, SCOREOFFSETY)- _
27: (COLSCORESX + 40, SCOREOFFSETY + 60), , BF
28: CardForm.ForeColor = RGB(160, 0, 0)
29: End Sub
30:
31: Sub ShowTotalScore()
32: CardForm.ForeColor = RGB(172, 172, 172)
33: CardForm.Line (TOTALSCOREX, TOTALSCOREY)- _
34: (TOTALSCOREX + 100, TOTALSCOREY + 30), , BF
35: CardForm.ForeColor = RGB(160, 0, 0)
36: CardForm.CurrentX = TOTALSCOREX
37: CardForm.CurrentY = TOTALSCOREY
38: CardForm.Font.Size = 24
39: CardForm.Print PlayerScores(Player)
40: CardForm.Font.Size = 8
41: End Sub
42:
43: Sub ShowPlayerScore()
44: Dim s As String

13 067231987x CH09 11/6/00 7:13 PM Page 269

45: CardForm.ForeColor = RGB(172, 172, 172)
46: CardForm.Line (PLAYERSCOREX, Player * _
47: LINESPACING + PLAYERSCOREY)- _
48: (PLAYERSCOREX + 30, Player * (LINESPACING + 3) + _
49: PLAYERSCOREY + 12), , BF
50: CardForm.ForeColor = RGB(160, 0, 0)
51: CardForm.CurrentX = PLAYERSCOREX
52: CardForm.CurrentY = Player * (LINESPACING + 3) + PLAYERSCOREY
53: CardForm.Print PlayerScores(Player)
54: AddToScoreFile
55: End Sub
56:
57: Sub DrawNewCardsInGrid()
58: Dim Col As Integer
59: Dim Row As Integer
60: For Col = 0 To COLUMNCOUNT - 1
61: For Row = 0 To ROWCOUNT - 1
62: CardForm.PaintPicture frmCards.Picture1(CARDBACK), _
63: Col * CELLWIDTH + MINX, Row * CELLHEIGHT + MINY
64: Next Row
65: Next Col
66: End Sub
67:
68: Sub SortCards(cards() As Integer, hand() As Integer)
69: Dim i As Integer
70: For i = 0 To 13
71: cards(i) = 0
72: Next i
73: cards(13) = 1
74: For i = 0 To 4
75: If hand(i) <> NOCARD Then
76: Dim val As Integer
77: val = hand(i) Mod 13
78: cards(val) = cards(val) + 1
79: End If
80: Next i
81: End Sub

The GetCardXY subroutine (Lines 4 to 8) gets the pixel X and Y coordinates of a
given card in the grid, whereas EvaluateHands (Lines 10 to 18) calculates the

scores for each column and row in the grid. The EraseScores subroutine (Lines 20 to
29) erases the old scores from the screen in preparation for displaying the new scores,
which is handled by ShowTotalScore (Lines 31 to 41) and ShowPlayerScore (Lines 43
to 55). The DrawNewCardsInGrid subroutine (Lines 57 to 66) fills the grid with card
backs, whereas the SortCards subroutine (Lines 68 to 81) sorts the cards in preparation
for analyzing the hands.

270 Day 9

LISTING 9.4 continued

ANALYSIS

13 067231987x CH09 11/6/00 7:13 PM Page 270

Poker Squares 271

9

3. Add the file-handling subroutines (see Listing 9.5) to the code window. You can
either type the code or copy it from the PokerSquares5.txt file, which you can find
in the Chap09\Code directory of this book’s CD-ROM.

LISTING 9.5 The File-Handling Subroutines

1: ‘==
2: ‘ File Handling Subroutines.
3: ‘==
4: Sub WriteScoreFile(names() As String, scores() As Integer)
5: ‘ChDir “c:\TYVBGames\PokerSquares”
6: Open “highscr.dat” For Binary As #1
7: Put #1, , names
8: Put #1, , scores
9: Close #1
10: End Sub
11:
12: Sub ReadScoreFile(names() As String, scores() As Integer)
13: ‘ChDir “c:\TYVBGames\PokerSquares”
14: Open “highscr.dat” For Binary As #1
15: Get #1, , names
16: Get #1, , scores
17: Close #1
18: End Sub
19:
20: Sub AddToScoreFile()
21: Dim names(MAXHIGHSCORES - 1) As String
22: Dim scores(MAXHIGHSCORES - 1) As Integer
23: Dim name As String
24: Dim i As Integer
25: Dim X As Integer
26: Dim NewHighScore As Boolean
27: Dim HighScore As Integer
28: Dim NameLen As Integer
29: ReadScoreFile names, scores
30: X = 0
31: NewHighScore = False
32: Do
33: HighScore = scores(X)
34: If PlayerScores(Player) > HighScore Then
35: NewHighScore = True
36: For i = MAXHIGHSCORES - 2 To X Step -1
37: names(i + 1) = names(i)
38: scores(i + 1) = scores(i)
39: Next i
40: name = InputBox _
41: (“Please enter your name for the high-score board.”,
42: _
43: “New High Score”)
44: NameLen = Len(name)

13 067231987x CH09 11/6/00 7:13 PM Page 271

45: If NameLen > 10 Then
46: name = Left$(name, 10)
47: NameLen = 10
48: End If
49: For i = NameLen To 9
50: name = name & “.”
51: Next i
52: name = UCase(name)
53: names(X) = name
54: scores(X) = PlayerScores(Player)
55: WriteScoreFile names, scores
56: End If
57: X = X + 1
58: Loop While ((Not NewHighScore) And (X < MAXHIGHSCORES))
59: If NewHighScore Then ShowScoreFile (X - 1)
60: End Sub
61:
62: Sub ShowScoreFile(NameToHighlight As Integer)
63: Dim names(MAXHIGHSCORES - 1) As String
64: Dim scores(MAXHIGHSCORES - 1) As Integer
65: Dim str As String
66: Dim X As Integer
67: ReadScoreFile names, scores
68: ScoreForm.Left = CardForm.Left + 100
69: ScoreForm.Top = CardForm.Top + 100
70: ScoreForm.Show
71: For X = 0 To MAXHIGHSCORES - 1
72: If X < 9 Then
73: str = “ “ & X + 1
74: Else
75: str = X + 1
76: End If
77: str = str & “. “ & names(X) & scores(X)
78: ScoreForm.CurrentX = 20
79: ScoreForm.CurrentY = 20 + X * LINESPACING
80: If X = NameToHighlight Then ScoreForm.ForeColor = vbBlue
81: ScoreForm.Print str
82: ScoreForm.ForeColor = vbBlack
83: Next X
84: End Sub

The WriteScoreFile subroutine (Lines 4 to 10) updates the high-score file with
the latest set of player names and high scores. The ReadScoreFile subroutine

reads the current player names and high scores from the high-score file, whereas
AddToScoreFile (Lines 20 to 60) adds a new score to the high-score list, sorting the
scores in descending order. Finally, ShowScoreFile displays the high-score file in the
ScoreForm window.

272 Day 9

LISTING 9.5 continued

ANALYSIS

13 067231987x CH09 11/6/00 7:13 PM Page 272

Poker Squares 273

9

4. Add the game functions (see Listing 9.6) to the code window. You can either type
the code or copy it from the PokerSquares6.txt file, which you can find in the
Chap09\Code directory of this book’s CD-ROM.

LISTING 9.6 The Game Functions

1: ‘==
2: ‘ Game Functions.
3: ‘==
4: Function GetColumnScores()
5: Dim Col As Integer
6: Dim Start As Integer
7: Dim X As Integer
8: Dim i As Integer
9: Dim hand(4) As Integer
10: Dim Score As Integer
11: Dim BestHand As Integer
12: For Col = 0 To COLUMNCOUNT - 1
13: Start = Col
14: For X = 0 To 4
15: hand(X) = NOCARD
16: Next X
17: i = 0
18: For X = 0 To 4
19: If Grid(X * COLUMNCOUNT + Col) <> EMPTYCELL Then
20: hand(i) = Deck.GetCardValue(0, _
21: Grid(X * COLUMNCOUNT + Col))
22: i = i + 1
23: End If
24: Next X
25: BestHand = GetBestHand(hand)
26: Score = GetScore(BestHand)
27: CardForm.CurrentX = COLSCORESX
28: CardForm.CurrentY = Col * LINESPACING + SCOREOFFSETY
29: CardForm.Print Score
30: GetColumnScores = GetColumnScores + Score
31: Next Col
32: End Function
33:
34: Function GetRowScores() As Integer
35: Dim Row As Integer
36: Dim Start As Integer
37: Dim X As Integer
38: Dim i As Integer
39: Dim hand(4) As Integer
40: Dim BestHand As Integer
41: Dim Score As Integer
42: For Row = 0 To ROWCOUNT - 1
43: Start = Row * COLUMNCOUNT

13 067231987x CH09 11/6/00 7:13 PM Page 273

44: For X = 0 To 4
45: hand(X) = NOCARD
46: Next X
47: i = 0
48: For X = Start To Start + 4
49: If Grid(X) <> EMPTYCELL Then
50: hand(i) = Deck.GetCardValue(0, Grid(X))
51: i = i + 1
52: End If
53: Next X
54: BestHand = GetBestHand(hand)
55: Score = GetScore(BestHand)
56: GetRowScores = GetRowScores + Score
57: CardForm.CurrentX = ROWSCORESX
58: CardForm.CurrentY = Row * LINESPACING + SCOREOFFSETY
59: CardForm.Print Score
60: Next Row
61: End Function
62:
63: Function CalcCardNumber(PixelX As Single, _
64: PixelY As Single) As Integer
65: Dim GridX As Integer
66: Dim GridY As Integer
67: GridX = (PixelX - MINX) \ CELLWIDTH
68: GridY = (PixelY - MINY) \ CELLHEIGHT
69: CalcCardNumber = GridY * COLUMNCOUNT + GridX
70: End Function
71:
72: Function GetScore(BestHand As Integer) As Integer
73: Select Case BestHand
74: Case NoHand
75: GetScore = 0
76: Case Pair
77: GetScore = 5
78: Case TwoPair
79: GetScore = 15
80: Case ThreeOfAKind
81: GetScore = 20
82: Case Straight
83: GetScore = 30
84: Case Flush
85: GetScore = 35
86: Case FullHouse
87: GetScore = 45
88: Case FourOfAKind
89: GetScore = 60
90: Case StraightFlush
91: GetScore = 100

274 Day 9

LISTING 9.6 continued

13 067231987x CH09 11/6/00 7:13 PM Page 274

Poker Squares 275

9

92: End Select
93: End Function
94:
95: Function GetBestHand(hand() As Integer) As Integer
96: Dim FlushFlag As Boolean
97: Dim StraightFlag As Boolean
98: Dim PairFlag As Boolean
99: Dim TwoPairFlag As Boolean
100: Dim ThreeOfAKindFlag As Boolean
101: Dim FourOfAKindFlag As Boolean
102: Dim cards(13) As Integer
103:
104: FlushFlag = CheckForFlush(hand)
105: SortCards cards, hand
106: StraightFlag = CheckForStraight(cards, hand)
107: PairFlag = CheckForPair(cards)
108: TwoPairFlag = CheckForTwoPair(cards)
109: ThreeOfAKindFlag = CheckForThreeOfAKind(cards)
110: FourOfAKindFlag = CheckForFourOfAKind(cards)
111:
112: If (StraightFlag) And (FlushFlag) Then
113: GetBestHand = StraightFlush
114: ElseIf FourOfAKindFlag Then
115: GetBestHand = FourOfAKind
116: ElseIf (PairFlag) And (ThreeOfAKindFlag) Then
117: GetBestHand = FullHouse
118: ElseIf FlushFlag Then
119: GetBestHand = Flush
120: ElseIf StraightFlag Then
121: GetBestHand = Straight
122: ElseIf ThreeOfAKindFlag Then
123: GetBestHand = ThreeOfAKind
124: ElseIf TwoPairFlag Then
125: GetBestHand = TwoPair
126: ElseIf PairFlag Then
127: GetBestHand = Pair
128: Else
129: GetBestHand = NoHand
130: End If
131: End Function
132:
133: Function CheckForTwoPair(cards() As Integer)
134: Dim i As Integer
135: Dim PairFlag As Boolean
136: CheckForTwoPair = False
137: PairFlag = False
138: For i = Ace To King
139: If cards(i) = 2 And PairFlag Then

LISTING 9.6 continued

13 067231987x CH09 11/6/00 7:13 PM Page 275

140: CheckForTwoPair = True
141: ElseIf cards(i) = 2 Then
142: PairFlag = True
143: End If
144: Next i
145: End Function
146:
147: Function CheckForThreeOfAKind(cards() As Integer) As Boolean
148: Dim i As Integer
149: CheckForThreeOfAKind = False
150: For i = Ace To King
151: If cards(i) = 3 Then CheckForThreeOfAKind = True
152: Next i
153: End Function
154:
155: Function CheckForFourOfAKind(cards() As Integer) As Boolean
156: Dim i As Integer
157: CheckForFourOfAKind = False
158: For i = Ace To King
159: If cards(i) = 4 Then CheckForFourOfAKind = True
160: Next i
161: End Function
162:
163: Function CheckForPair(cards() As Integer) As Boolean
164: Dim i As Integer
165: CheckForPair = False
166: For i = Ace To King
167: If cards(i) = 2 Then CheckForPair = True
168: Next i
169: End Function
170:
171: Function CheckForFlush(hand() As Integer) As Boolean
172: Dim i As Integer
173: Dim Suit As Integer
174: Suit = hand(0) \ 13
175: CheckForFlush = True
176: For i = 1 To 4
177: If hand(i) \ 13 <> Suit Or hand(i) = NOCARD Then _
178: CheckForFlush = False
179: Next i
180: End Function
181:
182: Function CheckForStraight(cards() As Integer, _
183: hand() As Integer) As Boolean
184: Dim First As Integer
185: Dim i As Integer
186: First = -1
187: i = Ace

276 Day 9

LISTING 9.6 continued

13 067231987x CH09 11/6/00 7:13 PM Page 276

Poker Squares 277

9

188: Do
189: If ((cards(i)) And (i <> Ace Or cards(Two))) _
190: Then First = i
191: i = i + 1
192: Loop While (First = -1)
193: If (First > Ten) Then
194: CheckForStraight = False
195: Else
196: CheckForStraight = True
197: For i = First To First + 4
198: If (cards(i) = 0) Then CheckForStraight = False
199: Next i
200: End If
201: End Function

These functions implement the scoring in the game and are discussed in detail
later in this chapter.

5. Add the variable declarations and enumerations (see Listing 9.7) to the top of the
code window. You can either type the code or copy it from the PokerSquares7.txt
file, which you can find in the Chap09\Code directory of this book’s CD-ROM.

LISTING 9.7 The Game’s Declarations

1: ‘==
2: ‘ Poker Squares for Visual Basic 6
3: ‘ by Clayton Walnum
4: ‘ Copyright 2000 by Macmillan Computer Publishing
5: ‘==
6: Option Explicit
7:
8: ‘==
9: ‘ Constants.
10: ‘==
11: Const EMPTYCELL = -1
12: Const NOCARD = -1
13: Const MINX = 28
14: Const MAXX = 332
15: Const MINY = 28
16: Const MAXY = 450
17: Const CELLWIDTH = 62
18: Const CELLHEIGHT = 86
19: Const COLUMNCOUNT = 5
20: Const ROWCOUNT = 5
21: Const DISPENSERX = 369
22: Const DISPENSERY = 151

LISTING 9.6 continued

ANALYSIS

13 067231987x CH09 11/6/00 7:13 PM Page 277

23: Const LINESPACING = 12
24: Const ROWSCORESX = 441
25: Const PLAYERSCOREX = 535
26: Const PLAYERSCOREY = 182
27: Const CARDBACK = 52
28: Const MAXHIGHSCORES = 15
29: Const CELLCOUNT = 25
30: Const COLSCORESX = 553
31: Const SCOREOFFSETY = 281
32: Const TOTALSCOREX = 430
33: Const TOTALSCOREY = 365
34:
35: Public Enum PokerHandsEnum
36: NoHand
37: Pair
38: TwoPair
39: ThreeOfAKind
40: Straight
41: Flush
42: FullHouse
43: FourOfAKind
44: StraightFlush
45: End Enum
46:
47: Public Enum PlayerEnum
48: FirstPlayer
49: SecondPlayer
50: End Enum
51:
52: ‘==
53: ‘ General Game Variables.
54: ‘==
55: Dim Player As Integer
56: Dim CardCount As Integer
57: Dim Grid(24) As Integer
58: Dim PlayerScores(2)
59: Dim Deck As clsDeck
60: Dim NumPlayers As Integer

These lines declare all the global game variables and constants. Later in this
chapter, you’ll examine these symbols in detail.

6. Add the frmCards.frm form and the clsCard, clsDeck, and Cards.bas modules to
the project, just as you did with the previous demo program.

7. Save your work.

You’ve now completed the Poker Squares program.

278 Day 9

LISTING 9.7 continued

ANALYSIS

13 067231987x CH09 11/6/00 7:13 PM Page 278

Poker Squares 279

9

Understanding Poker Squares
Now that you’ve played the game and built your own version, it’s time to examine the
code, starting with the game’s constants and variables.

The Poker Squares Variables and Constants
Poker Squares relies on a set of global variables and constants that it declares near the
top of the program. Table 9.1 lists the general global variables and their descriptions, and
Table 9.2 lists the constants.

TABLE 9.1 The Poker Squares General Game Variables

Variable Type Description

CardCount Integer The number of cards that have been dealt in the current
game

Deck clsDeck The game’s clsDeck object, which represents the deck of
cards

Grid() Integer An array that holds the card numbers for each cell in the
card grid

NumPlayers Integer The number of players in the current game

Player Integer The current player

PlayerScores() Integer An array that holds the scores for up to two players

TABLE 9.2 The Poker Squares Constants

Constant Description

CARDBACK The number of the card-back image

CELLCOUNT The number of cells in the grid

CELLHEIGHT The height of a cell in the card grid

CELLWIDTH The width of a cell in the card grid

COLSCORESX The X coordinate of the column scores

COLUMNCOUNT The number of columns in the grid

DISPENSERX The X coordinate of the card dispenser

DISPENSERY The Y coordinate of the card dispenser

EMPTYCELL The value that represents a grid cell that does not yet contain a card

LINESPACING The amount of space between lines of text in the scoreboards

MAXHIGHSCORES The maximum number of scores that will fit in the high score window

MAXX The maximum X value that is a valid mouse click in the grid

13 067231987x CH09 11/6/00 7:13 PM Page 279

MAXY The maximum Y value that is a valid mouse click in the grid

MINX The minimum X value that is a valid mouse click in the grid

MINY The minimum Y value that is a valid mouse click in the grid

NOCARD The value that indicates an empty position in a hand

PLAYERSCOREX The X coordinate of the player scores

PLAYERSCOREY The Y coordinate of the player scores

ROWCOUNT The number of rows in the grid

ROWSCORESX The X coordinate of the row scores

SCOREOFFSETY The Y coordinate of the row and column scores

TOTALSCOREX The X coordinate of the total score for the current game

TOTALSCOREY The Y coordinate of the total score for the current game

The Poker Squares program also defines two enumerations. The PokerHandsEnum enu-
meration defines constants for the nine different poker hands (including a non-scoring
hand), and the PlayerEnum enumeration defines the FirstPlayer and SecondPlayer

constants. (The SecondPlayer constant is not currently used in the program.)

Getting Row and Column Scores
Most of the source code in Poker Squares is easy to understand, especially now that you
can handle the clsCard and clsDeck classes. However, the card-evaluation functions,
which are the core of the game, require discussion.

The program calls the function EvaluateHands whenever the player places a new card in
the card grid. This function calculates the current row and column scores by calling the
GetRowScores and GetColumnScores functions. Also, EvaluateHands displays the play-
er’s new total score.

LISTING 9.8 The EvaluateHands Subroutine

1: Sub EvaluateHands()
2: PlayerScores(Player) = 0
3: EraseScores
4: PlayerScores(Player) = _
5: PlayerScores(Player) + GetRowScores
6: PlayerScores(Player) = _
7: PlayerScores(Player) + GetColumnScores
8: ShowTotalScore
9: End Sub

280 Day 9

TABLE 9.2 continued

Constant Description

13 067231987x CH09 11/6/00 7:13 PM Page 280

Poker Squares 281

9

This subroutine calls the functions required to calculate the player’s scores. Lines
4 and 5 get the row scores, and Lines 6 and 7 get the column scores.

The GetRowScores function starts a For loop that examines each of the five rows:

For Row = 0 To ROWCOUNT - 1

The function then calculates the cell number that starts the current row:

Start = Row * COLUMNCOUNT

Next, the function initializes the local hand array:

For X = 0 To 4
hand(X) = NOCARD

Next X

Another For loop gets the cards from the current row and places them into the hand
array.

LISTING 9.9 Initializing the Hand Array

1: i = 0
2: For X = Start To Start + 4
3: If Grid(X) <> EMPTYCELL Then
4: hand(i) = Deck.GetCardValue(0, Grid(X))
5: i = i + 1
6: End If
7: Next X

Line 1 initializes an index into the hand() array, and the loop in Lines 3 to 6 gets
the value of each card and places that value into the hand() array.

With the cards assembled into the hand array, the function calls GetBestHand, which ana-
lyzes the cards in the hand array and returns the highest-scoring hand for those cards:

BestHand = GetBestHand(hand)

The GetScore function then returns the score for the hand returned by GetBestHand, and
the function adds the score to the row scores total:

Score = GetScore(BestHand)
GetRowScores = GetRowScores + Score

Finally, GetRowScores displays the score for the current row, and the For loop continues
to the next row:

CardForm.CurrentX = ROWSCORESX
CardForm.CurrentY = Row * LINESPACING + SCOREOFFSETY
CardForm.Print Score

Next Row

ANALYSIS

ANALYSIS

13 067231987x CH09 11/6/00 7:13 PM Page 281

The function GetBestHand analyzes a hand of five cards and determines the highest-
scoring combination. It declares a set of flags that represent the various combinations of
cards:

Dim FlushFlag As Boolean
Dim StraightFlag As Boolean
Dim PairFlag As Boolean
Dim TwoPairFlag As Boolean
Dim ThreeOfAKindFlag As Boolean
Dim FourOfAKindFlag As Boolean

The GetBestHand function sets these flags by calling other functions that specialize in
calculating each type of hand. Checking for a flush, for example, is the job of the
CheckForFlush function:

FlushFlag = CheckForFlush(hand)

Checking for a flush is easy, as you’ll see when you examine the CheckForFlush func-
tion. Other types of poker hands require some extra processing. To start this processing,
GetBestHand defines an array that can hold 13 card values:

Dim cards(13) As Integer

Each element in the array represents a card of a specific face value. That is, cards(0)
represents aces, cards(1) represents twos, cards(2) represents threes, and so on, up to
cards(12), which represents kings. The element cards(13) represents aces when used
as high cards.

The SortCards subroutine sorts the cards in the current hand into the cards array:

SortCards cards, hand

With the cards sorted, GetBestHand can call the other functions that check for poker
hands:

StraightFlag = CheckForStraight(cards, hand)
PairFlag = CheckForPair(cards)
TwoPairFlag = CheckForTwoPair(cards)
ThreeOfAKindFlag = CheckForThreeOfAKind(cards)
FourOfAKindFlag = CheckForFourOfAKind(cards)

At this point, GetBestHand has set all the poker-hand flags. The final step is to check the
flags in order to determine the best possible hand, as shown in Listing 9.10.

282 Day 9

13 067231987x CH09 11/6/00 7:13 PM Page 282

Poker Squares 283

9

LISTING 9.10 Initializing the Hand Array

1: If (StraightFlag) And (FlushFlag) Then
2: GetBestHand = StraightFlush
3: ElseIf FourOfAKindFlag Then
4: GetBestHand = FourOfAKind
5: ElseIf (PairFlag) And (ThreeOfAKindFlag) Then
6: GetBestHand = FullHouse
7: ElseIf FlushFlag Then
8: GetBestHand = Flush
9: ElseIf StraightFlag Then
10: GetBestHand = Straight
11: ElseIf ThreeOfAKindFlag Then
12: GetBestHand = ThreeOfAKind
13: ElseIf TwoPairFlag Then
14: GetBestHand = TwoPair
15: ElseIf PairFlag Then
16: GetBestHand = Pair
17: Else
18: GetBestHand = NoHand
19: End If

This function must consider that some poker hands are actually combinations of
two types of hands. For example, the best poker hand, a straight flush, is a

straight that is also a flush (Line 1). Similarly, a full house has both a pair and three of a
kind (Line 5).

Analyzing Poker Hands
As you’ve learned, the CheckForFlush, CheckForStraight, CheckForPair,
CheckForTwoPair, CheckForThreeOfAKind, and CheckForFourOfAKind functions analyze
the cards for the various poker card combinations.

The CheckForFlush function simply checks whether every card in the current hand is of
the same suit. The function must also check that there are no empty elements (-1, repre-
sented by the NOCARD constant) in the hand array. This is because a flush must be five
cards of the same suit.

LISTING 9.11 The CheckForFlush Function

1: Function CheckForFlush(hand() As Integer) As Boolean
2: Dim i As Integer
3: Dim Suit As Integer
4: Suit = hand(0) \ 13
5: CheckForFlush = True
6: For i = 1 To 4

ANALYSIS

13 067231987x CH09 11/6/00 7:13 PM Page 283

7: If hand(i) \ 13 <> Suit Or hand(i) = NOCARD Then _
8: CheckForFlush = False
9: Next i
10: End Function

In Line 4 of CheckForFlush, the program first calculates the suit of the first card
in the hand array. It then compares this suit to the others in the hand (Lines 5 to

9). If the suit of any of the cards does not match or if the card position is empty,
CheckForFlush returns False (Lines 7 and 8). Otherwise, CheckForFlush remains True
throughout the entire loop.

To check for other card combinations, the program must first sort the cards in the current
hand into the cards array, which it does with the SortCards subroutine, shown in
Listing 9.12.

LISTING 9.12 The SortCards Function

1: Sub SortCards(cards() As Integer, hand() As Integer)
2: Dim i As Integer
3: For i = 0 To 13
4: cards(i) = 0
5: Next i
6: cards(13) = 1
7: For i = 0 To 4
8: If hand(i) <> NOCARD Then
9: Dim val As Integer
10: val = hand(i) Mod 13
11: cards(val) = cards(val) + 1
12: End If
13: Next i
14: End Sub

The array element cards(13) is always set to 1 (Line 6), which enables the pro-
gram to treat an ace as the highest card in the deck. As you may recall, the hand

array contains ID values of the cards in the hand. These values range from 0 (for the ace
of diamonds) to 51 (for the king of hearts). The program performs modulus division to
calculate the card’s face value (Line 10). Then it uses the card’s face value as an index
into the cards array (Line 11), incrementing the count for that card type. The program
stores the number of aces into cards(0), the number of twos into cards(1), the number
of threes into cards(2), and so on.

284 Day 9

LISTING 9.11 continued

ANALYSIS

ANALYSIS

13 067231987x CH09 11/6/00 7:13 PM Page 284

Poker Squares 285

9

Once the cards in the current hand have been sorted into the cards array, checking for a
pair is easy, as seen in Listing 9.13.

LISTING 9.13 The CheckForPair Function

1: Function CheckForPair(cards() As Integer) As Boolean
2: Dim i As Integer
3: CheckForPair = False
4: For i = Ace To King
5: If cards(i) = 2 Then CheckForPair = True
6: Next i
7: End Function

If there’s any occurrence of 2 in the card array, meaning that there are two of
that card in the hand, the player has a pair (Line 5). For example, a 2 in

cards(2) means that the player has a pair of threes.

Checking for three of a kind is just as easy, except the function checks for a 3 in an ele-
ment of the cards array, rather than for a 2, as shown in this snippet from the
CheckForThreeOfAKind function:

For i = Ace To King
If cards(i) = 3 Then CheckForThreeOfAKind = True

Next i

Checking for two pair is a little bit trickier because it has to check for a pair twice. Still,
the process is straightforward and not unlike checking for a single pair.

LISTING 9.14 Checking for Two Pairs

1: For i = Ace To King
2: If cards(i) = 2 And PairFlag Then
3: CheckForTwoPair = True
4: ElseIf cards(i) = 2 Then
5: PairFlag = True
6: End If
7: Next i

To check for a straight, the program calls the CheckForStraight function.

ANALYSIS

13 067231987x CH09 11/6/00 7:13 PM Page 285

LISTING 9.15 The CheckForStraight Function

1: Function CheckForStraight(cards() As Integer, _
2: hand() As Integer) As Boolean
3: Dim First As Integer
4: Dim i As Integer
5: First = -1
6: i = Ace
7: Do
8: If ((cards(i)) And (i <> Ace Or cards(Two))) Then First = i
9: i = i + 1
10: Loop While (First = -1)
11: If (First > Ten) Then
12: CheckForStraight = False
13: Else
14: CheckForStraight = True
15: For i = First To First + 4
16: If (cards(i) = 0) Then CheckForStraight = False
17: Next i
18: End If
19: End Function

CheckForStraight finds the first card in the cards array (Lines 7 to 10) and
then checks that five consecutive elements in cards contain a value other than 0

(Lines 14 to 17). Finding the first card is complicated by the fact that an ace, which is
stored in cards(0), can be counted as either the lowest or highest card in the deck. If an
ace is used as the high card in a straight, the cards array looks like Figure 9.6.

286 Day 9

ANALYSIS

1 0 0 0 0 0 0 0 0

0

1 1 1 1 1FIGURE 9.6
An ace-high straight in
the cards array.

As you can see in Figure 9.6, the cards array contains a 1 in cards(0), which is the
hand’s ace count, and a 1 in cards(13), which enables an ace to be counted as a high
card in a straight. The Do loop that finds the first card in the hand takes this ace compli-
cation into account.

In this loop, if cards contains no ace, the program simply finds the first element of
cards that contains a value. That element is considered to hold the first card in a possible
straight. If the cards array indicates an ace (cards(0) = 1), the ace is considered the
first card of a possible straight only if the cards array also indicates that the hand holds a
two (cards(1) = 1). Otherwise, the next element of cards after cards(0) that contains
a card is considered the first card in a possible straight.

13 067231987x CH09 11/6/00 7:13 PM Page 286

Poker Squares 287

9

After finding the first card in a possible straight, the program examines the rest of the
cards to see whether a straight exists. If the first card is greater than TEN (that is, it’s a
jack, queen, or king), the hand cannot possibly hold a straight. Otherwise, the program
sets CheckForStraight to True and then checks each consecutive element of cards for a
value, starting with First. If any of the five elements of cards from First to First+4

contain a 0, there is no straight and the CheckForStraight returns False.

You could probably optimize the code in GetBestHand quite a bit, but at the cost of mak-
ing it harder to understand. For example, the program can probably get by without a flag
for each poker card combination, but the flags help you see exactly what the program is
doing. If Poker Squares suffered in the speed department because of its lack of optimiza-
tion, you would have to find a faster way to handle the cards. But Poker Squares runs
fast enough, so the readability of the code is the most important factor in the design of an
algorithm.

High-Score Files
Game players love to beat old scores, and little gives them more pleasure than seeing
their name and score up in lights. Poker Squares uses a high-score file that holds 15
names and scores in descending order. That is, the highest score is the first in the file.
There’s no high-score file the first time that someone plays Poker Squares, so the pro-
gram creates one. The default high-score file contains nothing but 15 sets of an empty
string followed by a zero score.

When a player finishes a hand of Poker Squares, the program loads the high-score file
and checks whether the player’s score beats one already in the file. If it does, the pro-
gram asks for a new name. Then the program inserts the new name and score into the file
and writes the entire file back to disk.

The program handles the high-score file in the functions ShowScoreFile,
AddToScoreFile, ReadScoreFile, and WriteScoreFile. You can easily modify these
functions to create high-score files and displays for any of your games.

Summary
Poker Squares provides all the tools that you need to create many types of poker games.
For example, you could write a version of a video poker machine, similar to those found
in casinos. Instead of keeping track of scores, you could start each player with a specific
amount of money. The player who lasts the longest before going broke gets his or her
name on the high-score board. Use your imagination—maybe you can invent a whole
new kind of poker game!

13 067231987x CH09 11/6/00 7:13 PM Page 287

In Day 10, you’ll learn a bit about writing an intelligent computer player by using the
card classes to create a traditional poker game. Along the way, you’ll use the tools that
you developed in this chapter.

Q&A
Q Why does Poker Squares load a bitmap for its background image instead of

drawing the game screen using Visual Basic drawing commands?

A When you have a complicated background, it’s usually easier to draw it using a
paint program like Microsoft Paint than it is to write all the code required to draw
the same screen.

Q It seems to me that Poker Squares uses a lot of code to analyze poker hands.
Isn’t there an easier way?

A I don’t know whether there’s an easier way, but there are surely many different
ways. When you’re writing algorithms, you need to pick a method that you can
easily understand but that doesn’t bog down the program. There are surely faster,
more efficient ways to analyze poker hands than the method used in Poker Squares,
but the more efficient an algorithm becomes, the harder it tends to be to program
and understand. The Poker Squares algorithms are plenty speedy enough for this
game.

Q What if the player wants to get rid of all the high scores and start a new high-
score file?

A All the player has to do is delete the highscr.dat file from the Poker Squares direc-
tory, and the program will automatically create a new file when it needs it.

Workshop
The workshop includes quiz questions to help gauge your grasp of the material. You’ll
find the answers to this quiz in Appendix A. Even if you feel that you totally understand
the concepts presented here, you should work through the quiz anyway. The last section
contains an exercise to help reinforce your learning.

Quiz
1. What method of the clsDeck class makes it possible for Poker Squares to deal the

same cards to two players?

2. Explain how the MINX, MAXX, MINY, and MAXY constants are used in the Poker
Squares program.

288 Day 9

13 067231987x CH09 11/6/00 7:13 PM Page 288

Poker Squares 289

9

3. Why doesn’t the Poker Squares program have CheckForFullHouse and
CheckForStraightFlush functions?

4. In the GetBestHand function, what does the program store in the cards array?

5. What does the global Grid array contain?

6. Explain briefly how Poker Squares analyzes cards for scoring poker hands.

7. Why does the cards array have 14 elements instead of only 13?

Exercise
1. Modify Poker Squares so that a pair of aces is worth 25 points.

13 067231987x CH09 11/6/00 7:13 PM Page 289

13 067231987x CH09 11/6/00 7:13 PM Page 290

DAY 10

WEEK 2

Programming Computer
Opponents

Most of the games in this book are single-player games that require computer
“intelligence” only for the enforcing of the game’s rules. Many other types of
games require two or more players, however. What happens when you have a
multiplayer computer game and there’s nobody else to play? You, as the game’s
programmer, must supply a computer opponent.

Today you’ll create a strategy game called Crystals, which pits a human player
against the computer. Specifically, you’ll learn the following:

• The different approaches to artificial intelligence

• How to build the strategy game Crystals

• How to use “brute force” algorithms to create a computer opponent

• How to analyze game moves for the best score

14 067231987x CH10 11/6/00 7:16 PM Page 291

A Short Introduction to Artificial Intelligence
Artificial intelligence (AI) is one of the most controversial branches of computer science.
Some scientists believe that eventually computers will be able to outthink people, where-
as others believe such a claim is pure science fiction. AI research hasn’t progressed as
rapidly as its adherents would like, so the debate is still raging.

One thing’s for sure: You can make a computer do some amazing things by implement-
ing AI routines. For example, neural networks and fuzzy logic routines can help comput-
ers learn from experience, as well as make reasonable choices. Unless you’re a computer
scientist, though, or you’re willing to spend years in school becoming one, these high-
tech types of AI are out of the reach of the average game programmer.

So, how do you make a computer act as a game opponent? The solutions to this problem
are as varied as the games to which you can apply them. The approach that you take can
also vary. For example, do you want to program your computer to “understand” the strat-
egy behind a game? Or do you just want the computer to fake its way through a game by
calculating the results of moves before it makes them?

The first solution is the most difficult, not only because of the programming challenge,
but also because the game opponent that you produce will be only as good as you are at
playing the game. In fact, the game opponent will actually be significantly worse than
you because it’s unlikely that you can translate your creative-thinking process into equal-
ly effective computer code. Unless you’re a chess champion, you shouldn’t try to pro-
gram your own strategies into a chess game because it will disappoint players who are
more experienced than you.

The second method of creating a computer opponent is the easiest approach to take—
letting the computer cheat a bit by using its calculating power. After you create a
computer opponent in this “brute force” way, you can add strategy routines to plug some
of the holes in the way that the computer plays. Once you’ve created a competent player,
adding your own strategies can only make the player’s routines better.

Introducing Crystals
Thousands of years ago, long before playing cards, dice, and video games, people enter-
tained themselves using whatever items they could find lying around. Unfortunately, not
all the world’s locales offer as much of a variety of natural resources as others. For
instance, the ancient Egyptians, being in the middle of the desert, had to be a little more
creative in coming up with game materials than, say, the Native Americans in the lush
forests of North America. Everywhere that those poor Egyptians looked, it was sand and
stone, sand and stone.

292 Day 10

14 067231987x CH10 11/6/00 7:16 PM Page 292

Programming Computer Opponents 293

10

Not to be put off by such petty matters, the Egyptians came up with a game called Oh-
Wa-Ree (the spelling varies widely, depending on the source), which was played with
nothing more than a bunch of pebbles and some pits dug in the sand. This game became
so popular that it’s still played even today. Crystals, this chapter’s program, is a version
of this ancient Egyptian game. As you begin to appreciate the hidden complexities of this
basically simple game, you’ll probably become as fascinated with it as millions of others
have been throughout the ages.

Playing Crystals
When you first run the program, you see the screen shown in Figure 10.1. The message
box requests the number of crystals that you want to place in each pit at the start of the
game. The standard number is four, but you can try any number from three to nine.

FIGURE 10.1
Specifying the number
of crystals per pit.

The playing board consists of two rows of eight pits each (see Figure 10.2). The top row
belongs to you, and the bottom row belongs to the computer. Each pit starts with the
number of crystals that you chose at the start. The object of the game is to maneuver the
crystals so that you capture more than your opponent. A move consists of picking up the
crystals from a pit in your row (just click the pit with your mouse) and then “sowing”
them, one by one, in each succeeding pit until you’ve played all of them. The game per-
forms the sowing action automatically when you select a pit.

14 067231987x CH10 11/6/00 7:16 PM Page 293

FIGURE 10.2
The Crystals playing
board.

294 Day 10

In the original version of Oh-Wa-Ree, the pits are arranged in a circle and the pebbles
are sown clockwise. However, in this version, you sow the crystals from left to right in
each row. When you sow a crystal in the last pit of the bottom row, the play continues at
the first pit of the top row. Likewise, when you sow the last pit of the top row, play con-
tinues at the first pit of the bottom row.

If the pit where you end is empty before you drop your last crystal into it, your turn is
over. If the pit contains exactly three crystals (two plus the last one that you sowed), you
capture the crystals in that pit. The crystals are removed from the board, placed in your
storage pit, and added to your score. If the pit where you finish already contains other
crystals (unless, of course, the total is three), you must pick up all of them and continue
(the program does this automatically; you don’t actually have to do anything). Then you
must sow the crystals around the board until you run out again.

As play progresses, whenever the total number of crystals in any pit is three, the crystals
in that pit are immediately captured by the player in whose row the pit resides (unless
the play ends in the pit, as described in the previous paragraph). When you end in an
empty pit, it’s the computer’s turn. The play continues in this manner until there are four
or fewer crystals remaining, in which case the game ends. The player with the highest
score wins.

Building Crystals
Now that you’ve had a chance to play Crystals, you’ll learn how to build the program
yourself, one piece at a time.

14 067231987x CH10 11/6/00 7:16 PM Page 294

Programming Computer Opponents 295

10

Creating Crystals’ User Interface
The first step is to create the game’s user interface:

1. Start a new Standard EXE Visual Basic project.

2. Set the form’s properties to the values listed here:

AutoRedraw = True

Caption = “Crystals”

Height = 7590

ScaleMode = Pixel

Width = 9705

3. Set the form’s Picture property to the screen.gif image that you can find in the
Images\Crystals directory of this book’s CD-ROM.

4. Add three Image controls to the form, giving them the property values listed here:

Image #1

Name = imgCrystal

Picture = Crystal.bmp

Image #2

Name = imgPit

Picture = Pit.bmp

Image #3

Name = imgStoragePit

Picture = Storage.bmp

5. Add a form to the project by selecting the Add Form command from the Project
menu. Give the new form the following property settings:

Name = frmMessage

AutoRedraw = True

BorderStyle = Fixed Single

Caption = “Crystals”

Font = MS Sans Serif, Regular, 14-point

Height = 1470

ScaleMode = Pixel

Width = 3675

6. Save your work, naming the main form Crystals.frm, the project Crystals.vbp, and
the second form frmMessage.frm.

14 067231987x CH10 11/6/00 7:16 PM Page 295

You’ve now completed the Crystals user interface. Figure 10.3 shows what your main
form should look like at this point. In the next section, you’ll add handlers for the pro-
gram’s various controls.

296 Day 10

FIGURE 10.3
The completed
Crystals user inter-
face.

Adding the Object Handlers
Next, you need to associate code with the form that’s the base object of the game’s user
interface. To accomplish this task, double-click the Form1 form to bring up the code
window and add the following form handlers. You can either type the source code or
copy it from the Crystals1.txt file, which you can find in the Chap10\Code directory of
this book’s CD-ROM.

LISTING 10.1 The Form Handlers

1: ‘==
2: ‘ Form Handlers.
3: ‘==
4: Private Sub Form_Load()
5: InitObjects
6: InitGame
7: End Sub
8:
9: Private Sub Form_MouseDown(Button As Integer, _
10: Shift As Integer, x As Single, y As Single)

14 067231987x CH10 11/6/00 7:16 PM Page 296

Programming Computer Opponents 297

10

11: Dim pitGridX As Integer
12: Dim pitGridY As Integer
13: If Player = HUMAN Then
14: CalcPitGridCoords x, y, pitGridX, pitGridY
15: If pitGridX <> -1 Then HumanPlay pitGridX, pitGridY
16: End If
17: End Sub
18:
19: Private Sub Form_Unload(Cancel As Integer)
20: Unload frmMessage
21: End Sub

Completing the Game
Now, add the general game subroutines, functions, constants, and variables by perform-
ing the following steps:

1. Add the following initialization subroutines to the code window. You can either
type the code or copy it from the Crystals2.txt file, which you can find in the
Chap10\Code directory of this book’s CD-ROM.

LISTING 10.2 The Initialization Routines

1: ‘==
2: ‘ Initialization Routines.
3: ‘==
4: Sub InitObjects()
5: imgPit.Visible = False
6: imgCrystal.Visible = False
7: imgStoragePit.Visible = False
8: Form1.Left = 500
9: Form1.Top = 500
10: Form1.Height = 7590
11: Form1.Width = 9705
12: Form1.Show
13: End Sub
14:
15: Sub InitGame()
16: Randomize
17: ReadData
18: Scores(HUMAN) = 0
19: Scores(COMPUTER) = 0
20: Player = HUMAN
21: SetNumCrystalsInPit
22: CrystalCount = NumCrystalsInGame
23: StartNewBoard

LISTING 10.1 continued

14 067231987x CH10 11/6/00 7:16 PM Page 297

24: DrawScoreBoxes
25: End Sub
26:
27: Sub ReadData()
28: ChDir “d:\tyvbgames\crystals\”
29: Open “crystals.dat” For Binary As #1
30: Get #1, , CrystalXY
31: Close #1
32: End Sub
33:
34: Sub SetNumCrystalsInPit()
35: On Local Error Resume Next
36: NumCrystalsInPit = _
37: InputBox(“How many crystals in each pit?” & _
38: vbCrLf & “(3 - 9)”, “Crystal Count”, “4”)
39: If NumCrystalsInPit = 0 Then NumCrystalsInPit = 4
40: NumCrystalsInGame = NumCrystalsInPit * 16
41: Form1.PaintPicture Form1.Picture, 0, 0
42: End Sub
43:
44: Sub StartNewBoard()
45: Dim x As Integer
46: Dim y As Integer
47: Form1.PaintPicture imgStoragePit, 41, 197
48: Form1.PaintPicture imgStoragePit, 561, 197
49: For x = 0 To NUMPITSPERPLAYER - 1
50: Form1.PaintPicture imgPit, x * CELLWIDTH + OFFSETX, 196
51: Form1.PaintPicture imgPit, x * CELLWIDTH + OFFSETX, 260
52: For y = 0 To NumCrystalsInPit - 1
53: Form1.PaintPicture imgCrystal, _
54: OFFSETX + x * CELLWIDTH + CrystalXY(y * 2), _
55: ROW1OFFSETY + CrystalXY(y * 2 + 1)
56: Form1.PaintPicture imgCrystal, _
57: OFFSETX + x * CELLWIDTH + CrystalXY(y * 2), _
58: ROW2OFFSETY + CrystalXY(y * 2 + 1)
59: If y < 2 Then Board(x, y) = NumCrystalsInPit
60: Next y
61: Next x
62: End Sub

2. Add the following general subroutines to the code window. You can either type the
code or copy it from the Crystals3.txt file, which you can find in the Chap10\Code
directory of this book’s CD-ROM.

298 Day 10

LISTING 10.2 continued

14 067231987x CH10 11/6/00 7:16 PM Page 298

Programming Computer Opponents 299

10

LISTING 10.3 The Game’s Subroutines

1: ‘==
2: ‘ General Game Subroutines.
3: ‘==
4: Sub HumanPlay(pitGridX As Integer, pitGridY As Integer)
5: Dim numCrystals As Integer
6: If HaveMove(HUMAN) Then
7: numCrystals = PickUpCrystals(pitGridX, pitGridY)
8: DistributeCrystals numCrystals, pitGridX, pitGridY
9: Else
10: PlayerMessage (“Human has no move.”)
11: End If
12: Player = COMPUTER
13: ComputerPlay
14: End Sub
15:
16: Sub ComputerPlay()
17: Dim pitGridX As Integer
18: Dim pitGridY As Integer
19: Dim numCrystals As Integer
20: If HaveMove(COMPUTER) Then
21: PlayerMessage “Computer’s turn.”
22: pitGridY = COMPUTER
23: pitGridX = CalcMoves
24: numCrystals = PickUpCrystals(pitGridX, pitGridY)
25: DistributeCrystals numCrystals, pitGridX, pitGridY
26: Else
27: PlayerMessage (“Computer has no move.”)
28: End If
29: Player = HUMAN
30: PlayerMessage “Human’s turn.”
31: End Sub
32:
33: Sub PlayerMessage(msg As String)
34: frmMessage.Left = Form1.Left + 1000
35: frmMessage.Top = Form1.Top + 1000
36: frmMessage.Cls
37: frmMessage.CurrentX = 20
38: frmMessage.CurrentY = 25
39: frmMessage.Print msg
40: frmMessage.Show
41: Delay 2#
42: frmMessage.Hide
43: End Sub
44:
45: Sub DistributeCrystals(numCrystals As Integer, _
46: pitGridX As Integer, pitGridY As Integer)
47: While numCrystals > 0
48: GetNextGridXY pitGridX, pitGridY

14 067231987x CH10 11/6/00 7:16 PM Page 299

49: PutCrystalInPit pitGridX, pitGridY, numCrystals
50: Wend
51: End Sub
52:
53: Sub PutCrystalInPit(pitGridX As Integer, _
54: pitGridY As Integer, numCrystals As Integer)
55: Dim GameOver As Boolean
56: numCrystals = numCrystals - 1
57: Board(pitGridX, pitGridY) = Board(pitGridX, pitGridY) + 1
58: ShowCrystal pitGridX, pitGridY
59: GameOver = CalcScore(pitGridX, pitGridY, numCrystals)
60: If Not GameOver And Board(pitGridX, pitGridY) > 1 _
61: And numCrystals = 0 Then
62: Delay 0.3
63: numCrystals = PickUpCrystals(pitGridX, pitGridY)
64: End If
65: Delay 0.4
66: End Sub
67:
68: Sub ShowCrystal(pitGridX As Integer, pitGridY As Integer)
69: Dim index As Integer
70: Dim pitPixelX As Integer
71: Dim pitPixelY As Integer
72: If Board(pitGridX, pitGridY) < 25 Then
73: index = Board(pitGridX, pitGridY) - 1
74: pitPixelX = pitGridX * CELLWIDTH + OFFSETX
75: pitPixelY = pitGridY * CELLHEIGHT + ROW1OFFSETY
76: Form1.PaintPicture imgCrystal, _
77: pitPixelX + CrystalXY(index * 2), _
78: pitPixelY + CrystalXY(index * 2 + 1)
79: End If
80: End Sub
81:
82: Sub StoreCrystals(Winner As Integer)
83: Dim storagePitX As Integer
84: Dim storagePitY As Integer
85: Dim xPos As Integer
86: Dim yPos As Integer
87: Dim x As Integer
88: storagePitY = 200
89: If Winner = HUMAN Then
90: storagePitX = 40
91: Else
92: storagePitX = 560
93: End If
94: For x = 0 To 2
95: xPos = storagePitX + Int(Rnd * 25)
96: yPos = storagePitY + Int(Rnd * 90)

300 Day 10

LISTING 10.3 continued

14 067231987x CH10 11/6/00 7:16 PM Page 300

Programming Computer Opponents 301

10

97: Form1.PaintPicture imgCrystal, xPos, yPos
98: Next x
99: End Sub
100:
101: Sub CalcPitGridCoords(mx As Single, my As Single, _
102: pitGridX As Integer, pitGridY As Integer)
103: pitGridX = (mx - OFFSETX) \ CELLWIDTH
104: pitGridY = (my - ROW1OFFSETY) \ CELLHEIGHT
105: If Not ClickIsOnValidPit(mx, my, _
106: pitGridX, pitGridY) Then _
107: pitGridX = -1
108: End Sub
109:
110: Sub GetNextGridXY(pitGridX As Integer, pitGridY As Integer)
111: pitGridX = pitGridX + 1
112: If pitGridX = NUMPITSPERPLAYER Then
113: pitGridX = 0
114: If pitGridY = 0 Then
115: pitGridY = 1
116: Else
117: pitGridY = 0
118: End If
119: End If
120: End Sub
121:
122: Sub GameOver()
123: MsgBox “Game Over”
124: InitGame
125: End Sub
126:
127: Sub DrawScoreBoxes()
128: Form1.FillStyle = vbSolid
129: Form1.Line (20, 400)-(108, 440), vbWhite, BF
130: Form1.CurrentX = 34
131: Form1.CurrentY = 408
132: Form1.Print “HUMAN”
133: Form1.CurrentX = 34
134: Form1.CurrentY = 424
135: Form1.Print Scores(HUMAN)
136: Form1.Line (532, 400)-(620, 440), vbWhite, BF
137: Form1.CurrentX = 548
138: Form1.CurrentY = 408
139: Form1.Print “COMPUTER”
140: Form1.CurrentX = 548
141: Form1.CurrentY = 424
142: Form1.Print Scores(COMPUTER)
143: End Sub
144:

LISTING 10.3 continued

14 067231987x CH10 11/6/00 7:16 PM Page 301

145: Sub Delay(amount As Single)
146: Dim StartTime As Single
147: Dim CurrentTime As Single
148: StartTime = Timer
149: Do
150: CurrentTime = Timer
151: DoEvents
152: Loop While CurrentTime < StartTime + amount
153: End Sub

3. Add the following computer-player subroutines to the code window. You can either
type the code or copy it from the Crystals4.txt file, which you can find in the
Chap10\Code directory of this book’s CD-ROM.

LISTING 10.4 The Code for the Computer Opponent

1: ‘==
2: ‘ Computer-player subroutines and Functions.
3: ‘==
4: Function CalcMoves() As Integer
5: Dim CompScores(7) As Integer
6: Dim comboScores(7) As Integer
7: Dim indexes(7) As Integer
8: Dim BestComboScore As Integer
9: Dim bestCompScore As Integer
10: Dim count As Integer
11: GetAllScores CompScores, comboScores
12: BestComboScore = FindBestComboScore(comboScores)
13: BuildBestComboIndexTable BestComboScore, _
14: comboScores, indexes, count
15: bestCompScore = FindBestCompScore(CompScores, _
16: indexes, count)
17: CalcMoves = SelectMove(bestCompScore, CompScores, _
18: indexes, count)
19: End Function
20:
21: Function SelectMove(bestCompScore As Integer, _
22: CompScores() As Integer, indexes() As Integer, _
23: count As Integer) As Integer
24: Dim index As Integer
25: Dim r As Integer
26: index = -1
27: Do
28: r = Int(Rnd * (count + 1))
29: index = indexes(r)
30: If Int(Rnd * 3) > 0 And _

302 Day 10

LISTING 10.3 continued

14 067231987x CH10 11/6/00 7:16 PM Page 302

Programming Computer Opponents 303

10

31: CompScores(index) <> bestCompScore Then _
32: index = -1
33: DoEvents
34: Loop While index = -1
35: SelectMove = index
36: End Function
37:
38: Function FindBestCompScore(CompScores() As Integer, _
39: indexes() As Integer, count As Integer) As Integer
40: Dim bestScore As Integer
41: Dim x As Integer
42: bestScore = -100
43: For x = 0 To count
44: If CompScores(indexes(x)) > bestScore Then _
45: bestScore = CompScores(indexes(x))
46: Next x
47: FindBestCompScore = bestScore
48: End Function
49:
50: Sub BuildBestComboIndexTable(BestComboScore As Integer, _
51: comboScores() As Integer, indexes() As Integer, _
52: count As Integer)
53: Dim x As Integer
54: count = -1
55: For x = 0 To NUMPITSPERPLAYER - 1
56: If comboScores(x) = BestComboScore Then
57: count = count + 1
58: indexes(count) = x
59: End If
60: Next x
61: End Sub
62:
63: Sub GetAllScores(CompScores() As Integer, _
64: comboScores() As Integer)
65: Dim tempBoard(NUMPITSPERPLAYER - 1, 1) As Integer
66: Dim tempScores(1) As Integer
67: Dim numCrystals As Integer
68: Dim humanScore As Integer
69: Dim pitGridX As Integer
70: Dim pitGridY As Integer
71: Dim x As Integer
72: For x = 0 To NUMPITSPERPLAYER - 1
73: CompScores(x) = -1
74: comboScores(x) = -1
75: Next x
76: For x = 0 To NUMPITSPERPLAYER - 1
77: CopyBoard tempBoard, Board
78: If tempBoard(x, 1) <> 0 Then

LISTING 10.4 continued

14 067231987x CH10 11/6/00 7:16 PM Page 303

79: tempScores(HUMAN) = 0
80: tempScores(COMPUTER) = 0
81: pitGridY = COMPUTER
82: pitGridX = x
83: numCrystals = tempBoard(pitGridX, pitGridY)
84: tempBoard(pitGridX, pitGridY) = 0
85: While numCrystals
86: GetNextGridXY pitGridX, pitGridY
87: TestPutCrystalInPit pitGridX, pitGridY, _
88: numCrystals, tempBoard, tempScores, COMPUTER
89: Wend
90: CompScores(x) = tempScores(COMPUTER) - _
91: tempScores(HUMAN)
92: humanScore = RunHumanTurn(tempBoard)
93: comboScores(x) = CompScores(x) - humanScore
94: End If
95: Next x
96: End Sub
97:
98: Sub CopyBoard(dst() As Integer, src() As Integer)
99: Dim x As Integer
100: Dim y As Integer
101: For x = 0 To NUMPITSPERPLAYER - 1
102: For y = 0 To 1
103: dst(x, y) = src(x, y)
104: Next y
105: Next x
106: End Sub
107:
108: Function FindBestComboScore(comboScores() _
109: As Integer) As Integer
110: Dim bestScore As Integer
111: Dim x As Integer
112: bestScore = -100
113: For x = 0 To NUMPITSPERPLAYER - 1
114: If comboScores(x) > bestScore And _
115: comboScores(x) <> -1 Then _
116: bestScore = comboScores(x)
117: Next x
118: FindBestComboScore = bestScore
119: End Function
120:
121: Function RunHumanTurn(tempBoard() As Integer) As Integer
122: Dim bestScore As Integer
123: Dim numCrystals As Integer
124: Dim score As Integer
125: Dim pitGridX As Integer
126: Dim pitGridY As Integer

304 Day 10

LISTING 10.4 continued

14 067231987x CH10 11/6/00 7:16 PM Page 304

Programming Computer Opponents 305

10

127: Dim tempBoard2(NUMPITSPERPLAYER - 1, 1) As Integer
128: Dim tempScores(1) As Integer
129: Dim x As Integer
130: bestScore = -100
131: For x = 0 To NUMPITSPERPLAYER - 1
132: CopyBoard tempBoard2, tempBoard
133: If tempBoard2(x, 0) <> 0 Then
134: tempScores(HUMAN) = 0
135: tempScores(COMPUTER) = 0
136: pitGridY = HUMAN
137: pitGridX = x
138: numCrystals = tempBoard2(pitGridX, pitGridY)
139: tempBoard2(pitGridX, pitGridY) = 0
140: While numCrystals
141: GetNextGridXY pitGridX, pitGridY
142: TestPutCrystalInPit pitGridX, pitGridY, _
143: numCrystals, tempBoard2, tempScores, HUMAN
144: Wend
145: score = tempScores(HUMAN) - tempScores(COMPUTER)
146: If score > bestScore Then bestScore = score
147: End If
148: Next x
149: RunHumanTurn = bestScore
150: End Function
151:
152: Sub TestPutCrystalInPit(pitGridX As Integer, _
153: pitGridY As Integer, numCrystals As Integer, _
154: tempBoard() As Integer, tempScores() As Integer, _
155: Player As Integer)
156: Dim otherPlayer As Integer
157: otherPlayer = 0
158: If Player = 0 Then otherPlayer = 1
159: numCrystals = numCrystals - 1
160: tempBoard(pitGridX, pitGridY) = _
161: tempBoard(pitGridX, pitGridY) + 1
162: If tempBoard(pitGridX, pitGridY) = 3 Then
163: If numCrystals = 0 Or pitGridY = 1 Then
164: tempScores(Player) = tempScores(Player) + 3
165: Else
166: tempScores(otherPlayer) = tempScores(otherPlayer) + 3
167: End If
168: tempBoard(pitGridX, pitGridY) = 0
169: End If
170: If tempBoard(pitGridX, pitGridY) > 1 And _
171: numCrystals = 0 Then
172: numCrystals = tempBoard(pitGridX, pitGridY)
173: tempBoard(pitGridX, pitGridY) = 0
174: End If
175: End Sub

LISTING 10.4 continued

14 067231987x CH10 11/6/00 7:16 PM Page 305

These are the functions and subroutines that enable the computer to play a rea-
sonably intelligent game against a human opponent. You’ll examine these proce-

dures in detail later in this chapter.

4. Add the following game functions to the code window. You can either type the
code or copy it from the Crystals5.txt file, which you can find in the Chap10\Code
directory of this book’s CD-ROM.

LISTING 10.5 The Game’s Functions

1: ‘==
2: ‘ Game Functions.
3: ‘==
4: Function PickUpCrystals(pitGridX As Integer, _
5: pitGridY As Integer) As Integer
6: Dim numCrystals As Integer
7: Dim pitPixelX As Integer
8: Dim pitPixelY As Integer
9: numCrystals = Board(pitGridX, pitGridY)
10: Board(pitGridX, pitGridY) = 0
11: pitPixelX = pitGridX * CELLWIDTH + OFFSETX
12: pitPixelY = pitGridY * CELLHEIGHT + ROW1OFFSETY
13: Form1.PaintPicture imgPit, pitPixelX, pitPixelY
14: PickUpCrystals = numCrystals
15: End Function
16:
17: Function CalcScore(pitGridX As Integer, _
18: pitGridY As Integer, numCrystals As Integer) _
19: As Boolean
20: Dim Winner As Integer
21: Dim pitPixelX As Integer
22: Dim pitPixelY As Integer
23: Dim otherPlayer As Integer
24: otherPlayer = 0
25: If Player = 0 Then otherPlayer = 1
26: If Board(pitGridX, pitGridY) = 3 Then
27: Delay 0.5
28: CrystalCount = CrystalCount - 3
29: If numCrystals = 0 Or pitGridY = Player Then
30: Scores(Player) = Scores(Player) + 3
31: Winner = Player
32: Else
33: Scores(otherPlayer) = Scores(otherPlayer) + 3
34: Winner = otherPlayer
35: End If
36: pitPixelX = pitGridX * CELLWIDTH + OFFSETX
37: pitPixelY = pitGridY * CELLHEIGHT + ROW1OFFSETY
38: Form1.PaintPicture imgPit, pitPixelX, pitPixelY
39: StoreCrystals Winner

306 Day 10

ANALYSIS

14 067231987x CH10 11/6/00 7:16 PM Page 306

Programming Computer Opponents 307

10

40: Board(pitGridX, pitGridY) = 0
41: DrawScoreBoxes
42: End If
43: CalcScore = False
44: If CrystalCount < 5 Then
45: GameOver
46: CalcScore = True
47: End If
48: End Function
49:
50: Function ClickIsOnValidPit(mx As Single, my As Single, _
51: pitGridX As Integer, pitGridY As Integer) As Boolean
52: ClickIsOnValidPit = False
53: If mx > MINX And mx < MAXX And my > MINY And my < MAXY And _
54: mx < OFFSETX + pitGridX * CELLWIDTH + 42 And _
55: my < ROW1OFFSETY + pitGridY * CELLHEIGHT + 42 And _
56: Board(pitGridX, HUMAN) > 0 Then _
57: ClickIsOnValidPit = True
58: End Function
59:
60: Function HaveMove(Player As Integer) As Boolean
61: Dim x As Integer
62: HaveMove = False
63: For x = 0 To NUMPITSPERPLAYER - 1
64: If Board(x, Player) > 0 Then HaveMove = True
65: Next x
66: End Function

5. Add the following variable declarations and enumerations to the top of the code
window. You can either type the code or copy it from the Crystals6.txt file, which
you can find in the Chap10\Code directory of this book’s CD-ROM.

LISTING 10.6 The Game’s Declarations

1: ‘==
2: ‘ Battle Bricks for Visual Basic 6
3: ‘ by Clayton Walnum
4: ‘ Copyright 2000 by Macmillan Computer Publishing
5: ‘==
6: Option Explicit
7:
8: ‘==
9: ‘ Constants.
10: ‘==
11: Const CELLWIDTH = 56
12: Const CELLHEIGHT = 64

LISTING 10.5 continued

14 067231987x CH10 11/6/00 7:16 PM Page 307

13: Const OFFSETX = 104
14: Const NUMPITSPERPLAYER = 8
15: Const ROW1OFFSETY = 196
16: Const ROW2OFFSETY = 260
17: Const MINX = 102
18: Const MAXX = 532
19: Const MINY = 198
20: Const MAXY = 240
21:
22: Enum PlayerEnum
23: HUMAN
24: COMPUTER
25: End Enum
26:
27: ‘==
28: ‘ General Game Variables.
29: ‘==
30: Dim Board(NUMPITSPERPLAYER - 1, 1) As Integer
31: Dim Scores(1) As Integer
32: Dim Player As Integer
33: Dim CrystalCount As Integer
34: Dim NumCrystalsInPit As Integer
35: Dim NumCrystalsInGame As Integer
36: Dim CrystalXY(49) As Integer

6. Copy the Crystals.dat file from this book’s CD-ROM to your project’s directory.
This file contains the data that the computer loads into the CrystalXY() array.

7. Save your work.

You’ve now completed the Crystals program.

Understanding Crystals
Now that you’ve played the game and built your own version, it’s time to examine the
code, starting with the game’s constants and variables.

The Crystals Variables and Constants
Crystals relies on a set of global variables and constants that the game declares near the
top of the program. Table 10.1 lists the general global variables and their descriptions,
and Table 10.2 lists the constants.

308 Day 10

LISTING 10.6 continued

14 067231987x CH10 11/6/00 7:16 PM Page 308

Programming Computer Opponents 309

10

TABLE 10.1 The Crystals General Game Variables

Variable Type Description

Board() Integer An array that holds the contents of each pit on the
board

CrystalCount Integer The number of crystals remaining in the game

CrystalXY() Integer An array that holds the positions for placing crystals
in the pits

NumCrystalsInPit Integer The starting number of crystals in each pit

Player Integer The current player

Scores() Integer The array that holds the human and computer game
scores

TABLE 10.2 The Crystals Constants

Constant Description

CELLHEIGHT The height of a cell on the playing board

CELLWIDTH The width of a cell on the playing board

MAXX The maximum X value that’s a valid mouse click in the grid

MAXY The maximum Y value that’s a valid mouse click in the grid

MINX The minimum X value that’s is a valid mouse click in the grid

MINY The minimum Y value that’s a valid mouse click in the grid

OFFSETX The X coordinate of the left edge of the playing board

NUMPITSPERPLAYER The number of pits in each player’s row of the playing board

ROW1OFFSETY The Y coordinate of the top edge of a pit in the first row

ROW2OFFSETY The Y coordinate of the top edge of a pit in the second row

SCOREOFFSETY The Y coordinate of the row and column scores

TOTALSCOREX The X coordinate of the total score for the current game

TOTALSCOREY The Y coordinate of the total score for the current game

The Crystals program also defines one enumeration, PlayerEnum, which defines con-
stants for the human and computer opponent.

Programming Crystals
Crystals is a fairly easy game to program. All you need to do is keep track of the number
of crystals in each pit and move them around as required by the game rules. You could

14 067231987x CH10 11/6/00 7:16 PM Page 309

probably write a very simple version of this program for two human players, without
fancy graphics and a computer opponent, in a couple of pages of code.

This version of Crystals includes those fancy graphics, as well as a computer opponent.
Still, there’s not much new here, and the code is heavily commented. The program’s
computer opponent needs to be explored in depth, though.

Creating a Computer Opponent
Believe it or not, the computer opponent in Crystals knows absolutely nothing about
strategy. It only knows how to count. That is, its strategy for winning a game is to run
through all of its possible moves and see which move produces the highest score. It also
checks all the possible moves that the human player can make for each move that the
computer makes. Finally, the computer opponent picks the move that gives it the most
points while giving the human player the poorest opportunity to score points.

This programming strategy works well for a game like Crystals, which has only eight
possible moves per player per turn. When a player’s turn comes around, he can choose
only one of eight pits and then sow its crystals in each successive pit until they’re gone,
according to the rules of the game. After the player chooses the pit, he can do nothing to
change the outcome of his turn.

Although the Crystals computer opponent looks forward only two turns (which actually
requires analyzing 72 turns, which is eight computer turns, each with eight possible
human responses), you can create game programs that look forward any number of turns,
depending on how much time you want the computer to “think” and how much memory
you have available.

310 Day 10

In a game like chess—whose board contains 16 possible moves for each play-
er, each with 16 possible responses to each move (for a total of 256 respons-
es)—it takes considerably more time and memory to process the board. To
look forward two moves requires analyzing 272 possible moves and respons-
es. To look forward three moves requires analyzing 4,368 moves and
responses. And looking forward just four turns results in over 69,000 possi-
ble moves! (You calculate the total number of moves as follows: 161 + 162 +
163 + 164.)

Note

14 067231987x CH10 11/6/00 7:16 PM Page 310

Programming Computer Opponents 311

10

Programming the Computer’s Strategy
The computer’s turn begins in the subroutine ComputerPlay.

LISTING 10.7 The ComputerPlay Subroutine

1: Sub ComputerPlay()
2: Dim pitGridX As Integer
3: Dim pitGridY As Integer
4: Dim numCrystals As Integer
5: If HaveMove(COMPUTER) Then
6: PlayerMessage “Computer’s turn.”
7: pitGridY = COMPUTER
8: pitGridX = CalcMoves
9: numCrystals = PickUpCrystals(pitGridX, pitGridY)
10: DistributeCrystals numCrystals, pitGridX, pitGridY
11: Else
12: PlayerMessage (“Computer has no move.”)
13: End If
14: Player = HUMAN
15: PlayerMessage “Human’s turn.”
16: End Sub

This subroutine contains little more than calls to other subroutines that actually
do the work. ComputerPlay first calls HaveMove (Line 5) to determine whether

the computer opponent has a legal move it can make. If the computer does have a
move, the program calls the subroutine PlayerMessage (Line 6) to display a message
box on the screen. The message box just tells the human player that the computer oppo-
nent is about to take its turn. ComputerPlay then sets the computer’s pit row (pitGridY)
to the computer’s row (Line 7) and calls the function CalcMoves (Line 8), which returns
the pit number that will yield the best results for the computer’s turn.

After finding the computer’s move, the program calls the function
PickUpCrystals (Line 9), which removes the crystals from the pit on the screen

and returns the number of crystals picked up in the variable numCrystals. The
DistributeCrystals subroutine (Line 10) then performs the computer’s turn, sowing the
crystals around the playing board. Finally, ComputerPlay sets the player to HUMAN (Line
14), shows the player message (Line 15), and ends.

The function CalcMoves is one of several functions that provide the computer with its
smarts.

ANALYSIS

ANALYSIS

14 067231987x CH10 11/6/00 7:16 PM Page 311

LISTING 10.8 The CalcMoves Function

1: Function CalcMoves() As Integer
2: Dim CompScores(7) As Integer
3: Dim comboScores(7) As Integer
4: Dim indexes(7) As Integer
5: Dim BestComboScore As Integer
6: Dim bestCompScore As Integer
7: Dim count As Integer
8: GetAllScores CompScores, comboScores
9: BestComboScore = FindBestComboScore(comboScores)
10: BuildBestComboIndexTable BestComboScore, _
11: comboScores, indexes, count
12: bestCompScore = FindBestCompScore(CompScores, _
13: indexes, count)
14: CalcMoves = SelectMove(bestCompScore, CompScores, _
15: indexes, count)
16: End Function

At the top of the function’s body, you can see that the program uses three scoring
arrays to keep track of the results of each move’s analysis (Lines 2 to 4). A little

later in this chapter, you’ll see what the indexes() array does. The CompScores() array
holds the net point value for each of the computer’s eight possible moves. The program
calculates this net value by subtracting any scores that the move generates for the human
player from any scores that the move generates for the computer opponent.

For example, suppose that the computer opponent is analyzing the move starting at pit 2
(which is actually the third pit because the pit numbers start at 0). If, after sowing crys-
tals around the board, the human player gains six points (because two pits in the human’s
row were brought up to three crystals but were not captured by the computer opponent)
and the computer opponent gains nine points, that move’s net point value for the comput-
er opponent would be 3. The program would then store the value 3 in CompScores(2).

The comboScores() array contains the net point value of a move after the computer ana-
lyzes the human player’s possible responses. To calculate this net value, the program
subtracts from the score stored in CompScores() the highest possible net score for the
human player’s next move.

If all this sounds confusing, take a look at the following algorithm, which summarizes
how the computer calculates the values for the CompScores() and comboScores()

arrays:

1. Set pitGridX to 0 and pitGridY to the player’s row.

2. Sow the crystals in pit pitGridX around the board, keeping track of scores for both
the human and computer opponents.

312 Day 10

ANALYSIS

14 067231987x CH10 11/6/00 7:16 PM Page 312

Programming Computer Opponents 313

10

3. Subtract the human’s score gain from the computer’s score gain, and store this net
point value in CompScores(pitGridX).

4. Check each of the human’s eight possible responses for the move taken in step 2
and return the highest net point value that the human player can achieve.

5. Subtract from CompScores(pitGridX) the human net point value generated in step
4, and store the result in comboScores(pitGridX).

6. Increment pitGridX and go back to step 1 if it’s less than 8. Otherwise, the algo-
rithm ends.

The program implements the preceding algorithm in the subroutine GetAllScores,
which CalcMoves calls (Line 8) to fill the CompScores() and comboScores() arrays with
their score values. After filling the score arrays, the comboScores() array contains the
final net scores (which I call combination scores because they combine both the comput-
er’s move and the human player’s response) for each of the computer’s eight possible
moves. The program calls the function FindBestComboScore (Line 9) to find the highest-
rated move in the comboScores() array. FindBestComboScore returns this value into the
variable BestComboScore.

CalcMoves then calls BuildBestComboIndexTable (Line 10), which scans the
comboScores() array, looking for all scores that equal BestComboScore. Remember, sev-
eral moves may result in scores equal to BestComboScore. To create a more unpre-
dictable computer opponent, the program eventually chooses randomly from the moves
whose net scores equal BestComboScore. After calling BuildBestComboIndexTable, the
indexes() array contains indexes into the comboScores() array. These indexes point to
all values in the comboScores() array that equal BestComboScore.

Next, CalcMoves calls FindBestCompScore (Line 12), which scans the CompScores()
array and returns the highest score that it finds. Why does the program need this value?
After all, the comboScores() array already takes CompScores() into consideration, right?
Yes, but the comboScores() array stores net score values that assume that the human
player will respond with the best possible move. However, the human player won’t nec-
essarily choose the best possible move. So, the computer should pick not the move that
yields the highest combination score, but rather the move that yields the best combina-
tion score and that also has the highest possible score in CompScores().

To understand this logic better, look at Figure 10.4. In this figure, the highest possible
point value in the comboScores() array is 3. (A -1 indicates that no crystals are in the
pit, so no move is possible.) However, the computer can choose from six different moves,
all of which yield a net point value of 3. The six best scores in the comboScores() array
are at array indexes 0, 2, 3, 4, 5, and 6. Now look at the CompScores() array. The scores

14 067231987x CH10 11/6/00 7:16 PM Page 313

in this array indicate the net gain for the computer opponent without considering the
human player’s response. If you look at the scores in CompScores() at indexes 0, 2, 3, 4,
5, and 6, you’ll see that the highest net score for the computer’s move is 9.

314 Day 10

FIGURE 10.4
Using the score
arrays.

3 –1 3 3 3 3 3 –6

comboScores()

3 –1 9 3 3 3 6 3

CompScores()

The information you now have indicates that if the computer opponent chooses pit num-
ber 2 (counting from 0) and the human player responds with the best possible move, the
computer will get three more points than the human player. CompScores(2) is 9, so this
means that the player’s best response can get six points because 9-6=3, which is the
value in comboScores(2). However, if the human player fails to choose the best move,
the computer opponent can net up to nine points (rather than just three) for the move
starting at pit 2, depending on how many points the human player’s response actually
generates. Nine points is better than six or three, which are the net point values for other
moves in the CompScores() array.

Getting back to the source code, CalcMoves now calls SelectMove, which returns the pit
number that the computer opponent should choose for its current move.

Handling the Score Arrays
Of all the subroutines called in CalcMoves, GetAllScores and SelectMove are the only
ones of real interest. The other functions just perform calculations for CalcMoves. The
function GetAllScores provides the score arrays with their values:

LISTING 10.9 The GetAllScores Subroutine

1: Sub GetAllScores(CompScores() As Integer, _
2: comboScores() As Integer)
3: Dim tempBoard(NUMPITSPERPLAYER - 1, 1) As Integer
4: Dim tempScores(1) As Integer
5: Dim numCrystals As Integer
6: Dim humanScore As Integer
7: Dim pitGridX As Integer
8: Dim pitGridY As Integer
9: Dim x As Integer

14 067231987x CH10 11/6/00 7:16 PM Page 314

Programming Computer Opponents 315

10

10: For x = 0 To NUMPITSPERPLAYER - 1
11: CompScores(x) = -1
12: comboScores(x) = -1
13: Next x
14: For x = 0 To NUMPITSPERPLAYER - 1
15: CopyBoard tempBoard, Board
16: If tempBoard(x, 1) <> 0 Then
17: tempScores(HUMAN) = 0
18: tempScores(COMPUTER) = 0
19: pitGridY = COMPUTER
20: pitGridX = x
21: numCrystals = tempBoard(pitGridX, pitGridY)
22: tempBoard(pitGridX, pitGridY) = 0
23: While numCrystals
24: GetNextGridXY pitGridX, pitGridY
25: TestPutCrystalInPit pitGridX, pitGridY, _
26: numCrystals, tempBoard, tempScores, COMPUTER
27: Wend
28: CompScores(x) = tempScores(COMPUTER) - _
29: tempScores(HUMAN)
30: humanScore = RunHumanTurn(tempBoard)
31: comboScores(x) = CompScores(x) - humanScore
32: End If
33: Next x
34: End Sub

This subroutine uses two local arrays, tempBoard() and tempScores() (Lines 3
and 4), to keep track of its calculations. The array tempBoard() is a copy of the

contents of the global Board() array, which contains the current status of the game
board. Because the computer-player algorithm is only testing moves at this point, it can’t
change the contents of the global Board() array. Instead, it does all its work in the
tempBoard() array.

GetAllScores first sets each element of the CompScores() and comboScores() arrays,
which were passed into the function, to -1 (Lines 10 to 13). As mentioned previously, a
-1 indicates that no move is possible at the pit. GetAllScores fills in only those array
elements that actually have moves, so that the others are left with a -1.

Next, GetAllScores must loop through all eight of the computer opponent’s possible
moves (Line 14). It does this with a For loop. Within the loop, the program copies the
Board() array into the tempBoard() array (Line 15). This ensures that each move starts
with the current contents of the game board. Then, an If statement checks whether the
current pit contains crystals (Line 16). If it doesn’t, the entire contents of the For loop

LISTING 10.9 continued

ANALYSIS

14 067231987x CH10 11/6/00 7:16 PM Page 315

are skipped (except the If line, of course), leaving a -1 in the CompScores() and
comboScores() arrays.

If the current pit contains crystals, the program initializes the tempScores() array to
zeros (Lines 17 and 18) and sets the pit’s grid coordinates (Lines 19 and 20). Then, in the
temporary playing board stored in tempBoard(), the program distributes the crystals in
the current pit (Lines 22 to 27). (The game screen displays none of this activity. The
computer opponent isn’t actually making a move, but simply weighing all its possible
moves.) The subroutine GetNextGridXY calculates the next pit to receive a crystal (Line
24), and TestPutCrystalInPit places the crystal in the current pit in the temporary
game board and calculates any points scored (Lines 25 and 26). (The program stores the
scores in the tempScores() array.) TestPutCrystalInPit also adds crystals to the com-
puter’s “hand” (numCrystals) whenever appropriate. (By “hand,” I mean the crystals that
the computer picks up to sow around the board.)

After distributing all the crystals for a move, the program calculates the current move’s
net computer score by subtracting tempScores(HUMAN) from tempScores(COMPUTER)

(Lines 28 and 29). It then calls RunHumanTurn to determine the point value of the human
player’s best response (Line 30). This value is stored in the variable humanScore. Finally,
the program calculates the combination net score by subtracting humanScore from
CompScores(x) and storing the result in comboScores(x) (Line 31).

The For loop continues until it has analyzed all eight moves and filled all the score
arrays.

Selecting the Move
SelectMove is the function that finally determines exactly which move the computer
opponent should pick:

LISTING 10.10 The SelectMove Function

1: Function SelectMove (bestCompScore As Integer, _
2: CompScores() As Integer, indexes() As Integer, _
3: count As Integer) As Integer
4: Dim index As Integer
5: Dim r As Integer
6: index = -1
7: Do
8: r = Int(Rnd * (count + 1))
9: index = indexes(r)
10: If Int(Rnd * 3) > 0 And _
11: CompScores(index) <> bestCompScore Then _
12: index = -1
13: DoEvents

316 Day 10

14 067231987x CH10 11/6/00 7:16 PM Page 316

Programming Computer Opponents 317

10

14: Loop While index = -1
15: SelectMove = index
16: End Function

This function chooses a random index from the indexes() array (Lines 8 and 9).
As you’ve already learned, the indexes() array contains indexes into the

comboScores() array. These indexes point to any scores in the array that equal
BestComboScore. SelectMove checks whether the computer score at the chosen index in
CompScores() is equal to bestCompScore (Lines 10 and 11) If it is, the function has
found the computer’s best move. If it isn’t, the Int(Rnd * 3 > 0) in the If statement’s
conditional means that the chances are 1 in 3 that the computer opponent will choose the
random move, even if it doesn’t yield the highest value in CompScores(). This extra
complication keeps the computer opponent from becoming too mechanical and pre-
dictable.

In any case, SelectMove returns the computer opponent’s selected move. The move is
then processed exactly as the human player’s is. That is, you see the crystals being dis-
tributed around the game board just as you do when the human player uses the mouse to
select a pit.

The speed of the computer-player algorithm is amazing. If the PlayerMessage subroutine
didn’t insert a two-second pause, the computer opponent’s move would begin almost
instantly after the human player’s move.

Summary
Creating a computer opponent probably turned out to be an easier process than you
expected. Of course, the computer opponent in Crystals has an advantage that the human
player lacks: It can look forward at every possible set of two moves and find the best
one. Imagine how long it would take you to think through 72 different moves. Without
an additional playing board to keep track of things, you probably couldn’t do it.

Q&A
Q Is it even possible to create a computer opponent than can beat an expert

human player at a strategy game?

A Yep. Take chess, for example, which is considered to be the ultimate strategy game
with no elements of luck. Chess programs have been created that can beat some of
the best chess players in the world.

LISTING 10.10 continued

ANALYSIS

14 067231987x CH10 11/6/00 7:16 PM Page 317

Q It seems to me that Crystals isn’t all that hard to beat, once you get the hang
of the game. Shouldn’t it be tougher to beat a computer opponent?

A One reason you can beat Crystals with a little practice is that even a monkey can
play the game and get a score. Just the process of sowing crystals around the board
without any thought is bound to yield scoring moves. Still, a little strategy should
improve your scores. Once you’ve developed that strategy, try to convert it to
Visual Basic source code in order to make the computer opponent harder to beat.

Q What’s the absolute easiest way to create a computer opponent for a game like
Crystals?

A Well, because a monkey could beat this game, you could skip all the analyzing of
moves and simply have the computer pick a random pit for each turn. The comput-
er would then appear to be playing the game as a rank amateur.

Workshop
The workshop includes quiz questions to help gauge your grasp of the material. You’ll
find the answers to this quiz in Appendix A. Even if you feel that you totally understand
the concepts presented here, you should work through the quiz anyway.

Quiz
1. What are two typical approaches for adding a computer opponent to a game?

2. Which approach for creating a computer opponent does Crystals use? Explain your
answer.

3. What does the Crystals program use the CompScores() and comboScores()

arrays for?

4. Briefly describe the algorithm that Crystals uses to determine the computer oppo-
nent’s moves.

5. How does Crystals prevent the computer opponent from becoming too predictable?

318 Day 10

14 067231987x CH10 11/6/00 7:16 PM Page 318

DAY 11

WEEK 2

Adding Sound to a Game
The real world is overflowing with sound. There’s barely a moment of our lives
when we’re not barraged with hundreds of different sounds simultaneously. A
computer game can’t hope to compete with the real world in the aural depart-
ment, but it doesn’t have to. A few well-placed sound effects are all it takes to
bring a game alive.

Today, you’ll add a few sound effects to the Battle Bricks game you pro-
grammed on Day 7. Keep in mind that the sound effects included here are by
no means the limit of what you can do. You should feel free to experiment and
add as many other sound effects as you like. Specifically, today you’ll learn the
following:

• How to record and edit your own sound effects

• How to use the Microsoft Multimedia control

• How to use the Windows API to play sound effects

• How to use the DirectSound component of DirectX to play sound effects.

15 067231987x CH11 11/6/00 7:12 PM Page 319

Recording Sound
If you’ve never recorded sound effects in Windows before, you’re in for a treat. Not only
is the job easy, but it’s also fun. Most sound cards come with all the software you need to
create sound effects for any game that can handle WAV files. Moreover, many of these
sound-recording programs can also edit sounds in various ways, from clipping unwanted
noise to adding echo or even reversing a sound effect.

Because I’m a musician, I have a bit of an upper hand thanks to my small home studio.
If you have home-recording equipment, as well as an electronic instrument like a synthe-
sizer, you can create all sorts of cool sound effects for your game. Add to that some
sound manipulation software for your computer, and you’re ready to become a sound-
effects professional. Still, if you’re just starting off, your computer probably has the basic
programs you need already. If not, jump onto the Internet and look for freeware or share-
ware sound editors. Figure 11.1 shows WaveLab, the professional sound-editing software
I have on my computer. It costs around $300.

320 Day 11

FIGURE 11.1
The WaveLab sound
application.

No matter what sound card you have and what software you’ll be using to record and
edit sound effects, the first step is to plug a microphone into the sound card. Then, any
sounds the microphone picks up are transmitted to the sound card and the sound-editing
program you’re running.

15 067231987x CH11 11/6/00 7:12 PM Page 320

Adding Sound to a Game 321

11

Once you have the microphone plugged in, start up your sound-editing program and turn
on the recording function. (You’ll need to consult your program’s documentation for spe-
cific instructions on recording sound.) Then, the sounds that the microphone picks up are
converted to WAV format and saved to disk.

For example, suppose you want to record the words “Welcome, soldier, to Battle Bricks”
to be used as a greeting when the player first runs the game. After plugging in your
microphone and starting your sound program’s record feature, just speak into the micro-
phone (using a suitably impressive voice, of course). When you’re done, turn off the
record feature and save your spoken words to a WAV file. You can now play back those
words with any program that can play WAV files.

Editing Sounds
Once you’ve recorded a sound effect, you’ll almost always need to edit it somehow.
Different sound programs have different editing features, but most of them let you delete
various portions of the sound, as well as change the volume of the sound or add special
effects such as reverb, echo, phasing, and so on.

One piece of editing you’ll almost certainly have to do is to delete part of the beginning
and the end of the sound, because you’ll have a second or two of silence before the actu-
al sound. Why? It takes a second or two to go from turning on the sound program’s
record function to actually creating the sound you want to record.

Figure 11.2 shows WaveLab ready to delete a silent area from the front of a sound effect.
The user has marked the dark rectangular area with his mouse, in much the same way
you’d highlight text in a word processor. Then, the user deletes the extraneous sound data
by selecting the program’s Delete function, as shown in Figure 11.3.

Another thing you might have to do is increase the volume of the sound effect. For some
reason, they never seem to record loud enough. WaveLab has a Change Gain function
that multiplies the amplitude of a sound wave by a percentage you select in the Gain
Change dialog box (see Figure 11.4).

Your sound-editing program may have many other features as well, such as echo and
reverse. You should also be able to cut and paste pieces of different sound effects togeth-
er into one WAV file. Using this technique, you can come up with some pretty strange
stuff! Figure 11.5 shows some of WaveLab’s effects, open and ready to use.

15 067231987x CH11 11/6/00 7:12 PM Page 321

FIGURE 11.2
Deleting part of a
sound effect.

322 Day 11

FIGURE 11.3
After deleting the
leading silent area of
the sound effect.

15 067231987x CH11 11/6/00 7:12 PM Page 322

Adding Sound to a Game 323

11

FIGURE 11.4
Scaling a sound
effect’s volume.

FIGURE 11.5
Most sound editors
include special effects.

15 067231987x CH11 11/6/00 7:12 PM Page 323

Generating Sound Effects
Just like most things in life, the sound effects you create for a game can be as simple or
elaborate as you want. For most “homegrown” games, you can use items that you have
laying around the house to generate sound effects. For commercial games that will be
sold in a software store, you’ll need a full-fledged studio and probably a sound engineer
as well. Now you know why the major game companies are always complaining (or
boasting) about their development costs!

I recorded the game sounds in this book in my home studio using objects laying around
the house, along with a synthesizer. Later in this chapter, you’ll play the new version of
Battle Bricks and learn how the program plays back the sound effects.

Playing Sound Effects with Visual Basic
Once you have your sound effects, you need to set up your game program to play them.
You can use Visual Basic’s multimedia control, the Windows API, or the DirectSound
component of DirectX. In this section, you’ll examine all three methods of playing
sounds in your computer games.

The Multimedia Control
The Microsoft Multimedia Control comes with all commercial versions of VB, except
the Learning Edition. However, before you can use the control, you must add it to your
project by selecting the Components command of the Project menu. This brings up the
Components property sheet. On the Controls tab, select the Microsoft Multimedia
Control 6.0, as shown in Figure 11.6. The Multimedia Control will then appear in your
Visual Basic toolbox, along with the other controls that are loaded into your project.

324 Day 11

FIGURE 11.6
Loading the
Multimedia Control.

15 067231987x CH11 11/6/00 7:12 PM Page 324

Adding Sound to a Game 325

11

The Multimedia control encapsulates Windows’ MCI (Media Control Interface), which is
a library of functions for controlling multimedia devices. Although this powerful library
enables you to control any multimedia device, we’re only interested in the playback of
WAV files.

To use the Multimedia Control to play back WAV files, you must add an instance of the
control to your game’s form, as shown in Figure 11.7. As you can see, the control fea-
tures a full interface of buttons for controlling multimedia devices. The control can be
manipulated programmatically, however. In that case, you’ll almost certainly set the con-
trol’s Visible property to False so the interface doesn’t appear in the game’s window.

FIGURE 11.7
Adding the Multimedia
Control to a form.

With the control added to your form, you can now set it up in your program. First, set
the device type with the DeviceType property:

Form1.MMControl1.DeviceType = “WaveAudio”

Next, give the control the filename of the WAV file with the sound effect you want to
play:

Form1.MMControl1.FileName = “sound.wav”

To load the WAV file, issue the “Open” command:

Form1.MMControl1.Command = “Open”

15 067231987x CH11 11/6/00 7:12 PM Page 325

Finally, to play the sound, set the control’s From property to 0 (which tells the control to
play the sound from the start) and then issue the “Play” command:

Form1.MMControl1.From = 0
Form1.MMControl1.Command = “Play”

Whether you want to use the Multimedia Control depends on how sounds are incorporat-
ed into your game. For example, if you’re writing an arcade game like Battle Bricks, the
Multimedia Control probably won’t work too well because of the brief pause before the
sound is played. This latency may cause your program to bog down a bit. However, for
many Visual Basic games (which don’t tend to be arcade games anyway), the Multimedia
Control may be the easiest way to go.

On this book’s CD-ROM, you can find the MMControl example program, which plays a
sound effect using the Microsoft Multimedia Control. The source code is very simple, as
shown in Listing 11.1.

LISTING 11.1 The cmdPlay_Click Subroutine

1: Private Sub cmdPlay_Click()
2: ‘ChDir “d:\tyvbgames\chap11\mmcontrol”
3: Form1.MMControl1.DeviceType = “WaveAudio”
4: Form1.MMControl1.FileName = “beamup.wav”
5: Form1.MMControl1.Command = “Open”
6: Form1.MMControl1.From = 0
7: Form1.MMControl1.Command = “Play”
8: End Sub

This procedure opens a wave (Lines 3 to 5) and plays it (using the multimedia
control Lines 6 and 5).

Windows API Waveform Functions
Windows multimedia functions come in both high-level and low-level forms. The easiest
way to play a sound using the Windows API from within your application is to call one
of the high-level functions. These functions enable you to do everything from playing a
WAV file to recording MIDI files. Unfortunately, it would take an entire book to cover all
of the MCI’s high-level functions. This section will show you how to use the multimedia
high-level functions to control waveform audio, which is what you’ll use most of the
time. Windows supplies three high-level functions for playing waveform sounds:
MessageBeep(), sndPlaySound(), and PlaySound().

326 Day 11

ANALYSIS

15 067231987x CH11 11/6/00 7:12 PM Page 326

Adding Sound to a Game 327

11

Using the MessageBeep() Function
You can use the MessageBeep() function whenever you want to play a sound that’s asso-
ciated with one of Windows’ alert levels. These sounds include the ubiquitous “ding” and
other system sounds that inform you of various events. For example, if you click outside
of a dialog box that’s waiting for input, you hear a bell that reminds you to deal with the
dialog box before you continue.

In a program, the various sounds associated with the Windows alert levels are defined by
constants, including MB_ICONASTERISK, MB_ICONEXCLAMATION, MB_ICONHAND,
MB_ICONQUESTION, and MB_OK.

When you use one of these constants in a call to MessageBeep(), the system plays the
associated sound effect. Of course, before you can use MessageBeep() in a Visual Basic
program, you must first declare the function and define the constants for the various alert
levels, as shown here:

Public Declare Function MessageBeep Lib “user32” Alias _
“MessageBeep” (ByVal wType As Long) As Long

Const MB_ICONHAND = &H10
Const MB_ICONQUESTION = &H20
Const MB_ICONEXCLAMATION = &H30
Const MB_ICONASTERISK = &H40
Const MB_ICONINFORMATION = MB_ICONASTERISK
Const MB_ICONSTOP = MB_ICONHAND

A typical call to MessageBeep in a Visual Basic program looks something like this:

Dim ErrorCode As Integer
ErrorCode = MessageBeep(MB_ICONASTERISK)

The function returns a 0 if it fails and a non-zero value if it succeeds.

Using the sndPlaySound() Function
Whereas the MessageBeep function limits you to only those sounds associated with sys-
tem alert levels, the sndPlaySound function can play any waveform sound you like,
including alert sounds. In a Visual Basic program, sndPlaySound is declared, as shown
here:

Public Declare Function sndPlaySound Lib “winmm.dll” Alias _
“sndPlaySoundA” (ByVal lpszSoundName As String, _
ByVal uFlags As Long) As Long

The sndPlaySound function requires two parameters. The first is the name of the sound
or WAV file that you want to play. The function first searches the system registry for the
sound. These names aren’t the names of waveform files, but rather names assigned to
specific Windows events.

15 067231987x CH11 11/6/00 7:12 PM Page 327

To play the SystemAsterisk sound, provide sndPlaySound() with the string
SystemAsterisk as its first parameter. If sndPlaySound can’t find the sound represented
by the string, the function assumes that the sound string is the name of a waveform file.
Then sndPlaySound searches for the file in the current directory, the main Windows
directory, the Windows system directory, or directories included in the user’s PATH envi-
ronment variable. If the function can’t find the file, it tries to play the SystemDefault
sound. Finally, if it can’t find this sound, it returns an error.

The second parameter for sndPlaySound is the sound-play option, which you’d set to
SND_SYNC (&H0) for normal use.

A typical call to sndPlaySound() in a Visual Basic program looks something like this:

Dim ErrorCode As Integer
ErrorCode = sndPlaySound(“sound.wav”, &H0)

The function returns 0 if it fails and a non-zero number if it succeeds.

Using the PlaySound Function
The last high-level waveform function is PlaySound. It’s a little more flexible than its
cousin sndPlaySound, as you can see by its declaration in a Visual Basic program:

Public Declare Function PlaySound Lib “winmm.dll” Alias _
“PlaySoundA” (ByVal lpszName As String, _
ByVal hModule As Long, ByVal dwFlags As Long) As Long

Like sndPlaySound(), there are a number of flags you can use with PlaySound(), the
most common of which are SND_ASYNC (&H1), SND_FILENAME (&H20000), and SND_LOOP
(&H8). A typical call to PlaySound in a Visual Basic program looks something like this:

Dim ErrorCode As Integer
ErrorCode = PlaySound(“sound.wav”, 0, &H1 Or &H20000)

The arguments for the function are the sound’s name (system name, resource name, or
filename), the handle of the module that owns the resource (if the SND_RESOURCE flag is
used), and the appropriate flags. The function returns 0 if it fails and a non-zero number
if it succeeds.

In the Chap11\Playsounds directory of this book’s CD-ROM, you’ll find the PlaySounds
program that demonstrates using the Windows API to play sounds. Listing 11.2 shows
the complete source code.

328 Day 11

15 067231987x CH11 11/6/00 7:12 PM Page 328

Adding Sound to a Game 329

11

LISTING 11.2 The PlaySounds Program

1: Option Explicit
2:
3: Private Declare Function MessageBeep Lib “user32” _
4: (ByVal wType As Long) As Long
5: Private Declare Function sndPlaySound Lib “winmm.dll” Alias _
6: “sndPlaySoundA” (ByVal lpszSoundName As String, _
7: ByVal uFlags As Long) As Long
8: Private Declare Function PlaySound Lib “winmm.dll” Alias _
9: “PlaySoundA” (ByVal lpszName As String, _
10: ByVal hModule As Long, ByVal dwFlags As Long) As Long
11:
12: Private Sub Form_Load()
13: ChDir “d:\tyvbgames\chap11\playsounds”
14: End Sub
15:
16: Private Sub cmdMessageBeep_Click()
17: Dim ErrorCode As Integer
18: ErrorCode = MessageBeep(&H40)
19: If ErrorCode = 0 Then _
20: MsgBox “MessageBeep error.”, vbExclamation, “Error”
21: End Sub
22:
23: Private Sub cmdSndPlaySound_Click()
24: Dim ErrorCode As Integer
25: ErrorCode = sndPlaySound(“beamup.wav”, &H0)
26: If ErrorCode = 0 Then _
27: MsgBox “sndPlaySound error.”, vbExclamation, “Error”
28: End Sub
29:
30: Private Sub cmdPlaySound_Click()
31: Dim ErrorCode As Integer
32: ErrorCode = PlaySound(“beamup.wav”, 0, &H1 Or &H20000)
33: If ErrorCode = 0 Then _
34: MsgBox “PlaySound error.”, vbExclamation, “Error”
35: End Sub

Lines 3 to 10 declare the Windows API functions called in the program. The
Form_Load subroutine (Lines 12 to 14) set the current directory so that the pro-

gram can find its sound file. Lines 16 to 21 play a sound using the MessageBeep() func-
tion, and Lines 23 to 28 play a sound using the sndPlaySound() function. Finally, Lines
30 to 35 play a sound using the PlaySound() function.

When you run the program, you’ll see the window shown in Figure 11.8. Each button
shows the API function it calls. One thing to notice about the program is that it uses the
sndPlaySound() function asynchronously (by specifying the flag &H0), which means that

ANALYSIS

15 067231987x CH11 11/6/00 7:12 PM Page 329

control doesn’t return to the program until the sound effect has finished playing. The
PlaySound() function in this program, on the other hand, plays synchronously (by speci-
fying the flag &H1), which mean control returns to the program immediately. For this rea-
son, the PlaySound button immediately restarts the sound whenever it’s clicked.

330 Day 11

FIGURE 11.8
The PlaySounds
program.

Using DirectSound
Probably the best way to play sound effects in your programs is with the DirectSound
component of DirectX. In this section, you’ll learn the basics of using DirectSound.

Adding DirectX to Your Project
Before you can use DirectX in your programs, you must add to your project a reference
to the DirectX type library. To do this, select the Project menu’s References command.
The References dialog box appears. Place a check mark in the box next to the entry for
DirectX 7 for Visual Basic Type Library, as shown in Figure 11.9. Click OK to close the
dialog box, and you’re set.

FIGURE 11.9
Adding DirectX to a
VB project.

15 067231987x CH11 11/6/00 7:12 PM Page 330

Adding Sound to a Game 331

11

Declaring DirectSound Variables
After adding DirectX to your project, you can start adding DirectSound source code to
your program. First, you need to declare the variables that’ll hold references to the
DirectX objects your program needs to access:

Dim DirectX7Obj As New DirectX7
Dim DirectSoundObj As DirectSound
Dim SoundBuffer As DirectSoundBuffer

Here, the first line defines a DirectX object using the New operator, the second line
declares a DirectSound object, and the third line declares a buffer for the sound effect.
You’ll need to create a buffer like this for each sound effect in your program.

You can think of the DirectX object as the doorway into the DirectX library. Using the
DirectX object (named DirectX7Obj in this example), your program can create other
DirectX component objects, such as the DirectSound object that you’ll create in the next
section.

Creating a DirectSound Object
You need to create a DirectSound object in order to gain access to DirectSound’s inter-
face, which enables you to call DirectSound’s methods. In Visual Basic, you create a
DirectSound object like this:

Set DirectSoundObj = DirectX7Obj.DirectSoundCreate(“”)

Here, DirectSoundCreate’s single argument is an empty string that tells DirectX that the
DirectSound object will use the currently active driver.

Setting the Priority Level
Because the Windows environment allows multitasking, many applications may be run-
ning simultaneously. In order to keep things running smoothly, different aspects of the
operating system are assigned priority levels. For this reason, DirectSound provides the
SetCooperativeLevel method, which enables a program to request a priority level for
the sound hardware. You typically call SetCooperativeLevel like this:

DirectSoundObj.SetCooperativeLevel Me.hWnd, DSSCL_PRIORITY

The program calls SetCooperativeLevel with two arguments: the handle of the window
requesting a priority level and the flags representing the requested level. The DSSCL_
PRIORITY flag gives the program exclusive use of the sound device.

15 067231987x CH11 11/6/00 7:12 PM Page 331

Creating DirectSoundBuffer Objects
The next step is to create secondary DirectSoundBuffer objects for the sound effects in
your program. First, declare two data types that hold the information that gets passed
back and forth between DirectSound and your program:

Dim bufferDesc As DSBUFFERDESC
Dim waveFormat As WAVEFORMATEX

The DSBUFFERDESC structure holds information about DirectSoundBuffer objects. You
transfer information to and from DirectSound by using structures such as DSBUFFERDESC.
You fill in some of the information in the structure before you call certain DirectSound
member functions, while DirectSound fills in other structure members to send informa-
tion back to your program. You may or may not need any of this information.

To create a secondary buffer, the program loads a WAV file by way of the DirectSound
object’s CreateSoundBufferFromFile method:

SoundBuffer = DirectSoundObj.CreateSoundBufferFromFile _
(FileName, bufferDesc, waveFormat)

CreateSoundBufferFromFile’s three arguments are the path and filename of the WAV
file, the DSBUFFERDESC data, and the WAVEFORMATEX data.

Playing the Sound
Finally, you’re ready to get noisy with DirectSound. To play a sound, simply call the
DirectSoundBuffer object’s Play method:

SoundBuffer.Play 0

The Play method requires a single argument. A 0 indicates that the sound should play
once, whereas a 1 indicates that the sound should be looped, or played again and again
until it’s explicitly stopped. Other important DirectSoundBuffer methods include Stop
and SetCurrentPosition. The former stops a currently playing sound, and the latter sets
a position within the sound at which to start playing:

SoundBuffer.Stop
SoundBuffer.SetCurrentPosition 0

Here, the argument of 0 for the SetCurrentPosition method tells DirectSound to set the
sound back to the beginning.

The DirectSound Routines
You’ll be thrilled to know that your humble author has put together a set of DirectSound
routines that you can use in your programs without having to be a DirectSound expert.
Those routines are shown in Listing 11.3.

332 Day 11

15 067231987x CH11 11/6/00 7:12 PM Page 332

Adding Sound to a Game 333

11

LISTING 11.3 The DirectSound Routines

1: ‘**
2: ‘* DirectSound Visual Basic Subroutines
3: ‘**
4:
5: ‘STEP 1
6: ‘**
7: ‘* Place the following definitions at the top of your program.
8: ‘**
9: Dim DirectX7Obj As New DirectX7
10: Dim DirectSoundObj As DirectSound
11:
12: ‘ STEP 2
13: ‘**
14: ‘* Add the following line to the DirectSound definitions
15: ‘* at the top of your program, changing the name “SoundBuffer”
16: ‘* to the name of your sound effect. Add one of these lines for
17: ‘* each sound effect in the program.
18: ‘**
19: Dim SoundBuffer As DirectSoundBuffer
20:
21: ‘ STEP 3
22: ‘**
23: ‘* Call this subroutine, which initializes DirectSound, before
24: ‘* calling any of the other DirectSound subroutines.
25: ‘**
26: Sub InitDirectSound()
27: On Local Error Resume Next
28: Set DirectSoundObj = DirectX7Obj.DirectSoundCreate(“”)
29: If Err.Number <> 0 Then
30: MsgBox “DirectSound initialization failed.”
31: End
32: End If
33: DirectSoundObj.SetCooperativeLevel Me.hWnd, DSSCL_PRIORITY
34: End Sub
35:
36: ‘ STEP 4
37: ‘**
38: ‘* Call this function to initialize each sound effect buffer,
39: ‘* passing as an argument the path to the sound effect’s WAV
40: ‘* file. This function returns the DirectSoundBuffer object for
41: ‘* the sound effect.
42: ‘**
43: Function CreateSound(FileName As String) As DirectSoundBuffer
44: Dim bufferDesc As DSBUFFERDESC
45: Dim waveFormat As WAVEFORMATEX
46: bufferDesc.lFlags = DSBCAPS_STATIC
47: Set CreateSound = _
48: DirectSoundObj.CreateSoundBufferFromFile(FileName, _

15 067231987x CH11 11/6/00 7:12 PM Page 333

49: bufferDesc, waveFormat)
50: If Err.Number <> 0 Then
51: MsgBox “unable to find sound file”
52: End
53: End If
54: End Function
55:
56: ‘ STEP 5
57: ‘**
58: ‘* Call this subroutine to play a sound effect, passing
59: ‘* as arguments the sound effect’s DirectSoundBuffer
60: ‘* object, as well as two Boolean values, the first of which
61: ‘* specifies whether the sound buffer should stop playing a
62: ‘* previous instance of the sound effect, and the second of
63: ‘* which specifies whether the sound should loop repeatedly.
64: ‘* If you choose to loop the sound effect, you must, when you
65: ‘* want to stop the looping, call the sound effect’s Stop method
66: ‘* somewhere in your program.
67: ‘**
68: Sub PlaySound(Sound As DirectSoundBuffer, _
69: CloseFirst As Boolean, LoopSound As Boolean)
70: If CloseFirst Then
71: Sound.Stop
72: Sound.SetCurrentPosition 0
73: End If
74: If LoopSound Then
75: Sound.Play 1
76: Else
77: Sound.Play 0
78: End If
79: End Sub

As you can see, the routines include complete instructions for use. You can find
these routines under the name DirectSoundRoutines.txt in the Chap11\Code

directory.

Adding Sound Effects to Battle Bricks
Now that you know everything (well, not quite everything) about creating and playing
sound effects, you can beef up Battle Bricks with some cool sounds:

1. Add DirectX to your project by selecting the Project menu’s References command
and then checkmarking the DirectX 7 for Visual Basic Type Library item.

You need to do this so that your program recognizes the various DirectSound sym-
bols and methods.

334 Day 11

LISTING 11.3 continued

ANALYSIS

15 067231987x CH11 11/6/00 7:12 PM Page 334

Adding Sound to a Game 335

11

2. Add the following DirectX declarations to the other variable declarations near the
top of the program:
1: ‘==
2: ‘ DirectSound variables.
3: ‘==
4: Dim DirectX7Obj As New DirectX7
5: Dim DirectSoundObj As DirectSound
6: Dim BrickSoundBuffer As DirectSoundBuffer
7: Dim BounceSoundBuffer As DirectSoundBuffer
8: Dim BonusSoundBuffer As DirectSoundBuffer
9: Dim MissSoundBuffer As DirectSoundBuffer
10: Dim FireSoundBuffer As DirectSoundBuffer
11: Dim ClappingSoundBuffer As DirectSoundBuffer

These lines declare the DirectSound objects that the program needs.

3. Add the following DirectSound routines to the end of the program’s source code.
You can find these routines in the DirectSoundRoutines.txt file in the Chap11\Code
directory:
1: ‘==
2: ‘ DirectSound Subroutines.
3: ‘==
4: Sub InitDirectSound()
5: On Local Error Resume Next
6: Set DirectSoundObj = DirectX7Obj.DirectSoundCreate(“”)
7: If Err.Number <> 0 Then
8: MsgBox “DirectSound initialization failed.”
9: End
10: End If
11: DirectSoundObj.SetCooperativeLevel Me.hWnd, DSSCL_PRIORITY
12: End Sub
13:
14: Function CreateSound(FileName As String) As DirectSoundBuffer
15: Dim bufferDesc As DSBUFFERDESC
16: Dim waveFormat As WAVEFORMATEX
17: bufferDesc.lFlags = DSBCAPS_STATIC
18: Set CreateSound = _
19: DirectSoundObj.CreateSoundBufferFromFile(FileName, _
20: bufferDesc, waveFormat)
21: If Err.Number <> 0 Then
22: MsgBox “unable to find sound file”
23: End
24: End If
25: End Function
26:
27: Sub PlaySound(Sound As DirectSoundBuffer, _
28: CloseFirst As Boolean, LoopSound As Boolean)

ANALYSIS

15 067231987x CH11 11/6/00 7:12 PM Page 335

29: If CloseFirst Then
30: Sound.Stop
31: Sound.SetCurrentPosition 0
32: End If
33: If LoopSound Then
34: Sound.Play 1
35: Else
36: Sound.Play 0
37: End If
38: End Sub

Lines 4 to 12 initialize the DirectSound libraries, and Lines 14 to 25 create a
sound buffer from the given wave file. Finally, Lines 27 to 38 play the sound

effect.

4. Add the following lines to the end of the Form_Load event handler:
InitDirectSound
CreateSounds

5. Add the following subroutine to the program. Note that you should change the
explicit paths in the #Else section of the subroutine to your project’s path.
1: Sub CreateSounds()
2: #If COMPILING Then
3: Set BrickSoundBuffer = CreateSound(“Brick.wav”)
4: Set BounceSoundBuffer = CreateSound(“Bounce.wav”)
5: Set BonusSoundBuffer = CreateSound(“Bonus.wav”)
6: Set MissSoundBuffer = CreateSound(“Miss.wav”)
7: Set FireSoundBuffer = CreateSound(“Fire.wav”)
8: Set ClappingSoundBuffer = CreateSound(“Clapping.wav”)
9: #Else
10: Set BrickSoundBuffer = CreateSound(_
11: “d:\tyvbgames\chap11\battlebricks2\Brick.wav”)
12: Set BounceSoundBuffer = CreateSound(_
13: “d:\tyvbgames\chap11\battlebricks2\Bounce.wav”)
14: Set BonusSoundBuffer = CreateSound(_
15: “d:\tyvbgames\chap11\battlebricks2\Bonus.wav”)
16: Set MissSoundBuffer = CreateSound(_
17: “d:\tyvbgames\chap11\battlebricks2\Miss.wav”)
18: Set FireSoundBuffer = CreateSound(_
19: “d:\tyvbgames\chap11\battlebricks2\Fire.wav”)
20: Set ClappingSoundBuffer = CreateSound(_
21: “d:\tyvbgames\chap11\battlebricks2\Clapping.wav”)
22: #End If
23: End Sub

This subroutine simply loads the sound effects from disk. However, notice the
use of compiler directives (Lines 2, 9, and 22) to control the paths from which

the sounds are loaded. When you’re running the program from within the Visual Basic

336 Day 11

ANALYSIS

ANALYSIS

15 067231987x CH11 11/6/00 7:12 PM Page 336

Adding Sound to a Game 337

11

IDE, the second set of CreateSound calls provide an explicit pathname. When the
COMPILING symbol is set to True, however, the first set of paths are used. This ensures
that the executable can find the sound files in its own directory, no matter what that
directory is named.

6. In the MoveBall subroutine, add the following line right before the
KingSurrenders line that’s already there:

PlaySound ClappingSoundBuffer, False, False

7. In the HandleBallActions subroutine, add the following line right before the
StartNewBall line that’s already there:

PlaySound MissSoundBuffer, False, False

8. In the CheckWalls subroutine, add the following line right before the second
End If:

PlaySound BounceSoundBuffer, True, False

9. In the CheckWalls subroutine, add the following line right before the third End If:

PlaySound BounceSoundBuffer, True, False

10. In the CheckPaddle subroutine, add the following line right before the last End If:

PlaySound BounceSoundBuffer, True, False

11. In the DestroyBrick subroutine, add the following line right before the End If:

PlaySound BonusSoundBuffer, True, False

12. In the DestroyBrick subroutine, add the following line right after the End If:

PlaySound BrickSoundBuffer, True, False

13. In the WaitForReady subroutine, add the following line right before the End Sub:

FireSoundBuffer.Play 0

14. Add the following line to the top of the program, right after the Option Explicit
line that’s already there:

#Const COMPILING = False

When you set the COMPILING symbol to False, the program uses the full, explicit
pathnames in the CreateSounds subroutine to locate the sound files. When you’re
ready to compile the program, change COMPILING to False. The program will com-
pile only the lines containing the sound filenames with no explicit paths.

15. Copy to your project’s directory all the WAV files from the Chap11\BattleBricks2
directory of this book’s CD-ROM.

Now the Battle Bricks sound effects are complete, which makes the game much more
interesting. Go ahead and play for a while!

15 067231987x CH11 11/6/00 7:12 PM Page 337

Summary
Creating sound effects for Windows games is easier than you might expect. Just
plug a microphone into your sound card and run a sound-recording program.
Every sound that the microphone picks up is recorded by the sound program
and stored on disk as a WAV (waveform) file. After recording the sound, you
can edit it in various ways, including deleting parts of the sound, increasing the
sound’s volume, adding echo, and even reversing the sound. To play your sound
effects, use the DirectSound routines provided in this chapter.

Q&A
Q Can I use commercial sound-effect recordings in my games?

A If you go to a large CD store, you’ll probably find libraries of sound effects on CD.
Whether you can use these sound effects in your games depends upon the licensing
agreement that comes with the CD. In most cases, the lower-priced collections
(around $15) are for personal use only. To get a sound-effect library that you can
use legally in your games, you usually have to pay $50 or more.

Q How much do I have to spend to set up a simple studio for creating sound
effects?

A You’ve already got the most important part of that studio: your computer. You can
get fairly powerful sound-editing software for between $50 and $100, and you can
get professional software for around $350. To get a decent synthesizer for creating
sound effects, you’ll probably have to spend at least $500, and more likely around
$1,000. A decent microphone—such as a Shure SM-57, which is a great all-around
mic—goes for around $90. But don’t forget that household items, a microphone, a
sound-editing program, and your sound card may be all you need to get started.

Q Is DirectSound really as simple to use as it’s described to be in this chapter?

A Yes and no. If all you want to do is play sound effects from beginning to end, the
simple routines I’ve provided should do the trick nicely. However, DirectSound
provides a great deal of control over sound devices. If you’re looking for that
greater control and don’t mind digging deeper into DirectSound, look it up in your
Visual Basic online help.

Workshop
The workshop includes quiz questions to help gauge your grasp of the material. You’ll
find the answers to this quiz in Appendix A. Even if you feel that you totally understand

338 Day 11

15 067231987x CH11 11/6/00 7:12 PM Page 338

Adding Sound to a Game 339

11

the concepts presented here, you should work through the quiz anyway. The last section
has a couple of exercises to help reinforce your learning.

Quiz
1. What’s the minimum hardware and software you need for creating sound effects?

2. What are three ways of playing sound effects in your Visual Basic programs?

3. What would you use a sound editor for?

4. What does MCI stand for, and what is it?

5. Compare the MessageBeep() API function with the PlaySound() API function.

6. Which three DirectX objects does a program need in order to play a sound effect?
Describe them.

7. What method do you call to play a sound effect with DirectSound? What method
stops a sound from playing?

Exercises
1. Write a short program that plays a sound effect using DirectSound. (Don’t use the

DirectSound routines provided in this chapter. Also, don’t forget to add the DirectX
libraries to your project.)

2. Modify the Poker Squares program from Day 9 so that a sound effect plays when
the player places a card in the grid, and also when the player clicks on a cell that
already contains a card (an illegal-move sound).

15 067231987x CH11 11/6/00 7:12 PM Page 339

15 067231987x CH11 11/6/00 7:12 PM Page 340

DAY 12

WEEK 2

Playing the Game: The
Dragonlord RPG Project

If there’s one thing that makes game players all fuzzy inside, it’s the ability to
create their own levels for a favorite game. For example, it’s generally agreed
that Doom’s huge success, which led to many other similar games (including
Quake), was due as much to the game’s editability as it was to its playability.
(Early on, game hackers figured out how to edit the game files and created their
own editing tools before the official ones were released.) The funny thing about
this discovery is that game programmers have long had the editors needed to
create game levels for their games (a game editor is often one of the first pro-
grams created for a project); it just never occurred to anyone to release the edi-
tors for use by the general public.

Turns out, everyone thinks they’ve got what it takes to create great levels, and
they love to do it. For the next few days, you’ll work on a game called
Dragonlord, which includes its own level editor. Today, you’ll get an introduc-
tion to the game and have some fun hunting down skeletons and dragons in a
mysterious dungeon. Tomorrow, you’ll dig into the source code to see how the

16 067231987x CH12 11/6/00 7:08 PM Page 341

game works. Finally, the day after tomorrow, you’ll build the level editor. Dragonlord
will be your biggest project yet. Also, it will be good preparation for the last week of
study, when you create the complete Moonlord strategy game.

What’s an RPG?
If you’re an avid computer game player, you probably already know what the letters
RPG stand for: role-playing game. This type of game originated when a bunch of people
got together and created characters that they used in a pencil-and-paper game of dungeon
exploration. In the course of the game, the players told the game moderator (or dungeon
master) what actions they wanted to take in the dungeon, and the moderator told them
the results of those actions based on rolls of the dice. Before too long, the rules for such
games become formalized. The most famous of these games is Dungeons and Dragons,
or D&D as it’s affectionately known among its adherents.

The rules for a role-playing game are so complex that it often takes several books to spell
them out. Obviously, the dungeon master must do a lot of studying before he can run a
game. When personal computers came along, role-playing games were created for them.

Unfortunately, creating a full-featured computer RPG these days takes dozens of people
and several years. If this book tried to cover such a game, it would be the size of the
Encyclopedia Britannica. Luckily, you can learn the basics of writing an RPG fairly easi-
ly. Then you can decide for yourself how far you want to go with it.

So, what makes an RPG different from other adventure games? The player takes on the
role of another person, like a wizard, so a role-playing game must define one or more of
these characters. In modern role-playing games, dozens of attributes define the way a
character looks and acts in the game. These attributes typically include health (represent-
ed by hit points), strength, intelligence, race, occupation, class, religion, speed, skills,
and so on. In addition to all these attributes are external modifiers, including the type of
weapon the character has, the type of armor he’s wearing, and the non-player characters
(NPCs) with which the player must interact. The game must take all this data into
account, throw in a bit of random chance, and determine the outcome of every event in
the game.

In this book’s RPG, Dragonlord, you’ll get only a limited look at how to apply character
attributes to the game rules in order to devise outcomes. Still, it’s the same sort of pro-
gramming that goes into today’s mammoth RPGs, such as the Might and Magic series
and the Ultima series.

342 Day 12

16 067231987x CH12 11/6/00 7:08 PM Page 342

Playing the Game: The Dragonlord RPG Project 343

12

Playing Dragonlord
Now that you know what an RPG is, let’s have a little fun. Run Dragonlord, and you’ll
see the screen shown in Figure 12.1. Most of the screen consists of the dungeon map. At
first, you can see only one room, which is where you’re currently located. The other
rooms on the map are marked by red squares. The current location of your game charac-
ter is always a yellow square.

FIGURE 12.1
Dragonlord’s main
screen.

Below the dungeon map is Dragonlord’s control bar, which displays the game’s com-
mand buttons. You issue commands by clicking the buttons on the control bar. Table 12.1
lists the commands and what they do.

TABLE 12.1 Dragonlord’s Commands

Command Effect

Shop Calls the shopkeeper

Spell Casts a spell

Stats Displays a statistics box for the game in progress

Randomize Dungeon Randomizes the locations of the items in the currently loaded
dungeon

Load Dungeon Loads a dungeon file

About Displays Dragonlord’s About box

16 067231987x CH12 11/6/00 7:08 PM Page 343

Shopping for Supplies
Before you explore the game any further, you need to get some supplies from the shop-
keeper. To visit the shopkeeper, click the Shop button or press Alt+S. You’ll see the YE
OLDE SHOPPE dialog box (see Figure 12.2). Then choose the department where you
want to shop by clicking the appropriate button or pressing the appropriate Alt+key com-
bination (which is indicated by the underlined character on the button).

344 Day 12

FIGURE 12.2
The YE OLDE
SHOPPE dialog box.

The Health Department
When you click the Health button or press Alt+H, you’ll see the HEALTH DEPART-
MENT box (see Figure 12.3), which lists three items: Pie, Lodge, and Doctor. The box
also lists the prices of the items. You can buy 5 meat pies for 10 gold pieces, a visit to
the inn for 15 gold pieces, or a visit to the doctor for 15 gold pieces. When you click one
of the buttons, the appropriate amount of money is deducted from your gold and you’re
thanked for your purchase. If you purchase a stay at the inn or a visit to the doctor, you’ll
also see the number of strength or hit points you’ve gained, as shown in Figure 12.4. To
buy more of an item, you must click its button again.

FIGURE 12.3
The health depart-
ment.

FIGURE 12.4
The game displays the
number of hit points
you’ve gained.

16 067231987x CH12 11/6/00 7:08 PM Page 344

Playing the Game: The Dragonlord RPG Project 345

12

To maintain your strength in the dungeon, you need meat pies. Every time you move to a
new room, you consume one-third of a pie, so they go pretty quickly. If you can handle
the incredibly complex math, the 5 meat pies that you get for 10 gold pieces will last for
only 15 moves. Of course, you can have more than 5 pies at a time, but you should do
your best to conserve your gold.

When your pies are gone, your strength diminishes twice as quickly.Caution

When you need to restore some of your strength, visit the lodge. After a good night’s
sleep, you’ll restore 21 to 35 strength points. However, you can never have more than
100 strength points, so it’s probably unwise to visit the inn if you’ve got more than 70.
When your strength drops to 0, you run in panic from the dungeon—and panicked
adventurers always stumble upon an angry dragon. Aside from keeping you in the game,
strength also affects how well you fight.

Hit points are a measure of the injuries you’ve sustained. When they’re gone, so are you.
If your hit points start getting low, you should visit the doctor. For a reasonable fee of 15
gold pieces, he’ll patch you up, restoring 16 to 25 hit points. You can never have more
than 50 hit points, so don’t visit the doctor too often. As with strength, when your hit
points reach 0, you run in panic from the dungeon and stumble upon a dragon.
(Panicking adventurers don’t pay much attention to where they’re going.)

The Magic Department
When you click the Magic button or press Alt+M, you move to the magic department
(see Figure 12.5), where you can buy spells, advice, and dragon brew. Spells are 10 gold
pieces each, advice is 20 gold pieces per session, and the dragon brew is a whopping 80
gold pieces. You’ll need to do some saving to accumulate such a large wad of cash!

FIGURE 12.5
The magic department.

16 067231987x CH12 11/6/00 7:08 PM Page 345

Spells enable you to move instantly to any room on the map. This is an extremely useful
power when you need to get somewhere fast. For example, you may stumble upon a tele-
port room that moves you far from where you want to be in the dungeon. A spell can get
you right back on track. You can find spells lying around in the dungeon, so you
shouldn’t purchase any from the magic department until you’re desperate.

When you buy advice, the shopkeeper tells you the direction of the dragon’s room in
relation to your current location. Getting advice at the beginning of the game is a good
way to avoid the dragon until you’re ready to take him on. If you stumble upon the drag-
on before you have the dragon brew, you’re dragon chow.

Dragon brew is the most important item in the game. Normally the dragon is completely
invincible in battle, so you must tame him with this magical potion. When you have the
brew and you find the dragon’s room, you and the dragon become good buddies.
Otherwise… well, let’s just say that dragons are always hungry, thanks to their huge bel-
lies and nasty dispositions.

The Weapon Department
The dragon’s dungeon is full of undead skeletons that would like nothing better than to
make you one of them. When you find a skeleton, you must fight to the death.
Obviously, the better your weapon, the better your chance of surviving a battle. Buy a
decent weapon as soon as possible by clicking the Weapon button or pressing Alt+W.
This takes you to the shopkeeper’s weapon department, shown in Figure 12.6.

346 Day 12

FIGURE 12.6
The weapon depart-
ment.

Generally, the better your weapon, the easier the game is to beat. The sword is the best
weapon, but it’s expensive. If you buy the sword at the beginning of the game, you’ll
have no gold left to buy meat pies or advice.

When choosing a weapon, you can employ several strategies. You can spend all your
gold on the sword and then hope you don’t stumble upon the dragon before you can
afford either advice or dragon brew. Or you might want to get advice from the very start

16 067231987x CH12 11/6/00 7:08 PM Page 346

Playing the Game: The Dragonlord RPG Project 347

12

and make do with a knife, which is almost as good as a sword. A club is only slightly
more effective than no weapon at all, but it leaves you with a lot of gold to spend.

Keep in mind that weapons are expensive. You probably won’t be able to afford another
one at any time during the game, so choose wisely at the start. (By the way, if you don’t
buy a weapon, you fight with your fists.)

Moving Through the Dungeon
Each room in the dungeon has one or more doors. To move to another room, you must
move in the direction of an exit. If you want to move north, for example, the north wall
of your current room must have a door. If there is a door, simply click the room to which
you want to move. The new room appears on the map, and you see whatever is in that
room, if anything. Keep in mind that each move consumes 1 strength point and one-third
of a pie.

Discovering Objects in the Dungeon
As you move from room to room, you’ll stumble upon various objects, including gold,
spells, serums, teleporters, skeletons, the thief, and, of course, the dragon. When you
move to a room that has such an object, the DISCOVERY box appears. This box tells
you what you’ve found and performs any action related to that object. After you discover
an item in a room, you automatically pick it up, so it won’t be in the room if you return
there later in the game. The exceptions are skeletons and gold pieces, which can appear
randomly in any room.

Gold Pieces
You use gold pieces (see Figure 12.7) to buy items from the shopkeeper. When you enter
an empty room, you may stumble upon a small cache of gold. Also, whenever you defeat
a skeleton, you get to keep his gold. Dragon brew is expensive, so you must spend your
gold wisely. You’ll not have much to spare.

FIGURE 12.7
Discovering gold
pieces.

16 067231987x CH12 11/6/00 7:08 PM Page 347

Spells
The spells that you find in the dungeon (see Figure 12.8) are exactly like those you buy
from the shopkeeper. They enable you to move instantly to any room. To use a spell,
click the control bar’s Spell button or press Alt+P. A dialog box appears, telling you to
click the room (or room square, if the room isn’t on the map yet) where you want to
move. When you click the room, you move there instantly.

348 Day 12

FIGURE 12.8
Discovering spells.

Serums
Serums (see Figure 12.9) restore a portion of your strength. You cannot buy these magi-
cal potions from the shopkeeper. The only way that you can obtain them is to find them
in the dungeon. You drink a serum automatically after a battle in which your strength
drops below 20 points. Of course, if you have no serum, the only way to restore your
strength is to visit the shopkeeper and purchase a stay at the inn.

FIGURE 12.9
Discovering serum.

Teleporters
A few of the rooms in the dungeon contain teleporter fields (see Figure 12.10) that
instantly transfer you to another room. Often, this surprise move is helpful, taking you to
a new area to explore. However, just as often, the teleporter plops you down near the
dragon. In that case, your best bet is to use a spell to get back to where you were. If you
don’t have a spell or don’t want to use one, you should take the most direct route to safe-
ty. If you stumble into the dragon’s room without the dragon brew, the dragon will have
a tasty meal.

16 067231987x CH12 11/6/00 7:08 PM Page 348

Playing the Game: The Dragonlord RPG Project 349

12

FIGURE 12.10
A teleporter.

The Thief
One room in the dungeon hides the thief (see Figure 12.11). After you run into this
pesky fellow, you’ll find that 25 percent of your gold pieces are missing. The thief is an
annoyance if you’re carrying a lot of gold, but otherwise he does no harm. After the thief
robs you once, he never appears again. With any luck, you’ll manage to avoid him com-
pletely. (Yeah, right. Fat chance of that!)

FIGURE 12.11
The thief.

Skeletons
The dragon’s dungeon is positively packed with skeletons (see Figure 12.12). These are
nasty creatures that have nothing better to do than to make exploring miserable for inno-
cent adventurers like yourself.

FIGURE 12.12
A skeleton.

16 067231987x CH12 11/6/00 7:08 PM Page 349

When you discover a skeleton, you must battle him to the death (yours or his). To start
the battle, click OK to exit the skeleton’s DISCOVERY box. The battle box then appears,
as shown in Figure 12.13.

350 Day 12

FIGURE 12.13
The battle box.

The green die on the left represents your attack, and the green die on the right represents
the skeleton’s. For each attack, the fighter with the highest attack score delivers a blow to
his opponent. Below the dice is your modifier score. This modifier is added to your roll
to come up with your final attack score. For example, if you roll a 6 and have an attack
modifier of 2, your total attack is 8. Then, if the skeleton rolls an 8 or less, you win. (In
the case of a tie, you win.)

Each hit, against either you or the skeleton, scores between 1 and 5 points of damage.
This damage is subtracted from the loser’s hit points. Because a skeleton starts with 5 hit
points, you can kill him with 1 to 5 hits. Each time you attack, you consume 1 strength
point. If you’re out of meat pies, you consume your strength twice as fast.

After you defeat a skeleton, you get his cache of gold. The amount of gold varies from
skeleton to skeleton. If you fail to defeat the skeleton, the game ends because either your
strength or hit points will have dropped to 0.

The Dragon
Like most objects in the dungeon, the dragon (see Figure 12.14) stays in the same room
throughout the entire game. He doesn’t come looking for you and really couldn’t care
less that you’re reducing his skeleton army to heaps of moldy bones. However, the drag-
on doesn’t like visitors, and if you stumble into his room, you’d better have the dragon
brew to tame him. Otherwise, it’s munch, munch, munch. If you do have the dragon
brew when you discover His Scaly Majesty, you tame the dragon and win the game.

16 067231987x CH12 11/6/00 7:08 PM Page 350

Playing the Game: The Dragonlord RPG Project 351

12

FIGURE 12.14
The dragon.

Randomizing a Dungeon
When you run Dragonlord, it always loads the default dungeon file, Dungeon.drg. This
file (and every other Dragonlord dungeon file) defines the locations of all objects in the
dungeon, so every time you load it, all the items are put back in the same rooms they
were in before. Obviously, knowing where things are—especially the dragon—can make
adventuring mucho boring. That’s why the game gives you the Randomize Dungeon but-
ton. Click this button at the beginning of a game and Dragonlord shuffles the dungeon’s
contents. This way, you can play the same dungeon layout repeatedly.

You can randomize the dungeon only at the beginning of a game. Once a
game starts, the Randomize Dungeon button becomes disabled until the
game ends.

Note

Loading a Dungeon
To start a new game, you must load a dungeon file, which defines the layout of the
rooms in the dungeon, as well as the items located in those rooms. To load a dungeon,
click the Load Dungeon button, or press Alt+L, and choose the dungeon from the Open
Dungeon File dialog box that appears. Figure 12.15 shows this dialog box as it appears
in Windows Me. If you have an earlier version of Windows, the dialog box will look a
bit different but will function similarly.

At this point, your Dragonlord game features only a single dungeon file,
Dungeon.drg. On Day 14, you’ll create a dungeon editor that enables you to
create your own dungeon files.

Note

16 067231987x CH12 11/6/00 7:09 PM Page 351

FIGURE 12.15
The Open Dungeon
File dialog box.

352 Day 12

Building Dragonlord
So far you’ve had an easy lesson, spending most of your time playing the Dragonlord
RGP. Unfortunately, learning how to play games is only a small part of learning how to
program games. It’s time to get back to the serious work!

In the following section, you’ll build the program’s user interface. In tomorrow’s lesson,
you’ll add the source code that gets the game running. Crack your knuckles and stock up
on gummy bears, because this will be your biggest project yet!

Creating Dragonlord’s Main Form
The first step is to create the game’s main form:

1. Start a new Standard EXE Visual Basic project.

2. Set the form’s properties to the values listed here:

AutoRedraw = True

Caption = “Dragonlord”

Height = 7590

ScaleMode = Pixel

Width = 9720

This form will be the game’s main screen.

3. Set the form’s Picture property to the Dragonlord.gif image that you can find in
the Images\Dragonlord directory of this book’s CD-ROM.

4. Add an Image control to the project, giving it the name imgRoom and assigning the
Room0.bmp file to the Picture property. (As with all of Dragonlord’s image files,
you can find Room0.bmp in the Images\Dragonlord directory of this book’s
CD-ROM.)

16 067231987x CH12 11/6/00 7:09 PM Page 352

Playing the Game: The Dragonlord RPG Project 353

12

5. Select the new Image control by clicking it, and then press Ctrl+C to copy the con-
trol to the Clipboard. Press Ctrl+V to paste a new instance of the control into your
form. When VB asks if you want to create a control array, answer Yes. Assign the
Room1.bmp image file to this control’s Picture property.

6. Add 13 more Image controls to the control array. Assign the remaining room
images (Room2.bmp through Room14.bmp) to these controls. That is, the image
control imgRoom(2) should get the Room2.bmp image, imgRoom(3) should get the
Room3.bmp image file, and so on. The final control array will appear on your form
as shown in Figure 12.16.

Each of the different rooms in the dungeon has an image associated with it. The
imgRoom control array contains these images.

FIGURE 12.16
The imgRoom control
array.

7. Create another Image control array called imgHall that contains two controls, and
assign the Hall0.bmp and Hall1.bmp image files to the controls’ Picture proper-
ties.

This image array holds the two images that represent the hallways that lead from
one room to another. When the player moves from one room to another, the con-
necting hallways appear on the screen.

16 067231987x CH12 11/6/00 7:09 PM Page 353

8. Create another Image control array called imgDice that contains nine controls, and
assign the Dice0.bmp through Dice8.bmp image files to the controls’ Picture
properties.

The outcome of a battle is determined by a roll of the dice. However, Dragonlord’s
dice are special. Each die can represent a value from 1 to 9, rather than just 1 to 6.

9. Create another Image control array called imgSkeleton that contains four controls,
and assign the Skeleton0.bmp through Skeleton3.bmp image files to the controls’
Picture properties.

When battling a skeleton, the player is treated with a couple of simple animation
sequences. The imgSkeleton image array holds the images for these sequences.

10. Add seven more Image controls (not as a control array) to the form, and give them
the following property settings:

Image Control #1

Name = imgGold

Picture = Gold.bmp

Image Control #2

Name = imgThief

Picture = Thief.bmp

Image Control #3

Name = imgSerum

Picture = Serum.bmp

Image Control #4

Name = imgSpell

Picture = Spell.bmp

Image Control #5

Name = imgTeleport

Picture = Teleport.bmp

Image Control #6

Name = imgDragon0

Picture = Dragon0.bmp

354 Day 12

16 067231987x CH12 11/6/00 7:09 PM Page 354

Playing the Game: The Dragonlord RPG Project 355

12

Image Control #7

Name = imgDragon1

Picture = Dragon1.bmp

These images will be used in the Discovery dialog box to illustrate what the player
has found in a room.

11. Add a CommonDialog control to the form, keeping the object’s default name. If
the control isn’t in your VB toolbox, you’ll need to load it using the Project menu’s
Components command, as shown in Figure 12.17.

The program uses this control to enable the player to load different dungeon lay-
outs.

FIGURE 12.17
Adding the
CommonDialog con-
trol to a project.

12. Add a Shape control to the form, giving it the following property settings:

Name = shpRoomMarker

BorderColor = Yellow

BorderWidth = 3

Height = 40

Shape = Rectangle

Width = 42

This shape control is the yellow rectangle that marks the player’s current location
in the dungeon.

16 067231987x CH12 11/6/00 7:09 PM Page 355

13. Add six CommandButton controls to the form, giving them the following property
settings:

CommandButton #1

Name = cmdShop

Caption = &Shop

Height = 34

Left = 30

Top = 418

Width = 65

CommandButton #2

Name = cmdSpell

Caption = S&pell

Height = 34

Left = 105

Top = 418

Width = 65

CommandButton #3

Name = cmdStats

Caption = S&tats

Height = 34

Left = 180

Top = 418

Width = 65

356 Day 12

16 067231987x CH12 11/6/00 7:09 PM Page 356

Playing the Game: The Dragonlord RPG Project 357

12

CommandButton #4

Name = cmdRandomize

Caption = &Randomize Dungeon

Height = 34

Left = 322

Top = 418

Width = 65

CommandButton #5

Name = cmdLoad

Caption = &Load Dungeon

Height = 34

Left = 398

Top = 418

Width = 65

CommandButton #6

Name = cmdAbout

Caption = &About

Height = 34

Left = 540

Top = 418

Width = 65

These buttons trigger the game’s main commands.

14. Save your work, naming the form Dragonlord.frm and the project file
Dragonlord.vbp.

You’ve now completed the game’s main form, which should look something like Figure
12.18. However, you still need to add dialog boxes to the game’s user interface, which
you’ll do in the following section.

16 067231987x CH12 11/6/00 7:09 PM Page 357

FIGURE 12.18
The completed form.

358 Day 12

Adding Dialog Boxes to the User Interface
Dragonlord incorporates a number of dialog boxes into its user interface. These dialog
boxes enable the user to shop for adventuring supplies, as well as display status informa-
tion and battles. Perform the following steps to add the dialog boxes to the game:

1. Add a form to the project, giving the form the following property settings and
controls:

Name = frmBattle

AutoRedraw = True

BorderStyle = Fixed Dialog

Caption = “Dragonlord”

Font = MS Sans Serif, Bold, 10-point

ForeColor = White

Height = 4590

Picture = Battle.gif

ScaleMode = Pixel

Width = 3105

16 067231987x CH12 11/6/00 7:09 PM Page 358

Playing the Game: The Dragonlord RPG Project 359

12

CommandButton Control

Name = cmdOK

Caption = “&OK”

Height = 35

Left = 67

Top = 229

Width = 67

Figure 12.19 shows the completed dialog box, which appears when the player is
battling a skeleton.

FIGURE 12.19
The completed
frmBattle form.

2. Add another form to the project, giving it the following property settings and
controls:

Name = frmDiscovery

AutoRedraw = True

BorderStyle = Fixed Dialog

Caption = “Dragonlord”

16 067231987x CH12 11/6/00 7:09 PM Page 359

Font = MS Sans Serif, Bold, 10-point

ForeColor = White

Height = 3705

Picture = Discovery.gif

ScaleMode = Pixel

Width = 3105

CommandButton Control

Name = cmdOK

Caption = “&OK”

Height = 36

Left = 66

Top = 168

Width = 67

Figure 12.20 shows the completed dialog box, which appears whenever the player
discovers an object in a room.

360 Day 12

FIGURE 12.20
The completed
frmDiscovery form.

16 067231987x CH12 11/6/00 7:09 PM Page 360

Playing the Game: The Dragonlord RPG Project 361

12

3. Add another form to the project, giving it the following property settings and con-
trols:

Name = frmHealth

AutoRedraw = True

BorderStyle = Fixed Dialog

Caption = “Dragonlord”

ForeColor = White

Height = 3700

Picture = Health.gif

ScaleMode = Pixel

Width = 3880

CommandButton Control #1

Name = cmdPie

Caption = “&Pie”

Height = 34

Left = 23

Top = 169

Width = 65

CommandButton Control #2

Name = cmdLodge

Caption = “&Lodge”

Height = 34

Left = 93

Top = 169

Width = 65

16 067231987x CH12 11/6/00 7:09 PM Page 361

CommandButton Control #3

Name = cmdDoctor

Caption = “&Doctor”

Height = 34

Left = 163

Top = 169

Width = 65

Figure 12.21 shows the completed form, which enables the player to purchase
health-related items.

362 Day 12

FIGURE 12.21
The completed
frmHealth form.

4. Add another form to the project, giving it the following property settings and
controls:

Name = frmMagic

AutoRedraw = True

BorderStyle = Fixed Dialog

Caption = “Dragonlord”

16 067231987x CH12 11/6/00 7:09 PM Page 362

Playing the Game: The Dragonlord RPG Project 363

12

ForeColor = White

Height = 3700

Picture = Magic.gif

ScaleMode = Pixel

Width = 3870

CommandButton Control #1

Name = cmdSpell

Caption = ”&Spell”

Height = 34

Left = 23

Top = 169

Width = 65

CommandButton Control #2

Name = cmdAdvice

Caption = “&Advice”

Height = 34

Left = 93

Top = 169

Width = 65

CommandButton Control #3

Name = cmdBrew

Caption = “&Brew”

Height = 34

Left = 163

Top = 169

Width = 65

16 067231987x CH12 11/6/00 7:09 PM Page 363

Figure 12.22 shows the completed form, which enables the player to purchase
magic items.

364 Day 12

FIGURE 12.22
The completed
frmMagic form.

5. Add another form to the project, giving it the following property settings and
controls:

Name = frmShoppe

AutoRedraw = True

BorderStyle = Fixed Dialog

Caption = “Dragonlord”

ForeColor = White

Height = 3700

Picture = Shoppe.gif

ScaleMode = Pixel

Width = 3880

16 067231987x CH12 11/6/00 7:09 PM Page 364

Playing the Game: The Dragonlord RPG Project 365

12

CommandButton Control #1

Name = cmdHealth

Caption = “&Health”

Height = 34

Left = 23

Top = 169

Width = 65

CommandButton Control #2

Name = cmdMagic

Caption = “&Magic”

Height = 34

Left = 93

Top = 169

Width = 65

CommandButton Control #3

Name = cmdWeapon

Caption = “&Weapon”

Height = 34

Left = 163

Top = 169

Width = 65

Figure 12.23 shows the completed form, which enables the player to select the type
of store he wants to shop in.

6. Add another form to the project, giving it the following property settings and
controls:

Name = frmStats

AutoRedraw = True

BorderStyle = Fixed Dialog

16 067231987x CH12 11/6/00 7:09 PM Page 365

Caption = “Dragonlord”

Font = MS Sans Serif, Bold, 10-point

ForeColor = White

Height = 3900

Picture = Stats.gif

ScaleMode = Pixel

Width = 3105

CommandButton Control

Name = cmdOK

Caption = “&OK”

Height = 26

Left = 28

Top = 185

Width = 145

366 Day 12

FIGURE 12.23
The completed
frmShoppe form.

16 067231987x CH12 11/6/00 7:09 PM Page 366

Playing the Game: The Dragonlord RPG Project 367

12

Figure 12.24 shows the completed form, which displays the player’s current attrib-
utes and statistics.

FIGURE 12.24
The completed
frmStats form.

7. Add another form to the project, giving it the following property settings and
controls:

Name = frmWeapons

AutoRedraw = True

BorderStyle = Fixed Dialog

Caption = “Dragonlord”

ForeColor = White

Height = 3700

Picture = Weapons.gif

ScaleMode = Pixel

Width = 3890

16 067231987x CH12 11/6/00 7:09 PM Page 367

CommandButton Control #1

Name = cmdClub

Caption = “&Club”

Height = 34

Left = 23

Top = 169

Width = 65

CommandButton Control #2

Name = cmdKnife

Caption = “&Knife”

Height = 34

Left = 93

Top = 169

Width = 65

CommandButton Control #3

Name = cmdSword

Caption = “&Sword”

Height = 34

Left = 163

Top = 169

Width = 65

Figure 12.25 shows the completed form, which enables the player to purchase
weapons.

8. Save your work, giving the forms the default filenames supplied by Visual Basic.

You’ve now added a set of dialog boxes to your Dragonlord project. The next step is to
start adding program code, which you’ll do in tomorrow’s lesson.

368 Day 12

16 067231987x CH12 11/6/00 7:09 PM Page 368

Playing the Game: The Dragonlord RPG Project 369

12

FIGURE 12.25
The completed
frmWeapons form.

Summary
Computer role-playing games are among the most popular and complex games on the
market. In today’s lesson, you learned about RPG games in general and became familiar
with this book’s simple RPG game, Dragonlord.

Q&A
Q Why does it take so long for game companies to program computer RPG

games?

A First of all, a modern computer RPG has a storyline that’s large enough to fill a
novel. How long would it take you to write a novel? Second, modern RPGs usually
feature large worlds that include cities, dungeons, castles, deserts, oceans, lakes,
forests, mountains, and more. Creating a world of this size and detail takes a lot of
time.

Q Why would anyone want to take so much time to create a game?

A Creating a world and populating it with people and cities is a lot of fun (as well as
a lot of work). It gives you the chance to act as a kind of god, dictating what your
world will look like and what types of creates will live there. You also get to think
up cool puzzles and watch while people try to solve them. And did I mention that
RPG programmers get paid big bucks?

16 067231987x CH12 11/6/00 7:09 PM Page 369

Workshop
The workshop includes quiz questions to help gauge your grasp of the material. You’ll
find the answers to this quiz in Appendix A. Even if you feel that you totally understand
the concepts presented here, you should work through the quiz anyway. The last section
is an exercise to help reinforce your learning.

Quiz
1. What makes an RPG different from other types of adventure games?

2. Give two reasons why you might want to create a level editor for a game.

3. How do you define a character in an RPG?

4. How are a character’s attributes used in the program?

Exercise
1. Play the Dragonlord game until you’re comfortable with it from a player’s point of

view. You’ll need this experience in tomorrow’s lesson, when you dig into the
game’s source code.

370 Day 12

16 067231987x CH12 11/6/00 7:09 PM Page 370

DAY 13

WEEK 2

Programming a
Simple RPG

Today you’ll continue to develop Dragonlord, a full-fledged dungeon adventure
game in which you must locate and tame a dragon hidden within a dungeon
maze. To develop the Dragonlord program, you’ll use many of the techniques
that you’ve learned so far. Not only will you deal with various images, but
you’ll also play interesting sounds and learn how to manage a dungeon map.
Specifically, today you’ll do the following:

• Add object-handler code to the game

• Add initialization routines to the game

• Add general subroutines and functions to the game

• Add a module for global data types and routines

• Add source code to each of the dialog boxes

• Explore how Dragonlord works

17 067231987x CH13 11/6/00 7:16 PM Page 371

Adding the Object Handlers
Now you need to associate code with the form that is the base object of the game’s user
interface, as well as with the various controls you’ve placed on the form:

1. Double-click the Form1 form to bring up the code window.

2. Add the following form handlers to the code window. You can either type in the
source code or copy it from the Dragonlord01.txt file, which you can find in the
Chap13\Code directory of this book’s CD-ROM:
1: ‘==
2: ‘ Main Form Handlers.
3: ‘==
4: Private Sub Form_Load()
5: FileName = “Dungeon.drg”
6: InitSound
7: InitObjects
8: InitGame
9: End Sub
10:
11: Private Sub Form_MouseDown(Button As Integer, _
12: Shift As Integer, X As Single, Y As Single)
13: If Randomizing Or Battling Then Exit Sub
14: If Stats.CastingSpell = True Then
15: SpellMove X, Y
16: Else
17: MovePlayer X, Y
18: End If
19: End Sub
20:
21: Private Sub Form_Resize()
22: On Error Resume Next
23: If Form1.Width < 9690 Then Form1.Width = 9690
24: If Form1.Height < 7560 Then Form1.Height = 7560
25: On Error GoTo 0
26: End Sub

The Form_Load event procedure (Lines 4 to 9) initializes the game when the form
loads, and the Form_MouseDown event procedure handles mouse clicks on the

playing board. The Form_Resize event procedure prevents the player from making the
window too small to contain the playing board.

3. Add the following button handlers to the code window, directly after the code you
added in the previous step. You can either type in the source code or copy it from
the Dragonlord02.txt file, which you can find in the Chap13\Code directory of this
book’s CD-ROM:

372 Day 13

ANALYSIS

17 067231987x CH13 11/6/00 7:16 PM Page 372

Programming a Simple RPG 373

13

1: ‘==
2: ‘ Button Handlers.
3: ‘==
4: Private Sub cmdAbout_Click()
5: MsgBox “Dragonlord” & vbCrLf & “By Clayton Walnum” & _
6: vbCrLf & vbCrLf & “Copyright 2000” & _
7: vbCrLf & “by Macmillan Computer Publishing “, _
8: vbInformation, “About Dragonlord”
9: End Sub
10:
11: Private Sub cmdRandomize_Click()
12: Dim Room As Integer
13: Dim SwapRoom As Integer
14: Dim temp As Integer
15: Dim RoomX As Integer
16: Dim RoomY As Integer
17: ToggleButtons False
18: cmdRandomize.Enabled = False
19: Randomizing = True
20: For Room = 0 To NUMBEROFROOMS - 1
21: If Map(Room) <> NOROOMDEFINED Then
22: Do
23: SwapRoom = Int(Rnd * NUMBEROFROOMS)
24: Loop While Map(SwapRoom) = NOROOMDEFINED
25: If Room <> STARTINGROOM And _
26: SwapRoom <> STARTINGROOM Then
27: GetPixelXY Room, RoomX, RoomY
28: DrawCircle RoomX + 16, RoomY + 16, vbWhite
29: Delay 0.001
30: DrawCircle RoomX + 16, RoomY + 16, RGB(168, 168, 168)
31: GetPixelXY SwapRoom, RoomX, RoomY
32: DrawCircle RoomX + 16, RoomY + 16, vbWhite
33: Delay 0.001
34: DrawCircle RoomX + 16, RoomY + 16, RGB(168, 168, 168)
35: temp = Items(Room)
36: Items(Room) = Items(SwapRoom)
37: Items(SwapRoom) = temp
38: End If
39: End If
40: Next Room
41: DragonRoom = GetDragonRoom
42: ToggleButtons True
43: cmdRandomize.Enabled = True
44: Randomizing = False
45: End Sub
46:
47: Private Sub cmdSpell_Click()
48: If Stats.Spells > 0 Then
49: MsgBox “Click on the room to” & vbCrLf & _
50: “which you want to move.”
51: Stats.CastingSpell = True

17 067231987x CH13 11/6/00 7:16 PM Page 373

52: Stats.Spells = Stats.Spells - 1
53: Else
54: MsgBox “You have no spells.”
55: End If
56: cmdRandomize.Enabled = False
57: End Sub
58:
59: Public Sub cmdStats_Click()
60: cmdRandomize.Enabled = False
61: Load frmStats
62: PrintStat 50, 50, “Hit Points: “ & Stats.HitPoints
63: PrintStat 50, 65, “Strength: “ & Stats.Strength
64: PrintStat 50, 80, “Pie: “ & Stats.Pie
65: PrintStat 50, 95, “Gold: “ & Stats.Gold
66: PrintStat 50, 110, “Spells: “ & Stats.Spells
67: PrintStat 50, 125, “Serums: “ & Stats.Serums
68: PrintStat 50, 140, “Brew: “ & -Int(Stats.Brew)
69: PrintStat 50, 155, “Weapon: “ & Stats.Weapon
70: frmStats.Show vbModal, Me
71: End Sub
72:
73: Private Sub cmdShop_Click()
74: frmShoppe.Show , Me
75: cmdRandomize.Enabled = False
76: End Sub
77:
78: Private Sub cmdLoad_Click()
79: CommonDialog1.flags = cdlOFNFileMustExist
80: CommonDialog1.CancelError = True
81: CommonDialog1.FileName = “”
82: CommonDialog1.InitDir = CurDir
83: CommonDialog1.DefaultExt = “drg”
84: CommonDialog1.Filter = _
85: “Dragonlord Files (*.drg)|*.drg|All Files (*.*)|(*.*)”
86: CommonDialog1.FilterIndex = 1
87: CommonDialog1.DialogTitle = “Open Dungeon File”
88: On Error GoTo DialogError
89: CommonDialog1.ShowOpen
90: FileName = CommonDialog1.FileName
91: InitGame
92: Exit Sub
93: DialogError:
94: MsgBox “No file loaded.”, vbInformation, “Open”
95: End Sub

The cmdAbout_Click event procedure (Lines 4 to 9) displays the About dialog
box when the player clicks the About button. The cmdRandomize_Click event

procedure (Lines 11 to 45) randomizes the contents of the dungeon when the player
clicks the Randomize Dungeon button. The cmdSpell_Click (Lines 47 to 57),

374 Day 13

ANALYSIS

17 067231987x CH13 11/6/00 7:16 PM Page 374

Programming a Simple RPG 375

13

cmdStats_Click (Lines 59 to 71), and cmdShop_Click (Lines 73 to 76) event procedures
handle casting spells, viewing statistics, and shopping, respectively. Finally, the
cmdLoad_Click event procedure (Lines 78 to 95) loads a dungeon file when the player
clicks the Load Dungeon button.

Adding General Game Source Code
Now add the general game subroutines, functions, constants, and variables:

1. Add the following initialization subroutines to the code window, directly after the
code you added in the previous section. You can either type in the code or copy it
from the Dragonlord03.txt file, which you can find in the Chap13\Code directory
of this book’s CD-ROM:
1: ‘==
2: ‘ Initialization Routines.
3: ‘==
4: Sub InitObjects()
5: Dim i As Integer
6: Form1.Height = 7560
7: Form1.Width = 9690
8: Form1.Left = 200
9: Form1.Top = 200
10: For i = 0 To 14
11: imgRoom(i).Visible = False
12: If i < 2 Then imgHall(i).Visible = False
13: If i < 9 Then imgDice(i).Visible = False
14: If i < 4 Then imgSkeleton(i).Visible = False
15: Next i
16: imgThief.Visible = False
17: imgGold.Visible = False
18: imgTeleport.Visible = False
19: imgSpell.Visible = False
20: imgSerum.Visible = False
21: imgDragon0.Visible = False
22: imgDragon1.Visible = False
23: End Sub
24:
25: Sub InitGame()
26: Dim temp As Integer
27: Dim PixelX As Integer
28: Dim PixelY As Integer
29: ‘ChDir “d:\TYVBGames\Chap13\DragonLord\”
30: Open FileName For Binary As #1
31: Get #1, , Map
32: Get #1, , Items
33: Close #1
34: Randomize
35: ResetStats

17 067231987x CH13 11/6/00 7:16 PM Page 375

36: Battling = False
37: DragonRoom = GetDragonRoom
38: Form1.PaintPicture Form1.Picture, 0, 0
39: PixelX = (Stats.Room Mod NUMBEROFCOLS) * _
40: CELLWIDTH + OFFSETX
41: PixelY = (Stats.Room \ NUMBEROFCOLS) * _
42: CELLHEIGHT + OFFSETY
43: Form1.PaintPicture imgRoom(Map(Stats.Room) - 1), _
44: PixelX, PixelY
45: DrawRoomMarker
46: cmdRandomize.Enabled = True
47: End Sub

The InitObjects subroutine (Lines 4 to 23) initializes the Visual Basic objects
in the game, setting form properties and making the various image objects invisi-

ble to the player. The InitGame subroutine (Lines 25 to 47) initializes the game’s vari-
ables, including loading the default dungeon map.

2. Add the following general subroutines to the code window, directly after the code
you added in the previous step. You can either type in the code or copy it from the
Dragonlord04.txt file, which you can find in the Chap13\Code directory of this
book’s CD-ROM:
‘==
‘ General Game Subroutines.
‘==
Sub DrawCircle(X As Integer, Y As Integer, Color As Long)
Form1.FillStyle = vbSolid
Form1.FillColor = Color
Form1.Circle (X, Y), 4, Color

End Sub

Sub MoveToRoom(newRoom As Integer, Direction As Integer)
Dim stillAlive As Boolean
stillAlive = UpdateStats
If stillAlive Then
PlaySound WalkSound, True, False
DrawRoomMarker
Stats.Room = newRoom
DrawRoom
DrawHallway Direction
DrawRoomMarker
ShowItem newRoom
End If

End Sub

Sub CheckForRandomItem(Room As Integer)
Dim randomItem As Integer
If Items(Room) = I_EMPTY Then
randomItem = Int(Rnd * 10)

376 Day 13

ANALYSIS

17 067231987x CH13 11/6/00 7:16 PM Page 376

Programming a Simple RPG 377

13

If randomItem = 8 Or randomItem = 9 Then
Items(Room) = I_GOLD

ElseIf randomItem > 4 And randomItem < 8 Then
Items(Room) = I_SKELETON

End If
End If

End Sub

Sub DrinkSerum()
Dim newStrength As Integer
Stats.Serums = Stats.Serums - 1
newStrength = Int(Rnd * 15) + 15
MsgBox “You drink a serum.” & vbCrLf & “+” & _

newStrength & “ strength points.”
SetStrength newStrength

End Sub

Sub ShowNoExit()
MsgBox “You can’t enter that” & vbCrLf & _

“room from where you are.”
End Sub

Sub DrawRoom()
Dim Color As Long
Dim RoomPixelX As Integer
Dim RoomPixelY As Integer
GetPixelXY Stats.Room, RoomPixelX, RoomPixelY
Color = Point(RoomPixelX, RoomPixelY)
If Color <> vbWhite Then _
Form1.PaintPicture imgRoom(Map(Stats.Room) - 1), _
RoomPixelX, RoomPixelY

End Sub

Sub DrawHallway(Direction As Integer)
Dim RoomPixelX As Integer
Dim RoomPixelY As Integer
Dim HallPixelX As Integer
Dim HallPixelY As Integer
GetPixelXY Stats.Room, RoomPixelX, RoomPixelY
GetHallPixelXY RoomPixelX, RoomPixelY, _

HallPixelX, HallPixelY, Direction
If Direction = NORTH Or Direction = SOUTH Then
Form1.PaintPicture imgHall(0), HallPixelX, HallPixelY

Else
Form1.PaintPicture imgHall(1), HallPixelX, HallPixelY

End If
End Sub

Sub GetHallPixelXY(RoomPixelX As Integer, _
RoomPixelY As Integer, HallPixelX As Integer, _
HallPixelY As Integer, Direction As Integer)

17 067231987x CH13 11/6/00 7:16 PM Page 377

Select Case Direction
Case NORTH
HallPixelX = RoomPixelX
HallPixelY = RoomPixelY + 25

Case EAST
HallPixelX = RoomPixelX - 19
HallPixelY = RoomPixelY

Case SOUTH
HallPixelX = RoomPixelX
HallPixelY = RoomPixelY - 19

Case WEST
HallPixelX = RoomPixelX + 25
HallPixelY = RoomPixelY

End Select
End Sub

Sub DrawRoomMarker()
Dim PixelX As Integer
Dim PixelY As Integer
GetPixelXY Stats.Room, PixelX, PixelY
shpRoomMarker.Move PixelX - 4, PixelY - 4

End Sub

Sub GetPixelXY(Room As Integer, PixelX As Integer, _
PixelY As Integer)

PixelX = (Room Mod NUMBEROFCOLS) * CELLWIDTH + OFFSETX
PixelY = (Room \ NUMBEROFCOLS) * CELLHEIGHT + OFFSETY

End Sub

Sub SpellMove(X As Single, Y As Single)
Dim newRoom As Integer
If X > OFFSETX And X < MAXX And _

Y > OFFSETY And Y < MAXY Then
Stats.CastingSpell = False
PlaySound SpellSound, False, False
newRoom = CalcRoomNumber(X, Y)
DrawRoomMarker
Stats.Room = newRoom
DrawRoom
DrawRoomMarker
ShowItem newRoom
End If

End Sub

Sub MovePlayer(X As Single, Y As Single)
Dim Direction As Integer
Dim Color As Long
Dim newRoom As Integer

If X > OFFSETX And X < MAXX And _
Y > OFFSETY And Y < MAXY Then

378 Day 13

17 067231987x CH13 11/6/00 7:16 PM Page 378

Programming a Simple RPG 379

13

newRoom = CalcRoomNumber(X, Y)
CalcMoveDirection newRoom, Color, Direction

Else
Exit Sub

End If

If (Color = vbWhite) Then
ShowNoExit

Else
cmdRandomize.Enabled = False
MoveToRoom newRoom, Direction

End If
End Sub

Sub PrintStat(X As Integer, Y As Integer, Stat As String)
frmStats.CurrentX = X
frmStats.CurrentY = Y
frmStats.Print Stat

End Sub

Sub CalcMoveDirection(newRoom As Integer, _
Color As Long, Direction As Integer)

Dim PixelX As Integer
Dim PixelY As Integer
GetPixelXY Stats.Room, PixelX, PixelY
If newRoom = Stats.Room - 10 Then
Color = Point(PixelX + 12, PixelY + 1)
Direction = NORTH

ElseIf newRoom = Stats.Room + 1 Then
Color = Point(PixelX + 26, PixelY + 12)
Direction = EAST

ElseIf newRoom = Stats.Room + 10 Then
Color = Point(PixelX + 12, PixelY + 25)
Direction = SOUTH

ElseIf newRoom = Stats.Room - 1 Then
Color = Point(PixelX + 1, PixelY + 12)
Direction = WEST

Else
Color = vbWhite

End If
End Sub

Sub ShowItem(Room As Integer)
Dim amount As Integer
Dim loss As Integer
Dim item As Integer
CheckForRandomItem Room
item = Items(Room)
Items(Room) = I_EMPTY
Select Case item
Case I_GOLD

17 067231987x CH13 11/6/00 7:16 PM Page 379

amount = Int(Rnd * 3) + 2
Stats.Gold = Stats.Gold + amount
ShowDiscovery imgGold, amount & “ GOLD PIECES”, False

Case I_SPELL
Stats.Spells = Stats.Spells + 1
ShowDiscovery imgSpell, “ A SPELL”, False

Case I_SERUM
Stats.Serums = Stats.Serums + 1
ShowDiscovery imgSerum, “ A SERUM”, False

Case I_THIEF
loss = Stats.Gold / 4
Stats.Gold = Stats.Gold - loss
ShowDiscovery imgThief, “ THE THIEF!”, False

Case I_TELEPORT
ShowDiscovery imgTeleport, “A TELEPORTER”, False
Teleport

Case I_SKELETON
Battling = True
ToggleButtons False
ShowDiscovery imgSkeleton(0), “ A SKELETON!”, False
FightSkeleton

Case I_DRAGON
FoundDragon

End Select
End Sub

Sub ToggleButtons(Setting As Boolean)
cmdShop.Enabled = Setting
cmdSpell.Enabled = Setting
cmdStats.Enabled = Setting
cmdLoad.Enabled = Setting
cmdAbout.Enabled = Setting

End Sub

Sub ShowDiscovery(img As Image, Msg As String, Sound As Boolean)
If Sound Then _

PlaySound DiscoverySound, True, False
Load frmDiscovery
frmDiscovery.Cls
frmDiscovery.Left = Form1.Left + 1500
frmDiscovery.Top = Form1.Top + 1500
frmDiscovery.PaintPicture img.Picture, 68, 50
frmDiscovery.CurrentX = 44
frmDiscovery.CurrentY = 135
frmDiscovery.Print Msg
frmDiscovery.Show , Me
Delay 2#
Unload frmDiscovery

End Sub

Sub Delay(amount As Single)
Dim StartTime As Single

380 Day 13

17 067231987x CH13 11/6/00 7:16 PM Page 380

Programming a Simple RPG 381

13

Dim CurrentTime As Single
StartTime = Timer
Do
CurrentTime = Timer
DoEvents

Loop While CurrentTime < StartTime + amount
End Sub

Sub FoundDragon()
Dim text1 As String
Dim text2 As String
Dim pic As Picture
If Stats.Brew Then
PlaySound DragonSound2, True, False
text1 = “ and tamed him”
text2 = “ with dragon brew.”
Set pic = imgDragon0.Picture

Else
PlaySound DragonSound, True, False
text1 = “ and he’s not happy!”
text2 = “(Munch, munch, munch)”
Set pic = imgDragon1.Picture

End If
frmDiscovery.cmdOK.Visible = False
frmDiscovery.Left = Form1.Left + 1500
frmDiscovery.Top = Form1.Top + 1500
frmDiscovery.PaintPicture pic, 68, 50
frmDiscovery.CurrentX = 22
frmDiscovery.CurrentY = 135
frmDiscovery.Print “You found the dragon,”
frmDiscovery.CurrentX = 20
frmDiscovery.CurrentY = 155
frmDiscovery.Print text1
frmDiscovery.CurrentX = 20
frmDiscovery.CurrentY = 175
frmDiscovery.Print text2
frmDiscovery.Show , Me
Form1.PaintPicture Form1.Picture, 0, 0
InitGame

End Sub

Sub Dead()
PlaySound DragonSound, False, False
frmDiscovery.cmdOK.Visible = False
frmDiscovery.Left = Form1.Left + 1500
frmDiscovery.Top = Form1.Top + 1500
frmDiscovery.PaintPicture imgDragon1.Picture, 68, 50
frmDiscovery.CurrentX = 26
frmDiscovery.CurrentY = 135
frmDiscovery.Print “You run for your life,”
frmDiscovery.CurrentX = 24

17 067231987x CH13 11/6/00 7:16 PM Page 381

frmDiscovery.CurrentY = 155
frmDiscovery.Print “and stumble right into”
frmDiscovery.CurrentX = 24
frmDiscovery.CurrentY = 175
frmDiscovery.Print “the dragon’s jaws.”
frmDiscovery.Show vbModal, Me
Form1.PaintPicture Form1.Picture, 0, 0
InitGame

End Sub

Sub FightSkeleton()
Dim Modifier As Integer
Dim playerAlive As Boolean
Dim amount As Integer
Modifier = Stats.Weapon - 4 + Stats.Strength / 20
playerAlive = DoBattle(Modifier)
If playerAlive Then
Delay 2#
Unload frmBattle
If Stats.Strength < 20 And Stats.Serums > 0 Then _

DrinkSerum
amount = Int(Rnd * 5) + 5
ShowDiscovery imgGold, amount & “ GOLD PIECES.”, True
Stats.Gold = Stats.Gold + amount

Else
Unload frmBattle
Dead

End If
End Sub

Sub Teleport()
Dim newRoom As Integer
PlaySound TeleportSound, False, False
DrawRoomMarker
Do
newRoom = Int(Rnd * NUMBEROFROOMS)

Loop While Map(newRoom) = NOROOMDEFINED Or _
newRoom = Stats.Room

Stats.Room = newRoom
DrawRoom
DrawRoomMarker
ShowItem newRoom

End Sub

3. Add the following game functions to the code window, directly after the code you
added in the previous step. You can either type in the code or copy it from the
Dragonlord05.txt file, which you can find in the Chap13\Code directory of this
book’s CD-ROM:

382 Day 13

17 067231987x CH13 11/6/00 7:16 PM Page 382

Programming a Simple RPG 383

13

1: ‘==
2: ‘ Game Functions.
3: ‘==
4: Function UpdateStats() As Boolean
5: SetStrength -1 - 1 * (Stats.Pie < 1)
6: If Stats.Strength < 1 Then
7: Dead
8: UpdateStats = False
9: Exit Function
10: End If
11: Stats.PieMoveCount = Stats.PieMoveCount + 1
12: If Stats.PieMoveCount = 3 Then
13: SetPie -1
14: Stats.PieMoveCount = 0
15: End If
16: UpdateStats = True
17: End Function
18:
19: Function CalcRoomNumber(PixelX As Single, _
20: PixelY As Single) As Integer
21: Dim mapx As Integer
22: Dim mapy As Integer
23: mapx = (PixelX - OFFSETX) \ CELLWIDTH
24: mapy = (PixelY - OFFSETY) \ CELLHEIGHT
25: CalcRoomNumber = mapy * NUMBEROFCOLS + mapx
26: End Function
27:
28: Function DoBattle(Modifier As Integer) As Boolean
29: Dim damage As Integer
30: Dim playerRoll As Integer
31: Dim skeletonRoll As Integer
32: Dim monsterHitPoints As Integer
33: Dim alive As Boolean
34: Dim X As Integer
35: frmBattle.Left = Form1.Left + 1500
36: frmBattle.Top = Form1.Top + 1000
37: frmBattle.cmdOK.Enabled = False
38: frmBattle.Show , Me
39: frmBattle.CurrentX = 58
40: frmBattle.CurrentY = 200
41: frmBattle.Print “Modifier = “ & Modifier
42: monsterHitPoints = 5
43: Battling = True
44: alive = True
45: Do
46: playerRoll = RollDice(48, 155)
47: Delay (0.5)
48: skeletonRoll = RollDice(117, 155)
49: damage = Int(Rnd * 5 + 1)
50: SetStrength -1 - 1 * Abs(Stats.Pie < 1)
51: If playerRoll + Modifier >= skeletonRoll Then

17 067231987x CH13 11/6/00 7:16 PM Page 383

52: PlaySound SkeletonHitSound, False, False
53: frmBattle.PaintPicture imgSkeleton(2), 68, 50
54: Delay 1#
55: monsterHitPoints = monsterHitPoints - damage
56: If monsterHitPoints < 1 Then Battling = False
57: Else
58: PlaySound PlayerHitSound, False, False
59: frmBattle.PaintPicture imgSkeleton(1), 68, 50
60: SetHitPoints -damage
61: Delay 1#
62: If Stats.Strength <= 0 Or Stats.HitPoints <= 0 Then
63: Battling = False
64: alive = False
65: End If
66: End If
67: If Battling Then _
68: frmBattle.PaintPicture imgSkeleton(0), 68, 50
69: Loop While Battling
70:
71: frmBattle.cmdOK.Enabled = True
72: frmBattle.PaintPicture imgSkeleton(3), 68, 50
73: cmdShop.Enabled = True
74: cmdSpell.Enabled = True
75: cmdStats.Enabled = True
76: cmdLoad.Enabled = True
77: cmdAbout.Enabled = True
78: DoBattle = alive
79: End Function
80:
81: Function RollDice(X As Integer, Y As Integer)
82: Dim num As Integer
83: Dim roll As Integer
84: For roll = 1 To 10
85: PlaySound DiceSound, True, False
86: num = Int(Rnd * 9)
87: frmBattle.PaintPicture imgDice(num), X, Y
88: Delay (0.1)
89: Next roll
90: RollDice = num
91: End Function
92:
93: Function GetDragonRoom()
94: Dim X As Integer
95: For X = 0 To 79
96: If Items(X) = I_DRAGON Then GetDragonRoom = X
97: Next X
98: End Function

You’ll explore these functions in detail later in this chapter. In general terms, the
UpdateStats function (Lines 4 to 17) keeps the player’s statistics up to date, the

384 Day 13

ANALYSIS

17 067231987x CH13 11/6/00 7:16 PM Page 384

Programming a Simple RPG 385

13

CalcRoomNumber function (Lines 19 to 26) returns the room number located at the given
coordinates, the DoBattle function (Lines 28 to 79) manages a battle between the player
and a skeleton, the RollDice function (81 to 91) handles the rolling of dice during a bat-
tle, and the GetDragonRoom function (Lines 93 to 98) returns the number of the room in
which the dragon is located.

4. Add the following variable declarations and enumerations to the top of the code
window. You can either type in the code or copy it from the Dragonlord06.txt file,
which you can find in the Chap13\Code directory of this book’s CD-ROM:
1: ‘==
2: ‘ Dragonlord for Visual Basic 6
3: ‘ by Clayton Walnum
4: ‘ Copyright 2000 by Macmillan Computer Publishing
5: ‘==
6: Option Explicit
7:
8: ‘==
9: ‘ Constants.
10: ‘==
11: Const NUMBEROFROOMS = 80
12: Const CELLWIDTH = 44
13: Const CELLHEIGHT = 44
14: Const OFFSETX = 106
15: Const OFFSETY = 50
16: Const NUMBEROFCOLS = 10
17: Const MAXX = 540
18: Const MAXY = 398
19: Const STARTINGROOM = 45
20: Const NOROOMDEFINED = 0
21:
22: Enum ItemEnum
23: I_EMPTY
24: I_SERUM
25: I_SPELL
26: I_GOLD
27: I_SKELETON
28: I_THIEF
29: I_TELEPORT
30: I_DRAGON
31: End Enum
32:
33: Enum DirectionEnum
34: NORTH
35: EAST
36: SOUTH
37: WEST
38: End Enum
39:

17 067231987x CH13 11/6/00 7:16 PM Page 385

40: ‘==
41: ‘ General Game Variables.
42: ‘==
43: Dim Randomizing As Boolean
44: Dim Items(NUMBEROFROOMS - 1) As Integer
45: Dim Map(NUMBEROFROOMS - 1) As Integer
46: Dim FileName As String
47:
48: ‘==
49: ‘ Public Variables.
50: ‘==
51: Public Battling As Boolean
52: Public DragonRoom As Integer

Lines 11 to 20 define the game’s constants, and Lines 22 to 38 define constants
in enumerations. Lines 40 to 52 declare the game’s general variables.

5. Save your work.

You’ve almost completed the Dragonlord program. (Whew!) All you need to do now is
add one module of code and the DirectSound routines that play the game’s sound effects.

Adding a Module for Data Types and Subroutines
Dragonlord uses a Visual Basic module for defining data types, subroutines, and func-
tions that manage the player’s game statistics. This module also contains the DirectSound
stuff. To add this module, select the Project menu’s Add Module command to display the
Add Module dialog box (see Figure 13.1).

386 Day 13

ANALYSIS

FIGURE 13.1
Adding a code module.

Then type the following source code into the new module’s code window, or copy the
source code from the Dragonlord07.txt file:

17 067231987x CH13 11/6/00 7:16 PM Page 386

Programming a Simple RPG 387

13

1: Option Explicit
2:
3: Enum WeaponEnum
4: FIST
5: CLUB
6: KNIFE
7: SWORD
8: End Enum
9:
10: Type StatsType
11: HitPoints As Integer
12: Strength As Integer
13: Pie As Integer
14: Gold As Integer
15: Spells As Integer
16: Serums As Integer
17: Brew As Boolean
18: Room As Integer
19: Weapon As Integer
20: PieMoveCount As Integer
21: CastingSpell As Boolean
22: End Type
23:
24: Public Stats As StatsType
25:
26: ‘==
27: ‘ DirectSound Variables.
28: ‘==
29: Dim DirectX7Obj As New DirectX7
30: Dim DirectSoundObj As DirectSound
31: Public DiceSound As DirectSoundBuffer
32: Public TeleportSound As DirectSoundBuffer
33: Public SkeletonHitSound As DirectSoundBuffer
34: Public PlayerHitSound As DirectSoundBuffer
35: Public WalkSound As DirectSoundBuffer
36: Public SkeletonDieSound As DirectSoundBuffer
37: Public DragonSound As DirectSoundBuffer
38: Public DragonSound2 As DirectSoundBuffer
39: Public SpellSound As DirectSoundBuffer
40: Public DiscoverySound As DirectSoundBuffer
41: Public ShopSound As DirectSoundBuffer
42: Public CheckStatsSound As DirectSoundBuffer
43:
44: Function CheckPurse(Cost As Integer) As Boolean
45: If Stats.Gold < Cost Then
46: MsgBox “Your purse is too meager.”
47: CheckPurse = False
48: Else
49: CheckPurse = True
50: End If

17 067231987x CH13 11/6/00 7:16 PM Page 387

51: End Function
52:
53: Sub ResetStats()
54: Stats.HitPoints = 50
55: Stats.Strength = 100
56: Stats.Pie = 1
57: Stats.Gold = 60
58: Stats.Spells = 0
59: Stats.Serums = 0
60: Stats.Brew = False
61: Stats.Room = 45
62: Stats.Weapon = FIST
63: Stats.PieMoveCount = 0
64: Stats.CastingSpell = False
65: End Sub
66:
67: Sub SetHitPoints(num As Integer)
68: Stats.HitPoints = Stats.HitPoints + num
69: If Stats.HitPoints > 50 Then Stats.HitPoints = 50
70: If Stats.HitPoints < 15 Then
71: PlaySound CheckStatsSound, False, False
72: Form1.cmdStats_Click
73: End If
74: End Sub
75:
76: Sub SetStrength(num As Integer)
77: Stats.Strength = Stats.Strength + num
78: If Stats.Strength > 100 Then Stats.Strength = 100
79: If Stats.Strength < 15 Then
80: PlaySound CheckStatsSound, False, False
81: Form1.cmdStats_Click
82: End If
83: End Sub
84:
85: Sub SetPie(num As Integer)
86: Stats.Pie = Stats.Pie + num
87: If Stats.Pie <= 0 Then Stats.Pie = 0
88: If Stats.Pie < 2 Then
89: PlaySound CheckStatsSound, False, False
90: Form1.cmdStats_Click
91: End If
92: End Sub
93:
94: ‘==
95: ‘ DirectSound Routines.
96: ‘==
97: Sub InitSound()
98: InitDirectSound
99: ‘ChDir “d:\TYVBGames\Chap13\DragonLord\”
100: Set WalkSound = CreateSound(“Walk.wav”)
101: Set DiceSound = CreateSound(“Dice.wav”)

388 Day 13

17 067231987x CH13 11/6/00 7:16 PM Page 388

Programming a Simple RPG 389

13

102: Set TeleportSound = CreateSound(“Teleport.wav”)
103: Set SkeletonDieSound = CreateSound(“SkeletonHit.wav”)
104: Set DragonSound = CreateSound(“Dragon.wav”)
105: Set DragonSound2 = CreateSound(“Dragon2.wav”)
106: Set SkeletonHitSound = CreateSound(“SkeletonHit.wav”)
107: Set PlayerHitSound = CreateSound(“PlayerHit.wav”)
108: Set SpellSound = CreateSound(“Spell.wav”)
109: Set DiscoverySound = CreateSound(“Discovery.wav”)
110: Set ShopSound = CreateSound(“Shop.wav”)
111: Set CheckStatsSound = CreateSound(“CheckStats.wav”)
112: End Sub
113:
114: Sub InitDirectSound()
115: On Local Error Resume Next
116: Set DirectSoundObj = DirectX7Obj.DirectSoundCreate(“”)
117: If Err.Number <> 0 Then
118: MsgBox “DirectSound initialization failed.”
119: End
120: End If
121: DirectSoundObj.SetCooperativeLevel Form1.hWnd, DSSCL_PRIORITY
122: End Sub
123:
124: Function CreateSound(FileName As String) As DirectSoundBuffer
125: Dim bufferDesc As DSBUFFERDESC
126: Dim waveFormat As WAVEFORMATEX
127: bufferDesc.lFlags = DSBCAPS_STATIC
128: Set CreateSound = _
129: DirectSoundObj.CreateSoundBufferFromFile(FileName, _
130: bufferDesc, waveFormat)
131: If Err.Number <> 0 Then
132: MsgBox “unable to find sound file”
133: End
134: End If
135: End Function
136:
137: Sub PlaySound(Sound As DirectSoundBuffer, _
138: CloseFirst As Boolean, LoopSound As Boolean)
139: If CloseFirst Then
140: Sound.Stop
141: Sound.SetCurrentPosition 0
142: End If
143: If LoopSound Then
144: Sound.Play 1
145: Else
146: Sound.Play 0
147: End If
148: End Sub

Lines 3 to 8 define constants for the different weapon types, and Lines 10 to 24
define a data type for the player’s game statistics. Lines 29 to 42 declare the

ANALYSIS

17 067231987x CH13 11/6/00 7:16 PM Page 389

variables needed by the DirectSound routines, Lines 44 to 92 define functions for man-
aging player statistics, and Lines 94 to 148 are the game’s DirectSound routines.

Adding Dialog Box Source Code
All of the Dragonlord dialog boxes require a small amount of source code to implement
their buttons and to control when and how they can be dismissed. For example, the dia-
log box that appears when the player battles a skeleton cannot be dismissed until the bat-
tle is over. Perform the following steps to add source code to the game’s dialog boxes:

1. Bring up the source code window for the frmBattle dialog box. Type the follow-
ing code into the code window, or copy it from the Dragonlord08.txt file (see
Figure 13.2):
1: Private Sub cmdOK_Click()
2: Unload Me
3: End Sub
4:
5: Private Sub Form_QueryUnload(Cancel As Integer,
6: UnloadMode As Integer)
7: If form1.Battling Then Cancel = True
8: End Sub

Lines 1 to 3 unload the form when the player clicks the OK button, and Lines 5
to 8 prevent the player from closing the Battle dialog box when a battle is in

progress.

390 Day 13

ANALYSIS

FIGURE 13.2
Adding source code to
the dialog box.

2. Bring up the source code window for the frmDiscovery dialog box. Type the fol-
lowing code into the code window:
Private Sub cmdOK_Click()
Unload Me

End Sub

17 067231987x CH13 11/6/00 7:16 PM Page 390

Programming a Simple RPG 391

13

3. Bring up the source code window for the frmHealth dialog box. Type the follow-
ing code into the code window, or copy it from the Dragonlord09.txt file:
1: Option Explicit
2:
3: Private Sub cmdDoctor_Click()
4: Dim canAfford As Boolean
5: Dim amount As Integer
6: Unload Me
7: canAfford = CheckPurse(15)
8: If canAfford Then
9: PlaySound ShopSound, False, False
10: Stats.Gold = Stats.Gold - 15
11: amount = Rnd(10) + 16
12: SetHitPoints amount
13: MsgBox “The doctor healed you.” & vbCrLf & _
14: vbCrLf & “+” & amount & “ hit points.”
15: End If
16: End Sub
17:
18: Private Sub cmdLodge_Click()
19: Dim canAfford As Boolean
20: Dim amount As Integer
21: Unload Me
22: canAfford = CheckPurse(15)
23: If canAfford Then
24: PlaySound ShopSound, False, False
25: Stats.Gold = Stats.Gold - 15
26: amount = Rnd(15) + 21
27: SetStrength amount
28: MsgBox “You had a good night’s sleep.” & vbCrLf & _
29: vbCrLf & “+” & amount & “ strength points.”
30: End If
31: End Sub
32:
33: Private Sub cmdPie_Click()
34: Dim canAfford As Boolean
35: Unload Me
36: canAfford = CheckPurse(10)
37: If canAfford Then
38: PlaySound ShopSound, False, False
39: Stats.Gold = Stats.Gold - 10
40: SetPie 5
41: End If
42: End Sub

These subroutines handle the buttons on the Health dialog box. Specifically,
Lines 3 to 16 enable the player to restore a portion of his hit points, and Lines 18

to 31 enable the player to recover strength points. Lines 33 to 42 enable the player to
purchase pie.

ANALYSIS

17 067231987x CH13 11/6/00 7:16 PM Page 391

4. Bring up the source code window for the frmMagic dialog box. Type the following
code into the code window, or copy it from the Dragonlord10.txt file:
1: Option Explicit
2:
3: Private Sub cmdAdvice_Click()
4: Dim canAfford As Boolean
5: Dim Direction As String
6: Unload Me
7: canAfford = CheckPurse(20)
8: If canAfford Then
9: PlaySound ShopSound, False, False
10: Stats.Gold = Stats.Gold - 20
11: Direction = GetAdvice
12: MsgBox “The dragon is “ & Direction & _
13: “ of your current location.”
14: End If
15: End Sub
16:
17: Private Sub cmdBrew_Click()
18: Dim canAfford As Boolean
19: Unload Me
20: canAfford = CheckPurse(80)
21: If canAfford Then
22: PlaySound ShopSound, False, False
23: Stats.Gold = Stats.Gold - 80
24: Stats.Brew = True
25: MsgBox “You now have the dragon brew!”
26: End If
27: End Sub
28:
29: Private Sub cmdSpell_Click()
30: Dim canAfford As Boolean
31: Unload Me
32: canAfford = CheckPurse(10)
33: If canAfford Then
34: PlaySound ShopSound, False, False
35: Stats.Gold = Stats.Gold - 10
36: Stats.Spells = Stats.Spells + 1
37: End If
38: End Sub
39:
40: Function GetAdvice() As String
41: Dim dragonX As Integer
42: Dim dragonY As Integer
43: Dim playerX As Integer
44: Dim playerY As Integer
45: dragonX = Form1.DragonRoom Mod 10
46: dragonY = Form1.DragonRoom \ 10
47: playerX = Stats.Room Mod 10
48: playerY = Stats.Room \ 10

392 Day 13

17 067231987x CH13 11/6/00 7:16 PM Page 392

Programming a Simple RPG 393

13

49: If dragonX = playerX Then
50: If dragonY < playerY Then
51: GetAdvice = “North”
52: Else
53: GetAdvice = “South”
54: End If
55: ElseIf dragonY = playerY Then
56: If dragonX < playerX Then
57: GetAdvice = “West”
58: Else
59: GetAdvice = “East”
60: End If
61: ElseIf dragonX < playerX And dragonY < playerY Then
62: If Int(Rnd(2)) Then
63: GetAdvice = “North”
64: Else
65: GetAdvice = “West”
66: End If
67: ElseIf dragonX > playerX And dragonY < playerY Then
68: If Int(Rnd(2)) Then
69: GetAdvice = “North”
70: Else
71: GetAdvice = “East”
72: End If
73: ElseIf dragonX > playerX And dragonY > playerY Then
74: If Int(Rnd(2)) Then
75: GetAdvice = “South”
76: Else
77: GetAdvice = “East”
78: End If
79: ElseIf dragonX < playerX And dragonY > playerY Then
80: If Int(Rnd(2)) Then
81: GetAdvice = “South”
82: Else
83: GetAdvice = “West”
84: End If
85: End If
86: End Function

These subroutines handle the buttons on the Magic dialog box. Specifically,
Lines 3 to 15 enable the player to purchase a clue as to the dragon’s location,

and Lines 17 to 27 enable the player to purchase the dragon brew. Lines 29 to 38 enable
the player to purchase a spell. Finally, Lines 40 to 86 are a helper function that’s called
from cmdAdvice_Click.

5. Bring up the source code window for the frmShoppe dialog box. Type the follow-
ing code into the code window, or copy it from the Dragonlord11.txt file:

ANALYSIS

17 067231987x CH13 11/6/00 7:16 PM Page 393

1: Option Explicit
2:
3: Private Sub cmdHealth_Click()
4: Load frmHealth
5: frmHealth.Show
6: Unload frmShoppe
7: End Sub
8:
9: Private Sub cmdMagic_Click()
10: Load frmMagic
11: frmMagic.Show
12: Unload frmShoppe
13: End Sub
14:
15: Private Sub cmdWeapon_Click()
16: Load frmWeapons
17: frmWeapons.Show
18: Unload frmShoppe
19: End Sub
20:
21: Private Sub Form_Load()
22: Me.Left = form1.Left + 1000
23: Me.Top = form1.Top + 1000
24: End Sub

These subroutines handle the buttons on the Shoppe dialog box. Specifically,
Lines 3 to 7 transfer the player to the health shop, Lines 9 to 13 transfer the

player to the magic shop, and Lines 15 to 19 transfer him to the weapon shop. Finally,
Lines 22 to 24 position the Shoppe dialog box when it appears.

6. Bring up the source code window for the frmStats dialog box. Type the following
code into the code window:
Private Sub cmdOK_Click()
Unload Me

End Sub

7. Bring up the source code window for the frmWeapons dialog box. Type the follow-
ing code into the code window, or copy it from the Dragonlord12.txt file:

1: Option Explicit
2:
3: Private Sub cmdClub_Click()
4: Dim canAfford As Boolean
5: Unload Me
6: canAfford = CheckPurse(15)
7: If canAfford Then
8: PlaySound ShopSound, False, False
9: Stats.Gold = Stats.Gold - 15
10: Stats.Weapon = CLUB
11: End If

394 Day 13

ANALYSIS

17 067231987x CH13 11/6/00 7:16 PM Page 394

Programming a Simple RPG 395

13

12: End Sub
13:
14: Private Sub cmdKnife_Click()
15: Dim canAfford As Boolean
16: Unload Me
17: canAfford = CheckPurse(40)
18: If canAfford Then
19: PlaySound ShopSound, False, False
20: Stats.Gold = Stats.Gold - 40
21: Stats.Weapon = KNIFE
22: End If
23: End Sub
24:
25: Private Sub cmdSword_Click()
26: Dim canAfford As Boolean
27: Unload Me
28: canAfford = CheckPurse(60)
29: If canAfford Then
30: PlaySound ShopSound, False, False
31: Stats.Gold = Stats.Gold - 60
32: Stats.Weapon = SWORD
33: End If
34: End Sub

These subroutines handle the buttons on the Weapon dialog box. Specifically,
Lines 3 to 12 enable the player to purchase a club, and Lines 14 to 23 enable the

player to purchase a knife. Finally, Lines 25 to 34 enable the player to purchase a sword.

Last-Minute Details
At last, you’re almost ready to compile your own version of Dragonlord. First, though,
you need to add the DirectX type library to your project. To do this, select the Project
menu’s References command and checkmark DirectX 7 for Visual Basic Type Library in
the dialog box that appears (see Figure 13.3).

One last thing: You need to copy the default dungeon file, Dungeon.drg, into your game’s
directory so the game can load the file. You can find this file in the Chap13/Dragonlord
directory of this book’s CD-ROM. Failure to put this file where it belongs will cause the
game to crash. You also need to copy all the WAV files from the Chap13/Dragonlord
directory to your own Dragonlord directory. After this, you can compile the complete
project.

ANALYSIS

Note that the program will run correctly only if you start it with the
Dragonlord.exe file. If you want to run the program from within the Visual
Basic programming environment, you need to add absolute paths to all the
files the game needs to load.

Note

17 067231987x CH13 11/6/00 7:16 PM Page 395

FIGURE 13.3
Adding DirectX to a
project.

396 Day 13

Understanding Dragonlord
Now that you’ve played the game and built your own version of it, it’s time to examine
the code, starting with the game’s constants and variables. Because the program is so
large, however, we won’t look at every line of code. Most of it you can understand on
your own. However, we will examine the parts of the program that handle the game’s
RPG elements.

Dragonlord’s Variables and Constants
Dragonlord relies on a set of variables and constants that the game declares near the top
of the program. Some variables are also declared in the Module1 program module. Table
13.1 lists the variables and their descriptions, and Table 13.2 lists the constants.

TABLE 13.1 Dragonlord’s General Game Variables

Variable Type Description

Battling Boolean A flag that indicates that the game is in the
battle mode

CheckStatsSound DirectSoundBuffer The buffer that holds the sound effect that
warns the player when a statistic is getting
dangerously low

DiceSound DirectSoundBuffer The buffer that holds the dice sound effect

DirectSoundObj DirectSound The program’s DirectSound object

DirectX7Obj DirectX7 The program’s DirectX object

DiscoverySound DirectSoundBuffer The buffer that holds the sound effect
that’s played when the player discovers
gold after defeating a skeleton

17 067231987x CH13 11/6/00 7:16 PM Page 396

Programming a Simple RPG 397

13

DragonRoom Integer The room containing the dragon

DragonSound DirectSoundBuffer The buffer that holds the sound effect for
when the player finds the dragon and loses
the game

DragonSound2 DirectSoundBuffer The buffer that holds the sound effect for
when the player finds the dragon and wins
the game

FileName String The filename of the currently loaded
dungeon

Items() Integer An array that holds the contents of each
room in the dungeon

Map() Integer An array that holds the room types for
each of the rooms in the dungeon

PlayerHitSound DirectSoundBuffer The buffer that holds the sound effect for
when a skeleton hits the player

Randomizing Boolean A flag that indicates that the program is
currently randomizing the dungeon

ShopSound DirectSoundBuffer The buffer for the item-purchase sound
effect

SkeletonDieSound DirectSoundBuffer The buffer that holds the sound effect for
when the player defeats a skeleton

SkeletonHitSound DirectSoundBuffer The buffer that holds the sound effect for
when a skeleton gets hit by the player’s
weapon

SpellSound DirectSoundBuffer The buffer that holds the spell sound effect

Stats StatsType The player’s game statistics

TeleportSound DirectSoundBuffer The buffer that holds the teleport sound
effect

WalkSound DirectSoundBuffer The buffer for the sound effect of the
player moving to a new room

TABLE 13.1 continued

Variable Type Description

17 067231987x CH13 11/6/00 7:16 PM Page 397

TABLE 13.2 Dragonlord’s Constants

Constant Description

CELLHEIGHT The height of a cell in the playing board

CELLWIDTH The width of a cell in the playing board

MAXX The maximum X value that is a valid mouse click in the grid

MAXY The maximum Y value that is a valid mouse click in the grid

NOROOMDEFINED The value that indicates that there’s no room in the referenced map
location

NUMBEROFCOLS The number of rooms in a row of the dungeon map

NUMBEROFROOMS The number of rooms in the dungeon

OFFSETX The X coordinate of the left edge of the playing board

OFFSETY The Y coordinate of the top edge of the playing board

STARTINGROOM The room where the player starts

The Dragonlord program also defines one enumeration and a data type:

1: Enum WeaponEnum
2: FIST
3: CLUB
4: KNIFE
5: SWORD
6: End Enum
7:
8: Type StatsType
9: HitPoints As Integer
10: Strength As Integer
11: Pie As Integer
12: Gold As Integer
13: Spells As Integer
14: Serums As Integer
15: Brew As Boolean
16: Room As Integer
17: Weapon As Integer
18: PieMoveCount As Integer
19: CastingSpell As Boolean
20: End Type

The WeaponEnum enumeration (Lines 1 to 6) defines constants for the weapons
that the player can purchase, and the StatsType data type (Lines 8 to 20)

declares a data set for the player’s statistics.

398 Day 13

ANALYSIS

17 067231987x CH13 11/6/00 7:16 PM Page 398

Programming a Simple RPG 399

13

Dungeon Maps
Now let’s look at how the game handles its dungeon map. Near the beginning of the pro-
gram, you see the following array definition:

Dim Map(NUMBEROFROOMS - 1) As Integer

This is the dungeon map as it’s stored in memory. Each number in the map represents a
room. Because there are 15 possible combinations of exits from a room, there are 15
types of rooms, numbered from 0 to 14. For example, in the upper-left corner of the
default map, there is a room type 7. This room has exits on the east and south walls. The
next room in the default map is type 13, which has exits on the east, south, and west
walls.

To create a different dungeon layout, you need only put different numbers in the map()
array. Of course, all the numbers must be between 0 and 14 (inclusive), and you must
ensure that the exits line up properly with the other rooms—that is, a north exit from a
room should always lead to a south entrance in the other room.

The program loads the room-type numbers into the map() array from the Dungeon.drg
file at the beginning of a game. As you learned yesterday, the player can load other
dungeon files by clicking the Load Dungeon button. To make it easy to generate these
dungeon files, Dragonlord comes with a visual dungeon editor, which you’ll create in
tomorrow’s lesson.

Initializing the Game
Like any program, Dragonlord must assign starting values to certain variables before the
user can start playing the game. Dragonlord must store items at random locations in the
dungeon (if the player chooses to randomize the dungeon, that is) and set the player’s
statistics to their starting values.

The InitGame subroutine handles the game initialization. In this subroutine, the program
first loads the default dungeon file:

Open FileName For Binary As #1
Get #1, , Map
Get #1, , Items
Close #1

InitGame then sets the player’s starting statistics by calling the ResetStats subroutine,
which is located in the Module1 program module:

1: Sub ResetStats()
2: Stats.HitPoints = 50
3: Stats.Strength = 100

17 067231987x CH13 11/6/00 7:16 PM Page 399

4: Stats.Pie = 1
5: Stats.Gold = 60
6: Stats.Spells = 0
7: Stats.Serums = 0
8: Stats.Brew = False
9: Stats.Room = 45
10: Stats.Weapon = FIST
11: Stats.PieMoveCount = 0
12: Stats.CastingSpell = False
13: End Sub

Here you can see the starting values for the many statistics that make up the
player’s character. If you wanted to give the player additional statistics to further

define the character, you would add a variable for each new statistic to the Stats data
type and then give each statistic a starting value in the ResetStats subroutine. How you
handle the statistic in the game depends on how you want to use it, of course. For exam-
ple, you might add an intelligence statistic that controls how well the player can cast
spells. InitGame finishes the game initialization like this:

1: Randomize
2: Battling = False
3: DragonRoom = GetDragonRoom
4: Form1.PaintPicture Form1.Picture, 0, 0
5: PixelX = (Stats.Room Mod NUMBEROFCOLS) * _
6: CELLWIDTH + OFFSETX
7: PixelY = (Stats.Room \ NUMBEROFCOLS) * _
8: CELLHEIGHT + OFFSETY
9: Form1.PaintPicture imgRoom(Map(Stats.Room) - 1), _
10: PixelX, PixelY
11: DrawRoomMarker
12: cmdRandomize.Enabled = True

Here, InitGame randomizes the random number generator (Line 1), sets flags
and variables to their starting values (Lines 2 and 3), and draws the first room

(Lines 4 to 11).

Handling Character Stats
Throughout the game, the program must manipulate the character statistics when the
player issues commands. For example, moving from room to room or fighting a skeleton
requires energy. The more energy a player uses, the weaker he becomes. So, when the
player does anything physical, the strength statistic goes down. Some statistics, such as
those for hit points, require extra handling when they change, so the program provides
member functions for manipulating those values. For example, to change the value of the
player’s HitPoints statistic, the program calls SetHitPoints:

400 Day 13

ANALYSIS

ANALYSIS

17 067231987x CH13 11/6/00 7:16 PM Page 400

Programming a Simple RPG 401

13

1: Sub SetHitPoints(num As Integer)
2: Stats.HitPoints = Stats.HitPoints + num
3: If Stats.HitPoints > 50 Then Stats.HitPoints = 50
4: If Stats.HitPoints < 15 Then
5: PlaySound CheckStatsSound, False, False
6: Form1.cmdStats_Click
7: End If
8: End Sub

Not only does this subroutine modify HitPoints by the amount in num (Line 2),
but it also ensures that HitPoints doesn’t exceed 50 (Line 3). In addition, when

HitPoints drops below 15, this subroutine sounds an alarm (the CheckStatsSound sound
effect) and displays the statistics window (Lines 4 to 7).

Two other data members—Strength and Pie—are changed by the subroutines
SetStrength and SetPie, which are both similar to SetHitPoints.

Moving the Player
When the player clicks a room, the program must take the mouse coordinates of the click
and calculate where the player wants to move. Then the program must move the player
to the new room.

The movement begins in the MovePlayer subroutine, which first checks that the player
has clicked within the screen limits of the dungeon map:

If X > OFFSETX And X < MAXX And _
Y > OFFSETY And Y < MAXY Then

If the player clicks outside of the map, the program ignores the input. However, if the
mouse coordinates check out okay, the program must calculate the number of the room
where the player wants to move. It does this by calling CalcRoomNumber:

1: Function CalcRoomNumber(PixelX As Single, _
2: PixelY As Single) As Integer
3: Dim mapx As Integer
4: Dim mapy As Integer
5: mapx = (PixelX - OFFSETX) \ CELLWIDTH
6: mapy = (PixelY - OFFSETY) \ CELLHEIGHT
7: CalcRoomNumber = mapy * NUMBEROFCOLS + mapx
8: End Function

This function takes the X,Y coordinates of the mouse click as parameters. It then
takes these coordinates and calculates the row and column of the map where the

player wants to move (Lines 5 and 6). Finally, it uses the row and column to get the
room number (Line 7). In the calculations for mapx, the OFFSETX value is the number of
pixels from the left edge of the screen to the left edge of the first map column, and

ANALYSIS

ANALYSIS

17 067231987x CH13 11/6/00 7:16 PM Page 401

CELLWIDTH is the width of each column. In the calculations for mapy, OFFSETY is the dis-
tance from the top of the screen to the top of the map grid, and CELLHEIGHT is the height
of each map row.

After MovePlayer calls CalcRoomNumber, the program has the room where the player
wants to move. However, the program doesn’t yet know whether the player should be
allowed to move to that room. For the room to be a valid destination, it must connect
directly to the room where the player is located. To check whether the move is valid,
MovePlayer first calls CalcMoveDirection:

1: Sub CalcMoveDirection(newRoom As Integer, _
2: Color As Long, Direction As Integer)
3: Dim PixelX As Integer
4: Dim PixelY As Integer
5: GetPixelXY Stats.Room, PixelX, PixelY
6: If newRoom = Stats.Room - 10 Then
7: Color = Point(PixelX + 12, PixelY + 1)
8: Direction = NORTH
9: ElseIf newRoom = Stats.Room + 1 Then
10: Color = Point(PixelX + 26, PixelY + 12)
11: Direction = EAST
12: ElseIf newRoom = Stats.Room + 10 Then
13: Color = Point(PixelX + 12, PixelY + 25)
14: Direction = SOUTH
15: ElseIf newRoom = Stats.Room - 1 Then
16: Color = Point(PixelX + 1, PixelY + 12)
17: Direction = WEST
18: Else
19: Color = vbWhite
20: End If
21: End Sub

This subroutine takes the following as parameters: the number of the destination
room, a reference to the long integer that will hold a color value, and a reference

to the integer that will hold a direction value.

The function calls GetPixelXY to retrieve the screen coordinates of the current room:

Sub GetPixelXY(Room As Integer, PixelX As Integer, _
PixelY As Integer)

PixelX = (Room Mod NUMBEROFCOLS) * CELLWIDTH + OFFSETX
PixelY = (Room \ NUMBEROFCOLS) * CELLHEIGHT + OFFSETY

End Sub

CalcMoveDirection then uses a compound If statement that compares the destination
room number (newRoom) to the current room number (stats.room). The subroutine uses
this comparison to determine the direction in which the player is trying to move. For
example, if the destination room is 15 and the current room is 25, the player is trying to

402 Day 13

ANALYSIS

17 067231987x CH13 11/6/00 7:16 PM Page 402

Programming a Simple RPG 403

13

move north because the room number to the north is always 10 less than the room num-
ber of the current location.

When the program determines the direction, it sets the variable Direction to one of the
directions enumerated in DirectionEnum (NORTH, EAST, SOUTH, or WEST), and then it calls
Point to retrieve the color of the pixel in the current room’s exit area. For example, if the
player is trying to move north, the program sets Direction to NORTH and gets the color of
a pixel in the current room’s northern exit area. The function returns both the direction
and color values to MovePlayer for further processing.

MovePlayer examines the color value returned by CalcMoveDirection to check whether
it is the color of the top of a wall (white):

If (Color = vbWhite) Then
ShowNoExit

Else
cmdRandomize.Enabled = False
MoveToRoom newRoom, Direction

End If

This is a handy way to check for exits without having to store extra values in a program.
In a way, you’re using the screen as a storage area not only for graphics, but also for pro-
gram data.

If the player is trying to move in an illegal direction, the program calls ShowNoExit to
tell the player of his mistake. Otherwise, the program calls MoveToRoom, which handles
the actual move. (The program also disables the Randomize Dungeon button, which pre-
vents the player from randomizing the dungeon after he’s made his first move.) This sub-
routine first calls UpdateStats to decrement the player’s strength and pie counts:

stillAlive = UpdateStats

UpdateStats returns a Boolean value that indicates whether the player is still alive (that
is, whether his strength is greater than 0). If he is, MoveToRoom calls DrawRoomMarker to
move the current room marker (the yellow square) to the destination room:

DrawRoomMarker

The MoveToRoom subroutine then sets the player’s room statistic to the new room, calls
DrawRoom to display the new room, and calls DrawHallway to display the connecting
hallway:

Stats.Room = newRoom
DrawRoom
DrawHallway Direction

17 067231987x CH13 11/6/00 7:16 PM Page 403

Finally, MoveToRoom calls ShowItem to show the player what, if anything, he has found in
the room:

ShowItem newRoom

The subroutine DrawRoom displays the new room:

1: Sub DrawRoom()
2: Dim Color As Long
3: Dim RoomPixelX As Integer
4: Dim RoomPixelY As Integer
5: GetPixelXY Stats.Room, RoomPixelX, RoomPixelY
6: Color = Point(RoomPixelX, RoomPixelY)
7: If Color <> vbWhite Then _
8: Form1.PaintPicture imgRoom(Map(Stats.Room) - 1), _
9: RoomPixelX, RoomPixelY
10: End Sub

DrawRoom first calls GetPixelXY (Line 5) to retrieve the screen coordinates at
which the new room will be drawn. It then samples the color value (Line 6) at

those coordinates to see whether the room has already been drawn. (The player may have
been to the room before.) If the color value of the sampled pixel isn’t white, the room
has not yet been drawn (Lines 7 to 9).

After the program draws the room, it must draw the connecting hallway. The subroutine
DrawHallway handles this task:

1: Sub DrawHallway(Direction As Integer)
2: Dim RoomPixelX As Integer
3: Dim RoomPixelY As Integer
4: Dim HallPixelX As Integer
5: Dim HallPixelY As Integer
6: GetPixelXY Stats.Room, RoomPixelX, RoomPixelY
7: GetHallPixelXY RoomPixelX, RoomPixelY, _
8: HallPixelX, HallPixelY, Direction
9: If Direction = NORTH Or Direction = SOUTH Then
10: Form1.PaintPicture imgHall(0), HallPixelX, HallPixelY
11: Else
12: Form1.PaintPicture imgHall(1), HallPixelX, HallPixelY
13: End If
14: End Sub

This subroutine calls GetPixelXY (Line 6) to get the screen coordinates of the
new room and then uses those coordinates in a call to GetHallPixelXY (Line 7),

which calculates the screen coordinates of the connecting hallway. DrawHallway uses its
single parameter Direction to determine whether to draw a vertical or horizontal hall
segment (Lines 9 to 13).

404 Day 13

ANALYSIS

ANALYSIS

17 067231987x CH13 11/6/00 7:16 PM Page 404

Programming a Simple RPG 405

13

The subroutine ShowItem displays whatever the player may have found in the new room:

1: Sub ShowItem(Room As Integer)
2: Dim amount As Integer
3: Dim loss As Integer
4: Dim item As Integer
5: CheckForRandomItem Room
6: item = Items(Room)
7: Items(Room) = I_EMPTY
8: Select Case item
9: Case I_GOLD
10: amount = Int(Rnd * 3) + 2
11: Stats.Gold = Stats.Gold + amount
12: ShowDiscovery imgGold, amount & “ GOLD PIECES”, False
13: Case I_SPELL
14: Stats.Spells = Stats.Spells + 1
15: ShowDiscovery imgSpell, “ A SPELL”, False
16: Case I_SERUM
17: Stats.Serums = Stats.Serums + 1
18: ShowDiscovery imgSerum, “ A SERUM”, False
19: Case I_THIEF
20: loss = Stats.Gold / 4
21: Stats.Gold = Stats.Gold - loss
22: ShowDiscovery imgThief, “ THE THIEF!”, False
23: Case I_TELEPORT
24: ShowDiscovery imgTeleport, “A TELEPORTER”, False
25: Teleport
26: Case I_SKELETON
27: Battling = True
28: ToggleButtons False
29: ShowDiscovery imgSkeleton(0), “ A SKELETON!”, False
30: FightSkeleton
31: Case I_DRAGON
32: FoundDragon
33: End Select
34: End Sub

This subroutine first calls CheckForRandomItem (Line 5), which is responsible
for placing skeletons and caches of gold in empty rooms. If the destination room

is empty, there’s a chance that one of these items may appear in the room. After deter-
mining whether any random items will appear, the program saves the contents of the
room by setting item equal to Items(Room) (Line 6) and then sets Items(Room) to
I_EMPTY (Line 7), which indicates that the room is now empty.

The Select Case statement (Lines 8 to 33) then routes the program to the code that’s
needed to handle the current item. In most cases, the program only displays a DISCOV-
ERY box and adds the item to the player’s statistics. However, the teleport, skeleton, and
dragon items get special handling, so the Select Case statement calls the appropriate

ANALYSIS

17 067231987x CH13 11/6/00 7:16 PM Page 405

function: Teleport, FoundDragon, or FightSkeleton. Teleport transfers the player to a
randomly selected room, and FoundDragon ends the game.

Battling Skeletons
FightSkeleton handles the battle between the player and the skeleton. The subroutine
first calculates the player’s attack modifier, which is based on the player’s weapon and
strength:

Modifier = Stats.Weapon - 4 + Stats.Strength / 20

Next, FightSkeleton calls DoBattle, which handles the actual fight:

playerAlive = DoBattle(Modifier)

DoBattle first displays the battle dialog box:

frmBattle.Left = Form1.Left + 1500
frmBattle.Top = Form1.Top + 1000
frmBattle.cmdOK.Enabled = False
frmBattle.Show , Me
frmBattle.CurrentX = 58
frmBattle.CurrentY = 200
frmBattle.Print “Modifier = “ & Modifier

Then, the program sets the skeleton’s hit points (monsterHitPoints) to 5, sets the
Battling flag to True, and sets the alive flag to True:

monsterHitPoints = 5
Battling = True
alive = True

The Battling flag prevents the player from doing anything in the program before the
battle is over. For example, the Form_MouseDown event handler will not process mouse
clicks as long as the Battling flag is True:

If Randomizing Or Battling Then Exit Sub

A Do loop then iterates until Battling becomes False:

Do
{

.

.

.
}
Loop While Battling

406 Day 13

17 067231987x CH13 11/6/00 7:16 PM Page 406

Programming a Simple RPG 407

13

Inside the Do loop, the program calls RollDice to display the rolling dice and get the
opponent’s attack scores:

playerRoll = RollDice(48, 155)
Delay (0.5)
skeletonRoll = RollDice(117, 155)

When the player or skeleton scores a hit, DoBattle calculates the amount of damage
scored by the hit. The program also subtracts an appropriate amount of strength from the
player:

damage = Int(Rnd * 5 + 1)
SetStrength -1 - 1 * Abs(Stats.Pie < 1)

Notice how the preceding calculation uses the Boolean value (Stats.Pie < 1). If
(Stats.Pie < 1) is true, it evaluates to -1. If (Stats.Pie < 1) is false, it evaluates to
0. Because the absolute value of the result of the Boolean expression is multiplied by -1,
when the player’s pie is less than 1, he loses an additional strength point. By using
Boolean expressions in this way, you can eliminate the need for If statements in some
circumstances.

Getting back to DoBattle, if the player’s roll beats the skeleton’s roll, the program dis-
plays the image of the hit skeleton, generates the winning sound, and deducts damage hit
points from monsterHitPoints:

If playerRoll + Modifier >= skeletonRoll Then
PlaySound SkeletonHitSound, False, False
frmBattle.PaintPicture imgSkeleton(2), 68, 50
Delay 1#
monsterHitPoints = monsterHitPoints - damage
If monsterHitPoints < 1 Then Battling = False

If monsterHitPoints is less than 1, the skeleton has lost the battle and Battling is set to
False. However, if the skeleton’s roll beats the player’s roll, the program executes the
Else portion of the If statement:

1: Else
2: PlaySound PlayerHitSound, False, False
3: frmBattle.PaintPicture imgSkeleton(1), 68, 50
4: SetHitPoints -damage
5: Delay 1#
6: If Stats.Strength <= 0 Or Stats.HitPoints <= 0 Then
7: Battling = False
8: alive = False
9: End If
10: End If

17 067231987x CH13 11/6/00 7:16 PM Page 407

Here, the program displays the attacking skeleton image (Lines 3), deducts dam-
age from the player’s hit points (Line 4), and generates the losing sound (Line 2).

If the player’s strength or hit points falls below 1 (Line 6), the player is dead, so the pro-
gram sets Battling to False and alive to False (Lines 7 and 8).

Finally, if the battle is not yet over, the program restores the skeleton’s normal image:

If Battling Then _
frmBattle.PaintPicture imgSkeleton(0), 68, 50

After the program restores the skeleton’s image, the Do loop performs another iteration.
This continues until Battling equals False, at which point the program displays the
skeleton as a pile of bones, enables the game’s command buttons, and returns the alive
flag to FightSkeleton:

frmBattle.cmdOK.Enabled = True
frmBattle.PaintPicture imgSkeleton(3), 68, 50
cmdShop.Enabled = True
cmdSpell.Enabled = True
cmdStats.Enabled = True
cmdLoad.Enabled = True
cmdAbout.Enabled = True
DoBattle = alive

Back in FightSkeleton(), if the player is still alive, the program gets rid of the battling
window after a two-second delay:

Delay 2#
Unload frmBattle

Then, if the player has less than 20 strength points and also has a bottle of serum, the
program calls DrinkSerum, which increases the player’s strength points:

If Stats.Strength < 20 And Stats.Serums > 0 Then _
DrinkSerum

The program then calculates how many gold pieces the player will find and displays the
result in a DISCOVERY box:

amount = Int(Rnd * 5) + 5
ShowDiscovery imgGold, amount & “ GOLD PIECES.”, True
Stats.Gold = Stats.Gold + amount

If the player is no longer alive when the program returns to FightSkeleton, the program
removes the battle window and calls the Dead subroutine, which ends the game:

Unload frmBattle
Dead

408 Day 13

ANALYSIS

17 067231987x CH13 11/6/00 7:16 PM Page 408

Programming a Simple RPG 409

13

Creating Sound Effects
I created all of Dragonlord’s sound effects in my home studio, using a Roland JP8000
synthesizer (see Figure 13.4), an Echo Layla professional PC sound card, and a Shure
SM-58 microphone. I edited all the sounds using Steinberg WaveLab.

FIGURE 13.4
The Roland JP8000
synthesizer.

The program plays all sound effects with the DirectSound routines you learned about on
Day 11, “Adding Sound to a Game.”

Summary
Although you’ve examined only a portion of Dragonlord’s source code, you should now
understand how the rest of the program works. Before moving on to Day 14, however,
you might want to spend some time going over the Dragonlord source code just to be
sure that you understand it. It’s a big program with a lot going on!

Q&A
Q What would be a typical number of attributes for a character in a profession-

al RPG?

A The number of attributes that a game uses depends upon how realistic the game
play will be. Full-fledged RPGs use dozens (hundreds?) of attributes that cover
everything from basic stuff like strength, charm, luck, and health to a whole host of
skills, such as swimming, mapping, understanding languages, repairing weapons,
riding horses, bargaining, stealing, fighting, sneaking, and much more. The sky’s
the limit!

Q Dragonlord is played in a simple 2D, top-down viewpoint. How are 3D RPGs
different?

A The only real difference is the graphics used to portray the character’s current loca-
tions. 3D programs handle character attributes the same way every other type of
RPG does. The viewpoints may be different, but the basics of the game are the
same. The player issues commands, and the program determines whether the

17 067231987x CH13 11/6/00 7:16 PM Page 409

player’s character has the correct abilities or statistics to complete the action. The
program then determines an outcome for the command based on the character’s
attributes.

Workshop
The workshop includes quiz questions to help gauge your grasp of the material. You’ll
find the answers to this quiz in Appendix A. Even if you feel that you totally understand
the concepts presented here, you should work through the quiz anyway. The last section
is an exercise to help reinforce your learning.

Quiz
1. How does Dragonlord use the Map() array?

2. What does the Items() array represent?

3. What data does the program use to keep track of the player’s statistics?

4. In general terms, explain the 15 room types.

5. How does the program use the Point function to control the player’s movement
through the dungeon?

6. What happens in the program when the player discovers a cache of gold, a spell, or
a serum?

7. How does the Dragonlord program handle the fact that creatures in a dungeon are
often on the move?

8. How do the Weapon and Strength attributes affect a fight?

9. What attributes do the skeleton characters have?

10. How can you use a Boolean expression to replace some types of If statements?

Exercise
1. Add a spell skill (attribute) to Dragonlord. This statistic should range from a mini-

mum of 1 to a maximum of 5. At the start of the game, the spell skill should be set
to 1. Each time the player casts a spell, the spell skill should go up 1. Use the spell
skill so that the higher the player’s skill, the closer the player gets to his target
room when he casts the spell. That is, a spell skill of 1 should give the player only
a 20% chance of reaching the selected room, whereas a spell skill of 5 should give
the player a 100% chance of reaching the selected room. You should add more
spell items to the dungeon to counteract the fact that they are now harder to use.
(Hint: You can call the Teleport subroutine to easily transfer the player to a ran-
dom room.)

410 Day 13

17 067231987x CH13 11/6/00 7:16 PM Page 410

DAY 14

WEEK 2

Creating a Level Editor
As I’ve said before, nothing gets people excited about a game more than being
able to create their own levels. In a game like Dragonlord, a level is just a set of
rooms and the items inside those rooms. This simplicity makes Dragonlord a
perfect demonstration vehicle for creating a level editor. Today, you’ll do just
that. Specifically, you’ll learn how to do the following:

• Use the editor

• Build the editor

• Save and load Dragonlord dungeon files

• Use control arrays to simplify the programming of editor toolboxes

Using the Dragonlord DungeonEditor
Before you learn how to build DungeonEditor on your own, you might like a
little experience creating dungeons. Luckily, there’s a version of DungeonEditor

18 067231987x CH14 11/6/00 7:12 PM Page 411

FIGURE 14.1
The DungeonEditor
application.

412 Day 14

As you can see, the right side of the window has a set of buttons for the various types of
rooms. To place a room in the dungeon, click on the corresponding button and then click
the desired location on the dungeon grid. The selected room appears. You place items in
the dungeon the same way, except you must place them in a location that already has a
room.

To choose a new button in the toolbox, first click the activated button. This turns all the
buttons back on again. Then you can select the new button you want to use.

To remove a room, click the first button in the toolbox, and then click the room. Both the
room and any item it contains vanish from the map. Note that to remove an item, you
must either replace the item with a different one or delete the room entirely.

The commands in the File and Help menus enable you to load and save files, start a new
dungeon, exit the program, or view the program’s About dialog box. Figure 14.2 shows
what the default dungeon map looks like when it’s loaded into the editor.

ready to go in the Chap14\DungeonEditor directory of this book’s CD-ROM. (Well,
okay, so luck had nothing to do with it.) When you run the program, you see the window
shown in Figure 14.1.

18 067231987x CH14 11/6/00 7:12 PM Page 412

Creating a Level Editor 413

14

FIGURE 14.2
DungeonEditor dis-
playing the default
Dragonlord
dungeon map.

Building the Dragonlord Dungeon Editor
Yesterday, you spent a lot of time building the Dragonlord game. Today, you’ll build the
game’s dungeon editor. You’ll be pleased to know that the editor is a small program that
won’t take too long to put together. In the following sections, you’ll build the program
one piece at a time.

Creating DungeonEditor’s Main Form
The first step is to create the editor’s main form:

1. Start a new Standard EXE Visual Basic project.

2. Set the form’s properties to these values:

AutoRedraw = True

Caption = “DungeonEditor”

Height = 6960

ScaleMode = Pixel

Width = 10005

3. Add a PictureBox control to the form, giving the control the following property
settings:

AutoRedraw = True

AutoSize = True

Font = MS Sans Serif, Bold, 8-point

ForeColor = Blue

18 067231987x CH14 11/6/00 7:12 PM Page 413

Left = 18

ScaleMode = Pixel

Top = 22

4. Set the PictureBox control’s Picture property to the Grid.gif picture file, which
you can find in the Images\DungeonEditor directory of this book’s CD-ROM.

5. Add 16 CommandButton controls to the form, making them a control array named
cmdRoom. Give the buttons the following property settings. You can find the but-
tons’ picture files in the Images\DungeonEditor directory of this book’s CD-ROM.

414 Day 14

cmdRoom(0) Button

Caption = “”

Height = 42

Left = 483

Picture = Empty.bmp

Style = Graphical

Top = 13

Width = 49

cmdRoom(1) Button

Caption = “”

Height = 42

Left = 483

Picture = Room01.bmp

Style =Graphical

Top = 61

Width = 49

cmdRoom(2) Button

Caption = “”

Height = 42

Left = 483

Picture = Room02.bmp

Style = Graphical

Top = 109

Width = 49

cmdRoom(3) Button

Caption = “”

Height = 42

Left = 483

Picture = Room03.bmp

Style = Graphical

Top = 157

Width = 49

cmdRoom(4) Button

Caption = “”

Height = 42

Left = 483

Picture = Room04.bmp

Style = Graphical

Top = 205

Width = 49

cmdRoom(5) Button

Caption = “”

Height = 42

Left = 483

Picture = Room05.bmp

Style = Graphical

Top = 253

Width = 49

18 067231987x CH14 11/6/00 7:12 PM Page 414

14

Creating a Level Editor 415

cmdRoom(6) Button

Caption = “”

Height = 42

Left = 483

Picture = Room06.bmp

Style = Graphical

Top = 301

Width = 49

cmdRoom(7) Button

Caption = “”

Height = 42

Left = 483

Picture = Room07.bmp

Style = Graphical

Top = 349

Width = 49

cmdRoom(8) Button

Caption = “”

Height = 42

Left = 541

Picture = Room08.bmp

Style = Graphical

Top = 13

Width = 49

cmdRoom(9) Button

Caption = “”

Height = 42

Left = 541

Picture = Room09.bmp

Style = Graphical

Top = 61

Width = 49

cmdRoom(10) Button

Caption = “”

Height = 42

Left = 541

Picture = Room10.bmp

Style = Graphical

Top = 109

Width = 49

cmdRoom(11) Button

Caption = “”

Height = 42

Left = 541

Picture = Room11.bmp

Style = Graphical

Top = 157

Width = 49

cmdRoom(12) Button

Caption = “”

Height = 42

Left = 541

Picture = Room12.bmp

Style = Graphical

Top = 205

Width = 49

cmdRoom(13) Button

Caption = “”

Height = 42

Left = 541

Picture = Room13.bmp

Style = Graphical

Top = 253

Width = 49

18 067231987x CH14 11/6/00 7:12 PM Page 415

6. Add seven more CommandButton controls to the form, making them a control
array named cmdItem. Give the buttons the following property settings. You can
find the buttons’ picture files in the Images\DungeonEditor directory of this book’s
CD-ROM. Figure 14.3 shows the finished controls.

cmdItem(0) Button

Caption = “”

Height = 42

Left = 599

Picture = Serum.bmp

Style = Graphical

Top = 13

Width = 49

cmdItem(1) Button

Caption = “”

Height = 42

Left = 599

Picture = Spell.bmp

Style = Graphical

Top = 61

Width = 49

cmdItem(2) Button

Caption = “”

Height = 42

Left = 599

416 Day 14

cmdRoom(14) Button

Caption = “”

Height = 42

Left = 541

Picture = Room14.bmp

Style = Graphical

Top = 301

Width = 49

cmdRoom(15) Button

Caption = “”

Height = 42

Left = 541

Picture = Room15.bmp

Style = Graphical

Top = 349

Width = 49

18 067231987x CH14 11/6/00 7:12 PM Page 416

Creating a Level Editor 417

14

Picture = Gold.bmp

Style = Graphical

Top = 109

Width = 49

cmdItem(3) Button

Caption = “”

Height = 42

Left = 599

Picture = Skeleton.bmp

Style = Graphical

Top = 157

Width = 49

cmdItem(4) Button

Caption = “”

Height = 42

Left = 599

Picture = Thief.bmp

Style = Graphical

Top = 205

Width = 49

cmdItem(5) Button

Caption = “”

Height = 42

Left = 599

Picture = Teleport.bmp

Style = Graphical

Top = 253

Width = 49

cmdItem(6) Button

Caption = “”

Height = 42

Left = 599

18 067231987x CH14 11/6/00 7:12 PM Page 417

Picture = Dragon.bmp

Style = Graphical

Top = 301

Width = 49

418 Day 14

FIGURE 14.3
The cmdRoom and
cmdItem control
arrays.

7. Add a CommonDialog control to the form, keeping the object’s default name. If
the control isn’t in your VB toolbox, you’ll need to load it using the Project menu’s
Components command, as shown in Figure 14.4.

FIGURE 14.4
Adding the
CommonDialog
control to the
DungeonEditor
project.

18 067231987x CH14 11/6/00 7:12 PM Page 418

Creating a Level Editor 419

14

8. Add a Shape control to the form, giving it the following property settings:

BorderColor = Yellow

BorderWidth = 3

Height = 42

Left = 222

Shape = Rectangle

Top = 177

Width = 42

9. Save your work.

Your form should now look something like Figure 14.5.

FIGURE 14.5
The completed form.

Next you’ll take care of the program’s menus.

Creating the Menus
Next step: the menus. Select the Menu Editor command from the Tools menu. When the
editor appears, create the menus shown in Figure 14.6. Use the menu names mnuFile,
mnuNew, mnuOpen, mnuSep (for the first menu separator in the File menu), mnuSave,
mnuSaveAs, mnuSep2, mnuExit, mnuHelp, and mnuAbout.

18 067231987x CH14 11/6/00 7:12 PM Page 419

FIGURE 14.6
The menu editor,
displaying
DungeonEditor’s
complete menus.

420 Day 14

You’ve now completed the game’s menus. Next, you’ll add the About dialog box to the
project.

Adding the About Dialog Box
Visual Basic provides a readymade About dialog box that you can add to your projects if
you don’t want to create one from scratch. In the following steps, you’ll include such a
dialog box in the project and modify it for your own use.

1. Add a form to the project, selecting the About Dialog type, as shown in
Figure 14.7.

FIGURE 14.7
Adding an About
dialog box.

2. Set the picIcon PictureBox control in the dialog box to the Dragon.bmp file in the
Images\DungeonEditor directory of this book’s CD-ROM.

3. Change the dialog box’s Caption property to the text “Copyright 2000 by Sams
Publishing”.

4. Delete the Warning label near the bottom of the dialog box.

18 067231987x CH14 11/6/00 7:12 PM Page 420

Creating a Level Editor 421

14

Adding the Object Handlers
Now, you need to associate code with the form and its objects:

1. Double-click the Form1 form to bring up the code window.

2. Add the following form handlers to the code window. You can either type the
source code or copy it from the DungeonEditor1.txt file, which you can find in the
Chap14\Code directory of this book’s CD-ROM.

LISTING 14.1 The Form Handlers

1: ‘==
2: ‘ Main Form Handlers.
3: ‘==
4: Private Sub Form_Load()
5: InitVariables
6: End Sub
7:
8: Private Sub Form_Unload(Cancel As Integer)
9: Dim Result As Integer
10: Result = SaveIfNecessary()
11: If Result <> vbCancel Then
12: Unload frmAbout
13: Else
14: Cancel = True
15: End If
16: End Sub

The Form_Load event procedure (Lines 4 to 6) initializes the editor’s variables.
This ensures that any changes are saved and that the frmAbout form is also

unloaded.

3. Add the following button handlers to the code window. You can either type the
source code or copy it from the DungeonEditor2.txt file, which you can find in the
Chap14\Code directory of this book’s CD-ROM.

LISTING 14.2 The Button Handlers

1: ‘==
2: ‘ Button Handlers.
3: ‘==
4: Private Sub cmdRoom_Click(Index As Integer)
5: If RoomButton = NOBUTTONSELECTED Then
6: RoomButton = Index
7: DisableButtons
8: cmdRoom(Index).Enabled = True

ANALYSIS

18 067231987x CH14 11/6/00 7:12 PM Page 421

9: ElseIf RoomButton = Index Then
10: RestoreButtons
11: RoomButton = NOBUTTONSELECTED
12: End If
13: End Sub
14:
15: Private Sub cmdItem_Click(Index As Integer)
16: If ItemButton = NOBUTTONSELECTED Then
17: ItemButton = Index
18: DisableButtons
19: cmdItem(Index).Enabled = True
20: Else
21: RestoreButtons
22: ItemButton = NOBUTTONSELECTED
23: End If
24: End Sub

These event procedures respond when the user clicks a room button or an item
button, setting the variables that determine what type of object the player wants

to place in the dungeon. The room number or item number is the index of the clicked
button.

4. Add the following PictureBox handlers to the code window. You can either type the
source code or copy it from the DungeonEditor3.txt file, which you can find in the
Chap14\Code directory of this book’s CD-ROM.

LISTING 14.3 The PictureBox Handlers

1: ‘==
2: ‘ Picture Object Handlers.
3: ‘==
4: Private Sub Picture1_Click()
5: If RoomButton <> NOBUTTONSELECTED Then PlaceRoom
6: If ItemButton <> NOBUTTONSELECTED Then PlaceItem
7: End Sub
8:
9: Private Sub Picture1_MouseMove(Button As Integer, _
10: Shift As Integer, x As Single, y As Single)
11: Dim Column As Integer
12: Dim Row As Integer
13: RoomX = x
14: RoomY = y
15: If RoomButton <> NOBUTTONSELECTED Or _
16: ItemButton <> NOBUTTONSELECTED Then
17: Column = X2Column(RoomX)

422 Day 14

LISTING 14.2 continued

ANALYSIS

18 067231987x CH14 11/6/00 7:12 PM Page 422

Creating a Level Editor 423

14

18: Row = Y2Row(RoomY)
19: Shape1.Move XOFFSET + Column * ROOMSIZE - 5, _
20: YOFFSET + Row * ROOMSIZE - 5
21: End If
22: End Sub

The Picture1_Click event procedure (Lines 4 to 7) calls the subroutines that
place a room or an item when the user clicks the dungeon grid. The

Picture1_MouseMove event procedure (Lines 9 to 22) moves the yellow rectangle wher-
ever the mouse pointer moves in the dungeon grid.

5. Add the following menu handlers to the code window. You can either type the
source code or copy it from the DungeonEditor4.txt file, which you can find in the
Chap14\Code directory of this book’s CD-ROM.

LISTING 14.4 The Menu Handlers

1: ‘==
2: ‘ Menu Handlers.
3: ‘==
4: Private Sub mnuAbout_Click()
5: frmAbout.Show
6: End Sub
7:
8: Private Sub mnuExit_Click()
9: Dim Result As Integer
10: Result = SaveIfNecessary()
11: If Result <> vbCancel Then Unload Form1
12: End Sub
13:
14: Function SaveIfNecessary() As Integer
15: Dim Answer As Integer
16: Answer = vbYes
17: If NeedToSave Then
18: Answer = MsgBox(“Do you want to save your changes?”, _
19: vbQuestion Or vbYesNoCancel)
20: If Answer = vbYes Then mnuSaveAs_Click
21: End If
22: SaveIfNecessary = Answer
23: End Function
24:
25: Private Sub mnuNew_Click()
26: Dim Result As Integer
27: Result = SaveIfNecessary()
28: If Result <> vbCancel Then

LISTING 14.3 continued

ANALYSIS

18 067231987x CH14 11/6/00 7:12 PM Page 423

29: InitVariables
30: DrawScreen
31: End If
32: End Sub
33:
34: Private Sub mnuOpen_Click()
35: Dim Result As Integer
36: On Error GoTo FileError
37: Result = SaveIfNecessary()
38: If Result <> vbCancel Then
39: CommonDialog1.ShowOpen
40: FileName = CommonDialog1.FileName
41: Open FileName For Binary As #1
42: Get #1, , Rooms
43: Get #1, , Items
44: Close #1
45: NeedToSave = False
46: DrawScreen
47: End If
48: Exit Sub
49: FileError:
50: MsgBox “File not loaded.”, vbExclamation, “Save”
51: End Sub
52:
53: Private Sub mnuSave_Click()
54: On Error GoTo FileError
55: If FileName = “” Then
56: mnuSaveAs_Click
57: Else
58: Open FileName For Binary As #1
59: Put #1, , Rooms
60: Put #1, , Items
61: Close #1
62: NeedToSave = False
63: End If
64: Exit Sub
65: FileError:
66: MsgBox “File not saved.”, vbExclamation, “Save”
67: End Sub
68:
69: Private Sub mnuSaveAs_Click()
70: On Error GoTo FileError
71: CommonDialog1.ShowSave
72: FileName = CommonDialog1.FileName
73: Open FileName For Binary As #1
74: Put #1, , Rooms
75: Put #1, , Items
76: Close #1

424 Day 14

LISTING 14.4 continued

18 067231987x CH14 11/6/00 7:12 PM Page 424

Creating a Level Editor 425

14

77: NeedToSave = False
78: Exit Sub
79: FileError:
80: MsgBox “File not saved.”, vbExclamation, “Save As”
81: End Sub

The mnuAbout_Click event procedure (Lines 4 to 6) displays the About dialog
box when the user clicks the About menu command, and the mnuExit_Click

event procedure closes the editor when the user clicks the Exit menu command.
SaveIfNecessary (Lines 14 to 23) asks the user whether he wants to save his work,
mnuNew_Click (Lines 25 to 32) starts a new dungeon file, mnuOpen_Click (Lines 34 to
51) opens an existing dungeon file, and mnuSave_Click (Lines 53 to 67) saves the cur-
rent dungeon file. Finally, mnuSaveAs_Click (Lines 69 to 81) saves the dungeon layout
under a new filename.

Adding General Source Code
Now, add the general subroutines, functions, constants, and variables by performing the
following steps:

1. Add the following initialization subroutine to the code window. You can either type
the code or copy it from the DungeonEditor5.txt file, which you can find in the
Chap14\Code directory of this book’s CD-ROM.

LISTING 14.5 The Initialization Routine

1: ‘==
2: ‘ Initialization Routine.
3: ‘==
4: Sub InitVariables()
5: Dim i As Integer
6: For i = 0 To ROOMCOUNT - 1
7: Rooms(i) = 0
8: Items(i) = 0
9: Next i
10: RoomButton = NOBUTTONSELECTED
11: ItemButton = NOBUTTONSELECTED
12: NeedToSave = False
13: FileName = “”
14: End Sub

This subroutine initializes the program’s variables.

LISTING 14.4 continued

ANALYSIS

ANALYSIS

18 067231987x CH14 11/6/00 7:12 PM Page 425

2. Add the following general subroutines to the code window. You can either type the
code or copy it from the DungeonEditor6.txt file, which you can find in the
Chap14\Code directory of this book’s CD-ROM.

LISTING 14.6 The General Subroutines

1: ‘==
2: ‘ General Subroutines.
3: ‘==
4: Sub DrawScreen()
5: Dim Column As Integer
6: Dim Row As Integer
7: Dim Room As Integer
8: For Column = 0 To COLUMNCOUNT - 1
9: For Row = 0 To ROWCOUNT - 1
10: Room = ColumnRow2Room(Column, Row)
11: Picture1.PaintPicture _
12: cmdRoom(Rooms(Room)).Picture, _
13: XOFFSET + Column * ROOMSIZE, _
14: YOFFSET + Row * ROOMSIZE
15: If Items(Room) <> 0 Then
16: Picture1.PaintPicture _
17: cmdItem(Items(Room) - 1).Picture, _
18: XOFFSET + Column * ROOMSIZE + 4, _
19: YOFFSET + Row * ROOMSIZE + 4, 20, 20
20: End If
21: Next Row
22: Next Column
23: End Sub
24:
25: Sub PlaceRoom()
26: Dim Column As Integer
27: Dim Row As Integer
28: Dim Room As Integer
29: Column = X2Column(RoomX)
30: Row = Y2Row(RoomY)
31: Room = ColumnRow2Room(Column, Row)
32: Rooms(Room) = RoomButton
33: If RoomButton = 0 Then Items(Room) = 0
34: Picture1.PaintPicture _
35: cmdRoom(RoomButton).Picture, _
36: XOFFSET + Column * ROOMSIZE, _
37: YOFFSET + Row * ROOMSIZE
38: If Items(Room) <> 0 Then
39: Picture1.PaintPicture _
40: cmdItem(Items(Room)).Picture, _
41: XOFFSET + Column * ROOMSIZE + 4, _
42: YOFFSET + Row * ROOMSIZE + 4, 20, 20
43: End If

426 Day 14

18 067231987x CH14 11/6/00 7:12 PM Page 426

Creating a Level Editor 427

14

44: NeedToSave = True
45: End Sub
46:
47: Sub PlaceItem()
48: Dim Column As Integer
49: Dim Row As Integer
50: Dim Room As Integer
51: Column = X2Column(RoomX)
52: Row = Y2Row(RoomY)
53: Room = ColumnRow2Room(Column, Row)
54: If Rooms(Room) = 0 Then
55: MsgBox “You must place a room there first.”
56: Else
57: Items(Room) = ItemButton + 1
58: Picture1.PaintPicture _
59: cmdRoom(Rooms(Room)).Picture, _
60: XOFFSET + Column * ROOMSIZE, _
61: YOFFSET + Row * ROOMSIZE
62: Picture1.PaintPicture _
63: cmdItem(ItemButton).Picture, _
64: XOFFSET + Column * ROOMSIZE + 4, _
65: YOFFSET + Row * ROOMSIZE + 4, 20, 20
66: NeedToSave = True
67: End If
68: End Sub
69:
70: Sub DisableButtons()
71: Dim i As Integer
72: For i = 0 To NUMROOMBUTTONS - 1
73: cmdRoom(i).Enabled = False
74: If i < 7 Then cmdItem(i).Enabled = False
75: Next i
76: End Sub
77:
78: Sub RestoreButtons()
79: Dim i As Integer
80: For i = 0 To NUMROOMBUTTONS - 1
81: cmdRoom(i).Enabled = True
82: If i < 7 Then cmdItem(i).Enabled = True
83: Next i
84: End Sub

The DrawScreen subroutine (Lines 4 to 23) paints the dungeon grid with its
rooms and items, PlaceRoom (Lines 25 to 45) paints a single room on the display,

and PlaceItem (Lines 47 to 68) paints an item. The DisableButtons subroutine (Lines
70 to 77) disables all of the editor’s buttons, and RestoreButtons (Lines 78 to 84)
enables all the buttons.

LISTING 14.6 continued

ANALYSIS

18 067231987x CH14 11/6/00 7:12 PM Page 427

3. Add the following functions to the code window. You can either type the code or
copy it from the DungeonEditor7.txt file, which you can find in the Chap14\Code
directory of this book’s CD-ROM.

LISTING 14.7 The Program Functions

1: ‘==
2: ‘ Program functions.
3: ‘==
4: Function X2Column(x As Integer) As Integer
5: X2Column = (x + 1 - XOFFSET) \ ROOMSIZE
6: End Function
7:
8: Function Y2Row(y As Integer) As Integer
9: Y2Row = (y + 1 - YOFFSET) \ ROOMSIZE
10: End Function
11:
12: Function ColumnRow2Room(Column As Integer, _
13: Row As Integer) As Integer
14: ColumnRow2Room = Row * COLUMNCOUNT + Column
15: End Function

These functions convert X coordinates (Lines 4 to 6) to columns, Y coordinates
(Lines 8 to 10) to rows, and grid columns and rows to room numbers

(Lines 12 to 15).

4. Add the following variable declarations and enumerations to the top of the code
window. You can either type the code or copy it from the DungeonEditor8.txt file,
which you can find in the Chap14\Code directory of this book’s CD-ROM.

LISTING 14.8 The Program Declarations

1: ‘==
2: ‘ Dragonlord Dungeon Editor for Visual Basic 6
3: ‘ by Clayton Walnum
4: ‘ Copyright 2000 by Macmillan Computer Publishing
5: ‘==
6: Option Explicit
7:
8: ‘==
9: ‘ Constants.
10: ‘==
11: Const XOFFSET = 7
12: Const YOFFSET = 6
13: Const ROOMSIZE = 44
14: Const COLUMNCOUNT = 10
15: Const ROWCOUNT = 8

428 Day 14

ANALYSIS

18 067231987x CH14 11/6/00 7:12 PM Page 428

Creating a Level Editor 429

14

16: Const ROOMCOUNT = 80
17: Const NOBUTTONSELECTED = -1
18: Const NUMROOMBUTTONS = 16
19:
20: ‘==
21: ‘ General Game Variables.
22: ‘==
23: Dim RoomButton As Integer
24: Dim ItemButton As Integer
25: Dim RoomX As Integer
26: Dim RoomY As Integer
27: Dim NeedToSave As Boolean
28: Dim FileName As String
29: Dim Rooms(ROOMCOUNT - 1) As Integer
30: Dim Items(ROOMCOUNT - 1) As Integer

5. Save your work.

You’ve now completed the Dragonlord DungeonEditor program. By now, you know what
that means… Time to dig into the program’s innards to see how it works.

Understanding DungeonEditor
Now that you’ve built your own version of DungeonEditor, it’s time to examine the code,
starting with the constants and variables. We won’t look at every line of code in the pro-
gram, however. Most of it you can understand on your own. Instead, we will examine the
parts of the program that are most important.

DungeonEditor’s Variables and Constants
DungeonEditor relies on a set of variables and constants that the game declares near the
top of the program. Table 14.1 lists the variables and their descriptions, and Table 14.2
lists the constants.

TABLE 14.1 DungeonEditor’s General Game Variables

Variable Type Description

FileName String The filename of the currently loaded dungeon

ItemButton Integer The index of the currently selected room button

Items() Integer An array that holds the items in each room of the dungeon

NeedToSave Boolean A flag that indicates whether or not the currently loaded
dungeon needs to save its changes

LISTING 14.8 continued

18 067231987x CH14 11/6/00 7:12 PM Page 429

RoomButton Integer The index of the currently selected room button

Rooms() Integer An array that holds the type of room in each dungeon
location

RoomX Integer The X coordinate at which the user wants to place a room

RoomY Integer The Y coordinate at which the user wants to place a room

TABLE 14.2 DungeonEditor’s Constants

Constant Description

COLUMNCOUNT The number of rooms in a row of the dungeon map

NOBUTTONSELECTED A value indicating that the user hasn’t selected a button in the toolbox

NUMROOMBUTTONS The number of room buttons in the toolbox

ROOMCOUNT The number of rooms in the dungeon

ROOMSIZE The size of a room, in pixels

ROWCOUNT The number of rooms in a column of the dungeon map

XOFFSET The X coordinate at which the left edge of the dungeon map is located

YOFFSET The Y coordinate at which the top edge of the dungeon map is located

The Toolbox
DungeonEditor is a simple program. All it has to do is write out to disk the integer values
that represent the rooms and items in the dungeon. To make it easy for you to tell the
program what those values are, DungeonEditor features a toolbox that contains a graphi-
cal button for each type of room and item that you can place in the dungeon.

DungeonEditor’s toolbox is nothing more than two CommandButton control arrays. The
first set of buttons represents the types of rooms you can use in the dungeon, and the sec-
ond represents the types of items. Because these buttons are arranged in control arrays, it
takes only one small event handler to handle all the buttons in an array. For example,
when the user clicks a room button, VB calls the cmdRoom_Click event handler with the
index of the clicked button:

430 Day 14

TABLE 14.1 continued

Variable Type Description

18 067231987x CH14 11/6/00 7:12 PM Page 430

Creating a Level Editor 431

14

LISTING 14.9 The cmdRoom_Click Event Procedure

1: Private Sub cmdRoom_Click(Index As Integer)
2: If RoomButton = NOBUTTONSELECTED Then
3: RoomButton = Index
4: DisableButtons
5: cmdRoom(Index).Enabled = True
6: ElseIf RoomButton = Index Then
7: RestoreButtons
8: RoomButton = NOBUTTONSELECTED
9: End If
10: End Sub

The subroutine simply sets the RoomButton variable to the index of the selected
button (Line 3) and calls DisableButtons, which disables the remaining buttons

in the toolbox (Line 4). If the user already had a button selected (Line 6), cmdRoom_Click
reenables all buttons (Line 7) and sets RoomButton back to NOBUTTONSELECTED (Line 8).
This leaves the toolbox ready for the user to select another button.

As you can see in the following source code, the cmdItem_Click event handler manages
the item buttons in exactly the same way:

LISTING 14.10 The cmdItem_Click Event Procedure

1: Private Sub cmdItem_Click(Index As Integer)
2: If ItemButton = NOBUTTONSELECTED Then
3: ItemButton = Index
4: DisableButtons
5: cmdItem(Index).Enabled = True
6: Else
7: RestoreButtons
8: ItemButton = NOBUTTONSELECTED
9: End If
10: End Sub

Placing a Room or Item into the Dungeon
If the user clicks the PictureBox control, the program assumes that he’s trying to place a
room or item at the clicked location. The Picture1_Click event handler routes the pro-
gram to the correct subroutine depending upon the value of the RoomButton and
ItemButton variables:

Private Sub Picture1_Click()
If RoomButton <> NOBUTTONSELECTED Then PlaceRoom
If ItemButton <> NOBUTTONSELECTED Then PlaceItem

End Sub

ANALYSIS

18 067231987x CH14 11/6/00 7:12 PM Page 431

The PlaceRoom subroutine takes care of placing a room in the dungeon. First, PlaceRoom
calls the X2Column and Y2Row functions to calculate the dungeon column and row in
which the clicked room is located:

Column = X2Column(RoomX)
Row = Y2Row(RoomY)

Then, the program gets the room number from the ColumnRow2Room function:

Room = ColumnRow2Room(Column, Row)

The RoomButton variable, which is the index of the currently selected room button in the
toolbox, contains the room type number for the selected location. (No, this isn’t magic. I
deliberately arranged the buttons in the toolbox this way.) The program sets the appropri-
ate element of the Rooms() array to this value:

Rooms(Room) = RoomButton

If it happens that the user is deleting a room, the program also deletes any item that
might be in the room:

If RoomButton = 0 Then Items(Room) = 0

At this point, the program has all the information it needs. After all, the only thing the
program needs is the contents of the Rooms() and Items() arrays, which it has to write
out to a file. However, because we humans cannot see into a computer’s memory (at
least, not yet), the program now must update the screen display to show these changes. It
does this by painting the currently selected button’s room image onto the dungeon grid:

Picture1.PaintPicture _
cmdRoom(RoomButton).Picture, _
XOFFSET + Column * ROOMSIZE, _
YOFFSET + Row * ROOMSIZE

It’s way cool that the buttons can act not only as graphical interface elements, but can
also as storage places for images.

Next, if the user has just replaced one type of room with another, the program needs to
redraw any item that was in the room:

If Items(Room) <> 0 Then
Picture1.PaintPicture _
cmdItem(Items(Room)).Picture, _
XOFFSET + Column * ROOMSIZE + 4, _
YOFFSET + Row * ROOMSIZE + 4, 20, 20

End If

432 Day 14

18 067231987x CH14 11/6/00 7:12 PM Page 432

Creating a Level Editor 433

14

Finally, because the user has changed the dungeon, the program sets the NeedToSave flag
to True:

NeedToSave = True

The PlaceItem subroutine takes care of dropping items into dungeon rooms. It starts off
by getting the room column, row, and number just as PlaceRoom did:

Column = X2Column(RoomX)
Row = Y2Row(RoomY)
Room = ColumnRow2Room(Column, Row)

Next, if the clicked location contains no room, the user isn’t allowed to place an item
there:

If Rooms(Room) = 0 Then
MsgBox “You must place a room there first.”

If a room exists at the selected location, the program places the item number in the
Items() array:

Items(Room) = ItemButton + 1

In case the user is replacing an already existing item in the room, the program redraws
the room:

Picture1.PaintPicture _
cmdRoom(Rooms(Room)).Picture, _
XOFFSET + Column * ROOMSIZE, _
YOFFSET + Row * ROOMSIZE

Now the program can draw the item in the room:

Picture1.PaintPicture _
cmdItem(ItemButton).Picture, _
XOFFSET + Column * ROOMSIZE + 4, _
YOFFSET + Row * ROOMSIZE + 4, 20, 20

As with any change to the dungeon, the NeedToSave flag must now be set to True:

NeedToSave = True

Saving and Loading Dungeon Data
Before DungeonEditor allows the user to exit the program, it calls the SaveIfNecessary
function, which determines whether the disk file is up to date with the dungeon data.
SaveIfNecessary checks the NeedToSave flag, and if the dungeon data is dirty (needs to

18 067231987x CH14 11/6/00 7:12 PM Page 433

be saved), the program displays a message box asking the user if he wants to save the
file:

If NeedToSave Then
Answer = MsgBox(“Do you want to save your changes?”, _

vbQuestion Or vbYesNoCancel)

If the user answers Yes, SaveIfNecessary calls mnuSaveAs_Click to save the file:

If Answer = vbYes Then mnuSaveAs_Click

To save the file, the program simply shows a Save As dialog box so the user can choose
a filename, opens the file, and writes out the contents of the Rooms() and Items() arrays:

CommonDialog1.ShowSave
FileName = CommonDialog1.FileName
Open FileName For Binary As #1
Put #1, , Rooms
Put #1, , Items
Close #1

Finally, the program sets the NeedToSave flag back to False because the contents of the
disk file now match the data stored in the program:

NeedToSave = False

The program reads the file back into the program in almost exactly the same way, except
that it’s reading the data rather than writing it:

Open FileName For Binary As #1
Get #1, , Rooms
Get #1, , Items
Close #1
NeedToSave = False

And that’s about all there is to the program. You should be able to understand the source
code we haven’t discussed here. Read through it to be sure that you understand how
everything works. Then have fun making custom dungeons for Dragonlord. However,
keep in mind that the default dungeon has been carefully balanced so that the game is
neither too easy nor too hard. For example, if you place too many treasure items in your
dungeon, the game may become too easy to beat. Also, be sure that the doors to your
rooms match up properly. Just some stuff to think about.

434 Day 14

18 067231987x CH14 11/6/00 7:12 PM Page 434

Creating a Level Editor 435

14

Summary
That finishes up our mini-project on creating simple RPGs. You can expand on what
you’ve learned in the last few days to create just about any type of RPG, except those
that require 3D graphics. You’ll need to read a few more books before you can join the
3D gurus!

Now that your second week of study is complete, you’re ready to jump into this book’s
major project—the Moonlord strategy game.

Q&A
Q Hey, building a dungeon editor was actually pretty easy. Should I start design-

ing my own editor for Quake?

A Er… not really. Editors for 3D games are immensely more complex than
Dragonlord’s editor. Still, the basics are pretty much the same. The editor does lit-
tle more than create the data that the game needs to load for each level. The rest is
all visual icing on the cake for the user. Of course, with a game like Quake, we’re
talking a whole lot of icing!

Q When I create levels for my own games, can’t I do away with all the fancy
graphics in an editor? Can’t I just plug values directly into the arrays and
write the data out to a file?

A Sure. The idea is to create a file that the game program can read and interpret,
nothing more and nothing less. However, think about what you’d have to do to
design the level. At the minimum, you’d have to draw everything out on paper
before translating the objects into numbers. Why not just let a computer program
do the dirty work for you?

Balancing a game so that it’s neither too easy nor too hard can be a tricky
process. The only sure way is to play the game again and again. But keep in
mind that you’re already an expert at playing the game. This means that for
a novice player, the game will be much more difficult. To account for this,
it’s a good idea to have some friends lined up who can test the game
for you.

Note

18 067231987x CH14 11/6/00 7:12 PM Page 435

Q DungeonEditor writes out its data in binary form. Instead, couldn’t I have my
editor create a text file that can be edited with a text editor, as well as with the
dungeon editor?

A Absolutely. The format of the data is completely up to you. You just have to be
sure that both the editor and the game know how to read and interpret the same set
of data. Of course, keep in mind that a text file is easy for game players to futz
around with, which could yield corrupted data files.

Workshop
The workshop includes quiz questions to help gauge your grasp of the material. You’ll
find the answers to this quiz in Appendix A. Even if you feel that you totally understand
the concepts presented here, you should work through the quiz anyway. The last section
contains an exercise to help reinforce your learning.

Quiz
1. What’s the only thing a level editor really needs to do?

2. How do DungeonEditor’s buttons serve double duty in the program?

3. What’s important about the order of the buttons in DungeonEditor’s toolbox?

4. What’s the advantage of grouping DungeonEditor’s buttons into a control array?

5. Explain the purpose of the NeedToSave variable.

6. What are the values that the program stores in the Rooms() and Items() arrays?

7. What data does DungeonEditor need to write to disk in order to create a dungeon
file that Dragonlord can load and interpret?

Exercises
1. Today’s exercise will give you a chance to have a little fun. Use DungeonEditor to

create several dungeons for Dragonlord. Try some different ideas, like creating a
section of dungeon that can be reached only by casting a spell, or protecting the
dragon by placing him at the end of a long, skeleton-infested corridor. You’ll have
to play your custom levels several times to make sure they aren’t too easy or too
hard.

436 Day 14

18 067231987x CH14 11/6/00 7:12 PM Page 436

In Review
Before creating any class, you must consider the different
ways to manipulate the data encapsulated in the class. After
you’ve analyzed your game’s needs, you can then write the
class’s functions. In Week 2, you created classes for a deck of
cards.

Creating a complete card class is a nearly impossible task
because you can never predict all the different ways that you
may need to manipulate cards in your programs. However,
you can write the functions that every card program needs—
such as shuffling a deck and dealing hands—and then add
more specific functions as you need them.

The Deck class you created features methods to shuffle the
deck, deal cards, show a hand, erase cards, move cards, get
card values, and restore a deck of cards to its state right after
it was shuffled.

In Week 2, you also learned how to evaluate blackjack and
poker hands. Evaluating a blackjack hand is easy, but writing
the code to analyze a poker hand is another story. The Poker
Squares program first checks the hand for a flush by deter-
mining whether all the cards in the hand are in the same suit.
Then the program sorts the cards into an array and calls func-
tions that check for the basic types of poker card combina-
tions. These functions set flags that the program uses to deter-
mine the best possible hand.

There are a couple of ways to create a computer game oppo-
nent. You can program an opponent that “understands” the
game’s strategy and plays much like a human player. This

WEEK 2 8

9

10

11

12

13

14

19 067231987x Wk2IR 11/6/00 7:10 PM Page 437

438 Week 2

solution is difficult to implement, however. Not only is it a programming challenge, but
the game opponent will be only as good as you are at playing the game.

Another method of creating a computer opponent is to let the computer cheat by using
its calculating power. This is the easiest approach to take. After you create a computer
opponent in this “brute force” way, you can plug some of the holes in the way that the
computer plays by adding strategy routines. Once you’ve created a competent opponent,
adding your own strategies can only make it better.

When you built the Crystals game in Week 2, creating the computer opponent turned out
to be relatively easy. Using the brute force method, the program simply looks forward at
every possible set of two moves and finds the best one.

Most computer sound cards come with all the software you need to create sound
effects for any game that can handle WAV files. Many of these sound-recording
programs can also edit sounds in various ways, from clipping unwanted noise to
adding echo, or even reversing a sound effect.

No matter what sound card you have and what software you’ll be using to
record and edit sound effects, the first step is to plug a microphone into the
sound card. Then start up your sound-editing program and turn on the recording
function.

Once you’ve recorded a sound effect, you’ll almost always need to edit it some-
how. Different sound programs have different editing features, but most of them
let you delete various portions of the sound, as well as change its volume and
add special effects such as reverb, echo, phasing, and so on.

Just like most things in life, the sound effects you create for a game can be as
simple or as elaborate as you want. For most “homegrown” games, you can use
items that you have lying around the house to generate sound effects. For com-
mercial games, you’ll need a full-fledged studio and probably a sound engineer
as well.

Once you have your sound effects, you need to set up your game program to play them.
There are several ways to do this, which include using Visual Basic’s multimedia control,
the Windows API, or the DirectSound component of DirectX.

Probably the best way to play sound effects in your programs is with DirectX. Before
you can use it in your program, you must add a reference to the DirectX type library to
your project. Then you can start adding DirectSound source code to your program. First,
you need to declare the variables that’ll hold references to the DirectX objects your pro-
gram needs to access.

19 067231987x Wk2IR 11/6/00 7:10 PM Page 438

In Review 439

Because the Windows environment allows multitasking, many applications may be run-
ning simultaneously. In order to keep things running smoothly, different aspects of the
operating system are assigned priority levels. For this reason, DirectSound provides the
SetCooperativeLevel method, which enables a program to request a priority level for
the sound hardware. The next step is to create secondary DirectSoundBuffer objects for
the sound effects in your program. Finally, you can play the sound by calling the
DirectSoundBuffer object’s Play method.

A role-playing game must define one or more characters to represent the player in the
game’s world. In modern role-playing games, dozens of attributes define the way a char-
acter looks and acts in the game. These attributes typically include health, strength, intel-
ligence, race, occupation, class, religion, speed, skills, and so on.

A player’s abilities are a combination of all these attributes along with external modi-
fiers, including the type of weapon the character has, the type of armor he’s wearing, and
the non-player characters with which he must interact. The game’s rules take all this data
into account, throw in a bit of random chance, and determine the outcome of an event in
the game.

In Week 2, you created a simple RPG named Dragonlord, and you got a look at how to
apply character attributes to the game rules in order devise outcomes. This game
included a level editor for creating custom dungeon layouts.

19 067231987x Wk2IR 11/6/00 7:10 PM Page 439

19 067231987x Wk2IR 11/6/00 7:10 PM Page 440

At a Glance
Week 3 is a seven-part, hands-on project in which you design
and program Moonlord, a complex space strategy game. On
Day 15, you’ll learn how to play Moonlord, and then you’ll
get started on your own version of the project by creating the
game’s user interface. On Day 16, you’ll add the source code
needed to declare and initialize the game’s many variables.
Then, on Day 17, you’ll program the first of the game’s three
screens. On Days 18 and 19, you’ll program the game’s two
subscreens. Finally, on Days 20 and 21, you’ll add animation
and sound to the game.

Along the way, you’ll revisit many topics that you’ve learned
about in this book and use those skills as you complete this
full-scale project. Specifically, you’ll call upon the following
skills to complete this final weeklong project:

• Drawing game screens

• Using Image controls to store game images

• Drawing text

• Writing game algorithms

• Displaying images

• Performing animation

• Playing sound effects

• Testing game programs

WEEK 3 15

16

17

18

19

20

21

20 067231987x Wk3AAG 11/6/00 7:11 PM Page 441

442 Week 3

When you’ve completed this project successfully, you’ll have polished up all the basic
skills you need to write a sophisticated game program using Visual Basic. You’ll then be
ready to design and create your own original games.

At the end of Week 3, you will have programmed the following game:

• Moonlord—A commercial-quality space strategy game in which you explore outer
space in an effort to destroy 50 alien ships before you run out of time and energy.

20 067231987x Wk3AAG 11/6/00 7:11 PM Page 442

DAY 15

WEEK 3

Game Play and the User
Interface: The Moonlord
Project

Here you are, already on your last week of studying VB game programming.
Over the next seven days, you’ll put all the knowledge you’ve attained into the
building of your biggest, most sophisticated game yet: a full-featured space
strategy game called Moonlord. Today you’ll learn how to play the game, after
which you’ll start creating your own version of Moonlord by assembling the
game’s user interface. Specifically, today you’ll learn about the following:

• The Moonlord story

• How to play Moonlord

• How to assemble the game’s user interface

• How to incorporate predefined Visual Basic dialog boxes into a project

21 067231987x CH15 11/6/00 7:15 PM Page 443

The Story
Like many games, Moonlord has a story that describes its setting and characters, as well
as spelling out the mission you must complete to win the game. So, without further ado:

Moonlord Planetinsky was a bitter man.

Even though he had succeeded in almost single-handedly defeating last year’s alien
attack (the entire Titanian Territorial Guard had been stymied by the aliens’ unusual
strategies), and even though he returned home as a hero to the adulation of thousands,
he found that deep inside, where it really counted, he was still as insecure as a
newborn cub.

It was his name, you know.

The name Moonlord sounded so much like a title of office that people could rarely resist
bowing when introduced. It was a matter of amusement for most, but Moonlord hated it.

His childhood had been no laughing matter, either. He had always been the kid with the
cootiumphaloids (imaginary creatures about the size of a temphibootawep; if the other
kids said you had them, you were an outcast). And now, as an adult, he still found that
his unusual name was anything but an asset.

Why couldn’t I have been given a normal name, he often thought, like Fredolotington
Alnertopater or Eddyboperty Elnopilersop?

So he became tough—the toughest starfighter on the Saturnian moon of Titan. Nobody,
nobody, dared cross him.

Now it seemed he had another job to do.

Moonlord stepped off the Sliderwalkatron and crossed to the headquarters of the
Titanian Territorial Guard, clutching the telegramomessagecard in his left hand. It was
from Leeryup Coddledoop, Commander-in-Chief of the TTG. He snickered to himself as
he remembered the last time he had seen Leeryup, tucked into a hospital bed, every part
of his body swollen like overfilled cameladesertliquibags.

“Guess he won’t bow to me again!” Moonlord said out loud. A few people glanced in his
direction, but none let his gaze linger. Moonlord was a hero, and they loved him—but
they knew better than to draw attention to his peculiarities. He drew a deep lungful of
smoke from his smokyngstickocancerlator and exhaled a swirling blue tornado.

When he stepped into Commander Coddledoop’s office, the gray-haired man behind the
desk stood up and saluted. Even though Moonlord was a civilian, he now received the

444 Day 15

21 067231987x CH15 11/6/00 7:15 PM Page 444

Game Play and the User Interface: The Moonlord Project 445

15
same respect as that awarded to an admiral of the fleet. To say the least, the TTG were
inordinately impressed by Moonlord’s handling of the last alien invasion.

Moonlord sat down without returning the salute and stared at the Commander, saying
nothing.

The Commander sat slowly, fighting the urge to bow with all his soul. Heavens, but old
habits died hard!

“Uh… ahem,” he began eloquently. “…uh… To say the least, the TTG were inordinately
impressed by your handling of the last alien invasion.”

Wow, thought Moonlord, Deja vu. But he said nothing; just sat, waiting.

“We have a tiny problem,” the Commander tried again, “One that requires your… er…
delicate touch.”

Moonlord’s eyebrows climbed his forehead. “You wouldn’t by any chance be referring to
the new fleet the aliens have sent out, would you?”

“Well… it’s a problem kind of… er… similar to that.”

“Similar?”

“Um… very close to that, actually.”

“How close?”

“Sort of… well… ‘identical’ would be the appropriate word, I guess.”

Moonlord sighed. “Are you or are you not referring to the new alien threat?”

“I believe that would be an accurate paraphrase of my previous remarks.”

“Have you ever considered politics?” Moonlord asked.

“Well…”

“Never mind. It was a rhetorical question.”

Moonlord stood up and crossed to the Commander’s newly installed
compudigibinotometer-Pentium, the one that had recently replaced the long-loved
compudigibinotometer-486, and called up the galactic map.

The aliens were everywhere.

“Let the good times roll,” Moonlord muttered.

“Excuse me?” said the Commander, standing to get a better look at the screen.

21 067231987x CH15 11/6/00 7:15 PM Page 445

“I’ll take the job,” Moonlord said, turning toward the Commander. “I’ll show those alien
scum that they can’t mess with Titan.”

The Commander positively glowed. “Thank you, thank you, thank you!” He was so
delighted that he forgot to control his inner impulses. Before he knew it, he was bending
at the waist, performing an elegant bow.

“Ohhhhh, nooooo…” he muttered.

It was the Commander’s opinion that hospital food hadn’t improved much since his last
stay.

The Rules
When you run Moonlord and select the File menu’s New Game command, you’ll see the
galactic map (see Figure 15.1) represented on your screen by an 18×8 grid. Each square
in the grid is one sector of the galactic milieu, and hidden within these 144 sectors are
the 50 alien craft you must locate and destroy. Since aliens always travel in pairs, only 25
sectors actually contain the enemy.

446 Day 15

FIGURE 15.1
Moonlord at the start
of a game.

To make your job a little easier, there are two starbases where you can stock up on sup-
plies and make repairs. There’s one at each end of the galaxy, and just like the aliens,
they’re randomly placed at the beginning of each game, forcing you to explore.

To win the game, you must locate and destroy all 50 alien craft. You have only 100
Galactic Standard days to complete your mission. It’ll take careful conservation of sup-
plies and planned movement. If you like to leap into the fray without a strategy, you’ll
find failure a constant companion.

21 067231987x CH15 11/6/00 7:15 PM Page 446

Game Play and the User Interface: The Moonlord Project 447

15
Although there’s only one way to win the game, there are many ways to lose. (Can’t
make it too easy for you, now can we?) The first is to run out of time. You’ve got 100
days. No extensions. All begging will be ignored.

The second way to lose your hero status is to allow your energy to run out. Keep your
eye on it; when it’s gone, so are you. Remember to check the status of your weapons,
too. If you’re in the heat of battle and find that both your weapons systems are down,
you’ll have to resort to ramming the aliens (more on that later). That means heavy dam-
age to your ship. Every time you ram an enemy, you’re taking a one-in-ten chance of
destroying your own ship.

Finally, using your ship’s warp capabilities is a risky venture indeed. Each time you use
them, you’re taking a one-in-ten chance of destroying your engines and ending the game.

The Bridge
Below the galactic map, you’ll find the bridge controls. This is where you gain access to
the ship’s main functions. There are four systems available here: cruise engines, scan-
ners, a status display, and warp engines. (You access weapon systems from the scanner
display.) To select a system, click its button.

Note that, at times, some systems will be damaged and thus unusable. You can tell at a
glance which systems are down: their buttons in the bridge control bar will be disabled
(see Figure 15.2). The only exceptions to this are the long-range scanners. They work
automatically each time you move, so they have no system button. You can check them
on the status display (see the “Status” section later in this chapter).

FIGURE 15.2
The control buttons for
damaged systems are
disabled.

21 067231987x CH15 11/6/00 7:15 PM Page 447

Cruise
To move your ship from one galactic sector to another, select the Cruise button. You are
allowed to move in any of the eight compass directions, but you should note that diago-
nal moves are actually counted as two moves, and the required energy and time are
deducted as if the move were completed with two non-diagonal moves. After clicking the
Cruise button, select your destination sector by placing the mouse pointer over it and
clicking. Each sector of movement uses ten units of energy and one day of time.

448 Day 15

If you click the Cruise button and then change your mind, you can click it a
second time to shut off the Cruise system.

Note

Status
Throughout the game, it’s important to keep close tabs on your ship’s condition and sup-
plies. You can’t afford to be stuck far from a starbase when your energy is almost deplet-
ed, and it helps to know which weapons are functional before you spring into battle. All
this information is available in the status display (see Figure 15.3). To view the status
display, select the Status system button on the bridge control bar.

FIGURE 15.3
Moonlord’s status
display.

Your ship’s six systems are displayed on the left, each followed by a number indicating
how many days are needed to repair that system. A 0 means the system is fully func-
tional.

On the right, you can find information on supplies, as well as the time remaining and the
number of aliens remaining.

Click the Bridge button to return to the bridge display.

21 067231987x CH15 11/6/00 7:15 PM Page 448

Game Play and the User Interface: The Moonlord Project 449

15
Damaged Systems
Damaged systems must be repaired before they can be used. Damage is measured by the
number of days the crew requires to complete repairs. If you don’t need the damaged
system right away, you need do nothing. The crew will automatically get to work, apply-
ing their best efforts to the restoration of your ship. Remember: One sector of movement
on the galactic map consumes one day. A system that requires three days to repair will be
operative after a move of three sectors.

If you find you must make repairs immediately, you may do so by selecting the Repair
button from the Status subsystem control bar. Each time you click the Repair button, a
day goes by. That day’s repairs are made and the status screen is updated.

System Repair Crews
If more than one system needs repair, the times are not added together. Each system has
its own crew. For example, if your photon launchers require four days to repair and your
short-range scanner needs two days, it’ll take only four days to fix both systems. If you
select only two days of repair time, the short-range scanner will be operational, but the
launchers will require two additional days of repair before you can use them.

Don’t forget that the time you spend waiting for repairs will be subtracted from the time
available to your mission. Sometimes it’s better to continue with a crippled ship than to
waste a lot of time waiting for repairs to be completed.

Warp
If you find that you must move a long distance in a short amount of time, the warp
engines may fill your need. Unfortunately, they’re still experimental and their safety and
reliability cannot be guaranteed. You have no control over where you’ll end up, and each
warp carries a one-in-ten chance of destroying your engines, leaving you helplessly
afloat in the timeless void of space. In other words, the game could come to an
abrupt end.

Each warp consumes one day and 30 units of energy. Due to its unreliability, you may
have to jump several times before you get where you want (or at least in the general
area).

Long-Range Scanners
You have two types of scanners on your ship: long-range and short-range. The long-
range scanners fill in the galactic map as you move. They function automatically, so you
need do nothing except repair them when they become damaged.

The long-range scanners examine the sectors adjacent to your position and mark the galac-
tic map appropriately. An empty marker indicates empty sectors, a red light represents

21 067231987x CH15 11/6/00 7:15 PM Page 449

aliens, and a blue cross represents a starbase. A blue blinking light marks your current
position. If your current sector contains aliens or a starbase, the blinking light alternates
between green and red for aliens, or between blue and a blue cross for a starbase.

Short-Range Scanners
The Scan button on the bridge control bar activates the short-range scanners. When you
select this system, the short-range scanner display pops up, as shown in Figure 15.4.

450 Day 15

FIGURE 15.4
Moonlord’s short-
range scanner display.

The short-range scan enables you to see your current sector in greater detail. Each sector
of the galactic map is divided into 36 smaller sectors. Icons on the short-range scan
screen represent all the suns, aliens, and starbases in the sector. Your own ship is marked,
as well. The scanner control bar provides four system commands: Bridge, Cruise, Phaser,
and Photon.

To return to the bridge, select the Bridge button.

Short-Range Cruise
Your movement in the short-range display is much the same as in the galactic map.
Select the Cruise system from the scanner subsystem control bar, and then use the mouse
to select your destination.

Unlike the galactic map, your movement here is somewhat restricted. You can’t move
through a sun, an alien, or a starbase. If anything is in your way, you must maneuver
around it. Also, diagonal moves are not allowed because they’re interpreted as two non-
diagonal moves. Since the aliens attack each time you move, only single moves are
allowed.

Movement on the short-range scanner display consumes no time, but it uses three energy
points per sector.

21 067231987x CH15 11/6/00 7:15 PM Page 450

Game Play and the User Interface: The Moonlord Project 451

15
Phasers
The phasers are the first and most powerful of your weapons systems. When activated,
they release a burst of electromagnetic energy in every direction, damaging any alien
craft on your scanners. Nothing can block their energy beams, not even a sun. The
amount of damage done depends on the number of alien craft and their distance from
your ship. Damage is cumulative. You may have to fire more than once to get the job
done.

Select the Phaser button from the scanner subsystem control bar, and then enter the
amount of power you want to apply to the phaser shot (see Figure 15.5). Each power
point will be subtracted from your remaining energy, so allocate just enough to get the
job done.

FIGURE 15.5
Allocating phaser
power.

Photon Torpedoes
Photon torpedoes (destructive globes of energy) can be fired on any alien craft that is in
alignment (horizontally, vertically, or diagonally) with your ship. Their range is suffi-
cient to strike any ship on your scanners, and a strike is always fatal. Select the Photon
button from the control bar, and then enter a photon vector (see Figure 15.6). A vector of
0 shoots a photon torpedo straight up, a vector of 1 shoots up and to the right, a vector
of 3 shoots directly right, and so on.

FIGURE 15.6
Entering the photon
torpedo vector.

Firing a photon torpedo consumes no energy, but nothing comes for free. In order to fire
photon torpedoes, your launchers must be in working order and you must have torpedoes
on hand. At the start of the game you’re given ten torpedoes, and you have to dock with
a starbase to get more. Obviously, you’re going to have to use them judiciously.

Ramming
If you find yourself in the midst of battle with all your weapon systems down, you can
still defeat the aliens by ramming them with your ship. Because your ship is much larger

21 067231987x CH15 11/6/00 7:15 PM Page 451

than the aliens’ ships, this will always be fatal to the enemy. However, resorting to such
desperate measures may cause excessive damage to your ship. There’s a one-in-ten
chance that the damage will be sufficient to cripple your ship permanently, thus ending
the game.

Starbases
When you set out from Titan Base, your ship will be carrying all the supplies it can hold.
It’ll be necessary to stock up at certain points in the game. For this reason, there are two
starbases, one at each end of the galactic milieu.

The starbases move from game to game, and they won’t be marked on the galactic map
until you locate them—one of your top mission priorities, obviously. After you locate a
starbase (see Figure 15.7), you must go to the short-range scanners and dock with the
base by moving your ship on top of it. All your supplies will be restocked and all sys-
tems will be repaired.

452 Day 15

A starbase looks just like your starship, except that it’s purple rather than
green and has a colored background.

Note

FIGURE 15.7
A starbase in the
short-range scanner
screen.

Building Moonlord’s User Interface
The first step in building Moonlord’s user interface is to create the editor’s main form:

1. Start a new Standard EXE Visual Basic project.

2. Set the form’s properties to the values listed here:

AutoRedraw = True

Caption = “Moonlord”

21 067231987x CH15 11/6/00 7:16 PM Page 452

Game Play and the User Interface: The Moonlord Project 453

15
Height = 6645

ScaleMode = Pixel

Width = 8745

3. Set the form’s Icon property to Moonlord.ico, which you can find in the
Images\Moonlord directory of this book’s CD-ROM.

This icon will appear not only in the window’s upper-left corner, but also in Windows
Explorer and on the taskbar when the program’s window has been minimized.

4. Add a PictureBox control to the form, giving it the following property settings:

Name = picScreen

AutoRedraw = True

AutoSize = True

BorderStyle = None

Font = MS Sans Serif, Bold, 8-point

ForeColor = Red (use the Palette tab)

Left = 16

ScaleMode = Pixel

Top = 5

This PictureBox control will hold the graphics for each of the game’s three
screens—the long-range, short-range, and status displays.

5. Set the PictureBox control’s Picture property to the MainScreen.bmp picture file,
which you can find in the Images\Moonlord directory of this book’s CD-ROM.

When the game begins, the screen image stored in the MainScreen.bmp file is what
the player first sees.

6. Add four CommandButton controls to the form, giving them the following proper-
ty settings. You can find the buttons’ picture files in the Images\Moonlord directory
of this book’s CD-ROM.

Button #1

Caption = “”

Height = 33

Left = 36

Picture = CrusBut.bmp

Style = Graphical

Top = 281

Width = 121

21 067231987x CH15 11/6/00 7:16 PM Page 453

Button #2

Caption = “”

Height = 33

Left = 164

Picture = ScanBut.bmp

Style = Graphical

Top = 281

Width = 121

Button #3

Caption = “”

Height = 33

Left = 292

Picture = StatBut.bmp

Style = Graphical

Top = 281

Width = 121

Button #4

Caption = “”

Height = 33

Left = 419

Picture = WarpBut.bmp

Style = Graphical

Top = 281

Width = 121

These four buttons make up the control panel for the game’s three screens. The
commands issued by the buttons depend upon the currently visible screen. On the
main screen, for example, the four buttons issue the long-range cruise, short-range
scan, status, and warp commands. On the short-range scan screen, however, these
buttons issue the bridge, short-range cruise, phaser, and photon commands. Only
two of the buttons appear on the status screen, issuing the bridge and repair com-
mands.

454 Day 15

21 067231987x CH15 11/6/00 7:16 PM Page 454

Game Play and the User Interface: The Moonlord Project 455

15
7. Add 11 Image controls to the form, giving them the following property settings:

Image Control #1

Name = imgMarker

Left = 64

Picture = Marker.bmp

Top = 330

Image Control #2

Name = imgEmpty

Left = 94

Picture = Empty.bmp

Top = 330

Image Control #3

Name = imgOccupied

Left = 125

Picture = Occupied.bmp

Top = 330

Image Control #4

Name = imgCross

Left = 155

Picture = Cross.bmp

Top = 330

Image Control #5

Name = imgClear

Left = 186

Picture = Clear.bmp

Top = 330

Image Control #6

Name = imgAlien

Left = 230

Picture = AlienShp.bmp

Top = 330

21 067231987x CH15 11/6/00 7:16 PM Page 455

Image Control #7

Name = imgSun

Left = 275

Picture = Sun.bmp

Top = 330

Image Control #8

Name = imgStarship

Left = 319

Picture = Starship.bmp

Top = 330

Image Control #9

Name = imgBase

Left = 364

Picture = Base.bmp

Top = 330

Image Control #10

Name = imgPhaser

Left = 408

Picture = Phaser.bmp

Top = 330

Image Control #11

Name = imgAlienShoot

Left = 453

Picture = AlienShoot.bmp

Top = 330

These are just some of the images required by the game. This set of image controls
holds the pictures needed to display each sector of the long-range scan screen and
the short-range scan screen, with the exception of the pictures used in the various
animations.

456 Day 15

21 067231987x CH15 11/6/00 7:16 PM Page 456

15

Game Play and the User Interface: The Moonlord Project 457

FIGURE 15.8
Moonlord’s menus.

9. Save your work, naming the form Moonlord.frm and the project Moonlord.vbp.

Your form should now look something like Figure 15.9.

FIGURE 15.9
The completed form.

8. Add the menus shown in Figure 15.8, naming them mnuFile, mnuNewGame,
mnuHelp, and mnuAbout.

21 067231987x CH15 11/6/00 7:16 PM Page 457

Adding the About Dialog Box
To complete this part of the Moonlord project, you must add the game’s About
dialog box:

1. Select the Project menu’s Add Form command. When the Add Form dialog box
appears (see Figure 15.10), double-click the About Dialog icon.

As you can see in the Add Form dialog box, Visual Basic provides a number of
prefab forms that you can add to your project and modify as needed.

458 Day 15

FIGURE 15.10
The Add Form
dialog box.

2. Give the lblTitle Label control the following property settings:

Font = MS Sans Serif, Bold, 18-point

Height = 331

Left = 986

Top = 165

Width = 3648

You don’t need to set the label’s Caption property because Visual Basic picks up
the name of the application from the main form’s name. You can change this type
of automatically configured information from the Project Properties dialog box, as
shown in Figure 15.11. To display this dialog box, select the Project menu’s
Properties command.

3. Give the form’s lblDescription Label control the following property settings:

Caption = “By Clayton Walnum”

Height = 186

Left = 986

Top = 776

Width = 3648

21 067231987x CH15 11/6/00 7:16 PM Page 458

Game Play and the User Interface: The Moonlord Project 459

15
FIGURE 15.11
The Project Properties
dialog box.

4. Add a Label control to the dialog box, giving it the following property settings:

Caption = “Copyright 2000 by Macmillan Computer Publishing”

Height = 196

Left = 971

Top = 993

Width = 3620

5. On the cmdOK CommandButton control, change the following properties to the val-
ues shown:

Height = 238

Left = 718

Top = 1366

Width = 1183

6. On the cmdSysInfo CommandButton control, change the following properties to
the values shown:

Height = 238

Left = 2662

Top = 1366

Width = 1183

7. Delete the “Warning” Label control from the dialog box.

8. Delete the two Shape controls (they look like lines) from the dialog box.

21 067231987x CH15 11/6/00 7:16 PM Page 459

9. Give the About form the following property settings:

Name = frmAbout

Height = 2865

Icon = Moonlord.ico

Width = 4935

10. Set the Picture property of the picIcon object to the Moonlord.ico file.

11. Save the project, giving the About dialog box form the name frmAbout.frm.

At this point, your new About dialog box should look like Figure 15.12. Of course, you
can make it look any way you like. The preceding steps only demonstrate how to use one
of VB’s predefined forms in your programs and how to edit it to fit your needs.

460 Day 15

FIGURE 15.12
The new About
dialog box.

Summary
You’ve now completed Moonlord’s user interface. You can run the program now, if you
like, but it still needs a boatload of source code, graphical images, and sound effects
before it will be complete. You’ll start adding the source code in tomorrow’s lesson.

21 067231987x CH15 11/6/00 7:16 PM Page 460

Game Play and the User Interface: The Moonlord Project 461

15
Q&A

Q Come on, this game is impossible! I didn’t even come close to winning.

A Like most strategy games, you have to learn to make the best of every move.
Learning to travel the galactic milieu and to use your weapons in the most efficient
manner possible is all part of becoming a Moonlord expert. (I’m the game’s cre-
ator, and it even took me a while to get to the point where I could beat the game
now and then.)

Q Where’s the code that makes Visual Basic’s predefined forms work (such as
the About dialog box)?

A The predefined forms that come with Visual Basic are really no different than the
forms you create yourself. If you double-click one of the forms (after adding it to
your project, of course), you can see the source code that Microsoft’s programmers
provided for it. You can learn some cool stuff by examining this source code.

Q I finished building this part of the Moonlord project, but when I run it, all the
images under the buttons show up. Did I do something wrong?

A Nope. Those images will disappear when you start adding source code to the pro-
gram. Specifically, the program will change the height of the form so that the
Image controls under the buttons are no longer visible. If the images really bug
you, though, you can set all their Visible properties to False.

Workshop
The workshop includes quiz questions to help gauge your grasp of the material. You’ll
find the answers to this quiz in Appendix A. Even if you feel that you totally understand
the concepts presented here, you should work through the quiz anyway. (Note that
because today’s lesson and the following Moonlord project lessons are extended exercis-
es that draw upon previous chapters in the book, this chapter has no formal exercises
after the quiz.)

Quiz
1. Explain how the picScreen PictureBox control in Moonlord’s main form enables

the form to act as the container for all three of Moonlord’s game screens.

2. How do the four CommandButton controls help implement the different Moonlord
game screens?

21 067231987x CH15 11/6/00 7:16 PM Page 461

3. What is the purpose of all the Image controls you added to the main form?

4. Why does the About dialog box display the title “Application Title” at design time
and the title “Moonlord” at runtime?

5. Where can you find the settings that Visual Basic uses for some of the strings in
the About dialog box?

462 Day 15

21 067231987x CH15 11/6/00 7:16 PM Page 462

DAY 16

WEEK 3

Tracking Game
Information: The
Moonlord Project

Now that you’ve put together the game’s main user interface, it’s time to add
the source code that makes the game work. The first part of that source code is
the game’s variables and constants, as well as the subroutines that initialize the
variables.

Today you’ll do the following:

• Define Moonlord’s constants and variables

• Initialize the game’s variables

• Study the game’s variables

• Learn how the initialization routines work

22 067231987x CH16 11/6/00 7:12 PM Page 463

Adding Enumerations, Constants, and
Variables to Moonlord

In this section, you’ll start adding source code to the Moonlord project you started in
yesterday’s lesson. First, you’ll add enumeration, constant, and variable definitions to the
program. Then you’ll add the source code that initializes the game’s variables to their
starting values.

Adding the Declarations
1. Add the following enumerations to the main form’s code window. You can type in

the source code or copy it from the Moonlord1.txt file in the Chap16\Code
directory:
1: ‘==
2: ‘ Moonlord for Visual Basic 6
3: ‘ by Clayton Walnum
4: ‘ Copyright 2000 by Macmillan Computer Publishing
5: ‘==
6: Option Explicit
7:
8: ‘==
9: ‘ Enumerations.
10: ‘==
11: Public Enum GameModes
12: MAINSCREEN
13: SHORTSCANSCREEN
14: STATSCREEN
15: CRUISE
16: SHORTCRUISE
17: BATTLE
18: WARP
19: PHASER
20: PHOTON
21: End Enum
22:
23: Public Enum Sectors
24: CLEARSEC
25: ALIENSSEC
26: BASESEC
27: SUNSEC
28: STARSHIPSEC
29: End Enum
30:
31: Public Enum Stats
32: TIMESTAT
33: NUMOFALIENS
34: PHOTONS

464 Day 16

22 067231987x CH16 11/6/00 7:12 PM Page 464

Tracking Game Information: The Moonlord Project 465

16

35: ENERGY
36: End Enum
37:
38: Public Enum Systems
39: WARPENGINES
40: CRUISEENGINES
41: SHORTRANGESCAN
42: LONGRANGESCAN
43: PHASERGUNS
44: PHOTONLAUNCHER
45: End Enum
46:
47: Public Enum BlinkModes
48: PLAYER
49: OTHER
50: End Enum
51:
52: Public Enum GameResults
53: GAMESTILLGOING
54: GAMEWON
55: GAMELOST
56: End Enum

These enumerations define constants in groups of related values. For example,
the Systems enumeration defines constants with values from 0 to 5 that will act

as indexes into the array that holds information about the starship’s systems.

2. Add the following constants to the main form’s code window, beneath the declara-
tions you added in Step 1. You can type in the source code or copy it from the
Moonlord2.txt file in the Chap16\Code directory:
1: ‘==
2: ‘ Constants.
3: ‘==
4: Const OPERABLE = 0
5: Const OFFSET = 25
6: Const SHORTRANGEOFFSETX = 157
7: Const SHORTRANGEOFFSETY = 26
8: Const SECTORSIZE = 28
9: Const SHORTRANGESECTORSIZEX = 39
10: Const SHORTRANGESECTORSIZEY = 36
11: Const SECTORCOUNT = 144
12: Const SHORTRANGESECTORCOUNT = 36
13: Const SHORTRANGECOLUMNCOUNT = 6
14: Const COLUMNCOUNT = 18
15: Const ROWCOUNT = 8
16: Const PLAYERSTARTSECTOR = 81
17: Const GRIDLOWX = 24
18: Const GRIDHIGHX = 521
19: Const GRIDLOWY = 23

ANALYSIS

22 067231987x CH16 11/6/00 7:12 PM Page 465

20: Const GRIDHIGHY = 240
21: Const SHORTRANGEGRIDHIGHY = 235
22: Const SHORTRANGEGRIDLOWX = 157
23: Const SHORTRANGEGRIDHIGHX = 385
24: Const SHORTRANGEGRIDLOWY = 25
25: Const MAXALIENS = 50
26: Const MAXTIME = 100
27: Const MAXENERGY = 600
28: Const MAXPHOTONS = 10
29: Const PHOTONSPEED = 4
30: Const SUNYELLOW = 65535
31: Const ALIENBLUE = 8388608

As you’ll see later today, these constants define symbols for values that the
program uses often. Defining a set of symbols like this and using them in your

programming makes the source code easier to read and understand.

3. Add the following variables to the main form’s code window, beneath the declara-
tions you added in Step 2. You can type in the source code or copy it from the
Moonlord3.txt file in the Chap16\Code directory:
1: ‘==
2: ‘ Global Variables.
3: ‘==
4: Dim GameMode As GameModes
5: Dim BlinkMode As BlinkModes
6: Dim Board(SECTORCOUNT - 1) As Integer
7: Dim Drawn(SECTORCOUNT - 1) As Boolean
8: Dim ShortRangeContents(SECTORCOUNT - 1, _
9: SHORTRANGESECTORCOUNT - 1)
10: Dim SystemStats(5) As Integer
11: Dim GameStats(3) As Integer
12: Dim AlienDamage(1) As Integer
13: Dim AlienPosition(1) As Integer
14: Dim GameOver As Integer
15: Dim PlayerSector As Integer
16: Dim ShortRangePlayerSector As Integer
17: Dim OldShortRangePlayerSector As Integer
18: Dim NumAliensDestroyed As Integer
19: Dim VectorsX1(8) As Integer
20: Dim VectorsY1(8) As Integer
21: Dim SystemNames(5) As String

These variables represent all the data needed by the game as a whole. Later
today, you’ll see specifically how the program uses these values.

466 Day 16

ANALYSIS

ANALYSIS

22 067231987x CH16 11/6/00 7:12 PM Page 466

Tracking Game Information: The Moonlord Project 467

16

Adding the Initialization Code
1. Add the following form and menu handlers to the code window beneath the decla-

rations you added in the previous section. You can type in the source code or copy
it from the Moonlord4.txt file in the Chap16\Code directory:
1: ‘==
2: ‘ Form Handlers.
3: ‘==
4: Private Sub Form_Load()
5: Form1.Height = 5505
6: Form1.Width = 8745
7: InitProgramVariables
8: End Sub
9:
10: ‘==
11: ‘ Menu Handlers.
12: ‘==
13: Private Sub mnuNewGame_Click()
14: InitGame
15: Command1.Enabled = True
16: Command2.Enabled = True
17: Command3.Enabled = True
18: Command4.Enabled = True
19: End Sub

When the program starts, the Form_Load event handler sets the form’s size and
calls the InitProgramVariables subroutine, which initializes program variables.

2. Add the following initialization subroutines to the code window. You can type in
the source code or copy it from the Moonlord5.txt file in the Chap16\Code
directory:
1: ‘==
2: ‘ Game Initialization.
3: ‘==
4: Sub InitGame()
5: Randomize
6: InitGameVariables
7: InitBoard
8: InitShortRangeContents
9: End Sub
10:
11: Sub InitProgramVariables()
12: VectorsX1(0) = 0
13: VectorsX1(1) = 1
14: VectorsX1(2) = 1
15: VectorsX1(3) = 1
16: VectorsX1(4) = 0
17: VectorsX1(5) = -1
18: VectorsX1(6) = -1

ANALYSIS

22 067231987x CH16 11/6/00 7:12 PM Page 467

19: VectorsX1(7) = -1
20: VectorsY1(0) = -1
21: VectorsY1(1) = -1
22: VectorsY1(2) = 0
23: VectorsY1(3) = 1
24: VectorsY1(4) = 1
25: VectorsY1(5) = 1
26: VectorsY1(6) = 0
27: VectorsY1(7) = -1
28: SystemNames(0) = “Warp Engines”
29: SystemNames(1) = “Cruise Engines”
30: SystemNames(2) = “Short Range Scan”
31: SystemNames(3) = “Long Range Scan”
32: SystemNames(4) = “Phasers”
33: SystemNames(5) = “Photon Launcher”
34: End Sub
35:
36: Sub InitGameVariables()
37: Dim i As Integer
38: GameMode = MAINSCREEN
39: GameOver = GAMESTILLGOING
40: PlayerSector = PLAYERSTARTSECTOR
41: BlinkMode = PLAYER
42: NumAliensDestroyed = 0
43: For i = 0 To 5
44: SystemStats(i) = OPERABLE
45: Next
46: GameStats(TIMESTAT) = MAXTIME
47: GameStats(NUMOFALIENS) = MAXALIENS
48: GameStats(ENERGY) = MAXENERGY
49: GameStats(PHOTONS) = MAXPHOTONS
50: End Sub

InitGame is a top-level initialization subroutine that calls the other subroutines
that actually perform the game initialization. The InitProgramVariables sub-

routine initializes variables whose values don’t change in the game, and the
InitGameVariables subroutine initializes variables that must be reinitialized each time a
new game starts.

3. Add the following secondary initialization subroutines to the code window. You
can type in the source code or copy it from the Moonlord6.txt file in the
Chap16\Code directory:
1: Sub InitBoard()
2: ClearGameBoard
3: PlaceAliens
4: PlaceStarBases
5: End Sub
6:
7: Sub PlaceStarBases()

468 Day 16

ANALYSIS

22 067231987x CH16 11/6/00 7:12 PM Page 468

Tracking Game Information: The Moonlord Project 469

16

8: Dim column As Integer
9: Dim row As Integer
10: Dim sector As Integer
11: While Board(sector) <> BASESEC
12: column = Int(4 * Rnd)
13: row = Int(ROWCOUNT * Rnd)
14: sector = row * COLUMNCOUNT + column
15: If Board(sector) = CLEARSEC Then Board(sector) = BASESEC
16: Wend
17: sector = 14
18: While Board(sector) <> BASESEC
19: column = Int((4 * Rnd) + COLUMNCOUNT - 4)
20: row = Int(ROWCOUNT * Rnd)
21: sector = row * COLUMNCOUNT + column
22: If Board(sector) = CLEARSEC Then Board(sector) = BASESEC
23: Wend
24: End Sub
25:
26: Sub PlaceAliens()
27: Dim placed As Boolean
28: Dim i As Integer
29: Dim column As Integer
30: Dim row As Integer
31: Dim sector As Integer
32: For i = 0 To (MAXALIENS / 2) - 1
33: placed = False
34: While (Not placed)
35: column = Int(COLUMNCOUNT * Rnd)
36: row = Int(ROWCOUNT * Rnd)
37: sector = row * COLUMNCOUNT + column
38: If Board(sector) = CLEARSEC And _
39: sector <> PLAYERSTARTSECTOR Then
40: Board(sector) = ALIENSSEC
41: placed = True
42: End If
43: Wend
44: Next
45: End Sub
46:
47: Sub ClearGameBoard()
48: Dim i As Integer
49: For i = 0 To SECTORCOUNT - 1
50: Board(i) = CLEARSEC
51: Drawn(i) = False
52: Next
53: End Sub
54:
55: Sub InitShortRangeContents()
56: ClearShortRangeSectors
57: PlaceShortScanSuns
58: PlaceShortScanAliens

22 067231987x CH16 11/6/00 7:12 PM Page 469

59: PlaceShortScanBases
60: PlaceShortScanStarships
61: End Sub
62:
63: Sub ClearShortRangeSectors()
64: Dim sector As Integer
65: Dim ShortRangeSector As Integer
66: For sector = 0 To SECTORCOUNT - 1
67: For ShortRangeSector = 0 To SHORTRANGESECTORCOUNT - 1
68: ShortRangeContents(sector, ShortRangeSector) = CLEARSEC
69: Next ShortRangeSector
70: Next sector
71: End Sub
72:
73: Sub PlaceShortScanSuns()
74: Dim sector As Integer
75: Dim GotThreeSuns As Boolean
76: Dim ClearSector As Integer
77: For sector = 0 To SECTORCOUNT - 1
78: ClearSector = Int(SHORTRANGESECTORCOUNT * Rnd)
79: ShortRangeContents(sector, ClearSector) = SUNSEC
80: ClearSector = GetClearShortRangeSector(sector)
81: ShortRangeContents(sector, ClearSector) = SUNSEC
82: GotThreeSuns = Int(2 * Rnd)
83: If GotThreeSuns Then
84: ClearSector = GetClearShortRangeSector(sector)
85: ShortRangeContents(sector, ClearSector) = SUNSEC
86: End If
87: Next
88: End Sub
89:
90: Sub PlaceShortScanAliens()
91: Dim sector As Integer
92: Dim ClearSector As Integer
93: For sector = 0 To SECTORCOUNT - 1
94: If Board(sector) = ALIENSSEC Then
95: ClearSector = GetClearShortRangeSector(sector)
96: ShortRangeContents(sector, ClearSector) = ALIENSSEC
97: ClearSector = GetClearShortRangeSector(sector)
98: ShortRangeContents(sector, ClearSector) = ALIENSSEC
99: End If
100: Next
101:End Sub
102:
103:Sub PlaceShortScanBases()
104: Dim sector As Integer
105: Dim ClearSector As Integer
106: For sector = 0 To SECTORCOUNT - 1
107: If Board(sector) = BASESEC Then
108: ClearSector = GetClearShortRangeSector(sector)
109: ShortRangeContents(sector, ClearSector) = BASESEC

470 Day 16

22 067231987x CH16 11/6/00 7:12 PM Page 470

Tracking Game Information: The Moonlord Project 471

16

110: End If
111: Next
112:End Sub
113:
114:Sub PlaceShortScanStarships()
115: Dim sector As Integer
116: Dim ClearSector As Integer
117: For sector = 0 To SECTORCOUNT - 1
118: ClearSector = GetClearShortRangeSector(sector)
119: ShortRangeContents(sector, ClearSector) = STARSHIPSEC
120: Next
121:End Sub

These initialization subroutines get the game board ready for play by filling the
game universe with aliens, suns, and bases.

4. Add the following function to the bottom of the code window. You can type in the
source code or copy it from the Moonlord7.txt file in the Chap16\Code directory:

1: ‘==
2: ‘ Game Functions.
3: ‘==
4: Function GetClearShortRangeSector(sector As Integer) As Integer
5: Dim GotClearSector As Boolean
6: Dim ShortRangeSector As Integer
7: GotClearSector = False
8: While Not GotClearSector
9: ShortRangeSector = Int(SHORTRANGESECTORCOUNT * Rnd)
10: If ShortRangeContents(sector, ShortRangeSector) = CLEARSEC _
11: Then GotClearSector = True
12: Wend
13: GetClearShortRangeSector = ShortRangeSector
14: End Function

Understanding Moonlord’s Initialization
As you’ve seen, Moonlord features a large set of constants and variables. Because of the
size and complexity of this variable set, it takes a lot of source code to initialize a game.
In this section, you’ll examine the initialization part of the Moonlord project in detail so
that you understand what all the variables and constants do.

Moonlord’s Variables and Constants
Moonlord relies on a set of global variables and constants that the program declares near
the top of the source code. Table 16.1 describes Moonlord’s constants, Table 16.2
describes the constants defined as enumerations, and Table 16.3 describes the game’s
global variables.

ANALYSIS

22 067231987x CH16 11/6/00 7:12 PM Page 471

TABLE 16.1 Moonlord’s Constants

Constant Description

ALIENBLUE The background color of an alien sector in the short-range scanner
screen

COLUMNCOUNT The number of columns in the long-range scanner screen

GRIDHIGHX The highest valid X coordinate for mouse clicks on the long-range
scanner screen

GRIDHIGHY The highest valid Y coordinate for mouse clicks on the long-range
scanner screen

GRIDLOWX The lowest valid X coordinate for mouse clicks on the long-range
scanner screen

GRIDLOWY The lowest valid Y coordinate for mouse clicks on the long-range
scanner screen

MAXALIENS The maximum number of aliens in the game’s universe

MAXENERGY The maximum amount of energy the player can have

MAXPHOTONS The maximum number of photons the player can have

MAXSUNS The maximum number of suns in the game’s universe

MAXTIME The maximum amount of time the player has to complete the game

OFFSET The distance from the left and top edges of the PictureBox control to
the left and top edges of the long-range scanner grid

OPERABLE A value that indicates that a ship system is operational

PHOTONSPEED The speed at which the photon animation runs

PLAYERSTARTSECTOR The long-range scanner sector at which the player begins the game

ROWCOUNT The number of rows in the long-range scanner screen

SECTORCOUNT The number of sectors in the long-range scanner screen

SECTORSIZE The width and height in pixels of a sector in the long-range scanner
screen

SHORTRANGECOLUMNCOUNT The number of columns in the short-range scanner screen

SHORTRANGEGRIDHIGHX The highest valid X coordinate for mouse clicks on the short-range
scanner screen

SHORTRANGEGRIDHIGHY The highest valid Y coordinate for mouse clicks on the short-range
scanner screen

SHORTRANGEGRIDLOWX The lowest valid X coordinate for mouse clicks on the short-range
scanner screen

SHORTRANGEGRIDLOWY The lowest valid Y coordinate for mouse clicks on the short-range
scanner screen

472 Day 16

22 067231987x CH16 11/6/00 7:12 PM Page 472

Tracking Game Information: The Moonlord Project 473

16

SHORTRANGEOFFSETX The distance in pixels from the left edge of the PictureBox control to
the left edge of the short-range scanner grid

SHORTRANGEOFFSETY The distance in pixels from the top edge of the PictureBox control to
the top edge of the short-range scanner grid

SHORTRANGESECTORCOUNT The number of sectors in the short-range scanner screen

SHORTRANGESECTORSIZEX The horizontal size in pixels of a sector in the short-range scanner
screen

SHORTRANGESECTORSIZEY The vertical size in pixels of a sector in the short-range scanner
screen

SUNYELLOW The color of a sun in the short-range scanner screen

TABLE 16.2 Moonlord’s Enumerations

Defining
Constant Enumeration Description

ALIENSSEC Sectors A value that indicates that there are aliens in the short-
range scanner sector

BASESEC Sectors A value that indicates that there is a base in the short-range
scanner sector

BATTLE GameModes A value that indicates that the player is currently in battle
with aliens

CLEARSEC Sectors A value that indicates that there is nothing in the short-
range scanner sector

CRUISE GameModes A value that indicates that the player is currently selecting
a sector to which to cruise in the long-range scanner
display

CRUISEENGINES Systems The index into the SystemStats() array for the cruise
engines

ENERGY Stats The index into the GameStats() array for the player’s
remaining energy

GAMELOST GameResults A value that indicates that the game is over and the player
has lost

GAMESTILLGOING GameResults A value that indicates that the player has not yet won
or lost

TABLE 16.1 continued

Constant Description

22 067231987x CH16 11/6/00 7:12 PM Page 473

GAMEWON GameResults A value that indicates that the game is over and the player
has won

LONGRANGESCAN Systems The index into the SystemStats() array for the long-range
scanners

MAINSCREEN GameModes A value that indicates that the player is currently in none of
the other game modes

NUMOFALIENS Stats The index into the GameStats() array for the remaining
number of aliens

OTHER BlinkModes A value that indicates that the sector graphic that shows the
contents of the sector is the next graphic to draw in the
blinking animation

PHASER GameModes A value that indicates that the player is currently using his
phaser weapon system

PHASERGUNS Systems The index into the SystemStats() array for the phasers

PHOTON GameModes A value that indicates that the player is currently using his
photon weapon system

PHOTONLAUNCHER Systems The index into the SystemStats() array for the photon
launchers

PHOTONS Stats The index into the GameStats() array for the player’s
remaining photons

PLAYER BlinkModes A value that indicates that the next sector graphic to draw
in the blinking animation is the player’s marker

SHORTCRUISE GameModes A value that indicates that the player is currently selecting
a sector to which to cruise in the short-range scanner
display

SHORTRANGESCAN Systems The index into the SystemStats() array for the short-range
scanners

SHORTSCANSCREEN GameModes A value that indicates that the player is currently viewing
the short-range scanner screen

STARSHIPSEC Sectors A value that indicates that the player’s starship is in the
short-range scanner sector

STATSCREEN GameModes A value that indicates that the player is currently viewing
the status scanner screen

474 Day 16

TABLE 16.2 continued

Defining
Constant Enumeration Description

22 067231987x CH16 11/6/00 7:12 PM Page 474

Tracking Game Information: The Moonlord Project 475

16

SUNSEC Sectors A value that indicates that there is a sun in the short-range
scanner sector

TIMESTAT Stats The index into the GameStats() array for the player’s
remaining time

WARP GameModes A value that indicates that the player is currently warping

WARPENGINES Systems The index into the SystemStats() array for the warp
engines

TABLE 16.3 Moonlord’s Global Variables

Variable Type Description

AlienDamage() Integer An array that contains the remaining damage
for each of the two aliens in the short-range
scanner screen

AlienPosition() Integer An array that contains the position of each of
the two aliens in the short-range scanner
screen

BlinkMode BlinkModes The current blink mode (the blink mode con-
trols which long-range scanner sector image is
displayed in the blinking sector)

Board() Integer An array that contains the contents of each
sector in the long-range scanner screen

Drawn() Boolean An array that indicates which sectors in the
long-range scanner screen have been drawn

GameMode GameModes Keeps track of the current game mode

GameOver Integer A value that indicates whether the game is
running, the game is over and the player has
won, or the game is over and the player
has lost

GameStats() Integer An array that holds the status for the game
values, such as the time remaining and the
number of aliens still to find

NumAliensDestroyed Integer The number of aliens destroyed in the current
short-range scanner sector

TABLE 16.2 continued

Defining
Constant Enumeration Description

22 067231987x CH16 11/6/00 7:12 PM Page 475

OldShortRangePlayerSector Integer The short-range scanner sector that the player
occupied before moving

PlayerSector Integer The long-range scanner sector in which the
player is currently located

ShortRangeContents() Integer The locations of all the suns, bases, aliens,
and starships in the short-range grids

ShortRangePlayerSector Integer The short-range scanner sector in which the
player is currently located

SystemNames() String An array containing the names of all ship
systems

SystemStats() Integer An array that holds the current status of each
ship system

VectorsX1() Integer A table of horizontal vectors used when cal-
culating the movement of a photon

VectorsY1() Integer A table of vertical vectors used when calculat-
ing the movement of a photon

Initializing the Program Variables
I’m using the term program variables here to mean variables that the program must ini-
tialize only once, when the program first starts up. That is, if the player starts a new
game without rerunning the program, the values of the program variables don’t change.
In Moonlord, these variables are three arrays. The first two, named VectorsX1() and
VectorsY1(), are initialized as shown in Listing 16.1.

LISTING 16.1 Initializing the Vector Arrays

1: VectorsX1(0) = 0
2: VectorsX1(1) = 1
3: VectorsX1(2) = 1
4: VectorsX1(3) = 1
5: VectorsX1(4) = 0
6: VectorsX1(5) = -1
7: VectorsX1(6) = -1
8: VectorsX1(7) = -1
9: VectorsY1(0) = -1
10: VectorsY1(1) = -1
11: VectorsY1(2) = 0
12: VectorsY1(3) = 1

476 Day 16

TABLE 16.3 continued

Variable Type Description

22 067231987x CH16 11/6/00 7:12 PM Page 476

Tracking Game Information: The Moonlord Project 477

16

13: VectorsY1(4) = 1
14: VectorsY1(5) = 1
15: VectorsY1(6) = 0
16: VectorsY1(7) = -1

The VectorsX1() and VectorsY1() arrays hold the vectors needed to animate a
photon. The numbers in VectorsX1() represent the required horizontal move-

ment for each of eight directions, and VectorsY1() holds the same types of values for
vertical movement. For example, if the photon is supposed to travel directly upwards (the
player has chosen vector 0), the program gets the value 0 from VectorsX1(0) and the
value -1 from VectorsY1(0). By moving the photon 0 units horizontally and -1 units ver-
tically, you make the photon move straight up the screen.

Another variable that must be initialized is the SystemNames() array, which holds the
names for each of the starship’s systems. Listing 16.2 shows how the program initializes
this array.

LISTING 16.2 Initializing the SystemNames() Array

1: SystemNames(0) = “Warp Engines”
2: SystemNames(1) = “Cruise Engines”
3: SystemNames(2) = “Short Range Scan”
4: SystemNames(3) = “Long Range Scan”
5: SystemNames(4) = “Phasers”
6: SystemNames(5) = ”Photon Launcher”

Initializing the Game Variables
I use the term game variables to mean variables that must be initialized at the beginning
of each new game. The program initializes one set of these variables in the
InitGameVariables subroutine, which first sets a couple of mode values:

GameMode = MAINSCREEN
GameOver = GAMESTILLGOING

The GameMode variable tracks what the player is currently doing. For example, if the
player is viewing the short-range scanner screen, GameMode is equal to SHORTSCANSCREEN.
The program uses the current mode to set buttons and to prevent the user from doing
things he shouldn’t. If the player is in the CRUISE mode, for example, it means that he
has pressed the Cruise button on the long-range scanner screen and is about to select a
sector to which to move. You don’t want the player to be able to click the Status button at

LISTING 16.1 continued

ANALYSIS

22 067231987x CH16 11/6/00 7:12 PM Page 477

this time, so the CRUISE mode tells the program to disable that button. The various game
modes are defined in the GameModes enumeration.

The GameOver mode variable can be one of three values: GAMESTILLGOING, GAMEONE, or
GAMELOST. These modes are pretty self-explanatory and are defined in the GameResults
enumeration.

Next, InitGameVariables initializes PlayerSector, BlinkMode, and
NumAliensDestroyed:

PlayerSector = PLAYERSTARTSECTOR
BlinkMode = PLAYER
NumAliensDestroyed = 0

The PlayerSector variable holds the player’s current location on the long-range scanner
screen, BlinkMode helps control the blinking sector animation (as you’ll see in an
upcoming lesson), and NumAliensDestroyed tracks how many of the aliens in the current
short-range scanner sector have been defeated. You’ll see all these variables in action as
you add more and more source code to the program.

InitGameVariables then sets all the starship systems to their undamaged condition:

For i = 0 To 5
SystemStats(i) = OPERABLE

Next

If one of the elements of the SystemStats() array is set to something other than
OPERABLE, that system can no longer be used.

Finally, InitGameVariables takes care of the GameStats() array:

GameStats(TIMESTAT) = MAXTIME
GameStats(NUMOFALIENS) = MAXALIENS
GameStats(ENERGY) = MAXENERGY
GameStats(PHOTONS) = MAXPHOTONS

You can tell which values this array holds by the names of the constants used as indexes
into the array. As for how the game uses these values? If the player runs out of time or
energy, the game is over. If he runs out of photons, the photon launcher will no longer
work. Finally, if the player runs out of aliens, he’s won the game.

Initializing the Game Board
The biggest task in setting up a game of Moonlord is initializing the game’s universe
with its contents. The first step, which happens in the ClearGameBoard subroutine, is to

478 Day 16

22 067231987x CH16 11/6/00 7:12 PM Page 478

Tracking Game Information: The Moonlord Project 479

16

empty the game’s universe and mark each sector as being undrawn (not yet displayed on
the screen):

For i = 0 To SECTORCOUNT - 1
Board(i) = CLEARSEC
Drawn(i) = False

Next

Next, the program must place 25 pairs of aliens, as shown in Listing 16.3.

LISTING 16.3 Placing the Aliens

1: For i = 0 To (MAXALIENS / 2) - 1
2: placed = False
3: While (Not placed)
4: column = Int(COLUMNCOUNT * Rnd)
5: row = Int(ROWCOUNT * Rnd)
6: sector = row * COLUMNCOUNT + column
7: If Board(sector) = CLEARSEC And _
8: sector <> PLAYERSTARTSECTOR Then
9: Board(sector) = ALIENSSEC
10: placed = True
11: End If
12: Wend
13: Next

Each time through the For loop, the program places one pair of aliens. Inside the
loop, the program calculates a random row and column. If the sector at that row

and column is currently empty, the program places the aliens there.

The program must also place two starbases, one at each end of the game board. The
PlaceStarBases subroutine handles this task. The subroutine places the first starbase as
shown in Listing 16.4. PlaceStarBases places the second starbase similarly.

LISTING 16.4 Placing a Starbase

1: While Board(sector) <> BASESEC
2: column = Int(4 * Rnd)
3: row = Int(ROWCOUNT * Rnd)
4: sector = row * COLUMNCOUNT + column
5: If Board(sector) = CLEARSEC Then Board(sector) = BASESEC
6: Wend

To place a starbase, the program gets a random column and row in the first four
columns of the board. If that sector is currently empty, the starbase is placed.

ANALYSIS

ANALYSIS

22 067231987x CH16 11/6/00 7:12 PM Page 479

Otherwise, the While loop tries again to place the starbase. A similar While loop places
the second starbase, but somewhere in the last four columns rather than in the first four.

Initializing the Short-Range Scanner Contents
Once the long-range scanner grid has been initialized, the contents of the game universe
must be positioned within the short-range scanner grids. There is one short-range scanner
grid for each sector in the long-range scanner grid, so there’s a lot of work to be done.
The InitShortRangeContents subroutine, shown in Listing 16.5, calls the various
lower-level subroutines that perform each initialization task.

LISTING 16.5 The InitShortRangeContents Subroutine

1: Sub InitShortRangeContents()
2: ClearShortRangeSectors
3: PlaceShortScanSuns
4: PlaceShortScanAliens
5: PlaceShortScanBases
6: PlaceShortScanStarships
7: End Sub

The first step is to call ClearShortRangeSectors, which sets all 25 short-range scanner
sectors in each of the 144 long-range scanner sectors (that’s a total of 3,600 short-range
scanner sectors!) to their starting values, as shown here:

For sector = 0 To SECTORCOUNT - 1
For ShortRangeSector = 0 To SHORTRANGESECTORCOUNT - 1
ShortRangeContents(sector, ShortRangeSector) = CLEARSEC

Next ShortRangeSector
Next sector

Now each sector must have two or three suns placed in the short-range grid. The
PlaceShortScanSuns subroutine handles this task with a For loop, as shown in
Listing 16.6.

LISTING 16.6 Placing Suns

1: For sector = 0 To SECTORCOUNT - 1
2: ClearSector = Int(SHORTRANGESECTORCOUNT * Rnd)
3: ShortRangeContents(sector, ClearSector) = SUNSEC
4: ClearSector = GetClearShortRangeSector(sector)
5: ShortRangeContents(sector, ClearSector) = SUNSEC
6: GotThreeSuns = Int(2 * Rnd)
7: If GotThreeSuns Then
8: ClearSector = GetClearShortRangeSector(sector)

480 Day 16

22 067231987x CH16 11/6/00 7:12 PM Page 480

Tracking Game Information: The Moonlord Project 481

16

9: ShortRangeContents(sector, ClearSector) = SUNSEC
10: End If
11: Next

Lines 2 and 3 place the first sun randomly in the short-range grid. Then, Line 4
calls GetClearShortRangeSector, which returns an empty random short-range

scanner sector, after which Line 5 places the second sun in the selected sector. Line 6
determines whether this sector should have a third sun. If so, Lines 7 through 10 place
the sun.

The program calls PlaceShortScanAliens to place the aliens in the short-range grids for
each long-range scanner sector. Listing 16.7 shows the source code that actually places
the aliens.

LISTING 16.7 Placing Aliens

1: For sector = 0 To SECTORCOUNT - 1
2: If Board(sector) = ALIENSSEC Then
3: ClearSector = GetClearShortRangeSector(sector)
4: ShortRangeContents(sector, ClearSector) = ALIENSSEC
5: ClearSector = GetClearShortRangeSector(sector)
6: ShortRangeContents(sector, ClearSector) = ALIENSSEC
7: End If
8: Next

The For loop starting in Line 1 iterates through each of the long-range scanner
sectors. If the current sector contains aliens (Line 2), Lines 3 through 6 place the

aliens randomly in the short-range grid, using the same method used to place the suns.

The program positions the two bases in the short-range grids in much the same way it
placed the suns and aliens, as shown in Listing 16.8.

LISTING 16.8 Placing the Starbases

1: For sector = 0 To SECTORCOUNT - 1
2: If Board(sector) = BASESEC Then
3: ClearSector = GetClearShortRangeSector(sector)
4: ShortRangeContents(sector, ClearSector) = BASESEC
5: End If
6: Next

LISTING 16.6 continued

ANALYSIS

ANALYSIS

22 067231987x CH16 11/6/00 7:12 PM Page 481

Finally, the program uses the same method yet again to initialize where the player’s ship
will appear in each short-range scanner sector:

For sector = 0 To SECTORCOUNT - 1
ClearSector = GetClearShortRangeSector(sector)
ShortRangeContents(sector, ClearSector) = STARSHIPSEC

Next

At this point, the game is fully initialized and ready to go.

Summary
Moonlord has a lot of variables that must be declared and initialized before the game can
begin. Initializing these variables requires more than setting a few simple values. Arrays
that represent the contents of the game’s universe must be filled, using techniques that
can be a little tricky.

With the game initialized, it’s time to let the game play begin. You’ll program the game’s
main screen tomorrow.

Workshop
The workshop includes quiz questions to help gauge your grasp of the material. You’ll
find the answers to this quiz in Appendix A. Even if you feel that you totally understand
the concepts presented here, you should work through the quiz anyway.

Quiz
1. What’s the difference between program variables and game variables?

2. What do the values in the VectorsX1() and VectorsY1() arrays mean?

3. Explain how the program will use the GameMode variable and the GameModes enu-
meration.

4. What do the values stored in the SystemStats() array represent?

5. What do the values stored in the GameStats() array represent?

6. What do the Board() and Drawn() arrays represent?

7. In general, explain how the program positions objects in the short-range grids.

8. What’s the difference between how the starbases are placed in the long-range grid
and how aliens are placed?

482 Day 16

22 067231987x CH16 11/6/00 7:12 PM Page 482

Tracking Game Information: The Moonlord Project 483

16

Exercise
1. Compile your new version of Moonlord and ensure that it runs correctly. When you

run the program, the program variables should initialize without error. Then, when
you select the File menu’s New Game command, the game variables should initial-
ize without generating errors. Of course, at this point the game isn’t playable. You
still have a lot of source code to add.

22 067231987x CH16 11/6/00 7:12 PM Page 483

22 067231987x CH16 11/6/00 7:12 PM Page 484

DAY 17

WEEK 3

Programming the Main
Screen: The Moonlord
Project

With Moonlord’s user interface put together and the game’s variables declared
and initialized, it’s time to start adding the source code that makes the game
work. Today you’ll get the main screen up and running so that you can cruise
or warp to any sector in the game’s universe. You’ll also make your long-range
scanner operational.

Specifically, today you’ll learn the following:

• How to program the main game screen

• How the buttons issue their commands

• How the game implements the game commands

• How the game displays graphics on the main screen

23 067231987x CH17 11/6/00 7:08 PM Page 485

Adding Graphics for the Main Screen
The first step in getting the game’s main screen up and running is to add some graphical
images needed by the buttons and the screen. These images are stored in separate forms.
Perform the following steps to add the forms and graphics to the program:

1. Add a new form to the project and name it frmMainScreen.

2. Set the new form’s Picture property to the MainScrn.bmp bitmap file that you can
find in the Images\Moonlord directory of this book’s CD-ROM. Figure 17.1 shows
what the form should look like.

The program will use the picture contained in this form to update the screen when-
ever the player moves from the short-range scanner or status screens back to the
main screen (the long-range scanner screen).

486 Day 17

FIGURE 17.1
The complete
frmMainScreen form.

3. Add another form to the project and name it frmButtons.

4. Add eight Image controls to the frmButtons form, giving them the following prop-
erty settings. When the form is complete, it should look like Figure 17.2.

As the player moves from one game screen to another, the program must update
the pictures displayed in the buttons. The program will get the graphics it needs to
update the buttons from this form.

23 067231987x CH17 11/6/00 7:08 PM Page 486

Programming the Main Screen: The Moonlord Project 487

17

FIGURE 17.2
The complete
frmButtons form.

Image Control #1

Name = imgBridgeBut

Height = 480

Left = 450

Picture = BridgeBut.bmp

Top = 345

Width = 1860

Image Control #2

Name = imgCruiseBut

Height = 480

Left = 450

Picture = CrusBut.bmp

Top = 940

Width = 1860

23 067231987x CH17 11/6/00 7:08 PM Page 487

Image Control #3

Name = imgPhaserBut

Height = 480

Left = 450

Picture = PhaserBut.bmp

Top = 1535

Width = 1860

Image Control #4

Name = imgPhotonBut

Height = 480

Left = 450

Picture = PhotonBut.bmp

Top = 2130

Width = 1860

Image Control #5

Name = imgRepairBut

Height = 480

Left = 2445

Picture = RepairBut.bmp

Top = 345

Width = 1860

Image Control #6

Name = imgScanBut

Height = 480

Left = 2445

Picture = ScanBut.bmp

Top = 940

Width = 1860

488 Day 17

23 067231987x CH17 11/6/00 7:08 PM Page 488

Programming the Main Screen: The Moonlord Project 489

17

Image Control #7

Name = imgStatusBut

Height = 480

Left = 2445

Picture = StatBut.bmp

Top = 1535

Width = 1860

Image Control #8

Name = imgWarpBut

Height = 480

Left = 2445

Picture = WarpBut.bmp

Top = 2130

Width = 1860

5. Save your work, using the default names (frmButtons.frm and frmMainScreen.frm)
for the new form files.

Updating Object Handlers
Now that you’re making the main game screen functional, you need to update some
object handlers and add a few new ones:

1. Replace the code in the mnuNewGame_Click event procedure with the following
lines:
InitGame
picScreen.Picture = frmMainScreen.Picture
SetButtons
DrawSector PlayerSector
DoLongScan

2. Add the following Form_Unload procedure to the program, right after the
Form_Load procedure:
Private Sub Form_Unload(Cancel As Integer)
Unload frmButtons
Unload frmMainScreen

End Sub

23 067231987x CH17 11/6/00 7:08 PM Page 489

These lines remove the frmButtons and frmMainScreen forms from memory when
the player exits the program.

3. Add the following line to the end of the Form_Load event procedure:

DisableAllButtons

The call to DisableAllButtons (a subroutine you’ll add to the program later
today) turns off all the game’s command buttons. To turn the buttons on, the player
must start a new game.

4. Add the following source code to the code window after the
PlaceShortScanStarships subroutine. You can type in this source code, or you
can paste it from the Moonlord1.txt file in the Chap17\Code directory of this
book’s CD-ROM:
1: ‘==
2: ‘ CommandButton Handlers.
3: ‘==
4: Private Sub Command1_Click()
5: If GameMode = MAINSCREEN Then
6: GameMode = CRUISE
7: SetButtons
8: Form1.MousePointer = 2
9: ElseIf GameMode = CRUISE Then
10: GameMode = MAINSCREEN
11: SetButtons
12: Form1.MousePointer = 0
13: End If
14: End Sub
15:
16: Private Sub Command2_Click()
17: If GameMode = MAINSCREEN Then
18: GameMode = SHORTSCANSCREEN
19: SetButtons
20: DoShortScan
21: End If
22: End Sub
23:
24: Private Sub Command3_Click()
25: If GameMode = MAINSCREEN Then
26: DoStatus
27: End If
28: End Sub
29:
30: Private Sub Command4_Click()
31: If GameMode = MAINSCREEN Then
32: GameMode = WARP
33: SetButtons
34: DoWarp
35: If GameOver = GAMESTILLGOING Then

490 Day 17

23 067231987x CH17 11/6/00 7:08 PM Page 490

Programming the Main Screen: The Moonlord Project 491

17

36: GameMode = MAINSCREEN
37: SetButtons
38: End If
39: End If
40: End Sub

These are the four subroutines that respond to the player’s command button
clicks. As you can see by the If statements, what a command button does

depends on the game’s current mode. Later today, you’ll examine these event
procedures in greater detail.

5. Add the following button helper subroutines to the program right after the code
you added in Step 4. You can type in this source code, or you can paste it from the
Moonlord2.txt file in the Chap17\Code directory of this book’s CD-ROM:
1: ‘==
2: ‘ Button Helper Subroutines.
3: ‘==
4: Sub SetButtons()
5: If GameOver = GAMESTILLGOING Then
6: Select Case GameMode
7: Case MAINSCREEN
8: SetMainButtons
9: Case CRUISE
10: SetCruiseButtons
11: Case WARP
12: SetWarpButtons
13: End Select
14: End If
15: End Sub
16:
17: Sub SetMainButtons()
18: Command1.Picture = frmButtons.imgCruiseBut.Picture
19: Command2.Picture = frmButtons.imgScanBut.Picture
20: Command3.Picture = frmButtons.imgStatusBut.Picture
21: Command4.Picture = frmButtons.imgWarpBut.Picture
22: Command3.Visible = True
23: Command4.Visible = True
24: Command1.Enabled = (SystemStats(CRUISEENGINES) = OPERABLE)
25: Command2.Enabled = (SystemStats(SHORTRANGESCAN) = OPERABLE)
26: Command3.Enabled = True
27: Command4.Enabled = (SystemStats(WARPENGINES) = OPERABLE)
28: End Sub
29:
30: Sub SetCruiseButtons()
31: DisableAllButtons
32: Command1.Enabled = True
33: End Sub
34:
35: Sub SetWarpButtons()

ANALYSIS

23 067231987x CH17 11/6/00 7:08 PM Page 491

36: DisableAllButtons
37: End Sub
38:
39: Sub DisableAllButtons()
40: Command1.Enabled = False
41: Command2.Enabled = False
42: Command3.Enabled = False
43: Command4.Enabled = False
44: End Sub

Depending on the current game mode, these subroutines enable and disable but-
tons, as well as update the buttons’ graphics. You’ll add more of these helper

subroutines when you add the source code for the short-range scanner and status
screens.

6. Add the following source code to the main form’s code window, right after the
Command4_Click event procedure. You can type in this source code, or you can
paste it from the Moonlord3.txt file in the Chap17\Code directory of this book’s
CD-ROM:
1: ‘==
2: ‘ Misc. Object Handlers.
3: ‘==
4: Private Sub picScreen_MouseDown(Button As Integer, _
5: Shift As Integer, x As Single, y As Single)
6: If GameMode = CRUISE Then
7: Command1.Enabled = False
8: DoLongCruise x, y
9: SetButtons
10: End If
11: End Sub

Whenever the player is in the game’s cruise mode, he needs to select a destina-
tion sector. In this case, the picScreen_MouseDown event procedure gets the

mouse click and passes the click’s coordinates to the appropriate subroutine.

7. Add the following menu handler to the Menu Handlers section of the program:
Private Sub mnuAbout_Click()
frmAbout.Show

End Sub

This subroutine does nothing more than display the About dialog box when the
player clicks the About menu command.

8. Add the following general subroutines to the program. Place the code after the
Menu Handlers section. You can type in this source code, or you can paste it from
the Moonlord4.txt file in the Chap17\Code directory of this book’s CD-ROM:
1: ‘==
2: ‘ General Game Subroutines.

492 Day 17

ANALYSIS

ANALYSIS

23 067231987x CH17 11/6/00 7:08 PM Page 492

Programming the Main Screen: The Moonlord Project 493

17

3: ‘==
4: Sub DrawSector(sector As Integer)
5: Dim x As Integer, y As Integer
6: Dim pic As Picture
7: x = Sector2X(sector)
8: y = Sector2Y(sector)
9: If sector = PlayerSector Then
10: Set pic = imgMarker.Picture
11: ElseIf Board(sector) = CLEARSEC Then
12: Set pic = imgEmpty.Picture
13: ElseIf Board(sector) = BASESEC Then
14: Set pic = imgCross.Picture
15: ElseIf Board(sector) = ALIENSSEC Then
16: Set pic = imgOccupied.Picture
17: End If
18: picScreen.PaintPicture pic, _
19: OFFSET + x * SECTORSIZE, OFFSET + y * SECTORSIZE
20: Drawn(sector) = True
21: End Sub
22:
23: Sub DoLongScan()
24: Dim PlayerColumn As Integer, PlayerRow As Integer
25: Dim ColumnLow As Integer, ColumnHigh As Integer
26: Dim RowLow As Integer, RowHigh As Integer
27: Dim column As Integer, row As Integer
28: Dim sector As Integer
29: If SystemStats(LONGRANGESCAN) <> OPERABLE Then Exit Sub
30: PlayerColumn = Sector2Column(PlayerSector)
31: PlayerRow = Sector2Row(PlayerSector)
32: If PlayerColumn = 0 Then
33: ColumnLow = 0
34: Else
35: ColumnLow = PlayerColumn - 1
36: End If
37: If PlayerColumn = COLUMNCOUNT - 1 Then
38: ColumnHigh = PlayerColumn
39: Else
40: ColumnHigh = PlayerColumn + 1
41: End If
42: If PlayerRow = 0 Then
43: RowLow = 0
44: Else
45: RowLow = PlayerRow - 1
46: End If
47: If PlayerRow = ROWCOUNT - 1 Then
48: RowHigh = PlayerRow
49: Else
50: RowHigh = PlayerRow + 1
51: End If
52: For row = RowLow To RowHigh
53: For column = ColumnLow To ColumnHigh

23 067231987x CH17 11/6/00 7:08 PM Page 493

54: sector = ColumnRow2Sector(column, row)
55: If PlayerSector <> sector Then
56: If Drawn(sector) = False Then
57: DrawSector sector
58: Delay 0.2
59: End If
60: End If
61: Next column
62: Next row
63: End Sub
64:
65: Sub Delay(amount As Single)
66: Dim StartTime As Single
67: Dim CurrentTime As Single
68: StartTime = Timer
69: Do
70: CurrentTime = Timer
71: DoEvents
72: Loop While CurrentTime < StartTime + amount
73: End Sub
74:
75: Sub CalculateStats(StatType As Integer, amount As Integer)
76: GameStats(StatType) = GameStats(StatType) + amount
77: If GameStats(StatType) < 0 Then GameStats(StatType) = 0
78: End Sub
79:
80: Sub UpdateSystemRepairs(days As Integer)
81: Dim i As Integer
82: For i = 0 To 5
83: SystemStats(i) = SystemStats(i) - days
84: If SystemStats(i) < 0 Then _
85: SystemStats(i) = OPERABLE
86: Next
87: End Sub
88:
89: Sub CheckGame()
90: If GameStats(NUMOFALIENS) = 0 Then
91: EndGame (GAMEWON)
92: GameOver = GAMEWON
93: ElseIf (GameStats(TIMESTAT) = 0 Or _
94: GameStats(ENERGY) = 0) Then
95: EndGame (GAMELOST)
96: GameOver = GAMELOST
97: End If
98: End Sub
99:
100: Sub EndGame(GameStatus As Integer)
101: If GameStatus = GAMEWON Then
102: MsgBox “You win.”
103: ElseIf GameStatus = GAMELOST Then
104: MsgBox “You Lose”

494 Day 17

23 067231987x CH17 11/6/00 7:08 PM Page 494

Programming the Main Screen: The Moonlord Project 495

17

105: End If
106: DisableAllButtons
107: End Sub

There’s a lot of code here, and you’ll examine it in more detail later today. For
now, just know that this part of the program does a lot of the work for the sub-

routines that call upon these subroutines.

9. Add the following command handlers to the program, after the subroutines you
added in Step 8. You can type in this source code, or you can paste it from the
Moonlord5.txt file in the Chap17\Code directory of this book’s CD-ROM:
1: ‘==
2: ‘ Command Subroutines.
3: ‘==
4: Sub DoStatus()
5: MsgBox “Status”
6: GameMode = MAINSCREEN
7: SetButtons
8: End Sub
9:
10: Sub DoShortScan()
11: MsgBox “Short Scan”
12: GameMode = MAINSCREEN
13: SetButtons
14: End Sub
15:
16: Sub DoWarp()
17: Dim OldPlayerSector As Integer
18: OldPlayerSector = PlayerSector
19: PlayerSector = Int(SECTORCOUNT * Rnd)
20: DrawSector PlayerSector
21: DrawSector OldPlayerSector
22: CalculateStats TIMESTAT, -1
23: CalculateStats ENERGY, -30
24: UpdateSystemRepairs 1
25: DoLongScan
26: If Int(10 * Rnd) = 0 Then
27: DisableAllButtons
28: MsgBox “You Lose.”
29: GameOver = GAMELOST
30: Else
31: CheckGame
32: End If
33:
34: End Sub
35:
36: Sub DoLongCruise(MouseX As Single, MouseY As Single)
37: Dim NewPlayerColumn As Integer, NewPlayerRow As Integer
38: Dim PlayerColumn As Integer, PlayerRow As Integer
39: Dim ColumnDelta As Integer, RowDelta As Integer

ANALYSIS

23 067231987x CH17 11/6/00 7:08 PM Page 495

40: Dim OldPlayerSector As Integer
41: Form1.MousePointer = 0
42: If MouseX > GRIDLOWX And MouseX < GRIDHIGHX And _
43: MouseY > GRIDLOWY And MouseY < GRIDHIGHY Then
44: NewPlayerColumn = X2Column(MouseX)
45: NewPlayerRow = Y2Row(MouseY)
46: PlayerColumn = Sector2Column(PlayerSector)
47: PlayerRow = Sector2Row(PlayerSector)
48: ColumnDelta = Abs(PlayerColumn - NewPlayerColumn)
49: RowDelta = Abs(PlayerRow - NewPlayerRow)
50: OldPlayerSector = PlayerSector
51: PlayerSector = ColumnRow2Sector(NewPlayerColumn, _
52: NewPlayerRow)
53: DrawSector PlayerSector
54: DrawSector OldPlayerSector
55: GameMode = MAINSCREEN
56: CalculateStats TIMESTAT, -(ColumnDelta + RowDelta)
57: CalculateStats ENERGY, -(ColumnDelta + RowDelta) * 10
58: UpdateSystemRepairs ColumnDelta + RowDelta
59: DoLongScan
60: CheckGame
61: End If
62: End Sub

These subroutines, which you’ll examine in more detail a little later, perform the
commands that the player selects when he clicks a command button.

10. Add the following functions to the program, after the subroutines you added in
Step 9. You can type in this source code, or you can paste it from the
Moonlord6.txt file in the Chap17\Code directory of this book’s CD-ROM:
1: Function Sector2X(sector As Integer) As Integer
2: Sector2X = sector - (sector \ COLUMNCOUNT) * COLUMNCOUNT
3: End Function
4:
5: Function Sector2Y(sector As Integer) As Integer
6: Sector2Y = sector \ COLUMNCOUNT
7: End Function
8:
9: Function Sector2Column(sector As Integer) As Integer
10: Sector2Column = sector Mod COLUMNCOUNT
11: End Function
12:
13: Function Sector2Row(sector As Integer) As Integer
14: Sector2Row = sector \ COLUMNCOUNT
15: End Function
16:
17: Function X2Column(x As Single) As Integer
18: X2Column = (x + 1 - OFFSET) \ SECTORSIZE
19: End Function
20:

496 Day 17

ANALYSIS

23 067231987x CH17 11/6/00 7:08 PM Page 496

Programming the Main Screen: The Moonlord Project 497

17

21: Function Y2Row(y As Single) As Integer
22: Y2Row = (y + 1 - OFFSET) \ SECTORSIZE
23: End Function
24:
25: Function ColumnRow2Sector(column As Integer, _
26: row As Integer) As Integer
27: ColumnRow2Sector = row * COLUMNCOUNT + column
28: End Function

These functions perform the calculations needed to convert between screen coor-
dinates, columns, rows, and sectors on the main screen display.

11. Save your work.

Understanding the Source Code
In the sections that follow, you’ll closely examine the source code that you added to this
portion of the Moonlord project.

The Button Handlers
As you already know, when the user clicks a CommandButton control, Visual Basic calls
the control’s Click event procedure. Moonlord has four command buttons, so it has four
different Click event procedures for buttons. However, what these buttons actually do
when they’re clicked depends on the game’s current mode. For example, in the
Command1_Click event procedure (as it stands today; you’ll add more code to it in later
lessons), the program first checks whether the game is in the MAINSCREEN mode:

If GameMode = MAINSCREEN Then
GameMode = CRUISE
SetButtons
Form1.MousePointer = 2

The MAINSCREEN game mode indicates that the player is viewing the game’s main screen
(the long-range scanner screen) and has no other commands pending. In this mode, the
Command1 button is enabled and triggers the cruise command. So, when the player clicks
the button in this mode, the program does the following:

• Changes the game mode to CRUISE.

• Calls the SetButtons subroutine to set the buttons as appropriate for the CRUISE
mode (all buttons disabled except the Cruise button).

• Changes the mouse pointer to a cross for selecting the destination sector.

ANALYSIS

23 067231987x CH17 11/6/00 7:08 PM Page 497

When the player clicks Command1, the game may already be in CRUISE mode. This even-
tuality is also accounted for in Command1_Click:

ElseIf GameMode = CRUISE Then
GameMode = MAINSCREEN
SetButtons
Form1.MousePointer = 0

The CRUISE game mode indicates that the player has clicked the Cruise button but hasn’t
yet selected a destination sector. If the player clicks the Cruise button again in this mode,
the program does the following:

• Changes the game mode back to MAINSCREEN.

• Calls the SetButtons subroutine to set the buttons as appropriate for the MAIN-
SCREEN mode (all buttons enabled—unless a system associated with a button is
damaged—and labeled with the Cruise, Scan, Status, and Warp commands).

• Changes the mouse pointer from a cross back to an arrow.

These actions cancel the player’s original Cruise command, enabling him to select a
different command.

The Command2_Click button, which triggers the Scan command in MAINSCREEN mode,
works similarly:

If GameMode = MAINSCREEN Then
GameMode = SHORTSCANSCREEN
SetButtons
DoShortScan

End If

Here, if the game is in the MAINSCREEN mode, the program does this:

• Changes the game mode to SHORTSCANSCREEN, which indicates that the player is
now viewing the short-range scanner screen.

• Calls the SetButtons subroutine to set the buttons as appropriate for the
SHORTSCANSCREEN mode (all buttons enabled—unless a system associated with a
button is damaged—and labeled with the Bridge, Cruise, Phaser, and Photon
commands).

• Calls DoShortScan to display the short-range scanner screen.

The Command3 button, which in the MAINSCREEN mode triggers the Status command, han-
dles a mouse click like this:

Private Sub Command3_Click()
If GameMode = MAINSCREEN Then
DoStatus

End If
End Sub

498 Day 17

23 067231987x CH17 11/6/00 7:08 PM Page 498

Programming the Main Screen: The Moonlord Project 499

17

Right now, the Status command doesn’t do a heck of a lot. In upcoming lessons, you’ll
add more source code to that part of the program. However, the Command4 button, which
triggers the Warp command in the MAINSCREEN mode, is now fully implemented. In
Command4_Click, the program first checks the game mode:

If GameMode = MAINSCREEN Then

If the player is clicking the button from the main screen (MAINSCREEN mode), the pro-
gram sets the game to the WARP mode:

GameMode = WARP

Then the program sets the buttons for the WARP mode (all buttons disabled):

SetButtons

Next, the program performs the warp:

DoWarp

Now, because warping may bring on the end of the game (those dang experimental warp
engines just aren’t dependable!), the program must check that the GameOver variable has
not been set to something other than GAMESTILLGOING. If the game’s still afoot, the pro-
gram sets the mode to MAINSCREEN and resets the buttons:

If GameOver = GAMESTILLGOING Then
GameMode = MAINSCREEN
SetButtons

End If

The Button Helper Subroutines
As you saw in the previous section, the SetButtons subroutine sets the state of the four
command buttons depending upon the current game mode. As you were building this
part of the program, you may have also noticed that the SetButtons subroutine (see
Listing 17.1) doesn’t do a heck of a lot on its own. It just calls other helper subroutines
that get the job done.

LISTING 17.1 The SetButtons Subroutine

1: Sub SetButtons()
2: If GameOver = GAMESTILLGOING Then
3: Select Case GameMode
4: Case MAINSCREEN
5: SetMainButtons
6: Case CRUISE
7: SetCruiseButtons
8: Case WARP

23 067231987x CH17 11/6/00 7:08 PM Page 499

9: SetWarpButtons
10: End Select
11: End If
12: End Sub

SetButtons first checks the GameOver flag to be sure that the game is still in
action (that is, the player hasn’t yet won or lost). Then SetButtons uses a

Select Case statement to call the appropriate subroutine for the current game mode.

For an example of a button helper function, let’s explore SetMainButtons. This subrou-
tine is called whenever the buttons need to be set for the main screen. First,
SetMainButtons transfers the correct images to the buttons:

Command1.Picture = frmButtons.imgCruiseBut.Picture
Command2.Picture = frmButtons.imgScanBut.Picture
Command3.Picture = frmButtons.imgStatusBut.Picture
Command4.Picture = frmButtons.imgWarpBut.Picture

Then, SetMainButtons ensures that the Command3 and Command4 buttons are visible
because they may have been turned off on the Status screen, which uses only two of the
buttons:

Command3.Visible = True
Command4.Visible = True

Now that the buttons have the correct images for the MAINSCREEN game mode and all the
buttons are visible, the program must determine whether some buttons must be disabled
due to damaged systems. Because each button’s Enabled property is set to True or
False, the program can use a Boolean expression to both check the associated system
and set each button’s state with the result. For example, this is the line that enables or
disables the Command1 button:

Command1.Enabled = (SystemStats(CRUISEENGINES) = OPERABLE)

On the right side of the equals sign is a Boolean expression that returns True if the cruise
engines are okay and False if they’re not. The result of this Boolean expression is
assigned to the button’s Enabled property, which sets the button’s state properly.

The program handles the other buttons’ Enabled properties the same way, except for
Command3, the Status command, which is always available:

Command2.Enabled = (SystemStats(SHORTRANGESCAN) = OPERABLE)
Command3.Enabled = True
Command4.Enabled = (SystemStats(WARPENGINES) = OPERABLE)

The other button helper functions work much the same way.

500 Day 17

LISTING 17.1 continued

ANALYSIS

23 067231987x CH17 11/6/00 7:08 PM Page 500

Programming the Main Screen: The Moonlord Project 501

17

Getting Mouse Clicks
When the player clicks the Cruise button and thus sets the game to the CRUISE mode, the
program must enable the player to click on the long-range scanner grid with the mouse.
Because Windows is an event-driven system, the game can’t sit around and wait for a
mouse click; it has to go on about its business until the player clicks. One of the reasons
Moonlord uses all these game modes is so it knows what to do with a mouse click when
it gets one. The program retrieves and routes the mouse events in the
picScreen_MouseDown subroutine. Why MouseDown instead of the usual Click? Because
the MouseDown event procedure passes the coordinates of the mouse click to the program;
Click doesn’t.

In the current version of picScreen_MouseDown (you’ll be adding more code to this pro-
cedure in upcoming lessons), the program first checks whether the game mode is CRUISE.
If it is, the program disables the command button (until the cruise is finished), calls the
subroutine that performs the cruise, and then resets the buttons:

If GameMode = CRUISE Then
Command1.Enabled = False
DoLongCruise x, y
SetButtons

End If

The Command Subroutines
When the player clicks a button, he expects something to happen—specifically, the com-
mand indicated in the button’s caption! You’ve already seen how the button controls
route the commands based on the game’s mode. Now it’s time to look at the lower-level
subroutines that actually perform the selected command.

You haven’t yet done the programming for the Status screen, so the DoStatus subroutine
only displays a message box and returns the game to the MAINSCREEN mode:

Sub DoStatus()
MsgBox “Status”
GameMode = MAINSCREEN
SetButtons

End Sub

At this time, the same is true of the DoShortScan subroutine:

Sub DoShortScan()
MsgBox “Short Scan”
GameMode = MAINSCREEN
SetButtons

End Sub

23 067231987x CH17 11/6/00 7:08 PM Page 501

The DoLongCruise and DoWarp subroutines are fully implemented in this early version of
Moonlord, however, because the program performs the Cruise and Warp commands on
the main screen. Let’s examine DoLongCruise first.

The DoLongCruise subroutine first sets the mouse pointer back to an arrow:

Form1.MousePointer = 0

Then the subroutine checks the coordinates of the mouse click to see whether the click
falls within the boundaries of the long-range scanner grid:

If MouseX > GRIDLOWX And MouseX < GRIDHIGHX And _
MouseY > GRIDLOWY And MouseY < GRIDHIGHY Then

If the mouse coordinates are okay, the subroutine converts the coordinates to the selected
column and row:

NewPlayerColumn = X2Column(MouseX)
NewPlayerRow = Y2Row(MouseY)

The program also needs the current column and row:

PlayerColumn = Sector2Column(PlayerSector)
PlayerRow = Sector2Row(PlayerSector)

Using the new and current positions, the subroutine calculates the horizontal and vertical
distance between the two locations:

ColumnDelta = Abs(PlayerColumn - NewPlayerColumn)
RowDelta = Abs(PlayerRow - NewPlayerRow)

Next, the program saves the current player sector, calculates the new player sector, and
draws both sectors on the screen:

OldPlayerSector = PlayerSector
PlayerSector = ColumnRow2Sector(NewPlayerColumn, _

NewPlayerRow)
DrawSector PlayerSector
DrawSector OldPlayerSector

With the cruise complete, the subroutine sets the game mode back to MAINSCREEN:

GameMode = MAINSCREEN

Because the cruise has eaten up some of the player’s time and energy, the subroutine
calls the CalculateStats and UpdateSystemRepairs subroutines to adjust these stats:

CalculateStats TIMESTAT, -(ColumnDelta + RowDelta)
CalculateStats ENERGY, -(ColumnDelta + RowDelta) * 10
UpdateSystemRepairs ColumnDelta + RowDelta

502 Day 17

23 067231987x CH17 11/6/00 7:08 PM Page 502

Programming the Main Screen: The Moonlord Project 503

17

Finally, the game performs a long scan around the player’s new location and checks
whether the game should end (the player may be out of time or energy):

DoLongScan
CheckGame

The DoWarp subroutine works similarly to DoLongCruise, except that the program calcu-
lates a random destination sector:

PlayerSector = Int(SECTORCOUNT * Rnd)
DrawSector PlayerSector
DrawSector OldPlayerSector

Just as with a cruise, after a warp, the player’s system stats must be updated and a long
scan must be performed:

CalculateStats TIMESTAT, -1
CalculateStats ENERGY, -30
UpdateSystemRepairs 1
DoLongScan

Unlike a cruise, a warp carries with it a 1-in-10 chance of wrecking the ship and ending
the game:

If Int(10 * Rnd) = 0 Then
DisableAllButtons
MsgBox “You Lose.”
GameOver = GAMELOST

If the ship survives the warp, it still has to survive the normal game check, which ensures
that the player hasn’t run out of time or energy:

Else
CheckGame

End If

General Subroutines
Now you should have a good idea of how the main-screen portion of the game works,
but there are still quite a few lower-level subroutines that you haven’t examined yet.
Guess what you’re going to do now?

The DrawSector Subroutine
The first subroutine we’ll examine is DrawSector, which receives the sector to draw as
its single parameter. DrawSector first gets the X and Y coordinate at which to draw the
sector:

x = Sector2X(sector)
y = Sector2Y(sector)

23 067231987x CH17 11/6/00 7:08 PM Page 503

The subroutine then determines which image must be drawn in the sector, as shown in
Listing 17.2.

LISTING 17.2 Determining the Correct Sector Image

1: If sector = PlayerSector Then
2: Set pic = imgMarker.Picture
3: ElseIf Board(sector) = CLEARSEC Then
4: Set pic = imgEmpty.Picture
5: ElseIf Board(sector) = BASESEC Then
6: Set pic = imgCross.Picture
7: ElseIf Board(sector) = ALIENSSEC Then
8: Set pic = imgOccupied.Picture
9: End If

When the subroutine has determined the correct image, the only thing left to do is to
draw the sector and mark it as drawn in the Drawn() array:

picScreen.PaintPicture pic, _
OFFSET + x * SECTORSIZE, OFFSET + y * SECTORSIZE

Drawn(sector) = True

The DoLongScan Subroutine
Every time the player moves on the long-range scanner screen, the program automatical-
ly performs a long-range scan (assuming that the long-range scanner is operational). The
subroutine that performs this scan is the appropriately named DoLongScan. This subrou-
tine first checks whether the long-range scanner is operational:

If SystemStats(LONGRANGESCAN) <> OPERABLE Then Exit Sub

If the scanner is working, the subroutine calculates the player’s current column and row
in the long-range scanner grid:

PlayerColumn = Sector2Column(PlayerSector)
PlayerRow = Sector2Row(PlayerSector)

Then DoLongScan must determine the minimum and maximum columns and rows to
scan. These won’t always be the eight adjacent sectors because the player’s ship may be
on the edge of the grid. DoLongScan sets the minimums and maximums, as shown in
Listing 17.3.

LISTING 17.3 Determining the Minimum and Maximum Columns and Rows

1: If PlayerColumn = 0 Then
2: ColumnLow = 0
3: Else

504 Day 17

23 067231987x CH17 11/6/00 7:08 PM Page 504

Programming the Main Screen: The Moonlord Project 505

17

4: ColumnLow = PlayerColumn - 1
5: End If
6: If PlayerColumn = COLUMNCOUNT - 1 Then
7: ColumnHigh = PlayerColumn
8: Else
9: ColumnHigh = PlayerColumn + 1
10: End If
11: If PlayerRow = 0 Then
12: RowLow = 0
13: Else
14: RowLow = PlayerRow - 1
15: End If
16: If PlayerRow = ROWCOUNT - 1 Then
17: RowHigh = PlayerRow
18: Else
19: RowHigh = PlayerRow + 1
20: End If

After determining the sectors to draw, DoLongScan does the drawing in nested For loops:

For row = RowLow To RowHigh
For column = ColumnLow To ColumnHigh

Inside the loop, the subroutine converts the column and row to the sector:

sector = ColumnRow2Sector(column, row)

The program then uses an If statement to skip drawing the player’s current sector:

If PlayerSector <> sector Then

Another If statement ensures that the sector is drawn only if it hasn’t been drawn
already:

If Drawn(sector) = False Then

Finally, the subroutine draws the sector followed by a slight delay:

DrawSector sector
Delay 0.2

The CalculateStats Subroutine
The CalculateStats subroutine adds or subtracts values to or from game values, such as
the amount of energy remaining:

Sub CalculateStats(StatType As Integer, amount As Integer)
GameStats(StatType) = GameStats(StatType) + amount
If GameStats(StatType) < 0 Then GameStats(StatType) = 0

End Sub

LISTING 17.3 continued

23 067231987x CH17 11/6/00 7:08 PM Page 505

Notice the amount parameter. This value can be positive or negative, which determines
whether the value is added to the game stat or subtracted from it. (When you add a nega-
tive number to something, it’s the same as subtracting.)

The UpdateSystemRepairs Subroutine
Whenever the player cruises to a new location in the long-range scanner screen, time
goes by. During this time, the ship’s repair crews have been working diligently to repair
any damaged systems. So each time the player moves, the program calls the
UpdateSystemRepairs subroutine, which is shown in Listing 17.4.

LISTING 17.4 The UpdateSystemRepairs Subroutine

1: Sub UpdateSystemRepairs(days As Integer)
2: Dim i As Integer
3: For i = 0 To 5
4: SystemStats(i) = SystemStats(i) - days
5: If SystemStats(i) < 0 Then _
6: SystemStats(i) = OPERABLE
7: Next
8: End Sub

Line 3 starts a For loop that iterates through the SystemStats() array, and Line
4 subtracts the number of days that have passed from the number of days needed

to repair the system currently indexed in SystemStats(). Lines 5 and 6 set the system
back to operational if repairs are complete.

The CheckGame Subroutine
Because each move consumes energy and time, any move can bring about the end of the
game. So after each move, the program calls the CheckGame subroutine, shown in
Listing 17.5.

LISTING 17.5 The CheckGame Subroutine

1: Sub CheckGame()
2: If GameStats(NUMOFALIENS) = 0 Then
3: EndGame (GAMEWON)
4: GameOver = GAMEWON
5: ElseIf (GameStats(TIMESTAT) = 0 Or _
6: GameStats(ENERGY) = 0) Then
7: EndGame (GAMELOST)
8: GameOver = GAMELOST
9: End If
10: End Sub

506 Day 17

ANALYSIS

23 067231987x CH17 11/6/00 7:08 PM Page 506

Programming the Main Screen: The Moonlord Project 507

17

Line 2 checks whether the player has exterminated all the aliens. If so, Lines 3
and 4 end the game with the player winning. Lines 5 and 6 check whether the

player has run out of time or energy. If he has, Lines 7 and 8 end the game with the
player losing.

The Functions
There’s really not much to say about the functions that you’ve added to Moonlord in this
lesson. They simply perform conversions between X and Y coordinates (pixel coordi-
nates), columns and rows (sector coordinates in the grid), and sector numbers.

Summary
Now you’re getting somewhere! Moonlord is actually doing something fun, which is
good because games are supposed to be fun. (That’s a fact that some game developers
have yet to figure out, eh?) You’ve now got your cruise engines up and running, and you
can even warp around the universe. The Scan and Status buttons don’t do much yet, but
you’ll fix the Scan button in the next lesson when you program the Scan screen.

ANALYSIS

23 067231987x CH17 11/6/00 7:08 PM Page 507

23 067231987x CH17 11/6/00 7:08 PM Page 508

DAY 18

WEEK 3

Programming the Short
Range Scanner Screen:
The Moonlord Project

Your Moonlord program is really starting to shape up, now that you have the
main screen working. Still, you’re quite a way from completing the game, so
today you’ll add the program code needed to make the short-range scanner
screen work.

Specifically, today you’ll do the following:

• Program the command buttons for the short-range scanner screen’s game
modes

• Implement the new commands represented by the short-range scanner
buttons

• Add a new set of general subroutines

• Add functions for managing the short-range scanner screen

24 067231987x CH18 11/6/00 7:15 PM Page 509

Adding Code to the Button Handlers
Moonlord’s four command buttons do different things depending upon the current game
mode. When the player switches to the short-range scanner screen, for example, the com-
mand buttons change to trigger the Bridge, Cruise, Phaser, and Photon commands. In this
section, you’ll add the source code needed to handle the buttons in the new game modes
associated with the short-range scanner screen:

1. Add the following lines to Command1_Click after the Form1.MousePointer = 0
line:
ElseIf GameMode = SHORTSCANSCREEN Then
picScreen.Picture = frmMainScreen.Picture
GameMode = MAINSCREEN
SetButtons
ShowBoard

If the player clicks the Command1 button when the game is in the SHORTSCANSCREEN
mode, he is issuing the Bridge command, which returns the game to the main
screen. These lines set up the main screen and put the game into the MAINSCREEN
game mode.

2. Add the following lines to Command2_Click after the DoShortScan line. If you
don’t want to type this in, you can copy it from the Moonlord01.txt file in the
Chap18\Code directory:
1: If SectorHasAliens Then SetUpAliens
2: ElseIf GameMode = SHORTCRUISE Then
3: GameMode = SHORTSCANSCREEN
4: SetButtons
5: Form1.MousePointer = 0
6: ElseIf GameMode = SHORTSCANSCREEN Then
7: GameMode = SHORTCRUISE
8: SetButtons
9: Form1.MousePointer = 2

These lines take care of the second command button when the player is viewing
the short-range scanner screen. If the player previously selected the cruise com-

mand but has changed his mind (Line 2), Lines 3 to 5 return the game to the
SHORTSCANSCREEN mode. On the other hand, if the player is already in the
SHORTSCANSCREEN mode (Line 6), clicking the Command2 button issues the cruise com-
mand, and Lines 7 to 9 set up the player to move his ship to a new short-range sector.

3. Add the following lines to Command3_Click after the DoStatus line. If you don’t
want to type this in, you can copy it from the Moonlord02.txt file in the
Chap18\Code directory:

510 Day 18

ANALYSIS

24 067231987x CH18 11/6/00 7:15 PM Page 510

Programming the Short Range Scanner Screen: The Moonlord Project 511

18

1: ElseIf GameMode = SHORTSCANSCREEN Then
2: GameMode = PHASER
3: SetButtons
4: ShootPhaser
5: GameMode = SHORTSCANSCREEN
6: SetButtons

If the player clicks the Command3 button when the game is in SHORTSCANSCREEN
mode (Line 1), he is firing the phaser. Lines 2 and 3 set up the game for the

PHASER game mode, and Line 4 calls the subroutine that fires the phaser. Lines 5 and 6
return the game to SHORTSCANSCREEN after the phaser has fired.

4. Add the following lines to Command4_Click after the first End If line. If you don’t
want to type this in, you can copy it from the Moonlord03.txt file in the
Chap18\Code directory:
1: ElseIf GameMode = SHORTSCANSCREEN Then
2: GameMode = PHOTON
3: SetButtons
4: ShootPhoton
5: GameMode = SHORTSCANSCREEN
6: SetButtons

If the player clicks the Command4 button when the game is in SHORTSCANSCREEN
mode (Line 1), he is firing a photon torpedo. Lines 2 and 3 set the game up for

the PHOTON game mode, and Line 4 calls the subroutine that fires the photon torpedo.
Lines 5 and 6 return the game to SHORTSCANMODE after the photon torpedo has been fired.

5. Add the following lines to SetButtons after the SetMainButtons line:
Case SHORTSCANSCREEN
SetScanButtons

6. Add the following lines to SetButtons after the SetWarpButtons line. If you don’t
want to type this in, you can copy it from the Moonlord04.txt file in the
Chap18\Code directory:
1: Case SHORTCRUISE
2: SetShortCruiseButtons
3: Case PHASER
4: SetPhaserButtons
5: Case PHOTON
6: SetPhotonButtons

These lines call the appropriate button-setting subroutine for the game modes
associated with the short-range scanner screen.

ANALYSIS

ANALYSIS

ANALYSIS

24 067231987x CH18 11/6/00 7:15 PM Page 511

7. Add the following subroutines to the program, right after the SetWarpButtons sub-
routine. If you don’t want to type this in, you can copy it from the Moonlord05.txt
file in the Chap18\Code directory:
1: Sub SetScanButtons()
2: Command1.Picture = frmButtons.imgBridgeBut.Picture
3: Command2.Picture = frmButtons.imgCruiseBut.Picture
4: Command3.Picture = frmButtons.imgPhaserBut.Picture
5: Command4.Picture = frmButtons.imgPhotonBut.Picture
6: Command1.Enabled = Not SectorHasAliens
7: Command2.Enabled = True
8: Command3.Enabled = (SystemStats(PHASERGUNS) = OPERABLE)
9: Command4.Enabled = (SystemStats(PHOTONLAUNCHER) = _
10: OPERABLE And GameStats(PHOTONS) > 0)
11: End Sub
12:
13: Sub SetShortCruiseButtons()
14: DisableAllButtons
15: Command2.Enabled = True
16: End Sub
17:
18: Sub SetPhaserButtons()
19: DisableAllButtons
20: End Sub
21:
22: Sub SetPhotonButtons()
23: DisableAllButtons
24: End Sub

These subroutines do nothing more than set the four command buttons properly
for the current game mode. For example, if the game is the SHORTSCANSCREEN

mode, the SetScanButtons subroutine is called. There, Lines 2 to 5 change the buttons’
graphical captions. Line 6 disables the Bridge button if there are any aliens still on the
screen, Line 7 enables the Cruise button, Line 8 enables the Phaser button only if the
phasers are operational, and Lines 9 and 10 enable the Photon button only if the photon
torpedo launcher is operational.

Command Subroutines
When the player clicks a button, more has to happen than just the game changing modes.
(Talk about stating the obvious!) The game must also process the command and perform
the task that the player has assigned it. In this section, you’ll add the source code needed
to perform the commands available on the short-range scanner screen:

1. Replace all the lines in the DoShortScan subroutine with the following lines. If you
don’t want to type this in, you can copy it from the Moonlord06.txt file in the
Chap18\Code directory:

512 Day 18

ANALYSIS

24 067231987x CH18 11/6/00 7:15 PM Page 512

Programming the Short Range Scanner Screen: The Moonlord Project 513

18

1: Dim column As Integer, row As Integer
2: Dim pic As Picture
3: Dim ShortRangeSector As Integer
4: GameMode = SHORTSCANSCREEN
5: picScreen.Picture = frmScanScreen.Picture
6: SetButtons
7: For ShortRangeSector = 0 To SHORTRANGESECTORCOUNT - 1
8: If ShortRangeContents(PlayerSector, _
9: ShortRangeSector) = ALIENSSEC Then
10: Set pic = imgAlien.Picture
11: ElseIf ShortRangeContents(PlayerSector, _
12: ShortRangeSector) = SUNSEC Then
13: Set pic = imgSun.Picture
14: ElseIf ShortRangeContents(PlayerSector, _
15: ShortRangeSector) = BASESEC Then
16: Set pic = imgBase.Picture
17: ElseIf ShortRangeContents(PlayerSector, _
18: ShortRangeSector) = STARSHIPSEC Then
19: Set pic = imgStarship.Picture
20: ShortRangePlayerSector = ShortRangeSector
21: Else
22: Set pic = imgClear.Picture
23: End If
24: column = ShortRangeSector2Column(ShortRangeSector)
25: row = ShortRangeSector2Row(ShortRangeSector)
26: picScreen.PaintPicture pic, _
27: SHORTRANGEOFFSETX + column * SHORTRANGESECTORSIZEX, _
28: SHORTRANGEOFFSETY + row * SHORTRANGESECTORSIZEY
29: Next ShortRangeSector

The DoShortScan subroutine has a lot of work to do, starting on Line 5, where it
changes the picture in the picScreen PictureBox control to the short-range scan-

ner screen, and on Line 6, where the buttons are set up for the SHORTSCANSCREEN game
mode. Line 7 starts a For loop that iterates once for each sector in the short-range scan-
ner display. In the loop, Lines 3 to 23 determine the correct image to display in the sec-
tor. Lines 24 and 25 calculate the column and row at which to draw the image, and Lines
26 to 28 paint the image in the sector.

2. Add the following DoShortCruise subroutine to the program, right after the
DoStatus subroutine. If you don’t want to type this in, you can copy it from the
Moonlord07.txt file in the Chap18\Code directory:
1: Sub DoShortCruise(MouseX As Single, MouseY As Single)
2: Dim newPlayerColumn As Integer, NewPlayerRow As Integer
3: Dim cruiseOK As Boolean
4: Dim aliensPresent As Boolean
5: Dim clickIsValid As Boolean
6: Dim sectorContents As Integer
7: Dim targetSector

ANALYSIS

24 067231987x CH18 11/6/00 7:15 PM Page 513

8: Form1.MousePointer = 0
9: clickIsValid = CheckShortRangeClick(MouseX, MouseY)
10: If clickIsValid Then
11: newPlayerColumn = X2ShortRangeColumn(MouseX)
12: NewPlayerRow = Y2ShortRangeRow(MouseY)
13: cruiseOK = CheckShortCruise(newPlayerColumn, NewPlayerRow)
14: If cruiseOK Then
15: targetSector = _
16: ColumnRow2ShortRangeSector(newPlayerColumn, _
17: NewPlayerRow)
18: sectorContents = ShortRangeContents(PlayerSector, _
19: targetSector)
20: OldShortRangePlayerSector = ShortRangePlayerSector
21: ShortRangePlayerSector = targetSector
22: If sectorContents = BASESEC Then
23: DockWithBase
24: ElseIf sectorContents = ALIENSSEC Then
25: DoRam (OldShortRangePlayerSector)
26: Else
27: ShortRangeContents(PlayerSector, _
28: OldShortRangePlayerSector) = CLEARSEC
29: ShortRangeContents(PlayerSector, _
30: ShortRangePlayerSector) = STARSHIPSEC
31: DoShortScan
32: Delay 1#
33: aliensPresent = SectorHasAliens
34: If aliensPresent Then AliensAttack
35: GameMode = SHORTSCANSCREEN
36: End If
37: Else
38: MsgBox (“Can’t cruise to that location.”)
39: GameMode = SHORTSCANSCREEN
40: End If
41: End If
42: End Sub

The DoShortCruise subroutine is another one with a lot of work to do. Because
of its size, you’ll examine it in detail later in this chapter. Generally, though, this

subroutine enables the player to move on the short-range scanner screen, and enables any
aliens that may be in the sector to attack. This subroutine also calls the subroutines nec-
essary to dock with a base or ram an alien ship.

3. Add the following DoRam subroutine to the program, right after the lines you added
in Step 2. If you don’t want to type this in, you can copy it from the
Moonlord08.txt file in the Chap18\Code directory:
1: Sub DoRam(OldPlayerSector As Integer)
2: Dim NumberOfSystemsDamaged As Integer
3: Dim i As Integer
4: Dim column As Integer

514 Day 18

ANALYSIS

24 067231987x CH18 11/6/00 7:15 PM Page 514

Programming the Short Range Scanner Screen: The Moonlord Project 515

18

5: Dim row As Integer
6: column = ShortRangeSector2Column(OldShortRangePlayerSector)
7: row = ShortRangeSector2Row(OldShortRangePlayerSector)
8: picScreen.PaintPicture imgClear.Picture, _
9: SHORTRANGEOFFSETX + column * SHORTRANGESECTORSIZEX, _
10: SHORTRANGEOFFSETY + row * SHORTRANGESECTORSIZEY
11: If (Int(10 * Rnd) = 0) Then
12: GameOver = GAMELOST
13: EndGame (GameOver)
14: Else
15: NumberOfSystemsDamaged = Int(4 * Rnd) + 1
16: For i = 0 To NumberOfSystemsDamaged - 1
17: DoSystemDamage
18: Next i
19: CalculateStats NUMOFALIENS, -1
20: ShortRangeContents(PlayerSector, _
21: ShortRangePlayerSector) = STARSHIPSEC
22: ShortRangeContents(PlayerSector, _
23: OldPlayerSector) = CLEARSEC
24:
25: NumAliensDestroyed = NumAliensDestroyed + 1
26: If NumAliensDestroyed = 2 Then
27: Command1.Enabled = True
28: NumAliensDestroyed = 0
29: Board(PlayerSector) = CLEARSEC
30: End If
31: DoShortScan
32: SetScanButtons
33: CheckGame
34: End If
35: End Sub

Because of its size, you’ll examine the DoRam subroutine in detail later in this
chapter. Generally, this subroutine handles the ramming of an alien ship, includ-

ing destroying the ship and damaging the starship’s systems due to the crash.

4. Add the following ShootPhoton subroutine to the program, right after the lines you
added in Step 3. If you don’t want to type this in, you can copy it from the
Moonlord09.txt file in the Chap18\Code directory:
1: Sub ShootPhoton()
2: Dim Vector As Integer
3: If SystemStats(PHOTONLAUNCHER) = OPERABLE And _
4: GameStats(PHOTONS) > 0 Then
5: Vector = GetVector
6: If Vector <> -1 Then
7: GameStats(PHOTONS) = GameStats(PHOTONS) - 1
8: TrackPhoton Vector
9: AliensAttack
10: End If
11: End If
12: End Sub

ANALYSIS

24 067231987x CH18 11/6/00 7:15 PM Page 515

As its name suggests, the ShootPhoton subroutine handles the shooting of a pho-
ton torpedo. First, Lines 3 and 4 check that the photon torpedo system is opera-

tional and that the player has photon torpedoes to shoot. If so, the call to GetVector
(Line 5) gets the photon torpedo-aiming vector from the player. Line 6 ensures that the
given vector is valid, and Line 7 removes a photon torpedo from the player’s supplies.
The call to TrackPhoton (Line 8) actually fires the photon torpedo, and Line 9 gives the
aliens their turn to attack after the shot.

5. Add the following ShootPhaser subroutine to the program, right after the lines you
added in Step 4. If you don’t want to type this in, you can copy it from the
Moonlord10.txt file in the Chap18\Code directory:
1: Sub ShootPhaser()
2: Dim power As Integer
3: Dim alien As Integer
4: Dim damage As Integer
5: On Local Error GoTo InputError:
6: power = InputBox(“Enter amount of power:”, _
7: “Phaser Power”, 50)
8: Command3.Enabled = False
9: If power > 0 Then
10: CalculateStats ENERGY, -power
11: For alien = 0 To 1
12: If AlienDamage(alien) > 0 Then
13: damage = CalculateDamage(power, alien)
14: AlienDamage(alien) = AlienDamage(alien) - damage
15: If AlienDamage(alien) < 1 Then _
16: DestroyAlien (alien)
17: End If
18: Next alien
19: AliensAttack
20: CheckGame
21: End If
22: If GameOver = GAMESTILLGOING Then Command3.Enabled = True
23: Exit Sub
24: InputError:
25: End Sub

The ShootPhaser subroutine handles the firing of the phaser. First, Line 5 asks
the player for the amount of power to apply to the phaser shot, after which Line

7 disables the Phaser button. If the amount of power to use is greater than 0 (Line 8),
Line 9 subtracts the power from the player’s ship, and Lines 10 to 15 deduct damage
from any alien ships in the grid. Line 17 gives the aliens their turn to attack, and Line 18
checks for the end of the game. Finally, Line 20 turns the Phaser button back on.

516 Day 18

ANALYSIS

ANALYSIS

24 067231987x CH18 11/6/00 7:15 PM Page 516

Programming the Short Range Scanner Screen: The Moonlord Project 517

18

General Subroutines
So far in this chapter, you’ve added a lot of source code to Moonlord. Many of the sub-
routines you’ve added call other subroutines that help them complete their tasks. In this
section, you’ll add those general, lower-lever subroutines:

1. Add the following SetUpAliens subroutine to the program, right after the
UpdateSystemRepairs subroutine. If you don’t want to type this in, you can copy
it from the Moonlord11.txt file in the Chap18\Code directory:
1: Sub SetUpAliens()
2: Dim i As Integer
3: Dim alien As Integer
4: For i = 0 To SHORTRANGESECTORCOUNT - 1
5: If ShortRangeContents(PlayerSector, i) = ALIENSSEC Then
6: Command1.Enabled = False
7: NumAliensDestroyed = 0
8: AlienPosition(alien) = i
9: AlienDamage(alien) = 5
10: alien = alien + 1
11: End If
12: Next i
13: End Sub

If a sector contains aliens, they must be set up in preparation for battle. The
SetUpAliens subroutine takes care of this task. Line 4 starts a For loop that iter-

ates through all the sectors in the short-range scanner grid. If a short-range sector con-
tains an alien (Line 5), Line 6 turns off the Bridge button, and Lines 7 to 10 initialize
values needed by the rest of the program: the number of aliens that have been destroyed,
the position of each alien on the grid, and the hit points for each alien ship.

2. Add the following ShowBoard subroutine to the program, right after the subroutine
you added in the previous step. If you don’t want to type this in, you can copy it
from the Moonlord12.txt file in the Chap18\Code directory:
1: Sub ShowBoard()
2: Dim column As Integer, row As Integer
3: Dim sector As Integer
4: Dim pic As Picture
5: For column = 0 To COLUMNCOUNT - 1
6: For row = 0 To ROWCOUNT - 1
7: sector = ColumnRow2Sector(column, row)
8: If Drawn(sector) Then DrawSector sector

9: Next row
10: Next column
11: End Sub

ANALYSIS

24 067231987x CH18 11/6/00 7:15 PM Page 517

The ShowBoard subroutine steps through each sector in the long-range scanner
grid, drawing the contents of each sector that was previously drawn. (The pro-

gram doesn’t draw sectors that the player has not yet explored.) As you can see, the
Drawn() array keeps track of which sectors need to be drawn by ShowBoard.

3. Add the following DockWithBase subroutine to the program, right after the subrou-
tine you added in the previous step. If you don’t want to type this in, you can copy
it from the Moonlord13.txt file in the Chap18\Code directory:
1: Sub DockWithBase()
2: Dim i As Integer
3: Dim column As Integer, row As Integer
4: For i = 0 To 5
5: SystemStats(i) = OPERABLE
6: Next i
7: GameStats(ENERGY) = 600
8: GameStats(PHOTONS) = 10
9: GameMode = SHORTSCANSCREEN
10: MsgBox “Docking complete.”
11: End Sub

The DockWithBase subroutine repairs all systems (Lines 4 to 6) and refills the
player’s energy and photon torpedoes (Lines 7 and 8). Then, Line 9 sets the

game back to SHORTSCANSCREEN mode, and Line 10 informs the player that the docking
was successful.

4. Add the following AliensAttack subroutine to the program, right after the subrou-
tine you added in the previous step. If you don’t want to type this in, you can copy
it from the Moonlord14.txt file in the Chap18\Code directory:
1: Sub AliensAttack()
2: Dim i As Integer
3: Dim r As Integer
4: DisableAllButtons
5: If Board(PlayerSector) = ALIENSSEC Then
6: For i = 0 To 1
7: If AlienDamage(i) > 0 Then
8: r = Int(Rnd * 5)
9: If r = 0 Then DoSystemDamage
10: End If
11: Next i
12: End If
13: End Sub

The AliensAttack subroutine takes care of alien attacks on the player. Because
not every sector contains aliens, Line 5 first checks that the current sector does

have aliens. If it does, the For loop in Lines 6 to 11 iterates twice, once for each alien.

518 Day 18

ANALYSIS

ANALYSIS

ANALYSIS

24 067231987x CH18 11/6/00 7:15 PM Page 518

Programming the Short Range Scanner Screen: The Moonlord Project 519

18

Line 7 checks whether the current alien is able to attack. If so, Line 8 gets a random
number from 0 to 5. If this number turns out to be 0, the alien’s attack hits and does
damage to the player’s ship (Line 9).

5. Add the following DoSystemDamage subroutine to the program, right after the sub-
routine you added in the previous step. If you don’t want to type this in, you can
copy it from the Moonlord15.txt file in the Chap18\Code directory:
1: Sub DoSystemDamage()
2: Dim SystemDamaged As Integer
3: Dim DamageAmount As Integer
4: SystemDamaged = Int(6 * Rnd)
5: DamageAmount = Int(6 * Rnd) + 1
6: MsgBox “System: “ & SystemNames(SystemDamaged) & vbCrLf & _
7: “Damage: “ & DamageAmount, vbExclamation, _
8: “Damage Alert”
9: SystemStats(SystemDamaged) = _
10: SystemStats(SystemDamaged) + DamageAmount
11: If SystemStats(SystemDamaged) > 9 Then _
12: SystemStats(SystemDamaged) = 9
13: SetScanButtons
14: End Sub

DoSystemDamage is the subroutine that determines which system an alien attack
has damaged and how bad the damage is. Line 4 calculates which system to

damage, and Line 5 calculates the amount. Lines 6 to 8 display a damage report to the
player, and Lines 9 to 12 apply the damage to the ship’s systems. Finally, Line 13 resets
the short-range scanner display’s buttons because a button that represents a damaged sys-
tem must be disabled.

6. Add the following TrackPhoton subroutine to the program, right after the subrou-
tine you added in the previous step. If you don’t want to type this in, you can copy
it from the Moonlord16.txt file in the Chap18\Code directory:
1: Sub TrackPhoton(Vector As Integer)
2: Dim x As Single
3: Dim y As Single
4: Dim xoff1 As Integer
5: Dim yoff1 As Integer
6: Dim hit As Boolean
7: Dim outOfBounds As Boolean
8: Dim color As Long
9: Dim alienCol As Integer
10: Dim alienRow As Integer
11: Dim alienSector As Integer
12: xoff1 = VectorsX1(Vector) * PHOTONSPEED
13: yoff1 = VectorsY1(Vector) * PHOTONSPEED
14: x = ShortRangeSector2X(ShortRangePlayerSector) + 15
15: y = ShortRangeSector2Y(ShortRangePlayerSector) + 14

ANALYSIS

24 067231987x CH18 11/6/00 7:15 PM Page 519

16: Do
17: color = picScreen.Point(x, y)
18: picScreen.PSet (x, y), vbWhite
19: Delay 0.05
20: If color = SUNYELLOW Then hit = True
21: If color = ALIENBLUE Then
22: alienCol = X2ShortRangeColumn(x)
23: alienRow = Y2ShortRangeRow(y)
24: alienSector = ColumnRow2ShortRangeSector(alienCol, alienRow)
25: If AlienPosition(0) = alienSector Then
26: AlienDamage(0) = 0
27: DestroyAlien (0)
28: Else
29: DestroyAlien (1)
30: AlienDamage(1) = 0
31: End If
32: hit = True
33: End If
34: x = x + xoff1
35: y = y + yoff1
36: If x < SHORTRANGEGRIDLOWX Or x > SHORTRANGEGRIDHIGHX Or _
37: y < SHORTRANGEGRIDLOWY Or y > SHORTRANGEGRIDHIGHY Then _
38: outOfBounds = True
39: Loop While hit <> True And outOfBounds <> True
40: End Sub

Because of its size, you’ll examine the TrackPhoton subroutine in detail later in
this chapter. Generally, this subroutine draws the photon torpedo tracking line

on the screen and determines when the torpedo hits something or goes off the grid.

7. Add the following DestroyAlien subroutine to the program, right after the subrou-
tine you added in the previous step. If you don’t want to type this in, you can copy
it from the Moonlord17.txt file in the Chap18\Code directory:
1: Sub DestroyAlien(alien As Integer)
2: GameStats(NUMOFALIENS) = GameStats(NUMOFALIENS) - 1
3: ShortRangeContents(PlayerSector, _
4: AlienPosition(alien)) = CLEARSEC
5: DoShortScan
6: NumAliensDestroyed = NumAliensDestroyed + 1
7: If NumAliensDestroyed = 2 Then
8: Board(PlayerSector) = CLEARSEC
9: Command1.Enabled = True
10: End If
11: End Sub

The DestroyAlien subroutine removes an alien from the sector when the player
has destroyed the alien. Line 2 subtracts an alien from the game’s total alien

count, and Lines 3 and 4 clear the contents of the short-range sector that the alien used to
occupy. Line 5 updates the short-range scanner display, and Line 6 increments the

520 Day 18

ANALYSIS

ANALYSIS

24 067231987x CH18 11/6/00 7:15 PM Page 520

Programming the Short Range Scanner Screen: The Moonlord Project 521

18

number of aliens that have been destroyed in the current sector. If that value is 2 (Line
7), the player has completely cleared the long-range sector of aliens. In that case, Line 8
clears the contents of the sector, and Line 9 enables the Bridge button so that the player
can get back to the main display screen (the long-range scanner screen).

Game Functions
Just as some of the subroutines in the game rely on other lower-level subroutines to get
work done, so do those same subroutines rely on various functions. In this section, you’ll
add the functions required by this chapter’s version of Moonlord:

1. Add the following SectorHasAliens function to the end of the program function
section. If you don’t want to type this in, you can copy it from the Moonlord18.txt
file in the Chap18\Code directory:
1: Function SectorHasAliens() As Boolean
2: Dim sector As Integer
3: Dim FoundAliens As Boolean
4: FoundAliens = False
5: For sector = 0 To SHORTRANGESECTORCOUNT - 1
6: If ShortRangeContents(PlayerSector, sector) = ALIENSSEC _
7: Then FoundAliens = True
8: Next
9: SectorHasAliens = FoundAliens
10: End Function

When the program needs to know whether a short-range sector contains an alien
ship, it can call the SectorHasAliens function. In this function, Line 4 initializes

the FoundAliens flag to False. The function will return the value of this flag. Lines 5 to
8 are a For loop that iterates through each of the short-range sectors. If any of these sec-
tors contains an alien ship (Line 6), Line 7 sets the FoundAliens flag to True. Line 9
returns the value of the flag to the calling subroutine.

2. Add the following GetVector function to the end of the program function section.
If you don’t want to type this in, you can copy it from the Moonlord19.txt file in
the Chap18\Code directory:
1: Function GetVector() As Integer
2: Dim result As Integer
3: On Local Error GoTo InputError
4: Do
5: result = InputBox(“Enter Photon Vector (0-7):”)
6: Loop While result < 0 Or result > 7
7: GetVector = result
8: Exit Function
9: InputError:
10: GetVector = -1
11: End Function

ANALYSIS

24 067231987x CH18 11/6/00 7:15 PM Page 521

The GetVector function displays an input box (Line 5) in which the player can
enter the vector for a photon torpedo shot. Thanks to the Do loop, the input box

keeps appearing until the player enters a valid value or clicks the Cancel button. The
Cancel button causes an error, which sends program execution to Line 10, which returns
an error value to the calling subroutine. Line 7 returns the vector value if no error occurs.

3. Add the following CheckShortRangeClick function to the end of the program
function section. If you don’t want to type this in, you can copy it from the
Moonlord20.txt file in the Chap18\Code directory:
1: Function CheckShortRangeClick(x As Single, _
2: y As Single) As Boolean
3: If x > SHORTRANGEGRIDLOWX And _
4: x < SHORTRANGEGRIDHIGHX And _
5: y > SHORTRANGEGRIDLOWY And _
6: y < SHORTRANGEGRIDHIGHY Then
7: CheckShortRangeClick = True
8: Else
9: CheckShortRangeClick = False
10: End If
11: End Function

The CheckShortRangeClick function returns True if the mouse coordinates
passed as the x and y parameters are within the boundaries of the short-range

grid. Otherwise, the function returns False.

4. Add the following CheckShortCruise function to the end of the program function
section. If you don’t want to type this in, you can copy it from the Moonlord21.txt
file in the Chap18\Code directory:
1: Function CheckShortCruise(NewPlayerColumn, _
2: NewPlayerRow) As Boolean
3: Dim PlayerColumn As Integer, PlayerRow As Integer
4: Dim CruiseOK As Boolean
5: Dim DeltaX As Integer, DeltaY As Integer
6: Dim OffsetX As Integer, OffsetY As Integer
7: Dim column As Integer, row As Integer
8: Dim sector As Integer, SectorContents As Integer
9: Dim response As Integer
10: PlayerColumn = _
11: ShortRangeSector2Column(ShortRangePlayerSector)
12: PlayerRow = _
13: ShortRangeSector2Row(ShortRangePlayerSector)
14: CruiseOK = True
15: DeltaX = Abs(PlayerColumn - NewPlayerColumn)
16: DeltaY = Abs(PlayerRow - NewPlayerRow)
17: If DeltaX = 0 And DeltaY > 0 Then
18: OffsetX = 0
19: If NewPlayerRow < PlayerRow Then

522 Day 18

ANALYSIS

ANALYSIS

24 067231987x CH18 11/6/00 7:15 PM Page 522

Programming the Short Range Scanner Screen: The Moonlord Project 523

18

20: OffsetY = -1
21: Else
22: OffsetY = 1
23: End If
24: ElseIf DeltaX > 0 And DeltaY = 0 Then
25: OffsetY = 0
26: If NewPlayerColumn < PlayerColumn Then
27: OffsetX = -1
28: Else
29: OffsetX = 1
30: End If
31: Else
32: CruiseOK = False
33: End If
34: If CruiseOK Then
35: column = PlayerColumn + OffsetX
36: row = PlayerRow + OffsetY
37: sector = ColumnRow2ShortRangeSector(column, row)
38: While column <> NewPlayerColumn Or row <> NewPlayerRow
39: SectorContents = _
40: ShortRangeContents(PlayerSector, sector)
41: If SectorContents = ALIENSSEC Or _
42: SectorContents = BASESEC Or _
43: SectorContents = SUNSEC Then CruiseOK = False
44: column = column + OffsetX
45: row = row + OffsetY
46: sector = ColumnRow2ShortRangeSector(column, row)
47: Wend
48: End If
49: SectorContents = _
50: ShortRangeContents(PlayerSector, sector)
51: If SectorContents = SUNSEC Then
52: CruiseOK = False
53: ElseIf SectorContents = ALIENSSEC Then
54: response = _
55: MsgBox(“Are you sure you want to ram that ship?”, _
56: vbYesNo)
57: If response = vbNo Then CruiseOK = False
58: End If
59: CheckShortCruise = CruiseOK
60: End Function

Because of its size, you’ll examine the CheckShortCruise function in detail later
in this chapter. Generally, this function determines whether the player is able to

cruise to the short-range sector he has selected.

5. Add the following CalculateDamage function to the end of the program function
section. If you don’t want to type this in, you can copy it from the Moonlord22.txt
file in the Chap18\Code directory:

ANALYSIS

24 067231987x CH18 11/6/00 7:15 PM Page 523

1: Function CalculateDamage(power As Integer, _
2: alien As Integer) As Integer
3: Dim div As Double
4: Dim ASquared As Double, BSquared As Double
5: Dim damage As Integer
6: Dim ShipColumn As Integer, ShipRow As Integer
7: Dim alienColumn As Integer, alienRow As Integer
8: Dim distance As Integer
9: ShipRow = ShortRangePlayerSector \ 6
10: ShipColumn = ShortRangePlayerSector - ShipRow * 6
11: alienRow = AlienPosition(alien) \ 6
12: alienColumn = AlienPosition(alien) - alienRow * 6
13: ASquared = (ShipRow - alienRow) * (ShipRow - alienRow)
14: BSquared = (ShipColumn - alienColumn) * _
15: (ShipColumn - alienColumn)
16: distance = Int(Sqr(ASquared + BSquared))
17: If NumAliensDestroyed = 1 Then
18: div = 3#
19: Else
20: div = 6#
21: End If
22: damage = Int(power / div / distance + 0.5)
23: CalculateDamage = damage
24: End Function

The CalculateDamage function figures out how much damage a phaser shot does
to an alien ship. The damage depends on how much power is applied to the phas-

er and how far the alien ship is from the player’s ship. Lines 9 to 12 get the columns and
rows where the two ships are located, and Lines 13 to 16 use a little trigonometry to cal-
culate the distance between the phaser and the alien ship. Because the phaser does more
damage to one ship than it does to two, Lines 17 to 21 select a divisor for modifying the
damage based on the number of alien ships that are absorbing power from the phaser
shot. Finally, Line 22 calculates the damage, and Line 23 returns the damage value to the
calling subroutine.

6. Add the following functions to the end of the program function section. If you
don’t want to type this in, you can copy it from the Moonlord23.txt file in the
Chap18\Code directory:
1: Function ShortRangeSector2Column(sector As Integer) As Integer
2: ShortRangeSector2Column = sector Mod SHORTRANGECOLUMNCOUNT
3: End Function
4:
5: Function ShortRangeSector2Row(sector As Integer) As Integer
6: ShortRangeSector2Row = sector \ SHORTRANGECOLUMNCOUNT
7: End Function
8:
9: Function X2ShortRangeColumn(x As Single) As Integer

524 Day 18

ANALYSIS

24 067231987x CH18 11/6/00 7:15 PM Page 524

Programming the Short Range Scanner Screen: The Moonlord Project 525

18

10: X2ShortRangeColumn = _
11: (x + 1 - SHORTRANGEOFFSETX) \ SHORTRANGESECTORSIZEX
12: End Function
13:
14: Function Y2ShortRangeRow(y As Single) As Integer
15: Y2ShortRangeRow = _
16: (y + 1 - SHORTRANGEOFFSETY) \ SHORTRANGESECTORSIZEY
17: End Function
18:
19: Function ColumnRow2ShortRangeSector(column As Integer, _
20: row As Integer) As Integer
21: ColumnRow2ShortRangeSector = row * _
22: SHORTRANGECOLUMNCOUNT + column
23: End Function
24:
25: Function ShortRangeSector2X(sector As Integer) As Integer
26: Dim col As Integer
27: col = sector Mod SHORTRANGECOLUMNCOUNT
28: ShortRangeSector2X = col * SHORTRANGESECTORSIZEX + _
29: SHORTRANGEOFFSETX
30: End Function
31:
32: Function ShortRangeSector2Y(sector As Integer) As Integer
33: Dim row As Integer
34: row = sector \ SHORTRANGECOLUMNCOUNT
35: ShortRangeSector2Y = row * SHORTRANGESECTORSIZEY + _
36: SHORTRANGEOFFSETY
37: End Function

These subroutines simply convert between short-range sectors, short-range X and
Y coordinates, and short-range columns and rows.

Odds and Ends
Only a couple of things left to do, and then this chapter’s version of Moonlord will be
complete. First, you need to add the lines shown in Listing 18.1 to the
picScreen_MouseDown event procedure. Place the new lines right after the SetButtons
line.

LISTING 18.1 Code for picScreen_MouseDown

1: ElseIf (GameMode = SHORTCRUISE Or GameMode = BATTLE) _
2: And GameOver = GAMESTILLGOING Then
3: Command2.Enabled = False
4: DoShortCruise x, y
5: If GameOver = GAMESTILLGOING Then
6: GameMode = SHORTSCANSCREEN
7: SetButtons
8: End If

ANALYSIS

24 067231987x CH18 11/6/00 7:15 PM Page 525

These lines handle mouse clicks on the short-range scanner screen when the
game is in SHORTCRUISE or BATTLE mode. Line 1 checks the game mode, and

Line 2 checks that the game is still in progress. Line 3 disables the Cruise button, and
Line 4 calls DoShortCruise, the subroutine that performs the cruise on the short-range
scanner screen. Finally, if the game hasn’t ended as a result of the cruise (Line 5), Lines
6 and 7 reset the game mode and buttons.

Next, you need to add the short-range scanner screen’s image to the program. To do this,
add a new form to the project, and then set the form’s Name property to frmScanScreen
and the Picture property to ScanScrn.bmp. You can find this bitmap in the
Images\Moonlord directory of this book’s CD-ROM.

Finally, because the program is going to be loading the new form, it also has to unload it.
Add the following line to the Form_Unload event procedure of the main form (Form1):

Unload frmScanScreen

You can now run Moonlord (after saving your work, of course) and try out your newly
functional short-range scanner screen.

Understanding the Source Code
Much of the source code you’ve added to the project in this chapter was described in the
construction steps. However, there are a few large subroutines and functions that need
more space to explain. In this section, you’ll examine those subroutines and functions in
detail.

The DoShortCruise Subroutine
The DoShortCruise subroutine enables the player to move his ship on the short-range
scanner screen. This subroutine must first check whether the player’s mouse click was
within the short-range grid’s boundaries:

clickIsValid = CheckShortRangeClick(MouseX, MouseY)

If the click is okay, the subroutine calculates the row and column to which the player
wants to move in the grid:

newPlayerColumn = X2ShortRangeColumn(MouseX)
NewPlayerRow = Y2ShortRangeRow(MouseY)

The function CheckShortCruise checks whether the move the player has requested is
legal:

cruiseOK = CheckShortCruise(newPlayerColumn, NewPlayerRow)

526 Day 18

ANALYSIS

24 067231987x CH18 11/6/00 7:15 PM Page 526

Programming the Short Range Scanner Screen: The Moonlord Project 527

18

If the move is legal, the subroutine calculates the sector number to which the player
wants to move and gets the contents (sun, alien, base, or starship) of that sector:

targetSector = _
ColumnRow2ShortRangeSector(newPlayerColumn, _
NewPlayerRow)

sectorContents = ShortRangeContents(PlayerSector, _
targetSector)

Next, the program saves the player’s old location in the grid and sets the new one:

OldShortRangePlayerSector = ShortRangePlayerSector
ShortRangePlayerSector = targetSector

If the target sector contains a starbase or an alien ship, the program must call the
DockWithBase or DoRam subroutines:

If sectorContents = BASESEC Then
DockWithBase

ElseIf sectorContents = ALIENSSEC Then
DoRam (OldShortRangePlayerSector)

If the destination sector is empty, the program moves the player to the sector and updates
the short-range scanner display:

ShortRangeContents(PlayerSector, _
OldShortRangePlayerSector) = CLEARSEC

ShortRangeContents(PlayerSector, _
ShortRangePlayerSector) = STARSHIPSEC

DoShortScan

If there are aliens in the sector, they now get their chance to attack:

aliensPresent = SectorHasAliens
If aliensPresent Then AliensAttack

Then the game mode is set back to SHORTSCANSCREEN:

GameMode = SHORTSCANSCREEN

Finally, if the sector where the player is trying to move isn’t a valid sector, the program
tells the player so:

38: MsgBox (“Can’t cruise to that location.”)
39: GameMode = SHORTSCANSCREEN

The DoRam Subroutine
The DoRam subroutine enables the player to ram an alien ship. In The subroutine, the pro-
gram first calculates the player’s column and row in the grid:

column = ShortRangeSector2Column(OldShortRangePlayerSector)
row = ShortRangeSector2Row(OldShortRangePlayerSector)

24 067231987x CH18 11/6/00 7:15 PM Page 527

Then, the program erases the image of the player’s ship from the grid:

picScreen.PaintPicture imgClear.Picture, _
SHORTRANGEOFFSETX + column * SHORTRANGESECTORSIZEX, _
SHORTRANGEOFFSETY + row * SHORTRANGESECTORSIZEY

Whenever the player chooses to ram an alien ship, there’s a 1-in-10 chance that the play-
er’s ship will be destroyed:

If (Int(10 * Rnd) = 0) Then
GameOver = GAMELOST
EndGame (GameOver)

If the ship survives the collision, it still sustains damage. How much damage the ship
receives depends on a roll of the virtual dice. The program gets the number of systems
damaged like this:

NumberOfSystemsDamaged = Int(4 * Rnd) + 1

A For loop then applies the damage by calling the DoSystemDamage subroutine:

For i = 0 To NumberOfSystemsDamaged - 1
DoSystemDamage

Next I

Because a collision always destroys the alien ship (unless the collision destroys the play-
er’s ship, of course, in which case the game is over), an alien must be removed from the
game:

CalculateStats NUMOFALIENS, -1

The player’s starship is moved to the sector that used to hold the alien ship:

ShortRangeContents(PlayerSector, _
ShortRangePlayerSector) = STARSHIPSEC

ShortRangeContents(PlayerSector, _
OldPlayerSector) = CLEARSEC

The program then increments the number of aliens that have been destroyed in the cur-
rent sector. If both aliens have been destroyed, the program enables the Bridge button
again and clears the sector of aliens:

NumAliensDestroyed = NumAliensDestroyed + 1
If NumAliensDestroyed = 2 Then
Command1.Enabled = True
NumAliensDestroyed = 0
Board(PlayerSector) = CLEARSEC

End If

528 Day 18

24 067231987x CH18 11/6/00 7:15 PM Page 528

Programming the Short Range Scanner Screen: The Moonlord Project 529

18

Finally, the program updates the short-range scanner display and the buttons, and then it
checks whether the game is over:

DoShortScan
SetScanButtons
CheckGame

The TrackPhoton Subroutine
When the player fires a photon torpedo, the program must draw the torpedo on the
screen and determine whether it hits anything or just goes off the grid. The TrackPhoton
subroutine handles this task. First, TrackPhoton calculates the vectors for photon torpedo
movement. The xoff1 and yoff1 vectors are values that the program adds to the photon
torpedo’s current position in order to calculate its next position:

xoff1 = VectorsX1(Vector) * PHOTONSPEED
yoff1 = VectorsY1(Vector) * PHOTONSPEED

Next, TrackPhoton calculates the starting pixel location for the photon:

x = ShortRangeSector2X(ShortRangePlayerSector) + 15
y = ShortRangeSector2Y(ShortRangePlayerSector) + 14

The program then starts a Do loop that continues until the photon torpedo either hits
something or travels off the short-range scanner grid. Inside the loop, the program gets
the color of the pixel where the photon torpedo is about to be drawn:

color = picScreen.Point(x, y)

Then the photon torpedo is drawn at the same location:

picScreen.PSet (x, y), vbWhite
Delay 0.05

The next step is to check the old color of the pixel where the photon torpedo is located to
see whether the torpedo has hit something. If the torpedo hits a sun, the loop ends with
no further processing required:

If color = SUNYELLOW Then hit = True

The program then checks whether the photon torpedo hit an alien ship:

If color = ALIENBLUE Then

If the photon torpedo has hit an alien, there’s a bit of work to be done. First, the program
calculates the alien ship’s sector:

alienCol = X2ShortRangeColumn(x)
alienRow = Y2ShortRangeRow(y)
alienSector = ColumnRow2ShortRangeSector(alienCol, alienRow)

24 067231987x CH18 11/6/00 7:15 PM Page 529

Then, if the calculated sector is where the first alien ship is located, the alien ship is
destroyed:

If AlienPosition(0) = alienSector Then
AlienDamage(0) = 0
DestroyAlien (0)

Otherwise, it must be the second alien that was hit:

Else
DestroyAlien (1)
AlienDamage(1) = 0

End If

Setting the hit flag enables the Do loop to end:

hit = True

The program then moves the photon torpedo’s position. If the photon torpedo has gone
beyond the bounds of the grid, the outOfBounds flag is set to True:

x = x + xoff1
y = y + yoff1
If x < SHORTRANGEGRIDLOWX Or x > SHORTRANGEGRIDHIGHX Or _

y < SHORTRANGEGRIDLOWY Or y > SHORTRANGEGRIDHIGHY Then _
outOfBounds = True

Finally, the Do loop ends if either the hit or outOfBounds flags have been set to True:

Loop While hit <> True And outOfBounds <> True

The CheckShortCruise Function
The CheckShortCruise function is one of the most complicated procedures in the pro-
gram. This function must analyze the contents of the short-range scanner grid and deter-
mine whether the player is able to move to the sector that he has selected. The chosen
sector must be empty, and no other objects, such as a sun or alien ship, can block the
path to the sector. In CheckShortCruise, the program first gets the player’s column
and row:

PlayerColumn = _
ShortRangeSector2Column(ShortRangePlayerSector)

PlayerRow = _
ShortRangeSector2Row(ShortRangePlayerSector)

Then the program initializes the CruiseOK flag, which is the value that will be returned
from the function, to True:

CruiseOK = True

530 Day 18

24 067231987x CH18 11/6/00 7:15 PM Page 530

Programming the Short Range Scanner Screen: The Moonlord Project 531

18

In order to trace the path that the player’s ship would have to take to get to the selected
sector, the program must calculate the vectors for the player’s movement, as shown in
Listing 18.2.

LISTING 18.2 Calculating the Vectors

1: DeltaX = Abs(PlayerColumn - NewPlayerColumn)
2: DeltaY = Abs(PlayerRow - NewPlayerRow)
3: If DeltaX = 0 And DeltaY > 0 Then
4: OffsetX = 0
5: If NewPlayerRow < PlayerRow Then
6: OffsetY = -1
7: Else
8: OffsetY = 1
9: End If
10: ElseIf DeltaX > 0 And DeltaY = 0 Then
11: OffsetY = 0
12: If NewPlayerColumn < PlayerColumn Then
13: OffsetX = -1
14: Else
15: OffsetX = 1
16: End If
17: Else
18: CruiseOK = False
19: End If

This code calculates vectors only for vertical or horizontal movement because diagonal
movement is not allowed. If the player is trying to move diagonally, CruiseOK will be
False. If CruiseOK is still True, the program calculates the next sector in the path of the
player’s movement:

If CruiseOK Then
column = PlayerColumn + OffsetX
row = PlayerRow + OffsetY
sector = ColumnRow2ShortRangeSector(column, row)

Then a While loop checks each sector in the path:

While column <> NewPlayerColumn Or row <> NewPlayerRow

Inside the loop, the program gets the contents of the sector currently being checked:

SectorContents = _
ShortRangeContents(PlayerSector, sector)

24 067231987x CH18 11/6/00 7:15 PM Page 531

If that sector contains an object, the path to the destination sector is blocked:

If SectorContents = ALIENSSEC Or _
SectorContents = BASESEC Or _
SectorContents = SUNSEC Then CruiseOK = False

The loop then calculates the next sector in the path to the destination sector and contin-
ues for another iteration:

column = column + OffsetX
row = row + OffsetY
sector = ColumnRow2ShortRangeSector(column, row)

Wend

After the loop, the program checks the contents of the destination short-range sector:

SectorContents = _
ShortRangeContents(PlayerSector, sector)

If the destination sector contains a sun, the move is disallowed:

If SectorContents = SUNSEC Then
CruiseOK = False

However, if the destination sector contains an alien ship, the player probably wants to
ram the ship. Just to make sure, the program asks whether that’s the player’s intention:

ElseIf SectorContents = ALIENSSEC Then
response = _

MsgBox(“Are you sure you want to ram that ship?”, _
vbYesNo)

If response = vbNo Then CruiseOK = False
End If

Finally, the function passes the value stored in the CruiseOK flag back to the calling sub-
routine:

CheckShortCruise = CruiseOK

Summary
Moonlord now has two functional screens, the main screen and the scanner screen. You
can actually play the game a bit at this point, but you have no way of repairing damaged
starship systems. This can quickly bring your game to a screeching halt. In Day 19,
you’ll take care of this problem when you program the Status screen, the last of
Moonlord’s three displays.

532 Day 18

24 067231987x CH18 11/6/00 7:15 PM Page 532

Programming the Short Range Scanner Screen: The Moonlord Project 533

18

Workshop
The workshop includes quiz questions to help gauge your grasp of the material. You’ll
find the answers to this quiz in Appendix A. Even if you feel that you totally understand
the concepts presented here, you should work through the quiz anyway.

Quiz
1. What does the program need to do with the four command buttons when the player

switches from the main screen to the scanner screen and vice versa?

2. Explain the SHORTRANGESCAN and SHORTCRUISE game modes.

3. In general, what does the DoShortScan subroutine do?

4. Which subroutine must be called after every command the player issues on the
sort-range scanner screen when aliens are present? Why?

5. How does the program determine how many ship systems are damaged after the
player rams an alien ship?

6. In general, what does the SetUpAliens subroutine do?

7. How does the ShowBoard subroutine, which redraws sectors on the main screen,
know which sectors to draw?

8. Why does the TrackPhoton subroutine get the color of a pixel before drawing the
photon torpedo on the pixel?

9. In general, what does the CheckShortCruise function do?

Exercise
1. Compile your new version of Moonlord and ensure that it runs correctly. When you

run the program, you should be able to switch between the main and scanner
screens. When you switch between the screens, the buttons’ captions should change
to the commands appropriate for each screen. Test the buttons and all commands
on the short-range scanner screen, including cruising, shooting phasers and photon
torpedoes, ramming alien ships, and docking with a starbase.

24 067231987x CH18 11/6/00 7:15 PM Page 533

24 067231987x CH18 11/6/00 7:15 PM Page 534

DAY 19

WEEK 3

Programming the Status
Screen: The Moonlord
Project

Today, you’ll program the status screen—the last screen in the game. Because
there’s not much for the player to do on this screen except view statistics and
repair systems, this lesson will be on the short side. Consider this a reward for
all your hard work up to this point!

Today you’ll do the following:

• Update the button source code for the status screen

• Add the subroutines and functions that implement the STATSCREEN game
mode

• Create a form for holding the status screen image

25 067231987x CH19 11/6/00 7:12 PM Page 535

Updating the Button Code
When the player switches between the main screen and the short-range scan screen, the
four command buttons get new captions and trigger different commands. The same is
true when the player switches to the status screen. In this section, you’ll add the source
code needed to handle the buttons in the STATSCREEN game mode:

1. Add the following code to the Command1_Click event procedure right after the
ShowBoard line that’s already there:
ElseIf GameMode = STATSCREEN Then
picScreen.Picture = frmMainScreen.Picture
GameMode = MAINSCREEN
SetButtons
ShowBoard

These lines enable the Command1 button to return the program to the main screen
and the MAINSCREEN game mode.

2. Add the following code to the Command2_Click event procedure right after the
Form1.MousePointer = 2 line that’s already there:
ElseIf GameMode = STATSCREEN Then
DoRepair

These lines enable the player to click the Command2 button to initiate repairs to ship
systems.

3. Add the following code to the SetButtons subroutine right after the
SetScanButtons line that’s already there:

Case STATSCREEN
SetStatusButtons

4. Add the following SetStatusButtons subroutine shown in Listing 19.1 to the pro-
gram right after the SetShortCruiseButtons subroutine that’s already there:

1: Sub SetStatusButtons()
2: Dim NeedRepairs As Boolean
3: Command1.Picture = frmButtons.imgBridgeBut.Picture
4: Command2.Picture = frmButtons.imgRepairBut.Picture
5: Command3.Visible = False
6: Command4.Visible = False
7: Command1.Enabled = True
8: NeedRepairs = CheckSystems
9: Command2.Enabled = NeedRepairs
10: End Sub

Lines 3 and 4 copy the correct graphic captions to the first two buttons, and
Lines 5 and 6 remove the second two buttons from the screen. Line 7 enables the

Command1 button, and Lines 8 and 9 enable or disable the Command2 button, depend-
ing on whether there are any repairs to be made to the ship’s systems.

536 Day 19

ANALYSIS

25 067231987x CH19 11/6/00 7:12 PM Page 536

Programming the Status Screen: The Moonlord Project 537

19

Adding Subroutines
Now you need to add a few more subroutines to the game. These subroutines manage
most of the work needed to implement the commands that the player can issue on the
status screen:

1. Replace the currently existing DoStatus subroutine with this one:
1: Sub DoStatus()
2: GameMode = STATSCREEN
3: picScreen.Picture = frmStatusScreen.Picture
4: SetButtons
5: ShowStatusValues
6: End Sub

This subroutine sets up the game for the STATSCREEN mode by setting the mode
(Line 2), copying the status screen image to the main form (Line 3), setting the

buttons for the mode (Line 4), and displaying the status values on the screen
(Line 5).

2. Add the following ShowStatusValues subroutine to the program, right after the
subroutine you added in the previous step. You can either type in the code or copy
it from the Moonlord1.txt file in the Chap19\Code directory on this book’s
CD-ROM:
1: Sub ShowStatusValues()
2: Dim i As Integer
3: picScreen.FillColor = RGB(0, 0, 0)
4: picScreen.FillStyle = 0
5: For i = 0 To 5
6: picScreen.Circle (277, 65 + i * 27), 8, RGB(0, 0, 0)
7: picScreen.CurrentX = 270
8: picScreen.CurrentY = 58 + i * 27
9: picScreen.Print SystemStats(i)
10: Next i
11: For i = 0 To 3
12: picScreen.Circle (468, 117 + i * 27), 8, RGB(0, 0, 0)
13: picScreen.Circle (480, 117 + i * 27), 8, RGB(0, 0, 0)
14: picScreen.CurrentX = 460
15: picScreen.CurrentY = 111 + i * 27
16: picScreen.Print GameStats(i)
17: Next i
18: End Sub

The ShowStatusValues subroutine prints the values for each of the game’s sys-
tems and game statistics. Lines 2 and 3 set the form’s fill style and color in

preparation for the calls to the Circle method that will erase the existing values on
the screen. The loop in Lines 5 to 10 prints the status of the ship’s systems, and
Lines 11 to 17 print the game statistics.

ANALYSIS

ANALYSIS

25 067231987x CH19 11/6/00 7:12 PM Page 537

3. Add the following DoRepair subroutine to the program, right after the subroutine
you added in the previous step. You can either type in the code or copy it from the
Moonlord2.txt file in the Chap19\Code directory on this book’s CD-ROM:
1: Sub DoRepair()
2: Dim stat As Integer
3: GameStats(TIMESTAT) = GameStats(TIMESTAT) - 1
4: For stat = 0 To 5
5: If SystemStats(stat) > 0 Then _
6: SystemStats(stat) = SystemStats(stat) - 1
7: Next stat
8: ShowStatusValues
9: SetButtons
10: End Sub

Each time the player clicks the Repair button on the status screen, the program
calls the DoRepair subroutine to apply one day’s worth of repairs to the ship’s

systems. Line 3 subtracts a day from the time remaining, and the loop in Lines 4 to
7 subtracts a day from the time needed to repair each of the ship’s six systems.
Finally, Lines 8 and 9 update the display and the buttons.

Adding a Function
For this part of the Moonlord project, you need to add only a single CheckSystems func-
tion. Add this function anywhere in the function section of the program:

1: Function CheckSystems() As Boolean
2: Dim i As Integer
3: Dim damaged As Boolean
4: For i = 0 To 5
5: If SystemStats(i) > 0 Then damaged = True
6: Next i
7: CheckSystems = damaged
8: End Function

This function returns True if any of the ship’s systems are damaged. The loop in
Lines 4 to 6 checks each of the six systems for a repair time of one day or

longer.

Odds and Ends
Only a couple of small tasks left, and you’ll have completed this chapter’s version of
Moonlord, leaving you with a fully playable game. First, you need to add another form
to the project. Name the form frmStatusScreen, and set its Picture property to the
StatScrn.bmp file in the Images\Moonlord directory on this book’s CD-ROM.

538 Day 19

ANALYSIS

ANALYSIS

25 067231987x CH19 11/6/00 7:12 PM Page 538

Programming the Status Screen: The Moonlord Project 539

19

Finally, add the following line to the Form1 Form_Unload subroutine:

Unload frmStatusScreen

That’s it. Now you can save your work, run the program, and check out your new status
screen!

Summary
At this point, your Moonlord game should be fully operational. You should be able to
play the game from beginning to end, although it may not be too exciting. Because the
game is missing animation and sound, it’s a lot like pancakes without butter and syrup.
In the final two days, you’ll fix that problem by adding animation and sound to your
game.

Workshop
The workshop includes quiz questions to help gauge your grasp of the material. You’ll
find the answers to this quiz in Appendix A. Even if you feel that you totally understand
the concepts presented here, you should work through the quiz anyway.

Quiz
1. What does Moonlord need to do to set up the buttons on the status screen?

2. In general, what does the DoRepair subroutine do?

3. In general, what does the ShowStatusValues subroutine do?

4. When does the CheckSystems function return a value of True?

Exercise
1. Compile your new version of Moonlord and ensure that it runs correctly. When you

run the program, you should be able to switch between the main, scan, and status
screens. When you switch between the screens, the buttons’ captions should change
to the commands appropriate for that screen. Test the Bridge and Repair commands
on the status screen.

25 067231987x CH19 11/6/00 7:12 PM Page 539

25 067231987x CH19 11/6/00 7:12 PM Page 540

DAY 20

WEEK 3

Adding Animation: The
Moonlord Project

If you think your version of Moonlord looks a little dull at the moment, that’s
all about to change. Today you’ll spice up Moonlord by adding animation
sequences, bringing the game up to a more professional level. By the time
you’re done, you’ll have alien ships that vanish in a whirl of power, starships
that rattle when they get hit, and much more.

Specifically, today you’ll do the following:

• Add animation sequences to the main screen

• Add animation sequences to the short-range scanner screen

• Add two functions required by the new subroutines

Animation on the Main Screen
In this section, you’ll add the controls and source code needed to animate
Moonlord’s main screen (the long-range scanner screen). This animation

26 067231987x CH20 11/6/00 7:13 PM Page 541

includes a blinking marker at the player’s current location, as well as an arrival animation
when the player moves to a new sector:

1. Add a Timer control to the Form1 form.

This timer will control the blinking marker animation.

2. Add the following lines to the end of the mnuNewGame_Click event procedure:
Timer1.Interval = 250
Timer1.Enabled = True

These lines turn on the timer and set it so that it generates a timer event every 250
milliseconds (1/4 second).

3. Add the following line to the DoLongCruise subroutine, right after the
PlayerSector = ColumnRow2Sector(newPlayerColumn, NewPlayerRow) line:

Timer1.Interval = 0

This line turns off the timer so that it doesn’t interfere with the arrival animation
that’s generated by the Cruise command.

4. Add the following line to the DoLongCruise subroutine, right after the DrawSector
OldPlayerSector line:

Timer1.Interval = 250

This line turns the timer back on after the player’s cruise command is completed.

5. Add the following Timer1_Timer event procedure to the program, placing it after
the picScreen_MouseDown event procedure:
Private Sub Timer1_Timer()
AnimateMarker

End Sub

The Timer1_Timer event procedure calls the AnimateMarker subroutine every time
Windows sends the program a timer event, the frequency of which is determined
by the timer control’s Interval property.

6. Add the following AnimateMarker subroutine to the program, placing it at the end
of the existing source code. You can either type in the subroutine or copy it from
the Moonlord1.txt file in the Chap20\Moonlord\Code directory on this book’s
CD-ROM:
1: ‘==
2: ‘ Animation subroutines.
3: ‘==
4: Sub AnimateMarker()
5: Dim column, row As Integer
6: Dim pic As Picture
7: If GameMode = MAINSCREEN Or GameMode = CRUISE Then
8: column = Sector2Column(PlayerSector)

542 Day 20

26 067231987x CH20 11/6/00 7:13 PM Page 542

Adding Animation: The Moonlord Project 543

20

9: row = Sector2Row(PlayerSector)
10: If Board(PlayerSector) = ALIENSSEC Then
11: Set pic = imgOccupied.Picture
12: ElseIf Board(PlayerSector) = BASESEC Then
13: Set pic = imgCross.Picture
14: Else
15: Set pic = imgEmpty.Picture
16: End If
17: If BlinkMode = PLAYER Then
18: picScreen.PaintPicture pic, _
19: OFFSET + column * SECTORSIZE, _
20: OFFSET + row * SECTORSIZE
21: BlinkMode = OTHER
22: Else
23: picScreen.PaintPicture imgMarker.Picture, _
24: OFFSET + column * SECTORSIZE, _
25: OFFSET + row * SECTORSIZE
26: BlinkMode = PLAYER
27: End If
28: End If
29: End Sub

Line 7 checks to be sure the player is on the main screen. (You don’t want to ani-
mate the marker when the player is on some other screen.) Lines 8 and 9 get the

player’s current column and row in the grid. If the player is in a sector that contains
aliens (Line 10), Line 11 gets the appropriate image for an occupied sector. Lines 12 and
13 are similar, except they check for a starbase. If the sector is empty, Lines 14 and 15
get the empty-sector image. Lines 17 to 21 then display the image representing the sector
contents if the BlinkMode is set to PLAYER; otherwise, Lines 22 to 27 display the player’s
marker image. Alternating between these two images makes the player’s location marker
blink.

7. Add the following line to the DoLongCruise subroutine, right after the line
Timer1.Interval = 0 that’s already there:

AnimateArrival PlayerSector

This line animates the player’s arrival at the target sector of a cruise command.

8. Add the following AnimateArrival subroutine to the program, right after the
AnimateMarker subroutine you added in Step 6. You can either type in the subrou-
tine or copy it from the Moonlord2.txt file in the Chap20\Moonlord\Code directory
on this book’s CD-ROM:
1: Sub AnimateArrival(sector As Integer)
2: Dim x As Integer
3: Dim y As Integer
4: Dim i As Integer
5: x = Sector2X(sector)

ANALYSIS

26 067231987x CH20 11/6/00 7:13 PM Page 543

6: y = Sector2Y(sector)
7: For i = 0 To 7
8: picScreen.PaintPicture frmFrames.Picture, _
9: OFFSET + x * SECTORSIZE, OFFSET + y * SECTORSIZE, _
10: 20, 20, i * 21 + 1, 1, 20, 20
11: Delay 0.1
12: Next i
13: End Sub

Lines 5 and 6 get the X and Y pixel locations of the player’s destination sector,
and Lines 7 to 12 display the arrival animation one frame at a time. Line 11 con-

trols the speed of the animation.

Animation in the Short-Range Scanner
Screen

In this section, you’ll add the objects and source code needed to animate Moonlord’s
short-range scanner screen. This animation includes alien attacks, phaser firing, docking
with a base, and an alien attack damaging the player’s starship:

1. Add a new form to the project, giving it the name frmFrames and setting its
Picture property to the Frames.bmp file, which you can find in the
Images\Moonlord directory of this book’s CD-ROM. Figure 20.1 shows the com-
pleted form.

This form holds the images needed to perform several of the short-range scanner
screen’s animations. Each of the image sets contains eight animation frames. To
create the animation, the program displays the frames one at a time in rapid
succession.

2. Add the following line to the end of Form1’s Form_Unload event procedure:

Unload frmFrames

This line unloads the frmFrames form from memory when the player closes the
program.

3. Add the following line to the ShootPhaser subroutine, right after the If Power >
0 Then line:

AnimatePhaser

This line performs the phaser animation when the player clicks the Phaser button
and selects a power setting greater than 0.

544 Day 20

ANALYSIS

26 067231987x CH20 11/6/00 7:13 PM Page 544

Adding Animation: The Moonlord Project 545

20

FIGURE 20.1
The frmFrames form.

4. Add the following AnimatePhaser subroutine to the program, right after the
AnimateArrival subroutine you placed there previously. You can either type in the
subroutine or copy it from the Moonlord3.txt file in the Chap20\Moonlord\Code
directory on this book’s CD-ROM:
1: Sub AnimatePhaser()
2: Dim column, row As Integer
3: Dim i As Integer
4: column = ShortRangeSector2Column(ShortRangePlayerSector)
5: row = ShortRangeSector2Row(ShortRangePlayerSector)
6: For i = 0 To 9
7: picScreen.PaintPicture imgPhaser.Picture, _
8: SHORTRANGEOFFSETX + column * SHORTRANGESECTORSIZEX, _
9: SHORTRANGEOFFSETY + row * SHORTRANGESECTORSIZEY
10: Delay 0.05
11: picScreen.PaintPicture imgStarship.Picture, _
12: SHORTRANGEOFFSETX + column * SHORTRANGESECTORSIZEX, _
13: SHORTRANGEOFFSETY + row * SHORTRANGESECTORSIZEY
14: Delay 0.05
15: Next i
16: End Sub

The AnimatePhaser subroutine makes the player’s ship blink. Lines 4 and 5 get
the player’s row and column in the grid. Then, in a For loop, Lines 6 to 15 alter-

nate between showing a glowing starship image and the regular starship image.

ANALYSIS

26 067231987x CH20 11/6/00 7:13 PM Page 545

5. Add the following line to the DestroyAlien subroutine, right after the
GameStats(NUMOFALIENS) = GameStats(NUMOFALIENS) - 1 line:

AnimateAlienDestruction (alien)

This line animates the destruction of an alien ship.

6. Add the following AnimateAlienDestruction subroutine to the program, right
after the AnimatePhaser subroutine you placed there in Step 4. You can either type
in the subroutine or copy it from the Moonlord4.txt file in the
Chap20\Moonlord\Code directory on this book’s CD-ROM:
1: Sub AnimateAlienDestruction(alien As Integer)
2: Dim alienRow As Integer
3: Dim alienColumn As Integer
4: Dim alienY As Integer
5: Dim alienX As Integer
6: Dim i As Integer
7: alienRow = AlienPosition(alien) \ 6
8 alienColumn = AlienPosition(alien) - alienRow * 6
9: alienY = ShortRangeRow2Y(alienRow)
10: alienX = ShortRangeColumn2X(alienColumn)
11: For i = 0 To 7
12: picScreen.PaintPicture frmFrames.Picture, _
13: alienX + 1, alienY + 1, _
14: 34, 31, i * 35 + 1, 22, 34, 31
15: Delay 0.1
16: Next i
17: End Sub

To animate the destruction of an alien ship, the program needs to display each of
the eight animation frames, one after the other, in rapid succession. Lines 7 to 10

calculate the pixel coordinates at which the alien ship is located. The For loop in Lines
11 to 16 displays each of the animation sequence’s eight frames. Notice how the program
uses the loop variable i to calculate the location of the next image to display.

7. Add the following line to the DockWithBase subroutine, right after the Dim column
As Integer, row As Integer line:

AnimateDocking

This line animates the starship docking procedure.

8. Add the following AnimateDocking subroutine to the program, right after the
AnimateAlienDestruction subroutine you placed there in Step 6. You can either
type in the subroutine or copy it from the Moonlord5.txt file in the
Chap20\Moonlord\Code directory on this book’s CD-ROM:
1: Sub AnimateDocking()
2: Dim column As Integer
3: Dim row As Integer

546 Day 20

ANALYSIS

26 067231987x CH20 11/6/00 7:13 PM Page 546

Adding Animation: The Moonlord Project 547

20

4: Dim i As Integer
5: column = ShortRangeSector2Column(OldShortRangePlayerSector)
6: row = ShortRangeSector2Row(OldShortRangePlayerSector)
7: picScreen.PaintPicture imgClear.Picture, _
8: SHORTRANGEOFFSETX + column * SHORTRANGESECTORSIZEX, _
9: SHORTRANGEOFFSETY + row * SHORTRANGESECTORSIZEY
10: column = ShortRangeSector2Column(ShortRangePlayerSector)
11: row = ShortRangeSector2Row(ShortRangePlayerSector)
12: For i = 1 To 10
13: picScreen.PaintPicture imgStarship.Picture, _
14: SHORTRANGEOFFSETX + column * SHORTRANGESECTORSIZEX, _
15: SHORTRANGEOFFSETY + row * SHORTRANGESECTORSIZEY
16: Delay 0.25
17: picScreen.PaintPicture imgBase.Picture, _
18: SHORTRANGEOFFSETX + column * SHORTRANGESECTORSIZEX, _
19: SHORTRANGEOFFSETY + row * SHORTRANGESECTORSIZEY
20: Delay 0.25
21: Next i
22: ShortRangePlayerSector = OldShortRangePlayerSector
23: column = ShortRangeSector2Column(ShortRangePlayerSector)
24: row = ShortRangeSector2Row(ShortRangePlayerSector)
25: ShortRangeContents(PlayerSector, _
26: ShortRangePlayerSector) = STARSHIPSEC
27: picScreen.PaintPicture imgStarship.Picture, _
28: SHORTRANGEOFFSETX + column * SHORTRANGESECTORSIZEX, _
29: SHORTRANGEOFFSETY + row * SHORTRANGESECTORSIZEY
30: End Sub

The docking animation is similar to the phaser animation (although a little
trickier). Lines 5 to 9 erase the player’s ship from its current sector, and Lines 10

and 11 get the column and row of the target sector (the one containing the starbase).
Lines 12 to 21 blink the player’s ship the same way the program did in the phaser anima-
tion. Finally, Lines 22 to 29 return the player’s ship to its original sector.

9. Add the following line to the AliensAttack subroutine, right after the If
AlienDamage(i) > 0 Then line:

AnimateAlienShots i

This line animates the alien ships when they fire on the player’s starship.

10. Add the following AnimateAlienShots subroutine to the program, right after the
AnimateDocking subroutine you placed there in Step 8. You can either type in the
subroutine or copy it from the Moonlord6.txt file in the Chap20\Moonlord\Code
directory on this book’s CD-ROM:
1: Sub AnimateAlienShots(alien As Integer)
2: Dim alienRow As Integer
3: Dim alienColumn As Integer
4: Dim alienY As Integer

ANALYSIS

26 067231987x CH20 11/6/00 7:13 PM Page 547

5: Dim alienX As Integer
6: Dim i As Integer
7: alienRow = AlienPosition(alien) \ 6
8: alienColumn = AlienPosition(alien) - alienRow * 6
9: alienY = ShortRangeRow2Y(alienRow)
10: alienX = ShortRangeColumn2X(alienColumn)
11: For i = 0 To 7
12: picScreen.PaintPicture imgAlienShoot.Picture, _
13: alienX, alienY
14: Delay 0.05
15: picScreen.PaintPicture imgAlien.Picture, _
16: alienX, alienY
17: Delay 0.05
18: Next i
19: End Sub

The firing alien is another blinking animation. Lines 7 to 10 get the alien ship’s
pixel coordinates, and the loop in lines 11 to 18 blinks the alien ship.

11. Add the following line to the DoSystemDamage subroutine, right after the Dim
DamageAmount As Integer line:

AnimateDamage

This line animates the player’s ship when an alien’s shot damages it.

12. Add the following AnimateDamage subroutine to the program, right after the
AnimateAlienShots subroutine you placed there in Step 10. You can either type in
the subroutine or copy it from the Moonlord7.txt file in the
Chap20\Moonlord\Code directory on this book’s CD-ROM:
1: Sub AnimateDamage()
2: Dim column, row As Integer
3: Dim i As Integer
4: Dim playerX As Integer
5: Dim playerY As Integer
6: column = ShortRangeSector2Column(ShortRangePlayerSector)
7: row = ShortRangeSector2Row(ShortRangePlayerSector)
8: playerX = SHORTRANGEOFFSETX + column * SHORTRANGESECTORSIZEX
9: playerY = SHORTRANGEOFFSETY + row * SHORTRANGESECTORSIZEY
10: For i = 0 To 7
11: picScreen.PaintPicture frmFrames.Picture, _
12: playerX + 1, playerY + 1, 34, 31, _
13: i * 35 + 1, 54, 34, 31
14: Delay 0.05
15: Next i
16: picScreen.PaintPicture imgStarship.Picture, _
17: playerX, playerY
18: Delay 1#
19: Command3.Enabled = True
20: End Sub

548 Day 20

ANALYSIS

26 067231987x CH20 11/6/00 7:13 PM Page 548

Adding Animation: The Moonlord Project 549

20

The AnimateDamage subroutine shakes the player’s ship when an alien’s shot has
hit it. This subroutine works much like AnimateAlienDestruction, except that it

uses a different set of animation frames. Specifically, Lines 6 to 9 calculate the
pixel coordinates of the player’s ship, and Lines 10 to 15 display the eight anima-
tion frames, one after the other. Finally, Line 16 restores the normal ship image to
the sector.

Adding New Functions
In this section, you’ll add two new functions required by a couple of the subroutines you
just added to the program. You can either type in the functions (see Listing 20.1) or copy
them from the Moonlord8.txt file in the Chap20\Moonlord\Code directory on this book’s
CD-ROM. Place the functions at the end of the program’s Game Functions section.

LISTING 20.1 More Moonlord Functions

1: Function ShortRangeColumn2X(col As Integer) As Integer
2: ShortRangeColumn2X = _
3: col * SHORTRANGESECTORSIZEX + SHORTRANGEOFFSETX
4: End Function
5:
6: Function ShortRangeRow2Y(row As Integer) As Integer
7: ShortRangeRow2Y = _
8: row * SHORTRANGESECTORSIZEY + SHORTRANGEOFFSETY
9: End Function

These functions simply convert between short-range scanner columns and rows
and pixel screen coordinates.

Today’s version of Moonlord is now complete. Make sure to save your work, giving the
frmFrames form the default name of frmFrames.frm.

Summary
Moonlord is really shaping up, now that you’ve added some animation sequences to the
mix. It’s surprising how much of a difference these simple animations can make to the
game. Playing Moonlord is a lot more fun now. And it’ll be even more fun after you add
the sound effects, which you’ll do tomorrow.

ANALYSIS

ANALYSIS

26 067231987x CH20 11/6/00 7:13 PM Page 549

Workshop
The workshop includes quiz questions to help gauge your grasp of the material. You’ll
find the answers to this quiz in Appendix A. Even if you feel that you totally understand
the concepts presented here, you should work through the quiz anyway.

Quiz
1. What’s the purpose of Moonlord’s timer control?

2. Explain, in general, how the AnimateMarker subroutine works.

3. Several of Moonlord’s animation sequences are made up of eight different images.
Explain how the program uses those eight images to produce an animation.

4. How are the phaser, docking, and alien-shooting animations similar?

Exercise
1. Compile your new version of Moonlord and ensure that it runs correctly. When you

run the program, try out all of the commands that are associated with animation
sequences. These sequences are the blinking marker, long-range cruise, destroying
an alien, shooting the phaser, an alien firing on your ship, getting hit by an alien
shot, and docking with a starbase.

550 Day 20

26 067231987x CH20 11/6/00 7:13 PM Page 550

DAY 21

WEEK 3

Adding Sound: The
Moonlord Project

The last step toward making Moonlord a professional-quality program is to add
sound effects. Just as adding animation helped bring the program to life, sound
effects raise the gaming experience to a whole new level. Remember that most
of the sensory input that humans rely on comes from our eyes and ears. The
more you stimulate these important senses, the better your game program
will be.

Because you’ve already studied DirectSound, this will be one of the easiest
chapters in the book. Consider this not only the last puzzle in the Moonlord
project, but also your graduation party!

Today you will do the following:

• Add DirectSound support to Moonlord

• Associate sound effects with Moonlord’s commands and animation
sequences

27 067231987x CH21 11/6/00 7:10 PM Page 551

Adding DirectSound Code
As you’ve already learned, one of the most powerful ways to add sound support to your
program is through DirectSound. In this section, you’ll add the code needed to get
DirectSound and your sound effects up and running:

1. Add the following variable declarations to the program’s existing variable declara-
tions, right after the Dim SystemNames(5) As String line. If you don’t want to
type this in, you can copy the Moonlord1.txt file, which you can find in the
Chap21\Moonlord\Code directory on this book’s CD-ROM:
1: ‘==
2: ‘ DirectSound Variables.
3: ‘==
4: Dim DirectX7Obj As New DirectX7
5: Dim DirectSoundObj As DirectSound
6: Dim LongScanSound As DirectSoundBuffer
7: Dim CruiseSound As DirectSoundBuffer
8: Dim AlienDestructSound As DirectSoundBuffer
9: Dim PhaserSound As DirectSoundBuffer
10: Dim ShortCruiseSound As DirectSoundBuffer
11: Dim AlienAttackSound As DirectSoundBuffer
12: Dim PlayerHitSound As DirectSoundBuffer
13: Dim PhotonSound As DirectSoundBuffer
14: Dim DockSound As DirectSoundBuffer
15: Dim ButtonSound As DirectSoundBuffer

These variables represent the DirectSound objects and the DirectSound buffers
for each of the sound effects.

2. Add the following InitDirectSound subroutine to the end of the program, right
after the existing AnimateDamage subroutine. If you don’t want to type this in, you
can copy the Moonlord2.txt file, which you can find in the Chap21\Moonlord\Code
directory on this book’s CD-ROM:
1: ‘==
2: ‘ DirectSound Routines.
3: ‘==
4: Sub InitDirectSound()
5: On Local Error Resume Next
6: Set DirectSoundObj = _
7: DirectX7Obj.DirectSoundCreate(“”)
8: If Err.Number <> 0 Then
9: MsgBox “DirectSound initialization failed.”
10: End
11: End If
12: DirectSoundObj.SetCooperativeLevel _
13: Form1.hWnd, DSSCL_PRIORITY
14: End Sub

552 Day 21

ANALYSIS

27 067231987x CH21 11/6/00 7:10 PM Page 552

Adding Sound: The Moonlord Project 553

21

Line 6 creates the program’s DirectSound object, and Lines 8 to 11 handle any
errors that arise. Lines 12 and 13 set the sharing level for the sound card.

3. Add the following InitSound subroutine to the end of the program, right after the
subroutine you placed in the previous step. If you don’t want to type this in, you
can copy the Moonlord3.txt file, which you can find in the Chap21\Moonlord\Code
directory on this book’s CD-ROM:
1: Sub InitSound()
2: InitDirectSound
3:
4: ‘ Comment out this line when compiling the program
5: ChDir “d:\TYVBGames\Moonlord\”
6:
7: Set LongScanSound = CreateSound(“LongScan.wav”)
8: Set CruiseSound = CreateSound(“FreezGun.wav”)
9: Set AlienDestructSound = CreateSound(“Zing.wav”)
10: Set PhaserSound = CreateSound(“Phaser.wav”)
11: Set ShortCruiseSound = CreateSound(“ShortCruise.wav”)
12: Set AlienAttackSound = CreateSound(“AlienAttack.wav”)
13: Set PlayerHitSound = CreateSound(“PlayerHit.wav”)
14: Set PhotonSound = CreateSound(“PlayerHit.wav”)
15: Set ButtonSound = CreateSound(“Button.wav”)
16: Set DockSound = CreateSound(“Dock.wav”)
17: End Sub

This subroutine first calls InitDirectSound (Line 2) to get DirectSound up and
running. Line 5 enables Moonlord to run properly from the Visual Basic environ-

ment, but it should be removed when the program is compiled. Finally, Lines 7 to
16 load all of Moonlord’s sound effects into their buffers.

4. Add the following CreateSound function to the end of the program, right after the
subroutine you placed in the previous step. If you don’t want to type this in, you
can copy the Moonlord4.txt file, which you can find in the Chap21\Moonlord\Code
directory on this book’s CD-ROM:
1: Function CreateSound(FileName As String) _
2: As DirectSoundBuffer
3: Dim bufferDesc As DSBUFFERDESC
4: Dim waveFormat As WAVEFORMATEX
5: bufferDesc.lFlags = DSBCAPS_STATIC
6: Set CreateSound = _
7: DirectSoundObj.CreateSoundBufferFromFile(FileName, _
8: bufferDesc, waveFormat)
9: If Err.Number <> 0 Then
10: MsgBox “Unable to find sound file”
11: End
12: End If
13: End Function

ANALYSIS

ANALYSIS

27 067231987x CH21 11/6/00 7:10 PM Page 553

The CreateSound function loads a WAV file from disk and creates the sound
effect’s DirectSound buffer. Lines 3 to 5 set up the data needed to create a sound

buffer. Then, Lines 6 to 8 load the sound effect identified by the filename passed to
the function. Finally, Lines 9 to 12 handle an error caused by a missing sound file.

5. Add the following PlaySound subroutine to the end of the program, right after the
function you placed in the previous step. If you don’t want to type this in, you can
copy the Moonlord5.txt file, which you can find in the Chap21\Moonlord\Code
directory on this book’s CD-ROM:
1: Sub PlaySound(Sound As DirectSoundBuffer, _
2: CloseFirst As Boolean, LoopSound As Boolean)
3: If CloseFirst Then
4: Sound.Stop
5: Sound.SetCurrentPosition 0
6: End If
7: If LoopSound Then
8: Sound.Play 1
9: Else
10: Sound.Play 0
11: End If
12: End Sub

The PlaySound subroutine plays the sound associated with the
DirectSoundBuffer object passed to the function as its first parameter. If the

CloseFirst parameter is True, Lines 3 to 6 turn off the sound before playing it
again. Then, if the LoopSound parameter is True, Lines 7 and 8 play the sound with
looping turned on. Otherwise, Lines 9 and 10 play the sound without looping.

6. Add DirectX libraries to the project. To do this, select the Project menu’s
References command and select DirectX 7 for Visual Basic Type Library from the
list that appears.

7. Add the following line to the end of Form1’s Form_Load event procedure:

InitSound

8. Copy all the WAV files from this book’s Chap15\Moonlord directory to the
directory in which you’ve stored this version of the game.

Playing Sound Effects
Now you need to add the code that plays the sound effects at the appropriate times. This
is just a matter of placing a number of calls to the PlaySound subroutine:

1. Add the following line to the beginning of the four button handlers,
Command1_Click, Command2_Click, Command3_Click, and Command4_Click:

PlaySound ButtonSound, True, False

554 Day 21

ANALYSIS

ANALYSIS

27 067231987x CH21 11/6/00 7:10 PM Page 554

Adding Sound: The Moonlord Project 555

21

2. Add the following line to the TrackPhoton subroutine, right after the Do line that’s
already there:

PlaySound PhotonSound, True, False

3. Add the following line to DoShortCruise, right after the If cruiseOK Then line
that’s already there:

PlaySound ShortCruiseSound, False, False

4. Add the following line to DoLongScan, right after the DrawSector sector line
that’s already there:

PlaySound LongScanSound, False, False

5. Add the following line to the AnimateArrival subroutine, right after the y =
Sector2Y(sector) Line that’s already there:

PlaySound CruiseSound, False, False

6. Add the following line to the AnimatePhaser subroutine, right after the row =
ShortRangeSector2Row(ShortRangePlayerSector) line that’s already there:

PlaySound PhaserSound, False, False

7. Add the following line to AnimateAlienDestruction subroutine, right after the
Dim i As Integer line that’s already there:

PlaySound AlienDestructSound, False, False

8. Add the following line to the AnimateDocking subroutine, right after the For i =
1 to 10 line that’s already there:

PlaySound DockSound, True, False

9. Add the following line to the AnimateAlienShots subroutine, right after the Dim i
As Integer line that’s already there:

PlaySound AlienAttackSound, True, False

10. Add the following line to the AnimateDamage subroutine, right after the playerY =
SHORTRANGEOFFSETY + row * SHORTRANGESECTORSIZEY line that’s already there:

PlaySound PlayerHitSound, False, False

At long last, Moonlord is complete. Compile the program, slip on your starship pilot’s
cap, and go save the universe!

Summary
Your 21-day trek through the world of game programming is now at an end. Not only do
you have a toybox full of games to play, but also the tools you need to create your own
original games. Still, this book is just a sampling of the programming techniques used to

27 067231987x CH21 11/6/00 7:10 PM Page 555

create computer games. If you want to continue this fascinating journey, be sure to check
out Appendix E, “Game Programming Resources,” for ideas on where to go next. Good
luck, and may all your programs be bug-free!

Workshop
The workshop includes quiz questions to help gauge your grasp of the material. You’ll
find the answers to this quiz in Appendix A. Even if you feel that you totally understand
the concepts presented here, you should work through the quiz anyway.

Quiz
1. By examining the DirectSound variables, can you tell how many sound effects the

program uses?

2. What is the purpose of the line ChDir “d:\TYVBGames\Moonlord\” in the
InitSound subroutine?

3. How does Moonlord synchronize its sound effects with its animations?

4. List the name of every variable you’ve declared in this book. If you answer this
question correctly, you will become an honorary member of PWDKJWTSO
(People Who Don’t Know a Joke When They See One).

Exercise
1. Compile your new version of Moonlord and ensure that it runs correctly. When you

run the program, try out all of the commands that are associated with sound
effects, such as clicking the buttons, shooting weapons, and docking with starbases.

556 Day 21

27 067231987x CH21 11/6/00 7:10 PM Page 556

In Review
Due to the nature of this week’s lessons, there’s really not
much to review. Rather than learning new game-programming
techniques, you spent Week 3 applying what you’ve learned
to a full-scale strategy game. You created the game’s user
interface, programmed the game’s three screens, and added
animation and sound.

On Day 15, you created the game’s interface, which involved
not only adding the controls the player uses to manipulate the
game, but also creating image controls that hold many of the
game’s bitmaps and a dialog box that presents the player with
information about the game. With most of the interface stuff
out of the way, on Day 16 you added the source code that
defines and manipulates the data needed to play the game.
This task included defining enumerations for sets of related
constants, as well as writing the code that initializes the data
in preparation for a new game. (Every game you write will
need to define and initialize variables that track game data.)

On Day 17 you worked on the game’s main screen.
Completing Day 17’s tasks included adding images for the
graphical buttons and adding the source code that sets up,
manipulates, and responds to the game’s objects (such as the
form and the buttons). You also wrote the source code that
enables the player to play the portion of the game related to
this main screen. Days 18 and 19 were similar to Day 17,
except that you programmed the game’s two subscreens. Not
every game you write will have more than one screen, but the
programming skills you practiced on these three days will
help you design and implement game screens for your own
projects.

WEEK 3 15

16

17

18

19

20

21

28 067231987x Wk3IR 11/6/00 7:08 PM Page 557

558 Week 3

Most games require some sort of animation, if for no other reason than to make them
more visually exciting. On Day 20, you added several animation sequences to the game
project, including the arrival of the player’s starship in a new sector and the destruction
of alien ships. Most games also require sound. On Day 21, you learned how to use
DirectSound to add sound effects to any game.

28 067231987x Wk3IR 11/6/00 7:08 PM Page 558

APPENDIX A
Quiz Answers
Answers for Day 1

Quiz
1. Why does programming games make you a better all-around

programmer?

Because game programs often require you to get the most out of your
computer’s hardware. This will give you practice with solving problems
you might encounter in many other programming projects. Along the
way, you’ll learn how to optimize your programs, which yields more
efficient code.

2. Give at least four reasons why Visual Basic is a good language to use for
game programming.

Here are seven reasons: It’s easy to use. Its controls enable quick creation
of user interfaces. It enables fast program development. It’s a powerful
language. It features advanced graphical capabilities. It allows user-
defined data types and classes. It can call Windows API functions
directly.

29 067231987x AppA 11/6/00 7:06 PM Page 559

3. Why isn’t Visual Basic a good language for programming real-time 3D games such
as Quake?

The number of calculations required, along with the need for very fast frame rates,
make Visual Basic a poor choice for commercial-quality action and role-playing
games.

4. What’s a computer algorithm?

A set of steps for solving a programming problem.

5. How are artificial intelligence and computer algorithms related in game program-
ming?

Computer algorithms determine how a computer player will play the game.
Whether a computer player is easy or difficult to beat depends on how well the
programmer has designed the algorithm.

Exercises
1. Imagine that you’re going to write a computer version of checkers. How would you

create the main game screen? What type of user interface might you use? What
images would you need to design?

Everybody will come up with their own ideas on how best to design this game. For
example, one programmer might want to create a screen that looks like a checker-
board viewed from an angle, while someone else might be happy with a simple
straight-down view. In any case, the user interface will require a way to move the
checkers, as well as commands for starting and ending games. You might have the
user move a checker by clicking the source and destination squares, or you could
get fancy and enable the player to drag the checker images around the board. You
could use buttons for starting and ending games, but you’d also want these com-
mands in the application’s menu bar. As for images, you’ll need to draw the check-
er board. You’ll also need images of checkers, as well as a way to indicate when a
checker has been kinged.

Answers for Day 2
Quiz

1. What are the five ways you can specify a color in a Visual Basic program?

By using standard color constants, Windows system color constants, the RGB func-
tion, the QBColor function, or hexadecimal values.

560 Appendix A

29 067231987x AppA 11/6/00 7:06 PM Page 560

Quiz Answers 561

A
2. Why might you want to use system colors in your programs?

So the colors change appropriately whenever the user changes his Windows system
color settings.

3. What are the three color elements of an RGB color value, and what are their mini-
mum and maximum values?

The three color elements are red, green, and blue. Each element has a minimum
value of 0 and a maximum value of 255.

4. What shapes can you draw with the Line method?

Lines and rectangles (including squares, of course).

5. What shapes can you draw with the Circle method?

Circles, ellipses, and arcs.

6. How does the Step keyword affect the coordinates given to the Line and Circle

methods?

The coordinate associated with the Step keyword becomes relative to the settings
of the CurrentX and CurrentY properties, rather than an absolute coordinate.

7. If you want to draw a shape filled with a predefined pattern, what property will you
set for the object on whose surface you want to draw?

The FillStyle property determines how Visual Basic fills a shape.

8. What is the purpose of a drawing mode?

The drawing mode determines how Visual Basic combines source and destination
colors when drawing.

9. Why are the vbCopyPen and vbInvert drawing modes especially useful?

The vbCopyPen mode replaces whatever is on the screen with what you’re drawing.
That way you get exactly what you ask for. The vbInvert mode, on the other hand,
combines the source and destination colors in such a way that a second identical
drawing operation erases what was drawn, returning the display to its original con-
dition.

10. Which two Visual Basic controls can display shapes without your program having
to draw them by using drawing methods?

The Line and Shape controls.

11. What Visual Basic object and control can act as drawing surfaces for the drawing
methods?

The Form object and the PictureBox control.

29 067231987x AppA 11/6/00 7:06 PM Page 561

12. Which two Visual Basic controls can display complex images such as bitmaps
stored in a file?

The Image and PictureBox controls.

Exercises
1. Start a new Visual Basic project and draw a blue, two-pixel-wide line on the form

from point 30,50 (measured in pixels) to point 100,75. (Hint: You can perform your
drawing in the form’s Form_Load method, but you must first set the form’s
AutoRedraw property to True.)
Private Sub Form_Load()
Form1.AutoRedraw = True
Form1.ScaleMode = vbPixels
Form1.DrawWidth = 2
Line (30, 50)-(100, 75), vbBlue

End Sub

2. In the same form, draw a yellow-filled rectangle with corners located at 20,30 and
75,60.
Private Sub Form_Load()
Form1.AutoRedraw = True
Form1.ScaleMode = vbPixels
Form1.FillStyle = vbFSSolid
Form1.Line (20, 30)-(75, 60), vbYellow, BF

End Sub

3. Add a PictureBox control to the form, and use the drawing methods to draw a
scene in the PictureBox that includes a simple house on a green lawn and a sun in
a blue sky. (Don’t forget to set the PictureBox’s AutoRedraw property to True.)

Private Sub Form_Load()
Picture1.AutoRedraw = True
Form1.ScaleMode = vbPixels
Picture1.ScaleMode = vbPixels
Picture1.FillStyle = vbFSSolid
Picture1.Line (0, 0)-(Picture1.Width, _
Picture1.Height / 2), vbBlue, BF

Picture1.Line (0, Picture1.Height / 2)-(Picture1.Width, _
Picture1.Height), vbGreen, BF

Picture1.FillColor = vbYellow
Picture1.Circle (50, 30), 15, vbYellow
Picture1.Line (100, Picture1.Height / 2 - 30)-(180, _
Picture1.Height / 2 + 30), vbWhite, BF

Picture1.Line (130, Picture1.Height / 2)-(150, _
Picture1.Height / 2 + 30), vbBlack, BF

End Sub

562 Appendix A

29 067231987x AppA 11/6/00 7:06 PM Page 562

Quiz Answers 563

A
Answers for Day 3

Quiz
1. Which object property determines text color?

The ForeColor property.

2. Which object property determines whether a line of text enables background
graphics to show through?

The FontTransparent property.

3. Which object property holds the attributes of the object’s font?

The Font property.

4. Name four font properties.

The Font object supports eight properties: Bold, Charset, Italic, Name, Size,
Strikethrough, Underline, and Weight.

5. How does the Weight property affect the appearance of text?

The Weight property specifies the amount of “boldness” (thickness) applied to the
text.

6. Which property enables a program to change the typeface of text?

The Name property.

7. Can you set a single font to display several different attributes, such as bold, italic,
and underline?

Yes. A font can have all its attributes set simultaneously.

Exercises
1. Change the Nightshade text adventure so that all text appears as 10-point Arial.

To do this, add the following lines to the beginning of the Form_Load subroutine:
Form1.Font.Name = “Arial”
Form1.Font.Size = 10

2. Add to the DoExamine subroutine the code needed to handle the command LOOK
BED. The response to the command will be, “The bed has a blue comforter.”

To do this, add one of the following ElseIf clauses to the DoExamine subroutine:
ElseIf Noun = “BED” And ItemLocations(BED) = -Room Then
lblResult.Caption = “The bed has a blue comforter.”

or

ElseIf Noun = “BED” And Room = 5 Then
lblResult.Caption = “The bed has a blue comforter.”

29 067231987x AppA 11/6/00 7:06 PM Page 563

Answers for Day 4
Quiz

1. What’s an algorithm?

It’s a series of steps that solve a problem.

2. Why do algorithms need to be efficient?

So that computer programs can run as fast as possible.

3. How does the complexity of an algorithm relate to its efficiency?

The more efficient an algorithm is, the more complex it tends to become.

4. How does a program store the location of a linked list in memory?

A program uses a list-head pointer to store the location of the start of a list, and it
usually uses a list-tail pointer to store the location of the end of the list.

5. What does the Life program use the LiveList and DieList linked lists for?

The LiveList and DieList lists hold the cells that might come to life or might die
in the next generation of the simulation.

6. In the Life program, what’s the World array used for?

The World array holds values that represent each cell in the grid, where 0 is a dead
cell and 1 is a live cell.

7. How does the Neighbors array in the Life program help to speed the simulation’s
algorithm?

The Neighbors array holds a running total of neighbor counts for all cells in the
grid. By keeping this total and updating the neighbor counts only for those cells
that have changed, the program doesn’t need to do the complete count in each gen-
eration of the simulation.

8. Why must a program call the DoEvents method within a game loop?

Because the operating system must be able to keep processing Windows messages.
Otherwise, the system will come to a screeching halt.

Exercises
1. Come up with an algorithm that completely shuffles an array of 20 values, from 0

to 19. Write a short program that implements your algorithm and displays the shuf-
fled values in the application’s form.

There are a number of ways that you might solve this problem. However, an
efficient solution would be to move each element of the array only once. In the

564 Appendix A

29 067231987x AppA 11/6/00 7:06 PM Page 564

Quiz Answers 565

A
following solution, the program iterates through the array, swapping each succes-
sive element with a randomly selected one. This algorithm requires only 20 swaps
to shuffle the entire array fully:
Option Explicit

Dim values(19) As Integer

Private Sub Form_Load()
Form1.AutoRedraw = True
Form1.ScaleMode = vbPixels
Form1.Height = 7000
LoadArray
ShuffleArray
DisplayArray

End Sub

Sub LoadArray()
Dim i As Integer
For i = 0 To 19
values(i) = i

Next i
End Sub

Sub ShuffleArray()
Dim i As Integer
Dim r As Integer
Dim temp As Integer
Randomize
For i = 0 To 19
r = Int(Rnd * 20)
temp = values(i)
values(i) = values(r)
values(r) = temp

Next i
End Sub

Sub DisplayArray()
Dim i As Integer
For i = 0 To 19
CurrentX = 40
CurrentY = i * 20 + 20
Print “values(“ & i & “) = “ & values(i)

Next i
End Sub

2. Add constants to the program you wrote in Exercise 1 so that you can easily
change the size of the array and the location where the program prints the array
values.

29 067231987x AppA 11/6/00 7:06 PM Page 565

Option Explicit

Const MAXELEMENTS = 20
Const XOFFSET = 40
Const YOFFSET = 20

Dim values(MAXELEMENTS - 1) As Integer

Private Sub Form_Load()
Form1.AutoRedraw = True
Form1.ScaleMode = vbPixels
Form1.Height = 7000
LoadArray
ShuffleArray
DisplayArray

End Sub

Sub LoadArray()
Dim i As Integer
For i = 0 To MAXELEMENTS - 1
values(i) = i

Next i
End Sub

Sub ShuffleArray()
Dim i As Integer
Dim r As Integer
Dim temp As Integer
Randomize
For i = 0 To MAXELEMENTS - 1
r = Int(Rnd * MAXELEMENTS)
temp = values(i)
values(i) = values(r)
values(r) = temp

Next i
End Sub

Sub DisplayArray()
Dim i As Integer
For i = 0 To MAXELEMENTS - 1
CurrentX = XOFFSET
CurrentY = i * 20 + YOFFSET
Print “values(“ & i & “) = “ & values(i)

Next i
End Sub

3. Modify the Life program so that it runs in a 30×18 grid, with cells that are 20 pix-
els high and 20 pixels wide. Change the size of the cell circles to a radius of 8.
(Hint: Study the program’s constants.)

566 Appendix A

29 067231987x AppA 11/6/00 7:06 PM Page 566

Quiz Answers 567

A
At first this might seem like a tricky change to make, but thanks to the game’s con-
stants, it’s actually very easy. Just change the following constants to the new values
shown:

Const CELLWIDTH = 20
Const CELLHEIGHT = 20
Const MAXCOL = 30
Const MAXROW = 18

Answers for Day 5
Quiz

1. What is a significant difference between the Image and PictureBox controls?

The PictureBox control is much like a form in that it can act as a container for
other controls.

2. Which Image control property enables the control to scale pictures?

The Stretch property.

3. What are two ways to move and resize an Image or PictureBox control?

You can set the control’s Height, Width, Left, and Top properties, or you can call
the control’s Move method.

4. When is it impossible to resize an Image control?

When its Stretch property is set to False.

5. What are two techniques for loading a picture into a control?

You can set the control’s Picture property at design time, or you can set the prop-
erty at runtime by calling the LoadPicture method.

6. Which of the two graphical controls can act as a drawing surface?

The PictureBox control.

7. Is it possible to scale a picture in a PictureBox control?

Yes, you can use the PaintPicture method to draw a picture at any size.

Exercise
1. Modify the Stretch3 program so that the PictureBox control displays the A.jpg pic-

ture file cut into two equal pieces when the user clicks the control. Hint: You’ll
need the PaintPicture method.

29 067231987x AppA 11/6/00 7:06 PM Page 567

Option Explicit

Dim ImageWidth As Integer
Dim ImageHeight As Integer
Dim Split As Boolean

Private Sub Form_Load()
Image1.Visible = False
ImageWidth = Image1.Width
ImageHeight = Image1.Height
Picture1.Width = ImageWidth * 3
Picture1.Height = ImageHeight * 3
Split = False
Picture1.PaintPicture Image1.Picture, 10, 10

End Sub

Private Sub Picture1_Click()
Picture1.Cls
If Split Then
Picture1.PaintPicture Image1.Picture, 10, 10

Else
Picture1.PaintPicture Image1.Picture, _

10, 10, ImageWidth / 2, ImageHeight, _
0, 0, ImageWidth / 2, ImageHeight

Picture1.PaintPicture Image1.Picture, _
ImageWidth / 2 + 200, 10, _
ImageWidth / 2, ImageHeight, _
ImageWidth / 2, 0, _
ImageWidth / 2, ImageHeight

End If
Split = Not Split

End Sub

Answers for Day 6
Quiz

1. What are the three steps needed to call a Windows API function from a Visual
Basic program?

Provide a function declaration, provide any required data type declarations, and
call the function.

2. What’s an easy way to get Windows API function, type, and constant declarations
for your Visual Basic programs?

568 Appendix A

29 067231987x AppA 11/6/00 7:06 PM Page 568

Quiz Answers 569

A
The easiest way is to load up the Apiload.exe application with the Win32api.txt
file, and then copy declarations from Apiload.exe.

3. Name three bitmap attributes that you can find in a BITMAP structure.

The BITMAP structure provides the width of the bitmap in pixels, the height of the
bitmap in pixels, the width of the bitmap in bytes, the number of color planes in
the bitmap, the number of bits required to specify a pixel in the bitmap, and a
pointer to the bitmap’s image data.

4. Which two Windows API functions enable you to draw single lines?

The MoveToEx() and LineTo() functions do the trick.

5. Which Windows API function enables you to draw a set of lines?

The Polyline() function.

6. Name three Windows API functions that draw shapes.

Rectangle(), Ellipse(), and Polygon().

7. How can you get the handle of a bitmap associated with a Visual Basic object?

The handle is stored in the object’s Image property.

8. What does DDB stand for?

Device-dependent bitmap.

9. What Windows API function retrieves information about a bitmap?

The GetObject() function.

10. What are the five most common pixel formats?

The five most common formats are 4-bit (16-color), 8-bit (256-color), 16-bit (High
Color), 24-bit (True Color), and 32-bit (True Color).

11. Why must some bitmaps be padded with extra bytes?

Because each row of data in a bitmap must have an even number of bytes.

Exercises
1. Modify the 24-bit program so that it displays the color purple rather than red.

(Hint: Purple is a combination of red and blue.)

All you have to do is change this line as shown:

BitmapBits(x) = 255 ‘ Blue color element

2. Write a short program that uses the Windows API to draw a circle that fits exactly
inside a rectangle.

29 067231987x AppA 11/6/00 7:06 PM Page 569

Option Explicit

Private Declare Function Rectangle Lib “gdi32” _
(ByVal hdc As Long, ByVal X1 As Long, ByVal Y1 As Long, _
ByVal X2 As Long, ByVal Y2 As Long) As Long

Private Declare Function Ellipse Lib “gdi32” _
(ByVal hdc As Long, ByVal X1 As Long, ByVal Y1 As Long, _
ByVal X2 As Long, ByVal Y2 As Long) As Long

Private Sub Form_Load()
Picture1.ScaleMode = vbPixels
Picture1.AutoRedraw = True
Rectangle Picture1.hdc, 20, 20, 100, 100
Ellipse Picture1.hdc, 21, 21, 99, 99

End Sub

3. Write a program that uses the Windows API to set the pixels of a PictureBox con-
trol’s bitmap to display alternating lines of black and white. (Hint: Load the
bitmap’s data into a two-dimensional array.)

Option Explicit

Private Type BITMAP ‘14 bytes
bmType As Long
bmWidth As Long
bmHeight As Long
bmWidthBytes As Long
bmPlanes As Integer
bmBitsPixel As Integer
bmBits As Long

End Type

Private Declare Function GetObject Lib “gdi32” _
Alias “GetObjectA” (ByVal hObject As Long, _
ByVal nCount As Long, lpObject As Any) As Long

Private Declare Function GetBitmapBits Lib “gdi32” _
(ByVal hBitmap As Long, ByVal dwCount As Long, _
lpBits As Any) As Long

Private Declare Function SetBitmapBits Lib “gdi32” _
(ByVal hBitmap As Long, ByVal dwCount As Long, _
lpBits As Any) As Long

Private Sub Form_Load()
Picture1.AutoRedraw = True

End Sub

Private Sub Command1_Click()
Dim BitmapSize As Long
Dim BitmapBits() As Byte

570 Appendix A

29 067231987x AppA 11/6/00 7:06 PM Page 570

Quiz Answers 571

A
Dim x As Long
Dim y As Integer
Dim bmp As BITMAP
Dim Color As Integer

GetObject Picture1.Image, Len(bmp), bmp
BitmapSize = bmp.bmWidthBytes * bmp.bmHeight
ReDim BitmapBits(1 To bmp.bmWidthBytes, 1 To bmp.bmHeight)
GetBitmapBits Picture1.Image, BitmapSize, BitmapBits(1, 1)
For y = 1 To bmp.bmHeight
Color = 0
If y Mod 2 Then Color = 255
For x = 1 To bmp.bmWidthBytes
BitmapBits(x, y) = Color

Next x
Next y
SetBitmapBits Picture1.Image, BitmapSize, BitmapBits(1, 1)

End Sub

Answers for Day 7
Quiz

1. What’s the purpose of a game loop in a real-time game?

The game loop runs continuously, moving objects and performing calculations
whether or not the program receives input from the user.

2. Explain how the BallX and BallY variables are used in Battle Bricks.

The BallX and BallY variables hold the X and Y coordinates where the ball is cur-
rently located.

3. What is a vector, and how is it used to control ball movement in Battle Bricks?

A vector is a line that indicates a direction. Battle Bricks controls the direction of
the ball by adding the values contained in the BallVecX and BallVecY variables.

4. How does Battle Bricks finally manage to break out of its game loop?

When the Done variable becomes True, the program breaks out of the loop.

5. What does the Bricks() array contain?

It contains a value for each brick in the wall. A value of NOBRICK (which equals 0)
in an element of the array indicates that that brick has been destroyed and is no
longer in the game. A value of BRICK (which equals 1) indicates that the brick still
appears on the screen.

6. How does the Battle Bricks program determine when to bounce the ball off of an
object?

29 067231987x AppA 11/6/00 7:06 PM Page 571

The program compares the coordinates of the ball with the coordinates of the dif-
ferent objects in the game. If the ball is about to overlap one of these objects—a
wall, a brick, or the paddle—the program causes the ball to bounce away by
reversing the one of the vectors, BallVecX or BallVecY.

7. What is the difference between candidate bricks and actual bricks?

A candidate brick is one of four brick locations that the ball may be overlapping.
There may or may not be an actual brick (a brick that still appears on the screen) at
one of these locations.

8. What does the program do to destroy a brick and remove it from the game?

To destroy a brick, the program erases it from the screen and then sets the associat-
ed element of the Bricks() array to NOBRICK.

Exercises
1. Modify Battle Bricks so that the paddle is 160 pixels wide.

All you have to do is change the following constants:
Const PADDLEWIDTH = 160
Const MAXPADDLEX = 340

2. Write a short program that bounces a ball around the display area of a form. Feel
free to steal source code from the Battle Bricks game. Don’t forget to use a game
loop.

Option Explicit

Const BALLWIDTH = 30
Const BALLHEIGHT = 30
Const MAXBALLX = 610
Const MAXBALLY = 450

Dim BallX As Integer
Dim BallY As Integer
Dim BallVecX As Integer
Dim BallVecY As Integer
Dim Done As Boolean

Private Sub Form_Load()
InitObjects
InitGame

End Sub

Private Sub Form_KeyDown(KeyCode As Integer, _
Shift As Integer)

572 Appendix A

29 067231987x AppA 11/6/00 7:06 PM Page 572

Quiz Answers 573

A
If KeyCode = vbKeyF2 Then GameLoop

End Sub

Private Sub Form_Unload(Cancel As Integer)
Done = True

End Sub

Sub InitObjects()
Form1.Height = 7575
Form1.Width = 9675
Form1.FillStyle = vbSolid
Form1.BackColor = vbBlue

End Sub

Sub InitGame()
BallX = 300
BallY = 300
BallVecX = 1
BallVecY = -1
Done = False

End Sub

Sub GameLoop()
Do
MoveBall
DoEvents

Loop While Not Done
End Sub

Sub MoveBall()
Form1.DrawWidth = 1
Form1.ForeColor = vbBlue
Form1.FillColor = vbBlue
Form1.FillStyle = vbSolid
Form1.Circle (BallX + BALLWIDTH / 2, _

BallY + BALLHEIGHT / 2), BALLHEIGHT / 2
BallX = BallX + BallVecX
BallY = BallY + BallVecY
CheckWalls
Form1.FillColor = vbRed
Form1.ForeColor = vbBlack
Form1.DrawWidth = 1
Form1.Circle (BallX + BALLWIDTH / 2, _

BallY + BALLHEIGHT / 2), BALLHEIGHT / 2
End Sub

Sub CheckWalls()
If BallX < 1 Or BallX > MAXBALLX Then _
BallVecX = -BallVecX

If BallY < 1 Or BallY > MAXBALLY Then _
BallVecY = -BallVecY

End Sub

29 067231987x AppA 11/6/00 7:06 PM Page 573

Answers for Day 8
Quiz

1. Which real-world objects do the clsCard and clsDeck classes represent?

The clsCard class represents a single card, and the clsDeck class represents a full
deck of 52 cards.

2. How does the clsDeck class use the clsCard class?

Each card in the deck is a clsCard object.

3. How can you calculate the suit of a card represented by a clsCard object?

suit = value \ 13

4. How can you calculate the card’s face value?

faceValue = value mod 13

5. Which modules do you need to add to your programs to use the card classes?

You need the clsCard.cls and clsDeck.cls class modules, of course. You also need
the Cards.bas module, as well as the frmCards.frm form.

6. Which module defines the constants that are used with the card classes?

Cards.bas

7. How do you get the cards represented by a clsDeck object into random order?

Call the clsDeck object’s Shuffle method.

8. How can you ensure that the frmCards.frm is removed from memory when the
player quits your card game?

Unload the form in your main form’s Form_Unload event procedure.

Exercises
1. Write a short program that deals four, six-card hands. Overlap the cards in each

hand by 10 pixels.
Option Explicit

Dim Deck As New clsDeck

Private Sub Form_Load()
CardForm.AutoRedraw = True
CardForm.ScaleMode = vbPixels

574 Appendix A

29 067231987x AppA 11/6/00 7:06 PM Page 574

Quiz Answers 575

A
CardForm.BackColor = vbBlack
Deck.Shuffle
Deck.Deal 6, 0, 20, 20, -10, FaceUp
Deck.Deal 6, 1, 20, 120, -10, FaceUp
Deck.Deal 6, 2, 20, 220, -10, FaceUp
Deck.Deal 6, 3, 20, 320, -10, FaceUp

End Sub

Private Sub Form_Unload(Cancel As Integer)
Unload frmCards

End Sub

2. Write a short program that shuffles the deck and then deals 10 cards, one each time
the user clicks the form. After the 10th card, reset the deck so that the same 10
cards are dealt again.

Option Explicit

Dim Deck As New clsDeck

Private Sub Form_Load()
CardForm.AutoRedraw = True
CardForm.ScaleMode = vbPixels
CardForm.BackColor = vbBlack
Deck.Shuffle

End Sub

Private Sub Form_Unload(Cancel As Integer)
Unload frmCards

End Sub

Private Sub Form_Click()
Dim NumCards As Integer
Dim i As Integer
NumCards = Deck.NumCardsInHand(0)
If NumCards = 10 Then
NumCards = 0
Deck.Restore
Cls
For i = 1 To 10
Deck.Discard 0, 0

Next i
End If
Deck.Deal 1, 0, 20 + NumCards * 60, 20, 10, FaceUp

End Sub

29 067231987x AppA 11/6/00 7:06 PM Page 575

Answers for Day 9
Quiz

1. What method of the clsDeck class makes it possible for Poker Squares to deal the
same cards to two players?

The Restore method restores the deck to its original state before any cards were
dealt.

2. Explain how the MINX, MAXX, MINY, and MAXY constants are used in the Poker
Squares program.

These constants represent the minimum and maximum X and Y coordinates for
valid mouse clicks in the card grid.

3. Why doesn’t the Poker Squares program have CheckForFullHouse and
CheckForStraightFlush functions?

Because the program can use the PairFlag and ThreeOfAKindFlag flags to deter-
mine that the player has a full house. Likewise, the StraightFlag and FlushFlag

flags can indicate a straight flush.

4. In the GetBestHand function, what does the program store in the cards array?

The number of each type of card.

5. What does the global Grid array contain?

The card values for the cards in the grid, with -1 meaning an empty cell.

6. Explain briefly how Poker Squares analyzes cards for scoring poker hands.

The program checks each group (row and column) of five cards separately. First, it
checks the current hand for a flush by checking whether all the cards in the hand
are of the same suit. Then, the program sorts the cards into the cards array and
calls functions like CheckForStraight and CheckForThreeOfAKind to check for
the basic types of poker card combinations. These functions set flags that the pro-
gram uses to determine the best possible hand.

7. Why does the cards array have 14 elements instead of only 13?

The 14th element (cards(13)) enables the program to consider an ace as either a
high card or a low card.

Exercises
1. Modify Poker Squares so that a pair of aces is worth 25 points.

You first need to modify the PokerHandsEnum enumeration to include the
PairOfAces hand:

576 Appendix A

29 067231987x AppA 11/6/00 7:06 PM Page 576

Quiz Answers 577

A
Public Enum PokerHandsEnum
NoHand
Pair
TwoPair
ThreeOfAKind
PairOfAces
Straight
Flush
FullHouse
FourOfAKind
StraightFlush

End Enum

Then, you must modify the GetScore function to return 25 for a PairOfAces hand:
Function GetScore(BestHand As Integer) As Integer
Select Case BestHand
Case NoHand
GetScore = 0

Case Pair
GetScore = 5

Case TwoPair
GetScore = 15

Case ThreeOfAKind
GetScore = 20

Case PairOfAces
GetScore = 25

Case Straight
GetScore = 30

Case Flush
GetScore = 35

Case FullHouse
GetScore = 45

Case FourOfAKind
GetScore = 60

Case StraightFlush
GetScore = 100

End Select
End Function

Finally, you must modify the GetBestHand function to check for a hand that con-
tains a pair, with that pair being aces:

Function GetBestHand(hand() As Integer) As Integer
Dim FlushFlag As Boolean
Dim StraightFlag As Boolean
Dim PairFlag As Boolean
Dim TwoPairFlag As Boolean
Dim ThreeOfAKindFlag As Boolean

29 067231987x AppA 11/6/00 7:06 PM Page 577

Dim FourOfAKindFlag As Boolean
Dim cards(13) As Integer

FlushFlag = CheckForFlush(hand)
SortCards cards, hand
StraightFlag = CheckForStraight(cards, hand)
PairFlag = CheckForPair(cards)
TwoPairFlag = CheckForTwoPair(cards)
ThreeOfAKindFlag = CheckForThreeOfAKind(cards)
FourOfAKindFlag = CheckForFourOfAKind(cards)

If (StraightFlag) And (FlushFlag) Then
GetBestHand = StraightFlush

ElseIf FourOfAKindFlag Then
GetBestHand = FourOfAKind

ElseIf (PairFlag) And (ThreeOfAKindFlag) Then
GetBestHand = FullHouse

ElseIf FlushFlag Then
GetBestHand = Flush

ElseIf (PairFlag) And (cards(0) = 2) Then
GetBestHand = PairOfAces

ElseIf StraightFlag Then
GetBestHand = Straight

ElseIf ThreeOfAKindFlag Then
GetBestHand = ThreeOfAKind

ElseIf TwoPairFlag Then
GetBestHand = TwoPair

ElseIf PairFlag Then
GetBestHand = Pair

Else
GetBestHand = NoHand

End If
End Function

Answers for Day 10
Quiz

1. What are two typical approaches for adding a computer opponent’s to a game?

One is to convert an expert player’s strategy into computer algorithms. Another is
to use a brute force method that takes advantage of the computer’s calculating
power to determine the outcome of its moves before making them.

2. Which approach for creating a computer opponent does Crystals use? Explain your
answer.

Crystals uses the brute force method. It calculates the outcomes of a set of moves
and the human’s responses to those moves before choosing the move that yields the
highest score for the computer and the lowest score for the human player.

578 Appendix A

29 067231987x AppA 11/6/00 7:06 PM Page 578

Quiz Answers 579

A
3. What does the Crystals program use the CompScores() and comboScores() arrays

for?

The CompScores() array holds the score the computer can get for each of its eight
possible moves, and the comboScores() array holds the computer scores minus the
scores for the human player’s best response to the eight moves.

4. Briefly describe the algorithm that Crystals uses to determine the computer oppo-
nent’s moves.

First, the program fills the CompScores() and comboScores() arrays with their
score values. The computer then finds the highest score in comboScores() that gets
the highest score in CompScores(). This is the move the computer selects.

5. How does Crystals prevent the computer opponent from becoming too predictable?

By inserting a random element into the SelectMove subroutine. This random ele-
ment ensures that the computer opponent won’t necessarily choose the same move
in identical circumstances.

Answers for Day 11
Quiz

1. What’s the minimum hardware and software you need for creating sound effects?

You need a sound card, a microphone, and a sound editor.

2. What are three ways of playing sound effects in your Visual Basic programs?

Using the Microsoft Multimedia Control, using Windows API MCI functions, or
using DirectSound.

3. What would you use a sound editor for?

A sound editor enables you to remove silences before and after recorded sound
effects, as well as change the effect’s volume and add special effects such as echo.

4. What does MCI stand for, and what is it?

MCI stands for Media Control Interface, and it’s a set of libraries for manipulating
multimedia devices.

5. Compare the MessageBeep() API function with the PlaySound() API function.

The MessageBeep() function only allows you to play system sound effects, where-
as the PlaySound() function can play any WAV file.

6. Which three DirectX objects does a program need in order to play a sound effect?
Describe them.

29 067231987x AppA 11/6/00 7:06 PM Page 579

DirectX7, DirectSound, and DirectSoundBuffer objects. The DirectX7 object
enables you to create component objects needed by your program (such as a
DirectSound object). The DirectSound object provides access to the DirectSound
libraries, enabling you to set priority levels and create sound buffers. The
DirectSoundBuffer object represents a sound effect and provides the methods
needed for manipulating the sound.

7. What method do you call to play a sound effect with DirectSound? What method
stops a sound from playing?

The Play method and the Stop method.

Exercises
1. Write a short program that plays a sound effect using DirectSound. (Don’t use the

DirectSound routines provided in this chapter. Also, don’t forget to add the DirectX
libraries to your project.)
Dim DirectX7Obj As New DirectX7
Dim DirectSoundObj As DirectSound
Dim BeamUpSound As DirectSoundBuffer

Private Sub Form_Load()
Dim bufferDesc As DSBUFFERDESC
Dim waveFormat As WAVEFORMATEX
Set DirectSoundObj = DirectX7Obj.DirectSoundCreate(“”)
DirectSoundObj.SetCooperativeLevel Me.hWnd, DSSCL_PRIORITY
bufferDesc.lFlags = DSBCAPS_STATIC
‘ChDir “d:\tyvbgames\chap11\exercises\exercise1”
Set BeamUpSound = _

DirectSoundObj.CreateSoundBufferFromFile(“beamup.wav”, _
bufferDesc, waveFormat)

End Sub

Private Sub cmdPlay_Click()
BeamUpSound.Stop
BeamUpSound.SetCurrentPosition 0
BeamUpSound.Play 0

End Sub

2. Modify the Poker Squares program from Day 9 so that a sound effect plays when
the player places a card in the grid and also when the player clicks on a cell that
already contains a card (an illegal-move sound).

You can find the answer to this exercise in the Chap11\Exercises\Exercise2 direc-
tory of this book’s CD-ROM. All new source code added to the program is
surrounded by the following comment lines:

‘^^

‘^^

580 Appendix A

29 067231987x AppA 11/6/00 7:06 PM Page 580

Quiz Answers 581

A
Answers for Day 12

Quiz
1. What makes an RPG different from other types of adventure games?

RPG games place the player in the role of a character with many attributes, which
define the way the character can respond to game events.

2. Give two reasons why you might want to create a level editor for a game.

The most obvious reason to program a level editor is to make it easy to create lev-
els for your game. The bonus is that your game’s players will probably create lev-
els on their own. So when you’re finished programming the game, you can include
the editor as part of the package.

3. How do you define a character in a computer RPG?

By defining a set of attributes—such as strength, speed, intelligence, and health.

4. How are a character’s attributes used in the program?

The character’s attributes determine which actions the character can perform in the
game, as well as the results of those actions. For example, a strong character
wreaks more havoc in a battle than a weak character can.

Answers for Day 13
Quiz

1. How does Dragonlord use the Map() array?

The Map() array contains numbers that specify the type of room (the available
exits) that should appear in each location in the dungeon.

2. What does the Items() array represent?

The Items() array contains numbers that specify the type of item (skeleton, gold,
teleporter, etc.) hidden in each room.

3. What data does the program use to keep track of the player’s statistics?

The program defines a custom datatype, StatsType, that contains a variable for
each statistic.

4. In general terms, explain the 15 room types.

When a room can have up to four exits, one in each of the four primary directions
(north, south, east, and west), there are 15 possible exit combinations. The room
types 0 through 14 represent these 15 types of rooms.

29 067231987x AppA 11/6/00 7:06 PM Page 581

5. How does the program use the Point function to control the player’s movement
through the dungeon?

The Point function returns the color of a specified pixel. By checking the color on
the wall of a room, the program can determine whether that wall contains a door.

6. What happens in the program when the player discovers a cache of gold, a spell, or
a serum?

The program adds the appropriate item to the player’s inventory, which means
adding it to the appropriate variable in the Stats data.

7. How does the Dragonlord program handle the fact that creatures in a dungeon are
often on the move?

Every time the player moves into an empty room, there’s a random chance that
he’ll encounter a skeleton.

8. How do the Weapon and Strength attributes affect a fight?

Both of these attributes affect the player’s modifier, which is a value that’s added to
the player’s dice roll. The better the player’s weapon and the higher the player’s
strength, the higher this modifier will be, thus making the skeleton easier to defeat.
Conversely, beating the skeleton is harder if these stats are low.

9. What attributes do the skeleton characters have?

Only one: hit points. Each skeleton starts with 5 hit points. When the player hits a
skeleton, the program takes away some of its hit points. When the skeleton runs
out of hit points, he’s dead and the battle is over.

10. How can you use a Boolean expression to replace some types of If statements?

A Boolean expression has an actual numerical value. This value is 0 for False and
-1 for True. You can use multiplication to take advantage of this value in order to
add or subtract from statistics, just as Dragonlord does with the statement
SetStrength -1 - 1 * Abs(Stats.Pie < 1).

Exercises
1. Add a spell skill (attribute) to Dragonlord. This statistic should range from a mini-

mum of 1 to a maximum of 5. At the start of the game, the spell skill should be set
to 1. Each time the player casts a spell, the spell skill should go up 1. Use the spell
skill in the program so that the higher the player’s skill, the closer the player gets
to his target room when he casts the spell. That is, a spell skill of 1 should give the
player only a 20% chance of reaching the selected room, whereas a spell skill of 5
should give the player a 100% chance of reaching the selected room. You should
add more spell items to the dungeon to counteract the fact that they are now harder

582 Appendix A

29 067231987x AppA 11/6/00 7:06 PM Page 582

Quiz Answers 583

A
to use. (Hint: You can call the Teleport subroutine to transfer the player to a ran-
dom room.)

You need to make changes to the source code shown below. Note that there is a
special test dungeon named TestDungeon.drg on this book’s CD-ROM that you can
use to test your new version of Dragonlord. This test dungeon has spells in every
room in order to make it easy to test the new SpellMove subroutine:

Type StatsType
HitPoints As Integer
Strength As Integer
Pie As Integer
Gold As Integer
Spells As Integer
Serums As Integer
Brew As Boolean
Room As Integer
Weapon As Integer
PieMoveCount As Integer
CastingSpell As Boolean
SpellSkill As Integer

End Type

Sub ResetStats()
Stats.HitPoints = 50
Stats.Strength = 100
Stats.Pie = 1
Stats.Gold = 60
Stats.Spells = 0
Stats.Serums = 0
Stats.Brew = False
Stats.Room = 45
Stats.Weapon = FIST
Stats.PieMoveCount = 0
Stats.CastingSpell = False
Stats.SpellSkill = 1

End Sub

Public Sub cmdStats_Click()
cmdRandomize.Enabled = False
Load frmStats
PrintStat 50, 50, “Hit Points: “ & Stats.HitPoints
PrintStat 50, 65, “Strength: “ & Stats.Strength
PrintStat 50, 80, “Pie: “ & Stats.Pie
PrintStat 50, 95, “Gold: “ & Stats.Gold
PrintStat 50, 110, “Spells: “ & Stats.Spells
PrintStat 50, 125, “Serums: “ & Stats.Serums
PrintStat 50, 140, “Brew: “ & -Int(Stats.Brew)
PrintStat 50, 155, “Weapon: “ & Stats.Weapon
PrintStat 50, 170, “Spell Skill: “ & Stats.SpellSkill

29 067231987x AppA 11/6/00 7:06 PM Page 583

frmStats.Show vbModal, Me
End Sub

Sub SpellMove(X As Single, Y As Single)
Dim newRoom As Integer
If X > OFFSETX And X < MAXX And _

Y > OFFSETY And Y < MAXY Then
Stats.CastingSpell = False
PlaySound SpellSound, False, False
Dim SpellFail
SpellFail = Int(Rnd * 5) + 1
If SpellFail > Stats.SpellSkill Then
Teleport

Else
newRoom = CalcRoomNumber(X, Y)
Stats.Room = newRoom
DrawRoom
DrawRoomMarker
ShowItem newRoom

End If
End If
If Stats.SpellSkill < 5 Then _

Stats.SpellSkill = Stats.SpellSkill + 1
End Sub

Answers for Day 14
Quiz

1. What’s the only thing a level editor really needs to do?

Write to a disk file the data that the game needs to load a level.

2. How do DungeonEditor’s buttons serve double duty in the program?

Not only do they act as graphical buttons, but they also hold the images needed to
paint the dungeon map display.

3. What’s important about the order of the buttons in DungeonEditor’s toolbox?

The order reflects the numerical values for the rooms and items in the dungeon.

4. What’s the advantage of grouping DungeonEditor’s buttons into a control array?

This technique enables the program to handle a set of buttons with a single event
handler, rather than requiring a handler for every button.

584 Appendix A

29 067231987x AppA 11/6/00 7:06 PM Page 584

Quiz Answers 585

A
5. Explain the purpose of the NeedToSave variable.

The NeedToSave variable is a Boolean value that indicates whether the user needs
to save the current dungeon before exiting the program. By checking the value of
this variable, the program knows when it needs to warn the user to save his work.

6. What are the values that the program stores in the Rooms() and Items() arrays?

The Rooms() array holds the room types for each room in the dungeon, and the
Items() array holds the items that are located in each of the dungeon rooms.

7. What data does DungeonEditor need to write to disk in order to create a dungeon
file that Dragonlord can load and interpret?

The editor only needs to write out the contents of the Rooms() and Items() arrays.
These arrays hold all the data that defines a Dragonlord dungeon.

Answers for Day 15
Quiz

1. Explain how the picScreen PictureBox control in Moonlord’s main form enables
the form to act as the display for all three of Moonlord’s game screens.

The PictureBox control will hold a different picture depending on the screen the
player has switched to.

2. How do the four CommandButton controls help implement the different Moonlord
game screens?

The buttons’ captions and the commands they trigger will change when the current-
ly displayed screen changes.

3. What is the purpose of all the Image controls you added to the main form?

These Image controls hold some of the pictures that the program needs to create
the long-range and short-range scanner screens.

4. Why does the About dialog box display the title “Application Title” at design time
and the title “Moonlord” at runtime?

At runtime, Visual Basic replaces the default title string with the application name
you’ve supplied for the project.

5. Where can you find the settings that Visual Basic uses for some of the strings in
the About dialog box?

These settings are on the Make page of the Project Properties dialog box. To dis-
play the dialog box, select the Project menu’s Properties command.

29 067231987x AppA 11/6/00 7:06 PM Page 585

Answers for Day 16
Quiz

1. What’s the difference between program variables and game variables?

Program variables are initialized only once when the program first starts. Game
variables must be initialized for each new game.

2. What do the values in the VectorsX1() and VectorsY1() arrays mean?

The values in these arrays determine the direction of a photon when it’s fired.

3. Explain how the program will use the GameMode variable and the GameModes
enumeration.

The game modes determine how the screen’s buttons are set up and what the player
can and can’t do at a given point in the game. The GameMode variable holds the cur-
rently active mode value, and the GameModes enumeration defines symbols for each
of the game modes to which the GameMode variable can be set.

4. What do the values stored in the SystemStats() array represent?

The current status (operational or damaged) of each of the ship’s six systems.

5. What do the values stored in the GameStats() array represent?

The time remaining, the number of aliens remaining, the number of photons
remaining, and the energy remaining.

6. What do the Board() and Drawn() arrays represent?

The Board() array holds the contents of the long-range grid, and the Drawn() array
contains Boolean values that indicate which of the long-range scanner sectors have
been drawn on the screen.

7. In general, explain how the program positions objects in the short-range grids.

The program first generates a random column and row. Then it checks whether the
sector at the generated column and row is empty. If it is, the program can place an
object in that location. If the selected location is not empty, the program must
choose another random column and row.

8. What’s the difference between how the starbases are placed in the long-range grid
and how aliens are placed?

The starbases can be placed only in the first or last four columns of the long-range
grid. Aliens can be placed anywhere, except where another object already exists.

586 Appendix A

29 067231987x AppA 11/6/00 7:06 PM Page 586

Quiz Answers 587

A
Answers for Day 18

Quiz
1. What does the program need to do with the four command buttons when the player

switches from the main screen to the scanner screen and vice versa?

Change the captions on the buttons to the commands appropriate for the current
screen.

2. Explain the SHORTRANGESCAN and SHORTCRUISE game modes.

SHORTRANGESCAN is the default game mode when the player is viewing the short-
range scanner screen. The SHORTCRUISE game mode is when the player has clicked
the Cruise button on the short-range scanner screen but hasn’t yet selected the sec-
tor where he wants to move.

3. In general, what does the DoShortScan subroutine do?

DoShortScan iterates through each of the sectors in the short-range scanner grid,
drawing the contents of each sector as it goes.

4. Which subroutine must be called after every command the player issues on the
sort-range scanner screen when aliens are present? Why?

The AliensAttack subroutine must be called because it’s the subroutine that han-
dles the aliens’ turn.

5. How does the program determine how many ship systems are damaged after the
player rams an alien ship?

By getting a random number between 1 and 4 (inclusive).

6. In general, what does the SetUpAliens subroutine do?

The SetUpAliens subroutine initializes variables that are used to track information
about the aliens in a sector.

7. How does the ShowBoard subroutine, which redraws sectors on the main screen,
know which sectors to draw?

The Drawn() array contains a True value for each sector that must be drawn.

8. Why does the TrackPhoton subroutine get the color of a pixel before drawing the
photon torpedo on the pixel?

The pixel’s color tells the program whether the photon torpedo has struck an alien
ship or a sun.

29 067231987x AppA 11/6/00 7:06 PM Page 587

9. In general, what does the CheckShortCruise function do?

The CheckShortCruise verifies that the player can move to the sector he has cho-
sen. For example, the player isn’t allowed to move past items such as suns and
alien ships.

Answers for Day 19
Quiz

1. What does Moonlord need to do to set up the buttons on the status screen?

It must copy the correct bitmaps to the first two buttons and remove the second two
buttons from the form (actually, it makes them invisible).

2. In general, what does the DoRepair subroutine do?

It subtracts a day from the time needed to repair each of the ship’s damaged
systems.

3. In general, what does the ShowStatusValues subroutine do?

This subroutine displays the current values of the ship system repair statuses and
the game’s statistics. It also updates the buttons, turning the Repair button on or off
as appropriate.

4. When does the CheckSystems function return a value of True?

When one or more of the ship’s systems are damaged.

Answers for Day 20
Quiz

1. What’s the purpose of Moonlord’s timer control?

The program uses the timer to time the blinking of the player’s marker on the long-
range scanner screen. The marker blinks every 1/4 second.

2. Explain, in general, how the AnimateMarker subroutine works.

Every 1/4 second, the Timer1_Timer event procedure calls the AnimateMarker sub-
routine. This subroutine displays an image in the player’s current sector on the
long-range scanner screen, alternating between the player’s normal marker and one
that represents the contents of the sector. The program uses the BlinkMode variable
to keep track of which image to display each time AnimateMarker gets called.

588 Appendix A

29 067231987x AppA 11/6/00 7:06 PM Page 588

Quiz Answers 589

A
3. Several of Moonlord’s animation sequences are made up of eight different images.

Explain how the program uses those eight images to produce an animation.

The program displays the images, one after the other, in rapid sequence.

4. How are the phaser, docking, and alien-shooting animations similar?

Each of these animation sequences uses only two images to create a blinking
effect.

Answers for Day 21
Quiz

1. By examining the DirectSound variables, can you tell how many sound effects the
program uses?

Yes, because each sound effect has its own DirectSoundBuffer object.

2. What is the purpose of the line ChDir “d:\TYVBGames\Moonlord\” in the
InitSound subroutine?

This line ensures that Moonlord can find the sound-effect files when the program is
being run from inside the Visual Basic programming environment. The compiled
version of the program doesn’t need this line because the executable knows to look
inside its own directory for the files.

3. How does Moonlord synchronize its sound effects with its animations?

By triggering the sound effects at the same time the animation sequences start.

4. List the name of every variable you’ve declared in this book. If you answer this
question correctly, you will become an honorary member of PWDKJWTSO
(People Who Don’t Know a Joke When They See One).

If you actually answered this one, you have way too much time on your hands!

29 067231987x AppA 11/6/00 7:06 PM Page 589

29 067231987x AppA 11/6/00 7:06 PM Page 590

APPENDIX B
Designing Computer
Game Graphics

Probably the most important element of a computer game, aside from its playa-
bility, is its graphics. The better the graphics, the more the player will enjoy the
game. In fact, graphics are so important that many mediocre games become
popular solely because of their visual appeal.

Unfortunately, most programmers are about as artistically gifted as chim-
panzees with cans of spray paint. To create a visually appealing game, many
programmers hire artists. Many other gifted programmers—those who are capa-
ble of writing sensational games—simply give up on the idea of game program-
ming when they discover their artistic limitations.

If this sounds familiar, here’s good news: The graphics that are often used in
computer games aren’t particularly hard to draw. Learning to draw simple com-
puter graphics is a lot like learning to make a cake from a mix. Much of com-
puter graphic design is a matter of technique rather than skill. Of course, a few
lessons in computer graphics won’t make you an artist. If your game requires a

30 067231987x AppB 11/6/00 7:09 PM Page 591

lot of detailed graphics, such as people, monsters, and buildings, you’ll probably still
need to find an artist. But read on. You’ll be amazed at how far you can get with just a
few graphics lessons.

3D Made Simple
Games often boast of “realistic 3D graphics,” but everything on your computer screen is
flat and therefore two-dimensional. Although the images may seem to be three-dimen-
sional, this is an illusion. What this book refers to as 3D graphics, then, are simply 2D
images that give the illusion of depth (like photographs). Many of the graphics in the
games in this book are three-quarter view or pseudo-isometric view graphics. In other
words, the viewing angle for some objects is such that three sides are displayed: front,
side, and top.

But before you get into three-quarter view graphics, it’s time for a quick lesson in basic
3D computer drawing techniques. Some approaches to using graphics to create a sense of
depth are very simple—so simple, in fact, that they require only a few lines. For exam-
ple, one of the most common and useful 3D drawing techniques is based on the idea that
all light comes from above. After all, sunlight never comes from below (unless you’re in
space), and even artificial light sources are usually placed at or above eye level.
Therefore, people automatically associate brightly illuminated surfaces with the tops of
objects and deeply shaded surfaces with the bottoms of objects.

Figure B.1 illustrates this principle. The drawing uses only three colors: white, gray, and
black. Gray is the neutral background color, neither highlighted nor shadowed. On the
background of the first image, the artist has drawn a reversed black “L,” representing two
sides of a rectangle. To create a 3D illusion for the rectangle in the middle of the figure,
the artist completes the rectangle with white lines so that the rectangle seems to protrude
from the background. To create the last rectangle in the figure, the artist makes a similar
drawing, but uses white for the base “L” and black to complete the rectangle. This rec-
tangle appears to be indented.

592 Appendix B

FIGURE B.1
A simple 3D drawing
technique.

If you stack such elements (drawing one within the confines of another), you can create
an illusion of multiple layers and varying depth. As Figure B.2 demonstrates, you can
even use this technique to draw buttons that seem to be indented when they are selected.

30 067231987x AppB 11/6/00 7:09 PM Page 592

Designing Computer Game Graphics 593

B

FIGURE B.2
Stacking 3D objects.

Using light this way is a useful technique for several reasons. First, it’s easy to do.
Second, it takes advantage of human depth perception. Third, it’s so simple that you can
easily accomplish it through programming—just plotting a few lines on the screen—
rather than having to draw the images in a paint application and then load the image into
your program.

How to Make a 2D Square into a 3D Box
To create more detailed graphics, you must use a paint program. Images drawn with a
paint program are called bitmapped graphics or just bitmaps. A bitmap can’t be drawn
with graphics function calls (at least, not very easily). Instead, you must transfer it to the
screen as one complete image. This chapter teaches you some simple but effective
bitmap-drawing techniques. (There’s no point in trying to win the race before you know
how to start the car!)

There are a lot of techniques for making flat computer graphics seem three-dimensional.
The most sophisticated techniques require either a lot of artistic skill or some very spe-
cialized graphics tools (such as a 3D modeling and rendering package). These sophisti-
cated methods are beyond the scope of this book. However, there are some techniques
that even non-artists can use to create good-looking graphics with even the most rudi-
mentary graphics editors or paint programs.

One basic trick for creating a 3D illusion is to add a simple shadow. This shadow is a
dark silhouette, identical in shape to the primary object, placed so that it appears to be
behind the object. You create the illusion of depth by offsetting the shadow away from
the primary object. You can see this effect by drawing a solid white square on top of a
solid black square, as shown in Figure B.3.

FIGURE B.3
Creating a shadow
effect.

Many computer paint programs enable you to create this shadow effect simply by copy-
ing the object that you’re drawing, coloring the copy darker than the original object so

30 067231987x AppB 11/6/00 7:09 PM Page 593

that the copy looks like a shadow, and then placing a copy of the original object over the
new shadow object, as was done with the two squares in Figure B.3. The original object
seems to be closer to you than its shadow.

You can get an even more realistic effect if you scale the shadow down slightly to simu-
late a perspective shift, as in Figure B.4. The farther away something is, the smaller it
looks. Consequently, the smaller a shadow is in relation to the object casting it, the far-
ther away the shadow appears.

594 Appendix B

FIGURE B.4
Adding greater depth
to a shadow.

Although the preceding technique is a good way to create a 3D effect between an object
and its background, it’s not an good method for making the object itself look three-
dimensional. However, you can use a variation of the shadow technique to draw three-
dimensional objects. This variation is similar to the pencil-and-paper drawing technique,
in which you change two overlapping squares into a cube by adding lines between the
corners.

The images in Figure B.5 illustrate the principle. First, the artist draws two overlapping
squares slightly diagonal to each other. Next, she draws lines connecting the equivalent
corners on each square. This results in a wireframe cube, which gives the illusion of
three dimensions but not of solidity. To make the cube look solid, the artist must select
the square that she wants to be in front and then erase any lines that show through that
front square and the top and facing squares. (The third cube in the figure shows the lines
that the artist is going to remove in order to form a solid cube.) Presto! A solid cube.

FIGURE B.5
Creating a 3D cube.

The less the squares overlap, the longer the object appears to be. (If the starting squares
don’t overlap at all, your drawing will look more like a railroad tie than a square cube.)
This drawing technique isn’t limited to squares. You can do the same thing with any
shapes, from triangles to nonagons and more (see first image in Figure B.6). The tech-
nique works for virtually all geometric shapes, except circles and ellipsoids. They have
no corners to connect, so the technique for making these objects look three-dimensional
is a little different (see the second image in Figure B.6).

30 067231987x AppB 11/6/00 7:09 PM Page 594

Designing Computer Game Graphics 595

B

FIGURE B.6
Other three-dimension-
al objects.

FIGURE B.7
An improperly drawn
3D cube.

If you don’t want your 3D object to look like it just came out of hyperspace,
make sure to keep the two source objects properly aligned. In other words,
don’t rotate one object relative to the other, or you may end up with
bizarre results like those shown in Figure B.7. The last time I saw a cube like
that, my wife had to drive me home from the party!

Caution

Now that you understand a few general principles, you can use them to create more
sophisticated computer graphics, including the aforementioned three-quarter-view graph-
ics. In the examples that follow, you’ll continue to use the technique of creating a new
three-dimensional object by connecting two copies of the same object. However, instead
of using paper-and-pencil drawing techniques, you’ll use the graphics power built into
computer paint programs.

Offset Stamping for 3D Results
Dragonlord, one of the games in this book, requires a dungeon map made up of a matrix
of individual rooms shown at three-quarter-view perspective. Creating such a room
object is a good way to demonstrate a graphics technique known as offset stamping.

To use the offset stamping technique described here, you must have a
graphics editor or paint program that enables you to clip a graphics element
and stamp down copies without disturbing the original. Furthermore, you
must be able to create transparent copies of objects. Such an object has a
transparent background that doesn’t erase the images beneath it.

Note

To try offset stamping, first start your paint program and draw a square frame (not a
filled square). Next, make a small opening in one of the sides to represent a door. Use
your paint program’s clipboard to copy the square, and then stamp a copy somewhere

30 067231987x AppB 11/6/00 7:09 PM Page 595

else on the screen. Pick a different color than you used for the first square and make the
copy this new color. You use these two squares as source elements when you create a
simulated 3D room, as shown in Figure B.8.

596 Appendix B

FIGURE B.8
Using offset stamping
to create a room.

To use offset stamping to create the room, copy the square that you recolored, move to a
blank area of the screen, and stamp a copy of the square there. Then stamp another copy
over the first, just one pixel above and to the left of the first, as shown in Figure B.9. Do
this several times, each time offsetting the stamp the same amount. Next, copy the first
square that you drew and stamp it onto the stack that you just made, offsetting it as you
did the other squares. When you’re done, you should have a 3D room similar to the one
shown in Figure B.8.

FIGURE B.9
The offset stamping
technique.

You can make your 3D objects look more realistic by adding more complex shading.
One good method is to shade the faces of your starting shape with different colors and
hues before you use the offset stamping technique. Figure B.10 shows an example of this
shading. In this example, the source of the light on the object is above and to the right
(as indicated by the sun symbol). You use the angle of the light source to determine how
bright each object surface should be. To make the effect realistic, treat each face like a
wall. If one side faces the light, make it brighter so that the other side is clearly in
shadow.

FIGURE B.10
Shading an object
before offset stamping.

30 067231987x AppB 11/6/00 7:09 PM Page 596

Designing Computer Game Graphics 597

B

After you finish the shading, use the offset stamping technique to create a room. First,
stack several copies of the shaded object, offsetting each copy by one pixel both horizon-
tally and vertically. Then fill the original shaded object with a single color and use that
new object to “cap” the stack. If you start with the object shown in Figure B.10, you’ll
end up with objects like those shown in figure B.11. As you can see, altering the direc-
tion of the offset stamping changes the appearance of the objects.

FIGURE B.11
Shaded objects created
by offset stamping.

You can apply the offset stamping technique to virtually any shape. As Figure B.12
shows, you can even use offset stamping to create round objects (although they require
more subtle shading).

FIGURE B.12
Shaded round objects
created by offset
stamping.

Special Tips and Tricks
Beyond 3D rooms and objects, you’ll undoubtedly need many other graphical objects for
your games. Some objects, such as bricks, are fairly simple to create. Others, such as
teleport squares or glass spheres, require a bit more skill. To help you get started, the rest
of this appendix is devoted to basic tips, techniques, and tricks for solving or avoiding
difficult graphics problems.

Choosing Identifiable Objects
Sometimes the hardest task in drawing game graphics is to make an object look like the
real-world object that it’s supposed to look like. Resolution and color limitations often
complicate your computer graphics drawing, but sometimes just figuring out how to
symbolize an object can drive you to the medicine cabinet for aspirin.

30 067231987x AppB 11/6/00 7:09 PM Page 597

For example, your game design might call for the hero to wear ultraviolet contact lenses
that enable him to see certain other game objects. But contact lenses are little more than
glass disks, which are difficult to render realistically. Would you recognize a graphic of
contact lenses, no matter how well it was drawn?

In such circumstances, you should find a more easily identifiable object to replace the
ambiguous object in your game. For example, you might use eyeglasses in your game
instead of contact lenses. A player is unlikely to mistake a pair of eyeglasses for any
other object.

Designing Icons
Creating icons for computer programs can be tougher than climbing a greased tree.
Although a sword icon clearly represents fighting and a scissors icon obviously repre-
sents some kind of cutting function, how can you represent less visual functions, such as
saving a game or displaying a high-score board?

Unfortunately, designing icons is a skill that can’t be taught. It requires a lot of imagina-
tion and trial and error. Where icons are concerned, a picture is clearly not worth a thou-
sand words!

Obviously, when you’re designing icons, you should strive for simple, unambiguous
images that easily identify their associated functions. If you can’t come up with such
images, you’re far better off to use text labels instead. There are few things more annoy-
ing in computer interfaces than poorly designed icons.

Drawing Metal
Believe it or not, drawing metal surfaces is one of the easiest tasks in computer graphics,
provided you have two or more shades of a specific color available. For flat metal sur-
faces, just draw diagonal highlights on the object. If you have more than two shades
available, you can get more complex, alternating highlights by using darker reflections.
Figure B.13 demonstrates this metal drawing technique. The more shades of a specific
color you use, the more effective your result will be.

598 Appendix B

FIGURE B.13
Using highlights and
reflections to draw
metal surfaces.

You can use a similar technique to draw curved metal surfaces, but you must follow
slightly different rules. First, highlights must appear near the edge closest to the light,
and shadows must appear near the edges farthest from the light. Figure B.14 shows how

30 067231987x AppB 11/6/00 7:09 PM Page 598

Designing Computer Game Graphics 599

B

you can make a cylinder appear metallic by changing hues and placing highlights appro-
priately. Notice that the harsh shadow along the dark left side of the cylinder softens to a
lighter shade at the rim, which produces a more reflective look.

FIGURE B.14
Drawing a curved
metal surface.

Because most metals are reflective, they display severe highlights and shadows. In other
words, the more smoothly and evenly you blend shades into each other, the less metallic
the surface appears. Adding specular highlights or “hot spots” (extremely bright points of
reflected light, as shown in Figure B.14) helps make surfaces look more metallic.

Drawing Glass
Because glass is transparent, you don’t draw it any more than you can draw air. What
you can draw is the effect that glass has on objects that are seen through it. Often, the
simplest way to create a glass object is to draw its general shape and then add highlights
and shadows as you did when drawing metal. You then draw whatever shows through the
glass, highlighting and shading it appropriately.

Figure B.15 shows how this works. You draw the bottle in light gray, with white high-
lights and dark gray shadows. Then you draw the liquid within the bottle by replacing
the bottle’s colors with different shades, but leaving a slim line of the original color at
the perimeter of the bottle to show the thickness of the glass. The result looks
transparent.

FIGURE B.15
Drawing a glass
bottle.

Because glass is reflective, you can create glass surfaces by placing highlights on them,
similar to those that you use to create metal surfaces. Highlights can either obscure
objects seen through the glass or allow those objects to show through. If the object seen
through the glass extends beyond the edges of the glass, you should degrade that part of
the object by drawing it with slightly lighter colors. This is because glass isn’t perfectly
transparent and thus captures a tiny amount of light. This makes an image seen through
glass look slightly dulled, as though it’s lost some of its color. Also, glass sometimes

30 067231987x AppB 11/6/00 7:09 PM Page 599

bends light passing through it, resulting in some distortion of the image. To create this
distortion, you can slightly enlarge the part of the object behind the glass as though it’s
being magnified.

Figure B.16 demonstrates the use of reflection, degradation, and distortion. It shows part
of a metal rod as seen through a pane of glass.

600 Appendix B

FIGURE B.16
Using reflections,
degradation, and dis-
tortion in drawing
glass objects.

Drawing Luminous Objects
You can take advantage of several tricks when drawing luminous objects such as light
bulbs or flaring stars. But if you’re not careful, you may end up with a strange-looking
object indeed. For example, if you draw a glow around a light bulb, almost anyone can
tell that the light bulb is supposed to be glowing. However, if you place the same glow
around an object shaped like a sheep, you get a lamb in need of shearing. Still, the glow
effect is useful if used sparingly.

One of the best ways to create a luminous object is to draw the effect of the emitted light
on the object’s surroundings. For example, a glowing light-emitting diode (LED) is just a
brightly colored blob. The only way you can show that the LED is lighted is by drawing
the effects of its light on its surroundings. Likewise, when you draw a knight wielding a
glowing sword, the sword should throw highlights on the knight while casting other parts
of the figure into shadow. Figure B.17 shows these types of objects.

FIGURE B.17
Drawing glowing
objects.

Fire, another type of glowing object, is difficult to draw because one of its distinguishing
characteristics is its motion—the dance of the flame. Often, a static representation of
flame looks like anything but fire. The colors that you use when drawing fire also can
have a profound effect on the end result. The wrong hues may make your fire look more
like a popsicle.

30 067231987x AppB 11/6/00 7:09 PM Page 600

Designing Computer Game Graphics 601

B

There are few good rules for drawing fire. Your best bet is to stick with the colors that
people automatically associate with fire (reds and oranges), and place flames within rec-
ognizable contexts, such as camps, fireplaces, and torches.

Drawing Drop Shadows
A drop shadow is a shadow that you place under an item you’ve drawn. This is useful for
a couple of reasons. First, if an object’s drop shadow is immediately beneath and con-
nected to the object, you can tell that the object is resting on the ground (or some other
surface). Conversely, when an object’s drop shadow is disconnected from and farther
below the object, the object appears to be floating in the air.

There’s not much to say about drop shadows. They’re generally dark spots, often black,
that appear around the base of an object or below an airborne one. The simplest drop
shadows, such as those used in cartoons, are just spots. However, more elaborate drop
shadows mimic the casting object’s shape. Figure B.18 provides a couple of examples.

FIGURE B.18
Drawing drop
shadows.

Smoothing Graphics
All display graphics on the PC are raster displays composed of thousands of illuminated
dots on a vast grid. Therefore, the only perfectly smooth lines that you can draw are hori-
zontal or vertical ones. Any line that deviates from perfect horizontal or vertical orienta-
tion is drawn across a series of rows and columns and appears to consist of staggered
line fragments with obvious stairsteps. This stairstep effect is known as an alias (or col-
loquially as a “jaggie” because of its jagged look). The technique that you use to dis-
guise this alias effect is called antialiasing.

Antialiasing blurs the edges of each stairstep by placing a pixel or pixels of an intermedi-
ate color or tone at the end of it. For example, to smooth the aliases between a blue or
red area, place a purple pixel at each stairstep.

Figure B.19 demonstrates antialiasing on a black circle. The left circle of each pair is
drawn black on white with no antialiasing. The right circle of each pair is antialiased,
with two or more shades of gray used to blur the stairsteps. When the antialiasing is
enlarged, as in the pair of circles on the right, it looks odd. However, when viewed at
normal scale on a computer screen, as shown in the pair of circles on the left, antialias-
ing works wonderfully to reduce and even remove the stairstep effect.

30 067231987x AppB 11/6/00 7:09 PM Page 601

FIGURE B.19
Antialiasing at work.

602 Appendix B

Many paint programs have a built-in feature for antialiasing part or all of a screen or
graphic. Most of these antialiasing functions do a fairly good job, but like any automated
procedure, sometimes you may not get the exact effect that you want. In such circum-
stances, you may have to retouch the antialiasing or even redo it from scratch.

Overusing antialiasing can result in fuzzy images. The fewer pixels that you
use to draw an item, the more likely it is to become fuzzy when antialiased.
Also, high-contrast images often look slightly muddy when antialiased.

Finally, if you antialias a graphic before placing it on its final background,
you may get unexpected and unappealing results. Because the colors used in
antialiasing are intermediate, placing a graphics element onto a different
background color changes the antialiasing effect. You should make antialias-
ing the final step in preparing graphics. (Keep a copy of the original image,
free of antialiasing, in case you have to make major changes or you just dis-
like the antialiasing effect.)

Caution

Summary
Although it takes many years of study and practice to become a competent computer
artist, you can quickly learn several handy techniques for drawing effective—albeit sim-
ple—game graphics. These techniques include highlighting, shading, offset stamping,
and antialiasing. You can combine all of these effects to create many types of pseudo-3D
objects. These techniques even enable you to draw metal and glass surfaces.

30 067231987x AppB 11/6/00 7:10 PM Page 602

APPENDIX C
Windows API Functions
for Game Programmers

On Day 6, “Graphics Programming with the Windows API,” you learned how
to call Windows API functions. This appendix lists some of the API functions
that you might find useful or interesting, along with their Visual Basic declara-
tions. If you find something you like, look up the function in your online API
reference to get all the details. Remember that some of these functions require
that you also define special data types. If you’ve forgotten how to do this, refer
back to Day 6.

AngleArc()
Draws an arc with a line segment connecting to it from the current drawing
position:

Public Declare Function AngleArc Lib “gdi32” Alias “AngleArc” _
(ByVal hdc As Long, ByVal x As Long, ByVal y As Long, _
ByVal dwRadius As Long, ByVal eStartAngle As Double, _
ByVal eSweepAngle As Double) As Long

31 067231987x AppC 11/6/00 7:06 PM Page 603

Arc()
Draws an arc:

Public Declare Function Arc Lib “gdi32” Alias “Arc” _
(ByVal hdc As Long, ByVal X1 As Long, ByVal Y1 As Long, _
ByVal X2 As Long, ByVal Y2 As Long, ByVal X3 As Long, _
ByVal Y3 As Long, ByVal X4 As Long, ByVal Y4 As Long) As Long

BitBlt()
Transfers a rectangular area of pixel color values from a source device context to a desti-
nation device context:

Public Declare Function BitBlt Lib “gdi32” Alias “BitBlt” _
(ByVal hDestDC As Long, ByVal x As Long, ByVal y As Long, _
ByVal nWidth As Long, ByVal nHeight As Long, _
ByVal hSrcDC As Long, ByVal xSrc As Long, _
ByVal ySrc As Long, ByVal dwRop As Long) As Long

Chord()
Draws a chord, which is the area formed when a line segment intersects an ellipse:

Public Declare Function Chord Lib “gdi32” Alias “Chord” _
(ByVal hdc As Long, ByVal X1 As Long, ByVal Y1 As Long, _
ByVal X2 As Long, ByVal Y2 As Long, ByVal X3 As Long, _
ByVal Y3 As Long, ByVal X4 As Long, ByVal Y4 As Long) As Long

CreateBrushIndirect()
Creates a brush with the style, color, and pattern specified in a LOGBRUSH structure:

Public Declare Function CreateBrushIndirect Lib “gdi32” _
Alias “CreateBrushIndirect” (lpLogBrush As LOGBRUSH) As Long

CreateDIBSection()
Creates a DIB (device-independent bitmap) that can be accessed directly in memory:

Public Declare Function CreateDIBSection Lib “gdi32” _
Alias “CreateDIBSection” (ByVal hDC As Long, _
pBitmapInfo As BITMAPINFO, ByVal un As Long, _
ByVal lplpVoid As Long, ByVal handle As Long, _
ByVal dw As Long) As Long

604 Appendix C

31 067231987x AppC 11/6/00 7:06 PM Page 604

Windows API Functions for Game Programmers 605

C

CreateHatchBrush()
Creates a brush with the given color and hatch pattern:

Public Declare Function CreateHatchBrush Lib “gdi32” _
Alias “CreateHatchBrush” (ByVal nIndex As Long, _
ByVal crColor As Long) As Long

CreatePatternBrush()
Creates a brush from the supplied bitmap image:

Public Declare Function CreatePatternBrush Lib “gdi32” _
Alias “CreatePatternBrush” (ByVal hBitmap As Long) As Long

CreatePen()
Creates a pen of the given color, style, and thickness:

Public Declare Function CreatePen Lib “gdi32” Alias _
“CreatePen” (ByVal nPenStyle As Long, _
ByVal nWidth As Long, ByVal crColor As Long) As Long

CreateSolidBrush()
Creates a brush of the given solid color:

Public Declare Function CreateSolidBrush Lib “gdi32” _
Alias “CreateSolidBrush” (ByVal crColor As Long) As Long

DeleteObject()
Deletes from memory a graphical object, such as a pen, bitmap, or brush:

Public Declare Function DeleteObject Lib “gdi32” _
Alias “DeleteObject” (ByVal hObject As Long) As Long

Ellipse()
Draws an ellipse or circle:

Public Declare Function Ellipse Lib “gdi32” Alias “Ellipse” _
(ByVal hdc As Long, ByVal X1 As Long, ByVal Y1 As Long, _
ByVal X2 As Long, ByVal Y2 As Long) As Long

31 067231987x AppC 11/6/00 7:06 PM Page 605

FloodFill()
Fills an area with the currently selected brush:

Public Declare Function FloodFill Lib “gdi32” Alias _
“FloodFill” (ByVal hdc As Long, ByVal x As Long, _
ByVal y As Long, ByVal crColor As Long) As Long

GetBitmapBits()
Retrieves the image data from the given bitmap:

Public Declare Function GetBitmapBits Lib “gdi32” _
Alias “GetBitmapBits” (ByVal hBitmap As Long, _
ByVal dwCount As Long, lpBits As Any) As Long

GetDC()
Gets the context for the window associated with the specified window handle:

Public Declare Function GetDC Lib “user32” Alias “GetDC” _
(ByVal hwnd As Long) As Long

GetDIBColorTable()
Gets the RGB color values from a DIB:

Public Declare Function GetDIBColorTable Lib “gdi32” _
Alias “GetDIBColorTable” (ByVal hDC As Long, _
ByVal un1 As Long, ByVal un2 As Long, _
pRGBQuad As RGBQUAD) As Long

GetDIBits()
Copies the image data from a bitmap into a buffer:

Public Declare Function GetDIBits Lib “gdi32” Alias _
“GetDIBits” (ByVal aHDC As Long, ByVal hBitmap As Long, _
ByVal nStartScan As Long, ByVal nNumScans As Long, _
lpBits As Any, lpBI As BITMAPINFO, ByVal wUsage As Long) _
As Long

606 Appendix C

31 067231987x AppC 11/6/00 7:06 PM Page 606

Windows API Functions for Game Programmers 607

C

GetObject()
Gets information about a graphical object, such as a bitmap, pen, or brush:

Public Declare Function GetObject Lib “gdi32” Alias _
“GetObjectA” (ByVal hObject As Long, _
ByVal nCount As Long, lpObject As Any) As Long

GetPixel()
Gets the RGB color value of the pixel at the given location:

Public Declare Function GetPixel Lib “gdi32” Alias _
“GetPixel” (ByVal hdc As Long, ByVal x As Long, _
ByVal y As Long) As Long

LineTo()
Draws a line from the current location to the given location:

Public Declare Function LineTo Lib “gdi32” Alias “LineTo” _
(ByVal hdc As Long, ByVal x As Long, ByVal y As Long) As Long

MaskBlt()
Combines the pixels from a source and destination bitmap using a given mask and raster
operation:

Public Declare Function MaskBlt Lib “gdi32” Alias “MaskBlt” _
(ByVal hdcDest As Long, ByVal nXDest As Long, _
ByVal nYDest As Long, ByVal nWidth As Long, _
ByVal nHeight As Long, ByVal hdcSrc As Long, _
ByVal nXSrc As Long, ByVal nYSrc As Long, _
ByVal hbmMask As Long, ByVal xMask As Long, _
ByVal yMask As Long, ByVal dwRop As Long) As Long

MessageBeep()
Plays one of the system-defined WAV sounds:

Public Declare Function MessageBeep Lib “user32” _
Alias “MessageBeep” (ByVal wType As Long) As Long

31 067231987x AppC 11/6/00 7:06 PM Page 607

PatBlt()
Fills the given rectangular area with the current brush, using the given raster operation:

Public Declare Function PatBlt Lib “gdi32” Alias “PatBlt” _
(ByVal hdc As Long, ByVal x As Long, ByVal y As Long, _
ByVal nWidth As Long, ByVal nHeight As Long, _
ByVal dwRop As Long) As Long

Pie()
Draws a pie slice, such as you might use in a pie-type graph:

Public Declare Function Pie Lib “gdi32” Alias “Pie” _
(ByVal hdc As Long, ByVal X1 As Long, ByVal Y1 As Long, _
ByVal X2 As Long, ByVal Y2 As Long, ByVal X3 As Long, _
ByVal Y3 As Long, ByVal X4 As Long, ByVal Y4 As Long) As Long

PolyBezier()
Draws a set of Bézier curves:

Public Declare Function PolyBezier Lib “gdi32” Alias _
“PolyBezier” (ByVal hdc As Long, lppt As POINTAPI, _
ByVal cPoints As Long) As Long

PolyDraw()
Draws a group of lines and Bézier curves:

Public Declare Function PolyDraw Lib “gdi32” Alias _
“PolyDraw” (ByVal hdc As Long, lppt As POINTAPI, _
lpbTypes As Byte, ByVal cCount As Long) As Long

Polygon()
Draws a polygonal shape:

Public Declare Function Polygon Lib “gdi32” Alias “Polygon” _
(ByVal hdc As Long, lpPoint As POINTAPI, _
ByVal nCount As Long) As Long

608 Appendix C

31 067231987x AppC 11/6/00 7:06 PM Page 608

Windows API Functions for Game Programmers 609

C

Polyline()
Draws a set of lines:

Public Declare Function Polyline Lib “gdi32” Alias _
“Polyline” (ByVal hdc As Long, lpPoint As POINTAPI, _
ByVal nCount As Long) As Long

PolyPolygon()
Draws a set of polygonal shapes:

Public Declare Function PolyPolygon Lib “gdi32” Alias _
“PolyPolygon” (ByVal hdc As Long, lpPoint As POINTAPI, _
lpPolyCounts As Long, ByVal nCount As Long) As Long

PolyPolyline()
Draws a set of polylines:

Public Declare Function PolyPolyline Lib “gdi32” Alias _
“PolyPolyline” (ByVal hdc As Long, lppt As POINTAPI, _
lpdwPolyPoints As Long, ByVal cCount As Long) As Long

Rectangle()
Draws a rectangle:

Public Declare Function Rectangle Lib “gdi32” Alias _
“Rectangle” (ByVal hdc As Long, ByVal X1 As Long, _
ByVal Y1 As Long, ByVal X2 As Long, ByVal Y2 As Long) _
As Long

RoundRect()
Draws a rectangle with rounded corners:

Public Declare Function RoundRect Lib “gdi32” Alias _
“RoundRect” (ByVal hdc As Long, ByVal X1 As Long, _
ByVal Y1 As Long, ByVal X2 As Long, ByVal Y2 As Long, _
ByVal X3 As Long, ByVal Y3 As Long) As Long

31 067231987x AppC 11/6/00 7:06 PM Page 609

SelectObject()
Selects a graphical object—such as a bitmap, brush, or pen—into a device context:

Public Declare Function SelectObject Lib “gdi32” Alias _
“SelectObject” (ByVal hdc As Long, ByVal hObject As Long) _
As Long

SetBitmapBits()
Sets the image data in a bitmap:

Public Declare Function SetBitmapBits Lib “gdi32” Alias _
“SetBitmapBits” (ByVal hBitmap As Long, _
ByVal dwCount As Long, lpBits As Any) As Long

SetDIBColorTable()
Sets the colors in a DIB’s color table:

Public Declare Function SetDIBColorTable Lib “gdi32” _
Alias “SetDIBColorTable” (ByVal hDC As Long, _
ByVal un1 As Long, ByVal un2 As Long, _
pcRGBQuad As RGBQUAD) As Long

SetPixel()
Sets the RGB value of the pixel at the given coordinates:

Public Declare Function SetPixel Lib “gdi32” Alias _
“SetPixel” (ByVal hdc As Long, ByVal x As Long, _
ByVal y As Long, ByVal crColor As Long) As Long

SetROP2()
Sets the raster operation to be used in subsequent drawing operations:

Public Declare Function SetROP2 Lib “gdi32” Alias “SetROP2” _
(ByVal hdc As Long, ByVal nDrawMode As Long) As Long

StretchBlt()
Copies a rectangular area of a bitmap to another rectangular area, stretching or shrinking
the source data to fit the destination rectangle and using the given raster operation to
determine how to combine the source and destination pixels:

610 Appendix C

31 067231987x AppC 11/6/00 7:06 PM Page 610

Windows API Functions for Game Programmers 611

C

Public Declare Function StretchBlt Lib “gdi32” Alias _
“StretchBlt” (ByVal hdc As Long, ByVal x As Long, _
ByVal y As Long, ByVal nWidth As Long, _
ByVal nHeight As Long, ByVal hSrcDC As Long, _
ByVal xSrc As Long, ByVal ySrc As Long, _
ByVal nSrcWidth As Long, ByVal nSrcHeight As Long, _
ByVal dwRop As Long) As Long

StretchDIBits()
Copies a rectangular area of a DIB to another rectangular area, stretching or shrinking
the source data to fit the destination rectangle and using the given raster operation to
determine how to combine the source and destination pixels:

Public Declare Function StretchDIBits Lib “gdi32” Alias _
“StretchDIBits” (ByVal hdc As Long, ByVal x As Long, _
ByVal y As Long, ByVal dx As Long, ByVal dy As Long, _
ByVal SrcX As Long, ByVal SrcY As Long, _
ByVal wSrcWidth As Long, ByVal wSrcHeight As Long, _
lpBits As Any, lpBitsInfo As BITMAPINFO, _
ByVal wUsage As Long, ByVal dwRop As Long) As Long

31 067231987x AppC 11/6/00 7:06 PM Page 611

31 067231987x AppC 11/6/00 7:06 PM Page 612

APPENDIX D
Getting Started with
DirectX

There are several operating systems available for owners of PC-
compatible computers, but Microsoft Windows has dominated the
market. All the best applications are available for Windows, and just
about every new computer comes with Windows already installed.
When you consider the immense popularity of Windows, you might
wonder why it took so long for Windows games to appear on the
shelves.

If you’ve ever programmed games under Windows, you already know
why all the best games used to run only under good old clunky DOS.
Ironically, Windows, which is a graphical user interface that relies on
tons of cute little icons and buttons, used to be slowest at handling
graphics. And any operating system that can’t handle graphics at
blazing speeds can’t handle games—at least not games that require
transferring a lot of graphics between memory and the screen.

32 067231987x AppD 11/6/00 7:13 PM Page 613

So why was DOS so much better at handling graphics? Because DOS lets you
create your own custom graphics routines and access graphics directly in memo-
ry. Whereas Windows, in its attempt to provide a device-independent environ-
ment, required that all graphics handling go through its GDI (Graphics Device
Interface), which is a library of handy but generally slow (compared to DOS)
graphics functions for doing such things as drawing lines and transferring
bitmaps to the screen.

Because of the GDI, games that required high-powered graphics engines were
impossible to write for Windows… until DirectX came along, that is. This
appendix shows you how to get started with DirectX in your game programs.

Why Game Programmers Need Fast
Graphics

But before you start learning about DirectX, you need to understand why fast
graphics are so important in games. The truth is that in most games, the slowest
code is the code that moves graphics data around. One reason for this is that
today’s computers can handle very detailed images. These high-resolution
images require huge amounts of memory.

Take, for example, a 256-color image with a resolution of 640×480. A 640×480
screen is made up of 307,200 individual dots of color, or pixels. Each of those
pixels must be represented by eight bits in memory because it requires eight bits
to allow for 256 different color combinations. (This is why 256-color pictures
are often referred to as 8-bit images.) Therefore, storing a 640×480, 256-color
image in memory requires 307,200 bytes. That’s a third of a megabyte! In order
to display that image on the screen, the program must transfer the image in
RAM to the screen’s memory.

Now, imagine that you’re using this 256-color image as the background scene in
a flight simulator game. Because the background scene is constantly changing,
your program must repeatedly transfer new images to the screen. Thirty images
a second wouldn’t be unusual (it would be a fairly slow screen update, in fact).
So now the program has to move 30×307,200 bytes—almost ten megabytes—of
graphical data each second. Things are really starting to slow down now.

614 Appendix D

32 067231987x AppD 11/6/00 7:13 PM Page 614

Getting Started with DirectX 615

D

But there’s still more. Suppose there are objects that move around on top of this
constantly changing scene. These objects, called sprites in computer-gaming
lingo, include the player’s onscreen character and all the enemies the player is
currently fighting. These sprites are graphical objects that must be transferred to
the screen. So now, not only must the program transfer the background scene to
the screen 30 times a second, but it must also transfer each sprite onto this
image, one by one.

And this scenario ignores the problems you encounter when trying to animate
sprites directly on the screen. Because simple animation produces an annoying
flicker as sprites constantly appear and disappear, game programmers usually
compose a complete scene in memory before transferring that scene to the
screen. This can double the amount of graphical data that must be transferred
because now the new background scene (or at least parts of it) must be trans-
ferred from one part of memory to another, the sprites are added, and then the
whole thing is transferred to the screen. When you think about it, it’s a miracle
that computer games work at all!

Enter DirectX
DirectX is a set of COM objects for handling graphics, sound, input devices,
and network play under Windows. COM, which stands for Component Object
Model, is a specification for creating standalone Windows objects that can be
called upon by any program in the system. COM objects provide an interface
that applications use to call the member functions included in the object. For
example, to use the DirectDraw component of DirectX, you create a DirectDraw
object. Then you can call DirectDraw’s member functions through the
DirectDraw object.

If you’ve looked at DirectX’s programmer’s reference, you may have been
shocked by the number of functions supplied by the library. The good news is
that only a small subset of these functions is required for most game programs.
For example, several DirectDraw functions give you the necessary tools to
transfer bitmaps quickly between memory and the screen. In many cases, how-
ever, you may need to supply your own custom graphics functions for complet-
ing such tasks as loading bitmaps and sound files.

32 067231987x AppD 11/6/00 7:13 PM Page 615

The Components of DirectX
DirectX actually comprises seven main components:

• DirectDraw—DirectDraw’s specialty is graphics. It gives your program direct con-
trol over a computer’s video hardware, enabling the program to quickly transfer
graphics between memory and the screen. DirectDraw is designed to take advan-
tage of any hardware capabilities that may be present on the user’s video card.
Moreover, DirectDraw can emulate most of these capabilities in software when
they aren’t available on the graphics card.

• DirectSound—DirectSound is to sound cards what DirectDraw is to video cards,
providing an almost device-independent method for directly dealing with the user’s
sound devices. DirectSound allows you to more easily synchronize your sound
effects with events on the screen because it responds much faster than other
Windows sound functions, such as those included in the MCI (multimedia control
interface). DirectSound can even handle 3D sound effects.

• DirectInput—Although most Windows games use the mouse as the control device,
DirectInput provides the functionality your program needs to respond to a joystick.
For this reason, you can now more easily create arcade-style games that use joy-
sticks or control pads to control onscreen characters. Using DirectInput, your pro-
gram can calibrate a joystick and read its position and buttons.

• DirectPlay—Today’s most popular games enable players to compete head-to-head
or cooperatively over a network. DirectPlay is the DirectX component that enables
your programs to more easily include network-play support by generalizing the
functionality needed by such support. As Microsoft so aptly puts it, “DirectPlay
provides a transport-independent, protocol-independent, and online service-
independent way for games developed for Windows to communicate with each
other.”

• Direct3D—Many of today’s games are built around 3D graphics engines. The
Direct3D component provides tools that help programmers create 3D-style games.
You can use it to build games like Quake—assuming, of course, that you’ve got the
advanced programming knowledge required to understand and use the Direct3D
libraries.

• DirectMusic—The DirectX DirectSound component handles the playback of digi-
tal sound effects. Its cousin, DirectMusic, provides similar services for playing
music in your games. DirectMusic takes message-based music (such as MIDI mes-
sages), converts it to WAV format, and then hands the music over to DirectSound
for playing.

• DirectSetup—The DirectSetup component sets up DirectX on a player’s system.

616 Appendix D

32 067231987x AppD 11/6/00 7:13 PM Page 616

Getting Started with DirectX 617

D

As you can see, DirectX includes just about everything you need except the game itself.
Using DirectX, you can create full-featured, power-packed games that can compete with
just about any game that used to run under DOS. In fact, creating games with DirectX is
easier than creating games under DOS because DirectX’s various components do so
much of the work for you.

In spite of DirectX’s richness of features, however, you need only a small subset of its
functions to get started. By drawing upon a few functions supplied with DirectDraw
and DirectSound, you can create just about any kind of game you like. This day will
introduce you to DirectDraw, which is the most important DirectX component.

Installing the DirectX 7 SDK
Now that you have some idea of what DirectX is and why you should use it, it’s
time to install the DirectX developer’s kit and sample applications on your sys-
tem. On this book’s CD-ROM, run the SETUP.EXE program in the
dx7asdk/DXF folder and then follow the onscreen prompts.

When the installation is complete, you’ll see that you now have a new program
group named Microsoft DirectX 7 SDK on your start menu. The DirectX group
contains many sample programs (including samples in Visual Basic) that
demonstrate many of DirectX’s talents, as well as utility programs for making
programming with the SDK easier.

You don’t need to install the full DirectX SDK in order to program DirectX
programs with Visual Basic. You only need the DirectX runtime libraries.
However, because the SDK includes tons of useful documentation, not to
mention sample programs complete with source code, I recommend that
you install the complete SDK.

Note

Programming with DirectDraw
Now that you have some idea what DirectX does, it’s time to use DirectDraw in an actu-
al program. Not only will you get hands-on experience with DirectDraw, but you’ll also
be able to see it in action.

As you learn more about DirectDraw, keep in mind that its main purpose is to provide
directly accessible drawing surfaces in memory and to allow you to transfer those draw-
ing surfaces quickly to the screen. This process is important for game programmers
because they frequently need to update the screen as often as 60 times a second.

32 067231987x AppD 11/6/00 7:13 PM Page 617

Here’s how to take advantage of DirectDraw in a Visual Basic program. You should keep
the following programming steps in mind as you develop the DirectDraw application that
follows:

1. Add a reference to the DirectX 7 For Visual Basic Type Library to your VB
project.

2. Create a DirectX object in the program.

3. Create a DirectDraw object by calling the DirectX object’s DirectDrawCreate
method.

4. Call the DirectDraw object’s SetCooperativeLevel method to set the cooperative
level (normal or exclusive) between running applications.

5. Call the DirectDraw object’s CreateSurface method to create a primary surface.

6. Call the DirectDraw object’s CreateSurface method to create a back-buffer mem-
ory area for assembling images into a final display.

7. Call the DirectDraw object’s CreateSurfaceFromFile method to load images into
memory and to create surfaces for those images.

8. Set the clipping rectangle for the primary surface object.

9. Set the transparent color for surfaces holding non-rectangular sprites.

10. Assemble an image in the back buffer surface.

11. Call the back buffer DirectDrawSurface object’s Blt method to copy the back
buffer surface to the primary surface, which displays the image in the application’s
window.

This may seem like a lot of work, and no doubt much of it is still confusing to you. But
fear not. All will be explained in the pages that follow. Once you get the hang of using
DirectDraw, you’ll discover that many of the steps in this list are little more than pro-
gram overhead—something you do once when your program starts up.

Creating the DirectX Application
Perform the following steps to create your first DirectDraw program:

1. Create a new Standard EXE Visual Basic project.

2. Use the Project menu’s References command to add a reference to the DirectX 7
for Visual Basic Type Library, as shown in Figure D.1.

618 Appendix D

32 067231987x AppD 11/6/00 7:13 PM Page 618

Getting Started with DirectX 619

D

FIGURE D.1
Adding a reference to
the DirectX type
library.

3. Set the form’s ScaleMode property to Pixels.

4. Add a PictureBox control to the project’s form.

5. Add two CommandButton controls to the form, giving them the following property
settings:

CommandButton #1

Name = cmdStart

Caption = “&Start”

Height = 49

Left = 424

Top = 32

Width = 49

CommandButton #2

Name = cmdStop

Caption = “S&top”

Height = 49

Left = 424

Top = 96

Width = 49

32 067231987x AppD 11/6/00 7:13 PM Page 619

6. Type the following source code into the project’s code window, or copy it from the
DirectX.txt file located in the AppendixD\Code directory of this book’s CD-ROM:

Option Explicit

Const SPEEDX = 2
Const SPEEDY = 1
Const SPRITEHEIGHT = 64
Const SPRITEWIDTH = 64
Const BACKGROUNDHEIGHT = 400
Const BACKGROUNDWIDTH = 400

Dim DirectX7Obj As New DirectX7
Dim DirectDraw7Obj As DirectDraw7
Dim PrimarySurface As DirectDrawSurface7
Dim BackBufferSurface As DirectDrawSurface7
Dim BackgroundSurface As DirectDrawSurface7
Dim SpriteSurface As DirectDrawSurface7
Dim ClipperObj As DirectDrawClipper
Dim BackBufferRect As RECT
Dim PrimarySurfaceRect As RECT
Dim Running As Boolean
Dim SpriteX As Integer
Dim SpriteY As Integer
Dim SpriteOffsetX As Integer
Dim SpriteOffsetY As Integer

Private Sub Form_Load()
InitObjects
InitDirectDraw
CreatePrimarySurface
CreateBackBufferSurface
CreateBackgroundSurface
CreateSpriteSurface
SetClipAndTransparency
InitVariables

End Sub

Private Sub Form_Unload(Cancel As Integer)
Set DirectDraw7Obj = Nothing
Set DirectX7Obj = Nothing
Running = False

End Sub

Private Sub cmdStart_Click()
cmdStart.Enabled = False
cmdStop.Enabled = True
Running = True

620 Appendix D

32 067231987x AppD 11/6/00 7:13 PM Page 620

Getting Started with DirectX 621

D

Animate
End Sub

Private Sub cmdStop_Click()
cmdStart.Enabled = True
cmdStop.Enabled = False
Running = False

End Sub

Sub InitObjects()
Form1.ScaleMode = vbPixels
Picture1.ScaleMode = vbPixels
Form1.AutoRedraw = True
Picture1.AutoRedraw = True
Form1.Width = 498 * Screen.TwipsPerPixelX
Form1.Height = 440 * Screen.TwipsPerPixelY
Picture1.BorderStyle = 0
Picture1.Width = BACKGROUNDWIDTH
Picture1.Height = BACKGROUNDHEIGHT
Picture1.Left = 4
Picture1.Top = 4
cmdStop.Enabled = False

End Sub

Sub InitVariables()
SpriteOffsetX = SPEEDX
SpriteOffsetY = SPEEDY

End Sub

Sub SetClipAndTransparency()
Set ClipperObj = DirectDraw7Obj.CreateClipper(0)
ClipperObj.SetHWnd Picture1.hWnd
PrimarySurface.SetClipper ClipperObj
Dim key As DDCOLORKEY
key.low = 0
key.high = 0
SpriteSurface.SetColorKey DDCKEY_SRCBLT, key

End Sub

Sub InitDirectDraw()
Set DirectDraw7Obj = DirectX7Obj.DirectDrawCreate(“”)
Call DirectDraw7Obj.SetCooperativeLevel _

(Form1.hWnd, DDSCL_NORMAL)
End Sub

Sub CreatePrimarySurface()
Dim ddsd As DDSURFACEDESC2
ddsd.lFlags = DDSD_CAPS
ddsd.ddsCaps.lCaps = DDSCAPS_PRIMARYSURFACE

32 067231987x AppD 11/6/00 7:13 PM Page 621

Set PrimarySurface = DirectDraw7Obj.CreateSurface(ddsd)
End Sub

Sub CreateBackBufferSurface()
Dim ddsd As DDSURFACEDESC2
ddsd.lFlags = DDSD_CAPS Or DDSD_HEIGHT Or DDSD_WIDTH
ddsd.ddsCaps.lCaps = _

DDSCAPS_OFFSCREENPLAIN Or DDSCAPS_SYSTEMMEMORY
ddsd.lWidth = Picture1.Width
ddsd.lHeight = Picture1.Height
Set BackBufferSurface = _

DirectDraw7Obj.CreateSurface(ddsd)
BackBufferRect.Left = 0
BackBufferRect.Right = Picture1.Width
BackBufferRect.Top = 0
BackBufferRect.Bottom = Picture1.Height

End Sub

Sub CreateBackgroundSurface()
Dim ddsd As DDSURFACEDESC2
ddsd.lFlags = DDSD_CAPS Or DDSD_WIDTH Or DDSD_HEIGHT
ddsd.ddsCaps.lCaps = DDSCAPS_OFFSCREENPLAIN
ddsd.lWidth = BACKGROUNDWIDTH
ddsd.lHeight = BACKGROUNDHEIGHT
Set BackgroundSurface = _

DirectDraw7Obj.CreateSurfaceFromFile _
(“d:\TYVBGames\Images\DirectX\Background.bmp”, ddsd)

End Sub

Sub CreateSpriteSurface()
Dim ddsd As DDSURFACEDESC2
ddsd.lFlags = DDSD_CAPS Or DDSD_WIDTH Or DDSD_HEIGHT
ddsd.ddsCaps.lCaps = DDSCAPS_OFFSCREENPLAIN
ddsd.lWidth = SPRITEWIDTH
ddsd.lHeight = SPRITEHEIGHT
Set SpriteSurface = _

DirectDraw7Obj.CreateSurfaceFromFile _
(“d:\TYVBGames\Images\DirectX\Sprite.bmp”, ddsd)

End Sub

Sub Animate()
PaintBackground
Do
EraseSprite
MoveSprite
PaintSprite
BltScreen
DoEvents

622 Appendix D

32 067231987x AppD 11/6/00 7:13 PM Page 622

Getting Started with DirectX 623

D

Loop While Running
End Sub

Sub MoveSprite()
SpriteX = SpriteX + SpriteOffsetX * SPEEDX
If SpriteX > BACKGROUNDWIDTH - SPRITEWIDTH Then
SpriteX = BACKGROUNDWIDTH - SPRITEWIDTH
SpriteOffsetX = -SpriteOffsetX

ElseIf SpriteX < 0 Then
SpriteX = 0
SpriteOffsetX = -SpriteOffsetX

End If
SpriteY = SpriteY + SpriteOffsetY * SPEEDY
If SpriteY > BACKGROUNDHEIGHT - SPRITEHEIGHT Then
SpriteY = BACKGROUNDHEIGHT - SPRITEHEIGHT
SpriteOffsetY = -SpriteOffsetY

ElseIf SpriteY < 0 Then
SpriteY = 0
SpriteOffsetY = -SpriteOffsetY

End If
End Sub

Sub EraseSprite()
Dim ddResult As Long
Dim SrcRect As RECT
Dim DstRect As RECT
SrcRect.Left = SpriteX
SrcRect.Right = SpriteX + SPRITEWIDTH
SrcRect.Top = SpriteY
SrcRect.Bottom = SpriteY + SPRITEHEIGHT
DstRect.Left = SpriteX
DstRect.Right = SpriteX + SPRITEWIDTH
DstRect.Top = SpriteY
DstRect.Bottom = SpriteY + SPRITEHEIGHT
ddResult = BackBufferSurface.Blt(DstRect, _

BackgroundSurface, SrcRect, DDBLT_WAIT)
If ddResult Then ShowError (ddResult)

End Sub

Sub PaintSprite()
Dim ddResult As Long
Dim SrcRect As RECT
Dim DstRect As RECT
SrcRect.Left = 0
SrcRect.Right = SPRITEWIDTH
SrcRect.Top = 0
SrcRect.Bottom = SPRITEHEIGHT
DstRect.Left = SpriteX
DstRect.Right = SpriteX + SPRITEWIDTH

32 067231987x AppD 11/6/00 7:13 PM Page 623

DstRect.Top = SpriteY
DstRect.Bottom = SpriteY + SPRITEHEIGHT
ddResult = BackBufferSurface.Blt(DstRect, _

SpriteSurface, SrcRect, DDBLT_KEYSRC Or DDBLT_WAIT)
If ddResult Then ShowError (ddResult)

End Sub

Sub PaintBackground()
Dim ddResult As Long
Dim SrcRect As RECT
Dim DstRect As RECT
SrcRect.Left = 0
SrcRect.Right = BACKGROUNDWIDTH
SrcRect.Top = 0
SrcRect.Bottom = BACKGROUNDHEIGHT
DstRect.Left = 0
DstRect.Right = BACKGROUNDWIDTH
DstRect.Top = 0
DstRect.Bottom = BACKGROUNDHEIGHT
ddResult = BackBufferSurface.Blt(DstRect, _

BackgroundSurface, SrcRect, DDBLT_WAIT)
If ddResult Then ShowError (ddResult)

End Sub

Sub BltScreen()
Dim ddResult As Long
DirectX7Obj.GetWindowRect Picture1.hWnd, PrimarySurfaceRect
ddResult = PrimarySurface.Blt(PrimarySurfaceRect, _

BackBufferSurface, BackBufferRect, DDBLT_WAIT)
If ddResult Then ShowError (ddResult)

End Sub

Sub ShowError(result As Long)
Select Case (result)
Case DDERR_GENERIC
MsgBox “DDERR_GENERIC”

Case DDERR_INVALIDOBJECT
MsgBox “DDERR_INVALIDOBJECT”

Case DDERR_INVALIDPARAMS
MsgBox “DDERR_INVALIDPARAMS”

Case DDERR_INVALIDRECT
MsgBox “DDERR_INVALIDRECT”

Case DDERR_NOALPHAHW
MsgBox “DDERR_NOALPHAHW”

Case DDERR_NOBLTHW
MsgBox “DDERR_NOBLTHW”

Case DDERR_NOCLIPLIST
MsgBox “DDERR_NOCLIPLIST”

Case DDERR_NODDROPSHW
MsgBox “DDERR_NODDROPSHW”

Case DDERR_NOMIRRORHW

624 Appendix D

32 067231987x AppD 11/6/00 7:13 PM Page 624

Getting Started with DirectX 625

D

MsgBox “DDERR_NOMIRRORHW”
Case DDERR_NORASTEROPHW
MsgBox “DDERR_NORASTEROPHW”

Case DDERR_NOROTATIONHW
MsgBox “DDERR_NOROTATIONHW”

Case DDERR_NOSTRETCHHW
MsgBox “DDERR_NOSTRETCHHW”

Case DDERR_NOZBUFFERHW
MsgBox “DDERR_NOZBUFFERHW”

Case DDERR_SURFACEBUSY
MsgBox “DDERR_SURFACEBUSY”

Case DDERR_SURFACELOST
MsgBox “DDERR_SURFACELOST”

Case DDERR_UNSUPPORTED
MsgBox “DDERR_UNSUPPORTED”

Case DDERR_WASSTILLDRAWING
MsgBox “DDERR_WASSTILLDRAWING”

End Select
End Sub

You’ve now completed the program. Run it, and then click the Start button. You’ll see a
window like the one shown in Figure D.2.

FIGURE D.2
The DirectX example
program in action.

In the following sections, you’ll examine the DirectX example program and learn how it
works.

Initializing DirectDraw
Before a program can use DirectDraw, it must create a DirectDraw object and the
DirectDrawSurface objects that will display the game’s graphics. This requires a bit of
work, as you’ll see in the following sections.

32 067231987x AppD 11/6/00 7:13 PM Page 625

Creating a DirectDraw Object
Creating a DirectDraw object is easy once you’ve added a reference to the DirectX type
library to your project. First, create a DirectX object:

Dim DirectX7Obj As New DirectX7

Then call the DirectX object’s DirectDrawCreate method:

Set DirectDraw7Obj = DirectX7Obj.DirectDrawCreate(“”)

You need to create a DirectDraw object in order to gain access to DirectDraw’s interface,
which enables you to call DirectDraw’s member functions. DirectDrawCreate takes the
video driver’s GUID (globally unique identifier) as an argument. If you don’t know any-
thing about driver GUIDs, don’t sweat it. Simply providing an empty string for this argu-
ment selects the currently active driver.

Requesting the Cooperative Level
Because the Windows environment allows multitasking, many applications may run
simultaneously. This can mean hard times for a game program that’s trying to retain con-
trol over the display hardware, including the screen resolution and the color palette. For
this reason, DirectDraw provides the SetCooperativeLevel method. A DirectDraw
application can share control of the screen resolution and the palette, or it can take exclu-
sive control. You call SetCooperativeLevel like this:

DirectDraw7Obj.SetCooperativeLevel _
Form1.hWnd, DDSCL_NORMAL

The SetCooperativeLevel method requires two arguments: the handle of the window
and the flag representing the requested mode. In most cases, the flag should be
DDSCL_NORMAL, which makes the application share the video resources just like any other
Windows application. When you’re writing a DirectX application that runs in the full-
screen mode, you probably want to use the DDSCL_EXCLUSIVE mode.

Creating DirectDrawSurface Objects
The next step is to create the DirectDraw surfaces, which include the primary surface
(the one that’s displayed on the screen), the back buffer surface, and any surfaces needed
for additional graphics, such as background images and sprites. Because this entails a bit
of work, the code that accomplishes these tasks is tucked away in several subroutines,
which are named after the surfaces they create. The first is CreatePrimarySurface (see
Listing D.1).

626 Appendix D

32 067231987x AppD 11/6/00 7:13 PM Page 626

Getting Started with DirectX 627

D

LISTING D.1 The CreatePrimarySurface Subroutine

1: Sub CreatePrimarySurface()
2: Dim ddsd As DDSURFACEDESC2
3: ddsd.lFlags = DDSD_CAPS
4: ddsd.ddsCaps.lCaps = DDSCAPS_PRIMARYSURFACE
5: Set PrimarySurface = DirectDraw7Obj.CreateSurface(ddsd)
6: End Sub

This subroutine first declares a local variable named ddsd (Line 2), which is an
instance of a DDSURFACEDESC2 data type. The DDSURFACEDESC2 data type is a

structure that holds information about DirectDrawSurface objects. The DDSURFACEDESC2
data type looks like this:

Type DDSURFACEDESC2
ddckCKDestBlt As DDCOLORKEY
ddckCKDestOverlay As DDCOLORKEY
ddckCKSrcBlt As DDCOLORKEY
ddckCKSrcOverlay As DDCOLORKEY
ddpfPixelFormat As DDPIXELFORMAT
ddsCaps As DDSCAPS2
lAlphaBitDepth As Long
lBackBufferCount As Long
lFlags As CONST_DDSURFACEDESCFLAGS
lHeight As Long
lLinearSize As Long
lMipMapCount As Long
lPitch As Long
lRefreshRate As Long
lTextureStage As Long
lWidth As Long
lZBufferBitDepth As Long

End Type

You communicate information to and from DirectDraw by using structures such as
DDSURFACEDESC2. You fill in some of the information in the structure before calling cer-
tain DirectDraw member functions, while DirectDraw fills in other structure members to
send information back to your program.

To create the primary surface, the CreatePrimarySurface subroutine first initializes the
DDSURFACEDESC2 data, filling the lFlags member with flags that tell DirectDraw which
structure members contain valid information (Line 3). In this case, the DDSD_CAPS flag
indicates that DirectDraw should consider the values stored in the ddsCaps member to be
valid. Setting the ddsCaps.lCaps member to DDSCAPS_PRIMARYSURFACE (Line 4) tells
DirectDraw that the program wants to create the primary surface.

ANALYSIS

32 067231987x AppD 11/6/00 7:13 PM Page 627

After initializing the DDSURFACEDESC2 data, the program calls the DirectDraw method
CreateSurface to create the primary DirectDrawSurface object. The program declares
this object near the top of the program:

Dim PrimarySurface As DirectDrawSurface7

CreateSurface’s argument is the DDSURFACEDESC2 data.

To create the surface on which the program will assemble its display, the program calls
the CreateBackBufferSurface subroutine (see Listing D.2).

LISTING D.2 The CreateBackBufferSurface Subroutine

1: Sub CreateBackBufferSurface()
2: Dim ddsd As DDSURFACEDESC2
3: ddsd.lFlags = DDSD_CAPS Or DDSD_HEIGHT Or DDSD_WIDTH
4: ddsd.ddsCaps.lCaps = _
5: DDSCAPS_OFFSCREENPLAIN Or DDSCAPS_SYSTEMMEMORY
6: ddsd.lWidth = Picture1.Width
7: ddsd.lHeight = Picture1.Height
8: Set BackBufferSurface = _
9: DirectDraw7Obj.CreateSurface(ddsd)
10: BackBufferRect.Left = 0
11: BackBufferRect.Right = Picture1.Width
12: BackBufferRect.Top = 0
13: BackBufferRect.Bottom = Picture1.Height
14: End Sub

This subroutine is similar to CreatePrimarySurface, except that it provides
more information to DirectDraw via the DDSURFACEDESC2 data. Specifically, this

subroutine also specifies a width and height for the surface (Line 3) and specifies the
DDSCAPS_OFFSCREEN flag (Lines 4 and 5), which means that the surface is an ordinary
area of memory in which you’re going to store and manipulate image data. The
CreateBackBufferSurface function also initializes the BackBufferRect variable (Lines
10 to 13), which will be used in transferring data to and from the buffer.

Finally, the program requires two other offscreen surfaces, CreateBackgroundSurface
and CreateSpriteSurface, one for the background image and one for the sprite (see
Listing D.3).

628 Appendix D

ANALYSIS

32 067231987x AppD 11/6/00 7:13 PM Page 628

Getting Started with DirectX 629

D

LISTING D.3 The CreateBackgroundSurface and CreateSpriteSurface Subroutines

1: Sub CreateBackgroundSurface()
2: Dim ddsd As DDSURFACEDESC2
3: ddsd.lFlags = DDSD_CAPS Or DDSD_WIDTH Or DDSD_HEIGHT
4: ddsd.ddsCaps.lCaps = DDSCAPS_OFFSCREENPLAIN
5: ddsd.lWidth = BACKGROUNDWIDTH
6: ddsd.lHeight = BACKGROUNDHEIGHT
7: Set BackgroundSurface = _
8: DirectDraw7Obj.CreateSurfaceFromFile _
9: (“d:\TYVBGames\Images\DirectX\Background.bmp”, ddsd)
10: End Sub
11:
12: Sub CreateSpriteSurface()
13: Dim ddsd As DDSURFACEDESC2
14: ddsd.lFlags = DDSD_CAPS Or DDSD_WIDTH Or DDSD_HEIGHT
15: ddsd.ddsCaps.lCaps = DDSCAPS_OFFSCREENPLAIN
16: ddsd.lWidth = SPRITEWIDTH
17: ddsd.lHeight = SPRITEHEIGHT
18: Set SpriteSurface = _
19: DirectDraw7Obj.CreateSurfaceFromFile _
20: (“d:\TYVBGames\Images\DirectX\Sprite.bmp”, ddsd)
21: End Sub

Notice that CreateBackgroundSurface and CreateSpriteSurface call the
CreateSurfaceFromFile (Lines 7 to 10 and Lines 18 to 20) DirectDraw method,

which enables you to easily create a surface from an image file.

Clipping and Transparency
The next step is to prepare the surfaces for animation by setting a clipping area and
defining a transparent color, which is a color that DirectDraw will not transfer when blit-
ting the animation frames. The SetClipAndTransparency subroutine (see Listing D.4)
takes care of these tasks.

LISTING D.4 The SetClipAndTransparency Subroutine

1: Sub SetClipAndTransparency()
2: Set ClipperObj = DirectDraw7Obj.CreateClipper(0)
3: ClipperObj.SetHWnd Picture1.hWnd
4: PrimarySurface.SetClipper ClipperObj
5: Dim key As DDCOLORKEY
6: key.low = 0
7: key.high = 0
8: SpriteSurface.SetColorKey DDCKEY_SRCBLT, key
9: End Sub

ANALYSIS

32 067231987x AppD 11/6/00 7:13 PM Page 629

The clipping area is the part of the screen to which all drawing operations must
be confined. First, SetClipAndTransparency creates a clipper object by calling

DirectDraw’s CreateClipper method (Line 2), whose single argument is a 0. The pro-
gram declares the clipper object itself near the top of the source code, like this:

Dim ClipperObj As DirectDrawClipper

To initialize the clipper object, the program passes the handle of the window to which
drawing must be constrained to the clipper object via the object’s SetHWnd method (Line
3). Finally, the program sets the clipping area by calling the primary surface’s
SetClipper method (Line 4), passing the newly created clipper object to the method.

Next, the subroutine sets the transparent color (Lines 5 to 8). Having a transparent color
enables DirectDraw to copy the image of the bouncing ball without erasing areas on the
background bitmap around the ball. For example, Figure D.3 shows what happens if you
run the animation without defining a transparent color. The black area surrounding the
ball image erases the background image. By defining a transparent color, you can tell
DirectDraw not to transfer the black areas.

630 Appendix D

ANALYSIS

FIGURE D.3
The display without a
transparent color
defined.

DirectDraw handles transparent colors through color keys, of which there are two types:
source color keys and destination color keys. A source color key specifies a color (or col-
ors) that DirectDraw will not copy when blitting (copying) an image. A destination color
key specifies a color (or colors) that will be replaced when blitting an image.

The DirectX example program uses a source color key to prevent the background image
from being wiped out when images of the ball are transferred to the surface. To do this,
the program first declares an instance of the DDCOLORKEY data type:

Dim key As DDCOLORKEY

32 067231987x AppD 11/6/00 7:13 PM Page 630

Getting Started with DirectX 631

D

The Visual Basic version of DirectDraw declares the DDCOLORKEY structure, as shown
here:

Type DDCOLORKEY
high As Long
low As Long

End Type

This data type holds only two values: the low index of the color space to define, and the
high index of the color space to define. A color space is simply a range of colors.
Because your program needs to define only one color key, the low and high values of the
range are the same:

key.low = 0
key.high = 0

In the color palette, black is represented by the palette index 0.

After defining the DDCOLORKEY data, the program simply calls the sprite surface’s
SetColorKey method, like this:

SpriteSurface.SetColorKey DDCKEY_SRCBLT, key

SetColorKey’s two arguments are a flag indicating the type of color key to create and the
DDCOLORKEY data. The DDCKEY_SRCBLT value specifies that the color key is a sprite color
that should not be transferred with the rest of the sprite image.

Performing the Animation
The first step in the animation process is painting the background image onto the back
buffer, which the PaintBackground subroutine handles (see Listing D.5).

LISTING D.5 The PaintBackground Subroutine

1: Sub PaintBackground()
2: Dim ddResult As Long
3: Dim SrcRect As RECT
4: Dim DstRect As RECT
5: SrcRect.Left = 0
6: SrcRect.Right = BACKGROUNDWIDTH
7: SrcRect.Top = 0
8: SrcRect.Bottom = BACKGROUNDHEIGHT
9: DstRect.Left = 0
10: DstRect.Right = BACKGROUNDWIDTH
11: DstRect.Top = 0
12: DstRect.Bottom = BACKGROUNDHEIGHT
13: ddResult = BackBufferSurface.Blt(DstRect, _
14: BackgroundSurface, SrcRect, DDBLT_WAIT)
15: If ddResult Then ShowError (ddResult)
16: End Sub

32 067231987x AppD 11/6/00 7:13 PM Page 631

This subroutine first initializes two instances of the RECT data type (Lines 5 to
12). These instances, SrcRect and DstRect, represent the rectangular area of the

background surface to be transferred to the back buffer and the rectangular area of the
back buffer to which the source data should be copied. Because both the source and des-
tination rectangles are the same size (the full size of the background image), both of
these RECT instances are initialized the same.

A call to the back buffer surface’s Blt method (Lines 13 and 14) transfers the back-
ground image to the back buffer. The Blt method’s four arguments are the destination
rectangle, the source surface, the source rectangle, and a flag specifying how the blit
should be carried out. The DDBLT_WAIT flag specifies that Blt should not return until the
blit is completed. (If DirectDraw is already busy with the surface, the copy will have to
wait a while.)

With the background image in memory, the program can start animating the bouncing
ball. The first step in the animation process is to erase the sprite from its current position.
That’s handled by the EraseSprite subroutine, which copies the portion of the back-
ground that was previously covered by the sprite (see Listing D.6).

LISTING D.6 The EraseSprite Subroutine

1: Sub EraseSprite()
2: Dim ddResult As Long
3: Dim SrcRect As RECT
4: Dim DstRect As RECT
5: SrcRect.Left = SpriteX
6: SrcRect.Right = SpriteX + SPRITEWIDTH
7: SrcRect.Top = SpriteY
8: SrcRect.Bottom = SpriteY + SPRITEHEIGHT
9: DstRect.Left = SpriteX
10: DstRect.Right = SpriteX + SPRITEWIDTH
11: DstRect.Top = SpriteY
12: DstRect.Bottom = SpriteY + SPRITEHEIGHT
13: ddResult = BackBufferSurface.Blt(DstRect, _
14: BackgroundSurface, SrcRect, DDBLT_WAIT)
15: If ddResult Then ShowError (ddResult)
16: End Sub

Lines 5 to 8 set up the coordinates of the source rectangle, and Lines 9 to 12 set
up the destination rectangle. Finally, Lines 13 and 14 restore the background sur-

face by painting over the sprite image.

632 Appendix D

ANALYSIS

ANALYSIS

32 067231987x AppD 11/6/00 7:13 PM Page 632

Getting Started with DirectX 633

D

Then the program can paint the sprite in its new position, which was set by the
MoveSprite subroutine. The PaintSprite subroutine paints the sprite on the back buffer
(see Listing D.7).

LISTING D.7 The PaintSprite Subroutine

1: Sub PaintSprite()
2: Dim ddResult As Long
3: Dim SrcRect As RECT
4: Dim DstRect As RECT
5: SrcRect.Left = 0
6: SrcRect.Right = SPRITEWIDTH
7: SrcRect.Top = 0
8: SrcRect.Bottom = SPRITEHEIGHT
9: DstRect.Left = SpriteX
10: DstRect.Right = SpriteX + SPRITEWIDTH
11: DstRect.Top = SpriteY
12: DstRect.Bottom = SpriteY + SPRITEHEIGHT
13: ddResult = BackBufferSurface.Blt(DstRect, _
14: SpriteSurface, SrcRect, DDBLT_KEYSRC Or DDBLT_WAIT)
15: If ddResult Then ShowError (ddResult)
16: End Sub

Lines 5 to 8 set up the coordinates of the source rectangle, and Lines 9 to 12 set
up the destination rectangle. Finally, Lines 13 and 14 copy the sprite image to its

new location on the back-buffer surface.

Finally, the BltScreen subroutine copies the back buffer to the primary surface, which
causes the image to appear in the window (see Listing D.8).

LISTING D.8 The PaintSprite Subroutine

1: Sub BltScreen()
2: Dim ddResult As Long
3: DirectX7Obj.GetWindowRect Picture1.hWnd, PrimarySurfaceRect
4: ddResult = PrimarySurface.Blt(PrimarySurfaceRect, _
5: BackBufferSurface, BackBufferRect, DDBLT_WAIT)
6: If ddResult Then ShowError (ddResult)
7: End Sub

Line 3 gets the size of the window’s rectangle, and Lines 4 and 5 copy the newly
updated back buffer to the screen.

ANALYSIS

ANALYSIS

32 067231987x AppD 11/6/00 7:13 PM Page 633

As you can see in the Animate subroutine, this process of creating a frame of animation
and copying it to the primary surface happens again and again in a loop (Lines 3 to 9)
until the user stops it by clicking the Stop button or exiting the program (see
Listing D.9).

LISTING D.9 The PaintSprite Subroutine

1: Sub Animate()
2: PaintBackground
3: Do
4: EraseSprite
5: MoveSprite
6: PaintSprite
7: BltScreen
8: DoEvents
9: Loop While Running
10: End Sub

Summary
Programming a DirectX application with DirectDraw requires you to perform a number
of steps. First, you call DirectDrawCreate to create a DirectDraw object. Then you can
call the DirectDraw object’s SetCooperativeLevel method to gain control over the dis-
play mode. Finally, the DirectDraw object’s CreateSurface and
CreateSurfaceFromFile methods enable you to create a primary surface and other sur-
faces you may need.

When you blit a bitmap from memory to the back buffer, often you need to specify a
transparent color that won’t be blitted with the rest of the image. To do this, you define a
color key (which can contain one or more colors) and tell DirectDraw to use that color
key when performing the blits. You also usually create a clipper object, which constrains
all drawing to the application’s window.

Finally, to perform your game’s animation, you build the current image in a back buffer
and then transfer the contents of the back buffer to the primary buffer. A surface’s Blt
method handles the task of moving image data from one surface to another.

634 Appendix D

32 067231987x AppD 11/6/00 7:13 PM Page 634

APPENDIX E
Game Programming
Resources

There’s a lot of information about game programming out there. You could eas-
ily spend days, or even weeks, looking for information. In this appendix, I’ve
done a little of the research for you, putting together a list of books and Web
sites with additional tools and information about the exciting world of game
programming.

Game Programming Books
There are quite a few game programming books out there, but most of them use
C or C++ as the development language. For some reason, Visual Basic game
programming books are almost nonexistent (which is why I wrote this one, of
course). Still, if you want to advance as a game programmer, sooner or later
you’re going to have to learn C or C++. The following books are good choices
for learning game programming with those languages:

33 067231987x AppE 11/6/00 7:09 PM Page 635

Tricks of the Windows Game Programming Gurus: Fundamentals of 2D and 3D Game
Programming
By Andre Lamothe
Macmillan Publishing Company
ISBN: 0672313618
Price: $49.99
1000 pages

Game Architecture and Design
By Andrew Rollings and Dave Morris
The Coriolis Group
ISBN: 1576104257
Price: $49.99
742 pages

Game Programming Gems
Edited by Mark Deloura
Charles River Media
ISBN: 1584500492
Price: $69.95
600 pages

Advanced 3D Game Programming With DirectX 7.0
By Adrian Perez and Dan Royer
Wordware Publishing
ISBN: 1556227213
Price: $59.95
500 pages

VB Game Programming Sites
Although there’s a shortage of Visual Basic game programming books, there’s no short-
age of online resources. The following list includes some of the top Visual Basic sites, as
well as some smaller (but still interesting) ones.

VB Game Programming Center

http://www.vbexplorer.com/games.asp

This site includes not only the usual tutorials (animation, sound, tiling, DirectX, game
design, and so on), but also some cool free stuff, such as a free package of game art and
a free sound library. Also featured are a tools library and game downloads.

636 Appendix E

33 067231987x AppE 11/6/00 7:09 PM Page 636

Game Programming Resources 637

E

Visual Basic Games, Code, and More

http://www.homestead.com/vbgames6/index.html

This site features tons of downloads, including games, source code, game art, and links.
Of extra interest is the ongoing “Zelda” project, in which the site owner is designing and
programming an RPG game in Visual Basic.

Lucky’s VB Gaming Site

http://members.home.net/theluckyleper/

This is another site where the owner is building a sample RPG game. Also featured are
tutorials on Windows API programming, playing WAV files, timing, blitting, game
design, lighting effects, card games, and much more. Extras include a glossary of game
terms, source code and library downloads, a message board, and a couple of online
arcade game projects.

RaBit Zone Visual B Studio

http://www.interfold.com/rabit/main_index.htm

This site features news and tutorials. Also, a download section offers games, utilities,
example code, tools, and a sample multimedia program written in Visual Basic.

Unlimited Realities

http://www.ur.co.nz/

This site features tons of tutorials, covering everything from sprites and bitmaps to
advanced topics like image processing and 3D graphics.

Visual Basic Games

http://www.vbgames.co.uk/

This site’s download area features over a dozen games written by the site’s owner, an
award-winning VB programmer. A majority of the games are written with DirectX, and
all of them include full source code. The site also features a tutorials area and a links
page.

Planet Source Code

http://www.planet-source-code.com/

This site boasts over 750,000 lines of Visual Basic source code, covering everything from
data structures to COM and the Registry. A special games section offers 57,000 lines of
sample code, including a game programming tutorial.

33 067231987x AppE 11/6/00 7:09 PM Page 637

Voodoo VB

http://www.redrival.com/voodoovb/

This site features a message board, articles, tutorials, source code, and a long list of com-
plete Visual Basic games you can download. The tutorials concentrate on DirectX Visual
Basic programming, but also cover blitting, alpha blending, tiling, and frame counting, to
mention a few.

vbX7: DirectX 7 and Game Programming for VB

http://www.cason.addr.com/

This site is dedicated to DirectX programming with Visual Basic. Featured are a discus-
sion board, tutorials on virtually every aspect of VB DirectX programming, and a down-
load center.

VB Game Planet

http://vbgplanet.thenexus.bc.ca/

Like many Visual Basic sites, VB Game Planet features tutorials, downloads, a message
board, on-going projects (an RPG game), and a links page. The tutorials cover introduc-
tory game programming, blitting, animation, MIDI, algorithms, and RPG game design,
including discussions of map editors, map scrolling, and game engines. Downloads
include full games, as well as lots of demo source code.

Advanced Game Programming Sites
The sites listed in this section cover more advanced topics and usually concentrate on C
or C++ programming rather than Visual Basic. Still, there’s a lot of good general infor-
mation available on these sites.

Pawn’s Game Programming Pages

http://www.aros.net/~npawn/

Here you’ll find programming tutorials on DirectSound, DirectDraw, loading WAV files,
handling MIDI data, texture mapping, scrolling, collision detection, tile graphics, and
more. There’s a small download area that has, among other things, a C++ class for han-
dling AVI files and a utility for converting sound files between formats. The site also has
a page of links to other game resources.

638 Appendix E

33 067231987x AppE 11/6/00 7:09 PM Page 638

Game Programming Resources 639

E

Microsoft’s DirectX Pages

http://www.microsoft.com/directx/

Here you can get up-to-date news about DirectX, and you can also download the home
version of DirectX (only what’s needed to run DirectX programs) or the full DirectX
developer kit. You can also access Microsoft’s new DirectX Developer Center, which
brings together everything you can imagine about DirectX, including documentation,
technical articles, downloads, newsgroups, events, books, and much more.

Game Programming Galaxy

http://www.geocities.com/SiliconValley/Vista/6774/

Includes articles on advanced topics like design, ray tracing, image filters, particle sys-
tems, sprites, and physics. Also features information on building tile-based worlds.
Includes a small library of graphics and sound tools, as well as some libraries that should
be useful to game programmers.

Visual Basic Game and Application Development

http://members.xoom.com/VBGAD/

Includes a FAQ section and a gallery of games, complete with source code. Features
many tutorials on game programming and on programming in general, including playing
sounds and displaying animated GIFs. Also includes a download section with source
code, controls, and utilities.

Gamasutra

http://www.gamasutra.com/

This is a very nice, up-to-date site that features current news on the gaming industry,
book excerpts, articles on the game-creation process, art galleries, and tutorials. Of great
interest are the articles that describe how professional game developers created commer-
cial games like Age of Empires II, Vampire: The Masquerade, and Resident Evil 2.

GameDev.Net

http://www.gamedev.net/gamedev.asp

Professional-level game development site that includes game development news, a refer-
ence section, and a game developer’s community featuring chats, contests, and inter-
views. Lots of tutorials, covering everything from compilers to very advanced topics such
as artificial intelligence, math and physics, and 3D graphics programming with OpenGL.

33 067231987x AppE 11/6/00 7:09 PM Page 639

Game Dictionary

http://www.gamedev.net/dict/

Here you can find online definitions of over 500 game programming terms. The search
engine enables you to find any term in the dictionary quickly, or you can search by cate-
gory. Categories include Games, Hardware, People, 2D Graphics, 3D Graphics, Audio,
Community, Network, OS, and others.

GameProgrammer.com

http://gameprogrammer.com/

This site features a bulletin board, a mailing list, want ads, and lots of tutorials on topics
such as polygon rendering, texture mapping, and optimization.

Game Programming Resources and Links

http://www.ziron.com/links/

This site includes what is billed as “the world’s largest game programming search
engine.” Also features a programming discussion board, an online programming book-
store, and library and utility downloads, as well as tutorials and source code for program-
ming topics such as DirectX, Windows, multiplayer games, networks, 3D graphics, and
much more.

640 Appendix E

33 067231987x AppE 11/6/00 7:09 PM Page 640

A

About command, 343
About dialog box, 420, 458-460
ace-high straight cards (Poker

Squares), 286
actions in Battle Bricks,

204-205
actual bricks, 208
Adams, Scott, 56
Add Class Module, 92, 113, 239
Add Form

command (Project menu),
239, 264, 295, 458

dialog box, 458
Add Module

command (Project menu), 240
dialog box, 386

AddCell subroutine, 116
adding

About dialog box, 420,
458-460

Blackjack object handlers,
250-252

button handlers to code
windows, code, 372-374

code
to AliensAttack subrou-

tine, 518
to button handlers,

510-512

to DestroyAlien
subroutine, 520

to DockWithBase
subroutine, 518

to DoRam subroutine,
514-515

to DoShortCruise
subroutine, 513-514

to DoShortScan
subroutine, 512-513

to DoSystemDamage
subroutine, 519

to SetButtons, 511
to SetUpAliens

subroutine, 517
to SetWarpButtons

subroutine, 512
to ShootPhaser

subroutine, 516
to ShootPhoton

subroutine, 515
to ShowBoard subroutine,

517
to TrackPhoton

subroutine, 519-520
declarations to Moonlord,

464-466
depth to shadows, 594
dialog boxes, to user interface

(Dragonlord), 358-368
DirectX to projects, 330, 395

Symbols

: (colon), 28
÷ (division), 28

Numbers

1pObject argument, 172
2D graphics, squares into 3D

boxes, 593-595
3D graphics

2D squares into 3D boxes,
593-595

cubes, 594-595
Direct3D, 616
objects, 592-597
offset stamping, 595-597
round objects, shading, 597
shadows, 593

8-bit bitmaps, code, 178-180
8-bit pixel formats, 178
16-bit pixel formats, 178
24-bit bitmaps, code, 179
24-bit pixel formats, 178-179
24-color mode, 174
32-bit pixel formats, 179-180
256-color mode, 173

INDEX

34 067231987x index 11/6/00 7:10 PM Page 641

enumerations to code win-
dows, code, 385-386

file-handling subroutines
(Poker Squares), code,
271-272

FindBrick function to Battle
Bricks, 196-197

form handlers, 186-188, 372
forms, 295, 538-539
functions to status screens

(Moonlord), 538
game functions, 273-277,

382-384
general subroutines, code,

269-270, 376-382
graphics to Moonlord main

screen, 486-489
initialization code to

Moonlord, 467-471
initialization routines to

Battle Bricks, 188-189
initialization subroutines, 268,

375-376
Letter Tiles program code,

143-148
object handlers, 265-268,

296-297, 421-425
PictureBox control to Face

Catch game, 36
short-range scanner screen

images to programs, 526
sound, 319, 334-337
source code

to dialog boxes, 390
DungeonEditor, 425-429

subroutines, 189-196,
537-538

Timer control to Face Catch
game, 37

variable declarations,
277-278, 385-386

AddNeighbors subroutine,
120-121

AddToScoreFile subroutine,
272

Advanced 3D Game
Programming With DirectX
7.0, 636

advanced game programming,
Web sites, 638-640

advice (Dragonlord), 346
AI (Artificial Intelligence), 16,

292
algorithms, 15-16, 87-91
alias effect, 601

ALIENBLUE constant, 472
AlienDamage() variable, 475
AlienPosition() variable, 475
aliens (Moonlord), code to

place, 446, 479-481, 546-547
AliensAttack subroutine, 518,

547
ALIENSSEC constant, 473
aligning 3D objects, 595
ALIVE constant, 114
allocating phaser power, 451
Alt+H keyboard shortcut, 344
Alt+L keyboard shortcut, 351
Alt+M keyboard shortcut, 345
Alt+P keyboard shortcut, 348
Alt+S keyboard shortcut, 103,

344
Alt+T keyboard shortcut, 103
Alt+W keyboard shortcut, 346
analyzing Poker Square hands,

283-288
AngleArc() function, 603
Animate subroutine, 634
AnimateAlienDestruction

subroutine, 546, 555
AnimateAlienShots subroutine,

547, 555
AnimateArrival subroutine,

543, 555
AnimateDamage subroutine,

548-549, 555
AnimateDocking subroutine,

546, 555
AnimateMarker subroutine,

542
AnimatePhaser subroutine, 545,

555
animations, 15

DirectDraw, performing,
631-634

FPS (frames per second), 10
Moonlord

alien ships, 546-547
blinking markers, 542
functions, 549
main screen, 541-544
phasers, 544
player ships, 548
short-range scanner

screen, 544-549
starship docking

procedure, 546
movements, 216
surrender animation frames,

215

antialiasing graphics, 601-602
API Viewer application, 161
APIs (application programming

interfaces), functions, games
calling for, 11

Appearance property, 132
appearances, starbases, 452
AppendixD\Code directory, 620
application programming inter-

faces (APIs), functions, games
calling for, 11

applications
API Viewer, 161
DirectX, creating, 618-625
DungeonEditor, 412
Ellipse, code, 168-169
Modes, color, 173-174
Polygon, code, 169-170
Polyline, code, 166-167
Rectangles, code, 167-168
source code, 620-625
Translate, 56-58
WinLines, code, 165

applying rules, Life cells, 89
Arc() function, 604
arcs, drawing, 28-29, 603-604
areas, graphical, 606-611
arguments

1pObject, 172
Deal method, 247
GetBitmapBits() function,

177
GetObject() function, 172
hCount, 172
height1, 135
height2, 136
hObject, 172
opcode, 136
PaintPicture control methods,

135-136
picture, 135
SetColorKey method, 631
SetCooperativeLevel method,

626
ShowHandCard method, 247
width1, 135
width2, 136
x1, 135
x2, 135
y1, 135
y2, 135

arrays
cmdItem controls, 418
cmdRoom controls, 418
comboScores(), 312-313

642 adding

34 067231987x index 11/6/00 7:10 PM Page 642

CompScores(), 312-313
Drawn(), 504
hand, code to initialize, 281,

283
imgRoom control, 353
map(), 399
score (Crystals), 314-316
SystemNames(), code to

initialize, 477
tempBoard(), 315
tempScores(), 315
vector, code to initialize,

476-477
VectorsX1(), 477
VectorsX2(), 477

artificial intelligence, 16
Artificial Intelligence (AI), 16,

292
aspect ratio, 28
assigning Font object to

controls, 84
Atari, 9
audio. See sound
AutoRedraw property, 132
AutoSize property, 132

B

backgrounds, 206, 288
balancing games, 435
BallCount variable, 199
BALLHEIGHT constant, 200
balls, Battle Bricks, 185,

202-211
BallVecX variable, 199
BallVecY variable, 200
BALLWIDTH constant, 200
BallX variable, 200
BallY variable, 200
BASESEC constant, 473
battle box, 350
Battle Bricks

actions, 204-205
balls, 185, 202-207
bricks, 208-213
building, 185
completing, 198-199
constants, 200-201
FindBrick function, adding,

196-197
form handlers, adding,

186-188
game loops, 201-202

initialization routines, adding,
188-189

kings, 185, 207-208
main screen, 184
paddles, moving, 213-214
playing, 184-185
scoring, 185
sound, adding, 334-337
speeds, 185
starting, 184
subroutines, adding, 189-196
user interface, creating,

185-186
variables, 199-200
vectors, movements, 203
walls, tearing down, 215-216

BATTLE constant, 473
BattleBricks2.txt file, 188
BattleBricks3.txt file, 189
BattleBricks4.txt file, 196
BattleBricks5.txt file, 198
battling Dragonlord skeletons,

406-408
Battling variable, 396
believable game worlds, 12
benefits of programming

games, 8-9
beverages, dragon brew

(Dragonlord), 346
Bézier curves, drawing, 608
BitBlt() function, 604
BITMAP structure, 162,

172-173
bitmaps

8-bit, code, 178-180
24-bit, code, 179
color modes, 173
DDB (device-dependent

bitmap), 171
DIB (device-independent

bitmap), creating, 604
drawing on, 171
graphics, 593
handles, 171
image data, 606, 610
Image property, 171
pixels, combining, 607
rectangular areas, copying,

610
Windows API, 172-177

Blackjack
completing, 253-254
main screen, 255
object handlers, adding,

250-252

playing, 255
programming, 256-257
user interface, creating,

248-249
winning, 255

BlankIsAbove function, code,
152-153

BLANKTILE constant, 149
BlinkCount variable, 154
blinking tiles (Letter Tiles), 153
blinking markers, 542
BlinkingTile variable, 149
BlinkMode variable, 475
Blt method, 632
Board() variable, 309, 475
bold (font property), 52
BONUSBRICK1 constant, 200
BONUSBRICK2 constant, 200
books, game programming,

635-636
borders, display (Face Catch),

code to draw, 43
BorderStyle property, 128, 132
bottles (glass), drawing, 599
bouncing balls (Battle Bricks),

205-207
boxes

battle, 350
DISCOVERY, 347
drawing, 26
HEALTH DEPARTMENT,

344
BrickCount variable, 200
BRICKHEIGHT constant, 200
bricks, 208-211
Bricks() variable, 200
BRICKWIDTH constant, 200
Bridge button, 448, 450
bridge controls (Moonlord), 447
bridges, returning to, 450
brushes, creating, 604-605
building

Battle Bricks, 185
clsCard class demo program,

239-245
clsDeck class demo program,

239-245
Crystals, 294
Dragonlord, 352-357
DungeonEditor, 413-419
Face Catch, 34-42
Letter Tiles user interface,

138-143
Life, 103-113

building 643

34 067231987x index 11/6/00 7:10 PM Page 643

Moonlord, user interface,
452-457

Nightshade, 59-63
Poker Squares, 262

buttons
Bridge, 448, 450
code (Moonlord), updating,

536
command (Moonlord), 510
Command1, 536
Command2, 536
Command2_Click, 498
Command3, 498, 511
Command4, 499, 511
CommandButton controls

Dragonlord, 414-418
Poker Squares, 263-264
property settings, 356-357

CommandButton handlers
(Poker Squares), code, 267

control, disabled, 447
Cruise, 448
Generations, 103
handlers

code, 421-422, 510-512
code windows, code to

add, 372-374
Poker Squares, code, 268
source code, 497-499

Health, 344
helper subroutines, source

code, 491-492, 499-500
Hit, 255
Load Dungeon, 351
Magic, 345
No, 260
Phaser, 451, 544
Quit, 262
Randomize Dungeon, 351
Repair, 449, 538
Score, 261
Shop, 344
Spell, 348
Start, 103, 260
Stay, 255
Stop, 103, 118
Weapon, 346
Yes, 260

C

CalcLimits subroutine, 121
CalcMoveDirection subroutine,

402-403

CalcMoves function, code,
311-312

CalcRoomNumber
function, 385
subroutine, 402

CalculateDamage function,
code, 523-524

CalculateStats subroutine,
source code, 505-506

calculating
cell neighbors (Life), 121-122
comboScores() array values,

312-313
CompScores() array values,

312-313
random number ranges, 45
vectors, code, 531

calling Windows API, 160-163
candidate bricks, 208-210
CanSwapTiles function, code,

152
card games

Blackjack, 248-257
cards, 229, 246-248
clsCard class, 226-230,

239-246
clsDeck class, 230-248
decks, shuffled or unshuffled,

245
desk-handling functions, 226
programming, 225

CARDBACK constant, 279
CardCount variable, 268, 279
cards, Poker Squares, 285-286
Cards.bas module, code,

240-241
cell lists (Life), 100-102
cell neighbors (Life), calculat-

ing, 121-122
CELLCOUNT constant, 279
CELLHEIGHT constant, 114,

149, 279, 309, 398
cells

counts, code to check, 122
initializing, code, 115
Life

adding to, code, 117
applying rules, 89
checking, 88-90
creating, 122-124
grid, seeding, 103
killing, 122-124
rules, applying, 89

CELLWIDTH constant, 114,
149, 279, 309, 398

Change event, 133
character statistics

(Dragonlord), 400-401
charset (font property), 52
Cheating flag, 157
Cheating variable, 149
cheats (game), creating, 156-157
CheckForEndOfGame subrou-

tine, code, 155
CheckForFlush function,

282-284
CheckForPair function, code,

285
CheckForStraight function,

code, 285-286
CheckGame subroutine,

506-507
checking actions in Battle

Bricks, 204-205
CheckKing subroutine, code,

207-208
CheckPaddle subroutine, code,

206-207
CheckShortCruise function,

code, 522-523, 530-532
CheckShortRangeClick func-

tion, code, 522
CheckStatsSound variable, 396
CheckSystems, 538
CheckWalls subroutine, code,

205
chess moves, planning, 310
Chord() function, 604
chords, drawing, 604
Circle method, drawing shapes,

27-29, 133
CIRCLERADIUS constant, 114
circles, drawing, 27, 605
Class Module icon, 92
classes

clsCard, 226-229, 239
building, 239-245
running, 226-230, 245-246
clsDeck, 230-246
List, 96-100
Node, 92-93

Class_Initialize method, 235
Class_Terminate subroutine,

code, 100
ClearList method or subrou-

tine, 100-101
CLEARSEC constant, 473
Click event, 129, 133
clicks, mouse, source code, 501

644 building

34 067231987x index 11/6/00 7:10 PM Page 644

Clipboard, copying and
pasting, 353

clipping, DirectDraw, 629-634
Cls method, 133
clsCard class

demo program, 239-246
methods, 229-230
source code, 226-228

clsDeck class
demo program, 239-248
methods, 237-238
source code, 230-235

cmdAbout_Click event proce-
dure, 374

cmdClear_Click event handler,
code, 117-118

cmdGenerations_Click event
handler, code, 118

cmdHit_Click subroutine, 251
cmdItem control arrays, 418
cmdItem_Click event

procedure, code, 431
cmdLoad_Click event

procedure, 375
cmdPlay_Click subroutine,

code, 326
cmdQuit_Click event

procedure, 267
cmdRandomize_Click event

procedure, 374
cmdRoom control arrays, 418
cmdRoom_Click event

procedure, code, 430-431
cmdScore_Click event

procedure, 267
cmdShop_Click event

procedure, 375
cmdSpell_Click event

procedure, 374
cmdStartGame_Click

subroutine, 252
cmdStart_Click

event handler, code, 117
event procedure, 268

cmdStats_Click event
procedure, 375

cmdStay_Click subroutine, 252
Coddledoop, Leeryup, 444
code. See also source code

8-bit bitmaps, 178-180
24-bit bitmaps, 179
aliens (Moonlord), placing,

479-481
AliensAttack subroutine, 518
applications, 620-625

BITMAP structure, 162, 172
BlankIsAbove function,

152-153
button (Moonlord), updating,

536
button handlers, 268,

372-374, 421-422, 510-512
CalcMoves function, 311-312
CalculateDamage function,

523-524
candidate bricks, determining,

209-210
CanSwapTiles function, 152
cards, discarding, 247-248
Cards.bas module, 240-241
cell counts, checking, 122
cells, 115-117
CheckForEndOfGame sub-

routine, 155
CheckForFlush function,

283-284
CheckForPair function, 285
CheckForStraight function,

285-286
CheckGame subroutine, 506
CheckKing subroutine,

207-208
CheckPaddle subroutine,

206-207
CheckShortCruise function,

522-523
CheckShortRangeClick

function, 522
CheckWalls subroutine, 205
Class_Terminate subroutine,

100
ClearList subroutine, 100-101
clsCard class source, 226-228
clsDeck class source, 230-235
cmdClear_Click event

handler, 117-118
cmdGenerations_Click event

handler, 118
cmdItem_Click event

procedure, 431
cmdPlay_Click subroutine,

326
cmdRoom_Click event

procedure, 430-431
cmdStart_Click event handler,

117
Command1_Click, 510
Command1_Click handler,

241-242
Command2_Click, 510

Command3_Click, 510
Command4_Click, 511
CommandButton handlers,

251
CommandButton handlers

(Poker Squares), 267
computer opponents

(Crystals), 302-305
ComputerPlay subroutine,

311
CreateBackBufferSurface

subroutine, 628
CreateBackgroundSurface

subroutine, 628-629
CreatePrimarySurface subrou-

tine, 626-627
CreateSpriteSurface subrou-

tine, 628-629
declarations, 198-199, 254,

307-308
DestroyAlien subroutine, 520
DestroyBrick subroutine,

211-212
Die subroutine, 123
DirectSound(Moonlord),

552-554
DirectSound routines,

332-334
DisplayInOrder subroutine,

155-156
DockWithBase subroutine,

518
DoRam subroutine, 514-515
DoShortCruise subroutine,

513-514
DoShortScan subroutine,

512-513
DoSystemDamage subroutine,

519
DoWinningAnimation sub-

routine, 155-156
Dragonlord, 398
DrawText subroutine, 69
Ellipse application, 168-169
enumerations, adding to code

windows, 385-386
EraseSprite subroutine, 632
EvaluateHands subroutine,

280
Face Catch, 37-44
file-handling subroutines

(Poker Squares), adding,
271-272

font properties, setting, 52-53

code 645

34 067231987x index 11/6/00 7:10 PM Page 645

form handlers, 186-188, 241,
250, 372, 421

Crystals, 296-297
Poker Squares, 265-266

Form_Load event handler, 38
FORM_LOAD subroutine, 67
functions (Crystals), 306-307
game functions, 273-277,

382-384
game loops, 201
general games

functions, 196-197
routines, 189-196

general subroutines, 41-42,
242-245, 253-254, 426-427

adding to code windows,
376-382

Poker Squares, adding,
269-270

GetAllScores subroutine,
314-315

GetCommandNoun subrou-
tine, 74

GetCommandVerb subroutine,
74

GetDirection subroutine,
77-78

GetItemNumber subroutine,
80-81

GetNode subroutine, 101
GetNumItemsInRoom sub-

routine, 80-81
GetVector function, 521
glue, placing in jugs, 79
hand array, initializing,

281-283
HandleBallActions subrou-

tine, 204
ImageBits program, 175-176
imgLetters_Click event

procedure, 151
imgLetters_MouseDown

event procedure, 156-157
InitGame subroutine, 68, 150
initialization

adding to Moonlord,
467-471

routines, 188-189,
297-298, 425

subroutines, adding to
code windows, 375-376

InitShortRangeContents sub-
routine, 480

invalid directions, response,
77

IsInRightPlace function, 153
IsMoveOK subroutine, 77-78
KeyDown subroutine, 213
Letter Tiles, adding, 143-148
Life, 106-113
List class, 96-98
MakeNewNode subroutine,

99
menu handlers, 40-41,

423-425
minimum columns or rows,

determining, 504-505
mirrors, giving to Troll, 80
Modes program, 174-175
modules, 386
Moonlord

button handlers, 497-499
button helper subroutines,

499-500
CalculateStats subroutine,

505-506
CheckGame subroutine,

506-507
command subroutines,

501-503
constants, 465-466
DoLongScan subroutine,

504-505
DrawSector subroutine,

503-504
enumerations, 464-465
form handlers, 467
functions, 471, 524-525
menu handlers, 467
mouse clicks, 501
subroutines, 467-471
UpdateSystemRepairs

subroutine, 506
variables, 466

mouse events, 116
MoveBall subroutine, 202
MovePaddle subroutine,

213-215
neighbor counts, initializing,

120-121
Nightshade

building, 62-63
constants, alternative

definitions, 66
ExitEnum enumeration,

66-67
ItemsEnum enumeration,

65-66
loading, 83

saving, 82
variables, saving, 82-83

Node class, testing, 93
nouns, manipulating, 75
opaque text, displaying, 50-51
PaintBackground subroutine,

631
PaintSprite subroutine,

633-634
picScreen_MouseDown event

procedure, 525
Picture1_Click event handler,

39
PictureBox handlers, 422-423
pictures, displaying width and

height, 163
PlaySounds program, 328-329
Polygon application, 169-170
Polyline application, 166-167
ProcessVerb subroutine,

75-76
programs, 428-429
Rectangles application,

167-168
ResetExits subroutine, 69
sector images, determining,

504
SectorHasAliens function,

521
SelectMove function, 316-317
SetButtons subroutine,

499-500, 511
SetClipAndTransparency sub-

routine, 629
SetRoomData subroutine, 70
SetUpAliens subroutine, 517
SetWarpButtons subroutine,

512
ShootPhaser subroutine, 516
ShootPhoton subroutine, 515
ShowBoard subroutine, 517
ShowExits subroutine, 71
ShowInventory subroutine, 73
ShowRoomDescription sub-

routine, 71
ShuffleTiles subroutine, 150
SortCards function, 284
source (DungeonEditor),

adding, 425-429
starbases (Moonlord),

placing, 479-481
StartNewGame subroutine, 67
Stretch example program,

130-131

646 code

34 067231987x index 11/6/00 7:10 PM Page 646

Stretch2 example program,
134

Stretch3 example program,
136

subroutines (Crystals),
298-302

suns (Moonlord), placing,
480-481

Swap subroutine, 150-151
SystemNames() array, initial-

izing, 477
Timer handler, 252
Timer1 handler, 39-40
Timer1_Timer event proce-

dure, 153-154
Toggling a Flag the Long

Way, 157
TrackPhoton subroutine,

519-520
TransferList subroutine, 100
transparent text, displaying,

50
two pairs cards (Poker

Squares), checking, 285
UpdateGameScreen sub-

routine, 68
UpdateSystemRepairs

subroutine, 506
variable declarations,

277-278, 385-386
vectors, 476-477, 531
verbs, manipulating, 75
WaitForTimer subroutine, 154
WinLines application, 165

code window
button handlers, code to add,

372, 374
enumerations, code to add,

385-386
form handlers, code to add,

372
frmBattle dialog box, source

code, 390
frmDiscovery dialog box,

source code, 390
frmHealth dialog box, source

code, 391
frmMagic dialog box, source

code, 392-393
frmShoppe dialog box, source

code, 393-394
frmStats dialog box, source

code, 394
frmWeapons dialog box,

source code, 394-395

game functions, code to add,
382-384

general subroutines, code to
add, 376-382

initialization subroutines,
code to add, 375-376

main form, source code, 492
source code, 386-389
variable declarations, code to

add, 385-386
COLCOUNT constant, 200
colon (:), 28
colors

24-color mode, 174
256-color mode, 173
background balls, 206
bitmap modes, 173
constants, 20-21
FillColor property, 31
hexadecimal numbers, 24
keys, 630
pixel color values, transfer-

ring, 604
pixels, 614
QBColor function, 23
RGB (red, green, blue)

function, 22, 606-607, 610
setting, 610
spaces, 631
system, 21-22
text, 50-51
transparent, undefined, 630

COLSCORESX constant, 279
column scores (Poker Squares),

280-283
COLUMNCOUNT constant,

279, 430, 472
columns, maximum or mini-

mum, code to determine,
504-505

combining pixels, 607
comboScores() array, 312-313
command buttons, 242, 491,

510
command handlers, source

code, 495-496
command subroutines, 501-503,

512-516
Command1 button, 536
Command1_Click

code, 510
event procedure, 536
handler, code, 241-242

Command2 button, 536

Command2_Click
button, 498
code, 510
event procedure, 536

Command3 button, 498, 511
Command3_Click, code, 510
Command4 button, 499, 511
Command4_Click, code, 511
CommandButton controls,

104-105, 249, 497
Dragonlord, 414-418
Poker Squares, 263-264
property settings, 356-357

CommandButton handlers,
code, 251, 267

commands, 14
About, 343
Dragonlord, 343
executing for Nightshade

players, 81
File menu, New Game, 446
Game menu, Exit or Start

Game, 33
Life, processing, 116-118
Load Dungeon, 343
Nightshade, processing, 74-76
Point, 159
Project menu

Add Class Module, 92,
113, 239

Add Form, 239, 295, 264,
458

Add Module, 240
Components, 418
Properties, 458
References, 554

PSet, 159
Randomize Dungeon, 343
scanner control bar, 450
Shop, 343
Spell, 343
Stats, 343
Tools menu, Menu Editor,

419
two-word, 55
Unload, 241

CommonDialog control, 355,
418

CompleteNoun variable, 64
completing Battle Bricks,

198-199
completing Blackjack, 253-254
components, 616-617
Components command (Project

menu), 418

Components command (Project menu) 647

34 067231987x index 11/6/00 7:10 PM Page 647

CompScores() array, 312-313
computers

AI (Artificial Intelligence),
292

algorithms, 16
opponents, 292, 302-305, 310
screens, pixels, 26
strategies (Crystals),

programming, 311-314
ComputerPlay subroutine,

code, 311
constants, 32

ALIENBLUE, 472
ALIENSSEC, 473
ALIVE, 114
BALLHEIGHT, 200
BALLWIDTH, 200
BASESEC, 473
BATTLE, 473
Battle Bricks, 200-201
BLANKTILE, 149
BONUSBRICK1, 200
BONUSBRICK2, 200
BRICKHEIGHT, 200
BRICKWIDTH, 200
CARDBACK, 279
CELLCOUNT, 279
CELLHEIGHT, 114, 149,

279, 309, 398
CELLWIDTH, 114, 149, 279,

309, 398
CIRCLERADIUS, 114
CLEARSEC, 473
COLCOUNT, 200
colors, 20-21
COLSCORESX, 279
COLUMNCOUNT, 279, 430,

472
CRUISE, 473
CRUISEENGINES, 473
Crystals, 309
DEAD, 114
DISPENSERXT, 279
DISPENSERY, 279
Dragonlord, 398
DungeonEditor, 430
EMPTYCELL, 279
ENERGY, 473
ENTER, 67
GAMELOST, 473
GAMESTILLGOING, 473
GAMEWON, 474
GRIDHIGHX, 472
GRIDHIGHY, 472
GRIDLOWX, 472

GRIDLOWY, 472
IN INVENTORY, 67
ITEM USED, 67
Key Code Constants (Visual

Basic), 213
Letter Tiles, 149
Life, 114-115
LINESPACING, 279
LONGRANGESCAN, 474
MAILSCREEN, 474
MAX ITEMS IN

INVENTORY, 67
MAX ITEMS IN ROOM, 67
MAXALIENS, 472
MAXBALLX, 200
MAXBRICKY, 200
MAXCOL, 114, 149
MAXENERGY, 472
MAXGENERATIONS, 114
MAXHIGHSCORES, 279
MAXPADDLEX, 200
MAXPHOTONS, 472
MAXROW, 114, 149
MAXSUNS, 472
MAXTIME, 472
MAXX, 114, 279, 309, 398
MAXY, 115, 280, 309, 398
MINBALLX, 200
MINBALLY, 200
MINBRICKY, 201
MINPADDLEX, 201
MINX, 280, 309
MINY, 280, 309
Moonlord, 465-466, 472-475
Nightshade, 64-67
NOBUTTONSELECTED,

430
NOCARD, 280
NOROOMDEFINED, 398
NOT IN GAME, 67
NOT VALID, 67
NUM NOUN NAMES, 67
NUM NOUNS, 67
NUM VERBS, 67
NUMBALLSPERGAME,

201
NUMBEROFCOLS, 398
NUMBEROFROOMS, 398
NUMOFALIENS, 474
NUMOFTILES, 149
NUMPITSPERPLAYER, 309
NUMROOMBUTTONS, 430
OFFSET, 472
OFFSETX, 201, 309, 398
OFFSETY, 201, 398

OPERABLE, 472
OTHER, 474
PADDLEWIDTH, 201
PADDLEY, 201
PHASER, 474
PHASERGUNS, 474
PHOTON, 474
PHOTONLAUNCHER, 474
PHOTONS, 474
PHOTONSPEED, 472
PLAYER, 474
PLAYERSCOREX, 280
PLAYERSCOREY, 280
PLAYERSTARTSECTOR,

472
Poker Squares, 279-280
RIGHTBUTTON, 149
ROOMCOUNT, 430
ROOMSIZE, 430
ROW1OFFSETY, 309
ROW2OFFSETY, 309
ROWCOUNT, 201, 280, 430,

472
ROWSCORESX, 280
SCOREOFFSETY, 280, 309
SECTORCOUNT, 472
SECTORSIZE, 472
SHIFTANDCTRL, 149
SHORTCRUISE, 474
SHORTRANGECOLUMN-

COUNT, 472
SHORTRANGEGRID-

HIGHX, 472
SHORTRANGEGRID-

HIGHY, 472
SHORTRANGEGRID-

LOWX, 472
SHORTRANGEGRIDLOWY,

472
SHORTRANGEOFFSETX,

473
SHORTRANGEOFFSETY,

473
SHORTRANGESCAN, 474
SHORTRANGESECTOR-

COUNT, 473
SHORTRANGESECTOR-

SIZEX, 473
SHORTRANGESECTOR-

SIZEY, 473
SHORTSCANSCREEN, 474
SPACEBETWEENTILES,

149
STARSHIPSEC, 474
STARTINGROOM, 398

648 CompScores() array

34 067231987x index 11/6/00 7:10 PM Page 648

STATSCREEN, 474
SUNSEC, 475
SUNYELLOW, 473
system colors, 21-22
TILEHEIGHT, 149
TILEWIDTH, 149
TIMESTAT, 475
TOTALSCOREX, 280, 309
TOTALSCOREY, 280, 309
WARP, 475
WARPENGINES, 475
XOFFSET, 115, 149, 430
YOFFSET, 115, 149, 430

control buttons, disabled, 447
controls, 14

bridges (Moonlord), 447
cmdItem control arrays, 418
cmdRoom control arrays, 418
CommandButton, 104-105,

249, 497
Dragonlord, 414-418
Poker Squares, 263-264
property settings, 356-357

CommandDialog, 418
CommonDialog, 355
Font object, assigning, 84
graphical, 32-33, 127-137
Image, 33, 295
Label, 105
Line, 32
PictureBox, 33, 36
Shape, 32, 419, 355
Timer, 37, 542
Windows API, manipulating

pictures, 171
converting degrees to radians

and radians to degrees, 28
Conway, John, 88
cooperative levels (DirectDraw),

requesting, 626
coordinates, 25, 44
cootiumphaloids, 444
copying, 353

image data, 606
WAV files, 554

counts
cells, code to check, 122
neighbors, 90, 120-121

courier font, displaying on
forms, 53

CreateBackBufferSurface sub-
routine, code, 628

CreateBackgroundSurface sub-
routine, code, 628-629

CreateBitmap() function, 161
CreateBrushIndirect() func-

tion, 604
CreateDIBSection() function,

604
CreateHatchBrush() function,

605
CreateLists, 119-120
CreatePatternBrush() function,

605
CreatePen() function, 605
CreatePrimarySurface subrou-

tine, code, 626-627
CreateSolidBrush() function,

605
CreateSound function, 553-554
CreateSpriteSurface subrou-

tine, code, 628-629
creating

Battle Bricks user interface,
185-186

Blackjack user interface,
248-249

brushes, 604-605
cells (Life), 122-124
computer opponents

(Crystals), 310
DIB (device-independent

bitmap), 604
DirectDraw

DirectDrawSurface objects,
626-629

DirectDraw objects, 626
DirectSound objects, 331
DirectSoundBuffer objects,

332
DirectX applications, 618,

620-625
Dragonlord sound effects, 409
DungeonEditor, 413-420
Face Catch menu bar, 35
game cheats, 156-157
Letter Tile menu bar, 142
linked lists, 94
Lists2, 96
Node class, 92-93
pens, 605
primary surfaces, 627
rooms with offset stamping,

596
shadow effect, 593
3D cubes, 594
user interfaces, 263-265,

295-296

crews, system repair
(Moonlord), 449

Cruise button, 448
CRUISE

constant, 473
mode, 498

Cruise system (Moonlord), 448
CRUISEENGINES constant,

473
cruises, short-range

(Moonlord), 450
CrystalCount variable, 309
CrystalCountXY() variable,

309
Crystals, 292

building, 294
computer opponents,

302-305, 310
computer strategies, program-

ming, 311-314
constants, 309
crystals per pit, specifying,

293
declarations, code, 307-308
form handlers, code, 296-297
forms, adding, 295
functions, code, 306-307
Image controls, 295
initialization routines, code,

297-298
moves, selecting, 316-317
object handlers, adding,

296-297
pits, 293
playing, 293-294
programming, 309-310
score arrays, 314-316
subroutines, code, 298-302
user interfaces, creating,

295-296
variables, 309

Crystals1.txt file, 296
Crystals2.txt file, 297
Crystals3.txt file, 298
Crystals4.txt file, 302
Crystals5.txt file, 306
Crystals6.txt file, 307
Ctrl+C keyboard shortcut, 139,

353
Ctrl+N keyboard shortcut, 142
Ctrl+S keyboard shortcut, 33
Ctrl+V keyboard shortcut, 139,

353
cubes, 3D, 594-595
CurrentX property, 27, 132

CurrentX property 649

34 067231987x index 11/6/00 7:10 PM Page 649

CurrentY property, 27, 132
curved metal surfaces, 599
curves, Bézier, drawing, 608

D

damaged systems
control buttons, disabled, 447
Moonlord, repairing, 449

dashed lines, drawing, 31
data

about dungeons, loading or
saving, 433-434

images, 606, 610
datatypes

Dragonlord, code to define,
398

DSURFACEDESC2, 627
StatsType, 398

days, Galactic Standard, 446
DblClick event, 129, 133
DDB (device-dependent

bitmap), 171
DDSURFACEDESC2 data type,

627
DEAD constant, 114
Deal method, 235, 247
Deal(num As Integer, hand As

Integer, x As Integer, y As
Integer, spacing As Integer,
face As Integer) method, 238

dealing cards (card games), 246
DealReplace method, 236
DealReplace(hand As Integer,

pos As Integer, face As
Integer) method, 238

Deck object, 241, 247
deck-handling functions (card

games), 226
decks (card games), shuffled or

unshuffled, 245
declarations

adding to Moonlord, 464-466
code, 198-199, 254
Crystals, code, 307-308
Get(), 162
programs, code, 428-429
variable

code windows, code to
add, 385-386

Poker Squares, code to
add, 277-278

Windows API, 160-162

declaring
DirectSound variables, 331
functions, 161
global variables, 38

defining Dragonlord datatype
or enumeration, code, 398

degradation (glass), drawing,
600

degrees, converting to radians,
28

DeleteObject() function, 605
deleting graphical objects, 605
Deloura, Mark, 636
demo programs, 239-248
departments, Dragonlord,

344-347
designing icons, 598
designing games, 12-16
Desk variable, 279
destination color keys, 630
DestroyAlien subroutine, 520,

546
DestroyBrick subroutine, code,

211-212
destroying

alien ships in Moonlord, 546
bricks in Battle Bricks,

211-213
determining

candidate bricks, code,
209-210

columns and rows, maximum
and minimum number of,
code, 504-505

sector images, code, 504
device context, 164, 606
device-dependent bitmap

(DDB), 171
device-independent bitmap

(DIB), creating, 604
dialog boxes

About, 420, 458-460
Add Form, 458
Add Module, 386
adding to user interface

(Dragonlord), 358-368
Discovery, 355
Dragonlord, source code,

390-395
frmBattle, code window,

source code, 390
frmDiscovery, code window,

source code, 390
frmHealth, code window,

source code, 391

frmMagic, code window,
source code, 392-393

frmShoppe, code window,
source code, 393-394

frmStats, code window,
source code, 394

frmWeapons, code window,
source code, 394-395

Generations, 103
Open Dungeon File, 352
Project Properties, 458
source code, adding, 390
YE OLDE SHOPPE, 344

DIB (device-independent
bitmap), creating, 604-606,
611

DiBColorTable() function, 606
DiceSound variable, 396
Die subroutine, 119, 123
DieList variable, 114
Difficulty menu, 33, 44
Difficulty variable, 42
Direct3D, 616
Direct3D API, 11
DirectDraw, 616

animations, performing,
631-634

clipping, 629-631
cooperative levels, requesting,

626
DirectDrawSurface objects,

creating, 626-629
initializing, 625-634
objects, creating, 626
programming with, 617-618
transparency, 629-631

DirectDrawCreate method, 626
DirectDrawSurface objects,

creating, 626-629
DirectInput, 616
directions, invalid, code for

response, 77
Directions variable, 64
DirectMusic, 616
DirectPlay, 616
DirectSetup, 616
DirectSound, 616

DirectSoundBuffer objects,
creating, 332

DirectX, 330
Moonlord, code, 552-554
objects, creating, 331
playing, 332
priority levels, setting, 331

650 CurrentY property

34 067231987x index 11/6/00 7:10 PM Page 650

routines, code, 332-334
variables, declaring, 331

DirectSoundBuffer objects,
creating, 332

DirectSoundObj variable, 396
DirectX

adding to projects, 395
applications, creating,

618-625
components, 616-617
DirectDraw

animations, performing,
631-634

clipping, 629-631
cooperative levels,

requesting, 626
DirectDrawSurface

objects, creating,
626-629

initializing, 625-634
objects, creating, 626
programming with,

617-618
transparency, 629-631

graphics, 615
libraries, 554
program in action, 625
projects, adding to, 330
type library, 395, 618

DirectX 7 SDK, installing, 617
DirectX.txt file, 620
DirectX70bj variable, 396
DisableButtons subroutine, 427
disabled control buttons, 447
Discard method, 236
Discard(hand As Integer, pos As

Integer) method, 238
discarding cards (card games),

code, 247-248
discovering objects

(Dragonlord), 347-350
DISCOVERY box, 347
Discovery dialog box, 355
DiscoverySound variable, 396
DISPENSERXT constant, 279
DISPENSERY constant, 279
display borders (Face Catch),

code to draw, 43
Display method, 228
Display(x As Integer, y As

Integer, face As Integer)
method, 230

displaying
courier font on forms, 53
dungeon maps (Dragonlord),

412
Moonlord short-range

scanner, 450
opaque text, code, 50-51
pictures, width and height,

code, 163
status (Moonlord), 448-449
transparent colors not defined,

630
transparent text, code, 50

DisplayInOrder subroutine,
code, 155-156

DisplayList method, 99
distortion, glass, drawing, 600
DistributeCrystals subroutine,

311
division symbol (÷), 28
Do loop, 201
DoBattle

function, 385
subroutine, 406-407

DockWithBase subroutine, 518,
546

DoDrop subroutine, 79
DoEvents method, 124
DoGet subroutine, 78
DoLongCruise subroutine, 502,

542-543
DoLongScan subroutine,

504-505, 555
Done flag, 201
Done variable, 200
DoRam subroutine, code,

514-515, 527-529
DoRepair subroutine, 538
DOS, graphics, 614
DoShortCruise subroutine,

513-514, 526-527, 555
DoShortScan subroutine, 501,

512-513
DoStatus subroutine, 537
DoSystemDamage subroutine,

519, 548
DoWinningAnimation subrou-

tine, code, 155-156
Dragonlord

advice, 346
battle box, 350
building, 352
character statistics, 400-401
CommandButton controls,

414-418

commands, 343
constants, 398
datatype, code to define, 398
dialog boxes, source code,

390-395
DirectX type library, 395
dragon, 350
DungeonEditor, 411

About dialog box, adding,
420

application, 412
button handlers, code,

421-422
cmdItem_Click event

procedure, code, 431
cmdRoom_Click event

procedure, code,
430-431

constants, 430
dungeon data, loading or

saving, 433-434
dungeon maps,

displaying, 412
form handlers, code, 421
general subroutines, code,

426-427
initialization routine,

code, 425
items, placing in

dungeons, 431-433
main form, creating,

413-419
menu handlers, code,

423-425
menus, creating, 419-420
object handlers, adding,

421-425
PictureBox handlers,

code, 422-423
program declarations,

code, 428-429
program functions, code,

428
rooms, placing in dun-

geons, 431-433
source code, adding,

425-429
toolbox, 430-431
variables, 429-430

dungeons
data, loading or saving,

433-434
dragon, 350
gold pieces, 347
loading, 351

Dragonlord 651

34 067231987x index 11/6/00 7:10 PM Page 651

maps, 399
moving through, 347
objects, discovering, 347
randomizing, 351
rooms or items, placing,

431-433
serums, 348
skeletons, 349-350
spells, 348
teleporters, 348
thief, 349

enumeration, code to define,
398

game, balancing, 435
general game source code,

375-386
health department, 344-345
hit points, 344
Image controls, 352-355
initializing, 399-400
level editor, creating, 411
magic department, 345-346
main form, creating, 352-357
meat pies, 345
modules, 386-390
object handlers, 372-375
players

moving, 401-406
statistics, 399-400

playing, 343
points, 345
rooms, creating with offset

stamping, 596
screen, 343
shopkeepers, visiting, 344
skeletons, battling, 406-408
sound effects, creating, 409
spells, 345-346
supplies, shopping for, 344
3D graphics, offset stamping,

595
user interfaces, adding dialog

boxes, 358-368
variables, 396-397
weapon department, 346-347

Dragonlord.exe file, 395
Dragonlord.vbp file, 357
Dragonlord01.txt file, 372
Dragonlord02.txt file, 372
Dragonlord03.txt file, 375
Dragonlord04.txt file, 376
Dragonlord05.txt file, 382
Dragonlord06.txt file, 385
Dragonlord07.txt file, 386

Dragonlord08.txt file, 390
Dragonlord09.txt, 391
Dragonlord10.txt file, 392
Dragonlord11.txt file, 393
Dragonlord12.txt file, 394
DragonRoom variable, 397
DragonSound variable, 397
DragonSound2 variable, 397
DrawGame subroutine, 115-116
DrawHallway subroutine, 404
drawing, 168-170

arcs, 28-29, 603-604
Bézier curves, 608
boxes, 26
chords, 604
circles, 27, 605
DrawMode property, 30
drop shadows, 601
ellipses, 27-28, 605
Face Catch, 43-44
filled rectangles, 26
fire, 600
glass, 599-600
glowing objects, 600
hollow rectangles, 26
lines, 24-26, 31, 46, 607-609
functions, 164-167
luminous objects, 600-601
metal, 598-599
on bitmaps, 171
ovals, 27-28
pie slices, 608
polygons, 608-609
polylines, 609
rectangles, 26, 609
shapes

aspect ratio, 28
Circle method, 27-29
Line method, 24-26

3D cubes, improperly drawn,
595

Drawing variable, 114
DrawMode property, 30, 132
Drawn()

array, 504
variable, 475

DrawNewCardsInGrid subrou-
tine, 270

DrawPaddle subroutine, 214
DrawRoom subroutine, 404-405
DrawScreen subroutine, 427
DrawSector subroutine, source

code, 503-504
DrawStyle property, 31, 132
DrawText subroutine, code, 69

DrawWidth property, 30, 132
drop shadows, drawing, 601
dropping items (Nightshade),

78-81
DSBUFFERDESC structure,

332
DSSCL_PRIORITY flag, 331
ducking kings in Battle Bricks,

207-208
Ducking variable, 200
dungeon maps (Dragonlord),

399, 412
Dungeon.drg file, 351
DungeonEditor. See

Dragonlord, DungeonEditor
DungeonEditor1.txt file, 421
DungeonEditor2.txt file, 421
DungeonEditor3.txt file, 422
DungeonEditor4.txt file, 423
DungeonEditor5.txt file, 425
DungeonEditor6.txt file, 426
DungeonEditor7.txt file, 428
DungeonEditor8.txt file, 428
dungeons. See Dragonlord,

dungeons
dx7asdk/DXF folder, 617

E

editing sound, 321
editors level, creating, 411. See

also Dragonlord,
DungeonEditor

effects, sound (Moonlord),
554-555

Ellipse application, code,
168-169

Ellipse() function, 168-169, 605
ellipses, drawing, 27-28, 605
EMPTYCELL constant, 279
end of game scores (Face

Catch), 45
ending Letter Tiles, 155-156
ENERGY constant, 473
engines, warp (Moonlord), 449
English, 56
enlarged pictures, 137
ENTER constant, 67
enumerations

code windows, code to add,
385-386

Dragonlord, code to define,
398

652 Dragonlord

34 067231987x index 11/6/00 7:10 PM Page 652

Moonlord, 464-465, 473-475
Nightshade, 64-67
PlayerEnum, 280
Poker Squares, 280
PokerHandsEnum, 280
WeaponEnum, 398

EraseCard method, 229-230,
236

EraseCard(HandNum As
Integer, pos As Integer)
method, 238

ErasePaddle subroutine, 214
EraseScores subroutine, 270
EraseSprite subroutine, code,

632
EvaluateHands subroutine, 270,

280
event handlers. See mouse,

event handlers
event procedures. See mouse,

event procedures
events. See mouse, events
executing player commands

(Nightshade), 81
Exit command (Game menu),

33
ExitEnum enumeration

(Nightshade), code, 66-67
exiting Poker Squares, 262
Exits() variable, 64
exporting List class, 98-100

F

Face Catch
building, 34-42
Difficulty menu, 33, 44
display borders, code to draw,

43
end of game scores, 45
faces, code to draw, 44
Form_Load event handler,

code, 38
Game menu, 33
general subroutines, code,

41-42
global variables, 38, 42
InitGame subroutine, 43
location, 45
menu bar, creating, 35
menu handler, code, 40-41
Picture1_Click event handler,

code, 39

PictureBox control, adding,
36

playing, 33-34
program options and vari-

ables, code, 37
random numbers, 43
Timer control, adding, 37
Timer1 handler, code, 39-40
Timer1 Timer handlers, 44
variables, 42
x and y coordinates, 44

fields, BITMAP structure,
172-173

FightSkeleton subroutine,
406-408

File menu commands, New
Game, 446

file-handling subroutines
(Poker Squares), code,
271-272

FileName variable, 397, 429
files

BattleBricks2.txt, 188
BattleBricks3.txt, 189
BattleBricks4.txt, 196
BattleBricks5.txt, 198
Crystals1.txt, 296
Crystals2.txt, 297
Crystals3.txt, 298
Crystals4.txt, 302
Crystals5.txt, 306
Crystals6.txt, 307
DirectX.txt, 620
Dragonlord.exe, 395
Dragonlord.vbp, 357
Dragonlord01.txt, 372
Dragonlord02.txt, 372
Dragonlord03.txt, 375
Dragonlord04.txt, 376
Dragonlord05.txt, 382
Dragonlord06.txt, 385
Dragonlord07.txt, 386
Dragonlord08.txt, 390
Dragonlord09.txt file, 391
Dragonlord10.txt, 392
Dragonlord11.txt, 393
Dragonlord12.txt, 394
Dungeon.drg, 351
DungeonEditor1.txt, 421
DungeonEditor2.txt, 421
DungeonEditor3.txt, 422
DungeonEditor4.txt, 423
DungeonEditor5.txt, 425
DungeonEditor6.txt, 426

DungeonEditor7.txt, 428
DungeonEditor8.txt, 428
GIF, 129
high-score (Poker Squares),

262, 287-288
JPEG, 129
MainScrn.bmp, 486
Moonlord.frm, 457
Moonlord.vbp, 457
Moonlord01.txt, 464, 490,

510, 537, 542, 552
Moonlord02.txt, 465, 491,

510, 538, 543, 552
Moonlord03.txt, 466, 492,

511, 545, 553
Moonlord04.txt, 467, 492,

511, 546, 553
Moonlord05.txt, 467, 495,

546, 554
Moonlord06.txt, 468, 496,

512, 547
Moonlord07.txt, 471, 513,

548
Moonlord08.txt, 514, 549
Moonlord09.txt, 515
Moonlord10.txt, 516
Moonlord11.txt, 517
Moonlord12.txt, 517
Moonlord13.txt, 518
Moonlord14.txt, 518
Moonlord15.txt, 519
Moonlord16.txt, 519
Moonlord17.txt, 520
Moonlord18.txt, 521
Moonlord19.txt, 521
Moonlord20.txt, 522
Moonlord21.txt, 522
Moonlord22.txt, 523
Moonlord23.txt, 524
PokerSquares1.txt file, 265
PokerSquares3.txt, 268
StatScrn.bmp, 538
WAV, copying, 554

fill properties, 29-31
FillColor property, 31, 132
filled rectangles, drawing, 26
filling areas (graphical), 606,

608
fills, FillStyle property, 31
FillStyle property, 31, 132
FindBrick function

adding to Battle Bricks,
196-197

balls, hitting bricks, 208, 211

FindBrick function 653

34 067231987x index 11/6/00 7:10 PM Page 653

fire, drawing, 600
flags

Cheating, 157
Done, 201
DSSCL_PRIORITY, 331
GameOver, 151
NeedToSave, 433

flattened arcs, drawing, 29
FloodFill() function, 606
folders, dx7asdk/DXF, 617
Font object, assigning to

controls, 84
Font property, 52, 132
fonts, 52-53, 84
FontTransparent property,

50-51
food, meat pies (Dragonlord),

345
For loop, 94, 481
Ford Load procedure, 134
ForeColor property, 50
form handlers

adding to Battle Bricks,
186-188

code, 186-188, 241, 250, 421
code windows, code to add,

372
Crystals, code, 296-297
Moonlord, code, 467
Poker Squares, code, 265-266

formats, pixels, 178-180
forms

courier font, displaying, 53
Crystal, adding, 295
Dragonlord, creating, 352-357
DungeonEditor, creating,

413-419
frmBattle, 359
frmButtons, 486
frmCards.frm, 239
frmDiscovery, 360
frmFrames, 544
frmHealth, 362
frmMagic, 364
frmMainScreen, 486
frmShoppe, 365
frmStats, 367
frmWeapons, 368
Letter Tiles. completed, 143
loading, 526
Moonlord, 457
opaque text, displaying, 51
status screens (Moonlord),

adding, 538-539

transparent text, displaying,
50

unloading, 526
Form_KeyDown subroutine,

188
Form_Load

event handler, 38, 266
event procedure, 372, 421,

554
procedure, 131, 137
subroutine, 115, 188, 250,

329
FORM_LOAD subroutine,

code, 67
Form_MouseDown

event handler, 116
event procedure, 266

Form_MouseMove event
handler, 116

Form_MouseUp event handler,
116

Form_Unload event handler,
241

Form_Unload event procedure,
267, 544

FPS (frames per second), 10
frames, 10, 215
frames per second (FPS), 10
frmBattle

dialog box, code window,
source code, 390

form, 359
frmButtons form, 486
frmCards.frm form, 239
frmDiscovery

dialog box, code window,
source code, 390

form, 360
frmFrames form, 544
frmHealth

dialog box, code window,
source code, 391

form, 362
frmMagic

dialog box, code window,
source code, 392-393

form, 364
frmMainScreen form, 486
frmShoppe

dialog box, code window,
source code, 393-394

form, 365

frmStats
dialog box, code window,

source code, 394
form, 367

frmWeapons
dialog box, code window,

source code, 394-395
form, 368

functions
AngleArc(), 603
animation (Moonlord), 549
Arc(), 604
BitBlt(), 604
BlankIsAbove, code, 152-153
CalcMoves, code, 311-312
CalcRoomNumber, 385
CalculateDamage, code,

adding, 523-524
CanSwapTiles, code, 152
CheckForFlush, 282-284
CheckForPair, code, 285
CheckForStraight, code,

285-286
CheckShortCruise, code,

522-523, 530-532
CheckShortRangeClick, code,

adding, 522
CheckSystems function, 538
Chord(), 604
CreateBitmap(), 161
CreateBrushIndirect(), 604
CreateDIBSection(), 604
CreateHatchBrush(), 605
CreatePatternBrush(), 605
CreatePen(), 605
CreateSolidBrush(), 605
CreateSound, 553-554
Crystals, code, 306-307
deck-handling (card games),

226
declarations, Windows API,

160-161
DeleteObject(), 605
DiBColorTable(), 606
DoBattle, 385
Ellipse(), 168-169, 605
FindBrick, 196-197, 208, 211
FloodFill(), 606
games, 273-277, 382-384,

521-525
general game, code, 196-197
GetBestHand, 281-282
GetBitmapBits(), 176-177,

606

654 fire, drawing

34 067231987x index 11/6/00 7:10 PM Page 654

GetCardTotal, 254, 256
GetCardValue, 237
GetDC(), 606
GetDIBits(), 606
GetDragonRoom, 385
GetNumPlayers, 268
GetObject(), 162-163, 172,

175, 607
getPixel(), 607
GetRowScores, 281
GetScore, 281
GetVector, code, adding, 521
IsInRightPlace, code, 153
LineTo, 164, 607
MaskBlt(), 607
MessageBeep(), 327-329,

607
Moonlord, 471, 507, 524-525
MoveToEx(), 164-165
PatBlt(), 608
PickUpCrystals, 311
Pie(), 608
PlaySound(), 328-330
PolyBézier(), 608
PolyDraw(), 608
Polygon(), 169-170, 608
Polyline(), 166, 609
PolyPolygon(), 609
PolyPolyline(), 609
programs, code, 428
QBColor, 23
Rectangle(), 167-168, 609
RGB (red, green, blue), 22
RollDice, 385
RoundRect(), 609
SectorHasAliens, code,

adding, 521
SelectMove, code, 316-317
SelectObject(), 610
SetBitmapBits(), 177, 610
SetDIBColorTable(), 610
SetPixel(), 610
SetROP2, 610
sndPlaySound(), 327-329
SortCards, code, 284
source code, 496-497
status screens (Moonlord),

adding, 538
StretchBlt(), 610
StretchDIBits(), 611
UpdateStats, 384
WaitForReady, 201
Windows API, 11, 163, 326

G

galactic maps, 446
Galactic Standard days, 446
Gamasutra Web site, 639
Game Architecture and Design,

636
Game Dictionary Web site, 640
Game menu commands, Exit or

Start Game, 33
Game Programming Galaxy

Web site, 639
Game Programming Gems, 636
Game Programming Resources

and Links Web site, 640
GameDev.Net Web site, 639
GAMELOST constant, 473
GameMode variable, 475-477
GameOver

flag, 151
variable, 149, 475, 478

GameProgrammer.com Web
site, 640

games. See also Battle Bricks;
Crystals; Dragonlord; Face
Catch; Moonlord;
Nightshade; Poker Squares

AI (Artificial Intelligence),
292

balancing, 435
best suited for Visual Basic,

10-11
boards, 478-480
cheats, creating, 156-157
chess, moves, planning, 310
commands, 14
computer opponents, 292
design, 12
frame rates, 10
functions, 521-525

code windows, code to
add, 382-384

general, code, 196-197
Poker Squares, code,

273-277
graphics, 614-615
loading, code, 83
loops, Battle Bricks, 201-202
modes, MAINSCREEN or

STATSCREEN, 536
NPCs (non-player characters),

342
Oh-Wa-Ree, 293-294

programming, 635-640
routines, code, 189-196
RPGs (role-playing games),

342
rules, 12
sound effects, 324-330
sound, 319-321
variables, Moonlord

initialization, 477-478
worlds, believable or

consistent, 12
GameStats() variable, 475
GAMESTILLGOING constant,

473
GAMEWON constant, 474
gave-save variables

(Nightshade), 64
GDI (Graphics Device

Interface), 614
general game

functions, code, 196-197
routines, code, 189-196
source code, Dragonlord,

375-386
variables (Nightshade), 64

general subroutines, 517-521
Battle Bricks, adding to,

189-196
code, 41-42, 242-245,

253-254, 426-427
code windows, code to add,

376-382
Poker Squares, code, 269-270

generating sound effects, 324
Generations

button, 103
dialog box, 103
variable, 114

Get method, 229
GetAllScores subroutine, code,

314-315
GetBestHand function, 281-282
GetBitmapBits() function,

176-177, 606
GetCardTotal function, 254-256
GetCardValue function, 237
GetCardValue(hand As Integer,

pos As Integer) method, 238
GetCardXY subroutine, 270
GetCommandNoun subroutine,

code, 74
GetCommandVerb subroutine,

code, 74
GetDC() function, 606
GetDIBits() function, 606

GetDIBits() function 655

34 067231987x index 11/6/00 7:10 PM Page 655

GetDirection subroutine, code,
77-78

GetDragonRoom function, 385
GetItemNumber subroutine,

code, 80-81
GetNode

method, 101, 121
subroutine, code, 101

GetNumItemsInRoom subrou-
tine, code, 80-81

GetNumPlayers function, 268
GetObject()

declaration, 162
function, 162-163, 172, 175,

607
GetPixel() function, 607
GetRowScores function, 281
GetScore function, 281
GetVector function, code, 521
GIF files, 129
glass, drawing, 599-600
global variables, 38, 42, 475-476
glowing objects, drawing, 600
glue, placing in jugs, code, 79
graphic design, 13
graphical areas, filling, 606-608
graphical controls

Image, 127-131
PaintPicture, 135-136
PictureBox, 127, 131-137

graphical objects
deleting, 605
information, retrieving, 607
selecting, 610

graphics, 13
alias effect, 601
antialiasing, 601-602
bitmaps, 593, 171
colors, 20-24
constants, 32
controls, 32-33
CurrentX property, 27
CurrentY property, 27
device context, 164
DirectDraw, 616

animations, performing,
631-634

clipping, 629-631
cooperative levels,

requesting, 626
DirectDrawSurface

objects, creating,
626-629

initializing, 625-634
objects, creating, 626
programming with,

617-618
transparency, 629-631

DirectX, 615
applications, creating,

618-625
components, 616-617

DirectX 7 SDK, installing,
617

DOS, 614
DrawMode property, 30
DrawStyle property, 31
DrawWidth property, 30
drop shadows, drawing, 601
fill properties, 29-31
FillColor property, 31
FillStyle property, 31
fire, drawing, 600
games, 614-615
GDI (Graphics Device

Interface), 614
glass, drawing, 599-600
glowing objects, drawing, 600
icons, designing, 598
identifiable objects, 597-598
LED (light-emitting diode),

600
light sources, 592
lines, 29-31
luminous objects, drawing,

600-601
metal, drawing, 598-599
Moonlord main screen,

adding to, 486-489
pixels, 26, 614
pseudo-isometric view, 592
raster operations, setting, 610
ScaleMode property, 25
shadows, 593-594
smoothing, 601-602
3D, 592-597
three-quarter view, 592
tiles, 14
TwipsPerPixelX property, 46
TwipsPerPixelY property, 46
2D squares into 3D boxes,

593-595
vbCopyPen mode, 30
Windows, 614

Graphics Device Interface
(GDI), 614

GrassColor variable, 200

grid (Life), seeding with cells,
103

Grid() variable, 279
GRIDHIGHX constant, 472
GRIDHIGHY constant, 472
GRIDLOWX constant, 472
GRIDLOWY constant, 472

H

hand array, initializing, code,
281-283

HandleBallActions subroutine,
code, 204

handlers
buttons

code, 421-422, 510-512
code windows, code to

add, 372-374
Poker Squares, code, 268
source code, 497-499

commands, source code,
495-496

command button, 242
Command1_Click, code,

241-242
CommandButton, code, 251
Difficulty menu, 44
forms

Battle Bricks, code,
186-188

code, 241, 250, 421
code windows, code to

add, 372
Crystals, code, 296-297
Moonlord, code, 467
Poker Squares, code,

265-266
menus, code, 40-41, 423-425
mouse events

cmdClear_Click, code,
117-118

cmdGenerations_Click,
code, 118

cmdStart_Click, code, 117
Form_Load, 38, 266
Form_MouseDown, 116
Form_MouseMove, 116
Form_MouseUp, 116
Form_Unload, 241
imgLetters_Click, 152
Picture1_Click, 39, 431

656 GetDirection subroutine, code

34 067231987x index 11/6/00 7:10 PM Page 656

objects
Blackjack, adding,

250-252
Crystals, adding, 296-297
Dragonlord, 372-375
DungeonEditor, adding,

421-425
Moonlord main screen,

updating, 489-497
Poker Squares, adding,

265-268
Picture1_Click event, 431
PictureBox, code, 422-423
Timer, code, 252
Timer1, code, 39-40
Timer1 Timer, 44

handles for bitmaps, 171
hands (Poker Squares),

analyzing, 283-288
HaveMove subroutine, 311
hCount argument, 172
head pointers (nodes), 92
health, meat pies (Dragonlord),

345
Health button, 344
health department

(Dragonlord), 344-345
HEALTH DEPARTMENT box,

344
height of pictures, displaying,

code, 163
Height property, 128, 132
height1 argument, 135
height2 argument, 136
help menus, Nightshade, 58
hero status (Moonlord), 447
hexadecimal numbers, 24
High Scores box (Poker

Squares), 261
high-score files (Poker

Squares), 262, 287-288
highlights, drawing metal

surfaces, 598
hints (Nightshade), 56
history (Life), 88
Hit button, 255
hit points (Dragonlord), 344
hitting bricks in Battle Bricks,

208-211
hObject argument, 172
hollow rectangles, drawing, 26
Homestead Web site, 637

I

IBM clones, 9
icons

Class Module, 92
designing, 598

identifiable objects, 597-598
Image controls, 33, 127

Crystal, 295
Dragonlord, 352-355
events, 129
pictures, 129-131
properties, 128
resizing, 128

Image property, bitmaps, 171
ImageBits program, code,

175-176
images, 14-15

data, 606, 610
sector, code to determine, 504
short-range scanner screen,

adding to programs, 526
Images\Moonlord directory,

486, 538, 544
imgLetters_Click

event handler, 152
event procedure, code, 151

imgLetters_MouseDown event
procedure, code, 156-157

imgRoom control array, 353
implementing Life, 88-90
IN INVENTORY constant, 67
Infocom Web site, 56
InitDirectSound subroutine,

552
InitGame subroutine, 115, 189,

268, 376, 399-400, 468
code, 68, 150
Face Catch, 43

InitGameVariables, 478
Initialize method, 99
initializing

cells, code, 115
DirectDraw, 625-634
Dragonlord, 399-400
hand arrays, code, 281-283
Moonlord

code, 467-471
constants, 472-475
enumerations, 473-475
game boards, 478-480
game variables, 477-478

global variables, 475-476
program variables,

476-477
neighbor counts, code,

120-121
routines, 188-189, 297-298
short-range scanner contents,

480-482
subroutines, 268, 375-376
SystemNames() array, code,

477
vector arrays, code, 476-477

InitObjects subroutine, 189, 376
InitShortRangeContents sub-

routine, code, 480
InitSound subroutine, 553
Init_Hands method, 237
input, mouse, 215
installing DirectX 7 SDK, 617
intelligence, AI (Artificial

Intelligence), 16
interfaces, 14

API (application program-
ming interface), 11

GDI (Graphics Device
Interface), 614

user
Battle Bricks, creating,

185-186
Blackjack, creating,

248-249
Crystals, creating,

295-296
Dragonlord, dialog boxes,

adding, 358-368
Face Catch, 35-37
Letter Tiles, building,

138-143
Life, 103, 105
Nightshade, building,

59-62
Poker Squares, creating,

263-265
invalid directions, response,

code, 77
IsInRightPlace function, code,

153
IsMoveOK subroutine, code,

77-78
italic (font property), 52
ITEM USED constant, 67
ItemButton variable, 429
ItemLocations() variable, 64

ItemLocations() variable 657

34 067231987x index 11/6/00 7:10 PM Page 657

ItemNames() variable, 64
items

Nightshade, getting and
dropping, 78-81

placing in dungeons, 431-433
Items() variable, 397, 429
ItemsEnum enumeration

(Nightshade), code, 65-66

J–K

joysticks, DirectInput, 616
JPEG files, 129
jugs, glue, code to place into, 79

Key Code Constants (Visual
Basic), 213

keyboard shortcuts
Alt+H, 344
Alt+L, 351
Alt+M, 345
Alt+P, 348
Alt+S, 103, 344
Alt+T, 103
Alt+W, 346
Ctrl+C, 139, 353
Ctrl+N, 142
Ctrl+S, 33
Ctrl+V, 139, 353

keyboards, input, moving pad-
dles in Battle Bricks, 213-214

KeyDown subroutine, code, 213
keys, color, 630
keywords, New, 94
killing cells (Life), 122-124
kings (Battle Bricks), 185,

207-208
KingSurrenders subroutine,

215

L

Label control, 105
Lamothe, Andre, 636
LED (light-emitting diode), 600
Leeryup Coddledoop, 444
Left property, 128, 132
Let method, 229
Letter Tiles

completed form, 143
constants, 149

ending, 155-156
first run, 137
menu bar, creating, 142
players moving tiles, 151-155
playing, 137-138
program code, adding,

143-148
starting, 150-151
tiles, blinking, 153
user interface, building,

138-143
variables, 149

level editor, creating, 411
libraries

DirectX, 395, 554, 618
GDI (Graphics Device

Interface), 614
Life

algorithms, 87-91
building, 103-113
cells

applying rules, 89
checking, 88-90
code to add, 117
creating, 122-124
killing, 122-124
lists, 100-102
neighbors, calculating,

121-122
rules, applying, 89

commands, processing,
116-118

constants, 114-115
Conway, John, 88
grid, seeding with cells, 103
history, 88
implementing, 88-90
linked lists, 91-95
List class, exporting, 98-100
main screen, 102
object-oriented lists, 96-98
playing, 102-103
rules of, 88
simulation, processing,

119-121
source code, 106-113
speed, 90-91
starting, 115-116
variables, 114

light, graphics, 592
light-emitting diode (LED), 600
Line

control, 32
method, 24-26, 133

line properties, 29-31
lines

dashed, drawing, 31
drawing, 24-26, 164-167,

607-609
DrawStyle property, 31
DrawWidth property, 30
stylized, drawing, 46
thickness of, drawing, 30

LINESPACING constant, 279
LineTo() function, 164
linked lists, 91-95
LintTo() function, 607
List class, 96-100
ListHead pointer, 92
lists

cells (Life), 100-102
CreateLists, 119
linked, 91-95
Lists2, creating, 96
object-oriented (Life), 96-98

Lists2, creating, 96
ListTail pointer, 92
Live subroutine, 119, 122
LiveList variable, 114
Load Dungeon

button, 351
command, 343

loading
dungeons (Dragonlord), 351,

433-434
forms, 526
Nightshade, 81-84
pictures, 129, 133

LoadPicture method, 129
locations (Face Catch), 45
long-range scanners

(Moonlord), 449-450
LONGRANGESCAN constant,

474
loops

Do, 201
For, 94, 481
game, 201-202
While, 95

losing (Moonlord), 447
Lucky’s VB Gaming Web site,

637
luminous objects, drawing,

600-601

658 ItemNames() variable

34 067231987x index 11/6/00 7:10 PM Page 658

M

Macintosh, 9
Magic button, 345
magic department

(Dragonlord), 345-346
MAILSCREEN constant, 474
main forms

code window, source code,
492

Dragonlord, creating, 352-357
DungeonEditor, creating,

413-419
main screens

animation (Moonlord),
541-544

Battle Bricks, 184
frmButtons form, 486
frmMainScreen form, 486
Moonlord, 486-497

MAINSCREEN
game mode, 536
mode, 497-498

MainScrn.bmp file, 486
MakeNewNode subroutine,

code, 99
manipulating nouns or verbs,

code, 75
map() array, 399
Map() variable, 397
mapping Nightshade, 55
maps

dungeon (Dragonlord), 399,
412

galactic, 446
markers, blinking, 542
MaskBlt() function, 607
MAX ITEMS IN INVENTORY

constant, 67
MAX ITEMS IN ROOM

constant, 67
MAXALIENS constant, 472
MAXBALLX constant, 200
MAXBRICKY constant, 200
MAXCOL constant, 114, 149
MAXENERGY constant, 472
MAXGENERATIONS

constant, 114
MAXHIGHSCORES constant,

279
maximum columns or rows,

code to determine, 504-505
MAXPADDLEX constant, 200

MAXPHOTONS constant, 472
MAXROW constant, 114, 149
MAXSUNS constant, 472
MAXTIME constant, 472
MAXX constant, 114, 279, 309,

398
MAXY constant, 115, 280, 309,

398
meat pies (Dragonlord), 345
memory, 92, 605
menu bars, creating, 35, 142
Menu Editor command (Tools

menu), 419
menu handlers, code, 40-41, 467
menus

Difficulty, 33, 44
DungeonEditor, creating,

419-420
Game, 33
handlers, code, 423-425
Moonlord, 457
Nightshade, help, 58

MessageBeep() function,
327-329, 607

metal, drawing, 598-599
methods

Blt, 632
Circle, 27-29, 133
Class_Initialize, 235
ClearList, 100-101
Cls, 133
clsCard class, 229-230
clsDeck class, 237-238
Deal, 235, 247
Deal(num As Integer, hand As

Integer, x As Integer, y As
Integer, spacing As Integer,
face As Integer), 238

DealReplace, 236
DealReplace(hand As Integer,

pos As Integer, face As
Integer), 238

DirectDrawCreate, 626
Discard, 236
Discard(hand As Integer, pos

As Integer), 238
Display, 228
Display(x As Integer, y As

Integer, face As Integer),
230

DisplayList, 99
DoEvents, 124
EraseCard, 229-230, 236

EraseCard(HandNum As
Integer, pos As Integer), 238

Get, 229
GetCardValue(hand As

Integer, pos As Integer), 238
GetNode, 101, 121
Initialize, 99
Init_Hands, 237
Let, 229
Line, 24-26, 133
LoadPicture, 129
Move, 128
MoveHandCard, 237, 248
MovieHandCard(hand As

Integer, pos As Integer, x As
Integer, y As Integer, face
As Integer), 238

PaintPicture, 133-137, 229
PictureBox control, 132
Play, 332
Point, 133
PSet, 133
Restore, 237-238
Scale, 133
SetColorKey, arguments, 631
SetCooperativeLevel, 331,

626
SetCurrentPosition, 332
ShowBack, 229-230
ShowFace, 228-230
ShowHand, 236
ShowHand(hand As Integer, x

As Integer, y As Integer,
spacing As Integer, face As
Integer), 238

ShowHandCard, 236, 247
Shuffle, 235, 238
Stop, 332
Sub ShowHandCard(hand As

Integer, pos As Integer, face
As Integer), 238

Terminate, 100
TransferList, 100

Microsoft
Multimedia Control, playing

sound effects, 324-326
Web site, DirectX Pages, 639

MINBALLX constant, 200
MINBALLY constant, 200
MINBRICKY constant, 201
minimum columns or rows,

code to determine, 504-505
MINPADDLEX constant, 201

MINPADDLEX constant 659

34 067231987x index 11/6/00 7:10 PM Page 659

MINX constant, 280, 309
MINY constant, 280, 309
mirrors, giving to Troll, code,

80
mnuAbout Click event proce-

dure, 425
mnuExit Click event procedure,

425
mnuLoad Click subroutine, 83
mnuNew Click event proce-

dure, 425
mnuNewGame_Click event

procedure, 542
mnuOpen Click event

procedure, 425
mnuSave Click event

procedure, 425
mnuSave Click subroutine, 82
mnuSaveAs Click event

procedure, 425
modes

bitmap colors, 173
CRUISE, 498
MAINSCREEN, 497-498,

536
STATSCREEN, 536
WARP, 499

Modes application, 173-175
modules, 240-241, 386-390
Moonlord, 443

About dialog box, adding,
458-460

aliens, code to place, 479-481
animation, 544-549
blinking markers, 542
bridges, returning to, 450
command buttons, 510
constants, source code,

465-466
damaged systems, repairing,

449
declarations, adding, 464-466
DirectX libraries, 554
enumerations, source code,

464-465
form handlers, source code,

467
forms, 457, 526
functions, 471, 507, 524-525
Galactic Standard days, 446
hero status, 447

initialization, 471
code, adding, 467-471
constants, 472-475
enumerations, 473-475
game boards, 478
game variables, 477-478
global variables, 475-476
program variables,

476-477
short-range scanner con-

tents, 480-482
losing, 447
main screen, 486-497
MAINSCREEN mode, 498
menu handlers, source code,

467
menus, 457
phasers, allocating power, 451
players, 491, 497-499
rules, 446

bridge controls, 447
Cruise system, 448
damaged systems, 449
long-range scanners,

449-450
phasers, 451
photon torpedoes, 451
ramming, 451-452
short-range cruises, 450
short-range scanners,

450-452
starbases, 452
status displays, 448-449
system repair crews, 449
warp engines, 449

ships, 447-448
short-range scanner screen

button handlers, adding
code, 510-512

CheckShortCruise func-
tion source code,
530-532

command subroutines,
512-516

DoRam subroutine source
code, 527-529

DoShortCruise subroutine
source code, 526-527

game functions, 521-525
general subroutines,

517-521
programming, 509

source code, 526
TrackPhoton subroutine

source code, 529-530
sound

DirectSound code,
552-554

effects, playing, 554-555
source code

button handlers, 497-499
button helper subroutines,

499-500
CalculateStats subroutine,

505-506
CheckGame subroutine,

506-507
command subroutines,

501-503
DoLongScan subroutine,

504-505
DrawSector subroutine,

503-504
mouse clicks, 501
UpdateSystemRepairs

subroutine, 506
starbases, code to place, 479,

481
status screen, 536-538
story, 444-446
subroutines, source code,

467-471
suns, code to place, 480-481
SystemNames() array, code

to initialize, 477
user interface, building,

452-457
variables, source code, 466
vector arrays, code to

initialize, 476-477
winning, 446

Moonlord Planetinsky. See
Moonlord

Moonlord.frm file, 457
Moonlord.vbp file, 457
Moonlord01.txt file, 464, 490,

510, 537, 542, 552
Moonlord02.txt file, 465, 491,

510, 538, 543, 552
Moonlord03.txt file, 466, 492,

511, 545, 553
Moonlord04.txt file, 467, 492,

511, 546, 553
Moonlord05.txt file, 467, 495,

546, 554

660 MINX constant

34 067231987x index 11/6/00 7:10 PM Page 660

Moonlord06.txt file, 468, 496,
512, 547

Moonlord07.txt file, 471, 513,
548

Moonlord08.txt file, 514, 549
Moonlord09.txt file, 515
Moonlord10.txt file, 516
Moonlord11.txt file, 517
Moonlord12.txt file, 517
Moonlord13.txt file, 518
Moonlord14.txt file, 518
Moonlord15.txt file, 519
Moonlord16.txt file, 519
Moonlord17.txt file, 520
Moonlord18.txt file, 521
Moonlord19.txt file, 521
Moonlord20.txt file, 522
Moonlord21.txt file, 522
Moonlord22.txt file, 523
Moonlord23.txt file, 524
Morris, Dave, 636
mouse

clicks, source code, 501
event handlers

cmdClear_Click, code,
117-118

cmdGenerations_Click,
code, 118

cmdStart_Click, code, 117
Form_Load, 38, 266
Form_MouseDown, 116
Form_MouseMove, 116
Form_MouseUp, 116
Form_Unload, 241
imgLetters_Click, 152
Picture1_Click, 39, 431

event procedures
cmdAbout_Click, 374
cmdItem_Click, code, 431
cmdLoad_Click, 375
cmdQuit_Click, 267
cmdRandomize_Click,

374
cmdRoom_Click, code,

430-431
cmdScore_Click, 267
cmdShop_Click, 375
cmdSpell_Click, 374
cmdStart_Click, 268
cmdStats_Click, 375
Command1_Click, 536
Command2_Click, 536
Form_Load, 372, 421,

554

Form_MouseDown, 266
Form_Unload, 267, 544
imgLetters_Click, code,

151
imgLetters_MouseDown,

code, 156-157
mnuAbout Click, 425
mnuExit Click, 425
mnuNew Click, 425
mnuNewGame_Click, 542
mnuOpen Click, 425
mnuSave Click, 425
mnuSaveAs Click, 425
MouseDown, 215
MouseMove, 215
picScreen_MouseDown,

492, 525
Picture1_Click, 131, 137,

423
Picture1_MouseMove,

423
Timer1_Timer, 153-154,

542
events

Change, 133
Click, 129, 133
code, 116
DblClick, 129, 133
Image control, 129
mouse, code, 116
MouseDown, 129, 133
MouseMove, 129, 133
MouseUp, 129, 133
Paint, 133
PictureBox control, 133
Resize, 133

input, 215
MouseDown event procedure,

129, 133, 215
MouseMove event procedure,

129, 133, 215
MouseUp event, 129, 133
Move method, 128
MoveBall subroutine, code, 202
MoveCount variable, 42
MoveHandCard method, 237,

248
movements

animations, 216
vectors, 203

MovePaddle subroutine, code,
213-215

MovePlayer subroutine,
401-403

moves
chess, planning, 310
Crystals, selecting, 316-317

MoveToEx() function, 164-165
MoveToRoom subroutine,

403-404
MovieHandCard(hand As

Integer, pos As Integer, x As
Integer, y As Integer, face As
Integer) method, 238

moving
balls (Battle Bricks), 202-204
objects on screen, 203
paddles (Battle Bricks),

213-214
players

Dragonlord, 401-406
Nightshade, 77-78

ships, 448
spirited, 206
through dungeons

(Dragonlord), 347
tiles (Letter Tiles), 151-155

Multimedia Control, playing
sound effects, 324-326

music, DirectMusic, 616

N

name (font property), 52
Name property, 128
naming high-score file (Poker

Squares), 262
NeedToSave

flag, 433
variable, 429

neighbors
counts, 90, 120-121
cells, calculating, 121-122

Neighbors() variable, 114
New Game command (File

menu), 446
New keyword, 94
NextDieList variable, 114
NextLiveList variable, 114
Nightshade

building, 59-63
commands, 55, 74-76
constants, 64-67
DoDrop subroutine, 79
DoGet subroutine, 78

Nightshade 661

34 067231987x index 11/6/00 7:10 PM Page 661

DrawText subroutine, code,
69

English, 56
enumerations, 64-67
ExitEnum enumeration, code,

66-67
FORM_LOAD subroutine,

code, 67
GetCommandNoun subrou-

tine, code, 74
GetCommandVerb subroutine,

code, 74
GetDirection subroutine,

code, 77-78
GetItemNumber subroutine,

code, 80-81
GetNumItemsInRoom sub-

routine, code, 80-81
glue in jugs, code to place, 79
help menu, 58
hints, 56
InitGame subroutine, code, 68
invalid directions, code for

response, 77
IsMoveOK subroutine, code,

77-78
items, getting and dropping,

78-81
ItemsEnum enumeration,

code, 65-66
loading, 81-84
mapping, 55
mirrors, code for giving to

Troll, 80
mnuLoad Click subroutine,

83
mnuSave Click subroutine, 82
Nightshadish, 56
nouns, code to manipulate, 75
players, 77-78, 81
playing, 55-56
ProcessInput subroutine, 74
ProcessVerb subroutine, code,

75-76
in progress, 53
ResetExits subroutine, code,

69
saving, 81-84
SetRoomData subroutine,

code, 70
ShowExits subroutine, code,

71

ShowInventory subroutine,
code, 73

ShowRoomDescription sub-
routine, code, 71

ShowVisibleItems subroutine,
73

starting, 56, 67-73
StartNewGame subroutine,

code, 67
story of, 54-55
Translate application, 56-58
UpdateGameScreen subrou-

tine, code, 68
variables, 63-64, 82-83
verbs, code to manipulate, 75

Nightshadish, 56
No button, 260
NOBUTTONSELECTED

constant, 430
NOCARD constant, 280
Node class, 92-93
nodes, 91-92, 99-101
non-player characters (NPCs),

342
non-transparent text, colors, 51
normal size pictures, 137
NOROOMDEFINED constant,

398
NOT IN GAME constant, 67
NOT VALID constant, 67
Noun variable, 64
NounIndexes() variable, 64
NounNames() variable, 64
nouns, manipulating, code, 75
NPCs (non-player characters),

342
NUM NOUN NAMES constant,

67
NUM NOUNS constant, 67
NUM VERBS constant, 67
NumAliensDestroyed variable,

475
NUMBALLSPERGAME

constant, 201
Number of Players box (Poker

Squares), 260
numbered cards (card games),

229
NUMBEROFCOLS constant,

398
NUMBEROFROOMS constant,

398

numbers
constants, 32
hexidecimal, 24
random, 43

NumCrystalsInPit variable, 309
NumGlueIngredients variable,

64
NumItemsInInventory variable,

64
NUMOFALIENS constant, 474
NUMOFTILES constant, 149
NUMPITSPERPLAYER

constant, 309
NumPlayers variable, 279
NUMROOMBUTTONS

constant, 430

O

object handlers
Blackjack, adding, 250-252
Crystals, adding, 296-297
Dragonlord, 372-375
DungeonEditor, adding,

421-425
Moonlord main screen, updat-

ing, 489-497
Poker Squares, adding,

265-268
object-oriented lists (Life), 96,

98
objects

Deck, 241, 247
DirectDraw, creating, 626
DirectDrawSurface, creating,

626-629
DirectSound, creating, 331
DirectSoundBuffer, creating,

332
Dragonlord, 347-350
Font, assigning to controls, 84
glowing, drawing, 600
graphical, 605-607, 610
handlers (DungeonEditor),

adding, 421-425
identifiable, 597-598
luminous, drawing, 600-601
moving onscreen, 203
round, shading, 597
shading, 596-597
sprites, 615
3D, 592-595

662 Nightshade

34 067231987x index 11/6/00 7:10 PM Page 662

OFFSET constant, 472
offset stamping, 595-597
OFFSETX constant, 201, 309,

398
OFFSETY constant, 201, 398
Oh-Wa-Ree, 293-294
OldCheckedMenu variable, 42
OldShortRangePlayerSector

variable, 476
opaque text, displaying, code,

50-51
opcode argument, 136
Open Dungeon File dialog box,

352
OPERABLE constant, 472
opponents, 292, 302-305, 310
Option Explicit statement, 38
OTHER constant, 474
ovals, drawing, 27-28
overlapping bricks with balls,

209

P

paddles (Battle Bricks),
206-207, 213-214

PADDLEWIDTH constant, 201
PaddleX variable, 200
PADDLEY constant, 201
Paint event, 133
PaintBackground subroutine,

code, 631
PaintPicture

control, 135-136
method, 133-137, 229

PaintSprite subroutine, code,
633-634

pasting, 353
PatBlt() function, 608
Pawn’s Game Programming

Pages Web site, 638
pens, creating, 605
Perez, Adrian, 636
performing actions in Battle

Bricks, 204
performing animations

(DirectDraw), 631-634
Phaser button, 451, 544
PHASER constant, 474
PHASERGUNS constant, 474

phasers
animations, 544
power, allocating, 451

PHOTON constant, 474
photon torpedoes (Moonlord),

451
PHOTONLAUNCHER

constant, 474
PHOTONS constant, 474
PHOTONSPEED constant, 472
pic variable, 154
PickUpCrystals function, 311
picScreen_MouseDown event

procedure, 492, 525
picture argument, 135
Picture property, 128-129, 132
Picture1_Click

event handler, 39, 431
event procedure, 131, 137,

423
Picture1_MouseMove event

procedure, 423
PictureBox

handlers, code, 422-423
control, 33, 36, 127, 131-137

pictures
enlarged, 137
GIF files, 129
height, code to display, 163
JPEG files, 129
loading, 129, 133
normal size, 137
sizing, 130-135
width, code to display, 163
Windows API controls,

manipulating, 171
pie slices, drawing, 608
Pie() function, 608
pits

Crystals, 293
Oh-Wa-Ree, 294

pixels, 26, 614
bit formats, 178-180
color values, transferring, 604
combining, 607
RGB color values, 607, 610
ScaleMode property, Twip, 25

PlaceItem subroutine, 433
PlaceRoom subroutine, 432
PlaceShortScanAliens subrou-

tine, 481
PlaceShortScanStarships sub-

routine, source code, 490-491

PlaceShortScanSuns
subroutine, 480

PlaceStarBases subroutine, 479
Planet Source Code Web site,

637
planning chess moves, 310
Play method, 332
PLAYER constant, 474
player ships (Moonlord),

animating, 548
Player variable, 279, 309
PlayerEnum enumeration, 280
PlayerHitSound variable, 397
PlayerMessage subroutine, 311,

317
players

command button clicks, 491
Dragonlord

moving, 401-406
starting statistics, 399
statistics, 400

Letter Tiles, moving tiles,
151-155

Moonlord, 497-499
Nightshade, 77-78, 81
Poker Squares, 260

PlayerScores() variable, 279
PLAYERSCOREX constant,

280
PLAYERSCOREY constant,

280
PlayerSector variable, 476-478
PLAYERSTARTSECTOR

constant, 472
playing

Battle Bricks, 184-185
Blackjack, 255
Crystals, 293-294
DirectPlay, 616
DirectSound, 332
Dragonlord, 343

dungeons, 347-351
health department,

344-345
magic department,

345-346
supplies, shopping for,

344
weapon department,

346-347
Face Catch, 33-34
Letter Tiles, 137-138
Life, 102-103

playing 663

34 067231987x index 11/6/00 7:10 PM Page 663

Moonlord sound effects,
554-555

Nightshade, 55-56
Poker Squares, 260-262
sound, 332, 607
sound effects, 324-328

PlaySound() function, 328-330
PlaySound subroutine, 554
PlaySounds program, code,

328-330
Point command, 159
Point method, 133
pointers, 92
points, Dragonlord, 344-345
Poker Squares, 259

backgrounds, 288
building, 262
button handlers, code, 268
cards, ace-high straight, 286
CommandButton

controls, 263-264
handlers, code, 267

constants, 279-280
enumerations, 280
exiting, 262
file-handling subroutines,

code to add, 271-272
form handlers, code, 265-266
game functions, code to add,

273-277
general subroutines, code to

add, 269-270
hands, analyzing, 283-288
High Scores box, 261
high-score files, 262, 287-288
initialization subroutines,

adding, 268
new game or new hand,

starting, 260
Number of Players box, 260
object handlers, adding,

265-268
players, 260
playing, 260-262
scores, row and column,

280-283
scoring, 262
screen, 260
two pairs (cards), code to

check, 285
user interfaces, creating,

263-265
variable declarations, code to

add, 277-278
variables, 279

PokerHandsEnum enumera-
tion, 280

PokerSquares1.txt file, 265
PokerSquares3.txt file, 268
PolyBézier() function, 608
PolyDraw() function, 608
Polygon application, code,

169-170
Polygon() function, 169-170,

608
polygons, drawing, 608-609
Polyline application, code,

166-167
Polyline() function, 166, 609
polylines, drawing, 609
PolyPolygon() function, 609
PolyPolyline() function, 609
power of phasers, allocating,

451
PrevBoatRoom variable, 64
primary surfaces, creating, 627
priority levels (DirectSound),

setting, 331
procedures. See mouse, event

procedures
processing

Life, 116-121
Nightshade commands, 74-76

ProcessInput subroutine, 74
ProcessVerb subroutine, code,

75-76
programming

advanced games, Web sites,
638-640

Blackjack, 256-257
card games, 225
Crystals, 309-314
with DirectDraw, 617-618
games, 13-16, 635-636
short-range scanner screen

(Moonlord), 509
Visual Basic games, Web

sites, 636-638
programs

declarations, code, 428-429
DirectX in action, 625
Face Catch, code, 37-42
functions, code, 428
ImageBits, code, 175-176
Letter Tiles, code, 143-148
Life, code, 106-113
Modes, code, 174-175
Nightshade, code to build,

62-63

PlaySounds, code, 328-330
SETUP.EXE, 617
short-range scanner screen

images, adding, 526
Stretch example, code,

130-131
Stretch2 example, code, 134
Stretch3 example, code, 136
variables, Moonlord initializa-

tion, 476-477
Project menu commands

Add Class Module, 92, 113,
239

Add Form, 239, 264, 295, 458
Add Module, 240
Components, 418
Properties, 458
References, 554

Project Properties dialog box,
458

projects, DirectX, 330, 395
properties

Appearance, 132
AutoRedraw, 132
AutoSize, 132
bold (fonts), 52
BorderStyle, 128, 132
charset (fonts), 52
CommandButton controls,

settings, 356-357
CurrentX, 27, 132
CurrentY, 27, 132
DrawMode, 30, 132
DrawStyle, 31, 132
DrawWidth, 30, 132
fill, 29-31
FillColor, 31, 132
FillStyle, 31, 132
Font, 52, 132
fonts, code to set, 52-53
FontTransparent, 50-51
ForeColor, 50
Height, 128, 132
Image controls, 128, 354-355
Image, bitmaps, 171
italic (fonts), 52
Left, 128, 132
line, 29-31
name (fonts), 52
Name, 128
Picture, 128-129, 132
PictureBox control, 132
ScaleMode, 25, 132
Shape controls, settings, 355

664 playing

34 067231987x index 11/6/00 7:10 PM Page 664

size (fonts), 52
Stretch, 128, 130
strikethrough (fonts), 52
Top, 128, 132
TwipsPerPixelX, 46
TwipsPerPixelY, 46
underline (fonts), 52
Visible, 128, 132
weight (fonts), 52
Width, 128, 132
xPosition, 229
yPosition, 229

Properties
command (Project menu), 458
window, 92

property sheets, Add Class
Module, 92

PSet
command, 159
method, 133

pseudo-isometric view, 592
puzzle games. See Letter Tiles

Q–R

QBColor function, 23
Quit button, 262

RaBit Zone Visual B Studio
Web site, 637

radians, converting to degrees,
28

ramming (Moonlord), 451-452
random numbers, 43-45
Randomize Dungeon

button, 351
command, 343

randomizing dungeons
(Dragonlord), 351

Randomizing variable, 397
ranges of random numbers, cal-

culating, 45
raster operations, setting, 610
rates, sound studios, 338
ratios, aspect, 28
ReadScoreFile subroutine, 272
recording sound, 320-321
Rectangle() function, 167-168,

609
rectangles, 26, 609
Rectangles application, code,

167-168

rectangular areas, copying,
610-611

references, adding to DirectX
type library, 618

References command (Project
menu), 554

reflections, drawing
on glass, 600
on metal, 598

relative coordinates, line
drawing, 25

Repair button, 449, 538
repair crews (Moonlord), 449
repairing damaged systems

(Moonlord), 449
requesting DirectDraw cooper-

ative levels, 626
ResetExits subroutine, code, 69
Resize event, 133
resizing Image control, 128
resources, game programming,

635
Restore method, 237-238
RestoreButtons subroutine, 427
returning to bridges, 450
RGB (red, green, blue)

function, 22, 606-607, 610
RIGHTBUTTON constant, 149
Roland JP8000 synthesizer, 409
role-playing games (RPGs),

342. See also Dragonlord
RollDice function, 385
Rollings, Andrew, 636
Room variable, 64
RoomButton variable, 430, 432
ROOMCOUNT constant, 430
RoomDesc variable, 64
rooms

creating with offset stamping,
596

placing in dungeons, 431-433
Rooms() variable, 430
ROOMSIZE constant, 430
RoomsX variable, 430
RoomsY variable, 430
round objects, shading, 597
RoundRect() function, 609
routines

general game, code, 189-196
initialization, code, 188-189,

297-298, 425
subroutines, 521

AddCell, 116
adding to Battle Bricks,

189-196

AddNeighbors, 120-121
AddToScoreFile, 272
AliensAttack, code,

adding, 518, 547
Animate, 634
AnimateAlienDestruction,

546, 555
AnimateAlienShots, 547,

555
AnimateArrival, 543, 555
AnimateDamage,

548-549, 555
AnimateDocking, 546,

555
AnimateMarker, 542
AnimatePhaser, 545, 555
button helper, source

code, 491-492, 499-500
CalcLimits, 121
CalcMoveDirection,

402-403
CalcRoomNumber, 402
CalculateStats, source

code, 505-506
CheckForEndOfGame,

code, 155
CheckGame, source code,

506-507
CheckKing, code,

207-208
CheckPaddle, code,

206-207
CheckWalls, code, 205
Class_Terminate, code,

100
ClearList, code, 100-101
cmdHit_Click, 251
cmdPlay_Click, code, 326
cmdStartGame_Click, 252
cmdStay_Click, 252
code windows, code to

add, 376-382
code, 41-42, 242-245,

253-254, 426-427
command, 501-503,

512-516
ComputerPlay, code, 311
CreateBackBufferSurface,

code, 628
CreateBackgroundSurface,

code, 628-629
CreateLists, 120
CreatePrimarySurface,

code, 626-627

routines 665

34 067231987x index 11/6/00 7:10 PM Page 665

CreateSpriteSurface, code,
628-629

Crystals, code, 298-302
DestroyAlien, 520, 546
DestroyBrick, code,

211-212
Die, 119, 123
DisableButtons, 427
DisplayInOrder, code,

155-156
DistributeCrystals, 311
DoBattle, 406-407
DockWithBase, 518, 546
DoDrop, 79
DoGet, 78
DoLongCruise, 502,

542-543
DoLongScan, 504-505,

555
DoRam, code, 514-515,

527-529
DoRepair, 538
DoShortCruise, 513-514,

526-527, 555
DoShortScan, 501,

512-513
DoStatus, 537
DoSystemDamage, 519,

548
DoWinningAnimation,

code, 155-156
DrawGame, 115-116
DrawHallway, 404
DrawNewCardsInGrid,

270
DrawPaddle, 214
DrawRoom, 404-405
DrawScreen, 427
DrawSector, source code,

503-504
DrawText, code, 69
ErasePaddle, 214
EraseScores, 270
EraseSprite, code, 632
EvaluateHands, 270, 280
FightSkeleton, 406-408
file-handling (Poker

Squares), code to add,
271-272

Form_KeyDown, 188
Form_Load, 115, 188,

250, 329
FORM_LOAD, code, 67
general, code, 242-245

GetAllScores, code,
314-315

GetCardXY, 270
GetCommandNoun, code,

74
GetCommandVerb, code,

74
GetDirection, code, 77-78
GetItemNumber, code,

80-81
GetNode, code, 101
GetNumItemsInRoom,

code, 80-81
HandleBallActions, code,

204
HaveMove, 311
InitDirectSound, 552
InitGame, 43, 68, 115,

150, 189, 268, 376,
399-400, 468

initialization, 268,
375-376

InitObjects, 189, 376
InitShortRangeContents,

code, 480
InitSound, 553
IsMoveOK, code, 77-78
KeyDown, code, 213
KingSurrenders, 215
Live, 119, 122
MakeNewNode, code, 99
mnuLoad Click, 83
mnuSave Click, 82
Moonlord, code, 467-471,

537-538
MoveBall, code, 202
MovePaddle, code,

213-215
MovePlayer, 401-403
MoveToRoom, 403-404
PaintBackground, code,

631
PaintSprite, code, 633-634
PlaceItem, 433
PlaceRoom, 432
PlaceShortScanAliens,

481
PlaceShortScanStarships,

source code, 490-491
PlaceShortScanSuns, 480
PlaceStarBases, 479
PlayerMessage, 311, 317
PlaySound, 554

Poker Squares, code to
add, 269-270

ProcessInput, 74
ProcessVerb, code, 75-76
ReadScoreFile, 272
ResetExits, code, 69
RestoreButtons, 427
RunLife, 119
SetButtons, 499-500, 536
SetClipAndTransparency,

code, 629
SetRoomData, code, 70
SetStatusButtons, 536
SetUpAliens, code,

adding, 517
SetWarpButtons, code,

adding, 512
ShootPhaser, 516, 544
ShootPhoton, code,

adding, 515
ShowBoard, code, adding,

517
ShowExits, code, 71
ShowInventory, code, 73
ShowPlayerScore, 270
ShowRoomDescription,

code, 71
ShowScoreFile, 272
ShowStatusValues, 537
ShowTotalScore, 270
ShowVisibleItems, 73
ShuffleTiles, code, 150
SlowBall routine, 202
SortCards, 270, 282
source code, 492-495
StartGame_Click, 252
StartNewGame, code, 67
status screens (Moonlord),

adding, 537-538
Swap, code, 150-151
Timer1_Timer, 252
TrackPhoton, 519-520,

529-530, 555
TransferList, code, 100
UpdateGameScreen, code,

68
UpdateStats, 403
UpdateSystemRepairs,

code, 506
WaitForTimer, code, 154
WriteScoreFile, 272

row scores (Poker Squares),
280-283

666 routines

34 067231987x index 11/6/00 7:10 PM Page 666

ROW1OFFSETY constant, 309
ROW2OFFSETY constant, 309
ROWCOUNT constant, 201,

280, 430, 472
rows, maximum or minimum,

code to determine, 504-505
ROWSCORESX constant, 280
Royer, Dan, 636
RPGs (role-playing games),

342. See also Dragonlord
rules, 12

Life, 88-89
Moonlord, 446

bridge controls, 447
Cruise system, 448
damaged systems, 449
long-range scanners,

449-450
phasers, 451
photon torpedoes, 451
ramming, 451-452
short-range cruises, 450
short-range scanners,

450-452
starbases, 452
status displays, 448-449
system repair crews, 449
warp engines, 449

RunLife subroutine, 119
running demo programs,

245-246

S

Saturn, Titan moon, 444
saving

dungeon data, 433-434
Nightshade, 81-84

Scale method, 133
ScaleMode property, 25, 132
scanners, Moonlord, 449-452,

480-482
score arrays (Crystals),

handling, 314-316
Score button, 261
Score variable, 42, 200
ScoreBoxColor variable, 200
ScoreMultiplier variable, 200
SCOREOFFSETY constant,

280, 309

scores
Battle Bricks, 185
Dragonlord, hit points,

344-345
Face Catch, 45
Poker Squares, 261-262,

280-283, 287-288
Scores() variable, 309
screens

Battle Bricks, 184
Blackjack, 255
Dragonlord, 343
Life, 102
Moonlord

animation, 541-544
graphics, adding, 486-489
object handlers, updating,

489-497
status, 536-539

pixels, 26
Poker Squares, 260
short-range scanner

(Moonlord)
animation, 544-549
button handlers, adding

code, 510-512
CheckShortCruise func-

tion source code,
530-532

command subroutines,
512-516

DoRam subroutine source
code, 527-529

DoShortCruise subroutine
source code, 526-527

game functions, 521-525
general subroutines,

517-521
images, adding to

programs, 526
programming, 509
source code, 526
starbases, 452
TrackPhoton subroutine

source code, 529-530
SDK (DirectX 7), installing, 617
sector images, code to deter-

mine, 504
SECTORCOUNT constant, 472
SectorHasAliens function, code,

521
SECTORSIZE constant, 472
seeding grids (Life) with cells,

103

Select Case statement, 405
Selected Items box, adding

items, 162
selecting

graphical objects, 610
moves (Crystals), 316-317

SelectMove function, code,
316-317

SelectObject() function, 610
serums (Dragonlord), 348
SetBitmapBits() function, 177,

610
SetButtons

code, 511
subroutine, 499-500, 536

SetClipAndTransparency sub-
routine, code, 629

SetColorKey method, argu-
ments, 631

SetCooperativeLevel method,
331, 626

SetCurrentPosition method, 332
SetDIBColorTable() function,

610
SetPixel() function, 610
SetRoomData subroutine, code,

70
SetROP2() function, 610
SetStatusButtons subroutine,

536
settings

colors, 610
CommandButton control

properties, 356-357
DirectSound priority levels,

331
Image controls (Dragonlord)

properties, 354-355
raster operations, 610
Shape control properties, 355

SETUP.EXE program, 617
SetUpAliens subroutine, code,

517
SetWarpButtons subroutine,

code, 512
shading objects, 596-597
ShadowGrassColor variable,

200
shadows, 593-594, 601
Shape controls, 32, 355, 419
shapes, drawing, 24-29, 167-170
sheets, property, Add Class

Module, 92

sheets, property, Add Class Module 667

34 067231987x index 11/6/00 7:10 PM Page 667

SHIFTANDCTRL constant,
149

ships (Moonlord), 447-448,
546-548

ShootPhaser subroutine, 516,
544

ShootPhoton subroutine, code,
515

Shop
button, 344
command, 343

shopkeepers (Dragonlord),
visiting, 344

shopping for supplies
(Dragonlord), 344

ShopSound variable, 397
short-range cruises (Moonlord),

450
short-range scanner screen

(Moonlord)
animation, 544-549
button handlers, code, adding,

510-512
command subroutines,

512-516
game functions, 521-525
general subroutines, 517-521
images, adding to programs,

526
initialization, 480-482
programming, 509
scanners, displaying, 450
source code

CheckShortCruise func-
tion, 530-532

DoRam subroutine,
527-529

DoShortCruise subroutine,
526-527

TrackPhoton subroutine,
529-530

starbases, 452
SHORTCRUISE constant, 474
SHORTRANGECOLUMN-

COUNT constant, 472
ShortRangeContents()

variable, 476
SHORTRANGEGRIDHIGHX

constant, 472
SHORTRANGEGRIDHIGHY

constant, 472
SHORTRANGEGRIDLOWX

constant, 472

SHORTRANGEGRIDLOWY
constant, 472

SHORTRANGEOFFSETX
constant, 473

SHORTRANGEOFFSETY
constant, 473

ShortRangePlayerSector
variable, 476

SHORTRANGESCAN
constant, 474

SHORTRANGESECTOR-
COUNT constant, 473

SHORTRANGESECTOR-
SIZEX constant, 473

SHORTRANGESECTOR-
SIZEY constant, 473

SHORTSCANSCREEN
constant, 474

ShowBack method, 229-230
ShowBoard subroutine, code,

517
ShowExits subroutine, code, 71
ShowFace method, 228-230
ShowHand method, 236
ShowHand(hand As Integer, x

As Integer, y As Integer,
spacing As Integer, face As
Integer) method, 238

ShowHandCard method, 236,
247

ShowInventory subroutine,
code, 73

ShowPlayerScore subroutine,
270

ShowRoomDescription subrou-
tine, code, 71

ShowScoreFile subroutine, 272
ShowStatusValues subroutine,

537
ShowTotalScore subroutine,

270
ShowVisibleItems subroutine,

73
Shuffle method, 235, 238
shuffled decks (card games),

245
ShuffleTiles subroutine, code,

150
simulation (Life), processing,

119-121
size (font property), 52, 84
sizing pictures, 130-135
SkeletonDieSound variable, 397

SkeletonHitSound variable, 397
skeletons (Dragonlord),

349-350, 406-408
slices of pie, drawing, 608
SlowBall routine, 202
smoothing graphics, 601-602
sndPlaySound() function,

327-329
SortCards function, code, 284
SortCards subroutine, 270, 282
sound

Battle Bricks, adding,
334-337

DirectSound, 330-332, 616
editing, 321
effects, 13-14

Dragonlord, creating, 409
generating, 324
MessageBeep() function,

327
Multimedia Control,

324-326
playing, 324
PlaySound function,

328-330
sndPlaySound() function,

327-328
Windows API waveform

functions, 326
games, adding to, 319
Moonlord, 552-555
playing, 607
recording, 320-321
Roland JP8000 synthesizer,

409
Steinberg WaveLab, 409
studios, rates, 338

source code. See also code
adding to dialog boxes, 390
applications, 620-625
button helper subroutines,

491-492
CheckShortCruise function,

530-532
clsCard class, 226-228
clsDeck class, 230-235
code windows, 386-395
command handlers, 495-496
DoRam subroutine, 527-529
DoShortCruise subroutine,

526-527
Dragonlord dialog boxes,

390-395

668 SHIFTANDCTRL constant

34 067231987x index 11/6/00 7:10 PM Page 668

DungeonEditor, adding,
425-429

functions, 496-497
general game (Dragonlord),

375-386
Life, 106-113
List class, 96-97
main form code window, 492
Moonlord

button handlers, 497-499
button helper subroutines,

499-500
CalculateStats subroutine,

505-506
CheckGame subroutine,

506-507
command subroutines,

501-503
constants, 465-466
DoLongScan subroutine,

504-505
DrawSector subroutine,

503-504
enumerations, 464-465
form handlers, 467
functions, 471
menu handlers, 467
mouse clicks, 501
subroutines, 467-471
UpdateSystemRepairs

subroutine, 506
variables, 466

PlaceShortScanStarships sub-
routine, 490-491

subroutines, 492-495
TrackPhoton subroutine,

529-530
SPACEBETWEENTILES

constant, 149
spaces, colors, 631
Speed variable, 200
speeds

Battle Bricks, 185
Life, 90-91

Spell
button, 348
command, 343

spells (Dragonlord), 345-348
SpellSound variable, 397
sprites, 206, 615
stacking 3D objects, 592
stamping (offset), 3D graphics,

595-597

starbases (Moonlord), 446, 452,
479-481

starships, docking procedure,
546

STARSHIPSEC constant, 474
Start button, 103, 260
Start Game command (Game

menu), 33
starting

Battle Bricks, 184
Letter Tiles, 150-151
Life, 115-116
Nightshade, 56, 67-73

STARTINGROOM constant,
398

StartNewGame subroutine,
code, 67

statements
Option Explicit, 38
Select Case, 405

statistics, Dragonlord players,
399-401

Stats
command, 343
variable, 397

STATSCREEN
constant, 474
game mode, 536

StatScrn.bmp file, 538
StatsType datatype, 398
status displays (Moonlord),

448-449
status screens (Moonlord),

536-539
Stay button, 255
Steinberg WaveLab, 409
Stop

button, 103, 118
method, 332

StopLife variable, 114
stories

Moonlord, 444-446
Nightshade, 54-55

strategies, computer (Crystals),
programming, 311-314

strength, meat pies
(Dragonlord), 345

Stretch example program, code,
128-131

Stretch2 example program,
code, 134

Stretch3 example program,
code, 136

StretchBlt() function, 610
StretchDIBits() function, 611
strikethrough (font property),

52
structures

BITMAP, code, 162, 172-173
DSBUFFERDESC, 332

studios (sound), rates, 338
stylized lines, drawing, 46
Sub ShowHandCard(hand As

Integer, pos As Integer, face
As Integer) method, 238

subroutines. See routine, sub-
routines

SubtractNeighbors routine, 122
suns (Moonlord), code to place,

480-481
SUNSEC constant, 475
SUNYELLOW constant, 473
supplies (Dragonlord), shop-

ping for, 344
surfaces

curved metal, 599
primary, creating, 627

surrender animation frames,
215

Swap subroutine, code, 150-151
synthesizers, Roland JP8000,

409
SystemNames() array, code to

initialize, 477
SystemNames() variable, 476
systems

colors, 21-22
Moonlord, 447-449
setups, DirectSetup, 616

SystemStats() variable, 476

T

tail pointers (nodes), 92
tearing down walls in Battle

Bricks, 215-216
techniques, offset stamping, 596
teleporters (Dragonlord), 348
TeleportSound variable, 397
tempBoard() array, 315
tempScores() array, 315
Terminate method, 100
testing

games, 16
List class, code, 98
Node class, code, 93

testing 669

34 067231987x index 11/6/00 7:10 PM Page 669

text
colors, 50-51
courier font, displaying on

forms, 53
non-transparent, colors, 51
opaque, code to display,

50-51
transparent, code to display,

50
text adventure game. See

Nightshade
thickness of lines, drawing, 30
thief (Dragonlord), 349
3D (three-dimensional)

graphics
2D squares into 3D boxes,

593-595
cubes, 594-595
Direct3D, 616
objects, 592-597
offset stamping, 595-597
round objects, shading, 597
shadows, 593

three-quarter view, 592
TILEHEIGHT constant, 149
tiles (Letter Tiles), 14, 151-155
TILEWIDTH constant, 149
Timer

controls, 37, 542
handler, code, 252

Timer1 handler, code, 39-40
Timer1 Timer handlers, 44
Timer1_Timer

event procedure, 153-154,
542

subroutine, 252
TIMESTAT constant, 475
Titan moon, 444
Titanian Territorial Guard

(TTG), 444
Toggling a Flag the Long Way,

code, 157
toolboxes, DungeonEditor,

430-431
Tools menu commands, Menu

Editor, 419
Top property, 128, 132
torpedoes, photon (Moonlord),

451
TOTALSCOREX constant, 280,

309
TOTALSCOREY constant, 280,

309

TrackPhoton subroutine,
519-520, 529-530, 555

TransferList
method, 100
subroutine, code, 100

transferring, pixel color values,
604

Translate application, 56-58
transparency, DirectDraw,

629-631
transparent colors, undefined,

630
transparent text, displaying,

code, 50
Tricks of the Windows Game

Programming Gurus:
Fundamentals of 2D and 3D
Game Programming, 636

Troll, mirror, code to give to, 80
Troll King, 54-55
TrollFainted variable, 64
TTG (Titanian Territorial

Guard), 444
TwipsPerPixelX property, 46
TwipsPerPixelY property, 46
2D (two-dimensional) graphics,

squares into 3D boxes,
593-595

two-word commands, 55
type declarations, Windows

API, 162
type libraries, DirectX, 395, 618
typefaces, fonts, 84

U

underline (font property), 52
Unlimited Realities Web site,

637
Unload command, 241
unloading forms, 526
unshuffled decks (card games),

245
UpdateGameScreen subroutine,

code, 68
UpdateStats

function, 384
subroutine, 403

UpdateSystemRepairs
subroutine, code, 506

updating
button code (Moonlord), 536
object handlers for Moonlord

main screen, 489-497
user interfaces

Battle Bricks, creating,
185-186

Blackjack, creating, 248-249
Crystals, creating, 295-296
Dragonlord, dialog boxes,

adding, 358-368
Face Catch, 35-37
Letter Tiles, building,

138-143
Life, 103-105
Moonlord, building, 452-457
Nightshade, building, 59-62
Poker Squares, creating,

263-265

V

values
color, QBColor function, 23
CompScores() array, calcu-

lating, 312-313
variable declarations

code windows, code to add,
385-386

Poker Squares, code to add,
277-278

variables
AlienDamage(), 475
AlienPosition(), 475
BallCount, 199
BallVecX, 199
BallVecY, 200
BallX, 200
BallY, 200
Battle Bricks, 199-200
Battling, 396
BlinkCount, 154
BlinkingTile, 149
BlinkMode, 475
Board(), 309, 475
BrickCount, 200
Bricks(), 200
CardCount, 268, 279
Cheating, 149
CheckStatsSound, 396
CompleteNoun, 64

670 text

34 067231987x index 11/6/00 7:10 PM Page 670

CrystalCount, 309
CrystalCountXY(), 309
Desk, 279
DiceSound, 396
DieList, 114
Difficulty, 42
Directions, 64
DirectSound, declaring, 331
DirectSoundObj, 396
DirectX70bj, 396
DiscoverySound, 396
Done, 200
Dragonlord, 396-397
DragonRoom, 397
DragonSound, 397
DragonSound2, 397
Drawing, 114
Drawn(), 475
Ducking, 200
DungeonEditor, 429-430
Exits(), 64
Face Catch, 42
FileName, 397, 429
game, Moonlord initializa-

tion, 477-478
GameMode, 475, 477
GameOver, 149, 475, 478
GameStats(), 475
Generations, 114
global, 38, 42, 475-476
GrassColor, 200
Grid(), 279
InitGameVariables, 478
ItemButton, 429
ItemLocations(), 64
ItemNames(), 64
Items(), 397, 429
Letter Tiles, 149
Life, 114
LiveList, 114
Map(), 397
Moonlord, 466, 476-477
MoveCount, 42
NeedToSave, 429
Neighbors(), 114
NextDieList, 114
NextLiveList, 114
Nightshade, 63-64, 82-83
Noun, 64
NounIndexes(), 64
NounNames(), 64
NumAliensDestroyed, 475
NumCrystalsInPit, 309

NumGlueIngredients, 64
NumItemsInInventory, 64
NumPlayers, 279
OldCheckedMenu, 42
OldShortRangePlayerSector,

476
PaddleX, 200
pic, 154
Player, 279, 309
PlayerHitSound, 397
PlayerScores(), 279
PlayerSector, 476, 478
Poker Squares, 279
PrevBoatRoom, 64
Randomizing, 397
Room, 64
RoomButton, 430, 432
RoomDesc, 64
Rooms(), 430
RoomsX, 430
RoomsY, 430
Score, 42, 200
ScoreBoxColor, 200
ScoreMultiplier, 200
Scores(), 309
ShadowGrassColor, 200
ShopSound, 397
ShortRangeContents(), 476
ShortRangePlayerSector, 476
SkeletonDieSound, 397
SkeletonHitSound, 397
Speed, 200
SpellSound, 397
Stats, 397
StopLife, 114
SystemNames(), 476
SystemStats(), 476
TeleportSound, 397
TrollFainted, 64
VectorsX1(), 476
VectorsY1(), 476
Verb, 64
WalkSound, 397
World(), 114

VB Game Planet Web site, 638
VB Game Programming Center

Web site, 636
VB. See Visual Basic
vbCopyPen mode, 30
vbX7z: DirectX 7 and Game

Programming for VB Web
site, 638

vectors
arrays, initializing, code,

476-477
calculating, code, 531
movements, 203
photon torpedo, 451

VectorsX1() array, 477
VectorsX1() variable, 476
VectorsX2() array, 477
VectorsY1() variable, 476
Verb variable, 64
verbs, manipulating, code, 75
views, pseudo-isometric or

three-quarter, 592
Visible property, 128, 132
visiting shopkeepers

(Dragonlord), 344
Visual Basic

advantages of using, 9-10
game programming, Web

sites, 636-638
games best suited for, 10-11
Key Code Constants, 213

Visual Basic Game and
Application Development
Web site, 639

Visual Basic Games Web site,
637

Voodoo VB Web site, 638

W

WaitForReady function, 201
WaitForTimer subroutine,

code, 154
WalkSound variable, 397
walls (Battle Bricks)

bouncing balls off, 205
tearing down, 215-216

WARP constant, 475
warp engines (Moonlord), 449
WARP mode, 499
WARPENGINES constant, 475
warps, ships, 447
WAV files, copying, 554
waveform functions

MessageBeep(), 327
PlaySound, 328-330
sndPlaySound(), 327-328
Windows API, sound effects,

playing, 326

waveform functions 671

34 067231987x index 11/6/00 7:10 PM Page 671

Wayne, Denny, 54-55
Weapon button, 346
weapon department

(Dragonlord), 346-347
WeaponEnum enumeration,

398
Web sites

advanced game programming,
638-640

Gamasutra, 639
Game Dictionary, 640
Game Programming Galaxy,

639
Game Programming

Resources and Links, 640
GameDev.Net, 639
GameProgrammer.com, 640
Homestead, 637
Infocom, 56
Lucky’s VB Gaming, 637
Microsoft, DirectX Pages,

639
Pawn’s Game Programming

Pages, 638
Planet Source Code, 637
RaBit Zone Visual B Studio,

637
Unlimited Realities, 637
VB Game Programming

Center, 636
vbX7: DirectX 7 and Game

Programming for VB, 638
Visual Basic Game and

Application Development,
639

Visual Basic game program-
ming, 636, 638

Visual Basic Games, 637
Voodoo VB, 638

weight (font property), 52
While loop, 95
width of pictures, code to

display, 163
Width property, 128, 132
width1 argument, 135
width2 argument, 136
windows

code
button handlers, code to

add, 372-374
enumerations, code to

add, 385-386

form handlers, code to
add, 372

frmBattle dialog box,
source code, 390

frmDiscovery dialog box,
source code, 390

frmHealth dialog box,
source code, 391

frmMagic dialog box,
source code, 392-393

frmShoppe dialog box,
source code, 393-394

frmStats dialog box,
source code, 394

frmWeapons dialog box,
source code, 394-395

game functions, code to
add, 382-384

general subroutines, code
to add, 376-382

initialization subroutines,
code to add, 375-376

main form, 492
source code, 386-389
variable declarations, code

to add, 385-386
device context, 606
Properties, 92

Windows API, 11
bitmaps, 172-177
calling, 160-162
controls, manipulating

pictures, 171
functions, games calling for,

11
graphics, 614
lines, drawing, 164-167
pixel formats. bits, 178-180
shapes, drawing, 167-170
waveform functions, playing

sound effects, 326
WinLines application, code, 165
winning

Moonlord, 446
Blackjack, 255

World() variable, 114
worlds, believable or consistent,

12
WriteScoreFile subroutine, 272

X-Y-Z

x and y coordinates, 44
x1 argument, 135
x2 argument, 135
XOFFSET constant, 115, 149,

430
xPosition property, 229

y1 argument, 135
y2 argument, 135
YE OLDE SHOPPE dialog box,

344
Yes button, 260
YOFFSET constant, 115, 149,

430
yPosition property, 229

672 Wayne, Denny

34 067231987x index 11/6/00 7:10 PM Page 672

34 067231987x index 11/6/00 7:10 PM Page 674

Read This Before Opening
By opening this package, you are agreeing to be bound by the following agreement:

You may not copy or redistribute the entire CD-ROM as a whole. Copying and redistrib-
ution of individual software programs on the CD-ROM is governed by terms set by indi-
vidual copyright holders.

The installer and code from the author(s) are copyrighted by the publisher and the
author(s). Individual programs and other items on the CD-ROM are copyrighted or are
under an Open Source license by their various authors or other copyright holders.

This software is sold as-is without warranty of any kind, either expressed or implied,
including but not limited to the implied warranties of merchantability and fitness for a
particular purpose. Neither the publisher nor its dealers or distributors assumes any lia-
bility for any alleged or actual damages arising from the use of this program. (Some
states do not allow for the exclusion of implied warranties, so the exclusion may not
apply to you.)

NOTE: This CD-ROM uses long and mixed-case filenames requiring the use of a
protected-mode CD-ROM Driver.

35 067231987x license 11/6/00 7:11 PM Page 675

Windows 95, Windows 98,
Windows NT 4, and
Windows 2000 Installation
Instructions

1. Insert the CD-ROM into your CD-ROM drive.

2. From the Windows desktop, double-click on the “My Computer” icon.

3. Double-click on the icon representing your CD-ROM drive.

4. Double-click on the icon titled START.EXE to run the installation program.

5. Follow the onscreen instructions to finish the installation.

If Windows 95, Windows 98, Windows NT 4.0, or Windows 2000 is installed
on your computer, and you have the AutoPlay feature enabled, the
setup.exe program starts automatically whenever you insert the disc into
your CD-ROM drive.

Note

36 067231987x install 11/6/00 7:09 PM Page 676

