

Digital Media Processing
DSP Algorithms Using C

Hazarathaiah Malepati

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Newnes is an imprint of Elsevier

Newnes is an imprint of Elsevier
30 Corporate Drive, Suite 400
Burlington, MA 01803, USA

The Boulevard, Langford Lane
Kidlington, Oxford, OX5 1GB, UK

Copyright © 2010 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher.
Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with
organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be
noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding,
changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information,
methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own
safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury
and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any
methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Malepati, Hazarathaiah.

Digital media processing : DSP algorithms using C / by Hazarathaiah Malepati.
p. cm.

Includes bibliographical references and index.
ISBN 978-1-85617-678-1 (alk. paper)

1. Multimedia systems. 2. Embedded computer systems—Programming. 3. Signal processing—Digital techniques.
4. C (Computer program language). I. Title.

QA76.575.M3152 2919
006.7–dc22

2009050460

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For information on all Newnes publications
visit our website at www.elsevierdirect.com

Printed in the United States
10 11 12 13 14 10 9 8 7 6 5 4 3 2 1

This book is dedicated to my late father
Mastanaiah Malepati, whose vision and hard

work shaped my career a lot.

This page intentionally left blank

Contents

Preface . ix

Chapter 1 Introduction . 1
1.1 Digital Media Processing . 1
1.2 Media-Processing Algorithms . 2
1.3 Embedded Systems and Applications . 4
1.4 Algorithm Implementation on DSP Architectures . 5

Part 1 Data Processing . 13
Chapter 2 Data Security . 15

2.1 Cryptography Basics . 15
2.2 Triple Data Encryption Algorithm.. 24
2.3 Advanced Encryption Standard . 37
2.4 Keyed-Hash Message Authentication Code. 50
2.5 Elliptic-Curve Digital Signature Algorithm.. 58

Chapter 3 Introduction to Data Error Correction . 87
3.1 Definitions . 87
3.2 Error Detection Algorithms .. 88
3.3 Block Codes . 97
3.4 Hamming (72, 64) Coder . 101
3.5 BCH Codes . 108
3.6 RS Codes . 112
3.7 Convolutional Codes . 118
3.8 Trellis Coded Modulation .. 126
3.9 Viterbi Algorithm . 134
3.10 Turbo Codes . 136
3.11 LDPC Codes . 143

Chapter 4 Implementation of Error Correction Algorithms .155
4.1 BCH Codes . 155
4.2 Reed-Solomon Error-Correction Codes . 166
4.3 RS Erasure Codes . 179
4.4 Viterbi Decoder . 190
4.5 Turbo Codes . 199
4.6 LDPC Codes . 216

Chapter 5 Lossless Data Compression .225
5.1 Entropy Coding .. 226
5.2 Variable Length Decoding . 231
5.3 H.264 VLC-Based Entropy Coding . 242
5.4 MQ-Decoder. 260
5.5 Context-Based Adaptive Binary Arithmetic Coding . 269

vi Contents

Part 2 Digital Signal and Image Processing . 283

Chapter 6 Signals and Systems. .285
6.1 Introduction to Signals . 285
6.2 Time-Frequency Representation of Continuous-Time Signals . 299
6.3 Sampling of Continuous-Time Signals . 304
6.4 Time-Frequency Representation of Discrete-Time Signals . 310
6.5 Linear Time-Invariant Systems . 312
6.6 Generalized Fourier Transforms . 317

Chapter 7 Transforms and Filters .321
7.1 Fast Fourier Transform . 321
7.2 Discrete Cosine Transform . 334
7.3 Filter Basics . 345
7.4 Finite Impulse-Response Filters . 352
7.5 Infinite Impulse-Response Filters . 363

Chapter 8 Advanced Signal Processing .381
8.1 Adaptive Signal Processing . 381
8.2 Multirate Signal Processing. 405
8.3 Wavelet Signal Processing . 415
8.4 Simulation and Implementation Techniques . 431

Chapter 9 Digital Communications. .437
9.1 Introduction .. 437
9.2 Single- and Multicarrier Communication Systems . 454
9.3 Channel Estimation . 464
9.4 Channel Equalization . 472
9.5 Synchronization . 491
9.6 Simulation Techniques . 504

Chapter 10 Image Processing Tools .509
10.1 Color Conversion . 509
10.2 Color Enhancement . 510
10.3 Brightness and Contrast Adjustment . 510
10.4 Edge Enhancement/Sharpening of Edges . 512
10.5 Image Filtering . 512
10.6 Edge Detection . 513
10.7 Image Scaling . 525
10.8 Erosion and Dilation . 531
10.9 Objects Corner Detection . 534
10.10 Hough Transform. 536
10.11 Simulation of Image Processing Tools . 540

Chapter 11 Advanced Image Processing Algorithms .553
11.1 Image Rotation . 553
11.2 Digital Image Stabilization . 562
11.3 Image Objects Detection . 568
11.4 2D Image Filters. 575
11.5 Fisheye Distortion Correction . 581
11.6 Image Compression . 584

Part 3 Digital Speech and Audio Processing .. 593

Chapter 12 Speech and Audio Processing .595
12.1 Sound Waves and Signals . 595

Contents vii

12.2 Digital Representation of Audio Signals . 596
12.3 Signal Processing with Embedded Processor . 608
12.4 Speech Compression . 611
12.5 VoIP and Jitter Buffer . 626

Chapter 13 Audio Coding .637
13.1 Psychoacoustics and Perceptual Coding . 637
13.2 Audio Signals Coding . 642
13.3 MPEG-4 AAC Codec . 647
13.4 Popular Audio Codecs . 651
13.5 Audio Post-Processing . 653

Part 4 Digital Video Processing .657
Chapter 14 Video Coding Technology .659

14.1 Introduction .. 659
14.2 Video Coding Basics . 661
14.3 MPEG-2 Decoder . 675
14.4 H.264 Decoder . 681
14.5 Scalable Video Coding . 709

Chapter 15 Video Post-Processing .713
15.1 Video Quality Measurement . 713
15.2 Video Scaling . 713
15.3 Video Processing . 728
15.4 Video Transcoding . 737

Index .745

viii Contents

On the Website

Part 5 Embedded Systems
Chapter 16 Embedded Systems . 1

16.1 Introduction .. 1
16.2 Embedded System Components .. 1
16.3 Embedded Video Processing and System Issues. 20
16.4 Software–Hardware Partitioning . 37
16.5 Embedded Processors and Application Requirements . 39

Chapter 17 Embedded Processing Applications. 1
17.1 Automotive Applications . 1
17.2 Video Surveillance Systems . 8
17.3 Portable Entertainment Systems . 11
17.4 Digital Communications . 12
17.5 Digital Camera Image Pipe . 20
17.6 Homeland Security and Health Care . 22

Appendix A Reference Embedded Processor . 1
A.1 Blackfin Architecture Overview . 1
A.2 Overview of Blackfin Instruction Set . 12
A.3 Blackfin DMA .. 23
A.4 Cycles Estimation with Blackfin . 25

Appendix B Mathematical Computations on Fixed-Point Processors . 1
B.1 Numeric Data Fixed-Point Computing .. 1
B.2 Galois Fields . 10

Appendix C Look-up Tables . 1

References. 1
Exercises . 1

Preface

The title of this book could well have been Digital Media Processing Algorithms: Efficient Implementation
Techniques in C, as it is not only about digital media processing algorithms, but also contains many implementa-
tion techniques for most algorithms. The main purpose of it is to fill the gap between theory and techniques taught
at universities and that are required by the software industry in the digital processing of data, signal, speech,
audio, images, and video on an embedded processor. The book serves as a bridge to transit from the technical
institute to the embedded software development industry. Many powerful algorithms in current cutting-edge
technologies are analyzed, and simulation and implementation techniques are presented.

Digital media processing demands efficient programming in order to optimize functionality. Data, signal,
image, audio, and video processing—some or all of which are present in all electronic devices today—are
complex programming environments. Optimized algorithms (step-by-step directions) are difficult to create, but
they can make all the difference when developing a new application. This book discusses the most recent
algorithms available to maximize your programming, while simultaneously keeping in mind memory and real-
time constraints of the architecture with which you are working. General implementation concepts can be
integrated into many architectures that you find yourself working with on a specific project.

My interest in writing a book on digital media processing algorithms derives from reading literature in the
field and working on those algorithms. This book cannot replace the literature on the background theory related
to the algorithms; in fact, what is written here is largely incomplete without it. Although I do not rigorously
discuss the theory and derivation of equations and theorems, a brief introduction and basic mathematics are
provided for most of the algorithms presented.

Typically, developers of embedded software modules want to know the basic functionality of an algorithm and
simulation techniques, in addition to whether any techniques are available to efficiently implement a particular
algorithm. Most developers are proficient with equations and algorithms as a result of university training; however,
the efficient implementation of such algorithms requires industry experience. But employers, of course, expect
developers to immediately begin work. Often they provide training for writing quality software, but not for
writing efficient software. Software engineers learn how to do this in time, such as during the course of working
on a few efficiently implemented modules or observing a senior engineer’s implementation methods. Many such
techniques to efficiently simulate and implement digital media processing algorithms are described in this book.

Today many algorithms are available on the Internet, and the software for a number of them is available in
the public domain. But the information available on the web is theory oriented, and we may obtain only pieces
of the software here and there and not the complete solution. Sometimes, we can obtain the complete software
for a particular algorithm that works well, but it may be inefficient for use in a particular project. Consequently,
users have to enhance software efficiency by purchasing it from a third-party source. What’s here provides the
information needed to develop efficient software for many algorithms from scratch.

The book is aimed at graduate and postgraduate students in various engineering subdisciplines and software
industry junior-level employees developing embedded systems software. Only college-level knowledge of math-
ematics is required to understand the equations and calculations. Knowledge of ANSI C is a prerequisite for
this book. Knowledge of microcontroller, microprocessor, or digital signal processing (DSP) architectures will
provide an added advantage so that you can understand implementation skills a bit faster.

Unlike other DSP algorithm books that concentrate mainly on basic operations, such as the Fourier transforms
and digital filters, this book covers many algorithms commonly used in media processing. For most of them, this
book provides full details of flow, implementation complexity, and efficient implementation techniques using
ANSI C. In addition, simulation results are provided for selected algorithms.

This book uses the Analog Devices, Inc. (ADI) Blackfin processor (BF5xx series) as the reference embedded
processor, and it discusses implementation complexity of all algorithms covered with respect to this amazing
general-purpose DSP processor. The Pcode notation (meaning pseudocode or program code) is used to flag
simulation code.

x Preface

The availability of test vectors is very important for testing the functionality of any algorithm. Test vectors,
look-up tables, and simulation results for most of the standalone algorithms described in this book are available
on the companion website at www.elsevier.direct/companions. In addition, a final part, Embedded Systems, can
be found there along with Appendices A and B, References, and Exercises.

Disclaimer
An algorithm can be implemented on an embedded processor in more than one way. Performance metrics vary
according to implementation method. Sometimes there may be a flaw in a particular implementation of a given
algorithm, even though we get the best performance with it. It may not be possible to test rigorously for all
possible flaws in a given time frame. The program code provided in this book is tested for only a few cases, and it
provides selected ways of implementing algorithms and corresponding simulation code. The code may contain
bugs. In particular, cryptographic systems are very vulnerable to changes in algorithm flow and implementation
as well as software and hardware bugs. Neither the author nor the publisher is responsible for system failures
due to the use of any of the techniques or program codes presented in this book. In addition, a few techniques
provided may be patented by either ADI or another company; check with the patent office before attempting to
incorporate any of the implementation methods discussed when developing your own software.

Acknowledgments
I am very thankful to Analog Devices, Inc. (ADI) and its employees for giving me the opportunity to write this
book. ADI is a great place to work and to achieve career goals.

In particular, I am very much indebted to Yosi Stein and Rick Gentile, without whom I may not have succeeded
in completing this book. The theme for the book originated while working with Yosi at ADI. My dream of writing
it came true with the constant support and encouragement I received from Rick Gentile. I am proud to say Rick
and Yosi are the heart and soul of this book.

It is with great pleasure that I thank Boris Liberol for reading every page and providing material on loop-
filter and motion compensation for the video coding chapter; Chalil Mohammed for providing sections for the
audio coding chapter; and Gabby Yi for providing material on motion estimation. David Katz and Rick Gentile
generously gave me permission to take a few sections from their book, Embedded Media Processing.

I thank Rick Gentile, Pushparaj Domenic, Gabby Yi, and Bijesh Poyil for reviewing selected sections, and
external reviewers Seth Benton and Kenton Williston for reviewing some portions of the material and for giving
valuable suggestions for improving the book. I thank Goulin Pan, An Wei, and Boris Learner for spending their
precious time with me to clarify a few digital media processing concepts.

I am especially grateful to S.V. Narasimhan, V.U. Reddy, and K.V.S. Hari for their guidance. It is with them
that I first began my journey into digital media processing.

I thank N. Sridhara, P. Rama Prabhu, Pushparaj Domenic, Yosi Stein, Joshua Kablotsky, Gordon Sterling, and
Rick Gentile for giving me a chance to work with them as part of their team.

I offer my heartfelt thanks to Analog Dialogue editor Scott Wayne for forwarding this material to Newnes–
Elsevier, and to acquisitions editor Rachel Roumeliotis at Newnes for accepting and preparing the contract for
this book. I am very thankful to this book’s project manager Marilyn E. Rash, copyeditor Barbara A. Kohl, and
proofreader Samantha Molineaux-Graham for enhancing the material here by far from my original writing.

Last, but not least, I thank my family for their support and encouragement during this intense period of
brainstorming: my mother Mastanamma for her love and sacrifices and the effort she made in shaping my career;
my sister Madhavi, brother-in-law Venkateswarulu, father-in-law Guruvaiah, and mother-in-law Swarajyam have
been very supportive and taken care of family responsibilities while I was engaged in this endeavor.

Above all, I would like to thank my wife Sunitha Rani for her love, patience, and constant support throughout
this project, and my beautiful daughter Akshara Mahalakshmi, who stayed with her grandparents while I was
writing this book. I missed her a lot and hope she will forgive me for not being with her during this time.

CHAPTER 1

Introduction

1.1 Digital Media Processing

Digital media processing as it is currently understood and further developed in this book is described in the
following subsections.

1.1.1 Digital Media Defined

In this book, media comprises data, text, signal, voice, audio, image, or video information, and digital media is
the digital representation of analog media information. In our daily lives, we typically use many types of media
for various purposes, including the following:

• telephoning (voice)
• listening to music (audio)
• watching TV (audio/video)
• camera use (image/video)
• e-mailing (text/images)
• online shopping (text/data/images)
• money transfer (text/data)
• navigating websites (text/image)
• conferencing (voice/video)
• body scanning with ultrasound and/or magnetic resonance imaging (MRI) (signal/image)
• driving vehicles using GPS (signal/audio/video), and so on

Applications that use media are continually increasing.

1.1.2 Why Digital Media Processing Is Required

In all of the previously mentioned applications, media is sent or received. As a sender or receiver, we typically use
the media (talking, listening, watching, mailing, etc.) without experiencing difficulties in perceiving (with our
eyes, ears, etc.) or delivering (talking, mailing, texting, etc.) the media. In reality, the media that we send or receive
passes through many physical channels and each one adds noise (due to interference, interruptions, switching,
lightning, topographic obstacles, etc.) to the original media. In addition, users may want to protect the media
(from others), enhance it (improve the original), compress it (for storing/transmitting with less bandwidth),
or even work with it (for analysis, detection, extraction, classification, etc.). Digital media processing using
appropriate algorithms then is required at both the transmitting and receiving ends to prevent and/or eliminate
noise and to achieve application-specific objectives mentioned here.

1.1.3 How Digital Media Is Processed

A software-based digital media processing system is comprised of three entities: an algorithm (that which
processes), a software language (to implement the processing), and embedded hardware (to execute the pro-
cessing). Examples of embedded hardware are digital signal processors (DSPs), field-programmable gate arrays
(FPGAs), and application-specific integrated circuits (ASICs). In this book, the Analog Devices, Inc. Blackfin

© 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-678-1.00001-6 1

2 Chapter 1

DSP is the reference embedded processor (see Appendix A on the companion website) for executing algorithms.
The algorithms are implemented in the C language. Algorithm examples are discussed in the next section.

1.2 Media-Processing Algorithms

In this book, digital media processing algorithms are divided into four categories: data, signal and image, speech
and audio, and video. Each category of algorithms are discussed in great detail in various chapters of this book.

1.2.1 Data Processing

Digital systems handle media signals (e.g., data, voice, audio, image, video, text, graphics, and communication
signals) by representing them with 1s and 0s, known as binary digits (bits). There are many advantages to digital
representation of signals. For example, providing integrity and authenticity to the signal using data security
algorithms becomes possible once the signal is digitized. It is also possible to protect data from random and burst
errors using data error correction algorithms. In some cases, it is even possible to compress the digital media
data using source-coding techniques to minimize the required data transmission or storage bandwidth.

Part 1 of this book covers the most popular algorithms used for data security, error correction, and compres-
sion. For all algorithms, a brief introduction, complete details of algorithm flow, C simulation for core algorithm
functions, efficient techniques to implement data processing algorithms on the embedded processor, and algo-
rithm computational cost (in terms of clock cycles and memory) for implementing on the reference embedded
processor ADI-BF53x (2005) are provided.

Chapter 2 is focused on the most widely used data security algorithms in practice. The algorithms covered
include triple data encryption algorithms (TDEA), advanced encryption standard (AES), keyed-hash message
authentication code (HMAC), and elliptic curve digital signature algorithm (ECDSA). In addition, cryptography
basics and pseudorandom-number generation methods are briefly discussed.

Chapter 3 discusses various data-error detection and correction algorithms. Error detection based on check-
sum and cyclic redundancy check (CRC) computation is discussed. Both block codes and convolutional codes
for error correction and corresponding decoding methods are discussed in detail. The algorithms covered
include CRC32, Hamming (N, K), BCH (N, K), Reed-Solomon (RS) (N, K) error correction codes, RS (N, K)
erasures correction codes, trellis coded modulation (TCM), turbo codes, low-density parity check (LDPC)
codes, Viterbi decoding, maximum a posteriori (MAP) decoding, and sum-product (SP) decoding algorithms.
Chapter 4 discusses efficient simulation and implementation techniques for all error correction algorithms
discussed in Chapter 3.

Widely used data entropy coding methods are discussed in Chapter 5. Variable length codes and arithmetic
coding approaches for entropy coding are discussed. The algorithms covered include the MPEG2 VLD, H.264
UVLC and CAVLC, JPEG2000 MQ-coder, and H.264 CABAC.

1.2.2 Digital Signal and Image Processing

We process raw signals using signal processing algorithms to get the desired signal output. Signal processing algo-
rithms have many applications—telecommunications, medical, aerospace, radar, sonar, and weather forecasting,
to name the most common. Part 2 of this book is dedicated to signals and systems, time-frequency transformation
algorithms, filtering algorithms, multirate signal-processing techniques, adaptive signal processing algorithms,
and digital communication algorithms. The later chapters of Part 2 are devoted to image processing tools and
advanced image processing algorithms.

In Chapter 6, background theory of digital signal processing algorithms is discussed. We will cover signal
representation, types of signals, sampling theorem, signal time-frequency representation (using Fourier series,
Fourier transform, Laplace transform, z-transform, and discrete cosine transform [DCT]), linear time invariant
(LTI) systems, and convolution operation.

Signal time-frequency representation and signal filtering are discussed thoroughly in most digital sig-
nal processing textbooks, including this one. In Chapter 7, we discuss implementation aspects of the fast
Fourier transform (FFT), DCT, finite-impulse response (FIR) filters, and infinite impulse response (IIR) filters.

Introduction 3

C simulation is provided for all algorithms. Comparative algorithm costs (in terms of clock cycles and memory)
for implementation on the reference embedded processor are discussed.

Chapter 8 discusses adaptive signal processing algorithms (minimum mean square error [MMSE] criterion,
least mean square [LMS], recursive least squares [RLS], linear prediction [LP], Levinson-Durbin algorithm
and lattice filters), multirate signal processing building blocks (e.g., decimation, interpolation, polyphase filter
implementation of decimation and interpolation, and filter banks), and wavelet signal processing (multiresolu-
tion analysis and discrete wavelet transform). The C fixed-point implementation of the LMS algorithm is also
presented.

Chapter 9 discusses the digital communication environment (channel capacity, noise measurement, modu-
lation techniques), single-carrier communication, multicarrier communication system building blocks (discrete
multitone [DMT] and orthogonal frequency division multiplexing [OFDM] transceivers), channel estimation
algorithms (for both wireline and wireless), channel equalizers (minimum mean square [MMS] equalizer,
decision-feedback [DF] equalizer, Viterbi equalizer, and turbo equalizer) and synchronization algorithms (fre-
quency offset estimation, symbol timing recovery, and frame synchronization). As most digital communication
algorithms involve basic signal-processing tasks (e.g., DFT, filtering), no exclusive C simulation is provided
for these algorithms. However, a few techniques to efficiently implement commonly used basic mathematic
operations such as division and square root on fixed-point processors are discussed, and C-simulation code is
provided for those basic operations.

Image processing plays an important role in medical imaging, digital photography, computer graphics, mul-
timedia communications, automotive, and video surveillance, to name the most common applications. Image
processing tools are basically algorithms used to process the image to achieve aims specific to the application,
such as improving image quality, creating special effects, compressing images for storage or fast transmission,
and correcting abnormalities in the captured image (sometimes the capturing device itself introduces artifacts
in the image due to hardware limitations or lens distortion). Image processing tools are also used in classifying
images, detecting objects in the image, and extracting useful information from captured images.

Chapter 10 is focused on discussing and simulating widely used image processing tools such as color conver-
sion, color enhancement, brightness and contrast correction, edge enhancement, noise reduction, edge detection,
image scaling, image object corners detection, dilation and erosion morphological operators, and the Hough
transform.

Advanced image processing algorithms such as image rotation, image stabilization, object detection (e.g., the
human face, vehicle license plates), 2D image filtering, fisheye correction, and image compression techniques
(DCT-based JPEG and wavelet-based JPEG2000), are discussed in Chapter 11. The C-simulation code and
algorithm costs (in terms of processor clock cycles and memory) are also provided for image rotation and 2D
image filtering algorithms.

1.2.3 Speech and Audio Processing

Speech and audio coding are very important topics in the field of multimedia storage and communication systems.
Example audio- and speech-coding applications are telecommunications, digital audio broadcasting (DAB),
portable media players, military applications, cinema, home entertainment systems, and distance learning. Human
speech processing has many other applications, such as voice detection and speech recognition. Part 3 is dedicated
to discussion of algorithms related to speech processing, speech coding, audio coding, and audio post-processing,
among others.

In Chapter 12, we discuss sound and audio signals, and explore how audio data is presented to the processor
from a variety of audio converters. Next, the formats in which audio data is stored and processed are described.
Selected software building blocks for embedded audio systems are also discussed. Because efficient data move-
ment is essential for overall system optimization, data buffering as it applies to speech and audio algorithms
is examined. There are many speech coding algorithms in the literature and this chapter briefly discusses a
few methods. Various speech compression standards are also briefly addressed. Finally, the Voice over Internet
Protocol (VoIP) and the purpose of the jitter buffer in VoIP communication systems are discussed.

4 Chapter 1

Audio coding methods are discussed in Chapter 13. While audio requires less processing power in general
than video processing, it should be considered equally important. Recent applications such as wireless, Internet,
and multimedia communication systems have created a demand for high-quality digital audio delivery at low
bit rates. The technologies behind various audio coding techniques are discussed, followed by examination of
MPEG-4 AAC codec modules and encoder and decoder architectures. Various commercially available audio
codecs and their implementation costs (in terms of cycles and memory) are presented. Finally, we discuss a few
audio post-processing techniques for enhancing the listening experience.

1.2.4 Video Processing

Advances in video coding technology and standardization, along with rapid development and improvements of
network infrastructures, storage capacity, and computing power, are enabling an increasing number of video
applications. Digitized video has played an important role in many consumer electronics applications, including
DVD, portable media players, HDTV, video telephony, video conferencing, Internet video streaming, and distance
learning, among others. As we move to high-definition video, the computing bandwidth required to process video
increases manyfold, and more than 80% of total available embedded processor computing power is allocated for
video processing.

Chapter14describesvideosignals,andvarious redundanciespresent invideoframesareexplored.Videocoding
buildingblocks(e.g.,motionestimation/compensation,block transform,quantization,andvariable-lengthcoding)
are briefly discussed, followed by a survey of various video coding standards and comparisons with respect to
coding efficiency and costs. Computationally complex (high-cost) coding blocks are identified. Efficient ways
of implementing video coders are discussed, followed by an examination of the two most widely adopted video
coding standards—the MPEG-2 and H.264 decoder modules. Details of H.264-specific decoding modules (e.g.,
H.264 transform, intraprediction, loop filtering) are provided. Also discussed are a few techniques to efficiently
implement the H.264 macroblock layer. A scalable video coding (based on the H.264 scalable extension standard)
and its applications are discussed. Video processing, as stated before, when compared to other media processing,
is very costly in terms of computation, memory, and data movement bandwidths. Video coding and system issues
because of limited MIPS, memory, and system bus bandwidth are presented in Section 16.5 on the companion
website,alongwith theuseofproperframeworks tominimizepowerconsumption in low-powervideoapplications.

Video data is often processed after decompression and before sending it to the display for enhancement or
rendering it suitable for playing on the screen. This part of the procedure is called “video post-processing.”
Chapter 15 is focused on video post-processing modules such as video scaling, video filtering, video enhance-
ment, alpha blending, gamma correction, and video transcoding.

1.3 Embedded Systems and Applications

Embedded systems enable numerous digital devices used in daily life, and thus, are literally everywhere. Embed-
ded computing systems have grown tremendously in recent years not only in popularity, but also in computational
complexity. In all the applications listed in Table 1.1, digital embedded systems process some form of digital
data. Digital media processing algorithms play an important role in all embedded system applications.

This book is focused on digital media and communication processing algorithms—that is, applications involv-
ing processing and communication of large data blocks (whether image, video, audio, speech, text blocks, or
some combination of these), which often need real-time data processing. For an application, we choose a par-
ticular embedded processor along with a peripheral set only after studying its capabilities to run the algorithms
of a particular application.

The last part of this book discusses embedded systems, media processing, and their applications. Embedded
systems have several common characteristics that distinguish such systems from general-purpose computing
systems. Unlike desktops, the embedded systems handle huge amount of data per second with very limited
resources (e.g., arithmetic logic units [ALUs], memory, peripherals). In most cases, embedded systems handle
very few tasks and usually these tasks must be performed in real time.

In Chapter 16 (see companion website), we discuss the important components of an embedded system (e.g.,
processor core, memory, and peripherals). Various types of memory and peripheral components are briefly

Introduction 5

Table 1.1: Digital media processing applications

Digital Home Telecommunications Consumer Electronics

AV receivers ADSL/VDSL Digital camera

DVD/Blu-Ray players Cable modems Portable media players

TV/desktop audio/video Wire/wireless smart phones Portable DVD players

Sound bar IP phone Digital video recorder

Digital picture frame Femto base stations Personal GPS navigation

Video telephony Software defined radio Mobile TV

IP TV, IP phone, IP camera WLAN, WiFi, WiMAX Bluetooth

Door phone Mobile TV HD/ANC headphones

Smoke detector Radar/sonar Video game players

Network video recorder Power line communication Digital music instruments

CD clock radio Video conferencing

FM/satellite radio
Automotives Industrial Medical

Advanced driver assistance Power meter Ultrasound

Automotive infotainment Motor control CT, MRI, PET

Digital audio/satellite radio Active noise cancellation Digital x-ray

Vision control Barcode scanner Pulse oximetry

Bluetooth hands-free phone Flow meter Digital stethoscope

Electronic stability control Oscilloscope Blood-pressure monitor

Safety/airbag control Security Lab diagnostic equipment

Crash detection Surveillance IP networks Heart rate monitor

Fingerprint biometrics

Video doorbell

Video analytic server

discussed. The necessity of software–hardware partitioning of embedded systems to handle complex applications
is discussed, as well as possible ways to efficiently partition such a system. Finally, we discuss future embedded
processor requirements to handle very complex embedded applications.

Chapter 17 (see companion website) briefly discusses various applications. Different embedded applications
use different algorithms. The processing power and memory requirements vary from one application to another.
We briefly talk about various modules present in a few embedded application sectors. The applications covered
in this chapter include automotive, video surveillance, portable entertainment systems, digital communications,
digital camera, and immigration and healthcare sectors.

1.4 Algorithm Implementation on DSP Architectures

In Section 1.2, various algorithms that are playing a critical role in diverse applications were mentioned. Although
dozens of semiconductor companies are designing embedded processors with a range of architectural features
to support different kinds of applications, no single architecture is efficient for processing all types of digital
media processing algorithms. This is because processors designed with many pipeline stages (to execute in
parallel multiple operations of numeric-intensive algorithms) do not efficiently handle algorithms that contain
full-control operations. The architectures developed for executing the control code are not efficient at computing
numeric-intensive algorithms. The architectural feature set of the reference embedded processor (see Appendix A
on the companion website) is in between, and is good at handling both control and numeric-intensive algorithms.

In the following subsections, DSP architecture and its performance in executing various algorithms are briefly
discussed. We also briefly describe a few algorithm implementation techniques.

6 Chapter 1

1.4.1 DSP Architecture

A simplified block diagram of embedded DSP architecture is shown in Figure 1.1. The main architectural
blocks of an embedded processor are the processor core (with register sets, ALU, data address generator [DAG],
sequencer, etc.), memory (for holding instructions and data, for stack space, etc.), peripherals (e.g., serial periph-
eral interface [SPI], parallel peripheral interface [PPI], serial ports [SPORT], general-purpose timers, universal
asynchronous receiver transmitter [UART], watchdog timer, and general-purpose I/O) and a few others (e.g.,
JTAG emulator, event controller, direct memory access [DMA] controller). Embedded processor peripherals and
memory architectures are discussed in some detail in Chapter 16.

The peripheral features are important when we talk about the overall application. In this book, we assume
that the architecture comes with all necessary peripherals to enable a particular application. Also, we assume
that the program code and data required for algorithm processing are residing in the faster memory (or level 1,
L1) memory, which can be accessed at the speed of the processor core. If we cannot fit data and program in L1
memory, then we store the extra data or program in L2/L3 memory and use DMA to get the data or program
from L2/L3 memory without interrupting the processor core. From an algorithm-implementation point of view,
the important things are processor core architecture, availability of L1 memory, and internal bus bandwidth.

Even more important than getting data into (or sending it out from) the processor, is the structure of the
memory subsystem that handles the data during processing. It is essential that the processor core access data in
memory at rates fast enough to meet application demands. L1 memory is often split between instruction and data
segments for efficient utilization of memory bus bandwidth. Most DSP architectures support this Harvard-like
architecture (in which data and instruction memories are accessed simultaneously, as shown in Figure 1.1) in
combination with a hierarchical memory structure that views memory as a single, unified gigabyte address space
using 32-bit addresses. All resources, including internal memory, external memory, and I/O control registers,
occupy separate sections of this common address space.

The register file contains different register types (e.g., data registers, accumulators, address registers) to hold
the information temporarily for ALU processing or for memory load/store purposes. The processor’s compu-
tational units perform numeric processing for DSP algorithms and general control algorithms. Data moving in
and out of the computational units go through the data register file. The processor’s assembly language provides
access to the data register file. The syntax lets programs move data to and from these registers and specify a
computation’s data format at the same time.

The DAGs generate addresses for data moving to and from memory. By generating addresses, the DAGs let
programs refer to addresses indirectly using a DAG register instead of an absolute address.

The program sequencer controls the instruction execution flow, including instruction alignment and decoding.
The program sequencer determines the next instruction address by examining both the current instruction being
executed and the current state of the processor. Generally, the processor executes instructions from memory in
sequential order by incrementing the look-ahead address. However, when encountering one of the following
structures, the processor will execute an instruction that is not at the next sequential address: jumps, conditional
branches, function calls, interrupts, loops, and so on.

ALU Unit

Registers DAG Unit

Sequencer

P
er

ip
he

ra
ls

Data
Memory

Instruction
Memory

DSP Core

Figure 1.1: Simplified diagram of DSP architecture.

Introduction 7

In the next subsection, we consider three algorithms with different processing flow requirements and discuss
to what extent the benchmarks provided by processor manufacturers are useful in deciding which processor
(from dozens of processors available today in the market) is suitable for a particular application.

1.4.2 Algorithm Complexity and DSP Performance

In this section, we consider three simple algorithms—dot product, RC4 stream cipher, and the H.264 CABAC
encode-symbol-normalization process—and discuss embedded processor performance (with a particular archi-
tectural feature set) in executing those three algorithms.

Dot Product
Dot product involves accumulation of sample-by-sample multiplication of elements from two sample arrays.
The dot product, z, of two N-length sample arrays x [] and y[], can be computed as

z =
N−1∑
n=0

x [n]y[n] (1.1)

A simple “for” loop C code that implements the dot product described by Equation (1.1) is shown in Pcode 1.1.
What is the cost (in terms of cycles and memory) of this dot-product algorithm for implementation on

the embedded processor, given its processor core architecture? Clearly, we require two buffers of length
2*N bytes (assuming the elements are the 16-bit word type), each to hold the two input array buffers in
memory.

In terms of computations, it involves N multiplications and N additions. If the embedded processor consumes
one cycle for multiplication and one cycle for addition, then we require a total of 2N cycles (assuming a single
ALU) to execute the corresponding dot-product code given in Pcode 1.1. What about the cycle cost of loading
the data from memory to the data registers? Typically, many processors come with separate data load/store units;
hence, we assume that the data loads happen parallel to compute operations and therefore they are free.

z = 0;
for(i = 0;i < N;i++)

z += x[i] * y[i];

Pcode 1.1: Pseudo code for dot product.

Many embedded processors come with multiply–accumulate (MAC) units, and in this case we require only
N cycles, as the dot product contains a total of N MAC operations. For this case, the two memory loads must
happen in a single cycle.

Now, you may wonder whether this cycle count can be achieved with the C code ported to the processor
assembly using the compiler or with the optimized assembly-level code written manually. Here, when we say
that the cycle count is N for executing the dot product, it means that one MAC operation is mapped to a single
processor instruction, which consumes exactly one cycle; only then can we describe the cycle count as N cycles
for N MAC operations.

Is this the final cycle count for computing the dot product? Not exactly—in the dot-product case, it also
depends on the number of MAC units that the processor comes with. For example, if the processor consists of
four MAC units, then we require only N/4 cycles to complete the dot product. How is this possible? It is possible
because we can execute four MAC operations in parallel on a four-MAC processor, as the dot product has no flow
dependencies. However, we will have a problem with the data load unless we load 128 bits (four 16-bit words
from array x [] and another four 16-bit words from array y[]) of data to eight 16-bit registers in a single cycle.

For efficient compilation to run on a four-MAC processor, we unroll the dot-product loop in Pcode 1.1 by
four times and reduce the loop count by a factor of 4 as shown in Pcode 1.2. Given that the dot product is a
simple algorithm, most compilers can efficiently map the C code to the assembly language so that the difference
between cycle estimation and actual cycles measured is negligible.

8 Chapter 1

z1 = 0; z2 = 0; z3 = 0; z4 = 0;
for(i = 0;i < N/4;i += 4) {

z1 += x[i]*y[i]; // MAC unit 1
z2 += x[i + 1]*y[i + 1]; // MAC unit 2
z3 += x[i + 2]*y[i + 2]; // MAC unit 3
z4 += x[i + 3]*y[i + 3]; // MAC unit 4

}
z = z1 + z2 + z3 + z4;

Pcode 1.2: Pseudo code for dot product with loop unrolling four times.

Digital media processing algorithms are not just “dot products.” Next, we consider another simple algorithm,
the RC4 stream cipher.

RC4 Stream Cipher
The RC4 algorithm (see Section 2.1.6, RC4 Algorithm, for more details) is used as a stream cipher in low-security
applications and as a pseudorandom number generator in many standard ciphers applications. RC4 is used in
many commercial software packages, such as Lotus Notes and Oracle Secure SQL, and in network protocols,
such as SSL, IPsec, WEP, and WPA. An RC4 simulation code is given in Pcode 1.3.

j = 0;
for (i = 0;i < N;i++) { // N: data length in bytes

k = i & 0xff; // i mod 255
r0 = SBox[k];
r1 = j + r0;
j = r1 & 0xff; // i mod 255
r1 = SBox[j]; // look-up table access with arbitrary offset
Sbox[j] = r0; // swap look-up table elements
Sbox[k] = r1;
r1 = r1 + r0;
r1 = r1 & 0xff; // i mod 255
r1 = Sbox[r1]; // look-up table access with arbitrary offset
in[i] = in[i] ˆ r1; // encrypt input message bytes

}

Pcode 1.3: Simulation code for RC4 stream cipher.

In the iterative procedure of computing RC4 encrypted data using Pcode 1.3, the computation of a new j value
requires updated (swapped) S-box values. Thus, computing many j values and swapping them at the same time
is not possible due to the dependency of j on updated S-box values. The RC4 algorithm is sequential in nature,
although no jumps are present. Even if multiple compute units are available with the processor, we cannot use
them in this case for parallel implementation of the algorithm. See Section 2.1.6, RC4 Algorithm, for cycle costs
and memory requirements to implement RC4 on the reference embedded processor.

Unlike the dot product, the execution of algorithms, such as RC4 on deep-pipeline processors, may not be
efficient in terms of cycles. RC4 can be computed efficiently on microcontrollers with a two-stage pipeline in
fewer cycles, compared to DSPs with 10 or more pipeline stages.

In the case of algorithms with frequently occurring conditional branches (e.g., the H.264 CABAC encode
symbol normalization process described in Section 5.5), the performance of deep-pipeline DSPs worsens. As
shown in Pcode 1.4, the normalization process has many conditional jumps in a “while loop.” This process is
costly in terms of cycles, as it performs normalization 1 bit at a time with many jumps. Avoiding jumps is the
only solution to reduce cycle cost (see Section 5.5 for details).

In summary, DSPs are good at handling FFTs, filters, and matrix operations, and are less effective at handling
both control code and sequential algorithms.Simple pipeline processors (e.g., ARM) are good at handling control
and sequential algorithms, and less effective at handling signal processing tasks such as transforms, filtering
operations, and so on.

In brief, the dot-product benchmark provided by the DSP manufacturer may not provide much useful infor-
mation because the application at hand rarely contains dot-product kinds of operations. To efficiently run

Introduction 9

while(pBAC->Range < 256) {// Low, Range, Outstanding bits (or Obits) are CABAC params
if(pBAC->Low >= 512) {

pBAC->Low -= 512;
write_bits(1,1);
if(pBAC->Obits > 0) {

write_bits(0,pBAC->Obits); // bit-fifo write
pBAC->Obits = 0;

}
}
else if(pBAC->Low < 256) {

write_bits(0,1);
if(pBAC->Obits > 0){

write_bits(1,pBAC->Obits); // bit-fifo write
pBAC->Obits = 0;

}
}
else{

pBAC->Obits++;
pBAC->Low -= 256;

}
pBAC->Range = pBAC->Range << 1;
pBAC->Low = pBAC->Low << 1;

}

Pcode 1.4: Simulation code for H.264 CABAC encode symbol normalization.

any algorithm on a particular digital signal processor, we need to dedicate some time to understanding the
underlying mathematical structure of the algorithm and then tune it to write efficient code for that processor.
A few techniques to map algorithms to DSPs are discussed in the next section.

1.4.3 Algorithm Implementation Techniques

Digital data is efficiently processed with an embedded processor by optimizing the corresponding program at
both the algorithm flow level and the instruction level. The algorithms are optimized for throughput, mem-
ory usage, I/O bandwidth, and power dissipation. In this subsection, we discuss algorithm-level optimization
using various techniques for increasing throughput. In most cases, there is a trade-off between throughput and
memory.

Algorithm code is optimized at the instruction level to eliminate pipeline stalls due to data dependencies, to
minimize the overhead of control code such as jumps and software loop overheads, and to efficiently handle
data movement within the system. Instruction-level optimization techniques vary by processor. Compilers also
perform some degree of instruction-level optimization. Typically we see a 10 to 20% gain with instruction-level
optimization (measured by a decrease in core clock cycles). When optimizing the code at the instruction level,
complete knowledge of the algorithm structure may not be necessary.

On the other hand, program-flow optimization at the algorithm level requires knowledge of the algorithm’s
mathematical structure and properties. Compilers cannot achieve algorithm-level program optimization. Min-
imizing the number of computations and balancing the CPU and load/store bandwidth are possible with
algorithm-level optimization. We can achieve algorithm-level optimization using multiple approaches. A few
of these methods considered in this section include changing the algorithm flow, using look-up tables, using
algorithm-flow statistics, using symmetry and periodicity, reusing already-computed data, and approximating
mathematic functionality. The amount of cycle savings depends on a particular algorithm and its flow. For the
algorithms discussed in this book, the amount of cycle savings achieved with algorithm-level optimization ranges
from 20 to 80%.

Is Optimizing All the Program Code Worthwhile?
Before we proceed, we ask whether optimizing all the program code is worthwhile. The answer is that it depends
on processor capabilities and application demands. Usually, we start optimizing the most critical modules in C,
and if the MIPS budget is not met, we continue to optimize other critical modules. If we are still not within the
MIPS budget, then we start writing assembly language and optimizing it. For example, consider a video decoder
(see Chapter 14 for details); it has many layers and modules (see Figure 14.15). In the slice layer, we decode

10 Chapter 1

the slice headers, and this is performed once per slice. We may spend a few hundred cycles decoding the slice
headers. Thus, the corresponding code can be in C. Similarly, the next layer is the macroblock layer, which may
consume a few thousand cycles since we access it for every macroblock to decode macroblock layer headers.
The macroblock layer code can be done in C or in assembly language, and we may optimize the code a little bit
depending on performance requirements.

The most critical modules in a video codec are motion compensation, DCT transformation, intraframe pre-
diction, de-block filtering, quantization, zig-zag scanning, and entropy coding. All of these modules work at the
pixel level, and therefore consume millions of cycles each second. Thus, optimization of these critical modules
comprising a video decoder is important to “play” the video in real time. Apart from these modules, we may be
required to perform other critical video post-processing modules (e.g., scaling, filtering, blending, YUV to RGB
conversion). Therefore, complicated applications such as video require a lot of optimization at many levels.

Optimization by Changing the Algorithm Flow
A change of algorithm flow sometimes leads to a lower number of computations and may balance the CPU
and load/store bandwidth. With a change of algorithm flow, even if the algorithm structure changes, we still
output the same data from the program. Consider the data encryption standard (DES) algorithm (see Section 2.2)
as an example module for optimization. Without algorithm-level optimization, 4288 cycles are required for
implementation on the reference embedded processor, whereas only 896 cycles are required for DES using the
algorithm-level optimization techniques discussed in Section 2.2.

In implementing algorithms such as the AES (see Section 2.3), RS decoder (see Section 4.2), Viterbi decoder
(see Section 4.4), turbo decoder (see Section 4.5), LDPC decoder (see Section 4.6), and CABAC encoder/decoder
(see Section 5.5), program optimization at the algorithm level can save many cycles.

Optimization Based on Algorithm-Flow Statistics
In an algorithm with multiple data paths, all data paths may not occur with equal probability. A few data paths can
occur very frequently and a few data paths may occur rarely. If we write the instruction-level optimized code to
cover all the data path logic, we may spend too many cycles in parsing all the algorithm paths. Instead, handling
the frequently occurring data paths separately and optimizing to the maximum extent saves many cycles. See
Section 5.5.4, Normalization Process, for the H.264 CABAC encode symbol normalization process optimization
using algorithm-flow statistics.

Optimization Using Symmetry and Periodicity
The number of arithmetic operations in a mathematical transformation algorithm can be reduced if any symmetry
or periodicity is present in the transformation matrix coefficients. For example, the symmetry and periodicity
properties of the DFT twiddle matrix are used to speed up computation upon implementing FFT algorithms.
In Section 7.2, we consider an 8 × 8 DCT computation as an example, and optimize implementation using its
symmetry and periodicity.

Optimization by Approximation
Simple approximations to underlying mathematical functions (without substantially compromising performance)
sometimes lead to great reductions in computations and cycle counts. In Section 10.6.3, we consider an example
of a pixel gradient of magnitude G and quantized angle φ as part of the computations in the Canny edge-detector
algorithm. We start with the x -gradient Gx and y-gradient G y of pixels, and compute the pixel gradient magnitude
and angle, which involve nonlinear functions of square root and trigonometric functions as follows:

G =
√

G2
x + G2

y, φ = tan−1
(

G y

Gx

)
(1.2)

Usually, we perform the preceding operations on a fixed-point DSP using some kind of approximation.

Optimization by Reuse of Already-Computed Data
In many cases, delay buffers are used to store history or reuse already-computed data. This is especially true in
video or image-processing applications, where a huge amount of data is present for processing. If we can reuse
some portion of the computed data to process neighboring pixels, we save many computations.

Introduction 11

In Section 15.3.1, we consider the example of a 3×3 median image filter, which is commonly used because
it preserves the edge information when compared to average 3×3 filters. With the 3×3 median filter, the center
pixel is replaced in the 3 × 3 block of pixels with the median of those n = 9 pixels. Computing a median by
sorting is very costly, as it involves 3n2 operations. The 3 × 3 median filter can be efficiently computed using
the techniques discussed in Section 15.3.1.

Optimization via Precomputing and Using Look-up Tables
The computation of nonlinear functions (e.g., square root, inverse, trigonometric, and exponential) using fixed-
point processors can be very costly. Consequently, we precompute the outputs of these functions in advance and
store the results in memory to minimize cycle costs. The implementation of bit-processing modules on deep-
pipeline DSPs is costly from the MIPS point of view. In such cases, we minimize computations by converting the
bit processing to word processing with precomputation of module output for all bit patterns of fixed length and
storing the results to a look-up table. A few bit-processing examples that can be implemented efficiently via this
optimization technique include DES, CRC error detection (see Section 3.2.3), BCH encoding (see Section 4.1),
and turbo encoding (see Section 4.5.1). In addition, the computation of modular arithmetic for arbitrary modules
is a costly operation. With precomputing and using look-up tables, we can minimize the cycles required to
perform modular arithmetic operations.

1.4.4 C-Level Program Optimization

According to a recent study, most programmers develop embedded algorithms in C rather than in assembly
language. There are a number of reasons to use C rather than assembly language: C is much easier to develop
and maintain, and it is comparatively portable. However, there is often a poor match between C and the features
of embedded processors in vectorization and fractional processing. These hardware features are essential to
efficient processing, but they are not natively supported in ANSI C. For this reason, inline assembly code is often
used within C programs.

Digital media processing algorithms have specialized characteristics, and compilers usually cannot generate
efficient code for them without some level of programmer intervention. Many embedded processors have spe-
cialized hardware or instructions to speed up common data-processing algorithms (e.g., FFT butterflies, video
processing operations, and Galois field arithmetic). These include, for example, single-cycle MACs with spe-
cialized addressing modes, single-cycle quad-byte average and clip operations, and addition and multiplication
with Galois field elements. In such cases, C compiler-specific intrinsics are very useful to better utilize the
processor-specialized hardware.

Probably the most useful tool for code optimization is a good profiler. In many implementations, 20% of the
code accounts for 80% of the processing time. Focusing on these critical sections yields the highest marginal
returns. It turns out that loops are prime candidates for optimization in most digital media processing algorithms
because intensive numeric processing usually occurs inside those loops.

Compiler-Level Optimization
The global approach to code optimization is to enable compiler optimization options that optimize for either
speed or memory conservation. Many other compiler options may exist to support different functionalities. There
is a vast difference in performance between compiled optimized and compiled nonoptimized code. In some cases,
optimized code can run 2 to 5 times faster.

Intrinsics and Inline Assembly Intrinsics are compiler-specific instructions that are embedded within C code
and are translated by the compiler into a predefined sequence of assembly-code instructions. Intrinsics give the
programmer a way to access specialized processor features without actually having to write assembly code.
Many embedded processor compilers support intrinsics.

An example of intrinsic usage is shown in Figure 1.2, a case of fractional dot-product computation. With
the code shown in Figure 1.2(a), the compiled code is executed as a multiply, followed by a shift, followed by
an accumulation. However, the processor MAC with fractional arithmetic support performs all these tasks in a
single cycle. Thus, with the code shown in Figure 1.2(b) using intrinsics for both fractional multiplication and

12 Chapter 1

Sum = 0;
for(i = 0; i < 100; i++){
sum += ((a[i]*b[i]) >> 15);

}
()

(a)

sum = 0;
for (i = 0; i < 100; i++){
sum = add_fr32(sum, mult_fr32(a[i],b[i]));

}
()

(b)

Figure 1.2: Fractional dot product: (a) without intrinsics and (b) with intrinsics.

addition, the compiler can translate the code of fractional multiply and accumulate into a single MAC instruction
supporting the fractional arithmetic mode.

Many compilers also support the use of inline assembly code, using the asm() construct within a C program.
This feature causes the compiler to insert the specified assembly code into the compiler’s assembly code output.
Inline assembly is a good way to access specialized processor features, and it may execute faster than calling
assembly code in a separate function. Using inline assembly, various costs are avoided, such as program flow
latencies, function entry and exit instructions, and parameter passing overhead.

Profile-Guided Optimization Profile-guided optimization (PGO) is an excellent way to tune the compiler’s
optimization strategy for a program’s typical runtime behavior. Many program characteristics that cannot be
known statistically at compile time can be provided through PGO. The compiler can use this knowledge to bring
about benefits, such as accurate branch prediction, improved loop transformations, and reduced code size. The
technique is most relevant where behavior of the application over different data sets is expected to be similar.

PGO should always be implemented as the last optimization step. If the application source code is changed
after gathering profile data, this profile data becomes invalid. The compiler does not use profile data when it can
detect that it is inaccurate. However, it is possible to change source code in a way that is not detectable by the
compiler (e.g., by changing constants). The programmer should ensure that the profile data used for optimization
remains accurate.

Available C or DSP runtime libraries can also be used for efficient implementation of algorithms. See ADI-
VDSP (2006) for more detail on various C-level compiler optimization techniques available for the reference
embedded processor.

System-Level Optimization
System optimization starts with proper memory layout. In the best case, all code and data would fit inside the
processor’s L1 memory. Unfortunately, this is not always possible, especially when large C-based applications
are implemented within a networked application.

The real dilemma is that processors are optimized to move data independently of the core via DMA, but
microcontroller unit (MCU) programs typically run using a cache model instead. While core fetches are an
inescapable reality, using DMA or cache for large transfers is mandatory to preserve performance.

Because internal memory is typically constructed in subbanks, simultaneous access by the DMA controller
and the core can be accomplished in a single cycle by placing data in separate banks. For example, the core can
be operating on data in one subbank while the DMA is filling a new buffer in a second subbank. Under certain
conditions, simultaneous access to the same subbank is also possible.

See Katz and Gentile (2006) for more details on system-level optimization for reference embedded processor
applications.

Part 1
Data Processing

This page intentionally left blank

CHAPTER 2

Data Security

Data exchange and data storage are common processes that we use every day. The data is usually categorized as
unclassified and classified. Unclassified data can be accessed by anyone without restrictions; whereas classified
data cannot be accessed by unintended third parties (i.e., other than sender and receiver). Examples of classi-
fied data are nations’ homeland security- and military-related data, highly innovative and research-related data
connected to defense and corporate, and financial transactions.

2.1 Cryptography Basics

Cryptography techniques are used to protect classified data from unintended observers or eavesdroppers (also
called adversaries, attackers, interceptors, interlopers, intruders, opponents, or simply the enemy).

2.1.1 Cryptography Terminology

The following is a list of some important cryptography terms:

Plaintext: Message with understandable substance (content).
Encryption: Process of disguising a message in such a way as to hide its substance.
Cipher text: Encrypted message.
Decryption: Process of turning cipher text back into plain text.
Cipher: Mathematical function (algorithm) used for encryption.
Inverse cipher: Mathematical function used for decryption.
Key: Large m-bit number used in the encryption or decryption process. The range of possible values of the

key is called key space.
Cryptosystem: Algorithm along with all possible plain texts, cipher texts, and keys.
Cryptography: Art and science of keeping messages secure that cryptographers practice.
Cryptanalysis: Art and science of breaking cipher text practiced by cryptanalysts.
Cryptology: Branch of mathematics encompassing both cryptography and cryptanalysis practiced by

cryptologists.

2.1.2 Cryptography System

Using cryptographic techniques, we make the information unintelligible to people who do not have a need to
know or who should not know. The basic cryptographic module consists of a secret key and a mathematical
algorithm as shown in Figure 2.1. The cryptographic process of converting plain text to unintelligent form
(termed as cipher text) is called encryption. The inverse process of converting cipher text to plain text is called
decryption.

Figure 2.1: Cryptographic modules
(a) encryption and (b) decryption.

Encryption
Algorithm

Plain
Text

Cipher
Text

(a)

Decryption
Algorithm

Key

Cipher
Text

Plain
Text

(b)

Key

© 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-678-1.00002-8 15

16 Chapter 2

We can understand the importance of a cryptography system by considering an example of data exchanged
between a military commander and his superior as follows:

S I R , W E A R E M O V I N G T O W A R D S E N E M Y

We make this classified information unintelligible (to unintended recipients) by encrypting the message before
sending it over a communication channel, and we decrypt the message at the receiving side to read the information.
To encrypt, we pass the original message (plain text) to the encryption algorithm to generate a cipher text
(unintelligent message). An encryption algorithm is a mathematical algorithm along with a secret key. Usually,
any cryptographic secret key is a large random number (e.g., a 128-bit number).

To work with the mathematical algorithm,we first use a codeword table (e.g., the 8-bit ASCII table) to generate
the numeric equivalent of the plain text. In the previous classified message, we have a total of 32 characters
(one comma, five spaces, and 26 letters with few repeats). The equivalent numeric 8-bit ASCII values for the
previous message characters are space, 00100000 (0x20); comma, 00101100 (0x2c); A, 01000001 (0x41); D,
01000100 (0x44); E, 01000101 (0x45); G, 01000111 (0x47); I, 01001001 (0x49); M, 01001101 (0x4d); N,
01001110 (0x4e); O, 01001111 (0x4f); R, 01010010 (0x52); S, 01010011 (0x53); T, 01010100 (0x54); V,
01010110 (0x56); W, 01010111 (0x57); and Y, 01011001 (0x59). The binary equivalent form of the previous
message follows:

01010011 01001001 01010010 00101100 00100000 01010111 01000101 00100000 01000001 01010010 01000101
00100000 01001101 01001111 01010110 01001001 01001110 01000111 00100000 01010100 01001111 01010111
01000001 01010010 01000100 01010011 00100000 01000101 01001110 01000101 01001101 01011001

If we represent the previous binary equivalent data in hexadecimal notation, then the plain text becomes
53 49 52 2c 20 57 45 20 41 52 45 20 4d 4f 56 49 4e 47 20 54 4f 57 41 52 44 53 20 45 4e 45 4d 59

Let us select the following cryptographic key (say, random numbers with 128 bits) in hexadecimal notation:
89 fc 23 d5 71 1a 86 22 c1 42 76 dd b3 94 7e a9

With a mathematical algorithm along with the previous secret key, we obtain the following cipher data for the
previous plain data:

da b5 71 f9 50 4d c3 02 80 10 33 fd fe db 28 e0 c7 bb 03 81 3e 4d c7 70 85 11 56 98 fd d1 3e f0

Now, if we map the previous hexadecimal cipher data back to cipher text using the ASCII table, we get
Ú μ q ù P M Ã STX € DLE 3 ý þ Û (à Ç � ETX · > M Ç p . . . DC1 V˜ý Ñ > ð

This cipher text is an unintelligent text (as we do not know its substance). The sender transmits this cipher text
to the receiver and the recipient decrypts the received cipher text with the same cryptographic key, obtaining the
plain text SIR, WE ARE MOVING TOWARDS ENEMY. This example shows the importance of cryptography
systems, as it is very difficult for an adversary to obtain message content in the process of communication.

2.1.3 Cryptographic Practices

Cryptographic techniques allow us to transmit or to store the classified data in a secure manner. In the crypto-
graphic process, a cryptographic (or mathematical) algorithm can be in the public domain, but the cryptographic
(or secret) key should not be disclosed to the public. Now, the question is, how good is this cryptographic system
(i.e., a secret key, an algorithm, plain text, and cipher text)? Will it protect our data from eavesdroppers, or is
it possible for eavesdroppers to get the content of message without the cryptographic key? Well, that depends
on the properties of the mathematical algorithm and the length and randomness of the key chosen. Here, the
cryptographic key should be random enough and eavesdroppers should not have any clue about the key pattern.
Eavesdroppers usually know the algorithm that is used in the cryptographic process, but with a well-designed
algorithm this knowledge will not help them. In other words, the only way for eavesdroppers to get the content of
cipher text is by decrypting the cipher text with each possible key pattern. The possible number of key patterns
with a 128-bit number is 2128. We call this set of 2128 possibilities the key space for a 128-bit key. Breaking the
cipher text with this approach (i.e., breaking cipher text by attempting all possible keys) is called a brute force
attack on a cryptographic system.

Data Security 17

Brute force attacks are very costly. For example, to break cipher text generated with a 128-bit key, the amount
of computational power needed is estimated as follows. Assume that decrypting the cipher text with one key
pattern takes about N operations. If the computer performs 1 million (or approximately 220) such operations
per second, or 236 (24∗ 60∗ 60∗ 220) operations per day, or 245 (365∗ 24∗ 60∗ 60∗ 220) operations per year, then
with 1 million computers (i.e., 265 operations per year), we would have to work for the next N ∗ 1020 years.
To put this in context, we believe this universe was formed 1020 years ago! Even if the cipher text decrypted
with one (N = 1) operation, breaking the cipher text using the brute force method is impossible with available
technology.

Is it only the way to break the cipher text? That’s a good question. The answer is no. Many types of attacks
are used to break the cipher text. We will start by discussing one such attack called the known plain-text attack,
and will examine other attacks later. In the known plain-text attack, the eavesdropper knows the content of some
portion of plain text and tries to break the cipher text by deducing the key pattern. If the eavesdropper succeeds
in this process, then the cryptographic system can be attacked with a simple decryption process and 1 million
computers for 220 years need not spend time on breaking the cipher text. Is it possible for the eavesdropper to
get the content of plain text and break the present cipher text?

Well, it depends on how the particular organization handles classified information and manages the secret
keys. For example, if the secret key of the cryptographic algorithm is not changed for a long time, and the previous
plain text messages are obtained by bribing the secretary, then the eavesdropper can succeed in his operation.
Most of the time, the eavesdroppers will not succeed in their operation as the secret key patterns are changed
periodically. If the cipher is generated with a new key, whatever plain text and cipher text the eavesdropper had
are not useful. Thus, secret key management plays an important role in cryptographic applications. Later we
present an overview of the key management process. Detailed discussion of the secret key management process
is beyond the scope of this book.

Security with Encryption Algorithms
As discussed previously, an algorithm is considered computationally secure if it cannot be broken with available
resources, either current or future. We measure the complexity of an attack in different ways:

Data complexity: The amount of data needed as input to perform an attack
Processing complexity: The time required to perform an attack
Storage requirements: The amount of memory needed to perform an attack

The security of a cryptosystem (plain texts, cryptographic algorithm, secret key, and cipher texts) is a function
of two things: the strength of the algorithm and the length of the key. If the strength of an algorithm is perfect,
then there is no better way to break the cryptosystem other than trying every possible key in a brute-force method.
Good cryptosystems are designed to be infeasible to break with the computing power that is expected to evolve
for many years in the future.

If we hide the functionality of the encryption algorithm and the security of an algorithm is based on keeping the
way that algorithm works a secret, it is a restricted algorithm, and is inadequate by today’s standards. A large or
changing group of users cannot use them, because every time a user leaves the group, everyone else must switch
to a different algorithm. If a user accidentally reveals the secret, everyone must change his or her algorithm. If we
do not have a good cryptographer in the group, then we do not know whether we have a secure algorithm. Despite
these major drawbacks, restricted algorithms are enormously popular for low-security applications, where users
either do not realize or do not care about the security problems inherent in their system.

All of the security in the standardized algorithm is based in the key, compared to none based in the details
of the algorithm. Products using these algorithms can be mass produced. It does not matter if an eavesdropper
knows our algorithm; if she/he does not know our particular key, she/he cannot read our messages. Cryptosys-
tems that look perfect are often extremely weak. Strong cryptosystems, with a couple of minor changes can
become weak. So it is best to trust algorithms that professional cryptologists have scrutinized for years without
cracking them.

18 Chapter 2

Attacks
The whole point of cryptography is to keep the plain text (or the key, or both) secret from eavesdroppers.
Eavesdroppers are assumed to have complete access to the communications between the sender and receiver.
Cryptanalysis is the science of recovering the plain text of a message without access to the key. An attempted
cryptanalysis is called an attack. There are four general types of cryptanalytic attacks. Of course, each of them
assumes that the cryptanalyst has complete knowledge of the encryption algorithm used.

Let Pi ,Ci , and EK denote plain text, cipher text, and encryption algorithm with key K . The four cryptanalytic
attacks are described in the following.

1. Ciphertext-only attack:
Given: C1 = EK (P1),C2 = EK (P2), . . . ,Ci = EK (Pi)

Deduce: Either P1, P2, . . . , Pi ; K ; or an algorithm to infer Pi+1 from Ci+1 = EK (Pi+1).
2. Known plain-text attack:

Given: P1,C1 = EK (P1), P2,C2 = EK (P2), . . . , Pi ,Ci = EK (Pi)

Deduce: Either K , or an algorithm to infer Pi+1 from Ci+1 = EK (Pi+1)

3. Chosen plain-text attack: This is more powerful than a known plain-text attack because the cryptanalyst can
choose specific plain text blocks to encrypt that might yield more information about the key.

4. Adaptive chosen plain-text attack: This is a special case of a chosen plain-text attack. Not only can the
cryptanalyst choose the plain text that is encrypted, but he can also modify his choice based on the results of
previous encryption.

Other types of cryptanalytic attacks include chosen cipher text, chosen key, rubber hose cryptanalysis, and
purchase key.

Algorithms differ by degrees of security; this depends on how hard they are to break. Categories of breaking
an algorithm follow:

Total break: Finding a key
Global deduction: Finding an alternate algorithm that results in plain text without knowledge of key
Instance deduction: Finding plain text of an intercepted cipher text
Information deduction: Gaining knowledge about key or plain text

Key Management
Key management basically deals with the key generation, distribution, storage, key renewal, and updating and
key destruction. In the real world, key management is the hardest part of cryptography. Cryptanalysts often
attack cryptosystems through the loopholes of key management. Why should we bother going through all the
trouble of trying to break the cryptographic algorithm if we can recover the key because of some sloppy key
management procedures? Why should we spend $500 million building a cryptanalysis machine if we can spend
$500 bribing a clerk?

The security of an algorithm rests in the key. If we are using a cryptographically weak process (reduced
key spaces or poor key choices) to generate keys, then our whole system is weak. The eavesdropper need not
analyze our encryption algorithm; he/she can analyze our key generation algorithm. Therefore, we should
generate the key bits from either reliably random source or a cryptographically secure pseudorandom-bit
generator. In Section 2.1.6, we discuss more about pseudorandom number generation for cryptographic
applications.

We use encrypted keys in transferring keys from one point to another. The keys of encryption keys have to be
distributed manually. No data encryption key should be used for an infinite period. The longer a key is used, the
greater the chance that it will be compromised. It is generally easier to do cryptanalysis with more cipher text
encrypted with the same key. Given that, the keys must be replaced regularly and old keys must be destroyed
securely. The keys of encryption keys do not have to be replaced as frequently. They are used only occasionally
for key exchange. However, if a key of the encryption keys is compromised, the potential loss is extreme as the
security of the data encryption key rests on the key of encryption keys.

Data Security 19

2.1.4 Cryptographic Applications

The cryptographic algorithms are used mainly for three purposes: (1) to keep the classified data confidential,
(2) to maintain data integrity, and (3) to have data authenticity.

Data confidentiality: Eavesdroppers try to acquire knowledge of classified data in data communications or data
storage systems by tapping the classified data without authorization. By processing the classified data using
cryptographic algorithms, we transmit or store the data in a secure manner.

Data integrity: Sometimes we may need to keep the data unchanged. The data may be altered by adding or
deleting or substituting with some other data. Data transmission or memory retrieval devices may introduce
errors by adding noise. Sometimes unauthorized persons may change the content of data before it reaches to
the intended party.

Data authentication: Data authentication basically gives the source of data origin. By generating the authen-
tication code using a secret key, we can have data authenticity after verification. Most of the time the data
need not be confidential, but to have confidence in the data, the data should have a trusted source and should
not be modified by unauthorized people.

2.1.5 Cryptographic Algorithms

Cryptographic algorithms are broadly divided into three categories: (1) symmetric key algorithms, (2) public-key
algorithms, and (3) hash functions based algorithms. In symmetric key algorithms, we use the same secret key
for both the encryption and decryption process. In public-key algorithms, we use one key for the encryption
process (generation) and a different key for the decryption process (verification). In hash functions, we do not
use a secret key to process the data. With these three kinds of algorithms, we achieve data confidentiality, data
integrity, and data authentication.

Symmetric Key Algorithms
The examples for symmetric key algorithms are the advanced encryption standard (AES) and the triple data
encryption algorithm (TDEA), and are used in most cryptographic applications for data encryption. Sections 2.2
and 2.3 present more details about the TDEA and AES algorithms, simulations, and efficient implementation
techniques.

Public Key Algorithms
The example for public-key algorithm is RSA (Rivest, Shamir, and Adelman). Public-key algorithms are used for
data authentication. For data authentication, we transmit digital signatures computed using a public key-based
digital signature algorithm (DSA). In Section 2.5, the elliptic-curve digital signature algorithm (ECDSA)—that
is, elliptic curve-based DSA—is discussed and simulated.

Hash Functions
Examples of hash-based algorithms are SHA functions. Popular and standardized SHA functions include SHA-1,
SHA-256, SHA-384, and SHA-512. Hash functions are used in achieving data integrity by computing unique
condensed message (or message digest) for data. Hash-based algorithms are also used to generate pseudorandom
numbers. In public-key algorithms and in computing message authentication codes, we use SHA functions to
condense the messages. In Section 2.4, the keyed hash message-authentication code (HMAC) algorithm is
discussed in detail and simulated. In Section 2.5, we use the hash function to generate condensed messages for
ECDSA.

2.1.6 Cryptography and Random Numbers

We use random numbers in cryptography for many purposes. For example, all cryptographic keys are random
numbers. We also use random numbers as default initial constants or as a seed for some cryptography algorithms.
Cryptographic algorithms use random number as input (as a key or as its state) and output random data (as cipher

20 Chapter 2

text, as authentication code, or as condensed message). In other words, cryptographic algorithms can also be
used for generating random numbers. Typically, we use symmetric key algorithms or hash functions to generate
random numbers for public key algorithms.

As discussed previously, given an encryption algorithm that is mathematically proven and has good properties
(for randomizing data without having any weak instants for key patterns), the strength and security of the
cryptographic system entirely depends on its key management process, as discussed in Section 2.1.3. In particular,
the use of good (i.e., random or unpredictable) key patterns for a cryptographic algorithm is very important to
improve the strength of the overall cryptosystem. Now, the question is how to generate random numbers? In
practice, we have two kinds of random numbers. One kind is truly random; we cannot reproduce them with any
deterministic method. Another kind is not truly random, but they look random and they can be reproduced with
deterministic methods. We cannot generate true random numbers with software algorithms. Instead, we use a
physical phenomenon (e.g., radioactive decay, electronic-parts generated noise, or instant temperature measures)
along with hardware for producing true random numbers; the subject of true random number generation is beyond
the scope of this book.

Pseudorandom Numbers Generation
A pseudorandom number generator (PRNG) uses a deterministic algorithm to produce the random numbers, and
these numbers are not truly random, as we can reproduce them again and again. There is a vast amount of literature
on the subject of pseudorandom number generation, and many algorithms have been developed for PRNG by the
research community in the last few decades. There are many test procedures in the literature to verify randomness
of numbers generated by PRNG. Once again, the subject of PRNG theory and test procedures is beyond the
scope of this book. In this section, we discuss PRNGs based on the linear feedback shift register (LFSR) and the
RC4 algorithm. We also discuss simulation and implementation techniques for these two algorithms in the next
two subsections. Note that these two algorithms may not be practically useful in cryptography and may not pass
all PRNG test procedures for reasons discussed later.

Linear Feedback Shift Register
The LFSR contains a small amount of memory to hold its state at any point of time. LFSR is basically used for
scrambling (or randomizing) data bits to uniformly distribute energy in the whole bitstream. We can generate
a pseudorandom binary sequence (PRBS) by using LFSR. The PRBS sequence is also used for bit interleaving
with error correction algorithms such as RS codes and turbo codes. Figure 2.2 shows a signal flow diagram of
the LFSR for the following PRBS generator polynomial:

p(x) = x15 + x14 +1

The randomizer is initialized at the very beginning with a seed value of 100101010000000. As this LFSR
contains 15 bits of memory, its output bit pattern does not repeat in the cycle of 215 − 1 bits. In other words,
the LFSR shown in Figure 2.2 generates a pseudorandom binary sequence (PRBS) of length less than 215. Then
this PRBS sequence is used for randomizing the input data, interleaving the bit patterns, and generating random
numbers. The straightforward simulation code for the LFSR shown in Figure 2.2 is given in Pcode 2.1 and a
much more efficient simulation code is given in Pcode 2.2.

LFSR and Pseudorandom Number Generation for Cryptography Applications The LFSR system shown in
Figure 2.2 generates random bits without repeating the bit pattern until the loop runs up to 215 −1 times. In the
interval [1,215], the generated bits are random. Now, the question is whether the random numbers generated

Figure 2.2: Signal flow diagram of data
randomizer.

PRBS

Data In Data Out

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 1 0 1 0 1 0 0 0 0 0 0 0

Data Security 21

S[0] = 1; s[1] = 0; s[2] = 0; s[3] = 1;
S[4] = 0; s[5] = 1; s[6] = 0; s[7] = 0;
S[8] = 0; s[9] = 0; s[10] = 0;
S[11] = 0; s[12] = 0; s[13] = 0; s[14] = 0;
for(i = 0; ; i++){

tmp = s[14] ^ s[13];
s[14] = s[13];s[13] = s[12]; s[12] = s[11]; s[11] = s[10];
s[10] = s[9]; s[9] = s[8]; s[8] = s[7]; s[7] = s[6];
s[6] = s[5]; s[5] = s[4]; s[4] = s[3]; s[3] = s[2];
s[2] = s[1]; s[1] = s[0]; s[0] = tmp;
data_out[i] = data_in[i] ^ tmp;

}

Pcode 2.1: Simulation code for LFSR shown in Figure 2.2.

A = 0x95000000; // initial state (15 MSBs)
B = 0xff8000000; // MASK
for(i = 0; ; i++){

C = A >> 1;
A = A ^ C;
A = A & B;
A = A << 14;
if (A) data_out[i] = data_in[i] ^ 1;
A = C | A;

}

Pcode 2.2: Efficient simulation code for LFSR shown in Figure 2.2.

by this LSFR system satisfy the requirement of cryptography standards. The answer is no. In cryptographic
practices, the algorithm will be in the public domain and for the cryptanalyst, attacking this type of system is
very easy even if the cryptanalyst does not have knowledge of the initial seed as the length of seed is only 15
bits. The seed pattern of the LFSR shown in Figure 2.2 can easily be derived from its output sequence with the
present day technology by using the brute force method. As per present cryptographic standards, we require a
minimum of 160-bit-width polynomial seeds for LFSR. To avoid attacks based on analytical methods, the SHA
function (discussed in Section 2.4) is applied on LFSR output and the pseudorandom numbers generated by the
LFSR-SHA system may be acceptable for cryptographic applications. For example, the LFSR with output cycle
period as 2160 −1 using primitive polynomial of degree 160 follows:

p(x)= x160 + x159 + x158 + x157 + x155 + x153 + x151 + x150 + x149 + x148 + x147 + x146 + x142 + x141

+ x137 + x134 + x133 + x132 + x130 + x128 + x126 + x125 + x121 + x120 + x118 + x117 + x116 + x114

+ x112 + x111 + x109 + x108 + x106 + x104 + x102 + x95 + x94 + x90 + x89 + x88 + x86 + x85 + x84

+ x83 + x82 + x81 + x80 + x78 + x76 + x68 + x66 + x64 + x61 + x60 + x59 + x57 + x52 + x50 + x46

+ x45 + x41 + x40 + x39 + x38 + x37 + x36 + x35 + x31 + x29 + x27 + x26 + x25 + x23 + x20 + x18

+ x16 + x11 + x10 + x8 + x7 + x6 + x5 + x3 + x +1

The binary coefficients of the previous primitive polynomial p(x) are also represented in hexadecimal vector
form as P = [0xf57e313a,0xb1badaa0,0x63bfa80a,0x9d0a31fc,0x574a86f5,0x80000000], where the coeffi-
cient of highest degree corresponds to the non-zero MSB (most significant bit) of the left-most word. Reproducing
the PRBS of this LFSR system without knowing the 160-bit initial seed by using the brute force method is not
an easy task. As mentioned earlier, to avoid attacks (or deriving the seeds) for LFSR based on analytical meth-
ods, SHA functions are applied on output of LFSR. In the next subsection, we discuss pseudorandom number
generation based on the RC4 algorithm.

22 Chapter 2

RC4 Algorithm
In this section, we discuss pseudorandom number generation using the RC4 stream cipher algorithm. The RC4
algorithm involves computation of S-Box (which consists of 256-byte elements, initially assigned with 0 to
255) values using the given key information. RC4 uses a variable length key from 1 to 256 bytes to initialize a
256-byte S-Box table. The S-Box computation is done by iteratively swapping the locations of S-Box elements
as given in Pcode 2.3. The S-Box table is used for the subsequent generation of pseudorandom bytes which
are then XORed with the input plain text to produce a cipher text. In other words, once we have a computed
S-Box, then the input data is encrypted (or randomized) one byte at a time by XORing with an S-Box element,
which is accessed through the offset obtained after the manipulation of indices in some particular way as given
in Pcode 2.4. The S-Box elements are also continuously swapped in encryption of every input byte and each
element in the S-Box table is swapped at least once in this process. Like this, the encryption (or randomization)
process will be continued until the input data bytes get over.

The RC4 algorithm is a nonstandardized and yet powerful stream cipher. One of the reasons for not stan-
dardizing this RC4 algorithm is because of its simple mathematical structure. However, the RC4 algorithm is
used as a stream cipher in low-security-risk applications and used as a pseudorandom number generator in many
standard ciphers applications. RC4 is used in many commercial software packages such as Lotus Notes and
Oracle Secure SQL, and in network protocols such as SSL, IPsec, WEP, and WPA.

RC4 and Pseudorandom Numbers Generation In this section, we discuss the pseudorandomness of data
patterns generated by the RC4 algorithm. As the RC4 state (S-Box) consists of 256 bytes, it is computationally
difficult for adversaries to break the RC4-generated random pattern by using the brute force method. However,
the RC4 algorithm is vulnerable to analytic attacks of the S-Box table; some weak keys exist for RC4 and some
theoretical attacks have been performed on RC4 (Mister and Tavares, 1998).

for(i = 0;i < 256;i++) // initialize S_Box
S_Box[i] = i;

j = 0;
for(i = 0;i < 256;i++){ // update S_Box using 256 bytes key

r0 = S_Box[i]; r1 = key[i];
r1 = r0 + r1;
r1 = r1 + j;
j = r1 & 0xff;
r1 = S_Box[j]; // look-up table access with arbitrary offset
S_Box[j] = r0;
S_Box[i] = r1;

}

Pcode 2.3: Simulation code for RC4 S-Box computation.

j = 0;
for (i = 0;i < N;i++){ // N: data length in bytes

k = i & 0xff; // i mod 255
r0 = S_Box[k]; // can be loaded with circular buffer addressing
r1 = j + r0;
j = r1 & 0xff; // mod 255
r1 = S_Box[j]; // look-up table access with arbitrary offset
S_Box[j] = r0;
S_Box[k] = r1;
r1 = r1 + r0;
r1 = r1 & 0xff; // mod 255
r1 = S_Box[r1]; // look-up table access with arbitrary offset
in[i] = in[i] ^ r1;

}

Pcode 2.4: Simulation code for RC4 Cipher.

Data Security 23

We can strengthen RC4 security by following a few rules:

1. Drop the first few hundred bytes of output of RC4 to avoid weak key attacks and other key schedule–related
attacks.

2. Do not repeat the secret key when generating the S-Box of RC4.
3. Do not use RC4 for generating (or encrypting) lengthy data patterns. For more information on RC4 weaknesses,

see Mister and Tavares (1998); Mantin and Shamir (2001); and Fluhrer, et al. (2001).

The other block ciphers such as DES and AES discussed in Sections 2.2 and 2.3, and hash functions discussed
in Section 2.4 are also used for generating pseudorandom numbers.

In the following, we discuss the complexity and simulation of RC4 as well as an efficient software
implementation method for the RC4 encryption process.

RC4 Simulation and Complexity In the iterative procedure of computing RC4 S-Box or encryption (or ran-
domization) processes given in Pcodes 2.3 and 2.4, the computation of new j value requires updated (swapped)
S-Box values. So, computing many j values and swapping them all at one time is not allowed due to dependency
of j on updated S-Box values. Every time we access the S-Box element from memory on the reference embedded
processor using an arbitrary offset to the S-Box table, we consume extra clock cycles (due to pipeline stalls).
This implementation is very inefficient as we cannot interleave the program to avoid the pipeline stalls. We have
one such look-up table access in Pcode 2.3 and two in Pcode 2.4.

Next we estimate the complexity of the RC4 algorithm given in Pcodes 2.3 and 2.4 in terms of processor cycles.
See Appendix A, Section A.4, on this book’s companion website for more information on cycles estimation on
the reference embedded processor. With the present program flow, we consume 11 cycles per iteration (assuming
three pipeline stalls) in S-Box computation using Pcode 2.3, and we consume 17 cycles per iteration in data
byte encryption using Pcode 2.4. With this, we consume 2816 (= 11∗ 256) cycles for S-Box computation and
17 ∗ N cycles for encryption of N data bytes. For N = 128, we consume 2176 (= 17 ∗ 128) cycles for encryption
process.

RC4 Implementation and Optimization The memory access stalls in RC4 can be avoided if we can compute
a minimum of two j values (if not more) at a time and interleave the program code. After careful observation,
the computation of two j values at a time is possible except for one case, when j = i + 1. By conditionally
computing the new index value j , we can have two j values and can do two swaps at a time and thereby avoid
extra stalls. Computing two random bytes and encrypting two data bytes at a time also achieve similar elimination
of the stalls in the data encryption algorithm. This efficient implementation code is given in Pcode 2.5. Here, we
have a scope to interleave the program code and to eliminate the memory access stalls. With this approach we

j = k = 0; m = 1;
for(i = 0;i < 256;i += 2){

r0 = S_Box[i]; r1 = key[i];
r1 = r1 + r0;
r1 = r1 + k; r5 = key[m];
j = r1 & 0xff; // mod 255
r2 = S_Box[j]; // memory access with arbitrary offset
if (j == m) r4 = r0;
else r4 = r3;
r1 = r4 + r5;
r1 = r1 + j;
k = r1 & 0xff; // mod 255
S_Box[i] = r2;
S_Box[j] = r0;
r4 = S_Box[k]; // memory access with arbitrary offset
r3 = S_Box[m];
S_Box[k] = r3;
S_Box[m] = r4; m = m + 2;

}

Pcode 2.5: Efficient implementation of RC4 S-Box computation.

24 Chapter 2

can reduce on average two clock cycles per iteration from the simulation code of Pcode 2.3. Now, we consume
about 2304 (= 18 ∗ 128) cycles (instead of 2816) in the S-Box computation. The similar approach can be used
to eliminate the pipeline stalls in the encryption process due to look-up table accesses with arbitrary offsets.

2.2 Triple Data Encryption Algorithm

The triple data encryption algorithm is based on the data encryption standard, adopted worldwide by most public
and private organizations for data communications and data storage. The TDEA algorithm can process data
blocks of 64 bits using three different keys, each of 56-bit length. In this section, we discuss the flow description
of TDEA-algorithm modules—namely, DES key expansion, DES cipher, and DES inverse cipher. We simulate
the TDEA algorithm modules and get the simulation results for given input data and key. Also we discuss the
computational complexity of the DES algorithm and efficient techniques to implement the DES cipher and DES
inverse cipher.

2.2.1 Introduction to TDEA

As shown in Figure 2.3, the TDEA algorithm consists of three cascaded DES units. Each DES unit uses a separate
key to process the data. In the case of the TDEA cipher, we cascade the DES cipher followed by the DES inverse
cipher followed by another DES cipher. The TDEA inverse cipher consists of inverse TDEA DES units. In other
words, in the case of a TDEA inverse cipher, we cascade the DES inverse cipher followed by the DES cipher
followed by another DES inverse cipher. The same set of three keys shall be used for the TDEA cipher and
TDEA inverse cipher. Hence we call the TDEA a symmetric cipher.

A few applications of the TDEA include data communications, data storage, Internet, military applications,
classified data management, online banking, and memory protection. Similar to TDEA, recently developed
AES (advanced encryption standard) is used in all the previous applications. We discuss the AES algorithm in
Section 2.3.

The strength of an encryption algorithm depends on its mathematical properties and supported key lengths.
The DES is a very old standard with less key space, and analysts have thoroughly understood and attacked the
DES cipher text. The T-DES is based on DES with a large key space. AES is the latest standard with very large
key space, no known attacks, and no known weak key patterns existed as of this writing.

2.2.2 TDEA Algorithm

The TDEA algorithm uses the DES algorithm as a basic unit as shown in Figure 2.3. TDEA uses a total of
three DES units in cascade fashion with a different 56-bit keyword for each DES unit. Effectively, the TDEA
algorithm key space is 168 (= 56∗ 3) bits. If we know how DES works, then TDEA is performed by simply
cascading three such DES units. From here on, we concentrate on the DES algorithm. The flow diagram of the
DES algorithm is shown in Figure 2.4. Input to the DES algorithm is a plain text of 64 bits and a key of 56 bits.
(The key starts as a 64-bit encoded key. It is 56 bits after removing the check bits from the 64-bit encoded key.)
The input 56-bits of key are then expanded using the DES key scheduler.

DES Key Scheduler
The DES key scheduler consists of three steps as shown in Figure 2.4. In the first step, we obtain the permuted
56-bit key data by applying the permutation choice-1 (PC-1). The second step is basically a loop run 16 times
that produces that many 56-bit data words. Before starting the loop, we treat the 56-bit key as two independent

Figure 2.3: Block diagram of the
TDEA algorithm.

E-DES-K1 D-DES-K2 E-DES-K3

D-DES-K1 E-DES-K2 D-DES-K3

TDEA Cipher

TDEA Inverse Cipher

Plain
Text

Cipher
Text

Cipher
Text

Plain
Text

Data Security 25

Figure 2.4: Flow diagram of DES
algorithm.

L0 R0

Ln 5 Rn21

f(.)

n 5 1

IP

n 5 n 1 1

n ,516

Plain Text

L16 R16

FP

Cipher Text

Left Shifts

Input Key

K
ey

 S
ch

ed
ul

er

PC-2

PC-1
Initial
Permutation

B
ut

te
rf

ly

Final
Permutation

Rn 5 Ln21 f (Rn21, Kn)1

28-bit words. In the loop, we rotate the two 28-bit words left by 1 or 2 bits in each iteration. The input to the next
iteration of the loop is its previous iteration output. In the third step of key scheduler, we take a 56-bit word (i.e.,
the result after combing the left shifted two 28-bit words) output from each iteration of the loop and generate a
48-bit word (or eight 6-bit words) by using permutation choice-2 (PC-2). In this way, the key scheduler expands
the input 56-bit key to total 128 (= 16∗ 8) 6-bit keywords for performing the DES algorithm (the same key
scheduler is used for both cipher/inverse cipher).

DES Cipher
As shown in Figure 2.4, the DES algorithm also consists of three steps, initial permutation, butterfly loop, and
final permutation. In the first step, we apply initial permutation on input plain text before entering the butterfly
loop. In the second step, the permuted plain text (split into two 32-bit words) passes through a 16-iteration
butterfly loop to output the pre-encrypted data using expanded key data. We use eight 6-bit keywords in each
iteration of the butterfly loop. As a third step, we apply the inverse of the initial permutation on the butterfly-loop
output (i.e., on pre-encrypted data) to get the cipher text. The main module in a DES-algorithm butterfly loop is
a nonlinear function f (.). The flow diagram of function f (.) is shown in Figure 2.5.

The nonlinear function f (.) in the DES butterfly loop again consists of three steps. In the first step, we expand
(E) the 32-bit data to 48-bit data and then we XOR the expanded 48-bit data with 48 bits of key data (we use
eight 6-bit words or 48 bits of key from the key scheduler output in a single iteration of the butterfly loop).

Then in the second step, the XORed 48-bit data is split into eight 6-bit words and passed through 4 × 16
dimension S-Boxes (6-bit words are used as addresses to the S-Box tables with the first and last bit to specify
the row of a table and middle 4 bits to specify the column number, see Section 2.2.3, DES Function Simulation)
to get eight 4-bit words (S-Box consists of 4-bit words). Next we merge the eight 4-bit words to a single 32-bit

26 Chapter 2

Figure 2.5: Flow diagram of nonlinear
function f (.) in DES algorithm.

f (Rn21, Kn)

Rn21 Kn

E

P

32

32

48 48

32

48

6

4

S1

6

4

S2

6

4

S4

6

4

S5

6

4

S6

6

4

S7

6

4

S8

6

4

S3

word and then as a third step we apply permutation (P) on merged 32-bit data to get the nonlinear function f (.)
output.

DES Inverse Cipher
The flow of the DES inverse cipher is the same as that of the DES cipher. The only difference between the DES
cipher and DES inverse cipher is that the former accesses the keywords from the start of the keyword buffer
to~the end of the buffer with its loop iterations (i.e., the first eight 6-bit keywords from 0 to 7 used for first
iteration, the next eight 6-bit keywords from 8 to 15 used for second iteration, etc.), whereas the inverse cipher
accesses the keywords from the end of buffer (i.e., the last eight 6-bit keywords from 120 to 127 used for first
iteration, the next eight 6-bit keywords from 112 to 119 used for second iteration, etc.).

2.2.3 Simulation of DES Algorithm

In the DES algorithm, the permutation or expansion operations are carried out using the mapping tables (specified
in the DES standard, Federal Information Processing Standard [FIPS], 1999). For example, the permutation
operation in the butterfly function is carried out by using the mapping table given in Table 2.1. By using this
bit position mapping table, we get the 1st bit in the permuted word from 16th bit of input word, the 2nd bit
in the permuted word from 7th bit of input word and so on. Finally, the last bit of permuted word is coming
from 25th bit of input word. In the simulation of all permutation operations, we use the equivalent shift values
(precomputed and stored in a memory) instead of standard table values to reduce the cycle cost. For example, we
use the derived shift values in Table 2.2 instead of actual bit numbers in Table 2.1 for simulating the DES butterfly

Table 2.1: Bit
numbers for
permutation

16 7 20 21
29 12 28 17

1 15 23 26
5 18 31 10
2 8 24 14

32 27 3 9
19 13 30 6
22 11 4 25

Table 2.2: Shift
values for
permutation

16 25 12 11
3 20 4 15

31 17 9 6
27 14 1 22
30 24 8 18

0 5 29 23
13 19 2 26
10 21 28 7

Data Security 27

permutation operation. In Table 2.2, the shift values are obtained by subtracting bit position numbers from 32. If
we perform the permutation of bits with logical AND, SHIFT, and OR operations as given in Pcode 2.16, then
the use of the derived shift value will consume less cycles with C code when compared to the use of bit numbers
and bits extract.

DES Key Scheduler Simulation
For simulation purpose, we split the DES key scheduler into four parts: (1) permutation choice-1, (2) permutation
choice-2, (3) left shifts, and (4) main key scheduler function. In the left shifts operation, we rotate independently
two 28-bit words to the left by 1 bit or 2 bits. As we repeat this left shifts operation many times, we define two
macros: DES_KEY_SCH_MACRO_ONE() for 1-bit left shift, and DES_KEY_SCH_MACRO_TWO() for
2-bit left shift to simplify the code. The simulation code for these two macros is given in Pcode 2.6. We call the
functions permutation choice-1, permutation choice-2, and the two left-shift macros from the main key scheduler
function. The simulation code for the key scheduler function is given in Pcode 2.7.

Permutation Choice-1 FIPS PUB 46-3 standard specifies a look-up table to perform permutation choice-1
(PC-1) operation. According to PC-1 table (shown in Table 2.3), we map 64-bit encoded key bits data to 56-bit
permuted bits data as follows. The 1st bit of permuted key is obtained from the 57th bit in the input key, the 2nd
bit of the permuted key is obtained from the 49th bit in the input key, and so on, until the 56th bit of the permuted
key is obtained from the 4th bit of the input key.

DES_KEY_SCH_MACRO_ONE() \ // rotate left by one bit
r3 = r1 >> 27; r1 = r1 << 1; \
r1 = r1 | (r3 & 0x10); r3 = r2 >> 27; \
r2 = r2 << 1; \
r2 = r2 | (r3 & 0x10);

DES_KEY_SCH_MACRO_TWO() \ // rotate left by two bits
r3 = r1 >> 26; r1 = r1 << 2; \
r1 = r1 | (r3 & 0x30); r3 = r2 >> 26; \
r2 = r2 << 2; \
r2 = r2 | (r3 & 0x30);

Pcode 2.6: Simulation code for DES key scheduler macros.

// void DESKeySch()

PermCh1(pc1); // call permutation choice 1
r1 = pc1[0]; r2 = pc1[1];
DES_KEY_SCH_MACRO_ONE()
PermCh2(r1,r2); // call permute choice 2 (--> K1)
DES_KEY_SCH_MACRO_ONE()
PermCh2(r1,r2); // --> K2
for(i = 0;i < 6;i++){

DES_KEY_SCH_MACRO_TWO()
PermCh2(r1,r2); // --> K3 to K8

}
DES_KEY_SCH_MACRO_ONE()
PermCh2(r1,r2); // --> K9
for(i = 0;i < 6;i++){

DES_KEY_SCH_MACRO_TWO()
PermCh2(r1,r2); // --> K10 to K15

}
DES_KEY_SCH_MACRO_ONE()
PermCh2(r1,r2); // --> K16

Pcode 2.7: Simulation code for DES key scheduler function.

28 Chapter 2

Table 2.3: DES key scheduler permutation choice-1
table values

57 49 41 33 25 17 9
1 58 50 42 34 26 18

10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15

7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

We do not use Table 2.3 directly in the simulation of PC-1 function; however, we generate the same out-
puts as what table values say. We simulate PC-1 function using logical AND, SHIFT, and OR operations
instead of using a look-up table (since we consume fewer cycles on the reference embedded processor per
bit with the analytic method given in Pcode 2.8 when compared to bit-mapping using look-up values). We
demultiplex 64-bit key data into seven 8-bit words in a nested loop. In this process, the check bits 8,16,24, . . .,64
present in the 64-bit key are removed by left shifting 2 bits (instead of 1 bit) at the end of each iteration of the
inner loop.

After the loop, we obtain two 28-bit permuted words from seven 8-bit words by rearranging the demultiplexed
bits. See Section 2.2.3, DES Simulation Results, for PC-1 simulation output results.

// void PermCh1(unsigned long *x3)

r1 = r2 = r3 = r4 = r5 = r6 = r7 = 0;
for(j = 0;j < 2;j++){

tmp1 = des_key[j];
for(i = 0;i < 4;i++){

tmp2 = tmp1 & 0x80000000; r1 = r1 >> 1;
r1 = r1 | tmp2; tmp1 = tmp1 << 1;
tmp2 = tmp1 & 0x80000000; r2 = r2 >> 1;
r2 = r2 | tmp2; tmp1 = tmp1 << 1;
tmp2 = tmp1 & 0x80000000; r3 = r3 >> 1;
r3 = r3 | tmp2; tmp1 = tmp1 << 1;
tmp2 = tmp1 & 0x80000000; r4 = r4 >> 1;
r4 = r4 | tmp2; tmp1 = tmp1 << 1;
tmp2 = tmp1 & 0x80000000; r5 = r5 >> 1;
r5 = r5 | tmp2; tmp1 = tmp1 << 1;
tmp2 = tmp1 & 0x80000000; r6 = r6 >> 1;
r6 = r6 | tmp2; tmp1 = tmp1 << 1;
tmp2 = tmp1 & 0x80000000; r7 = r7 >> 1;
r7 = r7 | tmp2; tmp1 = tmp1 << 2; // remove check bit

}
}
tmp1 = r1; r2 = r2 >> 8;
tmp1 = tmp1 | r2; r3 = r3 >> 16;
tmp1 = tmp1 | r3; r1 = r4 >> 28;
r1 = r1 << 4;
pc1[0] = tmp1 | r1; // store permuted first 28-bits
tmp2 = r7; r6 = r6 >> 8;
tmp2 = tmp2 | r6; r5 = r5 >> 16;
tmp2 = tmp2 | r5; r1 = r4 << 4;
r1 = r1 >> 28;
r1 = r1 << 4;
pc1[1] = tmp2 | r1; // store permuted second 28-bits

Pcode 2.8: Simulation code for DES key scheduler PC-1.

Data Security 29

Permutation Choice-2 In permutation choice-2 (PC-2), we use the following look-up values (which are derived
from the FIPS PUB 46-3 standard PC-2 table) to perform shift operations:
pc2[48]= {
18,15,21, 8,31,27,29, 4,17,26,11,22, 9,13,20,28, 6,24,16,25, 5,12,19,30,
19, 8,29,23,13, 5,30,20, 9,15,27,12,16,11,21, 4,26, 7,14,18,10,24,31,28};

PC-2 function takes two 28-bit left-shifted inputs and outputs two 24-bit permuted outputs. To perform this
process, we get a shift value from the pc2[] look-up table, and obtain the permuted bit by shifting right a 28-
bit input word with that shift value and extracting the first bit by ANDing with 0x01. The output of the PC-2
function (24-bit permuted word) is stored to ks_key[] buffer. In Pcode 2.7, the PC-2 function is called a total
of 16 times, and in each call it produces two 24-bit keywords. We use these expanded keys in both DES cipher
and inverse cipher functions. The simulation code for the PC-2 function is given in Pcode 2.9. See Section 2.2.3,
DES Simulation Results, for PC-2 simulation output results.

DES Function Simulation
In the DES function, we form a DES state using the given 64-bit input data and we update DES state with
DESInitP() followed by a 16-iteration butterfly function and then followed by the DESFinalP() function. The
butterfly loop itself consists of functions ExpandF(), S-Box(), and PermL(). Figures 2.4 and 2.5 show the flow
of the DES function. Both the cipher and inverse cipher use the same DES function except that the sequence in
which the expanded keys are accessed differs. The simulation code for the DES cipher and DES inverse ciphers
are given in Pcodes 2.10 and 2.11, respectively.

DES Initial Permutation The simulation techniques used for DES initial permutation (IP) is the same as the
techniques used for simulating PC-1 function. In IP we permute all 64 input bits and output as 64 permuted
bits (unlike in PC-1, where we eliminate the redundant bits from input). The simulation code for IP is given in
Pcode 2.12. See Section 2.2.3, DES Simulation Results, for IP simulation output results.

DES Final Permutation We perform the DES final permutation (FP) as per the look-up table values of IP−1

given in the FIPS PUB 46-3. The function FP takes 64 bits as the input and outputs 64 permuted bits. We can
also compute FP using the analytic method. Although we used the analytic method in the simulation code to
perform FP, we get the same permuted bits as in the look-up table method. We use logical AND, SHIFT, and
OR operations to perform FP with the analytic method. The simulation code for DES FP is given in Pcode 2.13.

// void PermCh2(unsigned long x1, unsigned long x2)

k = 0;
for(j = 0;j < 4;j++){

tmp3 = 0;
for(i = 0;i < 6;i++){

tmp1 = pc2[k++];
tmp2 = x1 >> tmp1;
tmp2 = tmp2 & 0x01; tmp3 = tmp3 << 1;
tmp3 = tmp3 | tmp2;

}
ks_key[n++] = tmp3; // store permuted first 24-bit word

}
for(j = 0;j < 4;j++){

tmp3 = 0;
for(i = 0;i < 6;i++){

tmp1 = pc2[k++];
tmp2 = x2 >> tmp1;
tmp2 = tmp2 & 0x01; tmp3 = tmp3 << 1;
tmp3 = tmp3 | tmp2;

}
ks_key[n++] = tmp3; // store permuted second 24-bit word

}

Pcode 2.9: Simulation code for DES key scheduler PC-2.

30 Chapter 2

// void DESCipher()

des_state[0] = p_data[0]; des_state[1] = p_data[1]; // DES state
DESInitP(); // initial permutation
j = 0;
for(i = 0;i < 16;i++){ // butterfly loop

Ln = des_state[0]; Rn = des_state[1];
des_state[0] = Rn; // L[n] = R[n-1]
// R[n] = L[n-1] XOR f(R[n-1],K[n]),f(R[n-1),K[n])-> P(S(E(R[n-1]) XOR K[n])))
ExpandF(Rn,t); // E(R[n-1])
t[0] = ks_key[j++]^t[0]; t[1] = ks_key[j++]^t[1]; // E(R[n-1]) XOR K[n]
t[2] = ks_key[j++]^t[2]; t[3] = ks_key[j++]^t[3];
t[4] = ks_key[j++]^t[4]; t[5] = ks_key[j++]^t[5];
t[6] = ks_key[j++]^t[6]; t[7] = ks_key[j++]^t[7];
S_Box(t); // S(E(R[n-1]) XOR K[n])
tmp = PermL(t); // P(S(E([n-1]) XOR K[n]))
des_state[1] = Ln^tmp; // L[n-1] XOR f(R[n-1],K[n])

}
Ln = des_state[0]; Rn = des_state[1];
des_state[0] = Rn;
des_state[1] = Ln;
DESFinalP(); // final permutation

Pcode 2.10: Simulation code for DES cipher.

// void DESInvCipher()

des_state[0] = c_data[0]; des_state[1] = c_data[1];
DESInitP(); // initial permutation
j = 120; // key words accessing index initialization
for(i = 0;i < 16;i++){

Ln = des_state[0]; Rn = des_state[1];
des_state[0] = Rn; // L[n] = R[n-1],
// R[n] = L[n-1] (+) f(R[n-1], K[n]),f(R[n-1),K[n])-> P(S(E(R[n-1]) (+) K[n])))
ExpandF(Rn,t); // E(R[n-1])
t[0] = ks_key[j++]^t[0]; t[1] = ks_key[j++]^t[1]; // E(R[n-1]) (+) K[n]
t[2] = ks_key[j++]^t[2]; t[3] = ks_key[j++]^t[3];
t[4] = ks_key[j++]^t[4]; t[5] = ks_key[j++]^t[5];
t[6] = ks_key[j++]^t[6]; t[7] = ks_key[j++]^t[7];
S_Box(t); // S(E(R[n-1]) (+) K[n])
tmp = PermL(t); // P(S(E([n-1]) (+) K[n]))
des_state[1] = Ln^tmp; // L[n-1] (+) f(R[n-1],K[n])
j-= 16;

}
Ln = des_state[0]; Rn = des_state[1];
des_state[0] = Rn;
des_state[1] = Ln;
DESFinalP(); // final permutation

Pcode 2.11: Simulation code for DES inverse cipher.

The output of FP gives the cipher text in the case of the DES cipher and gives plain text in the case of the DES
inverse cipher.

Expand Function The Expand function (E-function) is part of the butterfly function f (.), which is iterated
16 times in the main DES function. The E-function expands the 32 bit input data to 48 bits by repeat-
ing few bits two times. We perform E-function as per the E-BIT SELECTION TABLE given in the FIPS
PUB 46-3 standard. In the simulation code given in Pcode 2.14, we used an analytic method to simulate the
E-function.

S-Box Mixing In S-Box mixing, we output a 4-bit word from 6-bit input data by using a 2-dimensional S-Box
mixing look-up table. As shown in Figure 2.5, we obtain a total of eight 4-bit words (32 bits) from eight 6-bit
words (48 bits), by using eight S-Box mixing look-up tables. In the simulation code given in Pcode 2.15, we

Data Security 31

// void DESInitP()

r1 = r2 = r3 = r4 = r5 = r6 = r7 = r8 = 0;
for(j = 0;j < 2;j++){

tmp1 = des_state[j];
for(i = 0;i < 4;i++){

tmp2 = tmp1 & 0x80000000;
r1 = r1 >> 1; tmp1 = tmp1 << 1;
r1 = r1 | tmp2; tmp2 = tmp1 & 0x80000000;
r2 = r2 >> 1; tmp1 = tmp1 << 1;
r2 = r2 | tmp2; tmp2 = tmp1 & 0x80000000;
r3 = r3 >> 1; tmp1 = tmp1 << 1;
r3 = r3 | tmp2; tmp2 = tmp1 & 0x80000000;
r4 = r4 >> 1; tmp1 = tmp1 << 1;
r4 = r4 | tmp2; tmp2 = tmp1 & 0x80000000;
r5 = r5 >> 1; tmp1 = tmp1 << 1;
r5 = r5 | tmp2; tmp2 = tmp1 & 0x80000000;
r6 = r6 >> 1; tmp1 = tmp1 << 1;
r6 = r6 | tmp2; tmp2 = tmp1 & 0x80000000;
r7 = r7 >> 1; tmp1 = tmp1 << 1;
r7 = r7 | tmp2; tmp2 = tmp1 & 0x80000000;
r8 = r8 >> 1; tmp1 = tmp1 << 1;
r8 = r8 | tmp2;

}
}
tmp1 = r2; r4 = r4 >> 8;
tmp1 = tmp1 | r4; r6 = r6 >> 16;
tmp1 = tmp1 | r6; r8 = r8 >> 24;
des_state[0] = tmp1 | r8; // store permuted first 32-bits
tmp2 = r1; r3 = r3 >> 8;
tmp2 = tmp2 | r3; r5 = r5 >> 16;
tmp2 = tmp2 | r5; r7 = r7 >> 24;
des_state[1] = tmp2 | r7; // store permuted second 32-bits

Pcode 2.12: Simulation code for initial permutation of DES function.

// void DESFinalP()

r1 = 25; r2 = 24;
r3 = 25; r4 = 24;
tmp1 = des_state[0]; tmp2 = des_state[1];
tmp3 = 0; tmp4 = 0;
for(i = 0;i < 4;i++){

for(j = 0;j < 4;j++){
r5 = tmp1 & 0x80000000; r6 = tmp2 & 0x80000000;
r5 = r5 >> r1; r6 = r6 >> r2;
tmp4 = tmp4 | r5; tmp1 = tmp1 << 1;
tmp4 = tmp4 | r6; tmp2 = tmp2 << 1;
r1-= 8; r2-= 8;

}
for(j = 0;j < 4;j++){

r5 = tmp1 & 0x80000000; r6 = tmp2 & 0x80000000;
r5 = r5 >> r3; r6 = r6 >> r4;
tmp3 = tmp3 | r5; tmp1 = tmp1 << 1;
tmp3 = tmp3 | r6; tmp2 = tmp2 << 1;
r3-= 8; r4-= 8;

}
r1+= 34; r2+= 34;
r3+= 34; r4+= 34;

}
des_state[0] = tmp3;
des_state[1] = tmp4;

Pcode 2.13: Simulation code for final permutation of DES function.

perform S-Box mixing by combining eight look-up tables into a single big look-up table sb[] and accessing the
corresponding 4-bit words with appropriate offsets. The look-up table sb[] values can be found on this book’s
companion website.

32 Chapter 2

// void ExpandF(unsigned long x, unsigned char *y)

r1 = x << 3; r3 = x << 7;
r2 = r1 >> 26; r4 = r3 >> 26;
y[1] = r2; y[2] = r4;
r1 = x << 11; r3 = x << 15;
r2 = r1 >> 26; r4 = r3 >> 26;
y[3] = r2; y[4] = r4;
r1 = x << 19; r3 = x << 23;
r2 = r1 >> 26; r4 = r3 >> 26;
y[5] = r2; y[6] = r4;
r1 = x << 27; r3 = x << 31;
r2 = r1 >> 26; r4 = r3 >> 26;
r1 = x >> 31; r3 = x >> 27;
r2 = r2 | r1; r4 = r4 | r3;
y[7] = r2; y[0] = r4;

Pcode 2.14: Simulation code for Expand function of DES butterfly function f (.).

// void S_Box(unsigned char *y)

for(i = 0;i < 8;i++){
r1 = y[i];
r2 = r1 & 1; r3 = r1 >> 5;
r1 = r1 >> 1;
r1 = r1 & 0x0f; r3 = r3 << 5;
r2 = r2 << 4; r3 = r3 | r1;
r3 = r3 | r2;
r3 = i*64+r3;
r2 = sb[r3];
y[i] = r2;

}

Pcode 2.15: Simulation code for S-Box mixing in DES butterfly function f (.).

// unsigned long PermL(unsigned char *y)

tmp = 0; r2 = 0;
for(i = 0;i < 8;i++){

tmp = tmp << 4;
tmp = tmp | y[i]; // pack 4-bit words to 32-bit word

}
for(i = 0;i < 32;i++){

r2 = r2 << 1; r1 = tmp >> PermtL[i];
r1 = r1 & 1;
r2 = r2 | r1;

}
return r2;

Pcode 2.16: Simulation code for permutation in DES butterfly function f (.).

Permutation The permutation function of the DES butterfly function f (.) takes 32 bits of data as input and
outputs 32 bits as permuted data. The simulation code for the permutation operation of the butterfly function is
given in Pcode 2.16. We use the following shift values look-up table PermtL[] (the same as Table 2.2, which is
derived from Table 2.1) to perform the permutation operation.

PermtL[32]= {
16,25,12,11,3,20, 4,15,31,17,9, 6,27,14, 1,22,
30,24, 8,18,0, 5,29,23,13,19,2,26,10,21,28, 7};

DES Simulation Results
Input: p_data[], 64-bit plain text and des_key[], 64-bit encoded key

p_data[2]= {0x01122334, 0x45566778};
des_key[2]= {0x0f1e2d3c, 0x4b5a6978};

Data Security 33

Key Scheduler
PC-1 output: xx[], 56-bit or two 28-bit words (after removing check bits)

xx[2]= {0x00f0cca0, 0x330fffa0}; // left aligned

Left shifts output: yy[], two 28-bit words (after rotating 1 bit left)

yy[2]= {0x01e19940, 0x661fff40}; // left aligned

PC-2 output: zz[], eight 6-bit words

zz[8]= {0x1c, 0x03, 0x03, 0x24, 0x3a, 0x3d, 0x32, 0x38};

Key scheduler output: ks_key[], 128 6-bit words

ks_key[128]= {
0x1C,0x03,0x03,0x24,0x3A,0x3D,0x32,0x38,0x00,0x09,0x31,0x34,0x22,0x3F,0x3B,0x3A,
0x31,0x06,0x21,0x12,0x2F,0x1D,0x3C,0x31,0x09,0x2E,0x1C,0x20,0x26,0x34,0x39,0x36,
0x32,0x21,0x14,0x03,0x37,0x1E,0x2E,0x14,0x1A,0x18,0x09,0x19,0x2C,0x16,0x1B,0x1D,
0x01,0x1D,0x02,0x0A,0x3E,0x3B,0x0A,0x07,0x0C,0x20,0x27,0x12,0x2D,0x26,0x1E,0x2F,
0x04,0x25,0x28,0x11,0x0D,0x37,0x36,0x07,0x03,0x13,0x25,0x04,0x1B,0x22,0x07,0x37,
0x00,0x26,0x13,0x0D,0x39,0x3E,0x27,0x0F,0x16,0x14,0x14,0x20,0x19,0x29,0x1F,0x1B,
0x30,0x08,0x26,0x29,0x37,0x39,0x15,0x2F,0x24,0x1A,0x08,0x07,0x13,0x2D,0x3F,0x28,
0x08,0x11,0x3A,0x02,0x16,0x0F,0x35,0x3D,0x18,0x03,0x08,0x08,0x3B,0x0D,0x31,0x3D};

DES Cipher
DES state: des_state[], 64-bit data copied from p_data[]

des_state[2]= {0x01122334, 0x45566778};

Initial permutation output: des_state[], 64-bit permuted data

des_state[2]= {0xf0aa7855, 0x00cc8066};

DES Butterfly output: des_state[], 64-bit intermediate data after each iteration

des_state[2]= {0x00cc8066, 0xc9ed3c55}; // after first iteration
des_state[2]= {0xc9ed3c55, 0x8e6d9383}; // after second iteration
des_state[2]= {0x8e6d9383, 0xd42d8678}; // after third iteration
des_state[2]= {0xd42d8678, 0x67202012}; // after fourth iteration
des_state[2]= {0x67202012, 0xa319a3bc}; // after fifth iteration
des_state[2]= {0xa319a3bc, 0x80dd257e}; // after sixth iteration
des_state[2]= {0x80dd257e, 0x31ead8ed}; // after seventh iteration
des_state[2]= {0x31ead8ed, 0x38f0ff66}; // after eighth iteration
des_state[2]= {0x38f0ff66, 0xd10d67a6}; // after ninth iteration
des_state[2]= {0xd10d67a6, 0xcf0a862c}; // after tenth iteration
des_state[2]= {0xcf0a862c, 0x7dd727c4}; // after eleventh iteration
des_state[2]= {0x7dd727c4, 0xafceae47}; // after twelfth iteration
des_state[2]= {0xafceae47, 0xb9bdad67}; // after thirteenth iteration
des_state[2]= {0xb9bdad67, 0xcced41af}; // after fourteenth iteration
des_state[2]= {0xcced41af, 0x70cb25bd}; // after fifteenth iteration
des_state[2]= {0x70cb25bd, 0x1491f770}; // after sixteenth iteration

Pre-encrypted DES output: des_state[], 64-bit intermediate data

des_state[2]= {0x1491f770, 0x70cb25bd};

Final permutation output: des_state[], 64-bit output data

des_state[2]= {0x3e244e22, 0xd78fa536};

Output: c_data[], 64-bit cipher text

c_data[2]= {0x3e244e22, 0xd78fa536};

2.2.4 Computational Complexity of DES Algorithm

Most of the operations involved in the DES key scheduler, DES cipher and DES inverse cipher are bit operations
rather than byte or word operations and consume more cycles to run DES on the reference embedded processor
as we process all the data in terms of bits. For more details on clock cycle requirements for particular operations,
see Appendix A, Section A.4, on this book’s companion website.

34 Chapter 2

Complexity of DES Key Scheduler
Permutation Choice-1 In PC-1, we use a permutation table as shown in Table 2.3 to get a permuted key data
from input key data. We do not use Table 2.3 directly in the simulation of PC-1; however, using Pcode 2.8, we
generate the same outputs as the table values. We estimate the clock cycles requirement for PC-1 operation.
With the approach used to simulate PC-1, we have a nested loop in the program. The inner loop runs four times
and the outer loop runs two times. In these loops, we basically demultiplex the 64-bit input key into seven
8-bit words. From Pcode 2.8, to demultiplex 1 bit we perform four operations and that takes four cycles. We
consume 224(= 56∗ 4) cycles for 56 input key bits. For rearranging the demultiplexed bits to get the final two
28-bit words, we consume 18 cycles. We consume another 18 cycles in initialization, loading input key and for
removing check bits. With this, we consume about 260 cycles to perform the PC-1 operation.

Permutation Choice-2 The next big module in the DES key scheduler is permutation choice (PC) 2. The DES
standard, FIPS PUB 46-3, specifies another table for PC-2 functionality. In the simulation of PC-2 operation, we
use derived values from a standard table for extracting the permuted bit with a reference embedded processor.
The look-up values for PC-2 are generated by subtracting the standard table values from 32. In PC-2 simulation
as given in Pcode 2.9, we have two nested loops. For the inner loop, we consume five cycles. The inner loop runs
six times, and the outer loop, four times. Therefore, we consume a total of 128(= (6 ∗ 5+2)∗ 4) cycles in a single
nested loop. A total 256(= 2∗ 128) cycles for two nested loops are consumed in performing the PC-2 operation.
We perform the PC-2 operation 16 times in the DES key scheduler and we consume a total 4096(= 16 ∗ 256)

cycles.
Apart from permutations, the DES key scheduler performs left shifts of two 28-bit words and these operations

consume about 128(= 16∗ 8) cycles. With this, to run the DES key scheduler on the reference embedded
processor, we spend about 4484(= 260 +128+4096) cycles.

Complexity of DES Cipher
Now we discuss the complexity of the DES cipher module. In the DES cipher, we perform an initial permutation
(IP), a butterfly loop with f (.) function and a final permutation (FP). The complex part of the DES cipher is its
butterfly loop. The nonlinear butterfly function f (.) consists of three subfunctions, expand, S-Box mixing and
permutation.

Initial Permutation The operations IP (Pcode 2.12) for the cipher and PC-1 (Pcode 2.8) for the key scheduler
are almost similar and clock cycle consumption of IP is the same as that of PC-1. Therefore, about 260 clock
cycles are required to run IP on the reference embedded processor.

Final Permutation The FP operation consists of a nested loop with two inner loops as given in Pcode 2.13.
Each inner loop consumes 40 cycles. We consume a total of 346(= [2∗ 40+4]∗4+10) cycles in performing
the FP operation with a reference embedded processor.

Expand Function As given in Pcode 2.14, the simulation code of the expansion subfunction does not have any
dependencies and each operation consumes a single cycle. Therefore, the expansion subfunction consumes
a total of 28 cycles.

S-Box Mixing We use Pcode 2.15 for S-Box mixing to obtain 4-bit words from 6-bit words. We consume
12 cycles for obtaining a single 4-bit word and we consume about 96 cycles for obtaining eight 4-bit words.

Permutation The third subfunction of the butterfly function f (.) is a permutation operation. This operation is
costly in terms of cycle as it involves 32 bits permutation. In butterfly permutation, first we pack eight 4-bit
words to a 32-bit word and it takes 16 cycles. Then we use a look-up table to permute the 32-bit word. We
consume five cycles in getting 1 permuted bit. Therefore, we consume 160 cycles for permutation of 32 bits.
We consume a total of 176 cycles in performing the permutation operation.

With this, the total number of clock cycles required for the butterfly function is 300(= 28+96+176) cycles.
Apart from the butterfly function, we perform adding the key to the expanded input data and storing the temporary
data via swapping. These operations take 29 cycles. Therefore, in a single iteration of the DES cipher, we consume
329(= 300 +29) cycles to process the data. Now, for 16 iterations, we consume 5264(= 329 ∗ 16) cycles. With
this, the total number of cycles required to get a 64-bit cipher text from 64-bit plain text using the DES cipher

Data Security 35

is 5870(= 260 + 346 + 5264) cycles. As both the DES cipher and inverse cipher have the same flow, the DES
inverse cipher also consumes about the same number of cycles.

This clock cycles estimate is meaningful only when we interleave the program code (since many look-up
table accesses with immediate usage consume more than one cycle if we do not interleave the program code) in
implementation of the DES algorithm. Otherwise (i.e., without interleaving the program code), the cycle estimate
for the DES algorithm is much more than the previous estimated numbers. As the DES key scheduler does not
work in real time, we not discuss further about its optimization. In the next section, we discuss the optimization
techniques for DES cipher modules.

2.2.5 Efficient Implementation of DES Cipher

As discussed in the previous section, the DES cipher module consists of three steps. The first and last steps are
permutations and the middle step is the butterfly loop. The costliest step is the butterfly loop, which consumes
about 5264 clock cycles to encrypt or decrypt the data using an expanded key. In this section, we discuss the
efficient way of implementing the butterfly-loop function.

As discussed, the function f (.) in the butterfly loop consists of three steps: expansion, S-Box mixing and
permutation. As shown in Figure 2.5, after expanding 32-bit data (R[n − 1]) to 48-bit data and XORing with
keywords (K [n]), we have eight 6-bit words. In the S-Box mixing, we get eight 4-bit output words from eight 6-bit
input words. Then, we merge the eight 4-bit words to a single 32-bit word before permutation. The permutation
operation maps bits one-to-one from input 32-bit word to output 32-bit permuted word. This one-to-one mapping
of bits by the permutation operation gives us the scope for optimizing the butterfly loop. After careful observation,
the last two steps of S-Box mixing and permutation operation can be combined as follows. The following equation
is valid for S-Box mixing and permutation operations.

y = Si -Box[x]

z = P(y) = Mi [x]

Here Mi[x] contains the permuted values of Si -Box elements. We understand the meaning of the previous
equations with an example. Assume i = 1 and x = 48, then y is obtained from first S-Box and is equal to 15
(as we get second row and eighth column of S-Box from the value 110,000 [= 48] with the first and last bits
representing the row index and the middle 4 bits representing the column index). Now the value of z is obtained
by permuting the bits of value 15 (= 1111 in binary form). Here we know that i = 1 and hence the location
of bits in the merged 32-bit word are the first 4 bits (from left). According to the permutation table given in
Table 2.1, the 1st bit goes to the 9th position, the 2nd bit goes to the 17th position, the 3rd bit goes to the 23rd
position and the 4th bit goes to the 31st position in the permuted word. Therefore the permuted value z is equal
to 0x00808202 (0000 0000 1000 0000 1000 0010 0000 0010). If the value of x is the same (equal to 48) but the
S-Box number is different (i.e., i is other than one), then the value of z will be different from 0x00808202 as the
position of bits of y in the merged word occupy a position different from the first four positions.

We store the look-up table Mi [x] elements such that the elements are accessed linearly (that means, if x = 48,
then the corresponding element present in the look-up table Mi [x] is at the location with offset equal to 48).
Therefore, in this case, unpacking and packing of bits (to simulate as specified in the standard, like first and last
bit represents row index and middle 4 bits represents column index) is not needed to implement it. The elements
in Mi [x] are comprised of 32-bit words. If we want to permute all eight S-Box values in advance, then we need
2 kB (= 512∗ 4) of on-chip memory. The 512 elements of Mi [x] can be found on the companion website.

With this, the butterfly-loop flow can be viewed as eight independent parallel flows as shown in Figure 2.6.
The simulation code for efficient implementation of the DES butterfly loop is given in Pcode 2.17. In the first
step, we get expanded 6-bit words from an input 32-bit word for all eight paths. In the second step we XOR eight
expanded 6-bit words with eight 6-bit keywords. In the third step, we get permuted S-Box elements for all eight
paths by using eight XORed 6-bit values as offsets to the look-up table Mi [x]. Finally, we OR all eight paths’
32-bit words (which are orthogonal to each other with respect to bit-positionsfilled by placing four permuted bits)
to get one 32-bit word as the butterfly function f (.) output. In this approach, we have more scope to interleave

36 Chapter 2

E

M1 M2 M3 M4 M5 M6 M7 M8

E E E E E E E

Rn21

OR

6

6

6

6 6

6 6

6

6

6 6

6

6

6

6

6

32 32 32 32 32 32 32 32

32

32

Kn,1

6

Kn,2

6

Kn,3

6

Kn,4

6

Kn,5

6

Kn,6

6

Kn,7

6

Kn,8

6

f (Rn21, Kn)

Figure 2.6: Efficient implementation of DES butterfly flow.

j = 0;
for(i = 0;i < 16;i++){

r2 = des_state[1];
r1 = r2 << 31; tmp1 = r2 >> 1;
r1 = tmp1 | r1;
tmp1 = r1 >> 26;
tmp1 = tmp1^ks_key[j++];
tmp2 = M[tmp1];
for(k=1;k < 7;k++) {

r1 = r1 << 4;
tmp1 = r1 >> 26; // get 6-bit words
tmp1 = tmp1^ks_key[j++]; // XOR with key
tmp1 = tmp1 + 64*k; // get offset
tmp1 = M[tmp1];
tmp2 = tmp2 | tmp1;

}
r1 = r2 >> 31; tmp1 = r2 << 1;
r1 = r1 | tmp1;
tmp1 = r1 & 0x3f;
tmp1 = tmp1^ks_key[j++];
tmp1 = tmp1 + 64*7;
tmp1 = M[tmp1];
tmp2 = tmp2 | tmp1; r1 = des_state[0];
r1 = r1^tmp2;
des_state[0] = r2;
des_state[1] = r1;

}

Pcode 2.17: Simulation code for efficient implementation of DES loop.

the program code. Also, it is easy to distribute the workload to multiple ALUs of deep pipelined embedded
processor.

Now, we discuss the clock cycle consumption of the DES cipher with the suggested implementation of
the DES butterfly loop. As seen in Pcode 2.17, in the butterfly loop, we consume six cycles for all three
operations—expansion, S-Box mixing and permutation in paths 2 to 6, whereas in 1 and 8, we consume eight
cycles. Once we get f (R[n −1], K [n]), we update the left and right outputs of the butterfly as L[n] = R[n −1]
and R[n] = L[n − 1] ⊕ f (R[n − 1], K [n]). These operations consume about four cycles. We consume a total

Data Security 37

56 (= 6∗ 6 + 2∗ 8 + 4) cycles for one iteration of the butterfly loop. So, cycles required for the butterfly loop
total 896 (= 56∗ 16), whereas the original approach consumes 5624 cycles as discussed in the previous section.
As the suggested approach is easily extendable to multiple ALUs, the cycles’ consumption for the DES butterfly
loop on a four-ALU embedded processor is about 225 cycles. The same look-up table values and suggested
butterfly-loop implementation can also be used for DES inverse cipher.

2.3 Advanced Encryption Standard

The advanced encryption standard is the latest data security standard known as FIPS 197 (Federal Information
Processing Standard, 2001) adopted worldwide by most public and private sectors, for secure data communi-
cations and data storage purposes. The AES is used in a large variety of applications, from mobile consumer
products to high-end servers.

2.3.1 Introduction to AES Algorithm

The AES algorithm is a symmetric key algorithm, standardized by the National Institute of Science and Technol-
ogy (NIST) in 2001. The AES standard (Federal Information Processing Standard, 2001) specifies the Rijndael
algorithm that can process data blocks of 128 bits, using keys of 128-, 192-, or 256-bit length (and we call the
AES with particular key length AES-128, AES-192, and AES-256). The AES encipher (cipher) converts data
(plain text) to an unintelligible form (cipher text) using the cipher key, and the AES decipher (inverse cipher)
converts the cipher text back to plain text using the same cipher key. In AES, we use the same key (hence it is a
symmetric key algorithm) for both encryption and decryption. AES encryption and decryption are based on four
different transformations applied repeatedly in a certain sequence on input data and the flows of encryption and
decryption are not same. The AES standard also specifies a key expansion module to supply keys for multiple
iterations of the AES algorithm. Depending on input key length, the number of iterations (or complexity) of the
AES algorithm (including key expansion, encryption and decryption) will vary.

In this chapter, we discuss the flow of the AES algorithm and simulation of AES-128 key expansion, the
AES cipher, and the AES inverse cipher modules. In addition, we discuss the computational complexity of
AES and efficient techniques to implement the AES cipher and inverse cipher on the reference embedded
processor.

A few applications include data communications, data storage, Internet, military applications, classified data
management, and memory protection. Similar to the AES, the TDEA (triple data encryption algorithm) is used
in all applications mentioned previously (see Section 2.2). The strength of an encryption algorithm depends on
its mathematical properties and supported key lengths. The DES is a very old standard with less key space and
analysts thoroughly understood and attacked DES cipher text. Whereas AES was developed recently and its key
space is very large. No known attacks and no known weak keys exist for AES as of now.

2.3.2 AES Algorithm Description

The flow diagram of an AES encryption engine is shown in Figure 2.7. The main transformations in the AES
Rijndael’s cipher are (1) AddRoundKey (AR), (2) SubBytes (SB), (3) ShiftRows (SR), and (4) MixColumns
(MC). All these transforms work on a matrix called state that is formed using the input data. The AES state
is updated in multiple iterations using the previous transformations. The key expansion (KE) module expands
the given key for supplying the keys to all iterations of the AES cipher engine. The number of times the state
is iterated in a loop of the AES algorithm depends on what key length (Nk) we have chosen. For example, if
we choose the key length of 128 bits (i.e., Nk = 4 32-bit words), then we iterate the data (Nr −1) times, where
Nr = Nb + Nk +2 and Nb = 4. In the AES algorithm, the parameter Nb(= 4) corresponds to the number of rows
of state. AR transformation is applied before starting the loop. The transformations present within an AES loop
are SB, SR, MC, and AR. In addition, the transformations SB, SR, and AR are applied after the loop before
outputting the cipher text. We define each of these transformations in the following. For pictorial illustrations of
SB, SR, MC, and AR, please refer to Federal Information Processing Standards (2001).

38 Chapter 2

j , Nr2 1

PT

AR

SB SR MC AR

SB SR AR

CT

YES

NO

Kj

KEY

KE

(Nr1 1) Keys

KNr

K0

FS

GO

Figure 2.7: AES encryption engine.

The input to the AES algorithm is 128 bits (16-bytes) of plain text and a key of any following three lengths:
128 bits (or 16 bytes), 192 bits (or 24 bytes) or 256 bits (or 32 bytes). An overview of major steps in the AES
algorithm follows.

Form State (FS): At the start of the cipher, the input bytes in0, in1, . . . , in15 are copied into the state matrix as
Sr,c = inr+4c for 0 ≤ r < 4,0 ≤ c < 4. After FormState(), the elements Sr,c of AES state are given here.⎡

⎢⎢⎣
S00 S01 S02 S03

S10 S11 S12 S13

S20 S21 S22 S23

S30 S31 S32 S33

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

in0 in4 in8 in12

in1 in5 in9 in13

in2 in6 in10 in14

in3 in7 in11 in15

⎤
⎥⎥⎦

Get Output (GO): Reverse operation of FS.
Key Expansion (KE): The key expansion module generates a total of Nb(Nr +1) keywords, as the AES algo-

rithm requires that many keywords to encrypt the data. As shown in Figure 2.7, we expand the given key
with the key expansion module before processing data with the AES algorithm. More details of AES key
expansion is given in Section 2.3.3, AES-128 Key Expansion Simulation, and in Section 2.3.4, Complexity
of AESKeyExp().

Add Round Key (AR) Transformation: In add round key transformation, 4Nb 8-bit keywords are added to
the state by a simple bit-wise XOR operation. For 0 ≤ i ≤ Nr , Sr,c = Sr,c ⊕ K16i+4r+c where, 0 ≤ c < 4 and
0 ≤ r < Nb .

Substitution Bytes (SB) Transformation: The substitution bytes transformation is a nonlinear byte substitu-
tion operation that operates independently on each byte of the state using the substitution table. In SB, we
simply replace the state elements with the S-Box elements using state element as an offset to S-Box table.
The AES algorithm substitution tables for the AES cipher (S-Box) and AES inverse cipher (inverse S-Box)
are available on the companion website.

Shift Rows (SR) Transformation: In the shift rows transformation, the byte positions in the last three rows of
the state are cyclically shifted (to the left in the case of encryption and to the right in the case of decryption)
by different number of offsets. The first row, r = 0 is not shifted. The shift offset value depends on the row
number r as follows:

shift(r = 0) = 0, shift(r = 1) = 1, shift(r = 2) = 2 and shift(r = 3) = 3

Data Security 39

Mix Columns (MC) Transformation: Mix columns transformation operates on the states column-by-column
treating each column as a four element vector: S’i = A · Si , where

Si =

⎡
⎢⎢⎣

si,0

si,1

si,2

si,3

⎤
⎥⎥⎦, for encryption A =

⎡
⎢⎢⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥⎥⎦ and for decryption A =

⎡
⎢⎢⎣

0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e

⎤
⎥⎥⎦

For details on the computation process of MC transformation, see the following Section 2.3.4, Complexity of
MixColumns().

2.3.3 AES-128 Simulation

With the AES-128 algorithm,we use 128-bit-length keys. We initialize the parameters for the AES-128 algorithm
as Nk = 4 (number of 32-bit input keywords), Nb = 4 (number of state rows) and Nr = 10 (= Nb + Nk + 2),
the number of iterations in the AES loop. In the following sections, we simulate the AES-128 key expansion
module and the AES-128 cipher and inverse-cipher transformations.

AES-128 Key Expansion Simulation
The AES-128 algorithm uses a total of 176(= 4 · (Nr + 1) · Nk) bytes of key in the encryption or decryption
process. We expand the given 16 bytes (or 128 bits) of input key to 176 bytes for the AES algorithm. The
simulation code of key expansion module AESKeyExp() for AES-128 algorithm is given in Pcode 2.18. We
discuss more details on AESKeyExp() module in Section 2.3.4, Complexity of AESKeyExp().

For a given 128-bit (or 16 bytes) input key, an expanded key of 44 words (or 176 bytes) generated with
AESKeyExp() module follows:

AES-128 Key Expansion Module Input
key[4]= {
0x47f11a71, 0x1d29c589, 0x6fb7620e, 0xaa18be1b};

i = 0; // key expansion array index
while (i < pAes->Nk){
exp_key[i] = key[i]; // the first Nk words of key expansion is same as input key
i++;

}
k = pAes->Nb * (pAes->Nr + 1);// loop count
j = 0;
temp = exp_key[i-1]; // at this point, i = Nk,
while (i < k){ // this while loop code generates 4 key words in one iteration
Rc = temp << 8; // substitute bytes + shift rows transformations
Rc = Rc >> 24;
w = S_Box[Rc]; Rc = temp << 16;
w = w << 8; Rc = Rc >> 24;
w = w | S_Box[Rc]; Rc = temp & 0xff;
w = w << 8;
w = w | S_Box[Rc]; Rc = temp >> 24;
w = w << 8;
w = w | S_Box[Rc]; Rc = Rcon[j++];
Rc = Rc << 24;
temp = w ^ Rc; w = exp_key[i-pAes->Nk];
temp = temp ^ w; w = exp_key[i-pAes->Nk];
exp_key[i++] = temp; temp = temp ^ w;
exp_key[i++] = temp; w = exp_key[i-pAes->Nk];
temp = temp ^ w; w = exp_key[i-pAes->Nk];
exp_key[i++] = temp; temp = temp ^ w;
exp_key[i++] = temp;

}

Pcode 2.18: Simulation code for AESKeyExp() module.

40 Chapter 2

AES-128 Key Expansion Module Output
exp_key[44]= {
0x47f11a71, 0x1d29c589, 0x6fb7620e, 0xaa18be1b, 0xeb5fb5dd, 0xf6767054,
0x99c1125a, 0x33d9ac41, 0xdcce361e, 0x2ab8464a, 0xb3795410, 0x80a0f851,
0x388fe7d3, 0x1237a199, 0xa14ef589, 0x21ee0dd8, 0x1858862e, 0x0a6f27b7,
0xab21d23e, 0x8acfdfe6, 0x82c60850, 0x88a92fe7, 0x2388fdd9, 0xa947223f,
0x02557d83, 0x8afc5264, 0xa974afbd, 0x00338d82, 0x81086ee0, 0x0bf43c84,
0xa2809339, 0xa2b31ebb, 0x6c7a84da, 0x678eb85e, 0xc50e2b67, 0x67bd35dc,
0x0dec025f, 0x6a62ba01, 0xaf6c9166, 0xc8d1a4ba, 0x05a5f6b7, 0x6fc74cb6,
0xc0abddd0, 0x087a796a};

AES Cipher Simulation
As discussed in Section 2.3.2, AES Cipher consists of four transformations, and we use the following func-
tion names for each transformation: SubBytes() for substitute bytes transformation, ShiftRows() for shift
rows transformation, AddRoundKey() for add round key transformation and MixColumns() for mix column
transformation.

AddRoundKey() In add round key transformation, we add 16 key bytes to 16 bytes of AES state. The addition
operation is modulo 2 addition and we simulate this operation by XORing key bytes with state bytes as given
in Pcode 2.19. As the expanded key exp_key[] from AESKeyExp() module is in terms of 32-bit words, we
unpack exp_key[] words into bytes and add to state.

SubBytes() In simulation of SubBytes() transformation, we replace each AES state byte with S-Box element
as given in Pcode 2.20.

ShiftRows() transformation rotates AES state rows to the left by a particular number of bytes depending on
the row number. The simulation code for the ShiftRows() transformation is given in Pcode 2.21. As the state
elements are represented with bytes, we simulate the shift rows transformation in terms of load and store
bytes rather with a logical cyclic shift of 32-bit words.

MixColumns() In the MixColumns() transformation, we multiply each column of state with the matrix A for
encryption process as specified in Section 2.3.2. In this process, we multiply each state byte with 0x02 by
performing a Galois field multiplication in GF(28). More details on the MixColumns() transformation is
given in Section 2.3.4, Complexity of MixColumns(). The simulation code for MixColumns() is given in
Pcode 2.22.

for(j = 0;j < 4;j++){
tmp1 = exp_key[k++];
tmp2 = tmp1 >> 24;
state[0][j] = t[0][j]^tmp2; tmp2 = (tmp1 & 0x00ff0000) >> 16;
state[1][j] = t[1][j]^tmp2; tmp2 = (tmp1 & 0x0000ff00) >> 8;
state[2][j] = t[2][j]^tmp2; tmp2 = tmp1 & 0xff;
state[3][j] = t[3][j]^tmp2;

}

Pcode 2.19: Simulation code for AddRoundKey() transformation.

for(j = 0;j < 4;j++)
for(i = 0;i < 4;i++)

state[j][i] = S_Box[state[j][i]];

Pcode 2.20: Simulation code for SubBytes() transformation.

for(j = 1;j < 4;j++)
for(i = 0;i < j;i++){

tmp1 = state[j][0]; tmp2 = state[j][1];
state[j][0] = tmp2; tmp2 = state[j][2];
state[j][1] = tmp2; tmp2 = state[j][3];
state[j][2] = tmp2;
state[j][3] = tmp1;

}

Pcode 2.21: Simulation code for ShiftRows() transformation.

Data Security 41

AESCipher() The simulation code for AES cipher algorithm is given in Pcode 2.23. AES cipher uses all the
transformations discussed previously along with FormState() and GetOutput() operations.

for(j = 0;j < 4;j++)
for(i = 0;i < 4;i++){ // Premultiplication of State bytes with 0x02

tmp1 = state[j][i];
tmp2 = tmp1 >> 7; tmp1 = tmp1 << 1;
if (tmp2)
tmp1 = tmp1^0x1b;
s[j][i] = tmp1;

}
for(i = 0;i < 4;i++){

t[0][i] = s[0][i]^(s[1][i]^state[1][i])^state[2][i]^state[3][i];
t[1][i] = state[0][i]^s[1][i]^(s[2][i]^state[2][i])^state[3][i];
t[2][i] = state[0][i]^state[1][i]^s[2][i]^(s[3][i]^state[3][i]);
t[3][i] = (s[0][i]^state[0][i])^state[1][i]^state[2][i]^s[3][i];

}

Pcode 2.22: Simulation code for MixColumns() transformation.

k = 0; // offset to access expanded key
FormState();
AddRoundKey();
for (r = 1; r < 10; r++){

SubBytes();
ShiftRows();
MixColumns();
AddRoundKey();

}
SubBytes();
ShiftRows();
AddRoundKey();
GetOutput();

Pcode 2.23: Simulation code for AESCipher().

AES-128 Encryption Simulation Results
Key:
{0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b}
Plain text:
{0x9f, 0x5d, 0xbd, 0x6e, 0x43, 0xef, 0xc4, 0xa6, 0x39, 0xa8, 0x31, 0xa4, 0xd3, 0x37, 0xf2, 0x8b}
After FormState():
{{0x9f, 0x43, 0x39, 0xd3}, {0x5d, 0xef, 0xa8, 0x37}, {0xbd, 0xc4, 0x31, 0xf2}, {0x6e, 0xa6, 0xa4, 0x8b}}
After AddRoundKey():
{{0xd8, 0x5e, 0x56, 0x79}, {0xac, 0xc6, 0x1f, 0x2f}, {0xa7, 0x01, 0x53, 0x4c}, {0x1f, 0x2f, 0xaa, 0x90}}

//Loop Start
r=1 (input):
{{0xd8, 0x5e, 0x56, 0x79}, {0xac, 0xc6, 0x1f, 0x2f}, {0xa7, 0x01, 0x53, 0x4c}, {0x1f, 0x2f, 0xaa, 0x90}}
r=1 (after substitute bytes):
{{0x61, 0x58, 0xb1, 0xb6}, {0x91, 0xb4, 0xc0, 0x15}, 0x5c, 0x7c, 0xed, 0x29}, {0xc0, 0x15, 0xac, 0x60}}
r=1 (after shift rows):
{{0x61, 0x58, 0xb1, 0xb6}, {0xb4, 0xc0, 0x15, 0x91}, {0xed, 0x29, 0x5c, 0x7c}, {0x60, 0xc0, 0x15, 0xac}}
r=1 (after Mix Columns):
{{0x88, 0x02, 0x0f, 0x0f}, {0x5e, 0x78, 0x6a, 0xa7}, {0xb4, 0x91, 0x23, 0x30}, {0x3a, 0x9a, 0xab, 0x6f}}
r=1 (after add round key):
{{0x63, 0xf4, 0x96, 0x3c}, {0x01, 0x0e, 0xab, 0x7e}, {0x01, 0xe1, 0x31, 0x9c}, {0xe7, 0xce, 0xf1, 0x2e}}
r=2 (input):
{{0x63, 0xf4, 0x96, 0x3c}, {0x01, 0x0e, 0xab, 0x7e}, {0x01, 0xe1, 0x31, 0x9c}, {0xe7, 0xce, 0xf1, 0x2e}}
r=3 (input):
{{0x21, 0xa3, 0x71, 0x90}, {0x1b, 0x2e, 0x1b, 0x01}, {0xa0, 0x9b, 0x49, 0x7c}, {0x06, 0x1f, 0x39, 0xaa}}
r=4 (input):
{{0x1d, 0x93, 0x58, 0x0d}, {0xf1, 0x27, 0xee, 0xe5}, {0xb2, 0x95, 0xaa, 0xdc}, {0x86, 0xe6, 0x70, 0xe7}}
r=5 (input):
{{0x3c, 0x13, 0xb6, 0xbc}, {0x04, 0x36, 0x35, 0x6e}, {0x0a, 0x08, 0x86, 0x0e}, {0x8a, 0xee, 0x69, 0xad}}
r=6 (input):
{{0x91, 0x06, 0x4a, 0xa7}, {0x7e, 0x7b, 0x62, 0x74}, {0xca, 0x0b, 0x9a, 0xc5}, {0x06, 0xa1, 0xa3, 0xbb}}

42 Chapter 2

r=7 (input):
{{0x2a, 0x78, 0xf5, 0x97}, {0xaf, 0x42, 0x33, 0xe5}, {0x93, 0x71, 0x55, 0x6a}, {0x4d, 0x07, 0x5e, 0xaa}}
r=8 (input):
{{0x74, 0xd7, 0x1c, 0xd9}, {0x06, 0x30, 0x75, 0x6f}, {0xab, 0x79, 0x5b, 0x5a}, {0x47, 0x47, 0x9c, 0x52}}
r=9 (input):
{{0x66, 0xd9, 0xc7, 0xd4}, {0xab, 0xd8, 0xdf, 0x49}, {0x60, 0xb7, 0x20, 0x61}, {0x4a, 0x34, 0x49, 0xfd}}
//Loop end

//After Loop
{{0x2b, 0x80, 0xbd, 0x6c}, {0x8b, 0x8c, 0xaf, 0x86}, {0xd9, 0xb5, 0xff, 0x8a}, {0x74, 0x98, 0xec, 0xdf}}
After SubBytes():
{{0xf1, 0xcd, 0x7a, 0x50}, {0x3d, 0x64, 0x79, 0x44}, {0x35, 0xd5, 0x16, 0x7e}, {0x92, 0x46, 0xce, 0x9e}}
After ShiftRows():
{{0xf1, 0xcd, 0x7a, 0x50}, {0x64, 0x79, 0x44, 0x3d}, {0x16, 0x7e, 0x35, 0xd5}, {0x9e, 0x92, 0x46, 0xce}}
After AddRoundKey():
{{0xf4, 0xa2, 0xba, 0x58}, {0xc1, 0xbe, 0xef, 0x47}, {0xe0, 0x32, 0xe8, 0xac}, {0x29, 0x24, 0x96, 0xa4}}
Cipher text after GetOutput():
{0xf4, 0xc1, 0xe0, 0x29, 0xa2, 0xbe, 0x32, 0x24, 0xba, 0xef, 0xe8, 0x96, 0x58, 0x47, 0xac, 0xa4}

AES Inverse Cipher Simulation
The AES inverse cipher consists of four transformations that are inverse operations of the AES cipher transfor-
mation and we use the following function names for each transformation: InvSubBytes() for inverse substitute
byte transformation, InvShiftRows() for inverse shift rows transformation, InvAddRoundKey() for inverse add
round key transformation and InvMixColumns() for inverse mix columns transformation. The functionality of
inverse substitute bytes and inverse add round key transformations are the same as cipher substitute bytes and
add round key transformations except that the look-up table values and order of accessing keyword values are
different in the two cases. Although the same expanded key is used for both cipher and inverse cipher, in the
case of cipher the keywords are accessed from the beginning of the expanded array by increasing the array index
and in the case of inverse cipher the keywords are accessed from the end of the array by decreasing the array
index. Then, both the shift rows and mix columns transformations of cipher and inverse cipher are inversely
related.

InvAddRoundKey() Same as AddRoundKey(), but the keywords are accessed from the end of the key
expansion array.

InvSubBytes() This is the same as SubBytes(), but it uses Inv_S_Box[] instead of S_Box[].

InvShiftRows() In the InvShiftRows() transformation, we rotate the state rows to the right by a particu-
lar number of bytes depending on the row number. The simulation code for InvShiftRows() is given in
Pcode 2.24. As the state elements are represented with bytes throughout our simulation, we simulate this
inverse shift rows transformation in terms of load and stores bytes rather with logical cyclic shift of 32-bit
words.

InvMixColumns() transformation is the costly transformation in the AES algorithm. It involves multiplica-
tion of state bytes with 0x09, 0x0b, 0x0d, and 0x0e element combinations in the Galois field GF(28). The
simulation code for InvMixColumns() is given in Pcode 2.25.

InvAESCipher() The simulation code for the AES inverse cipher algorithm is given in Pcode 2.26. The AES
inverse cipher uses all the transformations discussed previously along with FormState() and GetOutput()
operations.

for(j = 1;j < 4;j++)
for(i = 0;i < j;i++){

tmp1 = state[j][3]; tmp2 = state[j][2];
state[j][3] = tmp2; tmp2 = state[j][1];
state[j][2] = tmp2; tmp2 = state[j][0];
state[j][1] = tmp2;
state[j][0] = tmp1;

}

Pcode 2.24: Simulation code for InvShiftRows() transformation.

Data Security 43

for(j = 0;j < 4;j++)
for(i = 0;i < 4;i++){ // multiply with 0x02

tmp1 = t[j][i];
tmp2 = tmp1 >> 7; tmp1 = tmp1 << 1;
if (tmp2)

tmp1 = tmp1^0x1b;
s[j][i] = tmp1;

}
for(j = 0;j < 4;j++)

for(i = 0;i < 4;i++){ // multiply with 0x04
tmp1 = s[j][i];
tmp2 = tmp1 >> 7; tmp1 = tmp1 << 1;
if (tmp2)

tmp1 = tmp1^0x1b;
ss[j][i] = tmp1;

}
for(j = 0;j < 4;j++)

for(i = 0;i < 4;i++){ // multiply with 0x08
tmp1 = ss[j][i];
tmp2 = tmp1 >> 7; tmp1 = tmp1 << 1;
if (tmp2)

tmp1 = tmp1^0x1b;
sss[j][i] = tmp1;

}
for(i = 0;i < 4;i++){

state[0][i] = (sss[0][i]^ss[0][i]^s[0][i])^(sss[1][i]^s[1][i]^t[1][i])^
(sss[2][i]^ss[2][i]^t[2][i])^(sss[3][i]^t[3][i]);

state[1][i] = (sss[0][i]^t[0][i])^(sss[1][i]^ss[1][i]^s[1][i])^
(sss[2][i]^s[2][i]^t[2][i])^(sss[3][i]^ss[3][i]^t[3][i]);

state[2][i] = (sss[0][i]^ss[0][i]^t[0][i])^(sss[1][i]^t[1][i])^
(sss[2][i]^ss[2][i]^s[2][i])^(sss[3][i]^s[3][i]^t[3][i]);

state[3][i] = (sss[0][i]^s[0][i]^t[0][i])^(sss[1][i]^ss[1][i]^t[1][i])^
(sss[2][i]^t[2][i])^(sss[3][i]^ss[3][i]^s[3][i]);

}

Pcode 2.25: Simulation code for InvMixColumns() transformation.

k = 40; // offset to access expanded key
FormState();
k-= 8;
AddRoundKey();
for (r=1; r < 10; r++){

InvShiftRows();
InvSubBytes();
InvAddRoundKey();
InvMixColumns();
k-= 8;

}
InvShiftRows();
InvSubBytes();
InvAddRoundKey();
GetOutput();

Pcode 2.26: Simulation code for InvAESCipher().

AES Inverse-Cipher Simulation Results
As the inverse AES cipher works in the reverse order as AES cipher, the simulation results presented in
Section 2.3.3, AES-128 Encryption Simulation Results, can be obtained in reverse order using the inverse
AES cipher. Therefore, the same intermediate outputs given in this section can be used to debug the AES inverse
cipher.

2.3.4 Computational Complexity of AES

In this section, we analyze AES algorithm complexity for implementing on the reference embedded processor.
We discuss the complexity of each transformation in terms of cycles (see Appendix A, Section A.4, on the

44 Chapter 2

companion website for cycles’ consumption by a particular operation on the reference embedded processor) and
data memory usage. Although the transformations AddRoundKey (AR) and ShiftRows (SR) can be computed
with fewer cycles by treating the AES state data as 32-bit words (simply XORing word by word for AR
transformation and shifting each word cyclically by a particular offset for the SR transform), the other two
transformations SubBytes (SB) and MixColumns (MC) work with bytes only, hence we work with bytes in all the
transformations.

Complexity of SubBytes()
In the SB transform, each byte of state is updated with the look-up table value by using the state byte value as
the offset for the look-up table. Basically SB transform involves only look-up table access. With a reference
embedded processor, though, the look-up table access takes multiple cycles per byte load; as we are not using
the output immediately, we can load each byte by consuming two cycles (one cycle for computing the absolute
address and one cycle for memory load) with program code interleaving. For updating all 16 bytes of state with
the SB transform, we consume a total of 32 cycles.

Complexity of ShiftRows()
In the SR transform, every row of state is rotated left cyclically except the zeroth row. The amount of rotation
for the first row is one byte, for the second row is two bytes and for the third row is three bytes. This is achieved
(without cyclic shifts) by loading the first byte to a temporary variable, and then loading the next location byte
and storing that to the current byte location as given in Pcode 2.21 of shift rows transformation simulation
code. Like in SB, here also we are not using the loaded value immediately. So, we can do this shifting of row
left by 1 byte in eight cycles. For the second row, we have to shift 2 bytes left, by applying the previously
described procedure twice, which consumes 16 cycles. Finally, in the third row, we have to shift 3 bytes left,
by one right shift of the third row. This takes another eight cycles. The SR transform consumes a total of
32 cycles.

Complexity of MixColumns()
The MC transformation is the costliest operation in the AES algorithm as MC transform involves costly Galois
field element multiplications. Now we discuss the MC transformation steps and then we estimate its cycle
consumption. First, we understand the process of two Galois field elements’ multiplication. If we want to
multiply two Galois field elements {0x07} and {0xab}, we use the approach described in AES standard FIPS
197. The field element {0x07} can be written as {0x04⊕0x02 ⊕0x01}. Then Galois field multiplication can be
expanded as {0x07} · {0xab} = {{0x04} · {0xab} ⊕ {0x02} · {0xab} ⊕ {0xab}}. If we want to multiply any field
element {0xmm} with {0x02} and if the MSB of {0xmm} is zero, one left shift of {0xmm} results in value
{0xmm} · {0x02}. If the MSB of {0xmm} is not zero, then one left shift of value {0xmm} along with XORing of
the result with {0x1b} is needed to make the multiplication result belongs to Galois field GF(28). This process
is equivalent to taking of modulo by dividing the multiplications result with irreducible polynomial specified in
the standard. If we want to multiply {0x04} · {0xmm}, we repeat the previous procedure twice.

In the AES cipher MC transform, we multiply the matrix A with a vector to get the transformed output. The
Galois field elements present in the matrix are {0x01}, {0x02} and {0x03}. Multiplying any Galois field element
by {0x01} results in the same element. Multiplying any Galois field element by {0x02} is done as described
previously. Multiplying any Galois field element {0xmm} by {0x03} is done by first multiplying the element with
{0x02} and then XORing the result with the original value as ({0x02} · {0xmm})⊕{0xmm}.

With this knowledge, we can simulate the MC transform as follows. First, we multiply all the state elements
by {0x02}. Multiplying one state element by {0x02} takes approximately 10 cycles: one load (requires four
cycles, including the stall, as we immediately use the loaded value in the next operation), one shift, one condition
check, one XOR, one conditional move and one store. So, we spend a total of 160 cycles to multiply all the
state elements with {0x02} and store in a temporary buffer. The multiplication of state elements with {0x03} is
done by XORing the result of {0x02} multiplication output with the original state elements. Once we have the
multiplication of state elements by {0x02}, then computing the MC transform involves only XOR operations as
given in Pcode 2.22. To compute one MC transform output element, we calculate a total of four XOR operations
(four cycles) and five load operations (five cycles assuming the program can be interleaved; otherwise it takes

Data Security 45

20 cycles). For all elements of state we consume 144 cycles (= 16x9). To store all the state elements back to
state we consume another 16 cycles. With this, the total number of cycles consumed in applying MC transform
on state is 320 cycles.

Complexity of AddRoundKey()
In the AR transform, we first load the keyword from memory (four cycles) and we unpack the word into bytes
(six cycles). We load the four state bytes row-wise (a minimum of eight cycles are needed after interleaving
the program code) and XOR with the key bytes (four cycles) and store them back to state (four cycles). So, in
applying AR transform for one row of state, we spend approximately 26 cycles, and for complete AR transform
on four rows of state we spend 104 cycles.

Overall Complexity of AES Cipher
Total cycles consumed for all the transforms in a single iteration of the AES cipher loop sum up to 488 cycles. For
the key length of 128 bits, the AES cipher loop iterates nine times. Thus, the approximate number of cycles for
encrypting one block of 128 bits of data using the AES cipher is about 5000 cycles (= 488x9+cycles consumed
by all transforms before and after the loop).

Inverse AES Cipher Computational Complexity
In the case of the AES inverse cipher, except the inverse MC transformation, all other transforms takes the
same number of cycles as the cipher transformations. In inverse MC transform, the matrix elements are {0x0d},
{0x0e}, {0x0b}, and {0x09}, and to multiply the state elements with these matrix elements, we need to store
multiplication results of {0x08} and {0x04} elements in temporary buffers apart from the {0x02} multiplication
result (as we may expand {0x0d} as {0x08 ⊕ 0x04 ⊕ 0x01} to perform multiplication of the state element with
{0x0d}). Generation of multiplication outputs for {0x08} and {0x04} elements with each state element take an
extra 320 cycles per loop iteration. Also, inverse MC multiplications take an extra 48 cycles per iteration (as the
multipliers in this case are large and need more XOR and load operations, as given in Pcode 2.25). With this, the
AES inverse cipher loop consumes approximately 856 cycles. So, the approximate total number of cycles for
decrypting one block of 128 bits of data using the AES inverse cipher with the reference embedded processor is
8000 cycles (= 856x9+ cycles consumed by the transforms before and after the loop).

Complexity of AESKeyExp()
Now, we discuss the complexity of AES key expansion module in expanding a 128-bit key. As given in Pcode 2.18,
the expanded key first four keywords are copied from the input key and it takes eight cycles for load and store of
keywords. The loop of the AES key expansion module is unrolled partially so that each iteration of the “while”
loop generates four keywords by avoiding conditional jumps. With this, the loop count for 128-bit key expansion
becomes 10 (= Nb ·Nr/4 = 4∗ 10/4). For generating the first keyword in each iteration of the while loop, from
the previous keywords, we perform the transformations, namely, substitute word and rotate word left and then we
XOR the result with Rcon. These operations consume 36 cycles (six cycles for unpacking the previous keyword,
16 cycles for loading four S-Box values, four cycles for loading Rcon constant, four cycles for packing the
bytes and four cycles for XORing with Rcon and for other operations). The operations substituting word, rotate
word, and XORing with Rcon need not be performed in generating the last three keywords in any iteration of the
“while” loop. Then, before storing each word as a keyword, we XOR the current word with the already generated
keyword. This operation of XORing the current four words with the previously generated four keywords and
storing XORed outputs consumes about 24 cycles (16 cycles for loading the previous four keywords, four cycles
for XORing and four cycles for storing). With this, total cycles consumed for generation of four keywords in a
single iteration of the key expansion loop are 60 (= 36+24). For generating all keywords with the key expansion
module, we consume approximately 608 (= 60x10 +8) cycles.

AES Algorithm Memory Requirements
In this section, we analyze the amount of data memory used in the AES algorithm. In key expansion, we used
176 bytes for storing expanded key, and 10 bytes for storing the Rcon constants. Both key expansion and AES
cipher use the S-Box values and we need 256 bytes of data memory for storing S-Box values. The AES inverse
cipher uses inverse S-Box and it needs another 256 bytes of data memory. We use almost 100 bytes of data

46 Chapter 2

memory for input, output, state and for temporary buffers to store Galois field multiplication results. With this,
the total amount of data memory used in the AES algorithm is about 0.75 kB.

2.3.5 Efficient Implementation of AES

In the previous section, we discussed the complexity of the AES algorithm in terms of reference embedded
processor clock cycles. The key expansion module consumes approximately 600 cycles and the key expan-
sion need not be done in real time as encryption of the data. Moreover, the key expansion module need
not be called for every data block. Therefore, we are not going to discuss the optimization techniques for
the key expansion module in this section. Next, the transforms used in the AES algorithm before and after
the main loop are occurring once per block of data. The costly part of the AES algorithm is the main loop
that runs Nb + Nk + 1 times. In this section, we discuss the ways to optimize the transformations in the AES
main loop.

The main loop of the AES algorithm contains SB, SR, MC, and AR transformations. All of these trans-
formations take input data from the previous transformation’s output. On a deep pipelined processor such as a
reference embedded processor, implementing this sequential flow of the AES algorithm as it is takes lot of cycles,
as discussed in the previous section. If we optimize the algorithm for reduced dependencies in its flow, only then
can we utilize full bandwidth and resources of an embedded processor (with multiple arithmetic and logic units)
and then the algorithm consumes less cycles. Therefore, in this section, we concentrate on restructuring the AES
algorithm for parallel flow to utilize the full bandwidth of the processor.

Now, we discuss how to make the AES algorithm suitable for running on deep pipelined multiple ALU
embedded processors. If we can somehow make the process of getting 16 output elements of state at the end of
a loop iteration from 16 bytes of state at the beginning of the loop without any dependency between the outputs
to the inputs (i.e., having 16 parallel independent flows for a full iteration of the loop), then we can efficiently
program such a flow on a deep pipeline embedded processor. The present flow of the AES algorithm is shown
in Figure 2.8 with dependencies. If any transformation has cross-inputs or cross-outputs, then there will be a
dependency between the transformations as we wait for all the inputs to become available for starting the next
transformation. From Figure 2.8, we can clearly see the dependency between SB and SR, SR and MC, and
MC and AR. There is no dependency between AR and SB, as the inputs or outputs of these transforms are not
crossed.

Efficient Implementation of AES Algorithm
The transformations SB and SR are commutative (Federal Information Processing Standards, 2001), meaning
the outputs of both functions SR(SB(state)) and SB(SR(state)) are the same. Out of all transformations, MC
transformation is the most costly. We can reduce the cycles for this transformation at the cost of memory. In
Daemen and Rijmen (2000), an alternative approach is suggested for fast implementation of AES using 4 kB
of data memory. In this approach, instead of computing the intermediate Galois field multiplication values at
runtime for performing MC, we precompute the multiplication values for all 255 S-Box elements with all rotated
combinations of MC matrix first-row elements and store them in a data memory. In Gladman (2003), with three
extra rotate operations, the memory required for fast implementation of AES had been reduced to 1 kB. Here,
we precompute the S-Box elements’ multiplied values for one row of elements in the MC matrix and store them
in memory using 1 kB of data memory. With the precomputed multiplication values, we spend the cycles in MC
transformation for loading the multiplication values, for rotations and for XORing them with the input of MC.
An efficient flow for the AES-algorithm loop transformations with precompution look-up tables is possible with
the following formula:

T = AR(MC(SB(SR(S)))), where S: input state, T : output state

Figure 2.9 shows the efficient implementation of the previous equation. Let M be the mix column matrix
elements, S the input vector, and S ′ the output of mix columns transformation.

Data Security 47

S00 S10 S20 S30 S01 S11 S21 S31 S02 S12 S22 S32 S03 S13 S23 S33

AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR

SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB

MC MC
MC

AR

T00 T10 T20 T30 T01 T11 T21 T31 T02 T12 T22 T32 T03 T13 T23 T33

SB

S00 S10 S20 S30 S01 S11 S21 S31 S02 S12 S22 S32 S03 S13 S23 S33

S00 S10 S20 S30 S01 S11 S21 S31 S02 S12 S22 S32 S03 S13 S23 S33

S00 S10 S20 S30 S01 S11 S21 S31 S02 S12 S22 S32 S03 S13 S23 S33

MC

SR SRSR SR

Figure 2.8: Flow of AES cipher algorithm transformations.

S ′ = M · S⎡
⎢⎢⎣

s ′
0

s ′
1

s ′
2

s ′
3

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

m0 m1 m2 m3

m3 m0 m1 m2

m2 m3 m0 m1

m1 m2 m3 m0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

s0

s1

s2

s3

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

m0

m3

m2

m1

⎤
⎥⎥⎦ · s0 ⊕

⎡
⎢⎢⎣

m1

m0

m3

m2

⎤
⎥⎥⎦ · s1 ⊕

⎡
⎢⎢⎣

m2

m1

m0

m3

⎤
⎥⎥⎦ · s2 ⊕

⎡
⎢⎢⎣

m3

m2

m1

m0

⎤
⎥⎥⎦

We precompute Li for 0 ≤ i ≤ 3 (Galois field multiplication, · , of si with first column of M) as follows, and
store it in memory.

Li = {m0} · si | {m3} · si | {m2} · si | {m1} · si

Now, to compute the mix column transformation for one column of state, we load Li for 0 ≤ i ≤ 3 from
memory corresponding to si . Next, we get L ′

i from Li by rotating Li to the right by i bytes. Then, we obtain s ′
i

by XORing all Lis as follows:
s ′

i = L ′
0 ⊕ L ′

1 ⊕ L ′
2 ⊕ L ′

3

where

L ′
0 = {m0} · s0|{m3} · s0|{m2} · s0|{m1} · s0

L ′
1 = {m1} · s1|{m0} · s1|{m3} · s1|{m2} · s1

L ′
2 = {m2} · s2|{m1} · s2|{m0} · s2|{m3} · s2

L ′
3 = {m3} · s3|{m3} · s3|{m2} · s3|{m1} · s3

48 Chapter 2

S11 S22 S33S00

K12

L0L1 L2 L3

T30

K8

L1L2 L3 L0

T20

K4

L2L3 L0 L1

T10

K0

L3L0 L1 L2

T00

S12 S23 S30S01

K13

L0L1 L2 L3

T31

K9

L1L2 L3 L0

T21

K5

L2L3 L0 L1

T11

K1

L3L0 L1 L2

T01

S13 S20 S31S02

K14

L0L1 L2 L3

T32

K10

L1L2 L3 L0

T22

K6

L2L3 L0 L1

T12

K2

L3L0 L1 L2

T02

S10 S21 S32S03

K15

L0L1 L2 L3

T33

K11

L1L2 L3 L0

T23

K7

L2L3 L0 L1

T13

K3

L3L0 L1 L2

T03

Figure 2.9: Efficient implementation of AES cipher.

Finally, we get the output for one iteration of the AES loop by XORing the mix columns output with round key
T = S ′⊕ K (here to reduce the number of XORs for AR, we transpose AES round keywords in the key expansion
module). Therefore, to compute one column of the state matrix, we require four extracts (to get individual state
elements after SR transformation), four loads (SB transformation), three rotations and four XORs (MC and AR).
The simulation code for an efficient AES cipher is given in Pcode 2.27. In Figure 2.9, we can see that the outputs
T00 to T33 do not depend on any intermediate results. All 16 outputs can be computed independently if we have
sufficient processor compute and data bandwidth. On the deep pipelined embedded processor, by interleaving
the program code, we can avoid all the stalls present with the memory (or look-up table) accesses.

In this way, using the approach for AES implementation in Gladman (2003), we can compute AES transfor-
mation operations by consuming one cycle for every operation with the program interleaving. In MC, we work
on columns; it is convenient if we hold one column of elements in one register. For this, we transpose the state
matrix before entering the loop. We again transpose back to the AES state matrix after the loop to work with the
last three transformations outside the loop.

Complexity of Optimized AES Algorithm
At this juncture, we estimate the cycles (see Appendix A, Section A.4, on the companion website) for computing
output T per iteration from Pcode 2.27 as follows. We have 16 state elements extracts (16 cycles), 16 XOR

Data Security 49

for(r = 1; r < = pAes->Nr; r++){
r0 = r4 & 0xff; r1 = (r5 >> 8)&0xff; r2 = (r6>>16) & 0xff; r3 = r7>>24; // SR
r0 = sbmc[r0]; r1 = sbmc[r1]; r2 = sbmc[r2]; r3 = sbmc[r3]; // SB
tmp1 = r1 >> 24; r1 = r1 << 8; r1 = r1 | tmp1; // rotate r1 by one byte
tmp1 = r2 >> 16; r2 = r2 << 16; r2 = r2 | tmp1; // rotate r2 by two bytes
tmp1 = r3 >> 8; r3 = r3 << 24; r3 = r3 | tmp1; // rotate r3 by three bytes
r0 = r0 ^ r1; r0 = r0 ^ r2; r0 = r0 ^ r3; // MC
r1 = enc_key_exp[k++]; r2 = r0 ^ r1; temp[0] = r2; // AR

r3 = r4 >> 24; r0 = r5 & 0xff; r1 = (r6 >> 8)&0xff; r2 = (r7 >> 16) & 0xff;
r0 = sbmc[r0]; r1 = sbmc[r1]; r2 = sbmc[r2]; r3 = sbmc[r3];
tmp1 = r1 >> 24; r1 = r1 << 8; r1 = r1 | tmp1;
tmp1 = r2 >> 16; r2 = r2 << 16; r2 = r2 | tmp1;
tmp1 = r3 >> 8; r3 = r3 << 24; r3 = r3 | tmp1;
r0 = r0 ^ r1; r0 = r0 ^ r2; r0 = r0 ^ r3;
r1 = enc_key_exp[k++]; r0 = r0 ^ r1; temp[1] = r0;

r2 = (r4 >> 16)&0xff; r3 = r5 >> 24; r0 = r6 & 0xff; r1 = (r7 >> 8)&0xff;
r0 = sbmc[r0]; r1 = sbmc[r1]; r2 = sbmc[r2]; r3 = sbmc[r3];
tmp1 = r1 >> 24; r1 = r1 << 8; r1 = r1 | tmp1;
tmp1 = r2 >> 16; r2 = r2 << 16; r2 = r2 | tmp1;
tmp1 = r3 >> 8; r3 = r3 << 24; r3 = r3 | tmp1;
r0 = r0 ^ r1; r0 = r0 ^ r2; r0 = r0 ^ r3;
r1 = enc_key_exp[k++]; r0 = r0 ^ r1; temp[2] = r0;

r1 = (r4 >> 8)&0xff; r2 = (r5 >> 16)&0xff; r3 = r6 >> 24; r0 = r7 & 0xff;
r0 = sbmc[r0]; r1 = sbmc[r1]; r2 = sbmc[r2]; r3 = sbmc[r3];
tmp1 = r1 >> 24; r1 = r1 << 8; r1 = r1 | tmp1;
tmp1 = r2 >> 16; r2 = r2 << 16; r2 = r2 | tmp1;
tmp1 = r3 >> 8; r3 = r3 << 24; r3 = r3 | tmp1;
r0 = r0 ^ r1; r0 = r0 ^ r2; r0 = r0 ^ r3;
r1 = enc_key_exp[k++]; r0 = r0 ^ r1; temp[3] = r0;

r4 = temp[0]; r5 = temp[1]; r6 = temp[2]; r7 = temp[3];
}

Pcode 2.27: Efficient implementation of AES Cipher loop.

operations (16 cycles), 16 look-up table accesses (32 cycles for both address generation and memory load), and
12 rotations (36 = 3 × 12 cycles, as we compute rotate operation in two SHIFTS and one OR, because there
is no rotate instruction on the reference processor). Therefore, the total number of cycles per iteration is 100.
The total number of cycles consumed for encrypting one block of 128 bits of data with a 128-bit key using
the efficient implementation of AES cipher given in Pcode 2.27 is 1050 cycles (= 100 × 9 + cycles consumed
by the transformations before and after the loop). In addition, with the inverse cipher (using the equivalent
inverse cipher in Federal Information Processing Standards, 2001), we consume the same number of cycles for
decryption of 128 bits of cipher text. We can use the same Pcode 2.27 for the AES inverse-cipher (i.e., for the
equivalent inverse cipher) loop as well by simply changing the SR code (as ISR and SR are inversely related)
and properly accessing the expanded key data (as the inverse cipher uses keys from the end of the expanded key
buffer). We use the sbmc[] and isbmc[] look-up table in the cipher and inverse cipher, respectively. Look-up
values for sbmc[] and isbmc[] can be found on this book’s companion website.

With the described AES implementation method, we can compute in parallel all 16 output elements of state in
a single iteration of the loop. If the embedded processor has more than one compute unit (ALU), then the number
of cycles required for processing a block will decline. On the deep-pipelined embedded processor (having similar
architectural features as the reference-embedded processor) with four compute units, the suggested method can
be implemented within 300 (= 1050/4+overhead) cycles. The extra overhead may result from uneven compute
and data bandwidth issues (meaning that compute slots may be adequate, but load/store slots for executing an
algorithm are insufficient) in the processor.

With the previous efficient AES implementation, we require 1.25 kB (1 kB for sbmc[] and 0.25 kB for
S-Box[]) of L1 data memory for encryption process look-up tables and we require another 1.25 kB of memory

50 Chapter 2

for decryption process look-up tables. Now, depending on the processor (with 32- or 8-bit supported registers and
on-chip L1 memory sufficiently available or not) used in a particular application, we choose either Pcode 2.23
or 2.27 to implement the AES cipher.

2.4 Keyed-Hash Message Authentication Code

The purpose of the HMAC is preservation of data authenticity and data integrity. Data authentication is intended
to prevent the alteration of data (presumed unaltered from sender to receiver) by a third-party. The HMAC uses
a cryptographic key in conjunction with secure hash algorithm (SHA) to generate message authentication code
(MAC). In this section, we discuss the HMAC using the SHA functions and we simulate the HMAC using the
SHA-256 function. Also, we discuss the computational complexity of HMAC using the SHA-256 algorithm.

2.4.1 HMAC Algorithm

The HMAC plays an important role in digital communications and data storage applications to maintain data
integrity. With the HMAC, we generate a MAC using a secret key that is shared between two parties, namely
sender and receiver. The HMAC uses this secret key for generation and verification of the MAC. The sender
sends the message along with the MAC and the receiver receives the message and its MAC (A). Then the receiver
also computes a new MAC (B) for the received message. If the transmitted message is unaltered, then A and B
will be same, otherwise they will differ. In this way, the HMAC provides data integrity. The HMAC uses one of
the four SHA functions—SHA-1, SHA-256, SHA-384, and SHA-512—for computing MAC.

SHA Functions
SHA functions are one-way hash functions used to generate a condensed data representation (called a message
digest) for a long data message (the data length for SHA-1 and SHA-256 is <264 bits and for SHA-384 and
SHA-512, <2128 bits). With one-way functions, we cannot reproduce the original data from the condensed data.
Here, one-way function means that the input message cannot be reproduced from the condensed data. With the
mathematical structures of existing SHA functions (SHA-1, SHA-256, etc.), it is almost impossible to generate
a same message digest value with two different data messages. In other words, a small change in the data will
generate an entirely different message digest. Also, it is not computationally feasible to generate an original
message from its message digest. This property enables maintaining the integrity of the data in which we are
interested. SHA functions are used in digital signature algorithms and HMAC algorithms. The performance
(strength) of HMAC depends on the strength of the hash function and key.

2.4.2 HMAC Description

The general block diagram for the HMAC algorithm is shown in Figure 2.10. HMAC algorithm inputs include
the message (which supposedly needs authentication) and a key (which is needed in the generation of message
authentication). Outputs include the original message and its authentication. The HMAC algorithm has three
layers. In the first layer, the HMAC parser prepares the data to the SHA parser, and in the second layer, the SHA

Figure 2.10: Block diagram of
keyed-hash message authentication
code algorithm.

HMAC Parser

SHA Parser

SHA Function

KEY Message

MessageMessage Authentication Code

HMAC Algorithm

Data Security 51

Figure 2.11: Flow diagram of HMAC
parser.

KEY M

Determine K0 from KEY

Z 5 H (Y || M)

A 5 H (X || Z)

MAC(M) 5 A (t leftmost significant bytes)

Y 5 K0 IPAD1X 5 K0 OPAD1

parser prepares the data to the SHA function. The core hash algorithm sits in the third layer. In the following
sections, we discuss the functionalities of all layers in detail.

HMAC Parser
The HMAC parser consists of many steps and uses the message M , and key KEY to generate the authentication
code. The flow diagram of the HMAC parser is shown in Figure 2.11. The first step of the HMAC parser is
determining K0, which is B (where the value of B is the length of the SHA-function input block) bytes of data
derived from the given input KEY. The data K0 is derived as follows. If the length of input KEY is K , then

K0 = KEY, if B = K

K0 = H(KEY), if B < K (here H is SHA function)

K0 = KEY ||zeros, if B > K

In the second step, we compute X and Y by XORing the derived K0 with IPAD and OPAD data (where IPAD
is equal to the value of 0 × 36 repeated B times, and OPAD is equal to the value of 0 × 5c repeated B times).
We compute Z in the third step by passing the appended data of Y and input message M to the SHA function
through the SHA parser. In the fourth step, A is computed by passing the data from the appended X and Z to the
SHA function through the SHA parser. Finally, in the fifth step, we get the input message MAC by extracting
the t-left-most significant bytes of A.

SHA Parser
In the SHA parser, basically we prepare B bytes of data blocks to the SHA function. The SHA parser consists of
three steps: (1) message padding, (2) dividing the padded message into B-byte length blocks, and (3) initialization
of the SHA function state H . We append a bit “1” and a Q-bit value (in the case of SHA-1 or SHA-256, Q = 64
and in the case of SHA-384 or SHA-512, Q = 128) representing the L (where L is the length of input message in
bits) to the message data. Bit 1 is appended immediately after the message, whereas the Q-bit value is appended
at the end of the block. To keep the message multiple of 8 ∗ B bits (or B bytes), we append zeros between bit 1
and the Q-bit value. Zeros (if needed) and the Q-bit value are appended to the message data in step 1 as message
padding. In step 2, we divide the message into data blocks of N 8∗ B bits, and pass them to the SHA function
one block per iteration for N iterations. The SHA function updates its state H (i) in every iteration. We initialize
the SHA state to H (0) in step 3 of the SHA parser before calling the SHA function.

SHA Function
The SHA function is the core module of the HMAC algorithm. The inputs to the SHA function are message data
block M (i) of length 8∗ B bits or B/4 32-bit words and SHA state H (i) (for i = 1,2, . . . , N). All functions—
SHA-1, SHA-256, SHA-384, and SHA-512—are quite similar with simple variations (e.g., different input sizes,

52 Chapter 2

initial states, and constant values). The flow of SHA-1 is a little bit different from the other three. In the next
section, we discuss the most popular SHA-256 function in detail.

2.4.3 SHA-256 Function

For the SHA-256 function, the length of the input block B is 64 bytes or 16 32-bit words, and the length of state
H is eight 32-bit words. The SHA function is called N times to compute the hash value or the message digest of
the entire message (divided into N blocks) with one data block per iteration as input. In the SHA-256 function,
we perform three steps:

1. Prepare data block scheduling.
2. Initialize eight working variables with initial state H (0) values.
3. Updating of eight working variables with iterative process.

At the end of the SHA function, we update the SHA state H (i) by adding eight working variables to H (i−1) in
corresponding positions. Full details of the SHA-256 function follow.

In step 1 of the SHA-256 function (i.e., preparing the data block scheduling), we expand the input data block
of 16 32-bit words to 64 32-bit words as follows:

Wt =
{

M (i)
t 0 ≤ t ≤ 15

σ
{256}
1 (Wt−2)+ Wt−7 +σ

{256}
0 (Wt−15)+ Wt−16 16 ≤ t ≤ 63

where

σ
{256}
0 (x) = ROTR7(x)⊕ROTR18(x)⊕SHR3(x)

σ
{256}
1 (x) = ROTR17(x)⊕ROTR19(x)⊕SHR10(x)

ROTRn(y) = (y >> n) | (y << (32 −n))

SHRn(y) = y >> n

In step 2 of the SHA-256 function, we assign eight working variables (a,b,c,d,e, f, g, and h) with the
previous iteration’s SHA state H values as shown here:

a = H (i−1)
0 , b = H (i−1)

1 , c = H (i−1)
2 , d = H i−1

3

e = H (i−1)
4 , f = H (i−1)

5 , g = H (i−1)
6 , h = H (i−1)

7

In step 3, we update eight working variables of SHA-256 through the following iterative process:

Loop: j = 1:64

T1 = h +
∑{256}

1
(e)+Ch(e, f, g)+ K 256

j + W j

T2 =
∑{256}

0
(a)+ Maj (a,b,c)

h = g

g = f

f = e

e = d + T1

d = c

c = b

b = a

a = T1 + T2

End Loop

Data Security 53

where

∑{256}
0 (x)=ROTR2(x)⊕ROTR13(x)⊕ROTR22(x)∑{256}
1 (x)=ROTR6(x)⊕ROTR11(x)⊕ROTR25(x)

Ch(x , y, z) = (x ∧ y)⊕ (x̃ ∧ z)

Maj(x , y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z)

ROTRn(y)= (y >> n) | ((y << (32 −n))

and K {256}
j comprises the following 64 constant values array K[]:

K[64]= {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2};

After completing three steps of the SHA-256 function, we update the SHA state as follows:

H (i)
0 = a + H (i−1)

0 , H (i)
1 = b + H (i−1)

1 , H (i)
2 = c + H (i−1)

2 , H (i)
3 = d + H (i−1)

3

H (i)
4 = e + H (i−1)

4 , H (i)
5 = f + H (i−1)

5 , H (i)
6 = g + H (i−1)

6 , H (i)
7 = h + H (i−1)

7

Then, we repeat the previous process N times to cover M (i) message blocks. The digest for the entire message
is obtained with the last iteration SHA state as

H (N)
0 ||H (N)

1 ||H (N)
2 ||H (N)

3 ||H (N)
4 ||H (N)

5 ||H (N)
6 ||H (N)

7

2.4.4 HMAC and SHA-256 Simulation

In this section, we simulate the HMAC with the SHA-256 function. The initial values for the SHA-256 function
state H and the defined values for IPAD and OPAD follow:

H [8] = { // initial values for SHA-256 state
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19};

ipad [16]={ // IPAD for HMAC with SHA-256
0x36363636, 0x36363636,0x36363636, 0x36363636,0x36363636, 0x36363636,0x36363636,
0x36363636, 0x36363636, 0x36363636,0x36363636, 0x36363636,0x36363636, 0x36363636,
0x36363636, 0x36363636};

opad[16] = { // OPAD for HMAC with SHA-256
0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c,
0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c,
0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c};

HMAC Parser
The simulation code for the HMAC parser is given in Pcode 2.28. We define constants and declare variables
such that the HMAC parser supports the SHA-256 parser and SHA-256 function. Although the SHA function is
computational intensive, it is straightforward with simple operations. The complex part (logically) of the HMAC
algorithm is present in the HMAC parser and SHA parser.

Next, we discuss simulating K0 computation from the given input KEY. With the computation of K0, we
basically make the input KEY suitable for use with the HMAC + SHA algorithm. Depending on the length of
input KEY (K in bytes), we have three conditions to check in preparing K0. If K and B (input block size of the
SHA-256 function) are equal, then K0 = KEY. If K < B, then K0 is equal to KEY with (B − K) appended zero

54 Chapter 2

// prepare K0 of length B (=64) bytes from given key of length K bytes
if (K > 512){

sha256(key, tmp, K); // shorten key to 256 bits
for(i = 0;i < 8;i++)

mac_key[i] = tmp[i];
for(i = 8;i < 16;i++)

mac_key[i] = 0; // append 256 ‘0’ bits
}
else if (K < 512){

j = K >> 5;
for(i = 0;i < j;i++)

mac_key[i] = key[i];
r0 = key[i]; i = K - (j<<5);
k =-1;
k = k << (32-i);
r0 = r0 & k;
mac_key[j] = r0; r0 = 0;
for(i=j+1;i < 16;i++)

mac_key[i] = 0; // append (B-K) ‘0x00’ bytes
}
else{

for(i = 0;i < 16;i++)
mac_key[i] = key[i];

}
for(i = 0;i < 16;i++) // K0 XOR ipad and append to in[] as prefix

in[i] = mac_key[i]^ipad[i];
// apply hash and output to tmp[] array from 16th word to 31st word: H((K0 ^ ipad):text)
sha256(in, &tmp[16], L+512);
for(i = 0;i < 16;i++) // K0 XOR opod : H((K0 XOR ipad):text)

tmp[i] = mac_key[i] ^ opad[i];
sha256(tmp,op,768); // H(K0 XOR opad : H((K0 XOR ipad):text))

Pcode 2.28: The simulation code for HMAC parser.

bytes from the LSB (least significant bit) side. Simulation of appending (B − K) “0 × 00” bytes to KEY is not
limited to a single instruction code. We have two choices to simulate this: (1) first zeroing the K0 and adding K
bytes from KEY to K0; and (2) first moving K bytes of KEY to K0 and zeroing the remaining (B − K) bytes. If
K > B, then this particular case becomes a bit complex. We first shorten the KEY length to 32 bytes by applying
SHA-256 on KEY and then append 32 zero bytes from the LSB side to get K0.

If we get K0, then the rest of the HMAC parser is straightforward with operations for XORing, data appending,
and computing hash values. Here, we have to take care of the data placement in the buffers properly at the input
and output of the SHA function. At the very beginning, the input text is placed in the buffer in[] from the 16th
word location and we make sure that the first 16 word positions are empty so that the XORed K0 and IPAD is
placed directly as the prefix in in[] (with this, the simulation of appending K0 to the input message becomes
easy) before calling the SHA function. The SHA function output is also placed after 16 word positions in buffer
tmp[] so that the XORed K0 and OPAD are placed directly as a prefix in the tmp[] buffer. The last SHA function
uses tmp[] as its input, and its output (op[]) is considered as MAC (message authentication code). Optionally,
sometimes we output the left-most t bytes of op[] as MAC.

SHA Parser
The SHA-256 function works on blocks of 512 bits of data at a time. The functionality of the SHA parser prepares
those 512-bit blocks for SHA-256 functioning. The SHA parser gets message data along with its length (L) as
input. The value of L need not be equal to 512, it can be less than or greater than 512. We insert bit “1” and a
64-bit L value to the message data. If the message data size is not a multiple of 512 bits, then the SHA parser
pads “0” bits to message data between the inserted bit 1 and 64-bit value L . Then we divide the message data
into N 512-bit data blocks M (i) . We compute the hash value for each data block of M (i) .

In the SHA parser, first we initialize the SHA state to predefined initial values H (0). Then, if L > 512, we
compute the hash value with SHA function for each 512-bit message block and add to the SHA state until the
length of the message block falls below the 512 mark. If the current length of the remaining message block is 448

Data Security 55

bits or more, then we have two more iterations of hash computation, otherwise we compute hash value once. In
both cases, we insert a bit “1” at the end of the message and a 64-bit value at the end of the data block along with
padded zeros in-between (if needed) to make a 512-bit blocks, and compute its hash values. After each iteration
of hash computation, the computed hash values are added to the previous SHA state by the SHA function. The
SHA parser outputs SHA state (the final result of all iterations) as a message digest. The simulation code for the
SHA parser is given in Pcode 2.29.

SHA-256 Function
The SHA-256 function is a simple algorithm with logical shift and XOR operations. In this SHA function, all
additions are performed with module 232. The SHA-256 function consists of three steps (1) preparation of a
64-word length message from an input 16-word (512 bits) length message, (2) initialization of the eight SHA-256
working variables, and (3) the iterative message digest process. The SHA-256 function gets the previous SHA
state and 16 words of message from the SHA parser as an input. In the expanded 64-word message, the first 16
words are the same as the input 16 words. To avoid copying the 16-word input to another buffer in the process
of expansion, we pass the input directly into the expand buffer W[] by declaring the expand buffer as a global

// assign initial values of H
sha_state[0] = H[0]; sha_state[1] = H[1];
sha_state[2] = H[2]; sha_state[3] = H[3];
sha_state[4] = H[4]; sha_state[5] = H[5];
sha_state[6] = H[6]; sha_state[7] = H[7];
// padding zeros
n = L >> 5; m = n >> 4;
k = 0;
while(m--){

for(j = 0;j < 16;j++)
w[j] = in[k++];

sha256fn(sha_state, w);
}
j = n - k;
if (j >=14){

i = L - (n << 5);
tmp1 = 0x80000000;
tmp1 = tmp1 >> i; tmp2 = in[n];
tmp2 = tmp2 | tmp1; w[15] = 0;
for(i = 0;i < j;i++)

w[i] = in[k++];
w[i] = tmp2;
sha256fn(sha_state, w);
for(i = 0;i < 15;i++)

w[i] = 0;
w[15] = L;
sha256fn(sha_state, w);

}
else{

i = L - (n << 5);
tmp1 = 0x80000000;
tmp1 = tmp1 >> i; tmp2 = in[n];
tmp2 = tmp2 | tmp1;
for(i = 0;i < 15;i++)

w[i] = 0;
for(i = 0;i < j;i++)

w[i] = in[k++];
w[i] = tmp2; w[15] = L;
sha256fn(sha_state, w);

}
out[0] = sha_state[0]; out[1] = sha_state[1];
out[2] = sha_state[2]; out[3] = sha_state[3];
out[4] = sha_state[4]; out[5] = sha_state[5];
out[6] = sha_state[6]; out[7] = sha_state[7];

Pcode 2.29: The simulation code for SHA parser.

56 Chapter 2

variable. Now, we expand the message from 16 to 63 words (a total of 48 words) by using the equations given
in step 1 of the SHA function (see Section 2.4.3).

In step 2 of the SHA-256 function, we initialize all eight working variables with SHA state values. The
iterative process of the SHA-256 in step 3 involves updating of these eight working variables in each iteration
(see step 3 of the SHA function in Section 2.4.3). Here, we compute two temporary values. The first temporary
value is computed from some of the working variables, expanded message and predefined constants and the
second one is computed from only working variables. Then, we update the next iteration eight working variables
with the present iteration working variable and with the two temporary values computed. After completion of
the iterative process, the updated eight working variables are added to the SHA state. The simulation code for
SHA-256 function is given in Pcode 2.30.

for(i = 16;i < 64;i++){ // prepare 64 word length message
tmp1 = W[i-7]; tmp2 = W[i-16];
r0 = W[i-2]; r1 = W[i-15];
r2 = r0 >> 17; r3 = r1 >> 7;
r4 = r0 << 15; r5 = r1 << 25;
r6 = r2 | r4; r7 = r3 | r5;
r4 = r0 >> 19; r5 = r1 >> 18;
r2 = r0 << 13; r3 = r1 << 14;
r2 = r2 | r4; r3 = r3 | r5;
r6 = r6 ^ r2; r7 = r7 ^ r3;
r2 = r0 >> 10; r3 = r1 >> 3;
r6 = r6 ^ r2; r7 = r7 ^ r3;
r6 = r6 + tmp1; r7 = r7 + tmp2;
W[i] = r6 + r7;

}
r0 = state[0]; r1 = state[1]; // initialize a, b
r2 = state[2]; r3 = state[3]; // initialize c, d
r4 = state[4]; r5 = state[5]; // initialize e, f
r6 = state[6]; r7 = state[7]; // initialize g, h
for(i = 0;i < 64;i++){ // start message digest loop

tmp3 = r4 >> 6; tmp4 = r0 >> 2;
tmp5 = r4 << 26; tmp6 = r0 << 30;
tmp1 = tmp3 | tmp5; tmp2 = tmp4 | tmp6;
tmp3 = r4 >> 11; tmp4 = r0 >> 13;
tmp5 = r4 << 21; tmp6 = r0 << 19;
tmp3 = tmp3 | tmp5; tmp4 = tmp4 | tmp6;
tmp1 = tmp1 ^ tmp3; tmp2 = tmp2 ^ tmp4;
tmp3 = r4 >> 25; tmp4 = r0 >> 22;
tmp5 = r4 << 7; tmp6 = r0 << 10;
tmp3 = tmp3 | tmp5; tmp4 = tmp4 | tmp6;
tmp1 = tmp1 ^ tmp3; tmp2 = tmp2 ^ tmp4;
tmp3 = r4 & r5; tmp4 = r0 & r1;
tmp5 = ∼r4 & r6; tmp6 = r0 & r2;
tmp3 = tmp3 ^ tmp5; tmp4 = tmp4 ^ tmp6;
tmp6 = r1 & r2;
tmp4 = tmp4 ^ tmp6;
tmp1 = tmp1 + tmp3; tmp2 = tmp2 + tmp4;
tmp1 = tmp1 + r7;
tmp1 = tmp1 + K[i];
tmp1 = tmp1 + W[i];
r7 = r6; r6 = r5;
r5 = r4; r4 = r3 + tmp1;
r3 = r2; r2 = r1;
r1 = r0; r0 = tmp1 + tmp2;

}
state[0] = state[0] + r0; state[1] = state[1] + r1;
state[2] = state[2] + r2; state[3] = state[3] + r3;
state[4] = state[4] + r4; state[5] = state[5] + r5;
state[6] = state[6] + r6; state[7] = state[7] + r7;

Pcode 2.30: The simulation code for SHA-256 function.

Data Security 57

Simulation Results
The simulation results of HMAC using the SHA-256 algorithm follow. Inputs for HMAC are 320 bits of message
and 264 bits of key. As the length of key (K) is less than the SHA function input block length (B), we append
248 zero bits (i.e., B-K bytes) to the input KEY to form 512 bits K0. Intermediate values for main operations
are presented along with their output data lengths in bits.

Input Message (M): 320 bits
0x00112233, 0x44556677, 0x8899aabb, 0xccddeeff, 0x0f1e2d3c, 0x4b5a6978, 0x8796a5b4, 0xc3d2e1f0, 0x01234567, 0x89abcdef
Input Key: 264 bits //ignore all bits of last word except 8 msbs
0x4a09e669, 0xdb67ae81, 0xec6ef374, 0x554ff539, 0x310e527c, 0x7b056882, 0x7f83d9a1, 0x1be0cd18, 0x20000000
K0: 512 bits
0x4a09e669, 0xdb67ae81, 0xec6ef374, 0x554ff539, 0x310e527c, 0x7b056882, 0x7f83d9a1, 0x1be0cd18, 0x20000000, 0x00000000,
0x00000000, 0x00000000,0x00000000, 0x00000000, 0x00000000, 0x00000000
K0 XOR IPAD: 512 bits
0x7c3fd05f, 0xed5198b7, 0xda58c542, 0x6379c30f, 0x0738644a, 0x4d335eb4, 0x49b5ef97, 0x2dd6fb2e, 0x16363636, 0x36363636,
0x36363636, 0x36363636, 0x36363636, 0x36363636, 0x36363636, 0x36363636
(K0 XOR IPAD)||M: 832 bits
0x7c3fd05f, 0xed5198b7, 0xda58c542, 0x6379c30f, 0x0738644a, 0x4d335eb4, 0x49b5ef97, 0x2dd6fb2e, 0x16363636, 0x36363636,
0x36363636, 0x36363636, 0x36363636, 0x36363636, 0x36363636, 0x36363636, 0x00112233, 0x44556677, 0x8899aabb, 0xccddeeff,
0x0f1e2d3c, 0x4b5a6978, 0x8796a5b4, 0xc3d2e1f0, 0x01234567, 0x89abcdef
H((K0 XOR IPAD)||M): 256 bits
0x4e938d08, 0x322f37e8, 0x8df9483f, 0x1c68c2e1, 0xfe1411e0, 0x85e8b0d0, 0xbc196189, 0x006378d6
K0 XOR OPAD: 512 bits
0x1655ba35, 0x873bf2dd, 0xb032af28, 0x0913a965, 0x6d520e20, 0x275934de, 0x23df85fd, 0x47bc9144, 0x7c5c5c5c,
0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c
(K0 XOR OPAD)||H((K0 XOR IPAD)||M): 768 bits
0x1655ba35, 0x873bf2dd, 0xb032af28, 0x0913a965, 0x6d520e20, 0x275934de, 0x23df85fd, 0x47bc9144, 0x7c5c5c5c, 0x5c5c5c5c,
0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c, 0x4e938d08, 0x322f37e8, 0x8df9483f, 0x1c68c2e1,
0xfe1411e0, 0x85e8b0d0, 0xbc196189, 0x006378d6
H((K0 XOR OPAD)||H((K0 XOR IPAD)||M)): 256 bits
0xbaa04656, 0x9880510e, 0x94b6c6c7, 0x58737860, 0xc3ccf3d6, 0xc6100ed5, 0x7566260d, 0x8f8b2f33
Message Authentication Code (MAC): 88 bits (taking t = 11 left-most bytes)
0xbaa04656, 0x9880510e, 0x94b6c600

2.4.5 Computational Complexity of HMAC

The SHA function is a complex core module of the HMAC algorithm. First we analyze the complexity of the
SHA function in terms of cycles (see Appendix A, Section A.4, on the companion website for more details
on the cycle consumption of particular operations on the reference embedded processor). The common opera-
tions in the SHA function are ROTR, XOR, ADD mod 232, SHIFT and OR. The ROTR operation is achieved
with two SHIFTs and one OR. In the first step of the SHA-256 function, we iterate the loop 48 times. In
a single iteration of the loop, we have five load-store operations and 20 arithmetic and logical operations.
We have a total of 25 operations, and a single iteration consumes 25 cycles. Therefore, we consume about
1200 (= 25∗ 48) for 48 iterations. We consume eight cycles in assigning eight working variables. In the iterative
message digest process, we run the loop 64 times. In a single iteration of the message digest iterative process, we
have 41 arithmetic and logical operations and two load operations. Therefore, a single iteration costs 43 cycles.
We consume a total of 2752 cycles for the message digest iterative process; at the end we spend another eight to
update the SHA state. With this, the SHA-256 function consumes 3968 (= 1200 +2752 +16) cycles.

In the SHA parser, we spend 16 cycles for initializing the state and for copying the state to the output
buffer at the end. We spend 50 to 65 cycles for message padding (includes inserting bit “1”, inserting 64-
bit value L , padding zeros [if needed] and dividing the padded message into blocks) and for calling SHA-
256 function. Here, we consume 50 cycles for only one call of the SHA-256 function. If the length of the
message is larger than 448 bits, then we call the SHA-256 function multiple times. In that case, for each
extra call, we consume about 28 cycles (for copying 16 words to the working buffer and for the function
call).

In HMAC parser, we consume 16 to 24 cycles to prepare K0 (apart from the SHA-256 function call cycles).
We consume 32 cycles for XORing KEY with IPAD and OPAD. Another 20 cycles are consumed for two SHA-
parser function calls. The overall cycle consumption of the HMAC algorithm depends on message length and

58 Chapter 2

key length. Here, we analyze HMAC complexity for message length of 320 bits and key length of 264 bits. The
clock cycles distribution is shown in the following:

HMAC Parser:
K0 preparation: 24 cycles
IPAD & OPAD: 32 cycles
Two SHA-parser calls: 24 cycles

SHA Parser: L = 832, 768
Two times 2 SHA-256 calls: 200 (= 2∗ (16+28+50 +overhead)) cycles

SHA-256 function:
Four times called: 15,872 cycles

Total: 16,152

From the previous cycle count information, it is clear that the SHA-256 function consumes more than 98% of
cycles and both the HMAC parser and SHA parser consume only less than 2% of total cycles.

2.5 Elliptic-Curve Digital Signature Algorithm

Public key cryptography allows us to have data authentication. Since the invention of public-key cryptography
in 1976 by Whitfield Diffie and Martin Hellman, various public-key cryptographic systems have been proposed.
Security in all of these systems relies on the difficulty of solving an underlying mathematical problem. In public
key cryptographic algorithms (unlike in symmetric key algorithms where we use the same secret key for both
encryption and decryption), the key used for encryption is different from the key used for decryption, and hence
we also call the public key algorithms as asymmetric key algorithms.

2.5.1 Digital Signature Algorithm

Digital signature algorithm (DSA), based on public key cryptography techniques, is used in conjunction with
the hash function SHA to provide data authentication and data integrity. See Section 2.4.3 for more details on
how to compute hash value (or message digest) using the SHA function for a given message. In this section
more emphasis is given to DSA based on elliptic curve public-key cryptographic systems. We discuss ECDSA
(elliptic-curve DSA) algorithms, their simulation techniques and also present a few simulation results at the end.

DSA Algorithm Analogous
Conceptually, today electronic mail (e-mail) system works on the philosophy of public key cryptography. In the
e-mail system, the user will have two identifications: (1) e-mail id and (2) password to send or receive e-mail.
An e-mail id is in the public domain and the password is with the user (and it’s not disclosed to the public). If the
user wants to send an e-mail, then that user has to enter into an e-mail system by using his/her password. Once
the user is in the electronic mail system, then he or she can send a mail using another end person’s e-mail id. If
the user wants to receive an e-mail from the other end person, then that person also follows the same procedure
to send an e-mail. In other words, the sender uses his/her password to send a message and the receiver views the
e-mail with the help of the sender e-mail id.

In the same way, with DSA using the public key cryptographic system, we have a key-pair, namely, public
key and private key. If we want to have authenticity and integrity to our communicating message, then we use a
DSA scheme to provide authenticity and integrity to the message. Using the DSA scheme, the sender generates
a digital signature using his/her private key and send the message along with the signature to the recipient. After
receiving the message, the recipient verifies the signature using the sender public key to rule out any third-party
involvement in this data communication. In other words, if the received signature is a valid one, then we assume
that the message is not altered. Later we briefly discuss three popular DSA approaches to protect data/messages.

The DSA algorithm is intended for use in electronic mail, electronic funds transfer, electronic data interchange,
software distribution, data storage, and other applications that require data integrity assurance and data origin
authentication. Similar to DSA, the HMAC (keyed-hash message authentication code) algorithm also provides

Data Security 59

data/message authentication and integrity. The only difference is that the HMAC uses same key for generation
and verification of authentication code using SHA, whereas the DSA algorithm uses the public key cryptographic
system in conjunction with the SHA function to provide data authenticity and integrity.

2.5.2 DSA Description

Building blocks of digital signature algorithm (DSA) are shown in Figure 2.12. The basic digital signature
scheme consists of three blocks and they are (1) the key-pair generation block, (2) the message digest generation
block, and (3) the signature generation/verification block. The key-pair generator generates two keys; we call
them the private key and public key. Here the private key is a secret key and should not be shared/disclosed. The
public key will be in the public domain and anyone can access it. The message digest block computes a unique
condensed value (called as message digest) corresponding to the message (that is supposed to be communicated)
using an SHA hash function. If party A wants to send a message to party B, and if party B wants to have a
message authenticity and integrity, then party A must generate a digital signature for the message using his/her
private key and send the message to B along with the signature. Party B checks the validity of the message after
receiving it by verifying the signature using sender’s public key.

As shown in Figure 2.13, at the source (transmitter side), the sender generates a signature using his/her private
key and using the message digest value. At the destination (receiver side), the receiver checks the validity of
the message by verifying the received signature using the sender public key and using the message digest value.
Note that the receiver also computes the message digest for the received message and that both message digests
computed at the transmitter and receiver are the same if the message is unaltered.

The digital signature algorithm uses a mathematical system for its key-pair generation and digital signature
generation/verification processes. Any DSA mathematical system consists of a parameter set (field elements,

Key-Pair
Generation

Message Digest
Computation

Signature
Generation/
Verification

Signature
Generation/
Verification

Key-Pair
Generation

(Message, Signature)

Message Digest
Computation

Party-A Party-B

SEED-A SEED-B

MessageMessage

Figure 2.12: Digital signature algorithm building blocks.

SHA

Message to Be
Transmitted

Message Digest Value

Signature
Generation

Private Key

SHA

Received
Message

Signature
Verification

Digital
Signature

Public Key

Signature
Valid /Not Valid

Transmitter Receiver

Figure 2.13: DSA algorithm-flow diagram.

60 Chapter 2

order of a field, etc.) and an operation set (modular arithmetic computations and other operations depend on
the particular parameter set chosen for DSA). As of today, DSA supports three popular types of parameter sets
and they are (1) RSA parameter set, (2) discrete logarithm based parameter set, and (3) elliptic curve-based
parameter set. Both sender and receiver must use the same parameter set to communicate with each other. In the
following subsections, we discuss and compare three DSA approaches in terms of security (for given key size)
and mathematical complexity.

RSA Public Key Cryptography Based DSA
The RSA digital signature algorithm, based on integer factorization problem, is an FIPS approved or NIST
recommended cryptographic algorithm for generating and validating digital signatures. The strength of the RSA
algorithm depends on the computational difficulty of factoring large numbers. Steps in the RSA algorithm
follow.

1. Generate two large prime numbers p and q.
2. Let n = pq, and let m = (p −1)(q −1).
3. Choose a small number e, coprime to m.
4. Find d, such that de(mod m) = 1. Then, publish (e,n) as the public key and keep (d,n) as the secret/private

key. See Appendix B, Section B.2, on the companion website for more details on modulo arithmetic.
5. If T and C denote plain text and cipher text, then encrypted text C = T e(mod n) and decrypted text T =

Cd(modn).

Discrete Logarithm-Based DSA
The digital signature algorithm, based on a discrete logarithm problem, is an FIPS-approved or NIST-
recommended cryptographic algorithm for generating and validating digital signatures. The strength of DLDSA
depends on the computational difficulty of finding a logarithm for large numbers. Key-pair generation, signature
generation, and signature verification steps of the DLDSA algorithm follow.

DLDSA Algorithm Key-Pair Generation

1. Choose two large prime numbers p and q such that q divides p −1.
2. Choose g, an element of order q in GF(p), see Appendix B, Section B.2, on the companion website for

more details on Galois field.
3. Select a random integer x in the range [1,q −1] and compute y = gx mod p.
4. Here, x is private key (do not disclose) and y is public key (disclose it).

Signature Generation Using DLDSA Algorithm

1. Select a random integer k in the interval [1,q −1].
2. Compute r = (gkmod p) mod q.
3. Compute s = k−1(e + xr) mod q, where e = SHA(M) is a message digest value.
4. The signature for message M is (r, s).

Signature Verification Using DLDSA Algorithm

1. Compute e = SHA(M), a message digest value for received message M .
2. Compute u1 = es−1 mod q and u2 = rs−1 mod q, where (r, s) is received signature for M .
3. Compute v = (gu1 yu2 mod p) mod q.
4. If v = r , then signature is valid and accept the message.

Elliptic Curve-Based DSA
Elliptic curve DSA (ECDSA) algorithm, based on elliptic curve discrete logarithm problem, is an FIPS-approved
or NIST-recommended cryptographic algorithm for generating and validating digital signatures. The strength of
ECDSA depends on the computational difficulty of finding a logarithm of an elliptic curve point. The structure
and flow of ECDSA are similar to the DLDSA algorithm discussed in Section 2.5.2, Discrete Logarithm-Based
DSA. In the later sections, full details of ECDSA along with necessary algorithms and simulation techniques
are discussed. In the next subsection, the three approaches of DSA are compared with respect to security level
for the given key sizes.

Data Security 61

Comparison of Three DSA Approaches
Now, we compare the three DSA approaches, RSA, DLDSA and ECDSA, with respect to key sizes used by a
particular approach for a required security. Key sizes of three approaches for a given security level are given in
Table 2.4.

If we take care of weak instances of three approaches and if we use a general-purpose algorithm to solve the
underlying problem of three approaches, then RSA and DLDSA are solved in subexponential time (solving a
problem in subexponential time is still considered as hard) whereas ECDSA can be solved only in exponential
time. In simple terms, this means that the elliptic curve discrete logarithm problem is currently considered
harder than either the integer factorization problem or the discrete logarithm problem. Table 2.5 compares the
time required to break the ECC with the time required to break RSA or DSA for various key sizes using the
best-known general algorithm. The values are computed in MIPS years. A MIPS year represents a computing
time of 1 year on a machine capable of performing one million instructions per second.

2.5.3 Elliptic Curves Overview

Mathematical systems (with parameter set, operation set) used in DSA forms an algebraic group. A group consists
of a set of elements with predefined operations on those elements. In this section, we discuss algebraic groups
formed by elliptic curves. For elliptic curve groups, the operation set is defined geometrically. Before going to
elliptic curve groups defined over finite fields, we understand elliptic curves with real numbers.

Elliptic Curves
An elliptic curve over real numbers is defined with a set of points {(Xi ,Yi)} satisfying an elliptic curve equation
E(x , y) of the form y2 = x3 + ax + b, where a and b are real numbers. With different values of parameters a
and b, we have different elliptic curves. One such elliptic curve geometrical view is shown in Figure 2.14.

P :(Xp,Yp), Q:(Xq,Yq), and R:(Xr ,Yr) are three points on elliptic curve E(x , y) as shown in Figure 2.14. If
4a3 + 27b2 is not 0, then the elliptic curve y2 = x3 + ax + b forms an additive group, meaning that the points
on the elliptic curve follows the closure property (i.e., the resulting point after adding two points on elliptic
curve also satisfies the elliptic curve), identity property (consists of identity element with respect to addition)
and inverse property (consists of inverse element with respect to addition). See the following subsections for
rules of addition with the elliptic curve points. An elliptic curve group over real numbers consists of points on
the corresponding elliptic curve, together with a special point O called the point at infinity. In elliptic curve
operations, O is treated as an identity element and the elliptic curve additive group satisfies the identity property

Table 2.5: Comparison of security levels of RSA,
DLDSA, and ECDSA for given key sizes

Key Size

MIPS Years RSA DLDSA ECDSA

4.5×105 512 512 128
3×1012 1024 1024 172
3×1021 2048 2048 234
2×1033 4096 4096 314

Table 2.4: Comparison of three
approaches with respect to key sizes
for a given security level

Private Key Size Public Key Size
RSA 2048 1088
DLDSA 160 1024
ECDSA 160 161

Figure 2.14: Elliptic curve E (x, y).

P

Q

R

2R

62 Chapter 2

P + O = O + P = P . A reflection of a point R on the elliptic curve with respect to the x -axis is treated as −R
and its coordinates are (Xr ,−Yr). If P = −Q, then P + Q = O, a point at infinity and hence it follows the
inverse property over addition.

Addition of Two Points on Elliptic Curve The addition of two points P and Q (whereP 	= Q) on an elliptic
curve is defined as a reflection of point of −R:(Xr ,−Yr) which is a point of intersection of the elliptic curve with
a line passing through P and Q. Geometric interpretation of the addition of points P and Q on the elliptic curve
E(x , y) is shown in Figure 2.14. Algebraically, the coordinates (Xr ,Yr) of the resulting point R after adding
points P and Q are obtained as

Xr = s2 − X p − Xq and Yr = −Yp + s(X p − Xr)

where s = (Yp −Yq)/(X p − Xq), the slope of the line passing through P and Q.

Point Double on Elliptic Curve When P and Q represent the same point on the elliptic curve, then we define
another operation called point double instead of points addition. Point double is defined as a reflection of
point −R:(Xr ,−Yr) which is a point of intersection of an elliptic curve with the tangent line passing through
P :(X p,Yp). The coordinates (Xr ,Yr) of point R = 2P are obtained as

Xr = s2 −2X p and Yr = −Yp + s(X p − Xr)

where s = (3X2
p +a)/(2Yp), the slope of the tangent passing through point P .

Scalar Point Multiplication Multiplication of point P of an elliptic curve by a constant k is termed as scalar
point multiplication. Scalar multiplication of point P with k results in another point S on the elliptic curve. If
k = 5, then S = 5P and the point S is obtained from P with point double and point add operations as P , 2P
after first doubling, 4P after second doubling, and 5P after adding P to 4P . As seen in subsequent sections, the
scalar point multiplication is a computationally intensive part of ECDSA algorithm.

Elliptic Curves over Finite Fields GF(q)
Elliptic curves over real numbers are of no practical use as they cannot be used in cryptographic applications.
Moreover, computationally it is not feasible to work with real number elliptic curves. Therefore, hereafter we
consider elliptic curves defined over finite fields. A group over a finite field contains a finite number of elements
and the output of the group operation after modulo reduction (either with prime P or an irreducible polynomial
depending on the finite field) results in an element that also belongs to the same finite field. The order of the
finite field is given by the number of elements in that finite field. Next, we discuss the elliptic curves defined
over prime Galois fields GF(P) and binary Galois fields GF(2m).

Elliptic Curves over Prime Field GF(P)
An elliptic curve E(p) over GF(P) defined by the parameters a and b is the set of solutions {(Xi ,Yi), for
Xi ,Yi ∈ GF(P)}, to the equation: y2 = x3 +ax +b, together with the point O at infinity. The number of points
in E(P) is denoted by #E(P). If 4a3 +27b2(mod P) is not zero, then E(P) forms an additive group satisfying
closure property, identity property and inverse property. In the prime field GF(P), the equations for elliptic curve
points operations are the same as that defined over a real number in the previous section except with the extra
computation of modulo reduction on the result of the operation with prime number P to make sure that the result
belongs to the prime field GF(P).

■ Example 2.1: Elliptic Curve over GF(23)

Points that satisfy the elliptic curve y2 = x3 + x + 1 defined over GF(23) with a = b = 1 follow:
(0,1) (0,22) (1,7) (1,16) (3,10) (3,13) (4,0) (5,4) (5,19) (6,4) (6,19) (7, 11) (7,12) (9, 7) (9,16) (11,3)

(11,20)(12,4)(12,19)(13,7)(13,16)(17,3)(17,20)(18,3)(18,20)(19,5)(19,18). The curve E(23) has
28 points (including the point at infinity O; we can assign O = (0,0) in this example as (0,0) is not
on the curve). If P = (5,4), Q = (7,11), then using the points addition rule and point double rule, the

Data Security 63

points R = P + Q and W = 2P are computed as (see Appendix B, Section B.2.2, on the companion
website for more details on computing in GF(P)).

P = (X p,Yp) = (5,4),

Q = (Xq,Yq) = (7,11)

R = (Xr ,Yr) = P + Q

s = (Yp −Yq)/(X p − Xq) = (4−11)/(5−7) = −7/−2 = 7/2 = (7+23)/2 = 30/2 = 15

Xr = s2 − X p − Xq = 225−5−7(mod 23) = 213(mod 23) = 6

Yr = s(X p − Xr)−Yp = 15(5−6)−4(mod 23) = −15−4(mod 23) = −19(mod 23) = −19+23 = 4

W = (Xw,Yw) = 2P

s = (3X2
p +a)/(2Yp) = (75+1)/8 = 76(mod 23)/8 = 7/8 = (7+23×7)/8 = 168/8 = 21

Xw = s2 −2X p = 441−2 ×5 = 431(mod 23) = 17

Yw = s(X p − Xw)−Yp = 21(5−17)−4 = −21×12 −4 = −256(mod 23) = −3(mod 23)

= −3+23 = 20

Note that the resulting points R and W , after addition and doubling of given points P and Q, also
lie on the same elliptic curve.

■

Elliptic Curves over Binary Field GF(2m)
An elliptic curve E(2m) over GF(2m) defined by the parameters a,b ∈ GF(2m),b 	= 0, is the set of solutions
{(Xi ,Yi), for Xi ,Yi ∈ GF(2m)}, to the equation y2 + x y = x3 +ax2 +b together with a point O at infinity. The
number of points in E(2m) is denoted by #E(2m). The additive inverse of point R:(Xr ,Yr) of E(2m) is defined
as −R:(Xr , Xr +Yr). With this, the elliptic curve E(2m) points form an additive group with satisfying closure,
identity, and inverse properties. The operations of the elliptic curve over the GF(2m) field are defined in the
following.

Addition Rule Let P :(X p,Yp) ∈ E(2m) and Q:(Xq,Yq) ∈ E(2m) be the two points such that X p 	= Xq .
Then the coordinates (Xr ,Yr) of R, the result after the addition of two points P and Q, is given by

Xr = s2 + s + X p + Xq +a,Yr = s(X p + Xr)+Yp + Xr , where s = (Yp +Yq)/(X p + Xq)

Doubling Rule Let (X p,Yp) ∈ E(2m) be a point with X p 	= 0. The coordinates (Xr ,Yr) of R, the result after
a doubling of P , are given by

Xr = s2 + s +a,Yr = X2
p + (s +1)Xr , where s = X p + Yp

X p

■Example 2.2: Elliptic Curve over GF(24)

With the irreducible polynomial f (x) = x4 + x + 1 and primitive element α, the generated elements of
GF(24) follow (see Appendix B, Section B.2.3, on the companion website for more details on computing
in GF(2m)).

α0 = (0001),α1 = (0010),α2 = (0100),α3 = (1000),α4 = (0011),α5 = (0110),α6 = (1100),

α7 = (1011),α8 = (0101),α9 = (1010),α10 = (0111),α11 = (1110),α12 = (1111),α13 = (1101),

α14 = (1001),α15 = α0(0001)

64 Chapter 2

Consider an elliptic curve E(24) over GF(24), with defining equation y2 + x y = x3 +α4x2 +1 for a = α4

and b = 1. The solution set of the elliptic curve E(24) defined over GF(24) is given by:

{(0,α0), (α0,α6), (α0,α13), (α3,α8), (α3,α13), (α5,α3), (α5,α11), (α6,α8), (α6,α14), (α9,α10),

(α9,α13), (α10,α1), (α10,α8), (α12,α0), (α12,α12)}
The solution set has 16 elements (including the point at infinity O, we can assign O = (0,0) in this

example as (0,0) is not on the curve). If P = (α5,α3) and Q = (α6,α8), then, using the points addition
rule and the point double rule, the points R = P + Q and W = 2P are computed as follows:

s = (Yp +Yq)/(X p + Xq) = (α3 +α8)/(α5 +α6) = α13/α9 = α4

Xr = s2 + s + X p + Xq +a = a8 +a4 +a5 +a6 +a4 = (a2 +1)(a2 +a)(a3 +a2) = a3 +a2 +a +1 = α12

Yr = s(X p + Xr)+Yp +Xr = α4(α5 +α12)+α3 +α12 = α4α14 +α10 = α3 +α2 +α +1 = α12

s = α5 +α3/α5 = α2 +α +α18/α5 = α2 +α +α13 = α2 +α +α3 +α2 +1 = α7

Xw = s2 + s +a = α14 +α7 +α4 = (α3 +1)+ (α3 +α +1)+ (α +1) = α0

Yw = X p
2 + (s +1)Xw = α10 + (α7 +1)α0 = (α2 +α +1)+ (α3 +α +1) = α6

Note that the resulting points R:(α12,α12) and W :(α0,α6), after addition and doubling of given points
P :(α5,α3) and Q:(α6,α8), also lie on the same elliptic curve.

■

2.5.4 ECDSA

In this section, we discuss the application of elliptic curves defined over finite fields GF(q). Similar to the discrete
logarithm problem (DLP), an elliptic curve discrete logarithm problem (ECDLP) is described as, find the integer
a given Q ∈ E(q) and W = aQ, where q = prime P or 2m . As described in Section 2.5.2, Comparison of
Three DSA Approaches, solving ECDLP needs exponential computational time. Because of this reason, digital
signature algorithms (DSA) over elliptic curve groups are recommended for many applications. Before going into
the use of elliptic curves in DSA, we explore some of the standard parameters (also called domain parameters)
necessary to work with ECDLP. These domain parameters follow:

• Elliptic curve coefficients: a, b
• Elliptic curve base point: G
• Order of elliptic curve base point G:n (a subset n elements of E(q) are given by rG,1 ≤ r ≤ n −1)
• Cofactor: h (is equal to N/n, where N is the order of the elliptic curve #E(q))

First we set up the parameter set by selecting coefficients a and b of the elliptic curve defined over GF(q).
Then we select a base point G such that the order of the elliptic-curve group base point is the order of n. With this,
we can generate a subset of elliptic curve group elements as {O, G,2G,3G, . . . , (n −1)G}. Here, the choice of
the base point G is not a security consideration as long as it has a large prime order as required by the standards.
However, sender and receiver must use the same set of elliptic curve domain parameters. One example set of
domain parameters follows:

a = 00 17858FEB 7A989751 69E171F7 7B4087DE 098AC8A9 11DF7B01
b = 00 FDFB49BF E6C3A89F ACADAA7A 1E5BBC7C C1C2E5D8 31478814
G = (01 F481BC 5F0FF84A 74AD6CDF 6FDEF4BF 61796253 72D8C0C5E1,

00 25E399F2 903712CC F3EA9E3A 1AD17FB0 B3201B6A F7CE1B05)
n = 01 00000000 00000000 00000000 C7F34A77 8F443ACC 920EBA49
h = 2

The previous domain parameters are used with elliptic curve E: y2 + x y = x3 +ax2 +b over GF(2193).

Key-Pair Generation
In the key-pair generation, first we choose a statistically unique random number k in the interval [1,n − 1].
Usually k is generated using a pseudorandom number generator (block ciphers discussed in Sections 2.2 and 2.3
can be used for pseudorandom number generation) and we assume that k is available for our key-pair generation

Data Security 65

process. Once we have k, then we compute a point W on E(2m) as W = kG. In other words, we compute point
W by multiplying the elliptic curve base point G with a large random number k. The size of random number k
can be up to m bits. The flow diagram of key-pair generation is shown in Figure 2.15.

As shown in Figure 2.15, ECDSA key-pair generation process outputs (k, W), where k is a private key and W
is a public key. The private key k should not be shared with the public and the sender only uses k for generating
the signature of message. Anyone can have access to the public key W , and the recipient verifies the digital
signature using W . Techniques to implement key generation process on an embedded processor are presented
in Section 2.5.5.

Signature Generation
The ECDSA signature generation process consists of three steps and they are (1) pseudorandom number gener-
ation, (2) message digest computation, and (3) signature generation. The flow diagram of the ECDSA signature
generation process is shown in Figure 2.16. In the signature-generation process, after generating pseudorandom

Figure 2.15: Flow diagram of ECDSA
key-pair generation process.

Start

Generate Random
Number, k

W 5 kG

Output (k, W)

End

Figure 2.16: Flow diagram of ECDSA
signature generation process. End

Start

Generate
random number, d

Compute
message digest, e

Compute
dG� (Xg, Yg)

Compute
r�Xg mod n

Get elliptic
curve domain

parameters set
{a, b, G, n}

Output (r, s)

Compute
s�d�1(e�k • r) mod n

66 Chapter 2

number d, we compute P :(X p,Yp) = dG by using elliptic curve point scalar multiplication algorithm. We com-
pute the message digest value e using the SHA function (see Section 2.4.3 for more details on message digest
generation algorithms). Then we generate r = X p modn and s = t mod n, where t = d−1(e + k · r). In scalar
point multiplication, the operations involved are over either prime field GF(P) or binary field GF(2m), whereas
the operations involved in generating r and s are over prime field GF(n), where n is the order of the elliptic
curve base point G.

In signature generation, we have one inverse, one multiplication and one addition over GF(n). In the later
sections, we discuss the algorithms for computing inverse and multiplication over GF(n) in detail. After
generating the signature, the sender sends the message ‘M’ along with the signature (r, s) to the receiver.

Signature Verification
Signature verification is done at the receiving end by the receiver. We get the message M along with signature
(r, s) from the sender and we verify the signature by using the sender public key W . The signature verification
process also requires message digest, and we compute it by using the same SHA function that the sender
used for computing the message digest. The flow diagram of the signature-verification process is shown in
Figure 2.17. In the signature-verification process, we have one inverse and two multiplications over GF(n), two
scalar point multiplications and one addition of elliptic curve points over GF(q). In Section 2.5.5, signature
verification algorithms and their simulation techniques are presented. Next, an example of ECDSA over GF(23)

is presented.

Figure 2.17: Flow diagram of
signature-verification process.

Start

Compute
message digest, e

Compute
t�s�1 (mod n)

Compute
u1�e • t (mod n)
u2� r • t (mod n)

Get elliptic curve
domain parameters set

{a, b, G, n} and received
signature (r, s)

Compute
(X1, Y1)�u1G�u2W

Compute
v�X1 (mod n)

 v� r ?

End

SV�0SV �1

Y N

Data Security 67

■Example 2.3: ECDSA over Prime Field GF(23)

In this example, ECDSA algorithm flow for key-pair generation, signature generation, and signature
verification are presented. We start the ECDSA by first selecting the domain parameters.

Domain Parameters (E:y2 = x3 +ax +b)

Elliptic curve coefficients: a = 1,b = 1
Elliptic curve base point: G(13,7)

Order of elliptic curve base point G:n = 7(since 7G = O, a point at infinity)
Cofactor: h = 4(h = N/n [see Section 2.5.4]; curve has a total of N = 28 points)

Key-Pair Generation

1. Select random number d in the range [1,n −1] = [1,6], say d = 4.
2. Compute point W = dG = 4G = 2(2G) (i.e., doubling of G two times is required [see Example 2.1

for equation of doubling operation]) = 4(13,7) = 2(2(13,7)) = 2(5,4) = (17,20).
3. Here d = 4 is a private key and point W = (17,20) is a public key.

Signature Generation

1. Select random number k in the range [1,n −1] = [1,6], say k = 3.
2. Compute point (X1,Y1) = kG = 3G = G + 2G (i.e., one point doubling and one point addition are

required) = 3(13,7) = (13,7)+2(13,7)= (13,7)+ (5,4) = (17,3);r = X1(mod n) = 17(mod 7) = 3.
3. Let us assume for now that the message digest value e of given message M is equal to 5. Then,

s = k−1(e +dr)(mod n) = 3−1(5+4∗ 3)(mod 7) = 1.
4. Signature is (r, s) = (3,1).
5. We send message M along with its signature (3, 1) to the recipient.

Signature Verification
At the recipient, we have message M along with its signature (r, s) = (3,1). We compute the message
digest value e for message M again for signature verification and e = 5 (same as what we computed, or
assumed, in signature generation).

t = s−1(mod n) = 1−1(mod 7) = 1

u1 = e · t (mod n) = 5∗ 1(mod 7) = 5

u2 = r · t (mod n) = 3∗ 1(mod 7) = 3

(X1,Y1) = u1G +u2W = 5(13,7)+3(17,20)

= [(13,7)+2(2(13,7))]+ [(17,20)+2(17,20)]

= [(13,7)+ (17,20)]+ [(17,20)+ (13,7)]

= (5,19)+ (5,19) = 2(5,19)

(if points P and Q are the same, then P + Q is obtained by 2P)= (17,3)

v = X1 mod n = 17 mod 7 = 3
Since v = r , the signature is valid and we accept the message, because it was not altered during the
transmission.

■

2.5.5 Simulation of ECDSA over Binary Field GF(2m)

In Section 2.5.4, Examples of ECDSA over Prime Field GF(23), the order of the elliptic curve group used
is 7, which we represent with 3 bits as 111. In practice, the order of the elliptic curve generated over binary

68 Chapter 2

field GF(2m) can be up to m bits. At present, most of the applications adapting ECDSA over GF(2m) use m
as greater than or equal to 163 bits. All operations of ECDSA over GF(2m) involve handling of m-bit integers.
This means that the size of elliptic curve coefficients, points and the order of the elliptic curve parameters are
all m-bit numbers. The question here is, with 163 or more bit integer numbers, how to compute the elliptic
curve operations (e.g., points addition over GF(q), point doubling over GF(q) or scalar point multiplication over
GF(q), where q is also of the order of m bits) and modular arithmetic operations (e.g., multiplication modulo n,
inverse modulo n, and square modulo n, where n = 2m or n = prime P) used in ECDSA key-pair generation,
signature generation and signature verification processes. Well, we need not worry by seeing that big numbers
as we are not manually performing those operations, rather the computer will do it for us. But, we have to
program the computer to do it. This section deals with the methods used to program the computer to perform
those operations with such big numbers. In ECDSA over GF(2m), we use modular arithmetic over both prime
field and binary field.

Binary Field Arithmetic
In ECDSA, we use binary field GF(2m) arithmetic in elliptic-curve point operations. The following binary
field arithmetic functions, gfb_add() for addition, gfb_mod() for modulo reduction, gfb_sqr() for squaring,
gfb_mul() for multiplication, and gfb_inv() for inverse, are used in the implementation of ECDSA over GF(2m).
If f(x) = xm + r(x) is an irreducible binary (primitive) polynomial of degree m, and if the elements of GF(2m)

are generated using the primitivepolynomial f(x), then the elements of GF(2m) are binary polynomials of degree
at most m −1 and we perform modulo f(x) arithmetic operations on the output of GF(2m) elements arithmetic
to make sure the result of the arithmetic operation belongs to GF(2m). In GF(2m), a field element is an m-bit
number that can be represented in polynomial form as a(x) = am−1xm−1 + · · ·+ a2x2 + a1x + a0 or in vector
form as A = [am−1am−2 . . .a2a1a0].

In arithmetic operations implementation on an embedded processor, we work with either 4-bit, 8-bit, 16-bit
or 32-bit words. We do not perform m-bit arithmetic operation bit-by-bit as it is most time-consuming. Because
we handle GF(2m) field elements most of the time as 32-bit words, we represent them with 32-bit words as
X = (x [n −1], . . . , x [2], x [1], x [0]),where n = �m/32� and the right-most bit of x [0] is the LSB bit of the
m-bit field element. The left-most t = (32n −m) bits of x [n −1] are not used and are set to zero. For example,
if m = 163, then we have n = 6 words (x [5], x [4], x [3], x [2], x [1], x [0]) in a field element of GF(2163) with
left-most t = 29 bits of x [5] set as zero. Next, we discuss the simulation techniques of arithmetic operations over
the binary field GF(2163) and the same simulation techniques can be used for implementation of other binary
field elements arithmetic operations.

gfb_add(): Addition of Two Field Elements X[] and Y[] of GF(2163) Among all the binary arithmetic oper-
ations, gfb_add() is the simplest operation, and Z [], the result of adding two elements X[] and Y [], is computed
by XORing the field elements X[] and Y [], as seen in Pcode 2.31.

gfb_sqr(): Squaring of Field Element X[] of GF(2163) We take a simple example to understand the process
of squaring binary field elements. If b(x) = x2 + x +1, then b2(x) = b(x) ·b(x) = (x2 + x +1) · (x2 + x +1) =
(x4 + x3 + x2 + x3 + x2 + x + x2 + x +1) = (x4 + x2 +1). If we represent b(x) in vector form B = [111], then
B2 = [10101]. So, if we square the binary field element, all the odd exponent terms become zero and only even
exponent terms remain. In the vector form, we see alternate zeros and ones in a squared element vector. To
achieve this squaring with larger field elements, there are two ways to compute square of field element. In the
first approach, we insert the zero bits using shift right, AND, shift left and OR. Each bit takes four cycles on the
reference embedded processor (see Appendix A on the companion website) and 163 bits takes 552 cycles. In
the second approach, we achieve this squaring in 150 cycles by using a 512-byte look-up table, gfb_sqr_tbl[].
This look-up table consists of squared values for 8-bit elements. The gfb_sqr_tbl[] look-up table values can be

for(i = 0;i < 6;i++)
Z[i] = X[i]^Y[i];

Pcode 2.31: Simulation code for additions of two field elements in GF(2163).

Data Security 69

j = 0;
for(i = 0;i < 3;i++) {

r0 = x[2*i]; r1 = x[2*i+1];
r2 = r0 & 0xff; r3 = r1 & 0xff;
r4 = gfb_sqr_tbl[r2]; r5 = gfb_sqr_tbl[r3];
r2 = r0 >> 8; r3 = r1 >> 8;
r2 = r2 & 0xff; r3 = r3 & 0xff;
r2 = gfb_sqr_tbl[r2]; r3 = gfb_sqr_tbl[r3];
r2 = r2 << 16; r3 = r3 << 16;
r4 = r4 | r2; r5 = r5 | r3;
y[0+j] = r4; y[2+j] = r5;
r2 = r0 >> 16; r3 = r1 >> 16;
r2 = r2 & 0xff; r3 = r3 & 0xff;
r4 = gfb_sqr_tbl[r2]; r5 = gfb_sqr_tbl[r3];
r2 = r0 >> 24; r3 = r1 >> 24;
r2 = gfb_sqr_tbl[r2]; r3 = gfb_sqr_tbl[r3];
r2 = r2 << 16; r3 = r3 << 16;
r4 = r4 | r2; r5 = r5 | r3;
y[1+j] = r4; y[3+j] = r5;
j+= 4;

}

Pcode 2.32: Simulation code for squaring binary field element in GF(2163).

found on the companion website. First, we unpack the 32-bit words to 8-bit bytes, and then we use the look-up
table to get the 16-bit squared equivalent of an 8-bit value. Next, we OR the 16-bit look-up value with 16-bit
left-shifted output. The simulation code for the look-up table-based binary-field element squaring is given in
Pcode 2.32.

gfb_mod(): Modulo Reduction with f (x) In binary field arithmetic, if we square or multiply m − 1 degree
polynomials, the degree of output polynomial is 2m − 2. If the arithmetic operation output polynomial y(x)

degree is more than the degree of primitive polynomial f (x), then we compute y(x) modulo f (x) to make
sure y(x) polynomial degree is less than m. In the binary field, it is true that x i = x i−mr(x)(mod f (x)) for
i ≥ m. If m = 163, then 2m − 2 degree polynomial y(x) can be represented with eleven 32-bit word vectors as
Y = (y[10], y[9], . . . , y[2], y[1], y[0]). If f (x) is a trinomial or pentanomial with middle terms close to each
other, then reduction of y(x) modulo f (x) can be efficiently performed one 32-bit word at a time. For example,
if f (x) = x163 + x7 + x6 + x3 +1, then we can compute the modulo reduction for y[9] (bits from 288 to 319 of
Y) as follows:

x288 = x132 + x131 + x128 + x125(mod f (x))

x289 = x133 + x132 + x129 + x126(mod f (x))

. . .

x318 = x162 + x161 + x158 + x155(mod f (x))

x319 = x163 + x162 + x159 + x156(mod f (x))

By observing the previous congruencies, the reduction of y[9] can be performed by adding y[9] four times to
Y , with zeroth LSB of y[9] added to bits 132, 131, 128 and 125 of Y , first LSB of y[9] added to bits 133, 132,
129 and 126 of Y , and so on. Finally, the MSB of y[9] is added to bits 163,162,159 and 156 of Y . Like this, we
eliminate y[10], y[9], y[8], y[7], y[6], and y[5] (except three LSBs) of Y . The simulation code for arithmetic
modulo reduction over binary field GF(2163) is given in Pcode 2.33.

gfb_mul(): Multiplication of Two Field Elements of GF(2163) In GF(2163), two binary field elements multi-
plication is efficiently carried out by using a precompute window method. To better understand this efficient way
of implementing multiplication of two field elements A and B of GF(2163) by precomputing, first we work with
a simple example. A = [11010] and B = [10011] are vector representations of two mth (= 4) degree polyno-
mials. If we precompute vector B with all first degree polynomial combinations P = ([11], [10], [01], [00]), we

70 Chapter 2

j = 0;
for(i = 10;i > 5;i--){

r0 = y[i];
r1 = r0 << 29; r2 = r0 << 4;
y[i-6] = y[i-6]^r1; r1 = r0<<3;
r1 = r1 ^ r2; r2 = r0 >> 3;
r1 = r1 ^ r2; r2 = r0 >> 28;
r1 = r1 ^ r0; r3 = r0 >> 29;
y[i-5] = y[i-5]^r1; r1 = r2^r3;
y[i-4] = y[i-4]^r1;

}
r4 = 0xfffffff8; r5 = 0x00000007;
r0 = y[5] & r4;
r2 = r0 << 4; r3 = r0 << 3;
r1 = r2 ^ r3; r2 = r0 >> 3;
r1 = r1 ^ r2; r2 = r0 >> 28;
r1 = r1 ^ r0; r3 = r0 >> 29;
y[0] = y[0] ^ r1; r1 = r2 ^ r3;
y[1] = y[1] ^ r1; y[5] = y[5] & r5;
z[0] = y[0]; z[1] = y[1];
z[2] = y[2]; z[3] = y[3];
z[4] = y[4]; z[5] = y[5];

Pcode 2.33: Simulation code for modulo reduction over binary field GF(2163).

have B’ = B.P = [b3’,b2’,b1’,b0’] = ([110111], [100110], [010011], [000000]). Now C = A · B is obtained
by dividing A into three 2-bit blocks [a2a1a0] = [01 10 10] (here the last block MSB is appended with zero to
make a 2-bit block) and using precomputed B’ as

C = [000000000],c2 = a2 · B = [01] · B = b1’ = [010011]

C = C + c2 = [000000000]⊕ [010011] = [000010011]

C = C << 2 = [001001100],c1 = a1 · B = [10] · B = b2’ = [100110]

C = C + c1 = [001001100]⊕ [100110] = [001101010]

C = C << 2 = [110101000],c0 = a0 · B = [10] · B = b2’ = [100110]

C = C + c0 = [110101000]⊕ [100110] = [110001110]

The previous window method (with window sizew= 2) involves two left shifts, three loads and three additions.
If we increase the window size w to 3, then we will have one left shift, two loads and two additions. From this, we
can say that the number of left shifts and number of additions required in multiplying two field elements reduces
with the increase of window size w. In this analysis, we did not include the overhead of precomputing and this
overhead also increases with the window size w. In GF(2163), two binary field elements A and B multiplication is
efficiently carried out by using the precomputed multiplied values of third-degree polynomials (or w = 4) of all
combinations with one of field element. We use field element B in precompute multiplication with third-degree
polynomials and bits of element A for loading the precomputed values. For this, we divide A into 4-bit blocks
as (MSB) 4|4|4| . . . |4|4|4 (LSB) and start the multiplication process from the MSB 4-bit block. Here the field
elements are 163 bits in length and we work in terms of 32-bit words.

There are six 32-bit blocks in one field element with some appended MSB zero bits in the last 32-bit block.
Multiplication of two field elements is carried out using a nested loop with two loops. The outer loop runs eight
times to cover all eight 4-bit blocks of one 32-bit word of A, and the inner loop runs six times to cover all
32-bit words of A. The output C of multiplication contains a total of eleven 32-bit words. Before the start of
multiplication we initialize C with zeros. In the inner loop, for six 32-bit words of A, we get multiplication of

Data Security 71

for(i = 0;i < 12;i++)
Tmp[i] = 0; // C = 0

for(j = 7;j >= 0;j--){
k = j<<2; r1 = 0;
for(i = 0;i < 6;i++){

r0 = a[i];
r0 = r0 >> k;
r2 = r0 & 0xf;
r2 = r2*6;
Tmp[r1+0] = Tmp[r1+0]^Bu[r2++]; // modulo 2 additions
Tmp[r1+1] = Tmp[r1+1]^Bu[r2++];
Tmp[r1+2] = Tmp[r1+2]^Bu[r2++];
Tmp[r1+3] = Tmp[r1+3]^Bu[r2++];
Tmp[r1+4] = Tmp[r1+4]^Bu[r2++];
Tmp[r1+5] = Tmp[r1+5]^Bu[r2++];
r1+=1;

}
if (j != 0){

r0 = Tmp[0]; r1 = Tmp[1]; // left shift by w-bits or C = C.xw

r6 = r0 >> 28; r7 = r1 >> 28;
r0 = r0 << 4; r1 = r1 << 4;
r1 = r1 | r6; Tmp[0] = r0;
r0 = Tmp[2]; Tmp[1] = r1;
r6 = r0 >> 28; r0 = r0 << 4;
r0 = r0 | r7; r1 = Tmp[3];
r7 = r1 >> 28; r1 = r1 << 4;
r1 = r1 | r6; Tmp[2] = r0;
r0 = Tmp[4]; Tmp[3] = r1;
r6 = r0 >> 28; r0 = r0 << 4;
r0 = r0 | r7; r1 = Tmp[5];
r7 = r1 >> 28; r1 = r1 << 4;
r1 = r1 | r6; Tmp[4] = r0;
r0 = Tmp[6]; Tmp[5] = r1;
r6 = r0 >> 28; r0 = r0 << 4;
r0 = r0 | r7; r1 = Tmp[7];
r7 = r1 >> 28; r1 = r1 << 4;
r1 = r1 | r6; Tmp[6] = r0;
r0 = Tmp[8]; Tmp[7] = r1;
r6 = r0 >> 28; r0 = r0 << 4;
r0 = r0 | r7; r1 = Tmp[9];
r7 = r1 >> 28; r1 = r1 << 4;
r1 = r1 | r6; Tmp[8] = r0;
r0 = Tmp[10]; Tmp[9] = r1;
r6 = r0 >> 28; r0 = r0 << 4;
r0 = r0 | r7; r1 = Tmp[11];
r1 = r1 << 4; Tmp[10] = r0;
r1 = r1 | r6; Tmp[11] = r1;

}
}

Pcode 2.34: Simulation code for window based multiplication of GF(2163) field elements.

a 4-bit block (of A, one 4-bit block per outer loop iteration starting from MSB side) with B and add to C. In
each outer loop iteration, we multiply the output after current iteration with x4 (i.e., shift left C by 4 bits). The
simulation code for the window-based multiplication process is given in Pcode 2.34.

gfb_inv(): inverse of field element GF(2163) modulo f (x) In the binary field GF(2m), one way of computing
the inverse of the field element is by exponentiation of the field element to the power 2m −2 (i.e., 1/α = α2m−2).
The following method is used to compute the inverse by exponentiation process. Let m −1 = br ,br−1 . . .b1;b0

is the binary representation of m −1, where the most significant bit br of m −1 is 1.
Set β = α and k =1
For i = r − 1:0

γ = β

For j = 1:k
γ = γ 2

End

72 Chapter 2

β = βγ and k = 2k
If bi =1, then set β = β2 α and k = k + 1

End
Output β2

The simulation code for computing Y , an inverse of field element X = (x [5], x [4], x [3], x [2], x [1], x [0]) in
GF(2163) is given in Pcode 2.35.

Prime Field Arithmetic
In ECDSA over GF(2m), we also use prime field GF(P) (where P is a large prime number and represented
with 163 bits) arithmetic in the signature generation and signature verification processes. The following prime
field arithmetic functions, gfp_add() for addition, gfp_mod() for modulo reduction, gfp_mul() for multiplication
and gfp_inv() for inverse, are used in the implementation of ECDSA key-pair generation, signature generation
and verification operations. The prime field arithmetic operations are similar to normal integer arithmetic and
the only extra operation present in prime field arithmetic is computing of modulo P for output of arithmetic
operation. If the GF(P) field element A is of 163 bits in size, then it is represented with six 32-bit words
as A = (a5,a4,a3,a2,a1,a0). In other words, a field element of GF(P) can be represented with a 5th-degree
polynomial whose coefficients are of 32-bit words in size. As most of the embedded processor registers precision
is limited to 32 bits and multiplication or addition of two 32-bit numbers result in more than 32 bits, we perform
field elements arithmetic operations by representing field elements with either 16-bit words or 8-bit bytes. In
this section, we simulate the prime field arithmetic by assuming P as a 163-bit number and such GF(P) field
elements represented either with six 32-bit coefficient polynomials or with 11 16-bit coefficients or with 21-byte
coefficient polynomials.

gfp_add(): Addition of GF(P) Field Elements The addition of two field elements of GF(P) is carried out by
converting field elements’ 32-bit coefficients to 16-bit coefficients as given in Pcode 2.36. Here, we perform
addition of two 11th-degree polynomials with 16-bit coefficients and the result is also an 11th-degree polynomial
with 16-bit coefficients. After addition, the result is converted back to the 5th-degree polynomial by merging the
16-bit coefficients to 32-bit coefficients.

r0 = 162;
j = 7; k = 1;
for (i = 0;i < 6;i++){

T1[i] = x[i]; T3[i] = x[i];
}
for (j = 6;j > = 0;j--){

T2[0] = T1[0]; T2[1] = T1[1];
T2[2] = T1[2]; T2[3] = T1[3];
T2[4] = T1[4]; T2[5] = T1[5];
for(i = 0;i < k;i++)

gfb_sqr(T2,T2); // T22 -> T2
k = k << 1;
gfb_mul(T1,T2,T1); // T1xT2 -> T1
r1 = r0 >> j;
r1 = r1 & 1;
if (r1 == 1){

gfb_sqr(T1,T1); // T12 -> T1
gfb_mul(T1,T3,T1); // T1*x -> T1
k = k+1;

}
}
gfb_sqr(T1,T2); // T12 -> T2
y[0] = T2[0]; y[1] = T2[1];
y[2] = T2[2]; y[3] = T2[3];
y[4] = T2[4]; y[5] = T2[5];

Pcode 2.35: Simulation code for computing inverse of field element in GF(2163).

Data Security 73

r4 = 0;
for(i = 0;i < 6;i++){
r0 = x[i]; r1 = y[i];
r2 = r0 & 0xffff; r3 = r1 & 0xffff;
r3 = r2 + r3 + r4;
r0 = r0 >> 16; r1 = r1 >> 16;
r2 = r3 & 0xffff; r3 = r3 >> 16;
r0 = r0 + r1 + r3;
r1 = r0 & 0xffff; r4 = r0 >> 16;
r1 = r1 << 16;
r2 = r2 | r1;
z[i] = r2;

}

Pcode 2.36: Simulation code for addition of two field elements in GF(P).

for(i = 0;i < 6;i++){ // convert from 32-bit word coefficient to 8-bit byte coefficient
r0 = x[i];
r1 = r0 & 0xff; r2 = r0 >> 8;
a[j++] = r1; r1 = r2 & 0xff;
a[j++] = r1; r2 = r0 >> 16;
r1 = r2 & 0xff; r2 = r0 >> 24;
a[j++] = r1; a[j++] = r2; r0 = y[i];
r1 = r0 & 0xff; r2 = r0 >> 8;
b[k++] = r1; r1 = r2 & 0xff;
b[k++] = r1; r2 = r0 >> 16;
r1 = r2 & 0xff; r2 = r0 >> 24;
b[k++] = r1; b[k++] = r2;

}
r0 = 0;
for(i = 0;i < 24;i++){ // compute c0 to c23

k = i;
for(j = 0;j < =i;j++)
r0 = r0 + a[k--]*b[j];
r1 = r0 & 0xff;
c[i] = r1; r0 = r0 >> 8;

}
for(i = 24;i < 47;i++){ // compute c24 to c47

k = 23;
for(j=i-23;j < 24;j++)

r0 = r0 + a[k--]*b[j];
r1 = r0 & 0xff;
c[i] = r1; r0 = r0 >> 8;

}
c[47] = 0;
for(i = 0;i < 12;i++){ // convert 8-bit byte coefficients to 32-bit word coefficient

j = i<<2;
r0 = c[j]; r1 = c[j+1];
r1 = r1 << 8; r2 = c[j+2];
r0 = r0 | r1; r2 = r2 << 16;
r0 = r0 | r2; r1 = c[j+3];
r1 = r1 << 24;
r0 = r0 | r1;
z[i] = r0;

}

Pcode 2.37: Simulation code for multiplication of two primary field GF(P) elements.

gfp_mul(): Multiplication of Two Prime Field Elements The multiplication of two field elements of GF(P)

is carried out by converting their polynomial default, 32-bit coefficients to either 16- or 8-bit coefficients (as
multiplication of two 32-bit coefficients needs processor registers of 63 bits of precision to hold the multiplied
value, and 32-bit embedded processor registers can only support 32 bits of precision). In the simulation, we
represent 163-bit field elements of GF(P) with polynomials containing 8-bit coefficients as given in Pcode 2.37
to perform a multiplication operation, and we have 21 such 8-bit coefficients in the 163-bit GF(P) field element

74 Chapter 2

polynomial. The simulation code supports the following 24 coefficient (or 23rd degree) polynomial multiplication
and this can also be used to perform 21 coefficient polynomial multiplication. Let the two polynomials

A(x) = a23x23 +a22x22 +· · ·+a2x2 +a1x +a0

and

B(x) = b23x23 +b22x22 +· · ·+b2x2 +b1x +b0

represent two GF(P) field elements. If C(x) = A(x).B(x), then the coefficients of C(x) is given by

c0 = a0b0

c1 = a0b1 +a1b0

c2 = a0b2 +a1b1 +a2b0
. . . .

c23 = a0b23 +a1b22 +· · ·+a21b2 +a22b1 +a23b0

c24 = a1b23 +a2b22 +· · ·+a22b2 +a23b1

. . . .
c45 = a22b23 +a23b22

c46 = a23b23

C(x) is a 46th-degree polynomial with 47 coefficients. We perform the modulo reduction on C(x) to make sure
that the result of multiplication of A(x) · B(x) belongs to GF(P). That means we reduce C(x) to a 21-coefficient
polynomial by performing modulo reduction.

gfp_mod(): Modulo Reduction of Polynomials over Prime Field GF(P) There are multiple modulo reduction
algorithms in the literature, and we discuss a straightforward simple method (also called classical modu-
lar reduction) in this section to perform modulo reduction. In GF(P), we perform modulo reduction for a
polynomial C(x) with a degree more than or equal to 20 (since P is of size 163 bits and represented as a
20th-degree polynomial p(x) with 21 byte coefficients) to keep the result of the arithmetic in GF(P). The
remainder of the division C(x) by p(x) is treated as a modulo reduction for C(x). In this classical reduc-
tion method, we work on bytes (i.e., radix or b = 28). If C(x) is a polynomial of degree m − 1, which
is greater than or equal to 20, then we perform modulo reduction of C(x) as follows (we normalize both
C(x) and p(x) such that cm−1 ≥ b/2 to speed up the modular operation). Now, we reduce C(x) byte by byte
iteratively from the MSB side by first computing a coarse estimate of the quotient, followed by a fine estimation
of the quotient. For finding a coarse estimate of the quotient (q) of division of C (dividend) with P (divisor),
we divide two leftmost bytes of C with one leftmost byte of P . Then we check whether the estimated quo-
tient is correct or to be adjusted (fine estimation) by subtracting multiplied two leftmost bytes of P with q
from three leftmost bytes of C . If the result is positive, then we subtract q ∗ P from C otherwise we reduce
the quotient by one and repeat the previous fine estimation process. This modulo reduction process eliminates
one leftmost byte of C(x) at a time and it will be continued until the degree of C(x) falls below 20. If the dividend
C(x) contains M digits and divisor p(x) contains L digits, then modulo reduction of C with respect to P is done
in M + L −1 steps. Simulation code for modular reduction over prime field is given in Pcode 2.38.

gfp_inv(): Inverse of Element in Prime Field GF(P) If B is an element of prime field GF(P), then C , an inverse
of field element B is computed by direct exponentiation as C = B−1 = B P−2. Finding the inverse of an element
in prime fields with straightforward exponentiation is costly because it involves square and multiplication of
field elements with modulo reduction. Although there are many algorithms for finding the inverse of the prime
field element, we choose the exponentiation method because it can be efficiently implemented on an embedded
processor with Montgomery multiplication operation, MonMul(). Montgomery multiplication of a and b is
defined as MonMul(a,b) = a ·b ·r−1 (mod P), where a and b are less than P and GCD(r, P) = 1. Even though
the algorithm works for any r that is relatively prime to P , it is more useful when r is taken to be a power of

Data Security 75

p = k; // k = m-n, where m and n are the degrees of A (= C(x)) and B (= P(x))
for(i = 0;i < p;i++){ // eliminates one MSB byte of A per iteration

if(a[m] == b[n])
r0 = 255; // q

else {
r1 = a[m]; r2 = a[m-1];
r1 = r1 << 8;
r1 = r1 | r2;
r0 = r1/b[n]; // q: coarse estimate of quotient

}
r1 = r1 << 8; r2 = a[m-2];
r1 = r1 | r2; r2 = b[n];
r2 = r2 << 8; r3 = b[n-1];
r2 = r2 | r3;
while ((r0*r2) > r1)

r0 = r0 - 1; // q: fine estimate of quotient
r2 = 0;
for(j = 0;j < = n;j++) { // c[n] = q.b[n]

r1 = b[j];
r3 = r1 * r0;
r1 = r3 + r2;
r3 = r1 & 0xff;
r2 = r1 >> 8; c[j] = r3;

}
c[n + 1] = r2; tmp2 = 0;
for(j = 0;j < = (n+1);j++){ // x[m:m-n] - c[n+1] -> x[m:m-n]

tmp1 = a[k+j-1] - c[j] + tmp2;
a[k+j-1] = tmp1; tmp2 = tmp1>>8;

}
if (tmp2 != 0){ // if x[m:m-n-1] < 0, then add b[n]

tmp2 = 0;
for(j = 0;j < = n;j++){ // x[m:m-n-1] + b[n]

tmp1 = a[k+j-1] + b[j] + tmp2;
a[k+j-1] = tmp1; tmp2 = tmp1>>8;

}
}
m = m-1; k = k-1;

}

Pcode 2.38: Simulation code for classical modulo reduction over prime field GF(P).

2. In this case, the Montgomery algorithm performs divisions by a power of 2, which is an intrinsically fast
operation on an embedded processor. Let P be a k-bit prime integer in the range 2k−1 ≤ P < 2k and r = 2k (here
GCD(P,r) = 1, as P is a prime number and less than r). To describe the Montgomery multiplication algorithm,
we first define P-residue of a (where a < P) as a’ = a ·r (mod P). Then c’ =MonMul(a’, b’) = a’ ·b’ ·r−1 (mod
P) which is P-residue of c since a · r ·b · r · r−1 (mod P) = a ·b · r (mod P) = c · r (mod P). To describe the
Montgomery modulo reduction we need another element P’ such that r ·r−1 − P · P’ = 1, where r−1 and P’ are
precomputed using the extended Euclidean algorithm.

Let Q = P −2, then C = B Q is computed as

Q = [qnqn−1 . . .q2q1q0], binary value of Q with qn = 1
B’= B ·r (mod P)

C’= B’
for i = n − 1:0

C’=MonMul(C’, C’)

if(qi = 1), then C’ =MonMul(C’, B’)
end
output MonMul(C’, 1) as C

The product MonMul(a’,b’) with Montgomery modulo reduction is computed as

g = a’·b’
h = (g + (g · P’ mod r) · P)/r.

if h ≥ P , then output h − P , else output h. The simulation code for the Montgomery multiplication algorithm is
given in Pcode 2.39.

76 Chapter 2

gfp_mul(x,y,muly); // a’.b’ -> t1, here both a’,b’ are in Montgomery domain (i.e., P-residues)
T1[0] = muly[0]; T1[1] = muly[1]; // t1 mod r -> t’
T1[2] = muly[2]; T1[3] = muly[3]; T1[4] = muly[4]; T1[5] = muly[5] & 7;
gfp_mul(T1,n_dash,mulx); // t’.n’-> tmp
T2[0] = mulx[0]; T2[1] = mulx[1]; // tmp mod r -> t2
T2[2] = mulx[2]; T2[3] = mulx[3]; T2[4] = mulx[4]; T2[5] = mulx[5] & 7;
gfp_mul(T2,modulous,mulx); // t2.n -> t2
r0 = 0;
for (i = 0;i < 12;i++){ // t1 + t2 -> t1

r1 = muly[i]; r2 = mulx[i];
r3 = r1 & 0xffff; r4 = r2 & 0xffff;
r3 = r3 + r4 + r0;
r0 = r3 >> 16; r5 = r3 & 0xffff;
r3 = r1 >> 16; r4 = r2 >> 16;
r3 = r3 + r4 + r0;
r0 = r3 >> 16; r4 = r3 & 0xffff;
r4 = r4 << 16;
r5 = r4 + r5; muly[i] = r5;

}
for (i = 5;i < 11;i++){ // t1/r -> u

r0 = muly[i]; r1 = muly[i+1];
r2 = r0 >> 3; r3 = r1 << 29;
r2 = r2 | r3; z[i-5] = r2;

}
j = 1;
for (i = 5;i > = 0;i--) { // check whether u > = n or not

if (z[i] == modulous[i]) continue;
else if (z[i] < modulous[i]){j = 0; break; }
else break;

}
if (j){ // if u > = n, then output u - n

r6 = 0;
for(i = 0;i < 6;i++){

r0 = z[i]; r1 = modulous[i];
tmp0 = r0 & 0xffff; tmp1 = r1 & 0xffff;
r7 = tmp0 - tmp1 + r6;
r6 = r7 >> 31; r2 = r7 & 0xffff;
r0 = r0 >> 16; r1 = r1 >> 16;
tmp0 = r0; tmp1 = r1;
r7 = tmp0 - tmp1 + r6;
r6 = r7 >> 31; r3 = r7 & 0xffff;
r3 = r3 << 16;
r2 = r3 | r2; z[i] = r2;

}
}

Pcode 2.39: Simulation code for Montgomery multiplication.

Representation of Elliptic Curve Points
In ECDSA signature generation and verification processes (see Section 2.5.4, Signature Generation, and
Section 2.5.4, Signature Verification), we need to compute a modulo inverse, which is very costly in terms
of computations (one inverse is almost 30 to 50 times more costly compared to multiplication in terms of com-
putational complexity). To avoid these modulo inverse operations, we convert the affine coordinates (X,Y) of
elliptic curve points to projective coordinates (X∗, Y ∗, Z ∗) to take care of the denominator part of the oper-
ations with Z ∗. At the end, we convert back from projective coordinates (X∗,Y ∗, Z ∗) to affine coordinates
(X , Y) and have more than one kind of projective coordinate. Here are two popular projective coordinate
representations.

Standard projective coordinates:

Affine to projective conversion: (X∗,Y ∗, Z ∗) = (X,Y,1)

Projective to affine conversion: (X,Y) =
(

X∗

Z ∗2
,

Y ∗

Z ∗3

)

Data Security 77

Modified Jacobian coordinates:

Affine to projective conversion: (X∗,Y ∗, Z ∗) = (X,Y,1)

Projective to affine conversion: (X,Y) =
(

X∗

Z ∗ ,
Y ∗

Z ∗2

)

As conversion from projective to affine coordinates also involves modulo inverse computation, it is not a
good idea to use projective coordinates for simple operations such as point double or points addition. But, use
of projective coordinates for scalar point multiplication speeds up the process by a lot as it involves many point
double and addition operations.

Simulation of Elliptic Curve Operations in GF(2m)
In the simulation, we use projective coordinates for all three elliptic curve operations, namely, points addition,
point double and scalar point multiplication. For point-double and two-points addition, methods using both
standard projective coordinates and modified Jacobian coordinates are discussed.

Addition of E(2m) Curve Points Given two elliptic curve points P : (X p,Yp, Z p) and Q: (Xq,Yq , Zq) in pro-
jective coordinates, the projective coordinates of point R: (Xr ,Yr , Zr), which is the result of addition of two
points P and Q (i.e., R = P + Q), is obtained with EccPointsAdd() as follows.

With standard projective coordinates:

Xr = a · [Z p(X p Z 2
q+Xq Z 2

p)Zq]2 + [Yp Z 3
q+Yq Z 3

p + Z p(X p Z 2
q + Xq Z 2

p)Zq][Yp Z 3
q+Yq Z 3

p]

+ [X p Z 2
q+Xq Z 2

p]3

Yr = [Yp Z 3
q +Yq Z 3

p + Z p(X p Z 2
q + Xq Z 2

p)Z p]Xr + [(Yp Z 3
q +Yq Z 3

p)Xq

+ Z p(X p Z 2
q + Xq Z 2

p)Yq][Z p(X p Z 2
q + Xq Z 2

p]2

Zr = Z p(X p Z 2
q + Xq Z 2

p)Zq

With modified Jacobian coordinates:

Zr = [Z p(Xq Z p + X p)]2

Xr = Z p(Xq Z p + X p)(Yq Z 2
p +Yp)+ (Yq Z 2

p +Yp)
2 + [(Xq Z p + X p)Z p +aZ 2

p](Xq Z p + X p)
2

Yr = Z p(Xq Z p + X p)(Yq Z 2
p +Yp)+ (Zr Xq + Xr)+ Zr (Zr Yq + Xr)

The simulation code for two elliptic curve points addition with standard projective coordinates is given in
Pcode 2.40 and with modified Jacobian coordinates is given in Pcode 2.41.

Doubling of E(2m) Curve Points Given an elliptic curve point P : (X p,Yp, Z p) and the projective coordinates
of point R: (Xr ,Yr , Zr), a result of doubling a point P (i.e., Q = 2P) is obtained with EccPointDouble() as
follows:

With standard projective coordinates:

Zr = X p Z 2
p

Xr = (X p + c · Z 2
p)

4
, where c = b2m−2

Yr = X4
p Zr + (Zr + X2

p +Yp Z p)Xr

78 Chapter 2

r0 = r2 = 0;
for(i = 0;i < 6;i++){ // Px -> T1, Py -> T2, Pz -> T3, Qx -> T4, Qy -> T5, Qz ->
T3, a->T9

T1[i] = x[i]; T2[i] = x[6 + i];
T3[i] = x[12 + i]; T4[i] = y[i];
T5[i] = y[6 + i]; T6[i] = y[12 + i];
T9[i] = a[i]; r2+= y[12 + i];
r0+= a[i];

}
if (r2 != 1){ // Qz != 1

gfb_sqr(T6,T7); // T62 -> T7
gfb_mul(T1,T7,T1); // T1xT7 -> T1
gfb_mul(T6,T7,T7); // T6xT7 -> T7
gfb_mul(T2,T7,T2); // T2xT7 -> T7

}
gfb_sqr(T3,T7); // T32 -> T7
gfb_mul(T4,T7,T8); // T4xT7 -> T8
gfb_add(T1,T8,T1); // T1+T8 -> T1
gfb_mul(T3,T7,T7); // T3xT7 -> T7
gfb_mul(T5,T7,T8); // T5xT7 -> T8
gfb_add(T2,T8,T2); // T2+T8 -> T2
gfb_mul(T2,T4,T4); // T2xT4 -> T4
gfb_mul(T1,T3,T3); // T1xT3 -> T3
gfb_mul(T3,T5,T5); // T3xT5 -> T5
gfb_add(T4,T5,T4); // T4+T5 -> T4
gfb_sqr(T3,T5); // T32 -> T5
gfb_mul(T4,T5,T7); // T4xT5 -> T7
if (r2 != 1)

gfb_mul(T3,T6,T3); // T3xT6 -> T3
gfb_add(T2,T3,T4); // T2+T3 -> T4
gfb_mul(T2,T4,T2); // T2xT4 -> T2
gfb_sqr(T1,T5); // T12 -> T5
gfb_mul(T1,T5,T1); // T1xT5 -> T1
if (r0 != 0){ // a != 0

gfb_sqr(T3,T8); // T32 -> T8
gfb_mul(T8,T9,T9); // T8xT9 -> T9
gfb_add(T1,T9,T1); // T1+T9 -> T1

}
gfb_add(T1,T2,T1); // T1+T2 -> T1
gfb_mul(T1,T4,T4); // T1xT4 -> T4
gfb_add(T4,T7,T2); // T4+T7 -> T2
for(i = 0;i < 6;i++){ // T1 -> Rx, T2 -> Ry, T3 -> Rz

z[i] = T1[i]; z[6 + i] = T2[i];
z[12 + i] = T3[i];

}

Pcode 2.40: Simulation code for points addition over GF(2163) using standard projective coordinates.

With modified Jacobian coordinates:

Zr = X2
p Z 2

p

Xr = X4
p +bZ 4

p

Yr = Xr (Y
2
p +bZ 4

p +a · Zr)+bZ 4
p Zr

For point double using standard projective coordinates, we have to precompute the value c = b2m−2
. In the case

of modified Jacobian coordinates, this precomputation of c is not needed. The simulation codes for point-double
using standard projective coordinates and modified Jacobian coordinates are given in Pcodes 2.42 and 2.43,
respectively.

Scalar Point Multiplication In this section, we discuss two methods for computing the multiplication of an
elliptic curve point P with a constant value k. A scalar multiplication kP of a point P on an elliptic curve is
computed with the doubling and add operations defined over elliptic curves. As the doubling and add operations
of elliptic curve points are too costly in terms of computations, here we discuss an efficient way of computing

Data Security 79

r0 = 0;
for(i = 0;i < 6;i++){ // Xq -> T1, Yq -> T2, Zq -> T3, Xp -> T4, Yp -> T5, a->T9

T1[i] = x[i]; T2[i] = x[6 + i];
T3[i] = x[12 + i]; T4[i] = y[i];
T5[i] = y[6 + i]; T9[i] = pE->coeff_a[i];
r0 = r0 + pE->coeff_a[i];

}
gfb_sqr(T3,T6); // T3^^2 -> T6
gfb_mul(T5,T6,T7); // T5xT6 -> T7
gfb_mul(T4,T3,T8); // T4xT3 -> T8
gfb_add(T7,T2,T7); // T7+T2 -> T7
gfb_add(T8,T1,T8); // T8+T1 -> T8
gfb_mul(T8,T3,T1); // T8xT3 -> T1
if(r0==0) {

T9[0] = T1[0]; T9[1] = T1[1];
T9[2] = T1[2]; T9[3] = T1[3];
T9[4] = T1[4]; T9[5] = T1[5];

}
else if (r0==1){
T9[0] = T6[0]; T9[1] = T6[1];
T9[2] = T6[2]; T9[3] = T6[3];
T9[4] = T6[4]; T9[5] = T6[5];

}
else
gfb_mul(T9,T6,T9); // axT6 -> T9
gfb_add(T9,T1,T9); // T9+T1 -> T9
gfb_sqr(T8,T8); // T8^^2 -> T8
gfb_mul(T8,T9,T8); // T8xT9 -> T8
gfb_mul(T1,T7,T2); // T1xT7 -> T2
gfb_sqr(T1,T1); // T1^^2 -> T1
gfb_sqr(T7,T7); // T7^^2 -> T7
gfb_add(T7,T8,T7); // T7+T8 -> T7
gfb_add(T7,T2,T3); // T7+T2 -> T3
gfb_mul(T1,T4,T6); // T1xT4 -> T6
gfb_add(T6,T3,T6); // T6+T3 -> T6
gfb_mul(T1,T5,T8); // T1xT5 -> T8
gfb_add(T8,T3,T8); // T8+T3 -> T8
gfb_mul(T2,T6,T2); // T2xT6 -> T2
gfb_mul(T8,T1,T8); // T8xT1 -> T8
gfb_add(T2,T8,T2); // T2+T8 -> T2
for(i = 0;i < 6;i++){

z[i] = T3[i]; z[6 + i] = T2[i];
z[12 + i] = T1[i];

}

Pcode 2.41: Simulation code for two points addition over GF(2163) using modified Jacobian coordinates.

scalar point multiplication with less points add and double operations. For better understanding of this scalar point
multiplication algorithm, two methods of building a 12-bit integer number k (say, 1796d = 704h =
011100000100b) with very few operations are described in the following.

COMB METHOD

011100000100 = 1 ·210 +1 ·29 +1 ·28 +0 ·27 +0 ·26 +0 ·25 +0 ·24 +0 ·23 +1 ·22 +0 ·21 +0 ·20

= (1 ·21 +1 ·20) ·29 + (1 ·22 +0 ·21 +0 ·20) ·26 + (0 ·22 +0 ·21 +0 ·20) ·23

+ (1 ·22 +0 ·21 +0 ·20) ·20

= (0 ·22 +1 ·21 +1 ·20) · 29 + (1 ·22 +0 ·21 +0 ·20) ·26 + (0 ·22 +0 ·21 +0 ·20) · 23

+ (1 ·22 +0 ·21 +0 ·20) ·20

= (0 ·29 +1 ·26 +0 ·23 +1 ·20) ·22 + (1 ·29 +0 ·26 +0 ·23 +0 ·20) ·21

+ (1 ·29 +0 ·26 +0 ·23 +0 ·20) ·20

80 Chapter 2

= (b23 ·29 +b22 ·26 +b21 ·23 +b20 ·20) ·22 + (b13 ·29 +b12 ·26 +b11 ·23 +b10 ·20) ·21

+ (b03 ·29 +b02 ·26 +b01 ·23 +b00 ·20) ·20

= 2(2 · [b23b22b21b20]+ [b13b12b11b10])+ [b03b02b01b00]

= 2 · (2 · (B2)+ B1)+ B0

r1 = 0;
for(i = 0;i < 6;i++){ // Px -> T1, Py -> T2, Pz -> T3, b2m-2 -> T4

r1 = r1 + x[i + 6];
T1[i] = x[i]; T2[i] = x[6+i];
T3[i] = x[12+i]; T4[i] = c_bsqrm_2[i];

}
gfb_mul(T2,T3,T2); // T2xT3 -> T2
gfb_sqr(T3,T3); // T32 -> T3
gfb_mul(T3,T4,T4); // T3xT4 -> T4
gfb_mul(T1,T3,T3); // T1xT3 -> T3
gfb_add(T2,T3,T2); // T2+T3 -> T2
gfb_add(T1,T4,T4); // T1+T4 -> T4
gfb_sqr(T4,T4); // T4^2 -> T4
gfb_sqr(T4,T4); // T4^2 -> T4
gfb_sqr(T1,T1); // T1^2 -> T1
gfb_add(T1,T2,T2); // T1+T2 -> T2
gfb_mul(T2,T4,T2); // T2xT4 -> T2
gfb_sqr(T1,T1); // T1^2 -> T1
gfb_mul(T1,T3,T1); // T1xT3 -> T1
gfb_add(T1,T2,T2); // T1+T2 -> T2
for(i = 0;i < 6;i++){ // T4->Qx, T2->Qy, T3->Qz

x[i] = T4[i]; // Xr

x[i + 6] = T2[i]; // Yr

x[i + 12] = T3[i]; // Zr

}

Pcode 2.42: Simulation code for point double in GF(2163) using standard projective coordinates.

for(i = 0;i < 6;i++){ // Xq -> T1, Yq -> T2, Zq -> T3, a -> T6, b -> T7
T1[i] = x[i]; T2[i] = x[6+i];
T3[i] = x[12+i]; T6[i] = a[i];
T7[i] = b[i];

}
gfb_sqr(T1,T1); // T12 -> T1
gfb_sqr(T3,T3); // T32 -> T3
gfb_mul(T1,T3,T4); // T1xT3 -> T4
gfb_sqr(T1,T1); // T12 -> T1
gfb_sqr(T3,T3); // T32 -> T3
gfb_mul(T7,T3,T3); // bxT3 -> T3
gfb_add(T1,T3,T1); // T1+T3 -> T1
gfb_sqr(T2,T2); // T22 -> T2
gfb_add(T2,T3,T2); // T2+T3 -> T2
gfb_mul(T3,T4,T3); // T3xT4 -> T3
gfb_mul(T6,T4,T5); // axT4 -> T5
gfb_add(T2,T5,T2); // T2+T5 -> T2
gfb_mul(T2,T1,T2); // T2xT1 -> T2
gfb_add(T2,T3,T2); // T2+T3 -> T2
for(i = 0;i < 6;i++){

x[i] = T1[i]; // Xr
x[6+i] = T2[i]; // Yr
x[12+i] = T4[i]; // Zr

}

Pcode 2.43: Simulation code for point double in GF(2163) using modified Jacobian coordinates.

Data Security 81

where

B j = [b j3b j2b j1b j0] = b j3 ·29 +b j2 ·26 +b j1 ·23 +b j0 ·20

⎡
⎣b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

⎤
⎦=

⎡
⎣0 0 0 1

0 0 0 1
1 0 1 0

⎤
⎦

In this example, B j can have 16 possible combinations and they are [0000] = (0 ·29 +0 ·26 +0 ·23 +0 ·20),

[0001] = (0 ·29 +0 ·26 +0 ·23 +1 ·20), . . . , [1111] = (1 ·29 +1 ·26 +1 ·23 +1 ·20). These 16 values are given
by 0, 1, 8, 9, 64, 65, 72, 73, 512, 513, 520, 521, 576, 577, 584, and 585. For our example of 1796, the values of
B0, B1 and B2 are given by 512 = [1000],512 = [1000] and 65 = [0101]. The number 1796 is obtained from
the expression 2 · (2 · (B2) + B1) + B0 as 2 · (2 · 65 + 512)+ 512. This involves two multiplications and two
additions, whereas the straightforward method involves 11 multiplications and 10 additions (it also requires 11
precomputed values of power 2). With the precomputation of 16 values, any 12-bit integer value can be computed
easily using the previous method with two additions and two multiplications. Preparing offsets Bi for the comb
method is illustrated in the following:

1

0

1

0

0

0

0

1

0

0

0

1

011
bi3

bi0

bi1

bi2

bi3

B2 B1 B0

Bi 5 [bi3 bi2 bi1 bi0]

100
bi2

000
bi1

100
bi0

In the comb method, we basically divide the given binary string into small fixed-length blocks (if the leftmost
block does not have sufficient bits, then we add enough zero bits at the MSB side to form a block). We arrange
blocks one below another and read from bottom to top column-wise for getting each offset Bi . From this,
B0 = [1000], B1 = [1000], and B2 = [0101]. The pseudocode for scalar point multiplication kG using the comb
method follows:

Q = Bn−1G; // assuming n-offsets of Bi

for i = n − 2:0
Q=EccPointDouble(Q);
Q=EccPointsAdd(Q,Bi G);

end
Output Q;

ADD-SUBTRACT WITH LOW ONE POPULATION

In this method, we compute a number h from a given number k by multiplying by 3. Then we compute g by
XORing h and k. Let g = (gngn−1gn−2 . . .g1g0) and k = (knkn−1kn−2 . . .k1k0), where gn = 1. Now, we build
the number k from 1 by using the binary strings (gngn−1gn−2 . . .g1g0) and (knkn−1kn−2 . . . k1k0) in an iterative
fashion, as seen in the following:

a = b = 1;
for(i = n − 1; i > 0; i −−){

a = 2a;
if (gi == 0)

continue;
else{

if(ki == 0)
a = a + b;

else
a = a − b;

}
}

82 Chapter 2

Next we use the previous method to compute a 12-bit number k from 1. Let k = 1796d = 0011100000100b,
h = 3∗ k = 3∗ 1796 = 5388d = 1010100001100b, and g = k ⊕ h = 1001000001000b = (gngn−1gn−2 . . . g1g0),
where n = 12. Then, from the previous iterative method, the updated value at the end of each iteration becomes
a = 2,4,7,14,28,56,112,224,449,898,1796. This method requires n − 1 multiplications and few additions
(in our example case, two additions took place at the non-zero value of gi). The number of additions depends
on the one’s population in the binary string of g.

For computing scalar point multiplication, in the previous method we replace the multiplication by 2 with
PointDouble, and addition and subtraction with FullAdd and FullSub operations. If we have sufficient memory,
then use of the comb method reduces computations of scalar multiplication of the elliptic curve point by a lot.
As discussed in Section 2.5.2, Elliptic Curve-Based DSA, in ECDSA, we have four scalar point multiplications,
one in key-pair generation, one in signature generation, and two in signature verification. Out of four scalar
point multiplications, we use base point G in three of them. In some cases, the domain parameters of elliptic
curves may not be changed, and precomputation of a few base-point scalar multiplications can speed up signature
generation or verification process computation.

The simulation code for scalar point multiplication using the comb method (for computing kG), EccPoint-
MulComb(), and add-subtract method (for computing kP), EccPointMulAddSub(), are given in Pcodes 2.44

for(j = m-1;j > = 0;j--){
EccPointDouble(Q); // 2Q->Q
r0 = 0;
for(i=5;i > =0;i--){ // get offset Bi

r1 = rk[i];
r1 = r1 >> j; r0 = r0 << 1;
r1 = r1 & 1; r0 = r0 | r1;

}
if(r0 != 0){ // get precomputed value

r0+=-1; r0 = r0 * 18;
for(i = 0; i < 18;i++)

P[i] = Gu[i+r0]; // Gu[] contains precomputed values
EccPointsAdd(pEC,P,Q,Q); // Q+[xxxxxx].G -> Q

}
}
// convert projective to affine coordinates, (Xq,Yq,Zq) -> (Qx,Qy)
T1[0] = Q[12]; T1[1] = Q[13];
T1[2] = Q[14]; T1[3] = Q[15];
T1[4] = Q[16]; T1[5] = Q[17];
gfb_sqr(T1,T1); // Qz^^2 -> T1
T9[0] = T1[0]; T9[1] = T1[1]; // T1 -> T9
T9[2] = T1[2]; T9[3] = T1[3];
T9[4] = T1[4]; T9[5] = T1[5];
gfb_inv(T1,T2); // 1/T1 -> T2
T1[0] = Q[0]; T1[1] = Q[1];
T1[2] = Q[2]; T1[3] = Q[3];
T1[4] = Q[4]; T1[5] = Q[5];
gfb_mul(T1,T2,T1); // T1xT2 -> T1
y[0] = T1[0]; y[1] = T1[1]; // T1 -> Qx
y[2] = T1[2]; y[3] = T1[3];
y[4] = T1[4]; y[5] = T1[5];
T1[0] = Q[12]; T1[1] = Q[13];
T1[2] = Q[14]; T1[3] = Q[15];
T1[4] = Q[16]; T1[5] = Q[17];
gfb_mul(T1,T9,T1); // T1xT9 -> T1
gfb_inv(T1,T2); // 1/T1 -> T2
T1[0] = Q[6]; T1[1] = Q[7];
T1[2] = Q[8]; T1[3] = Q[9];
T1[4] = Q[10]; T1[5] = Q[11];
gfb_mul(T1,T2,T1); // T1xT2 -> T1
y[6] = T1[0]; y[7] = T1[1]; // T1 -> Qy
y[8] = T1[2]; y[9] = T1[3];
y[10] = T1[4]; y[11] = T1[5];

Pcode 2.44: Simulation code for scalar point multiplication in GF(2163) using comb method.

Data Security 83

r0 = 0; r3 = 3;
for(i = 0;i < 6;i++) { // 3*k -> h

r1 = k[i];
r2 = r1 & 0xffff; r1 = r1 >> 16;
r4 = r2 * r3; r5 = r1 * r3;
r4 = r4 + r0;
r1 = r4 & 0xffff; r0 = r4 >> 16;
r5 = r5 + r0;
r2 = r5 & 0xffff; r0 = r5 >> 16;
r2 = r2 << 16;
r2 = r2 | r1;
h[i] = r2;

}

for(i = m - 1;i > = 1;i--){
EccPointDoubleModJac(pEC, Q); // 2Q->Q
r0 = i>>5; r2 = i & 0x1f;
r1 = k[r0]; r3 = h[r0];
r1 = r1 >> r2; r3 = r3 >> r2;
r1 = r1 & 1; r3 = r3 & 1;
if ((r1 == 0) && (r3 == 0))
continue;

if ((r1 == 1) && (r3 == 1))
continue;

if((r1 == 0) && (r3 == 1))
EccFullAddModJac(pEC, Q,P,Q);

else
EccFullSubModJac(pEC, Q,P,Q);

}
// convert from Modified Jacobian to affine coordinates

gfb_inv(&Q[12],T2); // 1/Zq -> T2
gfb_mul(Q,T2,y); // XqxT2 -> x
gfb_sqr(&Q[12],T1); // Zq^^2 -> T1
gfb_inv(T1,T2); // 1/T1 -> T2
gfb_mul(&Q[6],T2,&y[6]); // YqxT2 -> y

Pcode 2.45: Simulation code for scalar point multiplication in GF(2163) using add-subtract method.

and 2.45, respectively. In scalar multiplication using the add-subtract method, we have two new functions,
namely, EccFullAddModJac() and EccFullSubModJac(). The EccFullSubModJac() function first computes the
reflection point of the second input, and then calls the function EccFullAddModJac(). The EccFullAddModJac()
function is computed as follows.

EccAddPointsModJac(X, Y , Z); // X + Y −> Z
If (Z = 0)

EccDoublePointModJac(X, Z); // 2X−> Z
Output Z;

Simulation of ECDSA over GF(2163)
The ECDSA parameter set over a binary field consists of the following parameters: coefficients a and b,
field base-point G, field size s, and field order n. The ECDSA uses the three functions EccKeyPairGen()
for key-pair generation, EccSigGen() for signature generation and EccSigVer() for signature verification. The
signature generation routine uses a private key to compute the signature, whereas the signature verification
process uses a public key to verify the signature. See Section 2.5.4 for more details of ECDSA functiona-
lity. Both signature generation and signature verification processes assume that the message digest value is
available.

EccKeyPairGen(): Key-Pair Generation Process The key-pair generation process generates two keys,
namely, private key and public key by multiplying the base point G with a pseudorandom number k. The
simulation code for EccKeyPairGen() is given in Pcode 2.46.

EccSigGen(): Signature Generation Process The signature generation routine uses a private key (k) and
a message digest value to compute the signature of a message, as shown in Figure 2.15. The simulation
code for EccSigGen() is given in Pcode 2.47.

84 Chapter 2

EccSigVer(): Signature Verification Process The signature verification routine uses the public key (W) and
a message digest value to verify the signature of a message as shown in Figure 2.17. The simulation code
for EccSigVer() is given in Pcode 2.48.

// choose (generate) private key ‘k’ in the interval [1, n-1], where n = 2m , m = 163
// we assume the private key K[] (a random number) is available for this simulation
pECC->pvkey_m[0] = K[0]; pECC->pvkey_m[1] = K[1];
pECC->pvkey_m[2] = K[2]; pECC->pvkey_m[3] = K[3];
pECC->pvkey_m[4] = K[4]; pECC->pvkey_m[5] = K[5];

// compute public key ‘W’ as W = k.G
EccPointMulComb(pECC, K, pbkey);
for(i = 0;i < 12;i++)

pECC->pbkey_m[i] = pbkey[i];

Pcode 2.46: Simulation code for key-pair generation process.

// S = (x,y) = t.G , where ‘t’ is random number in the interval [1,n-1]
EccPointMulComb(pECC, t, randm, X);
// r = Sx mod n, its a m-bit integer modulo reduction
gfp_mod(P,T9,T4); // r = Sx mod n -> T4
// check if (sum(z[1:6})==0), then again start signature generation
// h = k.r, m-bit integer multiplication, where k is a private key of signature generator
T1[0] = pECC->pvkey_m[0]; T1[1] = pECC->pvkey_m[1];
T1[2] = pECC->pvkey_m[2]; T1[3] = pECC->pvkey_m[3];
T1[4] = pECC->pvkey_m[4]; T1[5] = pECC->pvkey_m[5];
// k.r, two m-bit numbers integer multiplication
gfp_mul(T1,T4,X); // T1 * T4 -> X
gfp_mod(X,T9,T3); // k.r mod n -> T3
// generate message digest ‘e = msgd[]’ using SHA-1 function
T1[0] = msgd[0]; T1[1] = msgd[1];
T1[2] = msgd[2]; T1[3] = msgd[3];
T1[4] = msgd[4]; T1[5] = 0;

// e + (k.r mod n)
// two m-bit numbers integer addition

gfp_add(T1,T3,T5); // T1+T3 -> T5
// 1/t, inverse for m-bit integer number

gfp_inv(temp_randm,T3); // inv(t) -> T3
gfp_mul(T5,T3,X); // inv(t)*(e+k.r) -> X
gfp_mod(X,T9,T1); // s = inv(t)*(e+k.r) mod n -> T1

// (r,s) -> output as signature

Pcode 2.47: Simulation code for EccSigGen() process in GF(2163).

2.5.6 Simulation Results of ECDSA over GF(2163)

In this section, the simulation results for two recommended elliptic curves in GF(2163) are presented. For each
elliptic curve, domain parameters, EccKeyPairGen() output, EccSigGen() output, and EccSigVer() output are
presented. For both signature generation and signature verification, we use a temporary message digest value,
msgd[].

Simulation Results for Koblitz Elliptic Curve over GF(2163)
Domain Parameters
a = 0x01; // coefficient ‘a’
b = 0x01; // coefficient ‘b’
G:(Xg , Yg)= (02 fe13c053 7bbc11ac aa07d793 de4e6d5e 5c94eee8,

02 89070fb0 5d38ff58 321f2e80 0536d538 ccdaa3d9); // base point ‘G’
N = 04 00000000 00000000 00020108 a2e0cc0d 99f8a5ef; // order of curve ‘n’
h = 02; // cofactor ‘h’

Key-Pair Generation
Input:
A ‘‘seed’’ value for random number generator.

Data Security 85

// assume message digest of message as e = msgd[], compute inverse of ‘s’ of signature (r,s)
for(i = 0;i < 6;i++){

T1[i] = pECC->outputs[6+i]; // s
T5[i] = pECC->outputs[i]; // r
T9[i] = pECC->order_g[i]; // n

}
gfp_inv(T1,T4); // inv(s) -> T4
gfp_mul(msgd,T4,X); // e.inv(s) -> X
gfp_mod(X,T9,X); // e.inv(s) (mod n) -> X
gfp_mul(T5,T4,Y); // r.inv(s) -> Y
gfp_mod(Y,T9,Y); // r.inv(s) (mod n) -> Y
EccPointMulComb(pECC,X,X); // X.G -> X
EccPointMulAddSub(pECC, Y, Y); // Y.W -> Y

for(i = 0;i < 6;i++){
P[i] = X[i]; Q[i] = Y[i];
P[6+i] = X[6+i]; Q[6+i] = Y[6+i];
P[12+i] = Zg[i]; Q[12+i] = Zg[i]; // Zg[] = 1

}
EccFullAddModJacc(pECC, P,Q,Q); // X.G + Y.G -> (x,y)
// convert from modified Jacobian to affine coordinates
gfb_inv(&Q[12],T3); // 1/Zq -> T3
gfb_mul(Q,T3,X); // XqxT3 -> X
gfb_sqr(&Q[12],T2); // Zq2 -> T2
gfb_inv(T2,T3); // 1/T2 -> T3
gfb_mul(&Q[6],T3,Y); // YqxT3 -> Y
for(i = 0;i < 6;i++){

T9[i] = pECC->order_g[i];
X[6+i] = 0;

}
gfp_mod(X,T9,T2); // x (mod n) -> T2
pECC->valid_s = 1;
for(i = 0;i<6;i++){

if(T2[i] != pECC->outputs[i]){
pECC->valid_s = 0;
break;

}
}

Pcode 2.48: Simulation code for EccSigVer() process in GF(2163).

Output:
k:03 a41434aa 99c2ef40 c8495b2e d9739cb2 155a1e0d; // private key
W:(Xw, Yw)= (03 7d529fa3 7e42195f 10111127 ffb2bb38 644806bc,

04 47026eee 8b34157f 3eb51be5 185d2be0 249ed776); // public key

Signature Generation

Input:
e:00 a9993e36 4706816a ba3e2571 7850c26c 9cd0d89d; // message digest value
d:00 a40b301c c315c257 d51d4422 34f5aff8 189d2b6c; // random number ∈ [1,n−1]
k:03 a41434aa 99c2ef40 c8495b2e d9739cb2 155a1e0d; // private key

Output:
(r, s):(01 52f95ca1 5da1997a 8c449e00 cd2aa2ac cb988d7f,

00 994d2c41 aa30e529 52aea846 2370471b 2b0a34ac); // signature:(r, s)

Signature Verification

Input:
(r, s):(01 52f95ca1 5da1997a 8c449e00 cd2aa2ac cb988d7f,

00 994d2c41 aa30e529 52aea846 2370471b 2b0a34ac); // signature:(r, s)
e:00 a9993e36 4706816a ba3e2571 7850c26c 9cd0d89d; // message digest value
W:(Xw, Yw)= (03 7d529fa3 7e42195f 10111127 ffb2bb38 644806bc,

04 47026eee 8b34157f 3eb51be5 185d2be0 249ed776); // public key

Output:
V alid_s:1 // 1/0:valid/not valid

86 Chapter 2

Simulation Results for Random Elliptic Curve Over GF(2163)

Domain Parameters
a = 07 b6882caa efa84f95 54ff8428 bd88e246 d2782ae2; // coefficient ‘a’
b = 07 13612dcd dcb40aab 946bda29 ca91f73a f958afd9; // coefficient ‘b’
G: (Xg, Yg)= (03 69979697 ab438977 89566789 567f787a 7876a654,

00 435edb42 efafb298 9d51fefc e3c80988 f41ff883); // base point ‘G’
N = 03 ffffffff ffffffff ffff48aa b689c29c a710279b; // order of curve ‘n’
h = 02; // cofactor ‘h’

Key-Pair Generation
Input:
A ‘‘seed’’ value for random number generator.

Output:
k:03 a41434aa 99c2ef40 c8495b2e d9739cb2 155a1e0d; // private key
W: (Xw, Yw)= (05 7f8f4671 cfa2badf 53c57cb5 4e5c48a9 45ff2114,

07 4da202c5 0a98ec3b badf742d 4c9dcf17 f52dc591); // public key

Signature Generation
Input:

e:00 a9993e36 4706816a ba3e2571 7850c26c 9cd0d89d; // message digest value
d:00 a40b301c c315c257 d51d4422 34f5aff8 189d2b6c; // random number ∈ [1,n−1]
k:03 a41434aa 99c2ef40 c8495b2e d9739cb2 155a1e0d; // private key

Output:
(r, s): (01 40ca54a6 4474606e c63f5dc8 affc2e14 a8acf423,

00 b653b62f d233247b c3441e64 b57449f2 cc5f1677); // signature:(r, s)

Signature Verification
Input:
(r, s): (01 40ca54a6 4474606e c63f5dc8 affc2e14 a8acf423,

00 b653b62f d233247b c3441e64 b57449f2 cc5f1677); // signature:(r, s)
e:00 a9993e36 4706816a ba3e2571 7850c26c 9cd0d89d; // message digest value
W: (Xw, Yw)= (05 7f8f4671 cfa2badf 53c57cb5 4e5c48a9 45ff2114,

07 4da202c5 0a98ec3b badf742d 4c9dcf17 f52dc591); // public key

Output:
V alid_s:1 // 1/0:valid/not valid

CHAPTER 3

Introduction to Data Error Correction

Error-correcting codes, an important part of modern digital communications systems, are used to detect and
correct errors introduced during transmission. In many communications applications, as shown in Figure 3.1, a
substantial portion of the baseband signal processing is dedicated to keeping a very low bit error rate (BER),
usually less than 10−10. As system designers, we can trade coding gain for lower transmit power or higher data
throughput, and there is an ongoing effort to incorporate increasingly more powerful channel coding techniques
into communications systems. In this chapter, we discuss various channel coding techniques and simulate the
most popularly used CRC32 error detection algorithm. The error correction algorithm simulation techniques
will be discussed in the next chapter.

3.1 Definitions

Communications channels introduce noise into useful signals during transmission. There are many noise sources
that generate noise and add it to the signal. See Section 9.1.2 for more information on noise generation and
measurement in communications systems. In his famous paper published in 1948, “Mathematical Theory of
Communications,” Shannon wrote that reliable communication through a channel is possible only if the rate of
data transmission is below the channel capacity. From this paper, it can be understood that the presence of noise
and the non-zero response of the channel are the two parameters that determine the channel capacity. It also
says that the channel capacity can be achieved through complex channel coding and modulation schemes. See
Section 9.1 for more information on channel capacity and modulation schemes. In this chapter, we discuss the
channel coding techniques through which we can perform forward error correction (FEC) or the correction of
channel errors at the receiver side without requesting retransmission of data. In Figure 3.1, the shaded portion
represents the baseband processing related to channel coding.

Depending on the communications system, we may use either an error detection scheme (which may request
for retransmission of data from the transmitter) or error-correction schemes, or both error detection and error
correction schemes. In two-way communications systems such as telecom or computer data systems, we can use
error detection with ARQ (automatic repeat request) schemes to improve communication quality. In Section 3.2,

Source
Coding

Transmitter
Back End

Noisy
Channel

Receiver
Front End

Data
Decompression

Channel
Coding

Digital
Modulation

Channel
Decoding

Source
Data

Received
Data

Figure 3.1: Channel coding in digital communications.

© 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-678-1.00003-X 87

88 Chapter 3

we discuss various error detection methods and simulate the popularly used CRC32 error detection algorithm.
Communications systems such as broadcast systems are examples of one-way communications systems, where
we do not have a backward channel to request for retransmission of error data frames. In such cases, we apply
error-correction techniques in the forward direction of the data itself to reduce the number of error frames.
An overview of various error-correction schemes based on block coding and convolutional coding methods is
provided in Sections 3.3 through 3.11.

3.2 Error Detection Algorithms

Data error detection algorithms with ARQ schemes play an important role in two-way communications systems
to minimize the number of error data frames at the user end. The two-way communications systems examples
are twisted-pair telephone lines, computer data communication networks, and some satellite communications
systems. Error detection is performed by using redundant data added to the original data at the transmitter. We
obtain the redundant data using either odd or even parity bit computation or cyclic-redundancy-check (CRC) bit
computation. At the receiver, we again compute the check bits from received data bits and compare against the
received redundant information. If the transmitted redundant information is the same as the computed check bits
at the receiver, then we assume that the received data is error free; otherwise, we treat the current data frame as
an error frame and request the transmitter to retransmit the current frame. In this section, we discuss how error
detection works with parity or CRC bits, and simulate the widely used CRC32 algorithm.

3.2.1 Error Detection with Parity Bits

Assume that the transmitter and receiver communicate using data frames of n bits. At the receiver, we would
like to know whether the current received frame contains any error bits. One way to know if errors are present
in the received frame is by adding the parity bit at the transmitter to each transmitted frame. To perform this, we
use only n −1 data bits and 1 parity bit to make an n-bit frame. At the receiver, we compute the parity bit again
from n − 1 data bits and check whether the computed parity bit matches the received parity bit. If they match,
we assume that there are no errors in the received frame; otherwise, an error is detected.

Even or odd parity (i.e., making the number of ones in the n bits frame as even or odd) can be used in
computing parity bits. Here we consider even parity. In Example 3.1, we use the data frame length of 8 bits and
explain how single-bit errors are detected in the received 8-bit frames with a parity bit. Typically, we use 8 bits
for transferring ASCII character data among computer memory, CPU, and peripherals. In these 8 bits, we use
7 bits to transmit actual data and 1 bit for parity.

■ Example 3.1

Assume that the following 7 bits of data—“1011001”—are to be transmitted. With the even parity, we
make the number of 1s present in the 8-bit data even by adding a 0 bit as a parity bit. Then after adding
the parity bit, the 8-bit frame becomes “10110010” (where the bit highlighted with a bold letter is a
parity bit), and we transmit this 8-bit frame to the receiver through a noisy channel. Assume we received
an 8-bit data frame as “10110110” with the 1 bit in error marked with an underscore. If we compute
the parity bit with 7 data bits of the received frame, then we get 1 for even parity, whereas the parity bit
of the received frame (i.e., 8th bit) is 0. As the parity bits are not matching, the received frame contains
errors and we request the transmitter to transmit this frame again. However, we will have a problem
if the number of errors occurred are even. For example, if the received frame contains two bit errors,
“10100110,” then both computed parity bit and received parity bit are the same. So, if an even number
of errors occurs in the received frame, we fail to detect the error. In some applications, we use long
data frame lengths on the order of hundreds of bits and the probability of an even number of errors to
occur is also high. Hence, the error frame detection failure rate is also high with this even-parity bit error
detection scheme.

■

Introduction to Data Error Correction 89

With large data frames, to improve the error detection rate, we use more than 1 bit for parity data and compute
these parity bits using the data blocks (of length k bits) instead of computing in terms of individual data bits.
In this way, we reduce the data length per parity bit by factor k. Also, we overcome the problem of burst error
detection as the parity computation module sees the burst errors as distributed across many parity bits. This is
explained in Example 3.2.

■Example 3.2

Assume that the following 7 data bytes, “B7, CA, 49, 62, AE, DD, 78,” are set for transmission. Along
with these 7 data bytes, assume that the allowed parity data is 1 byte. Next, we compute a parity byte
as 0x5D from the data of 7 bytes and then we transmit an 8-byte or 64-bit frame “B7, CA, 49, 62, AE,
DD, 78, 5D.” The first 7 bytes are data and the last byte is a parity byte highlighted with the bold letters.
Here, we computed even parity across the data bytes. The parity byte is also obtained by computing the
check-sum (or by XORing all 7 data bytes) using the XOR operation. At the receiver, we again compute
the check-sum of 7 data bytes. If the check-sum computed at the receiver matches with the parity byte,
then we assume that the received 64-bit frame is error free. If the check-sum does not match with the
parity byte, then the received 64-bit frame contains errors and we may request retransmission of the
entire frame.

1011 0111 (0xB7) –> data bytes
1100 1010 (0xCA)
0100 1001 (0x49)
0110 0010 (0x62)
1010 1110 (0xAE)
1101 1101 (0xDD)
0111 1000 (0x78)

0101 1101 (0x5D) –> parity byte

With this scheme, a burst of all lengths, except multiples of 16 bits, can be detected. For example,
assume that the received 8-byte data frame is “B7, CA, 49, 62, D1, 22, 78, 5D” with 15 continuous bit
errors. If we compute the check-sum again at the receiver as

1011 0111 (0xB7) –> data bytes
1100 1010 (0xCA)
0100 1001 (0x49)
0110 0010 (0x62)
1101 0001 (0xD1)
0010 0010 (0x22)
0111 1000 (0x78)

1101 1101 (0xDD) –> parity byte

we get the check-sum 0xDD, which is different from the received parity byte 0x5D. However, if we have
a burst of 16 bits, then we may fail to detect that frame as an error frame.

■

To reduce the overall failure rate or to improve the error detection rate significantly, error detection schemes
based on CRC bits are widely used. In the next section, we discuss how to compute CRC bits from the given
message data for use in error detection schemes.

3.2.2 Error Detection with CRC Bits

Error detection schemes based on a cyclic redundancy check are commonly used in many applications such
as digital communications and computer data storage systems for detecting the errors in the presence of noise.
Similar to the parity schemes discussed in the previous section, we compute the CRC bits from original (or

90 Chapter 3

payload) data at the transmitter and append CRC as overhead to the original data before transmitting through a
noisy channel. At the receiver, we again compute the CRC for payload data and compare it with the received
CRC bits to verify the integrity of the message. In computing the CRC, we use a division operation instead of
addition. While addition is clearly not strong enough to form an effective check-sum, it turns out that division
gives better redundant data as long as the divisor is wide enough and satisfies certain criteria to be discussed
later. The CRC bits are given by the remainder of the division operation.

The CRC algorithms operate on blocks of data instead of on individual data bits. Usually, a CRC is performed
through binary polynomial division with modulo-2 arithmetic. The elements of modulo-2 arithmetic are from
Galois field GF(2). In short, GF(2) is a field consisting of the elements 0 and 1, with + and * operations defined
as logical XOR and logical AND operations for modulo-2 arithmetic. The modulo-2 addition or XOR (⊕) and
modulo-2 multiplication or AND (∩) tables adhere to the following rule.

⊕ 0 1
0 0 1
1 1 0

∩ 0 1
0 0 0
1 0 1

Polynomial arithmetic with modulo 2 allows an efficient implementation of a form of division that is fast,
easy to implement and sufficient for the purpose of CRC computation. In the CRC computation, choosing of the
divisor (from now onwards, we call it “generator polynomial”) plays an important role to obtain CRC with good
characteristics. A well-chosen CRC generator polynomial ensures an evenly distributed mapping of message data
to CRC values. A well-constructed CRC value over data blocks of limited size will detect any contiguous burst
of errors shorter than the CRC data, any odd number of errors throughout the message, 2-bit errors anywhere in
the message, and certain other possible errors anywhere in the message.

Next, we discuss the computation of CRC bits given the message data bits and generator polynomial. We
represent all the inputs and outputs of the CRC module, such as message data, the CRC generator, and the CRC
value itself, in terms of bits and eventually in terms of polynomials in the computation of CRC bits. For example,
a binary vector b = [10010101] is represented in polynomial form as follows:

b(x) = 1 · x7 +0 · x6 +0 · x5 +1 · x4 +0 · x3 +1 · x2 +0 · x +1

= x7 + x4 + x2 +1

For purposes of clarity, in Example 3.3 the division operation is performed separately using binary digits
and corresponding polynomials. Here, the division is performed in the same way as long division performed
manually on paper.

■ Example 3.3

Let b = [10010101] be the dividend and g = [101] be the divisor of the division operation. In the
polynomial notation, their equivalents are represented as b(x) = x7 + x4 + x2 + 1 and g(x) = x2 + 1.
The remainder of the division is obtained in the vector form as c = [11] or in the polynomial form as
c(x) = x +1.

10111
101 10010101

101
011
000

110
101

111
101

100
101

11

x5 + x3 + x2 + x

x2 +1 x7 + x4 + x2 +1
x7 + x5

x5 + x4 + x2

x5 + x3

x4 + x3 + x2 +1
x4 + x2

x3 +1
x3 + x

x +1

Introduction to Data Error Correction 91

If b = [10010101] is the message vector and g = [101] is a generator vector, then the remainder c = [11]
corresponds to CRC value. We append the CRC bits to the message data as m = b|c and transmit to
the receiver.

■

Note that the even parity is a particular case of CRC and when the generator vector g = [11] or g(x) = x +1,
we get the CRC output the same as even parity output as computed in Example 3.4. For the same 8-bit message
vector considered in Example 3.3, if we compute even parity, we get the parity bit as “0” since the number
of ones present in the message vector is even. If we perform the division for the same message vector using
generator vector g = [11], then the CRC, that is, the remainder of the division, is obtained as “0.” Therefore, the
even parity and CRC outputs the same redundant bit when CRC uses the generator polynomial g(x) = x +1.

■Example 3.4

In this example, we compute CRC with generator polynomial g(x) = x +1, and show that the CRC and
even parity outputs the same redundant bit. First, we compute the even parity for a given 8-bit vector
10010101 as 0 since the number of 1s present in the given 8-bit vector are even. We add the 9th bit
as “0” to make sure that the parity added 9-bit data vector consists of an even number of 1s. Next, we
compute the CRC for the original 8-bit vector using 11 as divisor as follows:

1110011
11 10010101

11
10
11

11
11

00
00

01
00

10
11

0

x6 + x5 + x4 + x

x +1 x7 + x4 + x2 +1
x7 + x6

x6 + x4 + x2

x6 + x5

x5 + x4 + x2 +1
x5 + x4

x2 +1
x2 + x

x +1
x +1

0

With the message vector 10010101 and generator vector 11, the CRC, which is the remainder of
division, is obtained as “0” as expected. From this, we can say both CRC and even parity compute the
same when the generator polynomial used for CRC is g(x) = x +1.

■

We explore how 1-bit errors and 2-bit errors are detected using CRC. For this, we use Example 3.3 as the
transmitter-side CRC generation. Here, we transmit a total of 10 bits (8 bits of message and 2 bits of CRC) as
10010101|11. We consider two cases as in Example 3.5. The first case deals with the received message vector
a that contains one error, and the second case deals with the received message vector b that contains two errors.
With CRC, we are able to detect both 1-bit and 2-bit errors, as the CRC computed in both cases at the receiver
is different from the received CRC.

■Example 3.5

Assume that the transmitted message along with CRC bits is 10010101|11 and a noisy channel introduces
a 1-bit error in the received sequence, say a = 10110101|11. If we then compute CRC again for the
received data as follows, we obtain CRC bits 01, which is different from the received CRC bits 11; hence,
a single-bit error is detected.

92 Chapter 3

100100
101 10110101 => a

101
001
000

010
000

101
101

01

x5 + x2

x2 +1 x7 + x5 + x4 + x2 +1
x7 + x5

x4 + x2

x4 + x2

1

If the noisy channel introduces 2-bit errors in the received sequence, say b = 10001101|11, and we
then compute CRC again for the received data as follows, we obtain CRC 00, which is different from the
received CRC 11; thus, a double-bit error is detected.

101001
101 10001101 => b

101
010
000

101
101

001
000

101
101

00

x5 + x3 +1
x2 +1 x7 + x3 + x2 +1

x7 + x5

x5 + x3 + x2

x5 + x3

x2 +1
x2 +1

0

■

However, we may fail in some cases with short generator polynomials like g(x) = x2 +1 in detecting double-
bit errors. For example, we receive the message, say d = 10111101|11, which corresponds to the transmitted
message m = 10010101|11. The received message differs from the transmitted message in two bit places as
highlighted with underscoring. If we compute the CRC, the computed CRC will be the same as received CRC
(i.e., 11), so we fail to detect the received message d that contained a 2-bit error. In practice, we use 16, 24,
or 32-bit generator vectors for generating CRC bits to significantly improve the error detection rate. As the
message vector lengths are also very long, the overhead added by CRC (i.e., 32 bits) is negligible. Next, we
introduce a few notations to simplify and efficiently compute the CRC bits using the LFSR (linear feedback shift
register).

Let m(x), g(x), and c(x) represent a message polynomial of degree k −1, generator polynomial of degree n,
and a CRC polynomial of degree n −1, respectively. Then

m(x) = mk−1xk−1 +mk−2xk−2 +· · ·+m1x +m0

g(x) = xn + gn−1xn−1 +· · ·+ g1x + g0

c(x) = cn−1xn−1 + cn−2xn−2 +· · ·+ c1x + c0

If c(x) is the remainder when we divide m(x) with g(x), then c(x) = m(x) mod g(x), where “mod” represents
a modulo operation that outputs the remainder of the division operation. Since cn−1 need not be a non-zero
value, we cannot say that the CRC polynomial degree is n − 1. However, to generate n CRC bits, we have to

Introduction to Data Error Correction 93

c0

g0 g1 g2 gn 21

c1 c2 cn 21

mk 21mk 22...m1m0 00...0

k bits n bits

After k 1n clock cycles: CRC 5 cn 21cn 22…c2c1c0

Figure 3.2: CRC computation using LFSR.

use the nth-degree generator polynomial g(x). Then m(x) = g(x) · q(x)+ c(x), where q(x) is a quotient of
division. As the CRC bits (of length n) are appended at the end of message, we shift the message vector left
by n bits (or multiply the message polynomial by xn) and append n CRC bits. As the division has no effect on
the remainder even after multiplying the message polynomial by xn, we can write m(x) · xn = g(x) · Q(x)+
c(x) or m(x) · xn + c(x) = g(x) · Q(x), where Q(x) = q(x) · xn. At the receiver, if we compute the CRC for
entire k + n bits, that is, by performing division of m(x) · xn + c(x) by g(x), and if we get zero as remainder,
then no errors are present in the received message, as the message is a multiple of the generator polynomial
g(x).

LFSR is commonly used to compute the remainder of the division of a message polynomial with a generator
polynomial. As shown in Figure 3.2, the LFSR consists of n-shift registers and uses generator polynomial
coefficients as its taps. Here, the size of the LFSR is the same as the number of CRC bits. We shift the message
left by n bits and pass it through the LFSR 1 bit per clock cycle. After passing all k + n bits through the
LFSR, the state of the LFSR gives the CRC bits as shown in Figure 3.2. Then we append the CRC to the
message mk−1 . . .m1m0cn−1 . . . c1c0 and transmit it through a noisy channel to the receiver. The LFSR-based
CRC computation is explained in Example 3.6.

■Example 3.6

We consider the message polynomial used in Example 3.3 to compute CRC using LFSR. The state of
shift registers after each clock cycle is tabulated as follows. After k +n cycles (i.e., 8+2 = 10), the CRC
is given by the shift register values as shown in Figure 3.3.

■

c0 c1

1001010100

LFSR State Table

Cycle c1

After 10 clock cycles: CRC�c1c0�11

c0

1
2
3
4
5
6
7
8
9

10

1
0
1
1
1
0
1
1
1
1

0
1
0
1
1
1
0
1
1
1

Figure 3.3: Illustration of LFSR-based CRC computation.

The CRC computation using LFSR can be efficiently implemented in hardware. An equivalent software
implementation of LFSR-based CRC computation is given in Pcode 3.1. The input message vector is stored in
a buffer and loads a 32-bit word at a time from the buffer to pass the data. We pass n 0 bits at the end of the
message data to get the final CRC bits from the shift registers.

As Pcode 3.1 computes CRC bits by processing the message data bit by bit, it is not an efficient implementation
to compute CRC especially when the input is very long and the LFSR length is in the order of 32 bits. In this

94 Chapter 3

k = pCRC->message_length; // length of input message
n = pCRC->crc_length; // length of CRC bits
r2 = 0; // initialize LFSR
r4 = pCRC->gen_poly; // generator vector, [101]
r0 = *pCRC->in_data++; mask = pCRC->extract_crc;
m = k >> 5; tb = 1 << (n-1);
if (m != 0) { // if k > 32 bits

for(j = 0;j < m;j++) {
for(i = 0;i < 32;i++) {

r1 = r0 >> 31; r3 = r2 & tb;
r2 = r2 << 1; r2 = r2 | r1;
if (r3) r2 = r2 ˆ r4;
r0 = r0 << 1;

}
r0 = *pCRC->in_data++;

}
}
m = k-32*m;
if (m != 0){ // if n%32 is not zero

for(i = 0;i < m;i++) {
r1 = r0 >> 31; r3 = r2 & tb;
r2 = r2 << 1; r2 = r2 | r1;
if (r3) r2 = r2 ˆ r4;
r0 = r0 << 1;

}
}
if (pCRC->enc_flag){ // to compute CRC at transmitter side

r0 = 0;
for(i = 0;i < n;i++) { // passing n zero bits

r1 = r0 >> 31; r3 = r2 & tb;
r2 = r2 << 1; r2 = r2 | r1;
if (r3) r2 = r2 ˆ r4;
r0 = r0 << 1;

}
}
else { // to verify CRC at receiver side

for(i = 0;i < n;i++) {
r1 = r0 >> 31; r3 = r2 & tb;
r2 = r2 << 1; r2 = r2 | r1;
if (r3) r2 = r2 ˆ r4;
r0 = r0 << 1; m = m + 1;
if (m==32) {

r0 = *pCRC->in_data++; m = 0;
}

}
}
r2 = r2 & mask;
pCRC->crc_bits = r2;

Pcode 3.1: CRC implementation using bit-by-bit method.

approach, we consume up to 8 cycles per message bit (see Appendix A, Section A.4, on the companion website
for more details on cycle requirements to execute particular operations on the reference embedded processor).
In the next section, we discuss efficient block-based software implementation of CRC32 using look-up tables.

3.2.3 CRC32

As discussed earlier, to get CRC bits with good characteristics, we need more CRC bits; hence, longer generator
polynomials are used to get wider CRC data. In the industry, the following four CRC generator polynomials are
popularly used:

CRC-12: g = [1100000001111] or g(x) = x12 + x11 + x3 + x2 + x +1

CRC-16: g = [11000000000000101] or g(x) = x16 + x15 + x2 +1

CRC-CCITT: g = [10001000000100001] or g(x) = x16 + x12 + x5 +1

Introduction to Data Error Correction 95

CRC-32: Used in Ethernet, g = [100000100110000010001110110110111] or

g(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x +1

In this section, we concentrate on efficient implementation of CRC32 using look-up tables. To understand the
look-up-table–based CRC computation, we consider CRC computation for small size data b = [101100110110]
with the generator polynomial g(x) = x4 + x + 1 or g = [10011], as given in Example 3.7. We compute the
intermediate CRC value for 4 bits at a time instead of 1 bit.

■Example 3.7

In this example, we compute CRC bits on a block basis instead of bit by bit. As shown in the following,
we consider the first 4 bits, “1011,” of the message vector, and compute the intermediate CRC, and
then add this CRC to the next 4 bits of message and shift the message left by 4 bits and continue this
process. The length of the intermediate CRC depends on the degree of the generator polynomial. Here,
the degree of the generator polynomial is 4; hence, we have intermediate CRC output that contains 4
bits (see Figure 3.4).

■

10110000 1011 0011

0010

1110
1101

0110

0110
0100

0110

10 0000

10 0000

11 1000

1101

0101

10 0000
10011

11010000
10011

00100000
00000

110000
10011

10110
10011

0101

01000
00000

10000
10011

00110
00000

0110

01010
00000

00010
00000

10100
10011

10010
10011

01110
00000

00100
00000

1110

0100

Intermediate CRC

Remainder

Figure 3.4: Illustration of look-up-table–based CRC computation.

From Example 3.7, it is clear that the intermediate CRC values can be obtained from a precomputed look-
up table which contains intermediate CRC values for all possible 4-bit combinations of input values. The
intermediate CRC is accessed from the look-up table using the input 4- (= p) bit number as an offset to the
look-up table. The look-up-table–based CRC computation scheme works as shown in Figure 3.5.

We generate the values for the look-up table to implement an Ethernet CRC32 scheme. We represent the
CRC32 generator polynomial in short by using the hexadecimal notation as G=0x04c11db7. The program in
Pcode 3.2 follows the same approach used in Example 3.7 to generate the look-up table entries, but computes
32-bit intermediate CRC values (as the degree of CRC32 is 32) using 8-bit length bitstream combinations (since

Figure 3.5: Block-based CRC
implementation using a look-up table.

n-Length intermediate CRC bits

Look-up table

Message bits
p bits

p

2p entries

96 Chapter 3

8 bits are easily accessed from buffers when compared to 4 bits). As we can represent 256 possible levels with
8 bits, the loop runs 256 times and generates intermediate 32-bit CRC values for all 256 combinations. The
CRC32_LUT[] look-up table on the companion website contains the intermediate 32-bit CRC values for an
Ethernet CRC generator polynomial with an input of all 8-bit combinations.

r2 = pCRC->gen_poly;
for(i = 0;i < 256;i++){

r0 = (i<<24);
for(j = 0;j < 8;j++){

r1 = r0 >> 31;
r0 = r0 << 1;
if (r1) r0 = r0 ^ r2;

}
CRC_LUT[i] = r0;

}

Pcode 3.2: Block-based CRC look-up table generation.

Once the look-up table for intermediate CRC values of all possible combinations of 8-bit data is generated,
then computing the CRC of message data is very simple. As given in Pcode 3.3, we extract 8 bits from message,
get the 32-bit intermediate CRC value from look-up table CRC32_LUT[] and then XOR this value with the next
32 bits of message data, and continue the same process until the end of the message. The look-up-table–based
CRC32 computation requires 1 kB of data memory to store a 256-element look-up table and consumes about
4 cycles per byte or 0.5 cycles per bit, whereas the bit-by-bit CRC computation given in Pcode 3.1 consumes
about 8 cycles per bit. Example 3.8 describes application of a 32-bit CRC with a small test vector.

r0 = 0;
for(i = 0;i < pCRC->message_length_bytes;i++){

r1 = (r0 >> 24) & 0xff; // extract 8-bit or byte of data
r0 = (r0 << 8) | *pCRC->data_in++; // append next byte
r0 = r0 ˆ CRC_LUT[r1]; // XOR with look-up table output

}
if (pCRC->enc_flag){ // to generate CRC

for(i = 0;i < 4;i++){
r1 = (r0 >> 24) & 0xff; r0 = (r0 << 8);
r0 = r0 ˆ CRC_LUT[r1];

}
}
else { // to verify CRC

for(i = 0;i < 4;i++){
r1 = (r0 >> 24) & 0xff; r0 = (r0 << 8) | *pCRC->data_in++;
r0 = r0 ˆ CRC_LUT[r1];

}
}
pCRC->crc_bits = r0;

Pcode 3.3: Look-up table based CRC32 implementation.

■ Example 3.8

Let G =0x04c117db7 be the CRC32 generator polynomial represented in hexadecimal notation. Assume
that the 2 bytes “0x1c, 0x11” are intendedfor transmission. The CRC32 is computed using Pcode 3.3 and
its 32-bit CRC value is given by “0x97ed3f2f.” We append CRC32 to data bytes and transmit as “0x1c,
0x11, 0x97, 0xed, 0x3f, 0x2f.” At the receiver, we compute CRC32 again and detect error frames if any.
As we compute CRC32 for the entire frame including the transmitted CRC32, we get “0x00000000” as
the CRC32 value at the receiver if no errors are present in the received data frame. We verify CRC32 (use
the same code given in Pcode 3.3 by setting pCRC->enc_flag to zero) in the following, assuming three
cases: received data contains zero errors, received data contains one error, and received data contains
two errors.

Introduction to Data Error Correction 97

Case 1: Zero errors
Received data: 0x1c, 0x11, 0x97, 0xed, 0x3f, 0x2f
Computed CRC32 at the receiver: 0x00000000
Result: No errors are present in the received data frame

Case 2: One-bit error
Received data: 0x1d, 0x11, 0x97, 0xed, 0x3f, 0x2f
Computed CRC32 at the receiver: 0xd219c1dc
Result: Errors are present in the received data frame

Case 3: Two-bit errors
Received data: 0x1c, 0x14, 0x97, 0xed, 0x3f, 0x2f
Computed CRC32 at the receiver: 0x17c56b6b
Result: Errors are present in the received data frame

■

In essence, with CRC32, we can ensure the following:

• 100% detection of single-bit errors
• 100% detection of all double-bit errors (except those errors that are separated by 232 −1 bits
• 100% detection of any errors spanning up to 32 bits

With one-way communications systems (e.g., broadcast systems), the error detection schemes are not used as
the one-way communications systems cannot request for retransmission. In the next section, we discuss error
correction algorithms which not only detect errors but also correct them.

3.3 Block Codes

In the previous section we discussed how parity check or cyclic redundancy check bits are used to detect errors
in a received data block. With the error detection methods, we request for retransmission of data frames after
detecting errors in the received data. In this section, we introduce a few concepts with which we not only detect
errors but also correct them. This is called forward error correction (FEC). With FEC, we may not request for
retransmission of data frames as those errors are corrected at the receiver with error correction algorithms. All
errors can be corrected if the number of errors occurred in the received data is less than or equal to the capability
of the particular FEC algorithm used. Before discussing the theory behind the block codes, we consider two
examples to get a feel for error correction (see Examples 3.9 and 3.10). Then we introduce linear block codes
and discuss encoding and decoding techniques for simple codes. In the later sections, we discuss various types
of powerful linear block codes and convolutional codes.

■Example 3.9

Assume that we want to transmit 4 bits, “1,0,1,1,” and we would like to receive them exactly without
any errors. In the presence of noise, it is not guaranteed to receive error-free bits. If we receive the bits
as “1,0,0,1,” we cannot say anything from those bits; we don’t know whether they are error free or not
since we don’t have any extra information about those bits. If we append a few bits to “1,0,1,1” in a
specific manner, then it is possible to know whether errors are present or not, and we can correct those
errors. For example, we repeat each bit three times like “111, 000, 111, 111,” and transmit these 3-bit
blocks through a noise channel. That means, for each message bit, we are transmitting 3 bits. At the
receiver, we receive those 3-bit blocks as “111, 000, 101, 111” with 1 bit in error in the third block as
highlighted with underscoring. If we apply a decoding procedure which simply decodes such that if more
zeros are present in a block then decode as a bit “0’and if more ones are present in a block then decode
that bit as a bit “1.” With this decoding procedure we get decoded bits “1,0,1,1.” Although there is a
1 bit in error in the received sequence, we are able to get the transmitted data bits without errors with
the repetition of bits three times. We call it a repetition code. With a 3-bit repetition code, we can only

98 Chapter 3

correct one error per 3-bit block. The disadvantage with this code is that the bandwidth (i.e., number of
bits transmitted per unit time) is increased by three. In a communications system, we want to keep data
bandwidth as low as possible. Also, this code treats each bit as an individual block and the channels
may not introduce errors in each 3-bit block. Usually, block codes are used in a digital communications
system as an outer coder where we will have a bit-error rate (BER) of 10−2 or less. The BER is computed
as the ratio of total number of error bits to a total number of received bits. So, BER = 10−2 or less means
that there will be a 1-bit error in 100 or more received bits.

■

■ Example 3.10

We introduce another approach, where we treat a chunk of bits as one block (we call it a “message
block”) and add redundant bits per message block instead of to each individual bit. For example, we
consider the same previous bits for transmission but as one block like “1011” (i.e., input message block
length k = 4). Let B = b0b1b2b3 = 1011. We add 3 bits, “p0 p1 p2” (we call them “parity bits”), to this
block B, and form a new message block (we call it a message codeword) by appending parity bits to
data bits as “p0 p1b0 p2b1b2b3” (i.e., output message codeword length is n = 7). The parity bits p0, p1,
and p2 are calculated from a matrix arrangement of data and parity bits as shown in the following:

00 01 10 11
0
1

[−
p2

p0

b1

p1

b2

b0

b3

]
In this matrix, each bit can be identified with a row index and a column index. For example,

p0: (0,01), p1: (0,10),b0: (0,11), and so on. We ignore “,” and form one binary string to get the index
for message and parity bits as p0: 001(1), p1: 010(2),b0: 011(3), and so on. From the preceding matrix,
if we observe carefully, the parity bits are placed such that their corresponding index is a power of 2 (i.e.,
p0: 001, p1: 010, p2: 100). The parity bit p0 (note that its index 0th bit = 1) is calculated by XORing the
data bits at indexes where the 0th bit of index is 1 (i.e., bits b0,b1, and b3). Similarly, the parity bit p1

(note that its index 1st bit = 1) is calculated by XORing the data bits at indexes where the 1st bit of index
is 1 (i.e., bits b0,b2, and b3). Finally, the parity bit p2 (note that its index 2nd bit = 1) is calculated by
XORing the data bits at indexes where the 2nd bit of index is 1 (i.e., bits b1,b2, and b3). With this, the
parity bits p0, p1 and p2 are computed as follows:

p0 = b0 ⊕b1 ⊕b3

p1 = b0 ⊕b2 ⊕b3

p2 = b1 ⊕b2 ⊕b3

From the preceding equations, the parity bits are computed using the message block bits b0b1b2b3 =
1011 as p0 = 0, p1 = 1 and p2 = 0. We transmit the message codeword p0 p1b0 p2b1b2b3 = 0110011
through a noisy channel to the receiver.

Assume codeword bits p0 p1b0 p2b1b2b3 = 0110111 are received at the receiver with 1 bit in error as
highlighted with an underscore. Next, we discuss a method to correct the bit, which is received with an
error. From received data block, we separate data bits and parity bits as b0b1b2b3 = 1111 and p0 p1 p2 =
010. We compute the metrics, called syndromes, S0S1S2 (which give an indication of an error if one
is present) from the received data bits b0b1b2b3 as S0 = (q0 ⊕ p0), S1 = (q1 ⊕ p1) and S2 = (q2 ⊕ p2).
Here, we compute q0q1q2 in the same way as parity bits are computed just by replacing ps with qs in the
preceding parity equations. With this, q0 = 1,q1 = 1,q2 = 1 and S0S1S2 = 101. The index (S2, S1S0) =
(1,01) gives the bit position where the error would have occurred. That means from the preceding table,
the index (1, 01) says b1 is in error. As the codeword contains only binary digits (or bits), if we toggle
bit b1 in the received sequence, then we will get the corrected sequence as 0110011, which is the same
as the transmitted sequence. If S0S1S2 = 000, then no errors are present in the received data block.

■

Introduction to Data Error Correction 99

In the approach discussed in Example 3.10, we added three extra bits to the original message 4-bit block at
the transmitter to correct single-bit error in the received block. To compare the two methods discussed above,
we define a term called code rate (Rc) as the ratio of message block length (k) to the message codeword length
(n). In Example 3.9, k = 1,n = 3, and Rc = k/n = 1/3. In Example 3.10, k = 4,n = 7, and Rc = k/n = 4/7.
Here, if the code rate is more, then we need less transmission bandwidth. Hence, the second method requires
less bandwidth to correct the 1 bit per message block transmitted. Therefore, from here onwards, we concentrate
and build the framework for block codes based on the second method.

We rearrange the codeword p0 p1b0 p2b1b2b3 as B|P = b0b1b2b3| p0 p1 p2 to compute the block codes in a
systematic way by using the matrix representation. Here, we basically compute the parity data bits and append
to the message block to form a codeword. If the input message block length is k and output codeword length is n,
then we refer such a code as (n,k) code. If the original message block is present as it is in the output codeword (as
in B|P), then we call such a code (n,k) systematic code. The code that is not systematic is called nonsystematic
code. Given a message block B, we compute the codeword C = B|P using generator matrix G as:

C = B ·G (3.1)

where G = [Ik |P]. One example of generator matrix follows:

G = [Ik |P] =

⎡
⎢⎢⎣

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

⎤
⎥⎥⎦ (3.2)

In this matrix multiplication, we perform additions using modulo-2 or XOR operation.
In decoding of this (n,k) systematic codeword, we use another matrix called the parity check matrix H =

[P T |In−k]. The H matrix corresponding to G given in Equation (3.2) follows:

H = [P T |In−k] =
⎡
⎣ 1 1 0 1 1 0 0

1 0 1 1 0 1 0
0 1 1 1 0 0 1

⎤
⎦ (3.3)

This satisfies G · H T = 0, resulting in a k × (n − k) matrix with all zero elements, and C · H T = 0, resulting in
an n − k element row vector.

3.3.1 Linear Block Codes

A block code with input message length k and output codeword length n is referred to as an (n,k) code.
With the (n,k) code, we append (n − k)-length data as parity to k-length input message to form an n-length
codeword. At the receiver, we use this (n − k)-length parity data to correct the data errors present in the received
sequence. A subclass of block codes, known as linear block codes, is commonly used, as they have efficient
decoding methods. If k is the input-message-block length, then we can compute a set of 2k n-length codewords
{C} using the generator matrix G. A block code is called linear block code if the addition of two codewords
from {C} results in another codeword that belongs to the same block code set {C}. The performance of such
a linear block code depends on the minimum Hamming distance (dmin) between the codewords of set {C}.
As we are working with binary digits {0,1}, the Hamming distance between two binary codewords B and
C is defined as the number of positions in which the codewords differ in the bit values. If the weight of
a codeword is defined as the number of ones present in a codeword, then the Hamming distance between
two codewords B and C is also computed as the weight of the codeword D, where D is obtained by adding
the two codewords B and C . In the case of linear block codes, as the addition of two codewords results in
another codeword, the weight of a particular codeword represents the Hamming distance between some other
two codewords. Therefore, the minimum Hamming distance of the code {C} is given by the minimum weight
of codewords of set {C}.

Since C · H T = 0, the column vectors of H are linearly dependent if C is a non-zero codeword. If C is a
codeword with minimum weight dmin, then there are dmin number of columns of H that are linearly dependent.

100 Chapter 3

Alternatively, we may say that no more than dmin −1 columns of H are linearly independent. From Equation (3.3),
we will have a minimum of n − k linearly independent vectors in H (as H contains In−k), so n − k ≥ dmin −1.
Therefore, dmin is upper-bounded, as in

dmin ≤ n − k +1 (3.4)

In the case of linear block codes, with minimum distance dmin, we can correct at most (dmin −1)/2 errors. For
example, in Example 3.10, (dmin − 1)/2 = 3/2 = 1. That means, we can correct at most one error with (7,4)

code as discussed in Example 3.10.

Decoding with Linear Block Codes
At the receiver, the matrix H is used to compute the syndrome vector S as

S = R · H T (3.5)

where R is an n-length received noisy codeword corresponding to transmitted codeword C .

■ Example 3.11

In Example 3.10, we used parity equations to compute the parity bits. We can also use the
Equation (3.1) to compute the parity bits and to obtain a systematic codeword C = [b0b1b2b3|p0 p1 p2] =
[1011|010]. If the error occured at bit b1 in the received sequence, then the received noisy vector R is given
by [b0b1b2b3|p0 p1 p2] = [1111|010]. Then using Equation (3.5), the syndrome vector S is computed as
follows:

S = R · H T = [1111010]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0
1 0 1
0 1 1
1 1 1
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [101]

If b0 is in error instead of b1, then R = [0011|010] and we get S = R · H T as [110]. The error location is
given by (0,11) which corresponds to b0. What will happen if more than one error occurs? Let us assume
that the bits p0 and b2 are received as an error, then the codeword R = [1001|110]. From Equation (3.5),
S = [111] or (1,11), which is the location of b3. So, we have not corrected the two errors, but we know
there are errors in the received sequence as the syndrome vector results in a non-zero vector. So, with
(7,4) code, we can only detect the errors if two errors are present in the received sequence.

■

3.3.2 Popular Linear Block Codes

Depending upon their error correction capabilities and algebraic properties, there are many types of linear block
codes that are in use today. The most widely used are Hamming codes, BCH codes, RS codes, and LDPC codes.
From Hamming codes to LDPC codes, the error correction capabilities of linear block codes increase and at
the same time the decoding complexity and memory requirements to implement these codes also increase by
multiple factors.

Hamming Codes
The Example 3.11 that we worked with previously is a (7,4) Hamming code. There are both binary and non-
binary Hamming codes. Here, we consider only binary Hamming codes. The general form of (n,k) Hamming
code is as follows:

(n,k) = (2m −1,2m −1−m) (3.6)

where m is a positive integer. The (7,4) code is an example for m = 3.

Introduction to Data Error Correction 101

The binary (n,k) Hamming code can be extended to (n + 1,k) to increase dmin by 1 or can be shortened to
(n − l,k − l) by removing l rows from its generator matrix G to yield a code that has same error correction
capabilities as (n,k) code. In Section 3.4, we discuss and simulate the popularly used (72,64) Hamming code,
which is a shortened form of (127,119) Hamming code.

BCH Codes
BCH (Bose-Chaudhuri-Hocquenghem) codes are subsets of linear block codes and comprise a large class of
cyclic codes that include both binary and nonbinary codes. An overview of BCH codes with examples are
presented in Section 3.5.

RS Codes
RS (Reed-Solomon) codes are nonbinary cyclic linear block codes and these codes are used for FEC in many tech-
nologies for their excellent error-correction performance. An overview of RS codes with examples is presented
in Section 3.6.

LDPC Codes
LDPC (low-density parity check) codes are the most promising capacity approaching codes; they have been
largely forgotten for four decades. Recently, these codes have been reinvented and many standards are adapting
these codes in present technologies. An overview of LDPC codes are discussed in Section 3.11.

3.4 Hamming (72, 64) Coder

There are many error-correcting codes (ECC) in the literature for correcting bit errors in the received data. In
this section, we discuss the Hamming (72,64) coder, which is popularly used to correct all single-bit errors and
to detect all double-bit errors that could occur during the data transmission or storage and retrieval of data from
memory. In this section, we restrict ourselves to memory error-correction application.

The answer to the question of how much improvement we can get in BER (bit-error rate) performance curves
using a 1-bit error correction depends on the raw BER (RBER) without error correction and the codeword
length used with a single-bit error-correction coder. In Figure 3.6, the BER performance curves improvement
(i.e., uncorrectable BER, known as UBER) with zero to six bits error correction is shown for the given raw
BER values. Here, the codeword length used to generate BER curves is 2048 bits. For example, with the given
BER = 10−7, we can achieve an UBER of 10−11 with single-bit error correction. For a given RBER, a shorter
codeword will provide better error-correcting capability or higher UBER as shown in Figure 3.7.

Given the RBER, P , codeword length, N , and the number of error bits, n, we get the UBER with a 1-bit error
correction using the following equation (Mielke, 2008):

UBER =
∑N

n=2

(
N
n

)
Pn(1− P)N−n

N
=

1−
(

N
n = 0

)
(1− P)N −

(
N

n = 1

)
P(1− P)N−1

N
(3.7)

RBER

n 5 0

n 5 1

n 5 2

n 5 3

n 5 4

n 5 5
n 5 6

U
B

E
R

10220

10215

10210

1025

1027 1026 1025 1024 1023

Figure 3.6: RBER versus UBER with various error correction capability coders.

102 Chapter 3

Codeword Length

U
B

E
R

1029

1025

1024

1023

1028

1027

1026

0 200 400 600 800 1000 1200 1400 1600 1800 2000

RBER 5 10 23

RBER 5 10 24

RBER 5 10 25

Figure 3.7: Codeword length versus UBER for various RBER.

Memory
Section 1

Memory
Section 2

Memory
Section 3

• Programs, look-ups, etc. (constant)
• Encoder is used once, at the time of storing
• Decoder is used for each memory load

• Parameters, user inputs (changes slowly)
• Encoder is used whenever new data stored
• Decoder is used for each memory load

• Video/audio data, navigation data (changes
 in real time)
• ECC may not be required

ECC Complexity

Figure 3.8: Application of ECC in memory error correction.

3.4.1 Memory Error Correction with Hamming Codes

In automotive applications, software integrity level (ASIL) (memory with error correction capabilities) is one of
the important issues in choosing embedded processors. Software-based Hamming codes can be used to improve
the reliability of the most important sections of memory, thus improving the ASIL metric. Memory is used to
store information of various types. Some types of information require strong protection against errors and others
do not. For example, application software code, data structures, parameters, and look-up tables are very sensitive
and any content alteration may end up with catastrophic errors. On the other hand, information such as data
samples and image pixels is not as sensitive and may not require error protection.

A typical automotive application can be broken into different sections of memory consisting of different
types of information: (1) constant data such as software code and look-up tables, (2) slowly varying data such
as application parameters, and (3) continuously varying data such as audio/video data and navigation data (as
shown in Figure 3.8). A software ROM-based error-correction approach that uses Hamming code to correct the
single-bit errors in the first two sections of memory can then be implemented using a very small percentage of
processor resources. In the first case, as the data is constant, the extra error-correction information is constant and
can be generated once. Every time information is retrieved from this memory section an ECC decoder is applied
to correct the single-bit errors. In the second case, we call the decoder for each memory load, and the encoder
is called to update the error-correction information only when the new data is ready for storing to memory. In
these two cases, a software-based single-bit error correction can be implemented using a very small percentage
of processor resources.

A schematic diagram of the software-based memory error correction is shown in Figure 3.9. With the Hamming
(n,k) coder, we divide the data into k bits long, compute the n − k parity bits, and store the n-bits long block to

Introduction to Data Error Correction 103

Figure 3.9: Schematic diagram
of software-based memory error
correction.

Memory
Section with

Important
Information

Encoder

CPU

Decoder

ROM

Data for
storing to
memory

Data
retrieved
from memory

A

Reference Embedded Processor

B

Figure 3.10: Matrix arrangement
of Hamming (72, 64) encoder
input–output bits.

000

000 001 010 011 100 101 110 111

0000

0001

0010

0011

0100

0101

p 1

p 4 d 4 d 5 d 6 d 7 d 8 d 9 d 10

p 5 d 11 d 12 d 13 d 14 d 15 d 16 d 17

d 18 d 19 d 20 d 21 d 22 d 23 d 24 d 25

p 6 d 26 d 27 d 28 d 29 d 30 d 31 d 32

d 33 d 34 d 35 d 36 d 37 d 38 d 39 d 40

0110d 41 d 42 d 43 d 44 d 45 d 46 d 47 d 48

0111d 49 d 50 d 51 d 52 d 53 d 54 d 55 d 56

1000p 7 d 57 d 58 d 59 d 60 d 61 d 62 d 63

p 2 p 3d 0 d 1 d 2 d 3

the memory area. The parity overhead percentage with respect to data length can be computed as (n −k)∗100/k.
When the data is retrieved, the decoder uses the n −k parity bits to detect and correct errors that corrupted during
the time when data was residing in memory. We verify the computed parity with the retrieved parity data. If both
parity bits match, then no error bits are present in the received data; otherwise, there will be error bits in the
received data. The Hamming decoder can detect and correct all single-bit errors or detect all double-bit errors.
Because the error-correction software is permanently stored in the ROM and uses the core resources whenever
memory is accessed, we prefer the ECC solution which uses a very small amount memory and the processor
cycles.

In the next subsections, we discuss the widely used Hamming (72,64) coder and also discuss the implemen-
tation techniques and the computational complexity for encoding and decoding of Hamming (72,64) code on
the reference embedded processor.

3.4.2 Hamming (72, 64) Encoder

The Hamming (72, 64) encoder generates 8 bits of parity from 64 input data bits. To understand the Hamming
(72, 64) encoder parity bits generation, we arrange the data bits (input) and parity bits (output) in a matrix fashion
and give binary indexing to each row and column as shown in Figure 3.10. We have eight columns and nine
rows. Each bit in the matrix can be uniquely addressed with the row and column index bits. For example, the
address of bit d20 is 0011 010. Each parity bit p1 to p7 is placed at a special address that is a power of 2 (i.e.,
p1: 0000 001, p2: 0000 010, p3: 0000 100, p4: 0001 000, p5: 0010 000, p6: 0100 000, p7: 1000 000).

The parity bit p1 is generated by XORing the data bits that have “1” at the position “k” in the address field
xxxx xxk. Similarly the parity bit p2 is generated by XORing the data bits with “1” at the position “k” in the
address field xxxx xkx and so on. The equations for generating parity bits p1 to p7 follow.

p1 = d4 ⊕ d11 ⊕ d19 ⊕ d26 ⊕ d34 ⊕ d42 ⊕ d50 ⊕ d57 ⊕ d0 ⊕ d6 ⊕ d13 ⊕ d21

⊕ d28 ⊕ d36 ⊕ d44 ⊕ d52 ⊕ d59 ⊕ d1 ⊕ d8 ⊕ d15 ⊕ d23 ⊕ d30 ⊕ d38 ⊕ d46

⊕ d54 ⊕ d61 ⊕ d3 ⊕ d10 ⊕ d17 ⊕ d25 ⊕ d32 ⊕ d40 ⊕ d48 ⊕ d56 ⊕ d63 (3.8)

104 Chapter 3

p2 = d5 ⊕ d12 ⊕ d20 ⊕ d27 ⊕ d35 ⊕ d43 ⊕ d51 ⊕ d58 ⊕ d0 ⊕ d6 ⊕ d13 ⊕ d21

⊕ d28 ⊕ d36 ⊕ d44 ⊕ d52 ⊕ d59 ⊕ d2 ⊕ d9 ⊕ d16 ⊕ d24 ⊕ d31 ⊕ d39 ⊕ d47

⊕ d55 ⊕ d62 ⊕ d3 ⊕ d10 ⊕ d17 ⊕ d25 ⊕ d32 ⊕ d40 ⊕ d48 ⊕ d56 ⊕ d63 (3.9)

p3 = d7 ⊕ d14 ⊕ d22 ⊕ d29 ⊕ d37 ⊕ d45 ⊕ d53 ⊕ d60 ⊕ d1 ⊕ d8 ⊕ d15 ⊕ d23

⊕ d30 ⊕ d38 ⊕ d46 ⊕ d54 ⊕ d61 ⊕ d2 ⊕ d9 ⊕ d16 ⊕ d24 ⊕ d31 ⊕ d39 ⊕ d47

⊕ d55 ⊕ d62 ⊕ d3 ⊕ d10 ⊕ d17 ⊕ d25 ⊕ d32 ⊕ d40 ⊕ d48 ⊕ d56 ⊕ d63 (3.10)

p4 = d4 ⊕ d5 ⊕ d6 ⊕ d7 ⊕ d8 ⊕ d9 ⊕ d10 ⊕ d18 ⊕ d19 ⊕ d20 ⊕ d21 ⊕ d22 ⊕ d23
⊕ d24 ⊕ d25 ⊕ d33 ⊕ d34 ⊕ d35 ⊕ d36 ⊕ d37 ⊕ d38 ⊕ d39 ⊕ d40 ⊕ d49 ⊕ d50
⊕ d51 ⊕ d52 ⊕ d53 ⊕ d54 ⊕ d55 ⊕ d56 (3.11)

p5 = d11 ⊕ d12 ⊕ d13 ⊕ d14 ⊕ d15 ⊕ d16 ⊕ d17 ⊕ d18 ⊕ d19 ⊕ d20 ⊕ d21 ⊕ d22
⊕ d23 ⊕ d24 ⊕ d25 ⊕ d41 ⊕ d42 ⊕ d43 ⊕ d44 ⊕ d45 ⊕ d46 ⊕ d47 ⊕ d48 ⊕ d49
⊕ d50 ⊕ d51 ⊕ d52 ⊕ d53 ⊕ d54 ⊕ d55 ⊕ d56 (3.12)

p6 = d26 ⊕ d27 ⊕ d28 ⊕ d29 ⊕ d30 ⊕ d31 ⊕ d32 ⊕ d33 ⊕ d34 ⊕ d35 ⊕ d36 ⊕ d37
⊕ d38 ⊕ d39 ⊕ d40 ⊕ d41 ⊕ d42 ⊕ d43 ⊕ d44 ⊕ d45 ⊕ d46 ⊕ d47 ⊕ d48 ⊕ d49
⊕ d50 ⊕ d51 ⊕ d52 ⊕ d53 ⊕ d54 ⊕ d55 ⊕ d56 (3.13)

p7 = d57 ⊕ d58 ⊕ d59 ⊕ d60 ⊕ d61 ⊕ d62 ⊕ d63 (3.14)

The parity bit 8 is used to detect double-bit errors and is generated by XORing all the data bits as follows:

p8 = d0 ⊕ d1 ⊕ d2 ⊕ d3 ⊕ d4 ⊕ d5 ⊕ d6 ⊕ d7 ⊕ d8 ⊕ d9 ⊕ d10 ⊕ d11 ⊕ d12 ⊕ d13 ⊕ d14

⊕ d15 ⊕ d16 ⊕ d17 ⊕ d18 ⊕ d19 ⊕ d20 ⊕ d21 ⊕ d22 ⊕ d23 ⊕ d24 ⊕ d25 ⊕ d26 ⊕ d27

⊕ d28 ⊕ d29 ⊕ d30 ⊕ d31 ⊕ d32 ⊕ d33 ⊕ d34 ⊕ d35 ⊕ d36 ⊕ d37 ⊕ d38 ⊕ d39 ⊕ d40

⊕ d41 ⊕ d42 ⊕ d43 ⊕ d44 ⊕ d45 ⊕ d46 ⊕ d47 ⊕ d48 ⊕ d49 ⊕ d50 ⊕ d51 ⊕ d52 ⊕ d53

⊕ d54 ⊕ d55 ⊕ d56 ⊕ d57 ⊕ d58 ⊕ d59 ⊕ d60 ⊕ d61 ⊕ d62 ⊕ d63 (3.15)

The generated parity bits are concatenated to the original 64 data bits to form 72-bit encoded data. In Figure 3.9,
with Hamming (72, 64) coder, 64 bits of data enter into the encoder block at point A and 72 bits of encoded
data come out at point B. Then this encoded 72-bit data frame is stored to the memory. This process will be
continued for all data blocks.

3.4.3 Hamming (72, 64) Decoder

The Hamming decoder consists of two steps: (1) syndrome computation and (2) error correction. In the syndrome
computation step, the Hamming (72, 64) decoder computes eight syndromes using the 72 bits retrieved from
memory. The syndromes s1 to s8 are computed by XORing the encoder parity bits p1 to p8 (which are retrieved
from memory and these parity bits may be different in value due to bit errors) with the decoder parity bits c1 to
c8 (which we compute at decoder) as follows:

s1 = c1 ⊕ p1, s2 = c2 ⊕ p2, s3 = c3 ⊕ p3, s4 = c4 ⊕ p4

s5 = c5 ⊕ p5, s6 = c6 ⊕ p6, s7 = c7 ⊕ p7, s8 = c8 ⊕ p8

In the syndromes computation, to generate the decoder parity bits, we use the same encoder parity bit generator
equations from (3.8) to (3.15). For example, if the 64-data bits of 72 bits retrieved from memory are named as
b0 to b63 which corresponds to encoder data bits d0 to d63, then decoder parity bit c1 is generated using the
p1 parity bit generator equation as follows:

c1 = b4 ⊕ b11 ⊕ b19 ⊕ b26 ⊕ b34 ⊕ b42 ⊕ b50 ⊕ b57 ⊕ b0 ⊕ b6 ⊕ b13 ⊕ b21

⊕b28 ⊕ b36 ⊕ b44 ⊕ b52 ⊕ b59 ⊕ b1 ⊕ b8 ⊕ b15 ⊕ b23 ⊕ b30 ⊕ b38 ⊕ b46

⊕b54 ⊕ b61 ⊕ b3 ⊕ b10 ⊕ b17 ⊕ b25 ⊕ b32 ⊕ b40 ⊕ b48 ⊕ b56 ⊕ b63.

Introduction to Data Error Correction 105

Compute 8 syndromes

Start

Are all syndromes
zero?

Output “0” errors

Does s8�0?

Output double-bit
errors detected

Assuming single-
bit errors, correct
error and output

End

NY

YN

Figure 3.11: Hamming decoder flow chart diagram.

With respect to the retrieved 72 bits from memory, there are four possible cases of bit errors: (1) no occurrence
of bit errors, (2) occurrence of 1-bit error, (3) occurrence of 2-bit errors, and (4) occurrence of more than 2-bit
errors.

If all the computed eight syndrome values are zero, then there is no bit error in the retrieved 72 bits. The
non-zero values of syndromes indicate the presence of errors. The single-bit error is detected and also corrected,
if any single-bit error is present in the data bits, using the eight syndromes information in the error-correction
step. If any of the syndromes from s1 to s7 are non-zero and s8 is zero, then this indicates presence of two
error bits and this cannot be corrected. So, if two bits are in error, Hamming (72, 64) decoder only detects
the errors and cannot correct them. Any other result in syndrome values indicates presence of more than two error
bits in the retrieved data of 72 bits and they cannot be detected and corrected. The flow chart diagram for Hamming
decoder is shown in Figure 3.11.

3.4.4 Hamming (72, 64) Simulation

There are two ways to simulate the Hamming (72, 64) coder. In the first method, we store the bit indices of
each parity equation; extract corresponding bits from a 72-bit bitstream using bit indices and then XOR each
individual bit to get the parity bit. Although this method is simple to simulate, it is expensive in terms of cycles
and memory (as the look-up tables have to be stored in ROM permanently for this software-based memory
correction application). In the second approach, we compute the parity bits using the precomputed masks by
assuming the input 64 bits are present in two 32-bit registers r0 and r1.

0 1 2 3 . . . 30 31
r0

32 33 34 . . . 62 63
r1

The masks for each parity bit are generated using the parity equations given in Equations 3.8 through 3.15.
For example, to generate the mask for computing parity bit p1, we place “1” if a particular bit is participating
in the parity bit p1 computation; otherwise, we place bit “0” in that position as shown in the following:

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18 b19 b20 b21
1 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1

b22 b23 b24 b25 b26 b27 b28 b29 b30 b31 b32 b33 b34 b35 b36 b37 b38 b39 b40 b41 b42
0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

b43 b44 b45 b46 b47 b48 b49 b50 b51 b52 b53 b54 b55 b56 b57 b58 b59 b60 b61 b62 b63
0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1

106 Chapter 3

Since the reference embedded processor is a 32-bit machine, we can only hold 32 bits in a register. So, we split
the 64 bits into two 32-bit groups and convert to hexadecimal numbers as follows:

1 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0: 0xdab5556a

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1: 0xaaaaaad5

In the same way, we can generate the masks for other parity bits computation. The mask values for all parity bits
computation follow.

Mask0p1 = 0xdab5556a,Mask1p1 = 0xaaaaaad5,

Mask0p2 = 0xb66cccd9,Mask1p2 = 0x999999b3,

Mask0p3 = 0x01e3c3c7,Mask1p3 = 0x8787878f,

Mask0p4 = 0x0fe03fc0,Mask1p4 = 0x7f807f80

Mask0p5 = 0x001fffc0,Mask1p5 = 0x007fff80

Mask0p6 = 0x0000003f,Mask1p6 = 0xffffff80

Mask0p7 = 0x00000000,Mask1p7 = 0x0000007f

Mask0p8 = 0xffffffff,Mask1p8 = 0xffffffff

The simulation code for computing the 8 parity bits of Hamming (72, 64) code is given in Pcode 3.4. The
preceding precomputed parity bit masks are stored in the look-up table hm_masks[]. For each parity bit, we
get the corresponding masks into r2 and r3 from the look-up table and AND the masks with the actual data
bit words present in r0 and r1. The ANDed result is stored back into r2 and r3. Then we XOR r2 and r3, and
get the result to r2. If the number of ones present in the r2 is even, then the parity bit pn is set to 1; otherwise,
that is, if an odd number of ones present in r2, pn = 0. As counting the number of ones present in a 32-bit
word requires many operations in C simulation, we achieve it by shift and XOR in a few operations as shown in
Pcode 3.4. On the reference embedded processor, we can compute each parity bit in three cycles using a special
instruction set.

r7 = 0;
for(i = 0;i < 8;i++) {

r2 = hm_masks[2*i]; r3 = hm_masks[2*i+1];
r2 = r0 & r2; r3 = r1 & r3;
r2 = r2 ˆ r3;
r3 = r2 >> 16;
r2 = r2 ˆ r3;
r3 = r2 >> 8;
r2 = r2 ˆ r3;
r3 = r2 >> 4;
r2 = r2 ˆ r3;
r3 = r2 >> 2;
r2 = r2 ˆ r3;
r3 = r2 >> 1;
r2 = r2 ˆ r3;
r2 = r2 & 1;
r2 = r2 << i;
r7 = r7 | r2;

}

Pcode 3.4: Simulation code to generate parity bits of Hamming (72, 64) code.

Single-Bit Error Correction and Double-Bit Error Detection
Once we compute the 8 parity bits at the decoder using the data bits retrieved from memory, then we com-
pute syndromes by XORing both encoder and decoder parity bits. The syndromes provide indications about
bit errors. Also, syndromes provide the bit location if a single-bit error occurred and we flip that bit to correct
the data. We output a flag value depending on whether the bit errors occurred or not in the retrieved data. For
example, we output the decoded data status information by returning the value “0” for no errors occurred or one

Introduction to Data Error Correction 107

error occurred and corrected, “1” for two errors occurred and detected, and “2” for multiple errors occurred in
the retrieved data. The simulation code for correcting the error bit using Hamming (72, 64) coder is given in
Pcode 3.5.

r6 = data[2];
r6 = r6 ˆ r7;
r6 = r6 >> 24;
r4 = r6 & 0x80;
r6 = r6 & 0x7f;
j = 0; // assume no errors
if (r6 != 0){

if ((r4 == 0x80) & (r6 != 0)){ // correct single bit errors
if (r6 < 72){

r5 = hm_error_table[r6];
if (r5 < 32){

r5 = 31 - r5;
r4 = 1 << r5;
data[0] = data[0] ˆ r4;

}
else if (r5 < 64){

r5 = r5 - 32;
r5 = 31 - r5;
r4 = 1 << r5;
data[1] = data[1] ˆ r4;

}
}
else

j = 2; // multiple errors
}
else

j = 1; // double bit error detected
}

}

Pcode 3.5: Simulation code for correcting single bit error with Hamming (72, 64) coder.

Computational Complexity
Assuming each operation in Pcode 3.4 consumes one cycle on the reference embedded processor (see Appendix A,
Section A.4, on the companion website for more details on cycles estimation), it takes approximately 150 cycles.
It takes another 20 to 30 cycles for correcting an error using Pcode 3.5. With this, the Hamming encoder consumes
about 2.5 cycles per bit and the decoder consumes about 3 cycles per bit on the reference embedded processor.
Using a special instruction set, we can perform Hamming (72, 64) encoding in 0.5 cycles/bit and decoding in
0.75 cycles per bit. We use a total of 136 bytes of data memory for the look-up table.

Simulation Results
Assume the 64 bits that will be stored in a memory are r0 = 0x8f7f6f5f; r1 = 0x4f3f2f1f (0th bit is MSB of r0).
We compute 8 parity bits using 64 bits as 0xf4000000 (MSB bit is p8) and append to data bits to make a 72-bit
codeword before storing to memory.

Assume the retrieved 72 bits of data are r0 = 0x8e7f6f5f, r1 = 0x4f3f2f1f, r2 = 0xf4000000 with a 1-bit
error in the first 32-bit word. The parity bits c1 to c8 are computed using the retrieved data as 0x78000000
(MSB bit is c8). Then the eight syndromes are computed as 0x8c000000 (MSB bit is s8). We use look-up table
hm_error_table[] to get the error location from syndromes. Once we know the error location, we correct the
single-bit error (if occurred) using Pcode 3.5. The values of hm_error_table[] follow.

hm_error_table[72] = {
64,64,64, 0,64, 1, 2, 3,64, 4, 5, 6, 7, 8, 9,10,
64,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
64,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,
41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,
64,57,58,59,60,61,62,63};

108 Chapter 3

3.5 BCH Codes

The framework of BCH codes support a large class of powerful random error-correcting cyclic binary and non-
binary linear block codes. With BCH (N, K) codes, we compute mT (= N − K) parity bits from the input block
of K bits using generator polynomial G(x) and we correct up to T bit errors in the received block of N bits. At
the transmitter side, the BCH(N, K) encoder computes and appends mT parity bits to the block of K data bits
and at the receiver side the BCH(N, K) decoder corrects up to T errors by using mT bits of parity information.
We work with Galois field GF(2m) elements for decoding of BCH(N, K) codes. See Appendix B, Section B.2,
on the companion website for more details on Galois field arithmetic operations.

3.5.1 BCH Encoder

We represent the data either in polynomial form (like A(x), B(x),C(x), . . .), or in vector form (likeA,B,C, . . .).
A polynomial over a field GF(q) is a mathematical expression of the form

F(x) = fn−1 xn−1 + fn−2xn−2 +· · ·+ f1x + f0

where the symbol x is an intermediate, the coefficients fn−1, fn−2, . . . , f0 are elements of GF(q) and the indices
and exponents are integers. The BCH (N, K) encoder computes mT (= N − K) bits of parity data from K bits
of input data by using a generator polynomial G(x) = g0 + g1x + g2x2 +· · ·+ gN−K−1x N−K−1 + x N−K , where
gi ∈ GF(2). For BCH (N, K) codes, the generator polynomial G(x) is obtained by computing the multiplication
of T minimal polynomials φ2i−1(x) of field elements α2i−1 for 1 ≤ i ≤ T as follows:

G(x) = φ1(x)φ3(x) · · ·φ2T−1(x) (3.16)

As every even power of α has the same minimal polynomial as some preceding odd power of α, the G(x) is
obtained by computing the least common multiple (LCM) of minimum polynomials φi(x) for 1 ≤ i ≤ 2T ; hence,
G(x) has α,α2,α3 · · ·α2T as its roots. In other words, G(αi) = 0 for 1 ≤ i ≤ 2T . See Appendix B, Section B.2,
on the companion website for more details on Galois field arithmetic operations (see also Example 3.12).

Suppose that the input message block of K bits to be encoded is D = [d0d1d2 · · ·dK −1] and the corresponding
message polynomial is D(x) = d0 + d1x + d2x2 + · · ·+ dK −1x K −1. Let B = [b0b1b2 · · ·bN−K −1] denotes the
computed parity data of N − K (= mT) length and its polynomial representation is B(x) = b0 + b1x + b2x2 +
· · ·+bN−K −1x N−K −1. This parity polynomial B(x) is given by the remainder when we divide D(x) · x N−K with
generator polynomial G(x). The polynomial B(x) is computed as

B(x) = D(x) · x N−K mod G(x) (3.17)

After computing parity polynomial B(x), the encoded code polynomial C(x) is constructed as

C(x) = D(x) · x N−K + B(x)

= b0 +b1x +b2x2 +· · ·+bN−K −1x N−K−1 +d0x N−K +d1x N−K+1 +· · ·dK −1x N−1 (3.18)

= c0 + c1x + c2x2 +· · ·+ cN−1x N−1

Basically, we append mT bits of parity data to the input block of K bits and form a systematic codeword of
length N (= K +mT) bits. The encoded polynomial in the vector form is represented as C = [c0c1c2 · · · cN−1].
Equations (3.17) and (3.18) can be realized with an LFSR signal flow diagram as shown in Figure 3.12. To
compute parity polynomial B(x) coefficients, we input the data polynomial D(x) coefficients to LFSR with
dK −1 coefficient as first input. The values present in the delay units (Z) after passing all K coefficients of D(x)

gives the coefficients of parity polynomial B(x).

■ Example 3.12

Let us consider Galois field GF(23) with m = 3 from Appendix B, Section B.2, on the companion website.
With this, we can work with codeword length of N = 23 −1 = 7 bits. We choose message length K = 4
bits. Then mT = 7−4 = 3. In this case, we can correct a 1-bit error (since T = 1) with BCH(7, 4) code.
The generator polynomial for BCH(7, 4) code is G(x) = x3 + x + 1 (Shu Lin, 1983). Let 4-bit message

Introduction to Data Error Correction 109

Z

g0

Z

g1

Z

g2

Z

gN�K�1

C(x)

D(x)

B(x)

fbv

Figure 3.12: Realization of BCH(N, K) encoder.

data vector D = [1110] or in polynomial notation D(x) = x3 + x2 + x . Using the generator polynomial
G(x) and message polynomial D(x), we compute the parity (or remainder) using the Equation (3.17)
or using the shift register realization shown earlier. Here, we compute the parity using shift registers.
We initialize the shift registers with zero and then we pass messages through the shift registers one
after another. We obtain the parity as B = [100] after passing four message bits through shift registers
(Figure 3.13). So, the BCH codeword of 7 bits length is given by C = [1110100] or in polynomial notation
C(x) = x6 + x5 + x4 + x2.

■

Z Z Z
1110

1110100

Input

1 110
1 101
1 010
0 001

000

State

Figure 3.13: LFSR-based parity bits generation for BCH(7,4) encoding.

3.5.2 BCH Decoder

At the receiver, we use a BCH (N, K) decoder to detect and correct the bit errors. A BCH decoder consists of
the following three steps to decode the received data block R.

• Computation of syndromes
• Computation of error-locator polynomial
• Computation of error positions

The received data vector R or its polynomial R(x) = r0 + r1x + r2x2 + · · ·+ rN−1x N−1 consists of transmitted
data polynomial C(x) along with an added error polynomial E(x).

R(x) = C(x)+ E(x)

= D(x) · x N−K + B(x)+ E(x) (3.19)
= D(x) · G(x)+ E(x)

In a BCH decoder (unlike as in a BCH encoder), we have to perform Galois field arithmetic operations in
decoding of BCH codes.

Syndromes Computation
To know the presence of errors and the error pattern, we compute 2T syndromes using the received data
polynomial as follows:

R(αi) = D(αi) · G(αi)+ E(αi), where 1 ≤ i ≤ 2T

= 0 + E(αi)

= E(αi)

= Si

(3.20)

110 Chapter 3

Figure 3.14: Signal flow diagram of
syndrome computation.

Z

Zrj

aj

cj

bj

si

�i

From the preceding syndromes computation, if no errors are present in the received data vector, we get all
computed syndrome values (Si) as zero. If any one or more syndromes are non-zero, then we assume that the
errors are present in the received data vector. The syndromes Si = R(αi) are computed with the LFSR signal
flow diagram as shown in Figure 3.14 (see also Example 3.13).

■ Example 3.13

We transmit the codeword C = [1110100] computed in Example 3.12 through a noisy channel. Let the
received vector be R = [1110110], which differs from the transmitted codeword by 1 bit, highlighted with
an underscore. So, the error vector E = [0000010] or E(x) = x (but we don’t know errors in advance).
We can find the error vector with the BCH decoder if the number of errors occurred are less than or
equal T . In our example, T = 1 (i.e., the decoder can correct a 1-bit error) and we can correct one error
present in the received data vector. The first step in the BCH decoding is the computation of syndromes.
To correct T errors, we have to compute 2T syndromes Si = R(αi), where i = 1,2. The R(αi) is obtained
after substituting x = αi in the R(x). We use Galois field GF(23) arithmetic (see Appendix B, Section B.2,
on the companion website) in computing these two syndromes.

R(x) = x6 + x5 + x4 + x2 + x

R(α) = α6 +α5 +α4 +α2 +α = (α2 +1)+ (α2 +α +1)+ (α2 +α)+α2 +α = α

R(α2) = α12 +α10 +α8 +α4 +α2 = α7α5 +α7α3 +α7α +α4 +α2

= α5 +α3 +α +α4 +α2 = α2

∵S1 = α, S2 = α2

■

Error-Locator Polynomial Computation
An error-locator polynomial computation is the second step in decoding of BCH codes. We use the Berlekamp
-Massey recursive algorithm to compute the error-locator polynomial. The flow chart of Berlekamp-Massey
recursion is shown in Figure 3.15. If the number of errors present in the received data vector is L (which less
than or equal to T), then this algorithm computes the L-degree error-locator polynomial in 2T iterations. First,
we initialize the error-locator polynomial �(x) = 1 as a minimum-degree polynomial with degree L = 0. Then
we use syndromes information to build an error-locator polynomial by computing discrepancy delta. If the
value of delta is not zero then we update the minimum-degree polynomial with the discrepancy; otherwise, we
continue the loop. If the number of errors in the received polynomial R(x) is T or less, then �(x) produces the
true error pattern. At the end of 2T iterations of the Berlekamp-Massey recursion, we will have the Lth-degree
error-locator polynomial (with �0 = 1) as follows:

�(x) = �0 +�1x +�2x2 +· · ·+�L x L

= (1+ X1x)(1+ X2x) · · · (1+ X L x)
(3.21)

Once we have an error-locator polynomial of degree L , then we can find L error positions by computing the
roots of the error-locator polynomial (see Examples 3.14 and 3.15).

Introduction to Data Error Correction 111

Figure 3.15: Flow chart diagram
of Berlekamp-Massey algorithm.

L(0)(x) 51, B (0)(x) 51

L(k)(x) 5 L(k 21)(x) 2 Dk B
(k 21) (x)·x

B (k)(x) 5 B (k 21) (x)·x

L 5 0, k 51

Start

B (k)(x) 5L(k 21)(x)/Dk

L 5 k 2 L

End

N

N

Y

Y

Y

N

Dk50

2L # k 21

k # 2T

i 5 0

Dk 5SLi
(k 21)·Sk 2 i

L

■Example 3.14

Using the two syndromes computed in Example 3.13, we build the error-locator polynomial using
Berlekamp-Massey recursion as shown in Figure 3.15.

Initialization: �(0)(x) = 1, B(0)(x) = 1, L = 0,k = 1

First iteration (k = 1): �1 = S1 = α

Since �1 	= 0,�(1)(x) = 1+α x (Note: In the Galois field “+” is the same as “−”.)
Since (2L ≤ k −1), L = k − L = 1 and B(1)(x) = 1/α = α6

Second iteration (k = 2): �2 = �
(1)
0 S2 +�

(1)
1 S1 = α2 +α2 = 0

Since �2 = 0, �(2)(x) = �(1)(x), B(2)(x) = x B(1)(x) = α6x .
Since k = 2T (last iteration reached), stop Berlekamp-Massey algorithm.
The error-locator polynomial �(x) = �(2)(x) = 1+αx .

■

Error Positions Computation
If the number of errors L present in the received data vector is less than or equal to T (i.e., L ≤ T), then the
error-locator polynomial can be factored into L first-degree polynomials as in Equation (3.21) and the roots of
the error-locator polynomial are X−1

1 , X−1
2 , . . . X−1

L . The error positions are given by the inverse of the roots of
the error-locator polynomial. So the L error positions are X1, X2, . . . X L .

As binary BCH codes work on the data bits and if we find the error positions in the received data bits, then
correction of data bits is achieved by simply flipping the bit values in those error positions.

■Example 3.15

We continue Example 3.14 and find the error locations by finding the roots of the error-locator
polynomial. Since the computed error-locator polynomial has degree 1, its root is computed as

�(X−1
1) = 1+αX−1

1 = 0 ⇒ αX−1
1 = 1 ⇒ X−1

1 = 1/α = α6

112 Chapter 3

The error position is given by the inverse of roots of the error-locator polynomial. Therefore,

X1 = 1/α6 = α1

■

Error Correction
As we are working with binary BCH codes, we correct only the bit errors present in the received data (in the
next section we discuss how to correct m-bit words with RS codes). The correction of bit errors is achieved
by flipping the bit value at the error position (see Example 3.16). If the degree of error-locator polynomial (L)
and the number of error positions (P) are not equal then the BCH decoder cannot correct errors as the number
of errors occurred is more than the decoder error correction capability. Therefore, we skip error bits correction
when L 	= P .

■ Example 3.16

We computed the error position in Example 3.15 as X1 = α1. The exponent of error positions gives the
location of errors in the received data vector. In our case, the exponent of error position is 1 and the
error is present at position 1 in the received vector R = [1110110]. The indexing starts from the LSB side
as shown in the following.

1 1 1 0 1 1 0
6 5 4 3 2 1 0

Thus, the corrected data vector is [1110100], which is the same as the transmitted data vector.

■

In Section 4.1, we will further study the BCH codes. Also, we discuss the simulation of BCH codes and the
efficient techniques to implement BCH codes.

3.6 RS Codes

Reed-Solomon (RS) codes are block-based linear nonbinary error-correcting codes with a wide range of appli-
cations. The RS(N, K) coder works on a block of data and takes a K element block as input and outputs an
N element block by adding N − K elements as redundant data, which is used to perform error correction at
the receiver side. By adding redundant data before transmission, RS codes can detect and correct errors within
blocks of the data frame.

For any positive integer T ≤ 2m − 1, there exists a T -symbol error correcting RS code with the following
parameters.

N = 2m −1

K = N −2T = 2m −1−12T

dmin = 2T +1 = N − K +1

The RS(N , K) coder works with Galois field elements of m bits width and the data elements of RS(N, K)
coder belongs to GF(2m) Galois field. The RS(N, K) encoder adds 2T = N−K elements of redundancy at the
transmitter side and the RS(N, K) decoder uses that redundancy to correct up to T = (N−K)/2 errors at the
receiver side. As RS code consists of m-bit elements, these codes are well suited to correct burst bit errors.

A few applications where RS codes are predominantly used include high-speed modems such as ADSL, xDSL,
storage devices (e.g., compact disc [CD], DVD, hard disk), mobile and satellite communications, and digital
television and DVB. Like RS codes, BCH codes (see Sections 3.5 and 4.1) are used in some of the previous
applications for FEC. Both BCH codes and RS codes are linear block codes. The BCH codes are binary, whereas
RS codes are nonbinary.

Introduction to Data Error Correction 113

The error correction capability of BCH codes is inferior when compared to RS codes. In other words, we
achieve larger coding gain with RS codes than with BCH codes for given data rates and channel conditions. In
burst error cases, RS codes perform better than BCH codes.

In this section, we discuss the RS(N, K) coder to correct T data elements at the receiver side. The block
diagram of the RS(N, K) coder is shown in Figure 3.16. The RS(N, K) encoder takes K -element block D as
input and outputs N element block M. RS(N, K) decoder takes received N element error block R as input and
outputs K element block D′.

RS(N, K)
Encoder

RS(N, K)
Decoder

Input Block D

K Elements N Elements

M

K Elements

Decoded Output D�RChannel

ReceiverTransmitter

Figure 3.16: Block diagram of RS(N, K) coder.

Polynomial
Multiplier

Polynomial
Adder

Polynomial
Divider

D(x)

G(x)

x N 2K

M(x)

Figure 3.17: Operational blocks of RS(N, K) encoder.

3.6.1 RS(N, K) Encoder

Using the RS(N, K) encoder, we compute N−K length parity polynomial B(x) from K -length input message
D(x) by using the generator polynomial G(x). The encoded message M(x) is obtained as

M(x) = D(x) · x N−K + B(x) (3.22)

The following generator polynomial is used in the RS(N, K) encoder to compute the parity data:

G(x) = (x +α0)(x +α1)(x +α2) · · · (x +α2T−1)

= g0 + g1x + g2x2 +· · ·+ g2T−1x2T−1 + x2T
(3.23)

where 2T = N − K . Here, the polynomial G(x) is computed by multiplying 2T first-degree polynomials (x +αi)

where 0 ≤ i < 2T . The parity polynomial B(x) is computed as

B(x) = D(x) · x N−K mod G(x) (3.24)

The equivalent schematic block diagram of Equations (3.22) and (3.24) is shown in Figure 3.17. In this section,
we work with a few examples to better understand RS codes (see Examples 3.17, 3.18, and 3.19).

■Example 3.17

Let us consider the data elements with 3-bit width. We work with RS(7, 3) coder and use Galois field
GF(23) arithmetic (see Appendix B, Section B.2, on the companion website for more details on GF) to
encode and decode the data elements. With this, the three parameter values of RS coder are N = 7, K =
3,2T = N−K = 4. Let the K length message vector D = [3 1 4]. In terms of polynomial notation,

D(x) = α3x2 +α1x +α4

114 Chapter 3

For T = 2, the generator polynomial G(x) is given by

G(x) = (x +α)(x +α2)(x +α3)(x +α4)

= x4 +α3x3 + x2 +αx +α3

The parity polynomial B(x) is computed using Equation (3.24) as

B(x) = x N−K D(x) mod G(x)

= x4(α3x2 +αx +α4) mod (x4 +α3x3 + x2 +αx +α3)

= α3x3 +α5x2 +α5x +α

Then the codeword polynomial M(x) is obtained from Equation (3.22) as

M(x) = α3x6 +αx5 +α4x4 +α3x3 +α5x2 +α5x +α

■

3.6.2 RS(N, K) Decoder

The RS(N, K) decoder takes data blocks of N elements as input and outputs a K element data block as shown in
Figure 3.16. If errors are present in the received data and if they are less than or equal to (N−K)/2, then the RS
decoder corrects the errors and outputs a corrected data block. Let R(x) = rN−1x N−1 +rN−2 x N−2 +· · ·+r1x +r0

be the received polynomial with noise, then R(x) = M(x)+ E(x), where E(x) is the error polynomial. If R(x)

has v errors at the locations x i1 , x i2 , . . . , x iv , then E(x) will be represented with corresponding error magnitudes
as follows:

E(x) = ei1 x i1 + ei2 x i2 +· · ·+ eiv x iv (3.25)

The error correction with the RS decoder is achieved in four steps and the schematic block diagram of the RS
decoder is shown in Figure 3.18.

3.6.3 Syndrome Computation

In RS decoding, the first step of the decoder is syndrome computation. Syndromes, which give an indication of
presence of errors, are computed using the received data polynomial R(x). The syndromes are nothing but the
evaluated values of the received polynomial at x = α j for 1 ≤ j ≤ 2T .

S j = R(α j) = M(α j)+ E(α j).

∵ M(α j) = D(α j)G(α j) = 0, ⇒ S j = R(α j) = E(α j)

Syndromes
Computation

Error Locator
Polynomial

Computation

Error
Roots

Finding

Error
Magnitudes
Computation

Delay

R(x)

M̂(x)

Figure 3.18: Schematic block diagram of RS decoder.

Introduction to Data Error Correction 115

If all the syndromes are zero, then there are no errors in the received data. We compute a total of 2T syndromes
in the syndrome computation step. An i-th syndrome is computed as follows:

Si = R(αi) =
N−1∑
n=0

rn(α
i)n (3.26)

where addition is modulo-2 and performed using ⊕ instead of +.

■Example 3.18

R(x) is the received noise polynomial corresponding to the transmitted codeword polynomial M(x). The
received polynomial with errors in two positions follows:

R(x) = α3x6 +αx5 +α6x4 +α3x3 +α3x2 +α5x +α

From Equation (3.26), the 4(= 2T) syndromes are computed as

S1 = α5, S2 = α3, S3 = 0, S4 = α2

■

3.6.4 Error-Locator Polynomial Computation

Let Xi for i = 1,2, . . . , v, be the error locations and �(x) be the error-locator polynomial. Then

�(x) = (1− X1x)(1− X2x) · · · (1− Xvx)

=
v∏

i=1

(1− Xi x)

= 1+�1x +�2x2 +· · ·+�vxv

The coefficients �1,�2, · · ·�v of �(x) are computed using the Berlekamp-Massey recursion (see Figure 3.15)
seen in the following.

Initial conditions: �(0)(x) = 1, B(0)(x) = 1, L0 = 0

i-th iteration: �i =
Li∑

j=0
�

(i−1)
j Si− j

δi =
{

1 if �i 	= 0 and 2Li−1 ≤ i −1
0 otherwise[

�(i)(x)

B(i)(x)

]
=
[

1 −�i x
�−1

i δi (1− δi)x

][
�(i−1)(x)

B(i−1)(x)

]
Li = δi(i − Li−1)+ (1− δi)Li−1

We iterate the Berlekamp-Massey algorithm 2T times to get an error-locator polynomial �(x) of degree v that
is less than or equal to T . If v ≤ T , then the roots of the error-locator polynomial �(x) give the valid error
positions in the received data vector.

■Example 3.19

We compute the error-locator polynomial by using the syndromes of the received polynomial computed
in Example 3.18.

�(0)(x) = 1, B(0)(x) = 1, L0 = 0

116 Chapter 3

For i = 1,

�1 =
∑

�
(0)
j S1− j = S1 = α5

δ1 = 1, ∵�1 	= 0 and 2L0 ≤ 0

�(1)(x) = 1+α5x

B(1)(x) = α2

L1 = 1

Like this, continue up to i = 2T (in our case 2T = 4). The final error-locator polynomial is given by

�(x) = �(4)(x) = 1+αx +α6x2 = (1+α2x)(1+α4x)

■

3.6.5 Roots of Error-Locator Polynomial

We compute the roots of the error-locator polynomial (ELP) �(x) with a brute force method (also called
Chien’s search) by checking all the field elements to know whether any of field elements satisfies �(x). The
Equation (3.27) gives the error roots as X−1

i = αk where 1 ≤ i ≤ v whenever Pk becomes zero.

Pk = �(αk) =
v∑

j=0

� j (α
k) (3.27)

where 0 ≤ k < N . With ELP from Example 3.19, the error roots are found as X−1
1 = α5 and X−1

2 = α3. Then
the error positions are given by the inverse of error roots. Thus, X1 = α2 and X2 = α4.

3.6.6 Error Magnitude Polynomial Computation

The error magnitude polynomial
(x) = 1+ω1x1 +ω2x2 +· · ·+ω2T x2T is defined as

(x) = �(x)[1+ S(x)] mod x2T+1 (3.28)

where S(x) =∑2T
j=1 S j x j and �(x) =∑v

i=0 �i x iwith �0 = 1 are the syndrome polynomial and error-locator
polynomial, respectively. From Equations (3.25) and (3.26),

S(x) =
∑

j

[
v∑

i=1

Yi X j
i

]
x j =

v∑
i=1

Yi

⎡
⎣∑

j

(Xi x) j

⎤
⎦

where Yk = eik and Xk = x ik are error magnitudes and error locations, respectively.
Assuming |(Xi x)| < 1 and using infinite geometric series summation result, the S(x) can be approximated as

S(x) =
v∑

i=1

Yi

[
Xi x

1− Xi x

]
(3.29)

From Equations (3.28) and (3.29),

(x) = �(x)

[
1+

v∑
i=1

Yi

(
Xi x

1− Xi x

)]
mod x2T+1

= �(x) mod x2T+1 +
v∑

i=1

Yi Xi x�(x)

1− Xi x
mod x2T+1 (3.30)

= �(x)+
v∑

i=1

Yi Xi x
∏
j 	=i

(1− X j x)

Introduction to Data Error Correction 117

3.6.7 Error Magnitude Computation

To compute the error magnitudes from the error magnitude polynomial, we use the Forney algorithm. From
Equation (3.30),

(X−1
k) = �(X−1

k)+
v∑

i=1

Yi Xi X−1
k

∏
j 	=i

(1− X j X−1
k)

= Yk

∏
j 	=k

(1− X j X−1
k)

(3.31)

The error-locator polynomial with its factors follows:

�(x) =
v∏

i=1

(1− Xi x) (3.32)

Differentiating Equation (3.32) with respect to x on both sides, we have

�′(x) = ∂

∂x

[
v∏

i=1

(1− Xi x

]

= −
v∑

j=1

X j

∏
i 	= j

(1− Xi x)

�′(X−1
k) = −

v∑
j=1

X j

∏
i 	= j

(1− Xi X−1
k)

= −Xk

v∏
i 	=k

(1− Xi X−1
k)

(3.33)

From Equations (3.31) and (3.33), the error magnitudes are obtained as

Yk = eik = − Xk
(X−1
k)

�′(X−1
k)

(3.34)

3.6.8 Error Correction

Once we know the error locations and error magnitudes, then we can compute the error polynomial E(x) from
Equation (3.25). (See Example 3.20.) The corrected data polynomial D̂(x)is obtained from the received data
vector R(x) as

M̂(x) = R(x)+ E(x) (3.35)

■Example 3.20

From Example 3.19, the error positions X1 and X2 are obtained as X1 = α2 and X2 = α4. From Equation
(3.31), the quantities �′(X−1

1) and �′(X−1
2) are computed as

�′(x) = −X1(1− X2x)− X2(1− X1x)

�′(X−1
1) = −X1(1− X2 X−1

1) = α2(1+α4α5) = α

�′(X−1
2) = −X2(1− X1 X−1

2) = α4(1+α2α3) = α

From Equation (3.28), the error magnitude polynomial
(x) from �(x) and S(x) is obtained as

(x) = 1+α6x +α3x2

118 Chapter 3

Then

(X−1
1) = α,
(X−1

2) = 1

Using Equation (3.34),

Y1 = −X1
(X−1
1)

�′(X−1
1)

= α2α

α
= α2

Y2 = α3

The error polynomial is computed from Equation (3.25) as

E(x) = α2x2 +α3x4

The corrected data polynomial from Equation (3.35) is obtained as

M̂(x) = α3x6 +αx5 +α4x4 +α3x3 +α5x2 +α5x +α

D̂(x) = α3x2 +αx +α4 or

D̂ = [3 1 4]

■

In the Section 4.2, we discuss the simulation techniques for the RS coder. We will consider RS(204, 188) coder
for simulation purpose. Also, we discuss efficient implementation techniques for the RS decoder to minimize
the cycle cost on the reference embedded processor.

3.7 Convolutional Codes

The difference between block codes and convolutional codes is that the former work on a block-by-block basis
without any data dependency between the blocks, whereas in the latter case the output of encoder depends not only
on the current input block to encoder but also on the previous K −1 input blocks where K is the constraint length
of an encoder. A convolutional code is generated by passing the bitstream through a linear finite-state shift register
as shown in Figure 3.19. All flip-flop registers are updated for every encoded input data block (so the encoder
state changes with the encoding of each input block). The functionality of the convolutional encoder is similar to
the convolutional operation (i.e., linear filtering); hence, these codes are called convolutional codes. If we input
k bits to the encoder and it outputs n coded bits, then we call it the rate k/n encoder. Usually, convolutional
codes perform better than cyclic block codes (e.g., RS codes) for the following reasons: convolutional decoders
utilize the dependency among coded bits and are also capable of accepting soft information as input in decoding
the bits.

In the following subsections, various representations of convolutional codes are presented, the generation
of both systematic and nonsystematic codes is discussed and the decoding of convolutional codes using hard
decisions (with Hamming distance criterion) is discussed. The optimal decoding of convolutional codes (with
soft data and Euclidean distance criterion) using the Viterbi algorithm is discussed in Section 3.9.

3.7.1 Convolutional Encoder Representation

As we discussed in Section 3.3, the block codes can be represented with a generator matrix. Here we cannot use
a generator matrix to represent convolutional codes as these codes are semi-infinite. However, it is possible to
represent a generator function for each output bit of a convolutional encoder. In this section, we discuss different
ways of representing a convolutional encoder along with individual output bits generator function representation
using the rate 1/2 encoder shown in Figure 3.19.

Introduction to Data Error Correction 119

Figure 3.19: Flip-flop register
representation of convolutional
encoder.

a1

z1

z2

S0 S1

Flip-Flop Register Representation
In the flip-flop representation of the convolutional encoder, we define input and output connections through
flip-flop registers. Using the encoder shown in Figure 3.19, with one input bit a1, we get two output bits z1 and z2

(hence, it is rated as a 1/2 coder). The flip-flop registers are updated for every input block (or 1 bit). As per input-
output connections shown in Figure 3.19, the state value S1 of the flip-flop register is updated with S0 and the state
value S0 of the flip-flop register is updated with the input bit a1. The constraint length K of this coder is 3, as the
output bits depend not only on the current input bit but also on the previous two input bits (which are present in the
flip-flop registers S0 and S1). The following equations give the relationship between output bits z1 and z2 and input
bit a1.

z1 = a1 ⊕ S0 ⊕ S1 (3.36)

z2 = a1 ⊕ S1 (3.37)

Generator/Transfer Function Representation
In transfer function representation, we basically provide the input to output connections by assigning bit “1” if
connection to the output is present; otherwise, we assign a bit “0” to say that there is no connection to the output.
The number of bits in a generator function depends on the maximum total number of connections to any output
bit. For example, in Figure 3.19, there are three connections to output bit z1 and two connections to output bit z2.
Therefore, in the generator function representation of convolutional coder shown in Figure 3.19, we use three
bits for both outputs’ generator functions. From Equations (3.36) and (3.37), the generator functions g1 and g2

for two output bits z1 and z2 are

g1 = [111]

g2 = [101]

We also can represent the generator functions in the polynomial form as

G1(D) = 1+ D + D2 (3.38a)

G2(D) = 1+ D2 (3.38b)

State Machine Representation
From Figure 3.19, we can see that the output bits of the convolutional coder depend on both input bits and
the state values. Using state machine representation of the convolutional coder, we can show the updated states
along with output bits for a given input bits. The corresponding state machine representation of the convolutional
encoder of Figure 3.19 is shown in Figure 3.20. From Figure 3.20, we can see how the states are updated and what
output bits are generated with corresponding input bits. For example, if we input bit “0” when the encoder state
is “01,” then the output state becomes “10” and the output bits are “01.” Similarly, if we input bit “1,” then the
output state is “11” and the corresponding output bits are “10.” The state machine is a compact representation
of a convolutional encoder when compared to other representations. With this state machine, we can see all
possible states and output bits values for a given input value.

Tree Diagram Representation
In the tree diagram representation, we represent the states as nodes of a tree and the outputs as branches of a
tree. We start the encoder at zero state and build the tree for each possible input block bit pattern. The number
of branches emerging from any node depends on the number of bits (k) in one input block. For example, in
Figure 3.19, each input block contains only 1 bit; hence, there will be two branches (2k) from each node of the

120 Chapter 3

tree diagram. The corresponding tree diagram for the convolutional encoder shown in Figure 3.19 is presented
in Figure 3.21. The upward branches from a node are due to input bit “0,” whereas the downward branches from
a node are due to input bit “1.” Starting with the zero state, the tree diagram shows all possible output states and
output bits for all possible input block bit patterns.

Trellis Diagram Representation
The trellis diagram is a time-indexed version of a state diagram. With trellis diagram representation, we can see
all possible output states and output bits for a given input bit with respect to time scale. In practice, we start trellis
from zero state and force zero state at the end of the input bitstream with trellis terminating bits (usually, we use
0 bits to terminate trellis). A trellis diagram is popularly used in decoding of convolutional codes. Figure 3.22
shows the trellis diagram corresponding to the rate 1/2 encoder shown in Figure 3.19.

Systematic and Nonsystematic Convolutional Codes
As discussed in Section 3.3, the error-correction codes are classified into two types: (1) systematic codes, and
(2) nonsystematic codes (NSC). In the case of systematic codes, the original input data block is present as it is

Figure 3.20: State machine
representation of convolutional
coder.

00 10

01

11

1/11

1/01

a1/z2z1

0/00

S1S0

0/011/10

0/11

1/00

0/10

Figure 3.21: Tree diagram
representation of convolutional
coder.

0/00
0

1
1/11

00

01

00

0/00

1/11

00

01

0/01

10

11

1/10

0/00

1/11

00

01

0/01
1/10

10

11

0/11

1/00

00

01

0/10

1/01

10

11

S1S0

a1/z2z1

State (S1S0)
a1/z2z1

00

01

10

11

i�0 i�1 i�2 i�3 i�4 i�n�2 i�n�1

0/00

1/11

0/00 0/00

1/11

1/10

0/01

Figure 3.22: Trellis diagram representation of convolutional codes.

Introduction to Data Error Correction 121

along with parity data at the output of encoder, whereas with nonsystematic codes, we do not have a separate
input data block in the output data after encoding. The convolutional code generated with the encoder shown in
Figure 3.19 is a nonsystematic code as no input data bits are directly present at the output. A class of systematic
codes called recursive systematic codes (RSC) is popularly used with turbo coding (see Section 3.10), where we
output the input data block along with the parity data block as shown in Figure 3.44.

3.7.2 Decoding Criterion for Convolutional Codes

Usually, in digital communications systems, the convolutional decoding happens after baseband demodulation
as shown in Figure 3.23. In the baseband binary phase shift keying (BPSK) demodulation, we have two options
to obtain the demodulated data; in the first option, we quantize the data based on the sign of the demodulated
output and get bit “0” if the sign is positive and bit “1” if the sign is negative. In this case we used 1 bit to represent
the data and these decisions are called hard decisions. In the second option, we quantize the demodulator output
with more than one level. In other words, we represent the demodulated data with multiple levels using more
than 1 bit (e.g., represented with eight levels as −4, −3, −2, −1, 0, 1, 2, 3 using 3 bits) and these decisions are
called soft decisions.

Hard Decision versus Soft Decision
At the convolutional decoder output, we will see a considerable performance difference between hard decisions
and soft-decision inputs to the decoder. The reason is simple as illustrated in Figure 3.24. Consider a demodulator
input sample highlighted with a dashed circle. This sample corresponds to bit “1,” which supposedly is downwards
with some negative amplitude like other “1” bit input samples to the demodulator. But, because of the presence
of more noise at that sample, the noisy sample became a positive sample with value 0.0944. With the hard-
decision demodulator, we output bit zero as if it corresponds to a “0” transmitted bit, but actually it corresponds
to the transmitted bit “1.” With soft decisions, the demodulator outputs the sample with a small positive allowed
quantization level.

Now, assume a decoder based on the probability of having the sample close to some constant positive and
negative thresholds. In other words, it is more likely to decode a bit as “0” or it is less likely to decode a bit as
“1” if the soft decision has more positive value. Similarly, it is more likely to decode a bit as “1” or it is less
likely to decode a bit as “0” if the soft decision has more negative value. From a probabilistic point of view, with
demodulator hard decision outputs, the highlighted sample (corresponding to bit “1”) has the same probability
as “0”-bit samples, whereas with soft decisions, when compared to the highlighted sample, the probability of
“0”-bit samples is considerably higher. If these kinds of samples occur frequently in a sequence, then the decoders
based on the maximum likelihood criterion may make more wrong decisions with hard-decision inputs when
compared to soft-decision inputs.

Figure 3.23: Block diagram of
baseband digital communications
system.

BPSK
Modulator

Transmitter
Back End

Channel h(t)

Receiver
Front End

BPSK
Demodulator

Transmitter

Channel

Receiver

Sncm

Rn dm bk

ak x(t)

y (t)

Rate 1/2
Convolutional

Coder

Convolutional
Decoder

AWGN
noise u(t)

122 Chapter 3

0.4523
0.2931

0.9645
0.57220.0944

20.8928
21.1134

20.4417
20.2638

Demodulator Input

Hard Decisions by Demodulator

Soft Decisions by Demodulator

00000

1 1 1 1 1

13
12
11

0
21
22
23
24

20.8611

Figure 3.24: Illustration of hard decisions versus soft decisions.

Hamming Distance versus Euclidean Distance
As we discussed in Section 3.3.1, the Hamming distance between two codewords is given by the number of
positions in which the bits in those two codewords are different. For example, the Hamming distance between
the two codewords, 01011101 and 01001011, is 3, as they differ in three bit positions. We may prefer to use
Hamming distance in convolutional decoding if the input to the decoder is hard decisions. In the next subsection,
we discuss the decoding of convolutional codes with hard-decision inputs and Hamming distance criterion.

The Euclidean distance is defined as the distance between two vectors or the absolute difference between
two scalars. For example, consider two vectors

−→
OA and

−→
OB with A = (2.54,−1.98) and B = (1.44,−2.32).

The Euclidean distance between these two vectors is computed as
√

(2.54−1.44)2 + (−1.98+2.32)2 = 1.3256.
The Euclidean distance between two scalars P = −1.23 and Q = 2.45 is |−1.23−2.45| = 3.68. The Euclidean
distance is popularly used in convolutional decoding both with soft-decision inputs as well as hard-decision
inputs. From a hardware point of view, the Hamming distance can be computed with less complex hardware
circuitry and also the computation will be fast, whereas the computation of the Euclidean distance involves
floating-point operations so the corresponding hardware is costly and the computations will not be fast due to
slow floating point hardware circuitry. However, with soft-decision inputs and Euclidean distance criterion, we
will see a considerable performance gain at the convolutional decoder output. In Section 3.9, we discuss the
optimal decoding of convolutional codes with the Viterbi algorithm using the Euclidean distance as a criterion.

3.7.3 Convolutional Decoding with Hard Decisions

As we discussed in Section 3.7.1, the convolutional encoder is basically a finite-state machine. The optimum
decoding criterion for convolutional codes is maximum likelihood sequence estimation (MLSE). In the decoding
using maximum likelihood (ML) criterion, we select the most probable symbols as decoded symbols by mini-
mizing overall symbol errors. This is achieved by processing all the trellis stages corresponding to the encoded
symbols. We process the trellis stage-by-stage with the removal of less probable paths of the trellis in each stage
and retaining the most probable paths at each node of a trellis stage. For this, we define two metrics, namely
branch and state metrics. The branch metrics are obtained by computing the distance between the received sym-
bol and branch symbol values. The state metrics are obtained by selecting the minimum error value obtained after
adding the branch metrics to the previous stage state metrics from where these branches are diverged. In this way
we obtain the most probable symbol path in the trellis at every stage of trellis processing. The path that includes
most probable paths of all trellis stages is called the global most probable path. Then the bits corresponding to

Introduction to Data Error Correction 123

0

1

2

3

(S1S0)

(S1S0)

(S1S0)

0

2

2

0

1

1

0

2

2

0

3

3

2

0

0

1

1

2

1
1

3

2

1

1

1

1

1
1

2

2

0

0

2

2

1

2

2

2

1

2

2

0

0

1

1

2

1
1

1

2

3

3

0

2

2
0

1

1

1

1

1

3

3

3

1

1

1

2

0

1

0
2

2

2

3

3

1

1

1
1

0

0

2

2

3

3

2

3

3

3

2

3

0

2

2

1

1

0

1
1

3

2

4

4

2

0

0
2

1

1

1

1

4

3

3

3

1

1

1

2

0

1

0
2

4

4

3

3

2

0

0
2

1

1

1

1

3

4

4

4

0
State Metrics Branch Metrics

0

1

2

3

0

1

2

3

00 (i 5 0) 11 (i 5 1) 11 (i 5 2) 10 (i 5 3)

11 (i 5 4) 00 (i 5 5) 10 (i 5 6) 01 (i 5 7)

00 (i 5 8) 11 (i 5 9) 10 (i 5 10) 11 (i 5 11)

Figure 3.25: Convolutional decoding by trellis processing with Hamming distance.

the trellis global most probable path are output as the decoded bit values. An example of decoding with ML
criterion is shown in Figure 3.25.

The two major issues with decoding of convolutional codes using ML criterion are computational complexity
and memory usage. The computational complexity of the ML decoder increases exponentially with constraint
length K (as the number of trellis states is equal to 2K −1). As we actually start decoding bits after processing
all the trellis stages, with large received frames and with large constraint lengths, we need a lot of data memory
to store the most probable trellis branches history and all states’ metrics information. As shown in Figure 3.25,
we needed to store all state metrics as we don’t know in advance which state metrics contribute toward the most
probable paths. We store the branch connections information for each stage to trace the global most probable
path. As an example, we use a rate 1/2 convolutional coder shown in Figure 3.19 for illustrating decoding of
convolutional codes using ML criterion. Assume we want to transmit 10 bits 011000101100 (the last 2 bits are
used for trellis termination and they are extra bits apart from our 10 bits of information for transmission). We
start the encoder at state zero (i.e., S1S0 = 00). The corresponding encoded codewords for each bit are obtained
(updated trellis states are not shown here) as 00, 11, 10, 10, 11, 00, 11, 01, 00, 10, 10, 11. As we used terminating

124 Chapter 3

bits, the trellis state at the end of this encoding becomes zero. With the digital communications system shown
in Figure 3.23, assume we obtain hard decisions at the receiver after the BPSK demodulator as 00, 11, 11, 10,
11, 00, 10, 01, 00, 11, 10, 11, with 3 bits in error (due to noise), when compared to transmitted bit sequence.

We decode the demodulator hard-decision outputs with the ML decoder by processing the trellis as shown in
Figure 3.25. Here, we use Hamming distance for computing the distance between the received codewords and
encoder trellis codewords. We know the encoder started from zero state and was forced to zero state at the end
of encoding by using two terminating 0 bits and these bits are not part of the information that is intended for
communication. At the receiver, we have a total of 12 codewords including two trellis termination codewords.
Therefore, to decode 10 transmitted bits, we have to process 12 codewords (or trellis stages) in total.

Convolutional Decoding by Trellis Processing
We use the transmitter encoder trellis shown in Figure 3.25 to decode convolutional codes with the ML decoder.
We follow this trellis flow and compute the path (or branch) metrics and state metrics using the received
codewords. The received codewords along with the codeword index are shown at the bottom of each trellis stage.
At stage i = 0, we received a 2-bit codeword of “00.” As the encoder started from a zero state, we have only two
possible paths at stage i = 0. We compute the Hamming distance between the received codeword and the trellis
paths codewords of the first stage. For convenience, we use the encoder stabilized trellis stage with output bits
for allowed trellis paths as shown in Figure 3.26.

We initialize the state metric to zero value at the start of the encoder trellis, as shown in Figure 3.25. For
now we ignore the meaning of branches representation with solid, dashed and dotted lines. At stage i = 1, the
computed Hamming distance between the received codeword and the trellis path connecting 0<>0 states (here
m<>n denotes a branch that connects previous stage state m to current stage state n) is 0 as both codewords
have the same bits (i.e., 00). Similarly, the Hamming distance between the received codeword and the trellis path
connecting 0<>1 states is 2 as the two codewords differ in both bit positions (since the received codeword is 00
and the trellis branch 0<>1 is 11 as shown in Figure 3.26). We add the branch metrics to the previous (left side
to current stage) state metrics and place the accumulated state metrics at the current (right side to current stage)
states. At stage i = 0, we have two trellis paths; we select the most probable path as the one that connects to the
state with minimum state metric (i.e., the path connecting 0<>0 as shown by a solid line). The accumulated
state metrics at stage i = 0 are 0 and 2. We move to processing the trellis stage i = 1. At stage i = 1, we have
four trellis branches diverging from states at stage i = 0 and merging to states at stage i = 1. We compute the
Hamming distances from those four branches to the received codeword (i.e., 11) at stage i = 1. The values of
four branch metrics are shown at corresponding branches. Then we add the branch metrics to the previous stage
state metrics and place them at the current stage states. Here also (at stage i = 1), we have only single branches
merging to current states and the most probable path for this stage is given by the trellis branch that merges to
the state with the minimum accumulated state metric (i.e., branch 0<>1 at stage i = 1).

At stage i = 2, the trellis stabilizes and all allowed branches diverge from previous stage states and merge at
current stage states. We obtain the branch metrics by computing the Hamming distance between the received
codeword (i.e., 11, the underlined bit is in error) and all trellis stage branch codewords. Then we add branch
metrics to previous state metrics. We have more than one branch merging to the same state from this stage
onwards. If we have more than one branch merging to the current state, then we choose the probable path as

Figure 3.26: Stabilized trellis stage
branches with corresponding output
bits.

0

1

2

3

0

1

2

3

00

00
11

11

01

01
10

10

Introduction to Data Error Correction 125

one with which we will have a minimum of accumulated state metric. For example, we consider two branches
merging to state “0” (i.e., 0<>0 and 2<>0). With the branch 0<>0, we have an accumulated metric of 4,
whereas with branch 2<>0, we have an accumulated metric of 3. Therefore, we choose the branch 2<>0 as a
probable path to state “0.”

In the same way, we compute the probable paths to all states. Now the most probable path for the current stage
is given by the branch that connects to the previous stage’s most probable path and converges to the current state
with minimum accumulated state metric. We continue in the same manner and compute the most probable paths
to all stages of the trellis. Now we understand the meaning of solid, dashed, and dotted lines in the trellis. The
dotted line branches are the least probable paths as their metrics after accumulation with previous state metrics
end up having relatively big values. The dashed lines represent the probable paths to each current state from
previous states and connect to the current state with a smaller accumulated state metric (when compared to the
least probable path accumulated state metric). The solid lines represent the most probable paths to a current state
from a previous state with minimum state metric (when compared to other state metrics).

Next, we discuss a few specific cases that arise in trellis processing. At stage i = 2, we have two state metrics
with the same accumulated metric values and those two paths diverge from the same previous state. In this case,
as we don’t know in advance which path is going to survive, we assume both paths as most probable paths.
Because of this, the two paths, 1<>2 and 1<>3, are represented by solid lines. Next, when two branches from
different previous states merge to a state with the same accumulated metric value, we choose randomly one path
as the probable path. For example, at stage i = 4, two paths, 1<>2 and 3<>2, have the same accumulated state
metric. We choose randomly one out of those two as a probable path and the other as the less probable path. In
this case, we have chosen path 1<>2 as a probable path and path 3<>2 as a less probable path.

As shown in Figure 3.25, the accumulated state metrics grow with errors and we may have more than one
most probable path. After processing all the trellis stages, we end up with one path that connects all stages’ most
probable paths and we consider it the global most probable path. Tracing back the global most probable path
and taking the corresponding branch input bits gives the decoded bit sequence. Since we forced the encoder to
zero state at the end of the bitstream with terminating 0 bits, the global most probable path starts and ends at
the zero state. We know the input bit values for each trellis path that updates the trellis states. Figure 3.27 shows
the trellis paths with corresponding input bits. By following the global most probable path, we can retrieve the
corresponding stage’s most probable path (which is part of global most probable path) bits.

These bits give an estimate of transmitted bits. From Figures 3.25 and 3.27, we retrieve the global most
probable path bits as illustrated in Table 3.1, and the retrieved bitstream is 011000101100, where the last 2 bits
are trellis termination bits and we ignore them. The remaining 10 bits, 0110001011, are the bits decoded by
ML decoder as the estimate of the transmitted information bits. Although we had 3-bit errors at the input of the
decoder, we corrected these errors with our convolutional decoder.

As we discussed, the computational cost to perform convolutional decoding depends on constraint length
(as the number of states of trellis increases exponentially with the constraint length) of an encoder. For example,
decoding the convolutional codes that are encoded using a convolutional coder with constraint length equal to
4 requires processing of an 8 state trellis as shown in Figure 3.28. The memory usage depends on the input data
frame length (as an ML decoder works on one frame at a time) and constraint length. We have to store all stages

Figure 3.27: Stabilized trellis stage
branches with corresponding input
bits.

0

1

2

3

0

1

2

3

0

1
0

1

0

1
0

1

126 Chapter 3

Table 3.1: Global most probable
path and corresponding input bits

Most Probable Decoded
Stage (i) Global Path Bits

0 0<>0 0
1 0<>1 1
2 1<>3 1
3 3<>2 0
4 2<>0 0
5 0<>0 0
6 0<>1 1
7 1<>2 0
8 2<>1 1
9 1<>3 1

10 3<>2 0
11 2<>0 0

Figure 3.28: (a) Rate 2/3
convolutional coder and
(b) Corresponding steady-state
trellis.

(a)

S0

S1 S2

b1

b0

c0

c1

c2

(b)

S2S1S0 S2S1S0 b1b0/c2c1c0b1b0/c2c1c0
000

001

010

011

00/000, 00/100, 00/010, 00/110

10/010, 10/110, 10/000, 10/100

01/100, 01/000, 01/110, 01/010

11/110, 11/010, 11/100 11/000

00/001, 00/101, 00/011, 00/111

10/011, 10/111, 10/001, 10/101

01/101, 01/001, 01/111, 01/011

11/111, 11/011, 11/101, 11/001

100

101

110

111

000

001

010

011

100

101

110

111

and all state metrics as well as all most probable paths connections m<>n to trace the global most probable
paths to decode the bits. In Section 3.9, we discuss optimal decoding of convolutional codes with the Viterbi
algorithm and also we address memory savings by implementing the decoder with the window method.

3.8 Trellis Coded Modulation

Trellis coded modulation (TCM) is a combined coding and modulation technique used for digital transmission
over band-limited channels. With TCM, we can achieve significant coding gains over conventional uncoded
multilevel modulation without trading bandwidth. In this section, we discuss the coded modulation system and
its performance gain over an uncoded system and performance gain over a system where channel coding and
modulation is separately performed. We discuss the Viterbi decoder, a decoding technique for TCM symbols, in
the next section.

Introduction to Data Error Correction 127

Figure 3.29: PSK modulation.
(a) 4-point constellation. (b) 8-point
constellation.

2

1 1

(a) (b)

AB

C

D

!ß

2!ßdmin�

2�!ß!ß2

2�!ß!ß2

M-PSK
Modulator

Transmitter
Back End

Transmitter Channel

1 2 3 4 5 6

bn Sm Rm Cnx(t) y(t)Band Limited
Channel h(t)

Receiver
Front End

M-PSK
Demodulator

Receiver

Figure 3.30: Uncoded baseband communications system with M-PSK modulation.

We consider bandwidth-constrained channels (e.g., twisted-pair copper telephone lines) to study the TCM
systems and to see the performance gain of TCM over other coded and uncoded systems. For such band-limited
channels, the digital communications system is designed to use bandwidth-efficient multilevel/multiphase mod-
ulation schemes, such as PAM, PSK or QAM. See Section 9.1.3 for more details on baseband modulation schemes
(e.g., PSK, QAM). Here, we consider PSK modulation schemes in our performance analysis of TCM systems. For
convenience, the 4-PSK and 8-PSK constellations from Section 9.1.3 are redrawn here as shown in Figure 3.29.

Uncoded System
We consider a simple baseband uncoded communications system with a PSK modulation scheme as shown in
Figure 3.30. The inputs to the M-PSK modulator are equiprobable binary digits bn and the outputs are PSK
symbols Sm chosen from an M-point PSK constellation array. We assume that the DAC (digital to analog
conversion) operation along with low-pass filtering (to filter out-of-band frequency content) is performed in
the transmitter back-end module. The output of the transmitter back-end is a continuous time and continuous
amplitudesignal x(t) that is suitable for transmission over channel h(t). The receiver front-end includes filters (to
combat channel distortions such as noise, and ISI), symbol synchronization circuitry (to get accurate sampling
time and phase), ADC (analog to digital conversion), and a symbol detector (to get multilevel PSK symbols),
among other things. The output Rm of the receiver front-end is the PSK symbol. These PSK symbols are fed
to M-PSK demodulator to get back the transmitted binary digits, cn (which may be different from bn due to
channel impairments). This communications system is an uncoded system since no channel coding is present in
the signal chain.

In Figure 3.30, the data rates before the modulator (represented with 1 in a circle) and after the modulator
(represented with 2 in a circle) need not be the same. The modulator input data are bits bn, and its output are
PSK symbols Sm. Depending on the constellation used, we map m (= logM

2) bits to one PSK symbol. If the
bit rate at the modulator input is P , then the symbol rate at the output of the modulator is Q = P/m. As we
discussed in the previous sections and also will discuss later, the channel coding at the transmitter side adds
redundancy to the input bitstream and that increases the bit rate P at the input of modulator. However, we can
keep the symbol rate the same at the output of modulator by increasing m using multilevel/phase modulation.
This important feature of multilevel/phase modulators is very useful in designing a communications system for
a band-limited channel. The disadvantage with this type of system is that the constant symbol rate increases the
number of bits per symbol when bit rate increases and therefore we have to increase the energy levels of the
symbols for transmission to reduce the channel noise effect on the detection of symbols at the demodulator.

This type of communications system design is suitable for wireline communication where we do not have
much bandwidth but we can use more energy to transmit data. We use this kind of system design with a small

128 Chapter 3

2 4 6 8 10 12 14
1028

1026

1024

1022

100

Eb /N0 (in dB)

B
E

R

4-PSK

8-PSK

Figure 3.31: Performance curves of uncoded 4-PSK and 8-PSK systems.

value of m for satellite communication too, where we have infinite bandwidth and limited power is available for
transmission. Typically, we use 256- or 512-point constellation symbols for wireline communications, whereas
we use symbols from 4- or 8-point constellations in the case of satellite communications. The BER (bit error
rate) performance curves for this uncoded communication system are shown in Figure 3.31. From the M-PSK
performance curves, we can clearly see that the required Eb/N0 (energy per bit) increases for a given modulator
output bandwidth as bit rate (or M , the number of constellation points) increases. At BER = 10−6, we need
to spend 3.5 dB more energy per bit with 8-PSK symbols when compared to 4-PSK symbols. As no coding is
involved in this system, the parameters SNR and Eb/N0 are related by the following formula (see Section 9.1.2
for more details).

Eb/N0 = (Es/N0)/m = SNR/m (3.39)

or

Eb/N0 (in dB) = SNR (in dB) −10∗ log10(m) (3.40)

Coded System
With channel coding methods, it is possible to trade the bandwidth of the communications system with the
transmission power. Here, we discuss the application of channel coding to improve data rates in bandwidth-
constrained channels. When coding is applied to such channels, a performance gain is desired without expanding
the signal bandwidth. As an example, we consider the system shown in Figure 3.30 using 4-PSK constellation
points for modulation. This uncoded 4-PSK modulation achieves 2 bits/sec/Hz (capacity per unit of the channel
bandwidth) at an error probability of, say, 10−6. For this error rate, the signal to noise ratio (SNR) per bit (i.e.,
Eb/N0) is 10.5 dB (from Figure 3.31). If we want to reduce the SNR per bit using channel coding without
expanding the bandwidth, then we have to use symbols from a bigger constellation to accommodate redundant
bits (resulted due to channel coding) in the given bandwidth.

Using rate 2/3 coder, we go from 4-PSK (2 bits per symbol) with a minimum distance of
√

2 between the

points as shown in Figure 3.29(a) to 8-PSK (3 bits per symbol) with a minimum distance of
√

2 −√
2 between

the points as shown in Figure 3.29(b) to keep the bandwidth constant. With appropriate mapping of the encoded
bits to the signal points, the rate 2/3 coder in conjunction with 8-phase PSK yields the same data throughput as
the uncoded 4-phase PSK. An increase in the number of signal points from 4 to 8 requires an additional G dB

Introduction to Data Error Correction 129

(3.5 dB in this particular case; see Figure 3.31) approximately in signal power (since the minimum distance
CD < AB as shown in Figure 3.29) to maintain the same error rate. Therefore, if coding is used to reduce the
SNR per bit, then the rate 2/3 coder must overcome this G dB penalty and yield further gain. If the coding and
modulation are performed separately, then the use of very powerful codes (e.g., convolutional codes with large
constraint length) is required to offset the loss and provide some significant coding gain.

Coded Modulation System
On the other hand, if we combine the encoding process with the modulation to increase the minimum Euclidean
distance between pairs of coded signals, then the loss from the expansion of the signal set is easily overcome
and a significant coding gain is achieved with relatively simple codes. The TCM is one such coding scheme
that generates modulated codewords. The performance of a TCM system with rate 2/3 convolutional coder of
constraint length 3 using an 8-PSK modulation system (that achieves 2 bits/sec/Hz) is shown in Figure 3.32. We
use the corresponding Viterbi decoder (see Section 3.9 for more details) to decode this system. From performance
curves we can clearly see the performance gain with a TCM system over an uncoded system. At BER of 10−6,
with TCM, we see a coding gain of 3 dB with respect to the uncoded 4-PSK system. In the next section, we discuss
TCM codeword generation. TCM applications include voiceband modems, DSL modems, cable modems, and
satellite communications, among others.

3.8.1 TCM Encoder

In this section, we discuss the generation of TCM encoded symbols. The TCM encoder consists of two operators,
a convolutional coder and a modulator, as shown in Figure 3.33. In TCM, we map the coded bits to modulated
signal points in a particular way without increasing the data transmission bandwidth.

Convolutional Coder
For convolutional coding, we use a simple rate 1/2 convolutional encoder as shown in Figure 3.34. The dashed
lines (in parallel to the solid lines in the trellis diagram) in Figure 3.34 correspond to the uncoded bit paths (or

Uncoded 8-PSK
Uncoded 4-PSK
TCM: R 5 2/3, S 5 4, 8-PSK

20 4 6 8 10 12 14 16

1028

1026

1024

1022

100

Eb /N0 (in dB)

B
E

R

Figure 3.32: TCM system performance.

Figure 3.33: Schematic block
diagram of a TCM system.

Convolutional
Coder

Mapper and
Modulator

bn Sm

130 Chapter 3

Figure 3.34: A rate 2/3 convolutional
coder and its trellis diagram.

0

1

67

b0

S0 S1

c0

c1

c2

b1

00

10

01

11

States (S0S1)

Figure 3.35: 8-PSK symbol
constellation and set partitioning.

d2

d1

A

B

C

d0

branches). The encoder consists of two delay units (or shift registers); hence, its constraint length is K = 3.
Although the encoder takes 1 input bit and outputs 2 bits, due to passing of one uncoded bit, the effective code
rate becomes 2/3. For every two inputs, we get three output bits (which we represent with eight levels, 0 to 7).
For example, when the encoder is at state (or node) zero (i.e., S0S1 = 00), if input bits b1b0 are 00, 01, 10 and
11 then we obtain corresponding output bits c2c1c0 as 000 (0), 001 (1), 110 (6) and 111 (7). As said earlier, the
uncoded bits produce parallel paths in the trellis. If we have m uncoded bits then we will have 2m parallel paths
in the trellis. In our case, we have 1 uncoded bit (i.e., m = 1) and we have 2 parallel paths diverging from and
converging to all states in the trellis. Next, we discuss the mapping of coded bits to modulated signal points.

Mapper and Modulator
The key to this integrated modulation and coding approach is to devise an effective method for mapping the coded
bits into signal points such that the minimum Euclidean distance is maximized. For this, we perform partition of
constellation points into subpartitions more than once and make sure that the distance between points increases
in the subpartitions with each partitioning. The degree to which the signal constellation set is partitioned depends
on the characteristics of the code. The constellation set partitioning is shown in Figure 3.35. In Figure 3.35, if d0

is the minimum distance between points at level A,d1 is the minimum distance between points at level B and
d2 is the minimum distance between points at level C , then d0 < d1 < d2. From Figure 3.34 and Figure 3.35, the
assignment of signal points for each coded output is made according to the following Ungerboeck set partitioning
rules (Ungerboeck, 1987).

1. Parallel transitions are assigned to signal points separated by the maximum Euclidean distance.
2. The transitions originating from a particular state and merging into any state are assigned to signal points

separated by at least the next-largest distance.
3. The signal points should occur with equal frequency.

To satisfy these rules, the coded bits are used to choose a subset of points and the uncoded bits are used to choose
the points within a subset. With a rate 2/3 coder as shown in Figure 3.34, we use 2 coded bits to choose one of

Introduction to Data Error Correction 131

Figure 3.36: General structure of a
TCM encoder.

z1

a2

an 11

a1

a3 … …

… …

an

an 12

an 1k

z2

zn 11

z3

zn

zn 12

zn 1k 1m

Select
Point
from

Subset

Select
Subset

Signal
point

n: number of uncoded bits
k : number of bits to coder
m: redundancy added
S: number of states
P: number of parallel paths
 (5 2n)
K : constraint length
 (= log2 (S) +1)

S -state,
k /(k 1m)

Rate TCM
Encoder

P
000

001

100

101

010

011

110

111

StatesOutput Values from Each State

(0, 1, …, P 21), (2P, 2P 11, …, 3P 21), (4P, 4P 11, …, 5P 21), (6P, 6P 11, …, 7P 21)

(5P, 5P 11, …, 6P 21), (7P, 7P 11, …, 8P 21), (P, P 11, …, 2P 21), (3P, 3P 11, …, 4P 21)

(2P, 2P 11, …, 3P 21), (0, 1, …, P 21), (6P, 6P 11, …, 7P 21), (4P, 4P 11, …, 5P 21)

(7P, 7P 11, …, 8P 21), (5P, 5P 11, …, 6P 21), (3P, 3P 11, …, 4P 21), (P, P 11, …, 2P 21)

(6P, 6P 11, …, 7P 21), (4P, 4P 11, …, 5P 21), (2P, 2P 11, …, 3P 21), (0, 1, …, P 21)

(3P, 3P 11, …, 4P 21), (P, P 11, …, 2P 21), (7P, 7P 11, …, 8P 21), (5P, 5P 11, …, 6P 21)

(4P, 4P 11, …, 5P 21), (6P, 6P 11, …, 7P 21), (0, 1, …, P 21), (2P, 2P 11, …, 3P 21)

(P, P 11, …, 2P 21), (3P, 3P 11, …, 4P 21), (5P, 5P 11, …, 6P 21), (7P, 7P 11, …, 8P 21)

Figure 3.37: Trellis diagram for general TCM rate 2/3 encoder with K = 4.

four subsets at level C in Figure 3.35, and the uncoded bit is used to choose one of two points from the selected
subset.

The general block diagram of a TCM encoder is shown in Figure 3.36. This general encoder consists of
S-state nonsystematic convolutional rate k/(k +m) encoder with constraint length K and outputs n + k +m bits
by taking n + k bits as input. Out of n + k input bits, first n bits are uncoded and the rest of k bits are coded to
output k +m coded bits. We map the output n +k +m bits of encoder to signal constellation points with the help
of the mapper. For particular realization of the encoder with k = 2,m = 1, S = 8 and K = 4, the steady-state
trellis diagram is shown in Figure 3.37. The “n” uncoded bits results in P = 2n parallel transitions in each branch
of trellis. The output values from each state of the trellis are also shown in Figure 3.37.

3.8.2 Coding Gains with TCM

To observe the coding gain (Cgain) with TCM, we consider the TCM encoder shown in Figure 3.34 and for a
comparison we consider an uncoded system shown in Figure 3.30 with which we transmit 2 bits per symbol
by using a 4-PSK modulation scheme. The symbol constellations, considered in this section, are scaled so that
the average symbol energy is unity. From the signal constellation of Figure 3.29(a), if the radius of the circle
is unity, then the coordinates of points A and B are given by A:(1/

√
2, 1/

√
2) and B:(−1/

√
2, 1/

√
2). The

minimum Euclidean distance of the constellation is duc
min (uncoded) = √

2. Now, consider the TCM scheme
shown in Figure 3.36 with k = m = n = 1 and S = 3. The output bits of the encoder are mapped to symbols in
different subsets of the constellation according to the Ungerboeck set partitioning rules. Using set partitioning as
shown in Figure 3.35, we assign a set of points (which have the largest minimum distance) at level C to the trellis
parallel paths (that diverge from a particular state at the current stage and converge to the same state at the next
stage, for example the paths of the trellis in Figure 3.34 with output values 0, 1 or 6, 7). We assign a set of points

132 Chapter 3

(which have the next largest minimum distance) at level B to the trellis paths that diverge from the same state
at the current stage and converge to different states at the next stage (e.g., the paths of the trellis in Figure 3.34
with output values 0, 6 or 0, 7, or 1, 6 or 1, 7). With this mapping procedure, we can satisfy Ungerboeck’s set
partitioning rules.

The asymptotic coding gain for this TCM is given by

Cgain = 10 log((dc
free)

2/(dun
min)

2)

where dc
free is the free Euclidean distance of the trellis, which is defined as the minimum distance between those

transition paths which diverge from a state at the current stage and converge to the same state at later stages. This
is illustrated in Figure 3.38 with two paths A and B. The two paths A and B diverge from the state zero at one
stage and converge to the same zero state again at some other stage. The Euclidean distance with path A is d2

(as we assigned parallel paths with points that are separated by maximum possible distance), whereas the squared
Euclidean distance with path B is d1

2 + d0
2 + d1

2 = d0
2 + 2d1

2 = d0
2 + d2

2. Hence, in this case the minimum
Euclidean distance separation between paths that diverge from any state and converge to the same state is d2.

For the TCM scheme considered, the value of dc
free is equal to 2. Therefore, the coding gain is obtained as

Cgain = 10 log((dc
free)

2/(dun
min)

2) = 10 log(4/2) = 3.01dB

With TCM, we can achieve coding gains of about 2 dB to 6 dB depending on the type of coder used (i.e., the
number of states, the amount of redundancy added and the dimensionality of constellations considered) used. An
example of 8-state and 16-state rate 2/3 convolutional encoders with corresponding steady-state trellis diagrams
are shown in Figure 3.39 and Figure 3.40, respectively.

Figure 3.38: Trellis-free Euclidean
distance illustration.

00

10

01

00

10

01

11 11 11 11

00

10

01

00

10

01

B

A

Figure 3.39: 8-state rate 2/3
convolutional coder. (b)

S2S1S0

0

1

2

3

4

5

6

7

b1b0 (c2c1c0)

0(0), 1(4), 2(2), 3(6)

0(1), 1(5), 2(3), 3(7)

0(4), 1(0), 2(6), 3(2)

0(5), 1(1), 2(7), 3(3)

0(2), 1(6), 2(0), 3(4)

0(3), 1(7), 2(1), 3(5)

0(6), 1(2), 2(4), 3(0)

0(7), 1(3), 2(5), 3(1)

(a)

S1

S0 S2b0

b1

c0

c1

c2

Introduction to Data Error Correction 133

Figure 3.40: 16-state rate 2/3
convolutional coder.

S3S2S1S0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

b1b0 (c2c1c0)

0(0), 1(4), 2(2), 3(6)

0(1), 1(5), 2(3), 3(7)

0(4), 1(0), 2(6), 3(2)

0(5), 1(1), 2(7), 3(3)

0(2), 1(6), 2(0), 3(4)

0(3), 1(7), 2(1), 3(5)

0(6), 1(2), 2(4), 3(0)

0(7), 1(3), 2(5), 3(1)

0(4), 1(0), 2(6), 3(2)

0(5), 1(1), 2(7), 3(3)

0(0), 1(4), 2(2), 3(6)

0(1), 1(5), 2(3), 3(7)

0(6), 1(2), 2(4), 3(0)

0(7), 1(3), 2(5), 3(1)

0(2), 1(6), 2(0), 3(4)

0(3), 1(7), 2(1), 3(5)

(a)

(b)

S1

S0 S2b0

b1

c0

c1

c2

S3

3.8.3 TCM for DMT systems

One application of TCM is an ADSL modem which is based on a DMT (Discrete Multi Tone) system. See Section
9.2.3 for more details on DMT transceiver. Consider a DMT system with N subchannels. Let the number of
information bits per symbol in the i-th subchannel be bi . TCM for DMT can be implemented in two ways—
coding separately in each subchannel and coding across the subchannels. In the former case, we perform coding
and decoding separately and need (N/2)+ 1 encoders and an equal number of decoders. This means a large
amount of hardware when N is large. Also, if the DMT symbol interval is T , then the decoding delay in this case
is approximately 5KT to 8KT where K = max(Ki) with Ki denoting the constraint length of the i-th subchannel
encoder.

Usually, TCM coders used in DMT applications works across the subchannels with a code rate of bmin/(bmin +
1), where bmin is the minimum number of bits carried by a subchannel in a DMT block. The remaining bi −bmin

bits, where bi is the number of bits carried by the i-th subchannel, are uncoded. The TCM across the subchannels
encoder for a DMT system is shown in Figure 3.41.

First, bmin bits of b0 input bits, corresponding to the 0th subchannel, are coded into bmin + 1 bits and the
remaining b0 −bmin bits are passed to the output uncoded. Next the encoder will work on input bits corresponding
to the first subchannel, while the input state of the encoder is the output state determined by the input bits of the
previous subchannel, that is, 0th subchannel. Thus, in general, the state of the encoder, attained after the input

134 Chapter 3

Figure 3.41: Across subchannels TCM
encoder for a DMT system.

(bmin)/(bmin11)

Rate Encoder
k 5bmin

n 5bi2bmin … …

… …

bits of the i-th subchannel is encoded, becomes the initial state of the encoder for the (i +1)th subchannel. The
decoding is performed accordingly. Note that the channel SNR is different from subchannel to subchannel because
of the nonflat response of the channel. This may also be due to different noise variances in the subchannels. In such
a situation, we have to take the noise variance into consideration at each stage of the trellis while implementing
the Viterbi algorithm.

3.9 Viterbi Algorithm

The Viterbi algorithm is an optimum decoding algorithm used for decoding of convolutional codes (see
Section 3.7 for more details on convolutional codes) and it has often been served as a standard technique in
digital communications systems for maximum likelihood sequence estimation (MLSE). The Viterbi algorithm
application area is not limited to convolutional decoding in communications where the algorithm was originally
developed. It is used for channel equalization (Viterbi equalizer) in modern communications systems. It also
covers diverse applications such as pattern recognition, data storage, and target tracking. In this section, we
discuss the Viterbi algorithm and decoding of TCM (see Section 3.8 for more details on TCM) symbols. The
simulation and implementation techniques for the Viterbi algorithm are discussed in Chapter 4.

The Viterbi algorithm is commonly expressed in terms of a trellis diagram (which is a time-indexed version
of a state diagram). In the convolutional coding, a Viterbi decoder at the receiver follows the trellis used by the
transmitter and attempts to estimate the transmitted sequence through the trellis whose distance is closest to
the received noisy sequence. In other words, the Viterbi algorithm finds the sequence at a minimum Euclidean
distance from the received signal using a transmitter trellis. The sequence computed by the Viterbi algorithm
is the global most likely sequence. To compute the global most likely sequence, the Viterbi algorithm first
recursively computes the survivor path entering each state. After computing the survivor paths for all states, we
select the survivor path with a minimum path metric as the most likely path. We compute in this manner the
global most likely path for all symbols of a received sequence. We take this global most likely path and trace back
to get the bits of survivor branches. This decoded bits sequence corresponds to an estimate of the transmitted
bits sequence.

3.9.1 Maximum Likelihood Sequence Estimation

Assume that an N-length symbol sequence X = {x0, x1, . . . , xN−1} is transmitted, where x j is a symbol from a
signal constellation that consists of a finite number of points S with unit average energy. The corresponding N-
length received sequence is Y = {y0, y1, . . . , yN−1}. With an AWGN (additive white Gaussian channel) channel,
y j = x j +u j , where u j is a noise sample and it is a zero mean white Gaussian random variable. Let Xi denote an
N-length symbol sequence corresponding to the i-th path of the trellis diagram as shown in Figure 3.42 (which
corresponds to the TCM encoder shown in Figure 3.34). Then the maximum likelihood (ML) sequence estimate
Xd (representing the global most likely sequence) of X is given by

Xd = arg max{p(Y/X i)} (3.41)

where p(Y/X i) denotes a conditional density function of Y given Xi .
Since y j = x j +u j ,Xd can be expressed as

Xd = arg max{p(u = Y −Xi)} (3.42)

Introduction to Data Error Correction 135

Figure 3.42: Trellis (of encoder shown
in Figure 3.34) with N stages.

00

10

01

11

j 5 0 j 5 N 22j 5 2 j 5 4j 5 3j 5 1 j 5N 21

Two parallel branches

where u is an N-length vector and is a multivariate Gaussian with mutually uncorrelated components which
have zero mean and variance σ 2 = E(|u j |2). The p(u) forms a Gaussian probability density function (pdf) as
follows:

Xd = arg max
i

⎧⎪⎨
⎪⎩
∏

j

1√
2πσ

exp

⎛
⎜⎝−

∣∣∣y j − x i
j

∣∣∣2
2σ 2

⎞
⎟⎠
⎫⎪⎬
⎪⎭ (3.43)

After observing the Gaussian pdf given in Equation (3.43), the expression for Xd can be simplified by keeping
only factors that affect the maximization criterion as

Xd = arg max
i

⎧⎨
⎩exp

⎛
⎝− 1

2σ 2

∑
j

∣∣y j − x i
j

∣∣2
⎞
⎠
⎫⎬
⎭ (3.44)

or

Xd = min
i

⎧⎨
⎩

N−1∑
j=0

∣∣y j − x i
j

∣∣2
⎫⎬
⎭ (3.45)

3.9.2 Viterbi Algorithm

Using the Viterbi algorithm, we obtain the global most likely sequence Xd as derived in Equation (3.45). In
Figure 3.42, each path consists of N stages. Let the branch metric (BM) at the j -th stage for the i-th path be
defined as BM j,i = |y j − x i

j |2 where y j and x i
j denote the received signal and the transmitted symbol on the

i-th path corresponding to the j -th stage of the trellis, respectively. Then the state metric for the i-th path can be
defined as SMi =∑ j |y j − x i

j |2. The estimate Xd of the transmitted symbol sequence is given by the path with
the minimum state metric. The following steps describe the computations present in obtaining the global most
likely sequence using the Viterbi algorithm.

1. At stage j = 0, set SM to zero for all states.
2. At a node in a stage of j >0, compute BM for all branches entering the node.
3. Add the BM to the present SM for the path ending at the source node of the branch to get a candidate SM

for the path ending at the destination node of it. After the candidate SM has been obtained for all branches
entering the node, compare them and select only one with the minimum value. Let this corresponding branch
survive and delete all other branches to that node from the trellis current stage. This process is shown in
Figure 3.43.

4. Return to step 2 for dealing with the next node. If all nodes in the present stage have been processed, go to
step 5.

5. If j < N , increment j and return to step 2, else go to step 6.
6. Take the path with minimum SM (as the global most likely path) and follow the survivor branches backward

through the trellis up to the beginning of the trellis. Now collect the bits corresponding to the survivor branch
at all stages of the trellis to form the estimate of the transmitted information bits.

Figure 3.43 corresponds to the encoder shown in the Figure 3.34. Each branch contains two parallel transitions
before processing. For the most likely path sequence, the parallel transitions are resolved by selecting the signal

136 Chapter 3

00

10

01

11

j�0 j�N�2j�2 j�N�3j�1 j�N�1

Survivor paths

Global most likely path

SM

BM

Figure 3.43: Processing of trellis stages in Viterbi decoding.

points closest to the received sequence. The performance of the Viterbi decoder depends on the free distance
dc

free of the trellis. dc
free = min (dc

parallel,dc
non–parallel), is the minimum distance between paths, which diverge from

a particular node at the present stage and converge to the same node later at some stage. Note that the processing
of the trellis results in the solution of the Equation (3.45).

3.10 Turbo Codes

Turbo codes have attracted the research community as well as the industry greatly since their introduction in
1993 because of their remarkable performance. The turbo codes operate near (with SNR gap of 0.7 dB or less) the
ultimate limits of capacity of a communication channel (i.e., Shannon channel-capacity limit). Turbo codes were
first proposed in Berrou et al. (1993). Turbo codes are constructed using concatenated constituent convolutional
coders. In the turbo coding scheme, we generate two or more component codes on different interleaved versions
of the same information sequence. On the decoder side, we use SOVA (soft-output Viterbi algorithm) or MAP
(maximum a posterior) algorithms to decode the decisions in an iterative manner. The decoding algorithm uses
the received data symbols, parity symbols (which correspond to parity bits computed from actual and interleaved
versions of data bits) and other decoder soft output information to produce more reliable decisions. In this section,
we discuss turbo codes generation and MAP decoding algorithm. We discuss the simulation and implementation
techniques for turbo codes in Section 4.5.

Turbo codes gave rebirth to concatenated coding and iterative decoding schemes. In turbo decoding with two
component codes, we pass soft decisions from the output of one decoder to the input of a second decoder and
iterate this process several times to produce more reliable decisions. The decision-making concept by iterative
decoding allows one to explore applications of turbo coding beyond coding theory. One such application is
channel equalization. The turbo equalizers overcome the limitations of zero-forcing and decision-feedback
equalizers.

The turbo decoding algorithms (e.g., MAP) use both forward and reverse state metrics information and also
support iterative decoding using an interleaved priori information generated from the other decoder output’s soft
information to produce more reliable decisions. With turbo codes, we approach Shannon channel capacity and
can achieve an SNR gap below 0.7 dB. Turbo codes perform very well at low SNRs, however these codes suffers
from error floor characteristics at high SNRs. Use of a good random interleaver in turbo coding improves the
turbo codes’ performance to a great extent. Sometimes an RS coder is used as the outer coder along with the
turbo coder to overcome the error floor of turbo codes at high SNRs.

Sample Turbo Code Applications

• Mobile radio
• DVB-RCS
• Deep space exploration
• W-CDMA, UMTS (3GPP), CDMA2000 (3GPP2)
• Satellite communication
• DSL

Introduction to Data Error Correction 137

D D D

Feedback

dn,1

Parity output bits

Systematic output bits
dn,0

Input bits
cn

z2z1 z3

TT

Figure 3.44: Recursive systematic convolutional encoder.

Figure 3.45: Trellis data flow for RSC
encoder (of Figure 3.44).

Input/Output

z1z2z3

Current State Next State

000 S0

001 S1

010 S2

011 S3

100 S4

101 S5

110 S6

111 S7

000 S0

001 S1

010 S2

011 S3

100 S4

101 S5

110 S6

111 S7

cn /dn,0dn,1

0/00
1/11

1/11
0/00

Dotted line: data 0
Solid line: data 1

3.10.1 Turbo RSC Encoder

Turbo codes are produced by parallel concatenation of constituent convolutional coders. The encoder can be
visualized either as an FIR (finite impulse response) system that produces nonsystematic convolutional (NSC)
codes or as an IIR (infinite impulse response) system that produces recursive systematic convolutional (RSC)
codes. At any given SNR (signal to noise ratio), for high code rates, RSC codes give better error performance
when compared to NSC codes. In this section, we discuss the RSC encoder.

In the RSC encoder shown in Figure 3.44, we continually feed back the intermediate outputs to the encoder’s
input. The corresponding trellis is shown in Figure 3.45. At any time, we input 1 bit (cn = 0 or 1) and output
2 bits (dn,0dn,1 = 00, 01, 10 or 11). The code rate (the ratio of the number of input bits to the number of output
bits) for this encoder is 1/2. With each input bit, the state of the encoder is updated and the allowed input state
(current state) and output state (next state) combinations by the RSC encoder shown in Figure 3.44 are given by
the trellis as shown in Figure 3.45. For example, if the encoder is at state “001” and if we input a 0 bit to the
RSC encoder, then the output bit (parity bit) and output state of the RSC encoder are “0” and “100,” respectively.
Due to feedback, the encoder shown in Figure 3.44 produces an infinite bit sequence and we enable a dotted line
(TT) at the end of input bit sequence cn to terminate the trellis by forcing the encoder state to zero.

In turbo coding, we concatenate two such RSC encoders in parallel with an interleaved bit sequence as input
to the second encoder as shown in Figure 3.46. From the second encoder, we take only parity information bits
(dn,2). Therefore, the effective code rate is 1/3 for the turbo encoder shown in Figure 3.46. We transmit the
triplet (dn,0dn,1dn,2) for each input cn after multiplexing the output bits of two RSC encoders. The code rate of
the encoder may be increased by puncturing the 2-parity bitstreams. For example, 1 parity bit produced from 2
parity bits by puncturing increases the code rate from 1/3 to 1/2. (See Section 4.5 for efficient implementation
techniques of the turbo encoder.)

3.10.2 Turbo Decoder

The triplet (dn,0dn,1dn,2) obtained from the turbo encoder is passed through a mapper (i.e., a baseband modulator)
before transmitting through the channel. With BPSK modulation, we map “0” to “+1” and “1” to “−1.” Here, we

138 Chapter 3

Figure 3.46: Turbo encoder.

dn,0

dn,1

Input bits
cn

I

RSC
Encoder 1

dn,2
RSC

Encoder 2

BPSK
“0” 2. 11
“1” 2. 21

BPSK
“0” 2. 11
“1” 2. 21

BPSK
“0” 2. 11
“1” 2. 21

MAPPER

MAPPER

MAPPER

u0(n)

u1(n)

u2(n)

dn,0, dn11,0, dn12,0,…

dn,1, dn 11,1, dn 12,1,…

dn,2, dn 11,2, dn 12,2,…

xn,0, xn 11,0, xn 12,0,…

xn,1, xn 11,1, xn 12,1,…

xn,2, xn 11,2, xn 12,2,…

yn,0, yn 11,0, yn 12,0,…

yn,1, yn 11,1, yn 12,1,…

yn,2, yn 11,2, yn 12,2,…

AWGN
Channel

Figure 3.47: Modulator and channel model for transmission.

use the AWGN channel model to mitigate the impairments in a real communication channel because the AWGN
model approximates the effect of accumulation of noise components from many sources. Figure 3.47 shows the
BPSK modulator along with the AWGN channel. The noise sequences ui (n) are from i.i.d. (independent and
identically distributed) random process with zero mean and variance σ 2.

At the receiver side, we receive a noisy sequence . . . , yn−1,0, yn−1,1, yn−1,2, yn,0, yn,1, yn,2, yn+1,0, yn+1,1,

yn+1,2, . . . and pass the received noisy symbols to the turbo decoder to get reliable transmitted data symbols as
shown in Figure 3.48. Here, we assume that proper synchronization of data symbols (i.e., the boundaries of triplets
in the received sequencecorresponding to transmitted triplets) are identified properly.After data symbols synchro-
nization, we identify received triplets as . . . (yn−1,0, yn−1,1, yn−1,2), (yn,0, yn,1, yn,2), (yn+1,0, yn+1,1, yn+1,2)
Then we pass intrinsic information (systematic bits [yi,0] and first encoder parity bits [yi,1] of the received
sequence) to the first decoder along with extrinsic information, Ext.2 (soft information) from the second decoder.
For the first iteration, we use zeros for Ext.2 by assuming equiprobability for intrinsic information symbols. After
completing decoding with the first decoder, we start a second decoder with intrinsic information (interleaved
systematic bits, I[yi,0] and second encoder parity bits, yi,2) and extrinsic information, Ext.1 (soft information)
from the first decoder as input. This process is repeated many times until we get reliable decisions from the
second decoder output. At the end of the iterative decoding, we deinterleave the output of the second decoder
(LLRs) to get a transmitted symbol sequence. Then we obtain hard bits by using sign information of output
symbols. At the heart of turbo decoding we use a MAP decoder to get the likelihood ratio of received symbols.
In the next section we discuss the turbo decoding using the MAP algorithm.

3.10.3 MAP Decoding

In turbo decoding, we use the maximum a posteriori (MAP) algorithm to determine the most likely information
bit that has been transmitted. In the MAP algorithm, we first obtain a posteriori probabilities (APPs) for each

Introduction to Data Error Correction 139

MAP
Decoder 1

MAP
Decoder 2

I 21

I

I I 21

yn,1, yn 11,1, yn 12,1,…

yn,0, yn 11,0, yn 12,0,…

yn,2, yn 11,2, yn 12,2,…

xn,0, xn 11,0, xn 12,0,…

Ext.1

Ext.2

LLRs

I : Interleaver
I 21: Deinterleaver

ˆ ˆ ˆ

Figure 3.48: Turbo decoder.

transmitted data bit and then to decode a data bit, we assign to the data bit a decision value that corresponds
to the maximum a posteriori probability. The MAP algorithm using APPs minimizes the bit error probability
(BER) by calculating the likelihood ratio (LR) for every transmitted bit dn,0(= cn) as follows:

δn = LR(cn) = P(cn = 1|Y N
1)

P(cn = 0|Y N
1)

(3.46)

where Y N
1 is the received corrupted data symbol sequence from time n = 1 through some time N . If δn > 1 then

the decoded bit cn = 1 else if δn < 1 then the decoded bit cn = 0.
For the RSC (recursive systematic coder) codes with the AWGN channel model, the APP of a transmitted

coded bit cn is equal to the sum of all encoder states joint probabilities.

P(cn = i|Y N
1) =

∑
m

λi,m
n , i = 0,1 (3.47)

where λi,m
n = P(cn = i, Sn = m|Y N

1) and Sn is the encoder state at the time n. Therefore,

δn = LR(cn) =
∑

mλ1,m
n∑

mλ
0,m
n

(3.48)

For 1 < n < N , the sequence Y N
1 can be represented as Y N

1 = {Y n−1
1 ,Yn,Y N

n+1} and therefore

λi,m
n = P(cn = i, Sn = m|{Y n

1 ,Yn,Y N
n+1}) (3.49)

Using Bayes’ theorem, the Equation (3.49) can be simplified and can be factored into three metrics as follows:

λi,m
n = αm

n γ i,m
n β

f (i,m)
n+1

P(Y N
1)

(3.50)

where

αm
n

∼= P(Y n−1
1 |Sn = m), a forward state metric at time n and state m

γ i,m
n

∼= P(cn = i, Sn = m,Yn), a branch metric at time n and state m

β
f (i,m)

n+1 = P(Y N
n+1|Sn+1 = f (i,m), a reverse state metric at time n +1 and state f (i,m), is the next state for a

given input bit i and state m.

Then the MAP algorithm is translated to

δn = LR(cn) =
∑

m αm
n γ 1,m

n β
f (1,m)

n+1∑
m αm

n γ
0,m
n β

f (0,m)
n+1

(3.51)

140 Chapter 3

We take the natural logarithm on both sides for the preceding equations to avoid the multiplications present
in computing likelihood ratios. The resultant Log-MAP algorithm is given by

δ̄n = LLR(cn) = ln

[∑
mαm

n γ 1,m
n β

f (1,m)
n+1∑

mαm
n γ

0,m
n β

f (0,m)
n+1

]

= ln

[∑
m

αm
n γ 1,m

n β
f (1,m)

n+1

]
− ln

[∑
m

αm
n γ 0,m

n β
f (0,m)

n+1

] (3.52)

If ln(ab) = ln(a)+ ln(b) = ā + b̄, then ab = eā+b̄. Using this transformation,

δ̄n = ln

(∑
m

e

(
ᾱm

n +γ̄ 1,m
n +β̄

f (1,m)

n+1

))
− ln

(∑
m

e

(
ᾱm

n +γ̄ 0,m
n +β̄

f (0,m)

n+1

))
(3.53)

where ᾱm
n , β̄

f (1,m)

n+1 , γ̄ 1,m
n and δ̄n are logarithms of αm

n ,β
f (1,m)

n+1 , γ 1,m
n and δn, respectively.

Forward Metric Computation
The forward state metrics ᾱm

n are recursively computed (or updated by accumulation) with the trellis represen-
tation of encoder states (at each time instance n) from time n = 0 assuming initial values for ᾱm

0 as ᾱ0
0 = 0

and ᾱk
0 = −∞, where 1 ≤ k ≤ 2M − 1 and M is the number of memory units present in one RSC encoder. The

forward state metrics ᾱm
n at time n are computed from forward state metrics ᾱ

b(j,m)
n−1 at time n −1 according to

eᾱm
n = eᾱ

b(0,m)
n−1 +γ̄

0,b(0,m)
n−1 + eᾱ

b(1,m)
n−1 +γ̄

1,b(1,m)
n−1 (3.54)

where b(j,m) corresponds to the previous state (at time n −1) connecting to the present state m (at time n) for
j = 0 and 1.

Reverse Metric Computation
The reverse state metrics β̄m

n are recursively computed (or updated by accumulation) from n = N +1 assuming
initial values for β̄m

N+1 as β̄0
N+1 = 0 and β̄k

N+1 = −∞, where 1 ≤ k ≤ 2M − 1. The reverse state metrics β̄m
n at

time n are computed from reverse state metrics β̄
f (j,m)

n+1 at time n +1 using the encoder state trellis as

eβ̄m
n = eβ̄

f (0,m)
n+1 +γ̄ 0,m

n + eβ̄
f (1,m)

n+1 +γ̄ 1,m
n (3.55)

Branch Metric Computation
The branch metric γ̄ i,m

n is computed from its definition as follows:

γ i,m
n = P(cn = i, Sn = m,Yn)

= P(Yn |cn = i, Sn = m) P(Sn = m|cn = i) P(cn = i)

= P(Yn |cn = i, Sn = m) Pa(i), where Pa(i) = P(Sn = m|cn = i) P(cn = i) = 1

2M
P(cn = i)

We provide intrinsic information (both systematic symbols and parity symbols) to the first decoder as
{yn,0, yn,1} and for the second decoder as {I [yn,0], yn,2}. We derive the branch metric for first decoder and
the same approach can be used to obtain the branch metric for the second decoder. For the first decoder,
Yn = {yn,0, yn,1}. Assuming an AWGN channel with noise of zero mean and variance σ 2 and replacing the joint
probability with the pdf (probability density function), the metric γ i,m

n is computed as

γ i,m
n = Pa(i)e− (yn,0−xi

n,0)
2+(yn,1−xi

n,1)
2

2σ 2 (3.56)

Although the right-hand side of Equation (3.56) appears to be independent of state m, actually it is not true—the
parity symbols x i

n,1 are state dependent.

Introduction to Data Error Correction 141

Extrinsic Information Computation
From log-MAP Equation (3.52),

δ̄n = LLR(cn) = ln

[∑
mαm

n γ 1,m
n β

f (1,m)
n+1∑

mαm
n γ

0,m
n β

f (0,m)
n+1

]

= ln

⎡
⎢⎣∑mαm

n Pa(1)e− (yn,0−x1
n,0)

2+(yn,1−x1
n,1)

2

2σ 2 β
f (1,m)

n+1∑
mαm

n Pa(0)e− (yn,0−x0
n,0)

2+(yn,1−x0
n,1)

2

2σ 2 β
f (0,m)

n+1

⎤
⎥⎦

= ln

⎡
⎢⎣ Pa(1)

Pa(0)

e− (yn,0−x1
n,0)

2

2σ 2

e− (yn,0−x0
n,0)

2

2σ 2

∑
mαm

n e− (yn,1−x1
n,1)

2

2σ 2 β
f (1,m)

n+1∑
m αm

n e− (yn,1−x0
n,1)

2

2σ 2 β
f (0,m)

n+1

⎤
⎥⎦

= ln

[
Pa(1)

Pa(0)

]
+ ln

[
e

4yn,0
2σ2

]
+ ln

⎡
⎢⎣∑mαm

n e− (yn,1−x1
n,1)

2

2σ 2 β
f (1,m)

n+1∑
mαm

n e− (yn,1−x0
n,1)

2

2σ 2 β
f (0,m)

n+1

⎤
⎥⎦

LLR(cn) = L1e +2
yn,0

σ 2
+ L2e

where L1e = Pa(1)
Pa(0)

is the input a priori probability ratio, L2e is the output extrinsic information (or a priori
information for the second decoder to minimize the probability of decoding error within an iterative decoding
framework). This extrinsic information is computed from the likelihood ratio as

L2e = LLR(cn)− L1e −2
yn,0

σ 2
(3.57)

See Section 4.5 for simulation and implementation techniques of turbo codes.

3.10.4 Interleaver

In general, the purpose of the interleaver is to spread burst errors (which occur due to lightning or switching
interference) across the entire received data sequence. First, we understand the importance of the interleaver in
the case of block codes’ (e.g., RS codes) performance. RS codes, discussed in Section 3.6, can correct up to T
errors in a block of N data elements. If we assume that the received k-th block has zero errors and (k +1)th block
has L(>T) errors, then the RS decoder does nothing in the k-th block and cannot correct errors of (k + 1)th
block as it has more than T errors. In Figure 3.49, we considered two RS codewords for N = 15, K = 7 and
T = 4 to illustrate the purpose of the interleaver. We can see in Figure 3.49 how we overcome this problem by
interleaving the codewords at the transmitter and by spreading (or by deinterleaving) the errors at the receiver.
In both X (without interleaver) and Y (with interleaver) schemes, we assume that the errors have occurred at
the same positions in a data frame after the transmission. The interleaver shown in Figure 3.49 is a simple
two-element-depth matrix interleaver. In practice, the data is handled in terms of data frames with hundreds of
elements. We have to interleave total data frame elements at one time and that is why the matrix dimension is
usually very large. In a simple interleaver, we fill the matrix of size P × Q in row-wise and read in column-wise.
In the case of the deinterleaver, we fill the matrix column-wise and read the elements row-wise as shown in
Figure 3.50.

If we do not have sufficient elements to fill the matrix of P × Q, we fill the rest of the matrix with zeros as
shown in Figure 3.50. In general, after filling the matrix row-wise and before reading the matrix column-wise, we
randomize the matrix row and column elements to get random data elements. The concept of interleaving reflects

142 Chapter 3

A B A C D A E D F B B C F E A B C C E A F D A A A C B B B E Channel

A B A C D A E D F B B C F E A B D C E A E D A C A C B B E F

Scheme “X” without interleaver

No correction needed RS can’t correct errors as 5 . T

A B A C D A E D F B B C F E A B C C E A F D A A A C B B B E

Channel

Interleaver

A B B C A C C E D A A F E D D A E A B A A C C A F B E B F D

Deinterleaver A B A C D A E D E B A C F E F B C C E A F D A A A C A B B D

RS can correct 3 (, T) errors RS can correct 2 (, T) errors

Interleaver

Deinterleaver

Scheme “Y” with interleaver

Figure 3.49: Interleaver purpose illustration.

…

…

…
…

… …

a0

a0

aQ

a2Q

a2a1

a1

aQ11

0 0

a2

aQ12

aQ21

a2Q21

a3 … a(P 21)Q

a0 a1a2QaQ a3Q … …a(P 21)Q

a2a1 a3 … a(P 21)Q

a(P21)Q

Interleaver

…

…

…
…

… …

a0

a0

aQ

a2Q

a1

aQ11

aQ11

0 0

a2

aQ12

aQ21

a2Q21

a(P 21)Q

Deinterleaver

Figure 3.50: Interleaver and de-interleaver.

the Shannon view of random and very long complex codes which can approach channel capacity. Shannon (1948)
showed that as the length of code approaches infinity, the random codes achieve channel capacity. Although we
work (i.e., encoding or decoding) on a small block of data elements at a time within a data frame, because of
interleaving, the dimension of codes increases to the size of the data frame. By permuting the elements in rows
and columns of the matrix, we obtain random codes. The interleaver requires a large amount of data memory
and introduces delay in the communications system.

In Figure 3.49, we see the effect of the interleaver on the block codes’ (e.g., RS codes) performance. We see how
the interleaver improves the performance of convolutional codes (e.g., turbo codes). With simple convolutional
decoding (e.g., using trellis codes with Viterbi decoding), we know that the decoding converges after 6K stages
(where K is a constraint length of coder). If a burst of errors (of order of 6K length) occurs in a particular coded
data block, then we never converge in that particular region at the time of decoding of the coded sequence. With
turbo codes using an iterative MAP decoder, by performing interleaving and deinterleaving of data, the decoding
process converges after a few iterations (as we spread burst errors across the entire data frame). We output
more reliable decisions with increased number of iterations. In practice, we iterate between 6 to 18 times. See
Section 4.5, for simulation of the turbo RSC encoder and the MAP decoder.

Introduction to Data Error Correction 143

3.11 LDPC Codes

Low-density parity check (LDPC) codes, introduced by Gallager (1963), are linear block codes defined by
sparse parity check matrices. These efficient error control codes have attracted a lot of attention due to (1) their
remarkable bit error rate (BER) versus signal-to-noise ratio (SNR) performance, and (2) availability of elegant
decoding schemes. LDPC codes with larger frame lengths can perform within 0.0045 dB of the Shannon limit.
Like turbo codes, LDPC codes are also decoded iteratively. The following table summarizes coding differences
between turbo codes and LDPC codes.

Turbo Codes LDPC Codes

Generated with convolutional codes Generated with block codes
Use trellis representation for decoding Use graphical representation for decoding

Use MAP algorithm for decoding Use sum-product algorithm for decoding

On average require 8 iterations On average require 30 iterations

Decoding complexity per iteration is high Decoding complexity per iteration is low

3.11.1 Graphical Representation of Parity Check Matrix

As we discussed in Section 3.3, linear block codes are defined by parity-check matrix H . An M × N parity-check
matrix H defines a linear block code of length N , where each codeword C = [c0c1c2 . . .cN−1] satisfies M parity
check equations. The parity-check matrix can also be represented using a Tanner graph (which is a bipartite
graph with two types of nodes). One set of nodes called parity (or check) nodes represents the parity check
constraints and the other set of nodes called bit (or variable) nodes represents the codeword bits as shown in
Figure 3.51. The edge connections between bit nodes and parity nodes are defined based on H matrix elements,
h ji ∈{0,1}. If h ji = 1, then a bit node bi (corresponding to column i in H) is connected to the parity node p j

(corresponding to row j in H). Thus, each edge in the Tanner graph represents an entry of H that is equal to 1.
With the bipartite graph, the nodes of the same type cannot be connected (i.e., a bit node cannot be connected to
another bit node). All bit nodes connected to a particular parity node must sum (modulo-2) to zero.

A cycle of length L in a Tanner graph is a path of L distant edges, which closes on itself. One such cycle
of length L = 4 is shown with dark edges in Figure 3.51. The shortest possible cycle in a Tanner graph has
length 4. The presence of short cycles in a Tanner graph limits the decoding performance of graph codes such as
the LDPC code. We avoid the presence of short cycles (especially of length L = 4) in designing of parity check
matrices for Tanner graph codes.

We consider a parity check matrix H4×7 as given in Equation (3.58) to work with an example graph code.
The corresponding Tanner graph is shown in Figure 3.52. The number of parity nodes in a Tanner graph is equal
to the number of rows of a parity check matrix and the number of bit nodes is equal to the number of columns
of parity check matrix.

H4×7 =

⎡
⎢⎢⎣

1 0 1 0 0 1 1
0 0 1 1 1 0 0
1 1 0 0 0 1 0
0 1 0 1 1 0 1

⎤
⎥⎥⎦ (3.58)

p0

b0 b1 b2

c0

p1 p2 pM 22

cN 21cN 22c2c1

pM 21

bN 22 bN 21

Bit nodes

0 0 0 0 0

Codeword bit

Parity constraint

Parity nodes

Figure 3.51: Graphical representation of parity-check matrix H.

144 Chapter 3

Figure 3.52: Tanner graph of Equation
(3.58). b0

p0 p1 p2 p3

b1 b2 b3 b4 b5 b6

Bit nodes

Parity nodes

Figure 3.53: Graphical representation
of codeword [1010111] with H4×7.

0 0 0 0

1 0 1 1 1 10

c0 c1 c2 c3 c4 c5 c6 Bit nodes

Parity nodes

Figure 3.54: Parity checks for received
codeword [1110111].

0 0 1 1

1 1 1 1 1 10

d0 d1 d2 d3 d4 d5 d6 Bit nodes

Parity nodes

Decoding Hard-Decision Channel Output: Bit-Flip Algorithm
Before discussing the practically used graph codes, we work with a simple hard-decision decoding example to
understand the graph codes a bit more. With the parity check matrix H given in Equation (3.58), the encoded
codeword C for the input message vector M = [101] is computed as C = [c0c1c2 . . . c6] = [1010111]. Usually, to
get an encoded codeword, we multiply the message vector M with a generator matrix G, which is obtained from
the parity check matrix H . We can verify that the parity check constraint of H is satisfied (i.e., the modulo-2 sum of
all bit nodes connected to any particular parity node is zero) for the codeword [1010111] as shown in Figure 3.53.

Assume that the received data (hard-decision channel output) after transmitting through a noise channel is
D = [d0d1d2 . . .d6] = [1110111]. There is a 1-bit error (highlighted with an underscore) in the received data.
With this, we will have some parity nodes that do not satisfy the parity constraint as shown in Figure 3.54. We
use the bit-flip algorithm to correct the error bit in the received codeword by passing the message bits between
bit nodes and parity nodes.

With the bit-flip algorithm, we flip the bit values passing from a parity node (pi) to bit nodes (bi) whenever
the parity constraint (i.e., modulo-2 sum of inputs is equal to zero) at that parity node is not satisfied. To better
understand the bit-flip algorithm for the decoding of a codeword using Figure 3.54, we tabulate the values of
message bits passed from bit nodes (bi) to parity nodes (pi) and parity nodes (pi) to bit nodes (bi) as in Tables 3.2
and 3.3. In Table 3.2, we use the received hard-decision bits to pass from bit nodes to parity nodes. The computed
parity for the received bits is given in the right column of Table 3.2. If all received bits are error free, then we get
the computed parity as zero. In our case, we get some non-zero parity bits as the received bits contain one error.
In the last two rows, the computed parity bits are not zero and it means that the error bit is present in those two
rows. As we do not know in reality which bit is in error, we tentatively pass the flipped bits from the parity nodes,
at which the parity constraint is not satisfied, to the bits nodes by assuming the message bit from the current
bit node is in error and the bits from the other bit nodes are error free. In Table 3.3, the bits that are flipped at

Introduction to Data Error Correction 145

Table 3.2: Message bits passing from bit nodes
to parity nodes

Message passing from bit nodes to Parity
parity nodes constraint

b0 → p0
1

b2 → p0
1

b5 → p0
1

b6 → p0
1

0

b2 → p1
1

b3 → p1
0

b4 → p1
1

0

b0 → p2
1

b1 → p2
1

b5 → p2
1

1

b1 → p3
1

b3 → p3
0

b4 → p3
1

b6 → p3
1

1

Table 3.3: Message bits passing from parity nodes to bit nodes

Message passing from parity nodes to bit nodes Received bit Decoded bit

p0 → b0 p2 → b0

1 0 1 1
p2 → b1 p3 → b1

0 0 1 0

→

Corrected
p0 → b2 p1 → b2

1 1 1 1
p1 → b3 p3 → b3

0 1 0 0
p1 → b4 p3 → b4

1 0 1 1
p0 → b5 p2 → b5

1 0 1 1
p0 → b6 p3 → b6

1 0 1 1

the time of passing from parity nodes to bit nodes are highlighted with bold letters. Then we decode the bits
at bit nodes with the majority vote criterion using bits from parity nodes and the received bit for that bit node.
The decoded bits are shown in the right-most column of Table 3.3 and the error bit is corrected with the bit-flip
algorithm.

With hard decisions as the input to the graph code as shown in Figure 3.54, it is difficult to correct more than
one error per codeword with the given parity check matrix H4×7. In the later sections, we introduce a sum-product
algorithm (which can take soft decisions as input) to decode graph codes and with that we correct more than a
1-bit error per codeword using the same H4×7 parity check matrix.

3.11.2 LDPC Encoder

Since the LDPC codes are block codes defined by parity check matrix HM×N like any other block codes, we can
compute the LDPC encoder codeword vector for the given message vector by simply multiplying the message
vector with the generator matrix G, which is derived from the parity check matrix H . However, to achieve
bit-error rate performance with LDPC codes close to the channel capacity, we require a codeword of a size in
the order of thousands of bits. The matrix multiplication for that big codeword size demands huge memory and
computational requirements. Also, generating the parity check matrices of that order is not a simple task. Due
to this reason and due to the lack of linear time decoding algorithms in earlier times, the LDPC codes were
forgotten for decades.

With the recent developments in semiconductor technology, deterministic ways of computing the large parity
check matrices, and the introduction of polynomial time decoding algorithms for LDPC codes (e.g., the sum-
product algorithm), LDPC codes were rediscovered in the late 1990s. Since then LDPC codes have gained
momentum, and these codes were also recently embedded in a few standards such as WiMax, 802.16e, and
DVB. In the WiMax standard, the parity check matrices are compactly represented with a few elements for
storing. Since the parity check matrix H of LDPC code is a sparse (or low in density) binary matrix, it can be
represented with small size zero matrices and permutations of an identity matrix as in 802.16e. The WiMax

146 Chapter 3

standard describes the way to uncompress the compact base parity check matrix to get actual parity matrix and
also describes how to encode the lengthy codewords using small message blocks without computing the generator
matrix G from the parity check matrix H . Refer to the 802.16e standard for more details on implementing the
LDPC encoder for practical applications.

The number of 1s participating in any parity bit generation of the LDPC code is very small due to the low
density of ones present in the parity check matrix H . Let wr be the weight of j -th row, then the number of 1s
participating in j -th parity bit generation is wr (here the weight of a binary vector is defined as the number of 1s
present in it). Similarly, the i-th column weight wc gives the number of parity constraints which depends on the
i-th message bit. The LDPC codes are of two types: regular and irregular. If the row weights wr and the column
weights wc are uniform (or are almost uniform), then we call such code regular LDPC code; otherwise, we call
the irregular LDPC. Usually, irregular LDPC codes perform better than regular LDPC codes. In this chapter, we
concentrate on the regular LDPC codes. To generate a regular LDPC code, a small (≥3) column weight wc is
selected first and values for N (the block length) and M (the redundancy length) are selected. Then an M × N
matrix H is generated, which has weight wc in each column and weight wr in each row. To get a uniform row
of weight wr , we have to satisfy wc N = wr M . One more important characteristic of regular LDPC code is that
the minimum distance of the code increases linearly with N provided that wc > 3.

3.11.3 LDPC Decoder

In this section, we discuss the sum-product algorithm, a practically usable soft-decision decoding algorithm
for LDPC codes. Like the bit-flip algorithm discussed in Section 3.11.1, the sum-product algorithm uses the
concept of message passing or belief propagation between bit nodes and parity nodes in an iterative manner. The
advantage of the sum-product algorithm is that it can accept soft values and thus we do not pass the message hard-
decision bits between nodes in the sum-product algorithm, instead we pass the message reliability information
between bit nodes and parity nodes. As we iterate the sum-product algorithm more and more using the Tanner
graph, the reliability of soft information (called a posteriori probability) will improve with the iteration count.

Suppose that an encoded LDPC codeword C = [c0c1c2 . . . cN−1] is modulated using the binary phase shift
keying (BPSK) modulation and let X = [x0x1x2 . . . xN−1] be the resultant message symbol vector after BPSK
modulation. With BPSK, we map codeword bit “0” to symbol “1” and codeword bit “1” to symbol “−1.”
Then this BPSK symbol vector X is transmitted through an AWGN channel, and Y = [y0 y1 y2 . . . yN−1] is the
corresponding received symbols. Assume that the codewords (Yj) and symbols (yi) are properly synchronized
before passing to the LDPC decoder.

3.11.4 Sum-Product Algorithm

At the receiver, we use the sum-product algorithm to decode the LDPC codeword. The ultimate goal of the
sum-product algorithm is to find the LLR of the encoded bit ci , which is defined as

LLRi = Log

[
P(ci = 1)/Y N−1

0

P(ci = 0)/Y N−1
0

]
, Y N−1

0 = [y0, y1, y2, . . . yN−1] (3.59)

Then we make the hard decision to get the decoded bit ĉi as follows:

ĉi =
{

1 if LLRi < 0
0 otherwise

(3.60)

Here, we do not provide complete derivations for the sum-product algorithm; instead we will use the final
metrics computation equations to work with the sum-product algorithm. For full derivations of LDPC decoding
equations and sum-product algorithms, Gallager (1963) and MacKay (1999) are recommended. We use the
following notations for the sum-product algorithm:

Qij = Extrinsic information to be passed from bit node i to parity node j
R j i = Extrinsic information to be passed from parity node j to bit node i
Ui = { j such that h ji = 1}, the set of row locations of the 1s in the i-th column

Introduction to Data Error Correction 147

Figure 3.55: (a) Connections to third
parity node from 4-bit nodes.
(b) Connections to 5th-bit node from
two parity nodes.

b1

Q13 Q33 Q43 Q63

b3

p3

(a)

b4 b6

(b)

p0 p2

b5

R05 R25

Ui\a = Ui −{a}, the set of row locations of the 1s in the i-th column excluding the a-th row
V j = {i such that h ji = 1}, the set of column locations of 1s in the j -th row
V j\b = V j −{b}, the set of column locations of the 1s in the j -th row excluding b-th column
αi j = sign (Qij), sign of Qij

βi j = |Qij |, magnitude of Qij

φ(x) = − log[tanh(x/2)] = log
[

ex+1
ex−1

]= φ−1(x)

λi = 2yi/σ
2, the channel a posteriori probabilities (APPs)

From Figure 3.55 and Example 3.21, we understand the previous notations with illustrations and examples.
For this, we use the parity check matrix in Equation (3.58), and we consider the 5th-bit node connecting to two
parity nodes and the third parity node connecting to 4-bit nodes as shown in Figure 3.55.

■Example 3.21

The set of row locations with 1s in the 5th column of H is U5 = {0,2} and the set of columns with 1s in
the 3rd row of H is V3 = {1,3,4,6} as highlighted in Figure 3.56.

■

Figure 3.56: Parity check matrix
illustrating the node connections
of Figure 3.55. 1011010

0100011

0011100

1100101

6543210

H 5

0

1

2

3

i

j

Then

U5\0 = U5 −{0} = {2},U5\2 = U5 −{2} = {0}
V3\1 = V3 −{1} = {3,4,6}, V3\3 = V3 −{3} = {1,4,6},and so on.

We initialize Qij = λi at the start of the sum-product algorithm. After some manipulations, the Equation (3.59)
using the Tanner graph is computed as

LLRi = λi +
∑
j∈Ui

R j i

(3.61)

The extrinsic information R ji is computed as

R ji =
⎛
⎝ ∏

i′∈V j\i

αi′ j

⎞
⎠φ

⎛
⎝ ∑

i′∈V j\i

φ
(
βi′ j
)⎞⎠ (3.62)

The sum-product algorithm is iterated many times to converge the LLRi values to true APPs, and the single
iteration involves computation of Qij at bit nodes, R ji at parity nodes and LLRi at end of each iteration. The

148 Chapter 3

Qij

Qij

y2 yn�2 yn�1

bn�1bn�2

bn�1bn�2

y1y0

b0

b0 b1 b2

b0 b1 b2

p2p1p0

x0 x1 xk�1x2

p0 p1 p2 pm�2 pm�1

pm�2 pm�1

b1 b2

bn�1bn�2

Initialize with
received data

Bit nodes

Edge
interleaver

Parity nodes

Edge
deinterleaver

Qij

Total decoder
iterations (S)

Make hard decision using LLRi according to Equation (3.60)

i�S

i�1

Decision
maker

Decoder bits

LLRi

LLRi

LLRi

Rji

Rji

Rij

Figure 3.57: Data flow diagram of multi-iteration LDPC decoder.

extrinsic information Qij to be passed from bit nodes to parity nodes is updated in subsequent iterations as
follows:

Qij = LLRi − R ji (3.63)

An S-iteration LDPC decoding with the sum-product algorithm using an unrolled Tanner graph is illustrated in
Figure 3.57. All bit nodes are initialized with received data symbols yi . The channel APPs λi are computed from
yi . At the start of iterative decoding, the Qij values are initialized with λi for all j wherever h ji = 1. Then we
compute R jis using Equation (3.62) and LLRis using Equation (3.61). These steps account for the first iteration.

In the subsequent iterations, we use Equations (3.63), (3.62), and (3.61) to compute Qij , R ji and LLRi . In any
iteration, we compute Qij at the bit nodes and pass it to the connected parity nodes; then we compute Rij at the
parity nodes and pass it to the connected bit nodes; next we update LLRi at every bit node and this completes a
single iteration of the sum-product algorithm. If the Tanner graph contains zero cycles, then LLRi s converges to

Introduction to Data Error Correction 149

true APPs as the number of iterations tends to infinity. However, in practice we halt the sum-product algorithm
if any one of the following conditions is satisfied:

Halt if ĉH T = 0 (this requires computation of ĉ at the end of each iteration), or
Halt if the maximum number of iterations (S) is reached

Unlike the turbo coder, the LDPC coder does not have an external interleaver for randomization of messages.
However, the edge connections from bit nodes to parity nodes act as interleaving of extrinsic information (i.e.,
Qij ’s) passed from bit nodes to parity nodes and the edge connections from parity nodes to bit nodes act as
deinterleaving of extrinsic information (i.e., R ji ’s) passed from parity nodes to bit nodes and vice versa.

3.11.5 Min-Sum Algorithm

The sum-product algorithm is computationally expensive as it involves of the processing of nonlinear function
φ(.). For this reason, we use the min-sum algorithm (which is an approximation of the sum-product algorithm) in
practical LDPC decoders. As the nonlinear function φ(.) is a hyperbolic self-inverse function, we can approximate
the sum-product algorithm as follows:

φ

(∑
i′

φ
(
βi′ j
))≈ φ

(
φ

(
min

i′
βi′ j

))
= min

i′
βi′ j (3.64)

Using the approximation in Equation (3.64), we can approximate the computationally expensive metric R ji

computation as

R ji =
⎛
⎝ ∏

i′∈V j\i

αi′ j

⎞
⎠ min

i′ ∈V j\i

βi′ j (3.65)

To avoid the biased estimate of R ji in Equation (3.65), we multiply the Equation (3.65) with a constant k, where
k < 1.

R ji = k

⎛
⎝ ∏

i′∈V j\i

αi′ j

⎞
⎠ min

i′∈V j\i

βi′ j (3.66)

The computation of R ji using Equation (3.66) involves the computation of a minimum of magnitudes and the
XOR of sign information. This greatly reduces the complexity of the sum-product algorithm. The performance
loss due to the approximation is about 0.2 dB, which is acceptable for practical applications. The c-simulation
of the min-sum algorithm is presented in Section 4.6.

3.11.6 Simulation Results

We use the same parity check matrix H given in Equation (3.58) to work with the min-sum algorithm for decoding
the LDPC codeword. We consider the same codeword used with the bit-flip algorithm, that is, C = [1010111]. The
BPSK modulated symbols of codeword C are X = [−1,1,−1,1,−1,−1,−1]. We pass the BPSK modulated
symbols through an AWGN channel with noise variance σ 2 = 1. At the receiver we decode the message bits
with the min-sum algorithm using received noisy symbols for four test cases with corresponding hard decisions
containing 1-, 2-, 3-, and 4-bit errors. If we look at the soft values of the corresponding hard-decision bits that
are in error, those soft values are nearer to zero with a flip of sign in all four cases. In terms of probability, their
probability is around 0.5 indicating that they have equal chances to become 0 or 1. The value for constant k in
Equation (3.60) is chosen as 0.8 (for better performance results k is chosen between 0.8 and 0.9). In all four
cases, we present the first few iterations and the last iteration outputs. We stop the decoding if the hard decisions
contain no errors at the end of any particular iteration or if the maximum iteration counts of S = 10 is reached.

Case 1: One-bit error in hard decisions of channel output—Let the received noisy vector
Y = [−0.85,−0.05,−0.91,+0.88,−0.79,−0.90,−0.81] and the corresponding hard-decision vector
D = [1110111]. The error bit is highlighted with underscoring.

150 Chapter 3

Initialization and First Iteration

Channel APPs:

λi = [−1.70,−0.1,−1.82,1.76,−1.58,−1.80,−1.62]

Extrinsic information passed from bit nodes to parity nodes:

Qij =

⎡
⎢⎢⎣

−1.70 0 −1.82 0 0 −1.80 −1.62
0 0 −1.82 1.76 −1.58 0 0

−1.70 −0.10 0 0 0 −1.80 0
0 −0.1 0 1.76 −1.58 0 −1.62

⎤
⎥⎥⎦

Extrinsic information passed from parity nodes to bit nodes:

R ji =

⎡
⎢⎢⎣

−1.30 0 −1.30 0 0 −1.30 −1.36
0 0 −1.26 1.26 −1.41 0 0

0.08 1.36 0 0 0 0.08 0
0 1.26 0 −0.08 0.08 0 0.08

⎤
⎥⎥⎦

Updated LLRs for transmitted message bits:

LLRi = [−2.91,2.52,−4.38,2.94,−2.908,−3.02,−2.9]

Hard-decision output:

Ĉ = [1010111]

At the end of the first iteration we got the right outputs after making hard decisions, and we stop decoding for
Case 1 with the min-sum algorithm.

Case 2: Two-bit errors in hard decisions of channel output—Let the received noisy vector
Y = [−0.85,−0.05,−0.91,+0.88,−0.79,0.10,−0.81] and the corresponding hard-decision vector
D = [1110101]. The error bits are highlighted with underscoring.

Initialization and First Iteration

Channel APPs:

λi = [−1.70,−0.10,−1.82,1.76,−1.58,0.20,−1.62]

Extrinsic information passed from bit nodes to parity nodes:

Qij =

⎡
⎢⎢⎣

−1.70 0 −1.82 0 0 0.20 −1.62
0 0 −1.82 1.76 −1.58 0 0

−1.70 −0.10 0 0 0 0.20 0
0 −0.10 0 1.76 −1.58 0 −1.62

⎤
⎥⎥⎦

Extrinsic information passed from parity nodes to bit nodes:

R ji =

⎡
⎢⎢⎣

0.16 0 0.16 0 0 −1.29 0.16
0 0 −1.26 1.26 −1.41 0 0

−0.08 −0.16 0 0 0 0.08 0
0 1.26 0 −0.08 0.08 0 0.08

⎤
⎥⎥⎦

Updated LLRs for transmitted message bits:

LLRi = [−1.62,1.00,−2.92,2.94,−2.91,−1.02,−1.38]

Hard-decision output:

Ĉ = [1010111]

Introduction to Data Error Correction 151

At the end of the first iteration we got the right outputs after making hard decisions and we stop decoding for
Case 2 with the min-sum algorithm.

Case 3: Three-bit errors in hard decisions of channel output—Let the received noisy vector
Y = [−0.85,−0.05,−0.91,−0.08,−0.79,0.10,−0.81] and the corresponding hard-decision vector
D = [1111101]. The error bits are highlighted with underscoring.

Initialization and First Iteration

Channel APPs:

λi = [−1.70,−0.10,−1.82,−0.16,−1.58,0.20,−1.62]

Extrinsic information passed from bit nodes to parity nodes:

Qij =

⎡
⎢⎢⎣

−1.70 0 −1.82 0 0 0.20 −1.62
0 0 −1.82 −0.16 −1.58 0 0

−1.70 −0.10 0 0 0 0.20 0
0 −0.10 0 −0.16 −1.58 0 −1.62

⎤
⎥⎥⎦

Extrinsic information passed from parity nodes to bit nodes:

R ji =

⎡
⎢⎢⎣

0.16 0 0.16 0 0 −1.29 0.16
0 0 0.128 1.26 0.127 0 0

−0.08 −0.16 0 0 0 0.08 0
0 −0.128 0 −0.08 −0.08 0 −0.08

⎤
⎥⎥⎦

Updated LLRs for transmitted message bits:

LLRi = [−1.62,−0.387,−1.53,1.024,−1.53,−1.016,−1.54]

Hard-decision output:

Ĉ = [1110111]

At the end of the first iteration, we have a 1-bit error in the outputs after making hard decisions and we continue
decoding with the min-sum algorithm.

Second Iteration

Extrinsic information passed from bit nodes to parity nodes:

Qij =

⎡
⎢⎢⎣

−1.78 0 −1.69 0 0 0.28 −1.70
0 0 −1.66 −0.24 −1.66 0 0

−1.54 −0.227 0 0 0 −1.095 0
0 −0.26 0 1.104 −1.452 0 −1.459

⎤
⎥⎥⎦

Extrinsic information passed from parity nodes to bit nodes:

R ji =

⎡
⎢⎢⎣

0.224 0 0.224 0 0 −1.354 0.224
0 0 0.192 1.328 0.192 0 0

0.182 0.876 0 0 0 0.182 0
0 0.883 0 −0.207 0.207 0 0.207

⎤
⎥⎥⎦

Updated LLRs for transmitted message bits:

LLRi = [−1.29,1.659,−1.404,0.96,−1.18,−0.97,−1.188]

Hard-decision output:

Ĉ = [1010111]

152 Chapter 3

We got the right outputs at the end of the second iteration after making hard decisions and we stop decoding for
Case 3 with the min-sum algorithm.

Case 4: Four bit errors in hard decisions of channel output—Let the received noisy vector
Y = [0.14,−0.05,−0.91,−0.08,−0.79,0.10,−0.81] and the corresponding hard-decision vector
D = [1111101]. The error bits are highlighted with underscoring.

Initialization and First Iteration

Channel APPs:

λi = [0.28,−0.10,−1.82,−0.16,−1.58,0.20,−1.62]

Extrinsic information passed from bit nodes to parity nodes:

Qij =

⎡
⎢⎢⎣

0.28 0 −1.82 0 0 0.20 −1.62
0 0 −1.82 −0.16 −1.58 0 0

0.28 −0.10 0 0 0 0.20 0
0 −0.10 0 −0.16 −1.58 0 −1.62

⎤
⎥⎥⎦

Extrinsic information passed from parity nodes to bit nodes:

R ji =

⎡
⎢⎢⎣

0.16 0 −0.16 0 0 0.224 −0.16
0 0 0.128 1.264 0.128 0 0

−0.08 0.16 0 0 0 −0.08 0
0 −0.128 0 −0.08 −0.08 0 −0.08

⎤
⎥⎥⎦

Updated LLRs for transmitted message bits:

LLRi = [0.36,−0.068,−1.852,1.024,−1.53,0.344,−1.86]

Hard-decision output:

Ĉ = [0110101]

At the end of the first iteration, we have 3-bit errors in the outputs after making hard decisions and we continue
decoding with min-sum algorithm. Here, we skip a few iterations and give the outputs for the fifth iteration.

Fifth Iteration

Extrinsic information passed from bit nodes to parity nodes:

Qij =

⎡
⎢⎢⎣

0.502 0 −1.845 0 0 0.435 −1.77
0 0 −2.22 0.009 −1.73 0 0

0.68 0.81 0 0 0 0.65 0
0 0.122 0 1.257 −1.605 0 −2.02

⎤
⎥⎥⎦

Extrinsic information passed from parity nodes to bit nodes:

R ji =

⎡
⎢⎢⎣

0.348 0 −0.348 0 0 0.402 −0.348
0 0 0.008 1.384 0.008 0 0

0.524 0.524 0 0 0 0.545 0
0 1.006 0 0.098 −0.098 0 −0.098

⎤
⎥⎥⎦

Updated LLRs for transmitted message bits:

LLRi = [1.15,1.429,−2.16,1.32,−1.67,1.146,−2.06]

Hard-decision output:

Ĉ = [0010101]

Introduction to Data Error Correction 153

At the end of the fifth iteration, we have 2-bit errors in the outputs after making hard decisions and we continue
decoding with min-sum algorithm. Again, we skip a few more iterations and give the outputs for 11th iteration.

Eleventh Iteration

Extrinsic information passed from bit nodes to parity nodes:

Qij =

⎡
⎢⎢⎣

1.033 0 −2.04 0 0 0.983 −2.16
0 0 −2.62 0.376 −2.116 0 0

1.08 1.077 0 0 0 1.04 0
0 0.65 0 1.454 −1.802 0 −2.42

⎤
⎥⎥⎦

Extrinsic information passed from parity nodes to bit nodes:

R ji =

⎡
⎢⎢⎣

0.786 0 −0.786 0 0 0.827 −0.786
0 0 −0.301 1.693 −0.301 0 0

0.832 0.832 0 0 0 0.862 0
0 1.163 0 0.523 −0.523 0 −0.523

⎤
⎥⎥⎦

Updated LLRs for transmitted message bits:

LLRi = [1.898,1.895,−2.907,2.056,−2.404,1.88,−2.929]

Hard-decision output:

Ĉ = [0010101]

At the end of the 11th iteration, we still have 2-bit errors in the outputs after making hard decisions, and we
passed the maximum iteration count of 10. So, we stop decoding with the min-sum algorithm, although all errors
are not corrected.

0.5 1 1.5 2 2.5 3
1026

1025

1024

1023

1022

1021

Eb /N0

B
E

R

Iterations: 10

Iterations: 30
Iterations: 50

Figure 3.58: LDPC BER versus Eb/N0 curves for cod eword length of 576 bits.

154 Chapter 3

Usually the decoder fails to correct errors if the number of errors occurred are greater than the error correction
capability of the decoder irrespective of the number of iterations. The error correction capability of the LDPC
coder depends on the length of the codeword and the characteristic of the parity check matrix. With good
parity-check matrices, the decoder gives a better performance with larger codewords. In practice, the length of
the LDPC codeword used is in the order of thousands of bits. In Figure 3.58 on the previous page, the BER
performance versus Eb/N0 curves are shown using codeword length of 576 bits for different iteration counts.
In Figure 3.58, we can see the improved BER performance with the number of iterations for a given codeword
length. The encoder used is a rate 1/2 coder defined by parity check matrix H288×576, which is obtained from
the WiMax standard base matrices. The LDPC decoder uses the min-sum algorithm. The value for constant k is
chosen as 0.8.

CHAPTER 4

Implementation of Error Correction Algorithms

In Chapter 3, we briefly discussed various error correction algorithms and their related theory with a few examples.
In this chapter, we discuss efficient implementation techniques for widely used error correction algorithms.
Section 4.1 covers Bose-Chaudhuri-Hocquenghem (BCH) code simulation and implementation techniques. The
BCH codes are popularly used in correcting the bit errors in the header information included in data frame
communications. A subset of BCH codes called Reed-Solomon (RS) codes is discussed in Section 4.2. The RS
coder is widely used in cutting-edge communications systems as an outer coder. In Section 4.3, we discuss RS
erasure codes that are commonly used for further error correction in forward error correction (FEC) systems.
Section 4.4 covers simulation of the Viterbi algorithm used for decoding convolutional codes. The Viterbi
algorithm is a popular decoding algorithm used in many applications (apart from digital communications). Next,
we discuss turbo codes in Section 4.5. The most promising at present, turbo codes operate at near channel capacity
with an SNR gap of about 0.7 dB. Finally, in Section 4.6, we discuss the oldest and newest codes, namely low-
density parity-check (LDPC) codes. The LDPC codes were discovered in the 1960s, mostly forgotten for almost
four decades, and then reinvented in 1999. Like turbo codes, LDPC codes also operate at near channel capacity.
In this chapter, we simulate most of the algorithms that are popularly used in the industry.

4.1 BCH Codes

The BCH code framework supports a large class of powerful, random-error-correcting cyclic binary and non-
binary linear block codes. With the BCH(N, K) codes, we compute mT (= N − K) parity bits from an input
block of K bits using the generator polynomial G(x), and we correct up to T bit errors in the received block
of N bits. At the transmitter side, the BCH(N, K) encoder computes and appends mT parity bits to the block
of K data bits, and at the receiver side the BCH(N, K) decoder corrects up to T errors by using mT bits of
parity information. We work with the Galois field GF(2m) elements for decoding the BCH(N, K) codes. See
Section 3.5 for more details on theory and examples of the BCH(N, K) codes. In this section, we discuss the
simulation and implementation details of the BCH(N, K) binary codes. Also we discuss the optimization tech-
niques to efficiently implement the BCH(N, K) coder on embedded processors. We consider the BCH(67, 53)
coder as an example to discuss the implementation complexity and deriving efficient implementation techniques.
The BCH(67, 53) coder is used in the DVB-H standard for correcting bit errors in the received TPS data. The
BCH(67, 53) codes are a short form of the BCH(127, 113) systematic codes, which are decoded using the Galois
field GF(27). The field elements of GF(27) are generated using primitive polynomial P(x) = 1 + x3 + x7. As
mT = N − K = 67 − 53 = 14 = 7 × 2, this BCH(67, 53) coder is capable of correcting up to 2(= T) random
bit errors using 14(= mT) redundancy (or parity) bits.

4.1.1 BCH Encoder

The BCH(N, K) encoder computes mT (= N − K) bits of parity data from K bits of input data by using a
generator polynomial G(x) = g0 + g1x + g2x2 +· · ·+ gN−K−1x N−K −1 + x N−K . For the BCH(N, K) codes, the
generator polynomial G(x) is obtained by computing the multiplication of T minimal polynomials φ2i−1(x) of
field elements α2i−1 for 1 ≤ i ≤ T as follows:

G(x) = φ1(x)φ3(x) · · ·φ2T −1(x) (4.1)

© 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-678-1.00004-1 155

156 Chapter 4

Z

g0

Z

g1

Z

g2

Z

gN2K 21

C(x)

D(x)

B(x)

fbv

Figure 4.1: Realization of BCH(N,K) encoder.

As every even power of α has the same minimal polynomial as some preceding odd power of α, the G(x) is
obtained by computing the LCM (least common multiple) of minimum polynomials φi (x) for 1 ≤ i ≤ 2T , and
hence G(x) has α,α2,α3, . . . ,α2T as its roots. In other words, G(αi) = 0 for 1 ≤ i ≤ 2T .

Suppose that the input message block of K bits to be encoded is D = [d0d1d2 · · ·dK −1
]

and the correspond-
ing message polynomial is D(x) = d0 + d1x + d2x2 + · · ·+ dK −1x K −1. Let B = [b0b1b2 · · ·bN−K−1

]
denotes

the computed parity data of N − K (= mT) length and its polynomial representation is B(x) = b0 + b1x+
b2x2 +· · ·+bN−K −1x N−K −1. This parity polynomial B(x) is given by the remainder when we divide D(x).x N−K

with the generator polynomial G(x). The polynomial B(x) is computed as

B(x) = D(x) · x N−K mod G(x) (4.2)

After computing the parity polynomial B(x), the encoded code polynomial C(x) is constructed as

C(x) = D(x) · x N−K + B(x)

= b0 +b1x +b2x2 +· · ·+bN−K −1x N−K−1 +d0x N−K +d1x N−K+1 +· · ·+dK −1x N−1 (4.3)

= c0 + c1x + c2x2 +· · ·+ cN−1 x N−1

Basically, we append mT bits of parity data to the input block of K bits and form a systematic codeword
of N(= K + mT) bits. The encoded polynomial in the vector form is represented as C = [c0c1c2 . . . cN−1

]
.

Equations (4.2) and (4.3) can be realized with linear feedback shift register (LFSR) signal flow diagram as
shown in Figure 4.1. To compute parity polynomial B(x) coefficients, we input the data polynomial D(x)

coefficients to LFSR with the dK −1 coefficient as the first input. The values present in the delay units (Z) after
passing all K coefficients of the data polynomial D(x) represents the coefficients of the parity polynomial B(x).

Next, we discuss the simulation of the BCH(N, K) encoder. We use the LFSR signal flow diagram as shown
in Figure 4.1 for simulation of the BCH(N, K) encoder. We initialize all delay units with zero values. We start
with the data polynomial coefficient dK −1 and compute the feedback value (fbv). If the value of fbv is not zero,
then we update all delay units using fbv along with generator polynomial coefficients and using the present
values of the delay units. Otherwise, if the value of fbv is zero, then we update all delay units with the present
values of delay units. The simulation code for the BCH(N, K) encoder is given in Pcode 4.1.

4.1.2 BCH Decoder

At the receiver, we use the BCH(N, K) decoder to detect and correct the bit errors. The BCH decoder consists
of the following steps to decode the received data block R.

1. Computation of syndromes
2. Computation of error locator polynomial
3. Computation of error positions

Implementation of Error Correction Algorithms 157

for (i = 0; i < N - K; i++)
delay_unit[i] = 0;

for (i = K - 1; i >=0; i--) {
fbv = data_in[i] ˆ delay_unit[N - K - 1];
if (fbv != 0) {

for (j = N - K - 1; j > 0; j--)
if (bch_gp[j] != 0)

delay_unit[j] = delay_unit[j - 1] ˆ fbv;
else

delay_unit[j] = delay_unit[j - 1];
delay_unit[0] = bch_gp[0] & fbv;

}
else {

for (j = N - K - 1; j > 0; j--)
delay_unit[j] = delay_unit[j - 1];

delay_unit[0] = 0;
};
data_out[N - 1 - i] = data_in[K - 1 - i];

};
for (i = N - K - 1; i >=0; i--)

data_out[i] = delay_unit[i];

Pcode 4.1: The simulation code for BCH(N , K) encoder.

The received data vector R or its polynomial R(x) = r0 +r1x +r2x2 +· · ·+rN−1x N−1 consists of the transmitted
data polynomial C(x) along with the added error polynomial E(x):

R(x) = C(x)+ E(x)

= D(x) · x N−K + B(x)+ E(x) (4.4)

= D(x) · G(x)+ E(x)

In the BCH decoder (unlike as in the BCH encoder), we have to perform the Galois field arithmetic operations
in decoding of the BCH codes. See Appendix B, Section B.2, on the companion website for more details on
the Galois field arithmetic operations and their computational complexity analysis. In the simulation of the
BCH(67, 53) decoder, we use the Galois field GF(27) element look-up tables from the companion website; use
Galois_Log[] for performing the logarithm and Galois_aLog[] for performing the anti-logarithm.

Syndrome Computation
To determine the presence of errors and the error pattern, we compute 2T syndromes for the received data
polynomial as follows:

R(αi) = D(αi) · G(αi)+ E(αi), where 1 ≤ i ≤ 2T

= 0 + E(αi)

= E(αi)

= Si

(4.5)

Considering the previous syndrome computation, if no errors are present in the received data vector, all
computed syndrome values (Si) are zero. If any one or more syndromes are non-zero, then we assume that the
errors are present in the received data vector. The syndromes Si = R(αi) are computed with the LFSR signal
flow diagram as shown in Figure 4.2.

We simulate the signal flow diagram shown in Figure 4.2 for computing syndromes. The simulation code for
computing syndromes is given in Pcode 4.2. The Galois field element value a j , the j -th power of the Galois
field element αi , is computed by taking the Galois anti-logarithm for i · j modN . As the received vector consists
of binary coefficient values (r j), we do not really perform the Galois field multiplication r j a j in computing
c j = b j + r j a j , instead we conditionally add a j to b j .

158 Chapter 4

Figure 4.2: Signal flow diagram
of syndrome computation.

Z

Zrj

aj
cj

bj

si

�i

for (i = 0; i < 2*T; i++) {
Syndromes[i] = 0;
for (j = n - 1; j >=0; j--)

if (r[j] != 0) {
a = (i + 1)*(n-1-j)%N;
Syndromes[i] = Syndromes[i] ˆGalois_aLog[a];

}
}

Pcode 4.2: Simulation code for syndrome computation.

Error Locator Polynomial Computation
Computing an error locator polynomial is the second step in decoding of the BCH codes. We use the Berlekamp-
Massey recursive algorithm to compute the error locator polynomial.

If the number of errors present in the received data vector is L (which is less than or equal to T), then this
algorithm computes the L-th degree error locator polynomial in 2T iterations. As discussed in Section 3.5, first
we initialize the error locator polynomial �(x) = 1 as minimum-degree polynomial with degree L = 0. Then,
we use syndromes information to build the error locator polynomial by computing discrepancy delta. If the value
of delta is not zero, then we update the minimum degree polynomial with the discrepancy, otherwise we continue
the loop. If the number of errors in the received polynomial R(x) is T or less, then �(x) produces the true error
pattern. At the end of 2T iterations of the Berlekamp-Massey recursion, we have an L-th degree error-locator
polynomial (with �0 = 1) as follows:

�(x) = �0 +�1x +�2x2 +· · ·+�L x L

= (1+ X1x)(1+ X2x) · · · (1+ X L x)
(4.6)

The simulation code for computing the error-locator polynomial is given in Pcode 4.3. Once we have the error
locator polynomial of degree L , then we can find L error positions by computing the roots of the error locator
polynomial.

Error Position Computation
If the number of errors L present in the received data vector is less than or equal to T (i.e., L ≤ T), then the
error locator polynomial can be factored into L first-degree polynomials as in Equation (4.6) and the roots of
the error locator polynomial are X−1

1 , X−1
2 , . . . , X−1

L . As described in Section 3.5, the error positions are given
by the inverse of roots of error locator polynomial. So the L error positions are X1, X2, . . . , X L . The simulation
code for finding the error positions is given in Pcode 4.4.

Because binary BCH codes work on the data bits, when we find the error positions in the received data bits,
correction of data bits is achieved by simply flipping the bit values in those error positions.

Error Correction
When working with BCH binary codes, we correct only bit-errors present in the received data. The correction of
bit errors is achieved by flipping the bit value at the error position. If the degree of the error locator polynomial
(L) computed using Pcode 4.3 and the number of error positions (k) computed using Pcode 4.4 are not the
same, then the BCH decoder cannot correct errors as the number of errors that occurred is greater than the
decoder’s error-correction capability. Therefore, we skip error bit correction when L 	= k. The simulation code
for correcting bit errors with the BCH decoder is given in Pcode 4.5.

Implementation of Error Correction Algorithms 159

L = 0; // initialization
Elp[0] = 1; Tx[0] = 1;
for(i = 1;i < 2*T; i++){

Elp[i] = 0; Tx[i] = 0;
}
r0 = Syndromes[0]; // starting delta
for(k = 0;k < 2*T;k++){

for(i = 0;i < T+1;i++)
Conn_poly[i] = Elp[i]; // Conn_poly = Elp
if (r0 != 0) { // Elp = Conn_poly - Delta*Tx

r2 = Galois_Log[r0]; // log (delta)
for(i = 0;i < T+1;i++){

r1 = Conn_poly[i]; r3 = Tx[i];
r3 = Galois_Log[r3]; // log (delta), log(Tx[i])
r3 = r2 + r3;
r3 = Galois_aLog[r3];
r1 = r3 ˆ r1; // Conn_poly[i]ˆ Delta*Tx[i]
Elp[i] = r1;

}
if (2*L < (k+1)){

L = k+1 - L;
for(i = 0;i < T+1;i++) { // Tx = Conn_poly/Delta

r1 = Conn_poly[i];
r1 = Galois_Log[r1];
m = r1 - r2;
if (m < 0) m+= 127;
r1 = Galois_aLog[m];
Tx[i] = r1;

}
}

}
for(i = T+1;i > 0;i--) // Tx = [0 Tx]

Tx[i] = Tx[i-1];
Tx[0] = 0; r0 = Syndromes[k+1];
if(L > 0) {

for(i = 0;i < L;i++) {
// compute delta by convolution of Syndrome poly and Elp
r1 = log_Syndromes[k-i+1]; r2 = Elp[i+1];
r2 = Galois_Log[r2];
r1 = r1 + r2;
r2 = Galois_aLog[r1];
r0 = r0 ˆ r2;

}
}

}

Pcode 4.3: Simulation code for error-locator polynomial computation.

4.1.3 BCH Codes: Computational Complexity

In this section, we discuss the computational complexity of the BCH encoder and decoder, and we estimate
cycles from the simulations presented in Sections 4.1.1 and 4.1.2. See Appendix A, Section A.4, on the com-
panion website for more details on cycle requirements to execute specific operations on the reference embedded
processor.

BCH Encoder
In the BCH encoder simulation (as given in Pcode 4.1), we initialize N − K delay units with zeros at the
beginning, and we move the parity data from N − K delay units to the data buffer at the end. For this, we
consume about 2 ∗ (N − K) cycles. We use all bits of the message block to compute the parity for that message
block. We compute the parity with K input data bits using the BCH(N, K) encoder. For K input data bits, we
have to compute the feedback value and it consumes about K cycles. Depending on feedback value, fbv, we
have two paths to proceed. If fbv is zero, then we update N − K delay unit values with the current delay unit
values by consuming N − K cycles. If fbv is not zero, then depending on generator polynomial coefficients,

160 Chapter 4

k = 0;
for(i = 127;i>=1;i--) {

r0 = Elp[0];
for(j = 1;j < L+1;j++) {

r1 = i*j;
r2 = r1 >> 7; r1 = r1 & 0x7f;
r3 = log_Elp[j]; r1 = r1 + r2;
r2 = r1 >> 7; r1 = r1 & 0x7f;
r1 = r1 + r2;
r1 = r1 + r3;
r2 = Galois_aLog[r1];
r0 = r0 ^ r2;

}
if (r0 == 0){

Error_positions[k] = 127-i;
k++;

}
}

Pcode 4.4: Simulation code for finding error positions.

p = 1;
for(i = 0; i < L; i++) {

m = Error_position[i];
k = n-1-m;
data[k] = data[k]ˆ p;

}

Pcode 4.5: Simulation code for bit errors correction.

we conditionally update N − K delay unit values. To update one delay unit, we consume 3 cycles (1 cycle for
generator polynomial coefficient checking, 1 cycle for computing value to update delay unit, and 1 cycle for
conditional update of delay unit), and we consume 3 ∗ (N − K) cycles to update N − K delay units. Assuming
equal probability for fbv to become zero or one, on average we consume 2 ∗ (N − K)+ X cycles to update delay
units for 1 bit of the message block. Here, X cycles are overhead cycles consumed for conditional check and
conditional jump depending on fbv. Therefore, we consume [2 ∗ (N − K)+ X] ∗ K cycles to compute parity for a
K -bit input message block. With this, we consume about 2 ∗ (N − K)+ [2 ∗ (N − K)+ X] ∗ K cycles to execute
the BCH(N, K) encoder on the reference embedded processor.

As an example, we estimate the computational complexity of the BCH(67, 53) encoder. We consume a total
of 28(= 14 + 14) cycles to initialize parity bits (before the main loop) and to move the computed parity bits
(after the main loop) to the output buffer. We assume the jump taken (9 cycles) when feedback value is zero.
If the feedback value is not zero, then a single iteration of the main loop consumes 42 cycles. If the feedback
value is zero, then a single iteration consumes 24 cycles (including conditional check and conditional jump).
Assuming equal probability for feedback value to become one or zero, single iterations of the main loop require
an average of 33 cycles. The main loop runs 53 times for the BCH(67, 53) encoder. With this, implementation
of the BCH(67, 53) encoder using the method given in Pcode 4.1 takes about 1777(= 28+53 ∗ 33) cycles.

BCH Decoder
Syndrome Computation Based on Pcode 4.2, in syndrome computation, we have to compute the Galois field
element powers and that involves a costly modulo operation. In addition, look-up table access requires addition
of an arbitrary offset to the base address and we have stalls to load values from the Galois_aLog[] table due to
arbitrary offsets. We estimate the cycles for syndrome computation by assuming the interleaving of the program to
avoid stalls and circular buffer usage to mimic modulo operation (see Appendix A.4 on the companion website).
We consume 1 cycle to get a power of the Galois field element value from the Galois_aLog[] look-up table using
circular buffer registers. We conditionally update the accumulation value for syndrome by checking the received
bit (whether zero or not) and consume 4 cycles. We consume a total of 5 cycles to update a syndrome for one
received bit. We do not jump on checking the received bit as it takes about 10 cycles for a conditional check and
conditional jump. Next, to compute one syndrome, we use all N received bits and consume about 5 ∗ N cycles.

Implementation of Error Correction Algorithms 161

With this, to compute 2∗ T syndromes, we consume about 2 ∗ T ∗ 5 ∗ N cycles. For computing syndromes of the
BCH(67, 53) decoder, we require about 1380(= 2 ∗ 2 ∗ 5 ∗ 67+overhead) cycles.

Error Locator Polynomial Computation Based on Pcode 4.3, in the i-th iteration, we use Li − 1 Galois field
additions and multiplication in convolving syndromes with �(x) to compute discrepancy delta �i . We use the
Galois logarithm and anti-logarithm look-up tables for the Galois field multiplication.As we know all syndromes
in advance, we get logarithm values for all syndromes before entering the loop of �(x) computation. We have
to get the logarithm values for �(x) coefficients in all iterations as they change from iteration to iteration. With
this, we can compute the i-th iteration delta �i in 6 ∗ (Li −1) cycles. Depending on current iteration discrepancy
�i , we update �(x) (if �i 	= 0) as

�i (x) = �i−1(x)− x ·�i · T i−1(x) (4.7)

where T i−1(x) is computed in the previous iteration as

T i−1(x) =
{
�i−2(x)/�i−1 if �i−1 	= 0, 2Li−1 ≤ i −1

x · T i−2(x) otherwise
(4.8)

If �i 	= 0, we spend a total of 7 ∗ (T + 1) cycles for computing �i(x) and another 7 ∗ (T + 1) cycles for
computing T i(x) if 2Li ≤ i. We spend an overhead of another 20 cycles for moving the data to and from
buffers and for conditional checks. With this, we consume about 2T ∗ [6 ∗ (Li − 1)+ 14 ∗ (T + 1)+ 20] cycles
for computing the error locator polynomial using the simulation code given in Pcode 4.3. Assuming Li = 2, we
consume about 272(= 4 ∗ 68) cycles to compute the error locator polynomial.

Error Position Computation The error locator polynomial roots inverse {Xi , 0 ≤ i ≤ L} give the error positions
in the received data vector (if at all errors are present and the number of errors are less than or equal to T).We
find roots of the error locator polynomial �(x) by substituting every possible error position (Chien’s search)
in �(x) and checking for whether the particular error position satisfies �(x). In the error locator polynomial
roots finding, we need to find the powers of the Galois field elements and we compute the powers here with the
analytic method (instead of using circular buffer registers as in syndrome computation). Here, we consume 7
cycles (which can be achieved with one cycle on an embedded processor with circular buffer registers) to find
the power of the Galois field element. To find a particular data element that is in error (if that element position
satisfies the �(x)) or not, we spend 11 ∗ L cycles. We search for all the data element positions to find the roots
of �(x). Therefore, to find the roots of the error locator polynomial �(x) with an analytic method (without
using the circular registers of an embedded processor), we consume about N ∗ (11 ∗ L + 4) cycles. Assuming
L = T = 2, we consume about 1742(= 67 ∗ (11 ∗ 2+4)) cycles to find the roots of the error locator polynomial
of the BCH(67, 53) decoder.

4.1.4 BCH Coder Optimization

In this section, we discuss efficient implementation of the BCH(N, K) coder for particular values of N and K .
As an example, we consider the BCH(67, 53) coder.

BCH(67, 53) Encoder
It is clear from Pcode 4.1 that the conditional update of delay units in the loop is costly and it is very inefficient.
Given that we know the generator polynomial coefficients in advance for the BCH(67, 53) encoder, we can avoid
the conditional flow of the encoder by coding for this particular configuration. The LFSR flow diagram of the
BCH(67, 53) encoder is shown in Figure 4.3. The BCH(67, 53) encoder computes 14(= mT) parity bits from
53(= K) input bits by using the following generator polynomial:

G(x) = 1+ x + x2 + x4 + x5 + x6 + x8 + x9 + x14 (4.9)

As m = 7 and T = 2 for the BCH(67, 53) codes, the generator polynomial G(x) of the BCH(67, 53) coder is
obtained from Equation (4.1) as

G(x) = φ1(x)φ3(x)

162 Chapter 4

Z Z Z ZZ Z Z Z Z Z Z Z Z Z

C(x)

D(x)

B(x)

fbv

Figure 4.3: Realization of BCH(67, 53) encoder.

where φ1(x) = 1+ x3 + x7 and φ3(x) = 1+ x + x2 + x3 + x7. For more details on minimal polynomials working
with other BCH(N, K) encoders for different values of m and T , see Shu Lin (1983).

In Figure 4.3, as the G(x) has binary coefficients, we avoid multiplication of feedback values with gis. The
feedback connections to the delay units are shown only to the non-zero coefficients of the generator polynomial
given in Equation (4.9). The simulation code for the BCH(67, 53) encoder is given in Pcode 4.6. As the BCH
codes contain only binary elements and we know in advance the generator polynomial non-zero coefficient
positions, we further simplify the simulation code by working with packed delay unit elements instead of array
of individual delay unit elements. The simulation code for the efficient BCH(67, 53) encoder method is given in
Pcode 4.7.

for (i = 0; i < 14; i++)
delay_unit[i] = 0;

for (i = 52; i >= 0; i--) {
fbv = data_in[i] ˆ delay_unit[13];
delay_unit[13] = delay_unit[12];
delay_unit[12] = delay_unit[11];
delay_unit[11] = delay_unit[10];
delay_unit[10] = delay_unit[9];
delay_unit[9] = delay_unit[8] ˆ fbv;
delay_unit[8] = delay_unit[7] ˆ fbv;
delay_unit[7] = delay_unit[6];
delay_unit[6] = delay_unit[5] ˆ fbv;
delay_unit[5] = delay_unit[4] ˆ fbv;
delay_unit[4] = delay_unit[3] ˆ fbv;
delay_unit[3] = delay_unit[2] ;
delay_unit[2] = delay_unit[1] ˆ fbv;
delay_unit[1] = delay_unit[0] ˆ fbv;
delay_unit[0] = fbv;
data_out[i+14] = data_in[i];

}
for (i = 13; i>=0; i--)

data_out[i] = delay_unit[i];

Pcode 4.6: The simulation code for BCH(67, 53) encoder.

Next, we estimate the cycle consumption of the simulation code given in Pcode 4.7 for the BCH(67, 53)
encoder. We consume about 7 cycles outside the main loop, about 6 cycles in a single iteration of the loop, and
about 318(= 53×6) cycles for 53 iterations. With this efficient method, we consume a total of about 325 cycles
(instead of 1777 cycles using the general method) for the implementation of the BCH(67, 53) encoder.

BCH(67, 53) Decoder
Syndrome Computation The syndrome computation block is one of the costliest blocks in the BCH(N, K)
decoder. Instead of computing the Galois field elements’ powers on the fly, we use precomputed Galois field
element powers and avoid performing modulo operations in computing powers. The simulation code for efficient
syndrome computation is given in Pcode 4.8. The BchSynTbl[] look-up table values for computing syndromes
of the BCH(67, 53) decoder can be found on the companion website.

Implementation of Error Correction Algorithms 163

delay_units = 0; // 14 MSB bits represents bit values in delay units
gpc = 0x0ddc0000; // generator polynomial coefficient positions
for (i = 52; i >= 0; i--) {

fbv = delay_units >> 31;
temp = 0;
if (fbv != data[i]) temp = gpc; // data[] consists of unpacked bits of data_in[]
delay_units = delay_units << 1;
delay_units = delay_units ˆ temp;

}
data_out[0] = data_in[0]; // first 32-bits of data
temp = delay_units >> 21; // 11 MSB bits of parity
data_out[1] = data_in[1] | temp; // remaining 21 data bits | 11 parity bits
temp = delay_units << 11; // 3 LSB bits of parity
data_out[2] = temp; // remaining 3 bits of parity, total data_out is 67 bits

Pcode 4.7: Efficient implementation of BCH(67, 53) encoder.

for(i = 0;i < 4;i++) {
Syndromes[i] = 0;
for(j = n-1;j>=0;j--) {

temp = BchSynTbl[67*i+n-1-j];
temp = temp ˆ Syndromes[i];
if(data[j] != 0)

Syndromes[i] = temp;
}

}

Pcode 4.8: Efficient implementation of syndrome computation.

In Pcode 4.8, we consume 4 cycles to update conditionally the accumulation of the Galois field elements
powers. With N = 67 and K = 53 of the BCH decoder, we consume about 1080(= 4 ∗ 67 ∗ 4+overhead) cycles
to compute 2T syndromes. In this method, we do not use any circular buffer registers to access look-up table
BchSynTbl[].

Error Correction
As we know that the BCH(67, 53) decoder can correct up to two errors, we take a few shortcuts in computing the
error locator polynomial. Most of the time errors may not present in the received data. We can find the absence of
errors by checking the values of syndromes. If all syndromes are zero, then no errors are present in the received
data and we stop the BCH from further decoding. We handle one-error and two-errors cases separately. The
correction of single errors does not require computation of an error locator polynomial and roots finding. This
avoids 50% of computations of the BCH decoder.

Single-Bit Error Correction After computing 2T syndromes {S1, S2, S3, S4} with the BCH(67, 53) decoder, if
S1 	= 0 and S3 = S3

1 , then a single error is present in the received data vector. The error position is given by S−1
1 .

The simulation code for correcting single-bit errors after computing syndromes is given in Pcode 4.9.

r0 = Syndromes[0];
r0 = Galois_Log[r0];
m = n-1 - r0; p = 1; // n = 67
rec_msg[m] = rec_msg[m]ˆp;

Pcode 4.9: Simulation code for correcting single bit errors.

Double-Bit Error Correction After computing syndromes, if S1 	= 0 and S3 	= S3
1 , then two-bit errors are present

in the received data vector. If two-bit errors are present, then the maximum degree of the error locator polynomial
is two and the coefficients �1 and �2 of the error locator polynomial �(x) = 1+�1x +�2x2 are given by

�1 = S1, �2 = S3 + S3
1

S1
(4.10)

164 Chapter 4

Once we know the error locator polynomial coefficients, we find the error positions by using Chien’s search
algorithm. As discussed in Section 4.1.2, Error Correction, and Section 4.1.3, BCH Codes: Computational
Complexity, the computation of roots for �(x) using Chien’s search is a costly process and we consume 1742
cycles to compute roots of the second-degree error locator polynomial. Instead, we rearrange the second-degree
polynomial as seen in the following to reduce the number of computations with Chien’s search algorithm. If z
is a root of �(x), then

�(z) = �2z2 +�1z +1 = 0

⇒ z2 + �1
�2

z + 1
�2

= 0

⇒ z
(

z + �1
�2

)
+ 1

�2
= 0

⇒ z(z +a)+b = 0

(4.11)

where a = �1
�2

and b = 1
�2

.

We precompute a and b from �1 and �2 before starting Chien’s search algorithm. With the previous rear-
rangement, we compute the Galois field element substitution value with two additions and one multiplication.
The simulation code for the efficient error locator polynomial computation, error locator polynomial roots find-
ing and error correction is given in Pcode 4.10. Next, we estimate the cycles for the error locator polynomial and
error position computation. We consume approximately 30 cycles (here most look-up table access operations
consume 4 cycles as we do not have much scope to interleave the program code) to compute the error locator
polynomial �(x) = x(x + a)+ b. In error position computation, we have scope to interleave the program by
computing more than one substitution value per iteration of the loop. Therefore, we consume 8 cycles (6 cycles
for computing substitution value and 2 cycles for checking and continuing the loop) to know whether the bit at
the i-th position is in error or not. We consume a total of 536(= 67 ∗ 8) cycles for finding the error position.

//Compute error locator polynomial: Delta(x) = x(x+a) + b
r0 = Syndromes[0]; r1 = Syndromes[2];
r0 = Galois_Log[r0];
k = r0 * 3; m = r0*2;
if (k>=127) k-=127; if (m>=127) m-=127;
if (k>=127) k-=127;
r2 = Galois_aLog[k];
r2 = r2 ˆ r1;
r2 = Galois_Log[r2];
k = m - r2; m = r0 - r2;
if (k < 0) k+= 127; if (m < 0) m+= 127;
r1 = Galois_aLog[k]; r2 = Galois_aLog[m]; // a, b
for (i = 127; i>=60; i--) { // roots finding

r0 = Galois_aLog[i]; // z
r0 = r0 ˆ r1; // z + a
r0 = Galois_Log[r0];
r0 = r0 + i;
r0 = Galois_aLog[r0]; // z(z + a)
r0 = r0 ˆ r2; // z(z + a) + b
if (r0 == 0)

data[i-127+n-1] ^= r3; // bit error correction, n = 67
}

Pcode 4.10: Simulation code for efficient BCH(67, 53) decoder error correction.

With the previous suggested techniques, we consume about 1646(= 1080+30+536)cycles to correct two-bit
errors using the BCH(67, 53) decoder. Without this algorithm level optimization, we consume (as estimated in
Section 4.1.3, BCH Codes: Computational Complexity) about 3394(= 1380 + 272 + 1742) cycles to correct
two-bit errors using the BCH(67, 53) decoder. The cycle saving with the optimized BCH(67, 53) decoder is
about 51%. The cycle cost may vary if we implement the BCH decoder on a particular embedded processor by
taking advantage of its architectural and instruction set features.

Implementation of Error Correction Algorithms 165

BCH Decoder: Further Optimization for T= 2
In the case of T = 2, we know that the BCH decoder can correct up to two errors. Based on Equation (4.10), to
compute the error locator polynomial �(x), we use only two syndromes S1 and S3 out of 2T (= 4) computed
syndromes. The value of S1 only dictates whether errors are present (if S1 	= 0) or not (if S1 = 0). In addition, if
errors are present, then how many (whether one or two) errors are present is also decided by using the relation
between S1 and S3. Because syndrome computation is very costly in terms cycles, we do not have to compute
S2 and S4 to correct up to two errors (when T = 2) with the binary BCH decoder because we can calculate them
using S1 and S3. This saves 50% of syndrome computation cycles.

The other costly routine is Chien’s search method, used to find error positions when two or more errors are
present in the received data. As we can correct up to two errors for T = 2, the resultant second-degree error
locator polynomial consists of two parameters as given in Equation (4.11). We can find the two roots of the
second-degree polynomial using the precomputed look-up table method if we have a second-degree polynomial
with only one parameter. In this case, we do not have to use Chien’s search and therefore we save a lot of cycles.
In the look-up table method, discussed by Okano and Imai (1987), we precompute two roots (if they exist) of the
second-degree single parameter polynomial for all its possible values. We convert the second-degree polynomial
with two parameters (a and b) given in Equation (4.11) to one parameter of the second-degree polynomial by
substituting z = a · y as follows:

�(z) = z(z +a)+b = 0

�(ay) = ay(ay +a)+b = 0
(4.12)

⇒ a2 y2 +a2y +b = 0

⇒ y2 + y + c = 0

where c = b
a2

.

If m = 7, then c ∈ GF(27) and we have 128 possible values for c. Next, we precompute all existing roots of
the polynomial in Equation (4.12) for all 128 possible values of c. The precomputed look-up table elp_roots[]
for the roots of the second-degree polynomials with a single parameter that belong to GF(27) follows. The roots
y1 and y2 of the polynomial in Equation (4.12) are obtained by using c as the index (or offset) to the look-up
table elp_roots[] that can be found on the companion website. If roots do not exist for particular values of c,
then the table is filled with zeros at those offset values of c. The actual roots z1 and z2 for Equation (4.11) are
obtained by back substitution as z1 = a.y1 and z2 = a · y2. The simulation code for efficient implementation of
the BCH(67, 53) without Chien’s search method is given in Pcode 4.11. If we get the two roots z1 and z2 as
zeros, then there are no roots for Equation (4.11) and this indicates that more than two errors occurred and we
have to exit from the decoder without any bit errors correction.

An example of the previously described method of finding roots of the second-degree polynomial follows.
Let a,b ∈ GF(2127),a = α122, and b = α77. The computed roots for the polynomial given in Equation (4.11)
using the Chien search method given in Pcode 4.10 are z1 = α0 and z2 = α77. Next, c = b

a2 = α87. Given that
the look-up table values start from c = 0 (its logarithm value is not defined), and if we access the look-up table
with logarithm values of c, then we should access the look-up table with offset 88(= 87 + 1) to get the correct
roots. The roots of Equation (4.12) are obtained from the look-up table elp_roots[] as y1 = α5 and y2 = α82.
Then, the roots of Equation (4.11) are computed as follows:

z1
′ = a · y1 = α122 ·α5 = α127 = α0 = z1

z2
′ = a · y2 = α122 ·α82 = α204 = α77 = z2

Next, we estimate the cycle cost of this efficient method. As we need only two syndromes, we consume
536(= 2 ∗ 67 ∗ 4) cycles to compute syndromes S1 and S3 using Pcode 4.8. Then we consume approximately
30 to 70 cycles to find error positions and to correct one and two-bit-errors with the simulation code given in
Pcode 4.11. With this, the BCH(67, 53) decoder can be implemented on the reference embedded processor with

166 Chapter 4

in 600 cycles to correct up to two-bit errors in the received 67 data bits. The suggested techniques for the BCH
decoding simulation is also valid for other values of N and K as long as T = 2.

r4 = Syndromes[0];
r0 = Galois_Log[r4]; r1 = Syndromes[2];
k = r0 * 3; m = r0*2;
if (k>=127) k-=127; if (m>=127) m-=127;
if (k>=127) k-=127;
r2 = Galois_aLog[k];
if (r4 != 0){

if (r2 == r1)
data[n-1-r0] ˆ= 1; // single error correction

else {
r2 = r2 ˆ r1;
r2 = Galois_Log[r2];
k = m - r2; m = r0 - r2;
if (k < 0) k+= 127; if (m < 0) m+= 127; // a, b
m = m - 2*k;
if (m < 0) m+= 127;
if (m < 0) m+= 127;
r0 = elp_roots[2*(m+1)]; r1 = elp_roots[2*(m+1)+1];
if ((r0!=0) && (r1 != 0)) { // double error correction

r0 = r0 + k; r1 = r1 + k;
if (r0 > 127) r0-=127; if (r1 > 127) r1-=127;
data[r0-127+n-1]ˆ=1; data[r1-127+n-1]ˆ=1;

}
}

}

Pcode 4.11: Simulation code for efficient BCH decoding (for T = 2).

4.2 Reed-Solomon Error-Correction Codes

RS codes are widely used in digital communications and digital storage and retrieval systems for forward error
correction (FEC). See Section 3.6 for more information on theory and example of RS codes. In this section,
we discuss the simulation of RS(N, K) block codes. In particular we discuss the simulation techniques for the
RS(204, 188) coder, which is used in DVB-H standard for FEC. We also discuss the computational complexity
of the RS coder in terms of cycles and memory to implement on the reference embedded processor.

4.2.1 RS(N, K) Encoder

Using the RS(N, K) encoder, we compute N − K length parity data B(x) from K length input message D(x)

by using the generator polynomial G(x). The encoded message M(x) is obtained as

M(x) = D(x) · x N−K + B(x) (4.13)

The following generator polynomial is used in the RS(N, K) encoder (see Section 3.6) to compute the parity
data:

G(x) = (x +α0)(x +α1)(x +α2) · · · (x +α2T−1)

= g0 + g1x + g2x2 +· · ·+ g2T−1x2T−1 + x2T
(4.14)

where 2T = N − K . Here, the polynomial G(x) is computed by multiplying2T first-degree polynomials (x +αi)

where 0 ≤ i < 2T . The parity data B(x) is computed as

B(x) = D(x)·x N−K mod G(x) (4.15)

Equations (4.13) and (4.15) can be realized with a feedback system as shown in Figure 4.4.

Implementation of Error Correction Algorithms 167

Figure 4.4: Realization of RS(N, K)
encoder.

Z

g0

Z

g2

Z

g3

Z

g2T 21

M(x)

D(x)

B(x)

Figure 4.5: Syndrome computation
signal flow diagram.

rk si

�i Z

Z

4.2.2 RS(N, K) Decoder

As discussed, the RS(N, K) decoder takes data blocks of N elements as input and outputs K elements as a
decoded data block. If errors are present in the received data and if they are less than or equal to (N − K)/2,
then the RS decoder corrects the errors and outputs a corrected data block.

The error correction with the RS decoder is achieved with the following four steps:

1. Syndrome computation
2. Error locator polynomial computation
3. Error locator polynomial roots computation
4. Error magnitude polynomial computation

Syndrome Computation
In the RS decoder, the first step of decoding is a syndrome computation. Syndromes, which give an indication
of presence of errors, are computed using the received data polynomial R(x). If all the syndromes are zero, then
there are no errors in the received data. We compute 2T syndromes in the syndrome computation step. An i-th
syndrome is computed (see Section 3.6) as follows:

Si = R(αi) =
N−1∑
n=0

rk (α
i)n (4.16)

where addition is modulo-2 addition and performed using ⊕ instead of +. Equation (4.16) can be realized with
a feedback system as shown in Figure 4.5.

Computation of Error Locator Polynomial
The error locator polynomial is computed using the Berlekamp-Massey (BM) recursive algorithm as shown in
Figure 4.6. We iterate the BM algorithm 2T times to get an error locator polynomial �(x) of degree v which
is less than or equal to T . If v ≤ T , then the roots of the error locator polynomial �(x) give the correct error
positions in the received data vector. The error locator polynomial �(x) of degree v is represented as

�(x) = 1+�1x +�2x2 +· · ·+�v−1xv−1 (4.17)

Computation of Error Locator Polynomial Roots
We compute the roots of the error locator polynomial (ELP), �(x), with a brute-force method (also called Chien’s
search) by checking all of the field elements to know whether any of the field elements satisfy the Equation (4.17).
The following equation (with �0 = 1) gives the error location as i whenever Pi become zero:

Pi = �(αi) =
v∑

j=0

� j (α
i) (4.18)

where 0 ≤ i < N . Equation (4.18) can be realized with the signal flow diagram as shown in Figure 4.7.

168 Chapter 4

Figure 4.6: Flow chart diagram
of Berlekamp-Massey algorithm.

L(0)(x) 5 1, B (0)(x) 5 1
L 5 0, k 5 1

L(k)(x) 5L(k21)(x) 2 Dk B
(k21) (x)·x

B (k)(x) 5 B (k21) (x)·x

Start

B (k)(x) 5 L(k21)(x)/Dk

L 5 k 2 L

End

N

N

N

Y

Y

Y

Dk5 0

2L # k 2 1

k # 2T

i 5 0

Dk5SLi
(k 21)·Sk2i

L

Figure 4.7: Chien’s brute-force search
method for finding error locations.

Pi

Z

ZLk

�i

Computation of Error Magnitude Polynomial
The error magnitude polynomial
(x) = 1+ω1x1 +ω2x2 +· · ·+ω2T x2T is computed as

(x) = �(x) [1+ S(x)] mod x2T+1 (4.19)

where S(x) =
2T∑
j=1

S j x
j and �(x) =

v∑
i=0

�i x
i with �0 = 1

Error Correction
If �′(x) represents the derivative of the error locator polynomial �(x) and ik represents error positions, then
error magnitudes Yj = eik , where ik ∈ [0, N), are computed using error positions information X j = (α j)ik , 0 ≤
j < v, ik ∈ [0, N) as follows:

Yj = −
X j

(
X−1

j

)
�′
(

X−1
j

) (4.20)

Once we know error positions ik and error magnitudes eik , then we can obtain the error polynomial as

E(x) = ei1 x i1 + ei2 x i2 +· · ·+ eiv x iv (4.21)

The corrected data polynomial M̂(x) is obtained from the received data vector R(x) as follows:

M̂(x) = R(x)+ E(x) (4.22)

Implementation of Error Correction Algorithms 169

4.2.3 RS(204, 188) Coder

The RS(204, 188) coder, used in the DVB-H standard (see Section 17.4), is derived from the RS(255, 239)
coder, whose field elements belong to GF(28) and the Galois field elements for RS(255, 239) coder are generated
using the primitive polynomial p(x) = x8 + x4 + x3 + x2 +1. The generator polynomial used to compute parity
data is obtained as G(x) = (x +α0)(x +α1) · · · + (x +α15). The RS(204, 188) (shortened version of RS(255,
239)) coder uses the Galois field GF(28). See Appendix B, Section B.2, on the companion website for more
information on the Galois field GF(2n) arithmetic operations and respective simulation techniques.

RS(204, 188) Coder Data Representation
The polynomial and the corresponding vector representation of RS(204, 188) coder inputs, outputs, parity data,
generator polynomial, and error polynomial follow.

Generator polynomial (17 coefficients):

G(x) = x16 + g15x15 +· · ·+ g2x2 + g1x + g0

G = [1, g15, . . . , g2, g1, g0]

Encoder input (188-coefficient polynomial):

D(x) = d187x187 +d186x186 +· · ·+d2x2 +d1x +d0

D = [d187,d186, . . . ,d2,d1,d0]

Parity data (16-coefficient polynomial):

B(x) = b15x15 +b14x14 +· · ·+b2x2 +b1x +b0

B = [b15,b14, . . . ,b2,b1,b0]

Encoder output (204 coefficients):

M(x) = m203x203 +m202x202 +· · ·+m2x2 +m1x +m0

M = [m203,m202, . . . ,m2,m1,m0]

M = D|B
Error polynomial (maximum T coefficients) with ν errors:

E(x) = ei1 x i1 + ei2 x i2 +· · ·+ eiv x iv

E = [0,0, . . . ,ei1 ,0,0,0, . . . ,ei2 ,0,0,0, . . . ,0,0,0, . . . ,0,eiv ,0,0,0, . . . ,0
]

Decoder input (204-coefficient polynomial):

R(x) = r203x203 + r202x202 +· · ·+ r2x2 + r1x + r0

R = [r203,r202, . . . ,r2,r1,r0]

R = M +E

Decoder output (188 coefficients):

D′(x) = d ′
187x187 +d ′

186x186 +· · ·+d ′
2x2 +d ′

1x +d ′
0

D ′ = [d ′
187,d ′

186, . . . ,d ′
2,d ′

1,d ′
0

]

170 Chapter 4

In RS decoding, if v ≤ T , then D = D′. In other words, if the number of errors v present in the received data
vector R is less than or equal to T , then we can correct v errors using the RS decoder and the decoded output D ′
and actual transmitted data D will be the same; otherwise, D and D ′ will be different.

RS(204, 188) Coder Generator Polynomial
Coefficients of the RS(204, 188) coder generator polynomial G(x)= (x +α0)(x +α1) · · ·+(x +α15) are obtained
with the simulation code given in Pcode 4.12. We compute G(x) from first-degree polynomials iteratively in
2T iterations. As we do not compute generator polynomials in runtime, we will not discuss its computational
complexity and optimization. The simulation results of Pcode 4.12 (i.e., the coefficients of polynomial G(x) of
the RS(204, 188) coder) are provided in Section 4.2.6. In later sections, we discuss the simulation of RS(204,
188) encoder and RS(204, 188) decoder modules.

Gx[0] = 1 ; Gx[1] = 1 ; // [1 1] = (x+alphaˆˆ0), initialization
for(i = 2;i<=2*T;i++) { // multiplying with (x+alphaˆˆi)

Gx[i] = 1 ; // coefficient xˆˆi = 1
for (j = i-1; j > 0; j--)
if (Gx[j]!= 0) {

r0 = Gx[j-1]; r1 = Gx[j];
r1 = Galois_Log[r1];
r1 = r1 + i-1;
r2 = r1 >> 8; r1 = r1 & 0xff;
r1 = r2 + r1; // mod 255
r2 = Galois_aLog[r1];
r0 = r0 ˆ r2;
Gx[j] = r0; // coefficients from xˆˆ(i-1) to xˆˆ1

}
else

Gx[j] = Gx[j-1];
r1 = Gx[0];
r1 = Galois_Log[r1];
r1 = r1 + i-1;
r2 = r1 >> 8; r1 = r1 & 0xff;
r1 = r2 + r1; // mod 255
r0 = Galois_aLog[r1];
Gx[0] = r0; // coefficient xˆˆ0

}

Pcode 4.12: Simulation code for computing a generator polynomial.

4.2.4 RS(204,188) Encoder Simulation

We simulate the RS(204, 188) encoder using the signal flow diagram shown in Figure 4.4. We generate
16(= 2T = N − K = 204 − 188) parity data elements with the RS(204, 188) encoder using input message
of 188 data elements. The simulation code for computing parity data vector B from input message vector
D is given in Pcode 4.13. We obtain the encoded message M by appending data bytes to parity bytes as
M = data bytes|parity bytes. The computation of the parity data vector involves multiplication and addition
of the Galois field elements. We obtain the parity data vector from shift registers of the feedback loop by passing
all data elements of the message vector one at a time to the feedback loop. The complexity of the RS(204, 188)
encoder is estimated (see Appendix A.4 on the companion website for cycles estimation on the reference embed-
ded processor) as follows. To update the feedback loop with one message data element, we spend 6 + 2 ∗ T ∗ 9
cycles by interleaving the program code. Thus, we consume K ∗ (2 ∗ T ∗ 9+6) cycles for updating the feedback
loop with K input message elements.

4.2.5 RS(204,188) Decoder Simulation

With the RS(204,188) decoder, we process a data block of 204 elements at a time. In the receiver, before coming to
the RS decoder, the data had been processed by other physical layer modules such as demodulation, equalization,

Implementation of Error Correction Algorithms 171

for(i = K-1;i>=0;i--) {
r0 = Dx[K-1-i]; r1 = Bx[2*T-1];
r0 = r0 ˆ r1; // addition of Galois field elements
r7 = Galois_Log[r0]; // feedback
if (r7 != log0) {

for (j = 2*T-1;j > 0;j--)
if (log_Gx[j] != log0) {

r1 = log_Gx[j]; r0 = Bx[j-1];
r1 = r1 + r7; // multiplication of Galois field elements
r2 = r1 >> 8; r1 = r1 & 0xff;
r1 = r1 + r2; // modulo 255
r2 = Galois_aLog[r1];
r2 = r2 ˆ r0;
Bx[j] = r2;

}
else

Bx[j] = Bx[j-1];
r1 = log_Gx[0];
r1 = r1 + r7;
r2 = r1 >> 8; r1 = r1 & 0xff;
r1 = r1 + r2; // modulo 255
r2 = Galois_aLog[r1];
Bx[0] = r2;

}
else {

for (j = 2*T-1;j > 0;j--)
Bx[j] = Bx[j-1];

Bx[0] = 0;
}

}
for(i = 0;i < 2*T;i++) // multiply input msg with xˆˆ(N-K) and add parity data

Dx[K+i] = Bx[2*T-1-i];

Pcode 4.13: Simulation code for RS(204, 188) encoder.

and so on (see Section 17.4). We assume that the proper data block (i.e., a block corresponding to the encoder
output block) with 204 elements is available to the RS decoder as an input after data symbols synchronization.
Due to channel impairments, the received data vector R may not be same as the transmitted data vector M (see
Figure 3.16). Some of the byte elements in the received vector R may be in error and we can correct all the error
data bytes using the RS decoder if the number of errors are less than or equal to T , where T = (N − K)/2 = 8.
As discussed in Section 4.2.2, the RS decoder consists of four steps as follows:

1. Syndrome computation
2. Error locator polynomial computation
3. Finding roots for error locator polynomial
4. Error magnitude polynomial computation

Simulation of these four steps follows.

Syndrome Computation
Computation of one syndrome (see Figure 4.5) involves computation of the Galois field N (= 204) element
powers ((αi)k), N multiplications (rkα

i·k), and N −1 additions (⊕). We compute the Galois field two-element
multiplication using logarithm and anti-logarithm look-up tables of the Galois field elements (see Appendix
B, Section B.2.4, on the companion website). The x and y multiplication, z = x · y, using logarithm and anti-
logarithm look-up tables involves four steps:

1. Get a, the logarithm of x using the Galois_Log[]
2. Get b, the logarithm of y using the Galois_Log[]
3. Compute c = a +b
4. Get z, the anti-logarithm of c using the Galois_aLog[])

172 Chapter 4

Given the Galois field element β = αi , implementation of the Galois field element power (γ = βk) also involves
four steps:

1. Get i, an exponent of α or logarithm value of β

2. Compute i ∗ k
3. Compute j = i ∗ k modulo 255
4. Get γ = anti-logarithm of j

These steps consume approximately 7 cycles on the reference embedded processor. Instead, we use the
look-up table with precomputed Galois field element powers. We perform the Galois field addition using the
XOR operator. The simulation code for syndrome computation is given in Pcode 4.14. The 0-th syndrome
(S0 = R(α0) = R(1)) is computed by adding all received message polynomial coefficients. We handle computa-
tion of 0th syndrome separately as it involves only XOR operations. Syndromes from S1 to S15 are computed in
a loop using a look-up table for the Galois field element powers, sGalois_elem_pow[]. For each syndrome, we
need to compute 204 Galois field element powers, and hence the sGalois_elem_pow[] look-up table consists of
3060 (= 204∗ 15) elements. In the inner loop, we perform syndrome computation for two data elements at a time
with 12 instructions per iteration. If we interleave the program code, then the inner loop consumes 12 cycles per
iteration. Therefore, the syndrome computation block consumes (12∗ (2T−1)∗ N/2 + N) cycles. With this, for
T = 8, we require about 18,600 (= 12∗ 102∗ 15 + 204 + etc.) cycles to implement the syndrome computation
module on the reference embedded processor.

r0 = 0;
for(i = 0;i < N;i++)

r0 = r0 ^ rec_msg[i];
Syndromes[0] = r0;
for(j = 1; j < 2*T; j++) {

r0 = 0;
r7 = j*N;
for(i = 0; i < N; i+=2) {

r1 = rec_msg[N-i-1]; r2 = rec_msg[N-i-2];
r3 = Galois_Log[r1]; r4 = Galois_Log[r2];
r5 = sGalois_elem_pow[r7+i]; r6 = sGalois_elem_pow[r7+i+1];
r3 = r3 + r5; r4 = r4 + r6;
r3 = Galois_aLog[r3]; r4 = Galois_aLog[r4];
r4 = r4 ˆ r3;
r0 = r0 ˆ r4;

}
Syndromes[j] = r0;

}

Pcode 4.14: Simulation code for syndrome computation.

If all computed syndromes are zero, then no errors are present in the received data and we skip the next steps
of RS decoding. The received data is not in error most of the time. Even if data is in error, only a few elements
(one or two with high probability) of data will be in error. With the RS(204, 188) decoder, we can correct up to
8 (= T) error data elements. If errors are present in the received data block, then not all syndromes are zero and
the degree of the error locator polynomial gives the indication of the number of errors present in the data. Next,
we discuss the simulation of the error location polynomial generation process.

Error Locator Polynomial Computation
We use the Berlekamp-Massey recursion to compute the error locator polynomial �(x). With Berlekamp-Massey
recursion, error locator polynomial �(x) is generated using 2T syndromes in 2T iterations. Before entering the
loop, we initialize L , the degree of �(x) polynomial, as zero (i.e., �(x) = 1, assuming zero errors). We compute
the discrepancy � at the beginning of every iteration, and if the discrepancy is not zero, then we update �(x)

with the discrepancy. For the first iteration, � (discrepancy) is a 0th syndrome. For convenient simulation, we
get the first discrepancy � before entering the loop and we compute discrepancy for the next iteration always at
the end of the current iteration.

Implementation of Error Correction Algorithms 173

The discrepancy � is computed by convolving syndromes with the current error locator polynomial,
�(x) = 1+�1x +�2x2 +· · ·+�L−1x L−1 of degree L −1. For the i-th iteration, discrepancy �i is computed
as follows:

�i =
Li−1∑
j=0

� j Si− j

= �0Si ⊕�1Si−1 ⊕· · ·⊕�Li−1Si−(Li −1)

= Si ⊕�1Si−1 ⊕· · ·⊕�Li−1Si−(Li −1)

In the i-th iteration, we use Li − 1 Galois field additions and multiplications in convoluting syndromes with
current �(x) to compute discrepancy �i . We use the Galois logarithm and anti-logarithm look-up tables for
the Galois field elements multiplication. Because we know all syndromes in advance, we get logarithm values
for the syndromes before entering the loop of �(x) computation. We have to compute the logarithm values for
�(x) coefficients in every iteration as they change from iteration to iteration. With this, we can compute the i-th
iteration discrepancy �i in 6∗ (Li −1) cycles.

Depending on the current iteration discrepancy �i computed at the end of the previous iteration, we update
�(x) (if �i 	= 0) as �i(x) = �i−1(x)− x ·�i · T i−1(x), where T (i−1)(x) is computed in the previous iteration
as

T (i−1)(x) =
{

�i−2(x)/�i−1 if �i−1 	= 0 and 2Li −1 ≤ i −1

x · T i−2(x) otherwise

If �i 	= 0, we spend a total of (T +1)∗ 7 cycles for computing �i (x) and another (T +1)∗ 7 cycles for computing
T i(x) if 2Li −1 ≤ i −1. We spend an overhead of another 20 cycles for moving the data to and from buffers and
for conditional checks. Thus, for T = 8 we consume about 16 ∗ [6∗ (Li −1)+14 ∗ 9+20] cycles for computing
error locator polynomial. The simulation code for computing the error locator polynomial �(x) using the
Berlekamp-Massey recursion routine is given in Pcode 4.15.

Once we compute the error locator polynomial �(x), depending on the degree of �(x), we get an idea about
the number of errors present in the received data. However, we cannot come to a conclusion about the number
of errors present by seeing the degree of �(x) as it gives wrong information when the number of errors present
in the received data vector is more than T . By finding the roots of the error locator polynomial �(x), we can
get exact information about the number of errors (if the errors are less than or equal to T) present and about the
error positions in the received data vector.

Roots Computation for Error Locator Polynomial
The roots {Xi ,0 ≤ i < L} of the error locator polynomial gives the error positions in the received data vector (if
at all present and if they are less than or equal to T). We find the roots of the error locator polynomial �(x) by
substituting every possible error position (Chien’s search) in �(x) and checking for whether the particular error
position satisfies the �(x). In error locator polynomial roots finding, we need to find the powers of the Galois
field elements and we compute the powers here with an analytic method (instead of using look-up tables as in
syndrome computation). Here, we consume 7 cycles (and this can be achieved with one cycle on an embedded
processor with circular buffer registers; see Appendix A, Section A.4, on the companion website) to find the
power of a Galois field element. To find whether a particular data element is in error (if that element position
satisfies the �(x)) or not, we spend (7+4)∗ L cycles. We search all data element positions to find the roots of the
�(x). Therefore, to find the roots of error locator polynomial �(x) with an analytic method (without using the
modular arithmetic registers of an embedded processor), we consume about 204 ∗ 11∗ L cycles. The simulation
code of Chien’s search algorithm for finding the roots of an error locator polynomial is given in Pcode 4.16.

Computation of Error Magnitude Polynomial
We need to know error magnitudes (since the data elements are nonbinary) to correct the errors present in the
received data. The error magnitudes are computed with the help of an error magnitude polynomial. We compute

174 Chapter 4

L = 0;
r0 = Syndromes[0]; // starting delta
for(k = 0;k < 2*T;k++) {

for(i = 0;i < T+1;i++)
Conn_poly[i] = Elp[i]; // Conn_poly = Elp

if (r0 != 0) { // Elp = Conn_poly - Delta*Tx
r2 = Galois_Log[r0]; // log (delta)
for(i = 0;i < T+1;i++) {

r1 = Conn_poly[i]; r3 = Tx[i];
r3 = Galois_Log[r3]; // log (delta), log(Tx[i])
r3 = r2 + r3;
r3 = Galois_aLog[r3];
r1 = r3 ^ r1; // Conn_poly[i]ˆDelta*Tx[i]
Elp[i] = r1;

}
if (2*L < (k + 1)) {

L = k + 1 - L;
for(i = 0;i < T+1;i++) { // Tx = Conn_poly/Delta

r1 = Conn_poly[i];
r1 = Galois_Log[r1];
m = r1 - r2;

if (m < 0)
m+= 255;

r1 = Galois_aLog[m];
Tx[i] = r1;

}
}

}
for(i = T+1;i > 0;i--) // Tx = [0 Tx], increment degree by 1

Tx[i] = Tx[i-1];
Tx[0] = 0;
r0 = Syndromes[k+1];
if(L > 0) {

for(i = 0;i < L;i++) { // compute delta by convolution of Syndromes and Elp
r1 = log_Syndromes[k-i+1]; r2 = Elp[i+1];
r2 = Galois_Log[r2];
r1 = r1 + r2;
r2 = Galois_aLog[r1];
r0 = r0 ^ r2;

}
}

}

Pcode 4.15: Simulation code for Berlekamp-Massey recursion.

the error magnitude polynomial
(x), as described in Section 3.6, using the following equation:

(x) = �(x)[1+ S(x)] mod x2T+1

where S(x) =
2T∑
j=1

S j x j and �(x) =
v∑

i=0

�i x i with �0 = 1

Computation of the error magnitude polynomial
(x) involves multiplication of two polynomials, �(x) and
S(x). If
(x) = 1+ω1x1 +ω2x2 +· · · , then the coefficients of
(x) are obtained as follows:

ω1 = �1 + S1

ω2 = �2 +�1S1 + S2

. . .

As we know both the error locator polynomial and syndromes in advance, we precompute logarithm values
for syndromes and error locator polynomial coefficients to efficiently perform the Galois field multiplication

Implementation of Error Correction Algorithms 175

k = 0;
for(i = 203;i>=0;i--) {

r0 = Elp[0];
for(j = 1;j < L+1;j++) {

r1 = i*j; // power of Galois field
r2 = r1 >> 8; r1 = r1 & 0xff; // take modulo 255
r3 = log_Elp[j]; r1 = r1 + r2;
r2 = r1 >> 8; r1 = r1 & 0xff;

r1 = r1 + r2;
r1 = r1 + r3; // addition of powers (same as multiplication of log values)
r2 = Galois_aLog[r1];
r0 = r0 ˆ r2;

}
if (r0 == 0) {

Error_position[k] = 255-i;
k++;

}
}

Pcode 4.16: Simulation code for finding roots of error locator polynomial.

Emp[0] = 0; // error magnitude polynomial first coefficient logarithm
value
for(j = 1;j<=T;j++) {

r0 = 0;
for(i = 0;i<=j;i++) {

r1 = log_Elp[i]; r2 = log_Syndromes[j-i];
r1 = r1 + r2;
r2 = Galois_aLog[r1];
r0 = r0 ˆ r2;

}
r0 = Galois_Log[r0];
Emp[j] = r0; // logarithm of error magnitude polynomial i-th coefficicent

}

Pcode 4.17: Simulation code for computing error magnitude polynomial.

in computing
(x). As we can only correct T data element errors, we compute
(x) up to degree T . The
simulation code for computing the error magnitude polynomial is given in Pcode 4.17. For T = 8, we consume
about 4∗ T+ (5+10 +15+· · ·+40) cycles to compute the error magnitude polynomial.

Data Error Correction
To correct data errors, we have to know both the error positions and error magnitudes. We know error positions
from the roots of the error locator polynomial. We find error magnitudes with the help of the error magnitude
polynomial, differentiated error locator polynomial, and error roots {Xi ,0 ≤ i < L} by using the following
equation:

ei = − Xi
(X−1
i)

�′(X−1
i)

where �′(x) is the differentiated error locator polynomial of �(x), and is achieved by simply zeroing alternate
coefficients of �(x). Therefore, �′(x) = �1 + �3x2 + · · · . We compute error magnitudes (Yi) for all error
positions (Xi) by substituting the inverse of error position (X−1

i) in
(x) and �′(x) and then computing the
Galois field arithmetic expression Xi
(X−1

i)/�′(X−1
i). The simulation code for computing error magnitudes

and for correcting data errors is given in Pcode 4.18. By interleaving the program code, we consume about
144 (= T ∗ 18) cycles to compute
(X−1

i) and �′(X−1
i), 7 more cycles to perform division and multiplication

for computing error magnitude (ei) and about 3 cycles for getting the error data element and correcting with
error magnitude. Therefore, we consume a total of 154 cycles for correcting one data element. If we have data
with L errors, then we spend L ∗ 154 cycles to correct all the error data elements.

176 Chapter 4

for(j = 0;j<=T;j+=2) { // logarithm of derivative of error locator polynomial
log_Derv_Elp[j] = log_Conn_poly[j+1];
log_Derv_Elp[j + 1] = log0; // log0 = a value not in the Galois field GF(28)

}
for(i = 0;i < L;i++) { // Find error magnitudes using Forney algorithm, and correct data errors

r0 = 0; r5 = 0;
r2 = Error_position[i];
for(j = 0;j<=T;j++) {

r1 = Omega_gf[j]; r6 = log_Derv_Elp[j];
r3 = r2 * j;
r4 = r3 >> 8; r3 = r3 & 0xff;
r3 = r4 + r3;
r4 = r3 >> 8; r3 = r3 & 0xff;
k = r4 + r3;
k = 255 - k;
if (k < 0)

k+= 255;
r1 = r1 + k; r6 = r6 + k;
r1 = Galois_aLog[r1]; r6 = Galois_aLog[r6];
r0 = r0 ˆ r1; r5 = r5 ˆ r6;

}
r0 = Galois_Log[r0]; r5 = Galois_Log[r5];
k = r0 + 2*r2 - r5;
if (k < 0)

k+= 255;
r0 = Galois_aLog[k];
m = N-1 - r2;
rec_msg[m] = rec_msg[m]ˆr0;

}

Pcode 4.18: Simulation code for computing error magnitudes and data correction.

4.2.6 RS(204, 188) Simulation Results

In this section, we present the simulation results of the RS(204, 188) coder. We get input data of 188 bytes and
compute parity data of 16 bytes from the input data using the RS(204, 188) encoder. To frame 204 elements of
encoded data, we left shift the input data vector by 16 bytes and append parity data on the right side. Then we
add eight random errors (as RS(204, 188) can correct up to eight errors) to the encoded data, and we input to
the RS(204, 188) decoder. The simulation results for the RS(204, 188) coder with encoder input, decoder output
and intermediate results follow.

Generator polynomial coefficients vector:
G=[0x3b, 0x24, 0x32, 0x62, 0xe5, 0x29, 0x41, 0xa3, 0x8, 0x1e, 0xd1, 0x44, 0xbd, 0x68, 0xd,
0x3b, 0x1]

RS(204, 188) encoder simulation results:
Input data vector
D =[0x70, 0x18, 0x00, 0x36, 0xc9, 0xd1, 0x25, 0xa2, 0x95, 0x34, 0xb4, 0xff, 0xd2, 0xc4, 0x63, 0x01,

0x6d, 0x53, 0xc9, 0x6f, 0xb5, 0xf3, 0xb5, 0x23, 0x52, 0xc9, 0x49, 0xcc, 0x36, 0x62, 0xee, 0xfb,
0xc0, 0x9e, 0x0e, 0x56, 0x3d, 0x88, 0xad, 0x38, 0xa9, 0x1e, 0xda, 0x2a, 0x9d, 0xa2, 0xc4, 0x8b,
0x68, 0x36, 0xa0, 0xd4, 0xc3, 0xc3, 0xb3, 0xd1, 0x30, 0x32, 0x36, 0xc4, 0xe9, 0x3b, 0x58, 0xb2,
0x04, 0x8e, 0x9b, 0x73, 0x07, 0xfd, 0x0a, 0x0c, 0x1d, 0x4f, 0xb5, 0x1f, 0x83, 0x18, 0xb1, 0x46,
0x76, 0xa4, 0x09, 0xe5, 0xf7, 0x31, 0x27, 0x37, 0x8e, 0xe3, 0x51, 0x73, 0x73, 0x96, 0xb6, 0xb6,
0x41, 0x1d, 0x1b, 0x1d, 0x59, 0xba, 0x61, 0xb4, 0x5b, 0x03, 0x2a, 0xdd, 0x8e, 0x08, 0x2a, 0x2b,
0x18, 0xc1, 0x3e, 0xc3, 0x89, 0xf2, 0xfd, 0x0b, 0xfb, 0x51, 0x74, 0xb7, 0xee, 0x8c, 0x1e, 0x86,
0x90, 0x30, 0x4f, 0xf5, 0xf0, 0x37, 0xce, 0x44, 0xcf, 0x69, 0x9f, 0x8c, 0x83, 0x05, 0x6d, 0x05,
0x06, 0x79, 0x86, 0xf4, 0xc6, 0x29, 0x9f, 0xbf, 0x27, 0x95, 0xee, 0x78, 0xc8, 0x9f, 0x0b, 0x14,
0x78, 0x6d, 0xfd, 0x8b, 0xf1, 0x1b, 0x2a, 0x5e, 0xaf, 0xfa, 0x0d, 0x17, 0x14, 0xad, 0xea, 0x12,
0x97, 0x3a, 0xf9, 0x66, 0x83, 0x82, 0x97, 0x5e, 0x1c, 0x9b, 0x87, 0x81]

Parity vector generated by RS(204, 188) encoder
B =[0xd4, 0x02, 0x65,0xb2, 0x97, 0x1b, 0xa2, 0x06, 0x3b, 0xbf, 0xd5, 0xe7, 0x5c, 0xa4, 0x3b, 0x99]

Implementation of Error Correction Algorithms 177

Encoder output (parity bytes are bolded): D | B
M = [0x70, 0x18, 0x00, 0x36, 0xc9, 0xd1, 0x25, 0xa2, 0x95, 0x34, 0xb4, 0xff, 0xd2, 0xc4, 0x63, 0x01,

0x6d, 0x53, 0xc9, 0x6f, 0xb5, 0xf3, 0xb5, 0x23, 0x52, 0xc9, 0x49, 0xcc, 0x36, 0x62, 0xee, 0xfb,
0xc0, 0x9e, 0x0e, 0x56, 0x3d, 0x88, 0xad, 0x38, 0xa9, 0x1e, 0xda, 0x2a, 0x9d, 0xa2, 0xc4, 0x8b,
0x68, 0x36, 0xa0, 0xd4, 0xc3, 0xc3, 0xb3, 0xd1, 0x30, 0x32, 0x36, 0xc4, 0xe9, 0x3b, 0x58, 0xb2,
0x04, 0x8e, 0x9b, 0x73, 0x07, 0xfd, 0x0a, 0x0c, 0x1d, 0x4f, 0xb5, 0x1f, 0x83, 0x18, 0xb1, 0x46,
0x76, 0xa4, 0x09, 0xe5, 0xf7, 0x31, 0x27, 0x37, 0x8e, 0xe3, 0x51, 0x73, 0x73, 0x96, 0xb6, 0xb6,
0x41, 0x1d, 0x1b, 0x1d, 0x59, 0xba, 0x61, 0xb4, 0x5b, 0x03, 0x2a, 0xdd, 0x8e, 0x08, 0x2a, 0x2b,
0x18, 0xc1, 0x3e, 0xc3, 0x89, 0xf2, 0xfd, 0x0b, 0xfb, 0x51, 0x74, 0xb7, 0xee, 0x8c, 0x1e, 0x86,
0x90, 0x30, 0x4f, 0xf5, 0xf0, 0x37, 0xce, 0x44, 0xcf, 0x69, 0x9f, 0x8c, 0x83, 0x05, 0x6d, 0x05,
0x06, 0x79, 0x86, 0xf4, 0xc6, 0x29, 0x9f, 0xbf, 0x27, 0x95, 0xee, 0x78, 0xc8, 0x9f, 0x0b, 0x14,
0x78, 0x6d, 0xfd, 0x8b, 0xf1, 0x1b, 0x2a, 0x5e, 0xaf, 0xfa, 0x0d, 0x17, 0x14, 0xad, 0xea, 0x12,
0x97, 0x3a, 0xf9, 0x66, 0x83, 0x82, 0x97, 0x5e, 0x1c, 0x9b, 0x87, 0x81, 0xd4, 0x02, 0x65, 0xb2,
0x97, 0x1b, 0xa2, 0x06, 0x3b, 0xbf, 0xd5, 0xe7, 0x5c, 0xa4, 0x3b, 0x99]

RS(204, 188) decoder results:
Received data (error data elements are underlined)
R=[0x70, 0x18, 0x00, 0x36, 0xc9, 0xd1, 0x25, 0xa2, 0x95, 0x34, 0xb4, 0xff, 0xd2, 0xc4, 0x63, 0x01,

0x6d, 0x53, 0xc9, 0x6f, 0xb5, 0xf3, 0xb5, 0x23, 0x52, 0xc9, 0x49, 0xcc, 0x36, 0x62, 0xee, 0xfb,
0xc0, 0x9e, 0x0e, 0x56, 0x3d, 0x88, 0xad, 0x38, 0xa9, 0x1e, 0xda, 0x2a, 0x67, 0x38, 0xc4, 0x8b,
0x68, 0x36, 0xa0, 0xd4, 0xc3, 0xc3, 0xb3, 0xd1, 0x30, 0x32, 0x36, 0x10, 0xe9, 0x3b, 0x58, 0xb2,
0x04, 0x8e, 0x9b, 0xa5, 0x07, 0xfd, 0x0a, 0x0c, 0x1d, 0x4f, 0xb5, 0x1f, 0x83, 0x18, 0xb1, 0x46,
0x76, 0xa4, 0x09, 0xe5, 0xf7, 0x71, 0x27, 0x37, 0x8e, 0xe3, 0x51, 0x73, 0x73, 0x96, 0xb6, 0xb6,
0x41, 0x1d, 0x1b, 0x1d, 0x59, 0xba, 0x61, 0xb4, 0x5b, 0x03, 0x2a, 0x48, 0x8e, 0x08, 0x2a, 0x2b,
0x18, 0xc1, 0x3e, 0xc3, 0x89, 0xf2, 0xfd, 0x0b, 0xfb, 0x51, 0x74, 0xb7, 0xee, 0x8c, 0x1e, 0x5c,
0x90, 0x30, 0x4f, 0xf5, 0xf0, 0x37, 0xce, 0x44, 0xcf, 0x69, 0x9f, 0x8c, 0x83, 0x05, 0x6d, 0xb1,
0x06, 0x79, 0x86, 0xf4, 0xc6, 0x29, 0x9f, 0xbf, 0x27, 0x95, 0xee, 0x78, 0xc8, 0x9f, 0x0b, 0x14,
0x78, 0x6d, 0xfd, 0x8b, 0xf1, 0x1b, 0x2a, 0x5e, 0xaf, 0xfa, 0x0d, 0x17, 0x14, 0xad, 0xea, 0x12,
0x97, 0x3a, 0xf9, 0x66, 0x83, 0x82, 0x97, 0x5e, 0x1c, 0x9b, 0x87, 0x81, 0xd4, 0x02, 0x65, 0xb2,
0x97, 0x1b, 0xa2, 0x06, 0x3b, 0xbf, 0xd5, 0xe7, 0x5c, 0xa4, 0x3b, 0x99]

Syndrome vector
S =[0xd9, 0x9c, 0xfd, 0x0, 0x84, 0x16, 0x96, 0x3e, 0x60, 0x3a, 0x18, 0xd3, 0xfb, 0xcf, 0x90, 0xf0]

Error locator polynomial vector
�=[0x1, 0x9a, 0x3f, 0xe1, 0xc1, 0x34, 0x13, 0x7b, 0x62]

Error position vector
X =[0x3c, 0x4c, 0x60, 0x76, 0x88, 0x90, 0x9e, 0x9f]

Error magnitude polynomial vector

=[0x1, 0x43, 0x13, 0xad, 0x86, 0xfd, 0xad, 0x88, 0xaa]

Error magnitudes
e =[0xb4, 0xda, 0x95, 0x40, 0xd6, 0xd4, 0x9a, 0xfa]

Decoder output (corrected data elements are italicized and underlined)
D=[0x70, 0x18, 0x0, 0x36, 0xc9, 0xd1, 0x25, 0xa2, 0x95, 0x34, 0xb4, 0xff, 0xd2, 0xc4, 0x63, 0x1,

0x6d, 0x53, 0xc9, 0x6f, 0xb5, 0xf3, 0xb5, 0x23, 0x52, 0xc9, 0x49, 0xcc, 0x36, 0x62, 0xee, 0xfb,
0xc0, 0x9e, 0xe, 0x56, 0x3d, 0x88, 0xad, 0x38, 0xa9, 0x1e, 0xda, 0x2a, 0x9d, 0xa2, 0xc4, 0x8b,
0x68, 0x36, 0xa0, 0xd4, 0xc3, 0xc3, 0xb3, 0xd1, 0x30, 0x32, 0x36, 0xc4, 0xe9, 0x3b, 0x58, 0xb2,
0x4, 0x8e, 0x9b, 0x73, 0x7, 0xfd, 0xa, 0xc, 0x1d, 0x4f, 0xb5, 0x1f, 0x83, 0x18, 0xb1, 0x46,
0x76, 0xa4, 0x9, 0xe5, 0xf7, 0x31, 0x27, 0x37, 0x8e, 0xe3, 0x51, 0x73, 0x73, 0x96, 0xb6, 0xb6,
0x41, 0x1d, 0x1b, 0x1d, 0x59, 0xba, 0x61, 0xb4, 0x5b, 0x3, 0x2a, 0xdd, 0x8e, 0x8, 0x2a, 0x2b,
0x18, 0xc1, 0x3e, 0xc3, 0x89, 0xf2, 0xfd, 0xb, 0xfb, 0x51, 0x74, 0xb7, 0xee, 0x8c, 0x1e, 0x86,
0x90, 0x30, 0x4f, 0xf5, 0xf0, 0x37, 0xce, 0x44, 0xcf, 0x69, 0x9f, 0x8c, 0x83, 0x5, 0x6d, 0x5,
0x6, 0x79, 0x86, 0xf4, 0xc6, 0x29, 0x9f, 0xbf, 0x27, 0x95, 0xee, 0x78, 0xc8, 0x9f, 0xb, 0x14,
0x78, 0x6d, 0xfd, 0x8b, 0xf1, 0x1b, 0x2a, 0x5e, 0xaf, 0xfa, 0xd, 0x17, 0x14, 0xad, 0xea, 0x12,
0x97, 0x3a, 0xf9, 0x66, 0x83, 0x82, 0x97, 0x5e, 0x1c, 0x9b, 0x87, 0x81, 0xd4, 0x2, 0x65, 0xb2,
0x97, 0x1b, 0xa2, 0x6, 0x3b, 0xbf, 0xd5, 0xe7, 0x5c, 0xa4, 0x3b, 0x99]

4.2.7 RS(N, K) Coder Computational Complexity

The cycle consumption estimates of the RS encoder and decoder discussed in Sections 4.2.4 and 4.2.5 are
meaningful only with the particular approach followed in the simulation of the RS encoder and decoder. In
this implementation, we assumed sufficient on-chip memory (1.5 kB for the Galois_aLog[], 0.5 kB for the

178 Chapter 4

Galois_Log[] and for temporary working buffers, and 3.2 kB for precomputed look-up tables in syndrome
computation) is available to store the look-up table values. Whatever approach we use in the implementation
of RS codes, the overall cycle cost of RS coding depends on its error-correction capability (i.e., T). If we want
to correct more errors with RS coding by adding more redundancy to the original data, then the computational
cost of RS coding also increases. Next, we discuss the computational complexity of the RS coder for two
different values of T with the same implementation techniques used in this chapter to perform RS encoding
and decoding. The expressions used for cycles estimate is valid only with the assumption of one cycle per
operation (including data loads) after interleaving the program code to eliminate pipeline stalls of the reference
embedded processor. If we do not interleave the program code, then the cycle consumption increases by a lot as the
approach for implementation of RS codes involves many data load/store memory accesses. In addition, we did not
include the overhead of initialization of variables, jumps and other pipeline stalls in obtaining cycle consumption
expressions.

RS Encoder Computational Complexity
Based on Section 4.2.4, the cycles estimate for the RS(N, K) encoder in terms of T follows:

encoder cycles = K ∗ (2∗ T ∗ 9+6)

For the RS(204, 188) coder with T = 8 error correction capability, we consume about 28,200 (= 188∗ (2∗ 8∗ 9+
6)) cycles to compute 16 parity elements using the RS(204, 188) encoder. For T = 16, we consume about 55,272
(= 188 ∗ (2∗ 16∗ 9+6)) cycles to compute 32 parity elements using the RS(220, 188) encoder.

RS Decoder Computational Complexity
To correct up to T data errors using the RS(N, K) decoder, the total cycles we consume in all four steps of
decoding as seen in Section 4.2.5 follows:

Decoder cycles = [12 ∗ (2∗ T −1)∗ N/2 + N]+2∗ T ∗ [6∗ (Li −1)+14 ∗ (T +1)+20]+ N ∗ 11∗ L

+ [W + L ∗ (T ∗ 18+10)]

where Li is the length/degree of the error locator polynomial in the i-th iteration of the Berlekamp-Massey
recursive algorithm, L is actual number of data errors occurred in the received data and W is the number of
cycles consumed by the error magnitude polynomial computation. The decoder cycles expression depends on
many parameters and we assume some values for Li and L parameters in obtaining cycles. For T = 8 (or 16), we
obtain the RS decoder cycles by assuming the actual errors occurred as L = 6 (or 12) and the average iteration
count used for computing discrepancy (Li −1) as 4 (or 8). The value of W is 212 (or 744). The computational
complexity of the individual steps of the RS(204, 188) (or RS(220, 188)) decoder in terms of cycles follows:

• Syndrome computation: 18,600 (or 41,030)
• Error locator polynomial computation: 2720 (or 9792)
• Roots finding: 13,464 (or 29,040)
• Error magnitudes and correction: 1136 (or 4320)

Total cycle consumption for RS(204, 188) is obtained by summing individual step cycles and is equal to
35,920 (or 84,182). Of the four steps comprising the RS decoder, the syndrome computation and roots-finding
steps consume 80 to 90% of total cycles. As we see from the previous estimated figures, the cycle consumption of
the RS(N, K) decoder increases with T (i.e., cycles consumption increases with the error-correction capability
of the RS decoder).

4.2.8 RS Decoder: Efficient Implementation

As discussed in Section 4.2.7, the RS decoder is too costly in terms of cycle consumption. For example, if
we are working with a 1 Mbps bit rate application, and we want to correct the errors present in the received
data using RS (204,188) decoder, then we consume about 191 (= 35920∗ 5319) processor MIPS to handle
5319 (= 1000000/188) output data blocks per second. In general, embedded processors will have 500 to 1000
MPIS budget. If the RS decoder only consumes 20 to 40% of the MIPS, then running all other (physical layer)

Implementation of Error Correction Algorithms 179

modules on a single embedded processor will not be possible. Typically, we consider average MIPS as a criterion
to determine the MIPS budget for a particular application.

We may not find errors in the received data all the time and even if present, most of the time one or two errors
will be present. If no errors are present in the current block of received data frame, then the RS decoder cycle cost
for that particular block can be reduced to 50% of the RS decoder total cycles. For this, we check the syndrome
values after syndrome computation and stop further decoding if all syndromes are zero. If all syndromes are not
zero and we obtain the error locator polynomial degree as one after the error locator polynomial computation,
then we have one error in the received data block. If one error is present in the received data block, then computing
error roots and error magnitude polynomial can be avoided. In this case, the error correction of the received
data block is performed using the syndrome values and first-degree error locator polynomial coefficient. The
simulation code for correcting single errors in the received data is given in Pcode 4.19.

r2 = log_Conn_poly[1]; r0 = Syndromes[0];
m = N-1 - r2;
rec_msg[m] = rec_msg[m]ˆr0;

Pcode 4.19: Simulation code for correcting single data errors.

If two errors are present in the received data block (i.e., v = L = 2), then we use the efficient method (for finding
two roots of the error locator polynomial) as described in Section 4.1.4, BCH Decoder: Further Optimization
for T = 2. After finding two roots of the error locator polynomial, we use direct error correction for correcting
two data elements (in this case we can avoid error magnitude polynomial computation and also avoid Forney
algorithm for error magnitude computation). The simulation code for correcting double errors with the RS(204,
188) decoder is given in Pcode 4.20. With this, although the full the RS decoder needs 191 MIPS, we consume
on average 100 MIPS for RS(204, 188) decoding at a 1-Mbps data rate on the reference embedded processor.

r4 = Error_position[0]; r5 = Error_position[1]; // i1, i2
r2 = Galois_aLog[r4]; r3 = Galois_aLog[r5]; // X1, X2
r0 = r4 + log_Syndromes[0]; r1 = Syndromes[1];
r0 = Galois_aLog[r0]; m = N-1-r4;
r0 = r0 ˆ r1; r2 = r2ˆr3; // S1+S0 ·X1, X1+X2
r0 = Galois_Log[r0]; r2 = Galois_Log[r2];
r2 = 255-r2; r4 = rec_msg[m]; // 1/(X1+X2)
r0 = r0 + r2; r2 = Syndromes[0]; // (S1+S0 ·X1)/(X1+X2)
r0 = Galois_aLog[r0]; k = N-1-r5;
r2 = r2 ˆ r0; r5 = rec_msg[k]; // S0 + (S1+S0 ·X1)/(X1+X2)
r4 = r4 ˆ r2; r5 = r5 ˆ r0;
rec_msg[m] = r4;
rec_msg[k] = r5;

Pcode 4.20: Simulation code for correcting double data errors.

4.3 RS Erasure Codes

In Section 3.6, we discussed the RS(N, K) coder that corrects T = (N − K)/2 errors. With the RS(N, K)

coder, we compute 2T parity symbols at the transmitter side from K message symbols to form N symbols’
length codeword. At the receiver, using these 2T parity symbols, we correct up to T errors in the received N
length codeword. In this section, we discuss a different kind of RS(N, K) coder, called the RS erasure coder,
that can correct up to 2T errors given the error locations present in the received data. We discuss the encoder
structure and decoding procedure for RS erasure codes, as well as simulation and optimization techniques for
efficient implementation of RS erasure codes.

4.3.1 Erasure Codes

RS codes with known error locations are called erasure codes. In Section 4.2, we computed the error locator
polynomial from the syndromes, and then computed it roots to find the error locations. At these error locations,

180 Chapter 4

N 2 2 N 2 1210

L bytes

CRC byte

Row of bytes

Figure 4.8: Illustration of erasure information.

we could correct the received codeword symbols using error magnitudes which are computed from the syndrome
polynomial and error locator polynomial. We could build the error locator polynomial using the Berlekamp-
Massey algorithm until degree T and not more than that due to incomplete information from the convolution of
the syndrome polynomial and connection polynomial. We can get only T error locations from the roots of the
error locator polynomial of degree T . Actually, the RS decoder has the capability to correct up to 2T errors if
we know 2T error locations in advance. How come we know error locations at the receiver in advance? Well, in
some receivers using upper layer error check on received data, we can know the error locations. For example,
in the DVB-H receivers, the MPE-FEC module (see Section 17.4) design provides the erasure information and
allows us to correct up to 2T errors using the RS decoder.

We discuss a simple system that generates erasure information for us. Assume that the data is divided into
N blocks (or packets) of length L bytes each and arranged as shown in Figure 4.8. Out of L bytes, L − 1
bytes are payload (or message) and 1 byte (the last one) is CRC data (see Section 3.2 for more details on CRC
computation). Next, we transmit all NxL bytes as one frame to the receiver. At the receiver, assume that the
received frame contains a few error bytes. If we arrange the received frame as in Figure 4.8 and compute the
CRC for each payload block (with L −1 bytes), then we know whether any particular block was received with
error bytes. We tag those data blocks whose computed CRCs do not match their received CRC and treat them
as error blocks. Next, if we obtain the codeword from a row of data bytes as shown in Figure 4.8, then we know
the error locations of that codeword in advance from the tag information.

4.3.2 RS Erasure Encoder

Given the data frame, we discuss how to compute the parity symbols to work with erasure codes. For this, we
consider a DVB-H MPE-FEC module that supports erasure decoding. The MPE-FEC frame is arranged as a
matrix with 255 columns and a flexible number of rows. As we discussed, the RS coder is a block code that
takes K data symbols as input and output N symbol codeword by adding computed 2T parity symbols to K data
symbols. Here, N = 255 = 2m − 1 and hence m = 8 (i.e., symbol = byte, represented with a field element that
belongs to the Galois field GF(28)). Next, we choose K depending on how much error-correction capability we
are targeting. In the case of the DVB-H MPE-FEC module, K is chosen as 191. The size of columns (i.e., L)
can be a variable and we specify its value from the length of payload data that we want to pack in a single frame.
If Q is the length of data bytes and if L∗ 191 < Q, then we pad Q − L ∗ 191 zero bytes to the data frame before
computing parity, as shown in Figure 4.9. The payload data section may not occupy a full column of matrix, in
which case we continue the next data section immediately after the current data section. The data of S sections are
stored to the matrix in columns one after another and zeros are padded at the end to make the payload data length
L ∗ 191.

Next, we work row-wise to compute the RS parity bytes. We compute 64 (= 2T) parity bytes from 191 (= K)

data bytes using the RS encoder given in Section 3.6.1. The generator polynomial G(x) used in computing
64 parity bytes follows:

G(x) = (x +α0)(x +α1)(x +α2) · · · (x +α63) (4.23)

Implementation of Error Correction Algorithms 181

#1

#1

#S

#2 #64
#2

#3

#4

K 5 191 2T 5 N 2 K 5 64

P
A
D

Z
E
R
O
S

Data Sections RS Sections

Codeword

L

One data
section

P
a
r
i
t
y

D
a
t
a

P
a
r
i
t
y

D
a
t
a

P
a
r
i
t
y

D
a
t
a

Figure 4.9: Structure of RS erasure encoder.

Data Section 1 Data Section 2 Data Section S

Section 1 RS Section 2 RS Section 64

RS

CRC

Figure 4.10: One MPE-FEC frame with CRC appended to data and RS sections.

We append 64 parity symbols to 191 data symbols to form a 255 (= N) length systematic RS code-
word. Let M(x) be the encoder output message (or codeword polynomial), represented with an N − 1 degree
polynomial as

M(x) = m254x254 +m253x253 +m252x252 +· · ·+m2x2 +m1x +m0 (4.24)

where mi are field elements belongs to GF(28). In Figure 4.9, one row of matrix can be represented with vector
M = [m254,m253,m252, . . . ,m2,m1,m0], which consists of N = 255 bytes.

With the computation of parity data, the matrix is completely filled with data bytes and parity bytes and
contains a total of N ∗ L bytes as shown in Figure 4.9. Next, we compute the CRC for each data section (except
for the zero padded portion) and for each RS parity data columns and append it to corresponding sections, and
then transmit to the receiver as a single frame, as shown in Figure 4.10.

At the receiver,weagain compute theCRC for each section and compare it with the received CRCof that section
and we classify those sections as unreliable or error sections if the CRCs of those sections do not match. After
classification of each section as reliableor unreliable, wearrange them again in matrix form as shown in Figure 4.9.
Next, we have the information about which columns contain the error data. Let R = [r254,r253,r252, . . . ,r2,r1,r0]
be the vector representing one row of matrix; we come to know the error locations in that vector from the sections’
CRC check tagged information. Note that the CRC tagged information may say current byte as an error byte,
but actually this byte need not be in error (since the tagged information only conveys that there is a error data
somewhere in the column to which the current byte belongs). We treat the current byte as an error byte if the
CRC tagged information says so. In the next section, we discuss the RS decoder that corrects up to 2T errors
given the erasure (or error locations) information.

4.3.3 RS Erasure Decoder

As discussed in Section 3.6, given the received codeword R = [rN −1,rN −2, . . . ,r2,r1,r0] of length N symbols,
RS decoding consists of four steps: (1) syndrome computation, (2) error locator polynomial computation, (3)
error root computation to find error locations, and (4) error magnitude computation to correct the errors. Of these
four steps, we don’t need to compute Steps 2 and 3 for erasures correction as erasure gives the error locations.

182 Chapter 4

We can use Pcode 4.14 to compute the syndromes of received vector R. Given the syndromes and error locations,
we have two approaches to correct errors. One approach was discussed in Section 4.2.2, Computation of Error
Magnitude Polynomial and Data Error Correction, in which we compute the error magnitude polynomial and then
error magnitudes from differentiated error-locator and error magnitude polynomials. As we are not computing
the error-locator polynomial for erasures decoding, we follow a different approach (using the Bjorck-Pereyra
algorithm) discussed in Hong and Vetterli (1995), which doesn’t need the computation of an error magnitude
polynomial and error locator polynomial. We recursively build the error magnitudes using the syndromes and
error location values. Let Si = αai ,0 ≤ i ≤ 2T − 1, and E j = αbi ,0 ≤ j ≤ L − 1, where αai ,αb j ∈ GF(28)

represent syndrome values and error location values. Given L(≤ 2T), the number of error locations, a recursive
algorithm to get error magnitudes, is executed as follows:

for i = 0:L − 1
for j = L: − 1:i + 1

S j =S j − E∗
i S j−1

end
end
for i = L − 2: − 1:0

for j = i + 1:L − 1
S j=S j/(E j−E j−i)

S j−1=S j−1−S j

end
end
for i = 0:L − 1

ei=Si/Ei

end

The values ei ,0 ≤ i ≤ L −1 give the error magnitudes at the error locations Ei . Using error magnitudes ei , we
correct the errors present in the received codeword at locations Ei . The simulation code for the Bjorck-Pereyra
algorithm to compute error magnitudes is given in Pcode 4.21.

Next, we discuss the computational complexity of RS erasure decoding presented in this section to execute
on the reference embedded processor. As discussed in Section 4.2.7, RS Decoder Computational Complexity,
we consume approximately 97,000 cycles to compute syndromes using Pcode 4.14 when N = 255 and 2T = 64.
To compute error magnitudes using Pcode 4.21, we consume approximately (10 + 15)∗ L∗ (L + 1)/2 cycles
(i.e., 52,000 cycles when L = 64). Thus, we require about 150,000 cycles (or approximately 100 cycles per
bit or 100 MIPS at 1-Mbps bit rate) to perform the erasure decoding algorithm. This figure increases when we
want to correct errors other than erasures. Once errors (for which we don’t know locations) are present in the
received sequence, we then have to compute the error locator polynomial and error roots. As discussed in the
previous subsection, roots finding using Chien’s search is as complex as finding syndromes. We will discuss a
few optimization techniques in Section 4.3.5 with which the cycle consumption for decoding errors and erasures
declines significantly.

4.3.4 Decoding Errors and Erasures

We may come across a received sequence containing errors along with the erasures information, and in such
cases we have to perform RS decoding to correct both errors and erasures. To compute errors, we have to know
the ELP. To build the ELP, we use syndromes, which contain information about erasures. In other words, the
computed ELP also has information about erasures. But, with syndromes we can build an ELP only up to degree
T , which is not useful as we already know of more than T error locations with erasures. Since we know the error
locations in advance for erasures, we can also compute the erasure locator polynomial Er(x). Then we build
the ELP on that using the Berlekamp-Massey algorithm. For this, we modify the Berlekamp-Massey algorithm
a little bit to accommodate erasures in the ELP.

Computation of Erasure Locator Polynomial
Given the L error locations a0,a1, . . . ,aL−1, we compute the erasure locator polynomial as Er(x) =
(x +αa0)(x +αa1) · · · (x +αaL−1) = uL−1x L−1 + uL−2x L−2 + · · ·+ u2x2 + u1x + u0, where ui ∈ GF(28). The
coefficients ui of Er(x) are obtained using the Pcode 4.22. The polynomial Er(x) is computed iteratively by
multiplying the factors one after another.

Implementation of Error Correction Algorithms 183

// correct errors

for(i = 0;i < L;i++){
r0 = Error_position[i];
sxr[i] = Galois_aLog[r0];

}
for(i = 0;i < L-1;i++){

for(j = L-1; j > i; j--){
r0 = Error_position[i]; r1 = log_Syndromes[j];
r0 = r0 + r1;
r0 = Galois_aLog[r0]; r1 = Syndromes[j];
r0 = r0 ˆ r1; r1 = Galois_Log[r0];
Syndromes[j] = r0; log_Syndromes[j+1] = r1;

}
}
for(i = L-2;i>=0;i--){

for(j = i + 1;j < L;j++){
r0 = sxr[j]; r1 = sxr[j-i-1];
r0 = r0ˆr1;
r0 = Galois_Log[r0];
r1 = log_Syndromes[j+1];
m = r1 - r0;
if (m < 255) m+= 255;
r0 = Galois_aLog[m]; r1 = Syndromes[j-1];
Syndromes[j] = r0; log_Syndromes[j+1] = m;
r0 = r0 ˆ r1; r1 = Galois_Log[r0];
Syndromes[j-1] = r0; log_Syndromes[j] = r1;

}
}
for(i = 0;i < L;i++){

m = Error_position[i];
r0 = rec_msg[N-m-1]; r1 = Syndromes[i];
r0 = r0 ˆ r1;
rec_msg[N-m-1] = r0;

}

Pcode 4.21: Error magnitudes computation and errors correction.

erasure_poly[0] = erasure_loc[0];
for(i = 1;i < p;i++) {

r0 = erasure_poly[0]; r3 = erasure_loc[i];
r0 = Galois_aLog[r0]; r1 = Galois_aLog[r3];
r0 = r0 ˆ r1;
r6 = Galois_Log[r0]; r2 = erasure_poly[i-1];
r4 = 0;
for(j = i;j > 1;j--){

r0 = r2; r2 = r2 + r3;
r1 = Galois_aLog[r2]; r2 = erasure_poly[j-2];
r1 = r1 ˆ r4;
r5 = Galois_Log[r1];
erasure_poly[j] = r5; r4 = Galois_aLog[r0];

}
r2 = r2 + r3;
r1 = Galois_aLog[r2];
r1 = r1 ˆ r4;
r5 = Galois_Log[r1];
erasure_poly[1] = r5;
erasure_poly[0] = r6;

}

Pcode 4.22: Erasure polynomial computation.

Modified Berlekamp-Massey Algorithm With the modified Berlekamp-Massey algorithm, we compute the
ELP, �(x), using Er(x) as the initial polynomial. The connection polynomial T (x) is also initialized with
Er(x). The value of L gives the degree of the initial ELP. The simulation code for the modified Berlekamp-
Massey algorithm is given in Pcode 4.23. With this ELP, we can get (2T − L)/2 extra error locations information.

184 Chapter 4

For example, if parity length 2T = 64 and erasures numbers L = 60, then we can get two more extra error location
information by building the ELP from Er(x).

for(k = q; k < 2*T; k++){
for(i = 0;i < k;i++)

Conn_poly1[i] = Conn_poly0[i]; // Conn_poly_temp = Conn_poly
// compute discrepancy delta by convolution of Syndrome poly and Conn_poly

r0 = Syndromes[k];
for(i = 0;i < L;i++){

r1 = log_Syndromes[k-i]; r2 = Conn_poly0[i];
r2 = Galois_Log[r2];
r1 = r1 + r2; r2 = Galois_aLog[r1];
r0 = r0 ˆ r2;

}
if (r0 != 0) { // Conn_poly = Conn_poly_temp - Delta*Tx

r2 = Galois_Log[r0]; // log (delta)
for(i = 0;i < 2*T + 1;i++) {

r1 = Conn_poly1[i]; r3 = Tx[i+1];
r3 = r2 + r3; r3 = Galois_aLog[r3];
r1 = r3 ˆ r1; // Conn_poly_temp[i]ˆDelta*Tx[i]
Conn_poly0[i] = r1;

}
if (2*L < (q + k + 1)){

L = q + k + 1 - L; m = 255 - r2;
Tx[0] = m;
for(i = 0;i < 2*T;i++){ // Tx = Conn_poly_temp/Delta

r1 = Conn_poly1[i];
r1 = Galois_Log[r1];
m = r1 - r2;
if (m < 0) m+= 255;
Tx[i+1] = m;

}
}

}
for(i = 2*T + 1;i > 0;i--) // Tx = [0 Tx]

Tx[i] = Tx[i-1];
Tx[0] = log0;

}

Pcode 4.23: Berlekamp-Massey recursion to compute ELP with erasures.

Errors and Erasures Correction Given the ELP that contains both errors and erasures information, we can
use the simulation codes from Pcode 4.16 to 4.18 to perform Chien’s search (which finds error locator poly-
nomial roots), to find an error magnitude polynomial and to perform a Forney algorithm (which gives error
magnitudes).

Computational Complexity with Errors Correction
To correct both errors and erasures, we have to compute the erasure locator polynomial, error locator polynomial,
error roots and error magnitude polynomial. These extra computations are not required if only erasures are present
in the received data. We estimate the complexity for this portion of modules as follows. If we have L number
of erasures and (2T − L)/2 number of errors, then to compute the erasure locator polynomial we consume
L ∗ 14+8 ∗ L ∗ (L +1)/2 cycles. For example, if L = 60, then we consume 15,480 cycles to compute the erasure
locator polynomial. Based on Section 4.2.7, RS Decoder Computational Complexity, we can get the cycle counts
for computing the error locator polynomial from the erasure locator polynomial by assuming Li = 61 as 3368;
we consume 1,73,910 cycles for finding error roots, approximately 2000 cycles for computing error magnitude
polynomial and 36,332 cycles for finding error magnitudes. With this we consume about 328,090 (97,000 (to
find syndromes) + 15,480 (to compute the erasure locator polynomial) + 3368 (to compute the remaining error
locator polynomial) + 173,910 (to find the roots) + 2000 (to find the error magnitude polynomial) + 36,332
(to find the error magnitudes)) cycles to run the RS erasure decoder on the reference embedded processor for
correcting 60 erasures and 2 errors.

Implementation of Error Correction Algorithms 185

4.3.5 Erasure Decoder Optimization

As we saw in the previous section, the two most cycle consuming modules in RS decoding are syndrome
computation and error locator polynomial roots finding. The reason for this is that the complexity of these two
modules depends on block length N and on the error-correction capability T of the RS code. By contrast, the
complexity of determining the error locator polynomial and the error values is a function of only T . Usually the
value of N is very big when compared to T . The modules, syndrome computation and error roots finding of RS
decoding, are similar in that both entail the evaluation of polynomials at particular elements of extension field.
The technique most often employed to carry out these two modules is Horner’s method of polynomial evaluation
for finding syndromes and error locations. The high cost of syndrome computation and error roots finding can
be traced to the iterative nature of their computation procedure. The set of computations carried out for finding
a particular syndrome or an error root is repeated in finding other syndromes or error roots too. Moreover,
for the erasure code RS(255,191) with the value of T = 32, we evaluate 64 syndromes and up to 63 (i.e., 62
erasures + 1 error) error roots. This is like computing the DFT (discrete Fourier transform; see Section 7.1)
without using FFT. In DFT computation, we evaluate each frequency component at a time. Whereas with the
FFT method, using periodicity and symmetric properties of DFT twiddle factors, we evaluate all frequency
components together. Here, in RS decoding, if all the syndromes or all the error roots can be computed together,
then a reduction in complexity is perhaps possible. In the following subsections, we examine the syndromes and
error roots computation from the spectral point of view.

FFT-Based Computation
Consider the syndrome computation:

Si = R(αi) =
N−1∑
j=0

r j (α
i) j , i = 0,1,2, . . . ,2T −1 (4.25)

Since α is an element of order N , these equations may be interpreted as a DFT with the syndromes representing
2T contiguous components of the spectrum of received polynomial R(x). Thus, an alternative way to compute
the syndromes is to perform FFT on R(x) and discard the unwanted spectral components. Similarly, roots finding
can be performed in a spectral domain. Given the error locator polynomial �(x), the roots of �(x) are those
powers of α that satisfy

�(αi) =
L−1∑
j=0

� j (α
i) j = 0 (4.26)

or

σi
∼= �(αi) =

N−1∑
j=0

� j (α
i) j , with �L = �L+1 = �L+2 · · · = �N−2 = �N−1 = 0 (4.27)

In Equation (4.27), the error locations are given by the indices of i for which σi = 0. If the spectrum is
zero at index i, then �(x) has a root at i. This provides another way to compute the roots of the error locator
polynomial. If we observe carefully, the syndrome computation uses a few outputs of FFT and the error roots
finding contains a few inputs of FFT. To reduce the cost of the FFT method, we use FFT output pruning for
syndrome computation and FFT input pruning for error roots finding. See Sections 7.2.5 and 7.2.6 for more
detail on input and output pruning. However, we may not benefit much from this FFT method when T is a small
quantity. As the RS (255, 191) erasure decoder requires the computation of sizable syndromes and error roots,
we benefit more from the FFT method.

FFT-Based Implementation Since 255 = 15 × 17 and 15 and 17 are relatively prime, we can map the one-
dimensional FFT into a twiddle-factor-free two-dimensional FFT via the Good-Thomas mapping. To compute
the two-dimensional transform, we compute the row/column DFT transform followed by the column/row DFT
transform. In the case of syndrome computation, as we want to perform output pruning with FFT, the way to

186 Chapter 4

compute the transform is to perform the 17 15-point column transforms followed by point-wise evaluation of
the 64 points along the rows. Similarly, in the case of error roots finding, we perform the first 17-point row
transforms by straightforward multiplications, and then perform 17 15-point column transforms.

In addition, 15 = 3 × 5, and 3 and 5 are relatively prime; we further simplify the 15-point row transform by
mapping the one-dimensional 15-point FFT into a twiddle-factor-free two-dimensional FFT via Good-Thomas
mapping as described in the following.

The Good-Thomas FFT is given by

X[n1,n2] =
N1−1∑
k1=0

W n1k1
N1

N2−1∑
k2=0

x [k1,k2]W n2k2
N2

(4.28)

If N = N1 N2, where N1 and N2 are relatively prime, then at the input of FFT, the two-dimensional vertical and
horizontal indices k1 and k2 and one-dimensional index k are related by

k = (N2k1 + N1k2) mod N, where ki = (k) mod Ni (4.29)

At the output side of FFT, we use mi , which is defined as mi = N/Ni and satisfies mim
−1
i ≡ 1modNi , to get the

relationship between one-dimensional and two-dimensional frequency indices:

n = (m1((m
−1
1 n1) mod N1)+m2((m

−1
2 n2) mod N2)) mod N, where ni = (n) mod Ni (4.30)

■ Example 4.1

For N = 15, N1 = 3, and N2 = 5, it follows that:

m1 = N/N1 = 5; m−1
1 = 2 ∵ (2∗5) mod 3 = 1

m2 = N/N2 = 3; m−1
2 = 2 ∵ (2∗3) mod 5 = 1

Table 4.1 contains the time-domain (i.e., input to FFT) and frequency-domain (i.e., output of FFT)
one-dimensional and two-dimensional indice relationships using Equations (4.29) and (4.30).

Using Equation (4.28), we can perform two-dimensional FFT computed using N1 DFTs of length
N2 and N2 DFTs of length N1 without using an intermediate twiddle factor correction. In the imple-
mentation, we use look-up tables for getting indices for input pruning, output pruning, obtaining
one-dimensional and two-dimensional FFT mapping indices, and for storing twiddle factors. The
simulation code for computing 15-point FFT using two-dimensional 3x5 FFT is given in Pcode 4.24.

■

Look-up tables tp_w[] and fp_w[] on this book’s companion website were used to compute 3-point and
5-point FFTs. The look-up tables for input and output indexing to compute the 17 3x5 FFT are also on the
website.

Table 4.1: FFT input and output side
of Good-Thomas mapping

Input
k1\k2 0 1 2 3 4
0 x[0] x[3] x[6] x[9] x[12]
1 x[5] x[8] x[11] x[14] x[2]
2 x[10] x[13] x[1] x[4] x[7]

output
n1\n2 0 1 2 3 4
0 X[0] X[6] X[12] X[3] X[9]
1 X[10] X[1] X[7] X[13] X[4]
2 X[5] X[11] X[2] X[8] X[14]

Implementation of Error Correction Algorithms 187

for(p = 0;p < 17;p++){
r7 = p*m; r6 = 0;
for(k = 0;k < 3;k++){ // compute three horizontal 5-point FFTs

for(i = 0;i < 5;i++){
r5 = 0;
for(j = 0;j < 5;j++){

r4 = input_ index_fp[r7+k*5+j]; r2 = 5*i+j;
r3 = rec_msg[N-r4-1]; r2 = fp_w[r2];
r3 = Galois_Log[r3]; r0 = r2 + r3;
r0 = Galois_aLog[r0];
r5 = r5ˆr0;

}
sxc[r7+r6] = r5; r6 = r6 + 1;

}
}
r6 = 0;
for(k = 0;k < 5;k++){ // compute five vertical 3-point FFTs

for(i = 0;i < 3;i++){
r5 = 0;
for(j = 0;j < 3;j++){

r4 = sxc[r7+k+j*5]; r2 = 3*i+j;
r4 = Galois_Log[r4]; r2 = tp_w[r2];
r0 = r2 + r4; r0 = Galois_aLog[r0];
r5 = r5 ˆ r0;

}
r2 = output_index_fp[r6];
sxr[r7+r2] = r5; r6 = r6 + 1;

}
}

}

Pcode 4.24: Simulation code for 15-point two dimensional FFT computations.

j = 0;
for(k = 0;k < 2*T;k++){

r3 = sxn1[k]; r4 = sxn2[k];
r5 = 0;
for(i = 0;i < n;i++){

r1 = sxr[m*i+r4]; r2 = sp_w[r3*n+i];
r1 = Galois_Log[r1];
r0 = r1 + r2; r0 = Galois_aLog[r0];
r5 = r5 ˆ r0;

}
Syndromes[j] = r5;
j = j + 1;

}

Pcode 4.25: Syndromes computation with output pruning.

Output Pruning and Syndrome Computation
With Pcode 4.24, we could perform 17 15-point column FFT transforms. Next, using column FFT outputs, we
perform 17-point row FFTs only for required spectral outputs. The simulation code to perform 17-point FFT
with output pruning is given in Pcode 4.25. We use look-up tables sxn1[] and sxn2[] to choose the corresponding
input points. We use the look-up table sp_w[] for storing 17-point FFT twiddle factors. (See the companion
website for all three of the look-up tables.)

Input Pruning and Error Location Computation
In the FFT-based error locations computation, first we perform 17-point row DFT with input pruning followed
by 17 15-point column transforms. We use the look-up tables sxn1[] and sxn2[] for input pruning, and look-up
tables ern0[] and ern1[] on the website for computing 17-point FFT at points of interest. Once we have a
17-point FFT row transform output, we use Pcode 4.24 to compute 15-point FFT with 3x5 two-dimensional
FFTs. Next, we search for spectral nulls in FFT output and the indices of those spectral nulls give the error
locations.

188 Chapter 4

m = 15;
sxe[0] = 1;
for(i = 1;i < L + 1;i++){

r2 = sxn1[i]; r3 = sxn2[i];
r4 = Conn_poly0[i-1];
sxe[r2*m+r3] = r4;

}
// seventeen point DFT with input pruning
for(k = 0;k < 6;k++){

for(i = 0;i < n;i++){
r5 = 0;
for(j = 0;j < 5;j++){

r4 = ern0[k*5+j]; r2 = r4*n+i;
r3 = sxe[r4*m+k]; r2 = sp_w[r2];
r3 = Galois_Log[r3];
r0 = r2 + r3; r0 = Galois_aLog[r0];
r5 = r5ˆr0;

}
sxc[i*m+k] = r5;

}
}
for(k = 6;k < m;k++){

for(i = 0;i < n;i++){
r5 = 0;
for(j = 0;j < 4;j++){

r4 = ern1[(k-6)*4+j]; r2 = r4*n+i;
r3 = sxe[r4*m+k]; r2 = sp_w[r2];
r3 = Galois_Log[r3];
r0 = r2 + r3; r0 = Galois_aLog[r0];
r5 = r5ˆr0;

}
sxc[i*m+k] = r5;

}
}

Pcode 4.26: 17-point DFT with input pruning to compute error locations.

FFT-Based Polynomial Evaluation and Computational Complexity
To compute 15-point DFT, we use the two-dimensional 3x5 FFT as given in Pcode 4.24. To compute three
5-point FFTs we consume approximately 630 cycles and to compute five 3-point FFTs we consume another
450 cycles. With this, to compute the 15-point FFT, we need 1080 cycles and we require 18,360 (= 1080 ∗ 17)

cycles to compute 17 15-point FFTs on the reference embedded processor. To compute one syndrome using
a 17-point FFT, we consume about 110 cycles using Pcode 4.26. Like this, we consume 7040 (= 110 ∗ 64)

cycles to compute 64 syndromes. Thus, total cycles required for syndrome computation are about 25,400 cycles
which is far less when compared to Horner’s method of syndrome evaluation, which consumes about 97,000
cycles. With the FFT method, for error locations finding also we consume about the same number of cycles as
syndrome computation. Based on this, total RS erasure and errors decoding with FFT implementation consumes
about 107,980 (= 2 ∗ 25,400 + 15,480 + 3368 + 2000 + 36,332) which is about 1/3 of cycles when compared
to non-FFT-based implementation that consumes about 328,090 cycles.

4.3.6 RS Erasure Decoding Simulation Results

As part of the simulations, we consider a codeword M from the matrix in Figure 4.9, and this codeword is one
complete row belonging to that matrix. Let its 255 values be as follows:

M =
0x1C, 0x11, 0xC2, 0x4F, 0xD1, 0x27, 0x6E, 0x3D, 0xC6, 0x01, 0x8D, 0x3F, 0x66, 0x5A, 0x40, 0x1A,
0x68, 0x80, 0x07, 0x4B, 0xF0, 0x0A, 0x4A, 0x63, 0x57, 0x82, 0xE6, 0x03, 0x3A, 0xAA, 0xBD, 0xCF,
0x7A, 0xC3, 0x72, 0xBE, 0x53, 0xF1, 0x52, 0xC4, 0x9A, 0x22, 0xDF, 0x6B, 0xA9, 0xAF, 0x06, 0xA1,
0x4C, 0x20, 0xC2, 0x2F, 0x53, 0x91, 0x76, 0x39, 0x29, 0x19, 0x7B, 0x6C, 0x95, 0xEF, 0x70, 0xB4,
0xE7, 0x7A, 0xF7, 0x68, 0xD6, 0xD0, 0xC5, 0x82, 0xA6, 0xD7, 0x7E, 0xEC, 0x49, 0x79, 0xBB, 0x09,
0x70, 0x19, 0xB6, 0x6E, 0xC1, 0xD1, 0xF5, 0x04, 0x78, 0x00, 0xB3, 0xAE, 0x04, 0x24, 0x65, 0xC6,
0x34, 0xBF, 0x57, 0x2F, 0x8D, 0xF1, 0x7D, 0x3D, 0xC1, 0x40, 0x6E, 0x75, 0x04, 0xDE, 0xBF, 0x69,
0x88, 0xCD, 0x42, 0x98, 0xAB, 0xAC, 0xD3, 0x7E, 0x98, 0x63, 0x78, 0x22, 0x77, 0x4F, 0x36, 0x7D,

Implementation of Error Correction Algorithms 189

0x19, 0x71, 0xAD, 0xAC, 0x70, 0x1C, 0x00, 0x29, 0x81, 0xC9, 0x8C, 0x57, 0x62, 0x01, 0xB8, 0xA7
0xB3, 0x32, 0xBE, 0x57, 0x2C, 0x69, 0xC1, 0xB1, 0x07, 0xFD, 0xDC, 0xCA, 0xDA, 0xC3, 0x3B, 0xE1,
0x13, 0x21, 0x55, 0x51, 0x67, 0x38, 0x65, 0x7F, 0xDE, 0xF6, 0x5E, 0x09, 0xDC, 0xD5, 0xE4, 0x32,
0x35, 0xD0, 0x66, 0x5C, 0xF2, 0x1A, 0xFD, 0x62, 0x4B, 0x5B, 0x0E, 0x05, 0xE5, 0x43, 0x1E, 0x1B,
0xE5, 0x7B, 0x2B, 0x47, 0x15, 0x62, 0xA1, 0x57, 0x07, 0xC6, 0x34, 0x0A, 0xC9, 0x16, 0x96, 0xDC,
0x95, 0xE5, 0xEE, 0x69, 0x66, 0xC6, 0xA4, 0x2A, 0x1F, 0x93, 0x4F, 0xE7, 0xA1, 0x89, 0x9B, 0xB8,
0x7B, 0x01, 0xBA, 0x2E, 0x6A, 0x88, 0x83, 0xD9, 0x77, 0x87, 0xBE, 0x9C, 0x92, 0xD3, 0x13, 0x09,
0x9B, 0x92, 0x15, 0xD7, 0x98, 0x61, 0xBA, 0x03, 0xEE, 0xF7, 0xC3, 0xEA, 0xF9, 0xDD, 0x1D

Out of 255 bytes, the first 191 bytes belong to payload (or data section) and the next 64 bytes belongs to
parity (or RS section). The parity bytes are bolded, italicized hexadecimal numbers. Next, at the receiver, this
codeword is received (after arranging the total frame into matrix form, checking parity check, tagging the error
columns and extracting that particular row from matrix) as R. The codeword R contains a total of 60 erasures
(meaning that the locations are known for these 60 errors) and two errors (for these two errors we don’t have
error location information). The total incorrect bytes present in the R is 62 and this is also the RS(255, 191)
erasure coder maximum correction capability (since erasure coder correction capability = L + (64 − L)/2 =
60 + (64 − 60)/2 = 62). All 60 erasure bytes are highlighted with underscores and the two-error bytes are
highlighted with underscored bold numbers.

R =
0x1c, 0x11, 0xc2, 0x4f, 0xd1, 0x27, 0x6e, 0x3d, 0xc6, 0x01, 0x8d, 0x3f, 0x66, 0x5a, 0x40, 0x1a,
0x68, 0x80, 0x00, 0xba, 0xf0, 0x0a, 0x00, 0x63, 0x57, 0x82, 0x00, 0x03, 0x3a, 0xaa, 0x00, 0xcf,
0x7a, 0xc3, 0x00, 0xbe, 0x53, 0xf1, 0x00, 0xc4, 0x9a, 0x22, 0x00, 0x6b, 0xa9, 0xaf, 0x00, 0xa1,
0x4c, 0x20, 0x00, 0x2f, 0x53, 0x91, 0x00, 0x39, 0x29, 0x19, 0x00, 0x6c, 0x95, 0xef, 0x00, 0xb4,
0xe7, 0x7a, 0x00, 0x68, 0xd6, 0xd0, 0x00, 0x82, 0xa6, 0xd7, 0x00, 0xec, 0x49, 0x79, 0x00, 0x09,
0x70, 0x19, 0x00, 0x6e, 0xc1, 0xd1, 0x00, 0x04, 0x78, 0x00, 0x00, 0xae, 0x04, 0x24, 0x00, 0xc6,
0x34, 0xbf, 0x00, 0x2f, 0x8d, 0xf1, 0x00, 0x3d, 0xc1, 0x40, 0x00, 0x75, 0x04, 0xde, 0x00, 0x69,
0x88, 0xcd, 0x00, 0x98, 0xab, 0xac, 0x00, 0x7e, 0x98, 0x63, 0x00, 0x22, 0x77, 0x4f, 0x00, 0x7d,
0x19, 0x71, 0x00, 0xac, 0x70, 0x1c, 0x00, 0x29, 0x81, 0xc9, 0x00, 0x57, 0x62, 0x01, 0x00, 0xa7,
0xb3, 0x32, 0x00, 0x57, 0x2c, 0x69, 0x00, 0xb1, 0x07, 0xfd, 0x00, 0xca, 0xda, 0xc3, 0x00, 0xe1,
0x13, 0x21, 0x00, 0x51, 0x67, 0x38, 0x00, 0x7f, 0xde, 0xf6, 0x00, 0xad, 0xdc, 0xd5, 0x00, 0x32,
0x35, 0xd0, 0x00, 0x5c, 0xf2, 0x1a, 0x00, 0x62, 0x4b, 0x5b, 0x00, 0x05, 0xe5, 0x43, 0x00, 0x1b,
0xe5, 0x7b, 0x00, 0x47, 0x15, 0x62, 0x00, 0x57, 0x07, 0xc6, 0x00, 0x0a, 0xc9, 0x16, 0x00, 0xdc,
0x95, 0xe5, 0x00, 0x69, 0x66, 0xc6, 0x00, 0x2a, 0x1f, 0x93, 0x00, 0xe7, 0xa1, 0x89, 0x00, 0xb8,
0x7b, 0x01, 0x00, 0x2e, 0x6a, 0x88, 0x00, 0xd9, 0x77, 0x87, 0x00, 0x9c, 0x92, 0xd3, 0x00, 0x09,
0x9b, 0x92, 0x00, 0xd7, 0x98, 0x61, 0x00, 0x03, 0xee, 0xf7, 0x00, 0xea, 0xf9, 0xdd, 0x00,

The erasure locations Er follow: Note that the location indexing starts from the end of vector R since its
corresponding polynomial R(x) = r254x254 + r253x253 + · · · + r1x + r0 in vector form is represented as R =
[r254,r253, . . . ,r1,r0].

Er =
0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108,
112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192,
196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236

The coefficients {Er60, Er59, . . . , Er2, Er1, Er0} of 60th degree erasure locator polynomial Er[x] (corresponding
to erasure vector Er) computed using Pcode 4.22 follow:

0x01, 0xf6, 0x5, 0xd, 0x46, 0x25, 0x50, 0xa6, 0xc9, 0x42, 0xc9, 0xce, 0x96, 0xf0, 0xa4, 0xce,
0x24, 0x81, 0xf9, 0x47, 0x8f, 0x4d, 0x9, 0x1d, 0xa0, 0xc, 0x3d, 0xa7, 0xce, 0xa4, 0x31, 0x2e,
0xca, 0x52, 0x49, 0xdc, 0xc8, 0x2e, 0xbc, 0x7a, 0xe1, 0xee, 0x58, 0x3b, 0xf9, 0xe7, 0x11, 0xe8,
0xb6, 0x20, 0x92, 0x6c, 0x7c, 0x3, 0xd0, 0xbc, 0x5f, 0x22, 0x18, 0xb8, 0x64

The syndrome values Si for received codeword R computed with the FFT-based method using Pcode 4.24 and
4.25 follow:

S =
0x10, 0x45, 0xa8, 0x9a, 0x7c, 0xb0, 0x5d, 0x2f, 0xc8, 0xd8, 0xad, 0xc9, 0xc6, 0x19, 0x70, 0x36,
0xbb, 0xfb, 0x6e, 0x1c, 0x00, 0x25, 0xda, 0x9d, 0x00, 0xe9, 0x5d, 0x39, 0x98, 0xb7, 0x28, 0xff,
0xad, 0x84, 0x74, 0xe4, 0xf5, 0x35, 0xdc, 0x8a, 0x7c, 0x87, 0x18, 0xcf, 0x7d, 0xc6, 0x9, 0xd3,
0xe0, 0x8f, 0xe8, 0x13, 0x1d, 0x4, 0xd2, 0x9c, 0xf6, 0x53, 0x70, 0xa9, 0x4d, 0x46, 0x89, 0x64

As the errors are present along with erasures in the received codeword R, we have to compute the effective
error-erasure locator polynomial. The coefficients Ei of the error-erasure locator polynomial computed using
the modified Berlekamp-Massey algorithm using Pcode 4.23 follow:

190 Chapter 4

E i =
0x01, 0xa6, 0x34, 0xcb, 0xee, 0x1f, 0x41, 0xf0, 0x64, 0x58, 0x61, 0x82, 0xb6, 0xfa, 0xb4, 0x4,
0xcc, 0xff, 0xe1, 0x3f, 0x71, 0x5a, 0x78, 0xa6, 0xbe, 0xd, 0x1d, 0x74, 0xfb, 0xb2, 0x20, 0xbc,
0xa5, 0x87, 0x76, 0x3d, 0x7f, 0x2e, 0x39, 0x50, 0x23, 0xf0, 0x52, 0x39, 0x84, 0xa4, 0x52, 0x79,
0x6b, 0x80, 0xa4, 0x53, 0x33, 0x8f, 0x8b, 0xfd, 0xdf, 0x3f, 0xa6, 0xad, 0xa9, 0x52, 0x8

Once we know the error-erasure locator polynomial, we compute the 62-error position vector (this is not necessary
when only erasures are present) with the FFT-based method using Pcode 4.26. The error positions vector Ep
follows:

Ep

0, 204, 136, 68, 172, 104, 36, 208, 140, 72, 4, 176, 108, 40, 144, 76,
8, 212, 180, 112, 44, 148, 80, 12, 216, 116, 48, 235, 184, 84, 16, 220,
152, 120, 52, 188, 88, 20, 224, 156, 56, 192, 124, 24, 228, 160, 92,60,
196, 128, 28, 232, 164, 96, 200, 132, 64, 236, 168, 100, 83, 32

Note that the error positions output by the FFT method are not in order.
Using the syndromes and error positions, we compute the error magnitudes Emi using Pcode 4.21. The error

magnitude vector Em follows. The error magnitudes are also not in order, however they do correspond to the
error positions.
Em

0x1d, 0xc2, 0xd3, 0xe, 0xb6, 0xc1, 0x4f, 0x6, 0x42, 0xfd, 0xc3, 0xbb, 0xbe, 0xa4, 0xbf, 0x66, 0xba, 0xdf,
0x7e, 0xb8, 0xee, 0x6e, 0xe4, 0x15, 0x52, 0x8c, 0x96, 0xf1, 0xc5, 0x5e, 0x13, 0x72, 0x7d, 0x0, 0x34, 0xf7,
0x65, 0xbe, 0xbd, 0x57, 0xa1, 0x70, 0xad, 0x83, 0xe6, 0x65, 0x55, 0x2b,
0x7b, 0x36, 0xba, 0x4a, 0xb3, 0x3b, 0x76, 0x78, 0x1e, 0x7, 0xf5, 0xdc, 0xa4, 0x9b

The RS(255, 191) erasure-decoder corrected output follows. All corrected bytes are highlighted with bold
hexadecimal numbers.

M ′ =
0x1C, 0x11, 0xC2, 0x4F, 0xD1, 0x27, 0x6E, 0x3D, 0xC6, 0x01, 0x8D, 0x3F, 0x66, 0x5A, 0x40, 0x1A,
0x68, 0x80, 0x07, 0x4B, 0xF0, 0x0A, 0x4A, 0x63, 0x57, 0x82, 0xE6, 0x03, 0x3A, 0xAA, 0xBD, 0xCF,
0x7A, 0xC3, 0x72, 0xBE, 0x53, 0xF1, 0x52, 0xC4, 0x9A, 0x22, 0xDF, 0x6B, 0xA9, 0xAF, 0x06, 0xA1,
0x4C, 0x20, 0xC2, 0x2F, 0x53, 0x91, 0x76, 0x39, 0x29, 0x19, 0x7B, 0x6C, 0x95, 0xEF, 0x70, 0xB4,
0xE7, 0x7A, 0xF7, 0x68, 0xD6, 0xD0, 0xC5, 0x82, 0xA6, 0xD7, 0x7E, 0xEC, 0x49, 0x79, 0xBB, 0x09,
0x70, 0x19, 0xB6, 0x6E, 0xC1, 0xD1, 0xF5, 0x04, 0x78, 0x00, 0xB3, 0xAE, 0x04, 0x24, 0x65, 0xC6,
0x34, 0xBF, 0x57, 0x2F, 0x8D, 0xF1, 0x7D, 0x3D, 0xC1, 0x40, 0x6E, 0x75, 0x04, 0xDE, 0xBF, 0x69,
0x88, 0xCD, 0x42, 0x98, 0xAB, 0xAC, 0xD3, 0x7E, 0x98, 0x63, 0x78, 0x22, 0x77, 0x4F, 0x36, 0x7D,
0x19, 0x71, 0xAD, 0xAC, 0x70, 0x1C, 0x00, 0x29, 0x81, 0xC9, 0x8C, 0x57, 0x62, 0x01, 0xB8, 0xA7,
0xB3, 0x32, 0xBE, 0x57, 0x2C, 0x69, 0xC1, 0xB1, 0x07, 0xFD, 0xDC, 0xCA, 0xDA, 0xC3, 0x3B, 0xE1,
0x13, 0x21, 0x55, 0x51, 0x67, 0x38, 0x65, 0x7F, 0xDE, 0xF6, 0x5E, 0x09, 0xDC, 0xD5, 0xE4, 0x32,
0x35, 0xD0, 0x66, 0x5C, 0xF2, 0x1A, 0xFD, 0x62, 0x4B, 0x5B, 0x0E, 0x05, 0xE5, 0x43, 0x1E, 0x1B,
0xE5, 0x7B, 0x2B, 0x47, 0x15, 0x62, 0xA1, 0x57, 0x07, 0xC6, 0x34, 0x0A, 0xC9, 0x16, 0x96, 0xDC,
0x95, 0xE5, 0xEE, 0x69, 0x66, 0xC6, 0xA4, 0x2A, 0x1F, 0x93, 0x4F, 0xE7, 0xA1, 0x89, 0x9B, 0xB8,
0x7B, 0x01, 0xBA, 0x2E, 0x6A, 0x88, 0x83, 0xD9, 0x77, 0x87, 0xBE, 0x9C, 0x92, 0xD3, 0x13, 0x09,
0x9B, 0x92, 0x15, 0xD7, 0x98, 0x61, 0xBA, 0x03, 0xEE, 0xF7, 0xC3, 0xEA, 0xF9, 0xDD, 0x1D

4.4 Viterbi Decoder

In this section, we discuss the simulation and implementation techniques for decoding convolutional codes by
using the Viterbi algorithm. In particular, we implement the Viterbi decoder that decodes trellis-coded modulation
data. Refer to Sections 3.7 through 3.9 for more details on convolutional codes, TCM, and the Viterbi algorithm.
As we discuss later, the Viterbi algorithm is costly both in terms of computations and memory usage. We discuss
the window-based method to avoid huge memory requirements in implementation of the Viterbi decoder. At the
end, we provide simulation results for the 1/2-rate, four-state convolutional coder with 8-PSK modulation and
for the corresponding Viterbi decoder.

4.4.1 TCM Convolutional Encoder

In this section, we simulate the TCM encoder. In particular, we simulate the TCM coder shown in Figure 3.34 by
using the set partitioning as shown in Figure 3.35. This coder takes 1 bit as input and outputs 2 bits (hence, rate
R = 1/2). However, the overall rate of the code is 2/3 as we are passing 1 bit as uncoded. At each time instance,
we get 3 bits (2 bits from the convolutional coder and one uncoded bit) and we use 8-PSK to modulate them.

Implementation of Error Correction Algorithms 191

The look-up table, psk_8_tbl_tcm[], is used to map 3 bits to 8-PSK constellation points. We take care of the
Ungerboeck set-partitioning of constellation points at the time of filling psk_8_tbl_tcm[] as follows:

psk_8_tbl_tcm[8][2] = {{1,0}, {-1,0}, {1/sqrt(2),1/sqrt(2)}, {-1/sqrt(2),-1/sqrt(2)},
{-1/sqrt(2), 1/sqrt(2)}, {1/sqrt(2),-1/sqrt(2)}, {0,1}, {0,-1}}

Subset 0: {(1,0), (-1,0)}
Subset 1: {(1/sqrt(2),1/sqrt(2)), (-1/sqrt(2),-1/sqrt(2))}
Subset 2: {(-1/sqrt(2),1/sqrt(2)), (1/sqrt(2),-1/sqrt(2))}
Subset 3: {(0,1), (0,-1)}

S0 = S1 = 0;
for(m = 0;m < N;m++){

x = (float) rand() / RAND_MAX;
b0 = (int) (x+0.5); // b0: 0/1
x = (float) rand() / RAND_MAX;
b1 = (int) (x+0.5); // b1: 0/1
in_buf[2*m] = b0; in_buf[2*m+1] = b1;
c0 = b0; c1 = S0ˆS1ˆb1; c2 = S1ˆb1; // inputs b0, b1 and outputs c0,c1, c2
S1 = S0; S0 = b1; // update encoder states
j = 4*c2 + 2*c1 + c0; // compute offset for 8-PSK look-up table
tx_seq[2*m] = psk_8_tbl_tcm[j][0];
tx_seq[2*m+1] = psk_8_tbl_tcm[j][1]; // store transmitted sequence

}

Pcode 4.27: Simulation code for TCM encoder.

Figure 4.11: 8-PSK constellation point
numbering with TCM set partitioning.

01

2

3

6

7

4

5

The simulation code for the TCM coder is given in Pcode 4.27. The output of encoder “c2c1c0” forms offsets
ranging from 0 to 7. Bits “c2c1” decide which subset to choose and bit “c0” decides which point to choose
from a subset. For example, c2c1c0 = 110, then c2c1 = 11, and c0 = 0. We choose Subset 3 and 0-th point
(i.e., (0,1) or the point numbered with 6 in Figure 4.11). The constellation points are numbered as shown in
Figure 4.11.

4.4.2 Viterbi Decoder Simulation

The Viterbi decoder, as we discussed in Section 3.9.2, basically involves the computation of Equation (3.45)
or the processing of trellis as shown in Figure 3.43. The input to the Viterbi decoder is the received sequence
rx_seq[], which is a corrupted (by AWGN noise; see Section 9.1.2 for more details on noise generation and
measurement) version of transmitted sequence tx_seq[] (generated by the encoder given in Pcode 4.27).

We encode the bits with the TCM encoder that usually starts at zero state and is forced to the zero state at
the end of the encoding. Hence, we know the starting and ending states of the TCM encoder. Therefore, the
corresponding trellis diagram also starts and ends at zero state as shown in Figure 3.42. We simulate the Viterbi
decoder by following the six steps given in Section 3.9.2. The corresponding simulation code of the Viterbi
decoder is given in Pcode 4.28 through Pcode 4.30.

Computational Complexity and Memory Requirements
Using the simulation code in Pcodes 4.28 through 4.30, we decode the whole frame of length N samples. In
other words, the corresponding trellis consists of N stages. We obtain the survivor paths by computing all states’

192 Chapter 4

r0 = rx_seq[0]; r1 = rx_seq[1]; // received sequence
r2 = psk_8_tbl_tcm[0]; r3 = psk_8_tbl_tcm[1];
r4 = r0 - r2; r5 = r1 - r3; // stage: 0
r2 = psk_8_tbl_tcm[2]; r3 = psk_8_tbl_tcm[3];
r6 = r0 - r2; r7 = r1 - r3;
r4 = r4*r4 + r5*r5; r6 = r6*r6 + r7*r7;
if (r6 > r4) {r2 = r4; r3 = 0;}
else {r2 = r6; r3 = 1;}
vm[1][0] = r2; vn[1][0][0] = 0; vn[1][0][1] = r3;
r2 = psk_8_tbl_tcm[12]; r3 = psk_8_tbl_tcm[13];
r4 = r0 - r2; r5 = r1 - r3;
r2 = psk_8_tbl_tcm[14]; r3 = psk_8_tbl_tcm[15];
r6 = r0 - r2; r7 = r1 - r3;
r4 = r4*r4 + r5*r5; r6 = r6*r6 + r7*r7;
if (r6 > r4) {r2 = r4; r3 = 0;}
else {r2 = r6; r3 = 1;}
vm[1][1] = r2; vn[1][1][0] = 0; vn[1][1][1] = r3; // store survivor branches and state metric
r0 = rx_seq[2]; r1 = rx_seq[3];
for(i = 0;i < 4;i++){ // stage: 1

a = vt_st_out0[2*i]; b = vt_st_out0[2*i+1];
r2 = psk_8_tbl_tcm[2*a]; r3 = psk_8_tbl_tcm[2*a+1];
r4 = r0 - r2; r5 = r1 - r3;
r2 = psk_8_tbl_tcm[2*b]; r3 = psk_8_tbl_tcm[2*b+1];
r6 = r0 - r2; r7 = r1 - r3;
r4 = r4*r4 + r5*r5; r6 = r6*r6 + r7*r7;
a = vt_st_in0[2*i]; b = vt_st_in0[2*i+1];
r5 = vm[1][a]; r7 = vm[1][b];
r4 = r4 + r5; r6 = r6 + r7;
if (r6 > r4) {r2 = r4; r3 = 0;}
else {r2 = r6; r3 = 1; a = b;}
vm[2][i] = r2; vn[2][i][0] = a; vn[2][i][1] = r3; // store survivor branches and metrics

}

Pcode 4.28: Viterbi decoder initial two stages processing.

(i.e., S = 2K −1 states, where K is a constraint length of encoder) state metrics (SM) for all N stages. If we have
n uncoded bits at each stage, then each path of the trellis consists of 2n parallel branches. The state metrics
are computed using the current stage branch metrics and previous stage state metrics. Thus, the number of
computations in decoding performed at each stage increases exponentially with n and K .

We determine the global most likely sequence by taking the survivor branch (i.e., a branch with minimum
state metric) at zero state of (N − 1)th stage and tracing back to the beginning of the trellis. To perform this,
we have to store all state metrics and the survivor branches information. If one trellis stage contains S states
and if we use 4 bytes per state to store one SM and if we use 1-byte per state to store the survivor branch
information (i.e., the index of the previous stage state which connects to the current stage state through the
survivor branch), then we need (4 + 2n) ∗ S ∗ N bytes of on-chip memory to store the processed trellis data.
For example, if the frame length N is 2000 samples and if we use a 4-state encoder with 1-bit uncoded, then
we require 48 kB (= (4 + 2) ∗ 4 ∗ 2000) of data memory to store only trellis data. However, we can reduce this
memory requirement by using window-based trellis processing (which is suboptimal when compared to the
original Viterbi algorithm). Based on computer simulations, it has been found that the decision taken at the
current stage for a bit of stage back in time of L stages (where L is greater than or equal to 6K) results in a
correct decoded bit with a very high probability. This convergence property of trellis allows us to implement
Viterbi decoder with less memory.

In Pcode 4.28 and 4.29, we use the look-up tables vt_st_in0[] and vt_st_int1[] to access the trellis branches
connected to appropriate states and we use look-up tables vt_st_out0 and vt_st_out1 to access the corresponding
branches’ outputs. These look-up table values follow:

vt_st_in0[8]={0,0,0,0,1,1,1,1}
vt_st_in1[16]={0,0,2,2,0,0,2,2,1,1,3,3,1,1,3,3}
vt_st_out0[8]= {0,1,6,7,2,3,4,5}
vt_st_out1[16]= {0,1,6,7,6,7,0,1,2,3,4,5,4,5,2,3}

Implementation of Error Correction Algorithms 193

j = 2;
while(j < N){

r0 = rx_seq[2*j]; r1 = rx_seq[2*j+1];
for(i = 0;i < 4;i++){

a = vt_st_out1[4*i]; b = vt_st_out1[4*i+1];
r2 = psk_8_tbl_tcm[2*a]; r3 = psk_8_tbl_tcm[2*a+1];
r4 = r0 - r2; r5 = r1 - r3;
r2 = psk_8_tbl_tcm[2*b]; r3 = psk_8_tbl_tcm[2*b+1];
r6 = r0 - r2; r7 = r1 - r3;
r4 = r4*r4 + r5*r5; r6 = r6*r6 + r7*r7;
a = vt_st_in1[4*i]; b = vt_st_in1[4*i+1];
r5 = vm[j][a]; r7 = vm[j][b];
r4 = r4 + r5; r6 = r6 + r7; // add
if (r6 > r4) {r2 = r4; r3 = 0;} // compare and select
else {r2 = r6; r3 = 1; a = b;}
vm[j+1][i] = r2; vn[j+1][i][0] = a; vn[j+1][i][1] = r3; // store temporarily

a = vt_st_out1[4*i+2]; b = vt_st_out1[4*i+3];
r2 = psk_8_tbl_tcm[2*a]; r3 = psk_8_tbl_tcm[2*a+1];
r4 = r0 - r2; r5 = r1 - r3;
r2 = psk_8_tbl_tcm[2*b]; r3 = psk_8_tbl_tcm[2*b+1];
r6 = r0 - r2; r7 = r1 - r3;
r4 = r4*r4 + r5*r5; r6 = r6*r6 + r7*r7;
a = vt_st_in1[4*i+2]; b = vt_st_in1[4*i+3];
r5 = vm[j][a]; r7 = vm[j][b];
r4 = r4 + r5; r6 = r6 + r7; r5 = vm[j+1][i]; // add
if (r6 > r4) {r2 = r4; r3 = 0;} // compare and select
else {r2 = r6; r3 = 1; a = b;}
if (r5 > r2){ // state metrics and survivor branches

vm[j+1][i] = r2; vn[j+1][i][0] = a; vn[j+1][i][1] = r3;
}

}
}

Pcode 4.29: Viterbi decoder total frame trellis processing.

// trace back and decode bits (baseband demodulation done automatically with Viterbi)
k = 0;
for(i = N;i > 0;i--){

b = (i-1) << 1;;
j = vn[i][k][0]; // get previous stage state index
a = vn[i][k][1]; // get branch (out of two parallel branches)
dec_bits[b] = vb[j][k][a][1]; // get first decoded bit
dec_bits[b+1] = vb[j][k][a][0]; // get second decoded bit
k = j;

}

Pcode 4.30: Simulation code for decoding bits by trace back.

We use the following look-up table, vb[][][][], for obtaining the associated input bits of the survivor branches
belonging to the most global likely sequence in the trace back.

vb[4][4][2][2] = {
{{{0,0},{0,1}},{{1,0},{1,1}},{{0,0},{0,0}},{{0,0},{0,0}}},
{{{0,0},{0,0}},{{0,0},{0,0}},{{0,0},{0,1}},{{1,0},{1,1}}},
{{{0,0},{0,1}},{{1,0},{1,1}},{{0,0},{0,0}},{{0,0},{0,0}}},
{{{0,0},{0,0}},{{0,0},{0,0}},{{0,0},{0,1}},{{1,0},{1,1}}}}

4.4.3 Viterbi Decoder Implementation

The simulation codes presented in the previous section to decode the TCM codes using Viterbi not only consume
a huge amount of memory but also use floating-point computations. In this section, we discuss a fixed-point
Viterbi decoder to decode fast and use a window-based method to reduce the overall memory requirement
in TCM decoding. We perform fixed-point arithmetic for the Viterbi decoder by converting the input data to

194 Chapter 4

8.8 fixed-point Q-format (which is achieved by multiplying the fractions by 28) and by using the 8.8 Q-format
look-up table psk_8_fix_tcm[] for 8-PSK constellation points as follows:

psk_8_fix_tcm[16]=
{255,0,-255,0,181,181,-181,-181,-181,181,181,-181,0,255,0,-255}

rx_fix_seq[i] = 256*rx_seq[i], 0 ≤ i ≤ N −1

The algorithm for window-based Viterbi decoding follows:

1. At stage j = 0, set SM to zero for all states.
2. At a node in a stage of j > 0, compute BM for all branches entering the node.
3. Add the BM to the present SM for the path ending at the source node of the branch, to get a candidate

SM for the path ending at the destination node of it. After the candidate SM has been obtained for all
branches entering the node, compare them and select only that with the minimum value. Let this corresponding
branch survive and delete all the other branches to that node from the trellis. This process is shown in
Figure 4.12.

4. Return to step 2 for dealing with the next node. If all nodes in the present stage have been processed, go to
step 5.

5. If j < L (where L > 6K, the window length), increment n and return to step 2, else go to step 6.
6. Take the path with minimum SM (as the global most likely path) and follow the survivor branches backward

through the trellis up to the beginning of the window considered. Now collect the bits that correspond to the
survivor branch of the global most likely path at the start of the window to form the estimate of the original
information bit sequence.

7. If j < n −1, move the window one stage forward and go to step 2.

To process the first two stages of the window-based Viterbi in a fixed-point format, we can use the same code
presented in Pcode 4.28 by replacing rx_seq[] with rx_fix_seq[] and psk_8_tbl_tcm[] with psk_8_fix_tcm[].
In window-based Viterbi decoding, we process the trellis up to L-samples (or a window length) and perform
decoding of a bit by tracing back. Then we move the window by one sample and compute the state metrics for the
new sample entered into the window and decode the next bit by performing the traceback again. In this process,
we perform the traceback for each decoded bit and it is too costly. Instead, we perform window-based Viterbi
decoding in a different way in which we perform the traceback once per L-sample. For this, we process the trellis
for the first two windows before starting the trace back. In other words, we process the next window trellis in
advance. At the end of the trellis processing of the second window, we perform the traceback and decode at once
all bits of the first window. The simulation code for this window-based Viterbi decoder is given in Pcodes 4.31
and 4.32. With the program in Pcode 4.31, we only process the trellis for the first window without any trace back.
In Pcode 4.32, we always perform trellis processing of the next window and decode all the bits of the previous
window by performing the traceback.

00

10

01

11

j 5 0 j 5n 2 2j 5 2 j 5Lj 5 L 21j 51 j 5n 2 1

Window of Length L

Global most likely path

Survivor paths

Figure 4.12: Processing of trellis stages in window-based Viterbi decoding.

Implementation of Error Correction Algorithms 195

// stages: 2 to 23
m = 2;
for(j = m;j < m + 22;j++){

r0 = rx_fix_seq[2*j]; r1 = rx_fix_seq[2*j+1];
for(i = 0;i < 4;i++){

a = vt_st_out1[4*i]; b = vt_st_out1[4*i+1];
r2 = psk_8_fix_tcm[2*a]; r3 = psk_8_fix_tcm[2*a+1];
r4 = r0 - r2; r5 = r1 - r3;
r2 = psk_8_fix_tcm[2*b]; r3 = psk_8_fix_tcm[2*b+1];
r6 = r0 - r2; r7 = r1 - r3;
r4 = (r4*r4 + r5*r5)>>8; r6 = (r6*r6 + r7*r7)>>8;
a = vt_st_in1[4*i]; b = vt_st_in1[4*i+1];
r5 = vm[j][a]; r7 = vm[j][b];
r4 = r4 + r5; r6 = r6 + r7;
if (r6 > r4) {r2 = r4; r3 = 0;}
else {r2 = r6; r3 = 1; a = b;}
vm[j+1][i] = r2;
vn[j+1][i][0] = a; vn[j+1][i][1] = r3;

a = vt_st_out1[4*i+2]; b = vt_st_out1[4*i+3];
r2 = psk_8_fix_tcm[2*a]; r3 = psk_8_fix_tcm[2*a+1];
r4 = r0 - r2; r5 = r1 - r3;
r2 = psk_8_fix_tcm[2*b]; r3 = psk_8_fix_tcm[2*b+1];
r6 = r0 - r2; r7 = r1 - r3;
r4 = (r4*r4 + r5*r5)>>8; r6 = (r6*r6 + r7*r7)>>8;
a = vt_st_in1[4*i+2]; b = vt_st_in1[4*i+3];
r5 = vm[j][a]; r7 = vm[j][b];
r4 = r4 + r5; r6 = r6 + r7; r5 = vm[j+1][i];
if (r6 > r4) r2 = r4; r3 = 0;
else r2 = r6; r3 = 1; a = b;
if (r5 > r2){

vm[j+1][i] = r2;
vn[j+1][i][0] = a; vn[j+1][i][1] = r3;

}
}

}
m+= 22;

Pcode 4.31: Simulation code for first window trellis processing.

4.4.4 Simulation Results

This section presents the simulation results for a four-state, 8-PSK, 1/2-rate convolutional coder (effective rate
is 2/3 as 1 bit is uncoded) as shown in Figure 3.34. We consider 128 random bits for transmission as follows:

Input
Input bits (bn): 128 bits

1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0,
1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1,
1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0

Convolutional Encoding
We encode the bits bn using a rate 1/2 convolutional encoder as shown in Figure 3.34. With a rate 1/2 coder, we
output 2 bits for every 1 input bit. We pass 1 more bit as uncoded (so, the effective code rate is 2/3). Hence, we
have three output bits for every two input bits. At the start, the encoder state “S1S0” is initialized to zero. The
encoded bits (192 output bits correspond to 128 input bits) follow:

Encoded bits (ck): 192 bits
1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1,
1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1,
1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1,
1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0,
1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1,
1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1

196 Chapter 4

while(m < 1001){
for(j = m;j < m + 24;j++){ // compute metrics for next 6K stages

p = j&0x3f; q = (j+1)&0x3f;
r0 = rx_fix_seq[2*j]; r1 = rx_fix_seq[2*j+1];
for(i = 0;i < 4;i++){

a = vt_st_out1[4*i]; b = vt_st_out1[4*i+1];
r2 = psk_8_fix_tcm[2*a]; r3 = psk_8_fix_tcm[2*a+1];
r4 = r0 - r2; r5 = r1 - r3;
r2 = psk_8_fix_tcm[2*b]; r3 = psk_8_fix_tcm[2*b+1];
r6 = r0 - r2; r7 = r1 - r3;
r4 = (r4*r4 + r5*r5)>>8; r6 = (r6*r6 + r7*r7)>>8;
a = vt_st_in1[4*i]; b = vt_st_in1[4*i+1];
r5 = vm[p][a]; r7 = vm[p][b];
r4 = r4 + r5; r6 = r6 + r7; // add
if (r6 > r4) {r2 = r4; r3 = 0;} // compare and select
else {r2 = r6; r3 = 1; a = b;}
vm[q][i] = r2; vn[q][i][0] = a; vn[q][i][1] = r3;
a = vt_st_out1[4*i+2]; b = vt_st_out1[4*i+3];
r2 = psk_8_fix_tcm[2*a]; r3 = psk_8_fix_tcm[2*a+1];
r4 = r0 - r2; r5 = r1 - r3;
r2 = psk_8_fix_tcm[2*b]; r3 = psk_8_fix_tcm[2*b+1];
r6 = r0 - r2; r7 = r1 - r3;
r4 = (r4*r4 + r5*r5)>>8; r6 = (r6*r6 + r7*r7)>>8;
a = vt_st_in1[4*i+2]; b = vt_st_in1[4*i+3];
r5 = vm[p][a]; r7 = vm[p][b];
r4 = r4 + r5; r6 = r6 + r7; r5 = vm[q][i];
if (r6 > r4) {r2 = r4; r3 = 0;}
else {r2 = r6; r3 = 1; a = b;}
if (r5 > r2){vm[q][i] = r2; vn[q][i][0] = a; vn[q][i][1] = r3;}

}
}
k = 0; a = vm[q][0]; // trace back and get decoded bits
if (a > vm[q][1]) {k = 1; a = vm[q][1];}
if (a > vm[q][2]) {k = 2; a = vm[q][2];}
if (a > vm[q][3]) {k = 3; a = vm[q][3];}
for(i = m + 24-1; i > m; i--){

p = i&0x3f; k = vn[p][k][0];
}
for(i = m;i > m-24;i--){

b = (i-1)<<1; p = i&0x3f;
j = vn[p][k][0]; a = vn[p][k][1];
dec_bits[b] = vb[j][k][a][1]; dec_bits[b+1] = vb[j][k][a][0];
k = j;

}
m+= 24;

}

Pcode 4.32: Subsequent window trellis processing and decoding by trace back.

PSK Modulation
At the time of encoding, the output of the encoder is mapped to 8-PSK symbols by using each 3-bit encoder
output as an offset to the 8-PSK look-up table psk_8_fix_tcm[] (which is constructed based on Ungerboeck’s
set-partitioning rules and makes sure that the distance between trellis parallel transitions is maximum). This
8-PSK modulated data follows:

8-PSK normalized constellation points to transmit (Sm): 64 constellation points

0,-1, 0.707106769, 0.707106769, 0,-1,-1, 0,-1, 0, 0, 1,-0.707106769,-0.707106769, 0,-1,
0, 1,-0.707106769,-0.707106769, 0, 1, 0, 1,-0.707106769, 0.707106769,
0.707106769, 0.707106769, 0.707106769,-0.707106769, 0,-1,

-1, 0, 1, 0, 1, 0, -1, 0, 0, 1, -0.707106769, -0.707106769, 1, 0,-0.707106769,-0.707106769,
1, 0,-0.707106769,-0.707106769, 1, 0,-0.707106769,-0.707106769, 1, 0,

-0.707106769,-0.707106769,-1, 0,
-0.707106769,-0.707106769, 0,-1, 0, 1,-0.707106769, 0.707106769,
-0.707106769,-0.707106769, 0.707106769, 0.707106769,-0.707106769, 0.707106769, 0,-1,

Implementation of Error Correction Algorithms 197

0,-1,-0.707106769, 0.707106769,-0.707106769,-0.707106769, 0.707106769, 0.707106769,
-0.707106769,-0.707106769,-0.707106769, 0.707106769, 0,-1,-1, 0, 0, 1,
0.707106769,-0.707106769, 0.707106769, 0.707106769,-0.707106769, -0.707106769,
0.707106769,-0.707106769, 0,-1, 0, 1,-0.707106769,-0.707106769, 0, 1,
0, 1,-0.707106769,-0.707106769,-1, 0,-0.707106769, 0.707106769, 0.707106769, 0.707106769, -0.707106769,

-0.707106769,-0.707106769,-0.707106769,-0.707106769, 0.707106769

Passing through AWGN Channel
We transmit the PSK points Sm (after converting them to analog signals) over a noisy channel. For the simulation
purpose we add AWGN noise to constellation points. At the receiver, we get noisy PSK constellation points (at
the output of the receiver front end) as follows:

Received noisy PSK constellation points (rm): 64 points

0.157108262, -0.876191974, 0.777749598, 0.572184622, -0.0493549667, -0.779661775,
-1.04820085, 0.129765883,-0.754512846, 0.0238341205, 0.113822095, 1.08242452,
-0.830362678,-0.480324298,-0.00643539662,-1.09403169, 0.139023885, 0.993276477,
-0.764336884,-0.95889169, 0.0967011526, 1.0580529, 0.0155533217, 0.864503026,
-0.576663733, 0.72110486, 0.439940155, 0.867248893, 0.187527895,-0.900946856,
0.269263357,-1.00332797,-0.965083599, 0.127240837, 0.969807982, 0.1253566,
1.0114671, 0.0736974776,-1.10441804, 0.208328649, 0.025401894, 1.40040243,
-0.696813524,-0.711368084, 1.2361176, 0.201338947,-0.751767278,-0.69719702,
0.685953498,-0.0994339064,-0.590031147,-0.872876346, 1.08380294, 0.272845447,
-0.854398847,-0.510077894, 0.770515382,-0.0814026967,-0.841046274,-0.553521454,
-0.767543256,-0.11693459,-0.900310397,-0.909833312, 0.364312947,-1.22945499,
-0.17605862, 0.983639538,-0.774587214, 0.775650978,-0.858343899,-1.18007827,
0.615384161, 0.283505648,-0.393607974, 0.756205738, 0.0724883378,-0.78575933,
0.185971975, -1.3460393,-1.04868209, 0.653228343,-0.779842257,-0.512806058,
0.724324882, 0.492230177,-0.558885276,-0.866437376,-0.738605142, 0.714647472,
0.401384085,-0.90096128,-1.04960263, 0.140945986, 0.12148124, 1.07132232,
0.84473902,-0.770106435, 0.83484894, 0.708259106,-0.634552479,-0.87108928,
0.501765013,-0.930042982,-0.214983284,-1.13528705, 0.107488595, 0.880786121,
-0.718424797,-0.988860965, 0.431062669, 1.19838154, 0.0879992619, 1.43463016,
-0.625213265,-0.663498342,-0.936734319, 0.0526892953,-0.609834671, 0.482433826,
1.04271317, 0.66147238,-0.550259411,-0.517056823,-0.646719575, -0.730190217,
-0.631949961, 0.655985713,

Preparing Soft Decisions
To work with fixed-point code, we convert (by quantizing) the received noisy PSK points to soft-decisions
(multilevel) using 8.8 Q-format (i.e., 256 levels) as follows:

Quantized received soft data (Rm): 64 points (in 8.8 format)

40, -223, 199, 146, -12, -199, -267, 33, -192, 6, 29, 277, -212, -122, -1, -279,
36, 254, -195, -244, 25, 271, 4, 221, -147, 185, 113, 222, 48, -230, 69, -256,
-246, 33, 248, 32, 259, 19,-282, 53, 7, 359, -177, -181, 316, 52, -191, -177,
176, -24, -150, -222, 277, 70, -218, -130, 197, -20, -214, -141, -195, -29, -229, -232,
93, -314, -44, 252, -197, 199, -219, -301, 158, 73, -100, 194, 19, -200, 48, -344,
-267, 167, -199, -130, 185, 126, -142, -221, -188, 183, 103, -230, -268, 36, 31, 274,
216, -196, 214, 181, -161, -222, 128, -237, -54, -290, 28, 225, -183, -252, 110, 307,
23, 367, -159, -169, -239, 13, -155, 124, 267, 169, -140, -131, -165, -186, -161, 168

Viterbi Decoding
Next, we are ready with the data to feed the Viterbi decoder. The Viterbi decoder copies the transmitter side
encoder trellis and processes it. The trellis starts from a zero state (as we assumed at the start of the encoder on
the transmitter side) with zero-state metrics. Then we follow the Viterbi algorithm presented in Section 4.4.3
for each received data point. For purposes of clarity, we tabulated the processed trellis that follows on the next
page. The first column in the table gives the data points index, the second column gives the state metrics, the
third column gives the traceback information, and finally, the fourth column gives the decoded bits (an estimate
of transmitted bits) obtained from the global most likely sequence.

198 Chapter 4

Stages State Metrics Traceback Information Decoded Bits

0 0 0 0 0 ---- ---- ---- ---- 1, 1

1 438 72 0 0 0<>0 0<>1 0<>0 0<>0 0, 0

2 640 746 125 417 0<>0 0<>0 1<>0 1<>1 1, 0

3 193 567 628 604 2<>1 2<>1 3<>1 3<>1 1, 0

4 238 673 838 801 0<>1 2<>1 3<>0 1<>0 1, 0

5 307 679 871 859 0<>1 0<>0 1<>1 1<>0 0, 1

6 810 358 927 985 0<>0 0<>0 1<>0 1<>0 1, 0

7 975 1092 448 692 0<>1 2<>1 1<>1 1<>0 1, 0

8 473 981 972 970 2<>1 2<>1 3<>1 3<>1 0, 1

9 946 510 1199 1188 0<>0 0<>0 1<>0 3<>0 1, 0

10 1250 1152 587 949 0<>1 0<>1 1<>1 1<>1 0, 0

11 628 1088 1245 1195 2<>0 2<>0 3<>0 3<>0 0, 1

12 1100 666 1305 1313 0<>0 0<>0 1<>0 1<>0 0, 1

13 1393 1317 998 704 0<>1 0<>0 1<>0 1<>0 0, 1

14 1144 1362 1039 813 2<>0 2<>0 3<>0 3<>0 1, 0

15 1112 1217 995 1091 2<>1 0<>1 3<>1 3<>1 1, 0

16 1065 1182 1278 1404 2<>1 0<>1 3<>1 1<>1 1, 0

17 1107 1320 1461 1395 0<>1 2<>1 1<>1 1<>0 0, 0

18 1146 1500 1536 1600 0<>0 2<>0 1<>0 1<>1 0, 0

19 1169 1559 1740 1778 0<>0 2<>0 1<>0 1<>1 1, 0

20 1249 1653 1894 1788 0<>1 0<>0 1<>1 1<>0 0, 1

21 1856 1360 2005 2019 0<>0 0<>0 1<>0 1<>0 1, 0

22 2115 2107 1364 1718 0<>1 0<>1 1<>1 1<>1 0, 1

23 1883 1477 2086 1982 2<>0 2<>0 3<>1 3<>0 1, 0

24 2124 2152 1491 1845 0<>1 0<>1 1<>1 1<>0 0, 1

25 1898 1594 2007 2055 2<>1 2<>0 3<>1 3<>0 1, 0

26 2190 2081 1666 1966 2<>1 0<>1 1<>1 1<>1 0, 1

27 2128 1758 2288 2173 2<>0 2<>0 1<>0 3<>0 1, 0

28 2295 2455 1846 2106 0<>1 2<>1 1<>1 1<>0 0, 1

29 2278 1924 2283 2323 2<>1 2<>0 3<>1 3<>0 1, 0

30 2460 2465 1997 2279 0<>1 2<>1 1<>1 1<>0 1, 1

31 2418 2086 2503 2445 2<>1 2<>1 3<>0 3<>1 1, 0

32 2676 2670 2185 2544 0<>1 0<>1 1<>1 3<>1 1, 0

33 2337 2661 2765 2891 2<>1 2<>0 3<>1 1<>1 0, 1

34 2800 2384 2957 2869 0<>1 0<>0 1<>0 1<>0 0, 1

35 3057 3053 2780 2418 0<>1 0<>0 1<>1 1<>0 1, 1

36 3045 3117 2938 2576 2<>1 2<>1 3<>1 3<>1 0, 1

37 3215 3108 2853 2707 0<>0 2<>0 3<>1 3<>0 0, 0

38 3014 3202 2801 3001 2<>0 2<>1 3<>0 3<>0 1, 0

39 2875 3088 3182 3220 2<>1 0<>1 3<>1 3<>1 1, 1

40 3319 3012 3480 3384 2<>1 0<>1 1<>1 1<>1 0, 1

41 3498 3659 3446 3112 0<>1 2<>1 1<>1 1<>0 1, 1

42 3684 3632 3441 3181 0<>1 2<>1 3<>0 3<>1 0, 1

43 3755 3637 3492 3240 2<>0 2<>0 3<>1 3<>0 1, 1

44 3668 3826 3603 3319 2<>1 2<>1 3<>1 3<>1 0, 0

45 3863 3853 3328 3690 2<>0 2<>1 3<>0 3<>1 1, 0

46 3456 3710 3817 3980 2<>1 2<>0 3<>1 1<>1 1, 0

47 3505 3866 4014 3942 0<>1 2<>1 1<>1 1<>0 0, 1

Implementation of Error Correction Algorithms 199

Stages State Metrics Traceback Information Decoded Bits

48 4003 3555 4109 4171 0<>0 0<>0 1<>0 1<>0 1, 1

49 4238 4278 3967 3605 0<>0 0<>1 1<>1 1<>1 0, 1

50 4255 4189 4000 3638 2<>0 2<>0 3<>1 3<>0 1, 1

51 4194 4316 4021 3699 2<>1 2<>1 3<>1 3<>1 1, 0

52 4167 4340 3808 4064 2<>1 0<>1 3<>1 3<>1 1, 0

53 3897 4256 4408 4300 2<>1 0<>1 3<>1 3<>1 0, 1

54 4349 3955 4453 4497 0<>0 0<>0 1<>0 3<>0 1, 0

55 4639 4535 4028 4390 2<>1 0<>1 1<>1 1<>1 0, 0

56 4190 4480 4732 4587 2<>0 2<>0 1<>0 3<>0 0, 1

57 4789 4325 4824 4870 0<>0 0<>0 1<>0 1<>0 1, 0

58 5054 5034 4359 4677 0<>1 0<>1 1<>1 1<>1 1, 1

59 4840 4388 4903 4929 2<>0 2<>1 3<>0 3<>1 0, 1

60 5064 5126 4719 4471 0<>1 0<>0 1<>1 1<>0 0, 1

61 5072 4900 4907 4569 2<>0 2<>0 3<>1 3<>0 1, 1

62 5171 5153 4922 4660 2<>1 2<>1 3<>0 3<>1 1, 1

63 5156 5198 5011 4681 2<>1 2<>1 3<>1 3<>1 0, 0

4.4.5 TCM-Viterbi Performance

The previous table provides only 128 decoded bits. With 128 bits, we cannot say whether the decoder works
correctly or not. To see the performance of the TCM-Viterbi coder, we test the decoder with millions of bits (that
means we have to encode and transmit that many bits). For example, to test the bit-error-rate (BER) of 10−8, we
have to process at least 109 bits. In the following, BER versus Eb/N0 data for the TCM-Viterbi coder shown in
Figure 3.34 are provided. The corresponding BER plot for this data is shown in Figure 3.32.

BER versus Eb/N0 Data:
EbNo = 9.000000 error_count = 3 BER = 1.500000e-08
EbNo = 8.000000 error_count = 76 BER = 3.800000e-07
EbNo = 7.000000 error_count = 2104 BER = 1.052000e-05
EbNo = 6.000000 error_count = 32888 BER = 1.644400e-04
EbNo = 5.000000 error_count = 345240 BER = 1.726200e-03
EbNo = 4.000000 error_count = 2254097 BER = 1.127049e-02
EbNo = 3.000000 error_count = 8798461 BER = 4.399231e-02
EbNo = 2.000000 error_count = 21351731 BER = 1.067587e-01

4.5 Turbo Codes

In this section, we simulate a turbo encoder and decoder. There are more than one encoder configurations
to generate turbo codes and we use the RSC encoder configuration from the 3GPP standard (3rd Generation
Partnership Project, 2007) in the simulations. We use the maximum a posteriori (MAP) decoding algorithm to
decode turbo codes and for this we use derived equations from Section 3.10 to compute corresponding metrics in
the simulation of the MAP algorithm. We estimate the computational complexity of the turbo decoder in terms
of the number of computations and the amount of memory needed to decode turbo codes by using the MAP
algorithm.

4.5.1 RSC Encoder Simulation

For achieving better error-correction performance, we use RSC encoder to generate turbo codes. The 3GPP
standard specifies parallel concatenation of two RSC encoders for turbo codes generation as shown in Figure 4.13.
These RSC encoders consists of 3 (= M) delay units each and hence the constraint length of each RSC encoder
is 4 (i.e., M + 1). The two RSC encoders are separated by an interleaver and the interleaver input and output
sequence index relations are specified in the 3GGP standard. The first encoder works on a direct input bit
sequence and outputs a systematic output bit sequence and a parity bit sequence whereas the second decoder

200 Chapter 4

D D Dcn

dn,0

dn,1

dn,2

Feedback

Systematic output bits

Parity output bits
Input bits

D D D

Feedback

Parity output bits

z1 z2 z3

z1 z2 z3

I

Encoder 1

Encoder 2

TT

TT

Figure 4.13: Parallel concatenation of two RSC encoders with interleaver.

works on the interleaved bit sequence and outputs another parity bit sequence. In other words, we generate three
output bit sequences from one input bit sequence and hence the encoder shown in Figure 4.13 is a rate 1/3
coder.

At the beginning we initialize two RSC encoder states with zeros, and then the state of each encoder is updated
based on their input sequence bit and feedback bit. Typically, tracking of the RSC encoder state for each input
bit (and feedback bit) is carried out with the help of a trellis diagram as shown in Figure 4.14(a). The trellis has
three phases and they are (1) initialization phase, (2) steady-state phase, and (3) termination phase. After the start
of encoding, we needed three stages to get into steady-state. Similarly, the termination phase also involves three
stages. For trellis termination (TT), we use bits from a feedback loop instead of from input bits by switching, as
shown in Figure 4.13.

A zoomed version of the steady-state trellis in Figure 4.14(a) is shown in Figure 4.14(b). We rearrange the
output states of the trellis to get the simple flow of the steady-state trellis, and we use this rearranged flow
throughout the simulation as it has certain advantages in the implementation of the MAP algorithm on the
reference embedded processor. In Figure 4.14(b), a solid line represents the RSC encoder state update from the
current state to the next state when the input bit is “1,” and similarly the dotted line represents the state update
when the input bit is “0.” The state diagram shown in Figure 4.14(b) corresponds to the first RSC encoder as we
output two bits (one systematic bit and one parity bit) from one input bit. The trellis for the second RSC encoder
is also the same as the first RSC encoder; the only difference is that the number of output bits in this case is
one (i.e., a second parity bit). The simulation code of the 3GPP RSC encoder and the BPSK modulator is given
in Pcode 4.33. This simulation code assumes an interleaved input bit sequence is available to the second RSC
encoder; the study and simulation of the 3GPP interleaver is not in the scope of this book.

Typically, the input data bits are accessed in terms of 8-bit bytes from memory as the minimum size of the
data that the processor can access from memory is a byte (or an 8-bit quantity). Once we get a byte of data, then
to encode bit-by-bit, we have to unpack the bits which takes about 1.125 cycle per bit (or a total of 9 cycles with
the first bit unpack requiring 2 cycles and rest of the bits requiring 1 cycle per bit) on the reference embedded
processor. Then, an additional 7 cycles are required to code this bit as coding involves only sequential operations.
After coding, we have to pack the coded bits and store them in memory for other processing and transmission.
Packing of data takes the same number of cycles as unpacking 1.125 cycles per bit. Thus, a total of 10 cycles
are required for encoding 1 bit of data and outputting one parity bit (including overhead).

Implementation of Error Correction Algorithms 201

000 S0

001 S1

010 S2

011 S3

100 S4

101 S5

110 S6

111 S7
n = 0 1 2 3 4 5 … N 2 6 N 2 5 N 2 4 N 2 3 N 2 2 N 2 1

Initialization Steady State Steady State Termination
(a)

(b)

Current State Next State
z1 z2 z3

Input/Output
cn /dn,0dn,1

1/111/11

0/00

0/00

0/010/01

1/10

1/10

000 S0

001 S1

010 S2

011 S3

100 S4

101 S5

110 S6

111 S7

000 S0

100 S4

001 S1

101 S5

010 S2

110 S6

011 S3

111 S7

1/101/10

0/01

0/01

0/000/00

1/11

1/11

Dotted line: data 0
Solid line: data 1

Figure 4.14: (a) Trellis diagram flow for RSC encoder. (b) Steady-state trellis data flow of RSC encoder.

S1[0] = 0; S1[1] = 0; S1[2] = 0;
S2[0] = 0; S2[1] = 0; S2[2] = 0;
for(i = 0;i < N;i++) {

// first RSC encoder
feedback = S1[1] ˆ S1[2]; tmp1 = c[i]; // c[] contains input bit sequence
tmp1 = feedback ˆ tmp1; *x++ = 1 - 2*c[i]; // x[] contains output symbols
tmp2 = tmp1 ˆ S1[2]; S1[2] = S1[1];
tmp2 = tmp2 ˆ S1[0]; S1[1] = S1[0];
S1[0] = tmp1; *x++ = 1-2*tmp2; // modulate parity bit one and store
// second RSC encoder
feedback = S2[1] ˆ S2[2]; tmp1 = c_in[i]; // c_in[] contains interleaved input bits
tmp1 = feedback ˆ tmp1;
tmp2 = tmp1 ˆ S2[2]; S2[2] = S2[1];
tmp2 = tmp2 ˆ S2[0]; S2[1] = S2[0];
S2[0] = tmp1; *x++ = 1-2*tmp2; // modulate parity bit two and store

}

Pcode 4.33: Simulation code for 3GPP RSC encoder and BPSK modulator.

Turbo Encoder Complexity
Since we use the look-up table for interleaver addresses instead of computing on the fly, we only spend cycles
for look-up table accesses (which may come for free with compute operations). To interleave one data bit, it
takes about three cycles (one cycle for loading offset, two cycles for computing absolute address). Since turbo
encoding involves two RSC encoders and one interleave operation, in total we consume 25 cycles (including
overhead) for encoding one data bit. In other words, for applications with 14.4 Mbps bit rate (e.g., femtocell
base station), we require about 360 MIPS and this is about 60% of the total available 600 MIPS of the reference
embedded processor.

202 Chapter 4

Efficient Implementation of Turbo Encoder
As discussed, a turbo encoder is a costly module at higher bit rates if we are not implementing it properly. Next,
we discuss techniques for efficient implementation of the turbo encoder. We split the turbo encoder into two
parts. In the first part, we deal with the encoding of bits and in the second part we handle the interleaving of the
data bits.

Encoding Using Look-up Table Turbo encoding with two RSC encoders consumes about 20 cycles per input
bit as we discussed. Here, we describe a different approach using a look-up table that consumes only 2.5 cycles
(for both encoders) per input bit. For this, we need 256 bytes of extra memory for storing look-up table data.
Given the present state of the RSC encoder, it is possible to encode more than 1 bit at a time using this look-up
table. By precomputing the look-up table for all possible combinations of input bits of length L and for all three
combinations of state bits, we can encode L bits at a time. In this encoding, we use a look-up table that has 2L+3

entries. As the value of L increases, then the size of the look-up table also increases. With L = 4 (i.e., encoding
4 bits at a time), we have 27 or 128 entries in the look-up table as shown in Figure 4.15(a). Each entry contains
4 encoded bits and 3 bits of updated state information. In other words, a byte (or 8 bits) is sufficient to represent
each entry of the look-up table.

Exploring closely the details of the 8-bit look-up table design, it can be seen that to compute a 7-bit offset
to the 128-entry look-up table from 4 input bits (say in register r0) and 3 current-state bits (say in register r1),
we have to extract (1-cycle) 4 data bits (say to register r2) from the input byte (or from r0); extract (1-cycle) of
the current state (say to register r3) from the look-up table output (or from r1) of the previous encoding; shift
(1-cycle) 3 state bits by 4(r3 = r3 << 4); and OR (1-cycle) the extracted 4 input data bits to state bits (i.e.,
r4 = r2|r3). We can avoid the extract and shift operations for state bits by properly designing the look-up table.
If we use 2 bytes for each look-up table entry and place the state bits in the shifted position as shown in the
Figure 4.15(b), we can avoid two (saving 50%) of the offset calculation cycles.

Next, after computing the encoded bits, we have to pack the encoded bits. As we are encoding 4 bits at a time
and simultaneously outputting an encoded 4-bit nibble, packing nibbles into bytes is easy. We pack 2 nibbles
into a byte in 2 cycles (with one left shift and one OR or ADD operation). For packing two encoder outputs, we
spend 4 cycles on the reference embedded processor. By using the multiply-accumulate (MAC) unit, we can do
this packing in 2 cycles for two encoders since we have two MAC units on the reference embedded processor.
It is clear from this that the turbo encoding of 1 byte consumes 20 cycles or 2.5 cycles per bit.

Figure 4.15: (a) Look-up table–based
turbo encoding. (b) Look-up table
design for efficient turbo encoding.

7 bits

Offset

Encoded bits1 updated state

128
entries

(a)

(b)

x x x

Output encoded bits Next state of RSC encoder

One entry of look-up

Byte Byte

x x x x

Implementation of Error Correction Algorithms 203

In the previous discussion, we encoded 4 bits at a time for two encoders. But, in reality the second encoder
doesn’t get the data directly from the input bitstream bytes. We have to interleave the input bitstream before
passing it to the second encoder. In the previous section, we assumed that the interleaving bits are available for
the second encoder. The stored interleaved bits are accessed directly from the buffer for encoding by storing the
interleaved bits in an addressable boundary (i.e., a minimum of a byte has to be used for storing 1 bit).

Here, since we are encoding in terms of nibbles using the look-up table approach, we have to pack the
interleaved bits back to bytes before storing them to the interleaver buffer. Therefore, to feed the bits to the
second encoder in the right order, we have to perform the following three steps: unpack, interleave and pack.
As we represent the data in terms of bytes, packing and unpacking involves demultiplexing and multiplexing of
bytes into bits and bits into bytes, respectively. Packing of bits to bytes needs all interleaved bits, so we have to
first perform interleaving completely. We perform unpacking and interleaving together to avoid the stalls. The
two operations, unpacking and interleaving, consumes about 3 cycles per bit. Then we pack the bits back to
bytes and this packing operation consumes one cycle per bit on the reference embedded processor.

Based on the previous discussion, the cycles consumed per bit for unpacking, interleaving and packing of
interleaved data are 4. In encoding of data, we spend 2.5 cycles per bit. With this, the turbo encoder total cycle
cost is 6.5 cycles per bit. Assuming an overhead of 1 cycle per bit, we consume about 7.5 cycles per bit for
performing turbo encoding. With this efficient implementation, we use 108 MIPS of the reference embedded
processor or approximately 18% of processor MIPS at a bit rate of 14.4 Mbps. In comparison, we used 60% of
processor MIPS with simple implementation of turbo encoding discussed previously.

With the look-up table method described in this section for turbo encoding, we need 256 bytes of data memory
to store precomputed encoding information. With this efficient method, we need less data memory (by a factor
8) for storing the interleaved data as we pack the bits to bytes. Both methods require the same data memory for
storing interleaver addresses as it is costly to compute interleaver addresses on the fly.

Modulation and Transmission of Bits
The output of the turbo encoder is passed through a mapper to obtain a modulated encoded bit sequence
xn,0, xn,1, xn,2, xn+1,0, xn+1,1, xn+1,2, . . . before transmitting through a channel as shown in Figure 3.47. With
BPSK modulation, we map “0” to “+1” and “1” to “−1.” Here, we use the AWGN channel model to miti-
gate the real communication channel because the AWGN model approximates the effect of accumulation of
noise components from many sources. The noise sequences ui (n) from i.i.d. (independent and identically dis-
tributed) random process with zero mean and variance σ 2 are added to xn,i to obtain yn,i . At the receiver
side, we receive noisy sequence yn,0, yn,1, yn,2, yn+1,0, yn+1,1, yn+1,2, . . . and pass the received noisy symbols
to the turbo decoder to get reliable transmitted data symbols as shown in Figure 3.48. Here, we assume proper
synchronization of data symbols (i.e., the boundaries of triplets in the received sequence corresponding to
transmitted triplets should be identified). After data symbols synchronization, we identify received triplets as
(yn,0, yn,1, yn,2), (yn+1,0, yn+1,1, yn+1,2), and so on.

Next, we pass intrinsic information (systematic bits (yn,0) and the first encoder parity bits (yn,1) of the
received sequence) to the first decoder along with extrinsic information, Ext.2 (soft information) from the
second decoder. For the first iteration, we use zeros for Ext.2 by assuming equiprobability for intrinsic information
symbols. After completing decoding with the first decoder, we start the second decoder with intrinsic information
(interleaved systematic bits, I[yn,0] and the second encoder parity bits, yn,2) and extrinsic information, Ext.1
(soft information) from the first decoder as input. This process is repeated many times until we get reliable
decisions from the second decoder output. At end of the iterative decoding, we deinterleave the output of the
second decoder (LLRs) to get back the transmitted symbol sequence. Then, we obtain hard bits by using sign
information of output symbols. In the next section, we discuss the computation of metrics to simulate the turbo
decoder.

4.5.2 MAP Decoder Metrics Computation

Turbo codes are decoded by using more than one approach or algorithm type (e.g., SOVA, MAP). In this section,
we discuss a few techniques to simulate the MAP algorithm presented in Section 3.10.3 for decoding turbo

204 Chapter 4

codes. In the MAP algorithm, we need to compute alphas (forward-state metric using Equation 3.54), betas
(reverse-state metric using Equation 3.55), gammas (branch metric using Equation 3.56), LLRs (using alphas,
betas and gammas) and Extrinsic information (using Equation 3.57). In computing alphas, betas, and LLRs, we
have to compute an equation of the following form:

ez = ex + ey (4.31)

Equation (4.31) can be simplified using a correction factor as follows:

ez = emax(x,y)(1+ e−|x−y|) (4.32)

Taking the natural logarithm on both sides of Equation (4.32) results in

z = max(x , y)+ ln(1+ e−|x−y|)

= max∗(x , y)
(4.33)

The operator in Equation (4.33) is called a log-MAP operator. Sometimes we approximate the expression
ln(1+ e−|x−y|) using a constant, and then we call it a constant-log-MAP operator:

ln(1+ e−|x−y|) =
{

0 if|x − y| > 1.2

0.5 if|x − y| ≤ 1.2

If we completely ignore the value of ln(1 + e−|x−y|) in Equation (4.33), then we call that particular operator a
max-log-MAP:

z = max(x , y) (4.34)

If the absolute difference between x and y is greater than 3, then the difference between the evaluated
values of Equations (4.33) and (4.34) is negligible. For example, if x = 4 and y = 7, the computed values of
z from Equations (4.33) and (4.34) is going to be 7.04 and 7, respectively. Depending on embedded processor
capabilities, we use one of the previous operators in computing state metrics alpha and beta and the value
of LLRs.

We use the flow of RSC encoder steady-state trellis data (after BPSK modulation) to compute alphas, betas,
gammas, and LLRs. The rearranged steady-state trellis is shown in Figure 4.16. After mapping (with BPSK
modulator), the output binary digits dn,a :{0,1} in Figure 4.13 are changed to xn,a :{+1,−1}. The forward and
backward state metrics computation flow (with Equations (3.54) and (3.55)) is realized in Figure 4.17(a) and (b).
In computing state metrics (i.e., ᾱm

n and β̄m
n), we use γ̄ i,m

n .

Figure 4.16: Rearranged steady-state
trellis data flow diagram (after
modulation).

Current State Next State
S0

S1

S2

S3

S4

S5

S6

S7

S0

S4

S1

S5

S2

S6

S3

S7

(11, 11)(11, 11)

(21, 21)

(21, 21)

(21, 11)(21, 11)

(11, 21)

(11, 21)

(21, 21)(21, 21)

(11, 11)

Output (xi
n,0, xi

n,1)

(11, 11)

(11, 21)(11, 21)

(21, 11)

(21, 11)

Implementation of Error Correction Algorithms 205

(a)

��
0, b (0,m)
n�1

��
1, b (0,m)
n�1

��m
n

��b (0,m)
n�1

��b (1,m)
n�1

(b)

�n
0,m�

�n
1,m�

��
f (1,m)
n�1

��
m
n ��

f (0,m)
n�1

Figure 4.17: State metrics computation realization. (a) Forward-state metric computation. (b) Reverse-state
metric computation.

We compute gammas using the Equation (3.56). For m = 0, based on Figures 4.16 and 4.17(b),
(
x0

n,0, x0
n,1

)=
(+1,+1) and

(
x1

n,0, x1
n,1

)= (−1,−1). Thus,

γ 0,0
n = Pa(0)e−(yn,0−x0

n,0)
2+(yn,1−x0

n,1)
2

2σ2 = P (a)(0)e− y2
n,0+y2

n,1+2

2σ2 e
yn,0+yn,1

σ2

=
√

P (a)(0)P (a)(1)

√
P (a)(0)

P (a)(1)
e− y2

n,0+y2
n,1+2

2σ2 e
yn,0+yn,1

σ2

γ̄ 0,0
n = ln

(√
P (a)(0)P (a)(1)

)
+ ln

⎛
⎝
√

P (a)(0)

P (a)(1)

⎞
⎠− y2

n,0 + y2
n,1 +2

2σ 2
+ yn,0 + yn,1

σ 2

= ln
(√

P (a)(0)P (a)(1)
)

− y2
n,0 + y2

n,1 +2

2σ 2
− ln

⎛
⎝
√

P (a)(1)

P (a)(0)

⎞
⎠+ yn,0 + yn,1

σ 2
(4.35)

γ̄ 0,0
n = C0 + γ̄ h

n (4.36)

where C0 = ln
(√

P (a)(0)P (a)(1)
)

− y2
n,0+y2

n,1+2

2σ 2 contains terms which always result in positive values and γ̄ h
n =

− ln
(√

P(a)(1)

P(a)(0)

)
+ yn,0+yn,1

σ 2 contains terms which affect the maximum a posteriori probability. In a similar manner,

we can compute γ̄ 1,0
n as

γ̄ 1,0
n = C0 − γ̄ h

n (4.37)

Then, after ignoring constant terms,

eβ̄0
n = eβ̄

f (0,0)
n+1 +γ̄ 0,0

n + eβ̄
f (1,0)

n+1 +γ̄ 1,0
n

= eβ̄0
n+1+γ̄ h

n + eβ̄4
n+1−γ̄ h

n

Using Equations (4.31) to (4.33),

β̄0
n = max∗ (β̄0

n+1 + γ̄ h
n , β̄4

n+1 − γ̄ h
n

)
(4.38)

Similarly, for m = 2, from Figures 4.16 and 4.17(b),
(
x0

n,0, x0
n,1

)= (+1,−1) and
(
x1

n,0, x1
n,1

)= (−1,+1). Then,

eβ̄2
n = eβ̄

f (0,2)

n+1 +γ̄ 0,2
n + eβ̄

f (1,2)

n+1 +γ̄ 1,2
n

where γ̄ 0,2
n = C2 − γ̄

g
n ,γ̄ 1,2

n = C2 + γ̄
g
n , C2 = C0, γ̄

g
n = − ln

(√
P(a) (1)

P(a) (0)

)
+ yn,0−yn,1

σ 2 and then

eβ̄2
n = eβ̄1

n+1−γ̄
g
n + eβ̄5

n+1+γ̄
g
n

Using Equations (4.31) to (4.33),
β̄2

n = max∗ (β̄1
n+1 − γ̄ g

n , β̄5
n+1 + γ̄ g

n

)
(4.39)

206 Chapter 4

Figure 4.18: Branch metric (gamma)
computation.

yn,0

2 ln
2
1

P (a) (0)
P (a) (1)

yn,1

1

1

2

1 1

1 1

1

�n
g]�n

h]

(a)

��0
n

��0
n�1

��1
n

��4
n�1

��2
n

��1
n�1

��3
n

��5
n�1

��4
n

��2
n�1

��5
n

��6
n�1

��6
n

��3
n�1

��7
n

��7
n�1

��h
n

��h
n

��� g
n

��� g
n

��h
n��h

n

��� g
n��� g

n

��g
n��g

n

��� h
n��� h

n

��� h
n

��� h
n

��g
n

��g
n

(b)

��
0
n�1

��h
n

��h
n

��� g
n

��� g
n

��� h
n

��h
n��h

n

��� g
n��� g

n

��g
n��g

n

��� h
n��� h

n

��� h
n

��g
n

��g
n

��
0
n

��
4
n�1��

1
n

��
1
n�1��

2
n

��
5
n�1��

3
n

��
2
n�1��

4
n

��
6
n�1��

5
n

��
3
n�1��

6
n

��
7
n�1��

7
n

Figure 4.19: State metric butterflies computation.

In the same fashion we can derive γ̄ i,m
n for other values of m (or branches). With BPSK modulation, we have

only two branch metrics {γ̄ h
n , γ̄

g
n } per stage; the realization of branch metrics (gammas) computation is shown

in Figure 4.18. For a particular stage (at time n), state metrics alphas and betas are computed using the same
branch metric gammas as shown in Figure 4.19.

We calculate LLR using Equation (3.52) as follows:

LLR = ln

[∑
m

αm
n γ 1,m

n β
f (1,m)

n+1

]
− ln

[∑
m

αm
n γ 0,m

n β
f (0,m)

n+1

]

= ln

[∑
m

eᾱm
n +γ̄ 1,m

n +β̄
f (1,m)

n+1

]
− ln

[∑
m

eᾱm
n +γ̄ 0,m

n +β̄
f (0,m)

n+1

] (4.40)

Implementation of Error Correction Algorithms 207

Equation (4.40) for M = 3 (i.e., for 0 ≤ m ≤ 2M − 1) can be interpreted using the data flow in Figures 4.18
and 4.19. The first term in Equation (4.40) explains the connection from alpha to beta through gamma for bit
“1” as shown in Figure 4.20(a) and the second term in Equation (4.40) explains the connection from alpha to
beta through gamma for bit “0” as shown in Figure 4.20(b).

We obtain a posteriori probabilities (APPs) in Equation (3.46) from Figure 4.20(a) and (b) for bit “1” and bit
“0” at time n given received sequence YN as follows:

ln(Pr(cn = 1/YN)) = ln
(

e−γ̄ h
n

(
eᾱ0

n+β̄4
n+1 + eᾱ1

n+β̄0
n+1 + eᾱ6

n+β̄3
n+1 + eᾱ7

n+β̄7
n+1

)
(4.41)

+ e−γ̄
g
n

(
eᾱ2

n+β̄1
n+1 + eᾱ3

n+β̄5
n+1 + eᾱ4

n+β̄6
n+1 + eᾱ5

n+β̄2
n+1

))

ln(Pr(cn = 0/YN)) = ln
(

eγ̄ h
n

(
eᾱ0

n +β̄0
n+1 + eᾱ1

n+β̄4
n+1 + eᾱ6

n+β̄7
n+1 + eᾱ7

n+β̄3
n+1

)
(4.42)

+ eγ̄
g
n

(
eᾱ2

n +β̄5
n+1 + eᾱ3

n+β̄1
n+1 + eᾱ4

n+β̄2
n+1 + eᾱ5

n+β̄6
n+1

))

Based on Equations (3.46), (4.41), and (4.42), the LLR for the n-th trellis stage is computed as

LLR (cn) = ln(Pr (cn = 1/YN))− ln(Pr (cn = 0/YN)) (4.43)

4.5.3 MAP Decoder Computational Complexity

The LLR value in Equation (4.43) is computed from APPs which are obtained using Equations (4.41) and (4.42).
In computing APPs, we use the n-th stage trellis all-states alphas (forward-state metrics), betas (reverse-state
metrics), and gammas (branch metrics). At the n-th stage, gammas are computed using the received information
and extrinsic information of the n-th stage, alphas are computed using (n −1)-th stage alphas and gammas, and
betas are computed using (n + 1)-th stage betas and gammas. In other words, to compute the LLR value at the
n-th stage, we use information from alphas computed from previous n stages and betas computed from future
(N −n) stages of the trellis as shown in Figure 4.21.

(a) (b)

�2
g
n

�20
n �2

0
n 11

�21
n �2

4
n 11

�22
n �2

1
n 11

�23
n �2

5
n 11

�24
n �2

2
n 11

�25
n �2

6
n 11

�26
n �2

3
n 11

�27
n �2

7
n 11

�2h
n

�2h
n

�2h
n

�2h
n

�22 g
n

�2g
n

�2g
n

�20
n

�21
n

�22
n

�2
0
n 11

�2
4
n 11

�2
1
n 11

�23
n �2

5
n 11

�24
n �2

2
n 11

�25
n �2

6
n 11

�26
n �2

3
n 11

�27
n �2

7
n 11

�22 h
n

�22 h
n

�22 h
n

�22 h
n

�22 g
n

�22 g
n

�22 g
n

�22 g
n

Figure 4.20: (a) Bit “1” MAP connections. (b) Bit “0” MAP connections.

208 Chapter 4

Figure 4.21: Illustration of LLR
computation at n-th stage.

Trellis Stages

n th

Stage

BetasAlphas

LLR(n th Gamma, n th Alpha, (n 11)th Beta)

1st

Stage
N th

Stage

In Figure 4.21, to compute the LLR at the n-th stage we need the alpha and gamma of the n-th stage and the
beta of (n +1)-th stage. To compute alpha, we need previous alpha values, and to compute beta, we need future
beta values. To compute alphas, betas, and LLRs at a particular stage, we need gammas of that particular stage.
In other words, we have to keep all the stages alphas, betas, and gammas in the buffer alive for calculating LLRs.

The turbo decoder shown in Figure 3.48 works on a sequence or frame of length N symbols at a time. The
value of N ranges from a few tens of symbols to many thousands of symbols. For example, the range of N
specified by the 3G standard is 40 to 5044. If we are using turbo codes in a particular application, we have to
support all the data lengths used by that particular application or standard. The number of states (2M) present in
the trellis stage depends on the number of delay units present in the encoder. If M = 3 delay units are present in
an RSC encoder (as in UMTS 3G), then we have eight states in a trellis stage. Here, we consider N = 5044 and
M = 3 for estimation of turbo coder computational complexity in terms of the number of operations and memory
requirements.

Decoding Complexity and Number of Operations
In decoding of turbo codes using the MAP algorithm, we use two MAP decoders per iteration and repeat for
many iterations. In the maximum a posteriori algorithm, we compute all metrics in the logarithm domain to
avoid multiplications and to avoid frequent normalization of alpha and beta as they grow with errors. In the
logarithm domain, we predominantly use additions and subtractions and the log-MAP operator in computing
the LLR metrics. Table 4.2 shows the number of operations required (per trellis stage per decoder per iteration)
to compute gamma, alpha, beta, LLRs, and extrinsic information.

Memory Requirements
For M = 3, we have 2 gammas, 8 alphas and 8 betas in every stage of the trellis. We use 16 bits (or 2 bytes) to
represent each value (to avoid saturation before normalization). If N = 5044, then we need approximately 20 kB
(= 5044 x 2 x 2) for gammas, 80 kB (= 5044 x 2 x 8) for alphas, 80 kB for betas, and another 40 kB for storing
LLRs, extrinsic information of both decoders and intrinsic information for both decoders. The MAP algorithm
involves computation of betas from the last stage of the data frame to the first stage of the data frame and alphas
from the first stage of the data frame to the last stage of the data frame. We can avoid storing one of either alpha
or beta. For example, we store computed gamma and alpha for full frame, then we compute LLRs (in a backward
direction) using betas computed on the fly without storing them. The other way is storing computed gamma and
beta for full frame, then compute LLRs (in a forward direction) using alphas computed on the fly. In either case,
we need approximately 140 kB of data memory on an embedded processor (see Appendix A on the companion
website for more information on reference embedded processor resources) to implement the turbo decoder for
N = 5044 and M = 3. Consequently, we can say turbo codes demand a lot of memory in their decoding.

4.5.4 Window-Based Turbo Decoder Implementation

The huge requirement on memory in turbo decoding can be reduced by using a window-based method. This
method involves dividing the entire data frame into smaller data blocks and performing the decoding on smaller
windows. In this window-based method, we needed to store gamma and either one of alpha or beta. In the
implementation, we always compute alphas for full window and store them whereas we compute betas on the
fly and use them. As we compute LLRs using the gammas, alphas and betas of data within the present window
and if we divide the total frame into Q blocks, then the memory required with the window method is 1/Q of
straight forward implementation. The turbo decoding using the window-based method is shown in Figure 4.22.
By dividing the whole data frame into smaller windows, betas can be computed from the last stage of each

Implementation of Error Correction Algorithms 209

Table 4.2: Number of operations involved in computing MAP
algorithm metrics per trellis stage per decoder per iteration

Metric Number of Additions, Subtractions, Log-MAP
Operations Others Operations

Alpha 16 8
Beta 16 8
Gamma 8 0
LLR 21 14
Extrinsic information 6 0

Received Data Frame

Window 1

Window 2

Window 3

Window Q 21

Window Q

Overlap
Stages

Betas

Alphas
LLRs

Betas :

Alphas:

LLRs :

Figure 4.22: Turbo decoder window-based implementation.

data window instead of the last stage of the data frame. In the case of the full data frame, we use the trellis
termination sequence for betas to converge before the start of computing of LLRs from the last stage. But with
the window-based method, we do not know the state of the transmitted trellis at the last stage of the window
and hence we require a few overlap stages for betas to converge. Therefore, the window-based method requires
extra (of overlap length) beta computation in its implementation. Since we do not decode any information bits
during these overlap stages, this adds to the overall cost of MAP decoding.

The disadvantage with the window-based method is the computational overhead, estimated as follows. Typ-
ically, the length of overlap stages needed is about 6K stages, where K is the constraint length of the RSC
encoder. If we need “B” cycles to compute betas per stage, then we spend 6 ∗ K ∗ B extra cycles for computing
betas in the window-based method. This overhead depends on the number of windows that are used in decoding
the full frame. If the number of windows is less, then the overhead is also less (but requires more memory) and
if the number of windows is more, then the overhead is also more (but requires less memory).

Turbo decoding demands huge computations as well as huge memory requirements. Implementation of turbo
decoding on deep pipelined embedded processors needs a lot of optimization at both algorithm level and instruc-
tion level. The optimization at algorithm level includes rearranging the algorithm flow to suit the processor
architecture and taking a few shortcuts (if possible) to avoid some of the computations. The optimization at
the instruction level includes gathering many operations and feeding them to all compute units of the proces-
sor, balancing bandwidth of ALU and DAG units, avoiding pipeline stalls, and so on. Typically, we interleave
the program code to avoid pipeline stalls in running the program on deep pipelined embedded processors. To
interleave the program code, we have to gather as many operations that are independent from one another (i.e.,
their input does not depend on the output of other operations) as possible. In MAP decoding, the three major
operations (which consume almost 90% of cycles) are computation of alphas, betas, and LLRs. Here, we have
two options to implement the MAP decoder: (1) computation of all stages of alphas at once, all stages of betas at
once, and all stages of LLRs at once; and (2) simultaneously computing the alpha, beta, and LLR for one stage.

Next, we discuss the advantages and disadvantages with the previous two approaches. An advantage of the first
method is that the coding becomes simple, but there are many disadvantages. Based on Figures 4.19 through 4.21,

210 Chapter 4

Figure 4.23: Efficient implementation of window-based MAP decoder.

disadvantages of using the first method include (1) more memory is needed to store all metrics, (2) computation
of alphas and betas of the next trellis stage requires current trellis stage outputs (whose trellis states are not
the same as the inputs, and accessing them in the right order delays the next stage metric computation), and
(3) reduced scope to interleave the program code. Next, a disadvantage of the second method is that simultaneous
computation of all three terms (alpha, beta, and LLR) is not possible for the same stage (as shown in Figure 4.21).
Advantages of the second method are (1) sufficient storage of alpha or beta, (2) no delay in data access, and
(3) good scope to interleave the program code to avoid pipeline stalls.

As the MAP decoder implementation with the second method has many advantages, we concentrate on the
realization of this approach for simulation of the MAP decoder. We can overcome the disadvantage with the
second method in the window-based implementation as shown in Figure 4.23. Here, we compute only the alpha
of the first window before entering into the loop (as given later in Pcode 4.44), then in every iteration, we compute
beta and LLR for the current window and alpha for the next window, and the process continues. In this approach,
as we are computing at times alpha, beta, and LLR per iteration, we have sufficient time to arrange the data to
compute units and also have a good scope to interleave the program code.

4.5.5 Turbo Decoder Simulation

In this section, we simulate the window-based turbo decoder shown in Figure 4.23. We choose the length of the
input data frame to the turbo decoder as 5088. Based on this input data frame size, we define other parameter
sizes in the simulation of the window-based turbo decoder as given in Pcode 4.34. We divide the input data
frame into eight small data windows. We use 24(= 6 ∗ K = 6 ∗ 4) overlap stages for each window. We iterate five
times to get reliable decisions using the MAP decoder. The other parameters such as window length, maximum
window length and number of stages are defined based on parameters chosen previously. In this turbo decoder
simulation, we use the max-log-MAP operator (i.e., taking a simple maximum of two inputs). In addition, we use
a Ping-Pong buffer concept to reduce the L1 data memory size. We use approximately 45 kB of data memory to
store intermediate data, as given in Pcode 4.35. We store the whole received input data sequence (one systematic
sequence, one interleaved systematic sequence and two parity sequences) in L3 memory. We precalculate offsets
in advance for mitigating interleaver and deinterleaver functionality and store in L3 memory.

#define DATA_SIZE 5088
#define NUM_ITERATIONS 5
#define OVERLAP_LENGTH 24
#define NUM_WINDOWS 8
#define WINDOW_LENGTH DATA_SIZE/NUM_WINDOWS
#define MAX_WINDOW_LENGTH WINDOW_LENGTH + OVERLAP_LENGTH
#define NUM_STAGES DATA_SIZE + OVERLAP_LENGTH

Pcode 4.34: Window-based turbo decoder implementation parameters.

Data Handling and Transfer between L3 and L1
In the turbo decoder, we handle a huge amount of data in MAP decoding by storing the input data in slow L3 mem-
ory. We store three inputs, interleaver input and interleaver matrix in L3. As we compute beta and LLR for the cur-
rent window and alpha for thenext window,weneed branch metrics for both windows.To reduce thedata transfers,

Alpha

Beta
LLR

Alpha

Beta
LLR

Alpha

Window 3

Window 2

Window 2

Window 1

Window 1

Window Q

Beta
LLR

Implementation of Error Correction Algorithms 211

// Memory bank-1: approx. 22.5 kB for N = 5088
signed char Extrinsic1[NUM_STAGES]; // extrinsic info from MAP-1, 5kB
signed char Extrinsic2[NUM_STAGES]; // extrinsic info from MAP-2, 5kB
signed char inputX1[MAX_WINDOW_LENGTH]; // X in 5.3 format, 0.7 kB
signed char inputX2[MAX_WINDOW_LENGTH]; // 0.7 kB
signed short Alpha0[WINDOW_LENGTH*8+8]; // Alpha0, 10 kB
signed short interM1[WINDOW_LENGTH]; // interleaver look-up,1.3 kB
unsigned long Turbo_Struct[16];

// Memory bank-2: approx. 22.5 kB for N = 5088
signed short Alpha2[WINDOW_LENGTH*8+8]; // Alpha2, 10 kB
signed short interM2[WINDOW_LENGTH]; // 1.3 kB
signed short Gamma0[2*MAX_WINDOW_LENGTH+2]; // Gamma0, 2.7 kB
signed short Gamma1[2*MAX_WINDOW_LENGTH+2]; // Gamma1, 2.7 kB
signed short LLR01[WINDOW_LENGTH]; // 1.3 kB
signed short inputX3[MAX_WINDOW_LENGTH+4]; // 1.4 kB
signed short inputX4[MAX_WINDOW_LENGTH+4]; // 1.4 kB
signed char inputY1[MAX_WINDOW_LENGTH]; // Y in 5.3 format, 0.7 kB
signed char inputY2[MAX_WINDOW_LENGTH]; // 0.7 kB
signed short Beta[8];

Pcode 4.35: Data buffers used in turbo decoder simulation.

we bring the input data (intrinsic information + interleaver matrix for interleaving the output) for one window
and store the needed information for computing gamma for the next window temporally in L1 memory. As data
transfer (using DMA) introduces some latency, we always bring the data for the next window to avoid the data
transfer latency. We use the Ping-Pong buffer concept in this data transfer process.

MAP Decoder Metrics Simulation
As the MAP decoder involves the computation of many metrics, we define macros for each metric simulation.
We simulate the MAP decoder from bottom to top, meaning that we simulate the turbo decoder in the following
order: (1) simulate individual metrics, (2) simulate one window, (3) simulate one MAP decoder, (4) simulate
a single iteration, and (5) repeat this simulated code for many iterations. We use the data structure given in
Pcode 4.36 to handle all data and addresses.

Branch Metric: Gamma Based on Figure 4.18, the computation of the branch metric gamma requires intrinsic
information (systematic input and parity input) and extrinsic information (a priori information). In addition, we
multiply the intrinsic information with the channel noise variance (which is estimated at the receiver). A macro
definition for gamma computation is shown in Pcode 4.37. In the current window, we always compute gamma
for the next window and we store systematic input data temporally in L1 memory for future use (to compute
extrinsic information of next window). We compute two gammas per trellis stage as we require two gammas per
trellis stage to compute state metrics alphas and betas and to compute APPs for LLRs.

typedef struct TurboDec_tag {
signed char *xx; // holds systematic input array address
signed char *yy; // holds parity input array address
signed char *Ext1; // holds first decoder extrinsic information array
signed char *Ext2; // holds second decoder extrinsic information array
signed short *AlphaC; // holds current window Alpha metrics array
signed short *AlphaN; // holds next window Alpha metrics array address
signed short *GammaC; // holds current window Gamma metrics array
signed short *GammaN; // holds next window Gamma metrics array
signed short *mm; // holds interleave offsets array
signed short *xC; // holds current window systematic input
signed short *xN; // holds next window systematic input
signed long Sigma; // assign estimated channel noise variance

} TurboDec_t;

Pcode 4.36: Data structure to handle turbo decoder parameters.

212 Chapter 4

#define COMP_GAMMA_N()\
j = i<<1;\
r2 = pT->Ext2[i+n]; r1 = pT->yy[i]; r0 = pT->xx[i];\
r4 = r2 + (r0 + r1) * pT->Sigma; r5 = r2 + (r0 - r1) * pT->Sigma; pT->xN[i] = r0;\
*(pT->GammaN+j) = r4; *(pT->GammaN+j+1) = r5;

Pcode 4.37: Macro for gamma computation.

#define ALPHA()\
r0 = pT->AlphaN[m+0]; r1 = pT->AlphaN[m+1]; r2 = pT->GammaN[n+0];\
tmp0 = r0 + r2; tmp1 = r1 - r2; tmp2 = r0 - r2; tmp3 = r1 + r2;\
tmp0 = max(tmp0, tmp1); tmp2 = max(tmp2, tmp3);\
pT->AlphaN[k+0] = tmp0; pT->AlphaN[k+4] = tmp2;\
r0 = pT->AlphaN[m+2]; r1 = pT->AlphaN[m+3]; r2 = pT->GammaN[n+1];\
tmp0 = r0 - r2; tmp1 = r1 + r2; tmp2 = r0 + r2; tmp3 = r1 - r2;\
tmp0 = max(tmp0, tmp1); tmp2 = max(tmp2, tmp3);\
pT->AlphaN[k+1] = tmp0; pT->AlphaN[k+5] = tmp2;\
r0 = pT->AlphaN[m+4]; r1 = pT->AlphaN[m+5]; r2 = pT->GammaN[n+1];\
tmp0 = r0 + r2; tmp1 = r1 - r2; tmp2 = r0 - r2; tmp3 = r1 + r2;\
tmp0 = max(tmp0, tmp1); tmp2 = max(tmp2, tmp3);\
pT->AlphaN[k+2] = tmp0; pT->AlphaN[k+6] = tmp2;\
r0 = pT->AlphaN[m+6]; r1 = pT->AlphaN[m+7]; r2 = pT->GammaN[n+0];\
tmp0 = r0 - r2; tmp1 = r1 + r2; tmp2 = r0 + r2; tmp3 = r1 - r2;\
tmp0 = max(tmp0, tmp1); tmp2 = max(tmp2, tmp3);\
pT->AlphaN[k+3] = tmp0; pT->AlphaN[k+7] = tmp2;

Pcode 4.38: Macro for alpha computation.

State Metric: Alpha We simulate alpha computation based on the data flow shown in Figure 4.19(a). To compute
forward-state metrics (alpha, indexed with k), we use the previous stage state metrics (alpha, indexed with m)
and current stage branch metrics (gamma, indexed with n). The simulation code for alpha computation macro
definition is given in Pcode 4.38.

State Metric: Beta We simulate beta computation based on the data flow shown in Figure 4.19(b). We compute
reverse-state metrics (beta) from the last stage to the first stage. To compute current trellis state beta metrics, we
use next stage state beta metrics and next stage branch metrics (gamma, indexed with n). The simulation code
for beta computation macro definition is given in Pcode 4.39.

#define BETA()\
r0 = Beta[0]; r1 = Beta[4]; r2 = Beta[1]; r3 = Beta[5];\
r4 = Beta[2]; r5 = Beta[6]; r6 = Beta[3]; r7 = Beta[7];\
tmp2 = pT->GammaC[n]; tmp3 = pT->GammaC[n+1];\
tmp0 = r0 + tmp2; tmp1 = r1 - tmp2; r0 = r0 - tmp2; r1 = r1 + tmp2;\
tmp0 = max(tmp0, tmp1); r0 = max(r0, r1);\
Beta[0] = tmp0; Beta[1] = r0;\
tmp0 = r2 - tmp3; tmp1 = r3 + tmp3; r0 = r2 + tmp3; r1 = r3 - tmp3;\
tmp0 = max(tmp0, tmp1); r0 = max(r0, r1);\
Beta[2] = tmp0; Beta[3] = r0;\
tmp0 = r4 + tmp3; tmp1 = r5 - tmp3; r0 = r4 - tmp3; r1 = r5 + tmp3;\
tmp0 = max(tmp0, tmp1); r0 = max(r0, r1);\
Beta[4] = tmp0; Beta[5] = r0;\
tmp0 = r6 - tmp2; tmp1 = r7 + tmp2; r0 = r6 + tmp2; r1 = r7 - tmp2;\
tmp0 = max(tmp0, tmp1); r0 = max(r0, r1);\
Beta[6] = tmp0; Beta[7] = r0;

Pcode 4.39: Macro for beta computation.

LLRs Computation We compute LLRs based on bit “0” and “1” MAP connections shown in Figure 4.20(a)
and (b). We use current stage alphas, gammas and next stage betas for computing LLRs. The macro definition
for LLR computation is given in Pcode 4.40. In Pcode 4.38, we used array names alphaN[] and gammaN[]
to represent the metrics of the next window. In Pcode 4.40, we used array names alphaC[] and gammaC[] to
represent the metrics of the current window. Assuming limited data registers on an embedded processor, we use

Implementation of Error Correction Algorithms 213

#define LLRS()\
r0 = pT->AlphaC[m+0]; r2 = Beta[0]; r1 = pT->AlphaC[m+1]; r3 = Beta[4];\
tmp0 = r0 + r2; tmp1 = r1 + r3; tmp2 = r0 + r3; tmp3 = r1 + r2;\
tmp0 = max(tmp0, tmp1); tmp2 = max(tmp2, tmp3);\
Turbo_Stack[0] = tmp0; Turbo_Stack[1] = tmp2;\
r0 = pT->AlphaC[m+6]; r2 = Beta[7]; r1 = pT->AlphaC[m+7]; r3 = Beta[3];\
tmp0 = r0 + r2; tmp1 = r1 + r3; tmp2 = r0 + r3; tmp3 = r1 + r2;\
tmp0 = max(tmp0, tmp1); tmp2 = max(tmp2, tmp3);\
Turbo_Stack[2] = tmp0; Turbo_Stack[3] = tmp2;\
r0 = pT->AlphaC[m+2]; r2 = Beta[5]; r1 = pT->AlphaC[m+3]; r3 = Beta[1];\
tmp0 = r0 + r2; tmp1 = r1 + r3; tmp2 = r0 + r3; tmp3 = r1 + r2;\
tmp0 = max(tmp0, tmp1); tmp2 = max(tmp2, tmp3);\
Turbo_Stack[4] = tmp0; Turbo_Stack[5] = tmp2;\
r0 = pT->AlphaC[m+4]; r2 = Beta[2]; r1 = pT->AlphaC[m+5]; r3 = Beta[6];\
tmp0 = r0 + r2; tmp1 = r1 + r3; tmp2 = r0 + r3; tmp3 = r1 + r2;\
tmp0 = max(tmp0, tmp1); tmp2 = max(tmp2, tmp3);\
Turbo_Stack[6] = tmp0; Turbo_Stack[7] = tmp2;\
r0 = Turbo_Stack[0]; r1 = Turbo_Stack[1]; r2 = Turbo_Stack[2]; r3 = Turbo_Stack[3];\
tmp0 = max(r0, r2); tmp1 = max(r1, r3);\
r0 = Turbo_Stack[4]; r1 = Turbo_Stack[5]; r2 = Turbo_Stack[6]; r3 = Turbo_Stack[7];\
tmp2 = max(r0, r2); tmp3 = max(r1, r3);\
r0 = pT->GammaC[n]; r1 = pT->GammaC[n+1];\
r2 = tmp0 + r0; r3 = tmp1 - r0; r0 = tmp2 + r1; r1 = tmp3 - r1;\
tmp0 = max(r0, r2); tmp1 = max(r1, r3);\
r0 = tmp1 - tmp0; LLR01[p--] = r0;

Pcode 4.40: Macro definition for LLR computation.

array Turbo_stack[] as a stack to store intermediate results in computation of LLRs. After computing the LLR
of the current stage, we store it in array LLR01[].

State Metrics Initialization As discussed in Section 3.10.3, we initialize state metrics alpha and beta before we
start computing the initial alphas (i.e., for the first stage) and betas (i.e., the last stage). We initialize the first state
with zero and all other states with a large negative value (that can be represented within the allowed precision
for state metrics) and usually we assign with a negative value that is equal to half of the extreme end value (to
avoid saturation due to the initial fluctuations). The macro definition for state metrics initialization is given in
Pcode 4.41.

State Metrics Normalization The values of the state metrics (alpha and beta) grow with errors. If we do not
control the range of the state metrics, then we see a saturation of alpha and beta values after some stages of
computation. To avoid saturation, we normalize state metrics for every L stages. The interval L depends on
the number of bits or precision (i.e., 8, 16, 24, or 32 bits) used to represent state metrics. In the simulations,
we used 16 bits precision to represent state metrics alpha and beta and we use L = 64. We perform normal-
ization using either one of the following. Normalization of alphas is done by subtracting the maximum of all
states metric value or the first state metric value from all state metrics of current stage alphas. We also per-
form normalization of betas in the same way. The macro definition for alpha and beta normalization is given
in Pcode 4.42.

#define ALPHA_INIT()\
tmp0 = -4096*4;\
pT->AlphaC[0] = 0; pT->AlphaC[1] = tmp0;\
pT->AlphaC[2] = tmp0; pT->AlphaC[3] = tmp0;\
pT->AlphaC[4] = tmp0; pT->AlphaC[5] = tmp0;\
pT->AlphaC[6] = tmp0; pT->AlphaC[7] = tmp0;

#define BETA_INIT()\
tmp0 = -4096*4;\
Beta[0] = 0; Beta[1] = tmp0; Beta[2] = tmp0; Beta[3] = tmp0;\
Beta[4] = tmp0; Beta[5] = tmp0; Beta[6] = tmp0; Beta[7] = tmp0;

Pcode 4.41: Macro for initialization of state metrics.

214 Chapter 4

#define ALPHA_NORM()\
tmp0 = pT->AlphaN[m];\
pT->AlphaN[m+0] = pT->AlphaN[m+0] - tmp0;\
pT->AlphaN[m+1] = pT->AlphaN[m+1] - tmp0;\
pT->AlphaN[m+2] = pT->AlphaN[m+2] - tmp0;\
pT->AlphaN[m+3] = pT->AlphaN[m+3] - tmp0;\
pT->AlphaN[m+4] = pT->AlphaN[m+4] - tmp0;\
pT->AlphaN[m+5] = pT->AlphaN[m+5] - tmp0;\
pT->AlphaN[m+6] = pT->AlphaN[m+6] - tmp0;\
pT->AlphaN[m+7] = pT->AlphaN[m+7] - tmp0;

#define BETA_NORM()\
tmp0 = Beta[0];\
Beta[0] = Beta[0] - tmp0; Beta[1] = Beta[1] - tmp0;\
Beta[2] = Beta[2] - tmp0; Beta[3] = Beta[3] - tmp0;\
Beta[4] = Beta[4] - tmp0; Beta[5] = Beta[5] - tmp0;\
Beta[6] = Beta[6] - tmp0; Beta[7] = Beta[7] - tmp0;

Pcode 4.42: Macro for normalization of Alpha and Beta.

Extrinsic Information Computation and Interleaving
Once we compute LLRs, the next step in MAP decoding is the computation of present decoder extrinsic infor-
mation from present decoder systematic input and LLRs and from other decoder extrinsic information. Then,
we clip the computed extrinsic information between some thresholds to keep it within the same precision used
to represent the received input data. We interleave the extrinsic information before storing it (as we pass this
to another decoder in a future iteration) to be compliant with the other decoder inputs. The macro definition
for extrinsic information computation and interleaving is given in Pcode 4.43. We interleave the data using the
precalculated interleaving offsets and it is costly to compute these interleave offsets on the fly.

#define COMP_EXT()\
r3 = 127; r2 = -127;\
r0 = pT->Ext2[j]; r1 = pT->xC[j];\
r0 = (r0 + r1)*2; r1 = LLR01[j];\
r0 = (r0 - r1)/2; n = pT->mm[j];\
r0 = min(r0, r3); r0 = max(r0, r2);\
pT->Ext1[n] = r0;

Pcode 4.43: Macro for extrinsic information computation and interleaving.

To reduce L1 memory usage, we do not store betas of trellis stages in an array; instead we use betas immediately
after their computation in obtaining LLRs. As we split the entire data frame into small windows, we simulate
alphas, betas and LLRs based on Figures 4.22 and 4.23. We bring one window of received data at a time to
L1 memory from L3 memory. We consider current window last stage alphas as the initial alpha values for the
next window. But, in the case of betas, we do not have future window betas, and we have to compute them for
every window. How many betas we need to compute to converge (or to get the initial valid beta values) for the
current window depend on the constraint length (K) of the encoder. For betas to converge we have to compute
betas for 6K stages of the future window, and therefore we have to bring that much extra data from L3 to L1 as
overlap data, as shown in Figure 4.22.

We compute LLRs for one window at a time and for this we should have alphas, betas and gammas of
that window to compute LLRs. To efficiently implement the turbo decoder by interleaving the program code,
we compute alphas for the first window outside the loop and we always compute betas, LLRs and extrinsic
information for the current window and alphas for the next window in the loop. In addition, we compute
gammas for the next window before entering the loop as the alphas computation for the next window needs
those gammas. To compute LLRs of a current window in a loop, we first compute betas for overlap data (that
belongs to next window) to get converged betas, then we start computing LLRs from the last stage of current
window by computing beta on the fly without storing in L1 data memory (as given in Pcode 4.39). In the window-
based decoding, to reduce pipeline stalls and to utilize the system’s full bandwidth (i.e., ALU operations and

Implementation of Error Correction Algorithms 215

// CompBetaLLRsAlpha(pTD)
m = WINDOW_LENGTH*8;
ALPHA_NORM_TX() // normalize Alpha for next window
n = WINDOW_LENGTH; N = MAX_WINDOW_LENGTH;
for(i = 0;i < N; i++){

COMP_GAMMA_N() // Compute Gamma for Next window
}
BETA_INIT() // Initialize Beta
n = (MAX_WINDOW_LENGTH<<1)-2; M = OVERLAP_LENGTH;
for(i = 0;i < M;i++){ // Compute overlap Beta

BETA()
n = n - 2;

}
k = 8; m = 0; p = 0; Turbo_Struct[9] = m; Turbo_Struct[10] = p; //push to stack
N = WINDOW_LENGTH >> 6; L = 63;
m = (WINDOW_LENGTH<<3)-8; p = WINDOW_LENGTH-1;
Turbo_Struct[11] = m; Turbo_Struct[12] = n; //push to stack
for(j = 0;j < N;j++){ // Compute current window LLR’s, current Beta and next window Alpha

for(i = 0;i < L;i++){
m = Turbo_Struct[11]; n = Turbo_Struct[12];
LLRS() // Compute LLR’s for current stage
BETA() // compute Beta for current window stage
m = m - 8; n = n - 2; Turbo_Struct[11] = m; Turbo_Struct[12] = n;
m = Turbo_Struct[9]; n = Turbo_Struct[10];
ALPHA() // compute Alpha for next window stages
m+=8; k+=8; n+=2; Turbo_Struct[9] = m; Turbo_Struct[10] = n;

}
ALPHA_NORM() // normalize Alpha
BETA_NORM() // normalize Beta
L = 64; // next Alpha and Beta normalization occur after 64 iterations

}
M = WINDOW_LENGTH - ((WINDOW_LENGTH)>>6)*64+1;
for(i = 0;i < M;i++){ //last sub window without normalization

m = Turbo_Struct[11]; n = Turbo_Struct[12];
LLRS() // Compute LLR’s for current stage
BETA() // compute Beta for current window stage
m = m - 8; n = n - 2; Turbo_Struct[11] = m; Turbo_Struct[12] = n;
m = Turbo_Struct[9]; n = Turbo_Struct[10];
ALPHA() // compute Alpha for next window stages
m+=8; k+=8; n+=2; Turbo_Struct[9] = m; Turbo_Struct[10] = n;

}
N = WINDOW_LENGTH; r3 = 127; r2 = -127;
for(j = 0;j < N;j++) {

COMP_EXT() // compute extrinsic information for current window
}

Pcode 4.44: Simulation code for turbo decoding in a given window.

load–store operations), we compute current window LLRs and betas, and then next window alphas as given
in Pcode 4.44. We normalize alphas and betas once for every L stages. To avoid stages counting, conditional
checks and jumps in performing normalization of alpha and beta after L stages, we use a hardware loop setup
and compute L stages in a loop, and then we perform normalization. For the last M stages (where M is less
than L), we compute alphas and betas in a separate loop at the end. Once we have LLRs, we compute extrinsic
information of the current decoder by using current decoder LLRs, systematic input and other decoder extrinsic
information.

As shown in Figure 4.23, we compute alphas for the first window before entering the loop, we compute betas
and LLRs for the current window and alpha for next window inside the loop and we compute LLRs and betas for
last window after the loop. These three functions for two MAP decoders are handled with the following macros
MAP_ONE_A, MAP_ONE_B, MAP_ONE_C, MAP_TWO_A, MAP_TWO_B, and MAP_TWO_C.

The simulation code for the MAP decoder 1 is given in Pcode 4.45 and the simulation code for the MAP
decoder 2 is given in Pcode 4.46. We use different input and output buffers for MAP decoders 1 and 2. The main
function that calls all six macros for MAP decoders 1 and 2 is given in Pcode 4.47 (see page 218).

216 Chapter 4

#define MAP_ONE_A()\
Get_X(inputX1,0);\
Get_Y(inputY1,0);\
pTD->xx = inputX1; pTD->yy = inputY1;\
pTD->Ext2 = &Extrinsic2[0]; pTD->GammaC = Gamma0; pTD->AlphaC = Alpha0;\
CompGamma(pTD);\
CompAlpha(pTD);

#define MAP_ONE_B()\
Get_M(interM1,j);\
Get_X(inputX2,j+1);\
Get_Y(inputY2,j+1);\
pTD->xx = inputX2; pTD->yy = inputY2; pTD->xC = inputX3; pTD->xN = inputX4;\
pTD->Ext1 = Extrinsic1; pTD->Ext2 = &Extrinsic2[j*WINDOW_LENGTH];\
pTD->mm = interM1; pTD->AlphaC = Alpha0; pTD->AlphaN = Alpha2;\
pTD->GammaC = Gamma0; pTD->GammaN = Gamma1;\
CompBetaLLRsAlpha(pTD);\
Get_M(interM2,j+1);\
Get_X(inputX1,j+2);\
Get_Y(inputY1,j+2);\
pTD->xx = inputX1; pTD->yy = inputY1; pTD->xC = inputX4; pTD->xN = inputX3;\
pTD->Ext1 = Extrinsic1; pTD->Ext2 = &Extrinsic2[(j+1)*WINDOW_LENGTH];\
pTD->mm = interM2; pTD->AlphaC = Alpha2; pTD->AlphaN = Alpha0;\
pTD->GammaC = Gamma1; pTD->GammaN = Gamma0;\
CompBetaLLRsAlpha(pTD);

#define MAP_ONE_C()\
Get_M(interM1,6);\
Get_X(inputX2,7);\
Get_Y(inputY2,7);\
pTD->xx = inputX2; pTD->yy = inputY2; pTD->xC = inputX3; pTD->xN = inputX4;\
pTD->Ext1 = Extrinsic1; pTD->Ext2 = &Extrinsic2[6*WINDOW_LENGTH];\
pTD->mm = interM1; pTD->AlphaC = Alpha0; pTD->AlphaN = Alpha2;\
pTD->GammaC = Gamma0; pTD->GammaN = Gamma1;\
CompBetaLLRsAlpha(pTD);\
Get_M(interM2,7);\
pTD->Ext1 = Extrinsic1; pTD->Ext2 = &Extrinsic2[7*WINDOW_LENGTH];\
pTD->mm = interM2; pTD->AlphaC = Alpha2; pTD->AlphaN = Alpha0; \
pTD->xC = inputX4; pTD->GammaC = Gamma1; pTD->GammaN = Gamma0;\
CompBetaLLRs(pTD);

Pcode 4.45: Simulation code for window-based MAP decoder-1.

4.6 LDPC Codes

In Section 3.11, we discussed LDPC codes generation and their decoding algorithms. Before reading this section,
refer back to Section 3.11 for an introduction to LDPC codes. In this section, we simulate the min-sum algorithm
to decode LDPC codes. We also discuss the efficient way of implementing an LDPC decoder with larger parity
check matrices. As discussed, the LDPC codes are defined by the low-density parity check matrix H . At the
transmitter side, we generate the LDPC code by multiplying the message vector with the corresponding generator
matrix G derived from H (see IEEE, “802.16E Standard,” 2005, for other efficient encoding methods to compute
the LDPC codeword). Then we modulate the codeword bits using the BPSK modulator and transmit over a noisy
channel. At the receiver, we receive the corresponding noisy symbols (here we assume that the symbols and
frames are properly in sync). We convert the floating-point values of noisy symbols to fixed-point symbols.
We use the 5.3 format in the simulation to convert floating-point values to fixed-point values. For example, if
we receive the noisy symbol as −0.81, then its fixed-point format is obtained by multiplying it by 23. The 5.3
fixed-point equivalent of −0.81 is −6 (after truncation).

4.6.1 Decoding of LDPC Codes on Tanner Graph

The parity check matrix H of LDPC codes can be represented using a Tanner graph which is a bipartite graph
with two type of nodes, bit nodes and parity nodes. We decode the LDPC code symbols iteratively processing the
Tanner graph by using the sum-product algorithm. We use less complex min-sum algorithms in the simulations

Implementation of Error Correction Algorithms 217

#define MAP_TWO_A()\
Get_iX(inputX1,0);\
Get_Z(inputY1,0);\
pTD->xx = inputX1; pTD->yy = inputY1;\
pTD->Ext2 = &Extrinsic1[0]; pTD->GammaC = Gamma0; pTD->AlphaC = Alpha0;\
CompGamma(pTD);\
CompAlpha(pTD);

#define MAP_TWO_B()\
Get_iM(interM1,j);\
Get_iX(inputX2,j+1);\
Get_Z(inputY2,j+1);\
pTD->xx = inputX2; pTD->yy = inputY2; pTD->xC = inputX3; pTD->xN = inputX4;\
pTD->Ext1 = Extrinsic2; pTD->Ext2 = &Extrinsic1[j*WINDOW_LENGTH];\
pTD->mm = interM1; pTD->AlphaC = Alpha0; pTD->AlphaN = Alpha2;\
pTD->GammaC = Gamma0; pTD->GammaN = Gamma1;\
CompBetaLLRsAlpha(pTD);\
Put_LLR(LLR01,j);\
Get_iM(interM2,j+1);\
Get_iX(inputX1,j+2);\
Get_Z(inputY1,j+2);\
pTD->xx = inputX1; pTD->yy = inputY1; pTD->xC = inputX4; pTD->xN = inputX3;\
pTD->Ext1 = Extrinsic2; pTD->Ext2 = &Extrinsic1[(j+1)*WINDOW_LENGTH];\
pTD->mm = interM2; pTD->AlphaC = Alpha2; pTD->AlphaN = Alpha0;\
pTD->GammaC = Gamma1; pTD->GammaN = Gamma0;\
CompBetaLLRsAlpha(pTD);\
Put_LLR(LLR01,j+1);

#define MAP_TWO_C()\
Get_iM(interM1,6);\
Get_iX(inputX2,7);\
Get_Z(inputY2,7);\
pTD->xx = inputX2; pTD->yy = inputY2; pTD->xC = inputX3; pTD->xN = inputX4;\
pTD->Ext1 = Extrinsic2; pTD->Ext2 = &Extrinsic1[6*WINDOW_LENGTH];\
pTD->mm = interM1; pTD->AlphaC = Alpha0; pTD->AlphaN = Alpha2;\
pTD->GammaC = Gamma0; pTD->GammaN = Gamma1;\
CompBetaLLRsAlpha(pTD);\
Put_LLR(LLR01, 6);\
Get_iM(interM2,7);\
pTD->Ext1 = Extrinsic2; pTD->Ext2 = &Extrinsic1[7*WINDOW_LENGTH];\
pTD->mm = interM2; pTD->AlphaC = Alpha2; pTD->AlphaN = Alpha0;\
pTD->xC = inputX4; pTD->GammaC = Gamma1; pTD->GammaN = Gamma0;\
CompBetaLLRs(pTD);\
Put_LLR(LLR01, 7);\

Pcode 4.46: Simulation code for window based MAP decoder-2.

to decode LDPC codes on the Tanner graph. We pass the extrinsic information computed at one type of nodes
to another type of nodes through the Tanner graph edges back and forth; this mechanism of passing information
is known as message passing or belief propagation. The edge connections, which are defined by parity check
matrix elements, act as interleavers when passing extrinsic information through them.

Processing at Bit Nodes
We compute the LLRi at the i-th bit node using the extrinsic information Rji passed from parity nodes that are
connected to the i-th bit node and using the channel APP λi at the i-th bit node. Then, we compute the extrinsic
information Qij at the i-th bit node using the LLRi of the i-th bit node and using the extrinsic information R ji

passed to the i-th bit node from all connected parity nodes except from the j -th parity node. At the beginning,
we initialize the Qij s with λi . The computed Qij is passed from the i-th bit node to all parity nodes which are
connected to the i-th bit node.

Processing at Parity Nodes
We compute the extrinsic information R ji (to pass to the i-th bit node) at the j -th parity node using the extrinsic
information Qij passed to the j -th parity node from all connected bit nodes except the i-th bit node. The
magnitude value of R ji is obtained as the minimum of absolute values of participated Qij and the sign of R ji is

218 Chapter 4

//GenerateInterleaverMatrix(DATA_SIZE);
//InterleaveInputX();
pTD->Sigma = 1; // one_by_sigma_square: 1
for(i = 0;i < NUM_ITERATIONS;i++){

// ----- first MAP decoder --------
// pre-compute Gamma and Alpha for first window of first MAP decoder
MAP_ONE_A()
for(j = 0;j < NUM_WINDOWS-2;j+=2){

// compute LLRS, Beta for current window and Alpha for next window
MAP_ONE_B()

}
// compute LLRS and Beta and compute Extrinsic info for second MAP
MAP_ONE_C()

// ------ second MAP decoder --------
// pre-compute Gamma and Alpha for first window of second MAP decoder
MAP_TWO_A()
for(j = 0;j < NUM_WINDOWS-2;j+=2){

// compute LLRS, Beta for current window and Alpha for next window
MAP_TWO_B()

}
// compute LLRS and Beta and compute Extrinsic info for first MAP
MAP_TWO_C()

}

Pcode 4.47: Simulation code for window-based turbo decoder.

obtained by multiplication of signs of participated Qij . Here participated Qij nodes mean those Qij nodes that
are involved in the computation of R ji .

4.6.2 Min-Sum Algorithm

The min-sum algorithm discussed in Section 3.11 is summarized in the following.

Initialization:

λi = 2yi/σ
2 (4.44)

First iteration:

Qij = λi

(4.45)
R ji = k

⎛
⎝ ∏

i′∈V j\i

αi′ j

⎞
⎠ min

i′∈V j\i

βi′ j

where αi j = sign
(

Qij
)
, βi j = abs

(
Qij
)
, V j\i is the set of column locations of the 1s in the j -th row excluding

the i-th column in parity check matrix H , and k is a constant less than 1.

LLRi = λi +
∑
j∈Ui

R j i (4.46)

where Ui is the set of row locations of 1s in the i-th column of parity check matrix H .

Second iteration onwards:

Qij = LLRi − R ji (4.47)

R ji = k

⎛
⎝ ∏

i′∈V j\i

αi′ j

⎞
⎠ min

i′∈V j\i

βi′ j (4.48)

LLRi = λi +
∑
j∈Ui

R j i (4.49)

Implementation of Error Correction Algorithms 219

Repeat the computations using Equations (4.47) through (4.49) for the remaining iterations. Here, we are not
checking for the decoder halting at the end of the iteration. We run the decoder for all L iterations. After L
iterations, we make hard decisions using the soft values of LLRi s. The values of LLRi grow fast once they start
converging and we have to perform normalization of LLRi to avoid the saturation of metric values.

Hard decision making:

ĉi =
{

1 if LLRi < 0

0 Otherwise
(4.50)

4.6.3 LDPC Decoder Simulation

In this section, we simulate the min-sum algorithm described in the previous section for decoding LDPC codes.
We assume the noise variance σ 2 = 1 throughout the simulations and the received noisy floating-point symbols
are converted to 5.3 fixed-point format. The simulation code for initialization of the min-sum algorithm is given
in Pcode 4.48. We use Equation (4.44) for initialization. Since the noise variance is assumed as 1, we simply
multiply the received sequence yi by 2 to get λi . Then, we initialize Qij with λi wherever h ji = 1. The matrix
Qij contains zeros in places where h ji = 0.

for(i = 0;i < ldpc->n;i++){
Lambda[i] = 2*y[i];

}

for(j = 0;j < ldpc->m;j++){
for(i = 0;i < ldpc->n;i++){

if (H[j][i] == 1)
Qij[j][i] = Lambda[i];

else
Qij[j][i] = 0;

}
}

Pcode 4.48: Simulation code for initialization of min-sum algorithm.

The extrinsic information R ji passed from parity nodes to bit nodes is computed using the Equation (4.47).
The simulation code for computing R ji is given in Pcode 4.49. If h ji is equal to 1 (i.e., an edge connection is
present from the i-th bit node to the j -th parity node), then the magnitude of R ji is equal to the minimum of
all the j -th row Qij elements excluding the i-th column Qij element. If the minus sign is represented with bit
1 and the plus sign is represented with bit 0, then the sign of R ji is computed as XOR of all the j -th row Qij

elements’ sign bits excluding the i-th column Qij element sign bit. Then, we multiply the R ji by 0.8 (or 6 in 5.3
format) to get unbiased extrinsic information.

Once the extrinsic information R ji is available at bit nodes, then we can compute LLRi s of the transmitted
bits using λi and R ji . The simulation code for computing LLRi s using Equation (4.48) is given in Pcode 4.50.
At the end of all iterations we make hard decisions from LLRi s using Equation (4.49). The simulation code for
making hard decisions from soft LLRi values is given in Pcode 4.51.

We compute the Qij using LLRi and R ji from the second iteration onwards. The simulation code for computing
Qij is given in Pcode 4.52.

4.6.4 Complexity of Min-Sum Algorithm

We estimate the complexity of the min-sum algorithm in terms of the number of compute operations (or clock
cycles) and in terms of memory requirements. As discussed, a single iteration of the min-sum algorithm involves
the computation of Qij from LLRi and R ji , computation of R ji from Qij and computation of LLRi from λi and
R ji . The total computations involved in the min-sum algorithm depends on the complexity of previous three
metrics times the number of iterations the decoder runs before stop decoding.

220 Chapter 4

for(j = 0;j < ldpc->m;j++)
for(i = 0;i < ldpc->n;i++){

if (H[j][i] == 1){
sign = 0; mag = 32768;
for(k = 0;k < ldpc->n;k++){

if(i!=k){
if (H[j][k] == 1){

x = Qij[j][k];
b = x < 0 ? 1: 0;
a = abs(x);
sign = sign ^ b;
if (mag > a) mag = a;

}
}

}
mag = (mag * 6) >> 3;
Rji[j][i] = (sign==1) ? -mag : mag;

}
}

Pcode 4.49: Simulation code for computing R j i .

for(i = 0;i < ldpc->n;i++){
mag = 0;
for(j = 0;j < ldpc->m;j++){

if (H[j][i] == 1)
mag = mag + Rji[j][i];

}
LLRi[i] = Lambda[i] + mag;

}

Pcode 4.50: Simulation code to compute LLRi .

for(i = 0;i < ldpc->m;i++){
if (LLRi[i] < 0)

ch[i] = 1;
else

ch[i] = 0;
}

Pcode 4.51: Simulation code for making hard decisions from LLRi s.

for(j = 0;j < ldpc->m;j++)
for(i = 0;i < ldpc->n;i++)

if (H[j][i] == 1)
Qij[j][i] = LLRi[i] - Rji[j][i];

Pcode 4.52: Simulation code for computing Qi j .

Qij Computational Complexity
The computation of Qij involves one conditional arithmetic operation as shown in Pcode 4.52. A conditional
arithmetic operation consumes 3 cycles on the reference embedded processor (see Appendix A.4 on the com-
panion website for more details on cycles estimate on the reference embedded processor). As the loop of Qij

computation runs for M ∗ N times, we require 3 ∗ M ∗ N cycles to compute Qij .

R ji Computational Complexity
The costliest module in the min-sum algorithm is an R ji computation. Based on Pcode 4.49, the innermost loop
of the R ji computation consumes 7 cycles per loop iteration. As the computation of magnitude is performed
conditionally, we consume two more cycles to assign the computed value conditionally. This means, whether
the condition is true (for computation) or not (for jump), we spend 9 cycles, and so to run the innermost loop N

Implementation of Error Correction Algorithms 221

times we require 9 ∗ N cycles. However, the innermost loop itself runs conditionally depending on the presence
of element 1s in the parity check matrix. If h ji = 0, then we spend about 10 cycles (for conditional jump +
overhead); otherwise, we spend 9 ∗ N cycles. Therefore, the total cycles cost of R ji computation is estimated as
10 ∗ (M ∗ N − S)+ 9 ∗N ∗ S + 7 ∗ S (overhead to initialize parameters in the loop and to compute the final R ji)
cycles, where S is the total number of 1s present in the parity check matrix.

LLRi Computational Complexity
Based on Pcode 4.50, LLRi computation involves one conditional arithmetic operation and is computed M ∗ N
times. We have one more addition operation outside the inner loop and for that we consume N cycles as it runs
for N times. Thus, we spend a total of (M ∗ N ∗ 2 + N) cycles to compute LLRi .

Next, if M = 288, N = 576, S = 2000, and L = 10 (number of iterations that the Tanner graph iterated),
then we require approximately 120 million cycles for decoding 288 bits or 0.42 million cycles per bit. At this
complexity, we cannot decode 2 kbps bit rate sequence on 600 MIPS of the reference embedded processor
because it requires 840 MIPS. With the efficient implementation techniques discussed in the next section, we
can reduce the computational cycles by far.

Memory Requirements
The buffers used for holding H, Qij and R ji values are two-dimensional arrays each of size M × N . If we use
bytes to represent parity check matrix H elements and 16-bit words for Qij and R ji , then we require 5 ∗ M ∗ N
bytes of memory to store H, Qij and R ji . If M = 588 and N = 576, then we need 830 kB (see Appendix A.1 on
the companion website for memory availability on the reference embedded processor) of memory to hold data
values. All other buffers require less than 5 kB of data memory. In the next section, we discuss the techniques to
reduce the memory requirements of the LDPC decoder.

4.6.5 Efficient LDPC Decoder Implementation

In the previous section, we saw the computational and memory requirements with an inefficient implementation
of the LDPC decoder exceeding the budget of the reference embedded processor. In this section, we discuss
techniques to implement the min-sum algorithm with less memory and computations. The low-density population
of 1s in the parity check matrix not only gives the coding performance but also lowers high computational and
memory requirements for LDPC codes decoding. The heavy computations and memory requirements in the
LDPC decoder are due to the processing of the decoding algorithm on a two-dimensional array of M × N .
But in reality, we needed to process the data for only S non-zero elements of parity check matrix H , where
S << M × N .

If we can track the presence of 1s locations in the parity check matrix H during the decoding time, then it is
possible to avoid that heavy two-dimensional processing and memory usage. To track the 1s locations during
Tanner graph decoding, we use four look-up tables: V2C[][], vc[][], C2V[][], and cv[][]. The look-up table
V2C[j][] contains the positions of bit nodes, which are connected to the j -th parity node and look-up table vc[j][]
consists of the number of parity nodes to which the current bit node (which is connected to the j -th parity node) is
connected before the j -th parity node. This is illustrated in Figure 4.24. Based on the figure, before the j -th parity
node, the i-th bit node is connected to two parity nodes; so V2C[j][] = [i −e, i, i +g,3] and vc[j][] = [1,2,1].
The last entry in the V2C[j][] look-up table represents the number of bits nodes that connect to the j -th parity
node. Similarly, the look-up table C2V[i][] contains the position of parity nodes connected to the i-th bit node,
and the look-up table cv[i][] consists of the number of bit nodes to which the current parity node (which is

Figure 4.24: Illustration to fill entries
of look-up tables.

i- th Bit node

j - th Parity node
j

i�e j�a

j�b

j� c

j�d

i�f

i�g

i�h

i� k

i

222 Chapter 4

connected to i-th bit node) is connected before the i-th bit node. Based on Figure 4.24, C2V[i][] = [j −a, j −b,

j, j +d,4] and cv[i][] = [0,1,1,0]. The last entry in the C2V[i][] look-up table represents the number of parity
nodes connected to the i-th bit node. With this tracking information, we don’t need to hold the two-dimensional
parity check matrix H elements.

With this, if we consider the parity check matrix H of size M × N with row weight wr and column weight wc,
then the buffers Qij and R ji are required to store only M ∗ wr and N ∗ wc values. If M = 288, N = 576,wr = 7
and wc = 6, then we need a memory of size 7 ∗ (N ∗ wc + M ∗ wr) = 38304 bytes to store Qij (in 16-bit words),
R ji (in 16-bit words), V2C[j][] (in 16-bit words), vc[j][] (in bytes), C2V[i][] (in 16-bit words) and cv[i][]
(in bytes). Assuming 4 kB of memory used for other buffers, we require the data memory of 42 kB (which is
reasonable) to implement the LDPC min-sum algorithm decoder.

The simulation code for Qij , R ji , and LLRi computation using this memory-efficient method is given in
Pcodes 4.53, 4.54, and 4.55, respectively. As we are processing metrics only for non-zero elements parity check
matrix, the number of computations is also greatly reduced. In Pcode 4.53, we spend 3 cycles per one iteration of
the innermost loop and consume about 3 ∗ wr

∗ M cycles to compute Qij s. In computing R ji using Pcode 4.54,

for(j = 0;j < ldpc->m;j++){
n = V2C[j][7];
for(i = 0;i < n;i++){

a = vc[j][i];
b = V2C[j][i];
Qij[b][a] = LLRi[b] - Rji[j][i];

}
}

Pcode 4.53: Simulation code for efficient computation of Qi j .

for(j = 0;j < ldpc->m;j++){
n = V2C[j][7];
for(i = 0;i < n;i++){

sign = 0; mag = 32768;
for(k = 0;k < n;k++){

if (i!= k){
m = V2C[j][k];
a = vc[j][k];
x = Qij[m][a];
a = x < 0 ? 1 : 0;
b = abs(x);
if (mag > b) mag = b; // finding minimum
sign = sign ˆ a; // computing product of signs

}
}
mag = (6*mag) >> 3; // k = 0.8 or 6 in 5.3 format
Rji[j][i] = (sign == 1) ? -mag : mag;

}
}

Pcode 4.54: Simulation code for efficient computation of R j i .

for(i = 0;i < ldpc->n;i++){
n = C2V[i][6];
mag = 0;
for(j = 0;j < n;j++){

a = cv[i][j];
b = C2V[i][j];
mag = mag + Rji[b][a];

}
LLRi[i] = Lambda[i] + mag;

}

Pcode 4.55: Simulation code to efficiently compute LLRi .

Implementation of Error Correction Algorithms 223

we spend 9 cycles in the innermost loop and the loop runs conditionally wr times to compute one R ji .
Outside the innermost loop, we spend 6 cycles to initialize and to compute the final R ji value. Thus, to com-
pute all R ji values, we consume M(wr(9 ∗ wr + 6)+ 1) cycles. In Pcode 4.55, we spend 4 cycles in the inner
most loop and the loop runs for wc times. We consume a total of N(4 ∗ wc + 3) cycles for LLRi . With this, for
M = 288, N = 576,wr = 7,wc = 6, and L = 10, we consume about 1,630,080 cycles for 288 bits or 5660 cycles
per bit in decoding with the min-sum algorithm. In other words, decoding a 100-kbps bitstream requires only
about 566 MIPS on the reference processor.

This page intentionally left blank

CHAPTER 5

Lossless Data Compression

Data compression (or source coding) enables the communication system to transfer more information by
removing the redundancy present in the data (e.g., voice, audio, video). In other words, with data compression
algorithms, it is possible to represent the given data with fewer number of information bits. Data compression
algorithms are widely used in data storage and data communication applications. We use data compression algo-
rithms to compress multimedia data at the transmitter side and corresponding decompression algorithms at the
receiver side for getting back the transmitted data (which may not be exactly the same as the source-generated
data). In Figure 5.1, the highlighted region corresponds to data compression (performed at the transmitter side)
and decompression (performed at the receiver side) modules. In the communication system transceiver, the data
compression block is placed at the beginning of the transmitter modules and the corresponding decompres-
sion block is placed at the end of the receiver modules so that the rest of the communication system works on
compressed data to reduce the amount of data processing.

The communication system bandwidth is limited due to switching equipment, channel non-zero response and
other channel impairments. The system’s overall bandwidth determines the allowed bit rates for communication.
However, with source coding techniques, it is possible to trade processing power with the communication
system bandwidth. For example, in the case of multimedia (e.g., voice, audio, video, text) communications, data
compression significantly reduces bit rates and thus the cost of media communications. It enables the broadcast
of multimedia content in real time by reducing the data rate. The data compression and decompression blocks
shown in Figure 5.1 contain many modules such as parsing (to parse headers and payload data), transforms
(to remove redundancy in the data), motion estimation/compensation (to remove temporal redundancy in video
frames), quantization (to eliminate insignificant data coefficients), entropy coding (to compress data parameters),
and so on.

In this chapter, we concentrate only on entropy coding (or lossless data compression, with which we can get
back the original data parameters after decoding) modules that are used in video data compression. The other
modules of data compression or decompression blocks will be discussed in this volume’s audio/video coding
chapters.

Transmitter
Back End

Noisy
Channel

Receiver
Front End

Channel
Coding

Digital
Modulation

Channel
Decoding

Source
Data

Received
Data

Data
Compression

Data
Decompression

Entropy
Coding/
Decoding

Figure 5.1: Digital communication system with data compression and decompression.

© 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-678-1.00005-3 225

226 Chapter 5

5.1 Entropy Coding

In the data compression block, our entropy coding module is present at the end and we perform the corresponding
entropy decoding in the receiver at the beginning of the data decompression block, which is highlighted with
dark squares in Figure 5.1. Entropy coding algorithms output the bitstream by compactly representing various
data parameters using their source information. As previously stated, entropy coding is a lossless process and is
independent of the type of information (e.g., audio, video, text) that is being compressed. It is concerned solely
with how the information is represented. In Example 5.1, we work with a simple entropy coding algorithm to
see how an entropy coding system compactly represents the data information.

■ Example 5.1

We consider a source with symbol set S = {A,B,C,D,E,F,G,H}. Let us assume a probability set P =
{pa, pb, pc, pd , pe, p f , pg, ph} that governs the occurrence of symbols from the source S for their trans-
mission. Now, assume that the data string generated for transmission from S following the symbol
probability distribution P is M = BAAACAAAAABBDAAAAEAAAAFAAGCAAAAB. We have a total of
32 symbols for transmission.

Next, we assume two types of data coding schemes Type I and Type II as follows.

Type I coding: A:000, B:001, C:010, D:011, E:100, F:101, G:110, H:111
Type II coding: A:1, B:01, C:001, D:0001, E:00001, F:000001, G:0000001, H:00000001

for compactly representing the symbols.
With the Type I coding scheme, we need 96 bits to represent the data or an average of 3 bits/symbol

to transmit the message.

With Type I coding: 001 000 000 000 010 000 000 000 000 000 001 001 011 000 000
000 000 100 000 000 000 000 101 000 000 110 010 000 000 000
000 001 (total bits: 96)

If we code the same message data by using the Type II scheme, we require only 56 bits or an average of
1.75 bits/symbol to transmit the message.

With Type II coding: 01 1 1 1 001 1 1 1 1 1 01 01 0001 1 1 1 1 00001 1 1 1 1 000001
1 1 0000001 001 1 1 1 1 01 (total bits = 56)

Here, with Type II coding, the average number of bits/symbol is less than with Type I coding. This
is because the statistical nature of source S is modeled more accurately with the Type II coding scheme
than with Type I. We will discuss this further in the next section.

■

In the literature, two types of entropy coding methods are widely used—Huffman (or variable length) coding
and arithmetic coding. In previous generations of audio (e.g., MP3, WMV) and video codecs (e.g., the MPEG-2,
H.263, WMV), variable length codes (VLCs) were widely used. Recent audio and video codecs (e.g., AAC,
H.264) use arithmetic coding for lossless compression. With arithmetic coding, we achieve about 10 to 15%
more compression when compared to VLC code.

5.1.1 Huffman Coding

Suppose that the symbol set S has N symbols and these symbols occur in the input string with respective
probabilities Pi , i = 1,2,3, . . . , N , so that

∑
Pi = 1. The symbol occurrence is statistically independent. Then,

based on the fundamentals of information theory, the optimal number of bits to be assigned for each symbol of
the input string (which gets the character symbol at random from the symbol set S) is Qi = log 2(1/Pi), where
Pi is the probability of an i-th symbol. In other words, we require on average at least H = −∑ Pi log2(Pi) bits
per symbol to communicate the symbols from set S. Here H gives the average number of bits per symbol and is
called the entropy rate of the symbol source S with the corresponding symbol probabilities Pi . The entropy rate
of a source is a number that depends only on the statistical nature of the source. For example, if the probability

Lossless Data Compression 227

of a symbol is 1/256, such as would be found in a random byte stream, the number of bits per symbol required
is log2(256) or 8. As the probability goes up to 1/2, the optimum number of bits used to code the symbol would
go down to 1.

The idea behind Huffman coding is simply to use shorter bit patterns for frequently occurring character
symbols. Huffman coding assigns a code to each symbol, with the codes being as short as 1 bit or considerably
longer than the input symbols, strictly depending on their probabilities. In Example 5.1, the Type II coding
scheme is an example of Huffman coding. With Huffman coding, we cannot use log2(1/Pi) for arbitrary values
of Pi , as it outputs a noninteger number of bits. For this, we approximate the probabilities Pi by integer powers
of ½ so that all the resulting Qis are integers.

Now we discuss the assignment of bits to each symbol of the set S in a constructive way. Let us con-
sider a different symbol set S = {U, V , X,Y, Z } with the corresponding probability distribution set P =
{0.4,0.28,0.22,0.07,0.03}. Note that the sum of probabilities of all N (=5) symbols is 1. Next, we build a
binary tree with N stages. We start from the bottom of tree by considering the two least probable symbols. In
this case, the two least probable symbols are Z and Y with probabilities 0.03 and 0.07. We always assign the bit
“0” branch to the low-probability child node, and the bit “1” branch to the high-probability child node from the
parent node. The probability of the parent node is the sum of probabilities of its child nodes. Next, we move one
stage up and we consider the next highest probable symbol (i.e., X), and assign branch “1” if its probability is
more than the probability of parent node for two lower-stage child nodes; otherwise, it is assigned branch “0.”
Continue like this until all characters of the symbol set are touched once. Finally, make sure that the final parent
(or root) node probability is 1.00. Then, proceed to collect the bits of branches connecting from the root node to
leaf nodes that represent the characters from the symbol set S. In our case, from Figure 5.2, we assign the bits
to characters as given in Table 5.1.

With Huffman coding, it is not possible to code a symbol with a probability greater than 0.5 using a fraction of
a bit. Thus, a minimum of 1 bit is required to represent a symbol with Huffman coding. Moreover, the adaptive
Huffman coding algorithms are relatively time and memory consuming. We will discuss different variable length
decoding algorithms used with the MPEG-2 and H.264 standards in Sections 5.2 and 5.3.

Figure 5.2: Building Huffman codes
using a binary tree.

X

Z

V

Y

0

U

1

(0.03) (0.07)

(0.10) (0.22)

(0.32)(0.28)

(0.60)(0.40)

(1.00)

0 1

0 1

0 1

Table 5.1: Assignment
of bits to symbols per
probability

Symbol Bits
U 0
V 10
X 111
Y 1101
Z 1100

228 Chapter 5

0.00

0.50

0.75

1.00

A

B

C

0.50

0.75

0.625

0.6875

0.50

0.625

0.5625

0.59375

0.625

0.59375 2. Compressed output

0.609375

B A C A

0.609375

0.59375

Figure 5.3: Illustration of arithmetic coding.

5.1.2 Arithmetic Coding

As discussed, if we have a symbol set with nonuniform probabilities Pi , then the data compression is possible
and the number of bits we assign to data symbols equals to Qi = log2(1/Pi). With Huffman coding, we assign
the length of bits to symbols after rounding the actual number of bits Qi to the nearest integers. In other words,
Huffman coding achieves the Shannon limit only if the symbol probabilities are all integer powers of ½. Thus,
we require a minimum of 1 bit to represent a symbol even if its probability is more than half. This limits the
performance of Huffman codes. In contrast, using arithmetic coding, it is possible to code a symbol with a
probability of more than 0.5 using a fraction of a bit. This allows us to code the data very close to the ideal
entropy of the source. Because of this, with arithmetic coding we can get better compression (about 10 to 15%)
when compared to Huffman coding. However, arithmetic coding is more complex than Huffman coding.

In the arithmetic coding, an input message of any length is represented as a real number R in the range
[0, 1). Unlike Huffman coding, which assigns a separate codeword for each character, arithmetic coding yields
a single codeword for each encoded string of characters. The concept of arithmetic coding is explained in
Example 5.2.

Although arithmetic coding is a complex coding method when compared to Huffman coding, the process of
encoding and decoding a stream of symbols using arithmetic coding is not very complicated. The first step in
arithmetic coding is to divide the numeric range [0,1) into N number of intervals, where N is the number of
symbols in a character set. The size of each interval is related to the probabilities of corresponding symbols.
In Example 5.2, the probability distribution of symbol set {A, B,C} = {0.5,0.25,0.25}. We divide the range
[0,1) into 3 (=N) segments and mark the interval 0.0 to 0.5 for A, 0.50 to 0.75 for B, and 0.75 to 1.00 for C ,
respectively. The message to be compressed is, say, BACA. The first symbol to code is B, and thus we zoom
the interval B of the range [0,1), and subdivide it again into three segments with the length of subsegments
proportional to the probabilities of characters in the given symbol set in the same way as we did earlier. The
next symbol to code is A, and we again zoom the subsegment A and divide it into three segments, and continue
this process for the rest of symbols as shown in Figure 5.3. As we code more and more symbols of the long
string, the length of the working interval becomes shorter and shorter. Finally, the arithmetic coded value of the
string is given by the bottom value of the final subinterval. In Example 5.2, the complete arithmetic encoding
and decoding of the symbol string is presented along with the encode and decode algorithms.

■ Example 5.2

Consider the symbol set {A,B,C} with probabilities ½, ¼, and ¼; the corresponding symbol intervals
follow:

A ½ 0.00 to 0.50

B ¼ 0.50 to 0.75

C ¼ 0.75 to 1.00

Lossless Data Compression 229

Symbol_Range(Symbol) = 0.00 to 0.50 for A, 0.50 to 0.75 for B, 0.75 to 1.00 for C
High_Range(Symbol) = 0.50 for A, 0.75 for B, 1.00 for C
Low_Range(Symbol) = 0.00 for A, 0.50 for B, 0.75 for C

Message to transmit: BACA

Encoding Algorithm

Value = 0.0;
high = 1.0;
i = 4;
while(i—)
{

r = high–value;
high = value + r*high_range(symbol);
value = value + r*low_range(symbol);

}
output value as encoded_value;

Encoding Symbols

B: r = 1, high = 0.75, value = 0.5
A: r = 0.25, high = 0.625, value = 0.5,
C: r = 0.125, high = 0.625, value = 0.59375
A: r = 0.03125, high = 0.609375, value = 0.59375

Decoding Algorithm

value = encoded_value;
i = 4;
while(i—)
{

symbol = symbol_range(value);
r = high_range(symbol) - low_range(symbol);
value = value–low_range(symbol);
value = value / r;

}

Decoded Message

symbol = B
r = 0.25

value = 0.375
symbol = A

r = 0.50
value = 0.75

symbol = C
r = 0.25

value = 0
symbol = A

■

To avoid precision problems in arithmetic coding, the range of the arithmetic coder is frequently normalized.
With binary symbols, the arithmetic coding can be implemented very efficiently, and this type of coding is
popularly known as binary arithmetic coding.

Binary Arithmetic Coding
Binary arithmetic coding (BAC) is the most efficient way of implementing general arithmetic coding that is
applied to data sequences with only two symbols (0 and 1), thereby making it easier to implement arithmetic
coding operations both in hardware and software. Typically, any decision can be coded with multiple binary
decisions as we can represent any number with a binary sequence of 0s and 1s. With binary arithmetic coding,
we handle the following three steps.

230 Chapter 5

Binary Symbols Probability The BAC works on binary symbols 0 and 1. However, it is more convenient to use
variable symbol names for binary symbols, instead of 0 and 1 constants, to work with probabilities. In the BAC
literature, the variable symbol names MPS (most probable symbol) and LPS (least probable symbol) are used
for the binary decision 0 or 1. With BAC, knowing one symbol probability (p) is sufficient as the other symbol
probability is obtained as 1− p. Typically, as shown in Figure 5.4, we estimate the LPS probability and compute
the MPS probability by subtracting the LPS probability from 1. In reality, the probabilities of symbols are not
fixed, as they were in Example 5.2. As we code different types of symbols for different types of parameters, the
probabilities of symbols keep changing. With BAC, we track only the LPS probabilities. Either by observing
the previous symbols’ probabilities or based on the context of symbols, we obtain the approximate probability
information for the LPS. In addition, we fix the MPS decision bit for the context model and link it to the LPS
probability. We obtain the LPS bit as 1-MPS.

We always get the LPS probability and the MPS decision bit from the context model. When we compress
different types (e.g., headers, motion vectors, residual coefficients) of data then we will have that many contexts.
For each context, we assign initial LPS probability and MPS decision bits. We update this context information
(i.e., LPS probability and MPS bit value) after coding each binary decision. In this way, the binary arithmetic
coder easily adapts without much computation.

Interval Subdivision To handle the precision problem with arithmetic coder interval size, we use a soft range
for the interval range [0,1) by multiplying by a large integer, say, 215, and the interval becomes [0,215−1]. The
corresponding interval size is R = 215. If Qe (=p) is the probability of the LPS, then the LPS subinterval R_LPS
is obtained by multiplying the interval range R with LPS probability. Therefore,

R_L P S = Qe ∗ R
R_M P S = R − R_L P S = (1−p)∗ R

Symbol Coding To perform BAC on the binary symbol, we get the corresponding context {Qe, MPS bit} and
then obtain the R_LPS and R_MPS by subdividing the interval using Qe. As MPS occur frequently, we reduce
the number of computations for MPS decision coding when compared to LPS decision coding by arranging the
MPS and LPS subintervals as shown in Figure 5.4. We assign a lower interval part to the MPS decision and
by doing that the coding of the MPS decision becomes easy. If the binary decision is to code an MPS bit, then
the Code_Value remains the same. In this case, we just update the context and assign R_MPS to R. But, if the
binary decision is to code an LPS bit, then the value is updated by adding R_MPS to Code_Value. We update
the contexts accordingly and assign R_LPS to the next working interval R. In some cases, R_MPS becomes less
than R_LPS for a given Qe, in that case we swap R_MPS and R_LPS intervals or toggle the MPS bit in that
context. The symbol coding with BAC follows:

MPS coding LPS coding
R = R_M P S Code_V alue = Code_V alue + R_L P S

R = R_L P S

Interval Normalization As we code more and more decisions, the range of the interval becomes smaller and
smaller. And correspondingly, the number of bits required to represent Code_Value also increases. In that case,
we normalize the interval by shifting left both R and Code_Value. During the normalization, we collect the
shifted bits from Code_Value as those bits represent the compressed decisions.

Figure 5.4: Binary arithmetic coder.

R

MPS

LPS

R_MPS

R_LPSp

Code_Value

12p

Lossless Data Compression 231

Figure 5.5: Adaptive binary arithmetic
coder.

Probability
Estimation

Arithmetic
Coding
Engine

Update Probabilities

Binary Decisions
Compressed

Bitstream

Context

Adaptive Arithmetic Coding The adaptive binary arithmetic coding (ABAC) is one in which probabilities
are adapted continuously with the coding of binary decisions. The schematic diagram of ABAC is shown in
Figure 5.5.

The two most popular adaptive binary arithmetic coders are the M-coder and MQ-coder. The JPEG 2000
standard uses the MQ-coder for compressing the binary decisions, and the H.264 standard uses a variant of the
M-coder for arithmetic coding of binary decisions. We will discuss binary arithmetic decoding algorithms used
with the JPEG 2000 and H.264 in Sections 5.4 and 5.5.

5.2 Variable Length Decoding

As we discussed in Section 5.1.1, Huffman codes or VLCs are used to perform lossless data compression (or
entropy coding) by assigning fewer bits to more frequently occurring data symbols and assigning more bits to
rarely occurring data symbols. We use a variable length decoder (VLD) at the other side to decode the bitstream.
But the question is whether we have any such application where these kinds of data symbols occur in reality. The
answer is yes. There are many applications with these kinds of data symbols. In this chapter, we consider the
video data in which we find this kind of unevenly probable symbols. In video coding (see Chapter 14 for more
details on video coding technology), after applying the DCT to residual coefficients, we obtain the transform
domain coefficients. We use VLC to encode the value and position of zigzag scanned quantized DCT coefficients
at the encoder side using a predefined VLC codeword table. We use the corresponding VLD at the decoder side
to decode the value and position of quantized DCT coefficients.

The MPEG-2 standard (MPEG-2: ISO/IEC, 1995) uses VLD to decode the received video bitstream. The stan-
dard specifies many codeword tables to encode/decode various types of slice parameters, macroblock parameters,
and residual coefficients to/from the bitstream. In this section, an overview of the MPEG-2 residual VLD’s most
complex tasks is presented and its simulation and implementation techniques are discussed.

A few applications of the MPEG-2 codec are digital video broadcasting, digital subscriber lines, personal
media players, HDTV, video surveillance, digital media storage (DVD), multimedia communications, and so on.
Similar to VLD in the MPEG-2 standard, the MPEG-4 standard uses a different VLD, and the H.264 standard
uses the CAVLC (context-based adaptive variable length coder) for lossless data compression. The MPEG-2
VLD is simpler when compared to the MPEG-4 and H.264 standards. Although the concept of VLD is more or
less the same in all standards, the way the encoding and decoding procedures are used for encoding or decoding
the parameters varies greatly from standard to standard. The performance of the MPEG-2 VLD is reasonable
when compared to variable length coding performance of the MPEG-4 and H.264 standards.

5.2.1 MPEG-2 VLD

The MPEG-2 entropy coder uses variable length codes (VLCs) for lossless compression and decompression of
video frame parameters. We use the VLD to decode the MPEG-2 bitstream. The MPEG-2 standard specifies
many codeword tables to decode the various types of data which is encoded using VLC. With VLD, we decode
the bitstream and get the encoded parameter information back by matching the received bit pattern with the
appropriate MPEG-2 VLD codeword tables. Although the bitstream consists of many parameters and headers

232 Chapter 5

information along with residual coefficients, we focus on decoding 8×8 block residual coefficients, since 80
to 90% of the bitstream contains residual coefficient information. We use some video coding terminology in
the following discussion; consider consulting Chapter 14 for more detail about video coding technology before
proceeding.

Decoding of MPEG-2 Residual Coefficients
If the encoded video format is 4:2:0, then we have four 8×8 luma blocks and two 8×8 chroma blocks per mac-
roblock. In decoding the residual coefficients of an 8×8 block, we decode DC (direct current or zero frequency)
and AC (alternating current or high frequency) residual coefficients for both luma and chroma components. To
decode these coefficients, the MPEG-2 standard specifies altogether five codeword tables. With the MPEG-2
VLD, the only difference between luma and chroma coefficients decoding is in decoding of the DC coefficient in
the case of intra macroblock. Otherwise the same code can be used to decode either luma or chroma. In decoding
the DC coefficients we use separate prediction values and codeword tables for luma blocks and chroma blocks.
Although an 8×8 subblock contains 64 coefficients, most of them will be zeros. We decode all non-zero coeffi-
cients of an 8×8 subblock along with their locations using the MPEG-2 VLD. The flow diagram for decoding
an 8×8 subblock with the MPEG-2 VLD is shown in Figure 5.6.

The basic parameters used in the MPEG-2 residual decoding are macroblock_type and intra_vlc_ format.
Depending on the macroblock_type and intra_vlc_ format values, we select codeword tables for decoding residual
coefficients. If the macroblock_type is intra, then we decode the residual DC coefficient (or first coefficient)
using DC coefficients codeword tables and AC coefficients using another AC coefficient codeword table. If the
macroblock_type is inter, then both DC and AC coefficients are decoded using the same codeword table. After
decoding the first coefficient, we decode the rest of the AC coefficients in the loop which run up to 63 times.
In each iteration we get the codeword from the VLD table and check whether all the coefficients are decoded
(i.e., the end-of-block (EOB) is reached) or any coefficients have to be decoded further. If EOB is reached, we
then quit the loop, otherwise we continue decoding of the coefficient. For each AC coefficient, we compute
two values: the signed value and the run m (the number of zeros present from the previous non-zero coefficient
to the present non-zero coefficient; note that this run value is meaningful only with respect to zigzag scanned
positions; see MPEG-2: ISO/IEC, 1995). If m > 0, we first insert those many zeros in the coefficient buffer and
then place the signed coefficient value. As shown in Figure 5.6, decoding AC coefficients of a block includes
many condition checks and condition jumps.

We decode two parameters for each AC coefficient; signed value and run. Decoding of one AC coefficient
using VLD involves the following four steps:

1. Accessing 16 bits of bitstream
2. Accessing the appropriate look-up table to get “run” and “value”
3. Decoding sign bit
4. Updating the bit position and word offset

In the MPEG2 VLD, to decode a residual coefficient, we have to analyze bit patterns of length from 2
bits to as large as 24 bits in the bitstream. Depending on the incoming bitstream bits, whichever bit pattern
completely matches a codeword given in the table with a minimum length of bits, the corresponding row values
(or VLD_SYMBOLS) of a table are chosen as the decoded values. In addition, we do not encode the information
of number of bits (NUM_BITS) used for encoding the VLD_SYMBOLS, we determine NUM_BITS after
decoding that particular codeword. Now, the question is how to search the codeword tables to find the right
match? The brute-force solution for this problem is matching all size bit patterns to all codewords of a table and
it is very costly in terms of cycles. The other solution for this bitstream decoding problem is bit-pattern matching
by using look-up tables. If we use one look-up table for decoding all sizes of bit patterns, then the size of the
look-up table becomes (224)∗ 4 = 64,000 kB. This is not a practical amount of on-chip data memory in many
embedded processors.

VLD Decoding with Look-up Tables
The alternate solution for the MPEG-2 VLD decoding is to use a combination of look-up tables and analytic
methods. In this approach we use many small look-up tables and apply some logic to match the bit patterns of

Lossless Data Compression 233

Start

Does intra block?

Decode DC coefficientDecode 0th coefficient

n 5n 11
EB 5 0

Does EB 51?

End

Decode one codeword (CW)

Does CW 5 EOB?

Declare an array D[64]
with 64 entries; n 5 0

n , 64?

D [n] 5 0
n 5 n 11

EB 51

Get run m from CW

m .0?

Get signed value x
from CW

D [n] 5 x
n 5n 11
EB 5 0

D [n] 5 0
n 5n 11

m 5 m 21

Y

N

N

N

N

N

Y

Y

Y

Y

First
Coefficient

Remaining
Coefficients

Figure 5.6: Flow diagram for decoding coefficients of MPEG-2 8×8 blocks with VLD.

all sizes. Apart from the escape codes (which are of 24-bit length and by analyzing the first 6 bits of a bit pattern
we can tell whether it is an escape code or not), all other codes have maximum length of 17 bits including sign
bit. If we take out the sign bit, then we have to analyze 16 bits. The advantage with these codes is that they are
not random and they are systematically designed to uniquely represent all the possible positions and coefficient
values of 8×8 blocks depending on their probability of occurrence.

Now we discuss a simple method for the decoding of one DC coefficient and one AC coefficient with an
example. Let us assume that the current macroblock is intra, intra_vlc_ format is zero and the received bitstream
is 1101101001110000. At the time of encoding, in the case of the DC coefficient we encode both the DC

234 Chapter 5

difference and the number of bits (DC_SIZE) used to encode the DC difference. In the case of the AC coefficient
we encode both run (to represent how many zeros are present from the previous non-zero coefficient) and value
(with sign information). Therefore, first we decode the DC difference value (as we encode only the DC difference
after subtracting actual DC value from the predicted value) and then we decode AC coefficients.

Decoding the DC Coefficient Codeword
In decoding the DC difference, first we decode the DC_SIZE and then we read DC_SIZE bits from the bitstream
to get the signed DC difference value. For decoding the first part, DC_SIZE (to know the size of DC difference),
if we scan through the luma DC codeword table for matching a minimum length codeword with the input
bitstream, then we match the minimum length 110 codeword with input bitstream and this corresponds to value
4 (from the dct_dc_size_luminance look-up table) which is the size of the DC difference in terms of bits. Now
we read next 4 bits (1101) from the bitstream as the DC difference value. As seen here, the decimal equivalent
of the DC difference value is equal to 13. This DC difference of 13 is again manipulated to get the actual signed
DC difference value before adding it to the prediction value to get the final DC coefficient. For decoding DC,
we used a total of 7 bits so now we advance the bit position by 7 bits.

The remaining bit pattern after decoding DC is 001110000. In decoding the AC coefficient we decode both
the signed coefficient and the number of zeros present in between the previous coefficient and current decoding
coefficient. As we assumed the current macroblock was intra and intra_vlc_ format was zero, then we select
the corresponding codeword table to scan for the matching bitstream. The minimum length codeword we match
with the bitstream from the codeword table is 001110 and that corresponds to a signed value of 1 and a run (the
number of zeros between current and previous coefficients) of 3.

Next, we discuss the methodology to decode DC coefficients using small look-up tables. For this, we consider
the design of a look-up table for decoding the DC_SIZE that is used to get a DC difference value. According to
the MPEG-2 standard, to decode the DC_SIZE, we have to analyze a maximum of 9 bits. For this, if we use a
look-up table, such a look-up table shall contain two parameters, DC_SIZE and number of bits in a codeword
(NUM_BITS) to advance the bit position. We use 2 bytes to represent these two parameters in look-up table
design. If we want to decode using a single look-up table without any extra logic, then we need 1024 (2∗ 29)

bytes. This problem can also be solved by a different approach which uses a look-up table (VldTbA[], provided
at the simulation results) that contains only 96 bytes, but requires a few operations to fully decode DC_SIZE.
With this 96-byte look-up table, the parameters DC_SIZE and NUM_BITS are decoded as follows. First, we
analyze 4 bits from the bitstream and if the decimal equivalent of 4 bits is less than 15, then we are sure (from
the MPEG-2 codeword table, dct_dc_size_luminance) that the DC_SIZE can be obtained with a look-up table
of 32 (2∗ 24) bytes. If the decimal equivalent is greater than or equal to 15, then we analyze 9 bits of bitstream
to decode DC_SIZE. As seen in the codeword table, we know 4 MSB bits of codeword are all equal to 1, and if
we mask these 4 bits then the effective address space is 5 bits. Therefore, the look-up table size for analyzing 9
bits is 64 bytes (2∗ 25).

Decoding the AC Coefficient Codeword
Similarly, we analyze the procedure for decoding AC coefficients in the MPEG2 VLD. We choose one codeword
table out of two AC coefficient codeword tables depending on macroblock_type and intra_vlc_ format to decode
the AC coefficient. We always extract a 16-bit string (excluding escape bits and sign bit) from the bitstream
to decode any coefficient. For most of the VLD codewords of the same length, the length of prefix zeros is
also constant. We first obtain the prefix zeros present in these 16 bits. For each prefix length, we choose a
corresponding look-up table containing run and value. Given the length of prefix zeros, we remove the prefix
zeros from the 16-bit string and we use the remaining bits (or nonprefix bits) value as an offset to the look-up
table. If the length of nonprefix bits are different for a given prefix length, then we take care of this in the
look-up table design and the bit position is updated according to the value of NUM_BITS. Thus, all the look-up
tables designed to decode AC coefficients contain NUM_BITS information along with run and value for each
codeword. All 10 look-up tables from VldTb0[] to VldTb9[] to decode AC coefficients are provided in the
following section in the simulation results.

Lossless Data Compression 235

Next, we discuss the methodology to decode the AC coefficient using small look-up tables. We assume an
AC coefficient whose codeword contains six prefix zero bits. As said, we first extract 16-bit strings from the
bitstream. We check that the 16-bit string value is greater than or equal to 512 or not, to know whether the number
of prefix zeros present in the 16-bit string is equal to 6 or more than 6. Once we know that the number of prefix
zeros is 6, then we know from the MPEG-2 AC-coefficient VLD tables that we have only 8 codewords with
6 prefix zeros. We get the corresponding values (value, run, NUM_BITS) as decoded output with appropriate
offset derived from the 16-bit data as [(offset>>6)-8]. Here the offset is shifted right by 6 bits to discard the 6
LSBs as the length of codeword with 6 prefix zeros is only 10 bits excluding sign bit. Out of 10 bits, 6 are prefix
zeros. In addition, the 4th bit from the right is 1 in all codewords with 6 prefix zeros and we subtract 8 from
1xxx to clear this bit. Then only a 3-bit string remains in the offset, which represents eight unique entries in the
look-up table VldTb4[].

5.2.2 MPEG-2 VLD Simulation

As seen in the previous discussion, it is clear that the bitstream is accessed from the bitstream buffer for decoding
each coefficient. We call this a bit FIFO operation. We have two types of bit FIFO accesses for the bitstream
buffer. In one case, we only extract certain number of bits from the buffer without updating the bit position
immediately. For example, we extract 16 bits at the beginning of decoding any AC coefficient, but we are not
sure whether we are going to use all 16 bits. We come to know how many bits were used to decode a coefficient
only after obtaining NUM_BITS from the look-up table. Then we update the bit position with NUM_BITS.
In another case, we know in advance how many bits we want to use to decode the value (as in decoding DC
difference value using DC_SIZE bits). In this case, we update the bit position (and word pointer if the pointer
update condition is satisfied) in the bit FIFO function itself. We use two different functions Read_Bits() and
Next_Bits() to access the bit FIFO with and without bit position update. The simulation code for Next_Bits()
and Read_Bits() is given in Pcodes 5.1 and 5.2. To extract K bits from the buffer, we read a continuous 32-bit
string from the buffer and extract K bits from this string. In function Read_Bits(), we decrement the bit position
with the number of bits read from the buffer. Then we check whether the bit position is below zero and if it is, we
increment the word (32 bits width) pointer by 1 and add 32 to the bit position. With the Next_Bits() function,
we update the bit position outside the function after obtaining the NUM_BITS from the codeword read using
fixed-length bits.

int Next_Bits(Mpeg2Vld *pVld, int n)
{

unsigned int x, y, z;
if (pVld->bit_pos >= n){

x = Dat[pVld->word_offset];
z = x << (32 - pVld->bit_pos);
z = z >> (32 - n);

}
else {

x = Dat[pVld->word_offset];
z = x << (32 - pVld->bit_pos);
z = z >> (32 - n); y = Dat[pVld->word_offset + 1];
y = y >> (32 - n + pVld->bit_pos);
z = z | y;

}
return z;

}

Pcode 5.1: Simulation code for Next_Bits().

DC Coefficient Decoding Simulation
The DC coefficients are present only in the intra frame (I-frame) macroblocks. Both luma and chroma component
macroblocks contain the DC coefficients. Each 8×8 subblock of a macroblock contains one DC coefficient. A total
of six 8×8 subblocks (four luma and two for two chroma components) are present in one macroblock, and hence
we will have six DC coefficients per macroblock. However, luma and chroma subblocks use different VLD

236 Chapter 5

int Read_Bits(Mpeg2Vld *pVld, int n)
{

unsigned int x, y, z;
if (pVld->bit_pos >= n) {

x = Dat[pVld->word_offset];
z = x << (32 - pVld->bit_pos);
z = z >> (32 - n);

}
else {

x = Dat[pVld->word_offset];
z = x << (32 - pVld->bit_pos);
z = z >> (32 - n);
y = Dat[pVld->word_offset + 1];
y = y >> (32 - n + pVld->bit_pos);
z = z | y;

}
pVld->bit_pos = pVld->bit_pos - n;
if (pVld->bit_pos <= 0) {

pVld->bit_pos+= 32;
pVld->word_offset++;

}
return z;

}

Pcode 5.2: Simulation code for Read_Bits().

codeword tables for decoding the DC coefficient. The simulation code for decoding one luma DC coefficient is
given in Pcode 5.3. In this, first we extract 4-bit strings from the bitstream using the Next_Bits() function (as we
discussed earlier we don’t update the bit position within the Next_Bits() function), then check whether these 4
bits are sufficient for the current DC coefficient size, if they are, then we decode DC_SIZE, otherwise we read
9 bits to decode the DC_SIZE. In any case, we update the bit position after obtaining the NUM_BITS along
with the DC_SIZE value as shown in Pcode 5.3. Once we know the DC_SIZE, then we extract the DC_SIZE bit
value as DC_DIFFERENCE from the bitstream buffer using the Read_Bits() function. (Note: The Read_Bits()
function updates bit position by itself and we do not update the bit position outside the function after reading the
bits.) The actual DC coefficient is obtained after adding the prediction value to the signed DC_DIFFERENCE,
which is computed from DC_SIZE and DC_DIFFERENCE.

if (pVld->intra_mb == 1) { // decode 1st coefficient
offset = Next_Bits(pVld, 4);
if (offset < 15)

cw = VldTbA[offset]; // DC_SIZE codeword
else {

offset = Next_Bits(pVld, 9);
offset = offset - 0x1e0;
cw = VldTbA[16 + offset]; // DC_SIZE codeword

}
len = cw & 0xff; // NUM_BITS
pVld->bit_pos = pVld->bit_pos - len;
if (pVld->bit_pos <= 0) {

pVld->bit_pos+= 32; pVld->word_offset++;
}
size = cw >> 8; // DC_SIZE
if (size==0)

diff = 0;
else {

diff = Read_Bits(pVld, size); // DC_DIFFERENCE
if ((diff & (1<<(size-1)))==0)

diff-= (1<<size) - 1; // signed DC_DIFFERENCE
}
*DcPred = *DcPred + diff;
Sym[0] = *DcPred;

}

Pcode 5.3: Simulation code for decoding luma DC coefficient.

Lossless Data Compression 237

for (i = 1; ; i++) {
offset = Next_Bits(pVld, 16);
if (offset >= 512) {

if (pVld->vlc_format == 1) {
if (offset >= 1024) cw = VldTb0[(offset>>8)-4];
else cw = VldTb1[(offset>>6)-8];

}
else {

if (offset >= 16384) cw = VldTb2[(offset>>12)-4];
else if (offset >= 1024) cw = VldTb3[(offset>>8)-4];
else cw = VldTb4[(offset>>6)-8];

}
}
else if (offset>=256) cw = VldTb5[(offset>>4)-16];
else if (offset>=128) cw = VldTb6[(offset>>3)-16];
else if (offset>=64) cw = VldTb7[(offset>>2)-16];
else if (offset>=32) cw = VldTb8[(offset>>1)-16];
else (offset>=16) cw = VldTb9[offset-16];
// continue with Pcode 5.6

}

Pcode 5.4: Simulation code for decoding intra macroblock VLD codewords.

for (i = 0; ; i++) {
offset = Next_Bits(pVld, 16);
if (offset>=16384) {

if (i==0) cw = VldTbB[(offset>>12)-4];
else cw = VldTb2[(offset>>12)-4];

}
else if (offset >= 1024) cw = VldTb3[(offset>>8)-4];
else if (offset >= 512) cw = VldTb4[(offset>>6)-8];
else if (offset>=256) cw = VldTb5[(offset>>4)-16];
else if (offset>=128) cw = VldTb6[(offset>>3)-16];
else if (offset>=64) cw = VldTb7[(offset>>2)-16];
else if (offset>=32) cw = VldTb8[(offset>>1)-16];
else (offset>=16) cw = VldTb9[offset-16];
// continue with Pcode 5.6

}

Pcode 5.5: Simulation code for decoding inter macroblock VLD codewords.

AC Coefficients Decoding Simulation
Depending on the macroblock_type and intra_vlc_ format flag value, we choose one VLD codeword table for
decoding AC coefficients. The simulation of decoding residual AC coefficients is divided into two parts. In the
first part, we obtain the VLD codeword and in the second part we compute the run, value and NUM_BITS from
the codeword. The first part of obtaining the codeword is a little bit different for luma and chroma components,
as shown in Pcodes 5.4 and 5.5. But the basic idea of removal of the prefix zeros is the same in both cases. In
both cases, we extract 16 bits from the bitstream buffer using the Next_Bits() function. We obtain the offset
for the look-up table using the extracted 16 bits after removing the prefix zeros from the codeword. The entry
containing run, value and NUM_BITS is accessed from the designed look-up tables using the offset. We extract
the “run,” “value,” and NUM_BITS from the look-up output, and update the bit position using NUM_BITS. We
inspect the “run” information for EOB, ESC or regular coefficients and accordingly we proceed. If the “run”
information contains the information for the regular coefficient, then we will fill first the “run” number of zeros in
the coefficient buffer followed by a signed coefficient. We compute the sign by accessing 1 bit from the bitstream
buffer.

MPEG-2 VLD Simulation Results
Using the VLD codeword tables given in the MPEG-2 standard to decode the residual DCT coefficients, we
design the look-up tables for decoding the coefficients. Here, we only design the look-up tables for decoding the
coefficients of the luma component. The look-up table VldTbA[] is used to decode the DC coefficient of intra

238 Chapter 5

len = cw>>16;
pVld->bit_pos = pVld->bit_pos - len;
if (pVld->bit_pos < 0) {

pVld->bit_pos+= 32; pVld->word_offset++;
}
run = cw & 0xff;
if (run==64) { // EOB

while (i < 64) {
Sym[i] = 0; i++;

}
return;

}
if (run==65) { // escape

run = Read_Bits(pVld, 6);
val = Read_Bits(pVld, 12);
if((sign = (val>=2048))) val = 4096 - val;

}
else {

val = (cw & 0xff00)>>8; sign = Read_Bits(pVld, 1);
}
if (sign) val = -val;
while (run > 0) {

Sym[i] = 0; i++; run = run - 1;
}
Sym[i] = val;

Pcode 5.6: Simulation code for decoding and storing the coefficients from codeword obtained using either
Pcode 5.4 or Pcode 5.5.

subblocks whereas the look-up table VldTbB[] is used to decode the 0th coefficient of inter subblocks. Look-up
tables VldTb0[] through VldTb9[] are used to decode the remaining 63 coefficients of the 8×8 subblock of
either intra or inter macroblocks. All these look-up tables are derived from the MPEG-2 VLD codeword tables
and all can be found on this book’s companion website.

Simulation Results
We provide the simulation results for decoding the residual coefficients of one intra-luma macroblock assuming
intra_vlc_ format flag is 1. We use the following MPEG-2 encoded bitstream for four 8×8 subblocks of the
luma intra macroblock.

Dat[6] = {0xace43d68, 0x58d2968f, 0x79626883, 0xd16a0360, 0x54205adb, 0x50000000};

We initialize the bitstream buffer parameters word offset with 0 and bit position with 31. After decoding each
8×8 subblock, the updated word offset, bit position, and decoded residual coefficients of 8×8 subblocks follow.

Decoded output of first luma block:
pVld->word_offset = 0
pVld->bit_pos = 9

Sym[64] = 124, 0, 0, 0, 1, 2, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

Decoded output of second luma block:
pVld->word_offset = 2
pVld->bit_pos = 31

Sym[64] = 129, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -2, 3, 0, 0,
-1, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

Decoded output of third luma block:
pVld->word_offset = 3
pVld->bit_pos = 23

Lossless Data Compression 239

Sym[64] = 151, -5, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, 2, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

Decoded output of fourth luma block:
pVld->word_offset = 5
pVld->bit_pos = 29

Sym[64] = 146, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-1, -7, 0, 0, 2, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0,
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

Computational Complexity of MPEG-2 VLD
The decoding of residual coefficients using the MPEG-2 VLD codeword tables is costly in terms of cycles. In
decoding one coefficient, we read the bitstream two or three times, access different look-up tables, and also
the decoding flow contains many conditional jumps. As the DC coefficient is present in intra macroblocks and
there is only one coefficient, we are not going to discuss the complexity and optimization techniques for the DC
coefficient. The number of AC coefficients present in a macroblock depends on the frame type and bit rate. As we
saw in the simulation results, we may find five to six AC coefficients on average in medium bit rate applications.
To decode residual AC coefficients, we use the simulation codes in Pcodes 5.4 and 5.6 or Pcodes 5.5 and 5.6.

Now, we analyze the maximum number of cycles consumed by the AC coefficients decoding loop. This loop
decodes up to 63 AC coefficients in intra macroblocks and up to 64 coefficients in inter macroblocks. We decode
two parameters—signed value and run—for each AC coefficient. As we discussed, the VLD simulation uses
look-up tables with a few ALU operations. Decoding of one AC coefficient using the VLD involves the following
four steps:

1. Access 16-bit string of bitstream using Next_Bits() function (10 cycles)
2. Access appropriate look-up table to get “run” and “value” (4 cycles)
3. Update the bit position and word offset (4 cycles)
4. Decode sign bit using Read_Bits() function (13 cycles)

If we look at the “for” loop code given in Pcode 5.4 or Pcode 5.5 to decode AC coefficients, it consists of
many conditional jumps. If we assume that one conditional jump takes about 9 cycles on the reference embedded
processor (see Appendix A, Section A.4, on this book’s companion website for more details of cycle estimation
on the reference embedded processor), then depending on the input data bits pattern we may take about 40 to 80
cycles to decode one AC coefficient. We also spend a variable number of cycles filling zeros into the coefficient
array Sym[] when decoded “run” is not zero.

In decoding residual AC coefficient information as we discussed in Section 5.2.1, we can have prefix zeros
up to 10 bits in a codeword and for that reason we scan for the number of prefix zeros by conditionally jumping
after checking for a particular prefix length. Once we start decoding the VLD_SYMBOLS for an AC coefficient
(i.e., run and value) by analyzing the 16 bits of bit pattern, we have to know how many bits (NUM_BITS) are
actually used in decoding the VLD_SYMBOLS to advance the bit position. This information (NUM_BITS) also
has to be coded for each codeword in the look-up table. With this, for each AC coefficient, our look-up table
contains three entities (1) Run, (2) Value, and (3) NUM_BITS. If we represent each entity with 1 byte, then we
need 3 bytes for each codeword of VLD tables. As we use 1-byte, 2-byte, or 4-byte words for easy memory
access, we need 4 bytes for each codeword. If there are “n” remaining bits after removing the prefix zero bits
and excluding the sign bit, then for covering all codewords with that particular number of prefix zeros, we need
a look-up table size of 4 ∗ 2n bytes.

Once we know the look-up table output, we come to know the value of NUM_BITS and we advance the bit
position by NUM_BITS. We check the “run” information to find out whether this particular bit pattern represents
an escape code (ESC) or end of block (EOB) as “run” information contains abnormal values for these two cases.
If the current bit pattern represents the escape code, we jump to decode escape information (run and signed
value). If the bit pattern represents EOB, then we fill the remaining coefficient values with zeros and exit the

240 Chapter 5

loop. Otherwise, the coefficient array pointer incremented by “run” with filling zeros. Then the sign information
(the coefficient value is negative if the next bit of bitstream is 1; otherwise, the coefficient value is positive if the
next bit of bitstream is zero) is decoded from the bitstream using Read_Bits(). The bit position is advanced by
1 bit with the Read_Bits() function. The decoded signed value is stored in the coefficient array pointed to by
the array pointer, and the array pointer is increased by 1 to store the next coefficient value.

5.2.3 MPEG-2 VLD Optimization Techniques

As we discussed in the previous section, decoding an AC coefficient with the MPEG-2 VLD is a costly process
in terms of cycles. If we have 10 AC coefficients in a particular 8×8 subblock then we may need on average 600
cycles to decode all the subblock coefficients. In this section we will discuss an efficient procedure (see Stein
and Malepati, 2008) to decode AC coefficients and this approach reduces the cycles cost by approximately 80%,
but this reduction in cycles is achieved at the cost of more memory. This efficient technique is considered after
observing the statistics of MPEG-2 VLD test vectors. The following are the statistics of the MPEG-2 VLD for
two test vectors.

1. About 90% of VLD symbols are coded with less than or equal to 10 bits.
2. The percentage of bits on average used for each VLD symbol is shown in Figure 5.7.
3. About 25 to 45% of the time any two successive VLD symbols are represented with less than or equal to

10 bits.
4. About 2 to 5% of the time any three successive VLD symbols are represented with less than or equal to

10 bits.

As seen in the previous statistics, 90% of the time we decode coefficients with less than or equal to 10 bits
including sign information. Interestingly, out of 90%, 30% of coefficients use only 3 bits, 30 to 40% of the
time two consecutive coefficients consume less than 10 bits, and 5% of the time three consecutive coefficients
consume about 10 bits. This analysis prompts us to think about designing look-up tables for decoding multiple
coefficients with only one access of the bitstream buffer and look-up table. If we consider the 10-bit offset, then
we need a look-up table with 1024 (=210) entities. For each AC coefficient, we need three elements information
(NUM_BITS, value, and run). We do not compute sign information separately for each coefficient; instead we
embedded the sign information into “value” at the time of designing the look-up table. In this simulation, we
pack up to three AC coefficients information in one look-up table entity as shown in Figure 5.8. In each entity
of 32 bits or 4 bytes width, we will have the information about the number of coefficients packed, multiple
coefficients run and signed value information and the total number of bits (NUM_BITS) consumed by all the
coefficients packed in that entity. The look-up table size becomes 4096 (= 4∗ 210) bytes for one AC-coefficient
codeword table. In the MPEG-2 VLD, depending on intra_vlc_ format value, we have two codeword tables to
decode residual AC coefficients. Thus, we need a total of 8 kB of data memory for two look-up tables. In this
implementation, all the codewords with more than 10 bits are treated as escape codes. In the case of escape
codes, our look-up entry contains the pointer for the next small look-up table to decode the VLD symbol which

Figure 5.7: Histogram of MPEG-2
VLD symbol length versus percentage
of their occurrence.

0
3 4 5 6 7 8 9 10 �11

5

10

15

20

25

30

35

Number of Bits

P
er

ce
nt

 o
f O

cc
ur

re
nc

e

Lossless Data Compression 241

10-bit offset

 No. of coefficients Value 1, Run 1 Value 2, Run 2 Value 3, Run 3 NUM_BITS

Figure 5.8: Look-up table design for efficient implementation of MPEG-2 VLD.

consumes less than or equal to 17 bits including sign bit. If the VLD symbol consumes more than 17 bits, then
a separate code performs the decoding of that particular VLD symbol.

Although we decided on an offset length of 10 bits, we can also simultaneously access the data-register-width
number of bits (usually 32) from the bitstream to the data register to reduce the number of bitstream buffer
accesses and thus decode multiple coefficients with a single access. With this method of implementation, the
following bit offset analysis and coefficient decoding are possible.

(10 bit, 10 bit, 10 bit) -> 3 to 9 coefficients (occur with high probability)
(10 bit, 10 bit, ESC) -> 2 to 6 coefficients (occur with high probability)
(10 bit, 17 bit, or ESC) -> 2 to 4 coefficients (occur with medium probability)
(17 bit or ESC, 10 bit) -> 1 to 4 coefficients (occur with medium probability)
(ESC) -> 1 coefficient (occur with low probability)

Based on the previous analysis, we can decode up to nine symbols with one bitstream access. The number of
bitstream accesses, look-up table accesses, and the conditional jumps per 8×8 subblock AC coefficients decoding
will be greatly reduced in this approach. The simulation code for the implementation of this efficient decoding
is given in Pcodes 5.7 through 5.10. To reduce the cycles further, instead of filling the AC coefficient array with
zeros conditionally for every coefficient and at the end of the block in “while” loops, we fill all 64 coefficients
initially unconditionally with zeros and fill only the coefficient values at appropriate positions in the decoding
loop by incrementing the coefficient array pointer using “run” information.

Computational Complexity with Efficient Implementation of VLD
With the efficient implementation, we access the bitstream buffer once for multiple symbols. In addition, as
we extract 32 bits at a time from the bitstream buffer, it is simple and consumes fewer cycles (around 5, when
compared to the less-than-32 bits case, which takes around 10 cycles as discussed). Updating the bit position
twice for each coefficient is not required. Instead, the bit position is updated once for all symbols present in the
10-bit length pattern. With this efficient implementation, jumps occur only in cases of EOB (once for 8×8 block)
and ESC (occurs rarely). On the reference embedded processor, an average of less than 100 cycles are used to
decode 10 coefficients using this implementation, compared to 600 cycles using the standard implementation
provided in Pcodes 5.4 through 5.6. On the flip side, we require about 8 kB of additional data memory to use
this implementation.

Look-up Tables for Efficient Implementation of VLD
The simulation code given in Pcodes 5.7 through 5.10 can be used to decode the residual coefficients of 8×8
subblocks of both intra macroblocks as well as inter macroblocks with appropriate look-up table selection based
on intra_vlc_ format and macroblock_type. The look-up tables used with the efficient implementation of the
MPEG-2 VLD can be found on the companion website.

The average number of coefficients present in a subblock will vary and it depends on the bit rate for the given
frame resolution and frame rate. For example, the average number of coefficients present in a subblock will

242 Chapter 5

for(i = 1; ; i++) {
cw = Next_Bits(pVld, 32); // extract 32 bits from bitstream
code = cw >> 22; // obtain 10 bit offset
bitstr = Tb[code]; // get one look-up table entity
count = bitstr >> 30;
if (count != 0) {

val_inc = 5;
if (count == 3) val_inc = 4;
temp = 2;
for(j = 0;j < count;j++) {

run = ((bitstr << temp)>>28);
temp+= 4;
value = ((int)(bitstr << temp) >> (32-val_inc));
temp+= val_inc;
i+= run;
Sym[i] = value;
i++;

}
i--;
val = (bitstr << temp) >> 28;
pVld->bit_pos = pVld->bit_pos - val;
if (value == 0)

break;
cw = cw << val;
code = cw >> 22; // obtain second 10-bits offset
bitstr = Tb[code];
count = bitstr >> 30;
// continue with Pcode 5.8

Pcode 5.7: Simulation code for efficient implementation of MPEG-2 VLD.

be less for the 6-Mbps bit rate than for the 10-Mbps bit rate for bitstreams with the same full D1 (720×480)
resolution at 30 fps (frames per second).

5.3 H.264 VLC-Based Entropy Coding

In Section 5.2, we discussed the VLCs used with the MPEG-2 standard. The MPEG-2 uses static VLC tables to
code different types of video parameters and data. The VLC scheme used for MPEG-2 entropy coding is non-
adaptive since we do not use any context information in coding the symbols (except the intra_vlc_ format flag to
choose between two codeword tables). In this section, we will discuss more advanced VLC coding schemes that
are used in the H.264 standard. The H.264 standard uses two types of VLC schemes to compress the bitstream:
(1) universal VLCs (UVLCs), and (2) CAVLCs. We use VLC schemes in H.264 when the entropy_coding_mode
flag is set to zero. The UVLC scheme is used to code different parameters (e.g., slice layer and macroblock layer
headers, motion vectors, and coded block pattern), and the CAVLC scheme is used to code the residual coeffi-
cients. The following subsections present an overview of the UVLC and CAVLC schemes and their simulation
techniques.

5.3.1 Overview of the H.264 VLC Schemes

With the H.264 coder (for more details, see Section 14.4), we code the following types of data elements:
(1) sequence parameters, (2) picture parameters, (3) slice layer parameters, (4) macroblock layer parameters,
and (5) residual coefficients. All data elements except residual coefficients are coded using either fixed-length
codes or exponential Golomb codes. These VLC schemes are also known as UVLCs. The residual coefficients
are coded using CAVLCs.

Fixed-Length Codes
We code the equiprobable data elements using a fixed-length code (FLC) of n bits since the coding of equiprobable
elements does not offer any data compression. With FLC, we don’t analyze the n bits length bit pattern and in

Lossless Data Compression 243

// continuation from Pcode 5.7
if (count != 0) {

val_inc = 5;
if (count == 3) val_inc = 4;
temp = 2;
for(j=0;j<count;j++) {

run = ((bitstr << temp)>>28);
temp+= 4;
value = ((int)(bitstr << temp) >> (32-val_inc));
temp+= val_inc;
i+= run;
Sym[i] = value;
i++;

}
i--;
val = (bitstr << temp) >> 28;
pVld->bit_pos = pVld->bit_pos - val;
if (value == 0)

break;
cw = cw << val;
code = cw >> 22; // obtain third 10 bits
bitstr = Tb[code];
count = bitstr >> 30;
if (count != 0) {

val_inc = 5;
if (count == 3) val_inc = 4;
temp = 2;
for(j=0;j<count;j++) {

run = ((bitstr << temp)>>28);
temp+= 4;
value = ((int)(bitstr << temp) >> (32-val_inc));
temp+= val_inc;
i+= run;
Sym[i] = value;
i++;

}
i--;
val = (bitstr << temp) >> 28;
pVld->bit_pos = pVld->bit_pos - val;
if (value == 0)

break;
}

}
// continue with Pcode 5.9

Pcode 5.8: Simulation code for efficient implementation of MPEG-2 VLD.

most cases we directly obtain the coded information from the bitstream n bits and in some cases we use a look-up
table that is accessed using the n bits as an offset. In other words, we read a fixed number of bits (here the bits are
unsigned and we denote the bits reading function as u(n)) from bit FIFO and the Code_Num (or data parameter
information) is given by either n bits block or output of the look-up table which is accessed using n bits block
as an offset.

Exponential Golomb Codes
In the H.264 standard, the exponential Golomb codes (or exp-Golomb codes) are used to code a variety of data
parameters. With exp-Golomb codes, a single infinite length codeword table is used to code different kinds of
parameters. Instead of designing a different VLC table for each data parameter, the mapping to the codeword
table is adapted according to the data statistics for coding a particular data parameter. The codewords of such
a code progress in the logical order. One such codeword table with general form [m-zeros|1|m bits] is given in
Table 5.2. Here, the length of the codeword is 2m +1.

We construct each exp-Golomb codeword at the encoder with the formula m = ⌊log2(Code_Num +1)
⌋

. We
frame m-zero bits with suffix bit “1” as [m-zeros|1]. Then, we obtain the m bits information from another formula
m bits = Code_Num +1−2m. With this, the final codeword is obtained as [m-zeros|1|m bits]. This exp-Golomb

244 Chapter 5

// continuation from Pcode 5.8
else {

if (bitstr == 0)
continue;

else {
cw = cw << 10;
pVld->bit_pos = pVld->bit_pos - 10;
temp = bitstr >> 16;
code = cw >> (32-temp);
offset = bitstr & 0xffff;
offset = offset + (code<<1);
bitstr = Tba[offset];
offset = bitstr >> 8;
value = (int) (bitstr << 24) >> 24;
run = offset & 0x1f;
code = offset >> 5;
cw = cw << code;
pVld->bit_pos = pVld->bit_pos - code;
i+= run;
Sym[i] = value;

}
}

}
else
{

if (bitstr == 0) {
cw = cw << 6;
run = cw >> 26;
i+= run;
cw = cw << 6;
value = cw >> 20;
pVld->bit_pos = pVld->bit_pos - 24;
if((sign = (value>=2048)))
value = 4096 - value;
if (sign) value = - value;
Sym[i] = value;

}
// continue with Pcode 5.10

Pcode 5.9: Simulation code for efficient implementation of MPEG-2 VLD.

code has the regular decoding properties. To decode the given codeword, first we compute the prefix zeros count
(i.e., m), once we know the value of m, then we consider the following m +1 bits after prefix zeros and compute
the Code_Num as [1|m bits]-1. For example, given the bitstream 000101000101, the prefix zeros present are 3.
The 4 (i.e., 3+1) bits following the prefix zero bits are [1010] and the Code_Num = [1010]−1 = 9.

The data parameter “v” is mapped to Code_Num before encoding and we name the exp-Golomb code accord-
ingly. The four exp-Golomb codes used in the H.264 standard are (1) ue(v), unsigned exp-Golomb code, (2)
se(v), signed exp-Golomb code (3) me(v), mapped exp-Golomb code, and (4) te(v), truncated exp-Golomb code.
The parameter v is mapped to Code_Num for the previous schemes as follows.

ue(v): Code_Num = v (5.1)

se(v): Code_Num =

⎧⎪⎨
⎪⎩

0 if v = 0

2|v| if v < 0

2v −1 if v > 0

(5.2)

me(v): Code_Num = LUT[v] (5.3)

where LUT is a predefined mapping look-up table.

te(v): Code_Num =
{

ue(v) if v > 1

!u(1) if v = 1
(5.4)

Lossless Data Compression 245

// continuation from Pcode 5.9
else {

cw = cw << 10; pVld->bit_pos = pVld->bit_pos - 10;
temp = bitstr >> 16;
code = cw >> (32-temp); offset = bitstr & 0xffff;
offset = offset + code;
bitstr = Tba[offset];
offset = bitstr >> 8; value = (int) (bitstr << 24) >> 24;
run = offset & 0x1f; code = offset >> 5;
cw = cw << code;
pVld->bit_pos = pVld->bit_pos - code; i+= run;
Sym[i] = value; code = cw >> 22;
bitstr = Tb[code];
count = bitstr >> 30;
if (count != 0) {

val_inc = 5;
if (count == 3) val_inc = 4;
temp = 2;
for(j=0;j<count;j++) {

run = ((bitstr << temp)>>28);
temp+= 4;
value = ((int)(bitstr << temp) >> (32-val_inc));
temp+= val_inc; i+= run;
Sym[i] = value;
i++;

}
i--;
val = (bitstr << temp) >> 28;
pVld->bit_pos = pVld->bit_pos - val;
if (value == 0)

break;
}
else

continue;
}

}
if (pVld->bit_pos <= 0) {

pVld->bit_pos+= 32; pVld->word_offset++;
}

}
if (pVld->bit_pos <= 0) {

pVld->bit_pos+= 32; pVld->word_offset++;
}

Pcode 5.10: Simulation code for efficient implementation of MPEG-2 VLD.

Table 5.2: Exp-Golomb
codeword table

Code_Num Codeword

0 1

1 010

2 011

3 00100

4 00101

5 00110

6 00111

7 0001000

8 0001001

9 0001010

10 0001011

….. ….

246 Chapter 5

■ Example 5.3

Consider the bitstream 011001010001111001100110100. We decode it with UVLC schemes u(n),
ue(v), se(v), me(v), and te(v) using one scheme for one parameter. Let n = 3 for u(n), and the range
of v is greater than 1 for te(v). Set the bit position to zero (bit_pos = 0) and the bits are read from the
MSB side. We compute the data parameters as follows. In the case of se(v) decoding, if Code_Num is
even then v = −(Code_Num)/2, else v = (Code_Num +1)/2 and if Code_Num = 0 then v = 0.

u(n): v = Code_Num = u(3) = 011 = 3.
Total bits used: 3
Updated bit_pos: 3
Remaining bitstream = 001010001111001100110100

ue(v): Prefix zeros m = 2
Next m+1 bits: 101
v = Code_Num = [101]−1 = 4
Total bits used: 5
Updated bit_pos: 8
Remaining bitstream = 0001111001100110100

se(v): Prefix zeros m = 3
Next m+1 bits: 1111
Code_Num = [1111]−1 = 14
v = − Code_Num/2 = −7
Total bits used: 7
Updated bit_pos: 15
Remaining bitstream = 001100110100

me(v): Prefix zeros m = 2
Next m+1 bits: 110
Code_Num = [110]−1 = 5
v = LUT[Code_Num]
Total bits used: 5
Updated bit_pos: 20
Remaining bitstream = 0110100

te(v): Use ue(v) as v>1 is assumed
Prefix zeros m = 1
Next m+1 bits: 11
Code_Num = [11]−1 = 2
v = Code_Num
Total bits used: 3
Updated bit_pos: 23
Remaining bitstream: 0100

■

Context-Adaptive Variable Length Codes
In the H.264 standard, the CAVLC is used to code residual zigzag ordered 16 luma DC coefficients, 4 chroma
DC coefficients, and 4×4 (luma or chroma) subblocks AC coefficients. With the CAVLC scheme, VLC tables
for various syntax elements are changed depending on already coded syntax elements. Since the VLC tables
are designed to match the corresponding statistics, the entropy coding performance is improved in comparison
to schemes using a single VLC table such as in the MPEG-2 standard. The CAVLC tables are designed to take
advantage of several characteristics of quantized residual data symbols. Typically, after transform, the magnitude

Lossless Data Compression 247

of residual data symbols diminishes as we go from low frequency end to high frequency end. With quantization,
most of the insignificant symbols are truncated to zero. At the medium bit rates, the residual data symbols
contain many zeros after quantization. After the zigzag scan, the scanned array contains the DC and significant
AC coefficients at the beginning of the array and most of the zeros fall after the significant symbols. An example
of zigzag scanned and residual AC coefficients array r[] for 4×4 subblock follows:

r = [7,−3,0,1,−1,0,0,1,−1,0,0, 0,0, 0,0, 0] (5.5)

As we discussed, the zigzag scanned and quantized residual symbol array contains a majority of zeros. In
addition, the following cases are true with most of the quantized zigzag scanned, residual symbols array:

• The non-zero coefficients decay as we move from the start of the array toward its end.
• The majority of trailing non-zero coefficients are 1s.
• The number of non-zero coefficients of neighboring blocks are correlated.

Hence, the CAVLC is designed to compactly represent the residual data, which reflects the previous cases. A few
important characteristics of the CAVLC follow:

1. Adapts the tables to code the total coefficients of the block depending on its neighbor blocks total
coefficients

2. Uses trailing 1s to take care of non-zero trailing coefficients
3. Adapts various VLC tables to code non-zero coefficients from large coefficients to small coefficients
4. Adapts various VLC tables to code the total number of zeros present in-between all the coefficients
5. Adapts various VLC tables to code the number of zeros between two coefficients
6. Uses run-level coding to compactly represent the string of 0s

The H.264 CAVLC includes the following decoding steps:

• Coeff_Token (total coefficients and trailing 1s)
• Sign information for trailing 1s
• Signed-level information for remaining non-zero coefficients
• Total zeros present between all non-zero coefficients
• Run-before (the number of zeros present between two consecutive non-zero coefficients)

Coeff_Token
In the CAVLC, the combined coefficients and trailing 1s are treated as Coeff_Token. The coefficient total com-
prises the count of all non-zero coefficients present in a block. For example, in array r[], we have a total of six
non-zero coefficients. In many cases, most of the trailing coefficients are 1s. However, we code up to three 1
coefficients as trailing 1s with the CAVLC. We treat only the last three 1 coefficients as trailing 1s even if we
have more than three trailing 1s. For example, although we have four 1s in array r[], we treat the last three as
trailing 1s and the remaining 1 as a normal coefficient. Thus, with respect to array r[], the total coefficients
are six and the trailing 1s are three. There are many codeword tables specified in the H.264 standard to decode
Coeff_Token. Depending on the context, we choose a particular look-up table to decode Coeff_Token from the
bitstream. The context “nC” is determined based on the total coefficients present in corresponding up and left
blocks. Using context “nC” we choose one codeword table and decode the Coeff_Token by searching for the
bitstream bit pattern that matches with a minimum length codeword from the codeword table. We choose the
corresponding Coeff_Token of the codeword (that matches with the bitstream) to get the total coefficients and
trailing 1s.

Sign of Trailing 1s
Once we decode the Coeff_Token, we know whether there are any trailing 1s present in the block. If the trailing
1s are present, then we know their magnitudes are 1 and we need only their signs. Thus, we obtain the signs from
the bitstream for all trailing 1s. If we read bit “1” from the bitstream, then the sign of the trailing 1 is minus, and
if we read bit “0” then the sign of the trailing 1 is plus. We don’t use any context information in decoding the
signs for trailing 1s.

248 Chapter 5

Levels
The signed levels of the remaining non-zero coefficients are decoded in reverse order starting with the highest
frequency coefficient and working back toward the DC coefficient. There are seven VLC tables from VLC0

to VLC6 to choose from, based on context, depending on the previously decoded level’s magnitude. The table
VLC0 is biased toward lower magnitudes, table VLC1 is biased toward slightly higher magnitudes and so on,
and finally table VLC6 is biased toward larger magnitude levels. If the current decoded coefficient is greater
than the predefined threshold, then we move VLCm to VLCn where (m < n). An analytical method to decode
the signed level (apart from trailing 1s) follows.

SuffixLength = 0

If total coefficients are greater than 10 and trailing 1s are less than three, then SuffixLength is set to 1.

1. Decode LevelPrefix (using bitstream and the LevelPrefix VLC table)
2. Determine the LevelSuffixSize (from LevelPrefix and SuffixLength)
3. Decode LevelSuffix with LevelSuffixSize bits (from the bitstream)
4. LevelCode = (min(15,LevelPrefix) << SuffixLength)+LevelSuffix
5. Adjust LevelCode as follows:

(a) If (LevelPrefix > 15) and (SuffixLength = 0), then LevelCode = LevelCode +15
(b) If (LevelPrefix > 16), then LevelCode = LevelCode + (1<<(LevelPrefix − 3)) − 4096
(c) If trailing 1s are less than 3 and the first non-zero coefficient is decoding, then LevelCode= LevelCode + 2

6. Compute level from LevelCode as given:
(a) Level = (LevelCode +2) >> 1 if LevelCode is even
(b) Level = (−LevelCode −1) >> 1 if LevelCode is odd

7. Increment the SuffixLength if the current level magnitude is greater than the predefined threshold and repeat
steps 1 to 7 for the remaining levels decoding

Total Zeros
The value total_zeros gives the total number of zeros present between the start of the zigzag scanned array
and the last non-zero coefficient (which can be a trailing 1). For example, in array r[], the value total_zeros is
3. Although we compute run_before (which gives the total number of zeros present between two consecutive
non-zero coefficients) for placing each coefficient in the decoded array, there are two advantages in com-
puting the total_zeros. The first advantage is that the decoding of run_before can be adapted with zeros-left
information (which is obtained after subtracting the run_before of the previously decoded coefficient from
total_zeros) and the second advantage is that there is no need to compute the run_before for the lowest frequency
non-zero coefficient as zero left gives the indication of how many zeros are present from the start of the array
to that coefficient position. The VLC table for decoding of total_zeros is adapted based on the total number of
non-zero coefficients present in the block.

Run Before
The number of zeros preceding each non-zero coefficient is termed as run_before and is decoded in the reverse
order (i.e., from the highest frequency non-zero coefficient toward the lowest frequency non-zero coefficient).
For example, in array r[], the run_before between −1 and 1 is 2, and the run_before between −3 and 1 is 1.
We do not compute the run_before in the following two cases: (1) when the remaining total_zeros is zero (that
indicates no zeros are present between the coefficients) and (2) when we reach the lowest frequency non-zero
coefficient (for this zeros-left gives the count of preceding zeros). The VLC tables for decoding run_before
are adapted using the zeros-left information (which is obtained after subtracting the run_before of previously
computed coefficient from its zeros-left). At the start, we assign the total_zeros to zeros-left. Once we decode
all the levels and run lengths (of zeros), then we store each level accordingly using run lengths.

Next, we will discuss the simulation details for decoding each step of the CAVLC. The H.264 standard specifies
many codeword tables and functions to decode the residual coefficients as discussed previously. We consider the
designing of look-up tables for a few codeword tables in the simulation and the rest of the look-up tables can be

Lossless Data Compression 249

designed using similar approaches. The primary operation involved in decoding all of the steps is reading of bit
pattern from the bitstream buffer. Assuming the VLC codes with codeword lengths more than 16 bits as escape
codes (occurs very rarely), the bit FIFO is designed as follows.

We use a structure to hold the parameters and data to work with bit FIFO. The structure contains current_word
(current word in a bit FIFO which is MSB aligned), bit_pos (current bit position), and word_count (pointer or
index to bitstream buffer) as seen in the following:

struct {
unsigned int current_word;
int bit_pos;
int word_count;
} CAVLC_t;

CAVLC_t *pVLC;

At any time, to read n bits (less than or equal to 16) from the bit FIFO, we perform the following steps:

1. Extract n bits from the MSB side of the current_word.
2. Shift left the current word by n bits.
3. Increment the bit_ pos by n bits.
4. If the bit FIFO contains less than 16 bits, read the next 16 bits from the buffer.

5.3.2 Simulation of the H.264 VLC Schemes

We use the 16-bit FIFO definition described previously in CAVLC simulations most of the time. For escape
codes, we use the 32-bit FIFO discussed in Section 5.2. In this section, we design the look-up tables to efficiently
simulate some of the CAVLC functions.

Decoding UVLC Codes
UVLC codes include both FLC and exp-Golomb codes. The FLC is a simple code that reads a fixed number of
bits from bit FIFO. The simulation code for reading a fixed number of bits is given in Pcode 5.11. In computing
signed or unsigned exp-Golomb codes, we first compute Code_Num value. Assuming the codes with more than
16 bits are escape codes, we compute Code_Num by scanning for lead zeros in a 16-length bit pattern. Say, if
the lead zeros present in this case is m, we extract next (m +1) bits from the bitstream and its pattern looks like
[1|m bits]. The Code_Num is given by [1|m bits]−1. Once we compute Code_Num, then the decoded unsigned
and signed exp-Golomb code value “v” is obtained from Equations (5.1) and (5.2).

The simulation code for the decoding of unsigned and signed exp-Golomb codes is given in Pcodes 5.12
and 5.13.

w = (pVLC->current_word)>>(32-n); // read n-bits from MSB side
pVLC->bit_pos = pVLC->bit_pos + n; // increment bit position
pVLC->current_word = pVLC->current_word << n; // shift left bit FIFO by n-bits
if (pVLC->bit_pos > 16) {

pVLC->bit_pos = pVLC->bit_pos – 16;
a = bit_stream[pVLC->word_count++];
a = a << pVLC->bit_pos;
pVLC->current_word = pVLC->current_word | a;

}
return (w);

Pcode 5.11: Simulation code to read n-bits from bitstream buffer.

Decoding CAVLC Codes
As most CAVLC functions require context information, we first determine the context and choose the corre-
sponding VLC table to decode the residual coefficients from the bitstream. We use the following functions in
decoding residual coefficients.

Coeff_Token (Nonpredictable Bit-Pattern Lengths)
The Coeff_Token represents the total coefficients and trailing 1s present in the zigzag scanned array. We analyze a
maximum of 16 bits in decoding the Coeff_Token. Depending on context “nC” and the bit pattern, we read n bits

250 Chapter 5

w = pVLC->current_word >> 16; // consider 16-bits for scanning
k = 0;
while ((w & 0x8000) == 0) {

w = w << 1; k++; // obtain prefix zeros
};
pVLC->current_word = pVLC->current_word << k;
w = pVLC->current_word >> (32-k-1);
pVLC->bit_pos = pVLC->bit_pos + 2*k+1;
if (pVLC->bit_pos > 16){

pVLC->bit_pos = pVLC->bit_pos – 16;
a = bit_stream[pVLC->word_count++];
a = a << pVLC->bit_pos;
pVLC->current_word = pVLC->current_word | a;

}
return (w-1);

Pcode 5.12: Simulation code for unsigned exp-Golomb code ue(v).

w = pVLC->current_word >> 16; // consider 16-bits for scanning
k = 0;
while ((w & 0x8000) == 0) {

w = w << 1; k++; // obtain prefix zeros
};
pVLC->current_word = pVLC->current_word << k;
w = pVLC->current_word >> (32-k-1);
pVLC->bit_pos = pVLC->bit_pos + 2*k+1;
if (pVLC->bit_pos > 16){

pVLC->bit_pos = pVLC->bit_pos – 16;
a = bit_stream[pVLC->word_count++];
a = a << pVLC->bit_pos;
pVLC->current_word = pVLC->current_word | a;

}
if ((w&1) == 1) a = -(w-1)/2;
else a = w/2;

return (a);

Pcode 5.13: Simulation code for signed exp-Golomb code se(v).

(here n ranges from 1 to 16) from the bitstream and correlate with the codewords of the chosen VLC table. We
select the minimum length codeword that matches with the bitstream and the associated Coeff_Token is chosen
as the decoded total coefficients and trailing 1s. Although the codewords consists of prefix zeros followed by
information bits, these codewords are nonprogressive and we do not have any constructive formula to get the
number of bits present in a codeword. Thus, we search for all length bit patterns (from 1 to 16 bits) and choose
the minimum length codeword that matches with the bitstream. However, this kind of search consumes many
cycles on embedded processors as it involves many operations. Instead, we design a look-up table that gives the
Coeff_Token and the actual number of bits used for the codeword and thereby we spend a minimum number of
cycles in decoding the Coeff_Token. For this, we choose one Coeff_Token VLC table for nC less than 2, and
obtain the look-up table values as described in the following.

The maximum number of prefix zeros present in the codeword of the Coeff_Token VLC table for nC less
than 2, is 14. The Coeff_Token codeword looks like [p-zero bits|1|q bits] where 0 ≤ p ≤ 14 and 0 ≤ q ≤ 3. As
seen here, we design a look-up table that contains the information of total coefficients, trailing 1s and the actual
number of bits used p +q +1. Note that the value of p +q +1 never exceeds 16 or the value p +q never exceed
15 which we can represent with 4 bits. The maximum number of total coefficients is 16 and we use 8 bits to
represent it. The maximum number of trailing 1s is 3 and we use 4 bits of look-up table entry to represent it.
A total of 16 bits (or 2 bytes) are used for each entry of the look-up table to hold the total coefficients, trailing
1s and p + q. For example, the codeword for Coeff_Token(1,3), which represents three total coefficients and a
trailing 1, is 00000110. We have p = 5 prefix zeros and q = 2 bits and we have 8 bits in total for this codeword.
The corresponding look-up table entry contains 0x8103. The general form of look-up table entry is [4 bits (actual

Lossless Data Compression 251

bits used) | 4 bits (trailing 1s) | 8 (total coefficients)]. We design a look-up table for extreme values of p and q so
that the look-up table can be accessed with a unique address. With this, we require 240 (=15 ∗ 8∗ 2) bytes of data
memory to store one VLC table of the Coeff_Token for 0 ≤ nC < 2. The look-up table contains 15 segments (to
take care of all possible p values) and each segment contains 8 entries (to take care of all possible q values). For
example, in codeword 00000110, we have only q = 2 information bits, and we append one dummy bit for this
in the design of the look-up table to make sure each segment contain exactly 8 entries. With this, the offset for a
particular look-up table entry is given by p ∗ 8+q. The look-up table values of VLC codewords for 0 ≤ nC < 2
are available on the companion website.

The simulation code to obtain the Coeff_Token using look-up table tcto_nc_less_than_2[] is given in
Pcode 5.14.

w = (pVLC->current_word) >> 16; // read 16-bits to w
p = 0;
while((w & 0x8000)==0) {w = w << 1; p++;} // scan for lead zeros
if (nc < 2){

q = w << 1; // skip first ‘1’ bit
q = q >> 13;
offset = p*8 + q;
b = tcto_nc_less_than_2[offset];
k = b >> 12;
k = k + 1; // p+q+1
pVLC->bit_pos = pVLC->bit_pos + k;
pVLC->current_word = pVLC->current_word << k;
if (pVLC->bit_pos > 16){ // bit FIFO

pVLC->bit_pos = pVLC->bit_pos - 16;
w = pVLC->buffer_pointer[pVLC->word_count++];
w = w << pVLC->bit_pos;
pVLC->current_word = pVLC->current_word | w;

}
*t_ones = (b & 0xfff) >> 8;
*t_coeffs = b & 0xff;

}

Pcode 5.14: Simulation code for decoding Coeff_Token for nC < 2.

Level Prefix
The format for codewords of LevelPrefix is [(n −1) zeros | 1] and contains a total of n bits. We treat the codes with
n > 16 as escape codes. We scan 16 bits from the bitstream and find the number of prefix zeros. The LevelPrefix
is the same as the number of prefix zeros present in the codeword. Depending on the bitstream pattern, we read
n bits (where 1 ≤ n ≤ 16 for nonescape codes) and output the corresponding LevelPrefix value. The simulation
code for obtaining the LevelPrefix is given in Pcode 5.15.

w = (pVLC->current_word) >> 16;
k = 0;
while((w&0x8000) == 0){w = w << 1; k++;}
pVLC->bit_pos = pVLC->bit_pos+(k+1);
pVLC->current_word = pVLC->current_word << (k+1);
if (pVLC->bit_pos > 16){ // bit FIFO

pVLC->bit_pos = pVLC->bit_pos - 16;
w = pVLC->buffer_pointer[pVLC->word_count++];
w = w << pVLC->bit_pos;
pVLC->current_word = pVLC->current_word | w;

}
*len = k;

Pcode 5.15: Simulation code to compute LevelPrefix.

Total Zeros
Like Coeff_Token codewords, the codewords of total_zeros contain unpredictable VLC codeword lengths. The
general form of total_zeros codeword is [p-zeros |1/0|q bits], where 0 ≤ p ≤ 8 and 0 ≤ q ≤ 2. The VLC codeword

252 Chapter 5

tables of total_zeros are adapted depending on the context, which is the non-zero coefficients count “tc” in a
block. If fewer coefficients are present in a block, then the total number of zeros present between coefficients
is also lower. There is no need to compute the total_zeros if all the coefficients are present (i.e., total non-zero
coefficients is the same as the maximum number of coefficients present in a block). If the total coefficients
(obtained from the Coeff_Token) are less than the maximum coefficients of a block, we select the corresponding
codeword table and decode the total_zeros using the bit pattern from the bitstream. We use a maximum 9 bits
for decoding total_zeros. Depending on the bitstream pattern and the context (total coefficients), we read n bits
(n = 1 to 9) from the bitstream and output the corresponding total_zeros value. We design a look-up table to
perform total_zeros computation as follows. The general form of look-up entry w is organized as w= [4 bits
(actual number of bits used, maximum value 9) |4 bits (total zeros present, maximum value 15)] for decoding
only 4×4 luma block total_zeros. The look-up table contains a total of 15 segments and each segment contains
36 entries. The particular entry of a 36-entry segment is accessed using the p and q, where p is lead zeros and
q is the information bits of the codeword. The offset to access the look-up table entry follows:

offset = tc ∗ 36+ p ∗ 4+q

The look-up table total_zero_luma[] values of total_zeros computation for a 4×4 luma block can be found
on the website. The simulation code to compute total_zeros for a 4×4 luma block is given in Pcode 5.16.

w = (pVLC->current_word) >> 23;
p = 0;
while((w & 0x0100)==0) {w = w << 1; p++;}
q = w << 1;
q = (q >> 7) & 0x3;
offset = (t_coeffs-1)*36 + p*4 + q; // t_coeffs: non-zero coefficients of a 4x4 luma block
b = total_zeros_luma[offset];
k = b >> 4;
pVLC->bit_pos = pVLC->bit_pos + k;
pVLC->current_word = pVLC->current_word << k;
if (pVLC->bit_pos > 16){

pVLC->bit_pos = pVLC->bit_pos - 16;
w = pVLC->buffer_pointer[pVLC->word_count++];
w = w << pVLC->bit_pos;
pVLC->current_word = pVLC->current_word | w;

}
t_zeros = b & 0xf;
return (t_zeros);

Pcode 5.16: Simulation code to compute total_zeros for a 4×4 luma block.

Run Before
We read a maximum of 11 bits in decoding run_before. Depending on the bitstream pattern and the context
(zeros left), we read n bits (n = 1 to 11) from the bitstream and output the corresponding run_before value. We
use a look-up table to decode run_before. The look-up table design for decoding run_before is as follows. The
look-up table entry w looks like w= [4 bits (actual bits used, maximum value 3 without escape codes) | 4 bits
(run_ before)]. If zeros-left is greater than 6 and if the lead zeros are greater than 2, then we treat those codes
as escape codes. With this, scanning 3 bits of information from the bitstream is sufficient to decode run_before
with nonescape codes. The look-up table contains a total of 7 segments (corresponding to 7 contexts) and each
segment contains 8 entries. The look-up table entry for escape codes is zero as highlighted with a bold number
in the file on the companion website. The offset for the look-up table is calculated as follows:

offset = zeros_left*8 + value (of 3 bits read from the bitstream)

The simulation code to decode run_before is given in Pcode 5.17; see the website for the look-up table
runbefore[] values for decoding run_before with nonescape codes. The individual functions of the CAVLC
involved in decoding residual coefficients have been discussed. The simulation code for the overall parsing
process in decoding of a block of residual coefficients is given in Pcodes 5.18 and 5.19.

Lossless Data Compression 253

j = zeros_left; w = (pVLC->current_word)>>29;
if (j > 6) j = 7;
offset = (j-1)*8+w;
a = runbefore[offset];
k = a >> 4; rb = a & 0xf;
if (j == 7) {

if (a == 0) { // scan next 8-bits
w = (pVLC->current_word)>> 21; k = 3;
while((w & 0x800) == 0) { w = w << 1; k++;}
rb = rb + 7;

}
}
pVLC->bit_pos = pVLC->bit_pos + k;
pVLC->current_word = pVLC->current_word << k;
if (pVLC->bit_pos > 16){

pVLC->bit_pos = pVLC->bit_pos - 16;
w = pVLC->buffer_pointer[pVLC->word_count++];
w = w << pVLC->bit_pos;
pVLC->current_word = pVLC->current_word | w;

}
return (rb);

Pcode 5.17: Simulation code to decode run_before.

// decode total coefficients and trialing ones present in a 4x4 subblock
decode_tcoeffs_tones(pVLC, nc, &tcoeffs, &tones);
if (tcoeffs != 0){ // decode sign information for trailing 1s

k = 0; max_coeffs = 16; // initialize the local coefficient buffer to zero
for(i=0;i<tcoeffs;i++) buf[i] = 0;
if (tones != 0){

for(i=0;i<tones;i++){
w = read_bits(pVLC,1);
coeff = (w == 0) ? 1 : -1;
buf[k++] = coeff;

}
}
n = tcoeffs - tones;
if (n != 0){ // decode level information

suffix_length = 0;
if ((tcoeffs > 10) && (tones < 3)) suffix_length = 1;
for(i=k;i<tcoeffs;i++){ // decode level prefix

level_prefix(pVLC, &prefix_length);
level_suffix_size = suffix_length; // determine level suffix size
if ((prefix_length==14) && (suffix_length==0)) level_suffix_size = 4;
if (prefix_length >= 15) level_suffix_size = prefix_length - 3;
if (level_suffix_size == 0) level_suffix = 0; // decode level suffix
else level_suffix = read_bits(pVLC, level_suffix_size);
tmp1 = (prefix_length < 15) ? prefix_length : 15;
tmp1 = tmp1 << suffix_length;
level_code = tmp1 + level_suffix; // determine level code
if ((prefix_length >= 15) && (suffix_length == 0)) level_code += 15;
if (prefix_length >= 16){

tmp2 = (1<<(prefix_length-3))-4096;
level_code = level_code + tmp2;

}
if ((i==tones) && (tones < 3)) level_code = level_code + 2;
if ((level_code & 1) == 0) buf[i] = (level_code+2)>>1;
else buf[i] = (-level_code-1)>>1;
if (suffix_length == 0) suffix_length = 1;
if (abs(buf[i])>sufvlc[suffix_length]) suffix_length+= 1;

}
}
// Continued in Pcode 5.19

Pcode 5.18: Parsing process for decoding a block of residual coefficients.

254 Chapter 5

if (max_coeffs > tcoeffs){ // decode total zeros
t_zeros = total_zeros(pVLC, tcoeffs);
if (t_zeros != 0){

k = tcoeffs+t_zeros-1;
for(i=0; i<tcoeffs-1;i++){

if (t_zeros > 0){ // decode run before
coeff_buf[k] = buf[i]; // store the levels
rb = run_before(pVLC, t_zeros);
k = k - (rb + 1);

t_zeros = t_zeros - rb;
}
else{

coeff_buf[k] = buf[i];
k = k - 1;

}
}
coeff_buf[t_zeros] = buf[i];

}
else {

for(i = 0;i < tcoeffs;i++)
coeff_buf[i] = buf[tcoeffs-1-i];

}
}
else{

for(i = 0;i < tcoeffs;i++)
coeff_buf[i] = buf[tcoeffs-1-i];

}
}

Pcode 5.19: Parsing process for decoding a block of residual coefficients.

5.3.3 H.264 CAVLC Simulation Results

In this section, we present the simulation results for the H.264 CAVLC used to decode residual coefficients. We
consider the decoding of a few luma 4×4 block residual coefficients with the following received bitstream.

bit_stream_buffer[] = {
0x74f0, 0x696a, 0x07f9, 0x8bd9, 0xe234, 0x4af6, 0x462c, 0xd89f,
0x3736, 0x0924, 0x1f01, 0x233c, 0xf458, 0x1bc1, 0x064a, 0xf879};

Next, we present the intermediate results (includes Coeff_Token, trailing 1 sign, signed levels, total_zeros and
run_before) for the decoding process of multiple 4×4 luma blocks residual coefficients. The updated bit FIFO
parameters {pVLC->current_word, pVLC-> bit_ pos, pVLC->word_count} are shown whenever the FIFO is
accessed to the read bits.

Initialization
FIFO: {0x74f0696a, 0, 2}
First luma 4x4 subblock

—> Total coefficients and trailing 1s: Coeff_Token (t_coeffs, t_1s)
Context: nC = 0
Coeff_Token: (1, 1)
Bits used: 2
FIFO: {0xd3c1a5a8, 2, 2}

—> Trailing 1s sign information
sign: -ve
Bits used: 1
FIFO: {0xa7834b50, 3, 2}

—> No levels to decode

—> Total zeros information
Context: 1 (t_coeffs)
total_zeros: 0
Bits used: 1
FIFO: {0x4f0696a0, 4, 2}

—> No run before to decode

Lossless Data Compression 255

—> Output: [-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Second luma 4x4 subblock
—> Total coefficients and trailing 1s:

Context: nC = 1
Coeff_Token: (1, 1)
Bits used: 2
FIFO: {0x3c1a5a80, 6, 2}

—> Trailing 1s sign information
sign: +ve
Bits used: 1
FIFO: {0x7834b500, 7, 2}

—> No levels to decode

—> Total zeros information
Context: 1 (t_coeffs)
total_zeros: 1
Bits used: 3
FIFO: {0xc1a5a800, 10, 2}

—> No run before to decode

—> Output: [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Third luma 4x4 subblock
—> Total coefficients and trailing 1s:

Context: nC = 0
Coeff_Token: (0, 0)
Bits used: 1
FIFO: {0x834b5000, 11, 2}

—> No trailing 1s sign information to decode

—> No levels to decode

—> No total zeros information to decode

—> Output: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Fourth luma 4x4 subblock
—> Total coefficients and trailing 1s:

Context: nC = 1
Coeff_Token: (0, 0)
Bits used: 1
FIFO: {0x0696a000, 12, 2}

—> No trailing 1s sign information to decode

—> No levels to decode

—> No total zeros information to decode

—> Output: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Fifth luma 4x4 subblock
—> Total coefficients and trailing 1s:

Context: nC = 0
Coeff_Token: (3, 1)
Bits used: 8
FIFO: {0x96a07f90, 4, 3}

—> Trailing 1s sign information
sign: -ve
Bits used: 1
FIFO: {0x2d40ff20, 5, 3}

256 Chapter 5

—> Levels to decode: 2
First level

- suffix_length = 0
- Level prefix

prefix_length: 2
Bits used: 3
FIFO: {0x6a07f900, 8, 3}

- level_suffix_size = 0
level_suffix: 0

- level_code = 4
- coeff = 3

Second level
- suffix_length = 1
- Level prefix

prefix_length: 1
Bits used: 2
FIFO: {0xa81fe400, 10, 3}

- level_suffix_size = 1
level_suffix: 1
Bits used: 1
FIFO: {0x503fc800, 11, 3}

- level_code = 4
- coeff = -2

—> Total zeros information
Context: 3 (t_coeffs)
total_zeros: 0
Bits used: 4
FIFO: {0x03fc8000, 15, 3}

—> No run before to decode

—> Output: [-2, 3,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Sixth luma 4x4 subblock
—> Total coefficients and trailing 1s:

Context: nC = 0
Coeff_Token: (3, 0)
Bits used: 9
FIFO: {0xf98bd900, 8, 4}

—> No trailing 1s sign information to decode

—> Levels to decode: 3
First level

- suffix_length = 0
- Level prefix

prefix_length: 0
Bits used: 1
FIFO: {0xf317b200, 9, 4}

- level_suffix_size = 0
level_suffix: 0

- level_code = 2
- coeff = 2

Second level
- suffix_length = 1
- Level prefix

prefix_length: 0
Bits used: 1
FIFO: {0xe62f6400, 10, 4}

- level_suffix_size = 1
level_suffix: 1
Bits used: 1
FIFO: {0xcc5ec800, 11, 4}

- level_code = 1
- coeff = -1

Third level
- suffix_length = 1

Lossless Data Compression 257

- Level prefix
prefix_length: 0
Bits used: 1
FIFO: {0x98bd9000, 12, 4}

- level_suffix_size = 1
level_suffix: 1
Bits used: 1
FIFO: {0x317b2000, 13, 4}

- level_code = 1
- coeff = -1

—> Total zeros information
Context: 3 (t_coeffs)
total_zeros: 5
Bits used: 4
FIFO: {0x17b3c468, 1, 5}

—> Run before
Context: 5 (zeros-left)
run_before: 5
Bits used: 3
FIFO: {0xbd9e2340, 4, 5}

—> Output: [-1, -1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0]

5.3.4 H.264 CAVLC Optimization Techniques

In this section, we will discuss the computational complexity of the H.264 VLC and the optimization techniques
for the parsing process of residual decoding. We estimate the computational complexity of the H.264 VLC in
terms of clock cycles and memory used.

H.264 VLC Computational Complexity
As we discussed in Section 5.3.3, the simulation of the H.264 VLC involves many bit FIFO accesses and
conditional jumps. With bit FIFO accesses, we have two cases: (1) updating only the FIFO parameters and (2)
reading bits from the bitstream buffer along with FIFO updating parameters. We check to determine whether the
number of bits present in the FIFO is less than 16, and then conditionally jump to read bits from the bitstream
buffer to the FIFO if the bits present are less than 16. If we are not reading the bits from the bitstream buffer, then
we consume only 4 cycles (2 cycles for FIFO update and 2 cycles for the conditional check and for taking the
decision on the jump) to update the bit FIFO on the reference embedded processor by avoiding the conditional
jump. See Appendix A, Section A.4, on the companion website for more details on cycles estimation on the
reference embedded processor. If bits present in FIFO are less than 16, then we jump for reading bits from the
bitstream buffer and jump back to continue the decoding. In this case we consume about 20 cycles. On average,
we may read bits from the bitstream buffer once in four FIFO accesses. Hence, we consume on average about
(3∗ 4 + 20)/4 = 8 cycles to access bit FIFO instead of 13 cycles as in the MPEG-2 32-bit FIFO discussed in
Section 5.2.

UVLC Computational Complexity
The three UVLC functions u(n), ue(v), and se(v) access bit FIFO, and it is the major cycle-consuming portion
of the code. As seen in Pcode 5.11, the function u(n) consists of only bits extraction and bit FIFO update
functionality, and its average cycles consumption is about 9 cycles. The other two functions—unsigned exp-
Golomb code ue(v) and signed exp-Golomb code se(v)—consist of lead zero computation, which can be achieved
in 2 cycles on the reference embedded processor. In addition, we perform a little bit of adjustment to the value
read from FIFO to get the final Code_Num. On average, we consume about 12 and 15 cycles on the reference
embedded processor to perform exp-Golomb code functions ue(v) and se(v), respectively.

CAVLC Computational Complexity
The CAVLC cycle estimation for decoding residual coefficients is a difficult task since it involves many contexts,
functions, and jumps. We first estimate the cycle cost and memory consumption of individual CAVLC functions
and then estimate the overall complexity.

258 Chapter 5

Total Coefficients and Trailing 1s In computing the Coeff_Token, we have 6 VLC tables to choose from
depending on context and luma or chroma blocks. For this, we require about 1.2 kB of data memory to store all
look-up tables of Coeff_Token VLC codewords. In Coeff_Token computation, we have the following steps:

1. Choose the codeword table depending on context and luma or chroma blocks (2 cycles for choosing VLC
table with an offset)

2. Scan bits and obtain lead zeros (3 cycles)
3. Offset computation and look-up table accesses (4 cycles)
4. Extract total coefficients, trailing 1s and actual bits used information (3 cycles)
5. Bit FIFO access (8 cycles)

With this, we may consume about 20 cycles to compute the Coeff_Token on the reference embedded processor.

Trailing 1s Sign Computation Computing the sign of the trailing 1s involves only bit FIFO access and making
a decision on the sign information depending on bit “0” or “1” accessed from FIFO. We consume about 10 cycles
to get the sign information for a single trailing 1.

Level Prefix Computation of the level prefix (i.e., prefix_length) involves the following two steps: scanning bits
and obtaining lead zeros (3 cycles), and bit FIFO access (8 cycles). With this, we consume about 11 cycles to
compute level prefix for decoding 1 level.

Level Suffix If level_suffix_size is not zero then we access bit FIFO to get the level_suffix value otherwise if the
level_suffix_size is zero then the level_suffix value is set to zero. As it involves a conditional check and jump
whenever we don’t access bit FIFO, we consume either way about 10 cycles to compute level_suffix.

Total Zeros The total_zeros computation involves multiple VLC tables to choose from depending on context
(here the context is total coefficients). We require about 0.6 kB of data memory to store the look-up table to
compute total_zeros present between all non-zero coefficients of a block. In total_zeros computation, we have
the following steps:

1. Choose the codeword table depending on context and luma or chroma blocks (2 cycles for choosing VLC
table with an offset)

2. Scan bits and obtain lead zeros (3 cycles)
3. Offset computation and look-up table accesses (4 cycles)
4. Extract total_zeros and actual bits used information (2 cycles)
5. Bit FIFO access (8 cycles)

With this, we may consume about 19 cycles to compute total_zeros on the reference embedded processor.

Run Before We use 56 bytes of memory to store look-up tables in the run_before computation. We have the
following steps in the run_before computation:

1. Adjust context (2 cycles)
2. Scan bits, offset computation, and look-up table access (5 cycles)
3. Escape code handling (2 cycles)
4. Execute run_before and the actual number of bits used, extraction (2 cycles)
5. Bit FIFO access (8 cycles)

With this, we consume about 19 cycles in computing run_before.

Parsing Residual Decoding Process The parsing of residual decoding is a complex process as given in
Pcodes 5.18 and 5.19. In some cases we may obtain the Coeff_Token for the residual block as (0, 0), in which case
we don’t perform the rest of the functions as no coefficients are present in that residual block and we consume
about 30 cycles. In some cases we may have only trailing 1s and so we don’t perform levels decoding. If we have
trailing 1s, we consume another 10 cycles per trailing 1 sign computation. In other cases, we may have more
non-zero coefficients to decode. As given in Pcode 5.18, we have the following steps in decoding one non-zero
coefficient:

1. Determine suffix_length (4 cycles)
2. Determine suffix_level_size (8 cycles)

Lossless Data Compression 259

3. Compute prefix_length (11 cycles)
4. Compute suffix_level (10 cycles)
5. Compute level_code (17 cycles)
6. Determine signed coefficient from level_code (3 cycles)
7. Update suffix_length (3 cycles)

Apart from this, we perform total_zeroscomputation and run_before computation to store coefficients as given
in Pcode 5.19. If the total coefficient count is equal to maximum coefficients, we do not perform total_zeros
and run_before operations and we skip (10 cycles) these two operations. Otherwise, we consume 20 cycles
for total_zeros computation and 25 cycles per coefficient to perform run_before and to store that coefficient
(following zig-zag/field scan rules). If zeros-left is zero, then we do not perform run_before and we skip (10
cycles) the run_before function in this particular case.

As seen in the previous cycle estimate, we consume about 56 cycles to decode one coefficient and 25 cycles to
store that coefficient using run_before. With this, if we have three coefficients (a trailing 1 and two coefficients)
in a 4×4 residual block, we may consume about 217 cycles (20 cycles for Coeff_Token, 10 cycles for trailing
1s sign, 112 cycles for decoding two coefficients and 75 cycles—20 cycles for total_zeros and 55 cycles for
run_before and for other operations—for storing three coefficients) or about 13.5 cycles/pixel (as we have a
total of 16 pixels in a 4×4 block). Although the CAVLC for decoding a coefficient is costly in terms of cycles,
the average cycles per pixel will be small because the number of non-zero coefficients per block is small. We
see fewer than three or four coefficients per 4×4 residual block most of the time with the D1 frame size at the
1-Mbps bit rate. Therefore, we consume about 10 cycles/pixel on average to decode the residual coefficients of
D1 video frames at 1 Mbps using the CAVLC.

Optimization of the H.264 Parsing Process for CAVLC
In this section, we discuss some optimization techniques to reduce the cycle cost of the residual decoding process
using the CAVLC. Unlike the MPEG-2 VLC, where we do not have any contexts and can decode multiple symbols
in a single FIFO access, H.264 CAVLC decoding involves many contexts and it is very difficult to decode more
than one coefficient at a time. However, we can optimize the CAVLC flow by avoiding the conditional flow
wherever possible and by reducing the bit FIFO accesses whenever context is not present to choose a particular
VLC table from multiple tables.

Especially in decoding signed level information, we have many conditional checks as we are handling all pos-
sible rarely occuring data paths with one flow. If we separate the loop into two parts by treating prefix_length > 13
as an escape code, then we can avoid many conditional checks and conditional moves. This optimized data flow
is given in Pcode 5.20. In the case of computing the sign of trailing 1s, we access the bit FIFO three times if
we have three trailing 1s as given in Pcode 5.18. Instead, we can also read 3 bits to a register from FIFO in one
access and then extract the individual bits from the register in the loop as we do not have any context information
in decoding trailing 1s sign information. In this way we save 50% of cycles in trailing 1s sign computation. In
other words, we consume less than 15 cycles to get the sign information even if we have two or more trailing 1s.

In addition, in computing signed level using Pcode 5.20, we do not use any external context information in
decoding prefix_length or suffix_level other than the updated suffix_length (t) for decoding suffix_level. Using
six look-up tables (T1 to T6), we can minimize the cycle cost of signed level computation. The six look-up tables
are designed based on the following rules.

When prefix_length < 15,

level = (prefix_length << (t-1) + 1 + suffix_level) * sign

where suffix_level is a value of unsigned (t − 1) bits, and the sign bit follows the (t − 1) suffix bits except for
t = 1 (here the sign bit will be next to the “1” bit) and t is equal to the “n” in “Tn.” In this case, the codeword
looks like [prefix zeros][1][suffix bits][sign].

When prefix_level = 15,

level = (15 << (t-1) + 1 + 11_suffix_bits) * sign
codeword = [0000 0000 0000 000][1][11 suffix bits][sign]

260 Chapter 5

for(i = k;i < tcoeffs;i++){
level_prefix(pVLC, &prefix_length); // decode level prefix
if (prefix_length < 14) { // decode level suffix

if (suffix_length == 0) level_suffix = 0;
else level_suffix = read_bits(pVLC, suffix_length);
tmp1 = prefix_length << suffix_length;
level_code = tmp1 + level_suffix; // determine level code
if ((i==tones) && (tones < 3)) level_code = level_code + 2;
if ((level_code & 1) == 0) buf[i] = (level_code+2)>>1;
else buf[i] = (-level_code-1)>>1;
if (suffix_length == 0) suffix_length = 1;
if (abs(buf[i])>sufvlc[suffix_length]) suffix_length+= 1;

}
else { // escape

level_suffix_size = suffix_length; // determine level suffix size
if ((prefix_length == 14) && (suffix_length == 0)) level_suffix_size = 4;
if (prefix_length >= 15) level_suffix_size = prefix_length - 3;
if (level_suffix_size == 0) level_suffix = 0; // decode level suffix
else level_suffix = read_bits(pVLC, level_suffix_size);
tmp1 = (prefix_length < 15) ? prefix_length : 15;
tmp1 = tmp1 << suffix_length;
level_code = tmp1 + level_suffix; // determine level code
if ((prefix_length >= 15) && (suffix_length == 0)) level_code += 15;
if (prefix_length >= 16){

tmp2 = (1<<(prefix_length-3))-4096;
level_code = level_code + tmp2;

}
if ((i==tones) && (tones < 3)) level_code = level_code + 2;
if ((level_code & 1) == 0) buf[i] = (level_code+2)>>1;
else buf[i] = (-level_code-1)>>1;
if (suffix_length == 0) suffix_length = 1;
if (abs(buf[i])>sufvlc[suffix_length]) suffix_length+= 1;

}
}

Pcode 5.20: Optimization of signed level decoding process.

The tables updated (i.e., local context adaptation) as follows: Initially, t is set to zero except when
(total_coeffs>10) and (t_ones < 3), in this case t is set to 1. Afterwards, “t” is updated. If (abs(level) >

C[t]), then t = t +1, where the level is the decoded non-zero coefficient and C[] = {0,3,6,12,24,48,32768}.
When t = 0, this particular level is decoded as follows:

1. When (prefix_length <14),

level = [(prefix_length +2)>>1] * (-1)ˆprefix_length

2. When (prefix_length = 14),

level = [(prefix_length +2)>>1 + 3 suffix bits] * sign
codeword = [prefix zeros][1][3 suffix bits][sign]

3. When (prefix_length = 15),

level = [(prefix_length +1) + 11 suffix bits] * sign
codeword = [prefix zeros][1][11 suffix bits][sign]

With this optimization technique, we consume about 6 cycles/pixel on average to decode the residual coefficients
of D1 video frames at 1 Mbps using the CAVLC.

5.4 MQ-Decoder

The JPEG 2000 standard (ISO and ITU JPEG2000, 2000) uses the MQ-coder for entropy coding to compress
and decompress the data stream. In this section, we will discuss the overview, simulation and implementation
of the MQ-decoder. All the notations used are similar to JPEG 2000 standard notations.

Lossless Data Compression 261

5.4.1 MQ Coder Overview

The MQ-coder is a context-based binary arithmetic coder. The basic parameters of the MQ-coder are interval
range (A), code value (C), context parameters (Icx ,MPScx) and bit counter (CT). In the MQ-coder, unlike
the binary arithmetic coder, we do not have multiplications or divisions to perform interval subdivision. The
interval subdivision into least probable symbol (LPS) subinterval and most probable symbol (MPS) subinterval
is achieved using a look-up table with the given probable state Icx which is obtained from the context model. The
value of range A is always kept in the interval [0.75, 1.5). This allows a simple approximation of the following
interval subdivision calculations for given probability value “Qe” as the value of A is of the order unity.

MPS subinterval = A− (A∗ Qe) = A− Qe
LPS subinterval = A∗ Qe = Qe

The subinterval value for LPS is obtained from the look-up table. Whenever the value of A falls below 0.75
(or equivalent fixed point value of 0×8000), then both A and C are renormalized to keep the value of A around
unity to perform the next subinterval division approximation.

A few applications of JPEG 2000 include digital photography, optical drive, digital cinema (motion JPEG),
Internet, and so on. Similar to the MQ-coder in the JPEG 2000 standard, the H.264/AVC standard uses a variant
of the M-coder known as the context-based adaptive binary arithmetic coder (CABAC). The H.264 arithmetic
coder is simpler than the MQ-coder. The MQ-coder performs well when compared to VLCs and the bit savings
is about 10% more, whereas the H.264 arithmetic coder performs well when compared to the MQ-coder in terms
of throughput and bit savings by 15 to 20% and 2 to 5%.

In this section, assuming the availability of an MQ-coder-encoded bitstream, we will discuss bitstream decod-
ing by using the MQ-decoder. As shown in Figure 5.9, the MQ-decoder consists of many ALU operations,
look-up table accesses and conditional jumps. The flow of the MQ-decoder is a little bit similar to the CABAC
flow, which we will discuss in Section 5.5. As in the CABAC, we can divide the MQ-decoder into three
parts:

• Interval subdivision
• Parameter updating
• Normalization

Each part contains many steps as shown in Figure 5.9 with the numbers in the circles. In steps 1 and 2, we
perform the interval subdivision. In interval subdivision, we get the LPS subinterval range from the look-up
table using the offset obtained from the context model. Then we obtain the MPS subinterval after subtracting
the LPS subinterval from A. Depending on the code value C , LPS subinterval QeIcx and MPS subinterval A,
we continue either an LPS decoding path or an MPS decoding path to update the parameters. We use steps 3 to
11 to update the parameters. In parameter updating, we update the code value (in the MSB halfword of C) and
the context parameters and we compute decision D. We perform the renormalization process with steps 12 to
14 (not all at a time). With the renormalization process, we make sure that the value of A falls into the range
[0.75, 1.5). During renormalization, we append the bits from the bitstream to the code value C (from the LSB
side). Like the CABAC, the renormalization of the MQ-coder is also a multi-iterative process. The decoded binary
decision is given by the value D. We will discuss the simulation details of the MQ-decoder in the following
sections.

5.4.2 JPEG 2000 MQ-Decoder Simulation

The basic input and output parameters required for simulation of the JPEG 2000 arithmetic decoder are range
(A), value (C), contexts (Icx , MPScx), bit counter (CT), compressed data (Dat) and output decision (D). The
following structure is used in the simulation of the MQ-decoder.

typedef struct jad_tag
{

int A;
int C;
int CT;
int Icx;
int MPScx;

262 Chapter 5

unsigned char *BP;
int D;

} JpegArtDec_t;

JpegArtDec_t JBA, *pJBA;

QeIcx5 Qe [Icx]

A 5 A 2 QeIcx

A , QeIcx

A 5 QeIcx

D 512MPScx

A , QeIcx

A 5 QeIcx

D 5 MPScx

Icx5 NMPS [Icx]

D 512MPScx

MPScx512MPScx

MPScx512 MPScx

Icx5 NLPS [Icx]

Icx5 NLPS [Icx]

S[Icx] 51?

CT 5 0S[Icx] 51?

Icx5 NMPS [Icx]

A & 038000 5 0?

A & 038000 5 0?

B1 . 038F ?

B 5 03FF ?

Ch, QeIcx

Ch5 Ch2 QeIcx

D 5 MPScx

Start

BP 5 BP 11
C 5 C 1 (B ,, 9)

CT 5 7

A 5 A ,,1
C 5 C ,,1
CT 5 CT 21

BP 5BP 11
C 5 C 1 (B ,, 8)

CT 5 8
C 5 C 1 03FF 00

CT 5 8

End

2

3

4
5

6

7 8

9

10

12

13

14

15

1

11

Y

YN

N

N

N N

N

N

N

N

Y

Y

Y

Y

Y

Y

Y

N

Figure 5.9: Flow chart diagram of JPEG 2000 MQ-decoder.

Lossless Data Compression 263

The values of A,C , and CT are initialized according to the JPEG 2000 standard, and the initialization code
is given in Pcode 5.21.

pJBA = &JBA;
pJBA->C = (*(pJBA->BPST)) << 16;
if (*(pJBA->BPST) == 0xff) {

if (*(pJBA->BPST+1) > 0x8f) {
pJBA->C = pJBA->C + 0xff00;
pJBA->CT = 8;

}
else {

pJBA->BPST++;
pJBA->C = pJBA->C + (*(pJBA->BPST) << 9);
pJBA->CT = 7;

}
}
else {

pJBA->BPST++;
pJBA->C = pJBA->C + (*(pJBA->BPST) << 8);
pJBA->CT = 8;

}
pJBA->C = (pJBA->C) << 7;
pJBA->CT = pJBA->CT-7;
pJBA->A = 0x8000;

Pcode 5.21: Initialization of MQ-decoder.

The simulation code for interval subdivision and parameter updating is given in Pcode 5.22. To divide the
interval range into LPS subinterval and MPS subinterval, first we obtain the LPS subinterval QeIcx from the
look-up table Qe[]. We obtain the MPS subinterval by subtracting the LPS subinterval from the total interval A.
We update the parameters accordingly depending on the code value C and LPS subinterval QeIcx . Given the
current context (Icx ,MPScx), if the MPS subinterval A is less than the LPS subinterval QeIcx and if the switch
flag S[Icx] is set for context index Icx , then we update the MPS value MPScx (i.e., 0 to 1 or 1 to 0) of the current
index by inverting it. Next, we update the context index using LPS or MPS index tables depending on whether
we are decoding LPS or MPS as shown in Figure 5.9.

The simulation code for renormalization of interval range A of the MQ-decoder is given in Pcode 5.23. In
the renormalization process we consume the bits from the input bitstream. We shift left both the interval register
A and code register C 1 bit at a time (or 1 bit per iteration). With each shift, we consume 1 bit from bit FIFO
(present in the LSB halfword of C) and the bit count CT is reduced by 1. Whenever CT becomes zero, we append
to FIFO a new data byte obtained from the bitstream buffer. The renormalization process may involve multiple
iterations depending on the interval value A. Whenever interval range A goes beyond 0×8000 (or 0.75 in decimal
notation), then we stop the renormalization process iterations and output the decoded decision value D.

MQ-Decoder Simulation Results
Here we present simulation results for the JPEG 2000 MQ-decoder. For a given JPEG 2000 arithmetic encoded
bitstream, the initialized parameter values, output decision values and the decoder parameters after decoding 1
output decision, 5 output decisions, 10 output decisions and 20 output decisions follow. The encoded bitstream
is present in buffer dat[], and the decoded binary decision output D is stored in the buffer sym[]. The following
look-up tables are used in the MQ-decoder.

LPS probabilities or subintervals
Qe[47] = {
0x5601, 0x3401, 0x1801, 0x0ac1, 0x0521, 0x0221, 0x5601, 0x5401, 0x4801, 0x3801, 0x3001, 0x2401,
0x1c01, 0x1601, 0x5601, 0x5401, 0x5101, 0x4801, 0x3801, 0x3401, 0x3001, 0x2801, 0x2401, 0x2201,
0x1c01, 0x1801, 0x1601, 0x1401, 0x1201, 0x1101, 0x0ac1, 0x09c1, 0x08a1, 0x0521, 0x0441, 0x02a1,
0x0221, 0x0141, 0x0111, 0x0085, 0x0049, 0x0025, 0x0015, 0x0009, 0x0005, 0x0001, 0x5601};

Next symbol probability estimation given the present symbol as MPS:
nmps[47] = {
1, 2, 3, 4, 5, 38, 7, 8, 9, 10, 11, 12, 13, 29, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 45, 46};

Next symbol probability estimation given the present symbol as LPS:

264 Chapter 5

QeIcx = Qe[pJBA->Icx];
pJBA->A = pJBA->A — QeIcx;
Ch = pJBA->C;
Ch = Ch >> 16;
if (Ch < QeIcx) {

if (pJBA->A < QeIcx) {
pJBA->A = QeIcx;
pJBA->D = pJBA->MPScx;
pJBA->Icx = nmps[pJBA->Icx];

}
else {

pJBA->A = QeIcx;
pJBA->D = 1 — pJBA->MPScx;
if (S[pJBA->Icx] == 1)

pJBA->MPScx = 1 — pJBA->MPScx;
pJBA->Icx = nlps[pJBA->Icx];

}
// continue with renormalization process (use Pcode 5.23)

}
else {

Ch = Ch — QeIcx;
pJBA->C = pJBA->C & 0xffff;
pJBA->C = pJBA->C | (Ch << 16);
if ((pJBA->A & 0x8000) == 0) {

if (pJBA->A < QeIcx) {
pJBA->D = 1 — pJBA->MPScx;
if (S[pJBA->Icx] == 1)

pJBA->MPScx = 1 — pJBA->MPScx;
pJBA->Icx = nlps[pJBA->Icx];

}
else {

pJBA->D = pJBA->MPScx;
pJBA->Icx = nmps[pJBA->Icx];

}
// continue with renormalization process (use Pcode 5.23)

}
else

pJBA->D = pJBA->MPScx;
}

Pcode 5.22: Simulation code for interval subdivision and parameter updating.

do {
if (pJBA->CT == 0) {

if (*(pJBA->BPST) == 0xff) {
if (*(pJBA->BPST +1) > 0x8f) {

pJBA->C = pJBA->C + 0xff00;
pJBA->CT = 8;

}
else {

pJBA->BPST++;
tmp = *(pJBA->BPST);
pJBA->C = pJBA->C + (tmp << 9);
pJBA->CT = 7;

}
}
else {

pJBA->BPST++;
tmp = *(pJBA->BPST);
pJBA->C = pJBA->C + (tmp << 8);
pJBA->CT = 8;

}
}
pJBA->A = pJBA->A << 1;
pJBA->C = pJBA->C << 1;
pJBA->CT = pJBA->CT — 1;

} while((pJBA->A & 0x8000) != 0) ;

Pcode 5.23: Simulation code for renormalization of MQ-decoder.

Lossless Data Compression 265

nlps[47] = {
1, 6, 9, 12, 29, 33, 6, 14, 14, 14, 17, 18, 20, 21, 14, 14, 15, 16, 17, 18, 19, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 46};

Switch flag to toggle the MPS of context
S[47] = {
1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

JPEG 2000 encoded bitstream data
dat[] = {0x00, 0x00, 0xa4, 0xca, 0x2f, 0xff, 0x00, 0x00}

After JPEG 2000 arithmetic decoder initialization
pJBA->A = 0x00008000
pJBA->C = 0x00520000
pJBA->CT = 1
pJBA->Icx = 3
pJBA->MPScx = 0
sym[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

After decoding 1 decision by arithmetic decoder
pJBA->A = 0x0000AC10
pJBA->C = 0x05265000
pJBA->CT = 5
pJBA->Icx = C
pJBA->MPScx = 0
sym[] = {1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

After decoding 5 decisions by arithmetic decoder
pJBA->A = 0x0000B004
pJBA->C = 0x79905E00
pJBA->CT = 7
pJBA->Icx = 14
pJBA->MPScx = 0
sym[] = {1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

After decoding 10 decisions by arithmetic decoder
pJBA->A = 0x0000C006
pJBA->C = 0x51B9C000
pJBA->CT = 2
pJBA->Icx = 15
pJBA->MPScx = 0
sym[] = {1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0}

After decoding 20 decisions by arithmetic decoder
pJBA->A = 0x0000A802
pJBA->C = 0x76F00000
pJBA->CT = 4
pJBA->Icx = E
pJBA->MPScx = 0
sym[] = {1,1,1,0,0,0,0,0,1,0,0,0,1,1,0,1,1,1,1,1}

MQ-Decoder Computational Complexity
As seen in Figure 5.9, the flow of the JPEG 2000 arithmetic decoder is somewhat complex. We will analyze
decoder complexity by considering the following possible cases. The steps in each case are specified with <>.

Case 1: In this case, the decoder steps in the path <Start, (1), (2), (3), and End> are considered. This is the
shortest possible path. This path always decodes the MPS as output decision and does not require the process
of renormalization.

Case 2: In this case, the decoder steps in the following six paths <Start, (1), (2), (3), (6), (15), and End>,
<Start, (1), (2), (3), (9), (11), (15), and End>, <Start, (1), (2), (3), (9), (10), (11), (15), and End>, <Start,
(1), (2), (5), (15), and End>, <Start, (1), (2), (4), (8), (15), and End> and <Start, (1), (2), (4), (7), (8), (15),
and End> are considered. These paths include both the LPS and MPS decision decode and renormalization
process. However, in the renormalization process we do not read bits from the bitstream as these correspond
to the case where CT is greater than zero. In general (about 80% of the time), bits from the bitstream will
not be read in the renormalization process.

Case 3: In this case, all the paths are the same as Case 2 except the presence of step (12) in all the paths to read
bits from the bitstream buffer in the renormalization process when CT becomes zero. However, in this case
the current byte value and next byte values of the bitstream pointed to by the buffer pointer is assumed not
equal to 0xff. With this assumption, we can efficiently implement the renormalization process, as we will
discuss later.

266 Chapter 5

Case 4: In this case, all the considered paths of the decoder are the same as in Case 3 and the context is also
same. The only difference is that one of the current bytes or next bytes of the bitstream buffer pointed to by
the buffer pointer will be equal to 0xff.

As seen in the preceding four cases, we can see that the decoder complexity increases from Case 1 to Case 4.
With this analysis, in the following section we will optimize the JPEG 2000 arithmetic decoder flow for number
of cycles by keeping the memory usage the same for all cases.

5.4.3 Efficient Simulation of JPEG 2000 MQ-Decoder

In the optimization of the decoder, we first optimize each individual case described in the previous section and
we later combine all the cases for single flow with a few conditional jumps. Here, the conditional jump is taken
such that the average-to-peak cycles of decoding are reduced.

Optimization of Case 1
This path (Start, (1), (2), (3), and End) of the decoder is the shortest path and we do not have much scope for
optimization. However, a small modification by combining the two conditions to one condition as shown in
Pcode 5.24 will result in one conditional jump.

QeIcx = Jpeg_Art[pJBA->Icx + tmp];
Ch = pJBA->C;
Ch = Ch >> 16;
pJBA->A = pJBA->A - QeIcx;
if((Ch >= QeIcx) && ((pJBA->A&0x8000) == 0)) {

// Case 2, Case 3, or Case 4
}
else {

Ch = Ch − QeIcx;
D = pJBA->MPScx; // Case 1
pJBA->C = pJBA->C & 0xffff;
pJBA->C = pJBA->C | (Ch << 16);

}

Pcode 5.24: Efficient implementation of Case 1 of the MQ-decoder.

Optimization of Case 2
The decoder flows in this case are much more complex than in Case 1. The common process for all the flows of
Case 2 is the renormalization operation which is a conditional multi-iterative process and is very costly in terms of
cycles. For example, if the interval A is 0x0ac1, then the four iterations are needed for the normalization process
and if thebits arenot going to read to value C (this is what assumed in Case 2), it requires about 68 (= 4∗ (5+2∗ 6))

cycles (see Section A.4 on the companion website for more details on clock cycles estimation on the reference
embedded processor). Many of the cycles to execute the renormalization process can be avoided if we first
compute the normalization loop count “CNT” by counting the leading zeros in A, then shifting A and C by CNT
and subtracting CT from CNT.

Next, a complex task common to all paths in Case 2 is obtaining the new values for Icx ,MPScx and D and
new values for A and C before normalization. The new values for these parameters can be efficiently computed
using a look-up table and conditional moves. In this way we can avoid most of the jumps. As shown in Pcode 5.25,
the new values of A and C are obtained by conditional computation. Instead of accessing different look-up tables
for computing new values for Icx and MPScx, all look-up tables are combined to form a new look-up table.
Depending on the conditions, an offset is chosen to select the appropriate look-up values. In this way, the output
decision is also obtained from the look-up table. The look-up table’s 16-bit codeword contains D (4 bits), MPScx

(4 bits) and Icx (8 bits). The values of the look-up table Jpeg_Art[] for obtaining all the previous specified
parameters can be found on this book’s companion website.

Optimization of Case 3
The optimization techniques used in Case 2 are all applicable to Case 3 too. The extra computations we perform
in Case 3 are reading of the data bits from the bitstream buffer to value C in the renormalization process. If the

Lossless Data Compression 267

QeIcx = Jpeg_Art[pJBA->Icx];
r1 = 3; r2 = 1; r3 = 1; r4 = 3; r5 = 2; r6 = 4;
Ch = pJBA->C;
Ch = Ch >> 16;
pJBA->A = pJBA->A - QeIcx;
if (pJBA->MPScx == 1) {

r1 = r6; r2 = r5;
r3 = r5; r4 = r6;

}
if (pJBA->A < QeIcx) {

r1 = r2; r3 = r4;
}
if((Ch >= QeIcx) && ((pJBA->A&0x8000) == 0)) {

if (Ch >= QeIcx) {
Ch = Ch − QeIcx;
r1 = r3;
pJBA->C = pJBA->C & 0xffff;
pJBA->C = pJBA->C | (Ch << 16);

}
else

pJBA->A = QeIcx;
tmp = Jpeg_Art[r1*47+pJBA->Icx];
pJBA->Icx = tmp & 0xff;
pJBA->MPScx = (tmp>>8)&1;
pJBA->D = tmp >> 12;
r1 = 0;
while ((pJBA->A & 0x8000) == 0) {

pJBA->A = pJBA->A << 1;
r1++;

}
pJBA->C = pJBA->C << r1; // Case 2
pJBA->CT = pJBA->CT - r1;
if (pJBA->CT <= 0) {

if((*(pJBA->BPST) != 0xff) || (*(pJBA->BPST+1) != 0xff)) {
// Case 3

}
else {

// Case 4
}

}
}
else {

// Case 1
}

Pcode 5.25: Efficient simulation of Case 2 of the MQ-decoder.

current byte and next byte are not 0xff, then we can efficiently implement reading bits by moving 16 bits at a
time to C when CT becomes less than or equal to zero. Then add 16 to CT. In this way, we will read the buffer
only after 16 bits of renormalization process. If one of the current bytes or the next byte is 0xff, then we continue
with Case 4 optimization techniques. The efficient simulation code for reading bits to C in Case 3 is given in
Pcode 5.26.

Optimization of Case 4
In Case 4, we use all the previously suggested techniques of Cases 1 through 3. In this case, we handle the
normalization process in two parts to avoid a bit-by-bit process of normalization as given in the JPEG 2000
standard. In the first part, we read up to 8 bits to C when the normalization bits is less than or equal to 8. The
second part handles instances in which the normalization bits are more than 8 to read up to 15 bits to C as shown
in Pcode 5.27. Although Case 4 looks a little complex, this occurs rarely when compared to other cases.

Computational Complexity with Optimized MQ-Decoder
We estimate the computational complexity of the MQ-decoder in terms of memory and clock cycles consumed
in executing the optimized MQ-decoder. We use 0.25 kB of extra data memory (see look-up table Jpeg_art[])
with the optimized MQ-decoder. Since Cases 1 and 3 of the MQ-decoder do not occur frequently and Case 4

268 Chapter 5

if (pJBA->CT <= 0){
if((*(pJBA->BPST) != 0xff) && (*(pJBA->BPST+1) != 0xff)){

pJBA->BPST++;
r1 = *(pJBA->BPST);
r1 = r1 << 8;
pJBA->BPST++;
r2 = *(pJBA->BPST);
r1 = r1 | r2;
pJBA->C = pJBA->C | (r1 << (-pJBA->CT));
pJBA->CT+= 16;

}
else {

// Case 4
}

}

Pcode 5.26: Efficient implementation of bit FIFO for Case 3 of the MQ-decoder.

if (pJBA->CT <= 0){
if((*(pJBA->BPST) != 0xff) && (*(pJBA->BPST+1) != 0xff)){

// Case 3
}
else {

if (pJBA->CT >= -8) {
if(*(pJBA->BPST) != 0xff) { pJBA->BPST++;

pJBA->C = pJBA->C | (*(pJBA->BPST) << (8 - pJBA->CT)); pJBA->CT+= 8;
}
else {

if (*(pJBA->BPST+1) > 0x8f) {
pJBA->C = pJBA->C + (0xff00 << (8 - pJBA->CT)); pJBA->CT+= 8;

}
else {pJBA->BPST++;

pJBA->C = pJBA->C | (*(pJBA->BPST) << (7 - pJBA->CT)); pJBA->CT+= 7;
}

}
}
else {

if(*(pJBA->BPST) != 0xff) { pJBA->BPST++;
pJBA->C = pJBA->C | (*(pJBA->BPST) << 16); pJBA->CT+= 8;

}
else {

if (*(pJBA->BPST+1) > 0x8f) {
pJBA->C = pJBA->C + (0xff00 << 16); pJBA->CT+= 8;}

else { pJBA->BPST++;
pJBA->C = pJBA->C | (*(pJBA->BPST) << 15); pJBA->CT+= 7;

}
}
if(*(pJBA->BPST) != 0xff) { pJBA->BPST++;

pJBA->C = pJBA->C | (*(pJBA->BPST) << (8 - pJBA->CT)); pJBA->CT+= 8;
}
else {

if (*(pJBA->BPST+1) > 0x8f) {
pJBA->C = pJBA->C + (0xff00 << (8 - pJBA->CT)); pJBA->CT+= 8;

}
else { pJBA->BPST++;

pJBA->C = pJBA->C | (*(pJBA->BPST) << (7 - pJBA->CT)); pJBA->CT+= 7;
}

}
}

}
}

Pcode 5.27: Efficient implementation of Case 4 of the MQ-decoder.

occurs very rarely, we assume the average cycle cost of the MQ-decoder as the cycles required for Case 2 (since
it occurs more frequently). As seen in Pcode 5.25, the approximate cycle cost to run Case 2 of the MQ-decoder
on the reference embedded processor is about 45 cycles. We consume a minimum of 50 cycles and a maximum

Lossless Data Compression 269

of around 150 cycles for Case 2 of the MQ-decoder without applying any optimization techniques. Thus, with
optimization techniques, we can clearly reduce the average-to-peak cycles count by 100.

5.5 Context-Based Adaptive Binary Arithmetic Coding

The H.264 standard (ITU-T H.264, 2005) uses a variant of the M-coder for entropy coding to compress and
decompress the datastream. This entropy coding is known as the context-based adaptive binary arithmetic cod-
ing, or CABAC. See Section 5.1 for more details on the binary arithmetic coder (BAC). The H.264 standard’s
main profile defines three CABAC core routines for compressing/decompressing the bitstream: encode/decode
binary symbol, encode/decode equiprobable binary symbol, and encode/decode terminate symbol. Out of these
three core routines, encode and decode symbol routines are the more complex ones. In this section, we present
an overview of the H.264 arithmetic coder encode and decode symbol routines, and we estimate the computa-
tional complexity of CABAC encode and decode symbol routines. Although the H.264 reference software (see
http://iphome.hhi.de/suehring/tml/) is available in the public domain, it is written very inefficiently and cannot
be used as is for real-time applications. Thus, we discuss here efficient implementation techniques for H.264
CABAC encode and decode symbol routines.

A few applications of the H.264 standard include digital video broadcasting, digital subscriber lines, personal
media players, HDTV, video surveillance, digital media storage, and multimedia communications. Similar to the
CABAC in the H.264/AVC standard, the JPEG 2000 standard (see Section 5.4) uses the MQ-coder for bitstream
compression. The H.264 arithmetic coder is simpler than the MQ-coder. The MQ-coder (JPEG 2000) performs
well when compared to VLCs and the bit savings is about 10% greater, whereas the H.264 arithmetic coder
performs well when compared to the MQ-coder in terms of throughput and bit savings by 15 to 20% and 2 to
5%, respectively.

5.5.1 H.264 CABAC Overview

The basic parameters used for the CABAC encode symbol function are Range (interval), Value or Low (code
value), {State, MPS} (context parameters), and Obits (outstanding bits). In the H.264 CABAC, unlike in the
binary arithmetic coder, we do not have multiplications or divisions to perform interval subdivision. The interval
subdivision is achieved using a look-up table with the given Range and State (a quantized probability value,
obtained from the context model). The Symbol (also called as binary decision or bin, obtained after binarization of
syntax elements defined by the H.264 standard) is coded as MPS (most probable symbol) or LPS (least probable
symbol), depending on the Symbol and present MPS value. The parameters Range, Value, State and MPS are
updated after coding of each Symbol. To keep the precision of Range within limits, normalization of Range and
Value is performed whenever the value of Range becomes less than 256 (see Figure 5.11 on page 271). We will
discuss more about the H.264 CABAC encode symbol function in Section 5.5.2, Encode Symbol.

The basic parameters used for the CABAC decode symbol function are Range, Value, {State, MPS}, and
compressed/encoded bitstream. We divide the current interval Range with given State (or quantized probability
value) into MPS and LPS intervals. We get the LPS interval (rLPS) from the look-up table RangeLPS[] and we
compute MPS interval by subtracting rLPS from current Range. Depending on the MPS interval and Value, we
decode the symbol as MPS or LPS. We update Range, Value and {State, MPS} after decoding of every symbol.
To keep the precision of Range within the limits, renormalization of Range and Value is performed whenever the
value of Range becomes less than 256 and Value is filled with the bitstream during the renormalization process
(see Figure 5.11).

5.5.2 CABAC Symbol Coding

In video coding, we have various types of parameters (e.g., slice layer parameters, macroblock layer parameters,
prediction modes, motion vectors, residual coefficients) to encode (compress data) or decode (decompress data)
using an entropy coder. The H.264 standard uses a special name for all these parameters: syntax elements. The
H.264 standard defines various types of syntax elements along with the contexts {State, MPS} for coding different
type of parameters. Over 460 contexts for different types of syntax elements are defined in the H.264 standard.

270 Chapter 5

As the entropy coder CABAC of the H.264 works with binary data, we convert the syntax elements (nonbinary
valued data) to binary Symbols (bins) using a binarization process (which is defined in the H.264 standard for
each type of syntax elements) for encoding nonbinary syntax elements. In the same way, we apply a correspond-
ing debinarization process for decoded Symbols to build the syntax element value for particular parameters.
A context is a probability model for one or more bins of the binarized syntax element. This probability model
may be chosen from a set of available models depending on the statistics of recently coded syntax elements. As
an example, the syntax element value, bins, and associated context parameters {State, MPS} (which are not as
per H.264 standard) for CABAC of the residual coefficient value 6 follow:

Syntax element (residual coefficient): 6
After binarization (Symbols or bins): 1 1 1 1 1 0
Contexts (for each bin): {21, 1}, {23, 0}, {24, 0}, {27, 1}, {28,0}, {29,1}

For each image slice (a video frame may contain multiple slices) encoding or decoding, we initialize Range,
Value, and context {State, MPS} parameters of the CABAC. The associated context parameters of syntax elements
are updated when coding those syntax elements. The H.264 CABAC encode and decode symbol process is shown
in Figure 5.10. At the transmitter side, we perform the CABAC encoder operations (e.g., binarization, symbol
coding, context model update) and generate compressed bitstream which we transmit after processing by a
signal chain (include modules like channel coding, modulation, filtering, etc.) through a noisy channel. At the
receiver, we receive the bitstream at the end of the receiver signal chain (includes filters, demodulation, data
error correction, etc.). This bitstream corresponds to encoded bits. Signal chain blocks in the transmitter and
receiver are not shown in Figure 5.10.

In the H.264 CABAC, the symbol coding engine consists of three steps: (1) interval subdivision, (2) CABAC
parameters update, and (3) normalization process. In the interval subdivision, we divide the current interval
Range into LPS and MPS intervals. With the CABAC symbol coding routine, we code the Symbol as either LPS
or MPS and update the CABAC parameters correspondingly. After updating the CABAC parameters, we check
the value of Range and if it is below 256, then we perform normalization of Range to make sure the Range is
above 256. In doing normalization, we also normalize Value which produce (in encoder) or consume (in decoder)
the bitstream during the normalization process.

Encode Symbol
The flow chart diagram of the H.264 CABAC encode symbol routine is shown in Figure 5.11. Inputs to the encode
symbol function are Range, Value, {State, MPS} and Obits and outputs are the updated CABAC parameters
and bitstream. According to Range and State, we get rLPS (an LPS interval range) using the look-up table
RangeLPS[]. We compute MPS interval Range by subtracting rLPS from the current interval Range. Then,
depending on the current Symbol and MPS, we code the Symbol as either MPS or LPS and update the parameters
correspondingly. After updating the CABAC parameters, we check the value of Range and whether the Range
is less than 256, then we perform the encoder normalization process. The H.264 CABAC encoder normalization
process is a multi-iteration process as shown in Figure 5.11. In every iteration, we double the value of Range
and compare it with 256 (to confirm whether Range is greater than or equal to 256 or not). If Range is greater

Binarization
Process

CABAC
Encoder
Engine

Context
Models

CABAC
Decoder
Engine

Debinarization
Process

Syntax
Elements

Syntax
Elements

Bins Bins

Bits

Transmitter Side Receiver Side

Noisy
Channel

Figure 5.10: H.264 CABAC symbol coding process.

Lossless Data Compression 271

Start

N

Index 5 (Range .. 6) & 3
rLPS 5 RangeLPS[State][Index]

Range 5 Range 2 rLPS

State 5 StateMPS[State]

Y

State 5 StateLPS[State]

Symbol ! 5 MPS

State 55 0

End

Range 5 Range ,,1
Value 5 Value ,,1

Output (0 | Obits 1’s)

Output (1|Obits 0’s)

Value 5 Value 2 0 3 200Value 5 Value 2 0 3100
Obits5 Obits 11

Range , 256

Value , 256

Value $ 512

Y

Y

Y

Y

N

N

N

N

MPS 5 ^1

Value 15 Range
Range 5 rLPS

Figure 5.11: Flow chart diagram of the H.264 encode binary symbol.

than or equal to 256, then we quit the normalization process loop. During the normalization process, we also
normalize Value and output bits, depending on Value (to avoid overflow) in each iteration.

Decode Symbol
The flow chart diagram of the H.264 CABAC decode symbol routine is shown in Figure 5.12. Inputs to the
decode symbol function are Range, Value, {State, MPS} and bitstream and outputs are the updated CABAC
parameters and decoded Symbol. Based on Range and State, we get the rLPS (an LPS interval range) using the
look-up table RangeLPS[]. We compute the MPS interval Range by subtracting rLPS from the current interval
Range. Then, depending on Value and Range, we decode either the LPS or MPS by updating the corresponding
parameters. Then, we perform the normalization of Range and Value in multiple iterations if the value of Range
is less than 256. During the normalization process, we update Value with the input bitstream.

CABAC Symbol Coding Simulation
We simulate CABAC symbol encoding (or decoding) using the flow chart diagrams shown in Figure 5.11 (or
Figure 5.12). We use three look-up tables (defined by the H.264 standard) in CABAC symbol coding interval

272 Chapter 5

Start

N

Index 5 (Range .. 6) & 3
rLPS 5 RangeLPS[State][Index]

Range 5 Range 2 rLPS

State 5 StateMPS[State]

Y

State 5 StateLPS[State]

Value $ Range

State 55 0

End

Range 5 Range ,,1
Value 5 Value ,,1 | bitstream(1)

Range , 256

Y

N
MPS 5 ^1

Value 5 Value 2 Range
Range 5 rLPS

Figure 5.12: Flow chart diagram of CABAC decode symbol routine.

subdivision and parameters update; the values for the three look-up tables RangeLPS[], StateLPS[], and
StateMPS[] can be found on the companion website. The simulation code for CABAC encode symbol is given
in Pcode 5.28 and the simulation code for write_bits() (or Output() in Figure 5.11) is given in Pcode 5.29. The
simulation code for the CABAC decode symbol is given in Pcode 5.30. We use the read_bits()—or bit_stream()
in Figure 5.12—function in the CABAC decode symbol routine to read bits from the bitstream buffer.

We use the following parameters structure in CABAC symbol coding:

typedef struct H264BacPars_tag
{

int Range;
int Low;
int State;
int MPS;
int Obits;
int Symbol;
int byteoffset;
int bitpos;

} H264BacPars_t;

H264BacPars_t BAC, *pBAC;

5.5.3 CABAC Symbol Coding Complexity

As seen in Figures 5.11 and 5.12, the CABAC symbol coding consists of many sequential and conditional
operations (unlike other video coding block processing modules such as DCT transform, motion compensation
and so on, where we don’t have a conditional flow of operations). In some cases, the input of present operation
depends on the output of the previous operation and we do not have much scope to interleave the program code.

Lossless Data Compression 273

pBAC = &BAC;
tmp = (pBAC->Range>>6)&3;
rLPS = RangeLPS[4*pBAC->State + tmp];
pBAC->Range = pBAC->Range - rLPS;
if (pBAC->Symbol == pBAC->MPS)

pBAC->State = StateMPS[pBAC->State];
else {

pBAC->Low = pBAC->Low + pBAC->Range;
pBAC->Range = rLPS;
if(pBAC->State == 0)

pBAC->MPS = 1-pBAC->MPS;
pBAC->State = StateLPS[pBAC->State];

}
while(pBAC->Range < 256) {

if(pBAC->Low >= 512) {
pBAC->Low-=512;
write_bits(1,1);
if(pBAC->Obits > 0) {

write_bits(0,pBAC->Obits);
pBAC->Obits = 0;

}
}
else if(pBAC->Low < 256) {

write_bits(0,1);
if(pBAC->Obits > 0){

write_bits(1,pBAC->Obits);
pBAC->Obits = 0;

}
}
else {

pBAC->Obits++;
pBAC->Low -= 256;

}
pBAC->Range = pBAC->Range << 1;
pBAC->Low = pBAC->Low << 1;

}

Pcode 5.28: Simulation code for CABAC encode symbol.

tmp = dat[pBAC->byteoffset];
for (i=0;i<n;i++) {

tmp = tmp << 1 | b;
pBAC->bitpos = pBAC->bitpos - 1;
if(pBAC->bitpos == 0) {

dat[pBAC->byteoffset] = tmp;
pBAC->byteoffset++;
pBAC->bitpos = 8;

}
}
dat[pBAC->byteoffset] = tmp;

Pcode 5.29: Simulation code for write_bits() function.

The first two parts, interval subdivision and parameters update, of the CABAC symbol encoder and decoder has
similar flow in terms of computations. In the interval subdivision (see Pcode 5.28 or Pcode 5.30), we have to
perform the following operations in dividing Range.

tmp1 = Range >> 6; tmp2 = 4*State;
tmp1 = tmp1 & 3;
index = tmp1 + tmp2;
rLPS = RangeLPS[index]; //LPS interval
Range = Range — rLPS; //MPS interval

Dividing Range into MPS and LPS intervals takes around 9 to 10 cycles on the reference embedded processor
as the rLPS value, after accessing from the look-up table, is used immediately in computing Range, which
stalls the processor 3 to 4 cycles. The next step is coding the Symbol as MPS or LPS. This process involves

274 Chapter 5

tmp = (pBAC->Range>>6)&3;
rLPS = RangeLPS[4*pBAC->State + tmp];
pBAC->Range = pBAC->Range - rLPS;
pBAC->Symbol = pBAC->MPS;
if (pBAC->Value < pBAC->Range)

pBAC->State = StateMPS[pBAC->State]; //MPS decode
else {

pBAC->Value = pBAC->Value - pBAC->Range;
pBAC->Range = rLPS;
pBAC->Symbol = 1 - pBAC->MPS;
if (pBAC->State == 0)

pBAC->MPS = 1-pBAC->MPS;
pBAC->State = StateLPS[pBAC->State]; //LPS decode

}
while (pBAC->Range < 256){

pBAC->Range = pBAC->Range << 1;
pBAC->Value = (pBAC->Value << 1) | (read_bits(1));

}
//Output is pBAC->Symbol

Pcode 5.30: Simulation code for CABAC decode symbol.

one conditional jump to choose between LPS path or MPS path, update of Range, update of Value, conditional
update of MPS and one memory access to update State. These operations consume around 10 to 15 cycles to
update parameters. Based on the previous analysis, the first two parts of the CABAC symbol coding routines
take around 25 cycles.

CABAC Encode Symbol Normalization
In the H.264 encode symbol routine given in Pcode 5.28, the normalization process has many conditional jumps
in a “while loop.” This process is costly in terms of cycles as it performs normalization 1 bit at a time with
many jumps. In addition to this, writing encoded bits to memory using the write_bits() function (or Output();
see Figure 5.11) with normalization of Value is a very complex operation. We have to perform the following
operations every time for writing 1 bit to the memory buffer.

1. Read unfilled word from buffer (tmp = dat[wordoffset])
2. Shift the word left by 1 bit (tmp = tmp << (1)

3. OR the present bit “b” with the shifted word (tmp = tmp| b)
4. Store the ORed word to memory (dat[wordoffset] = tmp)

5. Reduce the bitpos by 1 (bitpos = bitpos – (1)
6. Check whether the bitpos is equal to zero (bitpos == 0)

7. If bitpos is zero, then increment the wordoffset by 1 and reset the bitpos to 32 (wordoffset = wordoffset+1;
bitpos = 32)

The procedure for writing bits to memory as just described is not part of the H.264 standard. But this function
is needed to write the bits to the buffer. Typically, the data is stored to memory in bytes (8 bits), halfwords
(16 bits) or words (32 bits) for easy addressing. When we want to store the encoded bits to a memory, first the
bits are packed into bytes or words, and then they are stored in a memory. The procedure described previously
packs the bits into 32-bit words and then stores them to the data buffer. We choose the 32-bit word instead of
8-bit byte because we are going to spend fewer cycles in storing words than bytes with fewer memory accesses
(once for every 32 bits instead of 8 bits). To pack the bits to 32-bit words, we use the bit counter (or bitpos) to
know how many bits are still needed to fill a 32-bit word. Every time we fill the word with a bit, we reduce the
bit count by 1. When the bit count is zero, the word is full with 32 bits and that word is stored to the buffer and
the bit counter is reset to 32.

To implement the previous procedure of packing bits to a word before storing to memory on the reference
embedded processor, we need a minimum of 10 cycles. Now if we want to do two bits of normalization (i.e.,
the loop count is two) with outstanding bits (Obits) equal to zero, it takes around 30 to 40 cycles (including
jumps and other operations) depending on Value. In addition to this, sometimes storing of Obits to memory in

Lossless Data Compression 275

the normalization process will become a lengthy task as the upper limit on Obits count according to the standard
is given by the number of encoding decisions present in a slice. This shows the complexity of the normalization
process and the necessity of its optimization.

CABAC Decode Symbol Normalization
The decode symbol normalization is also a multi-iterative process. In each iteration, we shift left the values
Range and Value by 1 bit and the LSB of Value is filled with 1 bit by reading 1 bit from the bitstream buffer. The
complexity of reading bits from the memory buffer is the same as writing bits to the memory buffer. Therefore,
a single iteration of the decode symbol normalization process consumes about 13 cycles (10 cycles for memory
read and three cycles for left shifts and appending the bit to Value).

5.5.4 Efficient CABAC Symbol Coding

As seen in Section 5.5.3, the CABAC symbol coding consumes a minimum of 45 cycles for encoding and 35
cycles for decoding of one symbol. The compression ratio achieved with the H.264 CABAC coding engine is
about 1.1. It means that the ratio of the number of input symbols to the number of output bits in the CABAC
coder is approximately 1.1. If we work with 1 Mbps bit rate, then the H.264 CABAC symbol coding routine
called approximately 1 million times per second and encode (or decode) symbol routine only consumes about
45 (or 35) MIPS of the embedded processor. In this section, we will discuss efficient simulation of the CABAC
symbol coding routines.

Interval Subdivision and Parameters Update
On the reference embedded processor, the conditional jumps are too costly. Instead of jumping conditionally
we can update parameters by moving the values conditionally. To reduce the number of conditional moves and
memory accesses, we pack State and MPS and access through one look-up table (that consists of State for both
LPS or MPS path and effective MPS value). Because of this, the new State look-up table becomes four times
bigger when compared to original State (LPS or MPS) look-up tables. The look-up table design also includes the
conditional update of MPS based on the current value of State. The offset calculation for look-up table access is
based on MPS value and the condition with which we decide whether MPS or LPS path is used to code the Symbol.
Thus, the encode symbol new State look-up table consists of a total of four parts. In each part, the codeword
consists of next State information (LSB byte) and effective MPS value (MSB byte). The efficient simulation code
for the first two parts of the encode decision routine is given in Pcode 5.31 and the new derived look-up table with
(MPS | State) for the efficient CABAC encode symbol is available on the companion website.

tmp = pBAC->Range >> 6;
tmp = tmp & 3; offset = pBAC->State << 2;
offset = offset + tmp;
rLPS = RangeLPS[offset];
flag = (pBAC->MPS == pBAC->Symbol);
offset = flag << 7; tmp = pBAC->MPS << 6;
offset = offset + tmp;
pBAC->Range = pBAC->Range - rLPS;
if (!flag) pBAC->Low = pBAC->Low + pBAC->Range; if (!flag) pBAC->Range = rLPS;
tmp = StateTbl[pBAC->State + offset];
pBAC->State = tmp & 0xff; pBAC->MPS = tmp >> 8;

Pcode 5.31: Simulation code for CABAC encode symbol (without normalization).

We use a structure pointer pBAC = &BAC, where BAC = {Range, Value, State, MPS, Obits, Symbol,
wordoffset, bitpos}, to handle the CABAC code parameters.

For the CABAC decode symbol routine, the aforementioned new State look-up up table can be used. As
the decoder outputs Symbol information from present context MPS value, we can also embed this information
into a new State look-up table by using the MSB of previous look-up table elements for Symbol or by adding
1 more byte to each element of the look-up table to represent Symbol. The simulation codes for the CABAC
decode symbol (without normalization) is given in Pcode 5.32. As seen in Pcodes 5.31 and 5.32, the CABAC
decode symbol routine flow is different from encode symbol routine flow and consumes five more cycles. With

276 Chapter 5

tmp = pBAC->Range >> 6;
tmp = tmp & 3; offset = pBAC->State << 2;
offset = offset + tmp;
rLPS = RangeLPS[offset];
pBAC->Range = pBAC->Range - rLPS; //3 to 4 stalls
flag = (pBAC->Value >= pBAC->Range);
offset = flag << 7; tmp = pBAC->MPS << 6;
offset = offset + tmp;
if (!flag) pBAC->Value= pBAC->Value + pBAC->Range; if (!flag)pBAC->Range = rLPS;
tmp = StateTbl[pBAC->State + offset];
pBAC->State = tmp & 0xff; pBAC->Symbol = tmp >> 15;
tmp = tmp & 0x7fff;
pBAC->MPS = tmp >> 8;

Pcode 5.32: Simulation code for CABAC decode symbol (without normalization).

this simulation, we consume (without normalization process) approximately 14 cycles for the CABAC encode
symbol routine and 20 cycles for the CABAC decode symbol routine on the reference embedded processor.

Normalization Process
In H.264 CABAC, we perform the normalization process to keep the value of Range greater than or equal to
256. Hypothetically, the “while” loop in the normalization can be avoided if we precompute the number of times
the loop is going to repeat. Mathematically the while loop count is equal to the value of log2 [256/Range]. In
other words, if we have an instruction which gives the lead zeros with respect to halfword or word boundary,
then we can get the value of log2[256/Range]. In the simulation code, we precompute the loop count using a
“while” loop. This loop count indirectly gives us the number of bits to normalize for the Range in the encode
(or decode) symbol routine and the number of bits needs to write (or read) to (or from) the buffer (along with
the outstanding bits in the case of the encode symbol routine) depending on Value. With this, in a single pass we
can do the total normalization process.

Encode Symbol Normalization Process
The implementation of the “while” loop bit-by-bit normalization process of the encode symbol routine as it is
on the reference embedded processor is not an acceptable implementation due to its heavy conditional flow.
As described previously, we precompute the loop count for normalization to avoid iterative process. But the
problem of writing a variable number of outstanding bits to memory will become complex in this case. The
problem of storing outstanding bits will be there even if we use the bit-by-bit “while” loop implementation. With
the precompute of the “while” loop count approach, the logic for writing the bits to the buffer will become more
complicated because of arbitrary parameter values of loop count (or number of normalization bits), Value and
Obits (the number of outstanding bits).

With the assumption of sufficient on-chip memory available, a look-up table based approach will eliminate
most of the logic to implement the precompute loop count encode symbol normalization process. Now the
question is how much on-chip memory is required for implementation of this look-up table based approach?
Assuming the minimum value of Range that can go according to the H.264 standard as 2 (which means at most
7 bits of Range left shift is required), then the maximum loop count required is 7 (represented with 3 bits). This
means that the analysis of 3 bits of loop count information, 8 bits of Value (as explained later the MSB of Value
may flip based on the value of Value after normalization process) and variable number of outstanding bits is
required. Assuming the number of outstanding bits as “n,” the memory size required for the look-up table is
2ˆ (3 + 8 + log2(n))∗ 4∗ (n/8) bytes. According to the H.264 standard, the maximum limit on n is as high as
4,147,200 for a full D1-size video slice (which has 720×480×1.5×8 bits); implementing such a look-up table
method is impractical. However, this methodology is a base for the efficient normalization approach that is
described in the following.

The loop count and outstanding bits count are two important parameters used in the implementation of the
look-up table based method. If we run the reference encoder with a few test vectors to get the statistics for these
two parameters, then the histograms of those two parameters are obtained as shown in Figure 5.13. As seen in

Lossless Data Compression 277

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9

N
um

be
r

of
 O

cc
ur

re
nc

es

Number of Outstanding Bits

(a)

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N
um

be
r

of
 O

cc
ur

re
nc

es

Number of Normalization Bits

(b)

Figure 5.13: Histograms. (a) Outstanding bits. (b) Normalization bits.

the histograms, though the maximum number of outstanding bits according to the standard is much higher, the
statistics show that the outstanding bits greater than 7 occur only in 2% of cases. Similarly, the normalization
bits greater than 3 occur in only 3% of cases. Thus, if we consider 7 outstanding bits and 3 normalization
bits for look-up table generation, almost 97% of the time we are going to use the look-up table for normali-
zation process and the remaining 3% of the time we jump out and implement the costly bit-by-bit normalization
process. The memory size required to implement the look-up table based approach for the previous parameters
is 2(4+3+2)∗

4∗ (7/8) = 2 kB. This makes a good trade-off between cycles and memory.
The look-up table codeword contains the following information: (1) updated Obits (4 bits), (2) actual bits

information that go to the buffer (0 to 10 bits), (3) length of bits that go to the buffer (4 bits), and (4) a flag (1 bit)
for Value’s MSB correction after normalization. Each codeword contains 19 bits of information and these bits
may be packed such that they will be easily accessed from memory. The next example presents the functionality
of the suggested method.

■Example 5.4

Offset: 9 bits = loop count (2 bits) | Obits (3 bits) | Value (4 MSBs)
Codeword: n (4 bits) | bits (10 bits) | Obits (4 bits) | Flag (1 bit)
Look-up table size (or memory requirement): 512 entries (512 ∗ 4 = 2 kB)
Loop count = 3, Obits= 6, Value (4 MSBs) = 1101
Offset = 0x1ed (Hex) = 11 110 1101 (bin)
Look-up table codeword: 1000 0000 1000 0001 0000 0001 0000 0000

■

Iteration n Bits Obits Flag
1 7 1000000 0 1
2 8 10000001 0 0
3 8 10000001 1 0 → store

to look-up

The purpose of Value’s MSB correction is more easily explained with an example. Let us consider the 10-bit
value of Value as 1011xxxxxx with 4 MSBs of Value equal to 1011. If we normalize bit-by-bit as per the
standard (as shown in Figure 5.11), after 2 bits of normalization we end up with Value as 01xxxxxx00. In the
first iteration, as Value is greater than 512, we subtract 512 from Value and it becomes 011xxxxxx0 after one

278 Chapter 5

left shift of Value before the next iteration. In the second iteration, as Value is greater than 256, we subtract
256 from Value and it becomes 01xxxxxx00 after one left shift at the end. If we use the normalization process
with precompute of the “while” loop count, we left shift Value by two and then the values of Value becomes
11xxxxxx0. Now, if we compare both methods’ output values of Value, they are not same. To make it right, we have
to correct the MSB of Value in the suggested method of normalization. This example tells us the purpose of Value
MSB correction. The efficient simulation code for the look-up table based normalization approach is given in
Pcode 5.33.

The cycle savings with the suggested method is explained in the following example. Let us assume that the
updated Range (before normalization) was 0×0060, Value was 0×0140, and the accumulated outstanding bits
(Obits) was 0×0006. Then the normalization loop count is equal to 2 (because two times left shift of Range is
needed to make the Range greater than or equal to 0×0100). First, we estimate the cycle count for bit-by-bit
normalization. The value of Value is between 0×0100 and 0×0200 in the first iteration of the while loop. As it
involves two conditional jumps and four arithmetic operations, it takes around 20 cycles. The accumulated out-
standing bits become 0×0007 in the first iteration. The value of Value is less than 0×0100 in the second iteration,
so here we needed to write bit “0” to memory. In addition, we have to write 7 outstanding bits in this iteration.
A total of 8 bits of storing (80 cycles), two conditional jumps (16 cycles) and four ALU operations (4 cycles)
are present in the second iteration. This adds up to a total of 100 cycles. The estimate of total number of cycles
consumed by bit-by-bit normalization for the previous example is about 120 cycles.

Now we estimate the cycle count for the suggested method. In this case, the loop count is computed in advance,
and it takes 2 cycles (1 cycle for lead zeros and 1 cycle for correction) on the reference embedded processor. As
the loop count and outstanding bits are within limits (which takes 3 cycles to confirm), we compute the offset

tmp = 0;
while (pBAC->Range < 256) { //precompute loop count

pBAC->Range = pBAC->Range << 1;
tmp++;

}
if ((tmp<=3) && (pBAC->Obits <= 7)) { //single flow normalization process

x1 = pBAC->Low >> 6; x2 = pBAC->Obits << 4;
x1 = x1 + x2; x3 = tmp << 7;
x1 = x1 + x3; pBAC->Low = pBAC->Low << tmp;
//x1: offset for look-up table, x1[8:7]->nbits, x1[6:4]->obits, x1[3:0]-> MSB Value
c = NormTbl[x1]; //c[31]-> flag, c[26:24]-> obits, c[19:16]-> length of bits, c[9:0]->actual bits
//c[31:28]-> length of bits, c[27:16]-> actual bits, c[15:8]-> obits, c[0]->flag
pBAC->Low = pBAC->Low & 0x1ff; flag = c & 1;
pBAC->Low = pBAC->Low | (flag << 9); tmp = c << 16;
x2 = tmp >> 24; x3 = c >> 28; x1 = c & 0x0fff0000;
pBAC->Obits = x2; x1 = x1 >> 16;
if (x3) { //write bits to memory

pBAC->bitpos = pBAC->bitpos - x3; x2 = 32;
tmp = datx[pBAC->wordoffset]; c = x1 << pBAC->bitpos;
if (pBAC->bitpos < 0) c = x1 >> (-pBAC->bitpos);
tmp = c | tmp; c = x2 + pBAC->bitpos;
datx[pBAC->wordoffset] = tmp; x1 = x1 << c;
datx[pBAC->wordoffset + 1] = x1;
if (pBAC->bitpos <= 0) pBAC->wordoffset++;
if (pBAC->bitpos <= 0) pBAC->bitpos+= 32;

}
}
else {

while (tmp > 0) { //do bit-by-bit normalization as described in Pcode 5.28
tmp = tmp — 1;
if ((tmp<=3) && (pBAC->Obits <= 7))

break;
}
//continue previously described normalization process when tmp and obits are within limits

}

Pcode 5.33: Simulation code for look-up table based encode symbol normalization process.

Lossless Data Compression 279

to access the look-up table. With this, we consume 10 cycles (6 for offset and 4 for loading) to get the look-up
table value. Then unpacking of parameters to store in memory takes around 10 cycles. Then packing bits to the
word for storing takes another 10 cycles. This adds up to a total of 35 cycles to perform the normalization for the
previous example. We may not benefit by using the suggested method if the loop count is 1, and the accumulated
outstanding bits are zero for the normalization process. The normalization look-up table NormTbl[] values,
which are used in the suggested method, can be found on the companion website.

As we skip the normalization process when Range is greater than or equal to 256 (i.e., loop count = 0), the
first 512 bytes of the look-up table are not used in the normalization process. To reduce the memory usage with
the suggested method for efficient simulation of the H.264 binary arithmetic coder encode symbol routine, we
can utilize these 512 bytes of memory to store StateTbl[] look-up values. With this change, the total memory
usage of encode symbol routine including a look-up table of RangeLPS[] is equal to 2.25 kB.

Decode Symbol Normalization Process
With precompute of “while” loop count, the decode symbol normalization process will become very simple as
the normalization of Range and Value and number of bits to be read from memory just depend on loop count.
The simulation code for decode symbol normalization is given in Pcode 5.34.

r0 = 0;
while (pBAC->Range < 256) { //precompute loop count

pBAC->Range = pBAC->Range << 1;
r0++;

}
if (r0) {//read bits from memory

pBAC->Value = pBAC->Value <<r0; r1 = 32;
r2 = bit_stream[pBAC->wordoffset]; r3 = bit_stream[pBAC->wordoffset + 1];
r4 = r1 − pBAC->bitpos; r5 = r1 — r0;
r2 = r2 << pBAC->bitpos; r3= r3 >> r4;
r2 = r2 + r3; pBAC->bitpos = pBAC->bitpos — r0;
r2 = r2 >> r5;
if (pBAC->bitpos <= 0) pBAC->wordoffset++;
if (pBAC->bitpos <= 0) pBAC->bitpos+= 32;
pBAC->Value = pBAC->Value | r2;

}

Pcode 5.34: Simulation code for decode symbol normalization process.

Further Optimization of Decode Symbol Normalization Process
On a limited MIPS embedded processor, the decoder software modules have to be optimized to the maximum
extent to run in real time. The cycle cost (from Pcode 5.34) of reading bits (bit FIFO) from the memory buffer
bit_stream[] is about 14 cycles. The cycle cost for reading bitstream can be reduced to 5 cycles by reading
bits in terms of 16-bit blocks from the buffer instead of an arbitrary number of bits. By shifting Value 22 bits to
the left and working with an upper halfword for Value (MSB aligned) manipulation and lower halfword for bit
FIFO functionality, we can reduce the cycle cost of bits reading from buffer bit_stream[]. For this, we have to
place Range and rLPS values in upper halfwords by shifting 22 bits. At the time of the initialization of Value, we
initialize Value with 32 bits instead of 9 bits and set bit position as 16 instead of 23. Now, to access bit FIFO and
updating bit_stream[] buffer parameters (bitpos and wordoffset), we spend about 7 cycles in simulation code
as given Pcode 5.35.

5.5.5 Simulation Results

We assume few Symbols (or bins, which are obtained after binarization of syntax elements) to encode and decode
using CABAC. In addition, we assume the corresponding context values {State, MPS} for Symbols coding as
follows:

Ctx[20][2] = {{24,1},{18,1}, {14,1}, {21,0}, {12,0}, {4,1}, {1,0}, {0, 1}, {18, 1}, {10,0}, {5, 0},
{17,1}, {11,0}, {2, 1}, {16, 0}, {20, 0}, {7, 1}, {8, 0}, {3, 1}, {9, 1}};

280 Chapter 5

r0 = 0;
while (pBAC->Range < 256) { //precompute loop count

pBAC->Range = pBAC->Range << 1;
r0++;

}
pBAC->Value = pBAC->Value <<r0;
pBAC->bitpos = pBAC->bitpos — r0;
if (pBAC->bitpos <= 0) {

pBAC->bitpos+= 16;
r1 = bit_stream[pBAC->wordoffset++];
r1 = r1 << pBAC->bitpos;
pBAC->Value = pBAC->Value | r1;

}

Pcode 5.35: Efficient simulation of decode symbol normalization.

Encode Symbol
Input: Symbols[20] = {1,1,1,0,0,0,0,0,1,0,1,1,0,0,0,1,1,1,1,1}; //bins
Initialization:

pBAC->Range = 0x1fe;
pBAC->Value = 0;
pBAC->Obits = 0;
pBAC->bitpos = 32;
pBAC->wordoffset = 0;

Intermediate outputs after encoding 1 symbol:
pBAC->Range = 0x01b9
pBAC->Value = 0x0000
pBAC->Obits = 0
pBAC->bitpos = 32
pBAC->wordoffset = 0

Intermediate outputs after encoding 5 symbols:
pBAC->Range = 0x0146
pBAC->Value = 0x0000
pBAC->Obits = 0
pBAC->bitpos = 31
pBAC->wordoffset = 0

Intermediate outputs after encoding 10 symbols:
pBAC->Range = 0x0115
pBAC->Value = 0x0060
pBAC->Obits = 3
pBAC->bitpos = 30
pBAC->wordoffset = 0

Intermediate outputs after encoding 20 symbols:
pBAC->Range = 0x01a8
pBAC->Value = 0x0178
pBAC->Obits = 0
pBAC->bitpos = 17
pBAC->wordoffset = 0

bitstream at end of 20 symbols encoding (includes a few dummy encoded bits):
bit_stream[] = {0x001e78f1, 0x00000000, 0x00000000, 0x00000000,… }

Decode Symbol
Input: Encoded bitstream[].

bit_stream[] = {0x001e78f1, 0x00000000, 0x00000000, 0x00000000,… }
Initialization:

pBAC->Range = 0x01fe;
pBAC->Value = 0x0079;
pBAC->wordoffset = 0;
pBAC->bitpos = 13;

Intermediate outputs after decoding 1 decision:
pBAC->Range = 0x01b9;
pBAC->Value = 0x0079;
pBAC->wordoffset = 0;
pBAC->bitpos = 13;

Intermediate outputs after decoding 5 decisions:
pBAC->Range = 0x0146;

Lossless Data Compression 281

pBAC->Value = 0x00f3;
pBAC->wordoffset = 0;
pBAC->bitpos = 12;

Intermediate outputs after decoding 10 decisions:
pBAC->Range = 0x0115;
pBAC->Value = 0x00dc;
pBAC->wordoffset = 0;
pBAC->bitpos = 8;

Intermediate outputs after decoding 20 decisions:
pBAC->Range = 0x01a8;
pBAC->Value = 0x006a;
pBAC->wordoffset = 1;
pBAC->bitpos = 30;

Decoded symbols:
bins[20] = {1,1,1,0,0,0,0,0,1,0,1,1,0,0,0,1,1,1,1,1}; // Symbols

This page intentionally left blank

Part 2
Digital Signal and Image Processing

This page intentionally left blank

CHAPTER 6

Signals and Systems

Raw signals are processed using signal-processing algorithms (e.g., DFT, DCT, FIR filters, IIR filters, correlation,
LMS and RLS adaptive filters, and so on, to be discussed in subsequent chapters) to get the desired signal output.
Signal processing algorithms have many applications, including telecommunications, medical, aerospace, radar,
sonar, and weather forecasting. Real-time processing of signals for many applications is possible with advances
in semiconductor technology. This chapter addresses the fundamentals of signals and signal processing.

6.1 Introduction to Signals

A signal is a measure of physical phenomenon such as temperature, pressure, electric voltage, and radioactive
decay, with respect to time or space. If we measure temperature during a day from 6 AM to 6 PM and plot the values,
the plot may resemble Figure 6.1. Typically, the x -axis (or horizontal axis) is used to represent the independent
variables (e.g., time, space) and the y-axis (or vertical axis) is used to represent the measured quantity (e.g.,
weight, amplitude) of dependent variables (e.g., temperature, voltage).

Figure 6.1 shows how the temperature measured from 6 AM to 6 PM on a particular day varies with time. We call
such a measured quantity with respect to time a signal. The temperature signal cannot be calculated using a well-
defined mathematical equation (because it depends on many factors such as weather, season, Earth orientation,
etc.). Such signals are random. On the other hand, the behavior of signals that can be exactly predicted by
mathematical equations is called deterministic. Examples of deterministic signals are sine waves, square waves,
and staircase signals.

6.1.1 Deterministic Signals

Deterministic signals can be expressed precisely with mathematical formulas. In this subsection we will discuss
various basic signals that appear in subsequent chapters focused on signal processing.

Sinusoidal Functions
Sinusoidal signals play an important role in signal processing applications. Here we discuss various representa-
tions of a sinusoidal signals. The simple representation of a sinusoidal signal (abbreviated as sin) is y(t) = sin(t).
This means that the value of a sinusoid at time t is y(t), and the plot of y(t) = sin(t) is shown in Figure 6.2.

Figure 6.1: Signal representation of
temperature (in ◦C) from 6 AM to 6 PM.

10

20

30

40

50

6 AM 7 8 9 10 11 12 1 2 3 4 5 6 PM

Temperature
signal

T
em

pe
ra

tu
re

 (
8C

)

Time (hrs)

© 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-678-1.00006-5 285

286 Chapter 6

Figure 6.2: Sine waveform
y(t) = sin(t).

T

1

21
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

20.8
20.6
20.4
20.2

0.8
0.6
0.4
0.2

0

t
y(

t)
5

si
n(

t)

As seen in Figure 6.2, the sine wave is periodic with period T , meaning that it repeats itself in regular intervals
of time T . However, with the sine wave representation y(t) = sin(t), the sine wave period is not transparent in
the equation. In addition, we cannot say how many times the sine wave repeats in one unit of the time interval.
Therefore, we represent the sine wave in a more transparent way:

y(t) = sin(2π ft) (6.1)

Using the sine wave representation given in Equation (6.1), we obtain more information about the sine wave.
For example, if we plot y(t) = sin(2π ft) for f = 1, 2, and 3 as shown in Figure 6.3(a), (b), and (c), we can
clearly see that parameter f controls the number of cycles present in one unit of the time interval. With f = 1,
we have one cycle of the sine wave in one unit of the time interval. With f = 2, we have two cycles of the
sine wave in one unit of the time interval and so on. If T is the period of the sine wave, then f = 1/T is the
frequency of the sine wave. If time T is measured in seconds, then the quantity f gives the cycles per second.
One cycle per second is equivalent to 1 hertz (Hz). With the sine wave representation in Equation (6.1), we can
easily determine the number of cycles present in 1 second or we can know the frequency of the sine wave. The
sine wave notation given in Equation (6.1) is commonly used in all signal processing algorithms.

A more general form of sinusoidal function can be expressed as follows:

x(t) = A sin(2π ft+φ) = A sin(ωt +φ) (6.2a)

where A is the peak amplitude, φ is the initial phase (or phase offset), and ω = 2π f, is the angular frequency
(measured in radians/second). The quantity ωt + φ gives the instantaneous phase of the sinusoid in radians.
Figure 6.4(a) and (b) show how the amplitude and phase offset modify the pure sinusoid function. When the
phase value φ = π/2, we have a special case and the resulting waveform is called a cosinusoid (or cos) function,
as shown in Figure 6.4(c) with the dotted line. This means that sin(ωt) lags cos(ωt) by π/2 radians (or 90◦) or
cos(ωt) leads sin(ωt) by 90◦.

Cosine and sine are often represented in complex number notation to perform signal processing tasks more
efficiently. In particular, the multiplication and division operations on sinusoids become very easy with complex
number representation. From the phasor (i.e., a rotating vector) diagram shown in Figure 6.4(d), the rectangular
coordinates (a,b) are obtained from the polar coordinates (A,ωt) as a = A cos ωt and b = A sin ωt . Using the
famous Euler formula,

a + jb = A(cos ωt + j sinωt) = Ae jωt (6.2b)

Based on Equation (6.2b), a = A cos ωt = Re(Aejωt) and b = A sin ωt = Im(Aejωt).
If P = a + jb = Aejωt |t=tn , then the amplitude A = |P | = √

a2 +b2, and the instantaneous phase ωtn =
∠P = tan−1

(b
a

)
. Note that A is the distance of the point P from the origin. For this reason, A is also called the

magnitude.
The conjugate of P is called P∗, and we define the conjugate P∗ as P∗ = a − jb = Ae− jωt . With this, the

multiplication of two complex numbers (indirectly sinusoid values) P1 = A1e jω1t and P2 = A2e jω2t can be
computed easily as P1 P2 = A1 A2e j (ω1+ω2)t , and the division of two complex numbers P1 and P2 is computed as

Signals and Systems 287

(a)

(b)

(c)

y
(t

)5
si

n(
2�

ft
)

fo
r

f5
3

H
z

t (sec)

t (sec)

y
(t

)5
si

n(
2�

ft
)

fo
r

f5
1

H
z

t (sec)
y

(t
)5

si
n(

2�
ft

)
fo

r
f5

2
H

z

1

21
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20.8
20.6
20.4
20.2

0.8
0.6
0.4
0.2

0

1

21
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20.8
20.6
20.4
20.2

0.8
0.6
0.4
0.2

0

1

21
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20.8
20.6
20.4
20.2

0.8
0.6
0.4
0.2

0

Figure 6.3: Plots of the sine wave: (a) f = 1 Hz, (b) f = 2 Hz and (c) f = 3 Hz.

P1/P2 = P1 P∗
2 /P2 P∗

2 = (A1/A2)e j (ω1−ω2)t . As additions and subtractions are easy to perform using rectangular
coordinates, we frequently switch between polar and rectangular coordinates in the computations involving
sinusoids.

Selected Important Deterministic Signals
Dirac Delta Function or Impulse Function The Dirac delta function is an interesting and ideal function that is
used for many theoretical purposes. The Dirac delta function δ(t) is defined as follows:

δ(t) =
{∞ if t = 0

0 otherwise
(6.3)

The signal diagram of the Dirac delta function is shown in Figure 6.5(a).
An important property of the Dirac delta function is that it integrates to 1 when we find the area under

this function. This can be visualized as shown in Figure 6.5(b). The area of the rectangle shown is 1 (since
area = width× height = a × 1/a = 1). Now, what happens if a approaches zero? In the limiting case, we will

288 Chapter 6

�1 �0.8 �0.6 �0.4 �0.2 0 0.2 0.4 0.6 0.8 1
�3

�2

�1

0

1

2

3

(b)(a)

�1 �0.8 �0.6 �0.4 �0.2 0 0.2 0.4 0.6 0.8 1
�1

�0.8

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

0.8

1

A � 1
A � 3

�1 �0.8 �0.6 �0.4 �0.2 0 0.2 0.4 0.6 0.8 1
�1

�0.8

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

0.8

1

(d)(c)

Re

Im

A

Angular
speed: � rad/sec.

�t

a

b

P

sin
cos

Phase � 0
Phase � �/3

Figure 6.4: Sinusoid functions and phasor representation. (a) f = 1, φ = 0. (b) f = 1, A = 1. (c) Relation between
sine and cosine. (d) Phasor representation.

Figure 6.5: (a) Dirac delta function.
(b) Rectangle function with width a
and height 1/a. (a)

t 5 0

�
(t

)

t

(b)

0

1/a

2a /2 a /2

have the Dirac delta with the unit area. If we multiply any function f (t) with the Dirac delta function δ(t) and
integrate, we get f (0), the value of function f (t) at t = 0. Similarly, if we multiply f (t) with δ(t − T), a shifted
version of the Dirac delta by time T , and integrate, we get f (T), the value of the function f (t) at t = T .

Constant Function
A constant function c(t), also referred to as DC value, is defined as follows:

c(t) = C −∞ < t < ∞
Figure 6.6 shows a signal diagram of the constant function.

Signals and Systems 289

Rectangular Pulse
A rectangular pulse r(t) with width T and constant height C is defined as

r(t) =
⎧⎨
⎩

0 if t < −T /2
C if − T /2 ≤ t ≤ T /2
0 if t > T /2

(6.4)

and a schematic diagram of the rectangular pulse is shown in Figure 6.7.

Unit Step Function
A unit step function u(t) is defined as

u(t) =
{

0 if t < 0
1 if t ≥ 0

(6.5)

and a signal diagram of the unit step function is shown in Figure 6.8.

Signum Function
A signum function, sgn(t), is defined as follows:

sgn(t) =
⎧⎨
⎩

−1 if t < 0
0 if t = 0
1 if t > 0

(6.6)

Figure 6.9 shows a signal diagram of the sgn(t) function. Any real value x can be expressed as the product of its
absolute value and its signum function as x = |x |sgn(x).

Figure 6.6: Signal diagram of constant
function.

t

c
(t

)

C

0

Figure 6.7: Signal diagram of
rectangular pulse function.

02T/2 T/2

r(
t)

C

t

Figure 6.8: Signal diagram of unit step
function.

0 t

u
(t

)

1

290 Chapter 6

Figure 6.9: Signal diagram of signum
function.

0

sgn(t)

1

21

t

Sinc Function
The sinc function is widely used in signal processing and communication systems. Its two versions are the
un-normalized sinc function, and the normalized sinc function, as given in Equations (6.7) and (6.8), respectively.

The un-normalized sinc function is defined as

sinc(t) = sin(t)

t
, −∞ < t < ∞ (6.7)

As shown in Figure 6.10, the zero-crossings of the un-normalized sinc function are at multiples of π(≈ 3.14).
The normalized sinc function is defined as

sinc(t) = sin(πt)

πt
, −∞ < t < ∞ (6.8)

As shown in Figure 6.11, the zero-crossings of the normalized sinc function occur at non-zero integer values.
The normalized sinc function has important properties that make it ideal in relation to interpolation (since
sinc(0) = 1 and sinc(k) = 0 for non-zero integers of k) and band-limited functions (if xk(t) = sinc(t − k), then
xk(t) form an orthonormal basis for band-limited functions in L2(R) function space). The sinc function is also
related to the Dirac delta function as follows:

lim
a−>0

1

a
sinc(t/a) = δ(t) (6.9)

Figure 6.10: Unnormalized sinc(t)
function.

2�2�

1

0.8

0.6

0.4

20.4
220 215 25 5 10 2015210 0

0.2

20.2

0
�

t

si
nc

(t
)

Figure 6.11: Plot of normalized sinc
function.

1

0.8

0.6

0.4

20.4

0.2

20.2

0

28 26 22 2 4 8624 0
t

si
nc

(t
)

Signals and Systems 291

6.1.2 Random Signals

Unlike deterministic signals, random signals are not so easy to handle. Random signals cannot be generated
by simple, well-defined mathematical equations, and their future values cannot be predicted. Rather, we must
use probability and statistics to analyze their behavior. The plot of one such random signal y(t) is shown in
Figure 6.12. As the random signal pattern varies from time to time, processing individual random signals does
not make sense; instead we process ensembles (groups of random signals). At this juncture, you might ask: Why
do I need to study random signals? Why do I need to process them? The answer is simple. In the real world (in
nature), deterministic signals are always associated with random noise (see Section 9.1.2 for details on noise
generation and measurement in a communication system environment).

To analyze deterministic signals, first we have to minimize the effect of noise, and for this we have to process
(measure, classify, and eliminate) the random signals (or noise). To process the random signals, we use statistical
measures such as mean, variance, standard deviation, and so on. Before going into statistical measure definitions,
we introduce the concepts of random variable and random process. Examples are provided of random variables
and random processes to present the overview of random signals. For definitions and fundamentals of random
variables and processes, see Papoulis (1984) and Leon-Garcia (1994).

Random Variables
Typically, we process numerical data with digital computers. However, the output of an experiment (or events
in a sample space) need not be a number. For example, if we conduct an experiment of tossing a coin, then
the outcome of that experiment is a head or tail. The sample space (or all outcomes) of this coin experiment is
S = {head, tail}. We cannot measure the output of the sample space of some experiments (e.g., {head, tail} of the
coin experiment). Now, if we map these events (or subsets of the sample space) to a measurable space through
a mapping function X , then we call such mapping function X a random variable. If we choose the measurable
space as real numbers, then the random variable X maps the sample space to real numbers. For example, the
head and tail events of a coin-tossing experiment may be mapped to +0.5 and −0.5 through random variable X .
But, you may ask, why do we need a random variable?

If we toss a coin, how long will it take to get the first head? How can we answer such a question? The head
may appear in the 1st, 2nd, 5th, or 10th toss, and so on. Clearly, we cannot answer such a question with a single
number. However, using the random variable concept, we can answer the preceding coin-tossing experiment
question in probabilistic terms.

10 20 30 40 50 60 70 80 90 1000
0

2

4

6

8

10

12

14

16

y(
t)

t

Figure 6.12: Plot of random signal.

292 Chapter 6

Let X be a random variable mapping the event of first head in a coin-tossing experiment conducted N times.
Let
i be the outcome of a coin-toss experiment with probabilities

Pr(
1 = Head) = p and Pr(
2 = Tail) = q = 1− p with
2∑

j=1

Pr(
 j) = 1

For an unbiased coin, p = q = 0.5. Assume, in the m-th experiment, that we get the first head. Then Pr(X =
first head) = qm−1 p. Similarly, in a dice-throwing experiment, we will have six outcomes of the dice facing up
with 1, 2, 3, 4, 5, and 6. Now, assume that we want to know the probability that the event of a dice-throwing
experiment never exceeds 4. We can answer this question in the same way as the coin-tossing experiment using
the concept of a random variable with Pr(X less than or equal to 4) = 2/3 by assuming equal probabilities for
all six outcomes.

Continuous and Discrete Random Variables
The outcome of an experiment need not be always discrete such as in the coin-tossing experiment. If we
consider the lifetime of an electric bulb, then it can be any time until the bulb burns out. If the random variable
represents the lifetime of an electric bulb, then that random variable takes continuous rather than discrete values.
If a random variable can take only a finite number of distinct values, then it must be discrete. On the other
hand, a continuous random variable is one that takes on an infinite number of possible values. Typically, discrete
random variables apply to countable events, and continuous random variables apply to measurable events. The
examples of discrete random variables include the number of heads showing up when we toss a coin 10 times,
the number of defective bulbs in an electronics store, the number of passengers in a train, and so on. Examples
for continuous random variable include the output voltage level of an electric circuit, the temperature at a given
time, travel time between cities, and so on.

Probability Mass, Probability Density, and Cumulative Distribution Functions
In general, the random variable X is associated with a probability. Typically, the probability mass function (pmf)
is used with discrete random variables, whereas the probability density function (pdf) is used for continuous
random variables. The probability distribution of a discrete random variable is a list of probabilities associated
with each possible outcome that are represented by a random variable. If X is a discrete random variable with
associated probability mass function fX (x), and if xi represents an i-th value in the range of random variable X
then fX (xi) = Pr(X = xi). For example, if we conduct an experiment of tossing a coin 10 times and the outcome
of heads mapped to measurable space with random variable X , then the random variable takes 10 discrete values
xi , where 0 ≤ i ≤ 10 and index i represents the count of heads in each experiment. The probability of xk (i.e.,
to get k heads) is given by

Pr(X = xk) =
(

10
k

)
pk (1− p)10−k

where p is the probability of a head. For an unbiased coin (i.e., the probability of getting a head is equal to
the probability of getting a tail is equal to 0.5), the pmf for the random variable X is shown in Figure 6.13.
The probability of getting zero heads is fX (x0) = Pr(X = x0) = 1

210 , the probability of getting one head is
fX (x1) = Pr(X = x1) = 10

210 , and so on. The pmf always satisfies the following two conditions:

0 ≤ fX (xi) ≤ 1∑
i

fX (xi) = 1

Given a random variable X , the probability function FX(x) = Pr(X ≤ x), where x is any real number in the
interval (−∞,∞), is called its cumulative distribution function (cdf). The function FX(x) is a nondecreasing

Signals and Systems 293

Figure 6.13: Probability mass function
for getting heads in tossing a coin
10 times.

5 91 2 3 4 6 7 10 118

P
(X
�

x k
)

k

Figure 6.14: Cumulative distribution
function for getting heads in tossing a
coin 10 times.

1

1 2 3 4 5 6 7 8 9 10 11
x

F
X

Figure 6.15: Continuous random
variable. (a) pdf. (b) cdf. (a)

pX

(b)

1.0
FX

x x

function and satisfies the following conditions:

0 ≤ FX(x) ≤ 1

FX(−∞) = 0 and FX(+∞) = 1

Pr(x1 < X ≤ x2) = FX(x2)− FX (x1)

The cdf of the coin-experiment random variable, whose pmf appears in Figure 6.13, is shown in Figure 6.14.
In the case of discrete random variables, the associated cdf always has jumps in the distribution curve as shown
in Figure 6.14.

Like discrete random variables, continuous random variables are associated with the probability density
function (pdf). As shown in Figure 6.15(a) and (b), both the pdf and cdf of a continuous random variable
are smooth, unlike discrete random variable probability functions. In some practical problems, we may also
encounter a random variable of mixed type. The cdf of such a random variable is a smooth, nondecreasing
function in certain parts of the real line, and contains jumps at certain discrete values of x .

The pdf, pX(x), of the continous random variable can be obtained by differentiating the cdf FX(x). Thus, we
have

pX(x) = d FX (x)

dx
, −∞ < x < ∞ (6.10)

FX(x) =
x∫

−∞
pX (y)dy, −∞ < x < ∞ (6.11)

The two most popularly used probability distributions in signal processing are the uniform and Gaussian.
The uniform distribution function is used to generate random numbers in a given interval. The pdf pX (x) and
the cdf FX(x) of a uniform random variable are shown in Figure 6.16(a) and (b). The Gaussian distribution is
widely used in digital media processing applications for noise modeling; the pdf and cdf of a Gaussian distributed
random variable is shown in Figure 6.17(a) and (b), respectively.

294 Chapter 6

Figure 6.16: Uniform distribution:
(a) pdf and (b) cdf. (a)

1/(v 2 u)

u v u v

1

(b)

pX FX

x x

Figure 6.17: Gaussian distribution:
(a) pdf and (b) cdf. (a)

pX

0.5

1.0

(b)

FX

x x

Multiple Random Variables and the Joint Probability Density Function
In practice, we encounter random phenomena resulting from multiple sources instead of just a single source. We
measure the events or random variables of combined experiments using joint probabilities. Let us consider two
random variables X1 and X2, each of which may be continuous, discrete, or mixed. The joint cdf for the two
random variables is defined as

FX1,X2(x1, x2) = Pr(X1 ≤ x1, X2 ≤ x2) =
x1∫

−∞

x2∫
−∞

pX1,X2(y1, y2)dy1dy2 (6.12)

or, equivalently,

pX1,X2(x1, x2) = ∂2

∂x1∂x2
FX1,X2(x1, x2) (6.13)

When the joint pdf pX1,X2(x1, x2) is integrated over one of the variables, we obtain the density function of
the other variable as follows:

∞∫
−∞

pX1,X2(x1, x2)dx1 = pX2(x2),

∞∫
−∞

pX1,X2(x1, x2)dx2 = pX1(x1) (6.14)

The pdfs pX2 (x2) and pX1(x1) obtained from the joint probability by integrating over the other random variable
are called marginal pdfs.

Conditional Probability Density Functions
In some cases, we may have an idea about one random phenomenon in a combined experiment (e.g., a priori
knowledge of symbol sets that are transmitted to the receiver). If one random variable X1 is given, then we obtain
the conditional pdf of another random variable X2 as follows:

pX2|X1(x2|x1) = pX1,X2(x1, x2)

pX1(x1)
(6.15)

Here, pX2|X1(x2|x1) is called the probability density of X2 given X1. We also express the joint pdf pX2,X1(x2, x1)

in terms of the conditional pdfs as in the following:

pX1,X2(x1, x2) = pX2|X1(x2|x1) · pX1(x1) = pX1|X2(x1|x2) · pX2 (x2) (6.16)

Signals and Systems 295

Bayes Theorem
Given Equation (6.16), we can write P(x1|x2) as

pX1|X2(x1|x2) = pX2|X1(x2|x1).pX1(x1)

pX2 (x2)
(6.17)

The Bayes theorem is a simple mathematical formula used for calculating conditional probabilities. Equation
(6.17) represents the simplest form of the Bayes theorem. The theorem simply allows the new information to
be used to update the conditional probability of a random variable in a combined experiment. For example, we
can consider a digital communication system as a combined experiment representing the transmitted messages
as mutually exclusive events with random variable X1. Let us say that M messages are transmitted in a given
time interval and Pr(x1i) represents the i-th message a priori probability. Assume that X2 is a random variable
of another event of the combined experiment, and X2 represents the received noisy message that contains one
of the M transmitted messages. Given X2, the a posteriori probability of X1i conditioned on having observed
the received signal X2 (i.e., Pr(x1i |x2)) is obtained by using the generalized Bayes theorem as follows:

Pr(x1i |x2) = Pr(x2|x1i) ·Pr(x1i)

Pr(x2)
= Pr(x2|x1i) ·Pr(x1i)∑M

j=1 Pr(x2|x1 j)Pr(x1 j)
(6.18)

Thus, if we assume that event X2 arises with probability Pr(x2|x1i) from each of the underlying messages
X1i, i = 1,2, . . . , M , we can use our observation of the occurrence of X2 to update our a priori assessment of
the probability of occurrence of each message, Pr(x1i), to an improved a posteriori estimate, Pr(x1i |x2).

Statistical Independence
What if the two random variables are not at all related (i.e., the occurrence of random variable X1 has
nothing to do with the occurrence of random variable X2)? In this case, what happens to the conditional
probability? If the occurrence of random variable X1 does not depend on the occurrence of random variable
X2, then conditional pdfs pX1|X2(x1|x2) = pX1(x1) and pX2|X1(x2|x1) = pX2(x2). Based on Equation (6.16),
pX1,X2(x1, x2) = pX1(x1)pX2(x2). Thus, if two random variables X1 and X2 are statistically independent,
then their joint pdf pX1,X2(x1, x2) is given by the product of their individual pdfs pX1(x1) and pX2(x2).
Similarly, for two statistically independent random variables X1 and X2, the joint cumulative distribution
FX1,X2(x1, x2) = FX1(x1)FX2(x2). The notion of statistical independence can be easily extended to multiple
random variables. If the N random variables X1, X2,. . . , X N are statistically independent, then their joint pdf is
a product of their individual pdfs as follows:

pX1,X2,... X N (x1, x2, . . . xN) = pX1(x1)pX2(x2) · · · pX N (xN)

or equivalently,

FX1,X2,... X N (x1, x2, . . . xN) = FX1(x1)FX2(x2) · · · FX N (xN)

Statistical Measures of Random Variables
Statistical measures play an important role in the overall characterization of an experiment and in the characteri-
zation of random variables defined on the sample space of an experiment. Popular statistical measures for single
random variables are mean, variance and standard deviation; and for multiple random variables are correlation
and covariance. These statistical measures are defined next.

The mean or expected value of a single continuous random variable X is defined as

E(X) = μx =
∞∫

−∞
x pX(x)dx (6.19)

296 Chapter 6

where E(.) denotes expectation used for statistical averaging. The expectation is also known as the first moment
of a random variable X . In general, the n-th moment is defined as

E(Xn) =
∞∫

−∞
xn pX(x)dx

If μx is the expected value of random variable X , then the n-th central moment is defined as

E[(X −μx)
n] =

∞∫
−∞

(x −μx)
n pX (x)dx (6.20)

When n = 2, the second central moment is called the variance of a random variable, and is denoted by σ 2
x .

Thus, the variance of random variable X is given by

Var(x) = σ 2
x =

∞∫
−∞

(x −μx)
2 pX (x)dx (6.21)

Equation (6.21) can also be expressed in terms of first and second moments by expanding it as follows:

σ 2
x = E(X2)−μ2

x (6.22)

The variance of a random variable X gives the amount of spread from the mean value of distribution. If the
variance of a random variable is large, then its probability distribution is also broader to that extent. The standard
deviation σx is given by the square root of the variance.

■ Example 6.1

We can compute the statistical measures for the discrete random variable with pmf shown in Figure 6.13.
Here, the random variable is the number of heads that show up when we toss a coin 10 times. With an
unbiased coin, the probability of k heads in n experiments is given by

Pr(X = k heads) =
(

n
k

)
/2n

Table 6.1 shows the probability distribution values for n = 10.
The mean of the distribution follows:

μx =
∞∑

k=−∞
xk Pr(X = xk) =

10∑
k=0

xk Pr(X = xk)

= 0 ×1

210
+ 1×10

210
+ 2 ×45

210
+ 3×120

210
+ 4×210

210
+ 5×252

210
+ 6×210

210

+ 7×120

210
+ 8×45

210
+ 9×10

210
+ 10 ×1

210
= 5

The distribution variance is obtained as follows:

σ 2
x =

∞∑
k=−∞

(xk −μx)
2 Pr(X = xk) =

10∑
k=0

(xk −μx)
2 Pr(X = xk)

= (25+160 +405+480 +210 +0 +210+480+405+160+25)/210 = 2.5

The standard deviation, then, is σx = √
2.5 = 1.581.

■

Signals and Systems 297

Table 6.1: Probability distribution
for number of heads in a
coin-tossing experiment

xk = Number of Heads Pr(X = xk)

0 1/210

1 10/210

2 45/210

3 120/210

4 210/210

5 252/210

6 210/210

7 120/210

8 45/210

9 10/210

10 1/210

Central Limit Theorem
The central limit theorem states that whenever a random sample z is taken from any distribution with mean μ and
variance σ 2, then the sample mean ẑ of n random samples will be approximately normal or Gaussian distributed
with mean μ and variance σ 2/n. For example, the associated noise present in the desired signal at the receiver
of a digital communication system is a result of accumulation of noise components from many sources, and the
underlying distribution of this accumulated noise is close to Gaussian. This is one of the reasons for using the
normal or Gaussian distribution to model the noise source most of the time. Typically, we model the normal
distribution by averaging the statistically independent and identically distributed (i.i.d.) random variables with
finite mean μ and finite variance σ 2. For example, by adding 12 times the samples from a uniform distribution
defined over the interval [0, 12] and repeating the process many times, we create a normally distributed sample
with μ = 6 and σ 2 = 1. The pdf of the Gaussian distributed random variable with mean μx and variance σ 2

follows:

px (x) = N(μx ,σ
2) = 1√

2πσ
e−(x−μx)2/2σ 2

, −∞ < x < ∞, σ > 0 (6.23)

Random Process
In the previous discussion, we defined random variables as functions that map the sample space to a measurable
real number space. In the same way, when we map the sample space to a measurable signal space instead of number
space, we call such a mapping function X (t) a random process. In the coin experiment, with the random process
X (t), we may map, for example, a head to a square wave and a tail to a triangle wave. We can view a random
process as a collection of random variables or a collection of sample functions. At a particular time instance ti ,
the random process X (t) represents random variable X (ti). If we consider a process s(t) = X . sin(2π ft), and if
X is a random variable, then for every possible value of X , there is a function of time called the sample function
sx(t). Then, the collection of all such sample functions forms a random process. We call such a collection of
functions an ensemble. Although the independent variable t is continuous, the underlying random process need
not be continuous. If the associated random variable is discrete, then the corresponding random process is also
discrete; if the random variable is continuous, then the corresponding random process is also continuous.

Distribution Functions for Random Processes
Random processes are easily studied by viewing them as a collection of random variables. Here, we consider the
random process X (t) at time ti , X (ti), where X (ti) represents a random variable. The cumulative distribution
function for random variable X (ti) is given by FX(ti)(xi) = Pr[X (ti) ≤ xi]. This relation can be generalized to

298 Chapter 6

the n-th–order case as follows:

FX(t1),X(t2),...,X(tn)(x1, x2, . . . , xn) = Pr[X (t1) ≤ x1, X (t2) ≤ x2, . . . , X (tn) ≤ xn] (6.24)

pX(t1),X(t2),...,X(tn)(x1, x2, . . . , xn) = ∂n FX(t1),X(t2),...,X(tn)(x1, x2, . . . , xn)

∂x1∂x2 · · · ∂xn
(6.25)

where x1, x2, . . . , xn are n random variables considered at n time instances t1, t2, . . . , tn . In general, a complete
statistical description of a random process requires knowledge of all order distribution functions. The random
processes X (t) and Y (t) are said to be statistically independent if and only if

pX(t1),X(t2),...,X(tn),Y (t1),Y (t2),...,Y (tn)(x1, x2, . . . , xn, y1, y2, . . . , yn)

= pX(t1),X(t2),...,X(tn)(x1, x2, . . . , xn)pY (t1),Y (t2),...,Y (tn)(y1, y2, . . . , yn)

Stationarity of Random Processes
A random process X (t) is said to be stationary if its statistical properties do not change with time. More precisely,
a process X (t) is said to be stationary in the strict sense if

pX(t1),X(t2),...,X(tn)(x1, x2, . . . xn) = pX(t1+ε),X(t2+ε),...,X(tn +ε)(x1, x2, . . . , xn) (6.26)

for all orders n and all time shifts ε. That is, all order statistics of a stationary random process are invariant
to any translation of the time axis. On the other hand, when the joint pdfs vary with time shifts, then that
random process is nonstationary. Another kind of random process in which the statistics are neither stationary
nor nonstationary, but periodically vary with period T , is called cyclo-stationary. For cyclo-stationary random
processes, the following formula applies:

pX(t1),X(t2),...,X(tn)(x1, x2, . . . xn) = pX(t1+T),X(t2+T),...,X(tn +T)(x1, x2, . . . , xn) (6.27)

where T is the period of n-th–order statistics.
In practice, we work with two kinds of stationary processes: wide-sense stationary and ergodic. A random

process X (t) is said to be wide-sense stationary if the following conditions are satisfied: its first-order statistics
are constant, and its second-order statistics depend only on time difference instead of absolute time. A random
process is said to be ergodic if all orders’ statistical and time averages are interchangeable.

Statistical Averages for Random Processes
Statistical averages for random processes are defined in ways similar to how we defined statistical averages
for random variables. We define next the popularly used first-order statistic mean and the second-order statistic
autocorrelation for the random process X (t). The expected value or mean μ(t) of a general random process X (t)
is defined as follows:

μ(ti) = E[X (ti)] =
∞∫

−∞
xi pX(ti)(xi)dxi (6.28)

In general, the value of the mean depends on the time instance ti if the pdf of X (ti) depends on the time
instance ti . For a stationary process, the pdf is independent of time; consequently, the first-order statistic mean
is also independent of time.

Next, we consider two random variables X (t1) and X (t2) at time instances t1 and t2. The autocorrelation
between X (t1) and X (t2) is measured by the joint movement with the following equation:

Rxx (t1, t2) = E[X (t1)X (t2)] =
∞∫

−∞

∞∫
−∞

x1x2 pX(t1),X(t2)(x1, x2)dx1dx2 (6.29)

When the random process X (t) is stationary, the joint pdf pX(t1),X(t2)(x1, x2) is identical to the joint pdf
pX(t1+ε),X(t2+ε)(x1, x2) for any arbitrary ε. This implies that the autocorrelation function of X (t) does not

Signals and Systems 299

depend on the specific time instances t1 and t2; instead, it depends on the time difference τ = t1 − t2. Thus,
for a stationary random process, the second-order statistic is Rxx (t1, t2) = Rxx (t1 − t2) = Rxx (τ). As previously
defined, if the random process X (t)’s first-order statistic mean μ is independent of time, and the second-order
statistic autocorrelation Rxx (τ) depends only on the time difference τ , then X (t) is called a wide-sense stationary
(WSS) process.

Time Averages for Random Processes
The statistical averages using an ensemble of sample functions assume an infinite-sized ensemble of signals.
However, in practical applications, we only get finite ensemble sizes and finite-length signals rather than an
infinite ensemble of signals. Thus, for practical handling of real-world signals, we define the time average mean
μt of random processes as follows:

μt = E[X (t)] = lim
T →∞

1

2T

T∫
−T

X (t)dt (6.30)

Similarly, the time autocorrelation function is defined as follows:

Rxx (τ) = E[X (t)X (t + τ)] = lim
T→∞

1

2T

T∫
−T

X (t)X (t + τ)dt (6.31)

The time autocovariance function for random process X (t) is defined as follows:

γxx (τ) = E[(X (t)−μt)(X (t + τ)−μt)] = lim
T→∞

1

2T

T∫
−T

(X (t)−μt)(X (t + τ)−μt)dt (6.32)

The time cross-correlation function for two random process X (t) and Y (t) is defined as follows:

Rxy(τ) = E[X (t)Y (t + τ)] = lim
T →∞

1

2T

T∫
−T

X (t)Y (t + τ)dt (6.33)

In practice, it is commonly assumed that a given signal is a sample function of an ergodic random process
so that the averages can be computed from a single function. The Fourier transform (see next section) of the
autocorrelation function of WSS random process gives the power spectral density (PSD) of the random process.

6.2 Time-Frequency Representation of Continuous-Time Signals

In Section 6.1 we introduced the concept of the signal and discussed various types of signals. All the signals
discussed in the previous section are represented in the time domain. That is, the signal variations are represented
with respect to time. Although we can clearly see the variations of physical phenomenon with respect to time
in the time-domain representation of a signal, signal processing requires much more information than variation
of signal amplitudes with respect to time. Using the time-domain signal information alone we cannot process
the signal to get the desired signal. Sometimes by transforming the data from one domain to another, we may
find more relevant information in the transformed domain data than in the original domain data. In addition, by
eliminating the undesired components in one domain, we may get the desired data in another.

One way to process the raw signal to get a desired signal is by decomposing an arbitrary signal into known
base components and choosing a subset of base components to form the desired signal. If we choose well-known
sinusoidal components as base components to decompose the signal, then with the signal decomposition, we
get the whole range of frequencies in the original signal. We obtain the desired signal by using a subset of
frequencies. This emphasizes the frequency-domain representation of the signal. In addition, if the given signal
contains fewer frequencies, we can compactly represent that signal in the frequency domain better than in the
time domain.

300 Chapter 6

6.2.1 Sinusoids and Frequency-Domain Representation

As discussed in Section 6.1, the sine wave representation y(t) = sin(2π ft) provides the frequency value of a sine
wave. We can now easily represent any sine wave of the form y(t) = A . sin(2π ft+φ), where A is the amplitude
and φ is the phase delay, in the frequency domain with the x -axis representing the frequency value and the
y-axis representing both magnitude and phase at a particular frequency. We use two separate plots to show the
magnitude and phase. The time- and frequency-domain representations of the signal y(t) = 5 sin(2π3t +π/4) =
5 cos(2π3t +3π/4) are shown in Figures 6.18 and 6.19, respectively.

In Figure 6.18, the dotted curve represents the zero-phase sine wave, and the solid curve represents the sine
wave with a phase difference of π/4 with respect to the zero-phase sine wave. The frequency-domain equivalent
of Figure 6.18 is shown in Figure 6.19. Figure 6.19(a) indicates that a sinusoid of magnitude 5.0 is present at
frequency index 3, and Figure 6.19(b) indicates that a sinusoid with a phase difference of 3π/4 (with respect
to the zero-phase cosinusoidal wave) is present at the frequency index 3. Thus, both figures represent the same
sinusoid information in different domains. Actually, Figure 6.18 shows only the finite-length sine wave due to
limited space, but it should be of infinite length to exactly match the equivalent frequency-domain information
in Figure 6.19.

Consider another waveform s(t) as shown in Figure 6.20. At first glance, the waveform of the figure seems
random, but it is not. It repeats itself with interval T , which is approximately equal to 1. Actually, s(t) is the
sum of three sinusoids as follows:

s(t) = 5 sin(2π t +π/4)+7 sin(2π4t +π/8)+4 sin(2π9t +π/12) (6.34)

The equivalent frequency-domain representation of the waveform in Equation (6.34) is shown in Figure 6.21. It
consists of three frequencies at f = 1, f = 4, and f = 9 with phases 3π/4,5π/8,7π/12, and amplitudes 5, 7,
and 4, respectively.

As discussed previously, the time- and frequency-domain plots provide complementary information about the
same signal. The question at this juncture is how to transform the signal from one domain to another domain.
We use well-known Fourier methods to transform the signal from one domain to another. Depending on the type

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
25

24

23

22

21

0

1

2

3

4

5

Figure 6.18: Time-domain plot for y (t) = 5 sin(2π3t+π/4).

0 01 2 3 4 5 6 7 8

5.0

3�/4

(a) (b)

1 2 3 4 5 6 7 8

�Y(f)� �Y(f)

f f

Figure 6.19: Frequency-domain representation for y (t) = 5 sin(2π3t+π/4). (a) Magnitude. (b) Phase.

Signals and Systems 301

0 0.5 1 1.5 2 2.5 3 3.5 4
215

210

25

0

5

10

15

T

Figure 6.20: Plot of a multifrequency waveform.

(a)

0 1 2 3 4 5 6 7 8

|S(f)|

5

9

7

4

f

(b)

0 1 2 3 4 5 6 7 8

3�/4
5�/8 7�/12

�S(f)

9
f

Figure 6.21: Frequency-domain representation of waveform s (t) of Equation (6.34).

of signal (e.g., periodic, nonperiodic, continuous, discrete), we use the following four types of Fourier methods
to transform the signal data:

• Fourier series (defined for periodic continuous-time signals)
• Fourier transform (defined for nonperiodic continuous signals)
• Discrete time Fourier transform (defined for nonperiodic discrete signals)
• Discrete Fourier transform (defined for periodic discrete signals)

In this section, we discuss the first two Fourier methods defined for continuous-time signals. The last two will
be discussed in Section 6.4.

6.2.2 Fourier Series

Any periodic waveform s(t) can be represented as the sum of an infinite number of sinusoidal and cosinusoidal
terms together with a constant term as follows:

s(t) = c +
∞∑

n=1

an cos(2π fnt)+
∞∑

n=1

bn sin(2π fnt) (6.35)

where c is a constant (also called DC value), f = 1/T , and T is the signal period. Given s(t), the coefficients
an and bn (also called AC values) and the constant term c are obtained as follows:

c = 1

T

T/2∫
−T/2

s(t)dt (6.36)

302 Chapter 6

an = 2

T

T/2∫
−T/2

s(t)cos(2π fnt)dt (6.37)

bn = 2

T

T/2∫
−T/2

s(t) sin(2π fnt)dt (6.38)

■ Example 6.2

Assume the periodic square wave shown in Figure 6.22(a), where the period is 1. One period of the
square wave is defined as follows:

s(t) =
{

1 0 ≤ t < 0.5
−1 0.5 ≤ t < 1

Using Equation 6.36 we obtain the value of c as zero since the sum of s(t) over one period of inter-
val results in zero. By substituting s(t) in Equations (6.37) and (6.38) and evaluating the integral over
interval [−T /2, T /2], we obtain the coefficients an as all zeros, and the coefficients bn as follows:

bn =
⎧⎨
⎩

0 if n is even
4

πn
if n is odd

20.5 0 0.5 1 1.5 2 2.5

21

0

1

(a)
20.5 0 0.5 1 1.5 2 2.5

21

0

1

(b)

n 5 1

20.5 0 0.5 1 1.5 2 2.5

21

0

1

(c)

n 5 3

20.5 0 0.5 1 1.5 2 2.5

21

0

1

(d)

n 5 5

20.5 0 0.5 1 1.5 2 2.5

21

0

1

(f)

n 5 9

20.5 0 0.5 1 1.5 2 2.5

21

0

1

(e)

n 5 7

20.5 0 0.5 1 1.5 2 2.5

21

0

1

(h)

n 5 13

20.5 0 0.5 1 1.5 2 2.5

21

0

1

(g)

n 5 11

Figure 6.22: Fourier series representation of a periodic square wave.

Signals and Systems 303

(b)

0

�S(nf)

54321

��/2 at odd
frequencies

n
(a)

0 987654321

|S(nf)|

4
�

4
3� 4

5�
4

7�

n

Figure 6.23: Frequency-domain representation of a square wave.

Then, based on Equation 6.35, the decomposition of the square wave in sinusoidal terms is given by

s(t) = 4

π

∑
odd n

sin(2π f nt)

n
, 1 ≤ n < ∞

The frequency-domain representation of square wave s(t) is shown in Figure 6.23.

■

As seen in Example 6.2, the square wave in Figure 6.22(a) can be represented by combining infinite sinusoids
with odd frequencies only. We illustrated this in Figure 6.22 using the first few sinusoids with odd frequencies.
Figure 6.22(b) through (h) represents the square wave s(t) approximation using the sum of m sinusoids with
frequencies n = 2m − 1 for 1 ≤ m ≤ 7. As shown in Figure 6.22(h), we are close to the ideal square wave
in representing it using the sum of the first eight odd-frequency sinusoids. However, we have ripples in the
Fourier-series–represented square wave. The presence of ripples in the Fourier-series computed waveform is
called the Gibbs phenomenon. We can only reduce the ripple width by adding more and more sinusoids, but
cannot attenuate the peaks of the ripple. The reason for the presence of ripples in the Fourier-series approximated
square wave is due to the discontinuous nature of square waves. If we have sharp edges or discontinuities in
the periodic wave (e.g., square waveform, triangular waveform), then we cannot exactly represent the waveform
using the Fourier-series representation. Because of this, the Fourier theory generalization was withheld from
publication for decades. Nevertheless, we accept the Fourier-series representation for all periodic signals in the
root mean square (RMS) error sense.

The Fourier-series representation in Equation (6.35) may be written more compactly by using exponential
notation, and has the advantage of exponential mathematical manipulations. Equation (6.35) can be rearranged
as follows:

s(t) =
∞∑

n=−∞
dne j2π fnt (6.39)

where

dn = 1

T

T/2∫
−T/2

s(t)e− j2π fntdt (6.40)

The values of dn in Equation (6.40) are complex, containing both real and imaginary numbers. As the sum-
mation in Equation (6.39) includes negative values of n, we evaluate the integral for both negative and positive
frequencies and the values of dn are halved numerically to represent an equal sharing of the magnitudes between
corresponding negative and positive frequencies. Using Equations (6.39) and (6.40), the relationship between
dn and c, an and bn is obtained as follows:

d0 = c, |dn| =
√

a2
n +b2

n, φn = − tan−1(bn/an)

304 Chapter 6

Thus, each frequency component of the waveform is characterized by the magnitude |S(n f)| = |dn| and its
phase angle∠S(n f) = φn . Based on Equation (6.40), it is clear that the Fourier series output is discrete and this
means that the periodic time-domain signals contain the frequencies only at discrete values.

6.2.3 Fourier Transform

What if the given signal is nonperiodic as shown in Figure 6.5 through Figure 6.12? How do we compute the
frequency-domain information of such nonperiodic signals? The Fourier series approach is defined for periodic
signals and cannot be applied to nonperiodic signals. In Equation (6.40), by increasing the period value T to
infinity, the quantity f (= 1/T) becomes � f as T → ∞ and the quantity S(nf) modifies to S(f) as follows:

S(f) = � f

∞∫
−∞

s(t)e− j2π ftdt (6.41)

After normalization of Equation (6.41) with � f , we have

S(f)

� f
= F(f) =

∞∫
−∞

s(t)e− j2π ftdt (6.42)

We can compute s(t) from Equation (6.42) by performing the inverse as follows:

s(t) =
∞∫

−∞
F(f)e j2π ftd f (6.43)

If we replace 2π f with ω in Equations (6.42) and (6.43), then we have the Fourier transform pair as follows:

F(ω/2π) =
∞∫

−∞
s(t)e− jωtdt (6.44)

s(t) = 1

2π

∞∫
−∞

F(ω/2π)e jωtdω (6.45)

In practice, we avoid the constant term 2π in the index of F(ω/2π), and write F(ω) by assuming that the
function F(.) is defined for normalized frequencies. Equations (6.44) and (6.45) are called the Fourier transform
pair. The time-frequency representation for nonperiodic signals, the Dirac delta function and rectangular pulse,
are shown in Figure 6.24(a) and (b). If an arbitrary nonperiodic signal s(t) contains frequencies up to fmax, then
|S(f)|, the magnitude of the Fourier transform of such a signal, resembles Figure 6.24(c).

6.3 Sampling of Continuous-Time Signals

In Section 6.1, we introduced the concept of signals and discussed various types of signals. All the signals
presented in that section are continuous in time. However, we cannot process continuous-time signals with
digital computers. Signal-processing computers handle only discrete signals in both time and amplitude. The
quantization of the signal amplitude into finite discrete levels is a lossy process and we cannot recover this loss
of information. On the other hand, sampling the signal with respect to time to get the discrete time samples can
be a lossless process, and the original signal can be recovered if we sample the signals appropriately. In this
section, we concentrate on appropriate sampling of continuous-timesignals to get discrete-time signals, and then
reconstructing the original signal from discrete samples. An example of a discrete-time signal x [n] is shown in
Figure 6.25, along with the actual analog signal x(t). Given sampling period T , the samples are obtained from
x(t) as x [n] = x(t)|t=nT . With sampling, the samples x [n] are equal to the value of the corresponding analog
signal x(t) at the sampling time instances. Signal values in between the samples are undefined.

Signals and Systems 305

Figure 6.24: Time-frequency
representation of nonperiodic signals.
(a) Dirac delta function.
(b) Rectangular pulse. (c) Arbitrary
signal.

t

r (t)

s (t)

t�0 f�0

�(t) |�(f)|
FT

(a)

(c)

(b)

t f�fmax fmax

FT

FT

f

|R(f)|

|S(f)|

t f

Figure 6.25: Plot of discrete-time
signal.

n

x [n]�x [nT]
x(t)

Consider a 6-Hz sinusoidal signal as shown in Figure 6.26(a) with a solid curve. Since the sinusoid frequency
is 6 Hz, it contains 6 cycles in 1-second intervals. The sinusoid shown in Figure 6.26(a) is plotted for 2 seconds
and contains 12 cycles. We also show another sinusoid at a 2-Hz frequency (i.e., it contains only 4 cycles in a
2-second interval) in Figure 6.26(a) with a dotted curve. With sampling of continuous-time signal, we collect
the samples at regular time intervals. For example, we sampled the 6-Hz signal at four samples per second in
Figure 6.26(b) and at eight samples per second in Figure 6.26(c). Now the question is how many samples would
be needed to obtain the original 6-Hz continuous-time sinusoidal signal? Is it possible to recover the original
sinusoidal signal of 6 Hz using points sampled at four points per second or eight points per second? As seen in
Figure 6.26(b) and (c), those four or eight points not only represent the 6-Hz sinusoid, but they also represent
the 2-Hz sinusoid. Thus, there is ambiguity in deciding which sinusoidal curves those sampled points actually
represent; we cannot recover the 6-Hz sinusoid signal using the four or eight points due to such ambiguity.

What if we chose a different set of sampling instances as shown in Figure 6.27? Is it possible then to recover
the 6-Hz sinusoid with those sample points? In Figure 6.27(b), we sampled the signal at six regular time intervals,
and those six points also represent the 3-Hz sinusoid apart from the 6-Hz sinusoid. The same ambiguity arises
even with nine points as shown in Figure 6.27(c). Consequently, you may think sampling with 100 points (instead
of 8 or 9 points) makes recovering the original 6-Hz sinusoid possible. Yes, we can recover that sinusoid if we
sample the 6-Hz signal with 100 samples per second, but processing and storing those 100 samples is very costly
when compared to 8 or 9 samples. Therefore, we are interested in the minimum number of samples required to
represent the continuous-time signal, such that we can recover the original signal without ambiguity.

In the following, we discuss the famous sampling theorem that specifies the rate at which an analog signal
should be sampled to ensure that all the relevant information contained in the signal is captured or retained via

306 Chapter 6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
21.5

21

20.5

0

0.5

1

1.5

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
21.5

21

20.5

0

0.5

1

1.5

(c)

1

2

3

4

1

2

3

4

1 2

3 4

5 6

7 8

1 2

3 4

5 6

7 8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
21.5

21

20.5

0

0.5

1

1.5

(a)
t (sec)

t (sec)

t (sec)

Figure 6.26: (a) Two sinusoids with frequencies 6 Hz (solid line) and 2 Hz (dashed line). (b) Sampling at four
samples per second. (c) Sampling at eight samples per second.

sampling. Depending on whether the signal is low pass (as shown in Figure 6.28(a), which contains most of its
energy at the lower frequencies) or bandpass (which contains most of its energy away from lower frequencies),
we follow a slightly different procedure in applying the sampling theorem.

6.3.1 Nyquist Criterion: Sampling of Low-Pass Signals

According to the Nyquist criterion, if the highest-frequency component in a signal is fmax (Hz), then the signal
should be sampled at the rate of at least 2 fmax samples per second to describe the signal completely. That is, the
sampling frequency or rate Fs is given by

Fs ≥ 2 fmax (6.46)

We call the sample rate, Fs , the Nyquist rate. Now, if we look at the sampling of the sinusoid example, the
maximum frequency of the sinusoid is 6 Hz as shown in Figure 6.26 or 6.27. This means that if we sample the 6-Hz
sinusoid at 12 samples or more per second (i.e., greater than or equal to 2 ×6), then there will be no ambiguity
in reconstructing the 6-Hz sinusoid after sampling. Sampling at less than the rate specified by the sampling
theorem leads to aliasing of image frequencies into the desired frequency band; hence, the original signal cannot
be recovered. The concept of image frequencies is explained next. For this, we consider a continuous-time

Signals and Systems 307

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
21.5

21

20.5

0

0.5

1

1.5

(a)
t (sec)

1 2
3 4

5 6 1 2
3 4

5 6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
21.5

21

20.5

0

0.5

1

1.5

(b)
t (sec)

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
21.5

21

20.5

0

0.5

1

1.5

(c)
t (sec)

Figure 6.27: (a) Two sinusoids with frequencies 6 Hz (solid line) and 3 Hz (dotted line). (b) Sampling at six
samples per second. (c) Sampling at nine samples per second.

signal as shown in Figure 6.28 along with its frequency-domain information (also called frequency spectrum).
If we sample this continuous-time signal into discrete samples, then the frequency spectrum of discrete samples
contains many replicas of the spectrum as shown in Figure 6.28(b). These are called image frequencies. The
intuitive reasoning for the formation of images with the signal sampling is discussed next.

When we applied the Fourier series to a periodic signal, we got a discrete frequency spectrum. This means
that when we have discrete content in one domain, we see the periodic information content in the other domain.
In the same way, the sampling of a continuous-time signal to discrete samples causes the frequency spectrum
to repeat itself. To obtain the original signal, we filter out these replicas. If we sample a continuous-time signal
with less than the sampling rate as shown in Figure 6.28(c), then the repeating spectral images overlap in the
frequency domain. In this case, we cannot obtain the original continuous signal as the filter cannot completely
remove the spectral images.

In Figures 6.26 and 6.27, we saw that 2-Hz and 3-Hz sinusoids are formed when the 6-Hz sinusoid is sampled
at less than 12 samples per second. This is because undersampling the 6-Hz signal causes overlapping in the
frequency domain and forms an alias of higher-frequency signals at the lower frequencies. Thus, these 2-Hz
and 3-Hz sinusoids are aliased signals of the actual 6-Hz signal when we undersample it. Even if we know the
maximum frequency present in the desired signal, sampling the desired signal with the rate greater than twice the
maximum frequency may not guarantee perfect reconstruction of the original signal due to noise. Noisy signals
usually occupy wider frequency bands when compared to desired signals. In this case, even if we follow the

308 Chapter 6

s(t)

t

|S(f)|

(a)

(b)

(c)

Image frequencies

Proper sampling

Undersampling

Sampling rate . 2fmax

Aliasing

s(t)

f

t

Sampling rate , 2fmax

s(t)

t

2fmax fmax

|S(f)|

f2fmax fmax

|S(f)|

f2fmax fmax

Figure 6.28: Sampling continuous-time signals. (a) Continuous-time signal and its frequency spectrum. (b) Proper
sampled discrete signal and corresponding image frequency spectrums. (c) Undersampling and corresponding
aliased frequency spectrum images.

x(t) y (t) y [n]

|X(f)|
|Y(f)| |Yd(f)|

fmaxfmax

Antialias
Filter

Sampler
Desired
signal

Noise

Figure 6.29: Sampling with an antialiasing filter.

sampling theorem, we may still see the frequency aliasing of sampled signals due to wideband noise. Thus, we
filter the noise using an antialiasing filter before sampling the desired signal as shown in Figure 6.29.

6.3.2 Reconstruction of Signal from Discrete Samples

According to the sampling theorem, we can reconstruct continuous-time band-limited signals from samples
obtained by sampling at least twice the maximum frequency present in the signal. If T is the sampling period
associated with the sequence x [n], then we construct the continuous-time signal x(t) from its samples x [n] as
follows:

x(t) =
∞∑

n=−∞
x [n]

sin[π(t −nT)/T]

π(t −nT)/T
(6.47)

Signals and Systems 309

25T 24T 23T 22T 21T 0 1T 2T 3T 4T 5T
21

20.5

0

0.5

1

1.5

2

2.5

3

Figure 6.30: Reconstruction of continuous-time signal from discrete samples.

Antialias
Filter

Sampler
Digital
Signal

Processor

Sinc
Interpolator

x (t) x [n] y [n] y (t)

Figure 6.31: Discrete-time processing of continuous-time signals.

In Equation (6.47), we basically use the delayed versions of the normalized sinc function to reconstruct the
continuous-time signal. With the normalized sinc function,

sin(π t/T)

π t/T

we have a continuous signal with a non-zero value at only t = 0, and zero values at all time instances t = nT ,
where n = (−∞,∞)−{0}. Similarly, if we delay the sinc function by m samples in time as follows,

sin[(π(t −mT)/T]

π(t −mT)/T

then we have a non-zero value only at t = mT, and zero values at all time instances t = nT , where n = (−∞,

∞)−{m}. This is illustrated in Figure 6.30 using four samples x[n]= [1,2,3,2] at sampling instances [−T , 0, T ,
2T]. As seen in Figure 6.30, the sinc function interpolates between the samples of x [n] to construct a continuous-
time signal xc(t). In fact, if there is no aliasing, then the sinc function can reconstruct a continuous-time signal
that exactly represents x(t).

Given a continuous-time signal, we can obtain discrete-time samples by sampling the continuous-time signal
at the Nyquist rate in Equation (6.46). We can then perform signal processing on discrete samples using spe-
cialized tools, and then we get back the processed continuous-time signal by using the reconstruction formula
in Equation (6.47). The basic signal processing system for real-world, continuous-time signals using a digital
signal processor is shown in Figure 6.31.

6.3.3 Sampling of Bandpass Signals

Bandpass signals frequently occur in communication systems, where signals are modulated to occupy particular
frequency bands for signal transmission, as shown in Figure 6.32. In such cases, the bandwidth of the signal
B is often very small when compared to the maximum frequency (fH) present, and sampling will be costly
(to process, store, or reconstruct) using the Nyquist criterion. The bandpass sampling theorem is used in such

310 Chapter 6

Figure 6.32: Frequency-domain
representation of a bandpass signal.

f

B

2fH

|X(f)|

02fL2fc
fL fHfc

situations. The signal is sampled at a rate of Fs , which satisfies the following equation:

2 fH

n
≤ Fs ≤ 2FL

n −1
(6.48)

where n =
⌈

fH

B

⌉
, an integer rounded up to next integer.

The bandpass sampling theorem allows us to sample narrowband signals at a much reduced rate, while
simultaneously permitting reconstruction of the signal without aliasing problems. In a special case where the
edge frequencies fL and fH are integer multiples of the signal bandwidth B, then such a signal can be sampled at
a theoretical minimum rate of 2B without aliasing. For example, if B = 10 kHz, fL = 80 kHz, and fH = 90 kHz,
then sampling at the rate 2B = 20 kHz allows us to reconstruct the original continuous-time bandpass signal.

6.4 Time-Frequency Representation of Discrete-Time Signals

In Section 6.2, we used Fourier series and Fourier transforms for time-frequency representation of continuous-
time signals. In this section, their counterparts to work with discrete-time signals are discussed. Like continuous-
time signals, there are also two types of discrete-time signals: periodic and nonperiodic. A discrete-time signal
x [n] is said to be periodic if x [n] = x [n + N] for some positive integer N . Here, the smallest integer value of N
represents the x [n] period. Note that the continuous-timesinusoid sin(ωt) is periodic regardless of the value of ω.
This is not the case with the discrete-time sinusoid sin(
n). To make sin[
(n + N)] = sin(
n), the following
has to be satisfied:

N = 2πm or

2π
= m

N

In brief, a discrete-time sinusoid sin(
n) is periodic only if

2π

is a rational number.

6.4.1 Discrete-Time Fourier Transform

We obtain the frequency-domain information for discrete-time nonperiodic signals using the discrete time Fourier
transform (DTFT) as follows:

X (
) =
∞∑

n=−∞
x [n]e− j
 n (6.49)

The DTFT output X (
) is periodic as shown in Figure 6.33. Since |e− j2π n| = 1, clearly the frequency information
X (
) from Equation (6.49) is periodic with period 2π as derived here:

X (
+2π) =
∞∑

n=−∞
x [n]e− j (
+2π)n =

∞∑
n=−∞

x [n]e− j
ne− j2π n =
∞∑

n=−∞
x [n]e− j
n = X (
) (6.50)

In the following, the periodicity of this Fourier transform of the discrete-time signal is explained. The Fourier
transform of an impulse train d(t) is again a periodic impulse sequence with a different period as shown in
Figure 6.34. Because discrete-time signals are obtained by multiplying the continuous-time signal with the
impulse train, we obtain the Fourier transform of the discrete-time signal as periodic. In other words, if we
have discrete information in one domain (time/frequency), then we will have periodic information in the other

Signals and Systems 311

0 1 2 3 4 5 6
n

x [n]

V

|X(V)|

DTFT

Figure 6.33: Discrete-time signals and periodic frequency-domain information.

d (t) 5

0 T 2T 3T 4T 5T2T22T23T24T
(a)

(b)

t

22� 2� 0 �

S
`

n52`

�(t 2nT)

Dk5 #
T/ 2

2T/ 2

� 2� 3�

1
T

dt 5
1
T

� 5
2�
T�(t)e2j�kt ,

Figure 6.34: (a) Impulse train in time domain. (b) Equivalent frequency-domain information.

domain (frequency/time). Since the Fourier transform of discrete-time signals is periodic, the inverse transform
is performed on one period, 2π , of the frequency spectrum:

x [n] = 1

2π

∫
2π

X (
)e j
nd
 (6.51)

Equations (6.49) and (6.51) form a discrete-time Fourier transform pair.

6.4.2 Discrete Fourier Transform

Digital systems process and output only discrete signals; thus, the DTFT tool is not suitable for digital signal
processing (DSP) because the output of DTFT is continuous. For this reason, we derive the discrete Fourier
transform (DFT) equations from the DTFT to work with DSPs. Upon sampling the DTFT output frequency
information in Equation (6.49), and taking samples at regular frequency intervals,

X[k
0] =
∞∑

−∞
x [n]e− j
0kn,
0 = 2π

T
(6.52)

In Equation (6.52), we usually ignore
0 in the index and simply write X[k
0] as X[k]. With sampling of
frequency-domain information, we force periodicity in the time domain. If we have N samples in one period T ,
then
0 = 2π

N . With this, Equation (6.52) can be rewritten as follows:

X[k] =
N−1∑
n=0

x [n]e− j2πkn/N (6.53)

312 Chapter 6

DFT

n

x [n]

N samples N samples

X [k]

k

Figure 6.35: Graphic illustration of discrete Fourier transform.

Given Equations (6.51) and (6.53), the inverse for DFT follows:

x [n] = 1

N

N−1∑
k=0

X[k]e j2πkn/N (6.54)

Equations (6.53) and (6.54) represent the DFT pair. Next, we verify the periodicity of the time-domain
sequence x [n] as follows:

x [n + N] = 1

N

N−1∑
k=0

X[k]e j2πk(n+N)/N = 1

N

N−1∑
k=0

X[k]e j2πkn/N e j2πk = 1

N

N−1∑
k=0

X[k]e j2πkn/N = x [n]

Therefore, the DFT assumes a built-in periodicity in the time-domain information. A graphic illustration of
the DFT is shown in Figure 6.35.

6.4.3 Discrete Cosine Transform

The discrete cosine transform (DCT) is commonly used to compress signal data. This is particularly important
for the storage and transmission of image frames, as the images will have much spatial redundancy, and the DCT
is good at eliminating the data correlations. Many types of DCT can be found in the literature; the following is
the most commonly applied DCT pair in the image processing field:

X[k] = β[k]
N−1∑
n=0

x [n] cos

[
π

N

(
n + 1

2

)
k

]
, k = 0,1,2, . . . , N −1 (6.55)

x [n] =
N−1∑
k=0

β[k]X[k] cos

[
π

N

(
n + 1

2

)
k

]
, n = 0,1,2, . . . , N −1 (6.56)

where β[0] = √
(1/N) and β[m] = √

(2/N) for m 	= 0.
Implementation techniques for both DFT and DCT are discussed in the next chapter.

6.5 Linear Time-Invariant Systems

A system is any process that produces an output signal in response to an input signal. With specialized signal
processing techniques, it is possible to express most of the systems in terms of mathematical models. This allows
us to apply signal processing tools for system analysis and thereby improve system performance. In particular,
we are interested in linear-time-invariant (LTI) systems, since many tools are available to analyze these systems.
One important characteristic of an LTI system is that its output response to a sinusoidal input is also a sinusoid
with some gain in amplitude and delay in phase. However, the frequency of the output sinusoid is the same
as the input sinusoid (i.e., we get the same frequency sinusoid with a different gain and phase). All systems
with input–output relationships described by linear differential equations are linear-time-invariant systems when
the coefficients of such differential equations are constant. Next, we discuss the properties of stable, causal,
linear-time-invariant systems.

Linearity. A system H {.} is said to be linear if it follows the principles of superposition and homogeneity. If
y1[n] and y2[n] are the output signals of system H {.}, when x1[n] and x2[n] are the respective input signals

Signals and Systems 313

(i.e., y1[n] = H {x1[n]} and y2[n] = H {x2[n]}), then the system H {.} is linear if and only if

H {ax1[n]+bx2[n]} = aH {x1[n]}+bH {x2[n]} = ay1[n]+by2[n] (6.55)

where a and b are arbitrary constants.
Time Invariance. Systems with parameters that do not change with respect to time are called time-invariant

systems. With the time-invariant system H {.}, if the input x [n] to a system H{.} is delayed by N samples, then
the corresponding output y[n] is also delayed by N samples. That is, if y[n] = H {x [n]}, then H {x [n − N]} =
y[n − N].

Causality. A system is causal if for every choice of input signal delay N , the output signal y[n] at the index
n = N depends only on the input signal x [n] values for index n ≤ N . That is, the output of a causal system
depends on the current input and/or previous inputs, but not on future inputs.

Stability. A system H {.} is stable in the BIBO (bounded-input, bounded-output) sense if and only if every
bounded input sequence produces a bounded output sequence. In discrete time, the condition for BIBO
stability is that the impulse response of the LTI system be absolutely summable, that is,

∑
n

|h[n]| < ∞.

Continuous- and Discrete-Time Systems. Systems in which inputs and outputs are continuous-time signals are
called continuous-time systems, usually denoted by h(t). Similarly, systems whose inputs and outputs are
discrete-time signals are called discrete-time systems, usually denoted by h[n]. Using the sampling theorem,
we can obtain the corresponding discrete-time system from the given continuous-time system.

6.5.1 Impulse Response of LTI Systems

A major reason for interest in LTI systems is that these systems can be completely described by an impulse
response. Why is an impulse response so important? We process the signals using systems and the processing of
signals involves classification of signals and elimination of unwanted signals (or choosing the signal with a subset
of frequency components). To process the signal with a system, we have to know the system (i.e., what frequency
components the system attenuates and what frequencies it allows without attenuation). That is, we have to know
the system frequencies and also the strength or amplitude and phase of each frequency. By passing a sinusoidal
signal with a particular frequency through an LTI system, we can determine whether the system passes that
particular frequency or attenuates it. Thus, by passing all the sinusoids within the required band of frequencies
through an LTI system, we can describe the system in terms of frequencies in the band of interest. However, this
is a huge task and it is not the most effective way to identify system behavior. Instead, if we input a unit impulse
(whose frequency response is constant, meaning that it contains all frequencies, as shown in Figure 6.24(a)) to
an LTI system, then its output response to a unit impulse provides the complete LTI system description. The
response of a system to a unit impulse input is called an impulse response. The frequency content of a system’s
impulse response contains all system frequencies. Thus, the impulse response of LTI systems plays an important
role in signal-processing applications. The graphic illustration of continuous- and discrete-time system impulse
responses is shown in Figure 6.36. In working with DSPs, we use only discrete-time systems.

Figure 6.36: Impulse response
examples of (a) continuous-time
system and (b) discrete-time system.

LTI
System

t

�(t)

t

h[n]

n

h(t)

n

�[n]

�(t) h(t)

(a)

LTI
System

�[n] h[n]

(b)

314 Chapter 6

6.5.2 Convolution

Once we know the impulse response of a system, we can then compute the response of that system to an arbitrary
input signal by using the convolution operation. If x(t) is the input signal and h(t) is the impulse response of a
given continuous-time system, then its output signal y(t) is computed as follows:

y(t) =
∞∫

−∞
x(τ)h(t − τ)dτ (6.56)

In short, the continuous-time convolution operation in Equation (6.56) is represented as follows:

y(t) = x(t)∗h(t) (6.57)

where ∗ represents the continuous-time convolution operation. For discrete-time systems, Equation (6.56)
modifies to

y[n] =
∞∑

k=−∞
x [k]h[n − k] (6.58)

In brief, the discrete-time convolution operation in Equation (6.58) is represented as follows:

y[n] = x [n] ⊗ h[n] (6.59)

where ⊗ represents the discrete-time convolution operation.
Based on Equations (6.58) and (6.59), an LTI system H {.} response to an arbitrary input signal x [k] can

be expressed in terms of the impulse responses of the system to the input impulse train sequence x [n] =∑
k x [k]δ[n − k] as follows:

y[n] = H {x [n]} =
∞∑

k=−∞
x [k]H {δ[n − k]} (6.60)

The pictorial interpretation of Equation (6.60) is shown in Figure 6.37. A simple way to compute the con-
volution sum in Equation (6.58) is by first obtaining the mirror image of the impulse response h[n] (i.e., the
mirror image of h[k] is h[−k]), and then correlating the input samples x [k] with mirror image samples h[n − k],
where −∞ < k < ∞. This is illustrated in Example 6.3. If the length of input sequence x [n] is M and the length
of impulse response h[n] is L , then the length of convolution output y[n] is N = M + L − 1. The convolution
operation is commutative, meaning that

y[n] = x [n] ⊗ h[n] = h[n] ⊗ x [n] (6.61)

6.5.3 DFT Based Convolution Computation

One important property of the convolution operation is that convolution in the time domain turns out to be a
multiplication in the frequency domain as follows:

x [n]⊗h[n] ⇔ X[k] · H [k] (6.62)

where X[k] = DFT{x [n]} and H [k] = DFT{h[n]}; that is, Y [k] = X[k] · H [k] or H [k] = Y [k]/X[k]. Here,
H [k] is called the system transfer function.

Based on Equation (6.62),

x [n] ⊗ h[n] =
∞∑

k=−∞
x [k]h[n − k]

(6.63)

DFT{x [n] ⊗ h[n]} = DFT

{ ∞∑
k=−∞

x [k]h[n − k]

}

Signals and Systems 315

Figure 6.37: Discrete-time system
response computation by convolution
operation.

0

0 1 2

0 0 1 2

0 1 2 3 4

0 1 2

x [n] h[n]

x [n]5x21[n]1x0[n]1x2[n] y [n]5y21[n]1y0[n]1y2[n]

x21[n]
y21[n]

y0[n]

y2[n]

x0[n]

x2[n]

21 1 2 n n

21 0 1 2 n21

n

n

21

21

0 3 4 n21

10 2 n

21 1 2 n

21 0 1 2 n

21 1 2 n

If the number of samples present in the input signal x [n] is M , the number of samples present in the impulse
response h[n] is L , and if N = M + L − 1, then, after some manipulations, Equation (6.63) can be written as
follows:

DFT{x [n] ⊗ h[n]} = DFT{x [n]} ·DFT{h[n]} = X[k] · H [k], 0 ≤ n ≤ N −1, 0 ≤ k ≤ N −1

Now, by applying the IDFT on both sides of the previous equation, we have

x [n](◦)h[n] = IDFT{X[k] · H [k]}, 0 ≤ n ≤ N −1, 0 ≤ k ≤ N −1 (6.64)

where (◦) is a circular convolution operator. The circular convolution output y[n] of the two sequences x [n] and
y[n] is defined as follows:

y[n] = x [n](◦)h[n] =
N−1∑
k=0

x [k]h[(n − k) mod N] (6.65)

Based on Equation (6.65), we can see that the DFT-based convolution assumes periodicity in the input
sequences. Consequently, to obtain the correct convolution output, we must use a DFT of N = M + L − 1
minimum length in the computation of convolution by the DFT method. For large values of M and L , computation
of the convolution sum using (6.58) is very complex. Because we can compute the DFT faster using FFT
algorithms (discussed in the next chapter), performing convolution on DSPs using Equation (6.65) can result
in huge computational power savings. Examples for computing the convolution sum using Equations (6.58)
and (6.65) are provided in Examples 6.3 and 6.4, respectively. Note that the end results in these examples are
the same.

316 Chapter 6

■ Example 6.3

Assume that the input signal x [n] = [1,2,−1,−3,−1,1,2,4,2,−1] and the impulse response h[n] =
[1,3,2]. The convolution sum is computed as follows:

y[n] =
∞∑

k=−∞
x [k]h[n − k]

Given that M = 10 and L = 3, we will have a total of N = M + L −1 = 10+3−1 = 12 samples in the
convolution output. The output samples y[n] are obtained as follows:

x [k]: 1,2,−1,−3,−1,1,2,4,2,−1
h[0 − k]: 2,3,1
y[0] = 0 ·h[−2]+0 ·h[−1]+1 ·h[0] = 1

x [k]: 1,2,−1,−3,−1,1,2,4,2,−1
h[1− k]: 2,3,1
y[1] = 0 ·h[−2]+1 ·h[−1]+2 ·h[0] = 1×3+2 ×1 = 5

x [k]: 1,2,−1,−3,−1,1,2,4,2,−1
h[2 − k]: 2,3, 1
y[2] = 1 ·h[−2]+2 ·h[−1]−1 ·h[0] = 1×2 +2 ×3−1×1 = 7

x [k]: 1,2,−1,−3,−1,1,2,4,2,−1
h[3− k]: 2, 3, 1
y[3] = 2 ·h[−2]−1 ·h[−1]−3 ·h[0] = 2 ×2 −1×3−3×1 = −2

x [k]: 1,2,−1,−3,−1,1,2,4,2,−1
h[4− k]: 2, 3, 1
y[4] = −1 ·h[−2]−3 ·h[−1]−1 ·h[0] = −1×2 −3×3−1×1 = −12

x [k]: 1,2,−1,−3,−1,1,2,4,2,−1
h[5− k]: 2, 3,1
y[5] = −3 ·h[−2]−1 ·h[−1]+1 ·h[0] = −3×2 −1×3+1×1 = −8

. . .

x [k]: 1,2,−1,−3,−1,1,2,4,2,−1
h[10 − k]: 2, 3,1
y[10] = 2 ·h[−2]−1 ·h[−1]+0 ·h[0] = 2 ×2 −1×3+0 ×1 = 1

x [k]: 1,2,−1,−3,−1,1,2,4,2,−1
h[11− k]: 2,3,1
y[11] = −1 ·h[−2]+0 ·h[−1]+0 ·h[0] = −1×2 +0 ×3+0 ×1 = −2

y[n] = [1,5,7,−2,−12,−8,3,12,18,13,1,−2]
■

■ Example 6.4

Using the same input signal x [n] and impulse response h[n] as in Example 6.3, we compute the
convolution sum using the DF T and IDF T pair as follows:

x [n]: 1,2,−1,−3,−1,1,2,4,2,−1

Signals and Systems 317

h[n]: 1,3,2
M = 10, L = 3, N = M + L −1 = 12

Hence, we use the 12-point DF T and 12-point IDF T in computing the convolution sum. Before applying
the 12-point DF T, we make the lengths of arrays x [n] and y[n] equal to 12 by padding two zeros to x [n]
and nine zeros to h[n] as follows:

x [n]: 1,2,−1,−3,−1,1,2,4,2,−1,0,0
h[n]: 1,3,2,0,0,0,0, 0,0,0, 0,0

X[k] = DF T {x [n]} =
N−1∑
n=0

x [n]e− j2πkn/N

6.0000 +0.0000i,−4.5981+5.9641i,10.5000 −6.0622i,1.0000 −1000i,
−4.5000 −2.5981i,0.5981−0.9641i,0.0000 +0.0000i,0.5981+0.9641,
−4.5000 +2.5981i,1.0000 +1.0000i,10.5000 +6.0622i,−4.5981−5.9641i

H [k] = DFT {h[n]} =
N−1∑
n=0

h[n]e− j2πkn/N

6.0000 +0.0000i,4.5981−3.2321i,1.5000 −4.3301i,−1.0000 −3.0000i,
−1.5000 −0.8660i,−0.5981+0.2321i,0.0000 +0.0000i,−0.5981−0.2321i,
−1.5000 +0.8660i,−1.0000 +3.0000i,1.5000 +4.3301i,4.5981+3.2321i

Y [k] = X[k] · Z [k] =
36.0000 +0.0000i,−1.8660 +42.2846i,−10.5000 −54.5596i,−4.0000 −2.0000i,
4.5000 +7.7942i,−0.1340 +0.7154i,0.0000 +0.0000i,−0.1340 −0.7154i,
4.5000 −7.7942i,−4.0000 +2.0000i,−10.5000 +54.5596i,−1.8660 −42.2846i

y[n] = IDFT {Y [k]} = 1

N

N−1∑
k=0

Y [k]e j2πkn/N

1.0000,5.0000,7.0000,−2.0000,−12.0000,−8.0000,
3.0000,12.0000,18.0000,13.0000,1.0000,−2.0000

■

6.6 Generalized Fourier Transforms

With Fourier methods,we are able to decompose an arbitrary signal in terms of sinusoids.Depending on the range
of frequency components (or sinusoids) present in an LTI system impulse response, we get the corresponding
output signal from the LTI system to an arbitrary input signal. However, as discussed previously, the Fourier
transform of an arbitrary impulse response may contain infinite frequencies, and handling or representing such
LTI systems would be too difficult. Moreover, most of the physical LTI systems (e.g., electric circuits, usually
characterized by differential equations) have a particular kind of impulse response that decays with time, as
shown in Figure 6.38. This kind of impulse response contains both sinusoids and exponentials of infinite length.
To handle this type of signals and more compactly represent the systems with this kind of impulse response,
as well as to better understand systems behavior, we use generalized Fourier transforms known as the Laplace
transform and z-transform. Another motivation for introducing this generalization is that the Fourier transform
does not converge for all sequences, and a generalization of the Fourier transform that encompasses a broader
class of signals is useful. The Laplace transform is defined for continuous-time signals, whereas the z-transform
is defined for discrete-time signals.

318 Chapter 6

Figure 6.38: The impulse response
shape of most real-world LTI systems.

6.6.1 Laplace Transform

For signal x(t), the Laplace transform X (s) is defined by

X (s) =
∞∫

−∞
x(t)e−stdt (6.66)

where e−st is called a complex exponential, which represents both sinusoid and exponential characteristics. With
the Laplace transform, we are no longer in the frequency domain. We move to a two-dimensional s-plane, where
s = σ + jω, which is formed with two parameters: σ (an exponential decay constant), which is represented using
the x -axis, and ω (the sinusoid frequency), which is represented using the y-axis. The inverse Laplace transform
produces the time-domain signal x(t) from the s-plane response as follows:

x(t) = 1

j2π

c+ j∞∫
c− j∞

X (s)estds (6.67)

The Laplace transform in Equation (6.66) may not converge for all values of s, and the region of s for which
the integral in the equation converges is called the region of convergence. Based on Equation (6.66),

X (s) =
∞∫

−∞
x(t)e−stdt =

∞∫
−∞

x(t)e−(σ+ jω)tdt =
∞∫

−∞
x(t)e−σ t e− jωtdt

If σ = 0 (i.e., by evaluating the Laplace transform along the y-axis), then the preceding equation leads to our
Fourier transform equation as follows:

X (jω) =
∞∫

−∞
x(t)e− jωtdt

Therefore, from a mathematical perspective, the Fourier transform is a particular case of the Laplace transform.
The Fourier transform analyzes signals in terms of sinusoids, whereas the Laplace transform analyzes signals in
terms of sinusoids and exponentials. In addition, the time-domain convolution operation on two signals maps to
the multiplication of their respective Laplace-transform outputs in the s-domain.

Transfer Function
If X(s) is the Laplace transform of system input signal x(t) and Y (s) is the Laplace transform of system output
signal y(t), then the system transfer function H (s) is obtained as follows:

H (s) = Y (s)

X (s)
(6.68)

Poles and Zeros of LTI Systems
For an LTI system, which is controlled by differential equations, the system transfer function can be expressed
as follows:

H (s) = bnsn +bn−1sn−1 +bn−2sn−2 +· · ·+b1s +b0

sn +an−1sn−1 +an−2sn−2 +· · ·+a1s +a0
(6.69)

Signals and Systems 319

Figure 6.39: Illustration of poles and
zeros in system frequency response.

Poles

Zero

If we factor both the numerator and denominator of Equation (6.69), then

H (s) = bn(s − z0)(s − z1) · · · (s − zn−1)

(s − p0)(s − p1) · · · (s − pn−1)
(6.70)

where pi’s (the roots of denominator) are called the poles and zi’s (the roots of numerator) are called the zeros
of LTI systems. Depending on the location of poles and zeros in the s-plane, we can uniquely represent an LTI
system, and these few parameters (i.e., poles and zeros) can completely describe system characteristics. The
system frequency response contains very large values at the pole locations, whereas it contains very small values
at the zero locations. A graphic view of poles and zeros is shown in Figure 6.39 by taking a cross-section of the
s-plane.

Typically, the number of zeros will be equal to, or less than, the number of poles. Factoring polynomials
greater than the second order is difficult; thus, we use a cascade of second-order stages (which can be represented
with second-order polynomials) to construct larger systems. For example, a 10th-order system can be obtained
by cascading five second-order systems. For example, the impulse response of the second-order system in
Equation (6.71) is easily obtained by rearranging the summation in Equation (6.72):

H (s) = k(s + z0)

(s + p0)(s + p1)
(6.71)

H (s) = k0

(s + p0)
+ k1

(s + p1)
(6.72)

By taking the inverse Laplace transform of H (s) in Equation (6.72), we obtain the impulse response as follows:

h(t) = (k0e−p0t + k1e−p1t)u(t) (6.73)

where u(t) is the unit step function defined as in Equation (6.5).
As the locations of poles and zeros provide a complete description of system frequency response (the frequency

response is equal to the values of H (s) along the imaginary axis), the Laplace transform is popularly used to
design the continuous-time LTI systems directly in the s-plane. In the next chapter, we will discuss the role
of s-plane poles and zeros in the design of Butterworth, Chebyshev, and elliptic filters for given passband and
stopband specifications.

6.6.2 z -Transform

The z-transform plays the same role in the analysis of discrete-time signals and LTI systems as the Laplace
transform does in the analysis of continuous-time signals and LTI systems. In other words, the Laplace transform is
a generalization of the Fourier transform, whereas the z-transform is a generalization of the discrete-time Fourier
transform. In addition, the convolution in the time-domain results in the multiplicationof the z-transform domain.
The z-transform of a discrete-time signal x [n] is defined as the power series,

X (z) =
∞∑

n=−∞
x [n]z−n (6.74)

where z is a complex variable. By substituting z = re jω in Equation (6.74), we have

X (re jω) =
∞∑

n=−∞
x [n](re jω)−n =

∞∑
n=−∞

(x [n]r−n)e− jωn (6.75)

320 Chapter 6

Thus, Equation (6.75) can be interpreted as the discrete-time Fourier transform of the product of the original
signal x [n] and the exponential sequence r−n. With the inverse z-transform, we obtain the discrete-time signal
x [n] from X (z) using the contour integral as follows:

x [n] = 1

j2π

∮
C

X (z)zn−1dz (6.76)

where C is any contour that lies in the region of convergence (ROC) of the z-transform and encircles the origin.
Similar to how the Laplace transform deals with differential equations of LTI systems, the z-transform

deals with the difference equations defining the behavior of an LTI system. However, the mathematics of the
s-plane uses rectangular coordinates, whereas the z-transform uses polar coordinates. In addition, there are
correspondences (if not one-to-one) from the s-plane to the z-plane as follows:

1. The y-axis in s-plane is mapped to the unit circle in the z-plane.
2. The left half of the s-plane is mapped to the interior of the unit circle.
3. The right side of the s-plane is mapped to the exterior of the unit circle.
4. The symmetry about the x -axis is reserved from the s-plane to the z-plane.

As the z-transform handles the sampled data, the z-plane can uniquely represent frequencies up to half the
sampling rate, and the frequencies above that range are wrapped around the circles of the z-transform.

The z-transform is commonly used in the design of digital filters (see Chapter 7). Typically, we design
recursive digital filters by starting with analog filters, and then we obtain the desired digital filter after a series
of mathematical conversions. So, we basically map the pole-zero locations from the s-plane to the z-plane in
deriving the recursive digital filters from analog filters. The locations of pole zeros in the s-plane are on the
vertical lines, and after mapping to the z-plane, they lie on circles concentric with the origin.

CHAPTER 7

Transforms and Filters

In Chapter 6, the concepts of convolution and time-frequency representation of signals were introduced. In
this chapter, we discuss how these concepts are implemented in digital systems using digital filters and fast
transforms.

Transforms and filters are among the most powerful tools in the digital signal processing (DSP) field. Indeed,
it is the development of fast versions of these computationally demanding algorithms, combined with advances
in semiconductor technology, that allow us to perform most media processing tasks in real time.

Fast Fourier transform (FFT) algorithms are used to compute the discrete Fourier transform (DFT) with fewer
computations. Digital filters are capable of achieving the performance that is close to desired system specifica-
tions. In addition, there are advantages of virtually eliminating errors in the filter (due to aging, temperature, etc.,
that usually degrade the performance of analog filters). One disadvantage of digital filters is that they are slower
due to the “block” nature of the processing and cannot handle very high frequencies when compared to analog
filters. In this chapter, we will discuss the simulation and implementation techniques of discrete transforms and
digital filters.

Various transforms were introduced in Chapter 6, including the Fourier series, discrete Fourier transform,
discrete cosine transform (DCT), Laplace, and z-transforms. These transforms uniquely map time-domain signals
to their frequency-domain representations. The inverses of these transforms likewise map a signal’s frequency-
domain representation back to the time domain. Which transform we use depends on the signal’s nature (periodic,
nonperiodic, exponential sinusoid, etc.) and signal type (continuous-time, discrete-time).

Of all transforms discussed in Chapter 6, only the DFT and DCT can be implemented using digital systems
(the others assume analog signals). The DFT is used in a wide range of signal-processing applications (e.g.,
telecommunications, medical, geophysics). The DCT is more heavily used in image and video compression
applications (e.g., JPEG, MPEG-2, MPEG-4). The DFT and DCT are by far the most commonly used in media
processing. Therefore, the discussion in this chapter is restricted to fast versions of these algorithms, and their
fixed-point simulation and efficient implementation techniques.

A filter is a system that allows some frequency components of a signal to pass through while attenuating
other components. Consider two extremes. One extreme is an amplifier, which allows all frequencies to pass
through unattenuated. The other extreme would be an oscillator, which outputs only a single frequency. Filters
lie somewhere in between. For example, linear-time-invariant (LTI) systems, as discussed in Section 6.5, are
filters. In fact, all filters discussed in this chapter are assumed to be LTI systems. LTI filters are completely
described by their impulse response, and the output of an LTI filter is obtained by convolving the filter input with
its impulse response. A few applications of digital filters include telecommunications, medical signal processing,
and audio/image/video processing.

The two main filter types are finite-impulse-response (FIR), and infinite-impulse-response (IIR) filters. In
Sections 7.3 through 7.5 we briefly discuss FIR and IIR filters, examine their specifications, and explore digital
filter design, simulation, and techniques for efficient implementation.

7.1 Fast Fourier Transform

In Section 6.4.2, we briefly discussed the DFT. Here, we discuss the complexity of the DFT, and then derive its
faster, less complex variant, the FFT. If the sequence (or discrete-time signal) x [n] consists of N samples, the

© 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-678-1.00007-7 321

322 Chapter 7

DFT also produces a sequence of N samples, X[k], spaced equally in the frequency domain:

X[k] =
N−1∑
n=0

x [n]e− j2πnk/N , k = 0,1,2, . . . , N −1 (7.1)

where e− j2πnk/N = cos(2πnk/N)− jsin(2πnk/N).
The DFT can be viewed as a correlation of the input signal with a set of sinusoids. Each sinusoid evaluates the

frequency content of the input signal at the sinusoid’s oscillation frequency. Equation (7.1) can also be expressed
in terms of matrix multiplication:

X N×1 = WN×N · xN×1 (7.2)

where xN×1 = [x0, x1, x2, . . . , xN−1]T , X N×1 = [X0, X1, X2, . . . , X N−1]T , and the matrix

WN×N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

1 e− j2π·1·1/N e− j2π·1·2/N · · · e− j2π·1·(N−1)/N

1 e− j2π·2·1/N e− j2π·2·2/N · · · e− j2π·2·(N−1)/N

...
...

...
...

...

1 e− j2π·(N−1)·1/N e− j2π·(N−1)·2/N · · · e− j2π·(N−1)·(N−1)/N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.3)

can be constructed from N components Wk = e− j2πk/N ,k = 0, . . . , N −1, which we refer to as “twiddle factors.”

DFT Computational Complexity
As seen in Equation (7.2), the matrix and vector multiplication in the DFT require N2 operations, and each
operation involves one complex multiplication and one complex addition. One complex multiplication requires
four real multiplications and two real additions. One complex addition requires two real additions. Thus, one
operation in the DFT computation involves four real additions and four real multiplications. We can now calculate
the complexity of an N-point DFT, in terms of real operations, as 4N2 real multiplications and 4N2 real additions.

To illustrate how this maps to real hardware, consider the reference embedded processor. On the reference
processor, multiplication and addition both consume 1 cycle (see Appendix A, Section A.4, on the companion
website for more details on the cycle estimation). The processor also has two MAC (multiply and accumu-
late) units, which can perform two additions and two multiplications per cycle. Using these MAC units, an
N = 4096-point DFT will consume approximately 33.5 million (= 2 ×4096×4096) cycles.

7.1.1 Fast Fourier Transforms

The FFT works by exploiting symmetry in the matrix W in Equation (7.3). Before going into the concepts
involved in the FFT, let’s examine the symmetry of W for N = 6, N = 7, and N = 8.

W6×6 =

⎡
⎢⎢⎢⎣

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 0.5000 −0.8660i −0.5000 −0.8660i −1.0000 −0.0000i −0.5000 +0.8660i 0.5000 +0.8660i
1.0000 −0.5000 −0.8660i −0.5000 +0.8660i 1.0000 +0.0000i −0.5000 −0.8660i −0.5000 +0.8660i
1.0000 −1.0000 −0.0000i 1.0000 +0.0000i −1.0000 −0.0000i 1.0000 +0.0000i −1.0000 −0.0000i
1.0000 −0.5000 +0.8660i −0.5000 −0.8660i 1.0000 +0.0000i −0.5000 +0.8660i −0.5000 −0.8660i
1.0000 0.5000 +0.8660i −0.5000 +0.8660i −1.0000 −0.0000i −0.5000 −0.8660i 0.5000 −0.8660i

⎤
⎥⎥⎥⎦

W7×7 =

⎡
⎢⎢⎢⎢⎣

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 0.6235 −0.7818i −0.2225 −0.9749i −0.9010 −0.4339i −0.9010 +0.4339i −0.2225 +0.9749i 0.6235 +0.7818i
1.0000 −0.2225 −0.9749i −0.9010 +0.4339i 0.6235 +0.7818i 0.6235 −0.7818i −0.9010 −0.4339i −0.2225 +0.9749i
1.0000 −0.9010 −0.4339i 0.6235 +0.7818i −0.2225 −0.9749i −0.2225 +0.9749i 0.6235 −0.7818i −0.9010 +0.4339i
1.0000 −0.9010 +0.4339i 0.6235 −0.7818i −0.2225 +0.9749i −0.2225 −0.9749i 0.6235 +0.7818i −0.9010 −0.4339i
1.0000 −0.2225 +0.9749i −0.9010 −0.4339i 0.6235 −0.7818i 0.6235 +0.7818i −0.9010 +0.4339i −0.2225 −0.9749i
1.0000 0.6235 +0.7818i −0.2225 +0.9749i −0.9010 +0.4339i −0.9010 −0.4339i −0.2225 −0.9749i 0.6235 −0.7818i

⎤
⎥⎥⎥⎥⎦

Transforms and Filters 323

W8×8 =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.0000 0.7071−0.7071i 0.0000−1.0000i −0.7071−0.7071i −1.0000−0.0000i −0.7071+0.7071i −0.0000+1.0000i 0.7071+0.7071i

1.0000 0.0000−1.0000i −1.0000−0.0000i −0.0000+1.0000i 1.0000+0.0000i 0.0000 – 1.0000i −1.0000 – 0.0000i −0.0000 +1.0000i

1.0000 −0.7071−0.7071i −0.0000+1.0000i 0.7071−0.7071i −1.0000−0.0000i 0.7071+0.7071i 0.0000−1.0000i −0.7071+0.7071i

1.0000 −1.0000−0.0000i 1.0000+0.0000i −1.0000−0.0000i 1.0000+0.0000i −1.0000−0.0000i 1.0000+0.0000i −1.0000−0.0000i

1.0000 −0.7071+0.7071i 0.0000−1.0000i 0.7071+0.7071i −1.0000−0.0000i 0.7071−0.7071i −0.0000+1.0000i −0.7071−0.7071i

1.0000 −0.0000+1.0000i −1.0000−0.0000i 0.0000−1.0000i 1.0000+0.0000i −0.0000+1.0000i −1.0000−0.0000i −0.0000−1.0000i

1.0000 0.7071+0.7071i −0.0000+1.0000i −0.7071+0.7071i −1.0000−0.0000i −0.7071−0.7071i −0.0000−1.0000i 0.7071−0.7071i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Observing the matrix elements of W6×6, W7×7, and W8×8, we find symmetry (except for sign) in both the
horizontal and vertical directions. Similarly, in both W6×6 and W8×8, we also find periodicity (except for sign)
in both horizontal and vertical directions. In matrix W6×6, the elements repeat (except for sign) two times in any
column or row (i.e., period = N/2 = 6/2 = 3). In matrix W8×8, the elements repeat (except for sign) four times
in any column or row (i.e., period = N/4 = 8/4 = 2). The N/2 period in matrix elements (or twiddle factors)
is present in all DFT twiddle-factor matrices when N is even. Similarly, the N/4 period is present in all DFT
twiddle-factor matrices where N is the power of 2 (i.e., for N equal to 4,8,16,32,64 . . .).

DFT Matrix Factorization
Why are the symmetry and periodicity of twiddle factors so important? They allow us to implement the DFT very
efficiently. When we have repeated elements in a matrix, we can use divide-and-conquer methods to perform the
matrix and vector multiplication (as seen in Equation (7.2)) with fewer multiplications.Consider, for illustration,
a DFT matrix with N = 8. The 8-point DFT twiddle-factor matrix in terms of W8 (= e− j2π/8, the primitive eighth
root of unity) is expressed as follows:

W8×8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

1 W 1
8 W 2

8 W 3
8 W 4

8 W 5
8 W 6

8 W 7
8

1 W 2
8 W 4

8 W 6
8 W 8

8 W 10
8 W 12

8 W 14
8

1 W 3
8 W 6

8 W 9
8 W 12

8 W 15
8 W 18

8 W 21
8

1 W 4
8 W 8

8 W 12
8 W 16

8 W 20
8 W 24

8 W 28
8

1 W 5
8 W 10

8 W 15
8 W 20

8 W 25
8 W 30

8 W 35
8

1 W 6
8 W 12

8 W 18
8 W 24

8 W 30
8 W 36

8 W 42
8

1 W 7
8 W 14

8 W 21
8 W 28

8 W 35
8 W 42

8 W 49
8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.4)

To begin, we divide the matrix W8×8 into two parts, placing all even columns first followed by all odd columns.
This is achieved by multiplying W8×8 with the matrix A8×8, defined as follows:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

324 Chapter 7

The rearranged matrix, W ′
8×8 = W8×8 A8×8, and the elements of W ′

8×8 are given in the following:

W ′
8×8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

1 W 2
8 W 4

8 W 6
8 W 1

8 W 3
8 W 5

8 W 7
8

1 W 4
8 W 8

8 W 12
8 W 2

8 W 6
8 W 10

8 W 14
8

1 W 6
8 W 12

8 W 18
8 W 3

8 W 9
8 W 15

8 W 21
8

1 W 8
8 W 16

8 W 24
8 W 4

8 W 12
8 W 20

8 W 28
8

1 W 10
8 W 20

8 W 30
8 W 5

8 W 15
8 W 25

8 W 35
8

1 W 12
8 W 24

8 W 36
8 W 6

8 W 18
8 W 30

8 W 42
8

1 W 14
8 W 28

8 W 42
8 W 7

8 W 21
8 W 35

8 W 49
8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

P4×4 Q4×4

R4×4 S4×4

]
(7.5)

After careful observation of the matrices P4×4 and R4×4, we can see that

W 2
8 = e− j2π2/8 = e− j2π/4 = W 1

4 , W 4
8 = W 2

4 , W 6
8 = W 3

4 , W 12
8 = W 6

4 , W 18
8 = W 9

4

W 8
8 = e− j2π8/8 = e− j2π = 1 = W 4

4 , W 16
8 = W 8

4 = e− j2π8/4 = e− j2π2 = 1

W 24
8 = 1, W 10

8 = e− j2π10/8 = e− j2π(2+8)/8 = e− j2π2/8.e− j2π8/8 = e− j2π1/4 = W 1
4

W 20
8 = W 2

4 , W 30
8 = W 3

4 , W 12
8 = W 2

4 , W 24
8 = 1 = W 4

4 , W 36
8 = W 4

8 = W 2
4 .1 = W 6

4 , W 14
8 = W 3

4

W 28
8 = W 6

4 and W 42
8 = W 9

4

Thus, P4×4 and R4×4 represent 4-point, DFT twiddle-factor matrices as follows:

P4×4 = W4×4 =

⎡
⎢⎢⎢⎢⎣

1 1 1 1
1 W 1

4 W 2
4 W 3

4

1 W 2
4 W 4

4 W 6
4

1 W 3
4 W 6

4 W 9
4

⎤
⎥⎥⎥⎥⎦ R4×4 = W4×4 =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1

1 W 1
4 W 2

4 W 3
4

1 W 2
4 W 4

4 W 6
4

1 W 3
4 W 6

4 W 9
4

⎤
⎥⎥⎥⎥⎥⎦

Similarly, after examination of matrices Q4×4 and S4×4, we can rewrite them as follows:

Q4×4 =

⎡
⎢⎢⎢⎢⎣

1 1 1 1
W 1

8 W 3
8 W 5

8 W 7
8

W 2
8 W 6

8 W 10
8 W 14

8

W 3
8 W 9

8 W 15
8 W 21

8

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 W 1

8 0 0

0 0 W 2
8 0

0 0 0 W 3
8

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 1 1 1

1 W 2
8 W 4

8 W 6
8

1 W 4
8 W 8

8 W 12
8

1 W 6
8 W 12

8 W 18
8

⎤
⎥⎥⎥⎥⎦

= D8

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1

1 W 1
4 W 2

4 W 3
4

1 W 2
4 W 4

4 W 6
4

1 W 3
4 W 6

4 W 9
4

⎤
⎥⎥⎥⎥⎥⎦= D8W4×4

Transforms and Filters 325

S4×4 =

⎡
⎢⎢⎢⎢⎣

W 4
8 W 12

8 W 20
8 W 28

8
W 5

8 W 15
8 W 25

8 W 35
8

W 6
8 W 18

8 W 30
8 W 42

8

W 7
8 W 21

8 W 35
8 W 49

8

⎤
⎥⎥⎥⎥⎦= W 4

8

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1

W 1
8 W 3

8 W 5
8 W 7

8

W 2
8 W 6

8 W 10
8 W 14

8

W 3
8 W 9

8 W 15
8 W 21

8

⎤
⎥⎥⎥⎥⎥⎦= −

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1

W 1
8 W 3

8 W 5
8 W 7

8

W 2
8 W 6

8 W 10
8 W 14

8

W 3
8 W 9

8 W 15
8 W 21

8

⎤
⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 W 1
8 0 0

0 0 W 2
8 0

0 0 0 W 3
8

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1

1 W 2
8 W 4

8 W 6
8

1 W 4
8 W 8

8 W 12
8

1 W 6
8 W 12

8 W 18
8

⎤
⎥⎥⎥⎥⎥⎦= −D8W4×4

Thus, Equation (7.5) can be rewritten as follows:

W ′
8×8 =

[
W4×4 D8W4×4

W4×4 −D8W4×4

]
(7.6)

Radix-2 FFT Algorithms
Once again, using matrix A8×8, we can rearrange the input data x8×8. Let x ′

8×1 = A8×8x8×1 and let X ′
8×1 =

W ′
8×8x ′

8×1. Since A8×8 A8×8 = I8×8, based on Equations (7.4) and (7.6), we will have X8×1 = W8×8x8×1 =
W8×8 A8×8 A8×8x8×1 = W ′

8×8x ′
8×1 = X ′

8×1. With this, by rearranging the input data x8×1, we can compute the
8-point DFT output X8×1 using two 4-point DFTs (using Equation (7.6)). The corresponding signal flow diagram
is shown in Figure 7.1.

This factorization is not yet over, as we can further factorize the W4×4 into W2×2 in the same manner. That
is, each 4-point DFT can be computed using two 2-point DFTs. The block diagram for computing an 8-point
DFT using four 2-point DFTs is shown in Figure 7.2. The corresponding signal flow diagram for computing
an 8-point DFT using 2-point DFTs is shown in Figure 7.3. As shown in Figure 7.2, we compute the 8-point
DFT using four 2-point DFTs in three stages. Only in the first stage do we compute the 2-point DFTs; in the
second and third stages we combine the outputs of previous stages with simple twiddle-factor multiplications
(not shown in the block diagram) to get two 4-point DFT outputs and then one 8-point DFT output.

As seen in Figure 7.3, we compute the 8-point DFT in terms of 2-point DFTs in three stages (here the 2-point
DFT is the smallest butterfly enclosed in a dashed curve as shown). In general, if N is a power of 2, then we
compute the N-point DFT in log2 N stages.

The number of complex multiplications in this approach is N log2N , and half of these are multiplications by
−1. Thus, we only require (N/2) log2 N complex multiplications and N log2 N complex additions to compute
an N-point DFT. For N = 4096, this is only about 0.09 million cycles on the reference embedded processor.
Compared to the DFT (which requires about 33.5 million cycles), this is 372 times faster!

W4 3 4

W4 3 4

x98 3 1 [0:3] 5{x0, x2, x4, x6}

x98 3 1 [4:7] 5{x1, x3, x5, x7}
X

1
1

1

1

1

2

X8 3 1 [0:3] 5

{X0, X1, X2, X3}

X8 3 1 [4:7] 5

{X4, X5, X6, X7}
D8

Data Arrangement 4-Point DFT Combine 4-Point DFTs 8-Point DFT Output

Figure 7.1: Signal flow diagram of 8-point DFT computation using two 4-point DFTs.

326 Chapter 7

W2 3 2

W2 3 2

W2 3 2

W2 3 2

Combine
2-Point
DFT’s
Output

Combine
4-Point
DFT’s
OutputCombine

2-Point
DFT’s

Output

Four 2-Point
DFT Outputs

Two 4-Point
DFT Outputs

8-Point
DFT Output

x0
x4

x2

x6

x1
x5

x3

x7

X0

X1

X2

X3

X4

X5

X6

X7

Data
Arrangement

Figure 7.2: Block diagram to compute 8-point DFT using four 2-point DFTs.

21

21

21

21

21

W 8
0

W 8
0

W 8
0

W 8
0

W 8
0

W 8
0

W 8
0

W 8
2

W 8
2

W 8
3

W 8
1

W 8
2

21

21

X0

21

21

21

21

x7

x3

x5

x1

x6

x2

x4

x0

X1

X2

X4

X5

X6

X7

X3

Stage 1 Stage 2 Stage 3

21

Figure 7.3: Signal flow diagram of decimation-in-time radix-2, 8-point DFT algorithm.

The multistage algorithm used to compute the 8-point DFT efficiently as shown in Figure 7.3 is referred to
as a decimation-in-time (DIT) radix-2 algorithm. We also have an equivalent decimation-in-frequency (DIF)
radix-2 algorithm for the N-point DFT. The signal flow diagram of DIF 8-point DFT is shown in Figure 7.4,
and is exactly opposite to the flow of the DIT algorithm. The complexity of both algorithms is exactly the same.

An FFT is any algorithm that computes the DFT faster than the direct computation.Since the DFT is computed
faster with radix-2 algorithms than with direct computation, we call these algorithms radix-2 FFT algorithms.

Bit Reversal
The FFT expects the input in the bit-reversal order in the case of DIT radix-2 or outputs the data in bit-reversal
order in the case of DIF radix-2 algorithms. Therefore, we discuss the data sample’s arrangement at the input
of DIT radix-2 algorithm and extracting the appropriate output in the case of the DIF radix-2 algorithm. In the
case of the DIT radix-2 algorithm, the inputs are rearranged (log2 N −1) times in the following manner:

{x0, x1, x2, x3, x4, x5, x6, x7} → {[x0, x2, x4, x6], [x1, x3, x5, x7]} <−− First-time decimation

→ {[(x0, x4), (x2, x6)], [(x1, x5), (x3, x7)]} <−− Second-time decimation

→ {x0, x4, x2, x6, x1, x5, x3, x7}

Transforms and Filters 327

21

21

21

21

21

21

21

X0

x7

x6

x5

x4

x3

x2

x1

x0

X4

X2

X1

X5

X3

X7

X6

Stage 1 Stage 2 Stage 3

21 21

21

21

21

W 8
0

W 8
0

W 8
0

W 8
0

W 8
0

W 8
0

W 8
0

W 8
1

W 8
2

W 8
2

W 8
2W 8

3

Figure 7.4: Signal flow diagram for decimation-in-frequency radix-2, 8-point DFT algorithm.

Table 7.1: Bit-reversal index for samples
of decimation-in-time radix-2 FFT

Before Arrangement After Arrangement

0 (000) 0 (000)
1 (001) 4 (100)
2 (010) 2 (010)
3 (011) 6 (110)
4 (100) 1 (001)
5 (101) 5 (101)
6 (110) 3 (011)
7 (111) 7 (111)

The DIF radix-2 algorithm outputs the frequency components in a particular order (permuted), and the actual
DFT output is obtained by undoing this permutation. The actual and permuted sample indices for the 8-point
DFT are provided in Table 7.1, and the corresponding binary numbers are shown in brackets. From these binary
numbers, it is clear that the permuted index is obtained by reversing the bits of the actual index.

For example, in the case of the DIT radix-2 algorithm, the input sample (x3) at index 3 (or binary 011) is
moved to the index 6 (or binary 110), and the sample (x4) at index 4 (or binary 100) is moved to the index 1 (or
binary 001) after rearrangement.

Radix-4 FFT Algorithm
When the length of the DFT N is a power of 4, we can further reduce the number of complex operations using
a radix-4 FFT algorithm. With a radix-4 FFT, we first divide the data into four datastreams and form a 4× N/4
matrix. We compute four N/4-point DFTs and then multiply with twiddle factors and transpose the matrix
(although this is a complex matrix, we transpose the matrix without conjugation). Then, we obtain the N-point
DFT by computing 4-point DFTs on the transposed (N/4)×4 matrix. This process is repeated for the next stage
by dividing each N/4-point DFT into four N/16 streams and it is continued until the length of the DFT reaches
4 as illustrated in Figure 7.5.

As an example, consider a 16-point DFT computed using a radix-4 FFT (i.e., N = 16). Let x ={x [n]}, 0 ≤ n ≤
N −1 be the input vector with 16 discrete-time samples. We compute the 16-point DFT output X = {X[k]},0 ≤
k ≤ N − 1, for input x using a radix-4 FFT algorithm as shown in Figure 7.5 We first divide x [n] into four

328 Chapter 7

Make one N-Point DFT

Make four
N /4-Point DFTs

Make N /16
16-Point DFTs

Compute N /4
4-Point DFTs

N Discrete
Input
Samples

TT

T

T

S 5 1 S 5 2 S 5 log4
N

2 1 S 5 log4
N

• Multiply with twiddle factors
• Transpose (just do transpose,
 no complex conjugation)
• Compute 4-Point DFTs on
 transpose

Stages:

:

Figure 7.5: An illustration of radix-4 FFT computation.

sequences and form a 4× N /4 two-dimensional array or matrix as x(u, v) = x [4v +u], where 0 ≤ v ≤ N/4−1
and 0 ≤ u ≤ 3. The samples of x(u, v) in two-dimensional space for N = 16 follow:

x [0], x [4], x [8], x [12]
x [1], x [5], x [9], x [13]
x [2], x [6], x [10], x [14]
x [3], x [7], x [11], x [15]

If X ′(u,q) represents a row-wise N/4-point DFT of x(u, v), then

X ′(u,q) =
(N/4)−1∑

p=0

x(u, p)W pq
N/4 (7.7)

For N = 16, Equation (7.7) becomes a 4-point DFT computation on rows of x(u, v), and it can be expressed in
a matrix form as shown in Equation (7.8):⎡

⎢⎢⎣
X ′(u,0)

X ′(u,1)

X ′(u,2)

X ′(u,3)

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x(u,0)

x(u,1)

x(u,2)

x(u,3)

⎤
⎥⎥⎦ (7.8)

The butterfly of a 4-point DFT equivalent to Equation (7.8) is shown in Figure 7.6. The 4-point DFT butterfly
is also the basic butterfly in the radix-4 FFT algorithm.

Next, we multiply the N/4-point DFT output X ′(u,q) with twiddle factors W uq
N and obtain X ′′(u,q) as

X ′′(u,q) = W uq
N X ′(u,q), where 0 ≤ u ≤ 3 and 0 ≤ q ≤ N/4−1:

⎡
⎢⎢⎢⎣

X ′′(0,0) X ′′(0,1) X ′′(0,2) X ′′(0,3)

X ′′(1,0) X ′′(1,1) X ′′(1,2) X ′′(1,3)

X ′′(2,0) X ′′(2,1) X ′′(2,2) X ′′(2,3)

X ′′(3,0) X ′′(3,1) X ′′(3,2) X ′′(3,3)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

W 0
16 X ′(0,0) W 0

16 X ′(0,1) W 0
16 X ′(0,2) W 0

16 X ′(0,3)

W 0
16 X ′(1,0) W 1

16 X ′(1,1) W 2
16 X ′(1,2) W 3

16 X ′(1,3)

W 0
16 X ′(2,0) W 2

16 X ′(2,1) W 4
16 X ′(2,2) W 6

16 X ′(2,3)

W 0
16 X ′(3,0) W 3

16 X ′(3,1) W 6
16 X ′(3,2) W 9

16 X ′(3,3)

⎤
⎥⎥⎥⎥⎦

Now, we compute N/4 4-point DFTs on N/4 columns of a 4×N/4 matrix with elements X ′′(u,q), and output
it as a 4×N /4 matrix with elements X (p,q) as given in Equation (7.9). Then, the N-point DFT of x in the

Transforms and Filters 329

y0

y1

y2

y3

Y0

Y1

Y2

Y321

21

21

21

2j

j

2j

j

y [0]

y [1]

y [2]

y [3]

Y [0]

Y [1]

Y [2]

Y [3]

Figure 7.6: Radix-4 basic butterfly signal flow diagram.

digit-reversed order is obtained by converting two-dimensional indices to one-dimensional indices as
X[(N/4)p +q] = X (p,q).

X (p,q) =
3∑

m=0

X ′′(m,q)W mq
4 , 0 ≤ p ≤ 3 (7.9)

X (0,0), X (0,1), X (0,2), X (0,3),

X (1,0), X (1,1), X (1,2), X (1,3),

X (2,0), X (2,1), X (2,2), X (2,3),

X (3,0), X (3,1), X (3,2), X (3,3),

⇒
X (0), X (4), X (8), X (12),

X (1), X (5), X (9), X (13),

X (2), X (6), X (10), X (14),

X (3), X (7), X (11), X (15)

The one-dimensional output vector X = {X[0], X[4], X[8], X[12], X[1], X[5], X[9], X[13], X[2], X[6],
X[10], X[14], X[3], X[7], X[11], X[15]} is in digit-reversed order. If we apply N/4 4-point DFTs in Equa-
tion (7.9) on N /4 rows of transposed matrix (just a transpose, not a complex conjugate transpose) X ′′(q,u), then
we get the DFT output X with indices in the correct order.

The 16-point radix-4 decimation-in-time algorithm with the input in normal order and the output in digit-
reversed order is shown in Figure 7.7. The complexity of a radix-4 FFT algorithm in terms of number of
operations is N log2 N complex additions and (3N/8) log2 N complex multiplications. That is, the number of
complex additions of the radix-4 FFT is the same as a radix-2 FFT, but the number of complex multiplications
in the radix-4 FFT is less than the number present in the radix-2 FFT. Thus, if N is a power of 4, then the use of
the radix-4 FFT has computational advantages. However, having a DFT whose length N is a power of 4 is not
always possible. In that case we can combine both radix-4 and radix-2 FFTs. Usually, the last stage of an FFT
can be either a radix-4 stage or a radix-2 stage depending on the length of N . If N = 2n and n > 3, we use only
a radix-4 FFT for all stages when n is even. Otherwise, we use radix-4 for all stages except for the last stage
where we use a radix-2 FFT algorithm instead.

7.1.2 Radix FFT Fixed-Point Simulation

In this section, we discuss techniques to efficiently implement FFT algorithms on the reference embedded
processor. There are three steps in the FFT implementation: (1) data arrangement, (2) butterfly computations,
and (3) combining intermediate results. In the data arrangement step, we take linearly indexed samples and output
them with indices in bit-reversed order. The simulation code to perform bit reversing is given in Pcode 7.1. This
code reads the complex samples with linear indices from buffer x[], and outputs the complex samples with the
bit-reversed indices into the same input buffer x[]. If we have sufficient on-chip data memory, for an FFT with
length N , we can compute the bit-reversed indices offline and store them in a look-up table instead of computing

330 Chapter 7

W 16
1

W 16
2

W 16
2

W 16
3

W 16
4

W 16
6

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11
x12

x13

x14

x15

X0

X4

X8

X12

X1

X5

X9

X13

X2

X6

X10

X14

X3

X7

X11

X15

W 16
3

W 16
6

W 16
9

Figure 7.7: Sixteen-point DFT computation using decimation-in-time radix-4 FFT.

them in real time. Then, we access the samples in bit-reversed indexing fashion from samples in a buffer with
linear indexing using the bit-reversed indices look-up table.

Now, with the N = 2n(n > 3) bit-reversed complex samples in x [], we can simulate the combination of
radix-4 and radix-2 complex FFT algorithms using 1.15 fixed-point computations (see Appendix B.1 on the
companion website for more details on the fixed-point representation of real numbers).

In the DFT computation, we use the twiddle-factor matrix. We could calculate this matrix on the fly, but
this would be costly because the twiddle-factor computation involves floating-point computations of a nonlinear
function e− j2π nk/N . Instead, we precompute the twiddle factors and store the values in the data memory in 1.15
format for various lengths of N .

//void bit_reverse(short *x, int n)

m = n << 1;j = 1;
for(i = 1;i < m;i+ = 2){

if(j > i){
tmp = x[j-1];x[j-1] = x[i-1];
x[i-1] = tmp;tmp = x[j];
x[j] = x[i];x[i] = tmp;

}
k = n;
while(k > = 2 && j > k){

j- = k;k >> = 1;
}
j+ = k;

}

Pcode 7.1: Simulation code to compute bit-reversed indexing.

The complex FFT simulation is divided into three parts. In the first part, we compute only 4-point complex
DFTs. Using the routine given in Pcode 7.2, we compute a radix-4 FFT first stage using only additions and
subtractions without any multiplications. In the second part, we compute multiple radix-4 middle stages. In
these middle stages, we multiply the previous stage output with the twiddle-factor values before applying
4-point DFTs for the current stage. As the values in the first row of the twiddle-factor matrix are all 1s in all
stages, we handle the first row separately without any twiddle-factor multiplications. All other rows are multiplied

Transforms and Filters 331

with twiddle factors first, and then the 4-point DFTs are computed. The simulation code for the second part
of the FFT computation is given in Pcode 7.3. The while() loop in Pcode 7.3 runs

(⌊
logN

4

⌋−1
)

times, where⌊
a
⌋

represents the integer part of real number a. The first for() loop computes 4-point DFTs for the first
row of the data matrix. The second for() loop computes 4-point DFTs for other rows of the data matrix after
multiplying with the twiddle factors. We perform twiddle-factor multiplication using 1.15 fixed-point comput-
ations.

In the third part of the FFT computation, depending on the DFT length N , we use either radix-2 or radix-4
butterflies to compute the last stage of the FFT. If N is a power of 4, we call the radix-4 algorithm given in
Pcode 7.3. If N is only a power of 2, then we use the radix-2 algorithm as given in Pcode 7.4. In the radix-2
algorithm computation, we reuse the twiddle-factor values of the radix-4 algorithm by accessing the appropriate
twiddle-factor values (except for sign). The sign information is compensated for within the addition/ subtraction
operations. As each stage of the FFT introduces a gain to the output, we take care of this by scaling the intermediate
outputs to avoid overflow in the outputs.

// void rad4_fft(short *x, short *tw, int n)
m = n >> 2;

// first part: first stage
r = 2; s = 4; // values are fixed for N = 512-point FFT computation
t = 6; p = 8;
k = -p;
for(i = 0; i < m; i++){ // 512 -> 128x4 (i.e., compute 128 4-point DFTs)

k = k + p;
a = x[k] + x[k+r]; b = x[k+1] + x[k+r+1];
c = x[k] - x[k+r]; d = x[k+1] - x[k+r+1];
e = x[k+s] + x[k+t]; f = x[k+s+1] + x[k+t+1];
x[k] = (a + e) >> 1; x[k+1] = (b + f) >> 1;
a = (a - e) >> 1; b = (b - f) >> 1;
e = x[k+s] - x[k+t]; f = x[k+s+1] - x[k+t+1];
x[k+s] = a; x[k+s+1] = b;
x[k+r] = (c + f) >> 1; x[k+r+1] = (d - e) >> 1;
x[k+t] = (c - f) >> 1; x[k+t+1] = (d + e) >> 1;

}

Pcode 7.2: Simulation code for first stage of radix-4 complex FFT algorithm.

In the radix-4 FFT stages given in Pcodes 7.2 and 7.3, we scaled down the output of the 4-point DFTs by
a factor of 2 by right shifting 1 bit within the addition/subtraction operations. We can perform this scaling of
intermediate outputs for free on the reference embedded processor (see Appendix A on the companion website)
by shifting the addition/subtraction value left by 1 bit using optional mode.

7.1.3 Larger DFT Simulation

In many applications, the DFT length N is on the order of thousands of samples. For example, the DFT of length
N = 2048,4096, or 8192 is used in the DVB-H mobile TV application for performing OFDM (orthogonal
frequency division modulation, used in many wireless standards). In such cases, the DFT computation uses large
data buffers stored in memory, and the access pattern of the data from these buffers arbitrarily causes frequent
closing and opening of DRAM pages, resulting in memory stalls. Thus, computation of longer-length DFTs
requires special data arrangements to avoid memory stalls. If we divide the larger DFT into smaller DFTs, then
this memory stall problem can be resolved. For this, we borrow the idea of the radix-4 FFT algorithm, which
always divides the N-point DFT into four N/4-point DFTs. In the same way, we can efficiently compute the
larger DFT using the matrix FFT.

With matrix FFT, we divide a long one-dimensional data array x [n], where 0 ≤ n ≤ N −1, into many shorter-
length blocks y(p,q) = x [qP + p], where 0 ≤ p ≤ P − 1, 0 ≤ q ≤ Q − 1 and N = PQ, arranging them in a
two-dimensional matrix. We then compute Q-point DFTs on P rows to get Y (r, s). Next, we multiply Y (r, s)
with the twiddle factors and then compute P-point DFTs on Q columns to get Z (u, v). Now, the DFT of the

332 Chapter 7

// Second part: middle stages (continuation from Pcode 7.2)
m = n >> 4; q = 3; p = p << 2;
k = -p;
u = n >> 1;v = n >> 2;
u = u + v;
u = u >> 1;
l = u; r = r << 2;s = s << 2; t = t << 2;
while(m > 1){ // 128 -> 32x4, 32 -> 8x4, 8 -> 2x4 (for N = 512 case)

for(i = 0;i< m;i++){ // 1x32 4-point DFTs, 1x8 4-point DFTs, 1x2 4-point DFTs (for N= 512 case)
k = k + p;
a = x[k] + x[k+r]; b = x[k+1] + x[k+r+1]; c = x[k] - x[k+r]; d = x[k+1] - x[k+r+1];
e = x[k+s] + x[k+t]; f = x[k+s+1] + x[k+t+1];
x[k] = (a + e) >> 1; x[k+1] = (b + f) >> 1; a = (a - e) >> 1; b = (b - f) >> 1;
e = x[k+s] - x[k+t]; f = x[k+s+1] - x[k+t+1]; x[k+s] = a; x[k+s+1] = b;
x[k+r] = (c + f) >> 1; x[k+r+1] = (d - e) >> 1;
x[k+t] = (c - f) >> 1; x[k+t+1] = (d + e) >> 1;

} // first row computed without multiplications as all twiddle factor values are 1s
for(i = 0;i <q;i++){// 3, 15, 63 (for N = 512 case)

k = k - m*p + 2;
for(j = 0;j< m;j++){ // 3x32 4-point DFTs, 15x8 4-point DFTs, 63x2 4-point DFTs

k = k + p;
g = x[k+r]*tw[u]; h = x[k+r+1]*tw[u+1];
g = (g - h + RC) >> 15;
a = x[k] + g; c = x[k] - g;
g = x[k+r]*tw[u+1]; h = x[k+r+1]*tw[u];
g = (g + h + RC) >> 15;
b = x[k+1] + g; d = x[k+1] - g;
g = x[k+s]*tw[u+2]; h = x[k+s+1]*tw[u+3];
g = (g - h + RC) >> 15;
v = x[k+s]*tw[u+3]; h = x[k+s+1]*tw[u+2];
h = (v + h + RC) >> 15;
e = x[k+t]*tw[u+4]; v = x[k+t+1]*tw[u+5];
e = (e - v + RC) >> 15;
f = x[k+t]*tw[u+5]; v = x[k+t+1]*tw[u+4];
f = (f + v + RC) >> 15;
v = g + e; w = h + f;
x[k] = (a + v) >> 1; x[k+1] = (b + w) >> 1;
a = (a - v) >> 1; b = (b - w) >> 1;
e = g - e; f = h - f;
x[k+s] = a; x[k+s+1] = b;
x[k+r] = (c + f) >> 1; x[k+r+1] = (d - e) >> 1;
x[k+t] = (c - f) >> 1; x[k+t+1] = (d + e) >> 1;

} // 4-point DFT computed after multiplying with twiddle factors
u = u + l;

}
l = l >> 2; u = l; m = m >> 2; q = q << 2;
q = q + 3; p = p << 2; r = r << 2; s = s << 2; t = t << 2;
k = -p;

}

Pcode 7.3: Simulation code for middle stages of radix-4 complex FFT algorithm.

one-dimensional long array x [n] is obtained as X[k] = Z (uN/P +v), where 0 ≤ k ≤ N −1,0 ≤ u ≤ P −1 and
0 ≤ v ≤ Q −1.

For example, consider the computation of a DFT for data x [n] of length N = 8192. We divide N = 8192
into two integers P = 64 and Q = 128, and arrange the data x [n] in matrix form with 64 rows, each of 128
length. We first compute 64 128-point DFTs row-wise and then multiply the row-wise DFT computed matrix
with twiddle factors. We then compute 128 64-point DFTs column-wise. In this way, we avoid memory stalls
due to page misses.

When P and Q are relatively prime numbers (with N = PQ) and the twiddle factors are from a Galois field,
multiplication of intermediate matrix DFT output with twiddle factors is not required in computing the N-point
DFT. For example, using the Reed-Solomon erasures correction in Section 4.3, the 255-point DFT is computed
with 15 17-point row DFTs followed by 17 15-point column DFTs. In this case, as 15 and 17 are relatively
prime, we do not require the multiplication of intermediate matrix DFT output with twiddle factors.

Transforms and Filters 333

q = q + 1;
q = q >> 1;
u = 2; k = 0;
for(i= 0;i<q;i++){

g = x[k+r]*tw[u]; h = x[k+r+1]*tw[u+1];
g = (g - h + RC) >> 15;
a = x[k] - g;
x[k] = x[k] + g;
g = x[k+r]*tw[u+1]; h = x[k+r+1]*tw[u];
h = (g + h + RC) >> 15;
b = x[k+1] - h;
x[k+1] = x[k+1] + h;
x[k+r] = a; x[k+r+1] = b;
u+= 6; k+= 2;

}
for(i= 0;i<q;i++){

g = x[k+r]*tw[u]; h = x[k+r+1]*tw[u+1];
g = (-g - h + RC) >> 15;
a = x[k] - g;
x[k] = x[k] + g;
g = x[k+r]*tw[u+1]; h = x[k+r+1]*tw[u];
h = (g - h + RC) >> 15;
b = x[k+1] - h;
x[k+1] = x[k+1] + h;
x[k+r] = a; x[k+r+1] = b;
u-= 6; k+= 2;

}

Pcode 7.4: Simulation code to compute the last stage of FF T (with radix-2 algorithm).

7.1.4 FFT Simulation Results

In this section, we provide the simulation results for a 16-point DFT and a 32-point DFT. We compute the
16-point DFT using two radix-4 stages and the 32-point DFT with two radix-4 stages and one radix-2 stage. We
use only a three-fourth length (of N) of the twiddle factors tw[] in the FFT computation since the first row of
the twiddle factors are all 1s (when we arrange the twiddle factors in the matrix form). Given the DFT length
N , the twiddle factors are computed using the following equations:

tw[3k] = W 2k
N = e− j2π2k/N

tw[3k +1] = W k
N = e− j2πk/N

tw[3k +2] = W 3k
N = e− j2π3k/N

We use two additional twiddle factors {0, − j}, {0, − j} in computing the last stage with the radix-2 FFT. For
fixed-point computation, we represent the twiddle factors in 1.15 format.

16-point DFT
Input: 16 complex samples

{11,9},{1,7},{16,5},{9,14},{13,11},{10,13},{14,10},{3,8},
{8,3},{7,12},{4,6},{6,1},{15,15},{12,2},{2,4},{5,16}

Bit-reversed index input:
{11,9},{8,3},{13,11},{15,15},{16,5},{4,6},{14,10},{2,4},
{1,7},{7,12},{10,13},{12,2},{9,14},{6,1},{3,8},{5,16}

Twiddle factors: 12 +2 complex samples
{32767,0},{32767,0},{32767,0},{23170,-23170}
{30273,-12539},{2539,-30273},{0,-32767},{23170,-23170}
{-23170,-23170},{-23170,-23170},{12539,-30273},{-30273,12539}
{0,-32768},{0,-32768}

FFT first stage output: Radix-4 stage
{47,38},{-1,8},{-9,-14},{7,4},{36,25},{18,-13},{4,-3},{6,11},
{30,34},{5,-3},{-14,4},{-17,-7},{23,39},{-5,15},{7,-9},{11,11}

334 Chapter 7

FFT second stage and final output: Radix-4 stage
{136,136},{18,-9},{-30,-4},{-16,-1},{6,6},{-20,39},{6,-14}, {22,15},
{30,-10},{-12,-19},{6,-32},{38,-15},{16,20},{10,21},{-18,-6}, {-16,17}

32-point DFT
Twiddle factors: 24+2 complex samples

{32767,0},{32767,0},{32767,0},{30273,-12539},
{32138,-6392},{27245,-18204},{23170,-23170},{30273,-12539},
{12539,-30273},{12539,-30273},{27245,-18204},{-6392,-32138},
{0,-32767},{23170,-23170},{-23170,-23170},{-12539,-30273},
{18204,-27245},{-32138,-6392},{-23170,-23170},{12539,-30273},
{-30273,12539},{-30273,-12539},{6392,-32138},{-18204,27245},
{0,-32768},{0,-32768}

Input: 32 complex samples
{15,26},{10,4},{7,13},{9,18},{20,23},{2,7},{22,9},{6,25},
{27,16},{32,17},{23,15},{4,32},{26,27},{12,10},{8,8},{3,24},
{5,11},{19,31},{31,2},{28,5},{18,30},{16,12},{17,14},{14,29},
{21,28},{25,6},{24,22},{30,21},{29,1},{1,3},{11,20},{13,19}

Bit-reverse of input:
{15,26},{5,11},{27,16},{21,28},{20,23},{18,30},{26,27},{29,1},
{7,13},{31,2},{23,15},{24,22},{22,9},{17,14},{8,8},{11,20},
{10,4},{19,31},{32,17},{25,6},{2,7},{16,12},{12,10},{1,3},
{9,18},{28,5},{4,32},{30,21},{6,25},{14,29},{3,24},{13,19}

FFT first stage output: Radix-4 stage
{68,81},{-2,9},{-28,-7},{22,21},{93,81},{28,-4},{-17,25},{-24,-10},
{85,52},{-31,12},{-9,-22},{-17,10},{58,51},{-7,-2},{20,-5},{17,-8},
{86,58},{2,-34},{-28,12},{-20,-20},{31,32},{-7,-16},{5,6},{-21,6},
{71,76},{-8,39},{3,-30},{-30,-13},{36,97},{-3,6},{4,11},{-13,-14}

FFT second stage output: Radix-4 stage
{304,265},{-14,15},{-43,-10},{22,79},{-24,-27},{-2,51},{-51,-20},{18,-19},
{18,59},{44,-43},{37,30},{42,11},{-26,27},{-36,13},{-55,-28},{6,13},
{224,263},{-2,4},{-36,-27},{-7,22},{34,-9},{52,-32},{-46,41},{-24,9},
{10,-83},{-26,-84},{-8,41},{5,-40},{76,61},{-16,-24},{-22,-7},{-54,-71}

FFT third stage and final output: Radix-2 stage
{528,528},{-15,19},{-87,-21},{28,101},{-6,-57},{0,-10},{-31,38},{22,6},
{-65,49},{-33,-1},{78,22},{6,29},{-37,-70},{-36,42},{-37,-13},{45,93},
{80,2},{-13,11},{1,1},{16,57},{-42,3},{-4,112},{-71,-78},{14,-44},
{101,69},{121,-85},{-4,38},{78,-7},{-15,124},{-36,-16},{-73,-43},{-33,-67}

7.2 Discrete Cosine Transform

The two-dimensional (2D) discrete cosine transform (DCT) is widely used in various image and video coding
applications. For instance, the two-dimensional (2D) DCT is used in JPEG for still-image compression, in the
H261/2/3 standards for video teleconferencing applications, in MPEG-2 for DVD, MPEG-4 for HDTV, and so
on. The purpose of the DCT in image and video coding standards is to reduce spatial redundancy in images or
video frames, thereby allowing us to encode them using fewer bits.

We could use the DFT (see Section 7.1) for image compression. However, we prefer the DCT for the following
reasons:

• Image pixels are highly correlated and the redundant (i.e., correlated) components are nicely decorrelated
with a DCT type-II.

• The DCT eliminates boundary discontinuities. This is important because boundary discontinuities
introduce noticeable block edge artifacts.

• The DCT has higher energy compaction. In other words, the DCT packs more energy into a smaller number
of frequency components. This translates into fewer bits needed to represent the image block.

• The DCT requires only real computations. When operating on real data, as is the case with pixel data, an
N-point DCT has a frequency resolution similar to a 2N-point DFT.

Transforms and Filters 335

In this section, we first examine the DCT algorithm, deriving the popular type-II DCT and its matrix factor-
ization. We then give a fixed-point implementation recipe for the DCT on the reference embedded processor, and
discuss DCT input/output pruning. We also discuss the computational complexity and accuracy of fixed-point
simulations with respect to floating-point simulations.

DCT Algorithm
The DCT obtains the frequency content of a signal/image in a similar manner as the discrete Fourier transform.
There are eight variants of DCTs and four types out of eight are commonly used.

Extending the DCT to two dimensions (2D) is straightforward. We achieve 2D DCT by performing 1D DCT
in the horizontal direction followed by another 1D DCT in the vertical direction. The DCT works on a block
of data, and its proper implementation on an embedded processor reduces the overall cycle cost of image and
video coding.

7.2.1 Discrete Cosine Transform

Of all discrete cosine transform variants, the type-II DCT (called DCT in this section) is the most commonly used
for image/video compression. Since the 2D DCT is simply achieved using 1D DCTs (applied to row followed by
column of 2D blocks or vice versa), here we will concentrate only on the 1D DCT (or just DCT) computations.
The DCT equation (see Section 6.4.3) is given in the following:

X[k] =
N−1∑
n=0

x [n] cos

[
π

N

(
n + 1

2

)
k

]
, k = 0,1,2, . . . , N −1 (7.10)

To eliminate the scaling factor in the data after the inverse transform, we multiply the DCT Equation (7.10)
with a variable constant βi :

X[k] = βk

N−1∑
n=0

x [n] cos

[
π

N

(
n + 1

2

)
k

]
, k = 0,1,2, . . . , N −1 (7.11)

where β0 =
√

1
N for k = 0 and βk =

√
2
N for 1 < k < N −1.

The N-point DCT in Equation (7.11) can be represented in matrix form as

X = Cd (7.12)

where C is an N × N matrix,⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0 β0 β0 · · · β0

β1 cos
(

π
2N

)
β1 cos

(3π
2N

)
β1 cos

(5π
2N

) · · · β1 cos
(

(2N−1)π
2N

)
β2 cos

(
2π
2N

)
β2 cos

(
6π
2N

)
β2 cos

(
10π
2N

) · · · β2 cos
(

2(2N−1)π
2N

)
...

...
...

...
...

βN−1 cos
(

(N−1)π
2N

)
βN−1 cos

(
(N−1)3π

2N

)
βN−1 cos

(
(N−1)5π

2N

)
· · · βN−1 cos

(
(N−1)(2N−1)π

2N

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and d = [x0, x1, x2, . . . , xN−1]T , an N × 1 matrix with N elements of input data. From this point forward, we
use the notation xn instead of x [n] to work with matrices. The inverse transform for the DCT in Equation (7.11),
which is obtained with the type-III DCT (called IDCT), follows:

xk =
N−1∑
n=0

Xnβn cos

[
π

N

(
k + 1

2

)
n

]
, k = 0,1, . . . , N −1 (7.13)

where β0 =
√

1
N and βn =

√
2
N for 1 < n < N −1

336 Chapter 7

The N-point IDCT in Equation (7.13) can be represented in matrix form as

x = CTD (7.14)

where D = [X0, X1, X2, . . . , X N−1]T , an N × 1 matrix with N elements, and C is an N × N matrix whose
elements are the same as in the DCT but transposed. One important property of the matrix C is that the mul-
tiplication of C with its transpose results in an identity matrix, that is, CCT = I. In other words, the inverse of
matrix C is given by its transpose (i.e., C−1 = CT). Matrices with this special property are referred to as unitary
matrices.

In image compression and video coding applications, an 8-point DCT is commonly used. For N = 8, matrices
C and d in the DCT Equation (7.13) follow:

C =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0 β0 β0 β0 β0 β0 β0 β0

β1 cos
(

π

16

)
β1 cos

(
3π

16

)
β1 cos

(
5π

16

)
β1 cos

(
7π

16

) −β1 cos
(

7π

16

) −β1 cos
(

5π

16

) −β1 cos
(

3π

16

) −β1 cos
(

π

16

)
β2 cos

(
2π

16

)
β2 cos

(
6π

16

) −β2 cos
(

6π

16

) −β2 cos
(

2π

16

) −β2 cos
(

2π

16

) −β2 cos
(

6π

16

)
β2 cos

(
6π

16

)
β2 cos

(
2π

16

)
β3 cos

(
3π

16

)
β3 cos

(
7π

16

) −β3 cos
(

π

16

) −β3 cos
(

5π

16

)
β3 cos

(
5π

16

)
β3 cos

(
π

16

)
β3 cos

(
7π

16

) −β3 cos
(

3π

16

)
β4 cos

(
4π

16

) −β4 cos
(

4π

16

) −β4 cos
(

4π

16

)
β4 cos

(
4π

16

)
β4 cos

(
4π

16

) −β4 cos
(

4π

16

) −β4 cos
(

4π

16

)
β4 cos

(
4π

16

)
β5 cos

(
5π

16

) −β5 cos
(

π

16

)
β5 cos

(
7π

16

)
β5 cos

(
3π

16

)
β5 cos

(
3π

16

) −β5 cos
(

7π

16

)
β5 cos

(
π

16

) −β5 cos
(

5π

16

)
β6 cos

(
6π

16

) −β6 cos
(

2π

16

)
β6 cos

(
2π

16

) −β6 cos
(

6π

16

) −β6 cos
(

6π

16

)
β6 cos

(
2π

16

) −β6 cos
(

2π

16

)
β6 cos

(
6π

16

)
β7 cos

(
7π

16

) −β7 cos
(

5π

16

)
β7 cos

(
3π

16

) −β7 cos
(

π

16

)
β7 cos

(
π

16

) −β7 cos
(

3π

16

)
β7 cos

(
5π

16

) −β7 cos
(

7π

16

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0 β0 β0 β0 β0 β0 β0 β0

β1 cos
(

π

16

)
β1 cos

(
3π

16

)
β1 sin

(
3π

16

)
β1 sin

(
π

16

) −β1 sin
(

π

16

) −β1 sin
(

3π

16

) −β1 cos
(

3π

16

) −β1 cos
(

π

16

)
β1 sin

(
3π

8

)
β1 cos

(
3π

8

) −β1 cos
(

3π

8

) −β1 sin
(

3π

8

) −β1 sin
(

3π

8

) −β1 cos
(

3π

8

)
β1 cos

(
3π

8

)
β1 sin

(
3π

8

)
β1 cos

(
3π

16

)
β1 sin

(
π

16

) −β1 cos
(

π

16

) −β1 sin
(

3π

16

)
β1 sin

(
3π

16

)
β1 cos

(
π

16

)
β1 sin

(
π

16

) −β1 cos
(

3π

16

)
β0 −β0 −β0 β0 β0 −β0 −β0 β0

β1 sin
(

3π

16

) −β1 cos
(

π

16

)
β1 sin

(
7π

16

)
β1 cos

(
3π

16

)
β1 cos

(
3π

16

) −β1 sin
(

π

16

)
β1 cos

(
π

16

) −β1 sin
(

3π

16

)
β1 cos

(
3π

8

) −β1 sin
(

3π

8

)
β1 sin

(
3π

8

) −β1 cos
(

3π

8

) −β1 cos
(

3π

8

)
β1 sin

(
3π

8

) −β1 sin
(

3π

8

)
β1 cos

(
3π

8

)
β1 sin

(
π

16

) −β1 sin
(

3π

16

)
β1 cos

(
3π

16

) −β1 cos
(

π

16

)
β1 cos

(
π

16

) −β1 cos
(

3π

16

)
β1 sin

(
3π

16

) −β1 sin
(

π

16

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where β0 = 0.3536 and β1 = 0.5.

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536
0.4904 0.4157 0.2778 0.0975 – 0.0975 – 0.2778 – 0.4157 – 0.4904
0.4619 0.1913 – 0.1913 – 0.4619 – 0.4619 – 0.1913 0.1913 0.4619
0.4157 – 0.0975 – 0.4904 – 0.2778 0.2778 0.4904 0.0975 – 0.4157
0.3536 – 0.3536 – 0.3536 0.3536 0.3536 – 0.3536 – 0.3536 0.3536
0.2778 – 0.4904 0.0975 0.4157 – 0.4157 – 0.0975 0.4904 – 0.2778
0.1913 – 0.4619 0.4619 – 0.1913 – 0.1913 0.4619 – 0.4619 0.1913
0.0975 – 0.2778 0.4157 – 0.4904 0.4904 – 0.4157 0.2778 – 0.0975

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

d = [x0, x1, x2, . . . , x7]T .

In the next section, we discuss the simulation of an 8-point DCT and IDCT.

7.2.2 DCT Simulation

The simulation code for an 8-point DCT is given in Pcode 7.5. It simply multiplies the 8 × 8 matrix C with an
8-element vector d.

Transforms and Filters 337

for(j = 0; j < 8; j++) {
f = 0.0;
for(k = 0; k < 8; k++)

f+ = C[k][j]*d[k];
X[j] = f;

}

Pcode 7.5: The simulation code for a floating point version of an 8-point DCT.

If d = [75,68,69,65,69,75,75,77]T , then using Pcode 7.5, the computed DCT output is X =
[202.5860,−5.9478,8.1236,3.9048,−0.3536,0.6290,3.9061,1.2166]T . The same simulation code given in
Pcode 7.5 can be used for an 8-point IDCT by simply changing the index values of matrix C from C[k][j] to
C[j][k] (i.e., the transposing C).

Now, we will discuss the complexity of the 8-point DCT code given in Pcode 7.5. Although the DCT code
is only five instructions long, it will consume 15,000 or more cycles on the reference embedded processor (see
Appendix A on the companion website), since the reference processor is a fixed-point processor, and it emulates
floating-point computations without any dedicated instructions (see Appendix A, Section A.4, on the companion
website for cycle estimation of arithmetic operations on fixed-point embedded processors).

Performing floating-point operations on a fixed-point embedded processor is too costly in terms of cycles.
Computing an 8-point DCT as given in Pcode 7.5 requires 64 floating-point additions and 64 floating-point
multiplications. On a reference embedded processor, if we assume that a floating-point multiplication con-
sumes about 100 cycles and floating-point addition consumes about 145 cycles, then we consume about 15,680
(= 64×100+64×145) cycles to perform an 8-point DCT. This is clearly not acceptable for real-time applica-
tions. In later sections, we will discuss efficient implementation techniques for an 8-point DCT that consumes
about 100 cycles on a fixed-point embedded processor. This gives you an idea of how much can be done with a
little optimization!

7.2.3 DCT Matrix Factorization

As discussed in Section 7.2.1, the coefficient matrix C used in DCT computation is a unitary matrix. The matrix
C has symmetry about the middle columns (apart from the sign value) and many coefficients are repeated. Taking
advantage of these features of C, we factorize it as follows: based on Equation (7.12), X = Cd; also, XT = dT CT

(since AB = BT AT). It is possible to factor C as a product of several sparse matrices. For N = 8, the matrix CT

can be factorized as CT = C1C2C3C4W, where

C1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 −1 0 0 0
0 0 1 0 0 −1 0 0
0 1 0 0 0 0 −1 0
1 0 0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 −1 0 0 0 0 0
1 0 0 −1 0 0 0 0
0 0 0 0 c2 0 0 −s2

0 0 0 0 0 c1 −s1 0
0 0 0 0 0 s1 c1 0
0 0 0 0 s2 0 0 c2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 c3 −s3 0 0 0 0
0 0 s3 c3 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 −1 0 1
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 1
0 0 0 0 0 p 0 0
0 0 0 0 0 0 p 0
0 0 0 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

338 Chapter 7

p

p

c3

c3

c2

c1

c1

c2

s2

s1
s1

s2

s3

s3

x0

x1

x2

x3

x4

x5

x6

x7

X0

X4

X2

X6

X7

X3

X5

X1

2

2

2

2

2

2

2

2

2

2

2

2

2

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1

1 1 1 1

Figure 7.8: Signal flow diagram of 8-point DCT.

W = q

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

c1 = cos
(π

16

)
, s1 = sin

(π

16

)
,c2 = cos

(
3π

16

)
, s2 = sin

(
3π

16

)

c3 = √
2 cos

(
3π

8

)
, s3 = √

2 sin

(
3π

8

)
, p = √

2,q = 1

2
√

2

The matrices C1 to C4 are low-density matrices with at most two non-zero elements per row or column, whereas
the matrix W is a low-density matrix with only one element per row or column. Multiplying a vector with W only
rearranges data in a vector and will not change any of its values. As matrix W is multiplied with the constant q,
all elements of W will be affected in the same way. So, XT = dT CT , without matrix W , can be represented with
a signal flow diagram as shown in Figure 7.8. Similarly, based on IDCT Equation (7.14), x = CT D = DT C and
C = WT CT

4 CT
3 CT

2 CT
1 , where the matrices CT

1 ,CT
2 ,CT

3 ,CT
4 , and WT are transposed matrices of C1,C2,C3,C4,

and W , respectively. The signal flow diagram of the IDCT without matrix W is shown in Figure 7.9. Using DCT
matrix factorization and the signal flow diagram shown in Figure 7.8, the number of floating-point multiplications
and additions present in DCT reduces to 14 and 26 (instead of 64 and 64). However, as these are floating-point
operations, we still consume about 5170 (= 26 × 145 + 14 × 100) cycles to implement an 8-point DCT on
a reference embedded processor. In the next section, we will discuss the simulation of a DCT and IDCT in
fixed-point format, and compare the fixed-point simulation results with floating-point simulation results.

7.2.4 DCT Fixed-Point Simulation

In this section, we discuss the DCT and IDCT fixed-point simulations and compare the fixed-point simulation
results with floating-point simulation results (see Appendix B, Section B.1, on the companion website for
Q-format representation and fixed-point computations). The advantage of fixed-point calculation is that the
fixed-point multiplication or addition consume only 1 cycle per operation on the reference embedded processor.

Transforms and Filters 339

c3

s3s3

c3
c2

c2

s2

c1

c1

s1
s1

p

p

X0

X4

X2

X6

X7

X3

X5

X1

x0

x1

x2

x3

x4

x5

x6

x7

2

2

2

2

2

2

2

2

2

2

2

2

2

1 1 1

1 1

1 1

1 1

1 1

1

1

11

1

1

1

1

1

11

1

1

11

Figure 7.9: Signal flow diagram of 8-point IDCT.

As we discuss later, the difference between fixed-point simulation and the floating-point simulation output is
negligible.

Fixed-Point Simulation
In this section, we discuss the fixed-point implementation of an 8-point DCT. We start by representing the DCT
matrix values and scaling factors in 1.15 format (see Appendix B, Section B.1, on the companion website for
fixed-point representation of real numbers) as follows:

c1 =0×7d8a, (the value of cos(π/16) in 1.15 format)
s1 =0×18f9, (the value of sin(π/16) in 1.15 format)
c2 =0×6a6e, (the value of cos(3π/16) in 1.15 format)
s2 =0×471d, (the value of sin(3π/16) in 1.15 format)
c3 =0×22a2, (the value of cos(3π/8)/

√
2 in 1.15 format)

s3 =0×539f, (the value of sin(3π/8)/
√

2 in 1.15 format)
p =0×5a82, (the value of 1/

√
2 in 1.15 format)

q =0×2d41, (the value of 1/2
√

2 in 1.15 format)

Based on Section 7.2.3, the values of factors p, c3, and s3 are greater than 1. As we cannot represent the values
whose value is more than 1 in 1.15 format, first we divide the factors p,c3, and s3 by a factor of 2 (we multiply
these coefficients by 2 during the computation), and then we represent the scaled-down values in 1.15 format.
The fixed-point simulation code for an 8-point DCT and IDCT is given in Pcodes 7.6 and 7.7.

DCT Simulation Results
The DCT fixed-point simulation code runs many times faster than the DCT floating-point simulation code on
the reference embedded processor. Fixed-point arithmetic operations consume 1 cycle each to execute on the
reference embedded processor. But this speed-up is at the cost of less accurate results. We can improve the
accuracy of a DCT output by scaling up the DCT input (i.e., by representing the DCT input in 12.4 format
instead of 16.0 format). The DCT and IDCT output values for floating-point and fixed-point simulation are
shown in Tables 7.2 and 7.3. The fixed-point simulation results provided in the tables are obtained by dividing
the third-stage outputs of DCT and IDCT as seen in the code given in Pcodes 7.6 and 7.7 with 1/2

√
2.

Precision, Accuracy, and Saturation
As can be seen in Tables 7.2 and 7.3, the output from the floating-point simulation code and fixed-point simulation
code are not exactly the same. The reason for this is that the floating-point code uses double-precision data types,

340 Chapter 7

// 1st stage of DCT signal flow diagram
r0 = in[0] + in[7]; r7 = in[0] - in[7];
r1 = in[1] + in[6]; r6 = in[1] - in[6];
r2 = in[2] + in[5]; r5 = in[2] - in[5];
r3 = in[3] + in[4]; r4 = in[3] - in[4];
// 2nd stage of DCT signal flow diagram
tmp1 = r0 + r3; r3 = r0 - r3;
tmp2 = r1 + r2; r2 = r1 - r2;
tmp3 = (r4 * c2) >> 15; tmp4 = (r7 * s2) >> 15;
r4 = (r4 * s2) >> 15; r7 = (r7 * c2) >> 15;
r7 = r7 - r4; r4 = tmp3 + tmp4;
tmp3 = (r5 * c1) >> 15; tmp4 = (r6 * s1) >> 15;
r5 = (r5 * s1) >> 15; r6 = (r6 * c1) >> 15;
r6 = r6 - r5; r5 = tmp3 + tmp4;
// 3rd stage of DC T signal flow diagram
r0 = tmp1 + tmp2; r1 = tmp1 - tmp2;
tmp1 = (r2 * c3) >> 14; tmp2 = (r2 * s3) >> 14; // multiply by 2
tmp3 = (r3 * c3) >> 14; tmp4 = (r3 * s3) >> 14; // multiply by 2
r2 = tmp1 + tmp4; r3 = tmp3 - tmp2;
tmp1 = r4 + r6; tmp2 = r5 + r7;
r6 = r4 - r6; r5 = r7 - r5;
r4 = tmp2 - tmp1; r7 = tmp2 + tmp1;
r5 = (r5 * p) >> 14; r6 = (r6 * p) >> 14; // multiply by 2
// last stage
out[0] = (r0 * q) >>15; out[1] = (r7 * q) >>15;
out[2] = (r2 * q) >>15; out[3] = (r5 * q) >>15;
out[4] = (r1 * q) >>15; out[5] = (r6 * q) >>15;
out[6] = (r3 * q) >>15; out[7] = (r4 * q) >>15;

Pcode 7.6: Fixed point simulation code for an 8-point DCT.

// 1st Stage of IDCT signal flow diagram
r0 = in[0] + in[4]; r1 = in[0] - in[4];
r2 = (in[2] * c3) >> 14; r3 = (in[6] * c3) >> 14; // multiply by 2
r4 = (in[2] * s3) >> 14; r5 = (in[6] * s3) >> 14; // multiply by 2
r2 = r2 - r5; r3 = r3 + r4;
tmp1 = in[1] - in[7]; tmp2 = in[1] + in[7];
tmp3 = (in[3] * p) >> 14; tmp4 = (in[5] * p) >> 14; // multiply by 2
r4 = tmp1 + tmp4; r6 = tmp1 - tmp4;
r5 = tmp2 - tmp3; r7 = tmp2 + tmp3;
// 2nd Stage of IDCT signal flow diagram
tmp1 = r0; tmp2 = r1;
r0 = tmp1 + r3; r3 = tmp1 - r3;
r1 = tmp2 + r2; r2 = tmp2 - r2;
tmp1 = (r5 * c1) >> 15; tmp2 = (r5 * s1) >> 15;
tmp3 = (r6 * c1) >> 15; tmp4 = (r6 * s1) >> 15;
r5 = tmp1 - tmp4; r6 = tmp3 + tmp2;
tmp1 = (r4 * c2) >> 15; tmp2 = (r4 * s2) >> 15;
tmp3 = (r7 * c2) >> 15; tmp4 = (r7 * s2) >> 15;
r4 = tmp1 - tmp4; r7 = tmp3 + tmp2;
// 3rd Stage of IDCT signal flow diagram
tmp1 = r0 + r7; r7 = r0 − r7;
tmp2 = r1 + r6; r6 = r1 − r6;
tmp3 = r2 + r5; r5 = r2 − r5;
tmp4 = r3 + r4; r4 = r3 − r4;
// last stage
out[0] = (tmp1 * q) >> 15; out[7] = (r7 * q) >> 15;
out[1] = (tmp2 * q) >> 15; out[6] = (r6 * q) >> 15;
out[2] = (tmp3 * q) >> 15; out[5] = (r5 * q) >> 15;
out[3] = (tmp4 * q) >> 15; out[4] = (r4 * q) >> 15;

Pcode 7.7: Fixed point simulation code for an 8-point IDCT.

whereas the fixed-point code uses data types that are only 16 bits in length (i.e., the “short” data type in C). This
difference in the output results can be reduced by increasing the precision of the fractional part of the decimal
value. In fixed-point simulations, if we assign more bits to the fractional part to get more accurate results, then
there is a possibility of totally unacceptable results due to saturation or overflow. The saturation of output with

Transforms and Filters 341

Table 7.2: DCT simulation results

DCT Input DCT Floating- DCT Fixed-Point DCT Fixed-Point
Point Simulation Simulation Output Simulation Output

Output (with Input 16.0) (with Input 12.4)

x[0] = 75 X[0] = 202.5861 X[0] = 202.5861 X[0] = 202.5861
x[1] = 68 X[1] = −5.9478 X[1] = −6.3640 X[1] = −6.0104
x[2] = 69 X[2] = 8.1236 X[2] = 7.7782 X[2] = 8.0433
x[3] = 65 X[3] = 3.9048 X[3] = 4.2426 X[3] = 3.8891
x[4] = 69 X[4] = −0.3536 X[4] = −0.3536 X[4] = −0.3536
x[5] = 75 X[5] = 0.6289 X[5] = −0.7071 X[5] = 0.5303
x[6] = 75 X[6] = 3.9061 X[6] = 3.8891 X[6] = 3.8891
x[7] = 77 X[7] = 1.2166 X[7] = 1.4142 X[7] = 1.1490

Table 7.3: IDCT simulation results

IDCT Input IDCT Floating- IDCT Fixed-Point IDCT Fixed-Point
Point Simulation Simulation Output Simulation Output

Output (with Input 16.0) (with Input 12.4)

X[0] = 202.5861 x[0] = 75.0000 x[0] = 73.8927 x[0] = 74.8870
X[1] = −5.9478 x[1] = 68.0000 x[1] = 68.5894 x[1] = 67.9927
X[2] = 8.1236 x[2] = 69.0000 x[2] = 68.9429 x[2] = 69.0534
X[3] = 3.9048 x[3] = 64.9999 x[3] = 65.4074 x[3] = 65.0538
X[4] = −0.3536 x[4] = 68.9999 x[4] = 69.6500 x[4] = 69.0313
X[5] = 0.6289 x[5] = 74.9999 x[5] = 73.1856 x[5] = 74.9754
X[6] = 3.9061 x[6] = 75.0000 x[6] = 74.9533 x[6] = 74.9754
X[7] = 1.2166 x[7] = 76.9999 x[7] = 76.7211 x[7] = 76.9641

fixed-point simulation is due to overflow of the integer part in arithmetic operations on the data that is represented
by assigning fewer bits to its integer part. The number of required bits that we use for the fractional part and
integer part depends on the range of values present in the input as well as the gain introduced by a particular
algorithm.

We measure the accuracy of the results as the mean square error (MSE) between the fixed-point output and
the floating-point output. The MSE is computed as follows:

MSE = 1

N

∑
n

(Y1[n]−Y2[n])2

If we replace Y1[] with the floating-point simulation output of the DCT and the IDCT (second columns in
Tables 7.2 and 7.3) and Y2[] with the fixed-point simulation output of the DCT and IDCT (third columns in
Tables 7.2 and 7.3), then the MSE of the fixed-point simulation for DCT and IDCT is given by MSEDCT = 0.2789
and MSEIDCT = 0.6921, respectively.

If we want to get even more accurate results, we can increase the precision for both the input of DCT and
IDCT via scaling. The DCT and IDCT flow diagrams shown in Figures 7.8 and 7.9 introduce a gain of 2

√
2.

To obtain more accurate results, we have to consider this gain in scaling up the inputs to the DCT and IDCT. If
we increase the precision of the fractional part from 0 to 4 bits (i.e., convert the input data format from 16.0 to
12.4), then the MSE of the fixed-point simulation for the DCT and IDCT is computed using the fourth-column
values (of Tables 7.2 and 7.3) and the MSE is given by DCTMSE = 0.0032 and MSEIDCT = 0.0028. Thus, we
can see that the accuracy (measured with the MSE, smaller is better) of the fixed-point simulation results (given
in Tables 7.2 and 7.3) is high in the case of fourth-column outputs (with 12.4 input format) when compared to
third-column outputs (with 16.0 input format).

Fixed-Point Simulation Cycle Cost
The fixed-point simulation code given in Pcodes 7.2 and 7.3 is very efficient, and on a fixed-point embedded
processor it runs many times faster when compared to the floating-point simulation code given in Pcode 7.1.

342 Chapter 7

See Appendix A, Section A.4, on the companion website for cycle estimation on the reference embedded
processor. As the data is handled as 16-bit data, multiplication of two fixed-point numbers (including the right
shift for scaling) can be achieved with 1 cycle on the reference embedded processor (this is the case with most
fixed-point embedded processors). If we assume that all arithmetic operations consume 1 cycle each on fixed-
point embedded processors, then the fixed-point simulation code given in Pcodes 7.2 and 7.3 for the DCT and
IDCT take approximately 50 cycles on a single ALU fixed-point embedded processors. The cycle consumption
of the DCT and IDCT drops to 25 cycles on two ALU embedded processors. The cycle count drops further with
the use of MAC units (e.g., the reference embedded processor has two MAC units).

7.2.5 DCT Input Pruning

In image or video processing applications, the DCT is also used as an interpolator function to scale up images.
When the scaling ratio is large, the DCT interpolator outperforms the bilinear interpolation method. At the block
level, the 2D DCT interpolator works as an optimum interpolator in the sense of generating better interpolated
points. Typically, the upscaling of an image with a DCT interpolator is achieved by performing an input-pruned
IDCT. In an input-pruned N-point IDCT, the number of inputs to the IDCT is less than N . In other words, with
an input-pruned IDCT, the number of inputs (< N) and the number of IDCT outputs (= N) are different. For
example, we use a 2D N /2-point DCT to an N-point IDCT transformation for scaling up images by a factor
of 4. See Chapter 15 for more details on video scaling.

As an image or frame of video is processed in terms of blocks of pixels (either 4×4 or 8×8), the application
of a 4×4 to 8×8 DCT interpolator is straightforward for use at the back end of a decoder. In addition, in some
decoders, the DCT coefficients are readily available to work with for scaling. In that case, we do not compute
the DCT of the data. If the DCT coefficients of a decoder are not usable (due to the feedback mechanism
present in the decoder, such as intraprediction in H.264), then we have to compute the 4 × 4 DCT coefficients
before scaling. The signal flow diagram for performing a 4-point DCT is shown in Figure 7.10 and its fixed-
point simulation code is given in Pcode 7.8. The computation of a 4-point DCT using simple multiplications of
cosine elements in a 4 × 4 matrix with 4 points in a data vector involves 16 floating-point multiplications and
16 floating-point additions. Using the DCT matrix factorization (obtained the same way as the 8-point DCT
discussed in Section 7.2.3) and signal flow diagram as shown in Figure 7.10, we can perform a 4-point DCT
with eight floating-point additions and six floating-point multiplications.

Once we have the 4 × 4 DCT coefficients, we use a 4 × 4 DCT to 8 × 8 IDCT function for interpolation in
upscaling the video or images. This requires results of the computation of a 4-point DCT to an 8-point IDCT in
both horizontal (row) and vertical (column) directions. One way of performing this is by taking 4 DCT points,
and then appending 4 zeros and computing an 8-point IDCT. As discussed in Section 7.2.4, the 8-point IDCT
code consumes about 50 instruction cycles. In this section, we provide efficient simulation code for a direct
4-point DCT to 8-point IDCT that takes only 32 instruction cycles on the reference embedded processor. The
signal flow diagram of the 4-point DCT to 8-point IDCT is shown in Figure 7.11. The fixed-point simulation
code of the 4-point to 8-point IDCT is given in Pcode 7.9.

Figure 7.10: Signal flow diagram of
4-point DCT.

x0

x1

x2

x3

X0

X2

X1

X3

a

c

c

b

b

a 5 1/2, b 5 1/2 cos (�/8), c 5 1/2 cos (3� / 8)

a

2

2

2

2

1

1

1

1

1

1

1

1

!ßÍ !ßÍ

Transforms and Filters 343

a = 0x4000; // 1/2
b = 0x539f; // sqrt(1/2)*cos(PI/8)
c = 0x2283; // sqrt(1/2)*cos(3*PI/8)

r0 = in[0]; r1 = in[1];
r2 = in[2]; r3 = in[3];
r4 = r0 + r3; r5 = r1 + r2;
r4 = (r4 * a) >> 15; r5 = (r5 * a) >> 15;
r6 = r4 + r5; r7 = r4 - r5;
out[0] = r6; out[2] = r7;
r4 = r0 - r3; r5 = r1 - r2;
r0 = (r4 * b) >> 15; r1 = (r4 * c) >> 15;
r2 = (r5 * b) >> 15; r3 = (r5 * c) >> 15;
r6 = r0 + r3; r7 = r1 - r2;
out[1] = r6; out[3] = r7;

Pcode 7.8: Simulation code for 4-point DCT.

X0

X2

X3

X1

2

2 cos(3� /8)

2 sin(3� /8)

cos(3� /16)

cos(� /16)

cos(� /16)

cos(3� /16)

sin(� /16)

2

2

2

2

2

2

2

2

2

!Í

!Í

!Í

sin(3� /16)

x0

x1

x2

x3

x4

x5

x6

x7

1

1

1

1

1

11

1 1 1

1

1

1

1

1

1

1

1

Figure 7.11: Signal flow diagram of 4-point DCT to 8-point IDCT.

7.2.6 DCT Output Pruning

We also use a DCT interpolator to downscale high-resolution images to lower resolution. Downscaling of video
is required in many applications, especially to reduce the data bandwidth for transferring video or images over
the Internet. Another application is viewing the DVD resolution video content on portable media players with
QVGA (320 × 240) resolution. Given the 8 × 8 DCT coefficients, we have two ways to get the 4 × 4 IDCT. In
the first approach, as shown in Figure 7.12, we take the top-left-corner 4 × 4 coefficients of an 8 × 8 block and
perform a 4×4 IDCT on them by using a 4-point IDCT. In this case, we are ignoring the high-frequency content
of an image. In Figure 7.12, the non-zero DCT coefficients are represented with solid circles and zero coefficients
are shown with empty circles. If we consider only the top-left-corner 4 ×4 block of DCT coefficients, then we
do not use the frequency information of five high-frequency DCT coefficients. If the bit rate of the video to be
scaled is higher, then we will have more DCT coefficients outside the top-left 4×4 block of the 8×8 block. In
high-bit-rate video, ignoring high-frequency DCT coefficients results in lower-quality downscaled images.

In the second approach, we use “output-pruned” IDCT for image or video downscaling. In particular, we
use an 8 × 8 DCT to 4 × 4 IDCT. In this approach, we use all frequency content presented within the image
block; the downscaled image quality is better with the output-pruned IDCT method since the downscaled image
contains all the frequency content of whatever is present in the original image. However, the computational

344 Chapter 7

c0 = 0x5a82; // (1/sqrt(2)*32768) = 23170
c1 = 0x7d8a; // cos(pi/16)*32768 = 32138
c2 = 0x18f9; // sin(pi/16)*32768 = 6393
c3 = 0x6a6e; // cos(3*pi/16)*32768 = 27246
c4 = 0x471d; // sin(3*pi/16)*32768 = 18205
c5 = 0x22a2; // cos(6*pi/16)/sqrt(2)*32768 = 8867
c6 = 0x539f; // sin(6*pi/16)/sqrt(2)*32768 = 21407
// first stage
tmp1 = in[0]; r2 = (in[2] * c5) >> 14;
tmp2 = in[0]; r3 = (in[2] * c6) >> 14;
r4 = in[1]; tmp3 = (in[3] * c0) >> 14;
r5 = r4 − tmp3; r7 = r4 + tmp3;
r6 = r4;
// second stage
r0 = tmp1 + r3; r3 = tmp1 - r3;
r1 = tmp2 + r2; r2 = tmp2 - r2;
tmp1 = (r5 * c1) >> 15; tmp2 = (r5 * c2) >> 15;
tmp3 = (r6 * c1) >> 15; tmp4 = (r6 * c2) >> 15;
r5 = tmp1 - tmp4; r6 = tmp3 + tmp2;
tmp1 = (r4 * c3) >> 15; tmp2 = (r4 * c4) >> 15;
tmp3 = (r7 * c3) >> 15; tmp4 = (r7 * c4) >> 15;
r4 = tmp1 - tmp4; r7 = tmp3 + tmp2;
// third stage
out[0] = r0 + r7; out[7] = r0 - r7;
out[1] = r1 + r6; out[6] = r1 - r6;
out[2] = r2 + r5; out[5] = r2 - r5;
out[3] = r3 + r4; out[4] = r3 - r4;

Pcode 7.9: Simulation code for 4-point to 8-point IDCT.

Figure 7.12: 8× 8 image pixels. Filled:
non-zero; empty: zero coefficients.

Top Left
4 3 4 Block

complexity of image or video downscaling with an output-pruned IDCT is greater, as this approach involves
more computations. We may require a bilinear interpolator at the end to get an arbitrary-sized downscaled image
with the DCT approaches.

In this section, we provide both 4-point IDCT and 8-point to 4-point IDCT methods for downscaling images
by a factor of 2 in both the horizontal and vertical directions. The signal flow diagram of a 4-point IDCT is shown
in Figure 7.13. The simulation code for a 4-point IDCT is given in Pcode 7.10. The computational complexity
of a 4-point IDCT is the same as the 4-point DCT discussed in Section 7.2.5. With the signal flow diagram
shown in Figure 7.13, we require eight floating-point additions and six floating-point multiplications to perform
a 4-point IDCT.

With the output-pruned IDCT, we can compute the IDCT by using all eight DCT coefficients and we output
4 IDCT points as shown in Figure 7.14. The number of computations involved in an 8-point DCT to 4-point
IDCT is 12 floating-point additions and 8 floating-point multiplications.The simulation code for an 8-point DCT
to 4-point IDCT is given in Pcode 7.11.

With DCT scaling, it is also possible to enhance the edges of objects in an image. See Section 15.1 for the
performance difference between the DCT and bilinear interpolation in scaling the luminance components of
video frames.

Transforms and Filters 345

Figure 7.13: Signal flow diagram of
4-point IDCT.

a

a

c

c

b

b

X0

X2

X1

X3

x0

x1

x2

x3

1

1

1
2 2

2

2

1 1

1

1

1

a 5 1/2, b 5 1/2 cos (�/8), c 5 1/2 cos (3�/ 8)!ßÍ !ßÍ

a = 0x4000; // 1/2
b = 0x539f; // sqrt(1/2)*cos(PI/8)
c = 0x2283; // sqrt(1/2)*cos(3*PI/8)
// first stage
r0 = (short) (in[0]+0.5);
r1 = (short) (in[1]+0.5);
r2 = (short) (in[2]+0.5);
r3 = (short) (in[3]+0.5);
// second stage
r4 = r0 + r2; r5 = r0 - r2;
r4 = (r4 * a) >> 15; r5 = (r5 * a) >> 15;
r2 = (r3 * c) >> 15; r0 = (r3 * b) >> 15;
r3 = (r1 * c) >> 15; r1 = (r1 * b) >> 15;
r6 = r4 + r1; r7 = r4 - r1;
r1 = r5 + r3; r4 = r5 - r3;
// third stage
out[0] = r6 + r2; out[3] = r7 - r2;
out[1] = r1 - r0; out[2] = r4 + r0;

Pcode 7.10: Simulation code for 4-point IDCT.

Figure 7.14: Signal flow diagram of
8- to 4-point DCT.

X0 x0

x1

x2

x3

X4

X2

X6

X1

X7

X3

X5

�0

�2

�6

�1 �

�7

�3

�5
�05 0.7071, �15 0.5412, �25 0.7071, �35 1.3066,

�55 1.3066, �65 0.7071, �75 0.5412, � 5 0.7071

1

1 1

1 1

1 1

11

1 1

1

2

2

2

2

2

2

2

7.3 Filter Basics

We use filters for two purposes: signal separation and signal enhancement. The signal separation is needed
to filter the noise when the desired signal is associated with noise, whereas signal enhancement is needed to
improve signal quality when the desired signal-generating hardware malfunctions or components are distorted.
For these purposes, we can use analog or digital filters. Analog filters are designed with physical components

346 Chapter 7

c0 = 0x5a82; // 0.7071 -> 23170 (1.15)
c1 = 0x4546; // 0.5412 -> 17734 (1.15)
c2 = 0x539f; // 1.3066/2 -> 21407 (1.15)
// first stage
r0 = ((short) (in[0]) * c0) >> 15;
tmp1 = ((short) (in[2]) * c0) >> 15; tmp2 = ((short) (in[6]) * c0) >> 15;
r2 = ((short) (in[1]) * c1) >> 15; r3 = ((short) (in[7]) * c1) >> 15;
r1 = tmp1 - tmp2; r2 = r2 - r3;
tmp1 = ((short) (in[3]) * c2) >> 14; tmp2 = ((short) (in[5]) * c2) >> 14;
r3 = tmp1 - tmp2;
// second stage
tmp1 = r0; tmp2 = r2;
r0 = tmp1 + r1; r1 = tmp1 - r1;
r2 = tmp2 - r3; r3 = tmp2 + r3;
r2 = (r2 * c0) >> 15;
r3 = r2 + r3;
// third stage
out[0] = r0 + r3; out[3] = r0 - r3;
out[1] = r1 + r2; out[2] = r1 - r2;

Pcode 7.11: Simulation code for 8-point DCT to 4-point IDCT.

(resistors, capacitors, inductors, op amps, etc.) as shown in Figure 7.15(a), whereas digital filters are defined
with numbers alone as shown in Figure 7.15(b). Compared to analog filters, the digital filter designs offer sharp
roll-offs, require no calibration, and have greater stability with time, temperature, and power supply variations.
Simple software changes can alter a digital filter response in real time, creating so-called adaptive filters, whereas
analog filters usually require hardware changes. Digital filters are increasingly finding their way into signal- and
image-processing applications.

We illustrate the purpose of a filter with a simple example. In Figure 7.16(a), the frequency-domain charac-
teristic X (f) of signal x(t), and whose spectrum occupies a frequency range between 0 and fb , is shown. If
the frequency components between fa and fb correspond to some undesired signal and if we want to eliminate
this undesired signal from the desired signal y(t) (whose frequency spectrum Y (f) is between 0 and fa), then
we use a filter with the frequency response H (f) as shown in Figure 7.16(b) to filter out the undesired signal
component from the given input signal x(t). The filtered signal with frequency spectrum Y (f) is shown in
Figure 7.16(c).

The filter shown in Figure 7.16(b) is a low-pass filter that passes the signal with frequency components up
to fa , and attenuates any signal whose frequency components are greater than fa . Similarly, a high-pass filter
shown in Figure 7.16(d) allows signals whose frequency components are above fb to pass while it attenuates
all other signals whose frequency components are below fb . The bandpass filter shown in Figure 7.16(e) allows
only signals whose frequency components lie between fa and fb to pass, and it attenuates the rest of the signals
whose frequency component falls below fa and above fb .

Although filtering is often required for processing signals in the time domain, most designers understand
the operation of a filter best in the frequency domain. When the spectrum of the input signal is multiplied by
the frequency response of the filter we get an output signal with an altered spectrum as shown in Figure 7.16.

R3

R2

R1
C1

C2
y (t)

x (t)

(a)

h[k], k�0, 1, 2, …
(Impulse Response)x [n] y [n]

(b)

Analog Filter

Digital Filter

Figure 7.15: Filter schematics. (a) Analog filter. (b) Digital filter.

Transforms and Filters 347

1
Ideal high-pass filter frequency characteristics

Filtered signal frequency spectrum

0

1 Ideal low-pass filter frequency characteristics

0 ffa fb

ffa fb

0 ffa fb

0 ffa fb

0 ffa fb

Effective signal frequency spectrum

Desired
Signal
Frequency
Response

(a)

(b)

(c)

(d)

(e)

1
Ideal band-pass filter frequency characteristics

|H
(f

) |
|H

(f
) |

|Y
(f

) |
|H

(f
) |

|X
(f

) |

Figure 7.16: Illustration of the concept of filtering. (a) Input signal with undesired frequency components.
(b) Ideal low-pass-filter frequency characteristics. (c) Filtered signal frequency spectrum. (d) Ideal high-pass-filter
frequency characteristics. (e) Ideal bandpass-filter frequency characteristics.

As discussed in Section 6.5.3, the multiplication in the frequency domain is equivalent to convolution in the time
domain. That is, if we convolve the input signal with the impulse response of the filter in the time domain, then
we get the desired time-domain signal.

The filters shown in Figures 7.16(b), (d), and (e) are ideal with perfect low-pass, high-pass, and bandpass
frequency characteristics. However, such filters cannot be realized in practice because they have an infinite-length
impulse response (i.e., time-domain response), and therefore, DSP processors cannot handle such filters because
the computational cost of implementation also becomes prohibitive.

348 Chapter 7

As discussed previously, the time- and frequency-domain representations are related, and we can easily obtain
the information in one domain given the information in another domain using the Fourier transforms. As shown
in Figures 7.16(b), (d), and (e), the shape of an ideal filter’s frequency response resembles a rectangular pulse,
and its impulse response in the time domain is an infinite-length sinc function as shown in Figure 7.17(b).

If we truncate the impulse response to a finite length as shown in Figure 7.17(c), we no longer have an ideal
frequency characteristic in the frequency domain, as shown in Figure 7.17(d). That is, good localization in
both the frequency and time domains simultaneously is not possible. If we desire good frequency localization
(i.e., ideal narrowband-frequency response), then we do not get good time-domain response localization (i.e.,
finite-length impulse response). This phenomenon is analogous to the Heisenberg uncertainty principle.

7.3.1 Filter Design Parameters

As discussed before, ideal filters exist only in theory and cannot be realized in practice. However, we can design
filters that perform well for most day-to-day applications. From an implementation point of view, one of the most
important parameters in filter design (in the time domain) is impulse-response length in terms of the number of
samples (L). As L increases, the implementation complexity of the filter also increases. In the context of digital
filters, we specify filter parameters in the frequency domain with respect to sampling frequency. This means that
the filter parameters obtained for a particular sampling frequency do not represent the same filter characteristics
for another sampling frequency. Four parameters typically specify the desired frequency response of a digital filter
response in the frequency domain: f p (passband cutoff frequency), fs (stopband cutoff frequency), δ1 (passband
ripple), and δ2 (stopband attenuation). The low- and high-pass digital filter specifications in the frequency domain
are shown in Figure 7.18(a) and (b), respectively.

■ Example 7.1

As digital filter parameters make sense only for a given sampling frequency, we first obtain the sampling
frequency (Fs) of the input discrete signal in determining filter parameters. Then we choose the passband
(fp) and stopband (fs) frequencies with respect to sampling frequency for required low-pass filtering.
Designers usually define the passband ripple in decibel units as 20 log(1+δ1)

10 , while the stopband ripple
is also in decibels at −20 logδ2

10. The length of the filter, L, determines the transition bandwidth of the
filter � f = fs − fp . Given the roll-off or transition bandwidth, � f (this also depends on the type of
window used, to be discussed in Section 7.4), the approximate value of the filter length, L, is obtained
as L ≈ 4/� f . With this, an example of low-pass filter parameter values follows.

Sampling frequency (fs) 44.1 kHz*

Passband frequency (f p) 18 kHz (or normalized frequency = 0.408)

Stopband frequency (fs) 21 kHz (or normalized frequency = 0.4762)

Transition bandwidth (� f) 21 to 18 = 3 kHz (or normalized frequency = 0.068)

Passband ripple 0.001 dB

Stopband ripple −96 dB

Filter length (L) 58 coefficients (L ≈ 4/� f)

∗High-fidelity audio signals are typically sampled at this frequency.

■

In this chapter, we restrict our discussion to the digital filters based on LTI systems that are completely
described by the discrete-time impulse response. Depending on a filter’s impulse-response length, two types of
filters are suggested: FIR and IIR. We briefly discuss the design of FIR and IIR filters, and mainly concentrate
on the implementation of FIR and IIR filters given their coefficients. We will discuss design, simulation, and
implementation techniques for FIR filters and IIR filters in Sections 7.4 and 7.5.

Transforms and Filters 349

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
�0.5

0

0.5

1

1.5

�60 �40 �20 0 20 40 60

�0.04

�0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

�80 �60 �40 �20 0 20 40 60 80
�0.04

�0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
�60

�50

�40

�30

�20

�10

0

10

(b)

(a)

(c)

(d)

|H
(f

) |
|H

t(
f)

|
h

[n
]

h t
[n

]

f

n

f

n

Figure 7.17: Impulse response truncation and its effect on frequency response. (a) Ideal low-pass-frequency
response. (b) Corresponding infinite-length impulse response. (c) Truncated impulse response. (d) Non-ideal
frequency response.

350 Chapter 7

fs fp

0.50

1

(b)(a)

f
0.50

�2

1

11 �1

2�2

12 �1

�2

11 �1

2�2

12 �1

fp fs

Df

Figure 7.18: Frequency-domain specifications. (a) Description of low-pass filter parameters. (b) Description of
high-pass filter parameters.

7.3.2 FIR versus IIR

Important Features of FIR Filters
Linear Phase: With linear-phase response, the phase delay of the output signal increases linearly with the

frequency of the input signal. A linear-phase response becomes particularly important in applications such as
speech processing, sonar, radar, and so on. We can design FIR filters with linear-phase response by maintaining
the symmetry in the impulse response. Digital IIR filters, on the other hand, have nonlinear-phase response
(however, we can achieve linear phase with special IIR filter designs). Linear-phase response is difficult to
achieve with analog filters. The term “linear phase” has nothing to do with system linearity. Both FIR and
IIR filters are linear filters from a system standpoint.

Stability: FIR filters have no poles in their z-plane transfer function, and thus outputs are always finite and stable.
IIR filters, in contrast, require careful design to ensure stability.

Low Sensitivity to Coefficient Errors: FIR filters are less sensitive to coefficient errors. This permits FIR filters
to be implemented with small word sizes (12 to 16 bits). Conversely, IIR filters are highly sensitive to
coefficient errors, and this may cause the filter to become unstable. Typical IIR filters need between 16 to 24
bits per coefficient.

Adaptive Filtering: Adaptive FIR filters are comparatively easy to implement via changes to the filter
coefficients in real time to adapt the filter’s characteristics to external conditions.

Important Features of IIR Filters
Highest Efficiency: IIR filters require fewer filter coefficients to obtain required frequency characteristics,

thereby minimizing the number of operations in filtering the data and maximizing throughput.

Least Memory Storage: Because IIR filters have fewer coefficients, they require less memory. Typically, we
use less than 10 coefficients for IIR filters to achieve a given performance level and we may use hundreds of
coefficients for FIR filters to achieve similar performance.

7.3.3 Digital Filtering and Finite-Word-Length Effects

The digital filter is nothing but a set of coefficients (or real numbers), and the filtering comprises transformation
of data. Thus, digital filtering involves basic mathematical operations (i.e., additions/subtractions and multipli-
cations/divisions) on the input data using filter coefficients. In general, the filter input and filter coefficients are
real numbers, and we require infinite-length precision data registers in digital computers to handle them (since
the real numbers are continuous in amplitude). However, the width of arithmetic registers in any digital computer
is limited and real numbers must be represented with a finite number of bits. For this, we quantize the continuous
amplitude data to discrete amplitudes to work with digital computers. In practice, we quantize the continuous
amplitude data to 2M discrete levels of information using M bits (where M is a finite number). With quantization,
the finite precision values are obtained either by rounding or truncation of actual data values. This results in

Transforms and Filters 351

a quantization error and we usually prefer rounding over truncation as rounding errors have better statistical
properties. Coefficient quantization has the adverse effect of modifying the desired frequency response, and it
may increase the peak passband ripple. We may also see a reduction in the maximum attenuation of the stopband
ripples.

We represent finite precision data in floating-point or fixed-point format (see Appendix B, Section B.1,
on the companion website). We use floating-point hardware to execute floating-point arithmetic operations.
Since floating-point processors typically run at lower clock rates and cost more than fixed-point processors, we
prefer fixed-point hardware processors over floating-point processors for many applications. The precision of
most fixed-point embedded processor registers is 16 or 32 bits. We use an m. n fixed-point format (where
m + n = 16 or 32 depending on the 16- or 32-bit processor architecture) to represent quantized values. We
choose m and n depending on the dynamic range of coefficients or data, filter gain, and filter structure. Some
examples for fixed-point formats include 1.15, 4.12, 1.31, 8.24, and so on.

The goal of a fixed-point implementation is to maximize the filter performance and minimize finite-word-
length effects, which include quantization errors and register overflow. Quantization errors occur whenever we
limit the precision of data and can arise in two ways: quantization of continuous amplitude data (as discussed
earlier), and quantization of arithmetic operations output. As an example of the latter, assume that we represent
two numbers in 1.15 format using 16 bits to work on a 16-bit processor; the precision of the multiplication output
is the sum of the precisions of the two numbers used in the multiplication operation. In our example, it is 2.30.
To hold/store the output in 16-bit architecture, we reduce the precision of the multiplication output to 16 bits by
right shifting. This results in round-off error, which in turn affects the output SNR of the filter. The extent of the
errors introduced depends on the type of arithmetic used and the filter structure.

Register overflow occurs whenever the dynamic range of the filter’s data or coefficients exceeds the dynamic
range of the fixed-point processor registers. This happens during filtering when we sum fixed-point numbers.
Register overflow can be avoided by scaling the data and coefficients or by using the two’s complement
arithmetic, which saturates the result to the extreme end values whenever register overflow occurs. However,
saturation does not always yield the right results as it blindly avoids the register overflow. Another way of
eliminating register overflow is to use extended-precision arithmetic registers. Extended-precision registers
provide additional headroom that allows holding the intermediate outputs with higher precision. For example,
the precision of accumulators present in the reference embedded processor is 40 bits, which is 8 bits more
when compared to 32-bit precision of arithmetic registers.

7.3.4 Digital Filters: Advantages and Disadvantages

With digital filtering, computations must be completed in a given sampling period to achieve real-time filtering.
In addition, finite-length-word effects must be taken care of during implementation of digital filters. These issues
do not arise in the case of analog filters.

Digital Filtering Advantages
Some of the advantages of digital filters (when compared to analog filters) follow:

• High accuracy and performance
• Linear phase and constant group delay (can be achieved with FIR filters)
• No drift due to component variations
• Flexibility, or adaptive filtering capabilities
• Easy to simulate and design

Digital Filtering Limitations
Digital filters have some limitations:

• May not handle high-bandwidth signals due to DSP speed limitations
• Analog filters are still needed for antialiasing and high-frequency filtering
• Lack of high-speed analog-to-digital converters (ADCs) for sampling of continuous-time signals

352 Chapter 7

7.4 Finite Impulse-Response Filters

Mathematically, the FIR filter is nothing but a linear-time-invariant transformation. The filter’s input and output
signals are related by the convolution sum as follows:

y[n] =
L−1∑
k=0

h[k]x [n − k] (7.15)

where x [] is input signal to the filter, y[] is output signal from the filter, and h[] is the impulse response of the
filter. Impulse-response length of the filter h[] is L samples, where L is a finite number, and hence these filters
are called FIR filters. The concept of convolution operation is illustrated in Figure 6.37. Using Equation (7.15),
we basically take the mirror image of x [k] (i.e., x [−k]) and correlate it with the impulse response h[] to get
the filtered samples y[]. If all L samples of h[] have the same value 1/L , then the Equation (7.15) reduces as
follows:

y[n] = 1

L

L−1∑
k=0

x [n − k] (7.16)

With Equation (7.16), we basically obtain the current filtered sample by summing the current sample to
previous L − 1 samples and multiplying by a constant 1/L . Then we increase n by 1 and repeat the preceding
process and continue like this until we finish all the input samples. This type of filter is called a moving-average
filter. The moving-average filter performs well in smoothing time-domain signals. The degree of smoothing
depends on the length of filter L . This is shown in Figure 7.19 in filtering a noisy sinusoid for three filter
lengths.

The moving-average filter can be efficiently computed using a recursive equation given as follows:

y[n] = y[n −1]+ x [n]− x [n − L] (7.17)

With Equation (7.17), to get the first filtered sample, we compute the sum of the current sample and previous
L −1 samples and multiply by 1/L . To obtain n-th filtered samples, we add the previous filtered sample y[n −1]
to z[n], where z[n] is obtained by subtracting the (n − L)th-input sample x [n − L] from the current input sample

2

1

0

0 1 1.5 20.5

21

22

2

1

0

0 1 1.5 20.5

21

22

(c) (d)

(b)

2

1

0

0 1 1.5 20.5

21

22

(a)

2

1

0

0 1 1.5 20.5

21

22

Figure 7.19: Smoothing of time-domain signal using moving-average filter. (a) Noisy sinusoid, moving average.
(b) Five samples in (a). (c) Fifteen samples in (a). (d) Twenty-five samples in (a).

Transforms and Filters 353

1

0.8

0.6

0.4

0.2

0

215

210

0

220

230

240

250

260
210 25 0

(a) (b)

0 0.1 0.2 0.3 0.4 0.55 10 15

h
[n

]

n f

|W
(f

)|

Figure 7.20: Time- and frequency-domain characteristics of a moving-average filter.

x [n]. In this way, we use one addition and one subtraction in computing the moving-average filter irrespective
of its length.

Although the moving-average filter performs well in smoothing time-domain signals, it performs inadequately
in separating the frequency components (i.e., in extracting or attenuating the specified frequency bands). The
time- and frequency-domain responses of the moving-average filter are shown in Figure 7.20. As shown in the
figure, the moving-average filter is a discrete rectangular pulse with height 1/L . If we look at the frequency
response of the moving-average filter, it has very poor low-pass filter characteristics with slow roll-off and poor
stopband attenuation. The expression for frequency response of the moving-average filter with length L samples
follows:

H (f) = 1

L

sin(π fL)

sin(π f)
(7.18)

The frequency-response characteristics of the moving-average filter can be improved by using different weights
(instead of the constant 1/L) for filter coefficients h[] in Equation (7.15).

7.4.1 Windowing

Applying a proper window to the impulse response minimizes abrupt changes in the truncated impulse response.
If we just cut the impulse response at both ends (i.e., by multiplying by the rectangular window) to obtain
the shorter impulse response, we introduce an abrupt change in values of the impulse-response samples, and
this leads to very poor frequency-response characteristics. For example, we applied a rectangular window to
an ideal sinc response in Figure 7.17(c) to get the shorter sinc response, and the ghastly frequency-response
characteristics of the filter can be seen in Figure 7.17(d). The same also applies to the moving-average filter
because it is obtained by multiplying an impulse train by a rectangular window. Two commonly used windows
to obtain acceptable frequency-response characteristics for FIR filter design are discussed next.

Hamming Window
The following equation represents the Hamming window function:

w[n] = 0.54−0.46 cos

(
2πn

N

)
, − N −1

2
≤ n ≤ N −1

2
(7.19)

where N is window length.
The time-domain (window is shifted right by 15 samples for N = 31) and frequency-domain characteristics of

the Hamming window are shown in Figure 7.21. A few characteristics of a Hamming window are: the passband
ripple is about 0.0194 dB, stopband attenuation is about 53 dB, and the main lobe relative to the side lobe is

354 Chapter 7

1

0.8

0.6

0.4

0.2

0
0 5 10 15

(a)

20 25 30

w
[n

]

n
(b)

0 0.1 0.2 0.3 0.4 0.5
f

210

0

220

230

240

250

260

270

280

|W
(f

)|

Figure 7.21: Time- and frequency-domain characteristics of Hamming window.

1

0.8

0.6

0.4

0.2

0
0 5 10 15

(a)

20 25 30

w
[n

]

n
(b)

0 0.1 0.2 0.3 0.4 0.5

|W
(f

)|

f

0

�20

�40

�60

�80

�100

�120

Figure 7.22: Time- and frequency-domain characteristics of Blackman window.

about 41 dB. Given filter length N , the transition width � f is obtained as follows:

� f = 3.3

N
(7.20)

Blackman Window
The time-domain characteristics of a Blackman window function are represented in the following equation:

w[n] = 0.42 −0.5 cos

(
2πn

N −1

)
+0.08 cos

(
4πn

N −1

)
, − N −1

2
≤ n ≤ N −1

2
(7.21)

where N is window length.
The time-domain (window is shifted right by 15 samples for N = 31) and frequency-domain characteristics

of the Blackman window are shown in Figure 7.22. A few characteristics of a Blackman window follow: the
passband ripple is about 0.0017 dB, stopband attenuation is about 75 dB, and the main lobe relative to the side
lobe is about 57 dB. Given filter length N , the transition width � f is obtained as follows:

� f = 5.5

N
(7.22)

Transforms and Filters 355

1

0.8

0.6

0.4

0.2

0

0 20 40 60 80 100 120

�0.2

h w
 [n

]

n
(a)

0

�20

�40

�60

�80

�100

�120

0 0.1 0.2 0.3 0.4 0.5

|H
w

(f
)|

f
(b)

Figure 7.23: The time-frequency response characteristics of Blackman windowed low-pass filter.

As shown in Figure 7.23, we can see amazing results in the frequency-response characteristics (from a practical
point of view) of a low-pass filter when we apply a Blackman window to the time-domain impulse response
(i.e., sinc function) of an ideal low-pass filter shown in Figure 7.17(b).

■Example 7.2

Consider the following low-pass-filter frequency-domain characteristics:

Passband cut-off frequency f p 2.2 kHz

Transition width 0.6 kHz

Stopband attenuation >50 dB

Sampling frequency 8.8 kHz

Obtain the coefficients of a FIR low-pass filter using the Hamming window. For a given cut-off frequency
fc , the ideal low-pass-filter impulse response (i.e., sinc functions) follows:

hlp[n] =
{

sin(2π fc n)

πn , n 	= 0

2 fc, n = 0

The filter coefficients are then obtained as follows:

h[n] = hlp[n]w[n], − N −1

2
≤ n ≤ N −1

2

where w[n] is the Hamming window.
The length of filter N is determined as follows. The normalized transition width � f = 0.6/8.8 = 0.0682.

Based on Equation (7.21), N = 3.3/� f = 3.3/0.0682 = 48.4. Given that we prefer N to be an odd
number, we choose N = 49. With the smearing effect of the window on the filter response, usually the
cut-off frequency is centered on the transition band and the effective frequency cut-off is determined
from the passband frequency and transition width as follows:

fc = fp +� f/2 = 2.2 +0.6/2 = 2.5 kHz

The normalized cut-off frequency is fc = 2.5/8.8 = 0.2841. With the symmetric filter property, we
only need to compute half the filter coefficients, with the other half automatically derived from the com-
puted coefficients. That is, if we compute coefficients h[n] from n = 0 to n = (N − 1)/2 = (48)/2 = 24,

356 Chapter 7

we can get the filter coefficients h[n] from n = 0 to 48 in the following way: h[24],h[25] = h[23],
h[26] = h[22], . . . ,h[48] = h[0]. With this, all the filter coefficients are obtained as follows:

h[24] = 2 fc = 2 ×0.2841 = 0.5682

h[23] = h[25] = hlp[25]w[25] = sin(2π fc25)

25π
[0.54−0.46 cos(2π25/48)] = 0.3099

h[22] = h[26] = hlp[26]w[26] = sin(2π fc25)

25π
[0.54−0.46 cos(2π26/48)] = −0.0651

...

h[0] = h[48] = hlp[48]w[48] = sin(2π fc48)

48π
[0.54−0.46 cos(2π48/48)] = −9.7594×10−4

■

The subject of FIR filter design theory is very broad, and the purpose of the concepts underlying FIR filter
design is to obtain the appropriate filter coefficients that best satisfy the frequency-response characteristics with
a minimum number of coefficients. We assume that the FIR filter coefficients are available for the desired time-
and frequency-domain responses. Next, we discuss FIR filter implementation techniques.

7.4.2 FIR Filter Realization

Filter difference equations (e.g., the convolution sum equation given in Equation (7.15)) are represented using
special signal flow diagrams called filter realization structures. There are many filter realization structures for
a given difference equation, each with specific advantages and disadvantages. All filter realization structures
consist of a delay unit, an adder, and a multiplier, as shown in Figure 7.24(a) through (c). In this section, we
discuss three widely used FIR filter realizations: the direct-form or transversal, linear-phase, and DFT-based
structures.

FIR Transversal Realization
A transversal FIR filter realization is a signal flow diagram that corresponds to the filter difference equation given
in Equation (7.15). The transversal realization of a FIR filter is shown in Figure 7.25. With a transversal FIR
filter structure, the computation of each output sample y[n] requires (1) L − 1 delay units to store the previous
L −1 input samples, (2) L memory locations to store L filter coefficients, (3) L multipliers, and (4) L −1 adders.

As seen in Figure 7.25, the current output sample y[n] is obtained from a weighted sum of the current input
sample x [n] and L − 1 previous input samples (i.e., x [n − 1] to x [n − L + 1]). With this realization, we can
implement a FIR filter very efficiently on an embedded processor, as all the indexing in accessing the input data
and filter coefficients is linear.

(a)

Delay
Unit (z�1)

x [n] x [n�1]

(b) (c)

x [n] a �x [n]
a

x [n]

y [n]

x [n]� y [n]
�

Figure 7.24: Building blocks of filter realization structure. (a) Delay unit. (b) Adder. (c) Multiplier.

Figure 7.25: Transversal realization of
FIR filter.

z 21 z 21 z 21 z 21

y [n]

x [n 2 L 1 2] x [n 2 L 1 1]

h[L 2 3] h[L 2 1]h[L 2 2]

x [n]

h [0] h [1]

x [n 2 1]

1 1 1 1

Transforms and Filters 357

Figure 7.26: Linear-phase realization
of FIR filter.

x [n 2(L 2 1)/2]

h[(L 2 1)/2]

x [n]

y [n]

x [n 2 1]

h [0] h [1]

1111

z 21

z 21 z 21 z 21 z 21

z 21 z 21 z 21

Figure 7.27: DFT-based FIR filter
implementation.

N-Point
DFT

N-Point
DFT

N-Point
IDFT

M Input Data
Samples

L Filter
Coefficients

FIR Filter
Output

Linear-Phase Realization
For a linear-phase realization, we modify the FIR filter difference equation as follows:

y[n] =
(N−1)/2−1∑

k=0

h[k]{x [n − k]+ x[n − (L −1 − k)]} +h[(L −1)/2]x [n − (L −1)/2] (7.23)

The signal flow diagram of the linear-phase realization is shown in Figure 7.26. With a linear-phase realization,
we can compute the filter output with fewer multiplications as the filter coefficients are symmetric about the
center (i.e., h[n] = h[n − (L − 1)]). Although the linear-phase structure allows us to compute the filter output
with fewer multiplications, the index order of input samples to the filter is not linear anymore and its efficient
implementation is not straightforward.

DFT-Based Structure
Since the convolution in the time domain is equivalent to multiplication in the frequency domain (see
Section 6.5.3), we can also use the DFT for performing the filter operation. This realization structure is popu-
larly used for a FIR filter implementation, especially when the filter impulse response is long. As a DFT can be
implemented very efficiently with FFT algorithms (see Section 7.1), the computation of a longer convolution
for a FIR filter can be avoided with use of a DFT structure as shown in Figure 7.27. Given the input data of
M-length samples and filter-impulse response of length L samples, we must use minimum N-point DFT with
the DFT structure to obtain linear convolution output, where N = M + L −1.

7.4.3 FIR Filter Fixed-Point Simulation

In this section, we discuss simulation and implementation techniques for a FIR filter using the transversal
realization structure. The floating-point simulation of a transversal structure is given in Pcode 7.12. Although the

for(n = 0;n < N;n++) {
y[n] = 0;
M = n < (L-1) ? n :(L-1); // maximum filter output samples
for(k = 0;k < M;k++)

y[n] = y[n] + h[k] * x[n-k];
}

Pcode 7.12: Floating point simulation code for a FIR transversal realization.

358 Chapter 7

simulation code given in Pcode 7.12 is simple, it is computationally very inefficient. First, it uses floating-point
values in the computation; hence it runs very slowly on a fixed-point embedded processor. Even if we convert to
fixed-point computations, this simulation code is still inefficient as it does not utilize the structural features of
transversal realization. In the following, we discuss a few tasks for efficient implementation of the fixed-point
FIR filter using a transversal structure.

Fixed-Point Computation
The most common fixed-point formats used with digital filtering are 1.15 and 1.31 (usually along with extended
arithmetic registers) (see Appendix B, Section B.1, on the companion website for more details on fixed-point
data formats). We may require scaling of the filter coefficients if the maximum value present in the coefficients
is greater than or equal to 1. If the dynamic range of the filter coefficients is larger, then we prefer the 1.31 format
over the 1.15 format to retain the lower-amplitude coefficients after scaling. While we obtain better results with
the 1.31 format compared to 1.15 format, the computational power and memory required with the 1.31 format
are greater. In the fixed-point implementation of a FIR filter as given in Pcode 7.13, we are restricted to 16-bit
precision to represent both the data and filter coefficients.

for(n = 0;n < N;n+ =4) {
y[n] = 0; y[n+1] = 0;
y[n+2] = 0; y[n+3] = 0;
M = i < (L-1) ? i : (L-1);
for(k = 0;k < = M;k+= 4) {

a = (x[n-k] * h[k]) >> 15; b = (x[n-1-k] * h[k+1]) >> 15;
c = (x[n-2-k] * h[k+2]) >> 15; d =(x[n-3-k] * h[k+3]) >> 15;
a = a + b; c = c + d;
y[n] = a + c;

a = (x[n+1-k] * h[k]) >> 15; b = (x[n-k] * h[k+1]) >> 15;
c = (x[n-1-k] * h[k+2]) >> 15; d =(x[n-2-k] * h[k+3]) >> 15;
a = a + b; c = c + d;
y[n+1] = a + c;

a = (x[n+2-k] * h[k]) >> 15; b = (x[n+1-k] * h[k+1]) >> 15;
c = (x[n-k] * h[k+2]) >> 15; d = (x[n-1-k] * h[k+3]) >> 15;
a = a + b; c = c + d;
y[n+2] = a + c;

a = (x[n+3-k] * h[k]) >> 15; b = (x[n+2-k] * h[k+1]) >> 15;
c = (x[n+1-k] * h[k+2]) >> 15; d = (x[n-k] * h[k+3]) >> 15;
a = a + b; c = c + d;
y[n+3] = a + c;

}
}

Pcode 7.13: Fixed point simulation code for FIR filter kernel.

Reuse of Data and Coefficients
In Pcode 7.13, we read the same data and coefficients multiple times from respective buffers. In other words,
we access the same data and coefficients up to L times in computing L output samples as shown in Figure 7.28,
where L is the filter length. However, we can reuse the data for computing multiple filter outputs by unrolling
both the inner and outer loops. By unrolling the inner and outer loops, we can (1) reduce the data and coefficient
memory buffer access, (2) compute the many MAC operations in parallel, and (3) reduce the cycles spent in loop
overheads. In Pcode 7.13, we unrolled both the inner and outer loops four times, and both input data samples
and filter coefficients are reused for computing four filter outputs.

Real-Time Filtering
Previously, we assumed a buffer of data samples and computed the filtered data output for that buffer of data
samples. In practice, things are not that simple. We must filter the data in real time for most applications. With

Transforms and Filters 359

Current sample participated in L filtered outputs

Same filter coefficient
participated in filtering
L samples

Figure 7.28: Illustration of data and coefficient reuse in filtering data samples.

Buffer 1 Buffer 2

Filtering Data
Samples

Filling Data
Samples

Filter N 2L
Samples

Fill N 2L Samples
from External
Source

Copy last L samples
from buffer 1

Swap Pointers
P1 P2

Last L samples

First L samples

Figure 7.29: Ping-Pong buffer scheme.

Figure 7.30: Schematic of circular
buffer. K Samples

P2 P1

Read Write

real-time filtering, the current data sample is filtered before arrival of next data sample. However, we do not
handle the data in terms of single samples; instead we work on a buffer of data samples (to efficiently utilize
processor resources). In brief, we must filter the current data sample buffer by the time that the next data buffer is
filled with data samples. For this, we use two approaches: (1) a Ping-Pong buffer scheme using two data buffers,
as shown in Figure 7.29, and a circular buffer scheme as shown in Figure 7.30. The Ping-Pong buffer scheme is
useful for C-implementation, whereas the circular buffer scheme is useful at assembly-level implementation on
embedded processors that support circular indexing.

Ping-Pong Buffer Scheme
With the Ping-Pong buffer scheme, when filtering the data of buffer 1, buffer 2 is filled with data samples. Once
we finish filtering buffer-1 data samples, we swap the pointers of both buffers and filtering is continued with
the buffer-2 data samples while filling buffer 1 with data samples. This process continues as long as the filter is
enabled. To perform filtering continuously without missing samples, the middle N − L samples in the current

360 Chapter 7

buffer are always filtered while filling the other buffer from the L-th sample, and we copy the last L samples of
the current buffer to the beginning of the other buffer.

If buffer overflow occurs when a filter is working on another buffer, we cannot perform real-time filtering due
to the limited bandwidth of an embedded processor (in terms of MIPS, memory, peripherals, etc.). Sometimes
inefficient implementation of a filter also results in non–real-time filtering.

Circular Buffer Scheme
Circular indexing is used to make a circular buffer from a linear buffer. The concept of circular indexing is
used in most embedded processors. With circular indexing, the write and read pointers P1 and P2 of the buffer
automatically wrap around after incrementing K samples, where K is the length of the circular buffer. The
schematic diagram of a circular buffer is shown in Figure 7.30. By making both data and coefficient buffers
circular, we can perform filtering of all samples with one loop and avoid all overheads associated with data copy,
pointer swap, and multiple loops setting overhead, and so on. For continuous filtering, we do not need to copy
the data samples from one place to another; instead simple adjustment of the buffer read pointer P2 allows us to
perform continuous filtering.

Computational Complexity
The computational complexity (in terms of cycles and memory) of a FIR filter depends solely on filter length L .
If we use the 1.15 format, we consume approximately L/2 cycles to perform filtering of a single sample on the
reference embedded processor (as the reference embedded processor consists of two MAC units). See Appendix A
on the companion website for more details on the reference embedded processor architecture. Given that we use
16 bits to represent both the data and coefficients, the amount of L1 data memory required is about 2(L + K)

bytes.

7.4.4 Simulation Results

In this section, we will present the simulation results for FIR filtering. We consider an analog signal whose
maximum frequency is less than or equal to 64 Hz. That is, we must sample such a signal at least 128 times per
second to process it in the digital domain and recover the signal from the processed digital signal. With this, the
normalized frequency of 0.5 in the digital domain is equivalent to the analog frequency of 64 Hz.

Low-Pass Filter
We consider a low-pass filter whose passband/cutoff frequency is 15 Hz (or the normalized cutoff frequency
is 0.1172), and its shortened impulse response is obtained by applying the Blackman window to the impulse
response of the ideal low-pass filter with a 15-Hz cutoff frequency. The time-frequency characteristics of this
low-pass filter are shown in Figure 7.31.

1.2

1

0.8

0.6

(a)

0.4

0.2

0

0 50 100 150
–0.2

h
[n

]

n
(b)

0 0.1 0.2 0.3 0.4 0.5
–150

–100

–50

0

|H
(f

)|

f

Figure 7.31: Low-pass filter characteristics. (a) Time domain. (b) Frequency domain.

Transforms and Filters 361

Desired Signal Generation
The desired signal is formed by adding two sine waves with frequencies 8 Hz (or the equivalent normalized
frequency equal to 0.0625) and 10 Hz (or the equivalent normalized frequency equal to 0.0781) as shown in
Figure 7.32(a). Its corresponding frequency-domain information is shown in Figure 7.32(b).

Noise Signal Generation
We consider two test cases for FIR filtering. In the first case, the desired signal is associated with narrowband
noise; and in the second case, the desired signal is associated with wideband noise.

1. Narrowband noise u[n] (bandwidth=5 Hz): Obtained by adding five sine waves from 40 Hz to 44 Hz (or
equivalent normalized frequency range is 0.3125 to 0.3438). The time-frequency information of the noisy
signal z[n] (= x [n]+u[n], where x [n] is a desired signal and u[n] is a narrowband noise signal) is shown in
Figure 7.33.

Figure 7.32: Desired signal
information. (a) Time domain.
(b) Frequency domain.

2

1

x
[n

]

0

0

(a)
n

20 40 60 80 100 120

�1

�2

(b)

0 0.05 0.1 0.15 0.2 0.25

f

0.3 0.35 0.4 0.45 0.5

0

�100

�200

�300

�400

|X
(f

)|

5

z
[n

]

0

0

(a)
n

20 40 60 80 100 120

�5

(b)

0 0.05 0.1 0.15 0.2 0.25

f
0.3 0.35 0.4 0.45 0.5

100

0

�100

�200

�300

�400

|Z
(f

)|

Figure 7.33: Plot of narrowband noise signal. (a) Time domain. (b) Frequency domain.

362 Chapter 7

3

2

1

z
[n

]

0

0

(a)

(b)

0 0.05 0.1 0.15 0.2 0.25

f

n

0.3 0.35 0.4 0.45 0.5

20 40 60 80 100 120

�1

�3

�2

10

0

�10

�20

�30

�50

�40

|Z
(f

)|

Figure 7.34: Plot of wideband noise signal. (a) Time domain. (b) Frequency domain.

2. Wideband noise v[n] (bandwidth=64 Hz):Obtained with Gaussian distributed random variable. The range of
the equivalent normalized frequencies present in wideband noise is 0.0 to 0.5. The time-frequency information
of a noisy signal z[n](= x [n] + v[n], where x [n] is a desired signal and v[n] is a wideband noise signal) is
shown in Figure 7.34.

Filtering Noisy Signals with the FIR Filter
We filter the noisy signals by passing them through a FIR filter whose impulse response h[n] is shown in
Figure 7.31. The FIR filtering can be achieved either by convolution (using Pcode 7.13, page 358) or FFT (see
Section 7.1). If the number of samples present in the input signal is M and the length of the impulse response
is L , then the length of the filter output is M + L − 1 samples. The filtered samples (corresponding to M input
samples) are given by the middle M samples in the convolution or FFT output (i.e., starting from the sample at
index (L −1)/2 to the sample at index (M + L −1)− (L −1)/2).

Narrowband Noise Filtering
The frequency spectrum of the narrowband noise-signal filter output is shown in Figure 7.35(a). As expected, the
noise band in the filter output (from 0.3125 to 0.3438 on the normalized frequency scale, shown with a dashed
line in Figure 7.35(a)) is attenuated by 100 dB with respect to the input-signal noise band. This attenuation
factor is the same as that of a low-pass filter in the stopband at those frequencies, as shown in Figure 7.31(b). In
addition, the noise signal (solid line) and filtered signal (dashed line), and original signal (solid line) and filtered
signal (dashed line) of the time domain are shown in Figure 7.35(b) and Figure 7.35(c), respectively. We can
determine FIR filter performance by inspecting the original signal (solid line) and filtered signal (dashed line)
in Figure 7.35(c). We cannot see the difference because both original and filtered signals are overlapping and
they are almost the same. The MSE difference between the original and filtered signal is 2.3556 × 10−8 (with
double-precision computations). Using 16-bit precision for both filter coefficients and input data (not shown),
the MSE difference between the original and filtered signals is 5.9×10−3.

Wideband Noise Filtering
The wideband noise signal z[n] is constructed by adding Gaussian-distributed white noise (whose frequency
spectrum is almost flat at all the frequencies between 0 to 64 Hz) to original signal x [n]. The filtered signal y[n]

Transforms and Filters 363

2

1

x
[n

],
y

[n
]

z
[n

],
y

[n
]

|Z
(f

)|
, |

Y
(f

)|

0

0

(c)

(b)

n

20 40 60 80 100 120

�1

�2

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

�100

�200

�300

�400

5

0

0

n

f

20 40 60 80 100 120

�5

Figure 7.35: Narrowband noise filtering with FIR low-pass-filter. (a) Frequency domain. Solid line, before filtering;
dashed line, after filtering. (b) Time domain. Solid line, before filtering; dashed line, after filtering. (c) Time
domain. Solid line, original signal; dashed line, filtered signal.

is obtained by convolving the noise signal z[n] with the filter impulse response h[n] shown in Figure 7.31(a). The
frequency spectra of the noisy signal (solid line) and filtered signal (dashed line) are shown in Figure 7.36(a).
In addition, the noise signal (solid line) and filter output (dashed line), and the original signal (solid line) and
filter output (dashed line) of the time domain are shown in Figure 7.36(b) and Figure 7.36(c), respectively.
As the filter allows the noise components in the passband, we can make out the difference between the original
and filtered signals in this case.

7.5 Infinite Impulse-Response Filters

Although we obtain desired time-frequency characteristics using FIR filters, their higher performance is at the
cost of greater computational complexity. Here we discuss another class of filters—the IIR filters, with which
we get the satisfactory performance results at very low computational complexity. FIR filters are implemented
using convolution, whereas IIR filters are implemented using recursion (hence IIR filters are also called recursive
filters). We will discuss details of IIR recursive implementation later. IIR filters are useful because they avoid
a longer convolution in implementing digital filters. Unlike FIR filters, which lack analog counterparts, IIR

364 Chapter 7

z
[n

],
y

[n
]

(b)

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

�50

�100

�150

3

2

1

0

0

n

f

20 40 60 80 100 120
�3

�2

�1

x
[n

],
y

[n
]

(c)

2

1

0

0

n

20 40 60 80 100 120
�2

�1

|Z
(f

)|
, |

Y
(f

)|

Figure 7.36: Wideband noise filtering with FIR low-pass-filter. (a) Frequency domain. Solid line, before filtering;
dashed line, after filtering. (b) Time domain. Solid line, before filtering; dashed line, after filtering. (c) Time
domain. Solid line, original signal; dashed line, filtered signal.

filters have traditional analog counterparts (e.g., Chebyshev, elliptic), and can be analyzed and synthesized using
familiar traditional filter design techniques. IIR filter design based on analog filters uses generalized Fourier
transform tools (i.e., Laplace transform and z-transform as discussed in Section 6.6). In particular, filter design
uses pole-zero location information to determine the time-frequency response characteristics of IIR filters. In
this section, we provide an overview of IIR filter design based on analog filter design techniques, their reali-
zation, simulation, and implementation techniques, and practical issues associated with the implementation of
IIR filters.

7.5.1 IIR Filter Design

Digital IIR filters are commonly designed based on weighted least-squares, min-max, analog filter, and modeling
designs. In this section, we concentrate only on digital IIR filter design based on analog filters. In this approach,
IIR filter specifications are derived from their analog counterparts. Digital IIR filter coefficients are obtained in
two steps: (1) picking an appropriate analog filter design, and (2) mapping filter specifications from the analog
to the digital domain. There are many choices in the two-step process of obtaining digital IIR filter coefficients
from analog filter designs. The main features of a few analog filters and analog-to-digital specification mapping
methods are briefly discussed.

Transforms and Filters 365

Analog-Filter Design Methods
The subject of analog filter design is very broad, and covering all concepts related to IIR filter design is beyond
the scope of this book. Here we discuss a few IIR filters that have comparable performance (from the application
point of view) with respect to moving-average and windowed-sinc FIR filters.

Single-Pole Analog Filters Like moving-average FIR filters, single-pole IIR filters also have good time-domain
characteristics, and these filters perform well in smoothing time-domain noisy signals. The single-pole filter is
not good at frequency-selective filtering. Time- and frequency-domain characteristics of a single-pole filter for
a particular pole location are shown in Figure 7.37. Unlike FIR filters, the IIR filter impulse response is not
symmetric, as shown in Figure 7.37(a); hence IIR filters are nonlinear-phase filters. The single-pole IIR filter
has very poor passband and stopband characteristics, as shown in Figure 7.37(b).

Chebyshev Filters Like windowed sinc FIR filters, Chebyshev IIR filters are used to perform frequency-selective
filtering. The Chebyshev filters achieve a faster roll-off by allowing the ripple in the passband (type-I) or stopband
(type-II) of their frequency response. Although Chebyshev filters cannot match the performance of windowed
sinc filters, the former are more efficient and more than adequate for many applications. Chebyshev filters provide
a trade-off between the roll-off and ripple. A particular class of filters with zero ripples is called maximally flat
or Butterworth filters. Butterworth filters have slower roll-off compared to Chebyshev filters. Another variation
of Chebyshev filters in which the ripples exist in both passband and stopband are called elliptic filters. Elliptic
filters provide the fastest roll-off for a given number of poles (or filter order), but are much harder to design.

The location of poles and zeros in the s-plane determines the complete frequency characteristics of analog
filters (e.g., Chebyshev filters), as shown in Figure 7.38. The expressions for squared magnitude response along
with the pole–zero location information for commonly used low-pass analog filters are provided in Table 7.4. The
frequency-domain characteristics of four low-pass digital IIR filters (obtained from the correspondent analog
filters by using mapping methods provided in Table 7.5) are shown in Figure 7.39. All four filters are designed with
the following specifications: filter order N = 6, passband cut-off frequency fp = Fs/8 (where Fs is sampling
frequency), passband ripple = 0.5 dB, and stopband attenuation = 20 dB. For a given set of specifications,
the elliptic filters provide good magnitude response with smallest filter order. However, Butterworth filters are
preferred due to better phase response.

Mapping Methods
Three of the most common methods of converting analog IIR filter to equivalent digital IIR filter are the
impulse invariant, the matched z-transform, and the bilinear z-transform. Mapping functions and advantages
and disadvantages for all three methods are presented in Table 7.5.

0 5 10 15 20
�0.2

�0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5
�35

�30

�25

�20

�15

�10

�5

0

5

(a) (b)

|H
[f

]|

n f

h
[n

]

Figure 7.37: Time-frequency characteristics of IIR filter with single pole.

366 Chapter 7

Table 7.4: Commonly used low-pass analog filter information

Analog Low-Pass Filters Information (e.g., Magnitude Response, Pole-Zero Locations)

Butterworth Contains only poles specified by the squared magnitude response |H (ω)|2 =
1

1+ (ω/ωc)
2N , where ωc is the cutoff frequency and N is the filter order. The

order N is obtained as N ≥ log{(As −1)/(Ap −1)}
2 log(ωs/ωc)

, where As and Ap are stop-

band attenuation and passband ripple (in amplitude, not in dB value), and ωs is
stopband frequency.

No ripples in both passband and stopband, as shown in Figure 7.39(a).
All poles are located in equally spaced positions on a circle of radius ωc as shown in

Figure 7.38(a)

Chebyshev type-I Contains only poles specified by the squared magnitude response |H (ω)|2 =
1

1+ε2C2
N (ω/ωc)

, where N is the order of filter, ε is related to passband ripple, and

CN (x) are Chebyshev polynomials CN (0) = 1 and CN (x) = 2xCN−1(x)−CN−2 (x).

Ripples are present only in the passband, as shown in Figure 7.39(b).
All poles are located on the ellipse as shown in Figure 7.38(b).

Chebyshev type-II Contains both poles and zeros, and the magnitude square frequency response is

given by |H (ω)|2 = 1

1+1/[ε2C2
N (ω/ωc)]

(i.e., it contains the inverse Chebyshev

polynomial).
Ripples present only in the stopband, as shown in Figure 7.39(c).
For a particular 6th-order filter, the s-plane pole-zero locations are shown in

Figure 7.38(c).

Elliptic Contains both poles and zeros, and the magnitude square frequency response

is given by |H (ω)|2 = 1
1+ε2G2

N(ω/ωc)
, where G N (x) is a Chebyshev rational

function.
Ripples in both the passband and stopband, as shown in Figure 7.39(d).
For a particular 6th-order filter, the s-plane pole-zero locations are shown in

Figure 7.38(d).

Table 7.5: Analog to digital mapping methods

Mapping Method Mapping Function and Limitations

Impulse invariant method: In this method,
we basically compute continuous-time impulse
response from the analog filter transfer func-
tion, sample it with sampling interval T , and
then compute the z-transform of the samples to
obtain the system function and z-domain fre-
quency response.

MF:
Q∑

k=1

Ak
s−pk

→
Q∑

k=1

Ak
1−epk T z−1 , where T is the sampling period.

As we sample the impulse response, the time-frequency-
domain characteristics remain the same if we sample with
reasonable sampling frequency.

Higher-order transfer functions have to be factored into
many first-order transfer functions to apply the mapping
function.

The antialiasing filter is required to work with high-pass or
bandpass filters.

Matched z-transform method: In this method,
the s-domain poles and zeros are mapped to
z-domain poles and zeros.

MF: (s −a) → (1−eaT z−1), where T is the sampling period.
Requires knowledge of poles and zeros.
The higher-order transfer function has to be factored into

first-order transfer functions to obtain poles and zeros
information.

Bilinear z-transform method: The most com-
mon method used in obtaining digital IIR filter
coefficients from analog IIR filter. With bilinear
z-transform, the imaginary axis of s-plane maps
to the unit circle in the z-plane, the left half of
the s-plane maps to inside the unit circle, and the
right half of the s-plane maps to outside the unit
circle.

MF: s = k z−1
z+1

,k = 1 or 2/T , where T is the sampling period.

Does not need any factorization.
Due to nonlinear mapping of frequencies, as ω =

k tan
(

T
2

)
, k = 1 or 2/T , where ω is the analog frequency

and
 is the digital frequency, the frequencies warp in this
mapping method. This effect is normally compensated for
by prewarping the analog filter before applying the bilinear
transformation.

Transforms and Filters 367

(a) (b)

(c) (d)

s plane

s plane

s plane

s plane

Figure 7.38: S-plane pole-zero locations of 6th-order low-pass IIR filters: (a) Butterworth, (b) Chebyshev type-I,
(c) Chebyshev type-II, and (d) elliptic.

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

(a)
f

(b)
f

|H
bt

(f
)|

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

(c)
f

|H
c2

(f
)|

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

|H
c1

(f
)|

(d)
f

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

|H
eI

(f
)|

Figure 7.39: Frequency-domain characteristics of 6th-order low-pass IIR filters: (a) Butterworth, (b) Chebyshev
type-I, (c) Chebyshev type-II, and (d) elliptic.

368 Chapter 7

For more details on analog filter design and for converting analog filter information to digital filter information,
see Rabiner and Gold (1975), Proakis and Manolakis (1992), Oppenheim et al. (1999), and Ifeachor and Jervis
(2002).

■ Example 7.3

Obtain low-pass digital IIR filter coefficients from analog filter design, assuming Butterworth character-
istics and meeting the following digital filter specifications:

Passband 0–750 Hz
Stopband 2–4 kHz
Passband ripple 5 dB
Stopband attenuation 20 dB
Sampling frequency 8 kHz

Use the bilinear z-transform method to convert the analog domain to discrete domain. With bilinear
transformation, the frequencies are warped in the analog-to-digital filter conversion. As the passband
and stopband frequencies are specified for the digital filter, we first determine the corresponding prewarp
analog frequencies as follows:

ωc or ωp = tan

(

pT

2

)
= tan

(
2π ×750

2 ×8000

)
= 0.3033

ωs = tan

(

sT

2

)
= tan

(
2π ×2000

2 ×8000

)
= 1

The order of the filter N for Butterworth characteristics is determined as follows:

N ≥ log{(As −1)/(Ap −1)}
2 log(ωs/ωc)

Passband ripple (Ap): 105/10 = 3.1623

Stopband attenuation (As) = 1020/10 = 100

Then, N ≥ log(2.1623/99)

2 log(1/0.3033)
= 1.6607

2×0.5181 = 1.6027. We use N = 2 as it must be an integer.

Given the order of the Butterworth filter as 2, the corresponding analog filter transfer function follows:

H (s) = 1

(s/ωc)2 +√
2s/ωc +1

= ω2
c

s2 +√
2sωc +ω2

c

Applying bilinear z-transform mapping leads to

H (z) = H (s)|s= z−1
z+1

= ω2
c(z−1

z+1

)2 +√
2ωc

(z−1
z+1

)+ω2
c

= ω2
c (z +1)2

(z −1)2 +√
2ωc(z2 −1)+ω2

c (z +1)2

After simplification and dividing the top and bottom by z2, the preceding equation reduces to

H (z) = ω2
c

1+√
2ωc +ω2

c

× 1+2z−1 + z−2

1+ 2(ω2
c−1)z−1

1+√
2ωc+ω2

c
+ (1−√

2ωc+ω2
c)z

−2

1+√
2ωc+ω2

c

Substituting the value of ωc = 0.3033 in the preceding equation results in

H (z) = 0.0605(1+2z−1 + z−2)

1−1.1940z−1 +0.3150z−2

The corresponding frequency-domain characteristic of the digital IIR filter is shown in Figure 7.40.

■

Transforms and Filters 369

�c �s

Stopband attenuation

Passband ripple

0.2 0.25 0.3 0.35 0.4 0.45 0.50.150.10.050

10

0

210

220

230

240

250

260

270

280

290

Figure 7.40: Frequency-domain characteristics for low-pass filter in Example 7.3.

Figure 7.41: Pole–zero locations for
real impulse response.

Complex pole: a 1 jbComplex zero: c 1 jd

Real zero: g

Complex conjugate
pole: a 2 jb

Real pole: q
Complex conjugate
zero: c 2 jd

Thus far, we discussed the digital IIR filter design based on its counterpart analog filter. Next, we discuss IIR
filter implementation aspects given the system function of the digital IIR filter.

Pole-Zero Locations
The locations of poles and zeros completely determine the time-frequency characteristics of IIR filters. The
general system function for the digital IIR filter follows:

H (z) = b0 +b1z−1 +b2z−2 +· · ·+bN z−N

1+a1z−1 +a2z−2 +· · ·+aM z−M
(7.24)

If we factor the numerator and denominator of the system function in Equation (7.24) into first-order poly-
nomials, then we have

H (z) = G
(z − z1)(z − z2) · · · (z − zN)

(z − p1)(z − p2) · · · (z − pM)
(7.25)

where G is the filter gain. The zi values, 1 ≤ i ≤ N , are zeros, and pi values, 1 ≤ i ≤ M , are poles of system
function H (z). If the poles and zeros of H (z) are symmetric with respect to the horizontal axis in the z-plane, then
the corresponding impulse response (i.e., inverse z-transform of H (z)) contains only real values. That means the
complex zeros and poles should occur in conjugate pairs as shown in Figure 7.41 to have real impulse response.

Assuming M1 and N1 real poles and zeros, and M2 and N2 complex conjugate pole and zero pairs, then
Equation (7.25) can be rearranged as follows:

H (z) = G

∏M1
k=1 (z − zk)

∏M2
k=1 (z − zk)(z − z∗

k)∏N1
k=1 (z − pk)

∏N2
k=1(z − pk)(z − p∗

k)
(7.26)

where M = M1 +2M2 and N = N1 +2N2 .

370 Chapter 7

Recursive Computation of IIR Filters
Equation (7.24) can be compactly represented as follows:

H (z) =
∑N

k=0 bk z−k

1+∑M
k=1 akz−k

= Y (z)

X (z)
(7.27)

N∑
k=0

bk z−k X (z) =
(

1+
M∑

k=1

ak z−k

)
Y (z) (7.28)

Taking the inverse z-transform on both sides of Equation (7.28) leads to

N∑
k=0

bk x [n − k] = y[n]+
M∑

k=1

ak y[n − k]

or

y[n] =
N∑

k=0

bk x [n − k]−
M∑

k=1

ak y[n − k] (7.29)

Equation (7.29) is a recursive equation that produces an infinite-length sequence when the input is an impulse
function. Consequently, these filters are called IIR filters. Based on Equations (7.27) and (7.29), the z-transform
of the IIR-filter impulse response can always be expressed as a rational function (i.e., H (z) = Y (z)/X (z)).

Stability of IIR Filters
The IIR filters are not always stable due to their recursive or feedback nature. IIR filter poles must lie within
the unit circle for stable filtering. As shown in Figure 7.42(a) through (e), the rate of decay of the single-pole,
IIR-filter impulse response slows down as the pole location moves toward the unit circle. The impulse response
grows outward as shown in Figure 7.42(f) when the pole moves outside the unit circle. We cannot produce
stable output data for stable input data with this outgrown impulse response and in this case we say that the
filter is unstable. What happens if system zeros lie outside the unit circle? The position of zeros only affects
frequency-response characteristics and does not affect system stability. In the case of systems with multiple poles
and zeros as given in Equation (7.26), even if one pole moves outside the unit circle, then the system become
unstable.

If we use double-precision floating-point operations in the implementation of IIR filters, we can guarantee
filter stability by taking care of pole locations (i.e., by making sure all poles lie within the unit circle) at the time
of filter design. However, this is not always the case when we implement IIR filters with fixed-point processors.
For efficiency and cost reasons, designers generally prefer fixed-point processors over floating-point processors.
If proper care is not taken in the fixed-point implementation of IIR filters, then we may end up with totally
unacceptable filter output due to finite-word-length effects associated with fixed-point computing.

7.5.2 IIR Filter Realization

In practice, we use various filter realization techniques (e.g., direct form, cascade, parallel, canonical, lattice) to
control arithmetic round-off errors. In this section, we focus on direct-form and cascade realization of IIR filters.
For M = N , Equation (7.29) can be realized using a direct-form structure as shown in Figure 7.43.

When the filter order is high, direct-form realization of the filter shown in Figure 7.43 is very sensitive to finite-
word-length effects. Numerical errors due to finite-word-length effects cause the systems to behave nonlinearly.
In practice, H (z) is broken down into smaller sections to minimize the finite-word-length effects, typically

Transforms and Filters 371

0 50 100 150
�1

�0.5

0

0.5

1

1.5
P�0.8

P�0.95

P�0.99

P�0.98

P�0.9

P�1.1

(a)

h
[n

]

n
(b)

n

n

n

0 50 100 150
�1

�0.5

0

0.5

1

1.5

(c)
n

(d)

0 50 100 150
�2

�1

0

1

2

0 50 100 150
�2

�1

0

1

2

(e)
n

(f)

h
[n

]

h
[n

]

h
[n

]

h
[n

]

h
[n

]

0 50 100 150
�1

�0.5

0

0.5

1

0 50 100 150
�1

0

0.5

�0.5

1

1.5

Figure 7.42: Impulse responses of single-pole system for various pole locations.

Figure 7.43: Direct-form realization of
IIR recursive equation.

z 21

x [n] y [n]

2a1 b1

2a2

2aM bN

b2

b0

z 21

z 21

first- or second-order blocks that are then connected in cascade or in parallel. Based on Equation (7.26), it is
straightforward to realize the higher-order system function in terms of cascaded first- or second-order structures.
The coefficients of these small-order structures can be real if all poles and zeros of higher-order system functions
are symmetric with respect to the horizontal axis.

372 Chapter 7

Cascade Realization of IIR Filters
If the poles and zeros are symmetric and if the number of poles is the same as the number of zeros, then we can
reorganize Equation (7.26) as follows:

H (z) = G
N1∏

k=1

(z − zk)

(z − pk)

N2∏
n=1

(z − zn)(z − z∗
n)

(z − pn)(z − p∗
n)

(7.30)

If the complex zero zn = an + jbn, then its complex conjugate zero z∗
n = an − jbn. With this, we can write

(z − zn)(z − z∗
n) as (z − zn)(z − z∗

n) = z2 − (zn + z∗
n)z + zn z∗

n = z2 − 2anz + (a2
n + b2

n) = z2 − fn z + gn, where
fn = 2an and gn = a2

n + b2
n. Similarly, if complex pole pn = cn + jdn, then (z − pn)(z − p∗

n) = z2 − unz + vn ,
where un = 2cn and vn = c2

n +d2
n . Now, Equation (7.30) is modified as follows:

H (z) = G
N1∏

k=1

(1− zk z−1)

(1− pk z−1)

N2∏
n=1

(1− fn z−1 + gnz−2)

(1−un z−1 +vn z−2)
(7.31)

The system function in Equation (7.31) contains first- and second-order polynomials with real coefficients
and such a system function can be realized as a cascade of many first- and second-order system function blocks
as shown in Figure 7.44. Cascade realizations are usually the least sensitive to finite-word-length effects. For
details on various IIR filter realizations and finite-word-length effects, see Oppenheim (1999).

Biquad IIR Filters
The second-order filters shown in Figure 7.44 are also called biquad filters. The general system function of the
biquad filter follows:

H (z) = b0 +b1z−1 +b2z−2

1+a1z−1 +a2z−2
(7.32)

The second-order system functions in Equation (7.31) and the biquad filter system function in Equation (7.32)
are the same except for gain. Based on Equation (7.26), the recursive equation for system function given in
Equation (7.32) follows:

y[n] =
2∑

k=0

bk x [n − k] −
2∑

k=1

aky[n − k] (7.33)

The corresponding direct-form realization of the biquad filter is shown in Figure 7.45.

1st

Order
1st

Order
1st

Order
2nd

Order
2nd

Order
2nd

Order
Gain

G

1 2 1 2N1 N2

x [n] y [n]

Figure 7.44: Cascade realization of IIR filters.

Figure 7.45: Direct-form realization of
a biquad filter.

z 21
2a1 b1

2a2 b2

b0

z 21

x [n] y [n]

Transforms and Filters 373

Causes
system
instability

(a) (b)

Figure 7.46: Illustration of the finite-word-length effects on pole-zero locations.

The higher-order filter implementation using biquad filters executes a little bit slower but generates smaller
arithmetic round-off errors than the direct implementation shown in Figure 7.43. The biquads can be scaled
separately and then cascaded to minimize the quantization errors and recursive accumulation of errors. In
the direct implementation of Figure 7.43, the coefficients and data are usually scaled all at once, which
gives rise to large errors. Another disadvantage of direct implementation is that the poles of such single-
stage high-order polynomials become increasingly sensitive to arithmetic round-off errors. Although care
is taken in filter design so that poles lie inside the unit circle of the z-plane, the filter input may see the
poles and zeros as if they moved from their actual positions due to quantization errors. This is illustrated in
Figure 7.46. If the quantization errors cause the poles to move outside the unit circle, then we obtain unac-
ceptable filter outputs due to system instability. The second-order polynomials (or biquads) are less sensitive
to finite-word-length effects, and error accumulation is also reduced because of shorter data flow in biquad
sections.

7.5.3 Biquad IIR Filter Fixed-Point Simulation

Finite-word-length effects can be minimized by implementing higher-order polynomials in terms of small-order
polynomials. In addition, the quantization errors can be minimized by increasing the precision of arithmetic
registers. As discussed, the best way to avoid register overflow is by scaling input data and filter coefficients and
by using extended-precision registers (if available) for holding intermediate accumulated results. For scaling,
we must first find the absolute maximum in the given data (say p) and in the coefficients (say q); then we divide
the entire data array with integer P and the entire coefficient array with integer Q, where P > p and Q > q.

Next, we choose the appropriate Q-format fixed-point representation to implement the IIR filters. As
16-bit multiplications can be easily performed on 32-bit fixed-point processors, we generally use the 1.15 format
to represent scaled input data and filter coefficients. However, if the precision of 16 bits is insufficient for a
particular filter implementation (i.e., to meet stringent specifications and to represent vulnerable pole locations),
we use the 1.31 format to represent data and coefficients. The question now becomes how we perform 32-bit
multiplications on a processor (e.g., the reference embedded processor) that has 32-bit width arithmetic registers
and 48-bit extended-precision accumulators. One way of performing this 32-bit multiplication on 32-bit proces-
sors is described here. Let a, b, c, and d represent four registers with 32-bit precision, and f and g represent two
registers with 48-bit extended precision. If b|a and d|c represent two 32-bit numbers u and v (here y|x represents
the 32-bit number MSB 16 bits (y) and LSB 16 bits (x)), then we perform two 32-bit number multiplications in
terms of 16-bit quantities (dc)×(ba) as follows:

f = (ac) >> 16

g = (ad +bc)

g = (f + g) >> 16

f = (bd + g) << 1

374 Chapter 7

where f contains the multiplication output in 1.31 format. If we compromise a little bit on accuracy, then the
four multiplications in the previous operation can be reduced to three multiplications as follows:

f = ad +bc

g = f >> 16

f = (bd + g) << 1

The recursive equation given in Equation (7.33) is used to implement the biquad IIR filter. We borrow the
concepts of real-time FIR filtering provided in Section 7.4.3 for real-time implementation of biquad IIR filters.
Either the Ping-Pong buffer model or circular buffer model can be used for real-time IIR filtering. With biquad
filters, we use three input data samples and two output data samples in computing the current output sample.
There are five coefficients in the biquad filter, and we denote them as a1, a2, b0, b1, and b2. We scale down both
filter coefficients and input samples if needed to make sure that all values are below 1. We represent both input
data and filter coefficients in the fixed-point format. The 1.15 and 1.31 fixed-point implementations of the biquad
filter are given in Pcodes 7.14 and 7.15, respectively. In the next section, we compare simulation results to see
how much improvement we can get by increasing precision from 16 to 32 bits.

We have not addressed the register overflow in Pcode 7.14 or 7.15 (see page 374) during filtering, as we did
not perform scaling for data or coefficients and we used the same fixed-point format for filter inputs, intermediate
outputs, and final outputs. As the IIR filters use the feedback structure and the current output sample is computed
by addition and subtraction of few terms, there is a chance of register overflow in the output that we give as
input again in the 1.15 fixed-point format to compute the next output. This causes error accumulation in filtering
due to feedback, and we may obtain unacceptable results if we do not properly scale the filter coefficients and
input. Sometimes we use different fixed-point formats for input samples, for intermediate outputs, and for final
outputs to minimize finite-length-word effects.

For example, in Pcode 7.14, by using the 1.15 format for inputs, the 4.12 format for intermediate outputs (i.e.,
right shift only 12 bits instead of 15 bits), and the 1.15 format for final output (scale it down to obtain 1.15 from
4.12), we avoid the register overflow in all biquad sections. However, this leads to more quantization errors due
to less precision of intermediate outputs. We determine which fixed-point format is appropriate for a particular
application based on the SNR that we want at the filter output.

a1 = fc[0]; a2 = fc[1]; b0 = fc[2]; b1 = fc[3]; b2 = fc[4];
out[0] = 0; out[1] = 0;
for(i = 2;i < L;i++){

a = in[i]; b = in[i-1];
e = (a*b0) >> 15; f = (b*b1) >> 15;
a = out[i-1]; b = out[i-2];
e = e - ((a*a1) >> 15); f = f - ((b*a2) >> 15);
a = in[i-2];
e = e + ((a*b2) >> 15);
e = e + f;
out[i] = e;

}

Pcode 7.14: Implementation of biquad IIR filter using 1.15 data format.

Computational Complexity
The number of filter coefficients associated with IIR filters is very small when compared to FIR filters, and
hence the number of computations and memory size are much smaller in the case of IIR filters. However,
given the filter order, the computational complexity of the IIR filter depends on fixed-point representation of
data. For example, the number of computations and the amount of memory required for 1.31 fixed-point IIR
implementation is greater compared to the 1.15 fixed-point IIR implementation. We consume almost double
the memory and approximately four times the number of clock cycles for 1.31 fixed-point IIR filters compared
to 1.15 fixed-point IIR filters. If L is the input data length, then we require about 2L bytes (using the circular
buffer model) of data memory to implement the biquad IIR filter using the 1.15 fixed-point data format. To

Transforms and Filters 375

out[0] = 0; out[1] = 0;
for(i = 2;i < L;i++){

a = in[i]; c = fc[2];
b = a >> 16; d = c >> 16; // MSB
a = a & 0xffff; c = c & 0xffff;
e = a * d; f = b * c;
e = e + f;
f = (a * c) >> 16; e = (e + f) >> 16;
f = b * d; g = f + e;

a = in[i-1]; c = fc[3];
b = a >> 16; d = c >> 16;
a = a & 0xffff; c = c & 0xffff;
e = a * d; f = b * c;
e = e + f;
f = (a * c) >> 16; e = (e + f) >> 16;
f = b * d; g = g + (f + e);

a = in[i-2]; c = fc[4];
b = a >> 16; d = c >> 16;
a = a & 0xffff; c = c & 0xffff;
e = a * d; f = b * c;
e = e + f;
f = (a * c) >> 16; e = (e + f) >> 16;
f = b * d; g = g + (f + e);

a = out[i-1]; c = fc[0];
b = a >> 16; d = c >> 16;
a = a & 0xffff; c = c & 0xffff;
e = a * d; f = b * c;
e = e + f;
f = (a * c) >> 16; e = (e + f) >> 16;
f = b * d; g = g - (f + e);

a = out[i-2]; c = fc[1];
b = a >> 16; d = c >> 16;
a = a & 0xffff; c = c & 0xffff;
e = a * d; f = b * c;
e = e + f;
f = (a * c) >> 16; e = (e + f) >> 16;
f = b * d; g = g - (f + e);
out[i] = (g << 1);

}

Pcode 7.15: Implementation of biquad IIR filter using 1.31 data format.

implement the biquad filter in 1.15 fixed-point format, we consume approximately four cycles per sample on the
reference embedded processor as it has two MAC units (see Appendix A on the companion website for details
on reference embedded processor architecture). In these four cycles, we do not include the cycles for memory
access as they are done parallel to the compute units. In addition, the operation (>> 15) is done for free on the
reference embedded processor.

7.5.4 Simulation Results

In this section, we present simulation results for the biquad IIR filter. In the following, we consider L = 64, the
length of the real-input data sample array x[] with double precision.

x[] = {
-0.73419553272114, 0.69405470315228, -0.84314100608659, 0.42060603379301,
-0.51497013058388, 0.28366075710274, -0.76249083362512, 0.00732434885485,
-0.58049161351719, -0.16355848979111, 0.03552863713489, -0.06948245208239,
-0.28186206405527, 0.54475523288876, 0.04860020926975, 0.10269344548893,
0.23900047593625, -0.91868755888719, 0.10931397941616, 0.02989635686007,
0.48129131846464, 0.22630493931331, -0.62535401079048, -0.06404540081684,
-0.21027908942413, 0.28991869866662, -0.18376371097574, -0.04607275562230,
-0.34467910818770, 0.03057475436452, 0.09694153826073, 0.33563844814254,
-0.02416783891113, -0.26440282666954, 0.44496738170435, 0.89073350344725,

376 Chapter 7

0.18027758692862, -0.05091551453884, 0.66804249350107, -0.36076559293720,
-0.42021964837270, -0.13223144391175, -0.04760000000000, 0.19154078804663,
0.12776795614633, -0.72556957909998, -0.18972954048883, 0.40266274104115,
-0.16628001546795, 0.35163798899788, -0.35120788406922, 0.15174746297898,
0.03905005003068, -0.09937556376360, 0.17213090531081, -0.02292825444822,
-0.72290233148861, 0.16326757381837, 0.07208180757915, -0.01150832752460,
0.07739777241019, 0.39472396921568, -0.81561204524936, 0.69420288575391};

The following system function is used for a biquad filter:

H (z) = 0.675436−0.892374z−1 +0.223344z−2

1−0.446897z−1 +0.312345z−2

Based on Equation (7.32), the filter coefficients a1, a2, b0, b1, and b2 follow:
a1 = -0.446897; a2 = 0.312345;
b0 = 0.675436; b1 = -0.892374; b2 = 0.223344;

We do not require any scaling for input data samples and filter coefficients as all data is less than 1. The
corresponding biquad filter double-precision output y[] follows:

y[] = {
-0.49590209383903, 0.90234937876447, -0.79467255749613, 0.55452142418984,
-0.41545177790717, 0.38621432902562, -0.58079842143537, 0.36853886544915,
-0.22281034840190, 0.19449363218240, 0.19681566440432, -0.08795837245195,
-0.22122306494244, 0.53256461804274, -0.20915182775101, -0.11215212035432,
0.09585021138778, -0.73299116989775, 0.58951692184313, 0.20986023925516,
0.23247062122988, -0.23161855732137, -0.69296240191518, 0.32799702080286,
0.13847754331020, 0.32860193150835, -0.32620265851882, -0.05079779789430,
-0.15355068526684, 0.26518898833673, 0.12768463035671, 0.12125429422500,
-0.27988101758672, -0.24500876263810, 0.50902121010294, 0.44951068113125,
-0.53182590730524, -0.37439903543690, 0.53571490566407, -0.49483844488573,
-0.20116004923176, 0.26976687190430, 0.17538495311387, 0.13643612229281,
-0.08906583580072, -0.64373152600100, 0.28800305277561, 0.60900503181259,
-0.33180601570965, 0.13732243683096, -0.42314175592357, 0.26244796092886,
0.06197356355373, -0.12235570598558, 0.13962764322551, -0.09067028101991,
-0.51350154892085, 0.54909326130500, 0.14731278403655, -0.14130513011438,
-0.03051523695858, 0.22547148622623, -0.77555500415086, 0.86786173773460};

Biquad Filter 1.15 Implementation
The input is converted to 1.15 format by multiplying all elements in array x[] with 215. The corresponding 1.15
fixed-point data values array x_1_15[] is given next.

x_1_15[] = {
-24058, 22742, -27628, 13782, -16874, 9294,
-24985, 240, -19021, -5359, 1164, -2276,
-9236, 17850, 1592, 3365, 7831, -30103,
3582, 979, 15770, 7415, -20491, -2098,
-6890, 9500, -6021, -1509, -11294, 1001,
3176, 10998, -791, -8663, 14580, 29187,
5907, -1668, 21890, -11821, -13769, -4332,
-1559, 6276, 4186, -23775, -6217, 13194,
-5448, 11522, -11508, 4972, 1279, -3256,
5640, -751, -23688, 5349, 2361, -377,
2536, 12934, -26725, 22747};

The values of filter coefficients a1, a2, b0, b1, and b2 in 1.15 format follow:
a1 = -14643; a2 = 10234;
b0 = 22132; b1 = -29241; b2 = 7318;

The biquad filter output y_1_15[] in 1.15 format is computed using Pcode 7.14 as follows:
y_1_15[] = {
-16250, 29567, -26040, 18170, -13614, 12654, -19032, 12076,
-7301, 6373, 6449, -2882, -7250, 17450, -6854, -3674, 3141, -24019, 19316,
6875, 7617, -7590, -22705, 10747, 4536, 10766, -10689, -1665, -5033, 8688,
4183, 3973, -9171, -8029, 16678, 14728, -17427, -12267, 17553, -16216,
-6592, 8840, 5747, 4470, -2919, -21093, 9436, 19953, -10873, 4500, -13865,
8600, 2030, -4009, 4574, -2972, -16827, 17992, 4826, -4630, -1001, 7386,
-25413, 28437

Transforms and Filters 377

The corresponding decimal values y_16 [] are obtained by dividing y_1_15[] with 215.
y_16[] = { -0.49591064453125, 0.90231323242188,
-0.79467773437500, 0.55450439453125, -0.41546630859375, 0.38616943359375,
-0.58081054687500, 0.36853027343750, -0.22280883789063, 0.19448852539063,
0.19680786132813, -0.08795166015625, -0.22125244140625, 0.53253173828125,
-0.20916748046875, -0.11212158203125, 0.09585571289063, -0.73300170898438,
0.58947753906250, 0.20980834960938, 0.23245239257813,-0.23162841796875,
-0.69290161132813, 0.32797241210938, 0.13842773437500, 0.32855224609375,
-0.32620239257813, -0.05081176757813, -0.15359497070313, 0.26513671875000,
0.12765502929688, 0.12124633789063, -0.27987670898438, -0.24502563476563,
0.50897216796875, 0.44946289062500, -0.53182983398438, -0.37435913085938,
0.53567504882813, -0.49487304687500, -0.20117187500000, 0.26977539062500,
0.17538452148438, 0.13641357421875, -0.08908081054688, -0.64370727539063,
0.28796386718750, 0.60891723632813, -0.33181762695313, 0.13732910156250,
-0.42312622070313, 0.26245117187500, 0.06195068359375, -0.12234497070313,
0.13958740234375, -0.09069824218750, -0.51351928710938, 0.54907226562500,
0.14727783203125, -0.14129638671875, -0.03054809570313, 0.22540283203125,
-0.77554321289063, 0.86782836914063};

Biquad Filter 1.31 Implementation
We convert the input to 1.31 format by multiplying all elements in array x[] with 231. The corresponding 1.31
fixed-point data values array x_1_31[] is given next.

x_1_31[] ={
-1576672900, 1490471125, -1810631523, 903244579, -1105889934, 609156837,
-1637436596, 15728919, -1246596247, -351239182, 76297167, -149212429,
-605294173, 1169852954, 104368154, 220532494, 513249613, -1972866510,
234749983, 64201937, 1033565236, 485986156, -1342937512, -137536450,
-451570906, 622595664, -394629564, -98940489, -740192748, 65658785,
208180368, 720778079, -51900038, -567800746, 955560176, 1912835633,
387143170, -109340234, 1434610330, -774738211, -902414823, -283964863,
-102220221, 411330710, 274379596, -1558148806, -407441085, 864711652,
-357083614, 755136831, -754213188, 325875195, 83859343, -213407398,
369648304, -49238051, -1552420935, 350614445, 154794503, -24713945,
166210450, 847663269, -1751513530, 1490789345};

The values of filter coefficients a1, a2, b0, b1, and b2 in 1.31 format follow:
a1= -959703999; a2 = 670755780;
b0 = 1450487765; b1 = -1916358572; b2 = 479627587;

The biquad filter output y_1_31[] in 1.31 format is computed using Pcode 7.15 as follows:
y_1_31[] = {
-1064941640, 1937780528, -1706546328, 1190825686, -892175900,
829388954, -1247255116, 791431184, -478481582, 417671892, 422658420,
-188889168, -475072918, 1143673806, -449150128, -240844846, 205836760,
-1574086548, 1265977952, 450671432, 499226856, -497397066, -1488125428,
704368238, 297378258, 705667274, -700514874, -109087440, -329747584,
569489014, 274200650, 260391612, -601039906, -526152312, 1093114724,
965316838, -1142087438, -804015804, 1150438998, -1062657468, -431987920,
579319944, 376636320, 292994342, -191267426, -1382402924, 618481844,
1307828342, -712547994, 294897690, -908690002, 563602706, 133087216,
-262756876, 299848080, -194712944, -1102736182, 1179168796, 316351788,
-303450462, -65530980, 484196328, -1665491688, 1863718888};

The corresponding decimal values y_32 [] are obtained by dividing y_1_31[] with 231.
y_32[] = {
-0.49590209499002, 0.90234937518835,
-0.79467255994678, 0.55452142190188, -0.41545177809894, 0.38621432799846,
-0.58079842291772, 0.36853886395693, -0.22281034942716, 0.19449363090098,
0.19681566394866, -0.08795837312937, -0.22122306656092, 0.53256461676210,
-0.20915182679892, -0.11215212102979, 0.09585021063685, -0.73299116827548,
0.58951692283154, 0.20986023917794, 0.23247062042356, -0.23161855805665,
-0.69296240247786, 0.32799702044576, 0.13847754243761, 0.32860193122178,
-0.32620265800506, -0.05079779773951, -0.15355068445206, 0.26518898736686,
0.12768462765962, 0.12125429324806, -0.27988101635128, -0.24500876292586,
0.50902120955288, 0.44951068144292, -0.53182590659708, -0.37439903430641,
0.53571490477771, -0.49483844451606, -0.20116005092859, 0.26976687088609,
0.17538495361805, 0.13643612246960, -0.08906583581120, -0.64373152516782,

378 Chapter 7

0.28800305165350, 0.60900502931327, -0.33180601615459, 0.13732243794948,
-0.42314175609499, 0.26244796160609, 0.06197356432676, -0.12235570512712,
0.13962764292955, -0.09067028015852, -0.51350155007094, 0.54909325949848,
0.14731278084219, -0.14130513276905, -0.03051524050534, 0.22547148540616,
-0.77555500343442, 0.86786173656583};

From the three output arrays, double-precision output y[], 1.15 fixed-point output y_16[], and 1.31 fixed-point
output y_32[], we can see that the double-precision filter output is very close to 32-bit precision filter output
when compared to 16-bit precision filter output. The root-mean-square error (RMSE) with the 16-bit precision
biquad filter is 3.0157649×10−5, whereas the RMSE with the 32-bit precision biquad filter is 1.3189298×10−9.

7.5.5 Goertzel Algorithm

As discussed in Section 7.1, the N-point FFT algorithm efficiently computes N DFT coefficients given N input
samples. In some applications (such as dual-tone multifrequency or DTMF), we do not require all the DFT
coefficients. In such cases, the Goertzel algorithm can be used to compute few DFT coefficients (or frequencies)
of the input signal x [n] using a second-order IIR filter. The recursive expression for computing k-th DFT
coefficient can be derived from the following standard DFT equation. Based on Equation (7.1),

X[k] =
N−1∑
n=0

x [n]W nk
N , where WN = e− j2π/N (7.34)

X[k] =
N−1∑
n=0

x [n]W −kN
N W nk

N ,
. .. W −kN

N = 1 (7.35)

X[k] =
N−1∑
n=0

x [n]W −(N−n)k
N (7.36)

= x [0]W −Nk
N + x [1]W −(N−1)k

N + x [2]W −(N−2)k
N +· · ·+ x [N −1]W −k

N

= (· · · ((((x [0]W −k
N + x [1]

)
W −k

N

)+ x [2]
)

W −k
N

)+· · ·+ x [N −1]
)

W −k
N

= yk[n]|n=N

(7.37)

where

yk[n] = W −k
N yk[n −1]+ x [n],n = 0, 1, 2, . . . , N with x [N] = 0 (7.38)

The system function governing the previous difference equation can be expressed as follows:

Yk[z]

X[z]
= 1

1− W −k
N z−1

= 1− W k
N z−1(

1− W −k
N z−1

) (
1− W k

N z−1
) = 1− W k

N z−1

1−2 cos 2πk
N z−1 + z−2

=
(

1

1−2 cos 2πk
N z−1 + z−2

)(
1− W k

N z−1)= Sk[z]

X[z]

Yk [z]

Sk[z]

(7.39)

where

Sk[z]

X[z]
= 1

1−2 cos 2πk
N z−1 + z−2

,
Yk[z]

Sk[z]
= 1− W k

N z−1 (7.40)

The final expressions for implementation of Goertzel algorithms are obtained from Equation (7.40) as follows:

sk[n] = x [n]+2 cos

(
2πk

N

)
sk[n −1]− sk[n −2], n = 0,1,2, . . . , N (7.41)

X[k] = yk[N] = sk[N]− W k
N sk[N −1] (7.42)

Transforms and Filters 379

Based on Equation (7.42), we are only interested in the IIR filter output to compute the DFT coefficient. Thus,
we need not compute the FIR filter Yk [z]/Sk [z] output for each input sample sk[n]. The square-value magnitude
of the k-th DFT coefficient can be obtained as follows:

|X[k]|2 = X[k]X∗[k] = s2
k [N]+ s2

k [N −1]−2 cos

(
2πk

N

)
sk[N]sk−1[N] (7.43)

Goertzel Algorithm Fixed-Point Implementation
For the k-th tone detection, we compute the magnitude square of the k-th DFT coefficient using the Goertzel
algorithm and detect the tone by applying the appropriate threshold on the magnitude square value. Equations
(7.41) and (7.43) are used for the simulation. For the given application, the values of k and N are available
in advance. Thus, we can precompute the value 2 cos(2πk/N) in advance. The actual implementation of the
algorithm is simple, and it involves only MAC and update operations as described in the following pseudocode.

Start n = 1:N
a = x[n] + k ∗ b − c; //k = 2 cos(2πk/N)

c = b;
b = a;
End

The value of sk[n] in Equation (7.41) grows in the recursive computation when the signal contains the k-th-
frequency component. Thus, we cannot use the 1.15 or 1.31 fixed-point format for sk[n]. The final amplitude of
sk[n] depends on block size N . For this reason, we use the 16.16 format in the simulation for all coefficients,
intermediate variables, and input samples. The simulation code for the 16.16 fixed-point implementation of the
Goertzel algorithm is given in Pcode 7.16. We use the extended precision (64-bit) variable q in the simulation
for simplifying the multiplication process of two 16.16 format numbers.

int detect_tone(int a, int n) // a: 2cos(2*pi*k/N) in 16.16 format, n: block size
{

int i,x,y,z;
long long q;

y = z = 0;
for(i = 0;i< n;i++){

q = (long long)a*y; // 2*cos(2*pi*k/N)*s[n-1]
q = q >> 16;
x = inp_x[i]+(int)q-z; // s[n] = x[n]+2*cos(2*pi*k/N)*s[n-1]-s[n-2]

// input inp_x[i] comes in 16.16 format
z = y; // s[n-2] = s[n-1]
y = x; // s[n-1] = s[n]

}
q = (long long) a*y;
q = q >> 16;
q = (long long) q*z;
x = q >> 16;
q = (long long) y*y;
y = q >> 16;
q = (long long) z*z;
z = q >> 16;
x = y+z-x; // magnitude square
x = x >> 16;
return x;

}

Pcode 7.16: Simulation code for fixed-point Goertzel algorithm.

By unrolling the IIR filter loop, we can further reduce the number of operations in the Goertzel algorithm
implementation. The explicit move operations can be avoided with the following unrolling:

Start n = 1:N/2
a = x[n] + k ∗ b − c
b = x[n] + k ∗ a − b

End

380 Chapter 7

The corresponding simulation code for the filter loop is provided in Pcode 7.17. Depending on block size N
(odd or even number), we may need to repeat one more iteration after the loop, as shown in the Pcode.

for(i = 0;i< n-1;i+=2){
s = (long long) a*y; // 2*cos(2*pi*k/N)*s[n-1]
s = s >> 16;
x = inp_s[j++] + (int) s-x; // s[n] = x[n]+2*cos(2*pi*k/N)*s[n-1]-s[n-2]

s = (long long) a*x; // 2*cos(2*pi*k/N)*s[n-1]
s = s >> 16;
y = inp_s[j++] + (int) s-y; // s[n] = x[n]+2*cos(2*pi*k/N)*s[n-1]-s[n-2]

}
// last iteration for odd values of N

s = (long long) a*y; // 2*cos(2*pi*k/N)*s[n-1]
s = s >> 16;
x = inp_s[j++] + (int) s-x; // s[n] = x[n]+2*cos(2*pi*k/N)*s[n-1]-s[n-2]
z = y; // s[n-2] = s[n-1]
y = x; // s[n-1] = s[n]

Pcode 7.17: Efficient implementation of Goertzel algorithm.

Goertzel Algorithm Computational Complexity
The computation for sk[n] takes one add and one MAC per sample. In DTMF detection, we are only concerned
with the magnitude square of the k-th DFT coefficient, that is, |X[k]|2 , as given in Equation (7.43). Unlike DFTs,
which require storing of many twiddle factors, we need not store any coefficients in the Goertzel algorithm. We
use only one coefficient “a” in the computation as given in Pcode 7.17, and this can be held in a data register.

On the reference embedded processor, we consume about 6 cycles (of which 4 cycles are used for multiplication
of two 16.16 format numbers) per iteration in the IIR filter loop of the Goertzel algorithm. If N = 200, then we
require about 1200 cycles to detect one frequency tone in the given signal using the Goertzel algorithm.

CHAPTER 8

Advanced Signal Processing

In Chapters 6 and 7, we discussed the basic signal processing tools such as the discrete Fourier transform (DFT),
discrete cosine transform (DCT), and digital filters. Most of these tools assume that the signals being processed
are stationary (or wide-sense stationary). In other words, if the second-order statistics (i.e., correlation or power
spectral density) of signals or underlying systems that produce the signals are constant, then we can effectively
process those signals with basic tools such as DFT, DCT, and digital filters. If the signal statistics vary with time,
then we cannot process such signals with basic tools. For this, we need advanced tools, the topic of this chapter.

In Section 8.1, we discuss adaptive signal-processing algorithms—widely used in digital communications,
and automotive, aerospace, control, and medical applications to operate effectively in an unknown environment
and to track time variations of statistics of underlying system or input data.

In Section 8.2, we discuss multirate signal-processing techniques with which we can save processing time,
reduce bandwidth requirements, and overcome a few other issues of single-rate systems. Multirate systems differ
from single-rate processing systems in that the sample rate is altered at various places within the system. The
aim of multirate techniques is to operate, at each point in the system, at the lowest sampling rate possible,
without introducing aliasing effects. The multirate signal-processing tools such as decimators, interpolators, and
polyphase filters are briefly discussed.

Fourier transforms use sinusoidal functions as base functions to analyze arbitrary signals. As sinusoids are
well-localized in frequency, but not in time, achieving both time and frequency localization of an arbitrary
signal to the required extent is not possible with Fourier transforms. To represent the frequency behavior of an
arbitrary signal locally in time, the signal should be analyzed by base functions that are localized both in time
and frequency. In Section 8.3, we introduce the wavelet transform bases (that overcome the shortcomings of
the Fourier transform’s sinusoidal bases), which are generated by translations and dilations of a prototype wave
called a mother wavelet. In addition, we discuss the discrete wavelet transform and its implementation aspects.

8.1 Adaptive Signal Processing

Before discussing adaptive signal-processing algorithms, we consider a few examples to understand more about
the limitations of the static digital filter. Let us consider the following three cases (from Chapter 9): (1) filter
to shape the transmitting signals (e.g., raised cosine filter to shape modulated signal), (2) filter to undo effects
of a stationary source that generates the signals (e.g., channel equalization in wired communications), and (3)
filter to undo effects of a nonstationary source that generates the signals (e.g., channel equalization in wireless
communications). We further divide case 3 into two scenarios: equalization of a slow time-varying channel,
and equalization of a fast time-varying channel. Here, the terms slow and fast are relative with respect to
duration of the sample block considered for processing. In other words, if channel statistics remain constant (i.e.,
variations are negligible) within a given block of channel output samples, then we treat such a channel as slow
time-varying or quasistationary; otherwise, the channel statistics are fast time-varying or nonstationary (i.e., the
channel statistics are not constant within the block of samples considered for processing). Next, we explain the
purpose of adaptive signal processing in digital communication systems by considering the three cases.

Case 1: In this case, given the sampling frequency and roll-off factor parameter, we can design offline a raised
cosine digital filter that meets the specifications and filters the modulated signals resulting in zero intersymbol

© 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-678-1.00008-9 381

382 Chapter 8

Figure 8.1: Block diagram of static
digital filter.

Time-Invariant
Filter

(design offline)

xnSn

interference (ISI) at the receiver under ideal channel conditions. With this filtering operation via a static digital
filter (see Figure 8.1), we get the expected filter output.

Case 2: In this case, there are no fixed specifications for filter design. Instead, we estimate the channel (a source
that outputs the sequence as a received sequence) using a training sequence, design the equalizer filter based on
the estimated channel by following given criteria, and filter the channel-generated samples to undo the effect of
the channel on transmitted samples. This is illustrated in Figure 8.2.

We transmit a training sequence at the beginning of communication. With the received training sequence and
using the reference training sequence (available at receiver), we then estimate the channel. Once we obtain the
equalizer filter coefficients from the estimated channel, we perform filtering on the received data samples by
assuming that the channel characteristics do not change during the established communication-link period.

Case 3: If channel statistics change with time, then a single time estimation of channel and equalizer design
to undo the channel effects will not be effective, as the equalizer weights computed at one point in time do not
represent inverse channel characteristics at any other point in time. In other words, the scheme illustrated in
Figure 8.2 cannot be used with time-varying channels. As shown in Figure 8.3, the equalizer filter coefficients
are adapted according to the current channel conditions. In this scheme, the training sequence is transmitted
periodically. The time period between two training sequences will be determined after rigorously studying
channel operating conditions. Here, we will have two modes to generate the error signal for adaptation: training
mode and decision-directed mode. Whenever the receiver perceives a training sequence, we use the reference
training sequence to generate the error; otherwise, we use decisions from the detector to generate the error signal.

Estimate the Channel
and Design an

Equalizer Filter Based
on Some Criterion

Perform
Filtering

xn̂

Equalizer Filter
Coefficients

Channel 1

Receiver

Received Data
Sequence

Received
Training

Sequence

AWGN
Samples

un
ynxn

Reference Training Sequence
zn

Figure 8.2: Static-channel estimation and equalization.

Estimate the Channel
and Design an

Equalizer Filter Based
on Some Criterion

Perform
Filtering

Equalizer Filter
CoefficientsTime-

Varying
Channel

Detector

Reference
Training

Sequence

1

1

1
2

Error
Signal

AWGN
Samples

xn̂ Sn
ˆ

xn

un

yn en

zn

Receiver

Received Data
Sequence

Figure 8.3: Block diagram of adaptive equalizer.

Advanced Signal Processing 383

Once the error signal is available, we use that error signal for updating the equalizer coefficients to track the
channel changes.

As discussed later, we use less computationally complex iterative algorithms to generate adaptive filter weights.
The algorithm generating the filter coefficients takes time to converge (known as convergence time) in obtaining
coefficients that accurately represent channel conditions. If the convergence time of an algorithm is greater than
the time at which the channel varies, then that adaptive scheme cannot cope with the channel variations and the
resulting adaptive filter will not be effective.

In the literature, adaptive filtering based on Wiener filter theory or least squares is widely used with stationary
and quasistationary signals or systems, whereas Kalman filter theory is applied to nonstationary systems. Due
to its high computational complexity, Kalman filtering is not preferred, especially in low-end applications. In
the following, we discuss adaptive filter algorithms based on Wiener filter and least-squares filter theories.
We consider the previous channel estimation and equalization applications as examples in discussing adaptive
filtering algorithms.

Given the input sequence {xn}, L channel coefficients {hn}, and additive white Gaussian noise (AWGN)
samples {un}, we can represent the AWGN channel output samples {yn} in the three following ways:

• Convolution model representation

yn = xn ⊗ hn +un

=
L−1∑
k=0

hk xn−k +un (8.1)

• Vector model representation

yn = hT x n +un (8.2)

where h = [h0 h1 h2 . . .hL−1]T and xn = [xn xn−1 xn−2 . . . xn−L+1]T

• Matrix model representation

y
n

= H x n +u n (8.3)

where

y
n
= [yn yn−1 yn−2 . . . yn−N]T , x n = [xn xn−1 xn−2 . . . xn−N−L+1]T , u n = [un un−1 un−2 . . .un−N]T

and

H =

⎡
⎢⎢⎢⎢⎢⎣

h0 h1 h2 · · · hL−1 0 0 · · · 0 0
0 h0 h1 h2 · · · hL−1 0 · · · 0 0
...

...
...

...
...

...
...

...
...

...
0 0 · · · 0 h0 h1 h2 · · · hL−1 0
0 0 · · · 0 0 h0 h1 h2 · · · hL−1

⎤
⎥⎥⎥⎥⎥⎦

The transversal filter structure is commonly used in most adaptive filtering applications. One such M-length
transversal filter structure is shown in Figure 8.4.

z�1 z�1

� � � � �

z�1 z�1

g0 g1 g2 g3 gM�2 gM�1

xn

yn
yn�1 yn�2 yn�3 yn�M�2 yn�M�1

ˆ

Figure 8.4: Structure of adaptive transversal filter.

384 Chapter 8

8.1.1 Wiener Filters

The Wiener filter solution is stated as follows: For stationary input signals, design a linear filter to minimize
the mean-square value of the error signal defined as the difference between the reference signal and actual filter
output signal. The Wiener filter solution is said to be optimum in the mean-square sense.

MMSE Criterion
With the minimum mean-square error (MMSE) criterion, we minimize the mean-square error (MSE) value. In
Figure 8.3, with the training mode, the error signal en is obtained by taking the difference between the actual
output signal x̂n and the reference signal zn as

en = x̂n − zn (8.4)

Then the MSE is defined as

MSE = E |en |2 = E
∣∣x̂n − zn

∣∣2 (8.5)

where E |.| represents the expectation operator.
Using the transversal filter structure as shown in Figure 8.4, the filter output signal x̂n is obtained by compu-

ting the convolution sum as follows:

x̂n =
M−1∑
m=0

g[m]yn−m (8.6)

(Note: In Equation (8.6), we use notation g[m] instead of gm for representing the filter coefficients.)
Using the vector model representation, Equation (8.6) can be expressed as

x̂n = yT
n

g (8.7)

where g = (g[0] g[1] g[2] · · · g[M − 1])T and y
n

= [yn yn−1 yn−2 · · · yn−M+1]T . Given Equations (8.5)
and (8.7),

MSE = J (g) = E
∣∣∣yT

n
g − zn

∣∣∣2 (8.8)

= E
[(

gT y
n
− zn

)(
yT

n
g − zn

)]
= gT E

[
y

n
yT

n

]
g − gT E

[
y

n
zn

]
− E

[
zn yT

n

]
g + E |zn |2 (8.9)

= gT Ryy[n]g − gT r n − r T
n g +σ 2

z

where Ryy[n] = E[y
n

yT
n
], the autocorrelation matrix of the filter input vector; r n = E[y

n
zn], the cross-

correlation vector between the input vector and reference data; and σ 2
z = E |zn |2, the variance of the reference

sequence, assuming that zn has a zero mean.
Based on Equation (8.9), if the filter input vector y

n
and the reference vector zn are jointly stationary, then the

MSE is precisely a second-order function of the filter coefficient vector g. The MSE function is a bowl-shaped
surface with a unique minimum as shown in Figure 8.5 (for M = 2), and our aim is to design the filter so that it
operates at the bottom of the bowl-shaped error surface.

Figure 8.5: MSE error-performance
surface of two-tap transversal filter.

g [1]

g95 (g9[0], g9[1])

M
S

E

g [0]

Advanced Signal Processing 385

The optimum filter coefficient vector g′ is obtained by differentiating the MSE function J (g) with respect to
the filter coefficient vector g and setting the result to zero. By differentiating the MSE function in Equation (8.9)
with respect to g,

d J (g)

dg
= 2Ryy[n]g −2r n (8.10)

In Equation (8.10), when
d J (g)

dg becomes zero, we reach the bottom of the error surface (i.e., the minimum

MSE), and the corresponding coefficient vector (known as the optimum coefficient vector) is obtained as follows:

2Ryy[n]g′ −2r n = 0 ⇒ Ryy[n]g′ = r n (8.11)

or

g′ = R−1
yy [n]r n (8.12)

Then, from Equations (8.9) and (8.11), the minimum MSE is given by

Jmin = J (g′) = σ 2
z − r T

n g′ (8.13)

Equation (8.11) is called the normal equation for the following reason:

E
[

y
n

yT
n

]
g′ = E

[
y

n
zn

]
or

(8.14)

E
[

y
n

(
yT

n
g′ − z n

)]
= 0 ⇒ E

[
y

n
e′

n

]
= 0

where e′
n = yT

n
g′ − zn and 0 is the zero vector.

Equation (8.14) states that when the filter operates in its optimum condition, each element of the input vector
y

n
and the estimation errors e′

n are orthogonal. Similarly, when the filter operates in its optimum condition, the
filter output x ′

n and the estimation error e′
n are also orthogonal. It is for this reason that Equation (8.11), which

defines the optimum filter, is called the normal equation.
Computation of the optimum filter coefficient vector g′ using Equation (8.12) involves finding the inverse

of the correlation matrix, which is computationally very expensive as the filter length increases. To reduce the
computational complexity of the MMSE filter, we use an iterative algorithm, the steepest-descent method, to
obtain the filter coefficient vector g with fewer computations.

Steepest-Descent Method
In real-world applications, the transversal filter coefficient vector g is usually obtained with an iterative procedure
that avoids the explicit computation of the inverse of correlation matrix. The simplest iterative procedure is the
steepest-descent method, which involves the following steps:

1. Given the filter length M , set the initial coefficient vector g
0

to the null vector of length M .
2. In the i-th iteration, we compute the gradient vector (defined as the gradient of the MSE function, J (g),

evaluated with respect to coefficient vector) using the existing coefficient vector g
i
.

3. We update the coefficient vector to g
i+1

by making a change in the g
i

in a direction opposite to the gradient
vector (since the error surface J (g) contains a single global minimum and the gradient gives the direction
in which the function J (g) increases the most, adjusting the coefficient vector in the opposite direction to
that of gradient vector eventually updates any arbitrarily initialized coefficient vector toward the optimum
coefficient vector after a few iterations).

4. Repeat steps 2 and 3 until we achieve Jmin, at which point the coefficient vector assumes its optimum
value g′.

386 Chapter 8

Let �i denote the gradient vector value at the i-th iteration, which is obtained by differentiating the MSE
function J (g

i
) with respect to the coefficient vector g

i
. Based on Equation (8.10),

�i = dJ(g
i
)

dg
i

= 2Ryy[i]g
i
−2r i (8.15)

According to the steepest-descent method, the updated value of the coefficient vector of (i +1)th iteration is
computed from the i-th iteration coefficient vector using the following simple recursive relationship:

g
i+1

= g
i
+ μ

2
(−�i) (8.16)

where μ is the step-size parameter required for convergence of this iterative procedure. Based on Equations
(8.15) and (8.16),

g
i+1

= g
i
+μ

(
r i − Ryy[i]g

i

)
, i = 0,1,2,3, . . . (8.17)

To ensure convergence of the iterative procedure, the step-size μ is chosen to be a small positive number.
In such a case, the gradient vector �i converges toward zero and the coefficient vector g

i
converges toward

the optimum coefficient vector g′. The step size μ controls the convergence time and minimum MSE that can
be achieved with the steepest-descent algorithm. For smaller step-size values, the algorithm converges slowly
and may contain a small steady-state error, whereas with a larger step size, the algorithm converges faster and
may contain a large steady-state error. Since the steepest-descent method works as a feedback system as shown
in Figure 8.6, the system can become unstable and the bounds on the step size guaranteeing stability can be
determined with respect to eigenvalues of the correlation matrix Ryy[i]. The necessary and sufficient condition
for the stability and convergence of the steepest-descent algorithm is that the step-size parameter μ must satisfy
the following condition

0 < μ <
2

λmax
(8.18)

where λmax is the largest eigenvalue of the correlation matrix Ryy[i].
Given that the computation of λmax(<

∑M−1
m=0 λm) is expensive, we use the trace of Ryy[i] instead of λmax in

choosing the step-size parameter μ upon satisfying the following condition:

0 < μ <
2

trace
(
Ryy[i]

) (8.19)

where

trace
(

Ryy[i]
) = sum[diag

(
Ryy[i]

)
] =

M−1∑
m=0

λm =
M−1∑
m=0

|y[i −m]|2 = input power

One more metric that affects the convergence behavior of the steepest-descent algorithm is the eigenvalue
spread of the correlation metric Ryy[i], ρR. The eigenvalue spread ρR is defined as the ratio of the largest and

Figure 8.6: Signal flow diagram of
steepest-descent algorithm.

I

ri

Ryy[i]

gi11 gi
�

2�

z21I1

1

Advanced Signal Processing 387

smallest eigenvalues associated with the correlation metric Ryy[n], that is,

ρR = λmax/λmin (8.20)

The best convergence behavior of steepest descent can be obtained when all eigenvalues are equal (i.e.,
ρR = 1 or λmax = λmin). In this case, the filter inputs are samples of the white noise process and they are
perfectly uncorrelated. As the eigenvalue spread ρR of the correlation matrix increases, the convergence speed
of the steepest-descent method deteriorates. In that case, one way to speed up the algorithm convergence rate
is by preprocessing the input with the whitening filter (or predictor) to get uncorrelated samples. This is called
prewhitening of input data.

Next, we provided the simulation results for the optimal Wiener filter and steepest-descent method. We
consider two cases with eigenvalue spread, ρR = 2.96 and 1.296. The error difference plot with the optimal
Wiener filter for the case when the eigenvalue spread ρR = 2.96 is shown in Figure 8.7(a), and the plots of error
versus the number of iterations of the steepest-descent algorithm with step size μ = 0.0003 and 0.003 are shown
Figure 8.7(b) and (c), respectively. The plot of filter coefficient convergence with the number of iterations is
shown in Figure 8.8. The solid curves represent the convergence of filter coefficients when μ = 0.003, and the
dotted curves represent the convergence of filter coefficients when μ = 0.0003. As seen in the simulation results
shown in Figures 8.7 and 8.8, the error and filter coefficients converge toward the optimum solution with the
steepest-descent algorithm as the number of iterations increases.

Similarly, the error plot with the optimal Wiener filter solution for the case of eigenvalue spread ρR = 1.296
is shown in Figure 8.9(a), and the error versus number of iterations plots of the steepest-descent algorithm with
step size μ = 0.0003 and 0.003 are shown in Figure 8.9(b) and (c), respectively. The plot for filter coefficient
convergence with the number of iterations for the case when eigenvalue spread ρR = 1.296 is shown in Figure 8.10.
The solid curves represent the convergence of filter coefficients when μ = 0.003, and the dotted curves represent
the convergence of filter coefficients when μ = 0.0003. Figures 8.9 and 8.10 show the improved convergence
behavior of the steepest-descent algorithm when the eigenvalue spread is close to unity. For the fixed eigenvalue
spread, smaller values of μ result in slower convergence of the steepest descent with reduced steady-state error,

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
3104

22

0

2

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
3104

22

0

2

(b)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

3104

22

0

2

(c)
Number of Samples (or iterations)

Number of Samples (or iterations)

Number of Samples (or iterations)

E
rr

or
E

rr
or

E
rr

or

Figure 8.7: Error estimate with MMSE filtering for ρR = 2.96. (a) Using optimal MMSE filter. (b) Using
steepest-descent algorithm with μ = 0.0003. (c) Using steepest-descent algorithm with μ = 0.003.

388 Chapter 8

�104

��0.0003

��0.003

g	[0]�1.0720

g	[1]�0.3938

g	[2]�0.0326

gi [0]

gi [1]

gi[2]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
�0.2

0

0.2

0.4

0.6

0.8

1

1.2

Number of iterations

Figure 8.8: Convergence of filter coefficients with steepest-descent algorithm for ρR = 2.96. Faster convergence
with μ = 0.003 (solid curves) and slow convergence with μ = 0.0003 (dotted curves).

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
3104

22

0

2

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
3104

22

0

2

(b)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
3104

22

0

2

(c)

Number of iterations

E
rr

or
E

rr
or

E
rr

or

Figure 8.9: Error estimate with MMSE filtering for ρR = 1.296. (a) Using optimal MMSE filter. (b) Using
steepest-descent algorithm with μ = 0.0003. (c) Using steepest-descent algorithm with μ = 0.003.

whereas larger values of μ result in faster convergence of steepest descent with more steady-state error. In
summary, the convergence behavior of the algorithm is highly sensitive to variations in the step-size parameter
μ and the eigenvalue spread ρR of the correlation matrix of the transversal filter input data.

Least-Mean Square Algorithm
As discussed previously, the optimum filter coefficients of a transversal, finite impulse-response (FIR) Wiener
filter can be obtained by solving the normal equations described by Equation (8.12) provided that the required
statistics of the underlying signals are available. Since solving normal equations by matrix inversion is computa-
tionally costly, an alternative way of finding the transversal filter coefficient vector is to use an iterative search (e.g.,
steepest-descent) algorithm given in Equation (8.17) that starts at some arbitrary initial point in the tap-weight

Advanced Signal Processing 389

3104

g	[0] 5 1.0091

g	[1] 5 20.0302

g	[2] 5 20.1014

gi [0]

gi [1]

gi[2]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
20.2

0

0.2

0.4

0.6

0.8

1

1.2

Number of iterations

Figure 8.10: Convergence of filter coefficients with steepest-descent algorithm for ρR = 1.296. Faster convergence
with μ = 0.003 (solid curves) and slower convergence with μ = 0.0003 (dotted curves).

vector space and progressively moves toward the optimum point in a few steps. Both the steepest-descent
algorithm and optimal Wiener filter solution assume the availability of autocorrelation (Ryy[n]) of the input data
samples and cross-correlation (r n) statistics of the input data and the reference data samples. We estimate these
statistics before computing the filter coefficients. However, the estimation of correlation matrices introduces
delay in the system; moreover, it is not the appropriate solution for dealing with time-varying systems. Instead,
the simplest estimators of Ryy[i] and r i for adaptive processing are instantaneous (instead of ensemble or time
averages), based on sample values of filter input data and reference data:

R̂yy[i] = y
i

yT
i

(8.21)

r̂ i = y
i
zi (8.22)

Based on Equations (8.17), (8.21), and (8.22),

ĝ
i+1

= ĝ
i
+μy

i

[
zi − yT

i
ĝ

i

]
(8.23)

ĝ
i+1

= ĝ
i
+μy

i
ei (8.24)

where ei = zi − yT
i

ĝ
i
, which is computed based on the current estimate of the filter coefficient vector ĝ

i
. The

algorithm described by Equation (8.24) is known as the least-mean square (LMS) algorithm. For convergence
of LMS, the step-size parameter μ is set within the bounds defined by Equation (8.19); this is also the necessary
and sufficient condition for overall stability of the LMS algorithm.

As seen in Equation (8.24), the filter coefficient vector is updated in accordance with an algorithm that adapts
to the incoming data. Given that we use the instantaneous noisy estimates in LMS for computing the gradient
vector, we can get the converged filter coefficients ĝ only after a large number of iterations. Since the LMS
algorithm is recursive in nature, the algorithm itself effectively averages out the larger variances of instantaneous
estimates during the course of adaptation. However, because of the instantaneous noisy gradient vectors, the
converged filter coefficients ĝ fluctuate about the optimum Wiener solution g′. In other words, the LMS-algorithm
filter coefficients converge in the mean sense.

We consider two cases with the eigenvalue spread ρR = 2.96 and 1.296, which are the same as those used for
illustrating the steepest-descent method’s convergence properties. The plot of error difference with the optimal

390 Chapter 8

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
3104

22

0

2

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
3104

22

0

2

(b)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
3104

22

0

2

(c)

Number of iterations

E
rr

or
E

rr
or

E
rr

or

Figure 8.11: Error estimate for inputs with ρR = 2.96. (a) Using optimal MMSE filter. (b) Using LMS algorithm
with μ = 0.0003. (c) Using LMS with μ = 0.003.

3104

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
20.2

0

0.2

0.4

0.6

0.8

1

1.2

Number of iterations

Figure 8.12: Convergence of filter coefficients with LMS algorithm for ρR = 2.96. Faster convergence with
μ = 0.003 (solid curves) and slower convergence with μ = 0.0003 (dotted curves).

Wiener filter for the case when the eigenvalue spread ρR = 2.96 is shown in Figure 8.11(a), and the plots of
error versus the number of iterations of the LMS algorithm with step size μ = 0.0003 and 0.003 are shown in
Figure 8.11(b) and (c), respectively. The plot of filter coefficients convergence with the number of iterations
is shown in Figure 8.12. The solid curves represent the convergence of filter coefficients when μ = 0.003 and
the dotted curves represent the convergence of filter coefficients when μ = 0.0003. The convergence behavior
of LMS for the small eigenvalue spread of ρR = 1.296 is shown in Figures 8.13 and 8.14. Figures 8.8 and
8.12 clearly show the slow convergence behavior of the LMS algorithm when compared to the steepest-descent
algorithm. Like the steepest-descent algorithm, when the eigenvalue spread ρR is large, the LMS algorithm slows
down, in that a large number of iterations are required for it to converge toward optimal solution.

Advanced Signal Processing 391

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

3104

22

0

2

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

3104

22

0

2

(b)

3104
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

22

0

2

(c)

Number of iterations

E
rr

or
E

rr
or

E
rr

or

Figure 8.13: Error estimate for inputs with ρR = 1.296. (a) Using optimal MMSE filter. (b) Using LMS algorithm
with μ = 0.0003. (c) Using LMS with μ = 0.003.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
20.2

0

0.2

0.4

0.6

0.8

1

1.2

3104Number of iterations

Figure 8.14: Convergence of filter coefficients with LMS algorithm for ρR = 1.296. Faster convergence with
μ = 0.003 (solid curves) and slower convergence with μ = 0.0003 (dotted curves).

Adaptive channel equalization (see Section 9.4) is required for channels whose characteristics change with
time. The channel equalizer must track such time variations in the channel response and adapt its coefficients to
reduce the time-varying ISI. If the LMS algorithm is chosen due to its low computational complexity for adapting
the channel equalizer to undo time-varying channel conditions, then the convergence time of the LMS algorithm
must be smaller than channel coherence time (i.e., the time period during which the channel characteristics
remain constant). But for channels that vary rapidly with time, the LMS cannot keep up with the time variations.
Increasing the step size μ beyond a certain point causes the algorithm to diverge. This limits the applicability of
LMS in fast-fading channels.

392 Chapter 8

Digital Implementation of LMS Algorithm
The LMS algorithm is popular due to its simplicity and ease of implementation. The two steps involved in
filter coefficient adaptation using the LMS algorithm are (1) error computation and (2) coefficient updating.
Given the filter length M , we require about 2M additions and 2M multiplications per iteration to perform the
previous two steps. The problem, however, is not the number of computations, but the convergence behavior of
the LMS algorithm due to improper scaling and quantization errors with fixed-point arithmetic implementation
(see Section 8.4). With finite precision, the adjustable filter coefficients as well as signal levels in the algorithm
are quantized to a least-significant bit. With the infinite-precision LMS algorithm, a small step size μ value
reduces the excess MSE (i.e., the difference between actual error and MMSE), whereas with finite-precision
LMS, a decrease in the step-size value μ may or may not improve adaptive filter performance. Sometimes the
algorithm virtually stops making any further adjustments due to quantization errors (see Figure 8.64(b) late in
chapter). In particular, when the correction term μei y

i
in Equation (8.24) is less than half the filter coefficient

quantization interval, then performance of an LMS adapted filter would not improve because the adaptation is
terminated by the quantization effect. If B is the number of bits used to represent the filter coefficients, then the
LMS algorithm will continue to adapt if the following condition is satisfied:

|μei y
i
| ≥ 2−B−1 (8.25)

A practical solution for combating finite precision error is to use more bits for the filter coefficients than for
the data. For more detail on the finite precision effects in the digital implementation of the LMS algorithm, see
Gitlin and Weinstein (1979).

Normalized LMS
With conventional LMS, tuning the step size μ can become especially difficult if there is much variation in the
filter input y

n
values. Depending on the variance of y

n
, the effective updated step sizes become inherently large

when y
n

has large values and small when y
n

has small values. Such variations in y
n

values can be compensated
for by choosing the step size β according to the incoming data. In other words, we normalize the step size μ

with the filter input power to mitigate input data variations as follows:

ĝ
i+1

= ĝ
i
+ μ

(α +||y
i
||2) y

i
ei = ĝ

i
+β y

i
ei (8.26)

where β = μ/(α + ||y
i
||2) and α > 0 is a constant used to avoid possible numerical problems when ||y

i
|| is

close to zero.
The algorithm described in Equation (8.26) is known as the normalized LMS, and it has much more predictable

convergence behavior. The normalized LMS algorithm is convergent in the mean-square sense if 0 < β < 2.
In communications systems, one way to achieve the normalized filter input values is to use the automatic gain
control (AGC) to scale the input signal before the equalization is performed.

Other LMS Algorithm Variants
A simple version of LMS is called the sign LMS (SLMS), in which the sign quantized error or input data (instead
of actual input/error values) are used to update the filter coefficients. Like the SLMS, the reduction in complexity
for LMS-algorithm gradient-vector computing is obtained by quantizing the error and data to the nearest power
of 2. This is called the log-log LMS algorithm, and the convergence behavior of log-log LMS is far better than the
signed LMS algorithm. For long adaptation processes, the block LMS (BLMS) is used to make the LMS faster.
In the block LMS, the input sequence is divided into blocks and the filter coefficients are updated block-wise. In
some adaptive applications (e.g., active noise control; see Section 17.1.5), the filtered signal undergoes few phase
changes (due to the presence of a secondary path) before we subtract it from the reference signal to obtain the
error signal. In that case, the input signal must be filtered (using the estimated secondary-path impulse response)
to compute the error for updating the filter coefficients. We compensate the phase delays of the secondary path
by filtering the input signal. The LMS algorithm that uses a filtered input signal for updating the filter coefficients
is known as the filtered LMS (FLMS).

Advanced Signal Processing 393

8.1.2 Least-Squares Filters

In the previous section, we used the MMSE criterion to obtain the transversal filter coefficients. The MMSE
criterion assumes the availability of statistics, autocorrelation of filter input data, and cross-correlation of filter
input data and reference data. In this section, we discuss least-squares criteria that do not require such statistical
information to obtain the filter coefficients. With the least-squares approach, we directly work with the raw
data rather than statistics based on the data. To illustrate the basic idea of least squares, consider the filter input
vector y

n
= [yn yn−1 yn−2 . . . yn−M+1]T and reference data vector z n = [zn zn−1 zn−2 . . . zn−M+1]T . Assume a

transversal filter of length M (as shown in Figure 8.4) with the filter coefficient vector g = [g0 g1 g2 . . . gM−1]T .
By utilizing z n as the desired response, we define the residual error en as the difference between the reference
sample zn and the filter output x̂n = gT y

n
, that is,

en = zn − x̂n (8.27)

Using the least-squares approach, the best filter model in the least-squares sense is the instance of the model
for which the sum of squared residual errors has its least or lowest value. In other words, in the method of least
squares, we choose the transversal filter coefficient vector g so as to minimize an index of performance that
consists of the sum of error squares,

J (g) =
N2∑

n=N1

|en|2 (8.28)

Let us consider (N2 − N1+1)-length residual error vector e:

e = [eN1 eN1+1 eN1+2 · · · eN2−1 eN2

]T
(8.29)

where

eN1+i = zN1 +i − x̂N1+i

= zN1 +i − gT y
N1+i

(8.30)

Based on Equations (8.29) and (8.30),

eT = zT − gT Y T (8.31)

where

z = [zN1 zN1 +1 zN1 +2 · · · zN2

]T
(8.32)

Y T =
[

y
N1

y
N1+1

· · · y
N2

]

=

⎡
⎢⎢⎢⎣

yN1 yN1+1 · · · yN2

yN1−1 yN1 · · · yN2−1
...

...
. . .

...
yN1−M+1 yN1−M+2 · · · yN2−M+1

⎤
⎥⎥⎥⎦ (8.33)

Based on Equations (8.28) and (8.31),

J (g) = eT e

= (zT − gT Y T)(z −Y g) (8.34)

= zT z − zT Y g − gT Y T z + gT Y T Y g

394 Chapter 8

To get the optimum filter coefficient vector ĝ that minimizes the error squares sum, J (g), we differentiate
J (g) with respect to g and set the result to zero as

∂ J (g)

∂g
= −2Y T z +2Y T Y g

or

∂ J (ĝ)

∂ ĝ
= −2Y T z +2Y T Y ĝ = 0 (8.35)

which means

Y T Y ĝ = Y T z (8.36)

Equation (8.36) is called the deterministic normal equation for the linear least-squares problem. The solution
of the normal equations yields the optimum vector ĝ, as follows:

ĝ = (Y T Y)−1Y T z (8.37)

In linear algebra, the normal equations described by Equation (8.36) are used to find an approximate solution
to an overdetermined system of linear equations. Here, we derive the same normal equations using the concepts
of linear algebra to provide a geometric interpretation of the least-squares solution, which in turn provides
invaluable insight into the problem. Let us consider an overdetermined system Ax = b described by m equations
with n unknowns, where m > n. In general, we cannot have a solution x that satisfies Ax = b when m > n.
In that case, the vector b is not in the column space (i.e., linear combinations of columns) of matrix A, C(A).
This is illustrated in Figure 8.15. Assume that the columns of A are independent and that the dimensionality
of column space is n or the rank of matrix A is n. The approximate solution x̂ for Ax = b with minimum
error e can be obtained by projecting the vector b onto the C(A). The term b̂ is the projection vector of b
and Ax̂ = b̂. The error between the given vector b and projection b̂ is e = b − b̂, and the error vector e is
perpendicular to C(A). In other words, the error vector e = b − Ax̂ is perpendicular to all columns of matrix A,
meaning that

aT
1 (b − Ax̂) = 0

aT
2 (b − Ax̂) = 0

...
aT

n (b − Ax̂) = 0

(8.38)

Equation (8.38) can also be represented in matrix form as

AT (b − Ax̂) = 0 (8.39)

or

AT Ax̂ = AT b (8.40)

Equations (8.36) and (8.40) are exactly the same except for variables. Consequently, we conclude that the least-
squares optimal filter coefficient vector ĝ produces the minimum-length error vector when compared to the error
length produced by any other coefficient vector g.

Figure 8.15: Geometric interpretation
of A x = b.

b

e

0
908

C(A)
b

Advanced Signal Processing 395

Based on Equation (8.37), the least-squares solution involves computation of the matrix inverse and is
computationally very complex. Next, we discuss the recursive way of obtaining the least-squares solution.

Recursive Least-Squares Algorithm
With the recursive least-squares (RLS) algorithm, we update the least-squares estimate of coefficient vector ĝ
at time instance n on arrival of new data using the coefficient vector at time n −1,

ĝ
n
= ĝ

n−1
+�ĝ

n
(8.41)

where �ĝ
n

is the correction term that is a function of input data and error data. We obtain the correction term

as follows. Let Ryy = Y T Y and r yz = Y T z; then by rewriting Equation (8.37),

ĝ = R−1
yy r yz (8.42)

At any given time instance n, the correlation functions Ryy and r yz can be expressed as

r yz[n] =
n∑

i=0

y
i
zi (8.43)

Ryy[n] =
n∑

i=0

y
i

yT
i

(8.44)

To limit the contribution of previous instance samples, we may embed a weighting factor or forgetting factor λ

in Equations (8.43) and (8.44) as follows:

r yz[n] =
n∑

i=0

λn−i y
i
zi (8.45)

Ryy[n] =
n∑

i=0

λn−i y
i
yT

i
(8.46)

The cross-correlation function at time instance n, r yz[n] in Equation (8.45) can be expressed in terms of the
cross-correlation function at time instance n −1 as

r yz[n] =
n∑

i=0

λn−i y
i
zi =

n−1∑
i=0

λn−i y
i
zi +λ0zn y

n

= λ

n−1∑
i=0

λn−1−i y
i
zi + zn y

n
= λr yz[n −1]+ zn y

n

(8.47)

Similarly, the autocorrelation function at time instance n, Ryy[n], can be expressed in terms of Ryy[n −1]:

Ryy[n] = λRyy[n −1]+ y
n

yT
n

(8.48)

If A and B are M × M positive-definite matrices, D is an N × N matrix, and C is an M × N matrix, which are
related by

A = B−1 +CD−1C T (8.49)

then, according to the matrix inverse lemma, we may express the inverse of matrix A as follows:

A−1 = B −BC(D +C T BC)−1C T B (8.50)

Applying the matrix inverse lemma to Equation (8.48), we obtain

R−1
yy [n] = λ−1 R−1

yy [n −1]− λ−2 R−1
yy [n −1]y

n
yT

n
R−1

yy [n −1]

1+λ−1 yT
n

R−1
yy [n −1]y

n

(8.51)

396 Chapter 8

Denoting

[n] = R−1
yy [n] and β[n] = λ−1
[n −1]y

n

1+λ−1 yT
n

[n −1]y

n

we may rewrite Equation (8.51) as

[n] = λ−1
[n −1]−λ−1β[n]yT
n

[n −1] (8.52)

We can obtain the correction term �ĝ
n

in Equation (8.41) using Equations (8.42) and (8.52) as follows:

ĝ
n
=
[n]ryz[n] =
[n]

(
λr yz[n −1]+ zn y

n

)
=
[n]

(
λRyy[n −1]ĝ

n−1
+ zn y

n

)
=
[n]

((
Ryy[n]− y

n
yT

n

)
ĝ

n−1
+ zn y

n

)
(8.53)= ĝ

n−1
−
[n]y

n
yT

n
ĝ

n−1
+
[n]zn y

n

= ĝ
n−1

+
[n]y
n

(
zn − yT

n
ĝ

n−1

)
= ĝ

n−1
+
[n]y

n
αn

where αn = zn − yT
n

ĝ
n−1

is the a priori estimation error.
Using the definition of β[n] and Equation (8.52), we can express Equation (8.53) as follows:

ĝ
n
= ĝ

n−1
+αnβ[n] (8.54)

Finally, the correction term is given by �ĝ
n
= αnβ[n]. An important feature of the RLS algorithm described by

Equations (8.52) to (8.54) is that the inverse of correlation matrix Ryy[n] is replaced by a simple division.
The RLS algorithm to update the filter coefficient vector by satisfying the least-squares error criteria is

summarized in the following. Initialize the algorithm by setting
[0] = δ−1I, ĝ
0

= 0, where δ = positive
constant (choose small value for high signal-to-noise ratio [SNR], and large value for low SNR), and I is an
M × M identity matrix. Choose λ such that 0 < λn−i ≤ 1 for i = 1,2, . . . ,n. Then,

Compute ωn =
[n −1]y
n

Compute β[n] = ωn

λ+ yT
n
ωn

Compute αn = zn − yT
n

ĝ
n−1

Update ĝ
n
= ĝ

n−1
+αnβ[n]

Compute
[n] = λ−1
[n −1]−λ−1β[n]yT
n

[n −1]

The signal flow diagram that describes the flow of previous RLS algorithm equations is shown in Figure 8.16.

Convergence of RLS Algorithm
At high SNR, the RLS algorithm converges in the mean square in about 2M iterations, where M is the number
of coefficients in the transversal filter. Unlike the LMS algorithm, the rate of convergence of the RLS algorithm
is insensitive to variations in the eigenvalue spread of the correlation matrix Ryy[n] of filter input data. However,
ill-conditioned least-squares problems may lead to poor convergence behavior. As the number of iterations
increases, the RLS algorithm-produced coefficient vector ĝ

n
converges to the Wiener solution g′. The performance

of the RLS algorithm in terms of convergence rate, tracking, stability, and steady-state error depends on the
forgetting factor. When the forgetting factor is very close to 1, the algorithm achieves low steady-state error and
good stability, but its tracking capabilities are reduced. A smaller value of the forgetting factor improves the
tracking capabilities but increases steady-state errors and affects stability.

Advanced Signal Processing 397

�[n]�
� �

��

�nzn

yn

z�1I

gnˆ

gn�1ˆ

xn
ˆ

� yn
T

Figure 8.16: Signal-flow graph representation of the RLS algorithm.

0.2

2

1

0

21

22
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

3104
2

E
rr

or

(b)

0.2

2

1

0

21

22
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

3104
2

E
rr

or

n

(a)
n

Figure 8.17: Convergence of estimation error. (a) With LMS using step size μ = 0.0003 and eigenvalue spread
ρR = 1.296. (b) With RLS using forgetting factor λ = 1.0.

For M = 3, SNR = 20 dB, and eigenvalue spread ρR = 1.296, the plot of estimation error with the LMS
algorithm is shown in Figure 8.17(a). The step size used with LMS is μ = 0.0003. The convergence of a priori
estimation error with the RLS algorithm for M = 3, SNR= 20 dB, and λ = 1.0 is shown in Figure 8.17(b). From
Figure 8.17, we can clearly see the superior performance of the RLS algorithm over the LMS algorithm in terms
of convergence speed and steady-state error. Figure 8.18 shows the a priori estimation error convergence with
the RLS algorithm for diverse values of the forgetting factor. As expected, when the value of the forgetting factor
approaches zero, the RLS algorithm converges very fast with a large steady-state error.

In contrast, the RLS algorithm produces quite opposite results with a posteriori estimation error (i.e., the
error obtained after filtering the input with updated filter coefficients). In other words, the smaller the forgetting
factor value, the faster the convergence with low steady-state error. The convergence of a posteriori estimation
error with the RLS algorithm for various values of forgetting factors is shown in Figure 8.19.

Computational Complexity of RLS Algorithm
The faster convergence of the RLS algorithm over the LMS algorithm is achieved at the expense of increased
computations per iteration. The complexity of the RLS algorithm per iteration is O(M2), whereas the complexity
of the LMS algorithm per iteration is O(M). To reduce the computational complexity of the RLS algorithm,
several fast algorithms have been introduced by Cioffi and Kailath (1984) and Cioffie (1990).

8.1.3 Linear Prediction

Linear prediction is an important topic in the field of digital signal processing. Given M +1 input data samples,
xn, xn−1, xn−2, . . . , xn−M , the difference between the processes of sample filtering and prediction is that the

398 Chapter 8

0.2

2

1

0

21

22
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
rr

or

0.2

2

1

0

21

22
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
rr

or

(c)

0.2

2

1

0

21

22
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
rr

or

3104n

(b)
3104n

(a)
3104n

Figure 8.18: Convergence of a priori estimation error with RLS algorithm for various values of forgetting factor.
(a) λ = 1.0. (b) λ = 0.5. (c) λ = 0.1.

1

0.5

20.5

21
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

1

0.5

20.5

21
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

(c)
3 104n

(a)
3 104n

(b)
3 104n

1

0.5

20.5

21
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0E
rr

or
E

rr
or

E
rr

or

Figure 8.19: Convergence of a posteriori estimation error with RLS algorithm for various values of forgetting
factor. (a) λ = 1.0. (b) λ = 0.5. (c) λ = 0.1.

Advanced Signal Processing 399

former produces the output at time index n by using the data samples measured up to and including time instance
n, whereas the latter produces the sample at instance m (where m = n+v−1) by using the data samples measured
up to time instance n and including time instance n. As discussed in Chapter 7, the M-th-order digital FIR filters
produce output yn at time instance n using current and previous M input data samples, {xk}k=n

k=n−M . Similarly,
the M-th-order digital IIR filter produces output yn at time instance n using the current input data sample and
previous M input data samples, {xk}k=n

k=n−M , and previous N output data samples, {yk}k=n−1
k=n−N . In the case of linear

prediction, we output a sample ym at time instance m (where m = n + v − 1) using the previous M + 1 input
data samples {xk}k=n

k=n−M and using previous N output data samples {yk}k=n−1
k=n−N . In other words, we predict the

sample ym (which is v samples ahead) using the linear combination of the input sample at time instant n, and
using few previous input and output samples as described with the difference equation,

ym = G
M∑

l=0

bl xn−l −
N∑

k=1

ak yn−k (8.55)

where {ak} and {bl}(with b0 = 1) are called predictor coefficients, G is the gain, and εm = xm − ym is termed the
prediction error. In this section, we discuss the one-step predictor (i.e., v = 1, or m = n), which is widely used
in digital-media-compression applications.

Given a particular sample {yn}, the problem is to determine the one-step predictor coefficients {ak} and {bl},
and the gain G. The predictor can also be specified in the frequency domain by taking the z-transform on both
sides of Equation (8.55). If H [z] is the system function of the predictor, then

H [z] = B[z]

A[z]
= G

1+∑M
l=1 blz−l

1+∑N
k=1 akz−k

(8.56)

The process described by Equation (8.56) is also called the autoregressive moving-average (ARMA) process
(or pole–zero model). If M = 0, then the resulting process is called the autoregressive (AR) process (or all-pole
model); if N = 0, it is called the moving-average (MA) process (or all-zero model). Of all models, the AR model
is the most widely used in practice because any process can be approximated with fewer AR model coefficients.

Linear-prediction-based source coding is widely used in speech compression applications. In general, speech
compression can be achieved with waveform-based or model-based methods. Linear-predictive-coding (LPC)–
based speech compression is the most widely used model-based source-coding technique. To analyze the speech
signals, we consider a simplified vocal tract model of speech production as shown in Figure 8.20. With linear-
prediction-based speech compression, instead of transmitting the digitized speech as is, we transmit the perceptual
parameters of speech (e.g., pitch, gain, voiced/unvoiced, vocal tract model, codebook addresses for residual error,
etc.) to reduce the data bandwidth requirements. The source that generates speech is not stationary, and hence the
spectral characteristics of speech vary with time. However, in practice, we assume that the spectral characteristics
of speech are stationary over segments between 20 and 50 ms, and hence process it segment by segment. We

White noise input
(for unvoiced sound)

Glottal pulse train
(for voiced sound)

Vocal tract

Speech Signal
(contains pitch, loudness
(gain), voiced/unvoiced and
vocal tract model information)

Source that Generates Speech

{yn}

{xn}

Figure 8.20: Simplified model for speech signal production.

400 Chapter 8

LPC
Analysis

Channel

LPC
Synthesis

Speech Samples {yn}

Filter Coefficients, Pitch,
Gain, Residual Error, etc.

Feature
Extract

Gain
Voiced/Unvoiced
Pitch

Codebook Addresses
(Residual Error)

Filter Coefficients

Filter Coefficients

Encoder

Gain

Voiced/Unvoiced
Pitch
Codebook Addresses
(Residual Error)

Decoder

Speech
Synthesizer

Reconstructed
Speech
Samples {yn}

Figure 8.21: Linear-prediction-based speech compression.

model the vocal tract using a linear filter, and the filter coefficients are updated periodically to cope with the
source variations that generate speech.

The LPC system comprises an analysis filter at the transmitter and a synthesis filter at the receiver as shown
in Figure 8.21. Redundancy in a speech signal is removed by passing the signal through a speech analysis
filter. The output of the analysis filter is termed residual error. Because the residual error has a lower standard
deviation and is less correlated than the speech itself, fewer bits are required to represent the quantized residual
error. This residual error along with the filter coefficients and other parameters are encoded and transmitted to
the receiver. At the receiver, the speech is reconstructed by passing the decoded residual error signal through
the synthesis filter (whose coefficients are decoded from the received bitstream). Since the speech signals are
quasi-wide-sense stationary, the filter model is valid only over short periods. The filter coefficients have to be
updated with time. The LPC filter spectral response is very sensitive to coefficient quantization; hence, these
coefficients are transformed to a different set of parameters, called line spectral pairs (LSP), that are insensitive
to quantization. Our interest in this section is focused on the linear prediction module (i.e., generating the filter
coefficients and residual error).

With LPC, we assume that the speech samples have been generated by an all-pole discrete-time filter having
the transfer function,

H [z] = G

1+∑N
k=1 ak z−k

(8.57)

With such an N-th order all-pole filter, the output sequence yn is obtained as linear combinations of past values
and current input xn, as described in Equation (8.58).

yn = Gxn −
N∑

k=1

ak yn−k (8.58)

In many applications (e.g., in speech production), the input xn is wholly unknown. In such cases, the sample
yn can be predicted approximately by using a linear combination of past samples:

ŷn = −
N∑

k=1

ak yn−k (8.59)

Advanced Signal Processing 401

Then the error εn between the actual sample yn and the predicted sample ŷn is given by εn = yn − ŷn:

εn = yn +
N∑

k=1

ak yn−k (8.60)

The predictor coefficients {ak} are obtained by minimizing the mean-square value of the prediction error εn.
The minimum mean-square value EN (where N represents the order of filter) is obtained with the optimum filter
coefficients {a′

k}. Based on Equation (8.14), for the optimum condition, the error sequence εn is orthogonal to
yn−k , that is,

E
[
εn yn−k

]= 0, 1 ≤ k ≤ N (8.61)

Equation (8.61) results in the following normal equations:

R a′ = r (8.62)

where

R =

⎡
⎢⎢⎢⎣

r(0) r(1) · · · r(N −1)

r(1) r(0) · · · r(N −2)
...

...
. . .

...
r(N −1) r(N −2) · · · r(0)

⎤
⎥⎥⎥⎦ (8.63)

a′ = [a′
1 a′

2 · · ·a′
N]T and r = −[r(1) r(2) · · · r(N)]T (8.64)

Assuming that the signal is stationary over the segment of L samples, the elements r(i) of matrix R can be
approximately computed as follows:

r(i) =
L−1−i∑

n=0

yn yn+i (8.65)

To solve the normal equations in Equation (8.62) for optimum predictor coefficients {a′
k}, traditional techniques

such as Gauss elimination or QR decomposition can be used and the complexity of either of those methods is
O(N3). However, because the matrix R is a Toeplitz matrix, the complexity of solving normal equations can be
reduced to O(N2) with the Levinson-Durbin algorithm, to be discussed later in this section.

Once the predictor coefficients are found, Equation (8.60) can be used to compute the prediction error
sequence εn. Then the gain, G, of the speech generation model is obtained by computing the variance of
prediction error:

G2 = EN = r(0)+
N∑

k=1

akr(k) (8.66)

Based on Equation (8.60), the analysis filter generates the error sequence {εn} by taking the sequence {yn} as
input. In contrast, the synthesis filter reconstructs the sequence {yn} by taking the error sequence {εn} as input.
This is shown in Figure 8.22(a) and (b). Based on Equation (8.60), the transfer function A[z] is obtained as
follows:

A[z] = 1+
N∑

k=1

ak z−k (8.67)

Figure 8.22: LPC. (a) Analysis filter.
(b) Synthesis filter.

A[z]
{yn}{yn} {
n} {
n}

1/A[z]

Analysis Filter Synthesis Filter

(b)(a)

402 Chapter 8

The Levinson-Durbin algorithm, using the Toeplitz properties of matrix R, proceeds to find the predictor
coefficients {ak} recursively, beginning with a first-order predictor and iteratively increasing the order of the
predictor filter up to the order N . Based on Equation (8.66), the final expression for prediction error variance
becomes

EN = r(0)+a1r(1)+a2r(2)+· · ·+aNr(N) (8.68)

We start with the 0-th order filter (or i = 0), and Ei can be expressed in this case as

E0 = r(0) (8.69)

For i = 1,

E1 = r(0)+a(1)
1 r(1) (8.70)

The superscript 1 in a(1)
1 indicates the coefficient value when the prediction order i = 1. Based on Equation

(8.62), the solution is simply

a(1)
1 = −r(1)

/
r(0) = −r(1)

/
E0 =p1 (8.71)

Based on Equations (8.70) and (8.71),

E1 = r(0)+ p1r(1) = r(0)
(
1− p2

1

)= E0
(
1− p2

1

)
(8.72)

For i = 2,

E2 = r(0)+a(2)
1 r(1)+a(2)

2 r(2) (8.73)

or ⎡
⎣r(0) r(1) r(2)

r(1) r(0) r(1)

r(2) r(1) r(0)

⎤
⎦
⎡
⎢⎣

1

a(2)
1

a(2)
2

⎤
⎥⎦=

⎡
⎣E2

0
0

⎤
⎦ (8.74)

Assume that the solution can be expressed as⎡
⎢⎣

1

a(2)
1

a(2)
2

⎤
⎥⎦=

⎡
⎢⎣ 1

a(1)
1

0

⎤
⎥⎦+ p2

⎡
⎢⎣ 0

a(1)
1

1

⎤
⎥⎦ (8.75)

Then, based on Equations (8.74) and (8.75),⎡
⎣r(0) r(1) r(2)

r(1) r(0) r(1)

r(2) r(1) r(0)

⎤
⎦
⎧⎨
⎩
⎡
⎣ 1

a(1)
1
0

⎤
⎦+ p2

⎡
⎣ 0

a(1)
1
1

⎤
⎦
⎫⎬
⎭=

⎡
⎣E2

0
0

⎤
⎦ (8.76)

⇒
⎡
⎣E1

0
q2

⎤
⎦+ p2

⎡
⎣q2

0
E1

⎤
⎦=

⎡
⎣E2

0
0

⎤
⎦ (8.77)

where

q2 = r(2)+a(1)
1 r(1) (8.78)

Based on Equation (8.77), the values of p2 and E2 are given by

p2 = −q2
/

E1 (8.79)

E2 = E1 + p2q2 = E1 − E1 p2
2 = E1(1− p2

2) (8.80)

Advanced Signal Processing 403

With this, the predictor coefficients for i = 2 can be obtained from Equation (8.76) as

a(2)
1 = a(1)

1 + p2a(1)
1 (8.81)

a(2)
2 = p2 (8.82)

The recursive solution for computing the predictor coefficients for i > 2 can be performed with the
following steps:

(1) qi = r(i)+
i−1∑
j=1

q(i−1)
j r(i − j) (8.83a)

(2) pi = −qi
/

Ei−1 (8.83b)

(3) a(i)
i = pi (8.83c)

(4) a(i)
j = a(i−1)

j + pi a
(i−1)
i− j , j = 1,2, . . . , i −1 (8.83d)

(5) Ei = Ei−1
(
1− p2

i

)
(8.83e)

Based on these results, we perform 2i +1 MAC (multiply and accumulate) operations in computing the Levinson-
Durbin i-th iteration using the above steps. Thus, the total number of MAC operations to compute the prediction
coefficients for the prediction order N becomes

N∑
i=1

(2i +1) = N(N +2)

In other words, the complexity of the Levinson-Durbin method is N2 + O(N) operations. The intermediate
quantities pi , 1 ≤ i ≤ N , are known as reflection coefficients. For the stability of the linear prediction filter, the
reflection coefficients must satisfy the following condition:

|pi | < 1, 1 ≤ i ≤ N (8.84)

The reflection coefficients {pi} can easily be obtained from Equations (8.83c) and (8.83d), given the prediction
coefficients {a(i)

j },1 ≤ j ≤ i −1.

8.1.4 Lattice Filters

Lattice filters are widely used in prediction applications. In this section, LPC is implemented in a lattice form
using reflection coefficients. As the absolute values of reflection coefficients are never greater than 1, the lattice
structures are always stable. In addition, the reflection coefficients guarantee the stability of the filter on quanti-
zation as they have a well-defined dynamic range. Consequently, reflection coefficient–based lattice structures
are often used to represent a vocal tract filter.

In the previous section, we discussed the computation of N prediction coefficients recursively using the
Levinson-Durbin algorithm. The N prediction coefficients are equivalent to N reflection coefficients since the
prediction coefficients and reflection coefficients are related as given in Equations (8.83c) and (8.83d). Based on
Equation (8.60), the error (also called forward prediction error) expressions of (N −1)th- and N-th-order filters
can be expressed as follows:

ε(N−1)
n = yn +

N−1∑
k=1

a(N−1)
k yn−k (8.85)

ε(N)
n = yn +

N∑
k=1

a(N)
k yn−k (8.86)

404 Chapter 8

In the same way, if we predict the backward sample yn−N based on N ahead samples yn, yn−1, . . . , yn−N+1 , the
backward prediction errors δ

(N−1)
n and δ

(N)
n of (N −1)th and N-th-order filters can be expressed as follows:

δ(N−1)
n = yn−N+1 +

N−1∑
k=1

a(N−1)
k yn−N+1+k (8.87)

δ(N)
n = yn−N +

N∑
k=1

a(N)
k yn−N+k (8.88)

Based on Equations (8.83c), (8.83d), and (8.86),

ε(N)
n = yn +

N∑
k=1

a(N)
k yn−k = yn +

N−1∑
k=1

a(N)
k yn−k +a(N)

N yn−N

= yn +
N−1∑
k=1

(
a(N−1)

k + pN a(N−1)
N−k

)
yn−k + pN yn−N

= yn +
N−1∑
k=1

a(N−1)
k yn−k + pN

N−1∑
k=1

a(N−1)
N−k yn−k + pN yn−N (8.89)

= ε(N−1)
n + pN

[
N−1∑
k=1

a(N−1)
N−k yn−k + yn−N

]

= ε(N−1)
n + pN

[
yn−N +

N−1∑
k=1

a(N−1)
k yn−N+k

]

From Equations (8.87) and (8.89),

ε(N)
n = ε(N−1)

n + pNδ
(N−1)
n−1 (8.90)

Similarly, based on Equations (8.83c), (8.83d), (8.87), and (8.88),

δ(N)
n = δ

(N−1)
n−1 + pNε(N−1)

n (8.91)

We can represent Equations (8.90) and (8.91) compactly using the following matrix notation:[
ε
(N)
n

δ
(N)
n

]
=
[

1 pN

pN 1

][
ε
(N−1)
n

δ
(N−1)
n−1

]
(8.92)

Equation (8.92) describes the lattice filter i-th stage as shown in Figure 8.23(a). The lattice implementation
of the LPC analysis filter using reflection coefficients is shown in Figure 8.23(b). Basically, we compute N
reflection coefficients from the given segment of speech samples and obtain the residual error εn by passing the
speech samples yn through the N-th order analysis filter. At the receiver, we use the corresponding synthesis
filter to construct the speech samples ŷn from the quantized residual error ε̂n. The lattice implementation of
the LPC synthesis filter using reflection coefficients is shown in Figure 8.24. For the synthesis filter, the input
comprises quantized error (i.e., ε

(N)
n = ε̂n), and the output comprises reconstructed speech samples, ŷn = ε

(0)
n .

The i-th stage of synthesis filter is governed by the following set of linear equations:

ε(N−1)
n = ε(N)

n − pN δ
(N−1)
n−1 (8.93)

δ(N)
n = δ

(N−1)
n−1 + pN ε(N−1)

n (8.94)

The intermediate prediction errors in a lattice are orthogonal to each other and as a consequence of the orthog-
onality, the various sections of the lattice exhibit a form of independence that allows us to add or delete one or

Advanced Signal Processing 405

(a)

z�1

�

�

(i �1)
n

�(i �1)
n

(i)
n

�(i)
n

pi

pi

(0)
n

(1)
n

(2)
n

(N �1)
n

�(0)
n

�(1)
n

�(2)
n

�(N �1)
n

(N)
n

(b)

p1

p1 p2

p2

pN

yn
n

z�1 z�1 z�1

��

� �

�

Figure 8.23: Lattice filter realization. (a) i-th stage. (b) N-th-order LPC filter.

z21 z21 z21

1
p1

2p1 2p2

p2

2pN

yn̂

(0)
n

(1)
n

(2)
n

(N21)
n

(N)
n

̂n

�(0)
n

�(1)
n �(2)

n
�(N21)
n

1

11

1

Figure 8.24: Lattice filter realization of N-th-order LPC synthesis filter.

more of the last stages without affecting the parameters of the remaining stages. The power of the prediction error
decreases with increasing lattice order. Typically, the first few reflection coefficients are of greater magnitude,
which drop to values close to zero in later stages. Although the operation of lattice filters is usually described
in the prediction context, the application of lattice filters is not limited to prediction applications. For example,
since backward prediction errors are orthogonal to each other, we can perform orthogonal transformation (in the
way similar to Gram-Schmidt orthogonalization) with the lattice filter on input samples to get the uncorrelated
output samples from N stages of the backward predictor.

8.2 Multirate Signal Processing

To this point, we have discussed digital processing when data was sampled at a frequency greater than or equal to
the Nyquist frequency. The same sampling rate is assumed across all modules. However, in many applications,
sampling signals at different frequencies at different stages of a digital system may be required. For example,
audio signals are handled at 48 kHz in studio work, while the CD (compact disc) production rate is 44.1 kHz and
the broadcast rate is 32 kHz. One obvious way to change the sampling rate is to switch from the digital to the
analog domain and sampling the analog signal again with a new sampling frequency. This approach, however,
may result in signal degradation, and it also requires high-quality antialiasing analog filters. Using multirate
techniques is the alternative method for changing the sampling rate. Multirate processing is basically an efficient
digital technique for changing the signal sampling frequency. Many applications take advantage of multirate
processing techniques to avoid the use of expensive antialiasing analog filters to reduce computational costs and
to efficiently handle the signals sampled at different frequencies.

8.2.1 Downsampler and Upsampler

The two important building blocks of multirate signal processing are the downsampler (or decimator) and
upsampler (or interpolator). The downsampler is used to decrease the sampling rate of a signal, whereas the

406 Chapter 8

(b)

x [n]

x [n]

yu [k]

(a)

x [n]

x [n]

yd [m]
M N

yd [m] 5 x [n] 2 yu [k] 5 x [n] 3))

Figure 8.25: Multirate building blocks. (a) Downsampler. (b) Upsampler.

upsampler is used to increase the sampling rate. We use the symbol↓M to denote the downsampler that decreases
the sampling rate by M-fold, and ↑ N to denote the upsampler that increases the sampling rate by N-fold. This
is illustrated in Figure 8.25. Mathematically, we can express the output yd[m] of the downsampler in terms of
its input x [n] as follows:

yd[m] = x [Mn] (8.95)

Similarly, the output yu[k] of the upsampler can be expressed in terms of its input x [n],

yu[k] =
{

x [n/N] if n = kN
0 if n 	= kN

(8.96)

where k, M , and N are integers.
We are also curious about what is going to happen in the frequency domain with the sample rate conversion

forced on the input sequence x [n] with either the downsampler or upsampler. Based on (Vaidyanathan, 1992),
the expressions for Yd (
) and Yu(
) in terms of X (
) are given by

Yd(
) = 1

M

M−1∑
k=0

X

(

−2πk

M

)
(8.97)

Yu(
) = X (
N) (8.98)

The effects of downsampling or upsampling of a digital signal in the frequency domain are seen in
Equations (8.97) and (8.98). As discussed in Chapter 6, the discrete-time Fourier transform X (
) of a sig-
nal x [n] is periodic with period 2π as shown in Figure 8.26(a). When we downsample the digital signal, we lose
the information during the process unless the input signal x [n] is a proper band-limited signal. This results in
aliasing error as shown in Figure 8.26(b). Aliasing can be prevented if x [n] is a low-pass signal band-limited
to the region |
| < π/M . With upsampling of a digital signal, we do not lose information. Instead, the spec-
trum is compressed and multiple copies of the compressed spectrum, called images, are created, as shown in
Figure 8.26(c). This necessitates a low-pass filtering of the signal after upsampling. This low-pass filtering results
in interpolation (or filling the spaces between samples shown in Figure 8.25(b)) of samples in the time domain.
Thus, in general, we require a low-pass digital filter called the decimation filter before the downsampler as
shown in Figure 8.27(a) to ensure that the input to the downsampler is properly band-limited; and we use an
interpolation filter as shown in Figure 8.27(b) after the upsampler to suppress the images. The downsampling and
upsampling operations are the two fundamental operations in multirate signal processing. With these operations,
we can increase or decrease sampling frequency without significant errors due to aliasing and quantization.

In some applications, we may need to change the sampling rate by a noninteger factor P . In such cases,
we express the noninteger factor P by an approximate rational number N/M where M and N are integers.

Advanced Signal Processing 407

Figure 8.26: Effects of downsampler
and upsampler in frequency domain.
(a) Actual spectrum. (b) After
downsampling by 2. (c) After
upsampling by 3.

2�22� 2� �

2�22� 2� �

X(V)

Yd
(V)

Yu(V)

0

0

0

(a)

(b)

Aliasing

Images

22� 2�
3

2�

3
4�

3
4�

3
2�

(c)

2 2

V

V

V

(a) (b)

x [n]
Hd [z]

yd [m] x [n]
HI [z]

yu [k]
NM

Figure 8.27: Multirate signal processing building blocks. (a) Downsampler preceded by decimation filter Hd[z].
(b) Upsampler followed by interpolation filter HI[z].

Figure 8.28: Multirate system with
noninteger sampling factor.

147160
z [k]y [n]x [n]u [m]

H [z]

It is necessary that the upsampler process precedes the downsampler; otherwise, the downsampling process
would remove some useful signal components. For example, to obtain 48-kHz audio samples from CD 44.1-kHz
samples, the CD samples are upsampled by a noninteger factor of P = 48/44.1 = 160/147; that is, N = 160
and M = 147. Here, we can combine the interpolation filter HI [z] and decimation filter Hd[z] into a single filter
with the system function H [z] = HI [z]Hd [z], as shown in Figure 8.28.

Assuming a direct-form implementation of the FIR filter H [z], the multirate system in Figure 8.28 can be
redrawn as shown in Figure 8.29; this multirate system is computationally very inefficient for the following
reasons. First, the delay line is fed with an input sample followed by N − 1 zeros because of input upsampling
by factor N . In other words, for each input sample u[m] fed in, N samples of y[n] are computed. Clearly,
filtering of zero-value samples is unnecessary. Similarly, the filter output y[n] is downsampled by a factor M ,
and this involves discarding M − 1 samples from input y[n] of the downsampler for each output sample z[k].
Since for each sample that is kept, the next M − 1 samples of y[n] are discarded, performing filtering of those
samples of y[n] that are discarded is unnecessary. Next, we discuss the polyphase decomposition of the system
function with which we can efficiently implement the decimation and interpolation filters of multirate signal
processing.

8.2.2 Polyphase Filters

The ideal setup for efficient implementation of a multirate system such as the one shown in Figure 8.29 would be
to first downsample the input by factor M , followed by filtering with H [z] and then upsampling the filter output

408 Chapter 8

Figure 8.29: FIR filter implementation
of multirate system.

1

1

1

1

h0

h1z

21

z

21

z

21

z

21

h2

h3

hL21

z [k]y [n]x [n]u [m]
N M

by factor N . To achieve this, we use a technique called polyphase decomposition to implement the downsam-
pler and upsampler. Multirate systems can be efficiently implemented with this polyphase decomposition. By
separating the even-numbered coefficients of hi from the odd-numbered coefficients in H [z], we can write H [z] as
follows:

H [z] =
∑

n

h2n z−2n + z−1
∑

n

h2n+1 z−2n (8.99)

H [z] = A0[z2]+ z−1 A1[z2] (8.100)

where

A0[z] =
∑

n

h2n z−n , A1[z] =
∑

n

h2n+1 z−n (8.101)

The idea of decomposing the system function H [z] into two subsystem functions, A0[z] and A1[z], can be
extended to any integer M number of subsystem functions. In other words, we can express H [z] as

H [z] =
M−1∑
k=0

z−k Ak[zM] (8.102)

where

Ak[z] =
∑

n

hMn+k z−n , 0 ≤ k ≤ M −1 (8.103)

Equation (8.102) is called type-1 polyphase decomposition, with Ak[z] representing the polyphase com-
ponents of H [z]. This type-1 polyphase decomposition of the decimation filter is illustrated in Figure 8.30.
As shown in Figure 8.30(c), because we first downsample the signal and then filter the downsampled
sequence, the number of multiplications and additions required to perform the decimation filtering is
much lower compared to straightforward implementation of the downsampler. In a similar manner, a
more efficient structure can be obtained for the interpolation filter using the following type-2 polyphase
decomposition:

H [z] =
N−1∑
k=0

z−(N−1−k) Bk[zN] (8.104)

where

Bk[z] = CN−1−k[z], Ci [z] =
∑

n

hNn+i z−n , 0 ≤ k ≤ N −1, 0 ≤ i ≤ N −1 (8.105)

Using the type-2 polyphase decomposition as given in Equation (8.104), we can implement the interpolation
filter shown in Figure 8.27(b) very efficiently as shown in Figure 8.31.

Advanced Signal Processing 409

Figure 8.30: This is the polyphase
implementation of M-fold decimation
filter. (a) Actual decimation filter.
(b) Polyphase decomposition of filter.
(c) Swapping of downsampler and
system functions (using noble identity
property [Vaidyanathan, 1992]).

M

M

M

M

M

M

M

(a)

x [n] y [m]
H [z]

(b)

1

1

x [n] y [m]
A0[z

M]

A1[z

M]

AM21[z

M]

z

21

z

21

z

21

z

21

z

21

z

21

(c)

1

1

x [n] y [m]
A0[z]

A1[z]

AM21[z]

Figure 8.31: This is the polyphase
implementation of interpolation filter.

x [m]

y [n]

B0[z]

B1[z]

�

�

BN�1[z]

z

�1

z

�1

z

�1

N

N

N

■Example 8.1

Given filter length L = 9 and upsampling factor N = 3, show that the schematics in Figures 8.27(b) and
8.31 essentially output the same samples with the following five input samples: x = {x0, x1, x2, x3, x4}.
Assume that the L (= 9) filter coefficients are h = {h0,h1,h2, . . . ,h8}.

Case 1: Direct-Form Implementation
Using Figure 8.27(b), the upsampler output is obtained by inserting N(= 3) zeros between every two
input samples, that is,

x ′ = {x0,0,0, x1,0,0, x2,0,0, x3,0,0, x4}

410 Chapter 8

The upsampled sequence y is obtained by convolving the two sequences x ′ and h as follows:

y0 = h0x0, y1 = h1x0, y2 = h2x0

y3 = h0x1 +h3x0, y4 = h1x1 +h4x0, y5 = h2x1 +h5x0

y6 = h0x2 +h3x1 +h6x0, y7 = h1x2 +h4x1 +h7x0, y8 = h2x2 +h5x1 +h8x0

y9 = h0x3 +h3x2 +h6x1, y10 = h1x3 +h4x2 +h7x1, y11 = h2x3 +h5x2 +h8x1

y12 = h0x4 +h3x3 +h6x2, y13 = h1x4 +h4x3 +h7x2, y14 = h2x4 +h5x3 +h8x2

y15 = h3x4 +h6x3, y16 = h4x4 +h7x3, y17 = h5x4 +h8x3

y18 = h6x4, y19 = h7x4, h20 = h8x4

Although we see a few MAC operations per output yn in the preceding calculations, in the actual
implementation there are L(= 9) MAC operations. In this way, we avoid conditional computation. For
example, the output sample y10 is computed using the convolution sum without any conditional checks
as follows:

y10 = h0 ·0 +h1x3 +h2 ·0 +h3 ·0 +h4x2 +h5 ·0 +h6 ·0 +h7x1 +h8 ·0

Case 2: Polyphase Implementation
Here, we compute the upsampler outputs with polyphase decomposition of the interpolation filter.
Based on Equation (8.105), the filters B0[z], B1 [z], and B2[z] follow:

B0[z] = h2 +h5z−1 +h8z−2, B1[z] = h1 +h4z−1 +h7z−2, B2[z] = h0 +h3z−1 +h6z−2

Next, the convolution of input x and polyphase filters Bi [z] are obtained as follows:

B0: h2x0,h2x1 +h5x0,h2x2 +h5x1 +h8x0,h2x3 +h5x2 +h8x1,

h2x4 +h5x3 +h8x2,h5x4 +h8x3,h8x4

B1: h1x0,h1x1 +h4x0,h1x2 +h4x1 +h7x0,h1x3 +h4x2 +h7x1,

h1x4 +h4x3 +h7x2,h4x4 +h7x3,h7x4

B2: h0x0,h0x1 +h3x0,h0x2 +h3x1 +h6x0,h0x3 +h3x2 +h6x1,

h0x4 +h3x3 +h6x2,h3x4 +h6x3,h6x4

The upsampled filter outputs with proper delay as shown in Figure 8.31 are tabulated as follows:

B0 B1 B2 yn

0 0 h0x0 h0x0

0 h1x0 0 h1x0

h2x0 0 0 h2x0

0 0 h0x1 +h3x0 h0x1 +h3x0

0 h1x1 +h4x0 0 h1x1 +h4x0

h2x1 +h5x0 0 0 h2x1 +h5x0

0 0 h0x2 +h3x1 +h6x0 h0x2 +h3x1 +h6x0

0 h1x2 +h4x1 +h7x0 0 h1x2 +h4x1 +h7x0

h2x2 +h5x1 +h8x0 0 0 h2x2 +h5x1 +h8x0

0 0 h0x3 +h3x2 +h6x1 h0x3 +h3x2 +h6x1

0 h1x3 +h4x2 +h7x1 0 h1x3 +h4x2 +h7x1

h2x3 +h5x2 +h8x1 0 0 h2x3 +h5x2 +h8x1

0 0 h0x4 +h3x3 +h6x2 h0x4 +h3x3 +h6x2

0 h1x4 +h4x3 +h7x2 0 h1x4 +h4x3 +h7x2

h2x4 +h5x3 +h8x2 0 0 h2x4 +h5x3 +h8x2

0 0 h3x4 +h6x3 h3x4 +h6x3

0 h4x4 +h7x3 0 h4x4 +h7x3

Advanced Signal Processing 411

h5x4 +h8x3 0 0 h5x4 +h8x3

0 0 h6x4 h6x4

0 h7x4 0 h7x4

h8x4 0 0 h8x4

Both the direct-form and polyphase implementation of the upsampler provide the same outputs. From
the computational point of view, the direct-form implementation requires L MAC operations per output,
whereas polyphase implementation requires only L/N MAC operations per output.

■

Using the polyphase structures of decimation and interpolation filters, we can efficiently implement the
multirate system shown in Figure 8.29. For simplicity, we choose M = 4 and N = 3. The successive redrawings
in Figure 8.32 show how the polyphase decomposition techniques lead to efficient implementation of noninteger
sampling conversion. As long as factors M and N are relatively prime, we can swap the consecutive downsampler
and upsampler operations without losing information. The final structure for noninteger sampling conversion is
shown in Figure 8.32(d).

For M = 4 and N = 3, we modified the multirate structure (which require LN MAC operations to compute
one output sample y[m], where L is the length of the filter) shown in Figure 8.29 to the most efficient structure
as shown in Figure 8.32(d) by moving all the downsamplers to the left of all the computational units and the
upsamplers to the right of all the computational units. This restructuring is applicable for any arbitrary M
and N as long as they are relatively prime. With this restructuring, noninteger sampling conversion based on
polyphase decomposition requires only L/N MAC operations per output sample. For large values of M or N ,
we can significantly reduce the number of computations per output sample by implementing the decimation or
interpolation filters in multiple stages (Vaidyanathan, 1992).

8.2.3 Quadrature Mirror Filter Banks

Before discussing quadrature mirror filter (QMF) banks, we consider an example of processing two signals whose
spectra S(f) and X (f) are shown in Figure 8.33. Assume that the spectrum S(f) is strictly band-limited to
B Hz, and the spectrum X (f) contains frequencies up to 2B Hz. As shown in Figure 8.33(b), most of the energy
in the signal spectrum X (f) is in its lower frequency region (below B Hz), with only a very small percentage in
the B- to 2B-Hz region. In addition, assume that both signals are sampled with the same sampling frequency,
say 4B Hz. Let s[n] and x [n] be the corresponding sampled signals. For various cost reasons (i.e., processing
cost, transmitting cost, storage cost, etc.), assume that both sequences s[n] and x [n] are downsampled by a
factor of 2 to minimize the cost of handling the sequences. Let sd[m] and xd[m] represent the downsampled
sequences. Since the sequence sd[m] is strictly band-limited to B Hz (and contains 2B samples per second), we
can completely recover the sequence s[n] from its downsampled sequence sd[m]. In the case of sequence x [n],
it is not possible to recover it from the downsampled sequence xd[m] because of aliasing.

However, since the energy of x [n] frequency components is much lower in the B- to 2B-Hz region, we can
efficiently represent the signal x [n] with a lower number of bits on average by assigning fewer bits to those
high-frequency signal components. Thus, the average number of bits required to represent the overall signal
will be reduced. To accomplish this, we decompose the signal x [n] using subband decomposition; the technique
of decomposing the source signal into constituent subbands and separately coding each subband samples effi-
ciently is known as subband coding. Typically, subband decomposition is implemented with so-called filter
banks.

A filter bank is an array of subband filters with either a common input or summed output. If the subband
filters of filter bank are used to decompose the common input signal x [n] into a set of subband signals xk[n],
then such subband filters Hk[z] are called analysis filters. If the subband filters of the filter bank are used to
combine a set of subband signals yk[n] into a single signal y[n] at its output, then such subband filters Fk[z] are
called synthesis filters. In general, the number of analysis filters is equal to the number of synthesis filters. If M
subband filters are used for analysis or synthesis filters, the system is called an M-channel filter bank. Typically,

412 Chapter 8

x [n]
H [z]

y [m]

(a)

(b)

x [n]

x [n]

y [m]

y [m]
1

1

1

1

B0[z]

B1[z]

B2[z]

B1[z]

B2[z]

B0[z]

z

21

z

21

z

21

z

21

z
2

z1

(c)

x [n]

y [m]
1

1

z21

z21

1

1

1B00[z]

B01[z]

B02[z]

B03[z]

z

2

1

1

1B20[z]

B21[z]

B22[z]

B23[z]

1

1

1B10[z]

B11[z]

B12[z]

B13[z]

z

(d)

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

z

21

z

21

z

21

z

21

z

21

z

21

z

21

z

21

z

21

Figure 8.32: Polyphase implementation of noninteger sampling conversion.

in an M-channel filter bank, the M-analysis filters are followed by M-fold downsamplers and the M-synthesis
filters are preceded by M-fold upsamplers, as shown in Figure 8.34.

Next, we discuss various frequency response characteristics of a filter bank for subband decomposition. Ideal
frequency response characteristics for filter banks are shown in Figure 8.35(a). However, designing the filters
with ideal frequency-response characteristics is impractical. In practice, the filters have non-zero transition

Advanced Signal Processing 413

B 2B 3B 4B

(a)
S

 (f
)

f (Hz)

B 2B 3B 4B

(b)

X
 (f

)

f (Hz)

Figure 8.33: Frequency spectra. (a) Band-limited to B Hz. (b) Frequencies up to 2B Hz.

Figure 8.34: M-channel filter bank.

Quantize
Encode
Store/

Transmit
Decode

Analysis Filter Bank Synthesis Filter Bank

x [n]
xk [n] uk [m] vk [m] yk [n]

y [n]

H0[z]

H1[z]

HM21[z]

F0[z]

F1[z]

FM21[z]M

M

MM

M

M

Figure 8.35: Various frequency-
response characteristics of filter bank
for signal subband decomposition.

H0[�] H1[�] H2[�] HM�2[�] HM�1[�]

(b)

(c)

(a) �

�

�

bandwidth and stopband gain. Thus, the signals xk[n] are not band-limited and their decimation results in
aliasing. The filters with frequency-response characteristics as shown in Figure 8.35(b) are realizable. Assuming
that stopband attenuations are sufficiently large, the effect of aliasing is not severe with such realization. However,
sub-band filters with frequency responses as seen in Figure 8.35(b) introduce severe attenuation of the input
signal around the transition frequencies. The alternative solution is to allow overlapping of frequency responses,
which minimizes signal attenuation around the transition frequencies. The drawback to this type of realization
is that it introduces aliasing error, even if the filters are designed with good stopband attenuation characteristics.
However, such aliasing due to overlapping can be canceled in the reconstruction process by using properly
designed synthesis filters.

Here, we consider a simple two-channel filter bank for subband coding as shown in Figure 8.36(a). A discrete-
time signal x [n] is passed through analysis filters H0[z] and H1[z], whose frequency responses are shown in
Figure 8.36(b). The frequency responses of low-pass filter H0[z] and high-pass filter H1[z] are mirror symmetric
at about π/2; hence this filter bank is known as the quadrature mirror filter (QMF) bank.

The subband signals xk[n] are then downsampled by a factor of 2. Since the bandwidth of decomposed
signals xk[n] is half when compared to that of the original signal x [n], we do not lose any information with the
downsampling process. Downsampled subband signals uk[m] are quantized and encoded by using the special
characteristics of the signals, such as energy levels and perceptual characteristics. The coded subband signals are

414 Chapter 8

Figure 8.36: Simple multirate
system. (a) Two-channel filter bank.
(b) Overlapping filter frequency
responses. (b)

�/2

Theoretical

Practical

H1[z]H0[z]H
 [z

]

x0 [n]

x1 [n]

(a)
ˆ

ˆ

ˆ

ˆ

ˆ

Quantize
Encode
Store/

Transmit
Decode

x [n]

x [n]

x0 [n]

x1 [n]

H0 [z]

H1 [z]

F0 [z]

F1 [z]

u0 [m] u0 [m]

u1 [m]u1 [m]
2

2

2

2

� V

then multiplexed and transmitted. At the receiver, the demultiplexed subband signals are decoded first to obtain
ûk[m] before upsampling. Then the upsampled subband signals x̂k[m] are passed through the reconstruction or
synthesis filters to obtain the estimate x̂ [n] of the transmitted signal x [n]. The reconstructed signal x̂ [n] may not
be the same as x [n] due to the presence of noise sources (e.g., quantization, aliasing, distortions due to filtering,
etc.) in the system.

Based on Figure 8.36(a),

Xk[z] = Hk[z]X[z], k = 0,1 (8.106)

The frequency-domain equivalent of the downsampled signal (Vaidyanathan, 1992) follows:

Uk[z] = 1

M

M−1∑
m=0

Xk
[
z1/M e− j2πm/M] = 1

2

1∑
m=0

Xk
[
z1/2e− j2πm/2]

(8.107)
= 1

2

(
Xk
[
z1/2]+ Xk

[−z1/2])
Ignoring the effects of quantization, the expression for the frequency-domain equivalent of the upsampled signal
x̂k[n] follows:

X̂k[z] = Ûk [z2] = 1

2
(Xk[z]+ Xk [−z]) = 1

2
(Hk[z]X[z]+ Hk [−z]X[−z]) (8.108)

From Figure 8.36(a), the reconstructed signal is obtained as seen in Equation (8.109).

X̂[z] =
M−1∑
k=0

Fk[z]X̂k [z]

(8.109)
= F0[z]X̂0[z]+ F1 [z]X̂1[z]

Based on Equations (8.108) and (8.109),

X̂[z] = 1

2
(H0[z]F0[z]+ H1[z]F1[z])X[z]

+1

2
(H0[−z]F0[z]+ H1[−z]F1[z])X[−z]

(8.110)

The second term in Equation (8.110) accounts for aliasing and imaging due to downsampling and upsampling
of the signal, and we can cancel the aliasing and imaging terms by choosing the synthesis filters such that
H0[−z]F0[z] + H1[−z]F1[z] is zero; that is, by choosing the synthesis filters F0[z] = H1[−z] and F1[z] =
−H0[−z], it is possible to completely cancel the aliasing effects. With this, Equation (8.110) is simplified to

X̂[z] = 1

2
(H0[z]F0[z]+ H1[z]F1[z])X[z] = P[z]X[z] (8.111)

Advanced Signal Processing 415

Although the aliasing is canceled in the reconstructed signal x̂ [n], Equation (8.111) still suffers from amplitude
and phase distortions due to the P[z] factor. Unless P[z] is a constant magnitude with a linear phase (i.e.,
P[z] = cz−�), a perfectly reconstructed signal is not possible. When a QMF bank is free from aliasing, amplitude,
and phase distortions, it is called a QMF bank with perfect reconstruction (PR) property. By choosing the filter
H1[z] = H0[−z], that is, the impulse responses as h1[l] = (−1)lh0[l], l = 0,1,2, . . . , L − 1, we can obtain
all four filters of the PR QMF bank using a single filter H0[z]. The perfectly reconstructed signal x̂ [n] is still
not exactly the same as the transmitted signal x [n] due to the presence of irreversible quantization errors and
unavoidable additive noise.

■Example 8.2

Determine the four filters of the QMF bank with PR property given the prototype filter H0[z] = 1+ z−1.
In addition, verify the perfect reconstruction property of the QMF bank.

The QMF bank’s four filters follow:

Analysis filters: H0[z] = 1+ z−1, H1[z] = H0[−z] = 1− z−1

Synthesis filters: F0[z] = H1[−z] = 1+ z−1, F1[z] = −H0[−z] = −1+ z−1

Aliasing component: H0[−z]F0[z]+ H1[−z]F1[z] = H0[−z]H0[z]− H0[z]H0[−z] = 0

P[z] = 1

2
(H0[z]F0[z]+ H1[z]F1[z]) = 1

2
[(1+ z−1)2 − (1− z−1)2]

= 1

2
(4z−1) = 2z−1

That is, P[z] is a simple delay with a gain of 2. Thus, the resulting QMF bank is the perfect reconstruction
filter bank.

An illustration of subband coding of a signal using the QMF bank designed with the prototype filter
H0[z] = 1 + z−1 is shown in Figure 8.37. The original signal for coding is shown in Figure 8.37(a).
Figure 8.37(b) through (j) indicate the outputs of various processes. The output of analysis filters is
shown in Figure 8.37(b) and (c); the downsampled subband signals, Figure 8.37(d) and (e); the quan-
tized subband signals, Figure 8.37(f) and (g); the receiver upsampled signals, Figures 8.37(h) and (i);
and the reconstructed signal, Figure 8.37(j).

■

In practice, polyphase decomposition methods (discussed in the previous section) are commonly used to
efficiently implement QMF filter banks. If we express the prototype filter H0[z] using type-1 polyphase decom-
position as H0[z] = A0[z2] + z−1 A1[z2], then the other filters of the QMF bank with the PR property can be
derived as H1[z] = A0[z2] − z−1 A1[z2], F0[z] = A0[z2] + z−1 A1[z2], and F1[z] = −A0[z2] + z−1 A1[z2]. The
final structure for efficient polyphase implementation of a two-channel QMF bank is shown in Figure 8.38.

8.3 Wavelet Signal Processing

Signals or images are decomposed to analyze their content, eliminate the undesired components, and compactly
represent them for storing or transmitting purposes. For this, we project the signal from a finite or infinite
dimensional space to another finite dimensional space using orthogonal basis functions. One way of analyzing
an arbitrary signal is by decomposing the signal into the number of frequency components using the Fourier
transform (i.e., decomposition of the signal using Fourier bases). As discussed in Chapter 6, the Fourier bases are
sinusoidal functions sin(2π fi t) and cos(2π f j t). A discrete signal x [n] described by Equation (8.112) is shown
in Figure 8.39(a), and its Fourier transform output is shown in Figure 8.39(b). This signal x [n] contains four
frequencies: f1 = 5 Hz, f2 = 10 Hz, f3 = 15 Hz, and f4 = 20 Hz:

x [n] = sin(2π f1n/Fs)+ sin(2π f2n/Fs)+ sin(2π f3n/Fs)+ sin(2π f4n/Fs) (8.112)

where n = 0,1,2, . . . ,4095, Fs = 1 kHz.

416 Chapter 8

50 100 150 200
�1

0

1

50 100 150 200
�1

0

1

50 100 150 200
�0.5

0

0.5

50 100 150 200
�1

0

1

50 100 150 200
�0.5

0

0.5

�0.5

0

0.5

20 40 60 80 100

�0.5

0

0.5

20 40 60 80 100

20 40 60 80 100
�1

0

1

20 40 60 80 100
�1

0

1

50 100 150 200
�1

0

1

(a) Original signal

(f) Quantized (to 256 levels)
low-frequency signal

(b) Decomposed low-frequency
signal

(g) Quantized (to 16 levels)
high-frequency signal

(c) Decomposed high-frequency
signal

(h) Upsampled low-frequency
signal

(d) Downsampled low-frequency
signal

(i) Upsampled high-frequency
signal

(e) Downsampled high-frequency
 signal

(j) Reconstructed signal

Figure 8.37: Illustration of subband decomposition, quantization, and reconstruction.

Figure 8.38: The polyphase
implementation of two-channel
QMF bank.

z21 z21

Quantize
Encode
Store/

Transmit
Decode

x [n]
A0 [z]

A1 [z]

A1 [z]

A0 [z]
x̂ [n]21 21

2

2

2

2

The Fourier transform provides all frequencies contained in the input signal x [n], and does not provide
any information about frequencies in a given segment (or window) of the signal. For example, let us consider
another signal described by Equation (8.113), shown in Figure 8.40(a). As seen in Figure 8.40(b), the signal
y[n] also contains the same four frequencies (i.e., 5 Hz, 10 Hz, 15 Hz, and 20 Hz) as that of x [n], although the
time-domain representations of x [n] and y[n] signals are entirely different. This is because the Fourier basis
(which is extended to infinity as shown in Figure 8.44(a), page 419) assumes that the signals under consideration
contain the frequency components all the time. In other words, the Fourier transform assumes that the signals
are stationary. This is one of the limitations of the Fourier transform. At any given time, we cannot obtain good
time and frequency localization of a signal using a Fourier transform. With the Fourier transform, we can have
either good time localization with poor frequency localization as shown in Figure 8.41(a), or good frequency
localization with poor time localization as shown in Figure 8.41(b).

y[n] =

⎧⎪⎪⎨
⎪⎪⎩

sin(2π f1n/Fs) 0 ≤ n < 1024
sin(2π f2n/Fs) 1024 ≤ n < 2048
sin(2π f3n/Fs) 2048 ≤ n < 3072
sin(2π f4n/Fs) 3072 ≤ n < 4096

(8.113)

Advanced Signal Processing 417

Figure 8.39: Stationary sinusoidal
signal. (a) Time domain. (b) Frequency
domain.

(a)

(b)

40

30

20

10

0
0 5 10 15 20

X
(f

)

4

2

0

0 500 1000 1500 2000 2500 3000 3500 4000

�2

�4

x [
n]

f

n

Figure 8.40: Non-stationary sinusoidal
signal. (a) Time domain. (b) Frequency
domain.

2

1

0

0 500 1000 1500 2000 2500 3000 3500 4000

�1

�2

(a)
n

y
[n

]

12

8

6

4

2

0
0 5 10 15 20

Y
(f

)

(b)
f

Figure 8.41: Fourier transform
time-frequency grid. (a) Good time
localization with poor frequency
localization. (b) Poor time localization
with good frequency localization.

tt

(a) (b)
f f

Short-Time Fourier Transform
The time-frequency localization problem of Fourier transform can be overcome using the so-called short-
time Fourier transform (STFT) or windowed Fourier transform. In this transform, the signal y[n] shown in
Figure 8.40(a) is divided into a few segments (or windows) and the Fourier transforms of those segments
are computed using Equation (8.113). The time-frequency information of each segment is plotted separately
in the two dimensions as shown in Figure 8.42, which provides simultaneous time and frequency localization.

418 Chapter 8

300
250
200
150
100
50
0

4000

3500

3000

2500

2000

1500

1000

500

0
0 5 10 15 20 25

f

n

Figure 8.42: STFT of y[n] in 2D space.

Figure 8.43: Time-frequency grid for
short-time Fourier transform. f

t

As seen in Equation (8.114), the length of the window determines the frequency resolution:

YSTFT[k,m] =
m+N−1∑

n=m

x [n]w[n −m]e− j2πk(n−m)/N (8.114)

where w[n] is a sliding window.
The time-frequency localization characteristics of STFT are shown in Figure 8.43, which clearly displays

y[n] signal frequencies at various instants in time. However, the STFT has a few shortcomings. As the STFT
uses the windowed Fourier basis (i.e., truncated sinusoidal waves with a window, as shown in Figure 8.44(b)),
we cannot obtain accurate frequency estimates over all frequency ranges because of the windowing. In any given
window, the STFT can analyze high-frequency components very accurately and its low-frequency components
estimate will not be that accurate due to the absence of full-length low-frequency components in that window. In
addition, the time localization we obtain with the STFT occurs only at the cost of frequency-localization loss.

In practice, the very nature of the signals in many applications is that the slowly varying longer signals are
associated with small bursts of high-frequency signals. Processing these types of signals with the STFT may not
provide accurate results. In contrast to the STFT, which uses a single analysis window, the wavelet transform
to be discussed next uses multiple windows, and in particular, shorter windows at high frequencies and longer
windows at low frequencies.

Time and frequency resolution cannot be arbitrarily small because their product is lower bounded as follows:

Time Bandwidth Product: �t� f ≥ 1
4π

(8.115)

Advanced Signal Processing 419

Infinite Length Fourier Basis Functions
(a)

Window Function

Compact Wavelet Basis Functions

Windowed Fourier Basis Functions
(b)

(c)

Figure 8.44: Various transform function bases. (a) Fourier transform basis. (b) STFT basis. (c) Wavelet transform
basis.

This is referred to as the Heisenberg inequality for Fourier transforms. It means that one can only trade time
resolution for frequency resolution or vice versa. A limitation of the STFT is that, because a single window
is used for all frequencies, the resolution of the analysis is the same at all locations in the time-frequency grid
(i.e., once the window is chosen, the time-frequency resolution is fixed for the entire time-frequency plane, as
shown in Equation (8.115)). To overcome the resolution limitation of the STFT, one can imagine letting the
resolution �t and � f vary in the time-frequency plane in order to obtain the multiresolution analysis. This can
be visualized by adjusting the lower-bound equation:

Time Bandwidth Product:

(
�t

k

)
(k� f) ≥ 1

4π
(8.116)

By varying the parameter k, we can trade time resolution for frequency resolution or vice versa. An intuitively
appealing way to achieve this is short high-frequency basis functions and long low-frequency basis functions.
This is exactly what is achieved with the wavelet transform. In particular, the wavelet transform is of interest for
the analysis of nonstationary signals.

420 Chapter 8

8.3.1 Multiresolution Analysis

In the same way that Fourier theory uses classic harmonic analysis in decomposing signals, the wavelet theory
uses so-called multiresolution analysis in decomposing the signals. In STFT, the windowed signals are analyzed
in terms of all harmonic components, that is, both low frequency and high frequency components are analyzed
with the same time resolution. In reality, the signals do not require the same time resolution for all frequency
components. For example, in many practical signals, the low frequency signals span the entire duration of a signal,
whereas high frequency signals occur in a transient manner. In such cases, it makes sense to use a multiresolution
time-scale grid as shown in Figure 8.45 to adapt low time resolutions for low frequency signals and high time
resolutions for high frequency components.

We use time scale instead of time frequency in multiresolution analysis. This is because the wavelet theory
analyzes the signals using different wavelets obtained by scaling a single prototype wavelet called the mother
wavelet. Wavelets are small waves as shown in Figure 8.44(c). The scale parameter inversely relates to frequency,
that is, smaller scales represent the higher frequencies and larger scales represent the lower frequencies. This
time-scale grid results in very good time resolution with poor frequency resolution at high frequencies, and very
good frequency resolution with poor time resolution at low frequencies. In other words, it is possible to achieve
nonuniform time-frequency localization with a multiresolution time-scale grid that has better characteristics for
analyzing the very nature of signals.

To formulate the multiresolution analysis mathematically, we start with scaling (or complete) subspaces
C j and wavelet (or difference) subspaces D j as shown in Figure 8.46, where j ∈ Z . The wavelet sub-
spaces D j+a comprise the difference between scaling subspaces C j+a and C j+a+1. The scaling subspaces
are increasing in dimension. In addition, each subspace C j is contained in the next higher-order subspaces C j+i ,
that is,

C−∞ ⊂ · · ·C− j−1 ⊂ C− j ⊂ · · · ⊂ C−2 ⊂ C−1 ⊂ C0 ⊂ C1 ⊂ C2 ⊂ · · · ⊂ C j ⊂ C j+1 ⊂ · · · ⊂ C∞

The following relationship holds true with the scaling subspaces and wavelet subspaces as pictorially presented
in Figure 8.46:

C j+2 = C j+1 ⊕ D j+1 = C j ⊕ D j ⊕ D j+1 = C j−1 ⊕ D j−1 ⊕ D j ⊕ D j+1

and so on, where the symbol ⊕ denotes a union of subspaces.

Figure 8.45: Multiresolution time-
scale grid.

S
ca

le

Time

Figure 8.46: Pictorial view of scaling
subspaces and wavelet subspaces.

Cj14

Dj13

Cj

Dj

Dj11

Dj12
Cj13

Cj12

Cj11

Advanced Signal Processing 421

Let L2(R) denote a space of measurable and integrable square functions f , that is, if f (t) ∈ L2(R), then∫
| f (t)|2 < ∞ (8.117)

Assume that the function f (t) belonging to the whole space L2(R) has formed from the sum of its elementary
functions f j (t), which belong to the subspaces of L2(R). We further assume that the elementary functions belong
to the scaling subspaces C j (i.e., f j (t) ∈ C j), which means,

C−∞ = 0 ⊂ · · ·C− j−1 ⊂ C− j ⊂ · · · ⊂ C−2 ⊂ C−1 ⊂ C0 ⊂ C1 ⊂ C2 ⊂ · · · ⊂ C j ⊂ C j+1 ⊂ · · · ⊂ C∞ = L2(R)

In addition, the subspaces C j are such that
⋃

j
C j is dense in L2(R),

⋂
j

C j = {0} and C j
⋂

D j = {0}.
It also means that the elementary functions f j (t) are obtained by projecting the f (t) onto the subspaces C j .

With this, an estimate of the function f (t) can be obtained by summing the elementary functions of subspaces
up to CJ as follows:

f̂ (t) =
∑
j≤J

β j f j (t) (8.118)

In Equation (8.118), f̂ (t) → f (t) as J → ∞. This implies that a portion of f (t) will be in each subspace
C j upon the decomposition of f (t). The addition of each of these pieces provides increasingly finer detail
to the reconstructed signal f̂ (t). Logically, we can think of this as lower-dimension subspaces containing the
coarse or approximate information about f (t), while higher-dimension subspaces contain finer details of the
function f (t).

The functions ϕ(t) in subspaces Ci behave according to the following laws:

• Dilation law: If ϕ(t) ∈ Ci , then ϕ(α j t) ∈ Ci+ j .
• Translation law: If ϕ(t) ∈ Ci , then ϕ(t − k) ∈ Ci .

According to the dilation law, if φ(t) = φ(α0t) ∈ C0, then φ(α j t) ∈ C j and φ(a− j t) ∈ C− j . For this reason, the
function φ(t) is called a scaling function. Defining the set of functions φ j,k(t) as in

φ j,k(t) = 2 j/2φ(2 j t − k), j,k ∈ Z (8.119)

we can produce multiresolution subspaces C j . We have chosen the scaling factor α = 2 to achieve a type of
multiresolution analysis shown in Figure 8.45. The factor 2 j/2 in Equation (8.119) indicates equal energy in
functions φ j,k(t) at different scales j . If function φ(t) is defined such that the value of φ0,0(t) = φ(t) outside the
interval [0, 1) is zero, then φ0,k(t) = φ(t − k) for different integer shift values of k forms the orthogonal basis of
subspace C0, that is,

∞∫
−∞

φ(t)φ(t − k)dt = δ(k) (8.120)

If the subspace C0 represents the band-limited functions in the interval (−π/2,π/2), then as seen in Equation
(8.119), the bandwidth of functions in C1 extends to the interval (−π,π) due to signal compression by a factor
of 2 in C1. This is illustrated in Figure 8.47(a). Since the subspace C0 is contained in C1, we can express the
function φ(t) of subspace C0 using the linear combination of the functions φ(2t − k) of subspace C1. In other
words, given Figure 8.47(a), it is clear that the φ(t) can be obtained by passing φ(2t) through a halfband low-pass
filter {gk} shown in Figure 8.47(b), expressed as

φ(t) = √
2
∑

k

gk φ(2t − k) (8.121)

Since C1 = C0 ⊕ D0, the subspace D0 in C1 can be interpreted as band-limited function space with frequencies
in the interval (−π,−π/2)∪ (π/2,π). In the signal domain, the corresponding band-limited function ψ(t) of

422 Chapter 8

Figure 8.47: Frequency-domain
division with multiresolution analysis.

(a)

(b)

(c)

��/2�� 0

C1

C0

G [z] H [z]

D0

0

C1

C�2

C�1

C0

0

C�3 D�3 D�2 D�1 D0

�/2

�/2

�/2 �

�

�

the space D0 is obtained by passing the φ(2t − k) through the corresponding halfband high-pass filter {hk }, and
is expressed as

ψ(t) = √
2
∑

k

hk φ(2t − k) (8.122)

It can be shown that ψ(t), called the wavelet function, and its translated forms an orthogonal basis for D0,
that is,

∞∫
−∞

ψ(t)ψ(t − k)dt = δk (8.123)

Since C0 and D0 cover disjointed regions of C1, the functions φ(t) and ψ(t) are orthogonal to each other for
different shift values (i.e., their dot product is zero):

< φ(t −m),ψ(t −n) >=
∞∫

−∞
φ(t −m)ψ(t −n)dt = 0 ∀m,n (8.124)

Given ψ(t) of D0, we can define a set of functions to cover the difference space D j :

ψ j,k(t) = 2 j/2ψ(2 j t − k), j,k ∈ Z (8.125)

The functions
{
ψ j,k (t)

}
are orthogonal for all scaling parameter values j and shift parameter values k. For

various shift values of k, the sets
{
φ j,k(t)

}
and

{
ψ j,k(t)

}
form the orthogonal basis for subspaces C j and D j .

Although the formulas in Equations (8.119) through (8.125) for scaling functions and wavelet functions happen
to be similar, their functionalities are entirely different. In analyzing the signals of subspace C1, the dilated
scaling functions contain the approximate information of C1, whereas the dilated wavelet functions contain the
detailed information of C1.

■ Example 8.4

Given the Haar scaling function and wavelet function in C0 and D0, obtain the set of scaling functions
for C0 and C1 and the set of wavelet functions for D0 and D1. Plot the corresponding scaling and

Advanced Signal Processing 423

wavelet functions. Obtain the filter coefficients {hk} and {gk} for generating the scaling function φ(t)
and wavelet function ψ(t) from φ(2t). In addition, verify the orthogonality properties of scaling and
wavelet functions.

The Haar scaling function in C0 is defined in the following graphic:

φ(t) =
{

1 0 ≤ t < 1
0 otherwise

1

1

0

�
(t

)

t

The corresponding Haar wavelet function in D0 is defined as follows:

ψ(t) =
⎧⎨
⎩

1 0 ≤ t < 0.5
−1 0.5 ≤ t < 1
0 otherwise t 0.5

1

0 1

21

�
(t

)

Based on Equation (8.119), the shifted scaling functions in C0 can be obtained as follows:

φ0,k(t) = φ(t − k) =
{

1 k ≤ t < k +1
0 otherwise

k

1

k 110

�
(t

2
k)

t

Similarly, the scaling functions of subspace C1 are

φ1,k(t) = √
2φ(2t − k) =

{√
2 k/2 ≤ t < (k +1)/2

0 otherwise

k /2

2

0 (k 11)/2

t

�
(2

t2
k)

The wavelet functions of subspace D0 are obtained from Equation (8.125) as follows:

ψ0,k(t) = ψ(t − k) =
⎧⎨
⎩

1 k ≤ t < (k +1/2)

−1 (k +1/2) ≤ t < k +1
0 otherwise k

1

0

k 11

21

t

�
(t

2
k

)

424 Chapter 8

The wavelet functions of subspace D1 follow:

ψ1,k(t) = √
2ψ(2t − k) =

⎧⎪⎪⎨
⎪⎪⎩

√
2 k

2 ≤ t <
(k

2 + 1
4

)
−√

2
(k

2 + 1
4

)≤ t <
(k

2 + 1
2

)
0 otherwise

t k /2

2

0

k /2 11/2

22

�
(2

t2
k

)

Filter Coefficients Calculation
The filter coefficients {gk} are obtained as follows:

φ(t) = 1√
2
φ(2t)+ 1√

2
φ(2t −1)

= √
2

[
1

2
φ(2t)+ 1

2
φ(2t −1)

]

Based on Equation (8.121), φ(t) = √
2
∑

k gkφ(2t − k). This implies that g0 = 1
2 and g1 = 1

2 .
Similarly, the wavelet function ψ(t) can be expressed as follows:

ψ(t) = 1√
2
φ(2t)− 1√

2
φ(2t −1)

= √
2

[
1

2
φ(2t)− 1

2
φ(2t −1)

]
Based on Equation (8.122),

ψ(t) = √
2
∑

k

hkφ(2t − k)

This expression means that h0 = 1
2 and h1 = − 1

2 . Clearly, the moving-average nature of scaling filter
coefficients forms a low-pass filter and the moving-difference nature of wavelet filter coefficients forms
a high-pass filter.

Orthogonal Properties
Since the functions φ0,k(t) in C0 are disjointed for different shift values of k, the dot-product of φ0,k(t),
and φ0,m(t) is zero as long as k 	= m, that is,

< φ0,k(t),φ0,m(t) > = δ(k −m)

However, the scaling functions φ(t − k) and
√

2φ(2t −m) of C0 and C1 need not be disjointed ∀k,m;
hence they are not orthogonal to each other.

In the case of wavelet functions, although the functions ψ(t −k) and
√

2ψ(2t −m) overlap, because of
positive and negative areas, the dot product of wavelet functions ∀k,m is always zero. Thus, the wavelet
function is orthogonal to all its dilations and translations:

< ψ0,k(t),ψ0,m(t) > = δ(k −m), < ψ0,k(t),ψ1,m(t) > = 0

■

Wavelet Basis Functions
The Haar wavelets considered in Example 8.4 are the simplest of all known wavelet functions. Haar scaling
and wavelet functions are not smooth, and hence are not suitable for practical applications. Unlike the Fourier

Advanced Signal Processing 425

(c)

(e)

0

0
20.2

0.2
0.4
0.6

0.5

1

0

0 1 2 3 4 5 6 7 8

0 10 20 30 40 50 60 70 80 90 100

0.8
1

0
20.2

0.2
0.4
0.6
0.8

1

1.2

0.5 1 1.5 2 2.5 3
(a) (b)

(d)

(f)

0

20.5

21

21

0.5

1

1.5

0

20.5

0.5

1

1

0

0 10 20 30 40 50 60 70 80 90 100

0 1 2 3 4 5 6 7 8

0 0.5 1 1.5 2 2.5 3

Figure 8.48: Selected scaling and wavelet functions used in practice. (a) Daubechies-2 scaling function.
(b) Daubechies-2 wavelet function. (c) Biorthogonal-1.5 scaling function. (d) Biorthogonal-1.5 wavelet function.
(e) Meyer scaling function. (f) Meyer wavelet function.

transform (which has only infinite-length sinusoidal functions as a basis), the wavelet transform has many
varieties of compact basis functions that can be used as the mother wavelet. Since the mother wavelet produces
all wavelet functions used in transformation through shifting and scaling, it determines the characteristics of
the resulting wavelet transform. Particular basic functions for the mother wavelet are chosen depending on the
application. A few common scaling and wavelet functions are shown in Figure 8.48.

8.3.2 Discrete Wavelet Transform

The aim of signal analysis is to extract relevant information from a signal by transforming it. Both Fourier
and wavelet transforms represent a signal through a linear combination of their basic functions. An important
feature of both wavelet and Fourier transforms is the orthogonality of their basic functions, which allows for a
unique representation of the signal being analyzed. The multiresolution approach to wavelets discussed in the
previous section enables us to characterize the class of functions ψ(t) ∈ L2(R) that generate an orthonormal
basis. Wavelets ψ(t) exist such that ψ j,k(t) = 2 j/2ψ(2 j t − k), j,k ∈ Z is an orthonormal basis of L2(R). The
change in the parameter j scales the mother wavelet ψ(t), whereas the change in parameter k shifts the mother
wavelet by k positions. The scaling parameter j is inversely related to the frequency of the signal. Unlike the
Fourier basis, wavelet bases are well localized in both time and frequency. By correlating the given signal x(t)
with the wavelet basis ψ j,k(t) at different dilations (or scales) j and translations (or shifts) k, we analyze the
signal x(t). If x(t) ∈ L2(R), then the portion of x(t) in the subspace C j ⊂ L2(R) can be represented as

x j(t) =
∞∑

k=−∞
cφ[j,k]φ j,k (t) (8.126)

426 Chapter 8

Using multiresolution analysis C j = C0 ⊕ D0 ⊕ D1 ⊕ D2 ⊕· · ·⊕ D j−1, we can rewrite Equation (8.126) as

x j (t) =
∑

k

cφ[0,k]φ0,k (t)+
j−1∑
i=0

∑
k

dψ [i,k]ψi,k (t) (8.127)

The quantity ||x(t)− x j (t)|| approaches zero as j → ∞. Thus, the signal x(t) can be expressed in terms of
scaling and wavelet basis functions as follows:

x(t) =
∑

k

cφ[0,k]φ0,k (t)+
∞∑

i=0

∑
k

dψ [i,k]ψi,k (t) (8.128)

The coefficients cφ[0,k] and dψ [i,k] follow:

cφ[0,k] =
∞∫

−∞
x(t)φ0,k(t)dt (8.129)

dψ [i,k] =
∞∫

−∞
x(t)ψi,k (t)dt (8.130)

Equations (8.129) and (8.130) are referred to as the wavelet series expansion of an arbitrary signal x(t) and
Equation (8.128) is the corresponding inverse wavelet series. In practice, the signals of interest are sampled.
With discretization of the input signal and basic functions in Equations (8.128) to (8.130), an equivalent discrete
wavelet series expansion follows:

x [n] = 1√
N

(∑
k

c0,kφ0,k[n] +
I−1∑
i=0

∑
k

di,kψi,k [n]

)
, n = 0,1,2, . . . , N −1, I = log2(N) (8.131)

c0,k = 1√
N

∑
n

x [n]φ0,k[n] (8.132)

di,k = 1√
N

∑
n

x [n]ψi,k [n], i = 0,1,2, . . . , I −1 (8.133)

By choosing the number of samples N = 2I , we can perform the transformation with only I dilations of the
mother wavelet. A fast implementation of analysis and synthesis equations of discrete wavelet series expansion
is referred to as a discrete wavelet transform (DWT). The computation of a DWT naturally fits into the multistage
two-channel filter bank. Next, we describe the filter bank implementation of the DWT.

Based on Equations (8.125) and (8.133),

di,k = 1√
N

∑
n

x [n]ψi,k [n] = 1√
N

∑
n

x [n]2i/2ψ[2i n − k] (8.134)

Based on Equation (8.122),

ψ[m] = √
2
∑

p

h pφ[2m − p] (8.135)

By substituting m = 2i n − k in Equation (8.135),

ψ[2i n − k] = √
2
∑

l

hlφ[2(2i n − k)− l]

= √
2
∑

l

hlφ[2i+1n −2k − l]
(8.136)

Advanced Signal Processing 427

By substituting l = m −2k in Equation (8.136),

ψ[2in − k] = √
2
∑

m

hm−2kφ[2i+1n −m] (8.137)

Based on Equations (8.134) and (8.137),

di,k = 1√
N

∑
n

x [n]2i/2
√

2
∑

m

hm−2k φ[2i+1n −m]

=
∑

m

hm−2k
1√
N

∑
n

x [n]2(i+1)/2φ[2i+1n −m] (8.138)

di,k =
∑

m

hm−2kci+1,m

Similarly, we can obtain the coefficients ci,k from ci+1,m as follows:

ci,k =
∑

m

gm−2kci+1,m (8.139)

The structure of Equations (8.138) and (8.139) is a direct consequence of multiresolution subspace C j+1 =
C j ⊕ D j . These expressions take us from the coefficients ci+1,k of the scaling basis in the subspace C j+1 to the
coefficients ci,k and di,k of the scaling and wavelet basis in subspaces C j and D j . This is the recursion that makes
the transform computation described in Equations (8.132) and (8.133) fast. Equations (8.138) and (8.139) can be
interpreted in the following manner. The convolution of ci+1,m with hm followed by downsampling by a factor
of 2 results in

∑
m

h2k−m ci+1,m . If we use a time-reversal filter response, {h−m}, in the convolution operation, we

can obtain di,k =∑
m

hm−2kci+1,m . Similarly, convolving ci+1,m with {g−m}, we obtain ci,k . We can obtain ci−1,p

and di−1,p from ci,k by repeating the same process once again. We repeat this process for I (= log2 N) stages to
compute the DWT. This is shown in Figure 8.49 with the multistage two-channel filter bank. The DWT output is
a collection of finer coefficients {di,k } at each stage together with the coarser coefficients {ci,k } at the final stage.
Note that the noncausal nature of the filter {h−m} and {g−m} does not create a problem in practice if we use FIR
filters. If L is the length of filters, then we can make the filters causal by delaying the input by L −1 samples.

The frequency characteristic of a multistage two-channel filter bank is shown in Figure 8.50. The downsam-
pling of filter output by a factor of 2 can also be explained from a frequency-spectrum perspective. As we pass
the input sequence x [n] through low-pass halfband {g−k} and high-pass halfband {h−k} filters, the bandwidth
of outputs c j,k and d j,k from low-pass and high-pass filters halves after filtering. Hence, we do not lose any
information with downsampling of these filter outputs by a factor of 2.

Figure 8.49: Analysis of filter bank for
computing DWT.

{h2m}

cj11,n

cj,p

dj 21,q

cj 21,q

dj,p

x [n]

{g2m}

{h2m}

{g2m}

2

2

2

2

Figure 8.50: Typical frequency
characteristics of wavelet filter bank.

8 4 2

0

H
(�

)

� � � �

�

428 Chapter 8

Figure 8.51: Synthesis filter bank for
computing IDWT.

{hk}

{hk}

x [n]ˆ

di,p
ˆ

di�1,q
ˆ

ci�1,qˆ

ci,pˆ

ci�1,nˆ

Finer wavelet coefficients

Coarser wavelet coefficients

{gk}

{gk}

2

2

2

2

To compute the inverse DWT (IDWT), we use the synthesis filter bank as shown in Figure 8.51. We start from
the coarser approximation coefficients and obtain an approximate signal x̂[n] by adding finer and finer detail
coefficients. At the i-th level, the synthesis formula can be expressed as

ci,n =
∑

k

gn−2k ci−1,k +
∑

k

hn−2k di−1,k (8.140)

This synthesis formula can be interpreted as upsampling of coarser and finer coefficients at the (i −1)th level and
then filtering the upsampled sequence with corresponding synthesis filters {gk} and {hk} to obtain the i-th-level
coarser coefficients, ci,n .

The choice of filters is crucial in achieving perfect reconstruction of the original signal. Typically, the down-
sampling operation introduces aliasing during the wavelet analysis. As discussed in Section 8.2.3, by carefully
choosing filters for the decomposition (or analysis) and reconstruction (or synthesis) systems, we can cancel out
the effects of aliasing. The choice of filters not only determines whether perfect reconstruction is possible, but
also determines the shape of the wavelet that we use to perform the analysis. We cannot choose arbitrary wavelets
for transforming the signal if we want to accurately reconstruct the original signal from transformed coefficients.
Instead, we choose a wavelet shape determined by the perfect reconstruction filter banks. The various filter
coefficients for low-pass and high-pass filters in the two-channel filter bank produce different shapes of scaling
and wavelet functions. For example, choosing the decomposition low-pass filter,

{g−k}:G D[z] = −0.1294+0.2241z−1 +0.8365z−2 +0.4830z−3

and other filter system functions,

{h−k}: HD[z] = z−(L−l−1) G D[−z], L = 4, l = 0,1,2,3

{gk}: G R[z] = −HD[−z]

and

{hk}: HR[z] = G D[−z]

the perfect reconstruction conditions described in the Section 8.2.3 can be satisfied. Iteratively upsampling {g(i)
k }

(where {g(0)
k } = {gk}) by a factor of 2 and convolving with the low-pass filter {gk}, and iteratively upsampling

{h(i)
k } (where {h(0)

k } = {hk}) and convolving with the low-pass filter {gk} produce the Daubechies-2 scaling
function and wavelet function, shown in Figures 8.52 and 8.53, respectively.

■ Example 8.5

Consider a nonstationary sinusoidal signal defined as

x [n] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin(2π f1n/Fs) 0 ≤ n < 1024

sin(2π f2n/Fs) 1024 ≤ n < 2048

sin(2π f3n/Fs) 2048 ≤ n < 3072

sin(2π f4n/Fs) 3072 ≤ n < 4096

Advanced Signal Processing 429

1 1.5 2 2.5 3 3.5 4
20.5

0

0.5

1

5 10 15 20 25

20.1
0

0.1
0.2
0.3
0.4

10 20 30 40 50 60 70 80 90 100 110

20.1

0

0.1

0.2

(a)

(c)

(e)

1 2 3 4 5 6 7 8 9 10 11
20.2

0

0.2

0.4

0.6

0.8

5 10 15 20 25 30 35 40 45 50

20.1

0

0.1

0.2

0.3

0.4

20 40 60 80 100 120 140 160 180 200 220
20.05

0

0.05

0.1

0.15

(b)

(d)

(f)

Figure 8.52: Iterative computation of Daubechies-2 scaling function. (a) {g (0)
k } = {g k}. (b) {g (1)

k }. (c) {g (2)
k }.

(d) {g (3)
k }. (e) {g (4)

k }. (f) {g (5)
k }.

1 2 3 4 5 6 7 8
20.5

0

0.5

1

2 4 6 8 10 12 14 16 18 20 22

20.4
20.2

0
0.2
0.4
0.6

10 20 30 40 50 60 70 80 90
20.3
20.2
20.1

0
0.1
0.2
0.3

(a)

(c)

(e)

1 2 3 4 5 6 7 8 9 10 11
21

20.5

0

0.5

1

5 10 15 20 25 30 35 40 45

20.2

0

0.2

0.4

20 40 60 80 100 120 140 160 180

20.1

0

0.1

0.2

(b)

(d)

(f)

Figure 8.53: Iterative computation of Daubechies-2 wavelet function. (a) {h(0)
k } = {hk}. (b) {h(1)

k }. (c) {h(2)
k }.

(d) {h(3)
k }. (e) {h(4)

k }. (f) {h(5)
k }.

430 Chapter 8

with f1 = 5 Hz, f2 = 10 Hz, f3 = 15 Hz, and f4 = 20 Hz. Using the Daubechies-4 family of scaling and
wavelet functions, decompose x [n] up to four levels using Equations (8.138) and (8.139) and plot them.
Then reconstruct the signal using Equation (8.140) and plot the reconstructed and error signals.

The low-pass filter G D[z] coefficients that determine the shape of the Daubechies-4 scaling function
are given by g−n = {−0.0106,0.0329,0.0308,−0.1870,−0.0280,0.6309,0.7148,0.2304}.

The other filters HD[z], G R[z], and HR[z] coefficients that satisfy the perfect reconstruction property
can be obtained as follows:

h−n = {−0.2304,0.7148,−0.6309,−0.0280,0.1870,0.0308,−0.0329,−0.0106}
gn = {0.2304,0.7148,0.6309,−0.0280,−0.1870,0.0308,0.0329,−0.0106}
hn = {−0.0106,−0.0329,0.0308,0.1870,−0.0280,−0.6309,0.7148,−0.2304}

At the beginning, the coarser signal at level j +1 is c j+1,n = x [n]. The coarser signal at the scale j , c j,n is
obtained by convolving c j+1,n with {g−n} and downsampling the result by a factor of 2. Then we obtain
the finer signal at the scale j , d j,n , by convolving c j+1,n with {h−n} and downsampling the result by a
factor of 2. The plot of d j,n is shown in Figure 8.54(f). Similarly, we obtain the finer signal at the scale
j − 1, d j−1,n, by convolving c j,n with {h−n} and downsampling the result by a factor of 2. The plot of
d j−1,n is shown in Figure 8.54(e). In the same way, we obtain the finer signal d j−2,n from c j−1,n and
{h−n}. The plot of d j−2,n is shown in Figure 8.54(d). Finally, we compute c j−3,n and d j−3,n from c j−2,n.
The plots of c j−3,n and d j−3,n are shown in Figure 8.54(b) and 8.54(c), respectively. Next, we reconstruct
the signal recursively from c j−3,n and d j−3,n using Equation (8.140). The reconstructed signal ĉ j+1,n is

0 500 1000 1500 2000 2500 3000 3500 4000
21

20.5
0

0.5
1

0 50 100 150 200 250 300
21

0

1

2

0 200 400 600 800 1000 1200
20.2
20.1

0
0.1
0.2

0 500 1000 1500 2000 2500 3000 3500 4000
21

20.5
0

0.5
1

(a)

(c)

(e)

(g)

0 50 100 150 200 250 300
24
22

0
2
4

0 100 200 300 400 500 600
20.2
20.1

0
0.1
0.2

0 500 1000 1500 2000 2500
20.01

20.005
0

0.005
0.01

0 500 1000 1500 2000 2500 3000 3500 4000
24
22

0
2
4

310212

(b)

(d)

(f)

(h)

Figure 8.54: Wavelet decomposition of nonstationary sinusoidal signal. (a) Original signal x [n] at scale j + 1.
(b) Coarser signal at scale j − 3. (c) Finer signal at level j − 3. (d) Finer signal at level j − 2. (e) Finer signal at
level j − 1. (f) Finer signal level j. (g) Reconstructed signal. (h) Error between original signal and reconstructed
signal.

Advanced Signal Processing 431

shown in Figure 8.54(g). Finally, the error between the original signal c j+1,n and the reconstructed signal
ĉ j+1,n is shown in Figure 8.54(h).

■

Complexity of DWT
As the DWT is computed with a multistage two-channel filter bank, the complexity of the filtering operation
for a given filter length and input data length is the sole determinant of DWT complexity. For example, if L is
the length of the filter, N is the length of the input, and Q is the complexity of the 0-th stage two-channel filter
bank, then the complexity of the first-stage, two-channel filter bank becomes Q/2 as the length of input to the
two-channel filter bank becomes N/2, the complexity of the second stage is Q/4 as the input length becomes
N/4, and so on. Thus, the overall complexity (excluding overheads) of DWT = Q + Q/2+ Q/4+ Q/8+· · ·=
Q(1+1/2 +1/4+1/8+· · ·) ≤ 2Q

8.4 Simulation and Implementation Techniques

The core operation for most of the algorithms discussed in this chapter happens to be a FIR filtering operation
whose implementation aspects are thoroughly discussed in Chapter 7. For this reason, instead of simulating
all the algorithms here, a few algorithms are identified for simulation and moved to the Exercises section
on the companion website. The interested reader can work through the exercises and think about efficiently
implementing a particular algorithm using the FIR filter simulation techniques in Chapter 7. As the adaptive
algorithms contain feedback loops, their fixed-point implementation requires engineering experience. In this
section, we discuss a few techniques to implement the widely used LMS adaptive algorithm on the fixed-point
reference embedded processor.

8.4.1 Implementation of LMS Algorithm

As discussed previously, the LMS algorithm consists of three simple steps:

xn = f [n]u[n] (8.141)

en = zn − xn (8.142)

f [n +1] = f [n]+μu[n]en (8.143)

where f [n] = [f (n)
0 , f (n)

1 , . . . , f (n)
M−1

]
, u[n] = [un,un−1, . . . ,un−M+1]T and zn is the reference input.

With the floating-point simulation in Pcode 8.1, as long as the step-size parameter μ satisfies the condition in
Equation (8.19), the filtering will be stable. However, in the fixed-point implementation of the LMS algorithm,
even if we choose the step size by satisfying Equation (8.19), the scaling of various data at various stages
of the algorithm modifies the effective step-size parameter and this may result in an unstable system due to
feedback (see Figure 8.63, page 435). Thus, the fixed-point implementation of the LMS is sometimes viewed as
an engineering art rather than a science.

float e[2000], f[7];
void lms_flt(int N, int M) // LMS function call: N -> data length and M-> filter length
{

int i,j,k;
float mu = 0.0156; // step size
float sum;
for(j = M - 1;j < N;j++){

sum = 0.0;
for(i = j,k = 0;i >= (j - M + 1);i--,k++)

sum = sum + flt_u[i]*f[k]; // convolution
e[j] = flt_z[j] - sum; // error
for(k = 0;k < M;k++)

f[k] = f[k] + mu*e[j]*flt_u[j - k]; // filter weights update
}

}

Pcode 8.1: Floating-point simulation for LMS algorithm.

432 Chapter 8

The flow diagram for floating-point implementation of the LMS algorithm described by Equations (8.141)
to (8.143) is shown in Figure 8.55. Here, the LMS algorithm is used for system identification, and hence the
input u[n] of the LMS filter is the same as the input to the unknown system H . For simulation purposes, we
assume that the impulse-response vector of the unknown system is h = [1.0,0.67,0.33]. Let the f and g vectors
denote the filter weights (i.e., impulse response of the identified system) obtained with LMS floating-point
and fixed-point simulation, respectively. The input signal u[n] is a unit variance Gaussian distributed random
signal of length 2000 (samples) as shown in Figure 8.56. The reference signal z[n] is obtained by convolving
input u[n] with the system impulse response h, and is shown in Figure 8.57. The error signal and filter weight
convergence obtained with the LMS floating-point simulation are shown in Figures 8.58 and 8.59. The step

Figure 8.55: Flow diagram of floating-
point LMS diagram.

z21

1

2

1
1

z [n]en

�

xnu [n]

f [n11]

f [n]

Unknown
System (H)

Figure 8.56: Input to LMS algorithm
(unit-variance Gaussian-distributed
signal).

0 200 400 600 800 1000 1200 1400 1600 1800 2000
24

23

22

21

0

1

2

3

4

n

u
[n

]

Figure 8.57: Reference input to LMS
algorithm.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
25

24

23

22

21

0

1

2

3

4

5

z
[n

]

n

Advanced Signal Processing 433

22.5

22

21.5

21

20.5

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000
n

e
[n

]

Figure 8.58: Error convergence with floating-point simulation.

Figure 8.59: Convergence of filter
weights with LMS floating-point
simulation (first three significant
values are plotted).

0 200 400 600 800 1000 1200 1400 1600 1800 2000
20.2

0

0.2

0.4

0.6

0.8

1

1.2

(n)
0f

(n)
1f

(n)
2f

f[
n]

n

Figure 8.60: Signal-flow diagram for
fixed-point implementation of LMS
algorithm.

z21

1

2

11

g [n]
u [n] x [n]

Unknown
System (H)

22s2

22s3

2s1

en

Q

Q

Fixed-point
input data

Fixed-point
reference data

2s1

g [n11]

z [n]

size used is μ = 1/64, and the converged filter weight values after processing n = 2000 samples (or iterations)
with filter length M = 7 are f = [1,0.670000017,0.329999954,−3.26260041e − 09,−4.98232966e − 09,

1.18865406e −08,−3.16232551e −08].
Next, we discuss fixed-point implementation (see Figure 8.60) to run the LMS algorithm on the reference

embedded processor (see Appendix A on the companion website). Given that the reference processor can
efficiently perform filtering with 16-bit data, we represent both signals and filter coefficients in 16 bits. We use

434 Chapter 8

a total of three scaling parameters to maintain the data at different stages of the algorithm to avoid data overflow
and realize stable filtering. Since both data and filter weights can be signed numbers, the MSB is always used to
indicate the sign of the data or filter weight. In addition, we allow 2 bits of margin to take care of variations in
the input signals. With this, we have only 13 out of 16 bits to work with.

The input and reference signals are converted to fixed-point data by multiplying by 2s1 and rounding to the
nearest integer (i.e., quantizing signals to finite levels). In practice, the value of the scaling parameter for the input
and reference signals need not be the same. It all depends on the gain of the unknown system H . We determine
the scale parameter s1 as follows. Assuming the amplitude levels of unit-variance Gaussian-distributed signals
can go as high as 7 (theoretically it can take any value), we require 3 bits to represent the integer portion of the
signals. We are left then with 10 bits for the fraction, and thus we choose 10 for the scale parameter s1.

By scaling the convolution output by 2−s2 , we ensure that the result of filtering output is within the range
[−215,215 − 1] with a margin of 1 or 2 bits. We choose s2 = 13, assuming that the convolution output grows
to 26 bits as the convolution is a MAC (multiply and accumulate) operation on 13-bit input and 13-bit filter
coefficients.

Then, scaling of the gradient, which is the output of multiplying the error and input signals, by 2−s3 ensures
that the gradient estimate is within range. Because the error signal is the difference between the output signal
x [n] and reference signal z[n], its amplitude can be represented by fewer than 13 bits. By assuming that the error
signal requires about 50% of total bits when compared to the reference signal, the gradient estimate can grow
to 20 bits. This means that to get the filter weights with 13-bit precision, we must multiply the gradient by 2−7.
Further, we also multiply the gradient by the step size μ(= 1/64), and this effectively scales the gradient by a
factor 2−13. Thus, we choose 13 for the third scaling parameter s3.

The fixed-point simulation code for the LMS algorithm is given in Pcode 8.2. The error convergence with
fixed-point simulation is shown in Figure 8.61. Figure 8.62 shows the filter weight convergence with fixed-point
implementation of the LMS algorithm. The converged filter weight values after n = 2000 samples with filter
length M = 7 is g = [8192,5488,2703,−1,0,1,1]. By normalizing the filter weights g with 213, we get the
filter coefficients [1.0000,0.6699,0.3299,−0.0001,0.0000,0.0001,0.0001], which are very close to the filter
coefficients that are obtained with floating-point simulation.

// fix_u[] array contain the fixed-point input data
// fix_z[] array contain the fixed-point reference data

short g[7];
short ee[2000];
void lms_fix(int N, int M)
{

int i,j,k;
int s1,s2,s3,sum;
s1 = 10; // data is converetd to fixed point by multiplying by (1 << s1)
s2 = 13; s3 = 13;
for(j = M - 1;j < N;j++){

sum = 0;
for(i = j,k = 0;i >= (j - M + 1);i--,k++)

sum = sum + (fix_u[i]*g[k]);
ee[j] = fix_z[j] - ((sum + 4096) >> s2); // round by adding (1 << (s2 - 1))
for(k = 0;k < M;k++){

sum = (ee[j]*fix_u[j - k] + 4096) >> s3; // round by adding (1 << (s3 - 1))
g[k] = g[k] + sum;

}
}

}

Pcode 8.2: Fixed-point simulation code of LMS algorithm.

As discussed previously, improper scaling in fixed-point implementation of the LMS algorithm may lead to
unstable filtering. For example, the error diverges as shown in Figure 8.63 if we run the program in Pcode 8.2 by
choosing scaling parameters s1 = 10, s2 = 13, and s3 = 9. This is where engineering experience plays a role. One
more important thing is that the error convergence of the fixed-point LMS algorithm also depends on register
width (i.e., precision) of the embedded processor. Based on Equation (8.25), it is clear that the LMS algorithm

Advanced Signal Processing 435

0 200 400 600 800 1000 1200 1400 1600 1800 2000
21500

21000

2500

0

500

1000

1500

n

ee
[n

]

Figure 8.61: Error convergence with fixed-point LMS algorithm.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
n

21000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

g0
(n)

g1
(n)

g2
(n)

g
[n

]

Figure 8.62: Filter-weight convergence with fixed-point LMS algorithm.

200 400 600 800 1000 1200 1400 1600 1800 2000
210

28

26

24

22

0

2

4

6

8

10

ee
[n

]

n

Figure 8.63: Error divergence with fixed-point LMS due to improper scaling.

436 Chapter 8

500 550 600 650 700 750 800

(a)

850 900 950 1000
21.5

21

20.5

1

0.5

0

1.5
31023

n
(b)

500 550 600 650 700 750 800 850 900 950 1000

24

23

22

21

0

1

2

3

4

5

n

Figure 8.64: Error convergence with LMS algorithm. (a) Floating-point simulation. (b) Fixed-point simulation.

will stop adapting for error magnitudes below a certain threshold as the number of bits used to represent the
filter coefficients is finite (i.e., 13 in our fixed-point implementation). This is shown in Figure 8.64 after n = 500
iterations. The error with the floating-point simulation converges to zero as shown in Figure 8.64(a), whereas the
convergence of error stopped as shown in Figure 8.64(b) due to finite precision of filter weights in the fixed-point
implementation case.

CHAPTER 9

Digital Communications

9.1 Introduction

In digital communications, we basically deal with the transmission of data in digital form from one source to
one or more destinations through physical channels (e.g., copper wire, space). In everyday life, we frequently
encounter two types of communications: (1) one-to-one or point-to-point communication (e.g., telephone), and
(2) one-to-many or broadcast communication (e.g., radio, TV). The data generated at the source can be any
information, such as voice, text, audio, and video. At present, multimedia network communications and the
Internet play a major role in all our lives.

The general structure of the TCP/IP protocol-based network communication system, shown in Figure 9.1,
consists of many layers and interfaces. Discussion of all layers, protocols, and interfaces of the system shown
in Figure 9.1 is outside the scope of this book. In this chapter, we limit our discussion to digital communication
modules that work on every bit of data and make the data suitable for transmission on physical channels. Most
of these communication modules pertain to the physical layer. Figure 9.2 shows a simplified communication
system after stripping off the protocol stack, network routing, and interfaces.

A brief description of the physical layer modules in the digital communication system shown in Figure 9.2
follows.

Information source: Captures the information (e.g., voice, images or any physical phenomenon) and digitizes
it with an appropriate sampling rate.

Data compression block: Compresses and represents the data with a minimum number of bits to transmit more
information using less channel bandwidth. In Chapter 5, we discussed and simulated various video data
entropy coding algorithms.

Channel coding block: Adds redundancy to data bits before transmitting them in order to perform forward error
correction at the receiver side (see Chapters 3 and 4).

Digital modulator block: Maps the individual or group of bits to symbols that are suitable for transmission over
communication channels.

Figure 9.1: General structure
of a TCP/IP protocol–based
communication system.

User Interface

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

User Interface

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

Communication Channel

© 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-678-1.00009-0 437

438 Chapter 9

Information
Source

Data
Compression

Channel
Coding

Digital
Modulator

Transmitter
Back End

Channel

Receiver
Front End

Digital
Demodulator

Channel
Decoding

Data
Decompression

Information
Destination

an bm ck Sj

x(t)

y(t)

ˆ

Synchronization

anˆ bmˆ ck̂ Sj

Figure 9.2: Simplified structure of a digital communication system.

Transmitter back end: Serves as the interface between the data processing blocks and physical channel. In
some cases, a radio frequency (RF) modulator is located in the transmitter back-end block and places the
data symbols onto high-frequency carriers. The processed signals at the transmitter back end are then passed
to the receiver front end through physical channels.

Channel: The physical medium used to send the signals from the transmitter to the receiver, such as twisted-pair
wirelines, fiber optic cables, and space. Communication signals are corrupted due to channel impairments
during signal transmission through these physical channels. A few channel impairments include noise from
human-made sources, noise from natural phenomena (due to lightning, high temperatures), non-zero channel
response, and so on. Apart from the channels, the switching equipment at both the transmitter and receiver
ends also adds noise to signals. The non-zero response of both switching equipment and physical channel
limits the effective transmission bandwidth of the communication system. Due to such channel impairments
and limited bandwidth, we cannot reliably transmit data over any communication channel at whatever rate
we wish. In other words, reliable communication is not possible beyond the information rate C , known as
channel capacity. We discuss more on channel capacity later.

Receiver front end: Receives, demodulates, and samples signals. This block consists of all the synchronization
circuitry needed for the demodulator and sampler, as well as filters to remove undesired out-of-band signals
received by the receiver.

Synchronization methods: Required in most communication systems to align the timing (with respect to the
data samples or frames) of receivers to the corresponding transmitters.

Digital demodulator block: Performs the exact opposite operation as that of the modulator block. When the
error correction module is embedded in the digital modulator (e.g., trellis-coded modulation [TCM]), both
demodulation and error decoding are simultaneously performed with this block.

Channel decoding block: Corrects the errors in the received data using redundancy added at the transmitter
side. In Chapters 3 and 4, we discussed and simulated various error detection and forward error correction
algorithms (e.g., RS codes, turbo codes) to minimize error data frames.

Data decompression block: Performs the exact opposite operation as that of the data compression block. Upon
data decompression, the exact or approximate replica of the information that was compressed and transmitted
at the transmitter side is obtained.

Information destination block: Reconstructs the analog data (e.g., signals, text, or images) using decompressed
data and sends it to an appropriate end device (e.g., phone, TV).

To understand digital communications systems, we must understand the environment in which they oper-
ate. Specifically, we must be able to model the communications channel. Modeling it allows us to determine
channel capacity and transmission reliability. It also allows us to determine the most effective modulation
scheme. To this end, we discuss the concepts of channel capacity, noise, and modulation schemes in the next
section.

In subsequent sections, we discuss other communication system modules that heavily use signal-processing
algorithms to mitigate channel effects. The topics of information source, transmitter back end, receiver front
end, and information destination blocks are outside the scope of this book.

Digital Communications 439

9.1.1 Channel Capacity

In information theory, channel capacity is defined as the upper bound on the amount of information that can
reliably be transmitted over a communication channel. Before deriving the capacity of a channel, we discuss
some theoretical concepts with respect to discrete random variables (see Section 6.1.2 for more on random
variables).

Let X be a discrete random variable taking values from a set SX ={x1, x2, . . . , xn} with probability
Pr(X = xi) = fX (xi), where fX (xi) is the probability mass function of the discrete random variable X . Then,
the average self-information or entropy H(X) of a discrete random variable X is defined as

H(X) = −
∑

i

fX (xi) log2 fX (xi) bits (9.1)

In Equation (9.1), entropy H(X) represents the measure of uncertainty of a random variable X in terms of bits.
Let g(.) be a probabilistic function and Y = g(X). Let SY denote the set of possible outcomes from g(.) when

it takes inputs from set SX . Given the random variable Y , the conditional entropy of X follows:

H(X |Y) =
∑

j

fY (y j)H(X |Y = y j)

=
∑

j

fY (y j)

[
−
∑

i

fX|Y (xi |y j) log2 fX|Y (xi |y j)

]

= −
∑

i

∑
j

fY (y j) fX|Y (xi |y j) log2 fX|Y (xi |y j)

= −
∑

i

∑
j

fX,Y (xi , y j) log2 fX|Y (xi |y j)bits

(9.2)

The average mutual information I (X;Y) between random variables X and Y is the difference between the
entropy of X and the conditional entropy of X given Y . Thus, I (X;Y) is given by

I(X;Y) = H(X)− H(X |Y)

= −
∑

i

fX (xi) log2 fX (xi)+
∑

i

∑
j

fX,Y (xi , y j) log2 fX|Y (xi |y j)

= −
∑

i

fX (xi) log2 fX (xi)+
∑

i

∑
j

fX,Y (xi , y j) log2

[
fY |X (y j |xi) fX (xi)

fY (y j)

]

= −
∑

i

fX (xi) log2 fX (xi)+
∑

i

∑
j

fX,Y (xi , y j)

[
log2 fX (xi)+ log2

fY |X (y j |xi)

fY (y j)

]

= −
∑

i

fX (xi) log2 fX (xi)+
∑

i

fX (xi) log2 fX (xi)+
∑

i

∑
j

fX,Y (xi , y j) log2
fY |X (y j |xi)

fY (y j)

=
∑

i

∑
j

fX,Y (xi , y j) log2
fY |X (y j |xi)

fY (y j)
bits

(9.3)

If we represent a communication channel with the probability function g(.) and the random variables X and
Y represent input and output of a channel, then the maximum mutual information between X and Y gives the
channel capacity C as

C = max
f X (xi)

I (X;Y) (9.4)

440 Chapter 9

Figure 9.3: AWGN channel model. AWGN Channel

1 1

{ni }
{xi } {yi }

Given Equations (9.1) through (9.4), the channel capacity is obtained as

C = max
f X (xi)

∑
i

∑
j

fX,Y (xi , y j) log2
fY |X (y j |xi)

fY (y j)
(9.5)

In Example 9.1, the channel capacity for an additive, white Gaussian noise (AWGN) channel model is derived.
Figure 9.3 shows such a channel model. (See Section 9.1.2 for more detail on AWGN.) If a symbol enters the
channel every T seconds, then the channel capacity in bits/second is given by C /T .

■ Example 9.1

With an additive white Gaussian noise (AWGN) channel, we model the channel as Gaussian distributed
noise with flat frequency response within the operative band of W Hz. This communication system with
inputs {xi} and outputs {yi} can be realized as shown in Figure 9.3.

yi = xi +ni (9.6)

where the noise samples ni are Gaussian zero-mean with variance σ 2
n = N0/2.

Then the conditional probability mass function (pdf), fY |X (yi |xi), is given by

fY |X (yi |xi) = 1√
2πσ 2

n

e−(yi−xi)
2/2σ 2

n (9.7)

Given Equation (9.5), the maximum of I (X;Y) over the input pdf ’s fX (xi) is obtained when {xi} are
zero-mean, statistically independent, Gaussian random variables; that is,

fX (xi) = 1√
2πσ 2

x

e
− x2

i
2σ2

x (9.8)

where σ 2
x is the variance of input {xi}. Then, given N input samples {x1, x2, . . . , xN } for transmission in

time T seconds, channel capacity based on Equation (9.5) follows:

C = N

2
log2

(
1+ 2σ 2

x

N0

)
bits (9.9)

Since T = N/(2W) and Pav = Nσ 2
x/T (with average power-limited inputs), the channel capacity (C)

per second follows:

C = W log2

(
1+ Pav

WN0

)
bits/second (9.10)

The normalized channel capacity is given by

C/W = log2

(
1+ Pav

WN0

)
bits/second/hertz (9.11)

If Eb denotes energy per bit, then Pav = CEb. Then the normalized channel capacity in terms of Eb/N0

is represented as

C/W = log2

(
1+ C

W

Eb

N0

)
bits/second/hertz (9.12)

■

Digital Communications 441

9.1.2 Noise Generation and Measurement

In a communication system, we typically receive data that is different from the data transmitted due to the
addition of noise to the data signals during transmission. The accumulated noise comes from different sources,
such as thermal noise (resulting from electron collision in conducting materials), interference noise (due to many
transmission signals running in parallel at a particular time), lightning noise (because of the natural lightning
phenomena during storms), switching noise (due to imperfect switching equipment at transmitter and receiver
sides), quantization noise (result of analog/digital conversion), intersymbol interference (ISI) (due to limited
channel bandwidth), and so on. Figure 9.4 displays a few noise sources in baseband digital communication
systems. Each noise component has its own distribution and they are random and independent. The presence of
noise restricts us from achieving reliable communication beyond the channel capacity. Achieving reliable com-
munication even below the channel capacity is possible only with very complex channel coding and modulation
techniques. Receiver performance (with channel decoders and demodulators) depends on the signal strength that
we are able to maintain at the receiver input.

As receiver modules introduce some gain to the signals during processing, the performance of a particular
module depends on signal strength at that particular module. Suppose we measure the signal-to-noise ratio
(SNR) at one stage of the receiver; if we compute module performance at another stage of the receiver using
this SNR, then those performance curves (or bit-error-rate [BER] curves) may not reflect module performance.
Consequently, we have to measure the SNR at each stage of the receiver in order to obtain correct performance
indicators for individual receiver modules.

But, as shown in Figure 9.4, the type of data present at one receiver module is different from the data at
another module. In other words, the data at different stages of the receiver is not of the same type. For example,
the data at the receiver front-end input is a continuous modulated signal, compared to the discrete sample form
at the channel equalization input, and data symbol form at the inner channel decoder input, and data bits form
at the outer channel decoder input. Signal strength is measured with different metrics at the input of the various
receiver modules by considering the appropriate data rate (as it affects bandwidth and noise power); and thereby
we avoid in previous modules upon determining the performance of the present receiver module.

Thermal Noise
In this section, we consider thermal noise generated by conducting materials such as resistors, and obtain a few
relationships to measure noise strength and to compute the ratio of signal power to noise power at different stages

Channel Coding
(Rate R Coder for
Error Correction)

Transmitter Back End
(Filtering, DAC

Modulation, etc.)

Communication Channel
(Wired, Wireless or Space,
Cable, Fiber Optics, etc.)

Receiver Front End
(Filtering, Carrier

Synchronization, Phase
Recovery, ADC, etc.)

Channel
Equalization

Inner
Channel
Decoder

Data Bits for
Transmission

Data
Symbols Data Signal

Distorted Data Signal

Distorted
Data

Samples

Noisy
Data

Symbols
Recovered
Data Bits

Energy per Bit
Used (Eb)

Energy per
Symbol (Es)

Signal Power
Used (S)

Noise Power Added
N 5 n11 n21 n3

SNR

Eb /N0Es /N0Es /N0

Noise

Noise Source (n2)

Noise Source (n1)

Noise Source (n3)

Outer
Channel
DecoderS/N

M-Array
Baseband
Modulation

Coded
Bits

1

Figure 9.4: General digital communication system along with a few noise sources.

442 Chapter 9

of the receiver. The noise root-mean-square voltage (E) across the resistor is given by

E = (4 · K · T · R · B)1/2 volts (9.13)

where K is the Boltzman constant in joules per kelvin, T is temperature in kelvins, R is resistance value in ohms,
and B is the bandwidth of frequencies (in Hz) involved in this process. Noise power (N) is defined as the noise
energy per unit time, as in

N = E2 watts (9.14)

The noise power spectral density (N0/2) is defined as noise power per unit bandwidth:

N0/2 = N/B = 4 · K · T · R watts/Hz (9.15)

The noise voltage spectral density (V) follows:

V = (4 · K · T · R)1/2 = (N0/2)1/2 volts/(Hz)1/2 (9.16)

White Noise
For white noise, spectral density is a constant N0/2 across all frequencies (i.e., it contains the noise components
with the same energy at all frequencies as in white color, which contains all colors). To compute the noise power
N for a given bandwidth B,

N = (N0/2) ∗B (9.17)

Gaussian Noise
If many noise sources are present in the system, then the effective noise power becomes the sum of all individual
noise powers. The distribution of this accumulated noise (according to the central limits theorem) converges to
the Gaussian distribution. If n1,n2, . . . ,nm are the powers of noises u1,u2, . . . ,um , which come from m different
and independent sources, then the effective noise power (N) is

N = n1 +n2 +· · ·+nm (9.18)

and as m approaches infinity, the distribution of accumulated noise U =u1 + u2 + · · ·+ um becomes Gaussian.
As shown in Figure 9.4, although we have many noise sources, we only see the effective noise power at the
receiver. Therefore, in simulations, we use one noise to represent all noise effects and we call that noise additive
white Gaussian noise (AWGN), assuming that the effective noise is random and occupies all frequencies (hence
it is white) in the band of interest.

Complex Noise
In the case of a complex signal, there are two independent noise channels; if their noise powers are na and nb,
then the effective noise power for complex noise is N = na +nb. If s2 is the variance (which is the same as the
power of the signal when the signal mean is zero), N0 is spectral density (power per unit bandwidth), and B
is bandwidth, then in the case of real noise, s2 = N = (N0/2)B, and in the case of complex noise, s2 = N =
(N0/2) B + (N0/2) B = (N0 B).

Signal-to-Noise Ratio
If S is signal power and N is noise power, then the ratio S/N is called SNR (signal-to-noise ratio). Typically, we
use SNR = S/N in the case of continuous-time signals.

Es/N0 If the complex signal is discrete, then SNR is defined in terms of discrete sample energies. If energy
per complex sample is Es and the sample rate is Fs , then the power of the complex signal is S = Es Fs . If we
are using a bandwidth of B Hz, then the complex noise power is N = N0 B. The ratio of signal-to-noise power
follows:

SNR = S/N = Es Fs/N0 B = Es/N0(∵ Fs = B) (9.19)

SNR = Es/N0 (9.20)

Digital Communications 443

In the case of real signals,

SNR = Es/(N0/2) (9.21)

Eb/N0 If we use the M-array modulation (see Section 9.1.3 for more details on modulation methods) with
mapping of k bits per symbol (without using any channel coding), then in complex sequences, Eb/N0 = SNR/k =
(Es/N0)/k, and in real sequences, Eb/(N0/2) = SNR/k = (Es/(N0/2)/k. With coding, we embed the code rate
(R) in the preceding formula. Then, with complex sequences Eb/N0 = (Es/N0)/(R∗k) and in real sequences,
Eb/(N0/2) = (Es/(N0/2))/(R∗k). Once we understand all the previous relationships, then we can generate noise
with necessary power to add to the signal in determining the performance of individual receiver modules during
the simulation time.

Noise Generation Using MATLAB
In MATLAB, the command randn() generates zero-mean unit variance (or power) for the normal or Gaussian
distributed noise sequence. Now, using randn(), assume that we want to generate a noise sequence with the
required noise power for a given Eb/N0 . Assume that u = sqrt(s2) ∗ randn(), where s2 is a variance of u, is a
noise sequence which satisfies Eb/N0 measured at the inner channel decoder (corresponding to rate R encoder)
in Figure 9.4; assume also that the M-array modulation is used with unit average symbol energy (or Es = 1).
In this process, k = log2(M) bits are loaded per symbol. We would like to know the value of s2 in terms of all
parameters Eb/N0, R,k, and Es .

Per unit bandwidth, in the case of real sequences Eb/(N0/2) = SNR/(k ∗ R), or

SNR = k ∗ R ∗ Eb/(N0/2)

S/N = Es/(N0/2) = k ∗ R ∗ Eb/(N0/2)

Es/s2 = k ∗ R ∗ Eb/(N0/2)

s2 = Es/(k ∗ R ∗ Eb/(N0/2)) = 1/(k ∗ R ∗ Eb/(N0/2)) = 1/
(
2 ∗ k ∗ R ∗ Eb/N0

)
(9.22)

If Eb/N0 is specified in decibel means, we have to convert to non-decibel quantities before substituting into the
preceding formula. This is done as follows:

x(in dB) = 10∗ log 10(Eb/N0) (9.23)

Eb/N0 = 10x/10 (9.24)

In complex sequences, the following factors must be considered. Although MATLAB generates zero-mean,
unit-variance, random Gaussian distributed numbers with the randn() command, some adjustment has to be done
for a complex sequence to generate a unit-variance complex sequence v = sqrt(s2) ∗ u, where u = randn()+
j ∗ randn() is a complex sequence, which is generated from two independent noise sequences obtained by using
the randn () command. At this point, u is no longer a unit-power sequence (which has a variance of 2), and it
has to be adjusted to unit power to use with the preceding formula to compute v. Therefore, we generate u to
have unit variance as follows:

u = (randn()+ j ∗randn())/sqrt(2) (9.25)

Next, s2 is obtained with the following formula to get an appropriate complex noise sequence v that is going to
be added to a complex data signal in determining the performance of a decoder module. For complex sequences,

s2 = 1/(k∗ R∗Eb/N0) (9.26)

Here Eb/N0 is a non-decibel value.

Noise Generation Using C
The simulation code to generate complex Gaussian-distributed L noise samples is given in Pcode 9.1. Given the
Eb/N0 (in decibels), we first convert it to its equivalent non-dB value using Equation (9.24) and compute the
sigma with the modulation parameter k and code rate R using Equation (9.26). We generate uniformly distributed

444 Chapter 9

random values using the “C” library function rand()/RAND_MAX. Once we have uniformly distributed random
values, we can generate Gaussian distributed samples either by repeated addition of uniformly distributed random
values (due to the central limit theorem) or using the Box-Muller transformation. If x1 and x2 are uniformly
and independently distributed between 0 and 1, then y1 and y2 as defined by Box-Muller transformation have a
Gaussian distribution with mean μ = 0 and variance σ 2 = 1.

y1 =
√

2 ln
1

x1
cos(2πx2) (9.27)

y2 =
√

2 ln
1

x1
sin(2πx2) (9.28)

The simulation code given in Pcode 9.1 generates complex AWGN samples using Equations (9.27) and (9.28).

EbNo = 9; // in dB
x = EbNo/10.0; y = pow(10.0f, x);
k = 3; R = 2/3;
sigma = sqrt(Es/(k*R*y)); mean = 0; // Signal power Es = 1
for(i = 0;i < L;i++){

x = (float)rand()/ RAND_MAX; // uniform distributed random number x1
if (x == 1.0) x = x - 0.0000001f;
y = sigma * sqrt(2.0 * log(1.0/(x)));
x = (float)rand()/ RAND_MAX; // uniform distributed random number x2
if (x == 1.0) x = x - 0.0000001f;
z = mean + y*cos(2*PI *x); // Gaussian distributed random number y1
cn[0] = z/sqrt(2);
z = mean + y*sin(2*PI *x); // Gaussian distributed random number y2
cn[1] = z/sqrt(2);

}

Pcode 9.1: Simulation code to generate complex noise samples.

9.1.3 Modulation Techniques

Modulation is a process by which some characteristics of a carrier signal are varied in accordance with the
message signal. Here the carrier signal is referred to as the “modulated signal,” and the message signal is
referred to as the “modulating signal.” Typically, the frequency of the carrier signal is very high when compared
to the message signal. At this point you may be wondering why such modulation is required. The simple
answer is that the modulated signals are more suitable for transmitting on a communication channel than the
message signal itself. For example, in wireless communications, we can transmit the signals in the available
frequency band and also minimize the antenna size by modulating the signals. The modulation schemes are
broadly classified into two categories—analog and digital. The message signals are continuous (or analog) in
the case of analog modulation, whereas they are discrete (or digital) for digital modulation. However, the carrier
signals themselves are continuous in both cases. Examples of analog modulation schemes include amplitude
modulation (AM), phase modulation (PM), and frequency modulation (FM), and examples of digital modulation
schemes include pulse amplitude modulation (PAM), quadrature amplitude modulation (QAM), and phase shift
keying (PSK).

With modulation schemes, we can efficiently use the available bandwidth (or improve spectral efficiency);
minimize cross-talk interference, noise, and ISI; and work with trade-offs of power, bandwidth, and cost. There
are more than one type of modulation scheme to choose from depending on channel characteristics, frequency
band of operation, and application type, among other factors. Each modulation scheme has its own advantages
and disadvantages, and all modulation schemes cannot be used with all applications. Discussing all analog and
digital modulation techniques is beyond the scope of this book. In this section, we briefly discuss some widely
used digital modulation schemes such as PAM, PSK, and QAM.

With baseband pulse amplitude modulation (PAM), we map a bit sequence bk to a set of symbols am , and then
each symbol is multiplied with a baseband pulse p(t) to form a continuous-timesignal d(t) =∑m am p(t −mT).

Digital Communications 445

Assume that the pulse p(t) and the channel h(t) are band-limited to W Hz (i.e., P(f) = H(f) = 0 for
| f | > W). The signal d(t) is transmitted to a receiver over channel h(t). The frequency characteristics of
the channel and the shape of baseband pulse p(t) determine the overall spectrum of the transmitted signal.
In an ideal baseband channel (i.e., H(f) = 1 for | f | ≤ W), the receiver output y(t) can be expressed as
y(t) =∑m am p(t −mT)+n(t), where n(t) is the noise component. We pass the signal y(t) through a demodula-
tor to get back the transmitted symbols, am. In an AWGN channel, the optimum demodulation is achieved using the
matched filter (Proakis,1995). If a signal y(t) is corrupted with AWGN, then the filter with impulse response c(t)
matched to y(t) maximizes the demodulator output SNR at sampling instances kT. In this case, the matched filter
impulse response is simply c(t) = p(T − t). With imperfect sampling, we see the interference of current symbols
with neighboring symbols due to the time overlap of band-limited pulses. This is called inter-symbol interference.
In Section 9.1.4, we introduce the raised cosine filter, and discuss how zero ISI is achieved with this pulse-shaping
filter assuming that the channel has ideal frequency response characteristics in the frequency band of operation.

With bandpass digital modulation, we further multiply the baseband pulse p(t) with the carrier signal by
varying the carrier’s amplitude, phase, or frequency parameters, or by varying combinations of two or more
parameters. Vector space representation of signals is used in dealing with the bandpass digital modulation
schemes (see Lathi, 2000, for details on representation of signals as vectors).

With vector space representation, we represent the N-dimensional signal x(t) using the linear combination
of K basis functions uk(t). Let x̂(t) be the K-dimensional approximation of the original signal x(t); the K
coefficients xk are obtained by minimizing the mean square error (MSE) between x(t) and x̂(t). Let emin be the
minimum MSE due to approximation. When emin = 0,

x(t) =
K∑

k=1

xkuk(t) (9.29)

If we can represent a finite energy signal by a series expansion of the form as in Equation (9.29), then
such a finite energy signal x(t) can be represented with a point in the K-dimensional vector space as PX =
(x1, x2, x3, . . . , xK). For example, using sinusoidal basis functions, the bandpass pulse-amplitude modulated
(PAM) signal given in Equation (9.30) can be represented with a one-dimensional vector space.

Pulse Amplitude Modulation
In this section, we consider the bandpass PAM scheme and derive expressions for obtaining the probability of
error with the demodulation of noisy PAM data received over AWGN channels. The same ideas can be applied
to obtain the probability of error for other digital modulation schemes as well. A bandpass PAM communicating
signal can be expressed (Proakis,1995) as follows:

xn(t) = An p(t)cos 2π fc t, n = 1,2, . . . , N, 0 ≤ t ≤ T (9.30)

The energy of such a PAM signal in one interval [0, T] is

En =
T∫

0

x2
n (t)dt = 1

2
A2

n Ep (9.31)

where Ep denotes the energy of pulse p(t) in the interval [0, T]. The xn(t) term in Equation (9.30) can then be
represented as in Equation (9.29):

xn(t) = xnu(t) (9.32)

where

u(t) =
√

2

Ep
p(t)cos 2π fc t (9.33)

and

xn = An

√
1

2
Ep (9.34)

446 Chapter 9

Figure 9.5: A 4-PAM signal
constellation.

23D 2D 1D 13D

00 01 11 10

Now, if we map k-bit blocks to symbols, we will have N = 2k levels. The signal amplitudes take the following
discrete levels:

An = (2n −1− N)d, n = 1,2, . . . , N (9.35)

For example, with k = 2 bit blocks, there will be N = 4 levels corresponding to four combinations of 2 bits—00,
01, 11, and 10. This is referred to as a 4-PAM scheme. The amplitude values An for a 4-PAM scheme follow:

A1 = −3d, A2 = −d, A3 = d, A4 = 3d

These four levels are plotted as points in the one-dimensional plane as shown in Figure 9.5, where
D = d

√
Ep/2. We refer to the points of vector space corresponding to the modulated waveform signals as

“constellation points.” The bits are assigned to points but not in a linear fashion; instead the bits are assigned
such that the consecutive bit patterns differ by 1 bit, known as Gray coding. With this type of bit assignment,
there are fewer bit errors (when compared to linear bit assignment) in the demodulation process at the receiver.

The Euclidean distance between any two constellation points is given by

d(E) = |xm − xn|2 = d
√

2Ep|m −n| (9.36)

If |m −n| = 1, then the constellation points are adjacent, and with this we get the minimum Euclidean distance
of constellation as follows:

d(E)
min = d

√
2Ep = 2D (9.37)

The average energy of constellation is

Eav = 1

N

N∑
n=1

En (9.38)

Given Equations (9.31), (9.35), and (9.38),

Eav = 1

6
(N2 −1)d2 Ep (9.39)

The average power of PAM signals, then, is given by

Pav = 1

T

[(
N2 −1

)
d2 Ep/6

]
(9.40)

With AWGN channels, the demodulator output for the m-th transmitted symbol follows:

ym = xm +nm =
√

1

2
Ep Am +nm (9.41)

where nm is the noise sample and has zero mean and variance σ 2
n = N0/2.

If |ym − xm | = |nm | > d(E)
min/2, then the optimum detector output x̂m will be in error and the probability of

symbol error (Pse) (Proakis,1995), in this case is given by

Pse = N −1

N
P(|ym − xm | > d

√
Ep/2)

= N −1

N

2√
πN0

∞∫
d
√

Ep/2

e−t2/N0 dt
(9.42)

Digital Communications 447

By substituting t = t
√

N0/2 in Equation (9.42), Pse

= (N −1)

N

2√
2π

∞∫
√

d2 Ep/N0

e−t2/2dt

= 2(N −1)

N
Q

⎛
⎝
√

d2 Ep

N0

⎞
⎠

(9.43)

where

Q(a) = 1√
2π

∞∫
a

e−t2/2dt, a ≥ 0

Given Equations (9.39) and (9.43), the probability of symbol error in terms of Eb/N0 follows:

Pse = 2(N −1)

N
Q

(√
(6 log2 N)

(N2 −1)

Eb

N0

)
(9.44)

The bit-error-rate (BER) performance of the 16-PAM scheme is shown in Figure 9.9.

Quadrature Amplitude Modulation
PAM modulation uses one carrier to map k bits of information to N = 2k possible levels. With quadrature
amplitude modulation (QAM), we map two separate k-bit blocks from the information sequence onto two
quadrature carriers cos 2π fc t and sin 2π fc t . The QAM signal waveform is expressed as follows:

xn(t) = AI
n p(t)cos 2π fc t − AQ

n p(t) sin 2π fc t (9.45)

xn(t) = xn1u1(t)+ xn2u2(t) (9.46)

where

u1(t) =
√

2
Ep

p(t)cos 2π fc t,u2(t) = −
√

2
Ep

p(t) sin 2π fc t (9.47)

xn = [xn1, xn2] = [AI
n

√
Ep/2, AQ

n

√
Ep/2] (9.48)

We represent two quadrature N = 2k amplitude levels AI
n and AQ

n using two separate k-bit patterns from the
bit sequence as follows:

AI
n or AQ

n = {(2n −1− N)d,n = 1,2, . . . , N}
For the even value of k, the QAM scheme can be obtained with two quadrature PAM schemes. We get a 16-point
constellation diagram as shown in Figure 9.6 by representing each one of four quadrature component levels with
k = 2 bits. In other words, we can map a total of 4 bits using 16 QAM. The 4-bit values are assigned to QAM
points in a particular order such that the hamming distance between neighboring points is always 1. With this
bit assignment, we probably see a 1-bit error even if we misdetect the symbol due to channel noise.

In Figure 9.6, we choose the value of D(= AI
n

√
Ep/2 or AQ

n
√

Ep/2) by making the average energy of the
constellation as 1, and the average energy of the constellation is calculated using the distance of points from the
origin as follows:

Eav = 4×2D2 +8×10D2 +4×18D2

16
= 160D2

16
= 10D2

1 = 10D2 or D = 1/
√

10

448 Chapter 9

Figure 9.6: A 16-QAM constellation
diagram.

In-phase

Quadrature

D

D

2D

2D

3D23D

3D

23D

0

0000000100110010

0100010101110110

1100110111111110

1000100110111010

Given Equation (9.48), the minimum distance between any two QAM constellation points follows:

d(E)
min = d

√
2Ep = 2d

√
Ep/2 = 2D (9.49)

The upper bound on the symbol error probability for the rectangular QAM schemes in the AWGN channels
(Proakis,1995) is given as

Pse ≤ 4Q

(√
3k

N −1

Eb

N0

)
(9.50)

Phase Shift Keying
With phase shift keying (PSK) schemes, we modify the phase of the carrier with information bits. We convey k
bits of information using N(= 2k) phases of carrier, and the corresponding signal waveforms are represented as
follows:

xn(t) = p(t)cos

[
2π fc t + 2π

N
(n −1)

]
(9.51)

= p(t)cos
2π

N
(n −1)cos 2π fc t − p(t) sin

2π

N
(n −1) sin 2π fc t

xn(t) = xn1u1(t)+ xn2u2(t) (9.52)

where

u1(t) =
√

2

Ep
p(t)cos 2π fc t (9.53)

u2(t) = −
√

2

Ep
p(t) sin 2π fc t (9.54)

and

xn = [xn1, xn2] =
[√

Ep

2
cos

2π

N
(n −1),

√
Ep

2
sin

2π

N
(n −1)

]
, n = 1,2, . . . , N (9.55)

In Equation (9.55), φn = 2π
N (n −1),n = 1,2, . . . , N , are the N possible phases of the carrier that convey k bits

of information. The constellation diagram of PSK for N = 16 is shown in Figure 9.7.

Digital Communications 449

Figure 9.7: A 16-PSK constellation
diagram.

0000

0001

0011

0010
0110

0111

0101

0100

1100

1101

1111

1110
1010

1011

1001

1000

r

(a) (b) (c)

000

001

011

010

110

111

101

100

0001

11 10

01

Figure 9.8: Constellation diagrams. (a) BPSK. (b) QPSK. (c) 8-PSK.

As all PSK points are positioned on the circle of radius r as shown in Figure 9.7, the average energy of the
PSK constellation is r2. By choosing r = 1, we can get the average energy of the PSK constellation as unity.
The minimum distance between any two points of PSK constellation is

d(E)
min =

√
Ep

(
1− cos

2π

N

)
(9.56)

The approximate symbol error probability for PSK schemes in AWGN channels is given as

Pse ≈ 2Q

(√
2k

Eb

N0
sin

π

N

)
(9.57)

In practice, we widely use 2-PSK or BPSK (binary-phase shift keying), 4-PSK or QPSK (quadrature phase shift
keying), and 8-PSK schemes. The constellation diagrams of these modulation schemes are shown in Figure 9.8.
The 2-PSK and 4-PSK modulation schemes are the same as 2-PAM and 4-QAM in terms of constellations and
error performance.

The BER performance curves of the 16-PAM,16-QAM, and 16-PSK schemes are shown in Figure 9.9. From
BER curves at BER = 10−6 it is clear that 16-QAM requires 4.2 dB less power when compared to the 16-PSK
scheme. Thus, we prefer N-QAM schemes over N-PSK schemes for larger values of N . If N = 4k , then N-
QAM modulation constellation points are obtained with two orthogonal one-dimensional

√
N-PAM schemes.

In other words, the BER performance of N-PAM is the same as for the N2-QAM scheme. For example, the BER
performance of 16-PAM and 256-QAM schemes is the same. Although we can double the number of transmitted
bits with QAM schemes when compared to PAM schemes at a given SNR, the bandwidth efficiency of QAM
and PAM schemes are the same because QAM signals are transmitted via double sideband (DSB), whereas PAM
signals can be transmitted via single sideband (SSB). In all of the previous modulation schemes, increasing k by
1 bit requires an extra 4 dB of power to have the same BER performance.

Orthogonal Modulation Schemes
There are many orthogonal modulation techniques based on time, frequency, or code division. Here, we consider
orthogonal modulation based on a frequency-division scheme in which a channel with a frequency bandwidth of
F is subdivided into N frequency slots, each with a width � f. We transmit N components of the N-dimensional

450 Chapter 9

100

1022

1024

B
E

R

1026

1028

5 10 15

Eb /N0 (in dB)

20 25

16-QAM

16-PSK

16-PAM

Figure 9.9: BER performance curves of 16-PAM, 16-PSK, and 16-QAM schemes.

signal vector over the channel by simultaneously modulating the amplitudes of N carriers of N frequency slots.
Consider N frequency-shift keying (FSK) signals with equal energy E as follows:

xn(t) =
√

2E

T
cos[2π(fc +n� f)t], n = 1,2, . . . , N, 0 ≤ t ≤ T

=
√

2E

T
cos(2π fc t +2πn� f t) (9.58)

= Re
[
x (l)

n (t)e j2π fct]
where x (l)

n (t) is the corresponding baseband signal equivalent of xn(t), and is defined as

x (l)
n (t) =

√
2E

T
e j2πn� ft , n = 1,2, . . . , N, 0 ≤ t ≤ T (9.59)

The magnitude of x (l)
n (t) is

√
2E/T , which is independent of t , and hence all these N signals have equal energy

of E . If we compute the cross-correlation of x (l)
n (t), then the real part of cross-correlation is given by

Rab = sin 2πT (a −b)� f

2πt (a −b)� f
(9.60)

Given Equation (9.60), it is clear that the cross-correlation coefficient Rab is zero whenever � f = 1/2T and
a 	= b. With � f = 1/2T , the N-FSK signals are orthogonal and equivalent to the N-dimensional vectors with√

2E as the distance between signals as represented here:

x1 = [
√

E 0 0 . . . 0]

x2 = [0
√

E 0 . . . 0]

...

xN = [0 0 . . . 0
√

E]

(9.61)

Digital Communications 451

With the N-FSK orthogonal modulation, we send the information on one of the N frequency components
in any given interval of time T as described in Equation (9.61). Now, upon considering the orthogonal signals
described by Equation (9.61), it is evident that we are using N frequency components to transmit one symbol
of information; hence this system is very inefficient from a bandwidth point of view. However, it is possible to
transmit a symbol at very low power with this scheme. Hence these systems are power efficient. For a given BER
requirement, we can trade system power with bandwidth. In other words, we can reduce the power requirement
by increasing the number of frequency components N . If we transmit k bits of information with each symbol,
then N = 2k . The upper bound on the probability of symbol error with N-FSK orthogonal signals in AWGN
channels is given by

Pse ≤ NQ

(√
k

Eb

N0

)
(9.62)

Comparison of Various Modulation Schemes
Next, we compare different modulation schemes in terms of spectral efficiency, power efficiency, and cost.
Spectral efficiency is defined as channel capacity per unit bandwidth, and we measure it in terms of bits per
second per hertz. Power is another important factor that we take into account. We specify power in terms of energy
per bit, Eb/N0 (in decibels). The next important criterion in choosing the modulation scheme is the hardware
cost to implement particular modulation and corresponding demodulation schemes. For example, the cost of
BPSK or 2-PAM demodulators is very small compared to 16-PSK. A comparison of widely used modulation
schemes N-QAM, N-PSK, and N-FSK in terms of spectral efficiency, power efficiency, and cost is given in
Table 9.1. Figure 9.10 shows the performance of various modulation schemes at BER = 10−5.

Table 9.1: Comparison of several modulation methods

Method/Metric Spectral Efficiency Power Efficiency Cost

N-PSK Good Poor High
N-QAM Good Poor Medium
N-FSK Poor Good Low

Figure 9.10: Comparison of various
modulation schemes at BER = 10−5.

C/W at BER 5 1025

21.6 0 5 10 15 20 25

4-PSK

4-QAM
8-PSK

16-PSK

16-QAM

64-QAM

8-FSK

16-FSK

32-FSK

64-FSK

Power-limited
region: R /W , 1

Bandwidth-limited
region: R /W . 1

Eb /N0 (dB)

Spectral efficiency
(bits/sec/Hz)
(nonlinear scale)

452 Chapter 9

9.1.4 Raised Cosine Modulation Filter

Assuming ideal channel frequency-response characteristics in the band of operation, the sampled matched filter
output can be expressed as

ym = am +
∞∑

n=−∞
n 	= m

anxm−n + zm (9.63a)

where x(t) and z(t) are the responses of the matched filter for inputs p(t) and n(t). The first term, am , in
Equation (9.63a) is the desired information at the m-th sampling instant, and the second term (due to ISI) and
third term (due to noise) are the undesired terms. It is possible to eliminate the ISI term with the following
Nyquist condition:

xm = x(t = mT) =
{
1 m = 0
0 m 	= 0

(9.63b)

One such pulse that satisfies the Nyquist condition for zero ISI in Equation (9.63b) is the normalized sinc
pulse. However, the sinc pulse is noncausal and is not suitable for transmission. Also, as the rate of convergence
of sinc toward zero is slow, any error in sampling instances may lead to non-zero ISI. Here we discuss another
type of pulse, namely the Nyquist pulse or raised cosine filter. The frequency- and time-domain characteristics
of the raised cosine filter are given by

Xrc(f) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T

(
0 ≤ | f | ≤ 1−α

2T

)
T

2

{
1+ cos

[
πT

α

(
| f |− 1−α

2T

)]} (
1−α

2T
≤ | f | ≤ 1+α

2T

)

0

(
| f | >

1+α

2T

) (9.64a)

xrc(t) = sin(π t/T)

π t/T

cos(παt/T)

1−4α2t2/T 2
(9.64b)

where α is the roll-off factor and takes values in the range of 0 ≤ α ≤ 1.
The time- and frequency-domain characteristics of the raised cosine filter for T = 0.1 are shown in Figure 9.11.

The time response of the filter goes through zero with a period that exactly corresponds to the symbol spacing,
T . Adjacent symbols do not interfere with each other at the symbol times because the response equals zero at all
symbol times except the center one. The raised cosine filters heavily filter the signal without blurring the symbols
together at the symbol times. This is important for transmitting information without errors caused by ISI. The
bandwidth occupied by the signal beyond the Nyquist frequency 1/2T is referred to as excess bandwidth, and is
usually expressed as a percentage of the Nyquist frequency. For example, when α = 0.0, the excess bandwidth
is 0%; when α = 0.5, the excess bandwidth is 50%; and when α = 1.0, the excess bandwidth is 100%. Typically,
the filter is split, half being in the transmitter path and half in the receiver path. In this case, root raised cosine
filters are used in each part, so that their combined response is that of the raised cosine filter. In the special case
where the channel is ideal (i.e., H(f) = 1, | f | ≤ 1/T),

Xrc(f) = P T
rc (f)P R

rc (f) = |P T
rc (f)|2 (9.65)

or

P T
rc (f) =√Xrc(f)e− j2π f τ (9.66)

and

P R
rc (f) =√Xrc(f)e j2π f τ (9.67)

where τ is some nominal delay that is required to ensure physical reliability of the filter.

Digital Communications 453

215 210 25 0 5 10 15
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Alpha 5 0.0

Alpha 5 0.5

Alpha 5 1.0

Alpha 5 0.0

Alpha 5 0.5

Alpha 5 1.0

(a)

(b)

20.2

0

0.02

0.04

0.06

0.8

1

20.4 20.3 20.2 0.1 0 0.1 0.2 0.3 0.4

Figure 9.11: Time-frequency domain characteristics of a raised cosine filter for T = 0.1. (a) Frequency-domain
characteristics for α = 0, 0.5, and 1.0. (b) Time-domain characteristics for α = 0, 0.5, and 1.0.

9.1.5 Eye Diagrams

As discussed previously, raised cosine filters are widely used for pulse shaping before transmission of modulated
symbols. Let’s consider an example of transmitting BPSK symbols. The constellation of BPSK symbols is
shown in Figure 9.8(a). With BPSK, we transmit symbol “1” for bit “0” and symbol “− 1” for bit “1”. If we
use rectangular pulses (with positive and negative amplitudes) to transmit the symbols − 1 and 1 as shown in
Figure 9.12(a), then we require infinite frequency bandwidth to transmit the symbols, as the rectangular pulse
contains infinite frequencies. Because of this, we use a pulse-shaping filter to transmit symbols “1”and “−1” as
shown in Figure 9.12(b).

The eye diagram is an oscilloscope display of repetitively sampled transmitted signal. With eye diagrams, we
see many transmitted pulses in two or more symbol time intervals in an overlapped fashion. The eye diagrams

454 Chapter 9

(a)

(b)

0

1

21

0

20.4
23 22 21 0 1 2 324 23 22 21 0 1 2 324

20.2

0

0.2

0.4

0.6

0.8

1
0.2

20.2

20.4

20.6

20.8

21

0

Figure 9.12: Two pulse shapes for transmitting BPSK symbols 1 and −1: (a) rectangular and (b) raised cosine.

of BPSK symbols transmitted with the ideal pulse and raised cosine pulse are shown in Figure 9.13. The eye
diagram is a useful tool for qualitative analysis of signals used in digital communications. Like the constellation
points, the eye diagrams also provide information on channel imperfections, SNR, clock timing jitter, skew,
and so on. For example, the spread and rotation of constellation points (see Figure 9.14(a)) indicate the SNR
and sampling time error at the receiver end. Similarly, eye diagrams for received noise signals indicate overall
channel conditions. Greater eye closure indicates low SNR, more signal distortion, more jitter in clock timing,
and so on. The width of the eye opening provides information on the time interval over which the received signal
can be sampled without error from noise and ISI. As seen in Figures 9.14(b) and (c), choosing the α value for
the raised cosine pulse affects receiver performance.

9.2 Single- and Multicarrier Communication Systems

As digital communication systems are making the transition from voice-centric communication to interactive
Internet data and multimedia types of applications, the demand for higher data-rate transmission is increasing
tremendously. For example, in the early days of voice communication systems (i.e., voiceband modems), data
rates were about 32 kbps, whereas we require 10 times or more data transmission rates to transmit present-day
multimedia services (e.g., voice, audio, video, text, image). We use more channel bandwidth and higher constella-
tion sizes to achieve this high-speed data communication. In the communication system design, a few parameters
that play important roles include the channel time-frequency characteristic, data rates, transmission power levels,
and receiver complexity. Given a particular channel time-frequency characteristic, the communication system
designer must decide how to efficiently use the available channel bandwidth to transmit the information reliably
within the constraints of transmission power and receiver complexity.

In this section, we discuss how high-speed communications are achieved using single- and multicarrier
communication systems. One of the main problems associated with the nonideal (i.e., spectrally shaped) channels
is ISI. Since the information is transmitted serially at a very high baud rate (i.e., the number of signals transmitted
per second), the time dispersion (i.e., distortion to the signal that occurs when the coherence bandwidth of the
channel is less than the modulation bandwidth) leads to ISI, where the energy from one symbol spills over into
another symbol. Traditionally, ISI is removed using a channel equalizer, which may be implemented in the time or
frequency domain. The higher data rates, with narrower symbol durations, experience significant time dispersion
and require highly complex equalizers. To transmit information through a spectrally shaped channel, one option
is to employ a single-carrier system with very complex equalizers. We discuss various channel equalization
techniques in detail in a later section.

Digital Communications 455

(a)

(b)
0 0.5 1 1.5 2 2.5 3 3.5 4

0

1

21.5

21

20.5

0.5

1.5

0

1

21.5

21

20.5

0.5

1.5

(c)
0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 9.13: Eye diagram for BPSK transmitted signals. (a) With rectangular pulse. (b) With raised cosine filter,
α = 1. (c) With raised cosine filter, α = 0.5.

Multicarrier modulation (MCM) techniques, on the other hand, overcome the problem of transmitting data
over channels that are severely distorted. From the ISI point of view, the MCM technique is a divide-and-conquer
approach to combat the problem of ISI. In MCM, we transmit the data by dividing the high bit-rate bitstream
into several parallel low bit-rate bitstreams and modulating those low bit-rate bitstreams onto many orthogonal
carriers. In other words, with MCM the channel is partitioned into a large number of small-bandwidth channels
called subchannels, and if a subchannel is narrow enough, the channel gain in the subchannel is approximately
a complex constant. In such cases, the ISI can be easily eliminated with a single tap filter, and the information is
transmitted over the narrowband subchannels without any ISI. Note that the multicarrier does not mean multiple
physical carriers; it is only the transceiver (i.e., transmitter and receiver pair) that views a single datastream
transmitting on multiple-frequency subbands (or subchannels).

Next, we discuss the techniques of both the single- and the multicarrier systems to achieve high-speed data
communications.

9.2.1 Single-Carrier Communication Systems

In single-carrier communication systems, the data signals are modulated on a single carrier and transmitted. At
the receiver, the down-converted baseband signals are processed to get the estimate of baseband modulated data

456 Chapter 9

(a)

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4
21.5

21

20.5

0.5

1.5

(b)

21.5

21

20.5

0

0.5

1

1.5

(c)

21

Constellation point’s
variance gives SNR

Non-zero phase indicates
the sampling time error

SNR at
sampling

Amount of distortion

11

0 0.5 1 1.5 2 2.5 3 3.5 4

Best time to sample(maximum eye open)

Figure 9.14: Views of received noisy BPSK symbols. (a) Represented by constellation points. (b) Represented by
eye diagrams of raised cosine pulse, α = 1. (c) Represented by eye diagrams of raised cosine filter, α = 0.5.

Data (PSD)

Channel frequency
response with a null

Noise (PSD)

Narrowband
interference

ReceivedChannelTransmitted

Received data
(PSD)

Figure 9.15: Single-carrier communication system with associated power spectral densities at transmitter and
receiver ends.

symbols by minimizing the effects of a dispersive and noisy channel. As shown in Figure 9.15, at the receiver,
the received-signal power spectral density (PSD) consists of channel attenuated data PSD along with undesired
PSDs such as noise, interference, and so on. Because of these channel imperfections, it may not be possible
to get back the exact transmitted data, instead, we try to get the estimate of transmitted data after applying a
series of signal processing and error correction algorithms on the received data. The baseband equivalent of
a modern single-carrier communication system with major building blocks is shown in Figure 9.16. Here, we
briefly explain the functionality of transmitter and receiver modules.

Digital Communications 457

Coded Modulation
(Bits to Symbols)

bk Channel
Encoder

cm Transmit
Filter {gi}

sn xn Transmitter
Back End

Channel

Receiver
Front End y (t)

x(t)

Channel
Equalizer

Viterbi
Decoder

Channel
Decoder

ynsnˆcmˆ
bk
ˆ

Synchronizer

Noise 1

Figure 9.16: Major building blocks present in baseband equivalent of single-carrier modern digital communication
system.

Transmitter Modules
First, we compress the source data (e.g., voice, audio, video, text) before transmitting to minimize the data
bandwidth, and encrypt it to protect it from eavesdroppers. The data bits {bk} are compressed (see Chapter 5)
and encrypted (see Chapter 2) before arriving at the channel encoder. The channel encoder (see Chapter 3) adds
redundancy to bits {bk} and forms codeword bits {cm} with forward error correction capability. The bits {cm},
after passing through the inner coder (shown as a coded modulation block, see Chapter 3), are again added with
redundancy of one more layer of error correction capability, and then these coded bits are mapped to baseband
symbols {sn} by the inner coder. The baseband symbols are compatible with the requirements imposed by the
transmission channel. These baseband symbols {sn} are then shaped by the transmit filter {gi} to minimize the
cross-interference with other channel data. The filtered data samples {xn} are then passed through the transmitter
back-end block (which contains DAC, filters, etc.) before transmitting through the noise-dispersive channel.

Receiver Modules
The receiver front end (which contains band-limiting filters, ADC, etc.) along with the synchronization block
(see Section 9.5) produces the discrete samples {yn} from received signal y(t). These received samples {yn}
correspond to transmitted samples {xn}, and are corrupted by the impaired channel. As shown in Figure 9.15, the
received signal spectrum is attenuated by the channel, and corrupted with noise and narrow band interference.
We use a channel equalizer (see Section 9.4), which is a filter design based on the estimated channel (see
Section 9.3), to undo the channel attenuation effects. The channel equalizer is one of the major blocks in a single-
carrier communication system receiver, and many complex signal processing algorithms are used to perform
channel estimation and equalization. The outputs of the channel equalizer {ŝn} are estimates of the transmitted
baseband symbols {sn} and contain many errors due to noise, interference, and residual errors resulting from
imperfect channel equalization; hence the symbols {ŝn} are mostly unreliable. The convolutional decoder (or
Viterbi decoder, see Chapter 3 for more detail) works on those corrupted noisy symbols {ŝn} and produces more
reliable codeword bits {ĉm}. Then, the channel decoder (e.g., RS coder; see Chapter 3 for more detail) performs
forward error correction and produces bits {b̂k} with a low bit error rate (BER). The bits {b̂k} are the estimate
of transmitted compressed and encrypted bits {bk}. The bits {b̂k} are then decrypted and decompressed by using
corresponding modules (not shown in the figure) before being fed to customer-end devices.

In the next section, we discuss a multicarrier system in which the block modulation and equalization structures
are significantly different than in single-carrier systems. Channel equalization in multicarrier systems is achieved
with relatively low complexity. We achieve very good spectral efficiency with multicarrier systems at the cost
of complex modulators and synchronization circuitry.

9.2.2 Multicarrier Communication Systems

An alternative approach to designing a bandwidth-efficient system in the presence of channel distortion is
to divide the available channel bandwidth into a number of subchannels such that each subchannel is nearly

458 Chapter 9

0 1 2 3 N 2 2 N 2 1…

T

0 # t , T

2` , t , `

(a) (b)

(c) (d)

Df 51/ T

f0 f1 f2 f3 fN22 fN21

F ; NDf

Figure 9.17: Illustration of multicarrier modulation. (a) Sinusoids with infinite duration. (b) Power-density spectra
of infinite-duration waveforms. (c) Sinusoids with finite duration. (d) Power-density spectra of finite-duration
carriers.

ideal. The technique of dividing the channel into a number of subchannels and modulating data over a carrier
corresponding to each subchannel is called multicarrier modulation (MCM). The total number of bits transmitted
is the sum of the number of bits transmitted in each subchannel. The MCM principle is to superimpose several
carrier-modulated waveforms in parallel subchannels in order to increase the data rate of a channel given a
fixed transmission power level. If available power is distributed over the subchannels using the SNR of each
subchannel, then high spectral efficiency can be achieved. In contrast to single-carrier modulation, multicarrier
modulation:

• Avoids full channel equalization
• Uses available bandwidth efficiently by controlling power and number of bits in each subchannel
• Is robust against impulse noise and fast fading due to long symbol duration
• Avoids narrowband distortion by simply disabling one or more subchannels

The concept of multicarrier modulation is illustrated in Figure 9.17. If we modulate the data onto frequency
carriers with infinite duration, then the frequency spectra of such a modulated signal is discrete as shown in
Figure 9.17(b). In practice, the modulated sinusoidal components are truncated in time as shown in Figure 9.17(c),
and the power-density spectrum of such truncated carriers consists of |sin(π f)/π f |2-shaped spectra as shown in
Figure 9.17(d). When we transmit the data symbol on the carriers with finite duration T , the width of subbands
fn − fn−1 =� f is wider than single frequency fn width, and the frequencies must satisfy fn − fn−1 = 1/T
for orthogonality between carriers. Note that the width of subband � f is very small compared to the total
frequency band F ≡ N� f used for transmission as shown in Figure 9.17(d). A schematic block diagram of the
multicarrier communication system is shown in Figure 9.18. At the output of the MCM block, the signal x(t)
can be obtained as

x(t) =
N−1∑
n=0

Xne j2π fnt , where fn = n� f (9.68a)

Let us consider

z(t) =
T∫

0

e j2π fnt(e j2π fn−1t)∗dt =
T∫

0

e j2π(fn − fn−1)t dt =
T∫

0

e j2π� f tdt

Digital Communications 459

Incoming Bits

Received Bits

Constellation
Mapper and

Serial to
Parallel

Converter

Constellation
Demapper and

Parallel to
Serial

Converter

Receiver
Front End

Transmitter
Back End

f0

f1

fN 21

XN 21

YN 21

X1

X0

Y0

y (t)

x (t)

Y1

Spectrally Shaped Channel (ISI)
1 AWGN Channel (Noise)

f0

f1

fN 21

Figure 9.18: Block diagram of multicarrier communication system.

If � f = 1/T , then the inner product of two adjacent carriers, z(t), is 0. In other words, if fn − fn−1 = 1/T , then
the modulated waveforms are orthogonal to each other. This important property of MCM allows us to demodulate
the data at the receiver by correlation. If we sample the signal with sampling interval �t (i.e., T = N�t), then
based on Equation (9.68a),

x(m�t) =
N−1∑
n=0

Xne j2π fntm , where tm = m�t (9.68b)

xm =
N−1∑
n=0

Xne j2πn� f m�t =
N−1∑
n=0

Xne j 2πnm�t
N�t =

N−1∑
n=0

Xne j2πnm/N = IDFT{Xn} (9.69)

The two most commonly used transceiver systems that employ MCM schemes are discrete multitone (DMT)
systems and orthogonal frequency-division multiplexing (OFDM) systems. The term “DMT” is used in the
wireline community (e.g., ADSL, VDSL), whereas the term “OFDM” is used in the wireless community (e.g.,
DVB, WLAN). Next, we discuss the basic principles and techniques used in DMT and OFDM systems.

9.2.3 DMT Transceiver

DMT modulation is the discrete implementation technique of multicarrier modulation. The idea is to use a set
of orthogonal subcarriers in the frequency domain so that variable numbers of bits are allocated to different
subcarriers according to the subcarrier channel gain.

DFT-Based DMT Modulation
One way of implementing DMT is using discrete Fourier transform (DFT) basis as subcarriers. A DFT-based
DMT system is illustrated in Figure 9.19; its block diagram appears in Figure 9.20.

In Figure 9.19, system output vector y is a linear convolution of input vector x and channel vector h. The
middle N samples of vector y (of length N + v + L − 1) are the circular convolution of x and h. The circular
convolution result is due to the addition of cyclic prefix (CP) of v samples (where v is greater than or equal to the
channel impulse-response length of L samples) to the input vector x of N samples (so that the input becomes
periodic within the extent of the channel time spread). Basically, we add the cyclic prefix as a guard interval to
avoid the ISI. But we can also avoid this ISI by simply adding zero samples. Then why do we use the cyclic
prefix? We add the cyclic prefix because it serves more than one purpose—it avoids intercarrier interference
(ICI) among DFT carriers and preserves the orthogonality of DFT carriers (by forming circular convolution)
after passing through the dispersive channel. This type of system can be realized in the frequency domain with
the blocks shown in Figure 9.20. Here, the IDFT basis is used as the modulator basis and the DFT basis as the

460 Chapter 9

h(n) 1v Samples

N Samples

xn:

xn yn

un

v Samples L21 Samples

N Samplesv Samples

yn:

Yk,n5 Xk,n Hk,n1 Uk,n, k 5 0,1,...,N21
L Samplesh(n): DFT

Cyclic Prefix (CP)

(Note: yn includes un)

CP Circular Convolution
of x and h

Tail

v $ L21

Figure 9.19: Illustration of DFT-based DMT system.

ID
F

T

D
F

T

Add
Cyclic
Prefix
and

Convert
Parallel
to Serial
Stream

Channel

ukX0

x0

x1

xN�1

X1

XN�1

Y0

Y1

YN�1

�hk

Remove
Cyclic
Prefix
and

Convert
Serial to
Parallel

Streams

Complex data Real data

y0

y1

yN�1

Figure 9.20: Block diagram of DFT-based DMT system.

demodulator basis. The N modulator basis follow:

fm(n) = 1√
N

e j 2πmn
N , 0 ≤ n ≤ N −1 for m = 0,1, . . . , N −1 (9.70)

A serial-to-parallel data buffer divides the input bitstream into blocks of b bits. The b bits in each block are
parsed into (N/2 −1) groups, where the i-th group is allocated bi bits such that

b =
N/2−1∑

i=1

bi (9.71)

Note that the subcarriers f0(n) and fN/2(n) in Equation (9.70) are the real subcarriers, which are not used
in practice. It is reasonable to view the DMT as being composed of N/2 orthogonal quadrature amplitude
modulation (QAM) channels, each operating at the same symbol rate, � f, with a different QAM constellation
size. For example, the i-th channel will have 2bi possible signal points. In Figure 9.20, Xi denotes the i-th encoded
QAM signal point at the output of the constellation encoder. To obtain real-value, time-domain transmitting
samples, we use the following Hermitian symmetry:

X N−k = X∗
k , k = 1,2, . . . , N/2 −1 (9.72)

The N-length, DMT modulated data sequence, {xk}, for a given block of N symbols [X0, X1, . . . , X N−1], is given
by

xk = 1√
N

N−1∑
i=0

Xie
j2πki/N , k = 0,1, . . . , N −1 (9.73)

Note that the signal points X0 and X N/2 are of zero amplitude. The N-sample input and output of the IDFT
block are called DMT blocks. The last v samples of the DMT block, where v is greater than or equal to the
channel impulse-response length minus one, are cyclically prefixed to the block, thereby making it an (N +v)-
length block. This is illustrated in Figure 9.19. The cyclic prefix is added to avoid the ISI introduced by the

Digital Communications 461

⇒

|H(f)|

|H0|

|H1|
|H2| |H3|

|H4|

X0,k Y0,k

U0,kH0

|HN /221|
|HN /2|

fN /221fN /2 ff0 f1 f2 f3 f4

13

X1,k Y1,k

U1,kH1

13

YN21,k

UN21,kHN21

XN21,k 13

Figure 9.21: Viewing channel as subchannels when DMT modulation is used.

dispersive channel. This (N + v)-length block is converted into (N + v) serial samples by using a parallel to
serial converter and then transmitted. (In practice, these samples are passed through D/A, channel, and A/D. The
D/A and A/D clocks are to be synchronized both in frequency and phase.) At the receiver, from each block of
(N + v) received samples, the first v samples are discarded. The resulting process can be viewed as a circular
convolution of the N-length DMT block with N-length channel impulse response (padded with the required
N − L number of zeros). This implies that the DFT of the N-length received block (after removing the first v

samples) is the product of the DFT of the N-length IDFT output DMT block and the DFT of the channel impulse
response, assuming no noise. Note that the DFT of the N-length IDFT output is the input DMT symbol block
[X0, X1, . . . , X N−1]. Thus, in the presence of noise,

Yi,k = Hi Xi,k +Ui,k , i = 0,1, . . . , N −1 (9.74)

where {Hi}N−1
i=0 denote the N DFT coefficients of the channel impulse response h(n), and {Ui }N−1

i=0 denote the N
DFT coefficients of the N-length noise sequence {un}. Here, Yi,k denotes the i-th output of the DFT demodulator
in the k-th DMT symbol block. Similarly Xi,k denotes the i-th input of the IDFT modulator, and Ui,k represents
the i-th noise sample of the k-th DMT block. Let the noise variance per dimension be σ 2.

When N is large, the continuous transfer function of the channel response H(f) can be approximated by narrow
rectangles, as shown in Figure 9.21. The N outputs of the DFT block correspond to N outputs of the orthogonal
subchannels, that is, there is no interference between them. Each subchannel is approximately flat in that no
transmissiondistortion is present other than the multiplication with Hi and the addition of noise Ui . Clearly, as the
number of subchannels N increases, the approximation that each subchannel is nearly flat becomes very accurate.
However, carrier and symbol synchronization are critical in multicarrier systems. Improper synchronization
results in loss of orthogonality between carriers, which in turn results in a catastrophic error system.

Bit Loading
Depending on the channel frequency response, a particular number of bits is assigned to a given subchannel. This
assignment of bits to each subchannel is called “bit loading.” Although assignment of bits to each subchannel
using the bit-loading concept is suboptimal when compared to Shannon’s water pouring solution of power
distribution,bit-loading concepts are mathematically very attractive and easily implementable. Using bit loading,
bits are assigned to each subchannel such that the symbol error probability (Pe) in all the subchannels is same.
For this, we use different constellations for each subchannel to have the same minimum distance at the output
of the demodulator. For nonrectangular QAM constellations, the symbol error probability Pse follows:

Pse < (2bi −1) Q(dmin/2σ) (9.75)

If the minimum distance used for the i-th subchannel at the input of the IDFT is dmin,i , then the minimum
distance of the symbol constellation at the output of the DFT block, denoted dmin, is related to dmin,i :

d2
min = ∣∣H 2

i

∣∣d2
min,i . (9.76)

We choose bi , the number of bits for the i-th subchannel, such that the 2bi-QAM constellation has a minimum
distance dmin,i with average symbol energy as unity. With QAM, the minimum number of bits used per subchannel

462 Chapter 9

is 2. As the minimum distance between constellation points and the average energy per symbol are directly related,
we use estimated SNRi of the i-th subchannel to allocate the number of bits to that i-th subchannel. The number
of bits that can be transmitted through each subchannel for a certain error probability can be calculated using
the following formula:

bi = log2

(
1+ SNRi

�

)
(9.77)

where � is called the SNR gap and is equal to 9.8 dB for an error rate of 10−7. The � of 9.8 dB is the reference
point for the uncoded system with a 0-dB performance margin (i.e., γmargin = 0 dB). For γmargin > 0 dB, we
embed γmargin into the bit-loading equation as follows:

bi = log2

(
1+ SNRi

� +γmargin

)
(9.78)

We use the following iterative algorithm to compute bi for a given SNRi , a total number of bits Btotal per DMT
symbol, and a minimum performance margin γmin = g dB.

1. γmargin = 0, Btotal = round(sum(bi) and Uch = N , where N is the maximum number of usable carriers.
2. Calculate b′

i , and Uch as follows:
Get b′

i = round(bi).
If b′

i = 0, then Uch = Uch −1.

3. Get Btemp =
N∑

i=1
b′

i if Btemp = 0, and then stop and declare the channel bad.

4. Compute the new γmargin:

γmargin = γmargin +10 log10

(
2

Btemp−Btotal
Uch

)
5. If γmargin > γmin, then stop and declare b′

i to be the bit-loading vector.
6. Decrease Btotal by k adaptively and repeat steps 2 to 5.

The channel frequency response and corresponding bit-loading diagram are illustrated in Figure 9.22.

Performance of DMT with Bit Loading: Simulation Results
DMT system performance with bit loading can be clearly seen when the channel has a deep spectral null in its
frequency response (as shown in Figure 9.22), or when the narrowband interference is present or the impulse
noise disturbs the transmitted sequence. Simulations have been carried out for a channel with a deep spectral
null and for the downstream case of CSA loop-4. The performance of DMT with bit loading for both cases is
shown in Figure 9.23.

10

0

0 0.5 1.51 2.52

�

3.5 0
0

1

2

3

4

5

B
its

 A
llo

ca
te

d

6

7

8

9

10

20 40 60 80

Subchannels

100 120 1403

210

220

230

240

250

(a) (b)

Figure 9.22: (a) Channel frequency response. (b) Bit-loading diagram.

Digital Communications 463

1026

1024

1022

1020

8 10 12 14 16 18 20 22 24

Without bit loading

With bit loading

B
E

R

10 12 14 16 18 20 22

1022

1024

1026

1028

With bit loading

Without bit loading

(a)
Eb /N0

(b)

Eb /N0

Figure 9.23: (a) DMT system performance with and without bit loading for the case of CSA loop-4. (b) DMT
system performance with and without bit loading for the case of channel with deep null in frequency response.

The BER curves show that there is about a 3-dB gain with bit loading in the case of CSA loop-4, and the
necessity for bit loading in the case of a channel with deep nulls in its frequency response. For both cases, we
used white Gaussian noise as one of the channel impairments. To implement the bit loading, we need a channel
estimate. The simulations have been carried out based on the assumption that the channel estimation is already
available (see Section 9.3 for more details on channel estimation).

9.2.4 OFDM Transceivers

Although both DMT and OFDM schemes use the basic principle of MCM (i.e., dividing the transmission
bandwidth into many narrow subchannels and transmitting low bit-rate data on many parallel subchannels),
there are small differences between the two modulation schemes as noted here.

• The DMT schemes are used with low-pass channels (e.g., twisted-pair wireline), whereas OFDM schemes are
used with bandpass channels (e.g., wireless channels).

• We output the real sequence with DMT schemes by making the IDFT input symbols symmetric, whereas the
OFDM schemes output a complex sequence (i.e., OFDM-modulated output contains both real and imaginary
parts) to transmit the data samples on I and Q channels of the bandpass communication system.

• We have information about the channel in the case of DMT at the transmitter; thus we perform bit load-
ing to improve spectral efficiency, whereas we cannot perform bit loading with OFDM schemes because we
lack information about the channel at the transmitter. Therefore, we transmit a fixed number of bits per sub-
channel (i.e., small constellation sizes are used) across all subchannels in the OFDM, whereas we transmit
a variable number of bits per subchannel in the case of the DMT depending on the SNR of the subchan-
nels (which we know at the transmitter as it receives the channel estimation information via the feedback
channel).

The schematic diagram of the baseband OFDM system is shown in Figure 9.24. Given the N-length con-
stellation points vector {Xm}, the OFDM-modulated data sample vector {xn} of length N samples is obtained as
follows:

xn = 1√
N

N−1∑
m=0

Xme j2πnm/N , 0 ≤ n ≤ N −1 (9.79)

We form an N + v length sample vector {sk} by adding a cyclic prefix of length v samples as guard data to the
N-length OFDM symbol vector {xn} as follows:

s = [xN−v , xN−v+1, . . . , xN−1, x0, x1, . . . , xN−1
]

(9.80)

464 Chapter 9

ID
F

T

D
F

T

X0

x0

x1
Y0

Y1sk

uk

rk
hk

X1

XN21 xN21

Add
Cyclic
Prefix
and

Convert
Parallel
to Serial
Stream

Remove
Cyclic
Prefix
and

Convert
Serial to
Parallel
Streams

Complex Channel

1

Complex data Complex data

y0

y1

yN21
YN21

Figure 9.24: Block diagram of DFT-based baseband OFDM system.

Assuming a constant channel over one OFDM symbol interval, we can express the channel output vector {rk} as

rk = sk
∗ hk +uk, 0 ≤ k < N +v + L −1 (9.81)

where ∗ represents the linear convolution operation and L is length of channel {hk}.
Here, the first v samples of {rk} correspond to the cyclic prefix and the last L −1 samples of {rk} correspond

to the convolution operation tail. We form the input {yn} to the demodulator by extracting middle N samples
from {rk} in Equation (9.81). The N samples of {yn} correspond to the circular convolution of the modulator
output {xn} and channel {hn}. With no ICI, assuming proper synchronization, the demodulator output can be
expressed as

Yi, j = Hi Xi, j +Ui, j (9.82)

Here, Yi, j denotes the i-th output of the DFT demodulator in the j-th OFDM symbol block.
However, in the mobile communications environment, channel frequency variations due to delay spread, and

channel time variations due to Doppler spread introduce ISI and ICI that degrade OFDM system performance.
With ICI, the expression for the demodulator output in Equation (9.82) is no longer valid.

9.3 Channel Estimation

As the channel attenuates and delays different frequencies by different amounts, the transmitted signal expe-
riences distortions when passing through a channel. The distortion of one symbol due to adjacent symbols is
known as ISI, whereas the distortion in data on one carrier due to data on other carriers is called ICI. Further
distortions in transmitted data occur due to thermal and cross-talk noise. Due to these distortions, the decoder
may make incorrect decisions, resulting in data errors. Upon compensating these distortions introduced by the
channel, we can achieve higher data transmission rates with low data errors. To combat channel distortions, first
we must measure or estimate the distortions. In this section, we discuss channel estimation techniques with DMT
and OFDM transceivers.

9.3.1 Channel Estimation in DMT Systems

In DMT transceivers, a cyclic prefix of length v, where v is the length of the channel impulse response minus 1,
is inserted between the transmitted symbols to avoid ISI and ICI. This cyclic prefix carries no information. Since
the v samples do not carry any new information about the transmitted signal, the transmission rate of a DMT
transceiver is decreased by a factor of N/(N + v). But by choosing v, a small deterministic value, we can still
maintain high data rates. However, the channel length is generally large. To reduce the inefficiency of the DMT
transmission system due to the use of a long cyclic prefix, the use of a time-domain equalizer (TEQ) to shorten
the effective channel impulse response to a standard cyclic prefix length has been the most popular equalization
approach in DMT receivers. As the equalizer designs assume the channel to be known, next we discuss channel
and noise estimation in DMT systems.

The block diagram of channel estimation in DMT systems is shown in Figure 9.25. The inputs to the system
consist of symbols from the 4-QAM constellation with unit average energy. These symbols are modulated on

Digital Communications 465

Hk

UkX0

X1

XN21

Y0

Y1

e1

e0

H0

H1

HN21

YN21

X0

X1

XN21

eN21

1

2

2

2

IFFT FFTP to S

Channel

S to P

Figure 9.25: Block diagram of channel estimation in DMT systems.

10

0

0 0.5 1 1.5 2

Frequency (radians)

Noise Level

Channel Estimation

2.5 3 3.5

M
ag

 (
dB

)

210

220

230

240

250

260

270

Original
Estimated

Figure 9.26: Frequency response and subchannel noise level.

carriers by means of an IDFT operation. The modulated symbols are passed through a parallel-to-serial converter
and are given to the channel as input samples. The channel output with additive stationary noise is converted
from serial to parallel and given to the demodulated block. From this received noisy data, and with knowledge
of the input, we can estimate channel and noise characteristics by formulating the MSE cost function and
minimizing MSE.

Here, the same DMT symbol block is repeated so that the output of the channel is a cyclic convolution of each
N-sample block with the impulse response. The minimum MSE (MMSE) estimate of channel Ĥk for a periodic
input is given by

Ĥk = E[Yk X∗
k]

E[|Xk|2]
=

1

L

L∑
l=1

Yk,l X∗
k,l

1

L

L∑
l=1

Xk,l X∗
k,l

(9.83)

E(|ek |2) = 1

L

L∑
l=1

|ek,l |2 ≡ 1

L

L∑
l=1

|Yk,l |2 −
∣∣∣∣∣ 1

L

L∑
l=1

Yk,l

∣∣∣∣∣
2

(9.84)

Figure 9.26 shows estimation of a channel {h(n) = [.227 .460 .688 .460 .227]} and noise at SNR = 30 dB with
L = 100 DMT blocks (ensembles) using Equations (9.83) and (9.84).

466 Chapter 9

9.3.2 Wireless Channel Characterization

A typical wireless channel with multiple delayed paths between a stationary radio transmitter and moving receiver
is illustrated in Figure 9.27. The major paths result in the arrival of delayed versions of the same transmitted
signal at the receiver. In addition, the radio signal undergoes scattering on a local scale for each major path and
results in reflected paths. These irresolvable components combine at the receiver and give rise to a phenomenon
known as multipath fading. Due to this phenomenon, each major path behaves as a discrete fading path and such
a fading process is commonly characterized by Rayleigh and Rician distributions.

A typical wireless channel is characterized with multiple time-varying amplitudes and it can be expressed,
with τi representing the delay of the i-th path, as

h(t, τ) =
L−1∑
i=0

hi (t)δ(τ − τi) (9.85)

Given Equation (9.85), the multipath channel consists of L channel amplitudes corresponding to L paths. The
amplitude h0(t) corresponds to the first arrival path and the remaining L −1 amplitudes {h j (t), j = 1,2, . . . , L −
1} correspond to L − 1 delayed paths. Due to mobile-unit motion, the hi (t)s comprise a wide-sense stationary
(WSS), narrowband complex Gaussian process, which are independent for different paths. The real part of the
wireless channel described by Equation (9.85) can be visualized as shown in Figure 9.28.

Delay Spread and Doppler Spread
In order to compare different multipath channels, we use parameters that quantify the multipath fading channels.
Four parameters that describe the nature of fading of a multipath channel are delay spread, coherence bandwidth,
Doppler spread, and coherence time.

Delay spread (τmax): In wireless communications, the signal usually arrives via multiple paths with different
path gains. The time difference between the arrival moment of the first multipath component and the last
multipath component is called delay spread.

Coherence bandwidth (Bc): A statistical measure of the range of frequencies over which the channel can be
considered flat. In other words, it’s the range of frequencies that pass through the channel with the same
spectral attenuation and linear phase distortion. Coherence bandwidth is inversely proportional to delay
spread.

Doppler spread (Bd): A measure of spectral broadening caused by the time rate of change of the mobile radio
channel, it is defined as the range of frequencies over which the received Doppler spectrum is essentially
non-zero.

Coherence time (Tc): This is a statistical measure of time duration over which the multipath channel gain is
essentially invariant. Coherence time is inversely proportional to Doppler spread.

The parameters’ delay spread and coherence bandwidth describe the time-dispersive nature of the channel
in a local area; however, they do not offer information about the time-varying nature of the channel caused by

Transmitter

ReceiverDirect, Delay 1

Reflected, Delay 3

Typical Wireless Channel

Reflected, Delay 4

Reflected, Delay 2

Figure 9.27: Typical wireless channel with multiple delayed paths.

Digital Communications 467

t

Coherence
time

Delay Spread

t2

t1

h2

hL21
h0

h1

0 1 2 L21

Figure 9.28: Visualization of wireless channel in time domain.

relative motion of the transmitter and receiver. The parameters’ Doppler spread and coherence time describe
the time-varying nature of a wireless channel in a small-scale region due to the motion of transmitter, receiver,
or obstacles. The delay spread and coherence time parameters are defined in the time domain, whereas the
coherence bandwidth and Doppler spread are defined in the frequency domain. The interpretation of the delay
spread and coherence time parameters are shown in Figure 9.28.

Calculation of Delay Spread and Coherence Bandwidth
The power delay profile of the channel is used to determine the delay spread. The power of the i-th path of a
quasistationary (i.e., Tc > 0) multipath channel follows:

ρi = E
{|hi |2

}
(9.86)

The values of ρi for 0 ≤ i ≤ L − 1 are referred to as the multipath power spread or power delay profile of the
channel. The RMS delay spread τRMS follows:

τRMS =

√√√√√
∑

i
(τi −μτ)ρi∑

i
ρi

(9.87)

where μτ is the mean-access delay and is computed as

μτ =
∑

i
τiρi∑

i
ρi

(9.88)

In practice, we do not have any knowledge of path gains hi s and delays τis, and we cannot compute the
metric RMS delay spread τRMS using Equation (9.87). Instead, we estimate the RMS delay spread using the
received data symbols. The RMS delay spread τRMS value is useful for estimating the channel more accurately.
Coherence bandwidth can be computed from the RMS delay spread using the fact that the signal components
passing through the channel coherence bandwidth will have a larger correlation. Typically,

Bc ≈ 1

50τRMS
(for frequency correlation function > 0.9) (9.89)

Bc ≈ 1

5τRMS
(for frequency correlation function ≈ 0.5) (9.90)

468 Chapter 9

Calculation of Doppler Spread and Coherence Time
The amount of spectral broadening depends on the Doppler frequency, fd . The fd parameter is related to the
relative speed v between the transmitter and receiver and the carrier frequency fc , as in

fd = v fc
c

(9.91)

where the constant c is the speed of light.
Coherence time (Tc) can be computed from the Doppler frequency using the fact that signal components

arriving with a time separation greater than Tc are affected differently by the channel. If the coherence time is
defined as the time over which the time correlation function is above 0.5, then the Tc is approximately given by

Tc ≈ 9

16π fm
(9.92)

where fm is the maximum Doppler shift. A widely used rule of thumb for calculating the Tc is given as

Tc ≈ 0.423

fm
(9.93)

OFDM Channel and Correlation Functions
Given the wireless channel h(t, τ), its time-varying frequency response can be calculated as

H(t, f) =
∞∫

−∞
h(t, τ)e− j2π fτ dτ

=
L−1∑
i=0

hi(t)e
j2π f τi

(9.94)

With sampling of the time-frequency axis, the channel frequency response at the m-th tone of the n-th OFDM
symbol in the time-frequency grid of the OFDM system can be expressed as

H [n,m] = H(nTf ,m� f)

=
L−1∑
i=0

hi (nTf)e
− j2πm� f τi

(9.95)

where Tf and � f are the symbol duration and the inter-subcarrier spacing of the OFDM system, respectively.
The channel correlation function in the time-frequency space for different OFDM symbols and tone separations

can be obtained as follows:

RHH[k, l] = E
{
H [n + k,m + l]H ∗ [n,m]

}
= σ 2

H Rt [k]R f [l]
(9.96)

where

σ 2
H =

L−1∑
i=0

ρi

is the total average power of the channel response, and ρi is the average power of the i-th propagation path.
Given Equation (9.96), note that the correlation function of H(t, f) can be separated into the multiplication of
time-domain correlation Rt [k] and frequency-domain correlation R f [l] functions. The function Rt [k] depends
on the motion of the mobile unit (or vehicle speed) or equivalently, the Doppler frequency fd .

Assuming a Jakes model, the simplified form of the time-domain correlation function can be expressed as
follows:

Rt [k] = J0(2πkFd) (9.97)

Digital Communications 469

where J0(.) is the zero-order Bessel function of the first kind and Fd = fd T f , the normalized Doppler frequency
(i.e., fd is normalized with the OFDM symbol rate, 1/T f).

The frequency correlation function R f [l] depends on the multipath delay spread. We consider the exponen-
tial decaying, multipath power delay profile (PDP) (which is the most commonly accepted model for indoor
channels). Such channels are characterized by

ρi = E
{|hi |2

}= e−i/τ ′
RMS (9.98)

where τ ′
RMS = τRMS/Ts is the RMS delay spread relative to the sampling interval Ts of the OFDM system. For an

exponentially decaying PDP, the Rf [l] is given by

Rf [l] = 1

1+ j2πτ ′
RMSl/N

(9.99)

where N is the total number of subcarriers used to transmit an OFDM symbol.

9.3.3 Channel Estimation in OFDM Systems

OFDM technology is widely used in wireless applications such as wireless LAN, DVB, WiMAX, and so on.
The wireless channel estimation in the frequency domain can be obtained by employing the frequency domain
interpolation of regularly spaced transmitted pilot symbols as shown in Figure 9.29. With combo-type pilot
symbols, the channel variations from one OFDM block to a subsequent OFDM block can be easily obtained
by frequency-domain interpolation. Next, we discuss the techniques to estimate the delay spread and Doppler
spread, which are very useful parameters in accurate channel estimation.

Channel Delay Spread Estimation
In typical OFDM systems, a guard interval may be specified to account for delay spread. Generally, the channel
length may be unknown, so typical channel estimation schemes may a priori assume that channel length is
equal to guard interval (or cyclic prefix). However, under some operating circumstances, the actual delay spread
encountered may not be the same as the guard interval, in which case it is not reasonable to assume that the
channel length is equal to the guard interval. Therefore, it may be desirable to provide a system that estimates
an actual delay spread encountered by the system, and utilize that estimated delay spread to provide a more
accurate channel estimate.

In Athaudage and Jaylath (2003), a novel RMS delay–spread estimation technique for wireless OFDM system
is proposed. This technique utilizes a frequency correlation function evaluated over the cyclic-prefix of the OFDM
signal to estimate the delay spread. The RMS delay spread is estimated by means of an MMSE fitting between
the observed samples correlation and its theoretical expectation.

The frequency selectivity of the channel is often characterized by the correlation function Rf [l]. The Rf [l]
shows the correlation between the channel response of two subcarriers, which are l subcarriers apart in the
OFDM spectrum. In the OFDM channel estimation, the Rf [l] is utilized at the receiver to interpolate the channel

Figure 9.29: Combo-type pilot
arrangement for OFDM channel
estimation.

F
re

qu
en

cy

Time

470 Chapter 9

response at unknown subcarrier locations using the channel estimates at pilot carrier locations. Here, we consider
a wireless channel with an exponentially decaying multipath PDP for the delay spread estimation, and the Rf [l]
for such channel is given in Equation (9.99).

As mentioned previously, the RMS delay spread value τRMS is a priori unknown. The use of a likely value of a
fixed number of samples for τ ′

RMS results in a suboptimal channel estimation and equalization process. Accurate
knowledge of τ ′

RMS is required at the receiver to ensure that the proper correlation function Rf [l] is used for
channel estimation.

Given a received multipath OFDM signal y[n] corresponding to channel input x [n], as in

y[n] =
[

Lc−1∑
i=0

hi x [n − τi]

]
e j2πnε/N +u[n] (9.100)

where ε is the normalized frequency offset and u[n] is the additive white Gaussian noise component, the τ ′
RMS is

estimated by searching for the value of τ ′
RMS that minimizes the MSE between the theoretical correlation measure

|RJ [N]| and observed correlation measure |RI
J [n]|, where 1 ≤ J ≤ Lc. The |RJ [N]| for the channel given in

Equation (9.98) follows:

|RJ [N]| = σ 2
s

1−β

[
J + βLc+1(1−β−J)

1−β

]
(9.101)

where σ 2
s is the OFDM signal variance and β = e−1/τ ′

RMS . The observed correlation measure |RI
J [n]| is computed

from the received samples y[n] as

|RI
J [n]| = 1

I

I−1∑
i=0

J −1∑
j=0

y(n + iNc − j)y∗(n + iNc − j − N) (9.102)

where Nc = N + Lc, I is the number of OFDM symbols used.
Given that we do not have a priori knowledge of the symbol timing and frequency offset, we estimate them

by using the magnitude and phase of |RI
J [n]|∣∣J =Lc

, as in

T̂ = arg max
n

|RI
Lc

[n]| (9.103)

ε̂ = 1

2π
∠RI

Lc
[n] (9.104)

The MMSE criterion can be then expressed as follows:

β̂ = arg min
0≤β≤βmax

Q(β) (9.105)

where

Q(β) = 1

Lc

Lc∑
J =1

(|RJ (N)|− |RI
J (N)|)2 (9.106)

and βmax = e−1/Lc

Doppler Spread Estimation
Doppler spread gives a measure of the fading rate of the wireless channel, which can be used to adjust the
OFDM channel estimation rate and create specifically designed channel estimators to combat ICI induced by
loss of orthogonality. Due to mobility, the Doppler spread causes the channel to be modeled with a time-variant
finite-impulse response filter. If mobility is low (i.e., a small Doppler spread), then the rate of channel estimation
can be lowered and throughput increased. If the mobility is high (i.e., high Doppler spread), then an increase of
the estimation rate can help to lower the BER.

Digital Communications 471

Many approaches are suggested in the literature for estimating Doppler spread from the received symbols, such
as level crossing rate (LCR) or zero-crossing rate (ZCR) of signal envelope–based estimation, covariance-based
estimation, and correlation-based estimation. The accuracy of Doppler spread estimation based on crossing rates
is less efficient with shorter estimation windows at high Doppler values and low SNR values. On the other hand,
the computational complexity of covariance-based Doppler estimation is significantly high. Here, we discuss
correlation-based Doppler spread estimation. In Doukas and Kalivas (2006), a Doppler estimation technique
based on the time correlation function of channel estimates over two OFDM symbols is proposed for low-
mobility OFDM channels. The time correlation function using demodulated OFDM symbols can be expressed
as

Rt [p] = 1

S −|p|
S−1−|p|∑

i=0

Yi,k Y ∗
i+|p|,k (9.107)

where S is the number of participating OFDM symbols and p is the time difference of OFDM symbols.
Assuming the Jakes model in Equation (9.97),

Rt [1]

Rt [0]
= J0(2π fd T f)

J0(0)
= J0(2π fd T f) (9.108)

Then, using Equations (9.107) and (9.108),

Y0,kY ∗
1,k

(|Y0,k |2 +|Y1,k |2)/2
= J0(2π fd T f)

or

fd = 1

2πT f
J −1

0

[
2Y0,kY ∗

1,k

|Y0,k |2 +|Y1,k |2
]

(9.109)

Pilot Symbol–Aided Channel Estimation
Given Equation (9.100), the OFDM receiver has to know the subchannel gains Hi to obtain the estimate of
transmitted symbols from the received noisy symbols. A dynamic channel estimation is necessary before the
demodulation of OFDM signals since wireless channels are frequency selective and time varying. For OFDM
systems, the channel estimation can be performed by either inserting pilot tones into all of the subcarriers with
a specific OFDM symbol period or inserting regularly spaced pilot tones into a few subcarriers of all OFDM
symbols. The former, known as the block-type pilot arrangement, is applicable to slow time-varying channels,
whereas the latter, known as the combo-type pilot arrangement, is applicable to fast time-varying channels. The
same framework described earlier for DMT channel estimation can be used for channel estimation of block-
type pilot arrangement OFDM systems. Next, we discuss channel estimation techniques for combo-type pilot
arrangement OFDM systems.

Let x p be the pilot information known at both the transmitter and the receiver. It is uniformly inserted at the
transmitter to the subcarriers according to the following equation:

X[k] = X[nM +m] =
{

x p m = 0
data m = 1,2, . . . , M −1

(9.110)

where M = N/Np , N is the total number of carriers, and Np is the number of pilot carriers. With this, we can
estimate the channel frequency response at Np pilot carriers as

Ĥp[kM] = Yp[kM]

X p[kM]
, k = 0,1, . . . , Np −1 (9.111)

Then, an efficient interpolation technique is used to estimate the channel at the data subcarriers by using
the channel information Ĥp at the pilot subcarriers. Commonly used interpolation techniques include linear,

472 Chapter 9

second-order, spline cubic, low-pass, and time-domain. For example, the channel estimation Hd[m] at the data
carrier m, where kL < m < (k +1)L , using linear interpolation is given by

Ĥd[m] = Ĥd[kL + l], 0 ≤ l < L

= Ĥp[kL]+ (Ĥp[(k +1)L]− Ĥp[kL])
l

L

(9.112)

However, the OFDM channel estimation using Equation (9.112) does not use already available side information
such as channel RMS delay spread and Doppler spread in the interpolation process, and hence the resulting
channel estimation will not be optimum from the performance and computational complexity points of view. In
Hoeher et al. (1997), pilot-symbol aided channel estimation based on 2D Weiner filtering of the time-frequency
grid using the maximum delay spread and maximum Doppler spread as side information was discussed. The
channel estimation-based on 2D Weiner filtering is formulated as

Ĥd[n,m] =
∑

n′,m′∈Sp

w[n,m,n′,m ′]Ĥp[n′,m ′], 0 ≤ n ≤ Nt −1,0 ≤ m ≤ M −1 (9.113)

where Ĥp is the channel frequency response at pilot positions; w[], 2D Weiner filter coefficients; Nt , number of
OFDM symbols considered; M , number of subcarriers; and Sp, set of pilot carriers in 2D grid.

Equation (9.113) can be expressed with the matrix notation as

Ĥd[n,m] = w[k, l]Ĥ p (9.114)

Coefficient values for the optimized Weiner filter wo[n,m] in the sense of MMSE can be obtained using the
autocorrelation matrix RĤp Ĥp

of observed samples and the cross-correlation vector RĤp H [n,m] of observed and
reference samples as in

wT
o [n,m] = RT

Ĥp H
[n,m]R−1

Ĥp Ĥp
(9.115)

where T represents the transpose operation.
The order of the Weiner filter decides the computational complexity of channel estimation, and we use the

estimated delay spread and Doppler spread parameters in determining the optimal order for the Weiner filter.
In Classen et al. (1995), two one-dimensional Weiner filtering (time-domain filtering followed by frequency
domain filtering) is suggested for channel estimation. Here, too, for interpolating the time-frequency grid in the
two directions, the sampling factors for both directions are chosen based on the maximum Doppler frequency
and maximum delay spread.

9.4 Channel Equalization

As the channel attenuates and delays various frequencies by different amounts, the transmitted signal experiences
distortions when passing through a channel. The distortion of one symbol due to adjacent symbols is known as
ISI, whereas the distortion in data on one carrier due to data on the other carriers is called ICI. Further distortions
in transmitted data result due to thermal and cross-talk noise. In single-carrier systems, the received sequence
y[n] can be expressed in terms of transmitted sequence x [n] and channel h[n] as

y[n] = h[m]x [n]︸ ︷︷ ︸
useful data

+
∑
k 	=m

h[k]x [n − k]

︸ ︷︷ ︸
ISI

+ u[n]︸︷︷︸
noise

(9.116)

If these distortions are severe, then the decoders at the receiver may make incorrect decisions resulting in data
errors. By compensating these distortions introduced by the channel, we can achieve higher data transmission
rates with low data errors. For this, we must perform “channel equalization” on the received data.

Digital Communications 473

Figure 9.30: Illustration of channel
equalization concept.

(a)

)H [k])

h [n] q [n]

k

)Q [k]))HQ [k])

hq [n]

(b)

n

In theory, a channel equalizer should have a frequency response that is exactly the inverse of the channel.
This is illustrated in Figure 9.30. When we multiply the frequency response of channel H [k] with the frequency
response of an equalizer Q[k], since the equalizer frequency response and the channel frequency response are
inversely related we get the flat frequency response HQ[k] as shown in Figure 9.30(a). The same occurs when we
look at the time domain as shown in Figure 9.30(b); after convolving the impulse response of channel with that
of equalizer, we get an impulse as the effective time-domain response of channel and equalizer. As the impulse
has zero delay spread or time dispersion, there is no ISI after equalization of the data symbol. However, this is
an ideal case and happens only in theory. In practice, we will have a few problems. First, we cannot design an
equalizer with 100% inverse characteristics as that of the channel, and thus a small amount of ISI will occur.
Second, the received data always contains noise and when we perform equalization on the noisy data, the noise
component is also amplified. This affects the demodulator output and leads to incorrect data decisions. Thus, in
practice we make a trade-off among ISI, noise, and implementation complexity.

In practice, an equalizer is normally implemented with a digital adaptive filter to combat the time-varying
nature of communication channels. An adaptation process is used to identify the optimal channel equalizer
coefficients and keep tracking possiblevariations of channel characteristics. For more details on adaptive filtering
algorithms (such as LMS and RLS) and their implementation techniques, see Chapter 8. Channel equalization
consists of two steps: (1) determination of equalizer response given the estimated channel impulse response, and
(2) performing the equalization of data by passing the data through the equalizer. Here, we briefly discuss two
types of equalization approaches—linear equalization and decision feedback equalization. In the later sections,
we discuss the application of these equalization techniques in DMT and OFDM systems.

9.4.1 Linear Equalization

With linear equalization, the equalized output is obtained after passing the received signal through a linear filter.
Next, we discuss two commonly used criteria to determine the linear filter coefficients.

Zero-Forcing Equalizer
In zero-forcing equalization (ZFE), the linear-filter frequency response is chosen as the exact inverse of channel
frequency response, as in

HE [k] = 1

HC[k]
(9.117)

The time-domain equivalent of Equation (9.117) is expressed as

∑
i

hc[i]he[j − i] =
{

1 if i = j

0 if i 	= j
(9.118)

474 Chapter 9

where hc[n] and he[n] are given by the inverse Fourier transform of HC [k] and HE [k]. The condition in
Equation (9.118) can be expressed in the matrix format as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hc[0] 0 0 0 · · · 0 0
hc[1] hc[0] 0 0 · · · 0 0
hc[2] hc[1] hc[0] 0 · · · 0 0

...
...

...
...

...
...

...
hc[N −1] hc[N −2] hc[N −3] hc[N −4] · · · hc[1] hc[0]

0 hc[N −1] hc[N −2] hc[N −3] · · · hc[2] hc[1]
...

...
...

... · · · ...
...

0 0 0 0 · · · 0 hc[N −1]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

he[0]
he[1]

...
he[N/2]

...
he[N −2]
he[N −1]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
1
...
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.119)

We can express Equation (9.119) in simplified notation as

Hche = a (9.120)

Because the matrix Hc is not a square matrix, the solution for he can be expressed as

he = (H T
c Hc)

−1 H T
c a (9.121)

where he = [he[0],he[1], . . . he[N −1]]T gives the coefficients of the equalization filter.
The zero-forcing equalizer minimizes ISI, but ignores any impact that channel noise may have on the system.

In other words, ZFE corrects for distortion due to the ISI term in Equation (9.116) but ignores the effects of the
additive noise component u[n]. Because the ZFE criterion ignores the noise associated with the channel, ZFE
filters can end up amplifying the noise.

Minimum Mean Square Equalizer
The MMSE criterion aims to minimize the power of the symbol or decision error, considering both ISI and
additive noise associated with the channel. Assuming the equalizer coefficient vector he, the instantaneous error
between the desired data sequence and the equalizer output is expressed as

ek = xk−m − yT
k he (9.122)

where xk−m = the desired data sequence after there is a channel delay of m sampling instances, yT
k =

[yk, yk−1, . . . , yk−N+1] is the received sequence vector, and h
T
e = [he[1],he[2], . . . ,he[N]] is the equalizer

coefficient vector.
Given the channel-impulse response (i.e., estimated channel coefficients), the received sequence yk at the k-th

sampling instant can be expressed with the convolution of the desired sequence vector x and the channel impulse
response vector hc as

yk = x T
k hc +uk (9.123)

where x T
k = [xk, xk−1, . . . , xk−N+1] is the desired transmitted sequence, h

T
c = [hc[1],hc[2], . . . ,hc[N]] is the

channel impulse response vector, and uk is the associated noise sample at the k-th sampling instant.
Based on Equation (9.122), the MSE with the equalizer he is given by

E[e2
k] = E

[
(xk−m − yT

k he)
2] (9.124)

Using the MMSE criterion (i.e., by taking the derivative on both sides of Equation (9.124) with respect to the
equalizer coefficient vector he and setting the derivative to zero; see Section 8.1.1 for more detail on the MMSE
criterion), we get the optimum equalizer coefficient vector h

opt
e as follows:

h
opt
e = E[xk−m yT

k]/E[yk yT
k] (9.125)

Digital Communications 475

The equalizer coefficients can be adapted with the error converging in the least mean square (LMS) sense as

h
(k+1)

e = h
(k)

e +αyk[xk−m − yT
k h

(k)

e] (9.126)

where α is the step size and should satisfy the following condition for error convergence,

α <
1

trace[Y]
, where Y = E[yk yT

k] (9.127)

In adaptive signal processing, the tuning of the LMS algorithm by choosing the appropriate step size α tends
to be more of an art than a science. For more details on the LMS algorithm and the importance of choosing the
right step size α for fast convergence of an adaptive process, please refer Section 8.1.1. Channel equalization
based on the MMSE criterion yields much better performance when compared to the zero-forcing criterion,
especially at low SNRs.

9.4.2 Decision Feedback Equalization

Assuming that the symbol decisions are correct after decision making, we can significantly improve the equalizer
performance by introducing the feedback path in the equalizer structure as shown in Figure 9.31. The basic idea
of decision feedback equalization (DFE) is that if the values of the symbols previously detected are known,
then the ISI contributed by these symbols can be canceled out exactly at the output of the forward filter by
subtracting past symbol values with appropriate weighting. This kind of equalization with nonlinear structure
(due to feedback path) can be implemented without a significant increase in computational complexity. The
feedback filter weights can be adjusted to fulfill a criterion such as the MMSE.

The equalized samples in the DFE structure are given by

ŝ[n −d] =
M−1∑
m=0

h[m]r[n −m] −
K −1∑
k=1

g[k]s̃[n −d − k] (9.128)

where the symbol values s̃[n] are the output of the detector, and d is the delay through the communication
channel, including the delay introduced by the forward filter h[n].

Equation (9.128) can also be written with the vector notation as

ŝn−d = RT
n H − S̃T

n−d−1G (9.129)

where

H = [h0 h1 · · · hM−1]T , G = [g1 g2 · · · gK −1]T , RT
n = [rn rn−1 · · · rn−M+1] and

S̃T
n−d−1 = [s̃n−d−1 s̃n−d−2 · · · s̃n−d−K +1]

The instantaneous error between the desired signal and the DFE output is

en = s̃n−d − ŝn−d = s̃n−d − RT
n H + S̃T

n−d−1
G (9.130)

where s̃n−d is the desired data symbol after d symbol intervals of channel delay, and en is the error between the
desired symbol and the decision feedback equalizer output.

Figure 9.31: Structure of decision
feedback equalizer.

G[z]

Detector
1

1

1

1

2

2

r [n]
H [z]

s [n]

Forward Filter

Feedback Filter

~s [n]ˆ

476 Chapter 9

Channel Detector
x[n]

Mod

Feedback
Filter

Feed-forward
Filter

Noise

Mod
y[n]

s[n]

1 2

s[n]~s[n]ˆ

Figure 9.32: DFE structure with precoding.

The expected value of the square error with a given set of equalizer coefficient vectors H and G is

E[e2
n] = E

[
(s̃n−d − RT

n H + S̃n−d−1G)2
]

(9.131)

Using the MMSE criterion, the optimum coefficient values for the coefficient vectors H and G are given by

H T
opt =

(
E[Rn RT

n]− E[Rn S̃T
n−d−1]E[S̃n−d−1 RT

n]
)−1

E[s̃n−d RT
n] (9.132)

GT
opt = H T

opt E[Rn S̃T
n−1] (9.133)

As the DFE coefficient vectors are obtained using the MMSE criterion, we also refer to channel equalization
using Equations (9.132) and (9.133) as the MMSE-DFE equalization.

The basic assumption for the DFE structure is that all detector decisions are correct, and as long as correct
decisions are made in the detector, the DFE feedback loop remains stable. If the detector outputs wrong decisions,
then the DFE starts generating poor equalized symbols, which in turn can cause more detector errors, causing
worse equalization outputs. Thus, a wrong estimation of the symbols could propagate errors through DFE
structure and it might take many symbol intervals for the DFE to recover from the error propagation. One way to
address the problem of error propagation is to use precoding methods such as Tomlinson-Harashima precoding
(THP). With THP, the feedback filter is moved into the transmitter to filter the original data symbols as shown
in Figure 9.32. For details on precoding based on MMSE-DFE, see Wesel and Cioffi (1995).

9.4.3 Channel Equalization in DMT Systems

As previously discussed, the DMT schemes are widely used in the high-speed wired communication systems
such as ADSL and VDSL. Since the statistics of wired channels vary quite slowly and may even have the
same characteristics during the entire transmission period, we can perform channel estimation and equalizer
coefficient computation once at the beginning of the transmission. We may use adaptive methods for updating
equalizer coefficients to embed the small variations of the channel characteristics during the transmission period.
As discussed in Section 9.3.1, we use a block-type pilot arrangement for channel estimation in DMT systems.

Given the channel estimates, the DMT systems usually apply two types of equalizers—one in the time domain
equalizer (TEQ) and the other in the frequency domain (FEQ)—on received data to eliminate ISI and ICI from
the data as shown in Figure 9.33. To compensate for residual ISI that occurs when the channel impulse response
duration exceeds the chosen cyclic prefix duration, the TEQ may be used in the receiver. The TEQ is designed
to shorten the channel impulse-response length to within the cyclic prefix duration. Thus, a shorter cyclic prefix
(v) can be employed to avoid ISI and ICI without significant degradation in transmission efficiency. Then,
after demodulation, an FEQ is used to extract the transmitted data symbols by compensating for the effect of
channel gains.

Time-Domain Equalization
The concept of time-domain equalization can be easily understood from Figure 9.34. The TEQ is worked
as a channel memory-truncating filter. Before the demodulator, it will produce a target channel, which is the
convolution of an actual channel and TEQ, with much shorter memory than the actual channel memory.

Digital Communications 477

Channel

Encoder
N -point

IFFT
Input
Data

Remove
CP

S/P
N -point

FFT
FEQDecoder

Output
Data

Noise

Add
CP

P/S

TEQ

Figure 9.33: Block diagram of DMT system along with TEQ and FEQ.

Figure 9.34: Concept of time-domain
equalization. Channel h(n) TEQ w(n) Shortened Channel c(n)

Figure 9.35: TEQ design based on
MMSE approach.

H(z)

Z2D

W(z)

C(z)

y(n)

e(n)

s(n)

u(n)

1

2

1

1

TIR, c

TEQ,wChannel, h

Flat Delay

There are many approaches to designing time-domain equalizers, and each has advantages and disadvantages.
A few TEQ design criteria follow:

• MMSE
• Maximizing shortening SNR (MSSNR)
• Maximizing channel capacity (MCC)
• Minimizing ISI (MINISI)

TEQ Design Based on MMSE Approach The MMSE design method formulates the square of the difference
between the target impulse response and the shortened impulse response as the error as shown in Figure 9.35 and
minimizes it. The MMSE design method maximizes the SNR at the TEQ output. The frequency response of the
equalizer tends to be a narrow bandpass filter placed at a center frequency, which has high SNR. The equalizer
increases the output SNR by filtering out the low SNR regions of the channel frequency response.

In this approach, we need to find a filter w with Nw taps such that the cascade of the channel h and the TEQ
w yields a shortened impulse response c, which has duration limited to (v+1) samples. The MMSE-based TEQ
solution involves computation of the minimum eigenvalue of a matrix that is dependent on channel and noise
parameters. We use either the unit energy or unit tap constraint to avoid a trivial solution. If we formulate an MSE
(with the minimum eigenvalue) that depends on effective channel delay, then the optimum TEQ corresponds to
the optimum channel delay. For more analysis on the MMSE TEQ design method, see Arslan (2000).

TEQ Design Based on MSSNR Approach In this method, we treat the TEQ design problem as a problem of
channel shortening rather than as an equalization problem. The goal is to find a TEQ that minimizes the energy of
the shortened impulse response (SIR) outside the target window by keeping the energy inside constant. Here, we
formulate shortened SNR (SSNR) with the energy ratio (energy of SIR inside the target window to the energy of
SIR outside the target window) that depends on the effective delay of the shortened impulse response. The TEQ

478 Chapter 9

0 --- --- --- L02 1 I 2 11 2 I 1 1 I 1 2 I 1v 22 I 1v 21 I 1vI

Target length
of v samples

TailTail
h

[n
]

n

Figure 9.36: Arbitrary-length channel impulse response with L0 coefficients.

solution based on maximizing the SSNR (MSSNR) involves eigenvalue decomposition, and the optimum TEQ
solution corresponds to the optimum delay. There are iterative methods to obtain the optimal TEQ in the sense
of MSSNR.

In the following, we discuss a computationally efficient divide-and-conquer TEQ (DC-TEQ) design pro-
posed in Lu et al. (2000). Let h(0) be the initial channel impulse response with L0 channel coefficients as shown
in Figure 9.36. Let v be the target impulse-response length. Let K be the length of the TEQ impulse response g[n].
The
DC-TEQ method divides the K taps of the TEQ into (K − 1) 2-tap filters, and iteratively designs each 2-tap
filter by maximizing the energy inside the target window and minimizing the energy outside the target window.

Let {[1 g1], [1 g2], . . . , [1 gK −1]} be the (K − 1) 2-tap filters. Based on Figure 9.36, the initial channel
impulse response with length L0 may be expressed as

h(0) =
[
h(0)

0
h(0)

1
· · ·h(0)

I−1
h(0)

I
h(0)

I+1
· · ·h(0)

I+v−1
h(0)

I+v
· · ·h(0)

L0−1

]
(9.134)

Then, the first iteration output of the effective channel impulse-response vector h(1)of length L1 = L0+1 after
convolving h(0)with the 2-tap vector g(1), where g(1) = [1 g1], is given by

h(1) =
[
h(1)

0
h(1)

1
· · ·h(1)

I−1
h(1)

I
h(1)

I+1
· · ·h(1)

I+v−1
h(1)

I+v
· · ·h(1)

L1−1

]
(9.135)

where h(1)
j = h(0)

j + g1h(0)
j−1.

Similarly, the i-th iteration output of the effective channel impulse-response vector h(i) of length Li = Li−1 +1
after convolving h(i−1) with the 2-tap vector g(i) , where g(i) = [1 gi], is given by

h(i) =
[
h(i)

0
h(i)

1
· · ·h(i)

I−1
h(i)

I
h(i)

I+1
· · ·h(i)

I+v−1
h(i)

I+v
· · ·h(i)

Li −1

]
(9.136)

where h(i)
j =h(i−1)

j + gih
(i−1)
j−1 .

S = {0,1,2, . . . , I − 1, I + v, I + v + 1, . . . , Li − 1} represents the set of indices of the channel response
outside the target window. The energy of the tail portion of channel after the i-th iteration is given by

E (i)
tail =

∑
k∈S

[
h(i)

k

]2 =
∑
k∈S

[
h(i−1)

k + gih
(i−1)
k−1

]2
(9.137)

We find the minimum of the quadratic function of gi in Equation (9.137) by differentiating with respect to gi ,
setting the derivative to zero, and solving for gi yields as follows:

gi = −
∑

k∈S h(i−1)
k h(i−1)

k−1∑
k∈S

[
h(i−1)

k−1

]2 (9.138)

Digital Communications 479

0 10 20 30 40 50
n

60 70 80
20.2

0

0.2

0.4

0.6

0.8

1
Shortened
Original

Figure 9.37: Actual impulse response of CSA loop-4 and its shortened impulse response by TEQ.

The computation of gi in Equation (9.138) requires two vector multiplications and one scalar division.
Figure 9.37 shows the actual impulse response of CSA-4 and a shortened impulse response by MSSNR approach
TEQ. For more information and for the computation analysis of the TEQ design approaches described here, see
Arslan (2000).

TEQ Simulation Results
In this section, we compare performance of the DMT system (shown in Figure 9.33) with and without TEQ.
Figure 9.38 shows the performance gain with TEQ. It is clear from the BER curves that the time-domain equalizer
is necessary in multicarrier modulation applications, where a standard cyclic prefix length is used to avoid ISI
and ICI. At BER = 10−1, we have a performance gain of 2 dB with TEQ. The parameters of the DMT system
used to obtain the BER curves follow:

• Total number of bits/DMT block: 408 bits
• Channel: CSA loop-4
• Cyclic prefix length: 16
• TEQ length: 5
• Total number of DMT blocks transmitted: 10,000
• Design approach used: MSSNR

The results show that without TEQ, we cannot achieve a BER below 10−2. But, in practical systems, the BER is
maintained in the range 10−7 to 10−9. To achieve these performance rates, we should use time-domain equalizers.

Frequency-Domain Equalizer
Once the effective channel impulse response, c(n), is found, the frequency-domain equalizer (FEQ) coefficients
Qk are given by the inverse of the N-point DFT of c(n), as in

Qk = 1∑N−1
n=0 c(n)e− j2πnk/N

(9.139)

In block-type pilot-based channels, the estimators are usually calculated once per block and are used until
the next pilot symbols arrive. This block-type pilot arrangement is used with wired or slow-fading wireless
systems, where the channel statistics change very slowly. For such channels, channel estimation with decision
feedback improves performance significantly, as the estimator adapts to small channel variations. The receiver
first estimates the channel conditions using the pilots, and obtains {Ĥk},0 ≤ k ≤ N − 1 using Equation (9.83).

480 Chapter 9

5 10 15 20 25
1028

1026

1024

1022

100

B
E

R

Eb/N0

Without TEQ
With TEQ

Figure 9.38: Performance of DMT system (see Figure 9.33) with and without TEQ (designed by MSSNR
approach).

Then, we shorten the channel impulse response using TEQ to make the channel delay less than the cyclic prefix
length. Let

Ĥ Q
k = 1

Qk
=

N−1∑
n=0

c[n]e− j2πnk/N

where c[n] = ĥ[n] ∗ w[n] is the shortened channel impulse response. Then the decision feedback equalization
for the k-th subcarrier can be described as follows:

1. Estimate the transmitted symbols using the current channel estimate as

X̂[k] = Y [k]/Ĥ Q
k , k = 0,1, . . . , N −1 (9.140)

2. Get the X[k] after demapping X̂ [k] to the binary data and mapping back again using the signal mapper.

3. The channel estimate Ĥ Q
k is updated by using the detector output decision X[k], as in

Ĥ Q
k = Y [k]

X[k]
, k = 0,1,2, . . . , N −1 (9.141)

Since the decision feedback equalizer assumes that the detector output decisions X[k] are correct, we cannot
use the preceding scheme with the fast-fading wireless channels. The fast-fading channel will cause the complete
loss of estimated channel parameters.

9.4.4 Channel Equalization in OFDM Systems

As previously discussed, the wireless community uses OFDM techniques to efficiently implement the multicarrier
modulation scheme. The OFDM handles frequency-selective fading resulting from delay spread by expanding
symbol duration. The increased symbol duration together with insertion of the guard interval mitigates the ISI
caused by time-dispersive fading channels. As the amount of channel dispersion (i.e., delay spread) increases,
symbol duration should also increase for two reasons—for a near-constant channel in each subchannel and
better transmission efficiency (i.e., relatively small guard interval when compared to OFDM symbol duration).
However, the longer symbol duration increases the ICI caused by Doppler spread in time-variant channels. The
coherence time of the channel reduces as the Doppler spread increases, and the assumption of a constant channel
in the single OFDM symbol interval is not valid anymore. Thus, these channel variations within the OFDM
symbol destroy the orthogonality between the subcarriers and result in ICI.

Digital Communications 481

In the OFDM, ICI is generated due to frequency offset because of imperfect synchronization, due to Doppler
spread (because of motion between the transmitter and receiver), or a combination of frequency offset and Doppler
spread. The frequency offset between the transmitter and receiver oscillators causes the loss of orthogonality
between the carriers and results in ICI. Thus, OFDM systems are very sensitive to synchronization errors. We
discuss synchronization techniques for multicarrier modulation schemes in Section 9.5. In this section, we discuss
ICI mitigation techniques that assume perfect synchronization between the transmitter and receiver oscillators
and treat the source of ICI due to the presence of Doppler spread.

ICI Cancellation
Using the discrete baseband equivalent the OFDM system model as shown in Figure 9.24 and assuming that the
channel delay spread is less than the inserted guard interval and the perfect synchronization between transmitter
and receiver, the received symbols Yk on the k-th subcarrier after demodulation can be expressed as

Yk = Hk,k Xk︸ ︷︷ ︸
Desired

+
N−1∑
l=0
l 	=k

Hk,l Xl

︸ ︷︷ ︸
ICI

+ Wk︸︷︷︸
Noise

(9.142)

where Xk is the transmitted symbol on the k-th subcarrier, Hk,k is the channel gain at the k-th carrier frequency,
Wk =∑N−1

n=0 w[n]e− j2πnk/N , and w[n] are AWGN noise samples.
In Equation (9.142), the middle term on the right-hand side is the ICI contribution due to channel time

variations within the OFDM symbol. In the discrete baseband channel model, let pi [n] represent the i-th fading
tap with delay τi , and by defining Pi [k] as the FFT of pi [n],

Pi [k] =
N−1∑
n=0

pi [n]e− j2πkn/N , 0 ≤ k ≤ N −1 (9.143)

With this, the channel matrix Hk.l can be expressed as

Hk,l = 1

N

L−1∑
i=0

Pi [l − k]e− j2πli/N , 0 ≤ l,k ≤ N −1 (9.144)

where L < Lc, L is the number of channel taps, and Lc is the cyclic prefix length.
When l = k in Equation (9.144),

Hk,k = 1

N

L−1∑
i=0

Pi [0]e− j2πki/N ,

where Pi [0] =∑N−1
n=0 pi [n] is an average value of the i-th path of the channel in one OFDM symbol duration. If

ICI is not present, then Hk,l = 0 for l 	= k and we can easily compensate channel multiplicative distortion using
a single-tap frequency-domain equalizer as in

X̂k = Yk

Hk,k
= Xk + Wk/Hk,k (9.145)

However, in the presence of ICI, first we have to cancel or mitigate the effect of the ICI before performing
frequency-domain equalization. Given Equations (9.142) and (9.144), we have

Y = HX + W (9.146)

482 Chapter 9

where Y = [Y0,Y1, . . . ,YN−1]T , X = [X0, X1, . . . , X N−1]T , W = [W0, W1, . . . , WN−1]T , and

H 5

H0,0 H0,1 H0,N21

. . .

. . .

. . .

. . .

. . .

H1,0

HN21,0 HN21,1 HN21,N21

H1,1 H1,N21. . .

. . . R3

R3

R2

R2R1 (9.147)

where the matrix elements Hk,l are obtained using Equation (9.144).
To solve X in Equation (9.146), we need to estimate the channel matrix H and calculate its matrix inverse.

Since H can be a large-sized matrix, it is difficult to compute in real time. In Jeon et al. (1999), assuming slow
multipath fading channel-tap variations in any given OFDM symbol duration, an efficient method for computing
the inverse of the H matrix is proposed. If the time variations of pi [n] for all L paths during one OFDM
symbol are small, then all L channel paths can be approximated using straight lines with small slope values. In
Figure 9.39(b), an illustration of the linear approximation for the i-th tap of a slowly varying channel is shown.
With this assumption, the ICI contribution from the channel matrix elements in the region R3 as defined in
Equation (9.147) is negligible, as most of the energy is concentrated in the neighborhood of the DC component.
This is illustrated with the time-frequency grid in Figure 9.40. Assuming all zeros in the region R3, we can
simplify the estimation of channel matrix H and computation of its inverse.

n 5 N 21

n 5 2

n 5 1

n 5 0

n 5 N 21

n 5 2

n 5 1

n 5 0
0 1 … i … L 2 1 i

Linear approximation

(a) (b)

Figure 9.39: Wireless channel tap-delay model. (a) Quasi-stationary channel (i.e., time invariant in one OFDM
symbol duration). (b) Slow time-varying channel.

N 2 1 N 2 1

N 2 1

(a) (b)

….

1

10 2

2

1

2

.

.

.

.

.

.n n

k
N 2 1….10 2

k

Figure 9.40: Wireless OFDM channel time-frequency grid. (a) Quasi-stationary channel (i.e., time invariant in one
OFDM symbol duration). (b) Slow time-varying channel.

Digital Communications 483

In Mostofi and Cox (2005), the channel matrix H is estimated assuming linear approximation to fading
channel paths. To perform linearization, knowledge of the channel path at one time instant in the symbol is
necessary. Using the pilot carriers, we estimate the average value for each channel path and assign this value to
mid-channel response within one OFDM symbol duration. With this, the pi [n] mid-value (i.e., for n = N/2−1)
can be obtained as in

pi

[
N

2
−1

]
= 1

L p

L p−1∑
k=0

Ĥμk,μk e j2π ik/L p , 0 ≤ i ≤ L p −1 (9.148)

where μk,0 ≤ k ≤ L p −1 are L p (> Lc) pilot positions, and Ĥμk,μk , the channel frequencies at pilot tones, are
estimated as follows:

Ĥμk,μk = Yμk

Xμk

= Hμk,μk + (noise+ ICI) (9.149)

Let αi denote the slope of the i-th channel tap in the current OFDM symbol. Then, assuming the linear model,
the pi [n], the i-th channel tap at n-th instant, can be calculated as

pi [n] = pi

[
N

2
−1

]
+αi

(
n − N

2
+1

)
(9.150)

The main diagonal elements of channel matrix Hk,k are merely the N-point DFT of qi . So,

Hk,k =
N−1∑
i=0

qie
− j2π ik/N (9.151)

where

qi =
{

pi
[N

2 −1
]

for 0 ≤ i ≤ L
0 for L < i < N

(9.152)

Computation of the off-diagonal elements of the channel matrix H can be simplified using Equations (9.143),
(9.144), and (9.150) as follows:

Hk,k+a =
(

1

N

N−1∑
n=0

(n +1− N/2)e− j2πna/N

)(∑
i

αi e− j2π(k+a)i/N

)
, a = ±1 (9.153)

= C (off diagonal)H (diagonal) (9.154)

where

C (off diagonal) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 c1 0 0 · · · 0 0

c−1 0 c1 0 · · · 0 0

0 c−1 0 c1 · · · 0 0

0 0 c−1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 c1

0 0 0 0 · · · c−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.155)

H (diagonal) = diag(FFT [α0, α1, . . .]) (9.156)

ca = 1

N

N−1∑
n=0

(n +1− N/2)e− j2πna = (N −1)×
{

0.5, a = 0
− 1

1−e− j2πa/N , a 	= 0
(9.157)

484 Chapter 9

and

αi =
p(curr)

i

[
N

2
−1

]
− p(prev)

i

[
N

2
−1

]
N + Lc

(9.158)

In Equation (9.158), p(curr)
i and p(prev)

i represent the i-th channel fading-tap coefficient in the mid-intervals of the
current and previous OFDM symbols. In Equation (9.154), the elements of off-diagonal matrix C are constant,
and they can be computed in advance as they depend only on the OFDM system parameters. With this, the
estimated channel matrix in Equation (9.146) can be expressed as

Ĥ = Hk,k +C (off diagonal)H (diagonal) (9.159)

With the off-diagonal matrix C (off diagonal) in Equation (9.155), the estimated channel matrix Ĥ contains
non-zero elements only in two off-diagonal array positions apart from the main diagonal array as expressed in
Equation (9.160).

5

0000000

0000000

00000000

000000

000000

000000

0000000

ˆ

hN21N21hN21N22

hN22N21hN22N22

hN23N22

h34h33h32

h23h22h21

h12h11h10

h01h00

H (9.160)

The matrix elements of Ĥ are rearranged to obtain the new matrix � as follows:

00000000

0000000
00000000

0000000

000000

0000000

0000000

000000

0000000

hN�3N�3

hN�2N�3

hN�3N�2

hN�2N�2

hN�1N�2

hN�2N�1

hN�1N�1

��
h33h32

h23

h22h21

h12h11

h22h21

h12h11

h10

h01h00

� =

⎡
⎢⎢⎢⎣

�0 0
�1

. . .
0 �N−1

⎤
⎥⎥⎥⎦

(9.161)

Then, the input–output relationship of the multipath channel is expressed using Equations (9.146) and (9.161) as

Y ′ = �X ′ + W ′ (9.162)

where

X ′ = [X ′
0 X ′

1 · · · X ′
N−3]T , X ′

i = [Xi Xi+1 Xi+2],Y ′ = [Y ′
0 Y ′

1 · · · Y ′
N−3]T ,Y ′

i = [Yi Yi+1 Yi+2],

W ′ = [W ′
0 W ′

1 · · · W ′
N−3], and W ′

i = [W ′
i W ′

i+1 W ′
i+2]

Digital Communications 485

Ignoring the noise sample contribution in Equation (9.163),

X ′ = �−1Y ′ (9.163)

where

�−1 =

⎡
⎢⎢⎢⎣

�−1
0 0

�−1
1

. . .
0 �−1

N−1

⎤
⎥⎥⎥⎦ (9.164)

Note that the size of the matrix inversion is lowered to 3×3, implying that the transmitted sequence can be
obtained with moderate computational complexity. Finally, the estimated transmitted symbols X̂2, X̂3, . . . , X̂ N−3

can be obtained by selecting the elements in the middle of X ′
i , where 1 ≤ i ≤ N − 4. The remaining symbols

X̂0, X̂1 are estimated by taking the first two elements of X ′
0, and X̂ N−2, X̂ N−1 are estimated by taking the last

two elements of X ′
N−3.

The relative Doppler frequency change, � fD , which indicates the degree of time variation of channel in any
given OFDM symbol, is defined by the ratio of the OFDM symbol duration to the inverse of Doppler frequency
(i.e., T . fD). As long as � fD is less than 0.1, the linear approximation holds good, and we will get acceptable
channel estimation results using the preceding method, as proposed in Jeon (1999).

9.4.5 Viterbi Equalizer

In Section 9.4.1, we discussed two criteria—namely zero forcing and MMSE—for designing channel equalizers.
In this section, we introduce the third approach—namely, maximum likelihood sequence estimation (MLSE).
The MLSE is a procedure for estimating a sequence of bits from a sequence of channel observations given the
channel model. The MLSE is optimal in the sense of having the lowest probability of detecting the incorrect
sequence. In the presence of ISI, the Viterbi algorithm provides an efficient way of computing the MLSE. The
equalizers based on the MLSE criterion along with the Viterbi algorithm are known as Viterbi equalizers. As
discussed in Section 3.9, the Viterbi algorithm finds the sequence at a minimum Euclidean distance from the
received signal using the predefined model’s trellis. We used the convolutional coder as a predefined model in
Section 3.9 for error correction, whereas in this section a communication channel is used as a predefined model
for channel equalization.

As discussed previously, the complexity of the Viterbi algorithm increases exponentially with the increase of
predefined model memory (e.g., the constrained length of convolutional coder determines the complexity of the
Viterbi decoder in error correction). In channel equalization, the amount of ISI (i.e., channel spread or memory)
present in the channel outputs determines Viterbi equalizer complexity. However, complexity can be reduced
by giving the Viterbi algorithm an approximate channel model with a shorter channel spread than that of the
original channel. For this, we use an equivalent model as shown in Figure 9.35 to shorten the channel before
using the Viterbi algorithm for channel equalization. The class of receivers employing this technique of linear
prefiltering of received data followed by equalization using the Viterbi algorithm is known as combined linear
Viterbi equalizers (CLVEs). The block diagram of a CLVE receiver is shown in Figure 9.41.

Since we know the L taps of shorted channel as {hi }L−1
i=0 after channel estimation and prefiltering, given a

sequence of symbols {sn}, the receiver can create noise-free channel output symbols as follows:

yNF
n =

L−1∑
i=0

hisn−i (9.165)

Figure 9.41: Block diagram of CLVE.

Channel Prefilter
Viterbi

Algorithm

Noise

sn yn

Effective Channel {hi }
of Length L Samples

486 Chapter 9

Figure 9.42: FIR filter realization of
effective channel response.

h0

sn

h1 hL22h2 hL21

yn
NF

z 21z21z21

State
21,21

21,11

11,21

11,11

21/21.157

1/20.657

21/21.057
1/20.157

21/0.157
1/1.057

21/0.657

1/1.157

h0 5 0.45
h1 5 0.857
h2 5 0.25

Figure 9.43: Steady-state trellis diagram of FIR channel for L = 3.

Let {yn} represent the received noisy channel observations at the prefilter output. The squared Euclidean
distance dSED of {yNF

n } from {yn} is given by

dSED =
∑

n

∣∣yn − yNF
n

∣∣2 =
∑

n

∣∣∣∣∣yn −
L−1∑
i=0

hi sn−i

∣∣∣∣∣
2

(9.166)

The MLSE decision then is the sequence of symbols {ŝm} minimizing the distance dSED; that is,

{ŝm} = arg min
{sm }

∑
n

∣∣∣∣∣yn −
L−1∑
i=0

hisn−i

∣∣∣∣∣
2

(9.167)

We solve Equation (9.167) with the trellis generated by using the shorted channel model as shown in
Figure 9.42. The steady-state trellis diagram of the FIR channel for L = 3 is shown in Figure 9.43. Here
the constraint length of the channel model is the same as the length of the channel L , and the memory size of
the model is L − 1 samples. The number of states present in the trellis corresponding to such a channel model
is 2L−1. Thus, the complexity of the Viterbi equalizer grows with the constraint length L of the channel.

Application of Viterbi Equalizer in GSM Systems
Next, we consider an application of the Viterbi equalizer in GSM (global system for mobile communications)
systems. The GSM communication protocol establishes the training sequence in the data packets to determine the
channel characteristics. In order to cope with the time-varying nature of mobile radio channels, GSM supports
block adaptivity by introducing a training sequence into the most frequently used normal burst (NB) as shown
in Figure 9.44. The duration of one normal burst slot is 0.577 ms. Each NB slot contains 58 message bits on each
side of 26 bits mid-amble, which is called a training sequence. The total number of bits per NB (including 6 tail
bits and 9.25 dummy bits) is 156.25, and so a 1-bit duration in GSM is about T = 3.6928 μs. The middle 16-bit
rs of the 26-bit mid-amble rt is also used for synchronization purposes. These synchronization pattern bits are
chosen such that the autocorrelation Rs[n] of the resulting binary modulated sequence rs [k] is

Rs[n] =
15∑

k=0

rs [k]rs [k +n] =
{

16, n = 0
0, n 	= 0

(9.168)

at least in the range of expected maximum echo delay τ = nT for |n| < 5.

Digital Communications 487

Training
Sequence Data Sequence Data SequenceTail

Bits
Tail
Bits

3 58 5826 3

0.577 ms

156.25 bits

Figure 9.44: Structure of normal burst in GSM systems.

The training sequence rt [n] enables the receiver to perform channel estimation and equalization. Let yt [n]
represent the channel output corresponding to the training sequence. Then,

yt [n] = h[n]⊗ rt [n] (9.169)

where h[n] is the sampled effective response of channel hc(t) and the transmitted pulse p(t) that is used to shape
the signals for minimizing the interference during the transmission. Here, we assume that the fading behavior
of the channel h[n] remains constant in the given NB slot duration. In other words, there should no fast-fading
degradation during an NB slot time when the receiver is using knowledge from the mid-amble to compensate
for the channel’s fading behavior.

At the receiver, the received sequence is passed through a matched filter with an impulse response hm [n],
which is matched to rt [n] (i.e., hm[n] = rt [−n]). The matched filter output yMF

t [n] can be written as

yMF
t [n] = hm[n]⊗ yt [n]

= hm[n]⊗ rt [n]⊗h[n]

= rt [−n]⊗ rt [n]⊗h[n]

= Rt [n]⊗h[n]

(9.170)

where Rt [n] is the autocorrelation of the training sequence rt [n]. In GSM, the training sequences (ETS, 1998)
are engineered so that Rt [n] result in a highly peaked function. Therefore, the matched filter output yMF

t [n] is a
good estimate of the complex channel h[n]. That is,

ĥ[n] ≈ yMF
t [n] (9.171)

The mathematical approximation to the metric in Equation (9.167) can be expressed with matched filter
outputs as input to the metric calculation (i.e., matched filter metric) as follows:

{b̂n} = arg max
{bn}

∑
m

bmRe

[
yMF

d [m]−
L−1∑
k=1

Skbm−k

]
(9.172)

where

yMF
d [n] =

L−1∑
k=0

ĥ∗[k]yd [k +n] (9.173)

Si =
L−1∑
k=0

ĥ[k]ĥ∗ [k + i], i = 1,2, . . . , L −1 (9.174)

Given that we know that bn are binary modulated symbols (i.e., +1 or −1), we can precompute 2L−1 possible
values of

Re

[
L−1∑
k=1

Skbm−k

]

in Equation (9.172) and store them in a look-up table. The tail bits at both ends of the NB define the start and
end states for the Viterbi algorithm. The necessary functional blocks to simulate Equation (9.172) are shown

488 Chapter 9

Extract
Training

Sequence

hm[n] Taps
are Matched to

Training Sequence
Autocorrelation

ĥ*[n]

ĥ[n]

y [n]

yt [n]

yd[n]

R
ea

l P
ar

t

2L21 Reference
Sequences

Branch
Metrics

Computation

Viterbi
Algorithm

Reference Inputs

Sk

b̂n
yd [n]MF

Figure 9.45: Functional blocks of Viterbi equalizer.

in Figure 9.45. We use a special filter (not shown) to truncate the estimated channel impulse response ĥ[n] to
a few taps (usually four to six channel taps are present after truncation). This means that in GSM, the Viterbi
algorithm performed on 8-,16-, or 32-state trellises depends on the number of taps present in the truncated channel
response.

9.4.6 Turbo Equalizer

So far, we have discussed the design of the receiver where the module’s channel equalization (CE) and channel
decoding (CD) are treated as two separate entities. However, in the literature, it has been shown that the receiver
design with modules CE and CD as a single entity performs well when compared to the receiver design in which
CE and CD are two design entities. If we treat modules CE and CD as two entities, then the CD gets only decision
outputs without a priori probability information from the CE. In order to best take advantage of the CD, the
CE has to provide decisions along with their reliability information. As CD algorithms such as turbo or LDPC
decoding provide likelihood information as an output, in turn, we can feed back this extrinsic information to the
CE and make the total process iterative. This type of equalizer structure is known as “turbo equalization” since
the extrinsic information is passed back and forth between the CE and CD in the same way as in turbo code
decoding.

Turbo equalization is motivated by turbo code breakthroughs, and has emerged as a promising technique
for drastic reduction of ISI effects in frequency-selective wireless channels. However, the trellis-based turbo
equalizer can be a heavy computational burden for wireless systems with limited processing power, especially
in cases where the wireless channel has a long delay spread (or larger ISI). In this section, we discuss two
turbo-equalization schemes—an ML/MAP criterion-based scheme with exponential computational complexity
and an MMSE criterion-based scheme with linear complexity. The difference between ML/MAP and MMSE
schemes is that the former relies on the nonlinear trellis-based processing whereas the latter can be achieved
with simple linear operations such as matrices processing.

We use the same transmitter structure with interleaver block shown in Figure 9.46 to discuss the turbo-equalizer
receiver design based on MAP and MMSE criteria. The source bits {bk} are encoded to produce the codeword
bits {cn}. Next, the bits {cn} are mapped to symbols {sn} using the BPSK modulator. The symbols are interleaved
to produce the symbol sequence {xn} before transmitting through the channel corrupted by AWGN noise and ISI.
Let {yn} represent the received symbols corresponding to the transmitted sequence {xn}. At the receiver, we will
assume a coherent symbol-spaced receiver front end as well as precise knowledge of the signal phase and symbol
timing such that the channel can be approximated by an equivalent, discrete-time, baseband model. We use the
same channel decoder structure (except for mapping functions) with both MAP and MMSE turbo-equalizer
algorithms.

Encoder BPSK
Modulator

Interleaver
P

ISI 1 Noise
Channel

bk cn sn xn
yn

Figure 9.46: Transmitter structure with interleaver block for data transmission.

Digital Communications 489

Equalizer Using
MAP Criterion

Deinterleaver
P21

Decoder Using
MAP Criterion

yn

2
1

2
1

bk
ˆ

Rp
D(sn)Re

D(sn)Re
D(xn)

Rp
E(xn) Re

E(xn) Re
E(sn)

Interleaver
P

Figure 9.47: Turbo-equalizer architecture based on MAP criterion.

Turbo Equalization Based on MAP Criterion
Given the received sequence y = {yn}, the MAP algorithm of the equalizer computes the log-likelihood ratios
(LLRs), RE

p (xn), using a posteriori probabilities Pr{xn = +1|y} and Pr{xn = −1|y} as follows:

RE
p (xn) ≡ ln

Pr{xn=+1|y}
Pr{xn=−1|y} = ln

Pr(y|xn=+1)

Pr(y|xn=−1)
+ ln Pr{xn =+1}

Pr{xn =−1}
= RE

e (xn)+ RE
a (xn)

(9.175)

where RE
e (xn) is the extrinsic information about xn contained in the received sequence {yn}, and RE

a (xn) is the a
priori information of xn and is independent from channel observations {yn}. The RE

e (xn) is generated using the
given received sequence {yn} and the a priori information of all symbols except n-th symbol (i.e., RE

a (xm),m 	= n).
After deinterleaving the extrinsic information RE

e (xn), we have the output of the deinterleaver RE
e (sn) to use as

a priori information for the channel decoder.
Given the a priori information r = {rn} = RE

e (sn) = �−1[RE
e (xn)], the MAP algorithm of the decoder

computes the LLRs using a posteriori probabilities Pr{sn = +1|r} and Pr{sn = −1|r} as

R D
p (sn) ≡ ln Pr{sn=+1|r}

Pr{sn=−1|r} = ln Pr(r |sn=+1)

Pr(r |sn=−1)
+ ln Pr{sn=+1}

Pr{sn=−1}
= R D

e (sn)+ R D
a (sn)

(9.176)

where R D
e (sn) is the extrinsic information about sn contained in {rn}, and R D

a (sn) is the a priori information of sn.
After interleaving the extrinsic information R D

e (sn), we have the output of interleaver R D
e (xn) to use as a priori

information for the equalizer. The a priori information R D
e (xn) = �[R D

e (sn)] is not available to the equalizer
for the first iteration, and we set R D

e (xn) to zero for all symbols assuming that they are equiprobable. Once we
reach the maximum iteration count Q, we extract the decoded bits b̂k from the decoder by applying the threshold
on the LLRs, R D

p (sn). The turbo equalizer based on Equations (9.175) and (9.176) is shown in Figure 9.47. For
more information on LLR computation using the trellis diagram, see Section 3.10. An example of steady-state
trellis diagram representation of the FIR channel is shown in Figure 9.43.

Turbo Equalization Based on MMSE Criterion
In contrast to the MAP approach, the MMSE-based approach performs only simple linear filter operations on the
received block of symbols {yn} to get the estimate of xn, x̂n, and then apply a mapping function on x̂n to produce
extrinsic information, RE

e (x̂n). Let us assume an MMSE linear equalizer as shown in Figure 9.48, consisting of
a filter with time-varying filter coefficients λn = [λn,−M2 ,λn,−M2+1, . . . , λn,−1,λn,0,λn,1, . . . , λn,M1−1,λn,M1]T

of length M = M1 + M2 +1. The design rule for the filter coefficients λn is to minimize the MMSE cost function
E{|xn − x̂n|2}. Let L = L1 + L2 + 1 be the length of the channel impulse response with the coefficient vector
h = [h−L2 ,h−L2+1, . . . ,h−1,h0,h1, . . . ,hL1−1,hL1]. Then the received symbol vector y

n
can be expressed as

y
n
= H xn +un (9.177)

where
y

n
≡ [yn+M2 , yn+M2−1, . . . , yn+1, yn, yn−1, . . . , yn−M1+1, yn−M1]T , an M×1 vector

xn ≡ [xn+L2+M2 , xn+L2+M2−1, . . . , xn+1, xn, xn−1, . . . , xn−L1−M1+1, xn−L1−M1]T , an (L+M−1)×1 vector

un ≡ [un+M2 ,un+M2−1, . . . ,un+1,un,un−1, . . . ,un−M1+1,un−M1]T , an M×1 vector

490 Chapter 9

H ≡

⎡
⎢⎢⎢⎢⎢⎣

h−L2 h−L2+1 · · · hL1 0 0 0 0 · · · 0
0 h−L2 h−L2+1 · · · hL1 0 0 0 · · · 0
...

...
...

. . .
...

...
. . .

...
...

...

0 0 0 0 0 0 h−L2 h−L2+1 · · · hL1

⎤
⎥⎥⎥⎥⎥⎦, an M × (L + M −1) matrix

The MMSE estimated symbol x̂n is calculated as follows:

x̂n = λHT
n y

n
+vn (9.178)

where the vector λn and the scalar vn are complex valued parameters subject to optimization, and (.)HT is the
Hermitian transpose.

The block diagram of the MMSE-based turbo equalizer is shown in Figure 9.49. The extrinsic information
R D

e (xn) from the channel decoder is demapped to obtain a priori information χn that is suitable to work with
the MMSE criterion. Once the estimated symbols x̂n are available, the extrinsic information RE

e (x̂n) from the
equalizer is obtained by using the mapping function. The complete description of MMSE estimation, mapping,
and demapping functions involves the manipulation of many mathematical equations. See Tuchler et al. (2002)
for a complete mathematical description of the MMSE-based turbo equalizer. Only the final results for the
MMSE-based equalizer follows.

Demapping

χn ≡ tanh

(
R D

e (xn)

2

)
(9.179)

where

χ
n
= [χn+L2+M2,χn+L2+M2−1, . . . ,χn+1,χn,χn−1, . . . ,χn−L1−M1+1,χn−L1−M1]T

is an (L + M −1)×1 vector.

MMSE Estimation

x̂n = λHT
n (y

n
− Hχ

n
+χnd) (9.180)

where

d ≡ H s, s ≡ [01×(L2+M2)
1 01×(L1+M1)

]T , 01×K

z21 z21 z21 z21 z21
yn1M2

yn1M221 yn1M222 yn11 yn yn21
yn2M1

λn,2M2
λn,2M211 λn,2M212 λn,21 λn,0 λn,1 λn,M1

vn

x̂n

Figure 9.48: MMSE symbol estimator with time-variant filter coefficients.

MMSE Criterion
Symbol Estimator P

21 Decoder Using
MAP Criterion

yn RE
e (ŝn)

R D
p (sn)R D

e (sn)R D
e (xn)

RE
e (x̂n)

1
P

2

b̂k
Mapper

Demapper

x̂n

MMSE Equalizer

xn

Figure 9.49: Turbo-equalizer architecture based on MMSE criterion.

Digital Communications 491

is a 1× K zero vector,

λn ≡ Z−1d

Z ≡ σ 2
u IN + H�n H HT +|χn|2d d HT

where

�n ≡ diag[(1−|χn+L2+M2 |2), (1−|χn+L2+M2−1|2), . . . , (1−|χn+1|2), (1−|χn |2),
(1−|χn−1|2), . . . , (1−|χn−L1−M1+1|2), (1−|χn−L1−M1 |2)]

in which IN is the N × N identity matrix, and σ 2
u is the estimated channel noise variance.

For the first iteration, the a priori information is not available, and we set χn = 0,∀n assuming the symbols
xn as equiprobable. Thus, for the first iteration, we can simplify the computation of Z as

Z ≡ σ 2
u IN + HH HT

Mapping

RE
e (x̂n) = 2x̂n

1−d Hλn
(9.181)

9.5 Synchronization

In a digital communication system, synchronization is an essential receiver function. Accurate timing informa-
tion must be known to the demodulator to produce reliable estimates of the transmitted data sequence. In the
previous sections, we assumed precise knowledge about the symbol phase and timing information, although
this assumption is often not explicitly stated. To have meaningful communication between the transmitter and
receiver, synchronization at various levels should first be established, depending on the type of communication
system. For example, in carrier-based communication systems, the carrier frequency is generated at the transmit-
ter by the RF oscillator and the receiver also generates the replica of the carrier signal for demodulation purpose.
We use a local RF oscillator at the receiver to generate the carrier signal.

For generation of the exact frequencies of both carrier signals at the transmitter and receiver, we must impose
a severe accuracy specification on the oscillators and this inflates the cost. If communication systems employ
less-accurate oscillators, then there will be a difference in the transmitter-generated carrier frequency and receiver-
generated carrier frequency, and this in turn results in a frequency offset between transmitted and received
generated-replica carrier signals. We estimate this frequency offset and correct it to minimize the errors in
the demodulated baseband signal. Similarly, the receiver should know about sample timing and phase (to have
proper samples to work with), and frame boundaries (to process proper data blocks) to optimally perform receiver
functions such as channel equalization, error correction, and so on.

Synchronization in communications systems has two steps—offset parameter (e.g., frequency offset, timing
offset, phase offset) estimation and correction. Typically, the offset estimation module is a signal-processing
algorithm that estimates the error between the actual transmitted signal parameter and the receiver regenerated
signal parameter. Once the offset is estimated by a corresponding algorithm, information is fed to the control
unit, usually a phase-locked loop (PLL) or equivalent function module, to generate signals with the desired
frequency, phase, and timing. In this section, we are restricted to parameter offset estimation algorithms, as the
subject of PLL control units is beyond this book’s scope. At the receiver, accurate frequency, timing, and phase
recovery are critical to obtain near optimal performance. In practice, we encounter two types of synchronizer
structures—data aided (DA), which use receiver decisions or a training sequence in computing the symbol timing
estimates, and nondata aided (NDA), which operate independent of the transmitted information sequence. In
noisy environments, the NDA structures are more robust when compared to DA structures.

9.5.1 Frequency Offset Estimation

In practice, we deal with two types of communication systems—single- and multicarrier systems. In single-carrier
communication, we modulate the baseband signal on a carrier with RF frequency and transmit the information.

492 Chapter 9

In a multicarrier system, the modulated OFDM signals are once again modulated onto an RF carrier to transmit
the information in a particular range of available broad wireless frequency spectra. Next, we discuss frequency
offset estimation for both single- and multicarrier systems.

Single-Carrier Systems
Frequency offset estimation for various single-carrier communication systems has been discussed in the literature
(Kay,1989; Luise, 1995; Mengali and Morelli, 1997; Kuo and Fitz, 1997). Here, we discuss the frequency offset
estimation in widely used burst-mode digital transmission systems such as time-division multiple access (TDMA)
systems. Let us consider an M-ary PSK modulation and AWGN channel with two-sided power spectral density
(PSD) N0/2. Assuming the correct sampling time instants, we can express the received sequence as

y[k] = ske j (2π fekT +φ) +n[k] (9.182)

where {sk} are M-PSK symbols, fe is the frequency offset, φ is constant phase offset, T is the sampling interval,
and n[k] are complex-valued AWGN samples. Since sk are unit amplitude symbols, we can eliminate the effect
of sk on y[k] by multiplying Equation (9.182) by s∗

k on both sides. With this,

r[k] = e j (2π fekT +φ)(1+u[k]) (9.183)

where r[k] = y[k]s∗
k and u[k] = n[k]s∗

k e− j (2π fekT +φ).
Now, computing the autocorrelation of sequence r[k] of length N for different lags yields

R[m] = 1

N −m

N−1∑
k=m

r[k]r∗[k −m]

= e j2πm fe T (1+η[m])

(9.184)

where

η[m] ≡ 1

N −m

N−1∑
k=m

(u[k]+u∗ [k −m]+u[k]u∗[k −m])

The frequency offset fe is then estimated as

f̂e = 1

2πT
arg

{
N−1∑
m=1

R[m]R∗[m −1]

}
(9.185)

Once we obtain the frequency offset using Equation (9.185), the effect of the frequency offset in the received
sequence y[k] is nullified by multiplying Equation (9.182) by the term e− j2π fekT .

Multicarrier Systems
As previously discussed, we use cyclic prefix-based discrete multitone (DMT) or orthogonal frequency division
multiplexing (OFDM) techniques to implement spectrally efficient multicarrier systems. OFDM system perfor-
mance mostly depends on the performance of synchronization algorithms used to find frequency offset, phase
offset, OFDM symbol timing, and so on. Although the modulated subcarriers overlap spectrally, they can be
easily recovered as long as the channel does not destroy orthogonality among the subcarriers. However, DMT
and OFDM systems are very sensitive to frequency offset caused by the oscillator instabilities and Doppler shifts
induced by the channel. The frequency offset in OFDM systems results in loss of orthogonality between subcarri-
ers, and this in turn results in symbol amplitude reduction after demodulating the signal from the subcarriers. As
the carriers are inherently closely spaced in frequency compared to channel bandwidth, the tolerable frequency
offset becomes a very small fraction of the channel bandwidth. For discussion of frequency offset estimation in
OFDM systems, see, for instance, Nogami and Nagashima (1995), Schmidl and Cox (1997), and Van de Beek
et al. (1997). In the following, we discuss a simple approach to estimate such frequency offset.

Let {xn},n = 0,1,2, . . . , N − 1 represent the OFDM modulated sequence obtained from N baseband mod-
ulated symbols {Xk},k = 0,1,2, . . . , N − 1. In other words, the sequence {xn} is obtained after taking N-point

Digital Communications 493

IDFT of {Xk}. Let L and Lc, where Lc ≥ L − 1, represent the channel {hl} length and cyclic prefix length,
respectively. Let {x ′

i} represent the N + Lc-length cyclic prefix-extended sequence of {xn}, and let {y ′
i} represent

the received noisy sequence after passing{x ′
i} through the time-dispersive channel {hl}. Let {yn} represent N-

length received noise sequence formed by removing the Lc cyclic prefix samples from {y ′
i}. With this, the noisy

sequence {yn} can be expressed as

yn = 1

N

[
N−1∑
k=0

Xk Hke j2πn(k+ε)/N

]
+un (9.186)

where Hk is the channel gain at the k-th carrier, ε is the relative frequency offset (which is defined as the ratio of
the actual frequency offset, fe , to the intercarrier spacing, � f), and un are the AWGN samples. If we repeat the
OFDM symbol with the same information, then based on Equation (9.186), the samples yn and yn+N , as long
as 0 ≤ n ≤ N −1, are related by

yn+N = yne j2πε +un+N (9.187)

Using this observation in Moose (1994), the maximum likelihood estimate (MLE) of ε, ε̂, is proposed by
repeating the OFDM symbol. Thus, the MLE estimate of relative frequency offset ε̂ follows:

ε̂ = 1

2π
tan−1

{[∑
i∈S

Im(Y1,iY
∗
0,i)

]/[∑
i∈S

Re(Y1,iY
∗
0,i)

]}
(9.188)

where

Y0,k =
N−1∑
n=0

yne− j2πnk/N , Y1,k =
N−1∑
n=0

yn+N e− j2πnk/N (9.189)

and the set S = {0,1,2, . . . , K − 1,0,0,0, . . . ,0, N − K, N − K + 1, . . . , N − 1} contains only low-frequency
carrier indices to avoid the contribution of high-frequency carrier offsets, as they are more erroneous.

9.5.2 Symbol Synchronization

We sample the received continuous-time signal to process the signal in the digital domain; for this we must know
the exact start of the sample or symbol time. In single-carrier systems, the exact sample timing can be found by
searching for the maximum “eye opening” in the down-converted, baseband modulated signal. Since the DMT
or OFDM modulated sequences are random in nature, the concepts used to calculate the sample timing for the
DMT signal are significantly different, as there is no “eye opening” where a best sampling time can be found.
In OFDM systems, we use the term “symbol” to represent the OFDM block, and it contains N time samples (or
N + Lc, including the cyclic prefix) as shown in Figure 9.50(a). Thus, for OFDM symbol synchronization, we
require information on the start of sample time as well symbol time.

The N-length OFDM modulated sequence x [n] can be obtained by taking IFFT for N baseband modulated
signals {Xk} as follows:

x [n] = 1

N

N−1∑
k=0

Xke j2πkn/N , n = 0,1,2, . . . , N −1 (9.190)

The autocorrelation of the OFDM sequence x(n) has an important property, that x(n) behaves like white
Gaussian noise in the band of operation, as shown in Figure 9.51. The autocorrelation of OFDM modulated x(n)

follows:

rxx (m) =
N−1∑
n=0

x(n)x∗(n +m)

=
{
σ 2

X if m = 0
0 if m 	= 0

(9.191)

494 Chapter 9

(b)

(a)
NLc

n th Symbol

N1Lc Samples

(n11)th Symbol(n21)th Symbol

Reference
sample

R

�

D

Figure 9.50: DMT symbol synchronization. (a) Transmitted. (b) Received.

Figure 9.51: Autocorrelation of
OFDM-modulated sequence x(n).

r x
x
(m

)

m , 0 m 5 0 m . 0

In Keller et al. (2001) and Speth et al. (1997), many correlation-based algorithms using the cyclic prefix
were suggested to achieve OFDM symbol synchronization. These correlation-based methods work well under
AWGN channel conditions at high SNRs. Their performance degrades significantly with frequency-selective
(or multipath fading) channels and with the increase of the Doppler frequency. In addition, correlation-based
methods perform poorly at low SNRs. Moreover, achieving fine synchronization is very difficult with correlation-
based techniques as the strong noise component attenuates the correlation peak at low SNRs. In Landstrom et
al. (2001) and Muller-Weinfurtner (1998), maximum likelihood (ML) and MMSE-based algorithms for OFDM
symbol synchronization are proposed, and they are computationally expensive in general. At low SNRs under
AWGN and moderately dispersive conditions, the sophisticated algorithms ML and MMSE show considerable
performance gains.

In this section, we describe both coarse- and fine-symbol synchronization techniques to identify an OFDM/
DMT symbol boundary by taking advantage of the redundant (or cyclic prefix) or training data (pilot tones)
present in OFDM/DMT symbols. We use correlation-based and simplified ML-based algorithms for obtaining
coarse symbol synchronization. The same techniques can be applied for both OFDM and DMT coarse symbol
synchronization. However, fine synchronization algorithms used for DMT are slightly different from OFDM due
to the time-varying nature of wireless channels.

Let us assume that the channel introduces a delay equal to DT (where T is the sampling interval and D
is a noninteger) as shown in Figure 9.50(b). The receiver estimates D and splits the delay into two parts—
�, to be estimated by a coarse symbol synchronization algorithm, and δ, to be estimated by a fine symbol
synchronization algorithm. In distortionless AWGN channels, we can estimate � to the nearest integer value of
D, and in that case 0 ≤ δ < 1. The symbol synchronizer detects the block of samples that belong to the same
received symbol and controls which N samples are fed to the demodulator (or FFT module). The fine symbol
synchronization guarantees timing alignment (zero phase/clock offset) of the receiver sampling clock with the
transmitter sampling clock (assuming zero-frequency offset between the clocks).

Digital Communications 495

Analog
Front End

Interpolation/
Decimation

Remove Cyclic
Prefix 1 (S to P)

Pre-FFT: Coarse
Estimation of D

D

�

Post-FFT: Fine
Estimation of D

Phase Offset
Correction 1

(P to S)

x (t) x [n]

F
F

T

Figure 9.52: Symbol synchronization with DMT systems.

Figure 9.53: Symbol timing estimation
by correlation.

n n 11 n 1 2 n 1 3

X X X X

1

Ryy[D]

Before FFT, we achieve coarse symbol synchronization with estimation of �, and this allows us to perform
demodulation. After FFT, we perform fine symbol synchronization by estimating δusing the training symbols. As
shown in Figure 9.52, we align sample time instances in the digital domain (instead of using PLL) by performing
interpolation and decimation on the received samples.

Coarse Symbol Synchronization
Given that we are not using any training data with the correlation-based or ML-based algorithms, these methods
come under NDA schemes. The autocorrelation property of the OFDM modulated sequence x [n] given in
Equation (9.191) and the redundant cyclic prefix in the transmitted sequence are mostly useful for achieving
coarse symbol synchronization at the receiver. Let y[n] be the received discrete baseband equivalent of the
OFDM sequence corresponding to the transmitted sequence x [n], which can be expressed as

y[n] =
L−1∑
i=0

hi x [n − τi]+w[n] (9.192)

where {hi} are L channel coefficients, τi are channel delays, and w[n] are AWGN samples. The length of channel
L is assumed to be less than the cyclic prefix length Lc. The coarse symbol synchronization techniques discussed
in this section assume that the channel is quasistationary (i.e., channel characteristics remain unchanged during
one OFDM symbol interval) and that there is a zero-frequency offset between transmitter and receiver clocks.

Correlation-Based Coarse Symbol Synchronization
We estimate coarse-symbol timing by using the correlation of observed data and reference data (here reference
data can be a shifted version of received data) as follows:

Ryy[D] =
∑

n

(
Lc−1∑
m=0

y[(m +n(N + Lc)+ D)T]y∗[(m +n(N + Lc)+ N + D)T]

)
(9.193)

The algorithm in Equation (9.193) correlates the received sample sequence y[n] with the N-samples shifted
version of the same sequence. As the OFDM symbols contain a cyclic prefix of length Lc, Lc consecutive samples
are pair-wise correlated with Lc other consecutive samples, N samples ahead, in the received OFDM sequence.
The value of D, for which Ryy[D] attains the maximum, gives the estimation of coarse symbol timing, �.
Figure 9.53 shows how Ryy[D] can be computed at the receiver for a fixed value of δ.

496 Chapter 9

Given Equation (9.193), we obtain the coarse symbol timing information �C R from correlation metric Ryy[D]
as follows:

�C R ≈ arg max
D

Ryy[D] (9.194)

ML-Based Coarse Symbol Synchronization
As the performance of correlation-based methods degrades significantly at low-channel SNRs or with dispersive
channel conditions, ML-based methods are preferred over correlation-based methods for coarse symbol syn-
chronization. In Van de Beek et al. (1997), assuming zero-frequency offset, the following ML estimation metric
for coarse symbol synchronization is derived:

�[D] = Re{Ryy[D]}−αPyy[D] (9.195)

where

Pyy[D] = 1

2

∑
n

(
Lc−1∑
m=0

|y[(m +n(N + Lc)+ D)T]|2 +|y[(m +n(N + Lc)+ N + D)T]|2
)

(9.196)

α = SNR

SNR+1
(9.197)

Given Equation (9.195), the ML estimation of coarse symbol timing �, �M L , is

�ML = arg max
D

�[D] (9.198)

As discussed previously, the ML-based coarse symbol synchronization is computationally very expensive. In
Van de Beek et al. (1995), a low-complexity ML-based, coarse symbol synchronization method is proposed, and
using this approach, we incorporate the sign-quantized information in building the coarse-symbol timing metric
�s [D], as follows:

�s[D] =
∑

n

Lc−1∑
m=0

(2g D
m −1) (9.199)

where

g D
m =

{
1 if sgn(y[(m +n(N + Lc)+ D)T]) = sgn(y[(m +n(N + Lc)+ N + D)T])

0 if sgn(y[(m +n(N + Lc)+ D)T]) 	= sgn(y[(m +n(N + Lc)+ N + D)T])
(9.200)

The sign-quantized ML estimation of coarse symbol timing �, �SML, is then obtained as follows:

�SML = arg max
D

�s [D] (9.201)

The performance of metrics �s [D] and Ryy[D] for the single Tu6 channel with 150-Hz Doppler at SNR = 0 dB
is shown in Figure 9.54(a) and (b).

There is usually some tolerance for symbol timing error when a cyclic prefix is used to avoid ISI and ICI. As
long as the error between actual delay D and estimated coarse symbol timing value � is less than the difference
between channel length (L) and cyclic prefix length (Lc), we will have a scope to correct the residual timing
error with the fine symbol synchronization algorithms.

Fine Symbol Synchronization
Once we estimate the coarse symbol timing with the estimation error within the range, we work in the frequency
domain to compensate for residual symbol timing error using fine symbol synchronization techniques. In DMT
systems, the time characteristics of the twisted-pair channel vary quite slowly, and there are very few pilot tones to
work with, whereas in OFDM systems, multipath channel characteristics change rapidly and we also have many
pilot tones to take advantage of in residual symbol timing error estimation. Thus, the fine symbol synchronization
techniques used for the DMT system are slightly different from the ones used with OFDM systems.

Digital Communications 497

(a) (b)

40

38

36

34

32

30

28

26

24

22
0 10 20 30 40 50 60 70 80 90 100 0

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

10 20 30 40 50 60 70 80 90 100

R
yy

[D
]

D

L
s
[D

]

D

Figure 9.54: Performance of coarse symbol timing-recovery metrics. (a) Sign-quantized ML-based metric.
(b) Correlation-based metric.

DMT Systems
In DMT systems, with zero frequency offset it is possible to estimate the coarse symbol timing � to the nearest
integer value of the delay D introduced by the channel. In other words, the residual symbol timing error δ is a
fraction and lies in the range 0 ≤ δ < 1. If we represent the discrete time equivalent of the channel when sampling
with phase δ by h(δ), then the k-th output of the DFT (or demodulator) can be expressed as an

k Hk(δ), where H(δ)

is the DFT of h(δ). The effect of a sample phase shift δ results in a rotation of the DFT outputs. In brief, this
means,

an
k Hk(δ) = an

k Hk(0)e j2πkδ/N (9.202)

This shows that a sample phase shift can be compensated in the digital domain by rotating each DFT output
over an angle proportional to the carrier index and the phase shift δ.

The phase shift δ can be estimated from the pilot tone with a known phase. Let K be the pilot tone carrier
index; its phase is assumed to be zero or some constant, and its amplitude is 1 at the time of transmission. At
the receiver, after estimating the coarse symbol timing, we know what samples should go to the demodulator,
DFT. Then, using the DFT output Y [k], the phase deviation of the n-th DMT symbol pilot tone can be computed
using the following relationship:

φn = tan−1 Im(Y [K])

Re(Y [K])
(9.203)

However, the phase φn computed using Equation (9.203) is not exactly equal to the actual phase shift δ, as
the transmitted signal is corrupted by background noise (AWGN); it is a random variable with some non-zero
variance and the mean is equal to probable actual phase shift δ. So, the actual phase shift is given by the ensemble
average of φn . Therefore,

δ =
∑

n

φn (9.204)

Then, with the estimated sample timing or phase offset δ, we can correct the sampling phases of each output of
the DFT by using the following formula:

Z [m] = Y [m]e− jmδ/K (9.205)

where Z [m] represents the demodulated output with corrected phase offset (or residual symbol timing error).
Now we provide few simulation results for the DMT system fine-symbol synchronization assuming that

the residual symbol timing error δ is a fraction in the range 0 ≤ δ < 1. Figure 9.55(a) shows the 16-point
QAM constellation diagram of the transmitted signal on a particular carrier at an SNR of 28 dB. Figure 9.55(b)
shows the rotation of constellation points due to the presence of a 20% phase shift in the received signal.
Figure 9.56(a) shows the derotation of constellation points after the phase offset correction using a single

498 Chapter 9

(a) (b)

21.5 21 20.5 0 0.5 1 1.5
21.5

21

20.5

0

0.5

1

1.5

Real Axis

21.5 21 20.5 0 0.5 1 1.5
21.5

21

20.5

0

0.5

1

1.5

Real Axis

Im
ag

in
ar

y
A

xi
s

Im
ag

in
ar

y
A

xi
s

Figure 9.55: Constellation diagram of data on a particular carrier at SNR = 28 dB. (a) Received sequence with
zero-phase offset. (b) Rotation of constellation points due to 20% phase offset in received sequence.

(a)

21.5 21 20.5 0 0.5 1 1.5
21.5

21

20.5

0

0.5

1

1.5

Real Axis

Im
ag

in
ar

y
A

xi
s

Im
ag

in
ar

y
A

xi
s

(b)

21.5 21 20.5 0 0.5 1 1.5
21.5

21

20.5

0

0.5

1

1.5

Real Axis

Figure 9.56: Constellation diagram of derotated data on a particular carrier at SNR = 28dB after 20%
phase-offset correction. (a) Using a single estimate. (b) Using an average of eight estimates.

(a)

8 10 12 14 16 18 20 22 24

100

1022

1024

1026

1028

Eb /N0 Eb /N0

B
E

R

B
E

R

(b)

8 10 12 14 16 18 20 22 24

100

1022

1024

1026

1028

Without correction
With correction

With single estimate phase offset correction
With average of 8 estimates phase offset correction
Without phase offset

Figure 9.57: Performance of DMT system. (a) With and without 10% phase correction. (b) With 10% phase
correction using a single estimate and an average of eight estimates (solid curve represents zero-phase offset).

estimate. Figure 9.56(b) shows the derotation of constellation points after the phase offset correction using an
average of eight estimates. Figure 9.57(a) shows performance of the DMT system with and without phase offset
correction. Finally, Figure 9.57(b) shows DMT system performance with phase offset correction using a single
estimate and an average of eight estimates.

Digital Communications 499

OFDM Systems
In Speth et al. (1997, 1999), the following simplified metric based on the ML principle for OFDM fine symbol
synchronization is derived:

�H (m) =
∑
k∈P

|H̃l,k(m)|2 (9.206)

where P is the set of subcarriers bearing the scattered pilots and H̃l,k(m) is the channel transfer function at pilot
positions belonging to P . In the DVB-H, these scattered pilots P are transmitted with boosted power level 4/3,
and therefore the channel at these pilot positions will not be severely affected by channel impairments. �H (m)

is the accumulated energy of the channel at pilot positions P . The fine symbol synchronization is the offset d
where �H(d) is the maximum. Given that we are assuming the residual symbol timing error spans more than
one sample interval in OFDM systems, we use the notation d instead of δ for residual error. Since the metric
is fully coupled with the channel, its performance degrades significantly at low SNRs with multipath and high
Doppler.

To reduce the effect of channel conditions, only the real part of the channel transfer function at pilot positions
P is considered for the metric. This new metric �HR(m) is defined as

�HR(m) =
∑
k∈P

|real{H̃l,k (m)}| (9.207)

Performance of the metrics �H(m) and �HR(m) with the known starting position of pilots is shown in
Figure 9.58(a) and (b). With the metric given in Equation (9.207), a significant peak is achievable in the worst
channel conditions. In addition, computationally this metric is very simple, as it involves only real-number
additions.

With the fine-symbol timing metric given in Equation (9.207), we must know the scattered pilots starting
index. In the DVB-H standard, OFDM symbol number indicates the starting position of scattered pilots in the
OFDM symbol. The position pk of scattered pilots is given by the expression

pk = Kmin +3(l mod 4)+12p (9.208)

where l is the OFDM symbol index (ranging from 0 to 67) in a DVB-H frame, p ≥ 0, pk ∈ [Kmin, Kmax], Kmin = 0,
and Kmax = 1704,3408, and 6816, for 2k, 4k, and 8k modes, respectively.

The scattered pilots are used for channel estimation; the starting index of scattered pilots is also required here.
To know the starting position of scattered pilots in the OFDM symbol, we must identify the index of the OFDM
symbol as given in Equation (9.208). But the OFDM symbol index is only obtained with the TPS data, which in
turn is obtained after channel estimation.

(a) (b)

3698

3696

3694

3692

3688

3690

3686

3684

3682

3680

3678
0 20 40 60 80 100 120 140

L
H

 (m
)

3000

2800

2600

2400

2200

2000

1800
0 20 40 60 80 100 120 140

L
H

R
 (m

)

m m

Figure 9.58: Performance of ML-based, fine symbol synchronization metrics. (a) ML with absolute number
additions. (b) ML with real number additions.

500 Chapter 9

In Schwoerer (2004), without waiting for channel estimation and TPS data extraction, which takes about 80
to 85 ms in 8k mode, two scattered pilot synchronization algorithms—power based and correlation based—are
proposed to get the starting position in about 10 ms. However, these algorithms involve complex multiplications
and absolute squaring computations. Instead, the fine symbol synchronization metric given in Equation (9.207)
can be used for fast scattered pilot-position synchronization. The modified power-based, fast scattered pilot
synchronization can be obtained with only additions as follows:

Pm,0 =
Pmax∑
p=0

|real{H̃l,12 p(m)}|

Pm,1 =
Pmax∑
p=0

|real{H̃l,12 p+3(m)}|

Pm,2 =
Pmax∑
p=0

|real{H̃l,12 p+6(m)}|

Pm,3 =
Pmax∑
p=0

|real{H̃l,12 p+9(m)}|

(9.209)

where Pmax = 141,283, and 567 for 2k, 4k, and 8k, respectively.
Let P0, P1, P2 and P3 correspond to the maximums of Pm,0, Pm,1, Pm,2 and Pm,3 over m. Then the starting

position of scattered pilots in the OFDM symbol is given by 3I , where the value of I is given by

I = arg max
i

Pi (9.210)

The fine symbol synchronization metric �HR(m) computed using Equation (9.207) may not always result in a
clear peak, as scattered pilot positions are not known in advance. Here, an alternate fine symbol synchronization
metric �HRn(m) is computed with the learning of the scattered pilot position from Pm,0, Pm,1, Pm,2 and Pm,3 as
follows:

�HRn(m) = max(Pm,0, Pm,1, Pm,2, Pm,3) (9.211)

In this way, both fine symbol synchronization and fast scattered pilot synchronization can be achieved with
one-time computations.

Symbol Synchronization Computational Complexity
In the OFDM-symbol coarse, fine, and fast scattered-pilot synchronization metrics, almost all the operations
are additions. Typically, more than one OFDM symbol is used in achieving the symbol synchronization. The
following computational complexity analysis assumes that the OFDM symbol synchronization is achieved with
a single OFDM symbol.

Coarse Symbol Synchronization In coarse symbol synchronization, the metric �s(D) is usually computed
with the two windows of L samples separated by N samples by summing the matched sign-quantized values
over L samples and moving the windows one sample at a time over N samples while increasing D by 1. This
requires overall L N additions and L N right-shift operations apart from comparison operations. To reduce the
number of operations, coarse symbol synchronization is achieved in two steps as shown in Figure 9.59.

First, compute the metric �s(D) at D = 100 · a, where a = 0,1 . . . (N + L + 100)/100. Then find the value
of u where �s(100 ·u) is maximum. Next, compute the metric �s(D) again in the range (u −2)100 to (u +2)100
at m = (u −2)100 +10b, where b = 0,1 . . . (u +2)10. Now, find the value of v where �s(10 ·v) is maximum.
Then the total offset index D for the coarse symbol synchronization is (u − 2)100 + v10. In this way, the
coarse symbol synchronization is achieved within ±20 samples, and the total number of additions or right shifts
reduces to L(N + L + 100)/100 + 40L . In the same two-step method, the correlation-based metric Ryy[D]
requires L(N + L +100)/100 +40L complex multiplications and L(N + L +100)/100 +40L additions.

Fine Symbol Synchronization Typically, the fine symbol synchronization algorithms work with the data after
demodulation, which involves DFT. In this analysis, DFT computations are not considered. Assuming the
availability of demodulated complex symbols, the proposed fine OFDM-symbol synchronization algorithm

Digital Communications 501

Figure 9.59: Two-step coarse symbol
synchronization.

L N

D�100 · a

N

Step I: Coarse (�/�200s)

Step II: Coarse (�/�20s)

10

100

D�10 · b

Random
Starting

Reference Sequence CP

involves only real additions. The number of additions required is given by R · Pmax where Pmax is the number of
scattered pilots present in the OFDM symbol and R is the number of points for which the metric is computed.

Scattered Pilot Synchronization Fast scattered pilot synchronization also involves the DFT operation and is
not considered in this analysis. Assuming the availability of demodulated complex symbols, the scattered pilot
synchronization algorithm involves only addition. The number of additions is given by 4RPmax, where Pmax is
the number of scattered pilots present in the OFDM symbol and R is the range of samples the window moved.

Simulation Results
The simulations are carried out with single Tu6 and double Tu6 channels and the entities for the same follow:

Single Tu6

hi = [10−3/20,1,10−2/20,10−6/20,10−8/20,10−10/20]

τi = [0, 2, 5, 15, 21,46]

D(i)
f = [90, 150, 89, 99, 101, 100]

M = 8

Double Tu6

hi = [10−3/20,1,10−2/20,10−6/20,10−8/20,10−10/20,10−18.5/20,

10−15.5/20,10−17.5/20,10−21.5/20,10−23.5/20,10−25.5/20]

τi = [1, 3, 6, 16, 22,47, 1793, 1795, 1798, 1809, 1816, 1843]

D(i)
f = [90, 150, 78, 99, 120, 51, 70, 120, 48, 69, 90, 21]

M = 16

where hi , τi , D(i)
f and M correspond to the channel gains, delays for each channel gain, Doppler frequency with

each channel gain in Hz, and the iteration count for the Jakes model, respectively. The values of the parameters
N and L used are 8192 and 2048, respectively.

The two-step coarse symbol synchronization is simulated as described in Figure 9.59. For the single Tu6
channel at SNRs 5 dB and −5 dB, the plots in Figure 9.60 show the presence of clear peaks with the sign-quantized,
ML-based method when compared to the correlation-based method. Figure 9.61 shows the performance of the
fine symbol synchronization algorithm metrics �H [m] and �HR[m] at SNRs 5 dB and −5 dB with the double
Tu6 channel. The overall performance of symbol synchronization algorithms is evaluated at various SNRs
with respect to the existing algorithms for both single Tu6 and double Tu6 and for AWGN channels. The

502 Chapter 9

3.3

3.2

3.1

3

2.9

2.8

2.7

2.6

2.5

2.4
0 10 20 30 40 50 60 70 80 90 100

R
yy

 (1
00

m
)

(e)
m

3.24

3.22

3.2

3.18

3.16

3.14

3.12

3.1

0 5 10 15 20 25 30 35 40
3.08

R
yy

 (1
0

m
)

(f)
m

0

12.4

12.2

12

11.8

11.6

11.4

11.2

11

10.8
10 20 30 40 50 60 70 80 90 100

R
yy

 (1
00

m
)

(g)
m

0 5 10 15 20 25 30 35 40

11.9

11.88

11.86

11.84

11.82

11.8

11.78

11.76

11.74

R
yy

 (1
0

m
)

(h)
m

47

46.5

45.5

44.5

43.5

46

45

44

43
0 5 10 15 20 25 30 35 40

L
s (1

0
m

)

(b)
m

54
52
50
48
46
44
42
40
38
36
34

0 10 20 30 40 50 60 70 80 90 100

L
s (1

00
m

)

(c)
m

46.8
46.6
46.4
46.2

46
45.8
45.6
45.4
45.2

45
44.8

0 5 10 15 20 25 30 35 40
L

s (1
0

m
)

(d)
m

80

70

60

50

40

30

20
0 10 20 30 40 50 60 70 80 90 100

L
s (1

00
m

)

(a)
m

Figure 9.60: Coarse symbol synchronization using sign-quantized, ML-based, and correlation-based metrics with a
single Tu6 channel. (a), (e) Step-I CS with single Tu6 channel at SNR = 5 dB. (b), (f) Step-II CS with single Tu6
channel at SNR = 5 dB. (c), (g) Step-I CS with single Tu6 channel at SNR = −5 dB. (d), (h) Step-II CS with single
Tu6 channel at SNR = −5 dB.

simulations are carried out over 100 times for every SNR, and the success rate of symbol synchronization or
correct detection of the symbol boundary is counted. Figure 9.62(a) shows the performance of the sign-quantized
ML metric and correlation-based metric achieved in two steps for the OFDM coarse symbol synchronization
within ±20 samples. The performance of OFDM fine symbol synchronization for the same offset with the metrics

Digital Communications 503

L
H

 (m
)

(c)

0
5015

5020

5025

5030

5035

5040

5045

5050

20 40 60 80 100 120 140

L
H

R
 (m

)

(a)

(d)

(b)

0
2800

3000

3200

3400

3600

3800

4000

4200

20 40 60 80 100 120 140
m

m

m

m

L
H

R
 (m

)
L

H
 (m

)

0
4100

4200

4300

4400

4500

4600

4700

4800

20 40 60 80 100 120 140

0
6975

6990
6985
6980

6995
7000
7005
7010
7015
7020

20 40 60 80 100 120 140

Figure 9.61: Fine symbol synchronization using sign-quantized, ML-based, and correlation-based metrics with a
double Tu6 channel, (a) FS with metric �HR(m) at SNR = 5 dB. (b) FS with metric �HR(m) at SNR = −5 dB.
(c) FS with metric �H(m) at SNR = 5 dB. (d) FS with metric �H(m) at SNR = −5 dB.

100

C
or

re
ct

 D
et

ec
tio

n
C

ou
nt

SNR (dB)

80

60

40

20

0

25 0 5 10 2015 25 25 0 5 10 2015 25

absML (1/210s)
absML (1/215s)

realML (1/20s)
absML (1/20s)
absML (1/25s)

CR
ML

(a)
SNR (dB)

100

C
or

re
ct

 D
et

ec
tio

n
C

ou
nt

80

60

40

20

0

(b)

Figure 9.62: Performance of symbol synchronization metrics at various SNRs. (a) CS with �s[D] (or
sign-quantized ML) and Ryy[D] (or correlation) metrics for 2Tu6 channel. (b) FS with �HR(m) (or ML with real
part) and �H(m) (or ML with absolute values) metrics for Tu6 channel.

�H(m) and �HR(m) for a given fixed, coarse symbol synchronization offset is shown in Figure 9.62(b). From
this, improved performance is clear with the sign-quantized ML metric, �s[D], and the ML with real-channel
metric, �HR(m), over the correlation metric, Ryy[D], and ML with the absolute channel metric, �H (m), in
achieving coarse and fine OFDM-symbol synchronization.

Frame Synchronization
In DMT or OFDM systems, a frame is formed with many DMT or OFDM symbols (e.g., in DVB-H systems, one
frame is formed with 68 OFDM symbols); thus we may be required to identify frame boundaries for extracting
the correct frame data/overhead information. In DVB-H systems, the standard specifies the synchronization word
as part of the TPS (transmission parameter signaling), and we can use this synchronization pattern as a reference
to identify the frame boundaries. In Chiani and Martini (2005, 2006), an algorithm based on the generalized
likelihood ratio test (GLRT) for finding the frame boundaries in AWGN channels with unknown data distribution

504 Chapter 9

and with the known synchronization pattern was proposed and its performance analyzed. Like the sign-quantized
ML metric �s[D], the GLRT metric �g[D] also takes the sign information of received and reference sequences
into account in computing the metric. Similar performance is achieved with both metrics, and the computational
complexity of the two algorithms is also the same.

9.6 Simulation Techniques

This section describes a few techniques to efficiently implement previously discussed digital communication
algorithms. As simulation techniques and C code are provided for most algorithms elsewhere in this book, here
we focus only on a few techniques to efficiently implement commonly used basic mathematic operations, such
as division and square root, with the algorithms discussed in this chapter. The commonly used algorithms are
identified and reappear in the exercise section on the companion website so that readers can experiment and
practice implementation.

Implementation of nonlinear mathematical operations (e.g., division, square root, and one over square root)
on the fixed-point processor is really an interesting task. The two important issues we face in implementation
of this type of operation are implementation complexity (in terms of cycles and memory) and accuracy (how
close the fixed-point implementation output is when compared to floating-point implementation). Typically, we
implement these operations by successive approximation algorithms (e.g., Newton Raphson [NR]) by choos-
ing the initial “seed” value. We use the analytic method or look-up table to obtain a good initial seed value.
Here, we follow the look-up table method to get that value. The output accuracy of fixed-point implementation
depends on many factors—initial seed value, number of iterations, data format chosen, and precision of processor
registers.

9.6.1 Division

We can perform the division P/Q of two numbers P and Q, by first computing 1/Q, and then multiplying the
result by P . We compute 1/Q using the NR successive approximation method. The algorithm used with NR to
compute y = 1/x is given as yi+1 = yi(2 − x yi) with y0 equal to the initial seed value from the look-up table.

For an arbitrary value of x , we require more memory for the look-up table to store more accurate initial seed
values. By normalization of input (i.e., denominator Q) to the NR algorithm, we can minimize the memory
requirement, and at the same time obtain better initial seed values. With the normalization, we make sure that
the range of the input is between 1 and 2 as described here:

2n ≤ Q < 2n+1

2n ≤ 2nq < 2n+1
(9.212)

where q is a real number and

1 ≤ q < 2 (9.213)

or

1

2n
≥ 2−n y >

1

2n+1
where y = 1

q
, 1 ≥ y > 0.5 (9.214)

Thus, P/Q ≈ 2−n Py. The question is how to find y with a minimum number of operations. The final accuracy
of division P/Q depends on how accurately we obtain the value of y using NR. With each iteration, we double
the accuracy of y. For example, if we choose the initial seed value y0 with 7 bits of accuracy, then with one
iteration of NR method, we will have y1 with 14 bits of accuracy and after two iterations we will have y2 with
28 bits of accuracy. Here, we have a trade-off between accuracy and complexity (i.e., cycles, memory). With
128 initial seed values and two NR iterations, we can have division output with accuracy up to 28 bits. For initial
seed values, the y in the range [1, 0.5) is divided into 128 equal segments and assigned to 128 look-up table
entries. The precomputed 128 initial seed values in 1.31 format is given in the table _div_int_seeds[].

Digital Communications 505

unsigned int DivInt(unsigned int a, unsigned int b)
{

int i;
unsigned int c,d,e,f,g,h;
i = 0;
while ((b&0x80000000) == 0){ // lead zeros

b = b << 1;i++;
}
c = b; c = c >> 24; i-= 28;
d = _div_int_seeds[c-128]; // get initial seed value
// first iteration
c = b & 0xffff; e = d & 0xffff;
f = d >> 16; h = b >> 16;
g = h * f; h = h * e; c = c * f; // w * c
h = (h+32768) >> 16; c = (c+32768) >> 16;
g = g + c + h;
h = 0x80000000-g; // 2-w*c
c = h & 0xffff; e = d & 0xffff;
f = d >> 16; h = h >> 16;
g = h * f; h = h * e; c = c * f; // c*(2-w*c)
h = (h + 32768) >> 16; c = (c + 32768) >> 16;
h = g + c + h;
d = h << 2;
// second iteration
c = b & 0xffff; e = d & 0xffff;
f = d >> 16; h = b >> 16;
g = h * f; h = h * e; c = c * f; // w*c
h = (h +32768) >> 16; c = (c +32768) >> 16;
g = g + c + h;
h = 0x80000000-g; // 2-w*c
c = h & 0xffff; e = d & 0xffff;
f = d >> 16; h = h >> 16;
g = h * f; h = h * e; c = c * f; // c*(2-w*c)
h = (h +32768) >> 16; c = (c +32768) >> 16;
h = g + c + h;
// multiply with numerator
c = h & 0xffff; e = a & 0xffff;
f = a >> 16; h = h >> 16;
g = h * f; h = h * e; c = c * f; // P*(1/q)
h = (h +32768) >> 16; c = (c +32768) >> 16;
h = g + c + h;
if (i<0){ // P*(1/q)*2ˆ-n

i = -i;
h = h >> i;

}
else

h = h << i;
return h;

}

Pcode 9.2: Fixed point simulation code for unsigned integer 32-bit division.

The simulation code for this division is given in Pcode 9.2. Each iteration of the NR method for division
consumes 4 cycles on the reference embedded processor, and about 24 cycles are required to perform the total
division operation with two NR iterations using the normalized denominator value.

9.6.2 Square Root

The square root of a number x ,
√

x , can be obtained as x/
√

x . We can use the NR method to compute
√

Q
efficiently in the same way as previously discussed:

22n ≤ Q < 22(n+1) (if Q > 1) (9.215)

22(−n−1) ≤ Q < 2−2n (if Q < 1 and Q > 0) (9.216)

506 Chapter 9

Here, we discuss the process for the case Q >1, similar equations can be derived for the Q < 1 case as well:

22n ≤ 22nq < 22(n+1)

where q is a real number, and

1 ≤ q < 4 (9.217)

or

2n ≤ 2n y < 2n+1

where

y = √
q, 1 ≤ y < 2 (9.218)

Then,
√

Q ≈ 2n y. For this, we first compute z = 1/
√

q and then compute y as y = q × z. To obtain just 1 over
the square root of Q, we compute it as

√
1/Q ≈ 2−n z. The NR algorithm used for computing 1 over the square

root is zi+1 = zi (3 − qz2
i)/2. Here, also we get the initial seed value z0 from the look-up table. The 192 initial

seed values stored in the look-up table are given in _sqrt_int_seeds[]. The simulation code for computing 1 over
the square root is given in Pcode 9.3.

9.6.3 Matrix Inversion

The literature contains many approaches to find the inverse of a given matrix depending on its properties. In
signal processing and digital communications, we often encounter matrices that are formed with the correlation
of data. These matrices are special in the sense that they are symmetric and positive definite. Given a symmetric,
positive definite matrix A ∈ C N×N , a special factorization method, called Cholesky decomposition, factorizes
the matrix into lower- and upper-triangular matrices with a relatively small number of computations. Instead of
finding arbitrary lower and upper triangular matrices L and U , as in LU decomposition method, the Cholesky
decomposition constructs a lower triangular matrix L whose transpose can itself serve as the upper triangular
part. In other words, L L H = A, where (.)H is a Hermitian transpose operation. If A = [aij] and L = [li j] where
li j = 0 for i < j , then elements li j are computed as

lii =
√√√√aii −

i−1∑
k=1

lik l∗ik , for i = j (9.219)

l j i = 1

lii

(
a ji −

j−1∑
k=1

lik l∗j k

)
, for i > j (9.220)

The simulation code given in Pcode 9.4 computes a lower triangular matrix L using Equations (9.219) and
(9.220) for matrix A with real elements.

After computing the lower triangular matrix L , the two problems—solving the linear system equation and
finding the matrix inverse—can be solved in a more or less similar way. Let A ∈ RN×N be a symmetric and
positive definite matrix; then Ax = b and L LT x = b:

Ly = b, where y = LTx (9.221)

The system Ly = b is solved by forward substitution, whereas LT x = y is solved by back substitution methods.
The simulation code for forward substitution is given in Pcode 9.5; the simulation code for backward substitution
is similar to that of forward substitution but uses different indexing. The computational complexity of linear
system solving via Cholesky decomposition (for N = 18) is given in Table 9.2.

Similarly, the inverse of lower triangular matrix L can be easily computed. Let G = L−1; elements of the
inverse matrix G, g ji , are obtained from L = [l j i] as follows:

g ji =
⎧⎨
⎩

1/lii if i = j

− 1

l j j

j−1∑
k=i

l j k gki if i < j
(9.222)

Digital Communications 507

unsigned int SqrtInt(unsigned int b)
{

int i;
unsigned int a,c,d,e,f,g,h;
a = b; i = 0;
while ((b & 0 x 80000000) == 0){ // lead zeros,

b = b << 1;
i++; } // or i = 32-(int) (log2(b) + 1);

c = b >> 25;
d = _div_int_seeds[c-64]; // get initial seed value
// first iteration
c = b & 0xffff; e = d & 0xffff;
f = d >> 16; h = b >> 16;
g = h * f; h = h * e; c = c * f; // w*c
h = (h+32768) >> 16; c = (c+32768) >> 16;
g = g + c + h;
g = g << 1;
c = g & 0xffff; e = d & 0xffff;
f = d >> 16; h = g >> 16;
g = h * f; h = h * e; c = c * f; // w*c*c
h = (h+32768) >> 16; c = (c+32768) >> 16;
h = g + c + h;
h = 0xc0000000-h; // 3-w*c*c
c = h & 0xffff; e = d & 0xffff;
f = d >> 16; h = h >> 16;
g = h * f; h = h * e; c = c * f; // c*(3-w*c*c)
h = (h + 32768) >> 16; c = (c + 32768) >> 16;
h = g + c + h;
d = h << 1;
// second iteration
c = b & 0xffff; e = d & 0xffff;
f = d >> 16; h = b >> 16;
g = h * f; h = h * e; c = c * f; // w*c
h = (h+32768) >> 16; c = (c+32768) >> 16;
g = g + c + h;
g = g << 1;
c = g & 0xffff; e = d & 0xffff;
f = d >> 16; h = g >> 16;
g = h * f; h = h * e; c = c * f; // w*c*c
h = (h+32768) >> 16; c = (c+32768) >> 16;
h = g + c + h;
h = 0xc0000000-h; // 3-w*c*c
c = h & 0xffff; e = d & 0xffff;
f = d >> 16; h = h >> 16;
g = h * f; h = h * e; c = c * f; // w*c*(3-w*c*c)
h = (h + 32768) >> 16; c = (c + 32768) >> 16;
h = g + c + h;
h = h << 1;
// multiply with numerator
c = h & 0xffff; e = a & 0xffff;
f = a >> 16; h = h >> 16;
g = h * f; h = h * e; c = c * f; // P*(1/q)
h = (h +32768) >> 16; c = (c +32768) >> 16;
h = g + c + h;
i = 32-i; // z*2ˆ-n
i = i >> 1;
h = d >> i;
return h;

}

Pcode 9.3: Fixed point simulation code for one over square root.

The simulation code for computing G, the inverse of L , appears in Pcode 9.6. The inverse of the upper triangular
matrix LT is given by GT (i.e., GT = (LT)−1). Thus,

A = L LT

A−1 = (L LT)−1 = (LT)−1 L−1 = GT G
(9.223)

508 Chapter 9

for(i = 0; i < N; i++) {
sum = 0.0;
if (i > 0) {

for(k = 1; k < i; k++){
temp2 = A[i][k];
sum = sum + temp2*temp2;

}
}
d = A0[i][i] - sum;
A[i][i] = sqrt(d);
d = 1/A[i][i];
for(j = i + 1; j < N; j++){

sum = 0.0;
for(k = 0; k < i; k++){

temp2 = A[i][k];
temp3 = A[j][k];
sum = sum + temp2*temp3;

}
sum = A0[j][i] - sum;
A[j][i] = sum*d;

}
}

Pcode 9.4: Simulation code for lower triangular matrix computation using Cholesky decomposition.

y[0] = b[0]/L[0][0];
for(i = 1;i < N;i++) {

sum = 0.0;
for (j = 0; j < i; j++)

sum = sum + L[i][j]*y[j];
y[i] = (b[i] - sum)/L[i][i];

}

Pcode 9.5: Simulation code for linear system solving with forward substitution.

Table 9.2: Computational complexity (number of operations) of
linear system solving via Cholesky decomposition

Operations (N = 18) Cholesky Decomposition Linear System Solving

Addition/subtraction 1140 342
Multiplication 1140 342
1/square root 18 –
Division – 18

for(j = 0;j < N;j++){
G[j][j] = 1.0/L[j][j];
for(i = 0;i < j;i++){

sum = 0.0;
for(k = i;k < j;k++)

sum = sum - L[j][k]*G[k][i];
G[j][i] = sum/L[j][j];

}
}

Pcode 9.6: Simulation code for computing inverse of lower triangular matrix.

CHAPTER 10

Image Processing Tools

Image processing tools play an important role in medical imaging, digital photography, computer graphics,
video processing, multimedia communications, and so forth. These tools are basically algorithms used to process
the image to meet the needs of given applications, such as improving image quality, creating special effects,
compressing images for storage or fast transmission, and correcting abnormalities in captured images (sometimes
the capturing device itself introduces artifacts in the image due to hardware limitations or lens distortion). Image
processing tools are also used in classifying images, detecting objects in the image, and extracting useful
information from the captured images. In this chapter, we discuss and simulate common tools such as color
conversion, color enhancement, brightness and contrast correction, edge enhancement, noise reduction, edge
detection, scaling, object corner detection, dilation and erosion, and the Hough transform.

Typically, the raw image can be represented in any format (e.g., RGB, YUV, HSV). Various color formats
for processing images are used, and applications often require switching from one format to another in different
stages of an algorithm. For example, images are commonly processed in the YUV domain, and then converted
to RGB for display. We capture images in RGB format, and we compress digital images in the YUV domain.
In displaying the image, we convert the decompressed image to RGB format before display. Color format
conversion, then, is an important tool for many applications.

If the color of a particular image is dull, we use a color enhancement tool. In a color-enhanced image, the green
portions of the image become greener and the yellow portions become yellower and so on. In the RGB domain,
color enhancement is achieved by the histogram equalization technique (details of histogram equalization are
discussed later). Color enhancement also makes the image brighter, and enhancement in the RGB domain results
in brightness and contrast correction in the YUV domain. If the image is in YUV format, then applying a
histogram equalization technique on the luminance component enhances image brightness and contrast.

Edge enhancement to sharpen images is achieved by augmenting high-frequency components of the image.
In enhancing the edges, we first filter the high-frequency portions of image and then we enhance the high-
frequency content of the image by boosting its values in a controlled manner. Sometimes the image itself may
contain unnecessarily noisy high-frequency components that make the image annoying. Smoothing filters are
used to remove high-frequency content. In later sections, we discuss average and median smoothing filters
to remove high-frequency content. Image scaling is used in many applications to change image resolution and
aspect ratio. A few previously mentioned image-processing tools are also used in image scaling to maintain image
quality after scaling. Detection of edges, corners, lines, circles, and so on, in images has many applications (e.g.,
image stabilization, object detection, and lens distortion correction).

10.1 Color Conversion

All image processing algorithms may not be applicable for a particular image format. For example, color
correction is performed in the RGB domain. If we perform color correction in the YUV domain, then we lose
the actual color information in the corrected image. Although there are many image formats, YUV and RGB
formats are widely used in many image processing applications. The following equations are used in converting
an image from one format to another:

YUV to RGB:
y = Y −16 (10.1)

© 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-678-1.00010-7 509

510 Chapter 10

u = U −128 (10.2)

v = V −128 (10.3)

R = y ∗ 1.164+v ∗ 1.596

G = y ∗ 1.164−v ∗ 0.813−u ∗ 0.391 (10.4)

B = y ∗ 1.164+u ∗ 2.018

RGB to YUV:

Y = R ∗ 0.257+ G ∗ 0.504+ B ∗ 0.098+16

U = −R ∗ 0.148− G ∗ 0.291+ B ∗ 0.439+128 (10.5)

V = R ∗ 0.439− G ∗ 0.368− B ∗ 0.071+128

This format conversion of YUV to RGB may lead to overflow and underflow of pixel values. To avoid this,
we clip calculation results so that the pixel values always lie in the range 0 to 255. The fixed-point simulation
codes for YUV and RGB color conversion are given later in this chapter in Pcodes 10.2 and 10.3.

10.2 Color Enhancement

In this section, we discuss the histogram equalization technique of color enhancement in the RGB domain. As we
know, if the color component is represented with 8-bit precision, then the values 0 to 255 are used to represent a
particular color component. We say that the image colors are well represented when the color components occupy
the total range of 0 to 255. If the color components of an image do not occupy the full range (i.e., 0 to 255), then
we have the scope to enhance the colors of that image. With the histogram equalization technique, first we find
the minimum (Xmin) and maximum (Xmax) values of a particular color component, and then we translate that
color component to have minimum value at zero by subtracting the Xmin from its values, and finally, multiply the
color component by 255/(Xmax − Xmin) to obtain the maximum color component 255. This process is illustrated
in Figure 10.1. The same process is applied for all three color components of an image. This process enhances
image colors (green becomes greener, yellow becomes more yellow, etc.), and we also see image brightness and
contrast enhancement in the YUV domain. The simulation code for image color enhancement using histogram
equalization is given later in the chapter in Pcode 10.4.

The histogram for one color component in the original image is shown in Figure 10.1(a); clearly the pixels
of this color component do not span the full range of values (0 to 255). Therefore, we have scope for enhanc-
ing that particular color component. The shifted histogram by subtracting Xmin from all pixel values of that
color component is shown in Figure 10.1(b). In Figure 10.1(c), the subtracted pixel values are multiplied by
255/(Xmax − Xmin) to enhance that color component by stretching the histogram maximum value to 255. This
process is called histogram equalization. The original test image used to enhance color components is shown in
Figure 10.2(a) and the corresponding color corrected image is shown in Figure 10.2(b).

10.3 Brightness and Contrast Adjustment

Raising pixel values toward 255 increases the intensity or brightness of image. In other words, we eliminate the
dullness of image by raising pixel values toward 255. Increasing the contrast means increasing the difference
between dark and bright pixels. This makes the bright part of an image brighter and the dark part darker. For
example, by increasing the contrast of an image containing objects along with shadows, the objects become
brighter and the shadows become darker. We usually perform image brightness and contrast adjustment in the
YUV domain. Typically, by applying the histogram equalization technique (discussed in the previous section)
to the luminance component of image, we achieve the image brightness and contrast correction. Figure 10.3(a)
shows the image before correction and Figure 10.3(b) shows the image after correction. The simulation code for

Image Processing Tools 511

Color component (i.e., R, G,
or B) values

Xmin
0

255Xmax

(a)
Pixel Values

(b)
Pixel Values

(c)
Pixel Values

N
um

be
r

of
 T

im
es

O
cc

ur
re

d
N

um
be

r
of

 T
im

es

O
cc

ur
re

d
N

um
be

r
of

 T
im

es

O
cc

ur
re

d

Xmax �Xmin
0 255

0 255

Figure 10.1: Histogram equalization of image color components. (a) Original image color component histogram.
(b) Shifted histogram. (c) Equalized histogram.

Figure 10.2: (a) Original image. (b) Color-enhanced image.

(a) (b)

Figure 10.3: (a) Before correction. (b) After correction.

512 Chapter 10

(a) (b)

Figure 10.4: (a) Before edge enhancement. (b) After edge enhancement.

correcting brightness and contrast of an image based on luminance component histogram equalization is given
in Pcode 10.5 later in the chapter.

10.4 Edge Enhancement/Sharpening of Edges

In applications such as digital photography, we perform edge enhancement to maintain sharp edges in an image.
With edge enhancement, we increase the contrast of the image along the edges. The edge enhancement is done by
strengthening the high-frequency components of an image. One way of enhancing edges is by adding weighted
high-frequency components of an image to itself. The following equation gets the high-frequency components
of an image and adds the weighted high-frequency components to the image:

X[m][n] = X[m][n]+ k ∗ HF (10.6)

where k is a weighting factor and HF is a high-frequency component obtained by the following filtering operation:

HF = 4 ∗ X[m][n]− X[m −1][n]− X[m +1][n]− X[m][n −1]− X[m][n +1] (10.7)

or the corresponding mask given by

HF =
⎡
⎣ 0 −1 0

−1 4 −1
0 −1 0

⎤
⎦ (10.8)

Figure 10.4(a) and (b) show the original image and the edge-enhanced image. The simulation code for obtaining
the edge enhancement is given in Pcode 10.6.

10.5 Image Filtering

Sometimes we introduce artifacts in the image at the time of processing it. The artifacts may be due to quantization,
scaling, overflow or underflow of pixels. Typically, we use two kinds of filters in image processing to reduce the
noise effects: average and median filters. With an average filter, we average the current and its surrounding pixels
and update the current pixel with an average value. With a median filter, we sort the current and all neighboring
pixel values in ascending or descending order, and then select the middle value as the current pixel. The filtering
process using the average and median filters is shown in Figure 10.5.

• Average filter: (217+227+231+211+216+169+198+139+126)/9 = 193
• Median filter: 126, 139, 169, 198, 211, 216, 217, 227, 231 (sorted in ascending order)

In Figure 10.5, we use 3 × 3 average and median filters to smooth the pixels of a noisy image. We apply the
filter by placing the center of the window at the current pixel that we want to filter. With the average filter, we get

Image Processing Tools 513

221 235 244 245

(a) (b)

217 227 231 177

211 216 169 140

198 139 126 188
193

221 235 244 245

217 227 231 177

211 216 169 140

198 139 126 188
211

Figure 10.5: 3× 3 average and median filter output at highlighted pixel position.

Figure 10.6: Scaled image without filtering.

Figure 10.7: Scaled image after applying average filter.

193 as the output for an actual pixel value of 216, whereas with the median filter we get 211 as the output. After
filtering the current pixel, we move the window in raster scan order by 1 pixel to filter the next pixel value and we
continue like this to filter all pixels in smoothing the image. The median filter is preferred over the average filter
in reducing noise as the average filter makes the image more blurry. With the average filter, we lose a lot of edge
information as it averages out the edge pixels with nonedge pixels. The scaled image without applying filters is
shown in Figure 10.6; the staircase artifacts result from scaling. The filtered scaled image with the average and
median filters is shown in Figures 10.7 and 10.8. In Figures 10.6 through 10.8, it is apparent that the median
filter performs well in reducing image artifacts.

10.6 Edge Detection

The edge detector is an important tool in image processing applications as edges represent the local boundaries
of objects in an image. Edge detectors filter out less relevant information while preserving important structural
properties. With edge detection, we can reduce the amount of work to process an image by (1) avoiding its

514 Chapter 10

Figure 10.8: Scaled image after applying median filter.

redundant portions, (2) extracting and processing only specific objects, or (3) classifying and processing only
selected portions of an image. The presence of objects (or edges) in some portions of an image causes intensity
variations in those portions of the image.

We compute intensity variations either by using pixel gradients (i.e., rate of change of pixels’ intensity obtained
from its first derivative) or by finding zero-crossings in the second derivative of pixel values. This is illustrated
in Figure 10.9 where first and second derivatives are applied to the 1D function s(x) representing the intensity
variation.

Many edge-detection algorithms are discussed in the literature. In this section, we briefly discuss edge detection
using the Sobel operator, Laplace edge detector, and Canny edge detector. We use three photographs—Lena, wall-
paper, and Lord Ganesh—as test images, shown in Figure 10.10. The first test image, shown in Figure 10.10(a),
contains fewer proper edges, whereas the second and third test images shown in Figures 10.10(b) and (c) have
many edges. Next we discuss the performance of Sobel, Laplacian, and Canny detectors in detecting the edges
of the three test images.

10.6.1 Edge Detection Based on Sobel Operators

With Sobel operators, we find the approximate absolute gradient magnitude at each pixel in an input grayscale
2D image. The Sobel edge detector uses a pair of 3×3 convolution masks, one estimating the gradient in the x -
direction (i.e., horizontal) and the other estimating the gradient in y-direction (i.e., vertical). The Sobel operators
for x and y directions are given as follows:

+1 0 −1
+2 0 −2
+1 0 −1

x−Sobel operator

+1 +2 +1
0 0 0

−1 −2 −1

y−Sobel operator

If Gx and G y represent the gradients in x and y directions, then the pixel gradient G is obtained as G =√
G2

x + G2
y. We compute the x and y gradients (i.e., Gx and G y) for the current intensity pixel I (i, j) by applying

the x and y Sobel operators at the current pixel. In computing the gradients, we place the Sobel operators such
that the current intensity pixel I (i, j) aligns with the center coefficient of 3 × 3 masks. In a large image with
M × N pixel resolution, we compute the pixel gradients by moving the 3 × 3 masks one pixel at a time in the
raster scan order. This is illustrated in Figure 10.11. If G is the gradient of pixel p5, then G is computed using
Sobel operators as in

G =
√

G2
x + G2

y (10.9a)

Image Processing Tools 515

(a)

S(x) S9(x)

(b)

S99(x)

(c)

Figure 10.9: (a) Sample one-dimensional intensity variation function s(x). (b) First derivative showing peak at
maximum rate of change of intensity. (c) Second derivative showing the zero-crossing at maximum rate of change
of intensity.

(a) (b) (c)

Figure 10.10: Test images for edge detection. (a) Lena. (b) Wallpaper. (c) Lord Ganesh.

217
Sobel
3 3 3 Mask

227 231 177

p15 217, p25 227
p35 231, p45 211
p55 216, p65 169
p75 198, p85 139
p95 126

211 216 169 140

198 139 126 188

p1 p2 p3

p4 p5 p6

p7 p8 p9

Figure 10.11: Illustration of pixel gradient computation in large image.

where

Gx = (p3 +2 ∗ p6 + p9)− (p1 +2 ∗ p4 + p7) (10.9b)

G y = (p1 +2 ∗ p2 + p3)− (p7 +2 ∗ p8 + p9) (10.9c)

By following the preceding equations, the gradient value G for the pixel (with value 216) as highlighted in
Figure 10.11 is equal to 331.9. After computing the gradients for all pixels, we obtain a binary image with only
prominent edges information by applying a threshold (T) value to gradients. Figures 10.12 through 10.14 show
the output of the Sobel edge detector when applied to the Lena, wallpaper, and Lord Ganesh images using various
threshold values.

10.6.2 Laplace Edge Detector

The edge detection based on the Sobel operator uses the pixels’ first derivatives (i.e., gradients), whereas the
Laplace edge detector uses the zero-crossings of second derivatives of pixels in identifying the edges. The

516 Chapter 10

(a) (b)

Figure 10.12: Lena image, Sobel edge detection with various thresholds. (a) T = 64. (b) T = 240.

(a) (b)

Figure 10.13: Wallpaper image, Sobel edge detection with various thresholds. (a) T = 64. (b) T = 240.

(a) (b)

Figure 10.14: Lord Ganesh image, Sobel edge detection with various thresholds. (a) T = 64. (b) T = 240.

Laplacian of a 2D function I (x , y) is a second-order derivative and is defined as

∇2 I = ∂2 I

∂x2
+ ∂2I

∂y2
(10.10)

where

∂2 I

∂x2
= I (x +1, y)+ I (x −1, y)−2I (x , y) (10.11)

∂2I

∂y2
= I (x , y +1)+ I (x , y −1)−2I (x , y) (10.12)

Given Equations (10.10), (10.11) and (10.12),

∇2 I = [I (x +1, y)+ I (x −1, y)+ I (x , y +1)+ I (x , y −1)]−4I (x , y) (10.13)

Image Processing Tools 517

(a) (b)

Figure 10.15: Lena image, Laplacian edge detection with various thresholds. (a) T = 16. (b) T = 64.

(a) (b)

Figure 10.16: Wallpaper image, Laplacian edge detection with various thresholds. (a) T = 16. (b) T = 64.

Equation (10.13) is the same as Equation (10.7) except for the sign, and we implement Equation (10.13) using
the following mask Lxy.

Lxy =
⎡
⎣0 1 0

1 −4 1
0 1 0

⎤
⎦ (10.14)

Computation of the image’s edge information using the Laplace edge detector is similar to the Sobel operator as
shown in Figure 10.11; the only difference is that the Laplace edge detector uses a single mask in edge computation
whereas the Sobel operator uses two masks. Thus, we cannot obtain the angle information using the Laplace
edge detector. Here we also use the threshold value (T) to get binary images with prominent edges. Figures 10.15
through 10.17 show edge information in the Lena, wallpaper, and Lord Ganesh images obtained using the Laplace
edge detector. The Laplacian operator highlights gray-level discontinuities in an image and deemphasizes regions
with slowly varying gray levels. As the Laplacian operator increases the contrast at the locations of gray-level
discontinuities, adding the Laplacian edges to the actual image enhances the edges while preserving the slowly
varying background. Figure 10.4 shows the edge enhancement obtained using Laplacian operator.

10.6.3 Canny Edge Detector

Canny developed a totally different approach to edge detection. The Canny edge detection operator uses a
multistage algorithm to detect a wide range of edges in images. This is an optimum edge detection algorithm,
and the detector is optimal in the sense of the following three criteria:

• Good detection: The detector marks as many real edges in the image as possible.
• Good localization: Edges marked should be as close as possible to the edges in the real image.
• Minimal response: There is only one response per edge under white noise conditions.

The Canny edge detector uses the following five steps to satisfy the preceding criteria:

1. Noise reduction using Gaussian filter
2. Computation of gradients (the Sobel operator can be used for this purpose)

518 Chapter 10

(a) (b)

Figure 10.17: Lord Ganesh image, Laplacian edge detection with various thresholds. (a) T = 16. (b) T = 64.

3. Computation of quantized orientation of edges
4. Nonmaximum suppression
5. Hysteresis thresholding

Noise Reduction
We use the following Gaussian function to generate the filter coefficients for minimizing noise effects in edge
detection:

Gσ (m,n) = 1√
2πσ 2

exp

(
−m2 +n2

2σ 2

)
(10.15)

where σ 2 is the variance of Gaussian function.
Given that m = n = k, we obtain a k × k Gaussian filter. For σ = 1.0, 1.5, and 2.0, three Gaussian filters

approximate discrete coefficients obtained from Equation (10.15):

G1.0 = 1

159

⎡
⎢⎢⎢⎢⎣

0 2 3 2 0
2 7 11 7 2
3 11 18 11 3
2 7 11 7 2
0 2 3 2 0

⎤
⎥⎥⎥⎥⎦ G1.5 = 1

171

⎡
⎢⎢⎢⎢⎣

2 5 6 5 2
5 9 12 9 5
6 12 15 12 6
5 9 12 9 5
2 5 6 5 2

⎤
⎥⎥⎥⎥⎦ G2.0 = 1

230

⎡
⎢⎢⎢⎢⎣

5 8 9 8 5
8 11 13 11 8
9 13 14 13 9
8 11 13 11 8
5 8 9 8 5

⎤
⎥⎥⎥⎥⎦

We smooth the image by convolving the image with filter coefficients Gσ . Figure 10.18 shows the Gaussian-
filtered Lena image for various sigma values. The amount of smoothing achieved by changing sigma values is
seen in the encircled areas.

Gradient Computation
We use the Sobel operators given in Equations (10.9b) and (10.9c) for computing the pixel gradients. If Gx and
G y represent the x -gradient and y-gradient, respectively, of a pixel, then from Equation (10.9a) the pixel gradient

is given by G =
√

G2
x + G2

y. Computing the exact pixel gradient on fixed-point processors is a complex task as

it involves square root computations. However, we tackle this problem by computing the approximate value for
G using simple methods. Two commonly used approaches are given in Equations (10.16a) and (10.16b).

G = |Gx |+ |G y | (10.16a)

G = max(Gx, G y) (10.16b)

The value computed using Equations (10.16a) and (10.16b) gives reasonable gradient information only when
the difference between Gx and G y is large. In another approach, we get the approximate value for the square root
of the sum G2

x + G2
y. There are many algorithms in the literature to obtain the approximate value of the square

root. Using the following method (Philipsson, 2002), we can get the approximate square root value to nearest
integer d.

Image Processing Tools 519

(a) (b) (c)

Figure 10.18: Lena original image after processing with Gaussian filter using sigma. (a) 1.0. (b) 1.5. (c) 2.0.

1. Get y = G2
x + G2

y

2. Get the number of bits in y, say m
3. Get n = m >> 1
4. Get a = x >> n,b = 1 << n
5. Get c = a +b
6. Finally, d = c >> 1, where d contains the approximate square root value (to the nearest integer for most

but not all cases) for the sum G2
x + G2

y

Edge Orientation Computation
The pixel gradient direction is computed from the pixel gradients Gx and G y as follows:

φ = tan−1
(

G y

Gx

)
(10.17)

The edge orientation is always perpendicular to its pixel gradient direction. As the Canny edge detector uses
only quantized angles, we can efficiently compute the quantized gradient directions using the iterative CORDIC
algorithm (Volder, 1959) in a few iterations. Using the CORDIC algorithm, we find the orientation of the vector
by rotation of the vector with the known angles in multiple iterations.

CORDIC Algorithm
Let z0 = (x0, y0) represent the initial point P rectangular coordinates, and assume that the point P is in the first
quadrant as shown in Figure 10.19. In the complex plane (because we are going to solve the problem in the
complex plane!), its equivalent polar coordinates are given by z0 = re jφ . Assume that the vector is rotated by a
known angle θ0 and that the new point z1 = (x1, y1) is obtained as follows:

z1 = z0e jθ0 = (x0 + j y0)(cos θ0 + j sin θ0) = (x0 cos θ0 − y0 sin θ0)+ j (x0 sin θ0 + y0 cos θ0)

The preceding expression can be represented in matrix form:[
x1

y1

]
=
[

cos θ0 −sin θ0

sin θ0 cos θ0

][
x0

y0

]
(10.18)

[
x1

y1

]
= cos θ0

[
1 −tan θ0

tan θ0 1

][
x0

y0

]
(10.19)

If θ0 = −45◦ (i.e., rotate vector z0 by 45◦ in the clockwise direction), then[
x1

y1

]
= cos θ0

[
1 1

−1 1

][
x0

y0

]
(10.20)

or

x1 = (x0 + y0)cos θ0, y1 = (−x0 + y0)cos θ0

520 Chapter 10

z0� (x0, y0)

r

�

P

Figure 10.19: Rectangular and polar coordinate representation of point P.

If y1 = 0, then the actual orientation of given vector is θ0 = 45◦. However, this need not be the case.
If y1 	= 0, then we again rotate the z1 by a known angle θ1 and obtain z2. Given Equation (10.19),[

x2

y2

]
= cos θ1

[
1 −tan θ1

tan θ1 1

][
x1

y1

]
(10.21)

This time we choose θ1 such that tan θ1 = ±1/2. That is, if y1 > 0, we choose θ1 = −26.5651◦; else
if y1 < 0, then we choose θ1 = 26.5651◦. Thus,

if y1 > 0, x2 = (x1 + y1/2)cos θ1, y2 = (−x1/2 + y1)cos θ1

else if y1 < 0, x2 = (x1 − y1/2)cos θ1, y2 = (x1/2 + y1)cos θ1

We continue this process until yn = 0 by choosing θn = tan−1[±(1/2)n] every time. If yn = 0, then the
orientation of vector φ is obtained as φ = θ0 + θ1 + θ2 + · · · θn. During this process, we also obtained the
magnitude of the vector r as xn. To avoid the multiplications and divisions, we precompute the value
cos θ0 cos θ1 · · · cos θn−1, and multiply once to get xn as xn = xn−1 cos θ0 cos θ1 · · · cos θn−1. In addition, we can
compute xi or yi with right shifting xi−1 or yi−1 by n since tan θn = (1/2)n.

■ Example 10.1

If P : (9, 56), then find the approximate magnituder and quantized angle φ of point P using the CORDIC
algorithm in four iterations.

Given that the signs of both coordinates are positive, the point P lies in the first quadrant.

z0 = (x0, y0) = (9,56)

First iteration: tan θ0 = 1 (since y0 > 0)

x1: = x0 + y0, y1: = −x0 + y0 (here we are not using“=” since we didn’t perform multiplication
of x0 and y0 with cos θ0)

z1 = (x1, y1): = (65,47)

Second iteration: tan θ1 = 1/2 (since y1 > 0)

x2: = x1 + y1/2, y2: = −x1/2 + y1

z2 = (x2, y2): = (88,14)

Third iteration: tan θ2 = 1/4 (since y2 > 0)

x3: = x2 + y2/4, y3: = −x2/4+ y2

z3 = (x3, y3): = (91,−8)

Image Processing Tools 521

Fourth iteration: tan θ3 = −1/8 (since y3 < 0)

x4: = x3 − y3/8, y4: = x3/8+ y3

z4 = (x4, y4): = (92,3)

The approximate value of magnitude r follows:

r = x4 cos θ0 cos θ1 cos θ2 cos θ3 = 92 ×0.6088 = 56.01

φ = θ0 + θ1 + θ2 + θ3 = 45+26.5651+14.0362 −7.1250 = 78.4763

The actual polar coordinates of point (9, 56) are r = 56.72 and φ = 80.87.

■

From Example 10.1, it is clear that the iterative CORDIC algorithm computes the pixel gradient’s approximate
magnitude

G =
√

G2
x + G2

y

and orientation

φ = tan−1
(

G y

Gx

)

in four iterations. This accuracy is more than sufficient for the Canny edge detection application. Because a
single iteration involves two right shifts and two addition operations, we can implement the CORDIC algorithm
on the reference embedded processor with four cycles per iteration.

Analytic Method for Computing Quantized Edge Orientation
The problem of quantized edge orientation computation can also be solved using the analytic method described
in the following. As shown in Figure 10.20, we want to find one of four quantized angles for each pixel given
the x -gradient Gx and y-gradient G y of the pixel. For this, we generate a look-up table gradient_directions[]
with a 5-bit number as an offset to work with the analytic method. The 5 bits of the offset represent truth flags
for following five conditions:

0th bit: |G y| ≤ 0.4|Gx |
1st bit: |G y| > 2.4|Gx |
2nd bit: (|G y | > 0.4|Gx |) && (|G y | ≤ 2.4|Gx |)
3rd bit: Gx < 0
4th bit: G y < 0

We precompute the look-up table gradient_directions[] values based on the preceding five conditions or
based on Figures 10.20(a) through (d). The 32 look-up table values are given as follows:

gradient_directions[32] = {//look-up table
0, 0, 90, 0, 45, 0, 0, 0, 0, 0, 90, 0, 135, 0, 0, 0,
0, 0, 90, 0, 135,0, 0, 0, 0, 0, 90, 0, 45, 0, 0, 0};

Once the look-up table values are generated, the quantized gradient direction Q is obtained from the look-up
table with an offset computed using the following pseudocode. We build the offset by checking the preceding
five conditions for the given x -gradient Gx and y-gradient G y .

x = Gx ; y = Gy ;
a = 0.4 ∗ abs(x); b = 2.4 ∗ abs(x);
i = 0;
if (y < 0)

i = 1;
end

522 Chapter 10

08

458

Gy5 0.4Gx

Gy5 2.4Gx

Gy5 0.4Gx

Gy5 2.4Gx

Gy5 22.4Gx

Gy5 22.4Gx

Gy5 20.4Gx

Gy5 20.4Gx

908

1358

(b)(a)

(c) (d)

Figure 10.20: Analytic approach for quantized angle computation. (a) Quantized range for 0◦. (b) Quantized
range for 45◦. (c) Quantized range for 90◦. (d) Quantized range for 135◦.

i = i << 1;
if (x < 0)

i |= 1;
end
i = i << 1;
if ((abs(y) > a) && (abs(y) <= b))

i |= 1;
end
i = i << 1;
if (abs(y) > b)

i |= 1;
end
i=i<<1;
if (abs(y) <= a)

i |= 1;
end
Q = gradient_directions[i];

Since the pixel gradients Gx and G y of Example 10.2 belong to the shaded region of Figure 10.20(c), the
corresponding quantized gradient direction is obtained as 90◦.

■ Example 10.2

Given Gx = −9 and G y = 56, compute the quantized gradient direction Q.

x = Gx = −9, y = G y = 56

0th bit: 0 (since |G y | > 0.4∗ |Gx |)
1st bit: 1 (since |G y | > 2.4∗ |Gx |)
2nd bit: 0 (since |G y| > 2.4∗ |Gx |)
3rd bit: 1 (since Gx < 0)
4th bit: 0 (since G y > 0)
offset = 01010b = 10d

Q = gradient_direction[offset] = 90◦

■

Image Processing Tools 523

Nonmaximum Suppression
Nonmaximum suppression makes all edges one pixel thick. Given the image gradients, a search is then carried
out to determine whether the gradient magnitude assumes a local maximum in the gradient direction. If g[j][i]
is the current pixel gradient, and g[j +1][i], g[j −1][i], g[j][i −1], g[j −1][i −1], g[j +1][i −1], g[j][i +1],
g[j − 1][i + 1], and g[j + 1][i + 1] are the neighbor pixels gradients, then the following pseudocode performs
nonmaximum suppression:

q[][] = g[][];
for j = 1:M

for i = 1:N
if (g[j][i] != 0)

if (Q == 0) // i.e., if −22.5 < φ ≤ 22.5
if (g[j][i] < g[j][i − 1] || g[j][i] < g[j][i + 1])

q[j][i] = 0;
end

end
if (Q == 45) // i.e., if 22.5 < φ ≤ 67.5

if ((g[j][i] < g[j − 1][i + 1]) || (g[j][i] < g[j + 1][i − 1]))
q[j][i] = 0;

end
end
if (Q == 90) // i.e., if 67.5 < φ ≤ 112.5

if ((g[j][i] < g[j − 1][i]) || (g[j][i] < g[j + 1][i]))
q[j][i] = 0;

end
end
if (Q == 135) // i.e., if 112.5 < φ ≤ 157.5

if ((g[j][i] < g[j + 1][i + 1]) || g[j][i] < g[j − 1][i − 1]))
q[j][i] = 0;

end
end

end
end

end

With nonmaximum suppression, we basically suppress the gradient information g[j][i] if g[j][i] is less than
the gradients of either of its neighbors with the same orientation as g[j][i]. This is because gradient direction is
perpendicular to the edge orientation, and therefore the edge points are suppressed in the gradient direction. This
is illustrated in Figure 10.21. We get better results if we use nearest-neighbor points (obtained by interpolation
of neighbor points) with nonmaximum suppression. Figure 10.22 shows the thinning effect of nonmaximum
suppression on the edges.

Hysteresis Threshold
A binary image is obtained after applying hysteresis thresholds. The aim of hysteresis thresholding is to realize
an improved balance between false positives and false negatives by exploiting connectedness in the object
boundaries. The pixels with larger gradients are more likely to correspond to edges than those with small
gradients. If we use a single threshold limit, the edge values fluctuating above and below the threshold will

458

08

9081358

g [j][i] g([j][i 11]

g [j 21][i 11]

g ([j 11][i 11]

g [j 11][i]

g [j 11][i 21]

g ([j][i 21]

g [j 21][i 21]
g [j 21][i]

Figure 10.21: Illustration of nonmaximum suppression.

524 Chapter 10

(b)(a)

Gx

Gy

Gx

Gy

Figure 10.22: Nonmaximum suppression. (a) Wide edges before suppression. (b) Thin edges after suppression.

appear broken (referred to as streaking). Hysteresis minimizes streaking by setting limits on upper and lower
edge values. Given upper- and lower-threshold values max_t and min_t, respectively, the following pseudocode
performs hysteresis thresholding:

for j = 1:M
for i = 1:N

if (g[j][i] > max_t)
g[j][i] = 1;

end
if ((g[j][i] < max_t)&& (g[j][i] > min_t))

g[j][i] = 2;
end
if (g[j][i] < min_t)

g[j][i] = 0;
end

end
end
f lag = 1;
while (f lag)

f lag = 0;
for j = 1:M

for i = 1:N
if (g[j][i] > 0)

if (g[j][i] == (2)

if((g[j − 1][i]) == (1) || (g[j − 1][i − 1]) == (1) ||
(g[j][i − 1] == (1) || (g[j + 1][i − 1] == (1) ||
(g([j + 1][i] == (1) || (g[j + 1][i + 1] == 1) ||
(g[j][i + 1] == 1) || (g[j − 1][i + 1] == 1))

g[j][i] = 1;
f lag = 1;

end
end

end
end

end
end
for j = 1:M

for i = 1:N
if (g[j][i] == 2)

g[j][i] = 0;
end

end
end

With the preceding pseudocode, we immediately accept the gradient at the current pixel position as edge if
the gradient value is greater than the upper threshold limit and immediately reject if the gradient value is less
than the lower threshold limit. The gradients that lie between the two thresholds are accepted as edges if they
are connected to pixels which exhibit strong connectedness.

Now, we apply the Canny edge detection method to the three test images and see its performance when
compared to Sobel and Laplacian. We use different sigma and threshold values to see the behavior of the Canny

Image Processing Tools 525

(a) (b)

Figure 10.23: Lena image, Canny edge detection with various parameters: (a) T1 = 16, T2 = 32, Sig = 1.0.
(b) T1 = 8, T2 = 16, Sig = 2.0.

(a) (b)

Figure 10.24: Wallpaper image, Canny edge detection with various parameters. (a) T1 = 16, T2 = 32, Sig = 2.0.
(b) T1 = 8, T2 = 16, Sig = 2.0.

(a) (b)

Figure 10.25: Lord Ganesh image, Canny edge detection with various parameters. (a) T1 = 16, T2 = 32,
Sig = 2.0. (b) T1 = 8, T2 = 16, Sig = 2.0.

edge detector. From Figures 10.23 through 10.25, we can see the superior performance of the Canny edge
detector.

10.7 Image Scaling

Images are scaled for purposes of changing aspect ratio, transmission of images over a communication link with
less bandwidth, storing images with less memory, and for better viewing. The main functionality in the image
scaling is the interpolation of image pixels. The quality of the scaled image depends on the type of interpolator
used for the scaling. There are many interpolator functions suggested in the literature for scaling the images.
In this section, we discuss two simple interpolation methods, namely (1) nearest neighbor and (2) bilinear
interpolator functions to scale the image. In Section 15.1, we discuss more complex interpolator functions in
scaling the luminance and chrominance components of video frames.

526 Chapter 10

Consider a QVGA image (i.e., 320 × 240 resolution), and assume scaling by a 3/2 factor in the horizontal
direction and by a factor of 2 in the vertical direction. We obtain a 480×480 resolution image. To achieve this,
we produce three pixels for every two pixels in the horizontal direction with factor 3/2 scaling, whereas two
pixels are produced for each pixel in the vertical direction with factor 2 scaling, as illustrated in Figure 10.26(a)
and (b).

For image scaling, we need to know which image pixels participate in the generation of new pixels, and how
to compute the new pixel value once we come to know the participating pixels. To find the pixels that participate
in the scaling or to generate the new pixels, we require both the scaling factor and interpolation method used.

10.7.1 Nearest-Neighbor Interpolation

As the name indicates, we reuse the nearest pixel value for the new interpolated pixel in the nearest-neighbor
interpolation. We consider a 4 × 4 block (i.e., 16 pixels) from the original image as shown in Figure 10.27(a).
Those 16 pixel values are represented by A, B, C , D, E , F , G, H , I , J , K , L , M , N , O, and P . When we
perform scaling by a factor of 3/2 in the horizontal direction and by a factor of 2 in the vertical direction, the
4 × 4 block of pixels in the original image maps to a 6 × 8 block of pixels as shown in Figure 10.27(b). In the
horizontal direction with factor 3/2 scaling, the interpolated pixel position u is placed at 2/3 distance from pixel
A and at 1/3 distance from pixel B. Similarly, the pixel v is placed at 1/3 distance from pixel B and 2/3 distance
from pixel C . With the nearest-neighbor criterion, we assign the pixels u and v with pixel value B (since the
pixel B is nearer to pixels u and v) as shown in Figure 10.27(b).

(a)
Interpolated pixel positions

Pixel positions before scaling

Pixel positions after scaling
0 1 2 3 4 5 6 …

0 1 2 3 4 …

(b)

Interpolated pixel
positions

0

1

2

3

4

5

0
1

2
3
4
5

6
7

8
9

10
11

Figure 10.26: Illustration of image scaling. (a) Horizontal scaling with factor 3/2. (b) Vertical scaling with factor 2.

(b)(a)

A B B

B BA

C

C

D

D

D

D

O

O

P

P

P

P

E

E

F

F

F

F

G

G

H

H

H

H

I

I

J

J

J

J

K

K

L

L

L

L

M

M

N

N

N

N

A

w

u v

y z

A B C D

E F G H

K L I J

M N O P

w y z

u v

2/3 1/3 1/3

1/2

1/2

Figure 10.27: Image pixel interpolation using nearest-neighbor method. (a) Original 16 pixels. (b) Interpolated
pixels with nearest-neighbor method.

Image Processing Tools 527

Similarly, we get all other interpolated pixel values in the horizontal direction. In the vertical direction with
factor 2 scaling, the interpolated pixel w, is placed at equal distances from original pixels A and E . As the
distance of x from A and E is the same, we can choose either A or E pixel value for pixel w, and we choose
A, as shown in Figure 10.27(b). Similarly, we obtain all interpolated pixels in the vertical direction. The scaling
may be performed with full horizontal scaling first followed by full vertical scaling next or with full vertical
scaling first followed by horizontal scaling next or both horizontal and vertical scaling at the same time. The test
image used in the simulation of scaling methods is shown in Figure 10.28. Figure 10.29 shows the scaled image
using nearest-neighbor interpolation.

The nearest-neighbor interpolation function is a simple rectangular function in 1D-spatial domain, defined as

hnn(x) =
{

1, 0 ≤ |x | < 0.5

0, otherwise
(10.22)

Spatial- and frequency-domain characteristics of the nearest-neighbor interpolator are shown in Figure 10.30.
As shown in the figure, the nearest-neighbor interpolator has very poor stopband characteristics.

Figure 10.28: Flower image to be scaled.

Figure 10.29: Scaled image with nearest-neighbor interpolation.

528 Chapter 10

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
22 21 0

(a)
1 2

15

10

5

0

25

210

215

220

0 2
(b)

4

Figure 10.30: One-dimensional nearest-neighbor interpolation function. (a) Spatial-domain characteristic.
(b) Frequency-domain characteristic.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
22 21 0

(a)
1 2

15

210

0

220

240

230

250

260

270

280

290
0 2

(b)
4

Figure 10.31: One-dimensional bilinear interpolation function. (a) Spatial-domain characteristic.
(b) Frequency-domain characteristic.

10.7.2 Bilinear Interpolation

Unlike nearest-neighbor interpolation where we reuse the actual pixel values for interpolated pixel positions, in
the bilinear interpolation we obtain the weighted average of pixel values for interpolated new pixels. The 1D
linear interpolation function can be characterized with the triangular function, defined as

hbl(x) =
{

1−|x |, 0 ≤ |x | < 1

0, otherwise
(10.23)

The 1D spatial-frequency domain characteristics of the linear interpolation function are shown in Figure 10.31.
Stopband characteristics of the bilinear interpolator are superior to nearest-neighbor interpolator stopband
characteristics; however, the bilinear interpolator blurs the scaled image by smoothing edges whereas the nearest-
neighbor interpolator retains the edge boundaries. As shown in Figure 10.32, the interpolated pixel value E is
obtained by averaging the four neighboring pixels A, B, C , and D with appropriate weights calculated using

Image Processing Tools 529

D

BA

C

E

a

b

1– b

1– a

Figure 10.32: Illustration of bilinear interpolation.

Equation (10.23). The weights are obtained by using the respective distance of the new pixel position from the
original pixel positions:

E = (1−b)[(1−a)A+aB]+b[(1−a)C +aD] (10.24)

= h0 A+h1 B +h2C +h3 D

where

h0 = (1−a)(1−b), h1 = a(1−b), h2 = (1−a)b, h3 = ab

To scale the image with bilinear interpolation, we must determine which original pixels should participate
in generating the new pixel and the corresponding coefficients to perform the interpolation. When b = 0, we
perform interpolation only in the horizontal direction with coefficients h0 = (1−a) and h1 = a; when a = 0 we
perform interpolation only in the vertical direction with coefficients h0 = (1−b) and h2 = b.

Line-Based Bilinear Interpolation
In video frame scaling using line-based bilinear interpolation, we interpolate pixels line by line horizontally and
vertically in two passes. The pixel values of scalar output will be the same whether we perform horizontal scaling
first followed by vertical scaling or vice versa, as bilinear interpolation is a linear operation. Which approach
is better in terms of cycles depends on the scaling ratios used in each direction. If the horizontal scaling ratio
is bigger than the vertical scaling ratio, then performing horizontal scaling first followed by vertical scaling
consumes less cycles and vice versa.

In line-based bilinear interpolation, we obtain one row of image pixels at a time from L3 memory to L1
memory to perform horizontal scaling, and store them in L3 after scaling (as we cannot keep the full image
in the L1 memory because L1 size is limited). In this manner, we continue scaling for all rows. Next, we get
one column of horizontally scaled pixels from L3 memory to L1 memory to perform vertical scaling. After
performing interpolation of one column of pixels, we DMA out the interpolated pixels. See Chapter 16 for more
detail on the embedded processor architecture, memory, DMA, and so on.

Assume that the scaling is accomplished by performing horizontal scaling first followed by vertical scaling. In
up scaling the image from resolution M1 × M2 to resolution N1 × N2 using bilinear interpolation, we determine
the index of original pixels that participate in the interpolation and the coefficient values as follows.

Let x represent the pixels from the original image and y represent the pixels of scaled image. Then,

r = M1/N1 (i.e., horizontal scaling ratio)
i = 0; s = 0;
y[k]= x[i];
s = s + r;
i = ⌊s⌋ ; a = s − i;
y[k + 1]= x[i]*(1-a)+ x[i + 1]*a;
s = s + r;
i = ⌊s⌋ ; a = s − i;
y[k + 2]= x[i]*(1-a)+ x[i + 1]*a;
s = s + r;
i = ⌊s⌋ ; a = s − i;
y[k + 3]= x[i]*(1-a)+ x[i + 1]*a;
...
s = s + r;
i = ⌊s⌋ ; a = s − i;
y[N1 − 1]= x[i]*(1-a)+ x[i + 1]*a;

530 Chapter 10

We perform the vertical scaling by taking the horizontally scaled pixels y as original pixels and obtain the up
scaled image pixels z as follows:

r = M2/N2 (i.e., vertical scaling ratio)
j = 0; s = 0;
z[k]= y[j];
s = s + r;
j = ⌊s⌋ ; b = s − j;
z[k + 1]= y[j]*(1-b)+ y[j + 1]*b;
s = s + r;
j = ⌊s⌋ ; b = s − j;
z[k + 2]= y[j]*(1-b)+ y[j + 1]*b;
s = s + r;
j = ⌊s⌋ ; b = s − j;
z[k + 3]= y[j]*(1-b)+ y[j + 1]*b;
...
s = s + r;
j = ⌊s⌋ ; b = s − j;
z[N2 − 1]= y[j]*(1-b)+ y[j + 1]*b;

On-the-fly computation of new pixel position indices i and j and the coefficients a and b in the preceding scaling
process can be avoided by using look-up tables if the scaling ratios are known in advance.

Block-Based Bilinear Interpolation
In video and image coding, data processing is typically carried out on a block basis. The block sizes 4×4, 8×8,
and 16×16 are commonly used in many coding standards. If we have the block-based scaling module, it is easy
to plug in the scalar at the back end of the codec. We can then reduce the number of data transfers between L1
and L3 memories in video scaling implementation on embedded processors. This technique reduces the DMA
bandwidth, which leads to less embedded-processor power consumption. The implementation procedure for
block-based bilinear interpolation is shown in Figure 10.33.

In the line-based approach, we duplicate the pixels at the extreme ends of the image to fill the gap, which is not
interpolated due to insufficient pixels at those edges. In block-based bilinear interpolation, we face this situation
for every block with insufficient pixels at the right-most and bottom-most edges. To interpolate edge pixels, we
always use neighbor block pixels as shown in Figure 10.33. In line-based interpolation, we can take care of edge
conditions separately as they occur once per line. But, in the block-based approach, this edge condition occurs for
every row or column of the block, which is relatively frequent when compared with a line-based approach. One
way of implementing this block-based approach efficiently is to copy the neighbor block pixels to the current
pixel buffer and running the loop without any condition checks or jumps. Given an M × N block, we work with
a somewhat larger buffer size of (M +1)× (N +1) to accommodate neighbor-block pixels.

In the line-based approach, we have two options to handle the top-line pixels. In the first option, we always
bring two lines from L3 and in the second option we always bring the current-line pixels from L3 and top-line

Left

Up-Left

Current

Up

Figure 10.33: Block-based bilinear interpolation.

Image Processing Tools 531

Figure 10.34: Scaled image with bilinear interpolation.

pixels from the delay line in L1 memory. In this block-based approach, we scale a small block of pixels that are
usually present in L1 memory (after performing the decoding operation). We move the block of scaled pixels
back to L3.

The bilinear interpolation is widely used in many image-scaling applications because it is less computationally
complex. Bilinear interpolation performs well as long as the scaling factor is greater than 0.5 and less than 2.
We see more staircase kinds of artifacts in the up scaled image when the scaling factor increases. Figure 10.34
shows the scaled image of Figure 10.28 with bilinear interpolation. From Figures 10.29 and 10.34, we can clearly
see the improved performance of bilinear interpolation. Staircase artifacts of nearest-neighbor scaling are seen
in the encircled area of Figure 10.29.

In practice, bilinear interpolation is used to scale an image’s chrominance component. As the scaling artifacts
are clearly seen in the intensity (or luminance) component (since the human visual system is more sensi-
tive to luminance), we use high-end interpolation methods to scale the luminance component. More complex
and advanced image scaling algorithms (e.g., scaling with bicubic and B-spline, DCT based scaling, edge
orientation–based scaling, etc.) are discussed in Section 15.1.

10.8 Erosion and Dilation

The basic morphological operations erosion and dilation produce opposite results when applied to grayscale or
binary images. Erosion shrinks image objects while dilation expands them. These operations apply a structuring
element to an input image, creating an output image of the same size by modifying the objects within the image.
The functionality of morphological operations depends on the structuring element and associated rules. A few
examples of structuring elements are shown in Figure 10.35.

Dilation
Dilation uses the following rules for grayscale and binary images:

• Grayscale image rule: The value of the output pixel is the maximum value of all pixels in the input pixel’s
neighborhood (i.e., within the structuring element mask).

• Binary image rule: The output pixel value is set to 1 if any of the input pixels are 1 in the neighborhood
(i.e., within the structuring element mask).

Dilation generally increases the size of objects, filling holes and broken areas, and connecting areas that are
separated by spaces smaller than the size of the structuring element. In grayscale images, dilation increases the

532 Chapter 10

(a) (b) (c) (d)

Figure 10.35: Structuring elements: The input pixel at the center is connected to (a) Two neighboring pixels
horizontally. (b) Two neighboring pixels vertically. (c) Four neighboring pixels both horizontally and vertically.
(d) Eight neighboring pixels in all directions.

Figure 10.36: Test image used for
demonstration of dilation and erosion
operators.

(a) (b)

Figure 10.37: Grayscale image intensity variation with dilation. (a) Original image. (b) Intensity variations with
three dilation operations.

brightness of objects by taking the neighborhood maximum when passing the structuring element over the image.
In binary images, dilation connects areas that are separated by spaces smaller than the structuring element, and
adds pixels to the boundary of each image object. To further expand the image objects in the case of binary
images or to further increase the intensity of image objects, the dilation operation is repeated multiple times.
The test image used for demonstrating dilation and erosion is shown in Figure 10.36. Figures 10.37 and 10.38
show the brightness variation and expansion of image objects with the dilation operation.

Erosion
Erosion uses the following rules for grayscale and binary images:

• Grayscale image rule: The value of the output pixel is the minimum value of all the pixels in the input
pixel’s neighborhood (i.e., within the structuring element mask).

• Binary image rule: The output pixel value is set to 0 if any of the input pixels are 0 in the neighborhood
(i.e., within the structuring element mask).

Image Processing Tools 533

(a) (b)

Figure 10.38: Binary image object size variation with dilation. (a) Original binary image with a few objects of
Figure 10.36. (b) After three dilation operations.

(a) (b)

Figure 10.39: Grayscale image intensity variation with erosion. (a) Original image. (b) Intensity variations with
three erosion operations.

(a) (b)

Figure 10.40: Binary image object size variation with erosion. (a) Original binary image of with a few objects of
Figure 10.36. (b) After three erosion operations.

Erosion generally decreases the size of objects and removes small anomalies by subtracting objects with a
radius smaller than the structuring element. In grayscale images, erosion reduces the brightness of objects by
taking the neighborhood minimum when passing the structuring element over the image. In binary images,
erosion completely removes objects smaller than the structuring element and removes boundary pixels from
larger image objects. To further shrink the objects in the case of binary images or to further reduce the intensity
of image objects in the case of grayscale images, we repeat the erosion operation multiple times. Figures 10.39
and 10.40 show the brightness variation and shrinkage of image objects upon using the erosion operation.

534 Chapter 10

10.9 Objects Corner Detection

In many applications we use the correlations of a few images to process and extract the information (e.g., object
motion, object depth, shooting camera movements). There are many ways to calculate the correlations and extract
the information from the images. We can obtain correlations between two images by using the brute-force method
(in which we examine every pixel in the two images for matching), object edges (in which we use object edge
information to track the motion), object corner points (in which we use points of interest to track the object), and
so on. Finding correlations with object corner points drastically reduces computation time. Some applications
of object corner detection are object motion tracking, stereo vision, object recognition, and image registration.

A corner point can be defined as the intersection of two edges or a point for which there are two dominant and
different edge directions in a local neighborhood of the point. There are many algorithms in the literature for
detecting object corners. In this section, we discuss the widely used Harris/Plassey operator to detect points of
interest. Although it has poor localization and is expensive to compute, the Harris operator is generally considered
the best operator with respect to detecting true corners.

The Harris operator uses pixel intensity variations to identify object corners. Pixel intensity variation in two
dimensions can be measured as follows:

Um,n(x , y) =
∑
∀i

(
m

∂ Ii

∂x
+n

∂ Ii

∂y

)2

(10.25)

where the index i belongs to the pixel indices in the given window centered at pixel (x , y).
Equation (10.25) can be rewritten as

Um,n(x , y) =
∑
∀i

(
m2 ∂ I2

i

∂x
+n2 ∂ I2

i

∂y
+2mn

∂ Ii

∂x

∂ Ii

∂y

)

= m2
∑
∀i

∂ I2
i

∂x
+n2

∑
∀i

∂ I2
i

∂y
+2mn

∑
∀i

∂ Ii

∂x

∂ Ii

∂y
(10.26)

= m2Vxx +n2Vyy +2mnVxy

Equation (10.26) can be written in the matrix form as

Um,n(x , y) = [m n] A

[
m
n

]
(10.27)

where

A =
[

Vxx Vxy

Vxy Vyy

]
, Vxx =

∑
∀i

∂ I2
i

∂x
, Vyy =

∑
∀i

∂ I2
i

∂y
, and Vxy =

∑
∀i

∂ Ii

∂x

∂ Ii

∂y

Here the matrix A contains all the differential operators describing the geometry of the image surface at the
pixel (x , y) of interest, and the eigenvalues of A,λ1 and λ2, will be proportional to the principal curvatures
of the image surface. The following inferences can be made about pixel (x , y) based on the magnitudes of the
eigenvalues:

• If both λ1 and λ2 are close to zero, then there are no features of interest at this pixel (x , y).
• If λ1 is close to zero and λ2 is a large positive value, then the pixel (x , y) belongs to an object edge.
• If both λ1 and λ2 are distinct and large positive values, then the pixel (x , y) belongs to an object corner.

The Harris operator uses the cornerness measure C(x , y), which is obtained from elements of matrix A:

C(x , y) = det(A)− k[trace(A)]2 (10.28)

Image Processing Tools 535

(a) (b)

R1 R2 R3

R4 R5 R6

R7 R8 R9

P1 P3P2

P4 P6P5

P7 P9P8

P1

P4 P5 P6

P3P2
Q1

Q4

Q7

Q2

Q5

Q8

Q3

Q6

Q9

P7 P8 P9

Figure 10.41: Approximate intensity variation calculation. (a) In horizontal direction. (b) In vertical direction.

where

det(A) = λ1λ2 = Vxx Vyy − V 2
xy

trace(A) = λ1 +λ2 = Vxx + Vyy

and k = constant (for best results we choose k between 0.04 and 0.06). Now, thresholding the cornerness measure
C(x , y) using the appropriate threshold T provides image object corners.

Next, we discuss a simple procedure to compute approximate directional intensities Vxx , Vyy, and Vxy. We
can obtain the approximate horizontal intensity variation Vxx using pixel Pis and Qis placed with one pixel
displacement as shown in Figure 10.41. The weighted horizontal intensity variation is obtained as in

Vxx =
9∑

i=1

wi
∂ I2

i

∂x
≈

9∑
i=1

wi(Pi − Qi)
2 =

9∑
i=1

wi(Qi − Pi)
2 (10.29)

where wi are coefficients of the 2D Gaussian filter,

w =
⎡
⎣w1 w2 w3

w4 w5 w6

w7 w8 w9

⎤
⎦=

⎡
⎣0.04 0.12 0.04

0.12 0.36 0.12
0.04 0.12 0.04

⎤
⎦

Similarly, the weighted vertical intensity variation Vyy is obtained with pixel Pis and Ris as shown in
Figure 10.41(b):

Vyy =
9∑

i=1

wi
∂ I2

i

∂y
≈

9∑
i=1

wi(Pi − Ri)
2 =

9∑
i=1

wi(Ri − Pi)
2 (10.30)

Vxy =
9∑

i=1

wi
∂ Ii

∂x

∂ Ii

∂y
(10.31)

where
∂ Ii

∂x
≈ (Pi − Qi),

∂ Ii

∂y
≈ (Pi − Ri)

Consider these test images: Analog Devices Inc. logo, house and blocks, and tree leaves, as shown in
Figure 10.42(a) through (c). The Harris-Plessey corner detection results for the test images are shown in
Figure 10.43(a) through (c), respectively.

It is desirable for a corner detector to satisfy the following criteria: detection of all true corners, localization
of corner points, robustness to noise, high repeatability rate, and computational efficiency. However, we do
not have a single algorithm to satisfy all these requirements. Some algorithms are good at performance but
computationally expensive and some are good at computational efficiency, but we may not obtain required
performance. Corner detection algorithms such as CSS, Trajkovic and Hedley with 8 neighbors, and SUSAN
provide both performance and computational efficiency.

536 Chapter 10

(a)

(b)

(c)

Figure 10.42: Test images for corner detection. (a) Analog Devices Inc. logo. (b) House and blocks. (3) Tree leaves.

10.10 Hough Transform

The Hough transform is popularly known as a method for detecting lines and circles. The line and circle detection
is used in many image processing applications such as detecting and tracking image objects of different shapes.
In this section, we provide an overview of the Hough transform in line detection, its computational complexity,
and a few efficient implementation methods for real-time applications.

We can generate a straight line easily using a few parameters. For example, we can generate a line with two
points (x1, y1) and (x2, y2), or we can generate a line with one point (x1, y1) and slope m, or with polar coordinates
using magnitude r and angle φ. However, given points in a 2D plane, it is a difficult task for computers to find
whether they lie on a line. In 1962, Paul Hough suggested one way of modeling this problem in a systematic
way. Using the Hough approach, we parameterize the straight line by mapping the line to a single point as shown
in Figure 10.44. When we draw a perpendicular line from the origin to line y = mx + c, the perpendicular line
makes a certain angle φ with the horizontal line and meets the given line at distance r from the origin. These two
parameters are unique and no other line can have the perpendicular line with the same parameters. In this way,
we map the points on a straight line in the x and y domain to a single point in the magnitude and angle domain.
Now, any point (x , y) on the line L satisfies the following equation:

r = x cosφ + y sin φ (10.32)

Given a particular point (x1, y1), there are an infinite number of lines (or their perpendicular lines with infinite
lengths r and infinite angles φ) that pass through point (x1, y1). If this is the case, then how does one find (r,φ)

Image Processing Tools 537

(a)

(b)

(c)

Figure 10.43: Harris-Plessey corner detection output results. (a) Analog Devices Inc. logo. (b) House and blocks.
(3) Tree leaves.

Magnitude

A
ng

le

y

r

L: y 5 mx 1 c

c

x

P: (r, �)

�

Figure 10.44: Hough approach of representing a line with a point.

that satisfies line L? One approach is to assume finite possibilities (e.g., a finite resolution image has finite pixels,
and thus finite amplitudes and finite angles) and find (r,φ) for only those finite possibilities. We map all given
points (xi , yi) to (ri ,φi), and in this process all points

(
x (L)

i , y(L)
i

)
that belong to line L map to a single point

(rL ,φL). This is illustrated in Figure 10.45. We mapped a given NL = 30 points of line L to the (r,φ) plane;

538 Chapter 10

0

0 0

250
25

5

10

15

20

25

30

N
L

�
5

15
20

50
100

150
200

r

(r L,�L)

Figure 10.45: Illustration of Hough transform.

we see a maximum of accumulated points at one place and that point is (rL ,φL). But still, how can we identify
these finite points (ri ,φi) given (xi , yi)? One approach to find (ri ,φi) follows:

1. Identify all lines Li passing through (xi , yi).
2. Compute the slopes mi of Li .
3. Find lines Zi that are perpendicular to lines Li and pass through the origin. As the slopes of perpendicular

lines are given by (−1/mi), the equations for perpendicular lines are given by y = (−1/mi)x .
4. Find the intersecting points of lines Li and Zi . Assume that both lines intersect at point (ui , vi).

5. Obtain the magnitude ri as the distance between (0, 0) and (ui , vi) ri =
√

u2
i +v2

i .

6. Obtain the angle φi as φi = tan−1
(
− 1

mi

)
= tan−1

(
vi
ui

)
.

Computational Complexity of Hough Transform
Even if we assume finite possibilities, the computations involved in the Hough transform are very high when
we want to detect lines in an M × N-pixel–resolution image. Using the preceding approach, we require 40 to 50
fixed-point operations to compute one point (ri ,φi) from (xi , yi). For example, if we consider a QVGA image
(i.e., 320×240 pixels), and assume that we quantize the angle to 360 finite angles, then we will have 360 points
of (ri ,φi) for one point (xi , yi). In other words, the number of fixed-point operations present in computing the
Hough transform for one QVGA image is about 1.4 billion (= 50×360×320×240). Consequently, this is not
a practical approach for detecting lines in an image.

Efficient Implementation of Hough Transform
As the edges obtained from an image contain line information, we can reduce the computations in the Hough
transform drastically by working on binary images instead of grayscale images. There are fewer points (xi , yi) to
work with in the case of binary images if we use a higher threshold level to obtain these images. Assume that we
have 1000 points in the binary image; using the Hough transform, we require only 18 million(= 50×1000×360)
operations. We can further reduce the complexity of the Hough transform by using the following techniques:

• Symmetry properties
• Look-up tables for cosine and sine values
• Embedded CORDIC algorithm

Hough Transform Using Look-up Tables
As the perpendicular lines with 180◦ phase difference can be distinguished with the sign information, we do
not compute Hough transform for all 360◦. Instead, we compute it for angles in the range (−90◦ to 90◦] and
use the sign information of r in Equation (10.32) to get all other angles. Instead of computing the angle and
magnitude by using the multiple iteration CORDIC algorithm, we use look-up tables for storing the precomputed
cosine and sine values in the range (−90◦ to 90◦) and use them to compute the amplitude information r using
Equation (10.32). In the look-up table method, we can compute a point (ri ,φi) using two multiplications and

Image Processing Tools 539

(a)

(b)
r

2 3

(c)

�

Figure 10.46: Line detection. (a) Synthetic image. (b) Mapped points. (c) Detected lines.

one addition. As we have two MAC units on the reference embedded processor, we consume 2 cycles per point
being mapped. In other words, we consume about 0.36 million cycles for mapping all 1000 pixels of a binary
image to parameter space <r,φ> with quantized angle φi resolution equal to 1◦. The simulation results of line
detection in synthetic and real images using the Hough transform is shown in Figures 10.46 and 10.47.

Circle and Ellipse Detection
The Hough transform concept can be extended to circle and ellipse detection as we can map circle and ellipse
coordinates to the parameter space using the following equations.
For circle detection,

x = r cosφ, y = r sin φ (10.33)

In Equation (10.33), we fix the angle φ and compute the amplitude r as:

r = x + y

cosφ + sinφ
(10.34)

For ellipse detection,

x = a cosφ, y = b sin φ (10.35)

540 Chapter 10

(a) (b)

(c) (d)

Figure 10.47: Real image for line detection. (a) TV set. (b) Edge information. (c) Mapped points after threshold.
(d) Detected lines.

In Equation (10.35), we fix the angle φ and compute the amplitudes a and b as follows:

a = x

cosφ
, b = y

sin φ
(10.36)

We can implement both circle and ellipse detection efficiently using the look-up table method. In the case
of circle detection, we map the point (x , y) coordinates to the parameter space <r,φ> using Equation (10.34)
by precomputing the values 1/(cos φ + sinφ), whereas in the case of ellipse detection, we map the point (x , y)

coordinates to the parameter space <a,b,φ> using Equation (10.36) by precomputing the values 1/cos φ and
1/ sin φ.

10.11 Simulation of Image Processing Tools

We can represent any image format pixel values in two dimensions. We use YUV format in the simulations, as
most of the image processing tools can be applied in the YUV format. The simulation code for reading/writing
the M × N resolution YUV 4:2:0 image from/to memory is given in Pcode 10.1. In C , fread or fwrite commands
are more efficient when we read/write a large number of bytes and read/write full-image pixels instead of one
row or column at a time. In real-time applications, we use the DMA for moving the image data to/from memory.

10.11.1 Color Conversion

Images are typically processed in the YUV domain. But display systems require the RGB format to output to
the screen. For this, we must convert YUV to RGB using Equation (10.4). The fixed-point simulation code for
converting YUV to RGB and RGB to YUV is given in Pcodes 10.2 and 10.3, respectively. In the case of YUV
to RGB, the coefficients are represented in 3.13 fixed-point format, whereas in the case of RGB to YUV the
coefficients are represented in 1.15 fixed-point format due to the different dynamic range of the coefficients.
Fixed-point values follow.

YUV to RGB:
9535 (3.13 format of 1.164), 13074 (3.13 format of 1.596), 6660 (3.13 format of 0.813),
2613 (3.13 format of 0.391) and 16531 (3.13 format of 2.018).

Image Processing Tools 541

// reading image A from memory
if (!(fp1 = fopen("image_a.yuv","rb"))){

return(-1);
}
fread(hBufY,1,M*N,fp1); /* Y */
fread(BufU,1,M*N/4,fp1); /* Cb */
fread(BufV,1,M*N/4,fp1); /* Cr */
fclose (fp1);
// writing image B to memory
if (!(fp2 = fopen("image_b.yuv","wb"))){

return(-1);
}
fwrite(hBufY,1,M*N,fp2); /* Y */
fwrite(BufU,1,M*N/4,fp2); /* Cb */
fwrite(BufV,1,M*N/4,fp2); /* Cr */
fclose (fp2);

Pcode 10.1: Simulation code for reading/writing images.

//void yuv2rgb()
//R = (Y-16)*1.164 + (V-128)*1.596;
//G = (Y-16)*1.164 - (V-128)*0.813 - (U-128)*0.391;
//B = (Y-16)*1.164 + (U-128)*2.018;

for(j = 0;j < M;j++)
for(i = 0;i < N;i++){

p = j*N+i; q = (j/2)*N+i/2;
x0 = BufY[p]-16; y0 = BufV[q]-128;
u = (9535*x0) >> 13; v = (13074*y0) >> 13;
u = u + v;
if (u < 0) u = 0;
if (u > 255) u = 255;
BufR[p] = (unsigned char) u;
u = (9535*x0) >> 13; v = (6660 * y0) >> 13;
y0 = BufU[q]-128;
u = u - v; v = (2613 * y0) >> 13;
u = u - v;
f (u < 0) u = 0;
if (u > 255) u = 255;
BufG[p] = (unsigned char) u;
u = (9535*x0) >> 13; v = (16531*y0) >> 13;
u = u + v;
if (u < 0) u = 0;
if (u > 255) u = 255;
BufB[j*N+i] = (unsigned char) u;

}
}

Pcode 10.2: Fixed-point simulation code to convert from YUV to RGB.

RGB to YUV:
8421 (1.15 format of 0.257), 16515 (1.15 format of 0.504), 3211 (1.15 format of 0.098), 4850 (1.15 format of
0.148), 9535 (1.15 format of 0.291), 14385 (1.15 format of 0.439), 12059 (1.15 format of 0.368) and 2327 (1.15
format of 0.071)

10.11.2 Color, Brightness, and Contrast Correction

Histogram equalization is performed in the RGB domain to enhance colors. It also adjusts brightness and contrast
in the YUV domain. The histograms are generated for each color component, and equalization is performed as
shown in Figure 10.1. We can also apply this histogram equalization technique in the YUV domain to enhance
brightness and contrast of images. In histogram equalization, we perform the following steps:

1. Obtain the histogram
2. Find minimum and maximum pixel values

542 Chapter 10

//void rgb2yuv()
//Y = R*0.257 + G*0.504 + B*0.098 + 16
//U = -R*0.148 - G*0.291 + B*0.439 + 128
//V = R*0.439 - G*0.368 - B*0.071 + 128

for(j = 0;j < M;j++){
p = j*N; q = (j+1)*N;
for(i = p;i < q;i++){

r = BufR[i]; g = BufG[i]; b = BufB[i];
x0 = (8421 * r) >> 15; y0 = (16515 * g) >> 15;
x0 = x0 + y0 + 16; y0 = (3211 * b) >> 15;
x0 = x0 + y0;
if (x0 < 0) x0 = 0;
if (x0 > 255) x0 = 255;
BufY[i] = x0;

}
}
for(j = 0;j < M/2;j++){

for(i = 0;i < N/2;i++){
p = (j << 1)*N+(i << 1);
q = j*(N >> 1)+i;
r = BufR[p]; g = BufG[p]; b = BufB[p];
x0 = (14385 * b) >> 15; y0 = (9535 * g) >> 15;
x0 = x0 - y0 + 128; y0 = (4850 * r) >> 15;
x0 = x0 - y0;
if (x0 < 0) x0 = 0;
if (x0 > 255) x0 = 255;
BufU[q] = x0;

x0 = (14385 * r) >> 15; y0 = (12059 * g) >> 15;
x0 = x0 - y0 + 128; y0 = (2327 * r) >> 15;
x0 = x0 - y0;
if (x0 < 0) x0 = 0;
if (x0 > 255) x0 = 255;
BufV[q] = x0;

}
}

Pcode 10.3: Fixed-point simulation code for RGB to YUV conversion.

3. Subtract all pixels from the minimum
4. Find the ratio r = 255/(maximum-minimum)

5. Multiply all pixels with factor r

The simulation code for red color correction is given in Pcode 10.4, and for brightness and contrast enhancement,
in Pcode 10.5.

10.11.3 Edges Enhancement

We enhance the edges by augmenting high-frequency components of the image. We compute the high-frequency
components using the Laplacian mask:

⎡
⎣ 0 −1 0

−1 4 −1
0 −1 0

⎤
⎦

Whenever we apply a mask (to filter, to find edges, etc.), we handle boundaries by appropriately filtering,
skipping, or copying them, depending on the operation. In Pcode 10.6, since we do not have much information to
find the frequencies at the boundaries, we just copy the pixel values to the destination folder without augmenting
the frequencies. For the rest of the pixels, we first compute high-frequency components and add them to actual
pixels before storing to memory.

Image Processing Tools 543

// Red color enhancement

for(j = 0;j < M;j++){
p = j*N; q = (j+1)*N;
for(i = p;i < q;i++)

Hist[BufR[i]]+= 1;
}
y0 = 0;
for(p = 0;p < 255;p++) {

y0+= Hist[p];
if (y0 > 25) break;

}
x = 0;
for(j = 0;j < M;j++){

p = j*N; q = (j+1)*N;
for(i = p;i < q;i++) {

x0 = (int) BufR[i] - p;
if (x0 < 0) x0 = 0;
if (x0 > 255) x0 = 255;
BufR[i] = x0;

}
}
for(j = 254;j > 0;j--)

if (Hist[j] > 0) break;
x = (float) 255.0/(255-p + 254-j);

for(j = 0;j < M;j++){
p = j*N; q = (j+1)*N;
for(i = p;i < q;i++)

BufR[i] = (unsigned char) ((float) BufR[i]*x + 0.5);
}

Pcode 10.4: Simulation code for red color enhancement.

// Brightness and contrast enhancement

for(j = 0;j < M;j++){
p = j*N; q = (j+1)*N;
for(i = p;i < q;i++)

Hist[BufY[i]]+= 1;
}
y0 = 0;
for(p = 0;p < 255;p++) {

y0+= Hist[p];
if (y0 > 25) break;

}
x = 0;
for(j = 0;j < M;j++){

p = j*N; q = (j+1)*N;
for(i = p;i < q;i++) {

x0 = (int) BufY[i] - p;
if (x0 < 0) x0 = 0;
if (x0 > 255) x0 = 255;
BufY[i] = x0;

}
}
for(j = 254;j > 0;j--)

if (Hist[j] > 0) break;
x = (float) 255.0/(255-p + 254 - j);

for(j = 0;j < M;j++){
p = j*N; q = (j+1)*N;
for(i = p;i < q;i++)

BufY[i] = (unsigned char) ((float) BufY[i]*x + 0.5);
}

Pcode 10.5: Simulation code for brightness and contrast enhancement.

544 Chapter 10

// edges enhancement
for(j = 0;j < 1;j++) { // copy top row

p = j*N; q = (j+1)*N;
for(i = p;i < q;i++)

BufX[i] = BufY[i];
}
for(j = 0;j < M;j++) { // copy left column

p = j*N;
BufX[p] = BufY[p];

}
for(j = 1;j < M-1;j++) {

p = j*N+1; q = (j+1)*N-1;
for(i = p;i < q;i++) {

x0 = BufY[i]; y0 = BufY[i-1];
x0 = x0 << 2;
x0 = x0 - y0; y0 = BufY[i+1];
x0 = x0 - y0; y0 = BufY[i-N-1];
x0 = x0 - y0; y0 = BufY[i+N+1];
x0 = x0 - y0;
x0 = (int) BufY[i] + (int) x*0.3;
if (x0 < 0) x0 = 0;
if (x0 > 255) x0 = 255;
BufX[i] = (unsigned char) x0;

}
}
for(j = 0;j < M;j++){

p = j*N; q = (j+1)*N;
for(i = p;i < q;i++)

BufY[i] = BufX[i];
}

Pcode 10.6: Simulation code for edge enhancement.

10.11.4 Image Filtering

In this section, we simulate both the 3 × 3 Gaussian filter and 3 × 3 median filter for smoothing images. The
general form of the 3×3 Gaussian filter mask is

1

K

⎡
⎣ a b a

b c b
a b a

⎤
⎦

where K = 4a +4b + c. We precompute the value of G = 1/K and represent G in 1.15 format. The simulation
code for the 3×3 Gaussian filter is given in Pcode 10.7.

for(j = 1;j < M-1;j++){
p = j*N+1; q = (j+1)*N-1;
for(i = p;i < q;i++){

x0 = BufY[i] * c;
y0 = BufY[i-N-2] + BufY[i-N] + BufY[i+N] + BufY[i+N+2];
y0 = y0 * a;
x0 = x0 + y0;
y0 = BufY[i-1] + BufY[i+1] + BufY[i-N-1] + [i+N+1];
y0 = y0 * b;
x0 = x0 + y0;
x0 = (x0 * G) >> 15;
BufX[i] = (unsigned char) x0;

}
}

Pcode 10.7: Simulation code for 3× 3 Gaussian filter.

In the case of the 3 × 3 median filter, we compute the median of nine pixels present in the 3 × 3 mask by
sorting the pixels in ascending or descending order. The simulation code for the 3 × 3 median filter is given in
Pcode 10.8. See Section 15.2 for efficient implementation of the 3×3 median filter.

Image Processing Tools 545

for(j = 1;j < M-1;j++) {
p = j*N+1; q = (j+1)*N-1;
for(i = p;i < q;i++) {

MedE[0] = BufY[i-N-2]; MedE[1] = BufY[i-N-1]; MedE[2] = BufY[i-N];
MedE[3] = BufY[i-1]; MedE[4] = BufY[i]; MedE[5] = BufY[i+1];
MedE[6] = BufY[i+N]; MedE[7] = BufY[i+N+1]; MedE[8] = BufY[i+N+2];

for(r = 0;r < 9;r++) {
x0 = MedE[0]; n = 0;
for(m = 1;m < 9;m++)

if (x0 < MedE[m]) {
x0 = MedE[m]; n = m;
}
MedF[r] = MedE[n];
MedE[n] = 0;

}
BufX[i] = MedF[4];

}
}

Pcode 10.8: Simulation code for 3× 3 median filter (bubble sort approach).

10.11.5 Edge Detection

Edge detection based on the Sobel or Laplacian operator is a simple algorithm and involves only gradient
magnitude computation. The simulation code for the Sobel and Laplacian edge detectors is given in Pcodes 10.9
and 10.10, respectively.

In contrast, the Canny edge detector is a more complex multistep algorithm. It involves image smoothing,
gradient magnitude and angle computation, nonmaximum suppression, and hysteresis thresholding. We use a

for(j = 1;j < M-1;j++){
p = j*N+1; q = (j+1)*N-1;
for(i = p;i < q;i++){

x0 = BufY[i-N] + (BufY[i+1] << 1) + BufY[i+N+2] -
(BufY[i-N-2] + (BufY[i-1] << 1) + BufY[i+N]);

y0 = BufY[i-N-2] + (BufY[i-N-1] << 1) + BufY[i-N] -
(BufY[i+N] + (BufY[i+N+1] << 1) + BufY[i+N+2]);

x0 = abs(x0); y0 = abs(y0);
grad = x0 > y0 ? x0 : y0; // approximate gradient computation
if (grad > 255) grad = 255;
BufX[i] = (unsigned char) grad;

}
}
for(j = 0;j < M;j++){

p = j*N; q = (j+1)*N;
for(i = p;i < q;i++) {

BufY[i] = BufX[i] > 128 ? 255 : 0; // thresholding

Pcode 10.9: Simulation code for Sobel edge detector.

for(j = 1;j < M-1;j++){
p = j*N+1; q = (j+1)*N-1;
for(i = 1;i < N-1;i++){

x0 = BufY[i-N-1] + BufY[i-1] + BufY[i+N+1] + BufY[i+1];
y0 = (BufY[i] << 2); x0 = x0 - y0;
if (x0 < 0) x0 = 0;
if (x0 > 255) x0 = 255;
BufX[i] = x0;

}
}
for(j = 0;j < M;j++){

p = j*N; q = (j+1)*N
for(i = p;i < q;i++)

BufY[i] = BufX[i] > 32 ? 255 : 0
}

Pcode 10.10: Similation code for Laplacian edge detector.

546 Chapter 10

for(j = 2;j < M-2;j++){
p = (j-2)*N; q = (j-1)*N; r = j*N;
s = (j+1)*N; t = (j+2)*N;
for(i = 2;i < N-2;i++){

y0 = (BufY[p+i-2] + BufY[p+i+2] + BufY[t+i-2] + BufY[t+i+2]) << 2;
x0 = (BufY[p+i-1] + BufY[p+i+1] + BufY[t+i-1] + BufY[t+i+1] + BufY[q+i-2] +

BufY[q+i+2] + BufY[s+i-2] + BufY[s+i+2]);
y0 = y0 + (x0 << 2) + (x0 << 1);
x0 = BufY[p+i] + BufY[r+i+2] + BufY[r+i-2] + BufY[t+i];
y0 = y0 + (x0 << 3) - x0;
x0 = BufY[q+i-1] + BufY[q+i+1] + BufY[s+i-1] + BufY[s+i+1];
y0 = y0 + (x0 << 3) + x0;
x0 = BufY[q+i] + BufY[r+i+1] + BufY[r+i-1] + BufY[s+i];
y0 = y0 + (x0 << 3) + (x0 << 2) - x0;
y0 = y0 + BufY[r+i]*12;
x0 = (y0*G) >> 15; // G = 1.15 format of 1/184
if (x0 > 255) x0 = 255;
BufX[r+i] = (unsigned char) x0;

}
}

Pcode 10.11: Simulation code for image smoothing using 5× 5 Gaussian filter.

5×5 Gaussian filter to smooth the images. The simulation code for smoothing images using the 5×5 Gaussian
filter is given in Pcode 10.11. We compute the x -gradient (Gx) and y-gradient (G y) using Sobel operators after
smoothing the image. Once we know the values of Gx and G y, we compute both pixel gradient magnitude
and angle using the CORDIC algorithm or any other methods to compute the gradient and angle. We can get
an approximate value of magnitude and quantized angle in four iterations of the CORDIC algorithm. Here we
compute the gradient and angle separately using simple methods. We use the same approach as in Pcode 10.9 to
get the magnitude. The quantized angle is obtained by using the look-up table method as given in Pcode 10.12.
The values of the look-up table edge_orientations[] used in quantized gradient-angle computation follow.

edge_orientations[32] = {
0, 0, 90, 0, 45, 0, 0, 0, 0, 0, 90, 0, 135, 0, 0, 0,
0, 0, 90, 0, 135,0, 0, 0, 0, 0, 90, 0, 45, 0, 0, 0};

Simulation code for nonmaximum suppression and hysteresis thresholding is given in Pcodes 10.13 and 10.14,
respectively.

x0 = abs(Gx); y0 = abs(Gy);
a = (g * x0) >> 13; // g is 3.13 format of 0.4
b = (h * x0) >> 13; // h is 3.13 format of 2.4
i = 0;
if (Gy < 0) i = 1;
i = i << 1;
if (Gx < 0) i |= 1;
i = i << 1;
if ((y0 > a) && (y0 <= b)) i |= 1;
i = i << 1;
if (y0 > b) i |= 1;
i = i << 1;
if (y0 <= a) i |= 1;
angle = edge_orientations[i];

Pcode 10.12: Simulation code for computing quantized angle.

10.11.6 Image Scaling

In this section, we present the simulation code for nearest-neighbor and the bilinear interpolation. See
Section 15.1 for simulations of advanced interpolation methods. The simulation code for the nearest-neighbor

Image Processing Tools 547

for(j = 0;j < M;j++){
p = j*N; q = (j+1)*N;
for(i = p;i < q;i++)
BufX[i] = BufY[i];

}
for(j = 0;j < M;j++){

p = j*N; q = (j+1)*N;
for (i = 0;i < N;i++){

if (BufY[i] != 0){
if (dirc[i] == 0){

if ((BufY[i] < BufY[i-1]) || (BufY[i] < BufY[i+1]))
BufX[i] = 0;

}
else if (dirc[i] == 45){

if ((BufY[i] < BufY[i+N]) || (BufY[i] < BufY[i-N]))
BufX[i] = 0;

}
else if (dirc[i] == 90){

if ((BufY[i] < BufY[i-N-1]) || (BufY[i] < BufY[i+N+1]))
BufX[i] = 0;

}
else if (dirc[i] == 135){

if ((BufY[i] < BufY[i-N-2]) || (BufY[i] < BufY[i+N+2]))
BufX[i] = 0;

}
}

}
}
for(j = 0;j < M;j++){

p = j*N; q = (j+1)*N;
for(i = p;i < q;i++)
BufY[i] = BufX[i];

}

Pcode 10.13: Simulation code for nonmaximum suppression.

// apply thresholds
t1 = 16; // minimum threshold
t2 = 64; // maximum threshold
for(j = 0;j < M;j++) {

p = j*N; q = (j+1)*N;
for(i = p;i < q;i++){

if (BufY[i] > t2)
BufY[i] = 255;

else if ((BufY[i] < t2) && (BufY[i] > t1))
BufY[i] = 128;

else
BufY[i] = 0;

}
}
f = 1;
while (f){

f = 0;
for (j = 0;j < M;j++){

p = j*N; q = (j+1)*N;
for(i = p;i < q;i++){

if (BufY[i] > 0){
if(BufY[i] == 128){

if ((BufY[i-1] == 255) && (BufY[i+1] == 255) &&
(BufY[i-N-1] == 255) && (BufY[i+N+1] == 255) && (BufY[i-N-2] == 255) && (BufY[i+N]== 255) &&
(BufY[i+N] == 255) && (BufY[i+N+2] == 255)){

BufY[i] = 255;
f = 1;

}
}

}
}

}
}
for(j = 0;j < M;j++){

p = j*N; q = (j+1)*N;
for(i = p;i < q;i++)

if (BufY[i] == 128)
BufY[i] = 0;

}

Pcode 10.14: Simulation code for hysteresis thresholding.

548 Chapter 10

interpolation method in order to double the image size in both horizontal and vertical directions is given in
Pcode 10.15.

for(j = 0;j < 2*M;j+=2){ // luma component scaling
p = j*2*N; q = (j+1)*2*N; r = (j >> 1)*N;
for(i = 0;i < 2*N;i+ = 2){

BufX[p+i] = BufY[r+(i >> 1)];
BufX[p+i+1] = BufY[r+(i >> 1)];
BufX[q+i] = BufY[r+(i >> 1)];
BufX[q+i+1] = BufY[r+(i >> 1)];

}
}
for(j = 0;j < M;j+=2){ // chroma component scaling

p = j*N; q = (j+1)*N; r = (j >> 1)*(N >> 1);
for(i = 0;i < N;i+ = 2){

BufA[p+i] = BufU[r+(i >> 1)];
BufA[p+i+1] = BufU[r+(i >> 1)];
BufA[q+i] = BufU[r+(i >> 1)];
BufA[q+i+1] = BufU[r+(i >> 1)];

}
for(i = 0;i < N;i+ = 2){

BufB[p+i] = BufV[r+(i >> 1)];
BufB[p+i+1] = BufV[r+(i >> 1)];
BufB[q+i] = BufV[r+(i >> 1)];
BufB[q+i+1] = BufV[r+(i >> 1)];

}
}

Pcode 10.15: Nearest-neighbor interpolation to double the image size both in horizontal and vertical direction.

We must also determine the pixel index offsets for the source image (i.e., which pixels participate in the
interpolation to get the current pixel in the output image) with arbitrary scaling of images. Computation of index
offset values on the fly for every pixel of original and scaled images is a time-consuming process. Instead, we use
a look-up table to hold the index offset values. We can scale the image by scaling all rows followed by all columns
or vice versa. In this process, if we know index offsets for one row or one column, then we can use the same
index offsets for all other rows or columns. Given the interpolation method and scaling ratio, we can compute the
look-up table values. For example, the computed index offset values for nearest-neighbor interpolation with a
scaling ratio of 3:2 and for the bilinear interpolation method with a scaling ratio of 5:4 is shown in Figures 10.48
and 10.49, respectively.

When using circular buffering, storing the index values for one interval period is sufficient. We access appro-
priate offsets by configuring the circular index register parameters. The simulation code for nearest-neighbor
interpolation to arbitrarily scale the luma component of the image is given in Pcode 10.16.

Source: 0, 1, 2, 3, 4, 5, 6, . . .
Look-up table (LUT): 0, 1, 1, 2, 3, 3, 4, 5, 5, . . .
Destination: 0, 1, 2, 3, 4, 5, . . .
Destination [i] 5 Source[LUT[i]]

Pixel positions
after interpolation

Pixels of
source image

Pixels of
destination image

Figure 10.48: Illustration of source and destination pixel placement for scaling ratio of 3:2 (i.e., generate three
pixels from given two pixels) using nearest-neighbor approach.

Image Processing Tools 549

Source: 0, 1, 2, 3, 4, 5, 6, . . .
Look-up table (LUT): 0, 0, 1, 2, 3, 4, 4, 5, 6, 7, . . .
Destination: 0, 1, 2, 3, 4, 5, . . .
Destination [i]� (a*Source[LUT[i]]�b*Source[LUT[i]�1])��15

Pixel positions
after interpolation

Pixels of
source image

Pixels of
destination image

Figure 10.49: Illustration of source and destination pixel placement for scaling ratio of 5:4 (i.e., generate five
pixels from given four pixels) using bilinear interpolator approach.

for(j = 0;j < M;j++){ // luma component horizontal scaling
p = j*K; q = (j+1)*K; // K = (N/rH), rH: horizontal scaling ratio
t = 0;
for(i = p;i < q;i++)

BufX[i] = BufY[HLUT[t++]];
}
for(i = 0;i < K;i++)

for(j = 0;j < R;j++) // R = (M/rV), rV: vertical scaling ratio
BufY[j*K+i] = BufX[VLUT[j]*K+i];

Pcode 10.16: Nearest-neighbor interpolation to scale the luminance component of image with arbitrary scaling
ratios in both horizontal and vertical directions.

for(j = 0;j < 2*M;j+= 2){
p = j*(N << 1); q = (j+1)*(N << 1);
r = (j >> 1)*N; s = ((j >> 1)+1)*N;
for(i = 0;i < 2*N;i+= 2){

BufX[p+i] = BufY[r+(i >> 1)];
BufX[p+i+1] = (BufY[r+(i >> 1)]+BufY[r+(i >> 1)+1]) >> 1;
BufX[q+i] = (BufY[r+(i >> 1)]+BufY[s+(i >> 1)]) >> 1;
BufX[q+i+1] = (BufY[r+(i >> 1)]+BufY[r+(i >> 1)+1]+

BufY[s+(i >> 1)]+BufY[s+(i >> 1)+1]) >> 2;
}

}
for(j = 0;j < M;j+=2){

p = j*N; q = (j+1)*N;
r = (j >> 1)*(N >> 1); s = ((j >> 1)+1)*(N >> 1);
for(i = 0;i < N;i+= 2){

BufA[p+i] = BufU[r+(i >> 1)];
BufA[p+i+1] = (BufU[r+(i >> 1)]+BufU[r+(i >> 1)+1]) >> 1;
BufA[q+i] = (BufU[r+(i >> 1)]+BufU[s+(i >> 1)]) >> 1;
BufA[q+i+1] = (BufU[r+(i >> 1)]+BufU[r+(i >> 1)+1]+

BufU[s+(i >> 1)]+BufU[s+(i >> 1)+1]) >> 2;
BufB[p+i] = BufV[r+(i >> 1)];

BufB[p+i+1] = (BufV[r+(i >> 1)]+BufV[r+(i >> 1)+1]) >> 1;
BufB[q+i] = (BufV[r+(i >> 1)]+BufV[s+(i >> 1)]) >> 1;
BufB[q+i+1] = (BufV[r+(i >> 1)]+BufV[r+(i >> 1)+1]+

BufV[s+(i >> 1)]+BufV[s+(i >> 1)+1]) >> 2;
}

}

Pcode 10.17: Simulation code to double the size of image using bilinear interpolation method.

Simulation code to double the image size and to arbitrarily scale the luminance component of an image using
bilinear interpolation is given in Pcodes 10.17 and 10.18. Before calling this module, we should generate the
look-up table with index offsets in both horizontal and vertical directions.

550 Chapter 10

for(j = 0;j < M;j++){ // luma component horizontal scaling
p = j*K; q = (j+1)*K; // K = (N/rH), rH: horizontal scaling ratio
t = 0;
for(i = p;i < q;i++) {

r = HLUT[t++]; a = HLUT0[j]; b = HLUT1[j];
BufX[i] = (a*BufY[r] + b*BufY[r+1]) >> 15;

}
}
for(i = 0;i < K;i++)

for(j = 0;j < R;j++) { // R = (M/rV), rV: vertical scaling ratio
r = VLUT[j]; a = VLUT0[j]; b = VLUT1[j];
BufY[j*K+i] = (a*BufX[r*K+i] + b*BufX[(r+1)*K+i]) >> 15;

}

Pcode 10.18: Bilinear interpolation to scale the luminance component of image with arbitrary scaling ratios in
both horizontal and vertical directions.

10.11.7 Dilation and Erosion

Dilation and erosion operations are performed based on rules specified for grayscale and binary images. The
dilation-operation simulation code for grayscale and binary images is given in Pcode 10.19, and the simulation
code for erosion applied to grayscale and binary images is given in Pcode 10.20.

if (binary_image) {
for(j = 1;j < M-1;j++) {

p = j*N+1; q = (j+1)*N;
for(i = p;i < q;i++){

if (BufY[i] == 0){
x0 = BufY[i-N-2] + BufY[i-1] + BufY[i+N] + BufY[i+N+1] +

BufY[i+N+2] + BufY[i+1] + BufY[i-N] +
BufY[i-N-1];

if (x0 > 0)
BufX[i] = 255;

}
}

}
}
else {

for(j = 1;j < M-1;j++){
p = j*N+1; q = (j + 1)*N;
for(i = p;i < q;i++){

x0 = BufY[i]; y0 = BufY[i-N-2];
if (x0 > y0) x0 = y0;
y0 = BufY[i-1];
if (x0 > y0) x0 = y0;
y0 = BufY[i+N];
if (x0 > y0) x0 = y0;
y0 = BufY[i-N-1];
if (x0 > y0) x0 = y0;
y0 = BufY[i+N+1];
if (x0 > y0) x0 = y0;
y0 = BufY[i-N];
if (x0 > y0) x0 = y0;
y0 = BufY[i+1];
if (x0 > y0) x0 = y0;
y0 = BufY[i+N+2];
if (x0 > y0) x0 = y0;
BufX[i] = x0;

}
}

}

Pcode 10.19: Simulation code for dilation operation.

Image Processing Tools 551

if (binary_image) {
for(j = 1;j < M-1;j++) {

p = j*N + 1; q = (j+1)*N;
for(i = p;i < q;i++){

if (BufY[i] == 255){
x0 = BufY[i-N-2] + BufY[i-1] + BufY[i+N] + BufY[i+N+1] +

BufY[i+N+2] + BufY[i+1] + BufY[i-N] + BufY[i-N-1];
if (x0 < 2040) // 8x255 -> 2040

BufX[i] = 0;
}

}
}

}
else {

for(j = 1;j < M-1;j++) {
p = j*N+1; q = (j+1)*N;
for(i = p;i < q;i++){

x0 = BufY[i]; y0 = BufY[i-N-2];
if (x0 < y0) x0 = y0;
y0 = BufY[i-1];
if (x0 < y0) x0 = y0;
y0 = BufY[i+N];
if (x0 < y0) x0 = y0;
y0 = BufY[i-N-1];
if (x0 < y0) x0 = y0;
y0 = BufY[i+N+1];
if (x0 < y0) x0 = y0;
y0 = BufY[i-N];
if (x0 < y0) x0 = y0;
y0 = BufY[i+1];
if (x0 < y0) x0 = y0;
y0 = BufY[i+N+2];
if (x0 < y0) x0 = y0;
BufX[i] = x0;

}
}

}

Pcode 10.20: Simulation code for erosion operation.

10.11.8 Corner Detection

In this section, we simulate the Harris–Plassey operator to detect corners. For this, the cornerness measure
C(x , y) is obtained from elements of 2×2 matrix A. The elements of matrix A represent intensity variations of
the image as discussed in Section 10.9.

A =
[

Vxx Vxy

Vxy Vyy

]

C(x , y) = det(A)− k[trace(A)]2

where

det(A) = λ1λ2 = Vxx Vyy − V 2
xy

trace(A) = λ1 +λ2 = Vxx + Vyy

and k = constant (for best results we choose k between 0.04 and 0.06).
We obtain object corners after applying threshold T to the cornerness measure. The simulation code for

detecting object corners using the Harris–Plassey operator is given in Pcode 10.21.

552 Chapter 10

for(j = 2;j < M-2;j++)
for(i = 2;i < N-2;i++){

x0 = 0;
for(p = 0;p < 3;p++)

for(q = 0;q < 3;q++)
x0 = x0 + (int) ((BufY[(j+p)*N+i+q] - BufY[(j+p)*N+i+q+1])*

(BufY[(j+p)*N+i+q] -
BufY[(j+p)*N+i+q+1])* w[p*3+q]);

BufA[j*N+i] = x0;
}

for(j = 2;j < M-2;j++)
for(i = 2;i < N-2;i++){

x0 = 0;
for(p = 0;p < 3;p++)

for(q = 0;q < 3;q++)
x0 = x0 + (int) ((BufY[(j+p)*N+i+q] - BufY[(j+p+1)*N+i+q])*
(BufY[(j+p)*N+i+q] - BufY[(j+p+1)*N+i+q]) * w[p*3+q]);

BufB[j*N+i] = x0;
}

for(j = 2;j < M-2;j++)
for(i = 2;i < N-2;i++){

x0 = 0;
for(p = 0;p < 3;p++)

for(q = 0;q < 3;q++)
x0 = x0 + (int) (abs((BufY[(j+p)*N+i+q] -

BufY[(j+p)*N+i+q+1])*(BufY[(j+p)*N+i+q]-
BufY[(j+p+1)*N+i+q])) * w[p*3+q]);

BufC[j*N+i] = x0;
}

for(j = 0;j < M;j++)
for(i = 0;i < N;i++){

x0 = BufA[j*N+i] * BufB[j*N+i] - (BufC[j*N+i]*BufC[j*N+i]);
y0 = (BufA[j*N+i] + BufB[j*N+i])*(BufA[j*N+i] + BufB[j*N+i]);
BufC[j*N+i] = x0 - 0.04*y0;

}
for(j = 0;j < M;j++)

for(i = 0;i < N;i++)
BufD[j*N+i] = BufC[j*N+i] > T ? 255 : 0; // T: threshold

Pcode 10.21: Similation code of Harris/Plassey operator for corner detection.

10.11.9 Hough Transform

The Hough transform is efficiently implemented by using the look-up table method. In the look-up table
method, we precompute look-up table values for cosφ and sinφ in the range (−90,90) and implement with two
multiplications and one addition.

The simulation code for detecting the lines using the look-up table based Hough transform method is given
in Pcode 10.22.

for(t = 0;t < 180;t++){
for(j = 0;j < M;j++){

p = j*N; q = t*3*K;
for(i = 0;i < N;i++)

if (BufY[p+i] != 0){
x0 = i-(N >> 1); y0 = j-(M >> 1);
r = (x0*cos_lut[t]) >> 15 +(y0*sin_lut[t]) >> 15;
r = r + K;
hBufY[q+r]+ = 1; // counting the mapped points

}
}

}

Pcode 10.22: Look-up table based Hough transform computation for line detection.

CHAPTER 11

Advanced Image Processing Algorithms

As discussed in Chapter 10, the pixels of a discrete image can be obtained by 2D sampling of the corresponding
analog image captured by a camera sensor. The previous chapter focused on many basic image processing
tools to perform image enhancement, edge detection, scaling, filtering, and so on, by processing images at
their basic element level (i.e., at the pixel level). In this chapter, we discuss certain advanced image processing
tools in detail, including image rotation, image stabilization, object detection, and image compression, based
on the assumption that the digital image pixels are available in the appropriate format. In addition, we discuss
C-simulation techniques for commonly used image processing algorithms.

11.1 Image Rotation

Real-time image rotation is a core operation in many applications such as medical image processing, computer
vision (CV), and image registration. Many applications such as radiology and photographic analysis require
very high-quality image rotation. In addition, high-throughput algorithms for image rotation are a common
requirement in real-time image processing. Typically, we rotate images about their center as shown in Figure 11.1.
The rotation of a 2D image about its Cartesian origin can be accomplished by moving each pixel of the source
image to the destination image with the rotation of pixel position by angle φ. For example, the position (c,d) of
pixel P in the destination image is computed from the position (a,b) of pixel P in the source image using the
rotation angle φ.

The mathematical expressions for computing the pixel positions (c,d) in the rotated image can be obtained as
follows: Let P be the pixel value of the 2D source image located at the position A: (a,b) shown in Figure 11.2.
We can express location A: (a,b) using polar coordinates A: (r, θ), where r = √

a2 +b2 and θ = tan−1(b/a).
Given polar coordinates (r, θ), we can obtain Cartesian coordinates (a,b) as in a = r cos θ and b = r sin θ . Using
a complex coordinate system, the position A can be expressed as

A = a + jb

= r cos θ + j sinθ (11.1)

= re jθ

Let (c,d) denote a rotated pixel position C obtained after rotating pixel P at position A by an angle φ shown in
Figure 11.2. As before, the position C can be expressed using a complex coordinate system:

C = re j (θ+φ)

= r[cos(θ +φ)+ j sin(θ +φ)] (11.2)

= r[cos θ cosφ − sin θ sin φ + j (sin θ cosφ + cos θ sin φ)]

Equation (11.2) can be simplified using polar to Cartesian coordinate expressions a = r cos θ and b = r sin θ :

C = a cosφ −b sin φ + j (b cosφ +a sin φ)
(11.3)

= c + jd

© 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-678-1.00011-9 553

554 Chapter 11

(a, b)

(c, d)

P
P

0 �0

Figure 11.1: An illustration of synthetic image rotation by angle φ.

Figure 11.2: Rotation of pixel by
angle φ.

A: (a, b), location of original pixel P
 in the source image

C : (c, d), location of rotated pixel P
 in the destination image

r
r

P

P

�

�

where

c = a cosφ −b sin φ (11.4)

d = a sinφ +b cos φ (11.5)

The expressions in Equations (11.4) and (11.5) define the basic rotation transformation. Given the pixel position
A: (a,b) and rotation angle φ, the rotated pixel position C : (c,d) can be obtained using compact matrix notations:[

c
d

]
=
[

cos φ −sinφ

sinφ cos φ

][
a
b

]
(11.6)

We need not compute a full transformation for every pixel to obtain its rotated position. As we scan the pixels
in raster scan order (i.e., reading row by row), at the start of the b-th row we compute the rotated pixel position
(c(b)

0 ,d(b)
0) from the source pixel position (a,b), where a indicates the column position and b indicates the row

position, using Equation (11.6). We then obtain the subsequent rotated position indices (c(b)
n+1,d(b)

n+1) by simply
following an iterative procedure:

c(b)
n+1 = c(b)

n + cosφ (11.7)

d(b)
n+1 = d(b)

n + sinφ (11.8)

where

c(b)
0 = a cos φ −b sinφ and d(b)

0 = a sin φ +b cosφ.

In this chapter, we use a real test image shown in Figure 11.3 for examining various image rotation algorithms.
This particular image was chosen as a test image because it consists of edges in various directions, and the rotation
of image affects the edges of the various directions differently.

11.1.1 Issues in Image Rotation

Although we can rotate images using the simple expressions given in Equations (11.4) and (11.5) or using the
equivalent matrix transformation given in Equation (11.6), obtaining a high-quality rotated image is challenging.
If we simply move the pixel at position (a,b) in the source image to the pixel position (c,d) in the destination

Advanced Image Processing Algorithms 555

Figure 11.3: Test image for rotation.

Figure 11.4: Image rotation showing
holes in rotated image via forward
mapping approach.

image using the preceding transformation, we may get the rotated image with many holes on the 2D sampled grid
due to discontinuity of indices c and d after transformation. In other words, no pixel is mapped to those particular
positions after performing the rotation transformation. For example, if we rotate the test image with φ = 15◦ by
simply copying the pixels from the source image to the rotated destination image, we obtain a visually unpleasant
rotated image with many holes, as shown in Figure 11.4. In this approach, we basically scan the source image
pixels in raster scan order, compute the rotated pixel position indices c and d from the source pixel indices a
and b and the angle φ, and then copy the corresponding pixel values from the source to the destination image.
This approach is also called image rotation by forward mapping.

Holes in the destination image can be avoided by scanning the pixel positions the other way. That is, instead
of scanning the source image pixel positions and copying those pixels to the rotated positions, we scan the pixel
positions in the rotated image, map back to the pixel position in the source by reverse transformation, and then
copy the corresponding pixel values from the source image to the destination image as shown in Figure 11.5. As
we continuously scan the destination image, we avoid the presence of holes in the rotated image. This is called
inverse mapping. Hereinafter we use only inverse mapping to rotate images since it does not leave holes in the
rotated image.

As shown in Figure 11.5(b), the problem with the inverse mapping approach is that the pixel positions obtained
by inverse transformation do not fall exactly onto the existing pixel positions of the source image. For example,
as shown in Figure 11.5, for a given angle φ, the pixel at position P in the destination image (i.e., rotated image)

556 Chapter 11

(a)

P

(b)

P�

Figure 11.5: Image rotation with inverse mapping approach. (a) Destination image. (b) Source image.

is mapped to the pixel position P ′ in the source image after inverse transformation. But there is no pixel value
at position P ′ because it does not fall on the grid of the source image. This means we should make the pixel
value at P ′ and move that newly created pixel to the position P in the rotated image. There are many ways to
obtain the pixel values at noninteger positions (i.e., off the grid) given the pixel values at integer positions using
interpolation (see Section 10.7). Methods such as nearest-neighbor, bilinear, and cubic B-spline are commonly
used to obtain new pixel values at intermediate pixel positions.

11.1.2 Image Rotation with Nearest-Neighbor

As discussed in Section 10.7.1, in the nearest-neighbor approach, we pick the pixel that is the nearest neighbor
to the pixel position P ′ as the new pixel value and move that new pixel to the pixel position P in the rotated
image. The test image is rotated two different angles, 15◦ and 125◦, using the nearest-neighbor method; the
corresponding rotated images are shown in Figure 11.6(a) and (b), respectively. Although the holes are avoided
in the rotated image with inverse mapping, we can see many staircase-type artifacts in the rotated image. These
artifacts arise due to overlapping of many pixels of the source image at a single pixel position in the destination
image after rotating, known as the aliasing effect. The main reason for this aliasing is the result of infinite-
precision pixel indices after rotation transformation and the presence of only finite sampling intervals in the 2D
sampled grid. The elimination of aliasing in rotated images with fewer computations is a hot topic in the image
processing field.

11.1.3 Image Rotation Using Bilinear Interpolation

In the literature, many techniques have been proposed to minimize aliasing in rotated images. One such technique
is to use interpolation—instead of simply copying the value of the nearest available pixel for the “exact” position
obtained by inverse mapping, we use several neighboring pixels for interpolation and then write the interpolated
pixel value to the rotated position. This is illustrated in Figure 11.7. Let G denote the inverse-mapped pixel
position in the source image. In the nearest-neighbor approach, we just copy the pixel value at position A (which
is the closest to pixel position G) to the rotated pixel position in the destination image. In the interpolation
approach, we compute the approximate pixel value g at pixel position G by means of interpolation, and then
move the pixel value g to the rotated pixel position in the destination image. The easiest method to obtain the
interpolated pixel value for inverse mapped position G is to apply bilinear interpolation for the neighboring
4 pixels as shown in Figure 11.7 (see Section 10.7.2 for more detail on bilinear interpolation).

Images that are rotated by the bilinear interpolation method are shown in Figure 11.8. The two rotated
images by angles of 15◦ and 125◦ are shown in Figure 11.8(a) and (b), respectively. Here we can see the
improved quality of the rotated images with bilinear interpolation when compared to the nearest-neighbor
approach. Even though we are able to minimize the aliasing effect with bilinear interpolation when compared
to the nearest-neighbor approach, there is still a significant amount of aliasing in the rotated images. You
may ask at this juncture whether one could obtain even better quality upon using higher-order interpolators
(e.g., cubic B-spline, sinc). The aliasing effect can, in fact, be further minimized with higher-order interpo-
lators. While it is not possible to completely eliminate this aliasing with higher-order interpolators, we can

Advanced Image Processing Algorithms 557

(a) (b)

Figure 11.6: Image rotation with nearest-neighbor approach. (a) Rotated 15◦. (b) Rotated 125◦.

Figure 11.7: Bilinear interpolation of
image pixels.

x 12 x

y

1 2 y

C D F

G

A E B

(a) (b)

Figure 11.8: Image rotation by bilinear interpolation. (a) Rotated 15◦. (b) Rotated 125◦.

obtain relatively high-quality rotated images such that the artifacts are so negligible that the human eye cannot
perceive them.

11.1.4 Image Rotation with Cubic B-Spline Interpolation

In this section, we discuss rotation of images with cubic B-spline interpolation (see Section 15.2.1 for more detail
on this method). In cubic B-spline interpolation, we work on a 4×4 area of pixels as shown in Figure 11.9. The
interpolation is carried out by first computing intermediate gray-colored pixels a,b,c, and d from corresponding
row pixels a1 to a4,b1 to b4,c1 to c4, and d1 to d4, and then computing the required pixel p at the target position
from intermediate pixels a,b,c, and d. The coefficients f1 to f4 and g1 to g4 that are used in interpolating

558 Chapter 11

Figure 11.9: Cubic B-spline
interpolation of image pixels.

a4a1 a2 a3

a

b1

b

b2 b3 b4

c2c1 c3 c4

d2d1 d3 d4

c

d

p

f1 f2 f3 f4

g1

g2

g3

g4

(a) (b)

Figure 11.10: Image rotation using cubic B-spline interpolation. (a) Rotated 15◦. (b) Rotated 125◦.

the pixels are first obtained using a cubic B-spline approximation function, given in Equation (15.8). Then the
interpolated pixels are calculated as follows:

a = f1a1 + f2a2 + f3a3 + f4a4 (11.9)

b = f1b1 + f2b2 + f3b3 + f4b4 (11.10)

c = f1c1 + f2c2 + f3c3 + f4c4 (11.11)

d = f1d1 + f2d2 + f3d3 + f4d4 (11.12)

p = g1a + g2b + g3c + g4d (11.13)

Note that the same coefficients f1 to f4 are used in computing all four rows of intermediate pixels a,b,c, and
d. This is because the distances of the corresponding row pixels with respect to intermediate pixels a,b,c, and
d are the same. As shown in Figure 11.10, the quality of rotated images with cubic B-spline interpolation is far
better when compared to the bilinear interpolation method. The aliasing artifacts are not visible in the rotated
images as shown in Figures 11.10(a) and (b). The higher-quality rotated images that are achieved with the cubic
B-spline method are at the cost of increased computation. Next, we discuss the computational complexity of
image rotation based on the cubic B-spline method.

Advanced Image Processing Algorithms 559

Figure 11.11: Quantization of 2×2
pixel space for look-up table method.

Inverse-mapped
subpixel position

Nearest quantized
subpixel position

Computational Complexity with Cubic B-Spline Interpolation
As shown in Figure 11.9 and based on Equations (11.9) through (11.13), given the coefficient values, the
computation of one interpolated pixel using the cubic B-spline interpolation method requires about 20 MAC
(multiply and accumulate) operations. In addition, since the inverse mapped pixel position with respect to
neighboring pixel positions vary from one pixel to another, we must compute the eight coefficient values using
Equation (15.8) for every inverse mapped pixel position. This is computationally very costly. Instead, we use
the look-up table method, which avoids coefficient computation. In the look-up table method, we quantize
the 2 × 2 pixel space to 1/8th resolution as shown in Figure 11.11. For each quantized subpixel position, we
precompute and store the eight cubic B-spline filter coefficients. If we represent each filter coefficient in 1.15
format, then the look-up table size would be 1 kB(= 64×8×2). With 1/4th quantization resolution, we require
only 256 bytes(= 16×8×2) of data memory. The filter coefficients of the inverse mapped subpixel position are
given by its nearest quantized subpixel position.

Still, the image rotation with cubic B-spline is costly, as it requires 20 MAC operations. Next, we discuss
another method with which we can get similar quality rotated images while performing the image rotation with
only nine MAC operations.

11.1.5 Image Rotation with 3×3 Gaussian Filter

Two-dimensional Gaussian filters are widely used for smoothing images in image processing applications. In
Section 10.6.3, we used the Gaussian filter to minimize noise effects in performing Canny edge detection. Here
we treat aliasing as noise and use the Gaussian filter for interpolation. The 2D Gaussian window generated using
Equation (10.15) with σ = 0.75 is shown in Figure 11.12. We obtain the 3×3 filter coefficients {hi} by placing
the center of the window at the inverse mapped pixel position. The scaled filter coefficients {gi} are obtained as
shown in Figure 11.13 by substituting the relative distances of actual pixel Pi from the inverse mapped pixel Q
into the Gaussian function given in Equation (10.15). In this instance, we can also use the look-up table method
as described in the previous section to avoid computation of filter coefficients.

Figure 11.12: Gaussian window with
σ = 0.75.

The normalized weights {hi} are computed from {gi} as follows:

hi = gi

9∑
i=1

gi

(11.14)

560 Chapter 11

Figure 11.13: Image rotation with
3× 3 Gaussian filter.

: Actual pixel
 positions on 2D grid
: Inverse mapped pixel
 position on 2D plane

P1 P2 P3

P4
P5 P6

P7
P8 P9

g1 g2 g3

g4

g5
g6

g7 g8 g9

Q

(a) (b)

Figure 11.14: Image rotation using 3×3 Gaussian filter. (a) Rotated 15◦. (b) Rotated 125◦.

Then, the approximate pixel value Q is obtained at the inverse mapped pixel position from the neighboring 3×3
pixels Pi with nine MAC operations:

Q = h1 P1 +h2 P2 +h3 P3 +h4 P4 +h5 P5 +h6 P6 +h7 P7 +h8 P8 +h9 P9 (11.15)

Rotated images obtained from 3×3 Gaussian filtering are shown in Figure 11.14.

11.1.6 Real-Time Implementation of Image Rotation Algorithm

In image rotation, we have two steps. The first step is obtaining the inverse-mapped pixel position, and the second
step comprises performing interpolation to create a new pixel at the inverse mapped position. We compute the
inverse mapped position using Equations (11.7) and (11.8). For this, we must have the cosine value for the given
rotation angle φ. The computation of the exact cosine value using fixed-point processors (e.g., the reference
embedded processor) is very costly in terms of cycles.

In practice, not all applications require the rotation of images for arbitrary angles. If we know in advance
the rotation angles, then we can precompute the cosine values for those angles and store them as a look-up
table. Otherwise, the best thing we can do is to quantize the entire range of rotation with a given resolution and
precompute the cosine values for those quantized angles and store them in memory. The amount of memory
required to store cosine values depends on the quantization resolution and the range of the rotation angle. If we
have cosine values in the range 0 to 90◦, we can then get the cosine values in other quadrants by just using the
symmetry of cosine values. In addition, the same look-up table can be used to compute the sine values since
sin(x) = cos(90 − x).

Typically, it is sufficient to use 1◦ resolution for most of the practical applications. In that case, we pre-
compute the cosine values from 0 to 90◦ in increments of 1◦ and store them in memory as a look-up table.
As the reference embedded processor is 16-bit MAC operations friendly, we use 1.15 fixed-point format to
represent the cosine values. The cosine values for 0 to 90◦ in 1.15 fixed-point format are given in the look-up
table CosLut[] (see companion website for the values). In addition, image rotation based on 3 × 3 Gaussian

Advanced Image Processing Algorithms 561

filter requires only 9 MAC operations and gives similar quality (as shown in Figure 11.14) as cubic B-spline
interpolation. In this section we simulate image rotation based on a 3 × 3 filter. The 3 × 3 Gaussian filter
weight in 1.15 format for obtaining interpolated pixels at the inverse mapped pixel position with subpixel
space 1/8-th quantization resolution is given in the look-up table LutRot[] (see companion website for the
values).

The fixed-point simulation code for rotating a QVGA (320 × 240) gray image in the range −90◦ to 90◦ at
1◦ resolution is given in Pcode 11.1. As we rotate the images with respect to center of image, the loop indices
move from −160 to 159 and −120 to 119 instead of 0 to 319 and 0 to 239. At the beginning of the row, we
compute the coordinates of the inverse mapped pixel position using Equations (11.4) and (11.5), and then for all
other pixels in the row, the inverse mapped pixel position is obtained using Equations (11.7) and (11.8). When
the inverse mapped pixel position falls outside the source image boundaries, then we skip the computation of
that pixel rotation. For this, we check the inverse mapped pixel regardless of whether its coordinates are within
the boundaries of the source image. On the reference embedded processor (see Appendix A on the companion
website), the cost of image rotation with the program code given in Pcode 11.1 is about 30 cycles/pixel and we
require about 1.5 kB of memory for both program and data. Another important issue in the implementation of
image rotation is the availability of pixel data to process in real time. The preceding cycles estimate assumes
that the corresponding pixel data is available in on-chip data memory, and there should be no delay in accessing
the image pixels.

xx = abs(theta);
dxx = cos_lut[xx]; dyy = cos_lut[90-xx]; // cosine from look-up table
if (theta < 0) dyy = -dyy;
for(j = 119;j >=-120;j--){

xx = -160*dxx + j*dyy; // Equation (11.4)
yy = 160*dyy + j*dxx; // Equation (11.5)
for(i =-160;i <= 159;i++){

r = xx >> 12; s = yy >> 12;
if ((r >=-1264)&&(r < 1264)&&(s >= -944)&&(s < 944)){ // skip out of image

m = r >> 3; n = s >> 3; // portions
p = M/2-n-1; q = N/2 + m-1;
m = m << 3; n = n << 3;
m = r - m; n = s - n;
r = abs(m); s = abs(n);
s = s*72 + r*9;
A1 = lut_rot[s]; A2 = lut_rot[s+1]; // filter weights from
A3 = lut_rot[s+2]; A4 = lut_rot[s+3]; // look-up table
A5 = lut_rot[s+4]; A6 = lut_rot[s+5];
A7 = lut_rot[s+6]; A8 = lut_rot[s+7];
A9 = lut_rot[s+8];

B5 = (A5 * BufY[p*N+q]+16384) >> 15; // filtering or interpolation
B1 = (A1 * BufY[(p-1)*N+(q-1)]+16384) >> 15; B2 = (A2*BufY[(p1)*N+q]+16384) >> 15;
B3 = (A3 * BufY[(p-1)*N+(q+1)]+16384) >> 15; B4 = (A4*BufY[p*N+(q-1)]+16384) >> 15;
B6 = (A6 * BufY[p*N+(q+1)]+16384) >> 15; B7 = (A7*BufY[(p+1)*N+(q-1)]+16384) >> 15;
B8 = (A8 * BufY[(p+1)*N+q]+16384) >> 15; B9 = (A9*BufY[(p+1)*N+(q+1)]+16384) >> 15;

r = B1+B2+B3+B4+B5+B6+B7+B8+B9; // Equation (11.15)
BufD[(119-j)*N+(160+i)] = (unsigned char) r; // store pixel in

} // in rotated position
xx = xx + dxx; // Equation (11.7)
yy = yy - dyy; // Equation (11.8)

}
}

Pcode 11.1: Simulation code for fixed-point implementation of image rotation.

As the images occupy more memory, they are usually stored in slow SDRAM (L3) memory and a few pixels
of the image are brought to on-chip memory (L1) for processing each time and the rotated pixels are moved
back to L3 after processing. There are two approaches to achieve this: enabling a data cache or enabling direct
memory access (DMA). Although we can enable a data cache at program compilation without any extra effort,
it is not as efficient as the DMA method. Next, we discuss image rotation by moving pixel data from L3 to/from

562 Chapter 11

P

(a)

B

A
P

(b)

Figure 11.15: Illustration of row-based image rotation. (a) Destination image. (b) Source image.

P Q

R S

(a)

A

C D

P
B

(b)

Figure 11.16: Illustration of block-based image rotation. (a) Destination image. (b) Source image.

L1 using DMA. The reference processor DMA (see Appendix A on the companion website) allows us to bring
either a line of pixels (1D-DMA) or a block of pixels (2D DMA) from L3.

As illustrated in Figure 11.15, in the image rotation, the pixels of the source image at a given location are
not exactly mapped to the same location in the destination image. If we scan a line of pixels in the destination
image, the corresponding inverse-mapped pixel locations can fall anywhere in the source image depending on
the angle of rotation. For example, a line with pixel P on it in the destination image is mapped to line AB
in the source image with a given rotation angle. The line AB is neither a row nor a column. That means we
cannot get the pixels on or around the line AB using 1D-DMA. The only way is to use 2D-DMA and bring the
block of pixels that belong to the rectangle specified by line AB as its diagonal. However, this brings a huge
amount of pixels into L1 memory and that much data may not fit. Another approach is to work on a block
of pixels, as shown in Figure 11.16; this can be implemented using 2D DMA with much less L1 memory.
In this approach, we always consider a square block of pixels (say, the area of pixels defined by PQRS) in
the destination image and get the source image’s appropriate pixels (defined by the area ABCD) from L3
using 2D DMA. Then obtain the block of pixels PQRS in the rotated image from the pixels ABCD by inverse
mapping.

11.2 Digital Image Stabilization

Image stabilization (IS) is the process of removing effects of unwanted camera movements from the captured
video sequence. The video sequences acquired by video cameras are usually affected by undesired motion
produced by an unstable camera platform. These undesired fluctuations of video will affect visual quality. The
challenge of image stabilization systems is how to compensate for shaking of the camera without affecting

Advanced Image Processing Algorithms 563

Movements
Estimation

Get Affine
Parameters

Movements
Compensation

Reference
Frame

Delay Unit

Edge
Detection

Vin Vout

Change
of scene

Figure 11.17: Schematic diagram of digital image stabilization.

the actual moving objects in the image sequence. Digital image stabilization (DIS) is the process of removing
undesired motion effects present in the captured video to generate a compensated image sequence using digital
image processing techniques without mechanical devices such as gyro sensors. In this section, we discuss a
DIS algorithm that detects such movements in the video sequence and compensates for them in order to obtain
stabilized video frames.

The DIS algorithm compensates for camera movement in the captured sequence by assuming that these
undesired effects in the video sequence are due to unexpected translations (both vertically and horizontally)
or rotations at the time the video is captured. The DIS system is generally composed of two basic modules:
the undesired movement estimation unit and the compensation unit. In DIS, we fix one video frame (usually a
good frame at the beginning of video sequence) as a reference frame and estimate the undesired movements of
subsequent frames with respect to the reference frame and then compensate those movements by processing the
video frames with estimated parameters. We use the affine transform (see Equations (11.16) through (11.20)) to
compensate for both translation and rotation effects.

Because the video frames contain both high-frequency regions as well as low-frequency regions, we can
efficiently estimate those unwanted movements by concentrating on the high-frequency regions. In other words,
we use a few sections of the image with strong edge information. The DIS system with basic blocks is shown in
Figure 11.17.

11.2.1 DIS Modules

As shown in Figure 11.17, the basic DIS modules are reference frame processing, motion estimation, affine
parameters computation, and motion compensation. The following sections briefly discuss the DIS modules.

Reference Frame Processing
Given the input video sequence shown in Figure 11.17, we will have a switch to choose the reference frame
path or sequence stabilization path. Whenever a change of scene occurs in the video sequence, we update the
reference frame from the input video sequence and perform some processing (e.g., finding edges informa-
tion, locating macroblocks with strong edges) on the new frame. We choose the relevant portions (in terms
of 16 × 16 macroblocks) of the reference frame with strong edges for estimating unwanted video move-
ments. We call these 16 × 16 blocks strong macroblocks. This is illustrated in Figure 11.18 with a synthetic
image.

Motion Estimation
The motion of the current input frame is estimated by subdividing the frame into macroblocks (i.e.,
16 × 16 block of pixels) and correlating the present reference frame’s strong macroblock pixels with
the input frame’s pixels. The current input-frame motion with respect to the reference frame can be in
any direction, and with our DIS algorithm this motion is approximated with three motion parameters:
(1) horizontal motion, (2) vertical motion, and (3) rotation. The horizontal and vertical motion together is called
translation.

Translation Estimation To get the translation motion vector (TMV) of the current frame with respect to the
reference frame, N macroblocks, referred to as trans_macroblocks, with the largest gradient value (which is

564 Chapter 11

(a) (b)

Figure 11.18: Illustration of strong macroblocks in a synthetic image.

(a) (b)

tmv� (�5, 4)

Figure 11.19: Translation estimation. (a) trans_macroblocks selection. (b) tmv estimation.

obtained as the sum of gradients of all pixels in the macroblock) are chosen from the strong macroblocks
set of the reference frame. This is shown in Figure 11.19 for the synthetic image. The motion vectors for
trans_macroblocks are obtained by correlating the trans_macroblocks of the reference frame with the current
input frame. The global motion vector or translation motion vector, tmv = (Tx, Ty), is now computed by taking
the median of the trans_macroblocks motion vector’s x and y coordinates separately. This allows us to correct
the translation of the current input frame with respect to the reference frame using tmv before estimating the
affine parameters (using Equations (11.18) through (11.21)).

Rotation Estimation For rotation estimation, the use of trans_macroblocks to estimate the rotation parameters
(for the affine transform) may result in incorrect values because the motion due to rotation from the image
center to its corners will vary a lot. If we use the macroblocks close to the frame center for estimating the
rotation parameters, the results may not be consistent from frame to frame. So, to get the proper affine transform
parameters, M macroblocks, referred to as rot_macroblocks, having the largest gradient values and away from
frame center, are selected as shown in Figure 11.20. We obtain the rotation motion vector rmv = (Rx , Ry) from
the motion vectors of rot_macroblocks. The parameters Rx and Ry can be computed in the same way as tmv by
taking the median of the motion vectors’ x and y coordinates. Note that the rot_macroblocks motion vectors are
used in computing rmv.

Affine Transform Parameters Computation
The affine transform given here detects unwanted frame motion using the image translation (Rx , Ry) and rotation
parameters (a11,a12,a21,a22) as inputs:

Gx = a11x +a12 y + Rx (11.16)

G y = a21x +a22 y + Ry (11.17)

Advanced Image Processing Algorithms 565

rmv� (�2, 2)
a11�0.9659
a12�0.2620
a21��0.2612
a22�0 .9661

15�

(a) (b)

Figure 11.20: Rotation estimation. (a) Selection of rot_macroblocks. (b) Affine parameters estimation.

where (x , y) is the source pixel position relative to the center of the image, and (Gx , G y) is the destination pixel
position relative to the image center.

After removing the translation (Rx , Ry) from the motion vectors of rot_macroblocks, the rotation parameters
(a11,a12,a21, a22) are estimated by minimizing the mean-squared difference between the affine model and the
actual motion vector field. The final expressions for computing a11,a12,a21, and a22 follow:

a11 = 1

det

(∑
x,y

x Vx

∑
x,y

y2 −
∑
x,y

yVx

∑
x,y

x y

)
(11.18)

a12 = 1

det

(∑
x,y

yVx

∑
x,y

x2 −
∑
x,y

x Vx

∑
x,y

x y

)
(11.19)

a21 = 1

det

(∑
x,y

x Vy

∑
x,y

y2 −
∑
x,y

yVy

∑
x,y

x y

)
(11.20)

a22 = 1

det

(∑
x,y

yVy

∑
x,y

x2 −
∑
x,y

x Vy

∑
x,y

x y

)
(11.21)

where

det =
∑
x,y

x2
∑
x,y

y2 −
(∑

x,y

x y

)2

(11.22)

and (Vx, Vy) are the motion vector results after subtracting (Rx , Ry) from the rot_macroblocks motion vectors.

Motion Compensation
The motion compensation (MC) of the current frame is achieved by applying the affine transform described in
Equations (11.16) and (11.17) to the individual pixels of the current frame. To avoid the shakiness from frame
to frame due to motion compensation with estimated inaccurate parameters because of a few abnormal inputs,
an integrator is used for smoothing the frame-to-frame transition. If P[n] is the estimated parameter with frame
number n, then the parameter Q[n] used to compensate for frame number n is derived as

Q[n] = Alpha∗ Q[n −1]+ (1−Alpha)∗ P[n]

566 Chapter 11

The initial value of Alpha is set as 0.7, which is updated adaptively for subsequent frames. With motion
compensation, we first compensate the current frame with the translation using the smoothed translation
vector tmv = (Tx, Ty) with the integrator. Then the frames are compensated by mapping all the pixels with
the affine transform using the smoothed affine parameters. The motion compensation process is performed as
follows:

1. Take the coordinates (x , y) of a pixel from the current frame n.
2. Obtain (Gx , G y) using the affine transform.
3. Transfer the pixel value at (x , y) in the current frame to position (Gx, G y) in the new frame, which is the

compensated frame for the current frame.

11.2.2 DIS Implementation

The functional block diagram for DIS is shown in Figure 11.21. We update the reference frame (RF) from the
input video sequence whenever the scene change detector (SCD) identifies a change of scene. When the reference
frame is updated, we then perform a series of operations such as edge detection and determination of strong
macroblocks (sMB), trans_macroblocks (tMB), and rot_macroblocks (rMB) for the new reference frame. The
sMBs are selected by choosing the appropriate threshold value T to avoid image portions with insignificant
edges. We use two threshold values T1 and T2 to get tMBs and rMBs from sMBs. We then estimate the tmv using
the tMBs motion vectors and pass-through integrator (1/s1) to get the smoothed tmv. Next, we perform motion
compensation (tMC) on the input frame using tmv. This motion-compensated frame is then used in computing
the motion vectors for rot_macroblocks, which are then used for obtaining the affine transform (AT) parameters.
To minimize the shakiness from frame to frame, we pass the affine parameters through the second integrator
(1/s2) as shown in Figure 11.21. Finally, motion compensation (rMC) is performed using affine parameters to
obtain the stabilized output video.

Scene Change Detector
The scene change detector updates the reference frame whenever there is a scene change in the video using
a threshold in the motion estimation process. The threshold is the lower limit on the number of translation
macroblocks. If the number of translation macroblocks is less than the threshold, then the current frame varies
a lot from the reference frame and the scene change detector signals the system to update the reference frame
with the current frame.

The DIS flow chart diagram is shown in Figure 11.22. We initially set SCD equal to 1 so that the first frame
is considered the reference frame. For subsequent frames, we determine the SCD based on the previous frame’s
tMV count. We exit the loop upon reaching the end-of-frame (EOF) count.

Integrator performance is shown in Figure 11.23. The dotted curve is the input to the integrator and the solid
curve is the output from the integrator. This smoothing of motion vectors by the integrator minimizes fluctuations

tME

AT

rMC

RF

DU1

Edge Detection and sMB Selection (T)

Input
Video
Frames

Stabilized
Output Video
Frames

SCD

Select tMB (T1) Select rMB (T2)

tMC rME1/s1

1/s2

DU2

Figure 11.21: Functional block diagram of digital image stabilization.

Advanced Image Processing Algorithms 567

Start

Input video frames: n, n�1, n�2, …

Does SCD�1?
Y

Y

N

N
Does EOF�n?

Choose a frame (r�n)
as a reference image

Detect the edges by
computing the gradients
and select sMBs (use T)

Select the tMBs (useT1)

Select the rMBs (useT2)

Stabilized output video frames: n, n�1, n�2

End

n��1

Obtain motion vectors (tMVs)
for tMBs and determine the
SCD. Get tmv� (Tx, Ty) from
tMVs. Remove translation in
the current frame using tmv.

Obtain motion vectors (rMVs)
for rMBs. Get rmv� (Rx , Ry).
Compute affine parameters after
removing rmv from rMVs.

Perform motion compensation
using affine parameters and rmv

Figure 11.22: DIS flow chart diagram.

M
ot

io
n

V
ec

to
rs

Frame Number

Figure 11.23: Smoothing motion vectors with integrator (the dotted curve is the input to the integrator and the
solid curve is the output of the integrator).

present in the stabilized image. Figure 11.24 demonstrates image stabilization with the DIS algorithm. The test
video sequence with unstabilized video tracking is shown in Figure 11.24(a) and the corresponding stabilized
video is shown in Figure 11.24(b).

568 Chapter 11

(a) (b)

Figure 11.24: Digital image stabilization simulation results. (a) Unstabilized video sequence. (b) Stabilized video
sequence.

11.3 Image Objects Detection

Object detection algorithms are the backbone of a wide variety of image processing applications. Commonly
used image object detection techniques are based on object features, shape, pattern, motion, color, and so on.
Some approaches utilize advance tools (e.g., neural networks, principal component analysis, template matching,
Hough transform) in detecting image objects. Image variations such as scale, orientation, pose, and illumination
make the object detection problem a complex task.

In this section, we focus on two object detection applications: (1) human face detection in color images, and
(2) vehicle license plate detection. In both cases, we use feature-based object detection techniques to detect the
image objects. In this approach, detection is achieved in two steps. First, the objects are classified using the
perceptual nature of the objects. For example, human faces are skin colored and the license plates are rectangular
shaped. In the second step, we use the features of objects to detect the object. For example, the relative position
of facial features such as eyes, nose, and lips serves as a device in detecting human faces. Similarly, the license
plate aspect ratio is an important feature that can be used in detecting plates.

11.3.1 Face Detection

Human face detection is an important component of applications such as video surveillance, computer vision,
image database management, digital photography, and so on. People are usually identified via face recognition.
Detecting people (i.e., faces) in static digital images is a very challenging problem because it is very difficult to
define a single model that describes all people. In addition, a single model may not be sufficient to detect the same
face at different scales and in different poses, illuminations, and so on. Here we discuss a face detection method
that assumes all images are at the same scale and all faces are in the straight frontal pose. The face detection
algorithm discussed in this section works with color images in the presence of slightly varying illumination
conditions as well as complex backgrounds.

Skin color is a prominent perceptual feature of human faces. Furthermore, color information is invariant
vis-à-vis face orientations. Although skin color varies by ethnicity, several studies have shown that the major
differences in the skin color model lie in intensity rather than color components. Modeling skin color requires
choosing an appropriate color space and identifying a cluster associated with color in that space. We use the YUV
color space (see Section 10.1) since it is perceptually uniform and separates luminance (Y) and chrominance
(UV) components. Here we assume that the UV components of the skin-tone color are independent of the Y
component.

Skin Color Detection
Typically, we use many test images to statistically determine the skin color region boundaries. The skin color
model is not only useful in localizing the skin regions, but also reduces the computational complexity of face
detection by a huge amount. As we discuss later, human faces are detected by filtering only the skin region portions
of the image. Therefore, accurate identification of the skin color regions in a given image is very important for
high face detection rate with less complexity. The region of skin color that is obtained by projecting the various

Advanced Image Processing Algorithms 569

Figure 11.25: Range of U and V
components for skin-tone colors.

250

200

150

100

50

U
V

0
50 100 150 200 250

Figure 11.26: Skin object localization using skin-color model.

images UV components on a 2D plane is shown in Figure 11.25. From this, the skin color regions Skin_UV are
identified using the following condition on the U and V components of a given image:

Skin_U V = (90 < U < 135) AND (130 < V < 160) (11.23)

After the skin color classification is done for every pixel of the image with U and V pixel values using
Equation (11.23), the image is marked with the skin and nonskin regions using a binary image representation as
shown in Figure 11.26. The grayscale binary image contains only 2 pixel values, 0 and 255. In generating the
skin color segmented image shown in the figure, we represented the nonskin color portion of the image with 0
and the skin-color portion of the image with 255. We often apply erosion followed by dilation morphological
operations (see Section 10.8) to avoid non–skin-color parts of the human face, such as eyeballs, eyebrows, and
facial hair. As expected, we are clearly able to localize the skin regions using the skin-color model.

Edge Computation
As seen in the binary image shown in Figure 11.26, there are many other parts of the body, such as hands and
the neck, that are skin-colored objects apart from the face. The facial regions of a skin-color binary image can
be extracted by searching for facial features in the image using the skin-color segmentations as side information.
We achieve this in two steps. In the first step, we obtain the skin-color segments along with their features. In
the second step, we extract the regions of interest by applying the appropriate filter. One way to obtain the
skin-color portion of the image along with their features is to compute the image edges and by ANDing this edge
information with the skin-color binary image. The reason for using image edges instead of the image itself is
that the useful facial features are rich with edges and contain relatively more information. The smooth portions

570 Chapter 11

of the face, such as forehead and chin, contain much less information and thus are not used as primary features
in detecting faces. See Section 10.6 for more details on how to compute edge information using various methods
given the luminance component (Y) of an image. In this section, we use the Sobel operator to compute image
edges.

Figure 11.27 shows the effective grayscale image after ANDing the skin color binary image with the edge
information. This grayscale image shows the clear facial features such as eyes, nose, mouth, and so on. With
this, although there are other skin color portions, we can localize the faces by searching for these facial features
using the appropriate filter.

Face Detection Using Facial Features
Among the various facial features, the eyes, nose, and mouth are the most prominent features for detecting
human faces. The principle of a feature-based approach is that these features on a human face have a fixed
relative position and this geometrical relationship is more invariant to changes in facial expressions than other
properties such as intensity. A filter, as shown in Figure 11.28, can be designed to identify these facial features
in detecting faces. This filter can be described with the edge information of three rectangles—ABCD, efgh, and
pqrs. Let us define the regions T and W as W= efgh+pqrs and T = ABCD− efgh−pqrs. Region W contains
strong edges and region T contains much less edge information.

If we scan the image in raster scan order (in steps of block size L × L instead of a pixel to reduce computations)
and compute the metrics T and W by accumulating all the edge information in those regions, then it is possible
to identify facial features using the appropriate threshold values Z1 and Z2. Here, the threshold values Zi and
the size of rectangles ABCD, efgh, and pqrs all depend on the image object scale factor. If we have images with
the same scaling factor (i.e., images obtained by fixing the camera zoom and its distance from objects), we can
use the same filter parameters and threshold value in detecting faces in all the images. We search for the facial
features in the grayscale image shown in Figure 11.27 by processing the image with the facial feature filter
shown in Figure 11.28. We mark a particular region as a face whenever the following condition is satisfied:

Obj = Face, if(W > Z1) AND (T < Z2) (11.24)

Obj = Nonface otherwise

Figure 11.27: Effective grayscale image with skin segments and edges.

Figure 11.28: Filter design for
extracting frontal face features.

A B

C D

qp

sr

e f

g h

Advanced Image Processing Algorithms 571

Undetected Face Object

Detected
Nonface Object

Figure 11.29: Detected faces using skin color model and face filter.

The detected faces using the criterion in Equation (11.24) are shown in Figure 11.29. The parameters used are,
AB = 32,AC = 48,ef = 28,eg = 10,pq = 22,pr = 15, and Z1 = Z2 = 50,000. The detected faces are marked
with a square. Most of the faces are detected with the previously described filter. There is one undetected face
object and one detected nonface object in the image (as highlighted). This algorithm can detect multiple faces
with a wide range of facial variations. Further, this algorithm can detect the faces of light- to dark-skinned people,
as we considered a range of UV component values in localizing skin-color objects.

11.3.2 License Plate Detection

License plate recognition (LPR) technology uses image processing algorithms to identify vehicles by automati-
cally reading their license plates. Typical applications of LPR include parking management, traffic monitoring,
automatic toll payment, and surveillance. LPR systems consist of two modules—license plate detection (LPD)
and character recognition. In this section, we discuss the detection of car license plate in the static images. The
subject of optical character recognition is outside the scope of this book.

Many algorithms can be found in the literature for the license plate detection problem and few of them are
based on spectral analysis (using the Fourier transform), line detection (using Hough transform), edge detection,
template matching, and so on. However, all algorithms have advantages and disadvantages. Some are good
at performance, while others are robust or can be implemented with fewer computations. In addition, these
algorithms work based on certain assumptions, such as fixed license-plate aspect ratio, complete visibility of
the plate, and location of plate. Since the dimensions of license plates vary, the plate placement on the vehicle
depends on a particular vehicle model, and since parked vehicles can be located in various surroundings, no
single license plate detection algorithm will work in all circumstances. Next, we discuss various approaches to
plate detection as well as their complexity.

Plate Detection by Spectral Analysis
In this approach, we compute the Fourier transform for an image’s rows and columns. As shown in Figure 11.30,
if a particular row or column contains characters, then the periodogram (which is obtained by squaring the
Fourier transform magnitude) of such a row or column contains high component values when compared to the
periodogram of other rows or columns with no characters. Upon accumulating the periodograms of individual
rows or columns, we will see peaks in the accumulated values as shown in Figure 11.31. Since the license plate
contains characters, we can locate the plate by looking for peaks in the accumulated values.

Next, we discuss the complexity and robustness of this license plate detection algorithm. Although the rows or
columns that contain the license plate have frequencies with high component values due to the presence of letters,
characters outside the license plate may also exist, as shown in Figure 11.31. Consequently, a “false positive”
is possible, that is, locating a license plate where one does not exist. Using the aspect ratio of the license plate

572 Chapter 11

Figure 11.30: Periodogram showing
row with and without characters.

Periodogram with no characters
Periodogram with characters

|.|
2

Frequency

N0

M

Toyota

R
ow

s

Columns

23FM76
Massachusetts

Spirit of America

Figure 11.31: Plate detection by accumulation of row and column periodograms.

23FM76

Toyota

Figure 11.32: License plate detection using Hough transform.

minimizes this false detection rate. This algorithm is computationally very costly for real-time applications, as
we need to compute a Fourier transform for every row and column of the image.

License Plate Detection by Hough Transform
The rectangular shape of license plates is an obvious noticeable characteristic. As the edges of the license
plates form straight lines, we can use the Hough transform (see Section 10.10) to detect lines. However, the
Hough transform detects many line edges on a vehicle in addition to license plate line edges. To minimize false
detection, we use the aspect ratio (usually it is 2:1) of the license plate to localize the rectangular shape as shown
in Figure 11.32.

Unfortunately, this technique is not effective when the license plate borders do not produce high enough
straight edges due to lower-level luminance around the plate borders. For example, when the border color
matches the vehicle color, the Hough transform may fail to detect license plate lines. Moreover, Hough transform

Advanced Image Processing Algorithms 573

Figure 11.33: Test image for license plate detection.

computations for nonhorizontal lines may be required depending on plate orientation. As discussed in Section
10.10, the computation of Hough transforms for all orientations is computationally very costly.

License Plate Detection by Edge Information
In this approach, we use edge detection methods to localize the car license plate. Consider the test image
shown in Figure 11.33 for license plate detection. This image is a very simple one for license plate detection
because the plate is clearly visible and no complex background is present. However, there is lot of infor-
mation apart from the license plate in the image. Most algorithms look for high-frequency content (e.g.,
lines, edges, letters) to detect the license plate. This image also contains letters and lines outside the license
plate.

Image Smoothing by Gaussian Filtering
Our principal aim in license place detection is to localize the plate by segmenting the image regions with
license plate features. The images are filtered to avoid false-positive localizations due to the presence of high-
frequency noisy components. The 5×5 Gaussian filter described in Section 10.6.3 is used to smooth the images
before computing the edges by Sobel operators. In this approach, no color information is used for license plate
detection; only grayscale images are processed for localization purposes. The grayscale test image and its 5×5
Gaussian-filter-smoothed image are shown in Figure 11.34(a) and (b), respectively.

Edge Computation by Sobel Operator
In Section 10.6.1, we discussed edge detection using the Sobel operator. The detected edges (which are rep-
resented with a binary image obtained using an appropriate threshold value) for the test image and Gaussian
smoothed image by the Sobel operator are shown in Figure 11.34(c) and (d), respectively. A lot of edge informa-
tion unrelated to the license plate is detected by the Sobel operator, and thus localizing the plate is difficult. In
Figure 11.34(e) and (f), the edges information is computed using only the y-Sobel operator. The amount of edge
information obtained with the y-Sobel operator is more or less the same as the two-directional Sobel operator.
This occurs because most of the edges in the test image are in the horizontal direction.

Upon computing the x -Sobel operator only, the binary image shows very strong edge information in the
license plate region and much less edge information in all other places as shown in Figure 11.34(g) and (h). This
is because characters contain edges in all directions. The x -Sobel operator finds only the edges of characters in
the vertical direction and masks all edges in other directions.

License Plate Localization by Edge Accumulation
After computing edges with the x -Sobel operator, the next step in this plate detection algorithm is to local-
ize the license plate boundaries. As the x -Sobel operator outputs the character edges and lines as shown in
Figure 11.34(h), we can easily identify the license plate regions by searching for more edge information in the
binary image. Since the width of the license plate is greater than its height and all vertical edges are present
in the license plate region, we first accumulate the edges row-wise as shown in Figure 11.35 to identify the

574 Chapter 11

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11.34: License plate detection using edge detection techniques. (a) Test image. (b) Gaussian filtered test
image. (c) After applying Sobel operator on (a). (d) After applying Sobel operator on (b). (e) After applying
y-Sobel operator on (a). (f) After applying y-Sobel operator on (b). (g) After applying x-Sobel operator on (a).
(h) After applying x-Sobel operator on (b).

row locations of the plate. We see a peak in the license plate region after filtering the accumulated edges. The
height of the license plate is computed by determining the number of rows around the peak with the strong edge
information. We get the plate height based on the number of rows by counting all the rows whose accumulated
edge value is above 50% of peak value. This is illustrated in Figure 11.35. Similarly, we obtain the width of
the license plate by counting all the columns whose accumulated edge value is above 50% of the peak value as
shown in Figure 11.36. Here, we accumulate the edges using only plate row pixels.

Localization Using License Plate Aspect Ratio
From Figure 11.34(h), we can also localize a license plate using its aspect ratio. Since the aspect ratio of the
plate will be the same irrespective of camera zoom and vehicle distance, we can find its location by accumulating
edge information in a box whose aspect ratio is the same as the license plate’s aspect ratio. We determine the
plate location by searching for the maximum accumulated edges in the box area. This process is repeated many
times for various box sizes because we do not know the size of the license plate in advance.

Advanced Image Processing Algorithms 575

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
3104

50%

50%

License
plate

height

Row Number

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
3105

Row Number
(a) (b)

Figure 11.35: Row-wise accumulation of edges. (a) Simple accumulation of edges. (b) Accumulation of edges
followed by smoothing of accumulated values.

3104

0 50 100 150 200
(a) (b)

250 300
0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250 3000

1

2

3

4

5

6

7

8

9

License
plate
width

Figure 11.36: Column-wise accumulation of edges. (a) Simple accumulation of edges. (b) Accumulation of edges
followed by smoothing the accumulated values.

11.4 2D Image Filters

In image processing applications, two-dimensional (2D) image filters play an important role in producing the
desired images. Typically, the image filters are implemented using 2D masks. As discussed in Chapter 10, we
use 2D masks for two purposes: reducing noise levels and extracting and enhancing image features (e.g., edges,
objects, corners). In this section, we discuss simulation and implementation techniques of 2D image filters for
smoothing images. When processing image pixels in the digital domain, a kind of random data (noise) from
many sources is added to the image pixels. A few noise sources follow:

• Channel (used for transmission or storing of images)
• Quantization (result of analog-to-digital conversion in the time domain)
• Removal of high-frequency content (quantization in the frequency domain)
• Scaling (or resampling) of image pixels
• Compression and decompression

Two-dimensional filters are applied to minimize these noise components in the image pixels. In this section,
we discuss an efficient way of applying typical 2D average and Gaussian filters to minimize noise levels, as well
as techniques to efficiently implement them on the embedded processor. The most commonly used median filter
implementation techniques are presented in Section 15.3.1.

576 Chapter 11

Filtered images after applying 2D average and median filters on scaled images are shown in Figures 10.7
and 10.8. Because such filters greatly modify the original image, objective measures (e.g., the peak signal to
noise ratio [PSNR] given in Equation 15.1) may not be appropriate for comparing filter performance. Instead,
we use subjective quality measures (e.g., mean opinion score [MOS]) to compare image quality after filtering.

11.4.1 2D Filters

Generally, 2D filters are of the form Q × Q (where Q is an odd integer and Q > 1) matrix with Q2 taps. Commonly
used Q values are 3, 5, or 7. Later we discuss techniques to efficiently implement the 3×3 average filter and the
5×5 Gaussian filter. With 2D filters, the center pixel of the Q × Q block is filtered upon applying a Q × Q filter
matrix as shown (for Q = 3) in Figure 11.37. We perform 2D filtering by computing 2D convolution of image
pixels and filter taps. If the filter taps are symmetric, then the filtered output is also obtained by accumulating the
element-wise product of pixels and filter taps. For example, we compute the filtered pixel x ′

5 using the symmetric
3×3 filter as follows:

x ′
5 =

⎡
⎣x1 x2 x3

x4 x5 x6

x7 x8 x9

⎤
⎦∗
⎡
⎣a b a

b c b
a b a

⎤
⎦= ax1 +bx2 +ax3 +bx4 + cx5 +bx6 +ax7 +bx8 +ax9

With an average filter, the filtered pixel is obtained by averaging all pixels present in the Q × Q block. The
Gaussian filtered pixel is obtained by calculating the weighted average of all pixels in the Q × Q block, where
the weight values are given by the taps of the Q × Q Gaussian filter. Efficient implementation techniques for 2D
average and Gaussian filters are discussed in Sections 11.4.3 and 11.4.4, respectively.

11.4.2 2D Image Filter Implementation

Since images are represented with 2D data, we process the images in 2D space. Although the filtering algorithms
are mathematically simple, there is a huge amount of data to be accessed and filtered per image. In this section,
we discuss efficient techniques to implement 2D image filters with limited resources on the embedded processor.
See Appendix A on the companion website for details on computation unit, memory, and data bus bandwidths
supported by the reference embedded processor. Assuming limited resources of the embedded processor, we
implement 2D image filters efficiently for real-time applications. This section covers selected aspects of applying
the filter to the entire image. In practice, we process the image or video in terms of blocks or rows by scanning the
image in a raster-scan order. For this, we have to store the entire image in embedded system memory and we may
need a lot of memory to store larger images. Typically, we store the entire image (which is approximately 0.5
MB for 720 ×480 resolution) in off-chip memory and a small amount of image data in terms of blocks or rows
(e.g., 256 bytes in 16×16 block) to bring to on-chip memory for filtering. We use the embedded processor DMA

p1 q1 q2 q3

q4 q5 q6

q7 q8 q9

p2 p3

p4 p5 p6

p7 p8 p9

p1 p2 p3

p4 p5 p6

p7 p8 p9

Image Pixels 3 3 3 Filter Taps Filtered Pixel p5

Figure 11.37: Two-dimensional image filtering.

Advanced Image Processing Algorithms 577

controller without interrupting the processor core to move a block or row of pixels from off-chip memory to
on-chip memory for filtering the image and moving the filtered block from on-chip memory to off-chip memory
to store the filtered image (see Appendix A, Section A.3, on the companion website for more detail on DMA
usage).

As the 2D filter works on Q × Q block of data, implementing 2D filters efficiently may require working
with more than one Q × Q data block. We place both image block and filter coefficients in L1 memory for fast
execution at the processor clock rate. As DMA is used to move the image data from L3 memory (slow, but big
in size) to L1 memory (fast, but small in size), setting up DMA every time is costly in terms of cycles. We move
data in bulk quantities to L1 to reduce DMA overhead. If we transfer too much data to L1, we may end up with
a few problems such as L1 memory shortage and DMA waits. With experience, we learn to make decisions for
efficiently handling DMA data transfers. We use either 1D DMA for working with rows or 2D DMA for working
on blocks. If we work with rows, we bring one full row (of N pixels each) at a time to L1 memory, and if we
work with blocks, we bring K × K block (where K > Q) of pixels to L1 memory. In row-based filtering, at any
point of time, we need Q rows for the filtering process and hence we bring Q rows for first-row filtering and
from the second row onward, we use the previous Q −1 rows (which are already in L1 memory) and bring the
next row to L1 using DMA.

To implement 2D image filters efficiently, we take advantage of 2D filter tap properties in performing the
filtering process. Sometimes we reuse the intermediate outputs of previous pixel filtering for filtering the current
pixel. As filter taps from one type of filter to another vary a lot (in terms of values, symmetry, and properties),
we follow various techniques in implementing filters.

As edge pixels do not have sufficient neighbors to apply filtering, we cannot perform the same filtering on
edge pixels as on nonedge pixels. We perform edge pixel filtering in two ways. First, we can filter the edge pixels
with whatever neighbors are available to that pixel (a costly technique, as it involves a few condition checks).
In the second instance, we basically duplicate edge pixels as they are without performing a filtering operation.
Since we do not concentrate much on the edges, we prefer the second method of duplicating pixels instead of
filtering the edge pixels. In other words, we duplicate four sides of the edge pixels and apply the filter only for
nonedge pixels. Next, we discuss implementation aspects of row-based and block-based 2D filtering.

Row-Based Image Filter Implementation
In row-based image filter implementation, we consume fewer cycles (due to less overhead) and more memory
(as we need Q rows of pixels in L1 at any point in time). As an example, consider the row-based 3 × 3 2D
filtering process shown in Figure 11.38. We place a 2D filter at the beginning (ignore edge pixel filtering) and
we move the filter mask to the right by 1 pixel and continue until the end of the row. If a row contains N pixels,
then we filter the middle N −2 pixels. In the meantime, we bring the next row from L3 to L1 using DMA in the

3 3 3 Filter placement Row of pixels to be filtered 3 3 3 Filter

q1 q2 q3

q4 q5 q6

q7 q8 q9

Filtered N] 2 pixels of a row

Filtered pixels
Duplicated pixels

Figure 11.38: Row-based 2D filter implementation.

578 Chapter 11

background. Then we DMA out filtered pixels of the current row to L3. Next, we move the 2D filter one row
down and continue the same process. In this manner, we continue filtering all the pixels of an image.

The computational complexity of row-based 2D filtering is estimated as follows: Assume that we are working
with an N × M size image and we duplicate all four edge pixels instead of filtering (which consumes about
2 ∗ (N + M) cycles). In addition, assume that we consume H cycles as overhead in switching from the current
row to the next row. If filtering of 1 pixel consumes G cycles, then we consume about 2 ∗ (N + M) + (M −
2) ∗ H + (N −2) ∗ (M −2) ∗ G cycles on the reference embedded processor to filter the entire image with row-
based implementation. The DMA waits (which may arise in moving the data from L3 to L1 and L1 to L3) are
ignored in the process of cycle estimation.

Block-Based Image Filter Implementation
We filter a K × K block of pixels at a time in block-based image filtering as shown in Figure 11.39. Block-based
filtering is preferred, particularly when the filtering is needed at the back end of video or image decoders (to avoid
data transfer overhead between L1 and L3 using DMA), as decoders work on blocks and the data block will be
available for filtering in L1 immediately after decoding. In this approach, we will have a problem in filtering the
block edges, as we do not have sufficient pixel information to apply the filter. Moreover, we cannot ignore block
edges (or cannot duplicate edge pixels) for every block. If we do so, we end up with many unfiltered pixels.

If we want to filter one block at a time to avoid extra data transfers and memory, we have to find ways to filter
the pixels at the following positions for all K × K blocks:

• Top left corner pixel
• Left-most column pixel
• Top-most row pixel
• Right-most column pixel
• Bottom-most row pixel

If we always filter the first three cases of pixels in a K × K block using the Q × Q 2D filter, then we automatically
cover the last two cases for all K × K blocks except for right-most column K × K blocks and bottom-most row

3�3 Filter placement Block of pixels to be filtered

Filtered K�K block of pixels

K�K Input block

Bottom two rows of up block

Right two columns
of previous block

n �1

m �1
m

n

3�3 Filter

q1 q2 q3

q4 q5 q6

q7 q8 q9

Figure 11.39: Implementation of block-based 2D image filter.

Advanced Image Processing Algorithms 579

K × K blocks of an image. We duplicate (Q −1)/2 bottom rows and (Q −1)/2 right-column pixels of an image,
as they are not viewed much. Let us assume m and n denote the image row and column indexes, respectively,
for K × K blocks, and we proceed by filtering the K × K blocks in raster scan order. We use the following
procedure to always filter the first three cases and output K × K block pixels. As shown in Figure 11.39, to filter
the bottom-most row of pixels of the up K × K block (with index [n,m −1]) just above the current K × K block
(with index [n,m]) and the top-most row pixels of the current K × K block, we maintain a delay line buffer to
hold the (Q −1)/2 bottom-most row pixels of [n,m −1] K × K block. Similarly, to filter the right-most column
pixels of the previous K × K block [n − 1,m] and the left-most column pixels of the current K × K block, we
maintain another buffer to hold the (Q −1)/2 right-most column pixels of the previous K × K block [n −1,m].
The current K × K block pixels are loaded from off-chip memory to the on-chip memory buffer using DMA.
Therefore, we need three types of buffers (i.e., a buffer to hold the previous block’s right-most column pixels, a
buffer to hold the up block’s bottom-most row of pixels, and a buffer to hold the current K × K block pixels) in
total to apply the 2D filter for the entire image with this block-by-block approach, as shown in Figure 11.39. A
K × K block of filtered pixels is outputted and moved to off-chip memory via DMA.

In block-based filtering, we place a Q × Q filter (we used a 3×3 filter in Figure 11.39) at the top-left corner
and filter the block either row- or column-wise. With block-based filtering, if we assume D cycles as overhead for
switching from one row/column filtering to another row/column filtering of a block, and if we consume G cycles to
filter each pixel, then we consume about [(K G + D)K](N/K)(M/K) cycles to filter a total image of N × M size.

11.4.3 Average Filter

In this section, we discuss efficient simulation of 3 × 3 average filters. As the 3 × 3 average filter works on
the 3 × 3 pixel block, we efficiently implement the 3 × 3, 2D average filter by reusing intermediate outputs of
previously filtered pixels. As shown in Figure 11.40, for filtering each pixel using the 3×3 average filter, instead
of summing all 9 pixels at a time and multiplying by 1/9 (costing approximately 10 cycles), we compute the
intermediate 3-pixel sum (we reuse two out of three intermediate sums) and then add all three pixel sums and
multiply by 1/9. Nine sums and one multiplication are performed for filtering the first pixel. Four sums and one
multiplication, then, are sufficient for filtering the remaining pixels. In Figure 11.40, values A, B,C , and D are
computed by adding three column pixels.

The filtered pixel p1 is computed as p1 = (A + B + C) ∗ (1/9) and filtered pixel p2 is computed as p2 =
(B +C + D) ∗ (1/9). To compute the intermediate results, we spend 2 cycles for two additions in the computation
of each A, B,C, D, and so on. For filtering pixel p2, we already have B and C ; we need to compute D (involving
two additions). Finally p2 is obtained with two more additions (for computing B +C + D). The simulation code
for performing the row-based 3×3 average filter is given in Pcode 11.2.

11.4.4 Gaussian Filter

Unlike an average filter in which filtering involves the simple addition of pixels, using a Gaussian filter involves
a weighted sum of pixels. The approximate weights for the 5×5 Gaussian filter with σ = 1.4 follow:

1

159

⎡
⎢⎢⎢⎢⎣

2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 4
2 4 5 4 2

⎤
⎥⎥⎥⎥⎦

Figure 11.40: Efficient row-based
implementation of the 3×3 2D average
filter.

A

p0 p1 p2 p3 p4 p5 p6 pN] 3 pN] 2 pN] 1

B C D

580 Chapter 11

R = 0x0e39;
For(j = 1;j < M-1;j++) {

i = 1;
r0 = BufY[(j-1)*N+i-1]; r3 = BufY[(j-1)*N+i];
r1 = BufY[j*N+i-1]; r4 = BufY[j*N+i];
r2 = BufY[(j+1)*N+i-1]; r5 = BufY[(j+1)*N+i];
r0 = r0 + r1; r3 = r3 + r4; // 2 additions
r1 = BufY[(j-1)*N+i+1]; r4 = BufY[j*N+i+1];
A = r0 + r2; B = r3 + r5; // 2 additions
r2 = BufY[(j+1)*N+i+1]; r5 = BufY[(j-1)*N+i+2];
r1 = r1 + r4; Q = A + B; // 2 additions
C = r1 + r2; BufP[0] = B; // 1 addition
Q = Q + C; BufP[1] = C; // 1 addition, 8 additions in total
BufZ[j*N+i] = (Q*R) >> 15; // R contains 1.15 format of 1/9
For(i=2;i < N-1;i++) {

r0 = BufY[j*N+i+1]; A = BufP[0];
r1 = BufY[(j+1)*N+i+1]; B = BufP[1];
r0 = r0 + r1; Q = A + B; // 2 additions
C = r0 + r5; BufP[0] = B; // 1 addition
Q = Q + C; BufP[1] = C; // 1 addition
BufZ[j*N+i] = (Q*R) >> 15; r5 = BufY[(j-1)*N+i+2];

}
}

Pcode 11.2: Simulation code for 3 x 3 average filter.

Figure 11.41: Efficient row-based
implementation of 5×5 2D Gaussian
filter.

5 3 5 Pixel Block Area of pixels to be filtered

p0 p1 p2 p3 p4 p5 p6 pN23 pN22 pN21

Computing one filtered output using a 5 × 5 Gaussian filter involves about 24 additions, 25 multiplications,
and 1 division. Discussed here are two approaches to reduce the number of computations for the 5×5 Gaussian
filter using its symmetry properties. As most of the filter taps repeat many times, we can substantially reduce the
number of multiplications.We can implement the 5×5 Gaussian filter with the previous matrix filter coefficients
using 24 additions, 6 multiplications, and 1 division. First, we add all pixels for which the filter coefficient is
the same, and then multiply the sum with the corresponding filter coefficient. For example, we have eight pixel
positions as shown in Figure 11.41, highlighted with square boxes, for which the filter coefficient value is 4.
Instead of multiplying eight times with 4 and then adding all of them, we first add all of them and then multiply
the sum by 4. In this way, we eliminate most multiplications.

However, this approach does not save any cycles on the reference embedded processor since multiplication
and addition operations consume 1 cycle each. Even though the number of multiplications required is reduced to
6, we still require 25 cycles to perform 25 additions. As the reference embedded processor consists of two MAC
units, we can perform 5×5 Gaussian filtering efficiently by filtering 2 pixels at a time using vector instructions.
This is illustrated in Figure 11.42.

Although we use two MAC units in computing 1 pixel at a time, we have more overhead in this case. By
filtering 2 pixels at a time, we compute the convolution in 25 cycles for 2 pixels. In other words, we consume

Advanced Image Processing Algorithms 581

Figure 11.42: Efficient implementation
of 5×5 Gaussian filter.

MAC1
MAC1

MAC0
MAC0

// duplicate two top and bottom rows edge pixels
// duplicate two left and right column edge pixels

R = 0x00ce; // 1.15 format of 1/159
For(j = 2;j < M-2;j++) {

p = j * N; q = (j + 1)*N; r = (N << 1);
For(i = p + 2;i < q - 2;i++) {

r0 = BufY[p-r-4]; r1 = BufY[p-r-3]; r2 = Coeff[0];
r3 = r0 * r2; r4 = r1 * r2; r0 = BufY[p-N-3]; r1 = BufY[p-N-2]; r2 = Coeff[1];
r3+= r0 * r2; r4+= r1 * r2; r0 = BufY[p-2]; r1 = BufY[p-1]; r2 = Coeff[2];
r3+= r0 * r2; r4+= r1 * r2; r0 = BufY[p+N-1]; r1 = BufY[p + N]; r2 = Coeff[3];
r3+= r0 * r2; r4+= r1 * r2; r0 = BufY[p+r]; r1 = BufY[p + r + 1]; r2 = Coeff[4];
r3+= r0 * r2; r4+= r1 * r2; r0 = BufY[p-r-3]; r1 = BufY[p-r-2]; r2 = Coeff[5];
r3+= r0 * r2; r4+= r1 * r2; r0 = BufY[p+N-2]; r1 = BufY[p + N - 1]; r2 = Coeff[6];
r3+= r0 * r2; r4+= r1 * r2; r0 = BufY[p-1]; r1 = BufY[p]; r2 = Coeff[7];
r3+= r0 * r2; r4+= r1 * r2; r0 = BufY[p+N]; r1 = BufY[p + N + 1]; r2 = Coeff[8];
r3+= r0 * r2; r4+= r1 * r2; r0 = BufY[p+r+1]; r1 = BufY[p + r + 2]; r2 = Coeff[9];

r0 = (r0 * R) >> 15; // 1 division with 1/159
BufZ[j*N+i] = r0;

}
}

Pcode 11.3: Simulation code for 5× 5 Gaussian Filter.

12.5 cycles per pixel. The feeding of data to compute units also becomes easy. MAC0 always computes the
convolution sum for the first pixel and MAC1 always computes the convolution sum for the second pixel. After
filtering the first 2 pixels, we move the window 2 pixels and continue with the same process.

The simulation code for a 5 × 5 Gaussian filter is given in Pcode 11.3. With the 5 × 5 Gaussian filter, we
do not have sufficient pixels to filter two top- and bottom-most rows and two left- and right-most columns. We
duplicate those pixels at the edge locations.

With the block-based approach, to filter image pixels using the 5×5 Gaussian filter, we have to maintain two
bottom rows of the up block and two right columns of the previous block as history. The pixel area covered for
filtering is the same in both row- and block-based approaches. The edge pixels (two left- and right-most column
edge pixels and two top- and bottom-most row edge pixels of the image) are duplicated in the filtered image.

11.5 Fisheye Distortion Correction

In photography, when we use a wide-angle lens, the pictures may look distorted as shown in Figure 11.43. This
is called “fisheye” distortion. The purpose of using a wide-angle lens is to extend the view angle with a short
focal length. In the early days, wide-angle lenses were used in astronomy or underwater applications. At present,
many commercial applications also use wide-angle lens cameras. In particular, fisheye cameras are increasingly
used in automobile rear-view imaging systems due to their cost-effectiveness.

In the fisheye distorted images, the edges of objects away from the center of focus look curved. The degree of
curvature depends on the view angle that the lens is made for. For a viewer of fisheye images, such distortion can

582 Chapter 11

Figure 11.43: Images with fisheye lens.

(a) (b)

Figure 11.44: (a) Fisheye-distorted image. (b) Distortion-corrected image.

be both unusual and confusing. Therefore, correcting the images captured by fisheye cameras to approximately
rectilinear versions before presenting them to viewers is desirable. To correct fisheye distortion, we first estimate
the amount of distortion present in a particular image and then we dewrap the image by remapping the pixel
positions to eliminate the fisheye distortion. One such fisheye-distortion corrected image is shown in Figure 11.44.
There are many fisheye correction algorithms discussed in the literature; some are based on neural networks
or training, lens calibration, and parametric and nonparametric approaches. Next, we discuss fisheye distortion
correction assuming that the camera lens is fixed; hence the amount of distortion is known in advance for
correction in the digital domain.

Since the fisheye distortion is corrected by remapping the source image distorted pixel positions to destination
image rectilinear pixel positions, we can easily perform distortion correction using the look-up table method in
the case of fixed camera geometry. All mapping locations of the entire image using appropriate inverse equations

Advanced Image Processing Algorithms 583

are precomputed and stored in the look-up table. Consider a setting where two main parameters of the image are
given: fisheye lens field of view, FOV, and image width, W .

Assuming that xd and yd are the destination image pixel x and y coordinates, and xs and ys are the source
image pixel x and y coordinates, the inverse equations for remapping the fisheye-distorted pixels are given by

xs = 2xd sin
(
tan−1(η/2)

)
η

(11.25)

ys = 2yd sin
(
tan−1(η/2)

)
η

(11.26)

where

η =
√

x2
d + y2

d

F
and (11.27)

F = image_width

4 sin(FOV/2)
(11.28)

As shown in Figure 11.45, the remapping positions need not be integer pixel positions in the source image;
consequently, we use an appropriate interpolation method to obtain pixel values at noninteger locations. Here,
we can use interpolation methods similar to those discussed for image rotation applications in Section 11.1. For
example, use of a 3×3 Gaussian filter requires a block of 3×3 pixels for interpolation as shown in Figure 11.45.
Since the remapping pixel locations of the source are not exactly mapped to integer numbers, it will be costly to
hold real numbers in the memory. Instead, we quantize the source image pixel grid to either one-fourth or one-
eighth subpixel resolution and store all remapping pixel location values in the off-chip memory by appropriately
representing them in the integer format.

In the look-up table method, we compute mapping positions offline once in the lifetime of a given camera’s
fisheye lens. In automotive rear-view imaging system applications, all the parameters needed for look-up table
generation are known beforehand, such as camera geometry and display system characteristics. The current
problem is accessing the appropriate memory location for remapping the pixel positions. Since the mapping
of pixel locations from the source image to destination image is not a one-to-one operation, programming the
embedded processor DMA descriptors for appropriately moving the right pixel data from off-chip memory to
on-chip memory is challenging.

Memory and DMA bandwidth requirements can be reduced using a block-based approach and interpolation
of pixel coordinates. We can use, say, 16×16 blocks, storing only coordinates of the blocks’ corners in on-chip
memory, and set up DMA descriptors to transfer the rectangular area covering the entire block. Then we can
linearly interpolate pixel coordinates for inner pixels of the block and read the pixel values from the rectangle.

Source Image Pixels

(xs, ys) (xd, yd)

Destination Image Pixels

Figure 11.45: Pixel remapping with appropriate interpolation of pixels.

584 Chapter 11

11.6 Image Compression

Before discussing image compression techniques, first we must understand how digital images are represented.
How much storage capacity or transmission bandwidth is required for storing or transmitting a digital image as
is? As discussed, the basic element of a digital image is the pixel. When we say an image of size M × N , its width
is M pixels and height is N pixels, and it contains a total of MN pixels. An image can be represented in more than
one format. Image formats include RGB, YUV, HSV, and so on. With the RGB format, for example, each pixel
of the image is represented with three color components—red, green, and blue. If we represent each color with
8 bits (i.e., 256 levels), then we require 24 bits for representing R, G, and B components of a pixel. Similarly,
with YUV 4:4:4 representation (the Y component indicates luminance or intensity and UV components indicate
chrominance or colors), we require 24 bits for representing a pixel.

Consider an image of size 700 × 660 as shown in Figure 11.46; it contains a total of 462,000 pixels, and
462,000×3 = 1.386 megabytes (MB) of memory are required to store that image for future use. Thus, uncom-
pressed images require considerable storage capacity and transmission bandwidth. Despite rapid progress in
mass-storage capacity and digital communication system performance, the demand for storage capacity and
transmission bandwidth continues to outstrip the capabilities of available technologies. This naturally suggests
compact representation of images—in other words, compressing digital images. For example, with a compres-
sion ratio of 16:1, the space, bandwidth, and transmission time requirements can be reduced by a factor of 16,
with acceptable perceptual image quality.

In general, there are several high-level approaches to image compression, most of which take advantage of
human perception limitations. For instance, we can reduce the color bandwidth (from YUV 4:4:4 to YUV 4:2:0)
in an image to reduce storage space without losing quality because our eyes are much more sensitive to intensity
than to color. Spatial techniques reduce the compressed image size by accounting for visual similarities within
image regions, such that a small amount of information can be made to represent a large object or portion of a
scene. In other words, image compression research aims at reducing the number of bits needed to represent an
image by removing as much redundancy as possible.

Image compression can be performed with “lossy” or “lossless” techniques, depending on the type of appli-
cation. Lossless compression implies that the original content can be wholly reconstructed, whereas lossy
compression allows some degradation in reconstruction quality in order to achieve much higher compression
ratios. Under normal viewing conditions, no visible loss is perceived with lossy compression techniques. The
lossless variety can only achieve a modest amount of compression (say, 2:1), whereas lossy compression schemes
are capable of achieving much higher compression (usually more than 10:1).

A common characteristic of most images is that neighboring pixels are correlated and therefore contain
redundant information. With image compression techniques, we remove the redundant data at various levels

Figure 11.46: Example digital image.

Advanced Image Processing Algorithms 585

(at the pixel, transform coefficient, and binary symbol levels), and thereby reduce the number of bits required to
represent image content. JPEG (joint photographic experts group) and JPEG2000 compression techniques are
widely used for still images compression.

11.6.1 JPEG

Since its standardization in 1994, JPEG is very popular for use in applications such as digital cameras and the
Internet to compress images for storage and transmission purposes. The basic building blocks of the JPEG image
compression standard (ISO/IEC 10918-1, 1994) to perform the preceding tasks of removing redundancy are
shown in Figure 11.47. JPEG typically achieves 10:1 compression with negligible perceptible loss in image
quality. As JPEG (in particular baseline JPEG method) is a lossy compression method, it should not be used
in applications where the exact reproduction of data is required, such as medical imaging and astronomical
observation. In the following, we focus a bit more on the basic building blocks of the baseline JPEG coder.

In general, the images captured by digital cameras are in RGB format. But for better compression, the RGB
format image is first converted to YUV format. See Section 10.1 for more details on RGB to YUV conversion.
The YUV color space conversion allows greater compression without a significant effect on perceived image
quality. Since the YUV color space decouples the intensity part and associated colors, and our human eyes are
more sensitive to the intensity component than to color components, greater perceptual image quality for the
same compression ratio is possible with compression of YUV images instead of RGB-format images.

Transform Coding
Transform coding has become the de facto standard paradigm in image compression, where the discrete cosine
transform (DCT) is used because of its efficient decorrelation and energy compaction properties. With DCT, we
divide the input image into 8×8 pixel blocks and then calculate the DCT of each 8×8 block. For more detail on
computing the 8×8 DCT and for its efficient implementation techniques, see Section 7.2. An example follows of
8×8 block image pixels and related DCT computed coefficients. As expected, the DCT transforms most of the
energy to a few low-frequency coefficients; these components are located inside the triangle in Figure 11.48(b).

Since DCT packs most of the energy in the 8×8 pixel block into the first few low-frequency components, the
reconstructed image with the first few DCT coefficients still has good perceptual image quality. For example,
the reconstructed image with only the first one-fourth of the DCT coefficients is shown in Figure 11.49(b);
human eyes cannot perceive a quality difference between the original image shown in Figure 11.49(a) and the
DCT-reconstructed image shown in Figure 11.49(b).

Source
Image
(in YUV)

Transform
Coding

Quantizer and
Zig-zag Scan

Entropy
Coding

Compressed
Bitstream

Remove spatial
redundancy

Remove insignificant
transform coefficients

Remove redundancy
in binary symbols

Figure 11.47: Block diagram of baseline JPEG image-compression system.

94

96

98

101

97

98

99

99

93

95

98

100

96

97

99

99

93

95

97

98

97

97

99

99

96

99

101

101

100

100

99

99

93

96

98

98

100

100

99

99

89

93

96

96

101

100

99

99

87

91

94

96

100

99

98

98

87

92

96

98

98

97

97

96

0

0

0

0

0

0

0

21

0

0

0

0

0

0

0

21

0

0

0

0

0

0

21

2

0

0

0

0

0

0

24

4

22

0

0

21

0

1

0

21

21

1

1

0

21

0

1

26

22

24

5

22

0

3

0

26

21

5

210

15

0

0

0

776

(a) (b)

Figure 11.48: Transformation of an 8×8 block of pixels using 8×8 DCT. (a) Spatial-domain pixels.
(b) Frequency-domain pixels.

586 Chapter 11

(a) (b)

Figure 11.49: Image compression with DC T. (a) Original image. (b) Reconstructed image with one-fourth of
DC T coefficients.

Quantization
The output of transform coding is directly fed to the quantization block. The purpose of quantization is to achieve
further compression by representing DCT coefficients with no greater precision than is necessary to achieve the
desired image quality. Thus, the quantizer simply reduces the number of bits needed to store the transformed
coefficients by reducing the precision of those values. Quantization is many-to-one mapping, and therefore is
fundamentally a lossy process. Both uniform and nonuniform quantizers can be used depending on the problem at
hand. If the quantization is performed on each individual coefficient, then it is referred to as scalar quantization,
whereas if quantization is performed on a group of coefficients, then it is referred to as vector quantization.
With scalar quantization, we divide each DCT coefficient by its corresponding quantizer step size, followed by
rounding to the nearest integer.

d Q
ij =

⌈
dij

Qij

⌉
(11.29)

Remember that the human eye is much more attuned to low-frequency information than high-frequency details.
Therefore, small errors in high-frequency representation are not easily noticed, and eliminating certain high-
frequency components entirely is often perceptually acceptable. The JPEG quantization process takes advantage
of this to reduce the amount of DCT information that needs to be coded for a given 8×8 block.

Zig-Zag Scan
After quantization, most of the high-frequency component values become zero, and to efficiently code non-zero
quantized DCT coefficients, we rearrange the coefficients by a special scan known as zig-zag scanning, shown
in Figure 11.50.

With zig-zag scanning, we can rearrange the coefficients into a 1D array sorted from the DC value to the
highest-order frequency component. With this scanning, most of the zero coefficients fall at the end of the
sequence as shown in Figure 11.51.

All of the DC coefficients (one from each 8 × 8 DCT output block) are grouped together in a separate list.
The DC coefficient is a measure of the average value of the 8 × 8 block image pixels. Because there is usually
strong correlation between the DC coefficients of adjacent 8 × 8 block pixels, the quantized DC coefficient is
encoded using a differential prediction model (DPCM). With DPCM, we can increase the probability that the
code value we encode will be small, and thus reduce the number of bits overall for coding the DC coefficients.
Thus, the DC coefficients will be encoded as one group and each set of AC values will be encoded separately as
another group.

Entropy Coding
The entropy coding block achieves additional compression losslessly by encoding the quantized DCT coefficients
more compactly based on their statistical characteristics. It uses a model to accurately determine the probabilities
for each quantized value and produces an appropriate code based on these probabilities so that the resultant output
codestream will be smaller than the binarized DCT coefficients input stream. The two most commonly used
entropy methods are Huffman coding and arithmetic coding. For more detail on Huffman coding and arithmetic

Advanced Image Processing Algorithms 587

Figure 11.50: Zig-zag scanning of
DC T coefficients.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

21

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

22

0

0

1

0

0

21

2

22

0

0

0

0

2

23

5

259

259, 22, 5, 23, 2, 22, 0, 0, 21, 2, 0, 0, 0,
0, 1, 0, 21, 0, 0, 0, 0, 0, 1, 0, all zeros ...

Zig-zag scan

(a) (b)

Figure 11.51: (a) An 8×8 DC T output in two dimensions. (b) Mapping from 2D to 1D using zig-zag scanning.

coding, and for efficient techniques to implement them, see Chapter 5. While arithmetic coding provides better
compression than Huffman coding because it uses adaptive techniques that make it easier to achieve the entropy
rate, the additional processing required may not justify the fairly small increase (5 to 10%) in compression. It
is important to note that a properly designed quantizer and entropy coder are absolutely necessary along with
optimum signal transformation to obtain optimal compression.

11.6.2 JPEG 2000

JPEG2000, also known as J2K, is a successor to JPEG; it addresses some of JPEG fundamental limitations while
remaining backward compatible with it. The J2K standard (JPEG and JBIG, 2000) provides a set of features
that are of importance to many high-end and emerging applications by taking advantage of new technologies.
The J2K image-compression system has a rate-distortion advantage (provides the minimum bit rate required
for allowed image distortion) over the original JPEG. More important, it also allows extraction of various
resolutions, pixel fidelities, regions of interest, and more, all from a single compressed bitstream. J2K has a
long list of features, a subset of which follow: superior low bit-rate performance, progressive transmission by
pixel accuracy and resolution, region-of-interest coding, random codestream access and processing, compressed
domain processing, lossless and lossy compression, and limited memory implementations. These features allow
an application to manipulate or transmit only the essential information with the highest quality to any target
device from any J2K compressed-source image. The block diagram of the J2K codec is shown in Figure 11.52.
Each functional block in the decoder either exactly or approximately inverses the effects of its corresponding
block in the encoder. Next, the individual modules of the J2K encoder are briefly discussed. For more description
of the J2K compression method, see Christopoulos et al. (2000).

Preprocessing
In the preprocessing stage, the source image is decomposed into components (e.g., RGB components or YUV
components). Then the image components are divided into nonoverlapping rectangular tiles. The tile blocks are
compressed independently with J2K, as if they were entirely distinct images. Tiling reduces memory require-
ments, and since they are also reconstructed independently, they can be used for decoding specific parts of
the image instead of the entire image. Arbitrary tile sizes are allowed, up to and including the entire image

588 Chapter 11

Source
Image Data

Compressed
Bitstream, Store or
Transmit Images

Reconstructed
Image Data

Encoder

Decoder

Bitstream
Parsing

Entropy
Decoder

Inverse
Quantizer

Inverse
Transform

Postprocessing

Forward
Transform

Quantizer
Entropy
Coder

Preprocessing
Bitstream
Formation

Figure 11.52: Block diagram of the J2K codec.

(i.e., entire image as a single tile). Each tile of a component must be of the same size, with the exception of tiles
around the border (i.e., right-most and bottom-most sides) of the image.

The J2K coder expects its input sample data to have a nominal dynamic range that is approximately centered
around zero. Suppose that a pixel has Q bits/pixel, and if the sample values are unsigned, then the nominal
dynamic range is clearly not centered around zero. Thus, the nominal dynamic range of the samples is adjusted
by subtracting a bias of 2Q−1 from each pixel value. If the pixel values of an image component are signed, the
nominal dynamic range is already centered around zero, and no further processing is required.

Forward Transform: 2D Discrete Wavelet Transform
Despite all the advantages of JPEG compression schemes based on DCT, such as simplicity, satisfactory perfor-
mance, and availability of hardware for efficient implementation, they are not without shortcomings. Since the
input image needs to be divided into 8 × 8 blocks, correlation across block boundaries is not eliminated. This
results in noticeable and annoying blocking artifacts, particularly at low bit rates (or at higher compression ratios)
as shown in Figure 11.53(b), which is reconstructed by considering only first 1/16th of 8×8 DCT coefficients.
The J2K codec is based on wavelet/subband coding techniques. See Section 8.3 for more detail on the wavelet
transform.

The tile components are decomposed into different decomposition levels using a wavelet transform. The
decomposed subbands consist of coefficients that describe the horizontal and vertical spatial frequency charac-
teristics of the original tile component. Power of 2 decompositions is allowed in the form of dyadic decomposition
as shown in Figure 11.54. Figure 11.54(d) shows an illustration of n-level dyadic decomposition of a tile compo-
nent into 2D subbands. Each application of 2D dyadic decomposition of tile components yields four subbands:
(1) horizontally and vertically high-pass (HH), (2) horizontally low-pass and vertically high-pass (LH), (3) hor-
izontally high-pass and vertically low-pass (HL), and (4) horizontally and vertically low-pass (LL). The input
tile component is considered to be the LLn band. At each decomposition (or resolution level), the LL band is
further decomposed (except if it is the LL0 band). For example, the LLn−1 band is decomposed to yield the
LLn−2, LHn−2, HLn−2, and HHn−2 subbands.

Unlike DCT-based image compression, the performance of a wavelet-based, J2K image coder depends to a
large degree on the choice of the wavelet. The wavelet transform used in J2K can be reversible or irreversible.
The default irreversible transform (real to real) is implemented by means of the Daubechies 9-tap/7-tap filter. The
default reversible transformation (integer to integer) is implemented by means of the 5-tap/3-tap filter. The wavelet
filters are designed so that the coefficients in each subband are almost uncorrelated from the coefficients in the
other subbands. The wavelet transform achieves better energy compaction than the DCT, and hence can help in
providing better compression for the same PSNR. To perform the forward wavelet transform, the standard uses
a 1D subband decomposition of a 1D set of samples into low-pass samples and high-pass samples. The basic
building block for such a transform is the 1D two-channel perfect reconstruction (PR), uniformly maximally
decimated filter bank, which has the general form shown in Figure 11.55.

Advanced Image Processing Algorithms 589

(a) (b)

Figure 11.53: DC T block artifacts. (a) Original image. (b) Reconstructed image with first 1/16th of DC T
coefficients.

(a)

(c) (d)

LHn22

HHn 22

LHn 21

HLn22

HLn 21 HHn 21

LL0

(b)

Figure 11.54: Image compression using wavelet transform. (a) Original image. (b) With one-level dyadic
decomposition. (c) With two-level dyadic decomposition. (d) Illustration of n-level dyadic decomposition of tile
component into 2D subbands.

1

z

x[m]

Q0

Q1

Hn 21[z]

Hn22[z]

H1[z]

H0[z] Qn 21

Qn22

s0

s1

y0[m]

][1 my

11

12

2

Figure 11.55: 1D realization of two-channel analysis filter bank.

Parameters for the 9/7 transform follow:

n = 4, H0[z] = β0(z +1), H1[z] = β1(1+ z−1), H2[z] = β2(z +1), H3[z] = β3(1+ z−1)

β0 ≈ −1.586134, β1 ≈ −0.052980, β2 ≈ 0.882911, β3 ≈ 0.443506

Qi(x) = x , i = 0,1,2,3 s0 ≈ 1.230174, s1 = 1/s0

590 Chapter 11

Parameters for the 5/3 transform are given by

n = 2, H0[z] = −1

2
(z +1), H1[z] = 1

4
(1+ z−1), Q0(x) = −⌊−x

⌋
, Q1(x) =

⌊
x + 1

2

⌋
, s0 = s1 = 1

If a particular transform was applied to the tile component during encoding, the corresponding inverse transform
is applied at the decoder. Due to the effects of finite precision arithmetic, the inverse transform process is not
guaranteed to be exactly as the data input at the forward transform unless reversible 5/3 transforms are employed.

Quantization
After tile component transformation, the resulting coefficients are subjected to uniform scalar quantization
employing a fixed dead zone about the origin. This is accomplished by dividing the magnitude of each coefficient
by a quantization step size and rounding down. A different quantizer is employed for the coefficients of each
subband. These step sizes can be chosen in a way to achieve a given quality level or target bit rate. When the
integer-to-integer transform (i.e., lossless coding) is employed, the quantization step size is essentially set to
1 (which effectively bypasses quantization). In this case, quality or precise rate control is achieved through
bitstream truncation. In the case of real-to-real transform mode (which implies lossy coding), the quantizer step
sizes are in conjunction with rate control. The relative values of step-size parameters, used by the encoder, are
conveyed to the decoder via the coded bitstream.

After quantization, each subband is divided into nonoverlapping rectangular blocks. Three spatially consistent
rectangles, one from each subband at a given resolution level, comprise a packet partition location. These packet
partitions are also referred to as precincts. Each packet partition location is further divided into nonoverlapping
rectangles, called code blocks. This is illustrated in Figure 11.56.

Entropy Coding
Code blocks are the fundamental entries for the entropy coding module. Coding is performed independently on
each code block. The coding is carried out in many passes on binarized coefficients and a bitplane is formed from
the output of each pass. Considering a quantized code block to be an array of signed integers, the bitplanes are
coded across the coefficients of the code block, one bitplane at a time starting from the most significant bitplane
with non-zero element to the least significant bitplane.

The individual bitplanes of a code block are coded with three coding passes. The three coding passes are sig-
nificance pass, refinement pass, and clean-up pass. Which pass a coefficient bit is coded in depends on conditions
for that pass. In general, the significant pass includes the coefficients that are predicted to become significant
and their sign bits, as appropriate. The magnitude pass includes bits from already significant coefficients. The
clean-up pass includes all the remaining coefficients and sign coding, as appropriate.

All three types of coding passes scan the coefficients of a code block in the same fixed order as shown in
Figure 11.57. This scan pattern is basically a column-wise raster within the height strips of the four coefficients.
At the end of each strip, scanning continues at the beginning of the next strip, until an entire code block is covered
as shown in Figure 11.57. For most significant bitplane coding, starting from the top left, the first 4 bits of the

Precinct

Code block

Figure 11.56: Dividing the subbands into precincts and code blocks.

Advanced Image Processing Algorithms 591

Figure 11.57: Coefficient scan order
within a code block.

Column Height
4 Coefficients

Empty

Empty Empty

0

1

2

L�1

Code Blocks
3210

La
ye

rs

Figure 11.58: Illustration of code block data contribution to bitstream layers.

first column are scanned. Then the first 4 bits of the second column are scanned, until the width and height of
the code block is covered. Other bitplanes are similarly coded.

The first coding pass for each bitplane is the significance pass. If a coefficient has not yet been found to be
significant, the significance of the coefficient is coded with a single binary symbol. If the coefficient happens to
be significant, then its sign is coded using a single binary symbol. The second coding pass for each bitplane is
the refinement pass. If the coefficient was found to be significant in a previous bitplane, the next most significant
bit of that coefficient is coded using a single binary symbol. The last coding pass for each bitplane is the clean-up
pass. This pass codes significance and sign information (if needed) for coefficients that have not yet been found
to be significant and are predicted to remain insignificant during bitplane processing.

The coding is carried out as context-dependent, binary arithmetic coding of bitplanes. The arithmetic coder
employed is the MQ-coder, which is discussed in Section 5.4. Since context-based arithmetic coding is employed,
a means for context selection is necessary. The contexts are selected by examining state information for the
connected neighbors of the current coefficient. J2K uses up to nine contexts to code any given type of binary
symbol information. The context models are always reinitialized at the beginning of each code block. Similarly,
the arithmetic codeword is always terminated at the end of each code block.

Bitstream Formation
The encoded data of each code block is distributed in one or more layers in the codestream as shown in
Figure 11.58. The coded data for each code block of a tile is organized into L layers, numbered from 0 to L −1.
Each layer contains the additional information from each code block. Some contributions may be empty, and
in general the number of bits contributed by a code block is variable. The coding passes containing the most
important data are included in the lower layers, while the coding passes associated with finer details are included
in the higher layers. In the case of lossy compression, some coding passes may be discarded, in which case rate
control must decide which passes to include in the final codestream. In the lossless case, all coding passes must
be included. Each layer successively and monotonically improves image quality, so that the decoder will be able
to decode the code block contributions contained in each layer in sequence.

592 Chapter 11

The coded data representing a specific tile, layer, component, resolution, and precinct appear in the codestream
in a contiguous segment called a packet. Packet data is aligned at byte boundaries. Only code blocks that contain
samples from relevant subbands confined to the precinct are represented in the packet. Since coding pass data
from different precincts is coded in separate packets, using smaller precincts reduces the amount of data contained
in each packet. If less data is contained in a packet, a bit error is likely to result in less information loss. Thus,
using a smaller precinct size leads to improved error resilience, while coding efficiency is degraded due to the
increased overhead of having a larger number of packets, as each packet contains its own header information.

J2K Decoder
At the decoder, we perform the exact opposite operations to decode the J2K compressed bitstream. The decoder
performs the following operations in sequence to decompress the images: parse bitstream with scalability options,
decode the bitstream with arithmetic decoder, get wavelet coefficients with dequantization, and perform inverse
transformation and implement post-processing to reconstruct the image.

Part 3
Digital Speech and Audio Processing

This page intentionally left blank

CHAPTER 12

Speech and Audio Processing

In this chapter, we begin with a discussion of sound and audio signals, and then explore how audio data is
presented to the processor from a variety of audio converters.

We will also describe the formats in which audio data is stored and processed. In particular, we will review the
compromises associated with selecting data sizes. This is important because it dictates the data types used and
may also rule out some processor choices if the desired quality level is too high for a particular device to achieve.
Furthermore, data size selection helps in making trade-offs between increased dynamic range and additional
processing power.

Next is a discussion of software building blocks for embedded audio systems. Efficient data movement is
essential, so we will examine data buffering as it applies to speech and audio algorithms.

Lastly, we cover some fundamental algorithms and then finish up with a brief discussion on various speech
compression standards and the voice-over Internet protocol (VoIP). Audio coding methods are discussed in
Chapter 13.

Audio and speech coding is used in digital audio broadcasting (DAB), VoIP phone, media players, military
applications, cinema, home entertainment systems, and distance learning, among many other applications.

12.1 Sound Waves and Signals

Sound is a longitudinal displacement wave that propagates through a medium, such as air. Sound waves are
defined in terms of amplitude and frequency attributes.

Amplitude describes the sound pressure displacement above and below the equilibrium atmospheric level. In
other words, the amplitude of a sound wave is a gauge of pressure change, measured in decibels (dB). The lowest
sound amplitude that the human ear can perceive is called the “threshold of hearing,” denoted by 0 dBSPL. On
this SPL (sound pressure level) scale, the reference pressure is defined as 20 micropascals (20 μPa). The general
equation for dBSPL, given a pressure change x , is

dBSPL = 20 ∗ log(x μPa/20 μPa)

Table 12.1 shows decibel levels for common sounds relative to the threshold of hearing (0 dBSPL). The main
point of Table 12.1 is that the range of tolerable audible sounds is about 0 to 120 dB (when used to describe ratios
without reference to a specific value, the correct notation is dB without the SPL suffix). Therefore, all engineered
sound systems can use 120 dB as the upper bound of the dynamic range. Dynamic range will be related to data
formats for digital media processing in the following discussion.

Frequency, the other key feature of sound, is denoted in hertz (Hz), or cycles per second. We can hear sounds
in the frequency range between 20 and 20,000 Hz, but as we age the highest frequency that we can hear decreases.

12.1.1 Converting Sound Waves to Electrical Signals

To create an analog signal that represents a sound wave, we must use a transducer to convert the mechanical
pressure energy into electrical energy. A more common name for this audio source transducer is a microphone.
All transducers can be described with a sensitivity (or transduction) curve. In the case of microphones, this curve
dictates how well it translates pressure into an electrical signal. Ideal transducers have a linear sensitivity curve.
Therefore, a voltage level is directly proportional to a sound wave’s pressure.

© 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-678-1.00012-0 595

596 Chapter 12

Table 12.1: Decibel (dBSPL) values for
selected common sounds

Source (distance) dBSPL

Threshold of hearing 0

Normal conversation (3 to 5 feet away) 60 to 70

Busy traffic 70 to 80

Loud factory 90

Power saw 110

Jet engine (100 feet away) 150

Since a microphone converts a sound wave into voltage levels, we now need to use a new decibel scale to
describe amplitude. This scale, called dBV, is based on a reference point of 1 V. The equation describing the
relationship between a voltage level x and dBV is

dBV = 20 ∗ log(x volts/1.0 volts)

An alternative analog decibel scale is based on a reference of 0.775 V and uses dBu units. To create an audible
mechanical sound wave from an analog electrical signal, we again need to use a transducer. In this case, the
transducer is a pair of speakers or headphones.

12.1.2 Audio and Speech Signals

The signal whose frequency spectrum is in the audible range (i.e., 20 Hz to 20 kHz) is considered an audio
signal. Essentially, we are concerned with two types of audio signals: speech signals as used in variety of
telecommunications and music signals such as used in broadcast and media player applications. Other audio
signals include machine/electronic sounds, vehicle horns, bird sounds, and so on. Audio signals are compressed
using the characteristics of the human auditory system and data compression techniques. Audio compression
techniques are discussed in Chapter 13.

Speech signals can be considered a subset of audio signals. Speech signals contain information about the
time-varying characteristics of the excitation source and the vocal tract system. Speech signals are nonstationary
and at best they can be considered quasistationary over short time periods (typically 10 to 30 ms). The spectral
properties of speech are thus defined over short segments. Resolution in both the temporal and spectral domains
is essential for extracting the characteristics of speech signals. Speech can generally be classified as voiced,
unvoiced, or mixed. Voiced speech is quasiperiodic in the time domain and harmonically structured in the
frequency domain, while unvoiced speech is random-like in the time domain and occupies a broad spectrum
in the frequency domain. Speech signals contain significant energy, from 200 Hz to 3.2 kHz. As mentioned
previously, these signals are compressed using the characteristics of the human speech production system and
auditory system, and data compression techniques. Various speech processing and compression algorithms are
briefly addressed later in this chapter.

12.2 Digital Representation of Audio Signals

Assuming that we have already converted sound energy into electrical energy, the next step is to digitize the
analog signals. Because audio itself is analog in nature, digital systems employ sampling and quantization to
convert the analog audio into digital audio.

12.2.1 Sampling and Quantization

A digital representation expresses the audio signals as a sequence of symbols, usually binary numbers. This
permits signal processing using digital circuits such as DSP processors and computers. In order to convert the
continuous-time analog signal to a discrete-time digital representation, it must be sampled and quantized. This

Speech and Audio Processing 597

is accomplished with an analog-to-digital converter (A/D converter or ADC). As one might expect, in order
to create an analog signal from a digital one, a digital-to-analog converter (D/A converter or DAC) is used.
Since many audio systems are really intended for a full-duplex media flow, the ADC and DAC are available in a
single package and called an “audio codec.” These audio codecs are usually implemented with hardware chips.
As discussed in Chapter 13 on audio compression, this audio codec should not be confused with audio coding
codecs, which are algorithms that compress audio signals. Audio coding codecs can be implemented in software
or hardware.

All A/D and D/A conversions should obey the Shannon-Nyquist sampling theorem. In short, this theorem
dictates that an analog signal must be sampled at a rate (Nyquist sampling rate) equal to or exceeding twice its
bandwidth (Nyquist frequency) in order to be perfectly reconstructed in the eventual D/A conversion. Sampling
below the Nyquist sampling rate will introduce aliases (see Section 6.3), which are low-frequency “ghost” images
of frequencies above the Nyquist frequency. If we take a sound signal that is band limited at 0 to 20 kHz, and
sample it at 2×20 kHz = 40 kHz, then the Nyquist theorem assures us that the original signal can be reconstructed
perfectly without any signal loss. However, sampling this 0- to 20-kHz band-limited signal at any frequency less
than 40 kHz will introduce distortions due to aliasing.

No practical system will sample at exactly twice the Nyquist frequency, however. For example, restricting a
signal to a specific band requires an analog low-pass filter, but these filters are never ideal. So the lowest sampling
rate used to reproduce music is 44.1 kHz, not 40 kHz, and many high-quality systems sample at 48 kHz in order
to capture the 0- to 20-kHz range of hearing even more faithfully. As mentioned earlier, speech signals are only
a subset of the frequencies that we can hear; the energy content below 4 kHz is enough to store an intelligible
reproduction of the speech signal. For this reason, telephony applications typically use only 8-kHz sampling
(= 2 ×4 kHz). Table 12.2 summarizes common sampling rates.

The most common digital representation for audio is a PCM (pulse-code–modulated) signal. In this represen-
tation, an analog amplitude is encoded with a digital level for each sampling period. The resulting digital wave is
a vector of snapshots taken to approximate the input analog wave. All A/D converters have finite resolution, so
they introduce quantization noise that is inherent in digital audio systems. Figure 12.1 shows a PCM representa-
tion of an analog sine wave (Figure 12.1(a)) converted using an ideal A/D converter, in which the quantization
manifests itself as the “staircase effect” (Figure 12.1(b)). You can see that the lower resolution leads to a worse
representation of the original wave (Figure 12.1(c)).

For instance, assume that a 24-bit A/D converter is used to sample an analog signal whose range is −2.828 V to
2.828 V (5.656 Vpp). The 24 bits allow for 224 (16,777,216) quantization levels. Therefore, the effective voltage

Table 12.2: Commonly used sampling rates

System Sampling Frequency

Telephone 8000 Hz

Compact disc 44,100 Hz

Professional audio 48,000 Hz

DVD audio 96,000 Hz (for 5.1 channel audio)

(a) (b) (c)

Figure 12.1: PCM representation: (a) Analog signal. (b) Digitized PCM signal. (c) Digitized PCM signal using
fewer precision bits.

598 Chapter 12

(a)

(b)

Analog
Input
Buffer

Multibit
S 2 D

Modulator

Multibit
S 2 D

Modulator

Decimator

Decimator

Filter
Engine

Data
Port

Clock
Driver

SPl
Port

AD1871

CAPRP DGNDAGNDCAPRN

XCTRL

COUT
CIN
CCLK

MCLK

RESET

DIN
DOUT
BCLK
LRCLK

CASC

ODVDD DVDDAVDDCAPLPCAPLN

VINLP

VINLN

VREF

VINRP

VINRN

CLATCH Analog
Input
Buffer

Clock Driver

Data
Port

SPI Port

S
P

O
R

T

SPI Port

AD1871
Reference
Embedded
Processor

LRCLK

BCLK

DOUT

RFS

RSCLK

DR

12.288 MHz
Crystal

MCLK

Analog
Signal

CLATCH SPISS

SCKControl CLK

CIN MOSI

COUT MISO

Figure 12.2: (a) Functional block diagram of AD1871 audio ADC. (b) Glueless connection of a reference
embedded processor to AD1871.

resolution is 5.656 V/16,777,216 = 337.1 nV. In later sections, we see how codec resolution affects the dynamic
range of audio systems.

12.2.2 Audio Converters

There are many ways to perform A/D conversion. One traditional approach is a successive approximation scheme,
which uses a comparator to test the analog input signal against a number of interim D/A conversions to arrive at
the final answer.

Audio ADCs
Most audio ADCs today, however, are sigma-delta converters. Instead of employing successive approximations
to create wide resolutions, sigma-delta converters use 1-bit ADCs. More detail about delta modulation is provided
in Section 12.4. In order to compensate for the reduced number of quantization steps, they are oversampled at

Speech and Audio Processing 599

a frequency much higher than the Nyquist frequency. Conversion from this supersampled 1-bit stream into a
slower, higher-resolution stream is performed using digital filtering blocks inside these converters in order to
accommodate the more traditional PCM stream processing. For example, a 16-bit, 44.1-kHz, sigma-delta ADC
might oversample at 64x, yielding a 1-bit bitstream at a rate of 2.8224 MHz. A digital decimation filter (discussed
in Section 8.2.1) converts this supersampled stream to a 16-bit one at 44.1 kHz.

Because they oversample analog signals, sigma-delta ADCs relax performance requirements of the analog
low-pass filters that band limit input signals. They also have the advantage of spreading out noise over a wider
spectrum than traditional converters.

Audio DACs
Traditional approaches to D/A conversion include weighted resistor, R-2R ladder, and zero-cross distortion
(Pohlmann, 2000). Just as in the A/D case, sigma-delta designs rule the D/A conversion space. They can take a
16-bit 44.1-kHz signal and convert it into a 1-bit 2.8224-MHz stream using an interpolation filter (see Section
8.2.1). The 1-bit DAC then converts the supersampled stream to an analog signal.

A typical embedded digital audio system may employ a sigma-delta audio ADC and a sigma-delta DAC;
therefore, the conversion between a PCM signal and an oversampled stream is done twice. For this reason, Sony
and Philips have introduced an alternative to PCM, called direct-stream digital (DSD), in their Super Audio
CD (SACD) format. This format stores data using the 1-bit, high-frequency (2.8224 MHz), sigma-delta stream,
bypassing the PCM conversion. The disadvantage is that DSD streams are less intuitive than PCM, and they
require a separate set of digital audio algorithms, so we focus only on PCM in this chapter and in Chapter 13.

Connecting to Audio Converters
A good choice for a low-cost audio ADC is the Analog Devices AD1871, which features 24-bit conversion at
96 kHz using sigma-delta technology.

An ADC Example
The functional block diagram of the AD1871 is shown in Figure 12.2(a). This converter has left (VINLx) and
right (VINRx) input channels, which is really just another way of saying it can handle stereo data. The digitized
audio data is streamed out serially through the data port, usually to a corresponding serial port on a signal
processor (e.g., SPORT interface on a reference embedded processor). There is also a serial peripheral interface
(SPI) port provided for the host processor to configure the AD1871 via software commands. These commands
include ways to set the sampling rate, word width, and channel gain and muting, among other parameters.

As the block diagram in Figure 12.2(b) implies, interfacing the AD1871 ADC to a reference embedded
processor is a glueless connection. The analog part of the circuit is simplified, since only the digital signals are
important in this discussion. The oversampling rate of the AD1871 is supplied with an external crystal. The
reference embedded processor shown has two serial ports (SPORTs) and an SPI port used for connecting to
the AD1871. The SPORT, configured in I2S mode, is the data link to the AD1871, whereas the SPI port acts as
the control link.

I2S (Inter-IC-Sound) The I2S protocol is a standard developed by Philips for the digital transmission of audio
signals. This standard allows for audio equipment manufacturers to create components that are compatible with
each other.

In a nutshell, I2S is simply a three-wire serial interface used to transmit stereo data. As shown in Figure 12.3(a),
it specifies a bit clock (middle), a data line (bottom), and a left/right synchronization line (top) that selects whether
a left or right channel frame is currently being transmitted. In essence, I2S is a time-division-multiplexed (TDM)
serial stream with two active channels. TDM is a method of transferring more than one channel (e.g., left and
right audio) over a physical link.

In the AD1871 setup, the ADC can reduce the 12.288-MHz sampling rate it receives from the external crystal
to drive the SPORT clock (RSCLK) and frame synchronization (RFS) lines. This configuration ensures that the
sampling and data transmission are in sync.

SPI (Serial Peripheral Interface) The SPI interface, shown in Figure 12.3(b), was designed by Motorola for
connecting host processors to a variety of digital components. The entire interface between an SPI master and

600 Chapter 12

(b)

(a)

Left Channel Right Channel

RFS

RSCLK

DR

SPISS

SCK

MOSI

MISO

Figure 12.3: Timing diagrams. (a) Data signals transmitted by AD1871 using I2S protocol. (b) SPI interface used
to control AD1871.

an SPI slave consists of a clock line (SCK), two data lines (MOSI and MISO), and a slave select (SSEL) line.
One of the data lines is driven by the master (MOSI), and the other is driven by the slave (MISO). In the example
shown in Figure 12.2(b), the reference embedded processor’s SPI port interfaces gluelessly to the SPI block of
the AD1871.

Audio codecs with a separate SPI control port allow a host processor to change the ADC settings on the fly.
Besides muting and gain control, one of the really useful settings on ADCs like the AD1871 is the ability to
place it in power-down mode. For battery-powered applications, this is often an essential function.

Audio Codecs
Connecting an audio DAC to a host processor is an identical process to the ADC connection just discussed. In a
system that uses both an ADC and a DAC, the same serial port can hook up to both if it supports bidirectional
transfers. But if you are tackling full-duplex audio, then you are better off using a single-chip audio codec that
handles both the analog-to-digital and digital-to-analog conversions. A good example of such a codec is the
Analog Devices AD1836, which features three stereo DACs and two stereo ADCs, and is able to communicate
through a number of serial protocols, including I2S.

I2S is not the only audio specification. Another popular one is AC’97, which Intel Corporation created to
standardize all PC audio and to separate the analog circuitry from the less noise-susceptible digital chip. In its
simplest form, an AC’97 codec uses a five-pin TDM scheme where control and data are interleaved in the same
signal. Various time slots in the serial transfer are reserved for a specific data channel or control word. Most
processors with serial ports that support TDM mode can demultiplex an AC’97 signal at the expense of some
software overhead. A good example of an AC’97 codec is the Analog Devices AD1847.

Speech Codecs
Since speech processing has slightly relaxed requirements compared to high-fidelity music systems, you may find
it worthwhile to look into codecs designed specifically for speech. Among many good choices is the dual-channel
16-bit Analog Devices AD73322 (Analog Devices Inc., 2004), which has a configurable sampling frequency
from 8 kHz all the way to 64 kHz. Figure 12.4 shows the functional diagram of AD73322 and its connection
to DSP.

PWM Output Thus far, the discussion has focused on digital PCM representation and the audio DACs used to
get those digital signals to the analog domain. But there is a way to use a different kind of modulation, called
pulse-width modulation (PWM), to drive an output circuit directly without any need for a DAC, when a low-cost
solution is required.

In PCM, amplitude is encoded for each sample period, whereas it is the duty cycle that describes amplitude
in a PWM signal. PWM signals can be generated with general-purpose I/O pins, or they can be driven directly
by specialized PWM timers, available on many processors. To make PWM audio achieve decent quality, the
PWM carrier frequency should be at least 12 times the bandwidth of the signal, and the resolution of the timer

Speech and Audio Processing 601

AVDD1

VFBN1

VOUTP1
VOUTN1

VOUTP2
VOUTN2

REFOUT
REFCAP

VEBP2
VINP2
VINN2

VFBN2

VFBP1
VINP1
VINN1 ADC Channel 1

AVDD2 DVDD

AD73322L

SDIFS

SCLK

SE

MCLK

SDOFS
SDO

SDI

DAC Channel 1

Reference SPORT

AGND1 AGND2 DGND
(a)

(b)

ADC Channel 2

DAC Channel 2

RESET

ADSP-BF53X

Reference
 Embedded
Processor

AD73322L # 1 AD73322L # 3
RCLK1

SCLK

SDIFS

SDOFS

SDO

SDI

SCLK

 RFS1

TFS1

PF11

PF10

N/C

SDIFS

SDOFS

SDO

SDI

RESET

SE

TCLK1

RFS1

TFS1

DT1

PF10

PF11

AD73322L #2

SCLK

SDIFS

SDOFS

SDO

SDI

RESET

SE PF11

PF10

 RFS1

TFS1

N/C

 RFS1

TFS1

N/C

AD73322L #4

SCLK

SDIFS

SDOFS

SDO

SDI

RESET

SE

PF11 from DCP

PPC from DCP
PF10 to
73322

PF11 to
73322

MCLK from cory

MCLK from cory

PF10

7#IC74

CLK

7#IC74

CLK

Figure 12.4: (a) AD73322L. (b) Eight-channel CODEC-DSP connection.

602 Chapter 12

(i.e., granularity of the duty cycle) should be 16 bits. Because of the carrier frequency requirement, traditional
PWM audio circuits were used for low-bandwidth audio, like subwoofers. However, with today’s high-speed
processors, it is possible to carry a larger audible spectrum.

The PWM stream must be low-pass filtered to remove the high-frequency carrier. This is usually done in
the amplifier circuit that drives a speaker. A class of amplifiers, called Class D, has been used successfully in
such a configuration. When amplification is not required, a low-pass filter is sufficient as the output stage. In
some low-cost applications, where sound quality is not as important, the PWM streams can connect directly to
a speaker. In such a system, the mechanical inertia of the speaker’s cone acts as a low-pass filter to remove the
carrier frequency.

12.2.3 Dynamic Range and Precision

In this section, we focus on the dynamic range of audio systems. Table 12.3 lists a few fairly established products
along with their assigned signal quality, measured in dB. So what exactly do those numbers represent? Let us
begin with some definitions. Use Figure 12.5 as a reference signal for the following “cheat sheet” of the essentials.

As mentioned earlier, the dynamic range for the human ear (the ratio of the loudest to the quietest signal level)
is about 120 dB. In systems where noise is present, dynamic range is described as the ratio of the maximum
signal level to the noise floor. In other words,

Dynamic Range (dB) = Peak Level (dB) −Noise Floor (dB) (12.1)

The noise floor in a purely analog system comes from the electrical properties of the system itself. In addition,
digital audio signals also acquire noise from the circuitry of ADCs and DACs, as well as from the quantization
errors due to the sampling of analog data.

Table 12.3: Dynamic range comparison of selected
audio systems

Audio Device Typical Dynamic Range

AM radio 48 dB

Analog TV 60 dB

FM radio 70 dB

16-bit audio codecs 90 to 95 dB

CD player 92 to 96 dB

Digital audio tape (DAT) 110 dB

20-bit audio codecs 110 dB

24-bit audio codecs 110 to 120 dB

Figure 12.5: Relationship among
important terms in audio systems.

Nominal
Line Level

Digital
SNR

Dynamic
Range

Distortion Region

Analog
SNR

Headroom

Noise Floor
265

14

125

dB

295

Peak Level
Clipping Point

Speech and Audio Processing 603

Another important term is the signal-to-noise ratio (SNR). In analog systems, this means the ratio of the
nominal signal to the noise floor, where “line level” is the nominal operating level. On professional equipment,
the nominal level is usually 1.228 Vrms, which translates to +4 dBu. The headroom is the difference between
nominal line level and the peak level where signal distortion starts to occur. The definition of SNR is a bit
different in digital systems, where it is defined as the dynamic range.

Without going into a long derivation, let us simply state what is known as the “6-dB rule,” which holds the key
to the relationship between dynamic range and computational word width. The complete formulation is shown
in Equation 12.2, but it is used in shorthand to mean that the addition of 1 bit of precision will lead to a dynamic
range increase of 6 dB. Note that the 6-dB rule does not take into account the analog subsystem of an audio
design, so imperfections in the transducers on both the input and the output must be considered separately.

Dynamic Range (dB) = 6.02n +4.77−20 log10

[
Smax

σs

]
≈ 6n dB (12.2)

where n = the number of precision bits, Smax represent the maximum amplitude of signal s[n], and σs is the
variance of s[n].

The 6-dB rule dictates that the more bits we use, the higher the quality of the system we can attain. In practice,
however, there are only a few realistic choices. Most devices suitable for digital media processing come in three
word-width flavors: 16-, 24-, and 32-bit. Table 12.4 summarizes the dynamic range for these types of processors.

Given the 6-dB rule, it is worth noting that nonlinear quantization methods are typically used for speech
signals. A telephone-quality linear PCM encoding requires 12 bits of precision. However, our ears are more
sensitive to audio changes at small amplitudes than at high amplitudes. Therefore, the linear PCM sampling is
overkill for telephone communications. The logarithmic quantization used by the A-law and μ-law companding
standards achieves a 12-bit PCM level of quality using only 8 bits of precision. More detail on μ-law quantization
is provided in Section 12.4.1 during discussion of speech compression methods. To make our lives easier, some
processor vendors have implemented A-law and μ-law companding into the serial ports of their devices. This
relieves the processor core from performing logarithmic calculations.

After reviewing Table 12.4, recall once again that the dynamic range for the human ear is around 120 dB.
Because of this, 16-bit data representation is inadequate for high-quality audio. This is why vendors introduced
24-bit processors that extended the dynamic range of 16-bit systems. The 24-bit systems are a bit nonstandard
from a C-compiler standpoint, so many audio designs these days use 32-bit processing.

Choosing the right processor is not the end of the story, because the total quality of an audio system is dictated
by the level of the “lowest-achieving” component. Besides the processor, a complete system includes analog
components like microphones and speakers, as well as the converters to translate signals between the analog and
digital domains. The analog domain is outside of the scope of this discussion, but the audio converters cross into
the digital realm.

Assume that you want to use the AD1871, the same ADC as shown in Figure 12.2(a), for sampling audio.
The data sheet for this converter explains that it is a 24-bit converter, but its dynamic range is not 144 dB, but
rather 105 dB. The reason for this is that a converter is not a perfect system, and vendors publish only the useful
dynamic range in their documentation.

If we were to hook up a 24-bit processor to the AD1871, then the SNR of the complete system would be
105 dB. The noise floor would amount to 144 dB − 105 dB = 39 dB. Figure 12.6 is a graphical representation

Table 12.4: Dynamic range of selected fixed-point
architectures

Computation Word Width Dynamic Range (Using 6-dB Rule)

16-bit fixed-point precision 96 dB

24-bit fixed-point precision 144 dB

32-bit fixed-point precision 192 dB

604 Chapter 12

Nominal
Line Level

Distortion Region

Converter
Dynamic

Range 5 105 dB

Headroom

Noise Floor

Peak Level

Conversion
Error 5 144 dB – 105 dB
 5 39 dB

24-bit Processor
(SNR 5 6 dB/bit 3 24 bits 5 144 dB)

“System”
SNR 5 105 dB

Figure 12.6: Audio system’s SNR is equal to weakest component’s SNR.

of this situation. However, there is still another component of a digital audio system that we have not discussed
yet: computation on the processor’s core.

Passing data through a processor’s computation units can potentially introduce a variety of errors. One is
quantization error. This can be introduced when a series of computations causes a data value to be either
truncated or rounded (up or down). For example, a 16-bit processor may be able to add a vector of 16-bit data
and store this in an extended length accumulator. However, when the value in the accumulator is eventually
written to a 16-bit data register, then some of the bits are truncated.

Take a look at Figure 12.7 to see how computation errors can affect a real system. If we take an ideal 16-bit
A/D converter (Figure 12.7(a)), then its SNR would be 16×6 = 96 dB. If quantization errors did not exist, then
16-bit computations would suffice to keep the SNR at 96 dB. Both 24-bit and 32-bit systems would dedicate 8
and 16 bits, respectively, to the dynamic range below the noise floor. In essence, the extra bits would be wasted.

However, all digital audio systems introduce some round-off and truncation errors. If we can quantify this
error to take, for example, 18 dB (or 3 bits), then it becomes clear that 16-bit computations will not suffice in
keeping the system’s SNR at 96 dB (Figure 12.7(b)). Another way to interpret this is to say that the effective noise
floor is raised by 18 dB, and the total SNR is decreased to 96 dB −18 dB = 78 dB. This leads to the conclusion
that having extra bits below the noise floor helps to deal with the nuisance of quantization.

Numeric Formats for Audio There are many ways to represent data inside a processor. The two main processor
architectures used for audio processing are fixed point and floating point. Fixed-point processors are designed for
integer and fractional arithmetic, and they usually natively support 16-bit, 24-bit, or 32-bit data. For more details
on fixed-point (or Q-format) representation of real numbers and for fixed-point arithmetic, see Appendix B,
Section B.1, on the companion website. Floating-point processors provide very good performance with native
support for 32- or 64-bit floating-point data types. However, they are typically more costly and consume more
power than their fixed-point counterparts, and most real systems must strike a balance between quality and
engineering cost.

Fixed-Point Arithmetic
Processors that can perform fixed-point operations typically use a 2 complement binary notation for representing
signals. A fixed-point format can represent both signed and unsigned integers and fractions. The signed fractional
format is most common for digital signal processing on fixed-point processors. The difference between integer
and fractional formats lies in the location of the binary point. For integers, the binary point is to the right of the
least significant bit, whereas the binary part of fractions is usually to the right of the sign bit. Figure 12.8(a) shows
integer and fractional formats (see Appendix B, Section B.1, on the companion website). While the fixed-point
convention simplifies numeric operations and conserves memory, it presents a trade-off between dynamic range
and precision. In situations that require a large range of numbers while maintaining high resolution, a radix point
that can shift based on magnitude and exponent is desirable.

Speech and Audio Processing 605

(a)

32-Bit Data Word

0123456789101112131415161718192021222324252728293031 26

24-Bit Data Word

01234567891011121314151617181920212223

16-Bit Data Word

0123456789101112131415

16-Bit Sample
01 0123456789101112131415 Noise Floor

(b)

32-Bit Data Word

0123456789101112131415161718192021222324252728293031 26

24-Bit Data Word

01234567891011121314151617181920212223

16-Bit Data Word

0123456789101112131415

16-Bit Sample
01 0123456789101112131415 Noise Floor

18 dB Noise

18 dB Noise

18 dB Noise

Figure 12.7: (a) Allocation of extra bits with various word-width computations for ideal 16-bit, 96-dB SNR
system, when quantization error is neglected. (b) Allocation of extra bits with various word-width computations
for ideal 16-bit, 96-dB SNR system, when quantization noise is present.

(a)

Fractional format is 1.15/1.23/1.31 notation

S • F F F F F F F - - - F F F F F F F F

Sign bit Binary point

S I I I I I I I - - - I I I I I I I I

Integer format is 16.0/24.0/32.0 notation

Sign bit Binary point

•

(b)

31 30 23 22 0

S e7 - - - e0 1 • f22 - - - - - - f0

Hidden bit Binary point

Sign bit 8-bit exponent 24-bit mantissa

Figure 12.8: (a) Fractional and integer formats. (b) IEEE 754 32-bit, single-precision floating-point format.

Floating-Point Arithmetic
Using the floating-point format, very large and very small numbers can be represented in the same system.
Floating-point numbers are quite similar to scientific notation of rational numbers. They are described with a
mantissa and an exponent. The mantissa dictates precision, and the exponent controls dynamic range.

606 Chapter 12

The IEEE-754 (Figure 12.8(b)), the standard that governs floating-point computations of digital machines, can
be summarized as follows for 32-bit floating-point numbers. Bit 31 (MSB) is the sign bit, where a 0 represents
a positive sign and a 1 represents a negative sign. Bits 30 through 23 represent an exponent field (exp_ field) as
a power of 2, biased with an offset of 127. Finally, bits 22 through 0 represent a fractional mantissa (mantissa).
The hidden bit is basically an implied value of 1 to the left of the radix point. The value of a 32-bit, IEEE
floating-point number can be represented with the following equation:

Value = (−1)sign_bit × (1.mantissa)∗2(exp_field−127) (12.3)

With an 8-bit exponent and a 23-bit mantissa, IEEE-754 reaches a balance between dynamic range and
precision. In addition, IEEE floating-point libraries include support for additional features such as ±∞, 0, and
NaN (not a number). Table 12.5 shows the smallest and largest values attainable from the common floating-point
and fixed-point types.

Emulation on Fixed-Point Processors
On 16-Bit Architectures As explained earlier, 16-bit processing does not provide enough SNR for high-quality
audio, but this does not mean that a 16-bit processor should be rejected for an audio system. For example, a
32-bit, floating-point machine makes it easier to code an algorithm that preserves 32-bit data natively, but a 16-bit
processor can also maintain 32-bit integrity through emulation at a much lower cost. Figure 12.9 illustrates some
of the possibilities when it comes to choosing a data type for an embedded algorithm.

The remainder of this section describes how to achieve floating-point, and 32-bit, extended-precision fixed-
point functionality on a 16-bit, fixed-point machine.

Table 12.5: Comparison of dynamic range for selected data formats

Data Type Smallest Positive Value Largest Positive Value

IEEE 754 floating-point (single precision) 2−126 ≈ 1.2×10−38 2128 ≈ 3.4×1038

1.15 16-bit fixed point 2−15 ≈ 3.1×10−5 1−2−15 ≈ 9.9×10−1

1.23 24-bit fixed point 2−23 ≈ 1.2×10−7 1−2−23 ≈ 9.9×10−1

IEEE floating-
point emulation

2-word
floating-point
emulation

16-bit
fixed point

32-bit
fixed point

Rounded
31-bit

fixed point

1.31 format

1.15 format

23-bit mantissa
8-bit exponent

16-bit mantissa
16-bit exponent

Dynamic Range

P
re

ci
si

on

Path of arrows denote
decreasing core clock
cycles required on
reference embedded
processor

Relaxed IEEE
floating-point

emulation

Figure 12.9: Depending on application goals, many data types can satisfy system requirements.

Speech and Audio Processing 607

Floating-Point Emulation on Fixed-Point Processors
On most 16-bit fixed-point processors, IEEE-754 floating-point functions are available as library calls from
either C/C++ or assembly language. These libraries emulate the required floating-point processing using fixed-
point multiply and ALU logic. This emulation requires additional cycles to complete. However, as fixed-point,
processor-core clock speeds venture into the 500-MHz to 1-GHz range, the extra cycles required to emulate
IEEE-754–compliant floating-point math become less significant.

It is sometimes advantageous to use a “relaxed” version of IEEE-754 in order to reduce computational
complexity. This means that the floating-point arithmetic does not implement the standard features such ∞
and NaN.

A further optimization is to use a more native type for the mantissa and exponent. Take, for example, the
reference-embedded-processor architecture, which has a register file set that consists of sixteen 16-bit registers
that can be used instead as eight 32-bit registers. In this configuration, on every core clock cycle, two 32-bit
registers can source operands for computation on all four register halves. To make optimized use of the reference
embedded processor register file, a two-word format can be used. In this way, one word (16 bits) is reserved for
the exponent and the other word (16 bits) is reserved for the fraction.

Double-Precision Fixed-Point Emulation
There are many applications in which 16-bit fixed-point data is not sufficient, but where emulating floating-
point arithmetic may be too computationally intensive. For these applications, extended-precision, fixed-point
emulation may be enough to satisfy system requirements. Using a high-speed, fixed-point processor will ensure
a significant reduction in the amount of required processing. Two popular extended-precision formats for audio
are 32-bit and 31-bit fixed-point representations.

32-Bit Accurate Emulation
The 32-bit arithmetic is a natural software extension for 16-bit fixed-point processors. For processors whose
32-bit register files can be accessed as two 16-bit halves, the halves can be used together to represent a
single 32-bit, fixed-point number. The reference embedded processor’s hardware implementation allows for
single-cycle 32-bit addition and subtraction. For instances where a 32-bit multiply will be iterated with accumu-
lation (as is the case in some algorithms discussed in subsequent sections), we can achieve 32-bit accuracy with
16-bit multiplications in just 3 cycles. Each of the two 32-bit operands (R0 and R1) can be broken up into two
16-bit halves (R0.H/R0.L and R1.H/R1.L).

As seen in Figure 12.10, the following operations are required to emulate the 32-bit multiplication R0×R1
with a combination of instructions using 16-bit multipliers.

• Four 16-bit multiplications to yield four 32-bit results.

1. R1.L×R0.L
2. R1.L×R0.H

R1.H

R0.H

R1.L

R0.L

32

1

1

1

1

3163 48 47 32 16 15 0

X

R1.L 3 R0.L

R1 3 R0

R1.H 3 R0.H

R1.H 3 R0.L

R1.L 3 R0.H

Figure 12.10: 32-bit multiplication with 16-bit operations.

608 Chapter 12

3. R1.H×R0.L
4. R1.H×R0.H

• Three operations to preserve bit place in the final answer (the >> symbol denotes a right shift). Since we are
performing fractional arithmetic, the result is 1.63 (1.31×1.31 = 2.62 with a redundant sign bit). Most of the
time, the result can be truncated to 1.31 in order to fit in a 32-bit data register. Therefore, the result of the
multiplication should be in reference to the sign bit, or the most significant bit. This way the right-most least
significant bits can be safely discarded in a truncation.

1. (R1.L×R0.L) >> 32
2. (R1.L×R0.H) >> 16
3. (R1.H×R0.L) >> 16

The final expression for a 32-bit multiplication is

((R1.L ×R0.L) >> 32 + (R1.L ×R0.H) >> 16)+ ((R1.H ×R0.L) >> 16+R1.H ×R0.H)

On the reference-embedded-processor architecture, these instructions can be issued in parallel to yield an effective
rate of a 32-bit multiplication in 3 cycles.

31-Bit Accurate Emulation
We can reduce a fixed-point multiplication requiring at most 31-bit accuracy to just 2 cycles. This technique is
especially appealing for audio systems, which usually require at least 24-bit representation, but where 32-bit
accuracy may be a bit excessive. Using the “6-dB rule,” 31-bit accurate emulation still maintains a dynamic
range of around 186 dB, which is plenty of headroom even with all the quantization effects.

From the multiplication diagram shown in Figure 12.10, it is apparent that the multiplication of the least
significant halfword R1.L×R0.L does not contribute much to the final result. In fact, if the result is truncated
to 1.31, then this multiplication can only have an effect on the least significant bit of the 1.31 result. For many
applications, the loss of accuracy due to this bit is balanced by the speeding up of the 32-bit multiplication
through eliminating one 16-bit multiplication, one shift, and one addition.

The expression for 31-bit accurate multiplication is

((R1.L ×R0.H)+ (R1.H ×R0.L)) >> 16+ (R1.H ×R0.H)

On the reference-embedded-processor architecture, these instructions can be issued in parallel to yield an effective
rate of 2 cycles for each 32-bit multiplication.

12.3 Signal Processing with Embedded Processor

There are a number of ways to get the signal data into the processor core. For example, a foreground program
can poll a serial port for new data, but this type of transfer is uncommon in embedded media processors because
it makes inefficient use of the core.

12.3.1 Getting Signals to the Processor Core

A processor connected to an audio codec, instead, usually uses a DMA engine to transfer the data from the codec
link (like a serial port) to some memory space available to the processor. This transfer of data occurs in the
background without the core’s intervention. The only overhead is in setting up the DMA sequence and handling
the interrupts once the data buffer has been received or transmitted.

Block Processing versus Sample Processing
Sample processing and block processing are two approaches for dealing with digital audio data. In the
sample-based method, the processor crunches the data as soon as it’s available. Here, the processing func-
tion incurs overhead during each sample period. Many filters (e.g., FIR and IIR, described in Chapter 7) are
implemented this way, because the effective latency is low.

Speech and Audio Processing 609

DMA

In 0 In 1

Block Processing

Out 0 Out 1

DMA

N N
(b)

DMA

In 0Input Buffer In 1

Block Processing

Out 0Output Buffer Out 1

DMA

N N
(a)

Figure 12.11: Double-buffering scheme for stream processing. (a) DMA accessing In0 and Out0 buffers while
core works on In1 and Out1 (b) DMA accessing In1 and Out1 buffers while core works on In0 and Out0 buffers.

Block processing, on the other hand, is based on filling a buffer of a specific length before passing the data to
the processing function. Some filters are implemented using block processing because it is more efficient than
sample processing. For one, the block method sharply reduces the overhead of calling a processing function for
each sample. Also, many embedded processors contain multiple ALUs that can parallelize the computation of
a block of data. What’s more, some algorithms are, by nature, meant to be processed in blocks. A well-known
one is the Fourier transform (and its practical counterpart, the fast Fourier transform, or FFT, see Section 7.1),
which accepts blocks of temporal or spatial data and converts them into frequency-domain representations.

Double Buffering
In a block-based processing system that uses DMA to transfer data to and from the processor core, a “double
buffer” must exist to arbitrate between the DMA transfers and the core. This is done so that the processor
core and the core-independent DMA engine do not access the same data at the same time, causing a data
coherency problem. To facilitate the processing of a buffer of length N , simply create a buffer of length 2 × N .
For a bidirectional system, two buffers of length 2 × N must be created. As shown in Figure 12.11(a), the core
processes the In1 buffer and stores the result in the Out1 buffer, while the DMA engine is filling In0 and
transmitting the data from Out0.

Figure 12.11(b) shows that once the DMA engine is done with the left half of the double buffers, it starts
transferring data into In1 and out of Out1, while the core processes data from In0 and into Out0. This config-
uration is sometimes called “Ping-Pong buffering,” because the core alternates between processing the left and
right halves of the double buffers.

Note that in real-time systems, the serial port DMA (or another peripheral’s DMA tied to the audio sampling
rate) dictates the timing budget. For this reason, the block-processing algorithm must be optimized in such a
way that its execution time is less than or equal to the time it takes the DMA to transfer data to/from a half of a
double-buffer.

2D DMA
When data is transferred across a digital link like I2S, it may contain several channels. These may all be
multiplexed on one data line going into the same serial port. In such a case, 2D DMA (see Appendix A,
Section A.3, on the companion website) can be used to deinterleave the data so that each channel is linearly
arranged in memory. Take a look at Figure 12.12 for a graphical depiction of this arrangement, where samples
from the left and right channels are demultiplexed into two separate blocks. This automatic data arrangement is
extremely valuable for those systems that employ block processing.

12.3.2 Signal Processing

There are three fundamental building blocks in audio processing. They are the summing operation, multiplication,
and time delay. Many more complicated effects and algorithms can be implemented using these three elements.

610 Chapter 12

Figure 12.12: 2D DMA engine:
(a) Used to deinterleave I2S stereo
data. (b) Data interleaved into
separate left and right buffers.

I2S Order L0 R0 L1 R1 L2 R2 . . . LN RN

(a)

(b)

Block of N samples
in separate L
and R channels

Y modify 5 2(N – 1)

X modify 5 N

L0 L1 L2 LN R0 R1 R2 RN

Figure 12.13: Layout of circular buffer
in memory.

D0

D1

D2

DN 2 2

DN 2 1

DN

Wraparound
to top after
last address
is accessed

Pointer
to current
address

Basic Operations
A summer has the obvious duty of adding two signals together. A multiplication can be used to boost or
attenuate an audio signal. On most media processors, multiple summer and/or multiplier blocks can be executed
in a single cycle. A time delay is a bit more complicated. In many audio algorithms, the current output depends
on a combination of previous inputs and/or outputs. The implementation of this delay effect is accomplished
with a delay line, which is really nothing more than an array in memory that holds previous data. For example, an
echo algorithm might hold 500 ms of input samples for each channel. The current output value can be computed
by adding the current input value to a slightly attenuated previous sample. If the audio system is sample based,
then the programmer can simply keep track of an input pointer and an output pointer (spaced at 500 ms worth of
samples apart), and increment them after each sampling period.

Since delay lines are meant to be reused for subsequent sets of data, the input and output pointers will need
to wrap around from the end of the delay line buffer back to the beginning. In C/C++, this is usually done by
appending the modulus operator (%) to the pointer increment. This wraparound may incur no extra processing
cycles if you use a processor that supports circular buffering (see Figure 12.13). In this case, the beginning and
length of a circular buffer must be provided only once. During processing, the software increments or decrements
the current pointer within the buffer, but the hardware takes care of wrapping around to the beginning of the buffer
if the current pointer falls outside of the bounds. Without this automated address generation, the programmer
would have to manually keep track of the buffer, thus wasting valuable processing cycles.

An echo effect derives from an important audio building block called the comb filter, which is essentially a
delay with a feedback element. When multiple comb filters are used simultaneously, they can create the effect
of reverberation.

Speech and Audio Processing 611

Signal Generation
In some audio systems, a signal (e.g., a sine wave) might need to be synthesized. Taylor-series function approxi-
mations can emulate trigonometric functions. Moreover, uniform random number generators are handy for
creating white noise.

However, synthesis might not fit into a given system’s processing budget. On fixed-point systems with ample
memory, you can use a look-up table instead of generating a signal. This has the side effect of taking up precious
memory resources, so hybrid methods can be used as a compromise. For example, you can store a coarse look-up
table to save memory. During runtime, the exact values can be extracted from the table using interpolation, an
operation that can take significantly less time than computing using a full Taylor series approximation. This
hybrid approach provides a good balance between computation time and memory resources.

Digital Filtering
Digital filters are used in audio systems for attenuating or boosting the energy content of a sound wave at specific
frequencies. The most common filter forms are high-pass, low-pass, band-pass, and notch. Any of these filters
can be implemented in two ways. These are the finite impulse response filter (FIR) and the infinite impulse
response filter (IIR), and they constitute building blocks to more complicated filtering algorithms like paramet-
ric equalizers and graphic equalizers. See Section 7.4 for detail on FIR-filter implementation techniques and
Section 7.5 for detail on IIR-filter implementation techniques.

Fast Fourier Transform
Quite often we can do a better job describing an audio signal by characterizing its frequency composition.
A Fourier transform takes a time-domain signal and rearranges it into the frequency domain; the inverse Fourier
transform achieves the opposite, converting a frequency-domain representation back into the time domain. Math-
ematically, there are some nice relationships between operations in the time domain and those in the frequency
domain. Specifically, a time-domain convolution (or an FIR filter) is equivalent to a multiplication in the fre-
quency domain. This tidbit would not be too practical if it were not for a special optimized implementation of
the Fourier transform called the fast Fourier transform (FFT). In fact, it is often more efficient to implement
an FIR filter by transforming the input signal and coefficients into the frequency domain with an FFT, multi-
plying the transforms, and finally transforming the result back into the time domain with an inverse FFT. See
Section 7.1 for detail on FFT implementation techniques.

There are other transforms that are used often in audio processing. Among them, the most common is the
modified discrete cosine transform (MDCT), which is the basis for many audio compression algorithms. We will
discuss more on MDCT in the next chapter.

12.4 Speech Compression

Speech compression is the field concerned with obtaining compact digital representation of voice signals for the
purpose of efficient transmission or storage. Speech compression probably deserves a chapter of its own, and
we will not delve too deeply here.

12.4.1 Speech Signals

The speech signals contain information about the time-varying characteristics of the excitation source and the
vocal tract system. Speech can generally be classified as voiced, unvoiced, or mixed. Voiced speech is quasiperi-
odic in the time domain and harmonically structured in the frequency domain as shown in Figure 12.14(a) and (b),
while unvoiced speech is random-like in time domain and occupies a broad spectrum in the frequency domain as
shown in Figure 12.14(c) and (d). The voiced speech is produced by exciting the vocal tract with quasiperiodic
glottal air pulses generated by vibrating the vocal cords. Unvoiced speech is produced by forcing air through a
constriction in the vocal tract. Low bit-rate voice codecs utilize this important characteristic of the speech pro-
duction system, and compress the speech by modeling the speech as a two-state excitation model together with
the time-varying linear filter for mitigating the vocal tract. Model parameters are updated periodically to track

612 Chapter 12

(a)
1400 1450 1500 1550 1600 1650 1700

20.4

20.2

0

0.2

0.4

0.6

(b)
0 500 1000 1500 2000 2500 3000

215

210

25

0

5

10

15

20

25

0 500 1000 1500 2000 2500 3000

250

240

230

220

210

0

10

(d)(c)
2260 2280 2300 2320 2340 2360 2380 2400 2420

20.6

 20.4

20.2

0

0.2

0.4

0.6

Figure 12.14: (a) Voiced speech. (b) Spectrum of voiced speech. (c) Unvoiced speech. (d) Spectrum of unvoiced
speech.

the quasiperiodic statistics of the speech signals. Since model parameters vary relatively slowly compared to the
speech signal itself, we achieve speech signal compression by representing the speech segment with few model
parameters and transmitting those parameters to the receiver. The receiver uses the received model parameters
to reproduce the synthetic speech.

The most common use for speech compression is in voice telecommunications. Most of the energy in typical
speech signals is stored within less than 4 kHz of bandwidth, thus making speech a subset of audio signals.
However, many speech compression techniques are based on modeling the human vocal tract, so these cannot
be used for general audio compression.

Speech compression is used widely in real-time communications systems like cell phones and in packetized
voice connections like Internet phones. Most of these applications require that the speech signal is in digital
format so that it can be processed, stored, or transmitted under software control.

Since speech is more band limited than full-range audio, it is possible to use audio codecs, taking the smaller
bandwidth into account. Almost all speech codecs do, indeed, sample voice data at 8 kHz. However, we can do
better than just take advantage of the smaller frequency range. Since only a subset of the audible signals within
the speech bandwidth is ever vocally generated, we can drive bit rates even lower. The major goal in speech
encoding is a highly compressed stream with good intelligibility and short delays to make real-time full-duplex
communication possible.

Speech and Audio Processing 613

12.4.2 Speech Compression Objectives and Requirements

The objective in speech coding is to represent speech with a minimum number of bits while maintaining its
perceptual quality. A speech compression algorithm is evaluated based on the following factors: quality of
reconstructed speech, achievable bit rates, algorithm complexity, coding delay, and robustness of the algorithm
to channel errors.

Reconstructed Speech Quality
In digital communication systems, speech quality is classified into four categories: broadcast (highest), network,
communication, and synthetic (lowest). The requirement on level of speech quality varies from application to
application. Typically, we use a mean opinion score (MOS) of 1 to 5 for evaluating the speech quality. The MOS
are based on listener ratings. The MOS of 1 refers to poor and 5 refers to excellent. Different speech coding
algorithms at different bit rates would achieve the required speech quality.

Bit Rate
The speech signals can be coded (for different applications) with bit rates in the range of 1 to 64 kbps. Usually,
broadcast quality speech can be achieved with bit rates at around 64 kbps, and network-quality speech can be
produced with bit rates above 16 kbps. The communication quality speech can be produced with bit rates above
4 kbps. The speech coders operating well below 4 kbps tend to produce speech of synthetic quality. In general,
high-quality speech coding at low bit rates is achieved using high-complexity compression algorithms.

Coding Delay
The speech quality experience by the end user depends on many factors and one of them is end-to-end delay.
Various kinds of delays are present in digital speech transmission and some of them are transmission, packetiza-
tion, processing, and algorithmic. Transmission delay is beyond our control and it is variable in nature. On the
other hand, algorithmic and processing delays depend on the type of algorithm used for speech coding and the
type of processor architecture chosen for a particular application. End-to-end delay must be minimized for high
speech quality.

Robustness to Channel Errors
In general, communication channels introduce errors in the received speech signals. As some of the compression
methods code parameters instead of the signal itself and transmit, the decoding of erroneous compressed speech
data at the receiver may sometimes result in a catastrophic error in the reconstructed speech. Usually, we use
forward error correction (FEC) techniques (see Chapters 3 and 4) to minimize errors in the received data.

12.4.3 Speech Compression Methods

In the literature, speech compression methods are broadly divided into three classes: waveform coding, vocoder
(voice coder), and hybrid coding methods as shown in Figure 12.15. The performance (quality versus bit rate)
of these codecs is shown in Figure 12.16.

12.4.4 Waveform Coders

Waveform coding techniques are not speech-specific. The waveform coders focus on representing the speech
waveform as such without exploiting the underlying speech model. Typically, waveform coders produce

Speech Compression Methods

Waveform
Coders

Vocoder
Methods

Hybrid
Coding

• Time-domain coding
(PCM, DPCM, DM, ADPCM)

• Frequency-domain coding
(SBC, ATC)

• Formant vocoder
• Linear-predictive vocoder

• Code excited linear prediction
 analysis-by-synthesis coder

Figure 12.15: Various speech compression approaches.

614 Chapter 12

Figure 12.16: Speech codec
performance (quality versus bit rate).

5

4

3

2

1

1 2 4 8 16 6432

Vocoders

Waveform
coders

Hybrid
coders

Q
ua

lit
y

Bit Rate (kbps)

Figure 12.17: Eight-level, mid-tread
quantizer.

s[n]

s[n]5Q (s [n])

ŝ1

ŝ2

ŝ3

ŝ4

ˆ

ˆ2s2

ˆ2s3

ˆ2s4

D: Step size

2s22s32s4 s1 s2 s3 s4
ˆ2s1

2s1

high-quality decoded speech at bit rates in the range 16 to 64 kbps. The simplest waveform coding is PCM
(pulse code modulation), which merely involves sampling and quantizing the input waveform. The sampled
signal values s[n] are real numbers and can be useful only for theoretical study purposes. The continuous ampli-
tude (or infinite precision) real samples must be quantized to work with digital computers. The quantizer simply
takes the real value samples s[n] as input and assigns an output ŝ[n] according to the discrete mapping Q(s).
An illustration of an eight-level, mid-tread quantizer is shown in Figure 12.17.

For samples within the range, the quantization error e[n] satisfies the following condition:

−�

2
< e[n] <

�

2
(12.4)

where � is the quantizer step size. For a b-bit quantizer, if the peak-to-peak signal range is 2Smax, the step size
� is given by

� = 2Smax/2b (12.5)

The signal-to-quantization noise ratio (in dB) of the b-bit uniform quantizer (assuming the quantization noise
as uncorrelated and uniformly distributed white noise) is obtained as follows:

SNR = 6.02b +4.77−20 log10

(
Smax

σs

)
(12.6)

A telephone-quality linear PCM encoding with uniform quantization requires 12 bits of precision. However,
our ears are more sensitive to audio changes at small amplitudes than at high amplitudes. Therefore, the linear
PCM sampling is overkill for telephone communications.

Nonuniform Quantization
In the logarithmic scale, a nonuniform quantization allows quantization intervals to increase with amplitude,
and it ensures that low-amplitude signals can be digitized with a minimum loss of fidelity. The nonuniform

Speech and Audio Processing 615

quantization used by the A-law and μ-law companding standards achieves a 12-bit PCM level of quality using
only 8 bits of precision. A μ-law quantized speech sample is obtained by the process described in Equation 12.7.
A block diagram of the PCM waveform codec with a nonuniform quantizer is shown in Figure 12.18.

sl [n] = g(s[n]) = Smax
log (1+μ |s[n]|/Smax)

log (1+μ)
sign(s[n]) (12.7)

For μ-law quantization, the SNR (in dB) is given by

SNR = 6b +4.77−20 log10 (1+μ)−10 log10

(
1+
[

Smax

μσs

]2

+√
2

Smax

μσs

)
(12.8)

Figure 12.19 shows the input-output mapping and SNR versus Smax/σs characteristics for uniform and
μ-law quantizers. The μ-law matches the logarithmic curve with a piece-wise linear approximation rather than
computing the logarithm of the input sample directly. Eight straight line segments along the curve produce a close
approximation to the logarithmic function. Each segment is known as a chord, and each chord is divided into
equally sized quantization intervals called steps. An encoded 8-bit codeword of a μ-law quantizer (for μ = 255,
shown in Figure 12.20 adapted by U.S. and Japan standards) is composed of 1 sign bit concatenated with a
3-bit chord and a 4-bit step. The μ-law binary encoding and decoding, which is described in the Table 12.6, is
well-suited for hardware or software implementation.

g (.) Q (.) Encoder
s [n] b [m]

D

b9[m] s9[n]sl [n] s [n]ˆ s9[n]ˆ
g21(.) Decoder

ReceiverTransmitter

Figure 12.18: Block diagram of PCM with nonuniform quantization.

(a)

s [n]

s
[n

]
ˆ

s
[n

]
ˆ

(c)

s [n]

(b)

(d)

16

22

28

34

b 5 6
b 5 5

b 5 11

Smax

S
N

R
(d

B
)

10 100 1000

b 5 7

�s

16

22

28

34
b 5 6

b 5 5

b 5 7

S
N

R
(d

B
)

10 100 1000 Smax
�s

Figure 12.19: Comparison of uniform and μ-law quantization. (a) Uniform quantizer input–output mapping.
(b) SNR versus Smax/σs characteristics of uniform quantizer. (c) μ-Law quantizer input–output mapping. (d) SNR
versus Smax/σs characteristics of μ-law quantizer.

616 Chapter 12

Figure 12.20: μ-Law companding
curve for μ = 255.

0

16
32
48
64
80
96

112
128

1/8 1/4 3/8 1/2 5/8 3/4 7/8 1.0

� 5 255

Normalized Input

Q
ua

nt
iz

ed
O

ut
pu

t

Table 12.6: Coding of μ-Law Quantized Samples

Encoding

Encoded Output
Input (Sign|Chord|Step: 1|3|4 Bits)

Bits: 12 11 10 9 8 7 6 5 4 3 2 1 0 Bits: 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 a a a a x s 0 0 1 a a a a
0 0 0 0 0 0 1 a a a a x x s 0 1 0 a a a a
0 0 0 0 0 1 a a a a x x x s 0 1 1 a a a a
0 0 0 0 1 a a a a x x x x s 1 0 0 a a a a
0 0 0 1 a a a a x x x x x s 1 0 1 a a a a
0 0 1 a a a a x x x x x x s 1 1 0 a a a a
0 1 a a a a x x x x x x x s 1 1 1 a a a a
1 a a a a x x x x x x x x s 0 0 0 a a a a

Decoding

Received Codeword (Chord|Step),
Sign Bit Ignored Decoded Output

Bits: 6 5 4 3 2 1 0 Bits: 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 a a a a 0 0 0 0 0 0 0 1 a a a a 1
0 0 1 a a a a 0 0 0 0 0 0 1 a a a a 1 0
0 1 0 a a a a 0 0 0 0 0 1 a a a a 1 0 0
0 1 1 a a a a 0 0 0 0 1 a a a a 1 0 0 0
1 0 0 a a a a 0 0 0 1 a a a a 1 0 0 0 0
1 0 1 a a a a 0 0 1 a a a a 1 0 0 0 0 0
1 1 0 a a a a 0 1 a a a a 1 0 0 0 0 0 0
1 1 1 a a a a 1 a a a a 1 0 0 0 0 0 0 0

ADPCM and ADM
The encoding and decoding process for A-law is similar to that of μ-law. With nonuniform quantization (i.e.,
using either the A-law or μ-law), the PCM coded speech at the bit rate of 64 kbps (i.e., 8 bits/sample and 8
kilosamples per second) can give a reconstructed speech which is almost indistinguishable from the original.
The more efficient waveform coders such as DPCM (differential PCM), DM (delta modulation), ADM (adaptive
DM), and ADPCM (adaptive DPCM), utilize the redundancy present in the speech waveform by exploiting the
correlation between adjacent samples. These waveform coders perform better than ordinary PCM for rates at
and below 32 kbps. The coding schemes DPCM and DM use differential quantization, whereas the schemes
ADM and ADPCM incorporate the adaptive differential quantizers. The block diagrams for these four systems

Speech and Audio Processing 617

are shown in Figures 12.21 through 12.24. DM is a subclass of DPCM where the error signal is encoded with
only 1 bit (i.e., DM incorporates a two-level quantizer).

DM and DPCM are low-complexity coders and perform better than ordinary PCM for rates at and below
32 kbps. In all four systems—DPCM, DM, ADM, and ADPCM—the block labeled P[z] is a linear predictor.

1

Q (.)
e [n] c [n]s [n]

P [z]

e [n]ˆ

s [n]ˆ

1

1
s [n]

Encoder
2

e9[n]

s9[n]

c9[n] ˆ s9[n]ˆ

1 1
Decoder

P [z]

(a) (b)

Figure 12.21: Block diagram of DPCM system. (a) Encoder. (b) Decoder.

(a) (b)

e [n] c [n]s [n]

P [z]

e [n]ˆ

s [n]ˆ

1

1

1

Encoder
2

s [n]

c9[n] e9[n]ˆ s9[n]ˆ

1 1
Decoder

P [z]
s9[n]

Figure 12.22: Block diagram of DM system. (a) Encoder. (b) Decoder.

(b)(a)

e [n] c [n]s [n]

P [z]

e [n]ˆ

s [n]ˆ

�

�

�
s [n]

Encoder
�

Step
Size
Logic

c�[n] e�[n]ˆ s�[n]ˆ

� �
Decoder

P [z]

Step
Size
Logic

s�[n]

Figure 12.23: Block diagram of ADM system. (a) Encoder. (b) Decoder.

(b)(a)

e [n] c [n]s [n]

P [z]

e [n]ˆ

s [n]ˆ

1

1

1
s [n]

Encoder
2

Predictor
Adaptation

System

Q (.)

Step
Size

Logic

s9[n]

c9[n] e9[n]ˆ s9[n]ˆ

1 1
Decoder

P [z]

Predictor
Adaptation

System

Step
Size

Logic

Figure 12.24: Block diagram of ADPCM system. (a) Encoder. (b) Decoder.

618 Chapter 12

The signal s̃[n] is predicted from p past samples of the signal ŝ[n]. The predicted signal s̃[n] is obtained as
follows:

s̃[n] =
p∑

k=1

αk ŝ[n − k],where αk’s are predictor coefficients (12.9)

The input to the quantizer is the differential (or error) signal e[n], which is the difference between the input
signal s[n] and predicted signal s̃ [n]:

e[n] = s[n]− s̃[n] (12.10)

ê[n] = e[n]+q[n] (12.11)

where q[n] is the quantization error signal. Since ŝ [n] = s̃ [n] + ê [n], from Equations (12.10) and (12.11), we
have

ŝ [n] = s[n]+q [n] (12.12)

Based on Equation (12.12), the SNR of the differential quantization system is computed as

SNR = σ 2
s

σ 2
q

= σ 2
s

σ 2
e

σ 2
e

σ 2
q

= GpSNRq (12.13)

where Gp is the prediction gain and SNRq is the quantizer SNR.
If the prediction is good, then the Gp in Equation (12.13) will be greater than 1 and the variance of the error

signal e[n] is much less than the original signal s[n]. This will allow us to use smaller step size �, and therefore
to represent the quantized signal ê [n] with a smaller number of bits.

In ADM and ADPCM, the step size is allowed to adapt to the time-varying statistics of speech. The adaptation
can be forward or backward. We used backward adaptation in the systems shown in Figures 12.23 and 12.24.
With backward adaptation, we need not transmit the step-size parameters as the decoder itself can derive them
from the bitstream.

As shown in Figure 12.24, the predictor is also allowed to adapt and track the time-varying statistics of speech.
Typically, adapting the step size improves the SNR by 6 dB over ordinary PCM and adapting the predictor further
improves the SNR by 4 dB.

Transform Domain Coding
Frequency-domain coding approaches such as subband coding (SBC) and adaptive transform coding (ATC)
exploit the redundancy of the signal in the transform domain. By coding different subbands (or frequencies)
independently, we can allocate more bits to perceptually important subbands so that the noise in these frequency
regions is maintained low, while in other subbands we allocate fewer bits and allow high coding noise, as the
noise at these frequencies is perceptually less important.

The SBC uses the filter bank techniques to split the input speech into a number of frequency bands. The block
diagram of SBC codec is shown in Figure 12.25. The design of the filter bank is a very important consideration
in the design of an SBC. In the absence of quantization noise, perfect reconstruction of speech can be achieved
using QMF (quadrature mirror filter) banks. See Section 8.2.3 for more details on QMF. Typically, SBC codecs
operate at bit rates in the range 16 to 32 kbps.

ATC, on the other hand, uses unitary transforms (e.g., DCT) to split the block of speech samples into a number
of frequency components (or transform coefficients). The potential for bit-rate reduction in ATC lies in the fact
that unitary transforms tend to generate near-uncorrelated transform coefficients that can be coded independently.
The number of bits used to code each transform coefficient is adapted depending on the spectral properties of
the speech. The block diagram of ATC codec is shown in Figure 12.26. The bit rates supported by ATC are also
in the range of 16 to 32 kbps.

Speech and Audio Processing 619

Decoder

Decoder

Decoder

Decoder

BI1

BI2

BI3

BIn

BPF1

BPF2

BPF3

BPFn

Encoder

Encoder

Encoder

Encoder

s [n]

n

n

n

n

s9[n]ˆ

Figure 12.25: Block diagram of subband speech codec. BPF, bandpass filter; BI, bandpass interpolation.

T Q (.)
s [n] ŷ [n]

T 21Q21(.)
y 9[n] s9[n]

Transmitter Receiver

Bit Allocation Bit Allocation

y [n] ŷ 9[n]

Figure 12.26: Block diagram of adaptive transform coding codec.

BPF1

BPF2

BPF3

BPF19

Speech
Signal
Input

Preemphasis
and Windowing

Voice
Excitation
Analysis

Rectifier 1

Rectifier 2

Rectifier 3

Rectifier 19

LPF1

LPF2

LPF3

LPF19

Pitch

Voiced /Unvoiced Flag

Output
Bitstream

E
nc

od
er

Ch #1

Ch #2

Ch #3

Ch #19

Figure 12.27: Block diagram of Holmes channel vocoder (only the encoder is shown).

12.4.5 Vocoders

Vocoders, on the other hand, are speech-specific coders and rely on speech models. As the vocoders rely on a
speech source model, performance generally degrades for nonspeech signals. The vocoders focus on producing
perceptually intelligible speech without necessarily matching the waveform. They operate at very low bit rates
in the range 2 to 4 kbps and the decoder reconstructed speech sounds synthetic.

Two well-known vocoder methods are channel and linear predictive coder (LPC). These vocoders operate
at bit rates as low as 2.4 kbps. Next, we briefly address these methods as well as the corresponding open-loop
speech synthesis process.

Channel Vocoder
Thechannel vocoder relies on representing the speech spectrum as the product of vocal tract and excitation spectra.
The block diagram of the Holmes channel vocoder (Holmes, 1980) is shown in Figure 12.27. The excitation
analysis system consists of pitch estimation and voiced/unvoiced speech flag computation. A vocal tract envelop
representation is obtained using a bank of bandpass filters. This vocoder can be efficiently implemented in the
digital domain using discrete Fourier transform techniques.

620 Chapter 12

Table 12.7: Bits allocation in a Holmes channel
vocoder

Parameters Allocation

Pitch 6 bits
Voiced/unvoiced flag 1 bit
Absolute level of first channel coefficient 3 bits
Remaining 18 channels (differential coding) 2 bits (each)
Signaling 2 bits
Total 48 bits

Transmitter Receiver

Decoder

Pulse
Generator

Noise
Generator

LPC
Synthesizer

s9[n]
Pitch

V/UV

Gain

Coefficients

LPC
Analyzer

s[n]

Pitch

E
nc

od
er

V/UV

Gain

LPC
Coeffi-
cients

Voice
Excitation
Analysis

Figure 12.28: Simplified block diagram of an LPC vocoder.

Table 12.8: Bits allocation in an
LPC vocoder

Parameters Allocation

Pitch 6 bits
Voiced/unvoiced flag 1 bit
Gain 5 bits
10 Predictor coefficients 6 bits (each)
Total 72 bits

In the Holmes vocoder, each 20-ms speech segment is represented with 48 bits of information. Table 12.7
describes the parameters required to transmit with the Holmes vocoder and the allocation of bits for individual
parameters. The bit rate of this vocoder is 2400 bps (48 * 50 frames/sec).

LPC Vocoder
LPC vocoders are more commonly used in practice for low bit-rate applications. Unlike the channel vocoder
(which analyzes a speech signal in the frequency domain), the LPC vocoder performs speech analysis in the
temporal domain. LPC vocoders use algorithms to predict the present speech sample from past samples. See
Section 8.1.3 for more detail on the linear prediction method and its application in speech compression.

The idea behind using LPC for speech coding is grounded in the observation that the human vocal tract can
be roughly modeled with linear filters. Voiced sounds can be modeled as linear filters driven by a fundamental
frequency, whereas unvoiced ones are modeled with random noise sources. Using these models, we can describe
human utterances with just a few parameters. This allows the LPC to predict signal output based on previous
inputs and outputs. A simplified block diagram of the LPC vocoder is shown in Figure 12.28. The LPC vocoder
also consists of a voice excitation analysis block to estimate the pitch, voiced/unvoiced flag, and gain information.

Eight to 14 linear predictive parameters are usually required to model the human vocal tract. Typically, these
parameters are updated every 10 to 30 ms. In the LPC vocoder, we use 72 bits to represent each speech segment.
Table 12.8 describes the parameters that are required to transmit with the LPC vocoder and the allocation of
bits for individual parameters. The bit rate of this vocoder is about 2400 bps at the frame rate of 33 frames per
second.

Speech and Audio Processing 621

Open-Loop Speech Synthesis
In the open-loop speech analysis/synthesis coders, the parameters of the model are estimated directly from
the speech signal. In this, the two-state voice excitation model used for speech synthesis can be very simple.
Many of the low-rate channel and LPC vocoders employ this simple two-state excitation (impulse train/white
noise). Although this simple excitation model is associated with strikingly low bit rates, it is also responsible for
synthetic-quality speech.

As shown in Figure 12.28, the decoder (or open-loop synthesis) parameters are directly obtained from the
compressed speech bitstream. Given the V/UV flag, pitch, and gain information at periodic intervals (or on a
frame basis), the unvoiced sounds are produced by exciting the system with white noise, and voiced sounds are
produced by a periodic impulse train excitation, where the spacing between impulses is the pitch period. The
V/UV switch selects the voiced or unvoiced segment of speech and the gain parameter G controls the amplitude
level of speech signal in that segment. The synthesized speech is obtained at the output of a time-varying digital
filter whose filter coefficients are derived from the decoded bitstream.

V/UV, Gain, and Pitch Detection
The vocoder methods heavily depend on the voice excitation analysis block, which detects voice activity, gain,
and pitch information. For digital coding applications, the pitch period and gain must be quantized. Typically,
we use 6 bits to represent pitch, 5 bits for gain (with the logarithmic scale), and 1 bit for the voice activity flag.
The following briefly discusses estimation of these parameters.

Voice Activity Detection
As the speech signals are quasistationary in nature, we transmit the speech in multiple small segments (or frames)
over which the underlying model parameters of speech are assumed to be nearly constant. By detecting the voice
activity in those small speech segments, we can reduce the bit rates by transmitting only the voice excitation and
vocal tract filter parameters instead of actual speech information. The unvoiced speech is produced by exciting
the system with white noise and voiced speech is produced by a periodic pulse train excitation. The transmission
of a simple flag conveys the information to the receiver that the current speech segment is voiced or unvoiced
and the receiver takes the appropriate action to synthesize the corresponding speech segment. Next, we briefly
discuss two popular voice-activity detection techniques.

Short-Time Energy The short-time energy, En, for the speech segment starting at index n is defined as

En =
∞∑

m=−∞
w2 [m]s2 [n −m] (12.14)

where w[n] is a window function (see Section 7.4.1).
Since the amplitude levels of unvoiced speech is relatively low when compared to voiced speech samples,

the short-time energy En is significantly low in the unvoiced region compared to the energy in the voiced region
as shown in Figure 12.29. Thus, given an appropriate threshold on short-time energy, we can determine the
particular speech segment as voiced or unvoiced.

Short-Time Zero-Crossing Rate Given that the speech segment sn[] starts at index n, the short-time zero-
crossing rate is defined as the average number of times the speech signal changes sign within the time window.
The rate is obtained as follows:

Zn =
∞∑

m=−∞
0.5|sgn(x [m])− sgn(x [m −1]) | (12.15)

where

x [m] = sn[m]⊗w[m] , (12.16)

w[] is a window function and ⊗ represents the convolution operation. The definition of the function sgn() is

sgn(x) =
{

1 x ≥ 0
−1 x < 0

(12.17)

622 Chapter 12

0 500 1000 1500 2000 2500 3000 3500
21

20.8

20.6

20.4

20.2

0

0.2

0.4

0.6

0.8

1
Short-time energy Short-time

zero-crossing rate

Figure 12.29: Typical speech waveform.

Since unvoiced speech signals are random in nature, the zero-crossing rate for the unvoiced speech segment
interval is relatively high compared to the zero-crossing rate in the voiced interval, as shown in Figure 12.29.
By using an appropriate threshold, we can determine the voice activity with the zero-crossing rate method in the
given speech segment.

Gain Estimation
The gain of unvoiced and voiced segments is typically determined such that the energy of the synthetic speech
segment matches that of the analysis segment. For this purpose, the short-time energy En given in Equation (12.14)
can be used to estimate the gain parameter. This short-time energy can also be obtained from the autocorrelation
function value Rn

ss [k] at lag k = 0.

Pitch Estimation
One of the important features of the speech signal is its fundamental frequency (F0), more commonly its inverse
value, referred to as pitch period P0(= 1/F0), which is useful in most speech processing applications. The
fundamental frequency of voiced speech can be anywhere in the range of 50 Hz to 500 Hz. As the fundamental
frequency varies slowly, we estimate the pitch period for each speech segment on a frame-by-frame basis.

A pitch detector is an essential component in various speech processing systems. Many low–bit-rate speech
codecs require pitch information for speech synthesis. The pitch detector, besides providing pitch information
to the speech synthesis block for generating voiced speech, can also be used in voice activity detection, speaker
recognition, and text-to-speech systems, among other applications. Various pitch detection methods have been
proposed in the literature; here we briefly discuss pitch detection based on autocorrelation and cepstrum methods.

Autocorrelation Method The autocorrelation approach is widely used in many applications for detecting
human-voice pitch information. This method is based on detecting the highest value of the autocorrelation
function in the region of interest. Given N samples of a speech segment, the short-time autocorrelation function
is computed as

Rss [m] = 1

N

N−1−m∑
n=0

s[n] s[n +m], 0 ≤ m ≤ M (12.18)

The variable m in Equation (12.18) is called the lag, and the pitch is equal to the value of m for which Rss[m]
results in a maximum value. Usually, the range of M is 16 to 160 samples at an 8-kHz sampling rate. This range
of lags corresponds to fundamental frequency values that lie in the 50- to 500-Hz interval. The autocorrelation
output of voiced speech (shown in Figure 12.14(a)) is shown in Figure 12.30.

The major limitation of the autocorrelation function is that it can contain many peaks other than those due
to the fundamental frequency. For voiced speech, many peaks may be present in the autocorrelation function

Speech and Audio Processing 623

0 20 40 60 80 100 120 140 160
2100

250

0

50

100

150

Pitch period (number of lags)

R
ss

 [m
]

m

Figure 12.30: Autocorrelation of speech segment with lags 0 to 160.

due to vocal-tract formant resonance frequencies. The peak selection must be robust in pitch detection; we use
preprocessing techniques and large window sizes to minimize the false detection rate.

Upon using center-clipping techniques in preprocessing, the increased distinctiveness of true period peaks
in the autocorrelation function can be seen. The relationship between input signal s[n] and the center-clipped
signal x [n] is expressed as follows:

x [n] = center_clip(s[n]) =
⎧⎨
⎩

s[n] −CT , s[n] ≥ CT

0, |s[n] | < CT

s[n] +CT , s[n] ≤ CT

(12.19)

where CT is the clipping threshold.

Cepstrum Method Cepstrum computation transforms the multiplicative relationship between voice source
and vocal tract effects into an additive relationship. With cepstrum, it is possible to separate the voice excitation
source part from the speech signal and find more accurate pitch information. For pitch determination, the real
part of cepstrum is sufficient, and is computed as

s̃ [n] = real

(
1

N

N−1∑
k=0

Ŝ [k] e j2πkn/N

)
, n = 0,1, . . . , N −1 (12.20)

where

Ŝ [k] = log

(∣∣∣∣∣
N−1∑
n=0

s[n] e− j2πnk/N

∣∣∣∣∣
)

, k = 0,1, . . . , N −1 (12.21)

The term “cepstrum” derives from the notion that it turns the spectrum inside out. The x -axis of the cepstrum
has units of quefrency (measured in seconds). To obtain excitation of the fundamental frequency from the
cepstrum, we look for a peak in the quefrency region as shown in Figure 12.31 corresponding to the fundamental
frequencies of typical speech. The block diagram of cepstrum-based pitch detection is shown in Figure 12.32.

12.4.6 Hybrid Coders

With hybrid coders, speech compression is achieved by combining the features of waveform coding techniques
(by providing for the matching of input speech signal) and vocoder techniques (by representing the formant and
pitch structure of speech), and by exploiting human auditory system characteristics (by incorporating perceptual
weighting). The analysis-by-synthesis approach is used in most hybrid codecs.

In analysis-by-synthesis methods, the excitation parameters are determined by minimizing the difference
between the reconstructed speech (by the decoder present in the encoder block) and original speech. The most
traditional hybrid speech coding approach is code-excited linear prediction (CELP). CELP is based on linear
prediction coding (LPC) models of the vocal tract (see Section 8.1.3) and a supplementary residue codebook.

624 Chapter 12

0 0.005 0.01 0.015 0.02

20.3

20.2

20.1

0

0.1

0.2

0.3

0.4

0.5

Pitch period (sec)

n /(Fs
/2) (sec)

s

Figure 12.31: Pitch detection by computing the cepstrum of the speech segment.

Figure 12.32: Computing the cepstrum
using DFT.

DFT log| | IDFT
s [n] S [k]

real(.)
S [k]ˆ s [n]ˆ s [n]

Table 12.9: Selected Speech Codecs

Speech Coding Standard Bit Rate Governing Body

GSM-FR 13 kbps ETSI
GSM-EFR 12.2 kbps ETSI
GSM-AMR 4.75, 5.15, 5.90, 6.70, 7.40, 7.95, 10.2, 12.2 kbps 3GPP
G.711 64 kbps ITU-T
G.723.1 5.3, 6.3 kbps ITU-T
G.729 6.4, 8, 12.8 kbps ITU-T
Speex 2 to 44 kbps Xiph.org

In real-time duplex communications systems, one person speaks while the other one listens. Since the person’s
listening is not contributing anything to the signal, some codecs implement features like voice activity detection
(VAD) to recognize silence, and comfort noise generation (CNG) to simulate the natural level of noise without
actually encoding it at the transmitting end.

12.4.7 Speech Compression Standards

Progress in speech coding, particularly in the late 1980s, enabled a number of organizations to standardize
various speech compression methods for diverse application (e.g., military, wireline, wireless communications)
requirement (in terms of quality, bit rates, delay, etc.). The result of these efforts was more than a dozen speech
compression standards. Table 12.9 shows selected widely used speech compression standards, supported bit
rates, and oversight organizations. These standards are briefly discussed in the following.

GSM
GSM speech codecs, used in cell phone systems around the world, are overseen by the European Telecommu-
nications Standards Institute (ETSI). There has been an evolution of standards in this domain. The first was the
GSM full rate (GSM-FR). This standard uses a CELP variant called the regular pulse excited linear predictive
coder (RPE-LPC). The speech signal input is broken up into 20-ms frames. Each of those frames is encoded
as 260 bits, thereby producing a total bit rate of 13 kbps. Free GSM-FR implementations are available for use
under certain restrictions.

The GSM enhanced full rate (GSM-EFR) was developed to improve the quality of speech encoded with
GSM-FR. It operates on 20-ms frames at a bit rate of 12.2 kbps, and it works in noise-free and noisy environments.
Because GSM-EFR is based on the patented Algebraic Code Excited Linear Prediction (ACELP) technology,
one must purchase a license before using it in end products.

Speech and Audio Processing 625

The 3rd-Generation Partnership Project (3GPP), a group of standards bodies, introduced the GSM adaptive
multirate (GSM-AMR) codec to deliver even higher-quality speech over lower bit-rate data links by using an
ACELP algorithm. It uses 20-ms data chunks, and allows for multiple bit rates at eight discrete levels between
4.75 kbps and 12.2 kbps. GSM-AMR supports VAD and CNG for reduced bit rates.

“G-Dot” Standards
The International Telecommunication Union (ITU) was created to coordinate standards in the communications
industry, and the ITU Telecommunication Standardization Sector (ITU-T) is responsible for many speech codec
recommendations, known as the G.x standards.

G.711 G.711, introduced in 1988, is a simple standard when compared with the other options presented here.
The only compression used in G.711 is companding (using either μ-law or A-law standards), which compresses
each data sample to 8 bits, yielding an output bit rate of 64 kbps.

G.723.1 G.723.1 is an ACELP-based, dual–bit-rate codec, released in 1996, that targets VoIP (see Section 12.5)
applications such as teleconferencing. The encoding frame for G.723.1 is 30 ms. Each frame can be encoded
in 20 or 24 bytes, thus translating to 5.3- and 6.3-kbps streams, respectively. The bit rates can be effectively
reduced through voice activity detection and comfort noise generation. The codec offers good immunity against
network imperfections like lost frames and bit errors. This speech codec is part of video-conferencing applications
described by the H.324 family of standards.

G.729 Another speech codec released in 1996 is G.729, which partitions speech into 10-ms frames, making it a
low-latency codec. It uses an algorithm called the conjugate structure ACELP (CS-ACELP). G.729 compresses
16-bit signals sampled at 8 kHz via 10-ms frames into a standard bit rate of 8 kbps, but it also supports 6.4- and
11.8-kbps rates. Voice activity detection and comfort noise generation are also supported.

Speex
Speex is another codec released by Xiph.org, with the goal of being a totally patent-free speech solution. Like
many other speech codecs, Speex is based on CELP with residue coding. The codec can take 8-, 16-, and 32-kHz
linear PCM signals and code them into bit rates ranging from 2 to 44 kbps. Speex is resilient to network errors,
and it supports voice activity detection. Besides allowing variable bit rates, another unique feature of Speex is
stereo encoding. Source code is available from Speex.org in both a floating-point reference implementation and
a fixed-point version.

The MIPS and memory required to implement some of the described earlier speech codecs on the reference
embedded processor is given in Table 12.10.

Table 12.10: MIPS and memory requirements to implement voice codecs on reference embedded
processor

Data Program
Voice Codec Encoder/Decoder Memory (kB) Memory (kB) MIPS Encoder (I/O)

G.711 with PLC Encoder 0.25 3.35 0.09 Input: 14-bit left-

Decoder 2.83 3.35 0.14 (1.09 for PLC) justified PCM samples
at 8 kHz
Output: Bitstream at
64 kbps

G.723.1A Encoder 24 32 10.4 Input: 16-bit PCM

Decoder 21.5 32 0.93 samples at 8 kHz
Output: G.723 bitstream
at 5.3 or 6.3 kbps

G.729AB Encoder/Decoder 13 30 6.77 Input: PCM samples at
8 kHz
Output: 8-kbps
G.729AB bitstream

626 Chapter 12

12.5 VoIP and Jitter Buffer

VoIP is one of the most powerful technologies revolutionizing the telecom industry. This technology allows us to
make voice calls using a broadband Internet connection instead of the regular public switched telephone network
(PSTN) connection. VoIP services convert analog voice into a digital signal and transmit this digitized voice in
terms of data packets over the IP network. The transition from circuit-switched to packet-switched networking,
occurring now at breakneck speed, is encouraging applications that go far beyond simple voice transmission,
embracing other forms of data and allowing all of them to travel over the same infrastructure.

By their nature, networks cause great variation in the data transmission delay. This variation, known as jitter,
is removed by buffering the packets long enough to ensure that the slowest packets arrive in time to be decoded in
the correct sequence. Naturally, a larger jitter buffer contributes to greater overall system latency. In this section,
we briefly discuss VoIP technology and jitter buffer schemes to handle delays.

12.5.1 VoIP Overview

Today’s voice networks—such as the PSTN—utilize digital switching technology to establish a dedicated link
between the caller and the receiver. While this connection offers only limited bandwidth, it does provide an
acceptable quality level without the burden of a complicated encoding algorithm. The VoIP alternative uses the
Internet protocol (IP) to send digitized voice traffic over the Internet or private networks. An IP packet consists
of a train of digits containing a control header and a data payload. The header provides network navigation
information for the packet, and the payload contains the compressed voice data. While circuit-switched telephony
deals with the entire message, VoIP-based data transmission is packet based, so that chunks of data are packetized
(separated into units for transmission), compressed, and sent across the network—and eventually reassembled
at the designated receiving end. The key point is that there is no need for a dedicated link between transmitter
and receiver in VoIP communication.

Figure 12.33(a) shows a simplified representation of a possible IP telephony network connections. Fig-
ure 12.33(b) shows the key components of a VoIP system: signaling process, encoder/decoder, transport mech-
anism, and switching gateway.

The signaling process involves creating, maintaining, and terminating connections between nodes. To reduce
network bandwidth requirements, audio and video are encoded before transmission and decoded during reception.
This compression and conversion process is governed by various codec standards for both audio and video
streams.

The compressed packets move through the network governed by one or more transport protocols. A switching
gateway ensures that the packet set is interoperable at the destination with another IP-based system or a PSTN
system. At its final destination, the packet set is decoded and converted back to an audio/video signal, at which
point it is played through the receiver’s speakers and/or display unit.

Packetizing voice data involves adding header and trailer information to data blocks. Packetization overhead
(additional time and data introduced by this process) must be reduced to minimize added latencies (time delays
through the system). Therefore, the process must achieve a balance between minimizing transmission delay
and using network bandwidth most efficiently—smaller size allows packets to be sent more often, while larger
packets take longer to compose. On the other hand, larger packets amortize header and trailer information across
a bigger chunk of voice data, so they use network bandwidth more efficiently than do smaller packets.

VoIP Protocols
The OSI (open systems interconnection) seven-layer model (see Figure 12.34) specifies a framework for net-
working. If there are two parties to a communication session, data generated by each starts at the top, undergoes
required configuration and processing through the layers, and is finally delivered to the physical layer for trans-
mission across the medium. At the destination, processing occurs in the reverse direction, until the packets are
finally reassembled and the data is provided to the other user.

Session Control: H. 323 versus SIP
The first requirement in a VoIP system is a session-control protocol to establish presence and locate users, as well
as to set up, modify, and terminate sessions. There are two protocols in wide use today. Historically, the first of

Speech and Audio Processing 627

Signaling Servers
(e.g., proxy, redirect, registrar,

location, gatekeeper)

Endpoint 1

Endpoint 2

(b)

Signaling

Data flow

IP

Gateway

Gateway

Gateway

Cell
Phone

Analog
Phone

Analog
Phone

IP
Phone

IP
Phone

PSTN

Switch

Switch

PC

IP

PC

(a)

Encoder/
Decoder

(e.g., G.723.1)

Media
Transport
Protocol
(e.g., RTP)

Media
Transport
Protocol
(e.g., RTP)

Transport
Layer

(e.g., UDP)

Transport
Layer

(e.g., UDP)

Encoder/
Decoder

(e.g., G.723.1)

Figure 12.33: (a) Simplified representation of possible IP telephony network connections. (b) Signaling and
transport flows between endpoints.

these protocols was H.323 (to be exact, the task of session control and initiation lies in the domain of H.225.0 and
H.245, which are part of the H.323 umbrella protocol), but SIP (session initiation protocol) is rapidly becoming
the main standard. Let’s take a look at the role played by each.

ITU H.323
H.323 is an ITU standard originally developed for real-time multimedia (voice and video) conferencing and
supplementary data transfer. It has rapidly evolved to meet the requirements of VoIP networks. It is technically
a container for a number of required and optional network and media codec standards. The connection signaling
part of H.323 is handled by the H.225 protocol, while feature negotiation is supported by H.245.

628 Chapter 12

OSI Model

Application
Layer

Application

Transport

Internet

Network

Ethernet
IEEE 802.3

Internet Protocol

Transmission
Control Protocol

User Data Protocol

Ethernet
IEEE 802.11

WiFi
Twisted

Pair
Optical
Fiber

Presentation
Layer

Session
Layer

Transport
Layer

Network
Layer

Data Link
Layer

Physical
Layer

TCP/IP Model TCP/IP Protocols

Application
Programs

Media
Codec

RTPRTCP SIP

Figure 12.34: OSI and TCP/IP models.

SIP SIP is defined by the Internet Engineering Task Force (IETF) under RFC 3261. It was developed specifically
for IP telephony and other Internet services, and although it overlaps H.323 in many ways, it is usually considered
a more streamlined solution.

SIP is used with the session description protocol (SDP) for user discovery; it provides feature negotiation and
call management. SDP is essentially a format for describing initialization parameters for streaming media during
session announcement and invitation. The SIP/SDP pair is somewhat analogous to the H.225/H.245 protocol set
in the H.323 standard.

SIP can be used in a system with only two endpoints and no server infrastructure. However, in a public
network, special proxy and registrar servers are used for establishing connections. In such a setup, each client
registers itself with a server, in order to allow callers to find it from anywhere on the Internet.

Media Codecs
At the top of the VoIP stack are protocols to handle the actual media being transported. There are potentially
quite a few voice, audio, and video codecs that can feed into the media transport layer. A number of factors help
determine how desirable a codec is, including how efficiently it makes use of available system bandwidth, how
much coding delay it introduces, how it handles packet loss, and what costs are associated with it, including
intellectual-property royalties.

Transport Layer Protocols
The preceding signaling protocols are responsible for configuring multimedia sessions across a network. Once the
connection is set up, media flows between network nodes are established by utilizing one or more data-transport
protocols, such as the user datagram protocol (UDP) or TCP.

UDP The UDP is a network protocol covering only packets that are broadcast out. There is no acknowledgment
that a packet has been received at the other end. Since delivery is not guaranteed, voice transmission will not
work very well with UDP alone when there are peak loads on a network. That is why a media transport protocol,
such as the real-time transport protocol (RTP), usually runs on top of UDP.

TCP TCP uses a client/server communication model. The client requests (and is provided) a service by another
computer (a server) in the network. Each client request is handled individually, unrelated to any previous one.
This ensures that “free” network paths are available for other channels to use.

TCP creates smaller packets that can be transmitted over the Internet and received by a TCP layer at the other
end of the call, such that the packets are “reassembled” back into the original message. The IP layer interprets
the address field of each packet so that it arrives at the correct destination.

Unlike UDP, TCP guarantees complete receipt of packets at the receiving end. However, it does this by allowing
packet retransmission, which adds latencies that are not helpful for real-time data. For voice, a late packet due
to retransmission is as bad as a lost packet. Because of this characteristic, TCP is usually not considered an

Speech and Audio Processing 629

appropriate transport for real-time streaming media transmission. Figure 12.34 shows how the TCP/IP Internet
model and its associated protocols compare with and utilize various layers of the OSI model.

Media Transport
As noted before, sending media data directly over a transport protocol is not very efficient for real-time com-
munication. Because of this, a media transport layer is usually responsible for handling this data in an efficient
manner.

RTP RTP provides delivery services for real-time packetized audio and video data. It is the standard way
to transport real-time data over IP networks. The protocol resides on top of UDP to minimize packet header
overhead, but at a cost—there is no guarantee of reliability or packet ordering. Compared to TCP, RTP is less
reliable, but it has less latency in packet transmission, since its packet header overhead is much smaller than for
TCP (see structure of RTP frame in Figure 12.35).

In order to maintain a given quality-of-service (QoS) level, RTP utilizes time stamps, sequence numbering, and
delivery confirmation for each packet sent. It also supports a number of error-correction schemes for increased
robustness, as well as some basic security options for encrypting packets. Figure 12.36 compares performance
and reliability of UDP, RTP, and TCP.

RTP Control Protocol The RTP control protocol (RTCP) is a complementary protocol used to communicate
control information, such as number of packets sent and lost, jitter, delay, and endpoint descriptions. It is most
useful for managing session time bases and for analyzing the QoS of an RTP stream. It also can provide a
backchannel for limited retransmission of RTP packets.

Delays and Echo Cancellation
Packetization is a good match for transporting data (e.g., a JPEG file or email) across a network, because the
delivery falls into a non–time-critical “best-effort” category. The network efficiently moves data from multiple
sources across the same medium. For voice applications, however, “best effort” is not adequate, because variable-
length delays as the packets make their way across the network can degrade the quality of the decoded voice
signal at the receiving end. For this reason, VoIP protocols, via QoS techniques, focus on managing network
bandwidth to prevent delays from degrading voice quality. The effect due to these delay variations or jitter can be
minimized by using a jitter buffer, which imposes a certain delay to each packet before playing back the packet
stream at a constant rate. More detail about the jitter buffer appears in the next section.

As mentioned before, latency represents the time delay through the IP system. One-way latency is the time
from when a word is spoken to when the person on the other end of the call hears it. Round-trip latency is simply
the sum of the two one-way latencies. The lower the latency value, the more natural a conversation will sound.
For the PSTN phone systems, this round-trip latency is less than 150 ms.

For VoIP systems, a one-way latency of up to 200 ms is considered acceptable. The largest contributors to
latency in a VoIP system are the network and the gateways at either end of the call. The voice codec adds

Figure 12.35: Header structure and
payload of RTP frame.

IP
Header

UDP
Header

RTP
Header

RTP
Payload

Figure 12.36: Performance versus
reliability.

TCP

UDP

RTP

Reliability

P
er

fo
rm

an
ce

630 Chapter 12

some latency, but this is usually small by comparison (< 20 ms). When the delay is large in a voice network
application, the main challenges are to cancel echoes and eliminate overlap. Echo cancellation directly affects
perceived quality; it becomes important when the round-trip delay exceeds 50 ms. Voice overlap becomes a
concern when the one-way latency is more than 200 ms.

Because most of the time elapsed during a voice conversation is “dead time”—during which no speaker is
talking—codecs take advantage of this silence by not transmitting any data during these intervals. Such “silence
compression” techniques detect voice activity and stop transmitting data when there is no voice activity, instead
generating “comfort” noise to ensure that the line does not “sound” dead when no one is talking.

In a standard PSTN telephone system, echoes that degrade perceived quality can happen for a variety of
reasons. The two most common causes are impedance mismatches in the circuit-switched network (“line echo”)
and acoustic coupling between the telephone’s microphone and speaker (“acoustic echo”). Line echoes are
common when there is a two-wire-to-four-wire conversion in the network (e.g., where analog signaling is
converted into a T1 system). Because VoIP systems can link to the PSTN, they must be able to deal with line
echo, and IP phones can also fall victim to acoustic echo. Echo cancellers can be optimized to operate on line
echo, acoustic echo, or both. Effectiveness of the cancellation depends directly on the quality of the algorithm
used.

An important parameter for an echo canceller is the length of the packet on which it operates. Put simply, the
echo canceller keeps a copy of the signal that was transmitted. For a given time after the signal is sent, it seeks
to correlate and subtract the transmitted signal from the returning reflected signal—which is, of course, delayed
and diminished in amplitude. To achieve effective cancellation, it usually suffices to use a standard correlation
window size (e.g., 32 ms, 64 ms, or 128 ms), but larger sizes may be necessary.

VoIP Advantages and Applications
Because the high-speed network as a whole (rather than a dedicated channel) is used as the transport mechanism,
a major advantage of VoIP systems is the lower cost per communication session. Moreover, VoIP calls allow
network operators to avoid most interconnect charges associated with circuit-switched telephony networks; the
additional infrastructure required to complete a VoIP phone call is minimal because it uses the network already in
place for the home or business personal computer (PC). Yet another reason for lower costs is that data-network
operators often have not used all available bandwidth, so that the additional VoIP services currently incur
an inconsequential additional cost-overhead burden. Use of the packet-switched network for voice increases
bandwidth utilization compared with the traditional connection-oriented approach and can lead to lower call
costs.

VoIP users tend to think of their connection as being “free,” since they can call anywhere in the world, as
often as they want, for just pennies per minute. Although they are also paying a monthly fee to their Internet
service provider, it can be amortized over both data and voice services.

Besides the low-cost relative to the circuit-switched domain, many new features of IP services become
available. For instance, incoming phone calls on the PSTN can be automatically rerouted to a user’s VoIP phone,
as long as it is connected to a network node. This arrangement has clear advantages over a global-enabled
cell phone, since there are no roaming charges involved. From the VoIP standpoint, the end user’s location is
irrelevant; it is simply seen as just another network connection point. This is especially useful where wireless
local-area networks (LANs) are available; IEEE Standard 802.11-enabled VoIP handsets allow conversations
at worldwide Wi-Fi hotspots without the need to worry about mismatched communications infrastructure and
transmission standards.

Everything discussed thus far in relation to VoIP extends to other forms of data-based communication as well.
After all, once data is digitized and packetized, the nature of the content does not much matter, as long as it is
appropriately encoded and decoded with adequate bandwidth. Consequently, the VoIP infrastructure facilitates
an entirely new set of networked real-time applications, such as:

• Videoconferencing
• Remote video surveillance
• Multicasting

Speech and Audio Processing 631

• Instant messaging
• Gaming

VoIP Disadvantages
Because VoIP relies on an Internet connection, the VoIP service will be affected by the quality and reliability
of broadband Internet service. Because VoIP devices operate with electricity, there is no service during a power
outage. In emergency situations, tracing the location of call origination is difficult with VoIP services.

12.5.2 Jitter Buffer

There are two reasons to use VoIP services instead of PSTN: lower cost and increased functionality. However,
the advantages of VoIP services come with few disadvantages. One of the major issues with VoIP services is
QoS. Given that a dedicated link between sender and receiver does not exist, voice quality is not guaranteed.

Many factors determine voice quality, including the choice of codec, packet loss, echo control, jitter delay,
and overall network design. In this section, we discuss jitter delay and its handling. Selected sources of delay in
VoIP communications and corresponding delay values are given in Table 12.11.

The nature of packet-switched networks causes unpredictable and variable delays (or jitter) to speech packets,
often resulting in unintelligible speech at the receiving end. Applications sending real-time datastreams over
unreliable IP networks have a lot of problems to overcome, including variable and long delays, and lost and
out-of-sequence packets. This is illustrated in Figure 12.37.

Jitter Buffer Overview
Of all delays, network delay is the most unpredictable (see Table 12.11), and it must be taken care of to
achieve QoS. Using an optimum jitter handling algorithm is an essential part of any VoIP system to address this
unpredictable network latency.

It is possible to absorb delay variations by adding a jitter buffer. With a jitter buffer, it is also possible to
reorder the packets within the time duration that corresponds to the buffer size. Figure 12.38 shows the placement
of a jitter buffer in the IP packet communication receiver. The greater the size of the buffer, the higher the delay

Table 12.11: Selected delay sources
in VoIP transmission

Source Delay (ms)

Encoding delay 18
Packetization/depacketization 20
Queuing 1
Uplink delay (at transmitter) 10
Network delay Variable (x)

Downlink delay 10
Jitter buffer 63
Decoder delay 2
Capture/playout delay 1
Total 125+ x

b acd bad

Out-of-
sequence

packet

Missed
packet

Variable
delay

Transmitter IP Network Receiver

Figure 12.37: Receiving out-of-order IP packets due to diverse latencies of network paths.

632 Chapter 12

(a)

(b)

Transmitter ReceiverChannel

Delay or LatencyD(t)

Packet Drop

Time

P
ac

ke
ts

Time

P
ac

ke
ts

Transmitter ReceiverChannel

Jitter Buffer

Variable Delay and
Out-of-Sequence Packets

Sorted Packets with
Constant Delay

d dc cb ba d c b aa

�

Delay or LatencyD(t) Jitter
Buffer

Figure 12.38: IP packet communication. (a) Packet drops due to variable network latencies. (b) Avoiding packet
drops with inclusion of jitter buffer.

variations it can accommodate. The higher the jitter buffer delay, the greater the overall latency (i.e., end-to-end
delay). For real-time applications like VoIP, minimal latency is required. These two conflicting requirements are
addressed by an adaptive jitter buffer (AJB).

The jitter buffer design can be static or dynamic. The static alternative assumes that the jitter buffer is too
large or too small, thereby causing voice quality to suffer due to excessive delay or packet loss. On the other
hand, dynamic buffer design allows the increase or decrease of buffer size based on interarrival delay variation
statistics of the last few packets.

AJB
As previously described, if the size of the jitter buffer is too small, it leads to deterioration of voice quality
in communications, such as discontinuity in voice reproduction due to packet loss. On the other hand, if the
buffer size is too big, the overall delay is very high and this leads to unpleasant delayed voice communication.
Therefore, it is necessary to optimize the number of packets to be accumulated in the buffer in accordance with
jitters in the network such that the minimum number of packets for retaining voice quality in communications
is accumulated, thereby minimizing the transmission delay resulting from packet accumulation in the buffer.
This can be achieved with the AJB as shown in Figure 12.39. One way to adapt is to insert/remove more silence

Speech and Audio Processing 633

Transmitter DecoderChannel

Jitter Buffer

Control

Adaptive Jitter Buffer
Receiver

Figure 12.39: Block diagram of adaptive jitter buffer.

Voice
Packets

(t 1)

0.5
0.4
0.3
0.2
0.1

20.1
20.2
20.3
20.4
20.5
20.6

0.0

Silence
(t 2)

Voice
Packets

(t 3)

Original Duration (transmitter side) Ts5 t11t21 t31 t41t5

Silence Silence

Silence
(t 4)

Voice
Packets

(t 5)

(a)

Voice
Packets

(t 3)

Voice
Packets

(t 5)

Silence
(t2’)

Silence
(t4’)

Actual Duration (receiver side) Tr5 t11t2’1t31t4’1t5

Silence
extended

0.5
0.4
0.3
0.2
0.1

20.1
20.2
20.3
20.4
20.5
20.6

Silence
dropped

0.0

Voice
Packets

(t 1)

(b)

Figure 12.40: Illustration of adaptive jitter buffer handling jitter in VoIP. (a) Speech with original silence periods at
transmitter. (b) Jitter buffer adaptation with insert or removal of silence.

between two “speech packets,” as there is a greater likelihood of silence packets in VoIP systems. If the buffer
underflows, the duration of silence is extended to the stretch time. If the buffer overflows, the duration of silence
is reduced to skew time as illustrated in Figure 12.40. However, this type of adaptation may not be possible with
all speech codecs.

Therefore, the key to intelligent AJB design is to know how long to expand the buffer (i.e., wait for delayed
packets), when to shrink the buffer (i.e., skip the packets), and by how much (i.e., how many packets to be
skipped) without deteriorating the voice quality.

Jitter Buffer Design
A jitter buffer comprises three entities as shown in Figure 12.41: control module, buffer manager, and buffer
memory. The manager is responsible for managing the jitter buffer memory, including storage and retrieval of
packet data. The control module is responsible for processing received packets, delay estimation, and playout
scheduling (i.e., informing the buffer manager which packet in the buffer is to output at what time instance).

The packet processor parses RTP header information and extracts parameters such as sequence number, time
stamp (which indicates when the voice packets needs to be sent to the player), payload type, payload size, and
so on.

The delay estimator estimates the packet delay based on the extracted time stamp and actual packet arrival
time. Figure 12.42(a) shows four periodically generated voice packets a,b,c, and d at the transmitter, and the

634 Chapter 12

Figure 12.41: Jitter buffer control
system.

Packet Processor,
Delay Estimator,

Playout Controller

Decoder

Control Module

Arrival Time

Header

Payload

IP
Packets

Buffer Memory

Buffer Manager

b c d

a

D

�a �b

�c �d

bc d

a

Receiver

Transmitter

(a)

Time

D1�b

D1�a D1�a

D1�c

Fixed delay D

a b c d

(b)
IP Packets

Ji
tte

r

Filter
output

Figure 12.42: (a) Illustration of IP packet communication with network delays. (b) Plot showing individual packet
delays and smoothed filter output.

corresponding received packets with arbitrary delays �i = �+δi |i=a,b,c,d , where � corresponds to the common
fixed delay associated with all IP packets. Figure 12.42(b) shows the delay versus IP packet received.

To improve voice quality, instead of using the individual packets delays �i , we use the statistics of delays of
the current and previously arrived packets to update the buffer parameters. A one-tap linear recursive filter can
be used to obtain the average delay �̂i and its variation V̂i (Ramjee et al., 1994). At the start of the session, there
are no statistics on which the delay can be estimated. Therefore, the delay needs to be set to a certain value at
start-up. This value can be a delay set by the user or a value agreed during the connection negotiation.

Upon completion of the header processing, the RTP packet sequence number is checked. If it is less than the
currently expected playout sequence number, then this packet is too late and is immediately discarded. Otherwise,
the time stamp, packet payload, and playout delay are passed to the playout controller, and the playout table
updated. When the playout control adds a new packet to the buffer, a linear search is performed to determine
where in the list the current packet ought to be inserted. During this linear search through the list, the time stamp
of the current packet is compared with the packets in the list, and the current packet is inserted into a place based
on the time stamp value. The packet addition process effectively sorts the playout order of the packets, and no
further search is required during the playout.

The playout control is responsible for playing out the buffered packets at the specified time instances in the
correct order. It utilizes the entries in the playout table to determine which packet is to be played out next. The

Speech and Audio Processing 635

jtb_Create()
jtb_Init()
jtb_Reconfigure()
jtb_Process()
jtb_Destroy

rtp_rtcp_Create()
rtp_rtcp_Init()
rtp_rtcp_Playout()
rtp_rtcp_Process()
rtp_rtcp_Reconfigure()
rtp_rtcp_GetProperties()

Interface

JiB

RTP/RTCP API

JiB API

DelayRTP_RTCP

Figure 12.43: Jitter buffer interface in an RTP stack.

controller fetches the next packet in sequence from the playout table, and the frames within the packet are played
out at the playout instances as indicated by the time stamp value.

Once all frames within a packet have been played out, the expected sequence number counter is incremented
by 1, and the packet entry is cleared from the playout table. Finally, the entire block of memory used to buffer
that packet in the jitter buffer is freed.

Jitter Buffer in RTP Stack
The real-time media is transferred as an RTP payload. An RTP header contains information related to the RTP
payload, such as sequence number, time stamp, data type, size, and so on. RTP itself does not provide a mechanism
to ensure timely delivery or provide other QoS guarantees. For this, as discussed previously, a jitter buffer is
embedded in the RTP stack at the receiver to improve the QoS. Figure 12.43 shows the interface used in the RTP
stack to embed the jitter buffer.

For more detail on the VoIP, RTP stack, and jitter buffer description, see Nagireddi (2008).

This page intentionally left blank

CHAPTER 13

Audio Coding

Audio functionality plays a critical role in digital media processing. While audio requires less processing power
in general than video processing, it should be considered equally important. Recent applications such as wireless,
Internet, and multimedia communication systems have created a demand for high-quality digital audio delivery
at low bit rates. Audio coding or compression algorithms are used to obtain compact digital representation of
high-fidelity audio signals for the purpose of efficient transmission or storage.

In this chapter, we discuss audio coding techniques. We begin with the concepts and technologies behind
various audio coding techniques in Sections 13.1 and 13.2. Next is a discussion about the modules comprising
the Moving Picture Experts Group-4 (MPEG-4) advanced audio coding (AAC) codec and encoder and decoder
architectures in Section 13.3. Section 13.4 focuses on various commercially available audio codecs and provides
implementation complexity (in terms of cycles and memory). Finally, we discuss a few audio post-processing
techniques to enhance the audio listening experience in Section 13.5.

Audio codecs are used for source encoding and decoding of audio information. Like any other source coding,
audio codecs remove redundancies without altering the perceptible information content. Codecs are designed
for two different parameters—sampling rate and bit rate. The sampling rate is the rate of uncompressed input
samples; bit rate is the rate of compressed output bit information. Audio signals contain frequencies in the range
of 20 to 20,000 Hz, and typically audio signals are sampled at 44.1 kHz or 48 kHz. For stereo audio with 16 bits
per sample and at a sampling rate of 44.1 kHz, we require a bit rate of about 1.41(= 2×16×44.1×103) Mbps
to transmit or store the digital audio. This bit rate increases to 4.32 Mbps with the addition of synchronization
and error correction overheads. Although high, these data rates were used successfully in first-generation digital
audio applications such as CD (compact disc) audio.

However, end-user expectations have created a demand for high-quality digital audio delivery at low bit rates.
Recent applications such as wireless and Internet communication systems are designed for lower bit rates. The
basic requirements for low bit-rate audio coding are robustness against variations in audio level and its spectrum,
minimum coding delay, robustness against random and burst errors, and graceful degradation in audio quality
with an increased bit-error rate due to packet losses in packet communications.

13.1 Psychoacoustics and Perceptual Coding

In this section, we briefly discuss the principles underlying audio compression. Unlike speech signals (which
can be compressed easily by source modeling), audio signals come from many sources and no simple source
model exists to compress audio. We use the psychoacoustic principles of the human auditory system (the ultimate
receiver) to compress the audio signals.

Audio codecs assume that the audio is for human listening. There are certain listening characteristics of normal
human hearing that can be exploited to achieve audio compression. Almost all audio coders use the following
characteristics in compressing audio signals: absolute threshold of hearing, critical bands, and masking.

13.1.1 Absolute Threshold of Hearing

The human ear can sense only frequencies in the range of 20 Hz to 20 kHz, and maximum sensitivity is in the
range of 4 kHz. Responses to various frequencies are studied in detail, and this response is called the absolute
threshold of hearing (ATH). The ATH characterizes the amount of energy needed in a pure tone such that it can

© 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-678-1.00013-2 637

638 Chapter 13

Figure 13.1: Absolute threshold of
hearing: SPL versus frequency.

10,0001000100

0

20

40

60

80

Frequency (Hz)
S

P
L

(d
B

)

be detected by a listener in a noiseless environment. The ATH is typically expressed in terms of dB SPL (see
Section 12.1 for more details on dB SPL). The human auditory system is not a linear organ. For example, the
threshold of hearing is 40 dB for a 50-Hz sine tone and 28 dB for an 80-Hz sine. Figure 13.1 shows a plot of the
ATH characteristic measured in the range 50 to 20,000 Hz.

What is the purpose of this ATH plot? Well, it gives us the maximum coding distortion that can be introduced
in a particular frequency band so that a smaller number of bits can be used to represent the signal component
in that particular band. This threshold can be mapped to different Bark bands or even to scalefactor bands to
perform psychoacoustic analysis. The terms Bark and scalefactor are further described later.

13.1.2 Critical Bands

The auditory system processes incoming audio spectral content with auditory filters having different passband
frequencies, referred to as critical bands. The critical bandwidth is a function of frequency that quantifies the
auditory filter passband. Although many experiments were done and many models conceived, there is no unique
way to determine the critical bandwidth. For an average listener, the approximate critical bandwidth (Painter and
Spanias, 2000) is given by the following Munich critical-bandwidth model:

BW c(f) = 25+75
[
1+1.4 (f/1000)2]0.69

(13.1)

This may be approximated by the one-third octave model using the following expression:

CBW 1/3(f) = 232 × (f/1000) (13.2)

Figure 13.2 shows critical bandwidth characteristics for the Munich and one-third octave models.
Alternatively, center frequencies are used to represent critical bandwidths. The spacing between center fre-

quencies is nonuniform with hertz spacing; for this reason we use the Bark scale to measure critical bandwidths.
One critical bandwidth is measured as one Bark. Table 13.1 presents the Munich model based on a few critical
bandwidths, corresponding center frequencies, and the Bark scale values. The idealized (or rectangular) critical
band filter magnitude responses based on Munich-model critical bandwidths are shown in Figure 13.3.

13.1.3 Masking

Another well-studied behavior of human ear is its masking characteristic. Masking refers to a process where one
sound is rendered inaudible because of the presence of another sound. For example, a strong frequency can mask a
weaker frequency if they appear close in the spectrum with sufficient energy difference.This phenomenon is called
frequency masking. The stronger signal (masker) masks the weaker signal (maskee). The masker and maskee
can be tone or noise, which results in four combinations: tone-masking tone (TMT), tone-masking noise (TMN),

Audio Coding 639

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
3 104

0

1000

2000

3000

4000

5000

6000

1/3 Octave

Munich

f

B
W

Figure 13.2: Critical bandwidths based on Munich and one-third octave models.

Table 13.1: Critical bandwidths, center frequencies, and bark
values for auditory filters that span audio spectrum

Bark Number Center Frequency (Hz) Critical Bandwidth (Hz)

0 50 0–100

1 150 100–200

2 250 200–300

3 350 300–400

4 450 400–510

5 570 510–630
– – –

23 13,500 12,000–15,500

24 19,500 15,500–

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
3 104

Frequency (Hz)

M
ag

ni
tu

de

1.0

Figure 13.3: Idealized responses for critical band-filter magnitude.

640 Chapter 13

noise-masking tone (NMT), and noise-masking noise (NMN). Furthermore, masking has temporal characteris-
tics, and therefore it can also be classified as simultaneous masking, backward masking, and forward masking.

Figure 13.4(a) illustrates premasking (or backward masking) and post-masking (or forward masking). Pre-
masking happens when the masker signal can mask a signal that comes before the masker itself. This can occur
when a soft signal is followed by a strong signal. Post-masking happens when the masker signal masks a signal
that comes after the masker. Typically, premasking tends to last only about 3 to 5 ms, whereas post-masking will
extend anywhere from 30 to 300 ms, depending on the masker.

Simultaneous masking may occur whenever two or more tones are simultaneously presented to the auditory
system. It is a frequency-domain phenomenon where a low-level signal can be made inaudible by a simultaneously
occurring stronger signal, and this is effective as long as both tones lie in the same critical band. This is illustrated
in Figure 13.4(b). Most audio coding algorithms utilize this feature (in particular TMN) of the auditory system
to mask unwanted signal components such as quantization noise, aliasing distortion, or transmission errors.

Temporal masking can be used to reduce effective pre-echo. Pre-echo is a coding artifact that is very annoying
for block-based transform coders in nonstationary input conditions, such as attacks. If the block size is large,
for an attack signal the transform-domain quantization error that spreads across the entire block introduces
more error in the early silent portion of the attack. If the temporal masking effect (as shown in Figure 13.5) is
considered while coding, more error is acceptable in the masked area, which provides more bits to code the rest
of the waveform. This is the basic principle of the temporal noise shaping (TNS) tool.

Masking occurs not only within the critical band but also spreads to neighboring bands. A spreading function
SF(x) can be defined, where x is the frequency and has units of Barks. This function provides a masking threshold
produced by a single masker for neighboring frequencies. The simplest function would be a triangular function
with slopes of +25 and −10 dB/Bark, but a more sophisticated one is highly nonlinear and depends on both

(a)

Louder Sound

Time

A
m

pl
itu

de

Postmasking

Masked
softer
sound Premasking

(b)
Frequency

M
ag

ni
tu

de

Mask
threshold

Masked
tone

Figure 13.4: (a) Temporal masking: loud sounds at a specific time can mask softer sounds in the temporal vicinity.
(b) Simultaneous masking: loud sounds at a specific frequency can mask softer sounds at nearby frequencies.

(b)

Masked samples

Masker

(a)

Figure 13.5: Temporal noise shaping. (a) Pre-echo before masking. (b) After masking.

Audio Coding 641

Quantization Noise Level

Minimum Masking Threshold

Masking Tone Level

NMR

SMRSNR Masking Threshold

Critical
Band

S
P

L
(d

B
)

Frequency

Figure 13.6: Illustration of SNR, SMR, and NMR.

frequency and amplitude of the masker. A convenient analytical expression for SF(x) is given by

SF(x) = 15.81+7.5(x +0.474)−17.5
√

1+ (x +0.474)2 dB (13.3)

The masking threshold, in the context of source coding (also known as threshold of just noticeable distortion –
JND), can be measured, and low-level signals under this threshold will not be audible. Without a masker, a signal
is still inaudible if its sound pressure level is below the absolute threshold of hearing.

Defining SNRq as the SNR resulting from q-bit quantization, the perceivable distortion in a given subband is
measured by the noise-to-mask ratio (NMR) defined as follows:

NMRq = SMR −SNRq (13.4)

where SMR is signal-to-mask ratio. The relationship among SNR, SMR, and NMR is illustrated in Figure 13.6.
Within a critical band, coding noise will not be audible as long as NMRq is negative.

Example 13.1 describes the importance of the masking for achieving efficient audio coding.

■Example 13.1

Assume that the input to an audio codec has four non-zero spectral lines: X = {S1 S2 S3 S4}. If the average
bits/spectral line = 10 bits, compare the bits used for encoding the frame if frequency masking is used.
Assume different relative power levels including the masker spread.

Spectral lines are illustrated in Figure 13.7. The curved line is the absolute threshold of hearing, which
can also be treated as a static mask. The slanted lines are dynamic masking thresholds contributed by
different masker spreads. S4 is always less than the absolute hearing threshold. Consequently, this need
not be transmitted, resulting in a savings of 10 bits.

S1

S2 S3

S4

(a)

Masking
threshold Absolute

threshold
of hearing

Frequency

S1

S2 S3

S4

(b)

Frequency

Figure 13.7: Spectral levels and masking thresholds. (a) Narrow masker spread. (b) Wider masker spread.

In Figure 13.7(a), the masker spread is masking S2. Thus, S2 is also redundant and need not be
coded, resulting in an additional savings of 10 more bits. That is, total bits required are going to be

642 Chapter 13

reduced by 20 bits. In Figure 13.7(b), masker spread is wider and masks S2 and S3. So, S2 and S3 are
redundant and need not be coded; total bits required are reduced by 30 bits.

■

13.2 Audio Signals Coding

To achieve the required compression without affecting perceived quality, perceptual redundancies must be
removed to the greatest possible extent. Removal of these three redundancies decreases the data rate without
affecting perceived quality: (1) interchannel, (2) intrachannel, and (3) psychoacoustic.

In the previous section, we discussed various psychoacoustic principles for coding audio signals by removing
redundancies that are irrelevant to the auditory system. Redundancies can be removed in various signal domains,
such as the time domain or frequency domain. Once redundancies are removed from the input signals, then the
signals can be quantized and coded efficiently as bitstreams. In this section, we discuss inter- and intra-channel
redundancies, and various aspects of audio encoders.

13.2.1 Interchannel Techniques

Interchannel redundancies can be removed by looking for common information in different channels. Stereo
audio coding heavily depends on removal of interchannel redundancies. Two popular stereo coding techniques
are joint stereo and parametric stereo coding.

Joint Stereo Coding
Joint stereo coding is one of the most commonly used techniques in audio coding. There are two types of joint
stereo coding—midside (MS) stereo and intensity stereo (IS). For MS stereo, at the encoder side, mid and side
samples are calculated from left and right samples using the following equations:

mid Mi = Ri + Li√
2

(13.5)

side Si = Ri − Li√
2

(13.6)

Mid and side samples are encoded. MS coding is an efficient coding method for stereo channels when there
is a great degree of correlation between two channels. At the decoder side, the left and right are computed using
the following equations:

left Li = Mi + Si√
2

(13.7)

right Ri = Mi − Si√
2

(13.8)

For IS, at the encoder side, the mono samples are calculated from left and right samples using following equations:

mono Mi = Ri + Li√
2

(13.9)

intensity Ib =
√∑

L2
i∑

R2
i

(13.10)

Only mono samples are encoded. The intensity factor is computed for a collection of samples called bands. The
Ib is quantized and encoded as a band parameter.

Audio Coding 643

At the decoder side, left and right are computed using the following equations:

left Li = Mi ∗ I ′
b

1+ I ′
b

(13.11)

right Ri = Mi ∗ 1

1+ I ′
b

(13.12)

where I ′
b is the inverse quantized intensity factor. A block diagram of intensity stereo coding is shown in

Figure 13.8.

Parametric Stereo Coding
Parametric stereo coding constitutes a major step toward enhancing the efficiency of audio compression for
low bit-rate stereo audio data. This coding achieves about 40% more compression than conventional stereo
coding methods (e.g., MS stereo coding). A block diagram of the parametric stereo coding system is shown in
Figure 13.9.

At the encoder side, we down-mix the stereo data to monaural data and extract corresponding parameters. The
monaural data samples are encoded by the conventional audio encoder and the parameters are encoded by the
parameter encoder. Then we multiplex the two bitstreams before transmitting. At the decoder side, we perform
inverse operations to get back the stereo audio data. The decoder uses a stereo synthesizer to reconstruct the
stereo data from the decoded monaural samples and the side parameter information.

Encoder

Decoder

Parametric
Analysis

Downmixing Encoding

L

M
on

o

P
ar

am
et

er

R

Stream

Stream
Decoding

Mono
Decoding

Parameter
Reconstruction

Mono

Parameter

RL

Figure 13.8: Block diagram of IS coding.

ReceiverChannel

M
U

X

D
E

M
U

X

Parameter
Decoder

Conventional
Mono Decoder

Stereo
Synthesizer

Stereo
Output

Downmixing
and Stereo
Analyzer

Conventional
Mono Encoder

Parameter
Encoder

Stereo
Input

Transmitter

Figure 13.9: Simplified block diagram of parametric stereo coder.

644 Chapter 13

The parameter stereo coding provides high audio quality at bit rates as low as 24 kbps. For more details on
parametric stereo coding, see Breebaart et al. (2005).

13.2.2 Intrachannel Techniques

The information rate can be improved by removing redundancies in a given channel. Intrachannel redundancies
can be removed with time-domain techniques, transform-domain techniques, or a combination of both. Lossless
coding techniques such as Huffman coding can effectively remove the redundancies present in the quantized
data symbols.

Time-Domain Techniques
DPCM and ADPCM Coding The simplest form of time-domain information reduction is DPCM. In this tech-
nique, the difference between real-time samples is quantized and encoded. As further enhancement to the DPCM,
ADPCM improves coding gain by adding adaptive prediction. The difference between the samples is predicted,
and the difference between the real sample and predicted speech samples are quantized and encoded. See
Section 12.4.4 for more details on DPCM and ADPCM coding techniques.

Linear Predictive Coding Linear predictive coding (LPC) is a widely used technique in speech coding; it is a
classical example of parametric coders. See Sections 8.1.3 and 12.4.5 for more detail on LPC. In comparison
to nonparametric spectral modeling techniques such as filter banks or transforms, LPC is more powerful in
compressing the spectral information into a few filter coefficients. However, LPC-based coders are considered
suboptimal for audio signals since these signals do not fit the assumed audio source model. This is because the
audio signals are typically multichannel and obtained from different instruments.

Audio compression is achieved by studying the perception of sound by the human ear rather than by modeling
sound-producing sources. Warped linear prediction coding (WLPC) is a technique that utilizes the characteristics
of human hearing for audio compression, and it is a preferred solution for wideband audio coding. Since a WLPC
system can be adjusted so that the spectral resolution closely approximates the frequency resolution of human
hearing, it is a clear step forward in applying LPC to model the human ear’s perception of audio signals.

Frequency-Domain Techniques
Filter Banks Filter banks can be employed to analyze audio samples. The filter bank can be used to exploit signal
redundancy and psychoacoustic irrelevancy in the frequency domain. The subband coders commonly use a filter
bank structure. The filter bank divides the audible signal spectrum into a number of frequency subbands, and
provides the frequency-localized signal power within each subband. The output of each filter is then decimated,
quantized, and encoded into the bitstream. Psychoacoustic signal analysis is used to allocate an appropriate
number of bits for the quantization of each subband.

At the receiver, the bitstream is decoded into samples, upsampled, and summed to reconstruct the signal.
The analysis and synthesis filters are carefully designed to cancel aliasing and imaging distortions. With perfect
reconstruction filter banks, the reconstructed audio samples will be identical to the original audio samples as
long as no quantization and channel errors are present in the process. For more details on signal processing with
filter banks, see Section 8.2.

DF T In this technique, the audio signal is transformed to the frequency domain by taking the discrete Fourier
transform (DFT) of the input signal and only significant portions of the spectrum are coded. But this method is
not very efficient as it introduces the imaginary part in the transform domain and doubles the output samples.
And there are more blocking artifacts if the quantization error is increased.

MLT and MDCT Modulated lapped transforms (MLTs) are a family of orthogonal transforms that allow an
orthogonal time-frequency representation of signals without blocking artifacts caused by sharp block edges.
They were first introduced in the context of filter banks by Princen and Bradley (1986), and generalized by
Malvar (1999). Because MLT basis vectors are derived from local (windowed) discrete cosine functions, they
are well adapted for the representation of audio signals, which are sum of sinusoids (partials), with slowly varying
amplitude and frequency. The MLT represents the perfect-reconstruction cosine-modulated filter bank based on
the concept of time-domain alias cancellation (TDAC).

Audio Coding 645

The MLT has also been referred to as an oddly stacked, modified, discrete cosine transform (MDCT). The
MDCT is used in MPEG 1/2 for layer 3, Dolby AC-3, MPEG 2/4 AAC, and Windows Media Player. The MDCT
maps an array of K real numbers, x[0], x[1], . . . ,x[K −1], into an array of K/2 real numbers (here we assumed
K as even number) as

Xm =
K −1∑
k=0

x [k] cos
[π

2K
(2k +1+ K/2)(2m +1)

]
, m = 0,1, . . . , K/2 −1 (13.13)

If {Xm} is an array of K/2 elements, then the inverse MDCT of {Xm} is an array of K elements, and is
obtained as

yk = 4

K

K/2−1∑
m=0

Xm cos
[π

2K
(2k +1+ K/2)(2m +1)

]
, k = 0,1,2, . . . , K −1 (13.14)

The final time-domain output x[k] is obtained from yk by overlap and add method as illustrated in Figure 13.10(b).
A portion of the audio signal x[k] is shown in Figure 13.11(a); the MDCT computed to the corresponding
audio signal with K/2 = 128 (i.e., a total of 80 windowed segments of length, 128 samples each) is shown in
Figure 13.11(b).

Fast Implementation of MDCT Using FF T The MDCT (with input length N and output length N/2, where N is
divisible by 4) can be calculated using N/4 point FFT with some pre- and post-rotation of the sample points. The
summary of MDCT fast implementation using N/4-point FFT follows (see Duhamel et al. [1991] for details).
Define

x̃ [k] =
⎧⎨
⎩

−x
[
k + 3N

4

]
, 0 ≤ k ≤ N/4−1

x
[
k − N

4

]
, N/4 ≤ k < N −1

(13.15)

and

x ′[k] = (x̃ [2k]− x̃ [N −2k −1])+ j (x̃ [N/2 +2k]− x̃ [N/2 −2k +1]) (13.16)

where 0 ≤ k ≤ N/4−1. Obtain x ′′[k] by multiplying x ′[k] with e− j 2π
N (k+ 1

8),

x ′′[k] = x ′[k]e− j 2π
N (k+ 1

8) (13.17)

(a)

K / 2 K / 2 K / 2

MDCT

MDCT

K / 2K / 2

K

K

X [m]

x [k]

(b)

x [k]

X [m] K / 2 K / 2

IMDCT

K / 2

IMDCT

K

K
IMDCT

K

K / 2 K / 2

Figure 13.10: MDCT. (a) Forward transform. (b) Inverse transform and reconstruction by overlap and add
method.

646 Chapter 13

0 1000 2000 3000 4000 5000

(a)

6000 7000 8000 9000 10,000
21

20.8

20.6

20.4

20.2

0

0.2

0.4

0.6

0.8

1

k

x
[k

]

0

1000 20 40 60 80 100 120 140

21

20.5

0

0.5

1

X
m

(b)
m

50 Number of
Windows

Figure 13.11: (a) Portion of audio signal. (b) MDCT output with K/2 = 128.

Then, compute N/4-point FFT and obtain the frequency-domain equivalent of x ′′[k], X ′′[m] as

X ′′[m] = FFT
(
x ′′[k]

)
, 0 ≤ k ≤ N/4−1,0 ≤ m ≤ N/4−1 (13.18)

Obtain X ′[m] by multiplying X ′′[m] with e− j 2π
N (m+ 1

8),

X ′[m] = X ′′[m]e− j 2π
N (m+ 1

8) (13.19)

Finally, the N/2-length MDCT output X[m] is obtained as follows:

X[2m] = Re
(
X ′[m]

)
, m = 0,1,2, . . . , N/4−1

X[2m +1] = Im
(
X ′ [N/4−m −1]

)
, m = 0,1,2, . . . , N/4−1

(13.20)

In similar fashion, we can compute the IMDCT using the FFT transform.

13.2.3 General Structure of an Audio Encoder

Based on the audio coding techniques discussed so far, we can design an audio encoder. Building blocks of an
audio encoder are shown in Figure 13.12. Most audio codecs perform frame-based encoding. Incoming audio is
buffered to get N consecutive samples, called the audio frame. One audio frame will contain an equal number
samples from all channels. After processing, the encoder outputs one audio packet corresponding to a single
audio frame. The audio frame is represented in samples and audio packet is represented in bits. In most cases,
frame and packet sizes are fixed for a given encoder configuration. One frame of audio samples is processed at
a time to remove spatial and temporal redundancies.

Psychoacoustic Model: Computes SMRs, estimates masking thresholds, and so on.
Time-Domain Processing: Removes interchannel redundancies, applies windowing, and so on.
Transform: Maps time-domain samples to number of frequency components. Filter bank or MDCT is

commonly used to transform the audio samples.
Transform-Domain Processing: Performs temporal noise shaping (TNS), perceptual noise substitution (PNS),

and so on.
Quantization: Quantizes transform-domain coefficients such that resulting quantization noise is lower than

the psychoacoustic-model masking thresholds.
Entropy Coding: Encodes quantized data using either Huffman or arithmetic coding methods.
Side Information Processing: Encodes psychoacoustic analysis parameters, filter coefficients, control infor-

mation, and so on.

Audio Coding 647

Time
Domain

Processing
Transform

Transform
Domain

Processing

Quantization
and Entropy

Coding
Buffering Mux

Audio
PacketFrame

PCM
Samples

Side Information Processing

Buffering Psychoacoustic Model

Figure 13.12: Block diagram of audio encoder.

Perceptual Model

MDCT TNS
Intensity
Coupling PNS LTP M/SWindow

Bit Reservoir

Bit Allocation

VLCCode Side Information

PCM
Audio
Samples

Quantization

MDCT: Modified discrete cosine transform
TNS : Temporal noise shaping
PNS : Perceptual noise substitution
LTP : Long-term prediction
M/S : Midside coding
VLC : Variable-length coding

Bits Multiplexing and Packing

AAC Bitstream Output

Figure 13.13: MPEG-4 AAC encoder block diagram.

13.3 MPEG-4 AAC Codec

In this section, we discuss MPEG AAC building blocks that utilize the audio-coding principles discussed thus
far. The MPEG-4 AAC codec, part of the ISO/IEC MPEG standard is a powerful coding algorithm, in terms
of perceived audio quality for single-channel and multichannel audio content. AAC delivers indistinguishable
quality stereo audio (from the original or CD) at bit rates of 128 kbps. The AAC is widely used in PC multimedia
and Internet broadcast applications. Different trade-offs between quality and complexity are provided by the
three MPEG-4 AAC profiles, namely, the main profile, low-complexity profile, and scalable sample rate profile.
Although the AAC requires a patent license for manufacturing or developing AAC codec, it is not a proprietary
format and no payments are required to stream or distribute files in AAC format.

13.3.1 MPEG-4 AAC Encoder

The block diagram of the MPEG-4 AAC encoder is shown in Figure 13.13. The AAC encoder receives PCM
audio samples and transfers them to the perceptual model and MDCT blocks.

Psychoacoustic Model
The MPEG-4 AAC algorithm, like other perceptual encoders (e.g., MP3, MPEG-2 AAC), uses psychoacoustic
principles to achieve target compression efficiency. The psychoacoustic model is used to calculate the signal-to-
mask ratio (SMR), masking thresholds, bit allocation information, window type, and so on. The psychoacoustic
model runs in the frequency domain and we use a separate transform (e.g., FFT) to obtain the spectrum for the
purpose of psychoacoustic analysis.

For psychoacoustic analysis, the spectrum is divided into many spectral partitions, and the energy of each
spectral partition is calculated. Also, the unpredictability measure for each partition is calculated (which provides

648 Chapter 13

the portion of the spectrum that cannot be predicted from the spectra of two previous blocks). Then the energy and
unpredictability measure of each partition are convolved with the cochlea-spreading function. The tonality index
is then calculated from the convolved unpredictability measure (which measures the level of tonal components
of the spectral partitions and is used to calculate the power ratio of the partition). Using the convolved energy
and the power ratio, the masking thresholds (Tmask) and SMR parameters are calculated. Both calculations are
adapted from the original spectral partitions to the actual scalefactor bands (which we define later). The Tmask

gives the maximum allowed quantization noise for scalefactor band.

Windowing
The MPEG-4 AAC encoder applies windowing to the incoming samples for MDCT block. Two types of windows,
the long window (with 2048-sample length) and the short window (with 256-sample length) are used. There is an
overlap of 50% between consecutive windows (i.e., 1024 samples overlap in the long window and 128 samples
overlap in the short window). Depending on the nature of the input audio samples (e.g., transient, steady state),
we switch between the two window types. When switching from one length to another length window, a different
type of window is used to facilitate a smooth transition. In other words, a start window is used when changing
from a long to short window and a stop window is used when changing from a short to long window.

Figure 13.14 shows a typical window sequence applying for MPEG-4 AAC input audio samples. Adaptive
window switching provides dynamic changing of the window length and shape. The psychoacoustic model
defines a simple method of switching by comparing the values of perceptual entropy from two consecutive
blocks. If significant change in perceptual entropy is detected, then a change of the block mode is triggered.

Modified Discrete Cosine Transform
The modified discrete cosine transform (MDCT) converts the samples from the time domain to the frequency
domain. This transform allows for signal decorrelation, and therefore minimizes the redundancies present in the
signal. Moreover, using a combination of the MDCT and psychoacoustic model, the irrelevant components (to
the human auditory system) of the original signal are identified and eliminated. By eliminating signal correlations
and irrelevant portions of signal spectrum, bits required to code the audio signals are significantly reduced. For
more detail on MDCT and its fast computation using FFT, see Section 13.2.2.

Several neighboring spectral coefficients are grouped into so-called scalefactor bands (SFBs), which share
the same scalefactor for quantization. The number of coefficients for a given scalefactor band depends on the
sampling rate and window length. Prior to quantization, a number of processing tools operate on the spectral
coefficients in order to improve coding performance.

Temporal Noise Shaping
Temporal noise shaping (TNS) is used to control the pre-echo, an artifact common to all transform-domain
compression algorithms. Pre-echoes occur when a signal with a sharp attack begins near the end of a transform
block immediately following a low-energy region. In this case, the inverse transform spreads the quantization

Long window Start window Short window Stop window

Figure 13.14: Example of window-switching sequence.

Audio Coding 649

noise over an entire block, and it may become audible, as it is not present in the encoder psychoacoustic analysis.
One way to compensate pre-echo is by using a short window length. However, frequent use of short blocks
reduces coding efficiency. Another way to compensate for pre-echo is by using the TNS tool. The TNS tool
uses frequency-domain linear prediction (LP) to shape the noise in the time domain. In other words, filtering the
frequency spectrum at the decoder with LP coefficients attenuates the pre-echo quantization noise generated by
transient signals.

Stereo Coding
The joint stereo coding tools, intensity coupling and M/S coding, exploit the redundancies in the stereo channel
and help to improve audio compression efficiency. The intensity coupling process is used to reduce the number
of bits needed for encoding stereo audio by coding two channels as a single channel. The individual spectral
envelopes for both the channels are transmitted as side information for reconstructing the stereo channel signals
at the decoder with appropriate gain factors.

The M/S decision is used for stereo signals, and determines whether the stereo channels should be encoded
as the usual left and right channels, or as middle and side channels. When a coding benefit is realized, M/S
transforms the left/right signals into sums and differences prior to quantization.

Perceptual Noise Substitution
Perceptual noise substitution (PNS) is used to efficiently code noisy signals. The PNS tool codes noisy spectral
components as white noise by replacing the noise spectral coefficients with a white-noise constant energy level.
The algorithm scans the frequency spectrum within the given range and checks for noise-like regions. A spectral
band is classified as noise-like if it is neither tonal nor has considerable energy changes over time.

Long-Term Prediction
The long-term prediction (LTP) tool is used to enhance the coding of tonal signals by applying a prediction
process to time-domain block data and transmitting just the error. This tool exploits the redundancy between
tonal signals of successive data blocks. The predicted signal for the current frame is calculated from the inverse
quantized time-domain signal from previous frames.

Scalefactors and Quantization
For the quantization, the MDCT coefficients are converted into a kind of floating-point representation. The
coefficients are represented with the mantissa and exponent. Here, the exponent is called the scalefactor, since
it is a factor that determines the resolution of the quantization scale. Each SFB is assigned a single scalefactor.
Scalefactors are encoded and transmitted as side information.

For each MDCT coefficient Xi , its quantized value X Q
i is obtained as

X Q
i = sgn(Xi)

⌊
|Xi |3/4 2

3
16 [sf (j)−csf] +0.4054

⌋
(13.21)

where sf (j) is the scalefactor of the j-th SFB to which the current MDCT coefficient Xi belongs, and csf is the
common scalefactor, which is computed as follows:

csf = 40 +
⌊

16

3
log2

(∣∣∣∣max{Xi}3/4

8191

∣∣∣∣
)⌋

(13.22)

The common scalefactor (csf) and the scalefactor sf (j) determine the quantization level for the j-th SFB.
Distortion in a j-th SFB caused by quantization is given by

DistQ
j =

jend∑
i= jstart

∣∣∣Xi − XIQ
i

∣∣∣2 (13.23)

where jstart and jend are lower and upper limits of the j-th SFB, respectively, and XIQ
i is the inverse quantized

value obtained as

XIQ
i =

(
X Q

i

)4/3
2− 1

4 [sf (j)−csf] (13.24)

650 Chapter 13

Bit Allocation and Bit Reservoir
In AAC, quantization is responsible for allocating the noise while adhering to psychoacoustic demands set by
the perceptual model. A two-loop iterative quantizer is designed such that the inner loop maintains the bit rate
and the outer loop maintains perceptual performance by adjusting the bit allocation in each SFB.

The properties of audio signals vary with time. However, most audio applications expect a constant bit rate
after encoding the audio signals. For that purpose, the AAC standard defines a bit reservoir for storing or
spending the extra bits. A bit reservoir is used to achieve a constant bit rate by buffering the extra bits for
coding signals with greater detail and by clearing the buffer when encoding signals with less information using
fewer bits.

Entropy Coding
Huffman coding is used for noiseless coding of the quantized spectral values to further reduce the number of bits
needed to encode the audio signals. The MPEG-4 AAC Huffman coding uses multiple codebooks with multiple
dimensions to code the quantized data. One or more SFBs are grouped into a section and coded using the same
codebook.

Bitstream Format
The bitstream packer assembles the coded data and control information into bitstream frames for transmission.
Each frame represents 1024 PCM samples per channel. The length of the AAC frames varies from frame to frame
because of the bit reservoir technique. The structure of the AAC encoded frame is shown in Figure 13.15. The
AAC bitstream frame consists of three mandatory fields (nonshaded) and five nonmandatory fields (shaded). Two
headers are specified in the AAC standard: audio data interchange format (ADIF) and audio data transport stream
(ADTS). The ADIF header is used for file-based applications, while the ADTS header is used for streaming
applications.

The AAC frame nonheader field contains the following information: program configuration (specifies sample
rate, output channel assignment, and so on), audio (at least one audio element must be present), coupling channel
element (used for intensity coding), data (contains auxiliary nonaudio information), fill (pads data if the frame
size is not big enough to reach the target bit rate), and terminator (allows for parsing and synchronization of the
bitstream).

13.3.2 MPEG-4 AAC Decoder

A simplified block diagram of MPEG-4 AAC decoder is shown in Figure 13.16. The first step in decoding is to
establish frame alignment. Once the frame alignment is found, the bitstream is demultiplexed. This includes
unpacking of the encoded quantized spectral data, scalefactors, stereo coding side information, TNS LPC
coefficients, PNS flag, and gain information.

Huffman decoded data must be inverse quantized and then scaled. We then perform stereo decoding using the
decoded stereo side information. Before applying IMDCT, we perform TNS by filtering the decoded stereo data
using LPC coefficients. For the noiselike portion of audio, we perform PNS. Finally, we compute the inverse
MDCT to obtain time-domain samples. After the IMDCT transform, the time-domain samples are passed through
the overlap and add block to reconstruct the PCM audio samples. Once we decode the complete audio frame,
the decoded audio samples are moved to the playback buffer.

In Chapter 5, we discussed the decoding procedure for Huffman or variable-length codes for MPEG-2 video
bitstream decoding. The same Huffman decoding techniques can be used for decoding MPEG-4 AAC. For
this, we first design look-up tables in advance from the codeword tables given in the AAC standard. Table
entries contain the level, run length, and codeword length in terms of the number of bits. For decoding, first
we extract the fixed number of bits from the bit FIFO (first-in-first-out) bitstream. We use the look-up table

Header
Program

Configuration
Audio Audio Coupling Data Fill Terminator

Figure 13.15: MPEG-4 AAC encoded frame structure.

Audio Coding 651

B
its

tr
ea

m
 D

E
M

U
X

Entropy
Decoding

Inverse
Quantizer

Stereo
Decoding

TNS

IMDCT

Overlap
and Add

PNS

Input Bitstream

Decoded
Audio Samples

Figure 13.16: Block diagram of MPEG-4 AAC decoder.

to get the level, run length, and codeword length. The bit FIFO pointer is updated using the codeword length
value. The inverse quantization process of the AAC decoder can also be performed efficiently using the look-up
table.

13.4 Popular Audio Codecs

Many audio coding standards were developed since 1990 to support various application requirements (e.g.,
channel/storage bandwidth, quality, coding delay). In this section, we briefly address various audio codecs.

MPEG-1

MPEG-1 is defined by ISO/IEC 11172-3 and is a simplified version of MUSICAM (Masking-Pattern Adapted
Universal Subband Integrated Coding and Multiplexing). MUSICAM is a primary audio format used for digital
video broadcast and the direct satellite system. MPEG-1 operates pretty well at 192 or 256 kbps per channel.
MPEG-1 has three layers—1, 2, and 3—with increasing coding complexity.

All three layers use 32-bank filter banks to perform time-frequency analysis at the encoder side. Processing
after the time-frequency analysis distinguishes the three layers. There are also differences in psychoacoustic
analysis. The bitstreams encoded in one layer cannot be decoded by another layer.

Layer 1 quantizes the filter bank output based on primitive psychoacoustic analysis. The quantized samples
are encoded to form the bitstream. Layer 3 uses 384 samples for encoding one frame. Because the lengths and
quantization parameters are also implicitly coded in the bitstream, the bitstream overhead is more in layer 1.
Layer 2 takes three times more samples for analysis than layer 1, and performs grouping of samples to reduce the
overhead. Layer 2 quantization is different from that of layer 1. Layer 2 reuses quantization parameters across
more samples to further reduce the overhead.

Layer 3 is the most complex of the three. Layers 1 and 2 use the type I psychoacoustic model from the ISO/IEC
11172-3 recommendation, whereas layer 3 uses the type II model. MPEG-1 layer 3 is also called MP3. MP3 is
probably the most popular lossy audio compression codec available today. The MP3 format was released in 1992
as a complement to the MPEG-1 video standard from the Moving Pictures Experts Group. MPEG forms part of
the ISO/IEC, an information center jointly operated by the International Organization for Standardization and the
International Electrotechnical Commission. MP3 was developed by the German Fraunhofer Institut Integrierte
Schaltungen (Fraunhofer IIS), which holds a number of patents for MP3 encoding and decoding.

MP3 uses “polyphase filters” to separate the original signal into subbands. Then, the MDCT transform converts
the signal into the frequency domain, where the psychoacoustic model quantizes the frequency coefficients.
CD-quality MP3 encoding can operate at a 128- to 196-kbps rate, thus achieving up to a 12:1 compression ratio.

652 Chapter 13

MPEG-2

MPEG-2 is defined by ISO/IEC 13818-3, and is an enhanced version of MPEG-1 to support multichannel and
other sampling rates and bit rates. MPEG-2 is identical to MUSICAM and gives near-CD quality at 96 to 192 kbps.
It is fully backward compatible with MPEG-1. MPEG-2 (backward compatible) defines its multichannel versions
of layers 1, 2, and 3. MPEG-2 layer 2 is used in broadcasting applications such as DAB. MPEG-2 layer 3 is
obsolete and superseded by nonbackward-compatible (NBC) and the more advanced version, AAC.

The MPEG-2 AAC is defined by ISO/IEC 138318-7. MPEG-2 AAC is a high-quality multichannel audio
coding system, which is used for HDTV, DVD, and cable and satellite television. It encodes multiple channels
of audio into a low bit-rate format. The high compression rate is achieved due to encoding multiple channels as
a single entity.

MPEG-4 AAC

MPEG-4 AAC (as discussed in Section 13.3) is the enhancement to MPEG-2 AAC, with many new codec and
system supports like low complexity (LC-AAC), high efficiency (HE-AAC), scalable sample rate (AAC-SSR),
and bit-sliced arithmetic coding (BSAC). It is approximately 30% more bit-rate efficient than the MP3 algorithm,
and outperforms its predecessors achieving indistinguishableCD audio quality at 128 kbps for stereo audio. AAC
supports sample rates that range from 8 to 96 kHz and bit rates of 32 to 160 kbps (for mono) and 64 to 320 kbps
(for stereo). It encompasses the error protection tool and error resilience techniques. Although the AAC requires
patent license for manufacturing or developing of AAC codec, it is not a proprietary format and there is no fee
to stream or distribute files in AAC format.

MPEG-4 ALS

MPEG-4 audio lossless (ALS) is an extension of the MPEG-4 audio coding family. Its operation is similar to
FLAC (free lossless audio codec).

MPEG-4 ALS data packing is efficient for audio data. It allows getting high-quality records at significantly
reduced data rates. MPEG-4 ALS mainly uses linear prediction coding (LPC), Golomb Rice coding and run-
length encoding (RLE) for its operation. MPEG-4 ALS provides fast lossless audio compression techniques for
consumer and professional use. An important benefit of MPEG 4-ALS coding is that it provides certain features
that are not available in other lossless compression formats:

• Support for uncompressed digital audio format
• Support for PCM resolutions of up to 32-bit at any sampling rate
• Support for up to 65,536 channels
• Optional storage in MPEG-4 file format

WMA 9 Lossless

WMA 9 lossless is the codec abbreviation for Windows Media Audio 9. Its extension is .wma, and it is considered
an audio file format. It is a lossless audio codec with an audio sampling rate of 96 kHz using 24 bits, which makes
it ideal for archive or backup storage. The data compression ratio is 2:1 or 3:1, depending on the complexity of the
source. It is compatible with various operating systems and backward compatible with previous WMA standards.
In addition, it has a digital rights management (DRM) platform (for copyright protection of digital media).

WMA

WMA, the abbreviation for Windows Media Audio, is Microsoft’s proprietary codec. The WMA codec supports
sampling rates of 44.1 or 48 kHz and bit rates from 64 to 192 kbps using 16-bits PCM sample resolution. It
supports constant bit-rate (CBR) and variable bit-rate (VBR) modes. With the development of WMA10 Pro,
many features were added to enhance the functionality of this codec. It can support 24-bit/96-kHz stereo,
5.1-channel or even 7.1-channel surround sound. WMA10 Pro offers streaming, progressive download, and

Audio Coding 653

download-and-play delivery at 128 to 768 kbps. This makes it applicable for a wide range of playback devices
and methods. WMA10 Pro is patented and supports DRM. Verification of performance results was conducted
by National Software Testing Labs.

Vorbis

Vorbis is a free and open-source, lossy audio-compression codec developed by the Xiph Foundation. The deve-
lopment of Vorbis was stimulated by the announcement of MP3 licensing. Many video games and consumer
electronics audio are stored in Vorbis format.

At a standard input sampling rate of 44.1 kHz, the encoder produces a digitized output sequence from 32
to 500 kbps, with VBR and various quality settings. It uses an MDCT transform for converting data from the
time domain into the frequency domain. After the data is broken into noise floor and residue components, it is
quantized and entropy coded using a codebook based on a vector quantization algorithm.

From a technical viewpoint, Vorbis outperforms MP3, according to many subjective tests, and it is therefore
in the class of the newer codecs such as WMA and AAC. Vorbis also fully supports multichannel compression,
thereby eliminating redundant information carried by the channels, as discussed previously.

AC3

The Acoustic Coder 3 (AC3) is a high-quality audio codec (audio coding format) elaborated by Dolby Labora-
tories. AC3 achieves large compression ratios by encoding multiple channels of audio into a low bit rate, and
encoding multiple channels as a single-entity format. It uses a hybrid backward/forward, adaptive bit allocation
approach, which is necessary for advanced television.

Dolby Digital, one of the AC-3 versions, encodes up to 5.1 channels of audio. AC-3 has been adopted as an
audio compression scheme for many consumer and professional applications. It is a mandatory audio codec for
DVD video, Advanced Television Standards Committee (ATSC), digital terrestrial television and Digital Living
Network Alliance (DLNA), and home networking, as well as an optional multichannel audio format for DVD
audio.

RealAudio 10

RealAudio10 is the proprietary codec of Real Networks. It supports bit rates from 12 to 800 kbps, and provides
extremely high audio quality at the widest possible bandwidth range. To achieve such superior quality, the Real
Audio codec is used for bit rates that are less than 128 kbps, but at bit rates higher than 128 kbps, it incorporates
the AAC codec. Real Audio is widespread in the portable and mobile devices market as well as in streaming,
on-demand, and download solutions.

FLAC

The Free Lossless Audio Code (FLAC) is another open standard from the Xiph Foundation. As the name implies,
this code does not throw out any information from the original audio signal. This, of course, comes at the expense
of much smaller achievable compression ratios. The typical compression range for FLAC is 30 to 70%.

MIPS (million instructions per second) and memory requirements for implementation of various audio codecs
on the reference embedded processor are given in Table 13.2.

13.5 Audio Post-Processing

Audio post-processing can be used to improve the user listening experience or for compatibility of the audio
player in multiple ways. Supporting multiple compression formats in audio players is no longer a special feature
but rather a standard one. The added value in audio systems today comes in the form of quality enhancements that
increase listening pleasure. Audio post-processing techniques such as equalization, stereo enhancement, surround
sound, noise removal, visual effects, and so on, add value to audio players. The post-processing module called

654 Chapter 13

Table 13.2: MIPS and memory requirements for audio codec implementation on reference
embedded processor

Data Program
Audio Encoder/ Memory Memory Encoder Sample
Codec Decoder (kB) (kB) MIPS Rate/Bit Rate

MP3 Encoder 30 32 45 (at 44.1 kHz, 128 kbps) 32/44.1/48 kHz,
32–320 kbps

Decoder 25 32 20 (at 128 kbps, 48 kHz)

MPEG-4
HE-AAC-v2

Encoder 110 130 74 (at 44.1 kHz, 36 kbps) 32/44.1/48 kHz,
16–36 kbps

Decoder 123 105 36 (at 48 kbps, 48 kHz)

WMA Encoder 156 60 35 (at 44.1 kHz, 128 kbps) 44.1/48 kHz,
64–320 kbps

Decoder 78 42 60 (at 128 kbps, 48 kHz)

AC-3 Encoder 117 68 136 (at 48 kHz, 448 kbps) All sampling
frequencies,
32–640 kbps

Decoder 39 26 44.1 (at 48 kHz, 384 kbps)

Vorbis Decoder 48 31 40.6 (at 48 kHz, 128 kbps) All sampling
frequencies, upto
500 kbps

Audio
post-processing

Sample
rate

conversion

12.5 6 46 (for 32 kHz to 48 kHz) Input:
8/11.025/12/16/22.05/
24/32/44.1/48 kHz
Output:
32/44.1/48/64/88.2/
96/128/174/192 kHz

sample rate conversion (SRC) is often used for compatibility of players with other digital systems. Most audio
post-processing involves some kind of filtering. We use either FIR or IIR digital filters (see Chapter 7) to perform
filtering. Next, we briefly discuss a few audio post-processing modules.

13.5.1 Audio Sample Rate Conversion

There are times converting a signal sampled at one frequency to a different sampling rate is necessary. One
situation where this is useful is decoding an audio signal sampled at, say 11.025 kHz, but when the DAC you
are using does not support that sampling frequency. Another scenario is when a signal is oversampled, and
converting it to a lower frequency can lead to a reduction in computation time. The process of converting the
sampling rate of a signal from one rate to another is called sample rate conversion, or SRC.

Increasing the sample rate is called interpolation, and decreasing it is called decimation. Decimating a signal
by a factor of M is achieved by keeping only every M-th sample and discarding the rest. Interpolating a signal by
a factor of L is accomplished by padding the original signal with L −1 zeros between each sample and filtering
the resultant images. See Section 8.2 for more details on decimation and interpolation processes.

Even though interpolation and decimation factors are integers, we can apply them in series to an input signal
and get a rational conversion factor. When we upsample by factor 5 and then downsample by factor 3, we get
the resulting factor as 5/3 = 1.67. Figure 8.29 shows SRC through upsampling and downsampling. We use an
antialiasing filter in the decimation process and an anti-imaging filter in the interpolation process to filter the
out-of-band signals. Note that it is possible to combine the anti-imaging and antialiasing filter into a single
component for computational savings.

The SRC is efficiently implemented by using polyphase decomposition techniques. See Section 8.2.2 for more
details on efficient implementation of decimation and interpolation using polyphase decomposition.

Audio Coding 655

Figure 13.17: Block diagram of
graphic equalizer.

A1[z] A2[z]

1

A3[z] AM [z]

Input PCM
Samples

Equalized
Output

G

g0 g1 g2 g3 gM

Bass
Shelving

Filter

Mid-
Peaking

Filter

Mid-
Peaking

Filter

Treble
Shelving

Filter

PCM Input

Equalized
OutputLPF BPF BPF HPF

g0 g1 gN21 gN

Figure 13.18: Parametric equalizer for boosting bass, mid, and treble frequencies.

13.5.2 Audio Equalization

Audio equalizers can be used for high-fidelity audio control. Audio equalizer applications include home theater
audio, car audio, PC audio, and so on. On the stage, music effects from different instruments may be highlighted
using equalization techniques. They may also be used to enhance audio content to suit particular listeners’
preferences or to match a particular acoustic environment.

Audio equalizers, by modifying the frequency envelope, compensate the distortion introduced by the sound
reproduction system. A regular audio equalizer includes several audio filters with appropriate gain control as
shown in Figure 13.17 to tune different parts of the frequency spectrum. Each filter controls a particular frequency
band. Usually, the entire audio spectrum is divided into 5 to 31 bands, and that many bandpass filters are used to
control the audio frequency spectrum. Often the equalizer design uses octave spacing to cover the entire audio
frequency spectrum.

With low bit-rate audio and in poor-quality audio reproduction systems, audio players need corrections at the
bass and treble frequencies. The bass adjusts the signal’s low-frequency spectrum, whereas the treble adjusts
the signal’s high-frequency spectrum. In parametric equalizers, many mid-frequency peaking filters are used to
control the mid audio spectrum apart from bass and treble. A cascade of bass (shelf filter), mid (peaking filter),
and treble (shelf filters) are present in a typical parametric equalizer design as shown in Figure 13.18.

13.5.3 Stereo Enhancement

A stereo signal can be viewed as comprising two main components: left+right and left−right channel. The
stereo image field is a function of amplitude, phase, time, and spectral content differences between left and right
channels in a stereo sound system. The true stereo sound field covers the entire listening area equally.

Stereo enhancement is typically achieved by widening (to a 180-degree arc in front of the audience) the
stereo sound field. The listener receives cleaner and richer sound effects with stereo enhancement. A general
stereo enhancement system is shown in Figure 13.19. There are many techniques to achieve stereo enhancement
(National Semiconductor, 2007): channel gains adjustment (where one channel gain is altered with respect to the
other stereo channel), delaying (where one channel is delayed with respect to the other stereo channel), phase
offsetting (where one channel is made out of phase with respect to the other stereo channel), frequency emphasis
(where more high frequencies are placed in one channel when compared to the other stereo channel), and so on.
The stereo enhancement may not always result in better sound perception. In some cases, the listener tends to
prefer unenhanced stereo version to the enhanced stereo version.

656 Chapter 13

Figure 13.19: Stereo enhancement
system.

Phase
Shift

�

�

�
� �

��

�

�

�

�

�

�

�

�

Stereo In Stereo Out

g1

g1

g2

RightLeft

Center

Subwoofer
AV Receiver

Surround
Left

Surround
Right

Audience
Chair

Figure 13.20: Speaker positioning of home theater 5.1-channel system.

13.5.4 Surround Sound

Surround sound is commonly used in movie theater applications. The surround sound technology is also widely
used in home theater, portable audio, virtual reality games, and PC audio. A surround-sound component makes
the audio seem to surround the user. Several surround-sound technologies are available today, such as Dolby Pro
Logic, Dolby Digital, DTS, Dolby TrueHD, and DTS-HD.

In Dolby Pro Logic, the center and surround channels are matrixed into the left-and-right channel information
for storage/transmission, and they are separated out by the decoder before playing out, whereas Dolby Pro Logic
II is designed to simulate the surround effect from a two-channel source (e.g., playing CDs and stereo sound
tracks on surround speakers).

With Dolby digital and DTS, multichannel audio is encoded into digital bitstreams and transmitted via multiple
discrete channels. This type of surround-sound system keeps all the channels separate from start to finish,
producing a clear surround effect. The most common format is 5.1 channels; it includes front left, center, and
right channels; rear left-and-right surround channels; and a low-frequency effects (LFE) subwoofer channel as
shown in Figure 13.20. Dolby digital technology is used in many commercial DVDs and in HDTV broadcasting.

In some cases, the decoded audio channel may not be compatible with the audio reproduction system. For
example, AC-3 audio codec codes multipleaudio channels into a single bitstream. If we decode AC-3 5.1-channel
audio and want to play out on stereo speakers, then we must down-mix 5.1-channel audio to stereo audio before
playing it.

A virtual surround-sound technology uses only one or two speakers and still creates the perception of surround
sound. This type of system provides surround sound virtually by utilizing the properties of the human auditory
system. The core virtual surround-sound technology depends on head-related transfer function (HRTF) filters
that can position a particular sound source at a particular azimuth and elevation angle. The HRTF implementation
consists of two filters for producing output for each ear. The virtual surround sound is popularly used in PC
stereo audio and portable audio with headphones.

Part 4
Digital Video Processing

This page intentionally left blank

CHAPTER 14

Video Coding Technology

14.1 Introduction

Before the mid-1990s, nearly all video was in analog form. Then the advent of MPEG compression, the
proliferation of streaming media on the Internet, and the FCC adoption of a digital television (DTV) stan-
dard brought the benefits of digital representation into the video world. These advantages over analog include
better signal-to-noise performance, improved bandwidth utilization (fitting several digital channels into each
existing analog channel), and reduction in storage space through digital compression techniques.

Figure 14.1 shows a typical end-to-end video processing system. A video source feeds into a media processor
(e.g., reference embedded processor) where it might be compressed via a software encoder before being stored
locally or sent over the network. In an opposite flow, a compressed stream is retrieved from a network or mass
storage. It is then decompressed via a software decoder and sent to display panels (e.g., CRT, TFT-LCD).

In analog video inputs, a video decoder chip converts an analog video signal (e.g., NTSC, PAL, CVBS,
S-video) into a digital form (usually of the ITU-R BT.601/656, YCbCr, or RGB variety). This is a complex,
multistage process as shown in Figure 14.2. It involves extracting timing information from the input, separating
luma from chroma, separating chroma into Cr and Cb components, sampling the output data, and arranging it
into an appropriate format. A serial interface such as SPI or I2C configures the decoder’s operating parameters.

A video encoder converts a digital video stream into an analog video signal. It typically accepts a YCbCr or
RGB video stream in either ITU-R BT.656 or BT.601 format and converts it to a signal compliant with one of

Digital CMOS Sensor

Outside World

Digital Video “Codecs”

SW Decoder
(Uncompression)

SW Encoder
(Compression)

HW Encoder
(D/A Converter)

HW Decoder
(A/D Converter)

TV or
Monitor

Analog Video
Camera or CCD Storage

Media
Network

Digital
LCD Panel

Media Processor

Figure 14.1: System video flow for analog/digital sources and displays.

© 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-678-1.00014-4 659

660 Chapter 14

INTRQ

Standard-Definition Processor

O
utput F

orm
atter

LUMA
Digital Fine

Clamp

LUMA
Filter

Chroma
Filter

Chroma
Dernod

VBI Data Recovery Global Control
Synthesized
LLC Control

Free Run
Output Control

Standard
Autodetection

Macrovision
Detection

Chroma
Digital Fine

Clamp

FSC
Recovery

SYNC
Extract

Line
Length

Predictor

Resample
Control

AV Code
Insertion

CTI
C-DNR

Chrome
2D COMB
(4H Max)

Chroma
Resample

L-DNR

LUMA
Resample

LUMA
2D CDMB
(4H Max)

8

16

10

10
Data

Preprocessor

Decimation and
Downsampling

Filters

SYNC and
CLK Control

ADV7183B

SYNC Processing and
CLOCK Generation

SCLK

SDA

ALSB

Serial Interface
Control and VBI Data

Control and Data

12
AnalogIN

CVBS
S-video
YPrPb

Input
Mux

Clamp A/D

A/D

A/D

Clamp

Clamp

10

10
10

Pixel
Data

HS

VS

Field

LLC1

LLC2

SFL

8

Gain
Control

Gain
Control

Figure 14.2: Block diagram of an ADV7183B video decoder.

TTXREQ

Power Management
Control

(Sleep Mode)

CGMS and WSS
Insertion Block

Teletext
Insertion Block

YUV to
RGB
Matrix

10

10

10

10998Y

U

V

8

4:2:2
to

4:4:4
Interpolator

Video Timing
Generator

I2C MPU Port
Real-time

Control Circuit

Sin/Cos
DDS Block Voltage

Reference
Circuit

M
ul

tip
le

xe
r

YCrCb
to

YUV
Matrix

888

ADD
Sync

Inter-
polator

Inter-
polator

Programmable
Luminance Filter

Programmable
Chrominance Filter

ADD
Burst

8

8888

1010

10

10 U

V

10 10-bit
DAC DAC A

DAC B

DAC C

VREF

RSET

COMP

GNDSCRESET/RTCSCLOCKCLOCK

HSYNC

P7-PD

Color
Data

Reset

VAA

Field/VSYNC
Blank

SDATA ALSB

10-bit
DAC

10-bit
DAC

10

10

TTX

ADV7174/ADV7179

Figure 14.3: Block diagram of an ADV7179 video encoder.

several different output standards (e.g., NTSC, PAL, SECAM). A host processor controls the encoder via a serial
interface like SPI or I2C, programming settings such as pixel timing, input/output formats, and luma/chroma
filtering. Figure 14.3 shows a block diagram of a representative video encoder.

Advances in video coding technology and standardization along with rapid development and improvements
of network infrastructures, storage capacity, and computing power are enabling an increasing number of video

Video Coding Technology 661

applications. Digitized video has played an important role in many consumer electronics applications including
DVD, portable media players, HDTV, video telephony, video conferencing, Internet video streaming, and distance
learning, among others.

Video coding enables the digital storage and transmission of video signals. Recent progress in digital tech-
nology has made the widespread use of compressed digital video signals practical. At the source end, the video
encoder compresses the digital video for efficient storage and transmission purposes, whereas the video decoder
at the destination end decompresses the received compressed video stream and sends to the display for viewing.
International video coding standards such as MPEG-1/2/4 and H.261/2/3/4 are the coding engines behind the
commercial success of digital video compression. They have played pivotal roles in spreading the technology
by providing the power of interoperability among products developed by different manufactures, while at the
same time allowing enough flexibility for creativity in optimizing and modeling the technology to fit a given
application and making the cost–performance trade-offs best suited to particular applications.

For details of video signals, analog and digital video interfaces, and video signal processing, see Jack (2001).
This chapter focuses on discussion of the video coding basics and the most widely used MPEG-2 and H.264 video
coding standards, along with the present requirement of scalable video coding. Embedded video processing and
system issues are also discussed.

14.2 Video Coding Basics

Video cameras today are overwhelmingly based on either charge-coupled device (CCD) or CMOS technology.
Both of these sensor technologies convert light into electrical signals. In order to properly represent a color image,
a sensor needs three color components, most commonly, red, green and blue (RGB). The RGB signals coming
from a color video camera can be equivalently expressed as luminance (Y) and chrominance (UV) components.
See Section 10.1 for more detail on RGB-to-YUV color conversion.

14.2.1 Digital Video

At its root, digitizing video involves both sampling and quantizing analog video signals. In the 2D context of
a video frame, sampling entails dividing the image space grid-like into small regions (pixels) and assigning
relative amplitude values based on the intensities of color space components in each region. Note that analog
video is already sampled temporally (i.e., discrete number of frames per second). The number of pixels per row
and column of the video frame defines the frame resolution. A few widely used video frames resolution names,
and their row and column sizes (N×M) are given in Table 14.1. Horizontal resolution indicates the number of
pixels on each video frame line, and vertical resolution designates how many horizontal lines are displayed on the
screen to create the entire video frame. For example, standard definition (SD) NTSC systems are characterized
by interlaced scan, with 480 lines of active pixels, each with 720 active pixels per line (i.e., 720 ×480).

Table 14.1: Selected video frame
resolution names and sizes

Frame Resolution Name Row×Column Size

QCIF 176×144

QVGA 320×240

CIF 352×288

VGA 640×480

525 SD or D1 720×480

720p HD 1280×720

1080p HD 1920×1088

16 VGA 2560×1920

4k×2k 4096×2048

662 Chapter 14

(a) (b)

: Luminance (Y)

: Chrominance (U)

: Chrominance (V)

Figure 14.4: YUV format. (a) Position of luminance and chrominance samples in 4:2:2 format. (b) Position of
luminance and chrominance samples in 4:2:0 format.

Pixel quantization is the process that determines discrete amplitude values assigned during the sampling
process. Eight-bit video is common in consumer applications, where a value of 0 is darkest and 255 is brightest
for each color component (R, G, B or Y, U, V). However, it should be noted that 10- and 12-bit quantization
per color channel are rapidly entering mainstream video products, allowing extra precision that can be useful in
reducing received image noise by minimizing round-off error.

The advent of digital video provided an excellent opportunity to standardize, to a large degree, the interfaces
to NTSC and PAL systems. When the International Telecommunication Union (ITU) met to define recommenda-
tions for digital video standards, it focused on achieving a large degree of commonality between NTSC and PAL
standards, such that the two could share the same coding formats. They defined two separate recommendations—
CCIR-601 (current ITU-R BT.601) and CCIR-656 (current ITU-R BT.656). Together, the two define a structure
that enables various digital video system components to interoperate, whereas BT.601 defines the parameters
for digital video transfer and BT.656 defines the interface itself.

For standard definition video, CCIR-601 defines how the video component signals (YUV) can be sampled and
digitized to form discrete pixels. The chrominance bandwidth may be reduced relative to the luminance without
significantly affecting the picture quality. The terms YUV 4:4:4, YUV 4:2:2, and YUV 4:2:0 are often used to
describe the sampling formats for digital video components. The format YUV 4:2:2 means that the chrominance
is horizontally subsampled by a factor of two relative to the luminance component as shown in Figure 14.4(a),
whereas the format YUV 4:2:0 means that the chrominance is both horizontally and vertically subsampled by a
factor of two relative to the luminance as shown in Figure 14.4(b).

Typically, we represent either RGB or YUV components with 8 bits of data. That is, we require 24 bits
to represent a single pixel’s three component values in the digital domain. Video data is enormously space-
consuming, and its most daunting aspect is that it just keeps coming! For example, 1 second of uncompressed
4:2:2 video NTSC video requires 27 MB of storage (or a bit rate of 216 Mbps), and a single minute requires
1.6 GB. Because raw video requires such dedicated high capacity for storage or high-bandwidth channels for
transmission, the industry spent hundreds of person years in efforts to avoid transferring it in uncompressed
form whenever possible. Compression algorithms have been devised that reduce bandwidth requirements for
NTSC/PAL video from tens of megabytes per second to just a few hundreds of kilobytes per second, with
adjustable trade-offs in video quality for bandwidth efficiency. Next, we discuss various redundancies in the
video data that provide the scope for video data compression.

14.2.2 Redundancy in Video Data

At its root, a video signal is basically just a 2D array of intensity and color data that is updated at a regular
frame rate, conveying the perception of motion. Video compression relies on the eye’s inability to resolve high-
frequency component changes, and the fact that there is a lot of redundancy within each frame and between
frames. A video compression system operates by removing the redundant information from the video signal prior
to transmission, and by reconstructing an approximation of the video signal from the received information at the

Video Coding Technology 663

Figure 14.5: Illustration of various
video frames coding. (a) I-frame
coding. (b) P-frame coding.
(c) B-frame coding. (a) (b) (c)

I
Frame

I or P
Frame

P
Frame

I or P
Frame

I or P
Frame

B
Frame

decoder. A coder and decoder pair is referred to as a codec. In video signals, three distinct kinds of redundancy
can be identified: spatial-temporal redundancy, psychovisual redundancy, and entropy redundancy.

Spatial-Temporal Redundancy
The video frame pixel values are not independent, but are correlated with their neighbors both within the same
frame and across frames. Spatial redundancy is the correlation of video pixels within the same frame data,
whereas temporal redundancy is the correlation of pixels across many video frames. To some extent, the value
of a pixel is predictable, given the values of the neighboring pixels.

Decorrelation transforms (e.g., discrete cosine transforms or discrete wavelet transforms) are used to remove
spatial redundancy among adjacent pixel values. This generates intracoded frames (or simply I-frames). Each
of these frames is encoded using only information contained within that same frame. That is, they are coded
independently of all other frames. I-frames are required to provide the decoder with a place to start for prediction,
and they also provide a baseline for error recovery.

Interprediction (i.e., motion estimation) and motion compensation together eliminate temporal redundancy in
video frames while compensating for motion by predicting pixel values in a frame from information in adjacent
frames. This generates predicted frames (or P-frames) and bidirectional predicted frames (or B-frames). While
the P-frames are coded with forward prediction from references made from previous I- and P-frames, the
B-frames are coded with forward prediction based on the data from previous I or P references, or they may be
coded with backward prediction from the most recent (in the future) I or P reference frames. The coding of
video using I-, P-, and B-frame types is illustrated in Figure 14.5.

Psychovisual Redundancy
The human eye has a limited response to fine spatial and temporal details (i.e., the details that our eyes can
resolve and the motion of objects that our eyes can track). Our eyes are less sensitive to detail near object edges
or around shot changes (i.e., human eyes do not respond to all visual information with equal sensitivity). Some
information is simply of less relative importance. This information is referred to as psychovisual redundancy
and can be eliminated without introducing significant differences to the human eye. Consequently, we can have
control of the bit rate by restricting both spatial details and temporal resolution and at the same time maintaining
that the same is not visible to human observers.

Entropy Redundancy
In any nonrandom digital samples, some sample values occur more frequently than others. For example, neigh-
boring block transform coefficients, motion information, and predictive modes do not occur entirely randomly
in video frame coding. The entropy coding methods at their core functionality exploit this type of redundancy.

In the next section, we discuss various video coding modules that exploit various types of redundancies present
in video frame data.

14.2.3 Video Coding

In video coding, frames are coded by dividing the frame into smaller blocks, called macroblocks. A macroblock
contains a 16×16 area of pixels. Generally, the video format used for coding is YUV, and with that format a
macroblock contains a section of the luminance component and spatially corresponding chrominance compo-
nents. The component information for Y , U , and V is coded independently. As discussed, the human eye is
not that sensitive to color information, therefore most video coding standards allow us to code the YUV 4:2:0
video format (i.e., the color components are subsampled in both horizontal and vertical directions by a factor

664 Chapter 14

of 2 relative to the luminance component). With this format, one macroblock coding comprises coding of the
16×16 Y-component, 8 × 8 U-component, and 8 × 8 V-component. With 4:2:0 representation, the macroblock
comprises a total of four 8×8 luminance blocks and two 8×8 chrominance blocks as shown in Figure 14.6.

Figure 14.7 shows a high-level view of a typical video encoder. This structure is common among encoders;
some might have additional stages of processing or stages that are branched off from the one shown here.
Nonetheless, video encoding can be characterized by temporal and spatial encoding. In the latter, the stages that
perform the discrete cosine transform (DCT), quantization, zig-zag coding, and entropy coding encompass spatial
coding of the frame. As a matter of fact, these stages are similar to the ones used in JPEG image compression.
We will talk about these modules a little later.

For temporal encoding, reference frames need to be created. Thus, macroblocks are reconstructed via inverse
quantization and inverse DCT after the quantization stage during spatial encoding. Then, during the encoding of
the next frame, the input macroblock and a search window from the reference frame are used to create motion-
compensated input, otherwise known as residuals. This is done by means of motion estimation, where motion

Figure 14.6: Macroblock structure in
4:2:0 representation.

0 1

2 3 4 5

Luminance Component Chrominance Component

88

8

8

8

8

8

8

Figure 14.7: High-level general view of a typical video encoder.

DCT
Quanti-
zation

Zig-Zag
Coding

Run-
Length
Coding

Variable
Length

Inverse
Quantization

Inverse
DCT

Reference
Frames

Frames to Be
Encoded

Motion
Estimation

Motion
Compensation

Reconstructed
Frame

… 001101001

I Frame Processing

Input
Macroblock

Reconstructed
Macroblock

Search
Window

P/B Frame Processing

Uncompensation

Video Coding Technology 665

I B B P B B P B B I

Figure 14.8: GOP (MPEG-2), and I-, P-, and B-frame coding.

vectors are identified, and motion compensation. In this process, the input macroblock and best-matched block
from the reference is subtracted and the residuals are created.

Video encoding always starts by compressing the first frame spatially, as an intraframe (I-frame). This frame
is coded independently, since there is no reference frame to work from. Then a typical group of picture (GOP)
structure would have a run of P-frames and/or B-frames, which would be predictively encoded before encod-
ing another I-frame. This is illustrated in Figure 14.8. Predictively coded frames take advantage of temporal
redundancy to achieve greater compression.

Motion Estimation/Motion Compensation
At present, we are so accustomed to seeing videoclips, lectures, and so on on our computers via the Internet that
we do not appreciate the technology that allows us to enjoy them in real time. But a quick estimate shows that
viewing, say, a videoclip with the frame size 360×240 pixels at 30 frames per second requires, at the intermediate
connection speed 768 kbps, a compression ratio of about 50:1 on average.

Image compression of video sequences (or, using an old name, “motion pictures”) involves all the instruments
of still-image compression as well as temporal redundancy. In brief, most of the time the differences between
successive frames are small because at 30 frames per second the camera and most objects in the scene do not move.

Thus, if we find a way to estimate the motion of the object, matching certain parts of the frame with a
corresponding part of a previous frame and encode only these differences, they will be small and can be encoded
very efficiently. This “matching” or motion estimation is done by the encoder using various search algorithms.
Because all video processing of “motion pictures” is done on a macroblock basis, we can simply search in one
of the previous frames around the currently processed macroblock position and find the “best match” in a certain
metric. Then in the decoder we need only the information about a “motion vector” with two components (vertical
and horizontal). If it was a good match, the differences between actual pixel values and those “moved” from
the stored frame are small, and most of these residual components become zero after quantization. Thus, we
achieve a high compression ratio by transmitting only the information required to recover these differences at
the receiver end.

In summary, one of the key components to video encoding is the temporal correlation among successive
frames. If video encoding did not take advantage of this aspect, it would be nothing more than compressing
individual images such as JPEG. Motion estimation is the process of finding the best temporal match between
frames in a video sequence. If the match is good, most residuals would become zeros after quantization, which
would result in fewer bits. Motion compensation is the process of reconstructing video frames using the received
motion vectors and residual data.

The full-search block-matching algorithm is the most straightforward method of finding the best matched
block. During the processing of a macroblock at location (a,b) of the current frame, it is overlaid on various
pixels in a search window from a reference frame. Figure 14.9 shows this process. For each pixel in the search
window, the macroblock is overlaid and a prediction error is calculated. Typically, the prediction error is stated
in terms of either the mean of absolute differences (MAD) or the sum of absolute differences (SAD). The MAD
calculation is just a normalized version of SAD. After calculating the prediction error for the macroblock over
each pixel in the search window, the candidate with the minimum error is used. The displacement (c-a,d-b)

between the location of the macroblock (a,b) and the overlaid region (c,d) in memory is the motion vector
used in future steps of frame compression.

Instead of compressing the data from a macroblock, the motion vector is used to obtain a macroblock that
is the difference between the current one and a macroblock-sized region from a reference frame. If the motion

666 Chapter 14

Reference Frame

Current Frame

Search Window

Motion Vector

Macroblock

Best Matched

Macroblock

(a, b)

(a, b)

(c, d)

Figure 14.9: Finding a motion vector using motion estimation algorithm.

vector obtained from the motion estimation accurately captured the movement of the video sequence, then the
difference between the macroblock and the overlaid reference area when quantized will result in a lot of data
becoming zeros, which in turn provides greater compression.

The full-search block-matching algorithm provides the best results since it is an exhaustive search, calculating
the prediction error while going over each pixel in the search window. In cost terms, this algorithm can use up
more than half of the processing required to compress a single frame. Since it is so costly, researchers in academia
and industry have tried to find heuristics to reduce the amount of processing needed for a solution that comes
close to the full-search algorithm.

Data Movement for Motion Estimation on Embedded Processors
Typical embedded processors have a hierarchical memory structure (see Section 16.2.3) where a limited amount
of fast internal memory (L1) sits near the core and the data can be accessed from L1 within a single cycle. Further
down the hierarchy, the processor can access memory sizes in megabyte ranges but with a higher latency.

In order to achieve real-time processing, processing from slow, external memory (L3) would be too costly.
Also, due to size limitations, entire frames cannot reside in internal memory. Therefore, a method for handling
this would be to have the frames reside in external memory and bring data needed from external memory to
internal memory via direct memory access (DMA), and then perform the processing in internal memory. The
final results can also be exported back to external memory. This procedure can typically be pipelined to reduce
the overhead from memory latencies.

In the case of video processing, macroblocks would be brought in from external memory using a DMA
transfer. If the frame is going to be predictively coded, the motion estimation stage would need a corresponding
search window from a reference frame that would reside in external memory. This search window would also
need to be placed in internal memory via DMA.

Full-Search Motion Estimation
Even when the data is in internal memory, the full-search motion estimation algorithm absorbs most of the
processing time. Consider a search range of ±8, that is, a 16×16 search window. Using a processor such as the
reference embedded processor, which can perform a SAD calculation on 4 bytes in a single cycle, the SAD can
ideally be calculated for a 16×16 macroblock for a single point in the search window in 64 cycles. A full search
over the entire search area would take about 16,000 cycles, which is equivalent to 64 cycles per pixel. For better
quality, larger search windows are used. Consider increasing the window by just 1 pixel in all directions. The
resulting size of the search window will be 18×18. A bit more than 20,000 cycles would be required to process
the entire search window, that is, an average 80 cycles per pixel. As seen in Figure 14.10, as the search range
increases linearly, the cost increases exponentially.

Video Coding Technology 667

Figure 14.10: Cost in terms of cycles
per pixel for full-search motion
estimation as search range increases.

0
16 18 20 22 24 26 28 30 32 34

100

200

300

400

500

600

700

Search Range

C
os

t (
cy

cl
es

-p
el

)
Figure 14.11: Search pattern for spiral
search.

Take for example, a 700-MHz processor encoding frames sized 720×480 (D1), at 30 frames per second.
This results in a limit of 67.5 cycles per pixel for encoding. Anything over this value would no longer qualify as
real time. Yet, for a search range of ±16, the full-search motion estimation uses up almost 95% of the resources
required to encode a D1-sized sequence. Obviously, a less resource-intensive algorithm is needed.

In practice, the full-search motion estimation algorithm is rarely used due to limited resources and a search
range of at least ±16 required for satisfactory quality.

Alternative Methods for Motion Estimation
As seen in the calculations, full-search motion estimation is very costly. Other methods use different search
patterns to limit the number of points searched in a window with comparable results. For example, a spiral or
a diamond pattern starting from the center of the search window reduces the number of points searched by a
significant amount.

The diamond search pattern is a diamond shape consisting of nine search points with a starting point in
the middle of it. A motion estimation algorithm that uses this pattern finds the minimum block distortion for
the points in the diamond. The algorithm reiterates, recentering the diamond pattern over the previously found
minimum block distortion point. After finding the minimum distortion again, a smaller diamond, consisting of
five search points, is used for the final search. Once the minimum distortion point is found this time, a motion
vector is obtained.

The spiral search method assumes that the motion vectors of neighboring macroblocks are highly spatially
correlated. Consequently, starting from the point located by the motion vector of the previous neighboring
macroblock, the spiral search begins to calculate the points’ minimum block distortion in the search window
moving in an outward spiral fashion. Once the distortion is under a limit, the new motion vector is found.
Figure 14.11 shows the spiral search pattern. The area is dependent on the search range selected for the algorithm.

Other suboptimal motion-estimation techniques include the three-step search (TSS), four-step search (FSS),
and 2D logarithmic search (TDL). Like the diamond and spiral searches, these algorithms assume and take
advantage of certain properties of temporal correlation among neighboring macroblocks to reduce the number
of points to be searched.

Motion Estimation on Embedded Processors
For motion estimation, the search window from the reference frame is DMA’d into internal memory. So, for
embedded processors, memory bandwidth is another factor that must be considered. For the previously mentioned
motion estimation algorithms, the search range dictates how much bandwidth is used.

Other block-matching algorithms use a hierarchical scheme where the reference frames are filtered and
decimated into scaled-down versions. For example, one algorithm might have a three-level hierarchy where the

668 Chapter 14

bottom level is decimated into a quarter, in each dimension, of the original size. The middle level would be
decimated into half, in each dimension, of the original size, and finally the top level would be untouched.

The algorithm would first search from the bottom level and obtain a motion vector, which would lead to
the search region for the next level. This continues until the top level is searched and the final motion vector is
obtained. Like other block-matching algorithms,hierarchical block matching aims to reduce the number of points
searched, yet effectively increasing the search range, since the intermediate motion vectors could theoretically
lead to anywhere in the final reference frame instead of a confined region.

Consider a full-search algorithm that uses a search window of 48×48. For comparable results from a hierar-
chical block-matching algorithm, window sizes of 4×12, 10×9, and 24×20 from the bottom, middle, and top
levels, respectively, can be used. For this, we can see that the bandwidth is actually less since the full search
needs around 2 kB of data brought in from external memory, while the hierarchical scheme needs only 618 bytes.

It has been shown that hierarchical block matching produces better results than other algorithms such as TDL
or TSS. But, this comes at a price: since the frames need to be decimated, more processing resources are needed.
In addition, on embedded processors, more bandwidth is used up on both the input and output sides to bring the
reference and reconstructed data in and out of internal and external memory. Finally, the encoder would also
need to be carefully scheduled due to the dependency of intermediate motion vectors calculated. This means
that the process is hard to be pipelined since a DMA cannot be started until the location from which to DMA’d
is known.

Fine Motion Search
For even better quality, video encoders employ various techniques in addition to a basic motion-estimation
algorithm. A lot of encoders find the motion vectors at half-pixel resolution where the pixels are interpolated
half-way between full-pixel points. Some even go further to find the motion vectors at the quarter-pixel resolution.
It is believed that capturing the motion at subpixel resolution provides greater precision for temporal coding.

Another technique is finding motion vectors for the blocks that make up the macroblock rather than the
macroblock itself. For example, a 16×16-sized macroblock is composed of four 8×8 blocks, and each of the
four would be associated with its own motion vector.

At the Decoder
The encoder-estimated motion vector information for P- and B-frames is conveyed to the decoder via the
compressed bitstream. At the decoder, those frames are reconstructed via the motion compensation technique
using the received motion vectors. We program the DMA using motion vector information to get the appropriate
reference frame block residing in external memory. Depending on the motion-vector pixel resolution, we may
need to interpolate the reference-frame block pixels to obtain more accurate blocks of pixels that fit the current
block under reconstruction. We reconstruct the current block by adding the interpolated pixel block to the residual
IDCT output. This total procedure is referred to as motion compensation. The cycle cost of motion compensation
increases with motion-vector pixel resolution and the number of subblocks used per macroblock.

Block Transform
Block transforms such as the DCT, H.264 transform, and discrete wavelet transform exploit the spatial redundancy
in video frames and transform most pixel energy into a few low-frequency coefficients. The block transform
does not directly reduce the number of bits required to represent the block. In fact, the N×N DCT transform
produces exactly N×N DCT coefficients, and these DCT coefficients may require more bits to represent the
block transform than the original pixels. The reduction in number of bits follows from the fact that, for typical
blocks of video data, the distribution of transform coefficients is nonuniform and this nonuniformity is due to
spatial redundancy in the original video frames. The transform places most of the energy into a few low-frequency
coefficients and many of the other coefficients are close to zero. The bit rate reduction is achieved by quantizing
the near-zero coefficients and entropy coding the remaining non-zero coefficients.

Quantization
After the block transform has been performed on a small video block (4×4 or 8×8), the results are quantized in
order to achieve larger gains in the compression ratio. Quantization refers the process of representing the actual

Video Coding Technology 669

coefficient values as one of a set of predetermined allowable values, so that the overall data can be encoded in
fewer bits. In this process, most of the high-frequency component values of the transform output are truncated
to zero and are left uncoded. Recall that the human eye is much more attuned to low-frequency information
than high-frequency details. Therefore, small errors in high-frequency components after decoding are not easily
noticed, and eliminating these high-frequency components entirely by quantization is often visually acceptable.
As discussed in Section 11.6.1, the JPEG quantization process takes advantage of this to reduce the amount of
DCT information that needs to be coded for a given 8×8 block.

Quantization is the key irreversible step in video coding. A quality scaling factor can be applied to the
quantization matrix to balance video quality and amount of achievable video compression. The quantization
process is straightforward once the quantization table is assembled, but the table itself can be quite complex,
often with a separate quantization coefficient for each element of the transform output block. The actual process
of quantization is a simple element-wise division (with rounding) between the transform output coefficient and
the quantization coefficient for a given row and column.

Entropy Coding
The last stage in video sequence coding is entropy coding. In this stage, a final lossless compression is performed
on the zig-zag scanned (one such zig-zag scan pattern is shown in Figure 11.50) and quantized DCT coefficients
to increase the overall compression ratio. Two widely used entropy coding methods are Huffman coding and
arithmetic coding. The former encodes binarized coefficients via Huffman look-up tables; therefore, Huffman
coding codes a symbol with one or more bits. In contrast, arithmetic coding can represent the information with
a fraction of the bits, and thus achieves 5 to 10% higher compression than Huffman coding. See Chapter 5 for
more detail on entropy coding methods and respective C-simulation techniques.

Rate Control
The rate-control algorithm is responsible for generating the quantization parameter (QP) by adapting to a target
transmission bit rate and output buffer fullness. Indeed, video streams are generally provided with a designated
bit rate for the compressed bitstream. The bit rate varies, depending on the desired image quality, capacity of the
storage/communication channel, and so on. In order to generate compressed video streams of the specified bit
rate, a rate controller is implemented in practical video encoding systems. In recent video coding standards, the
bit rate can be controlled through the quantization step size, which is used to quantize the DCT coefficients so
that it may determine how much of spatial details are retained. When the quantization step size is very small, the
bit rate is high and almost all picture details are conveyed. As the quantization step size is increased, the bit rate
decreases at the cost of some quality loss. The goal of rate control is to achieve the target bit rate by adjusting
the quantization step size, while minimizing quality loss. The block diagram of rate control in a typical video
coding system is shown in Figure 14.12.

In any lossy coding system, there is an inherent trade-off between the rate of the transmitted data and distortion
of the reconstructed signal. The purpose of rate control is to regulate the encoder to meet the bit-rate requirements
imposed by the transmission or storage medium while maintaining an acceptable level of distortion.Although QP
can be used to control bit rate and distortion, coding with a constant QP does not necessarily result in constant bit
rate or constant perceived quality. Both of these factors depend on scene content as well. Rate-control algorithms
and rate-distortion analysis are beyond the scope of this book. See Shoham and Gersho (1988), Gray (1990),
and Pickering and Arnold (1994) for more detail on rate-control algorithms.

Block
Transform

Quantization
Entropy
Coding

Virtual
Buffer

Rate
Controller

Figure 14.12: Block diagram of rate control in a typical video coding system.

670 Chapter 14

Profiles and Levels
As video compression plays a very important role in video content storage, broadcasting, Internet streaming, and
so on, and storage capacity and data transfer bandwidths are different for these applications; various levels of
coding to support individual applications (in terms of bit rate, quality, scalability, etc.) by the same compression
standard interface are very advantageous. For example, the MPEG-2 standard specifies various profiles (specify
syntax or algorithm) and levels (specify parameters such as frame rate, resolution) to address different application
segments. A profile is a subset of algorithmic tools and a level identifies a set of constraints on parameter values.
MPEG-2 supports six profiles: simple profile (SP), main profile (MP), multiview profile (MVP), 4:2:2 profile
(422P), SNR-spatial profile (SNRSP), and high profile (HP). The MPEG-2 standard supports four levels for a
given profile: low (up to 352×288 resolution, 30 frames/second, 4 Mbps, etc.), main (up to 720×576 resolution,
30 frames/second, 20 Mbps, etc.), 1440 (up to 1440×1088 resolution, 60 frames/second, 80 Mbps, etc.), and
high (which is intended for HDTV applications and supports up to 1920×1088 resolution, 60 frames/second,
100 Mbps, etc.). An MPEG-2 decoder that supports a particular profile and level is only required to support the
corresponding subset of algorithm tools and the set of parameter constraints.

Bitstream Structure
Figure 14.13 shows the MPEG-2 bitstream format of encoded video data. This bitstream contains information
about sequence layer headers, picture layer headers, slice layer headers, macroblock layer headers, motion
vectors, quantization parameters, coded block pattern, and residual coefficients (both luminance and chrominance
residual values). In addition, there will be synchronization information (called as sync pattern or start code) to
identify the start of a slice. At the decoder, as shown in Figure 14.14, we decode the MPEG-2 bitstream starting
with the decoding of sequence-layer headers, picture-layer headers, slice-layer headers, and macroblock-layer
headers, followed by decoding of motion vectors, the coded block pattern, and residual coefficients. The entropy
decoded transform coefficients are reconstructed (with inverse quantization) and inverse transformed to produce
the prediction error. This is added to the motion-compensated prediction generated from previously decoded
pictures to produce the decoded output.

Scalable Video Coding
Video coding today is used in many applications ranging from portable players, video conferencing, and Internet
video streaming to standard and high-definition TV broadcasting. Diverse receivers may require the same video at
different bandwidths, spatial resolutions, frame rates, computational capabilities, and so on. When we originally
code the video, we do not know which client or network situation will exist in the future. To serve diversified clients

MB 1 MB 2 --- MB m 21

Start
Code

Picture
Parameters

Slice
0

Slice
1

Slice
2

Slice
s 21

Start
Code

Sequence
Parameters

Profile
and

Levels

Picture
0

Picture
1

Picture
2

Picture
p 21

Macroblock
Layer

Slice
Layer

Picture
Layer

Sequence
Layer

MB
Type

Quantization,
Motion Vectors,

Coded Block Pattern

Residual
Coefficients

MB
Address

Start
Code

Slice
Address

Slice
Quantization

Value
MB 0

Figure 14.13: MPEG-2 video compression bitstream format.

Video Coding Technology 671

Sequence
Headers

GOP Layer

Picture
Layer

Slice
Layer

MB
Layer

Block Layer

Sequence
Header Code

Horizontal Size,
Vertical Size,
Aspect Ratio

Frame Rate,
Bit Rate, VBV
Buffer Size

Constrained
Parameter

Flag

Read
Quantization

Matrices

Sequence
Extension and

User Data

GOP
GOP, …
GOP

Picture,
Picture, …
Picture

Picture
Extension and

User Data

Broken
Link

Closed
GOP

Group Start
Code, Time

Code

Full pel Forward
Vector, Forward

F Code

VBV
Delay

Picture
Coding
Type

Temporal
Reference

Picture
Start Code

Full pel Backward
Vector, Backward

F Code

EIP, PCE,
Extension and

User Data

Slice,
Slice, …
Slice

Slice Start
Code

Slice Vertical
Position

Extension

Priority
Breakpoint

Quantizer
Scale

Intraslice
Flag

Intraslice
Extra

Information
Slice

MB,
MB, …
MB

Block,
Block, …
Block

MVs,
CBPs

Quantizer
Scale

DCT
Type

Frame and
Filed Motion

Type

Spatial
Temporal

Weight Code

MB Address
Increment,
MB Type

MB
Escape

DC Size,
DC Differential

First DCT
Coefficient

Subsequent
DCT Coefficients

End of
Block

Figure 14.14: MPEG-2 video bitstream decoding steps.

over heterogeneous networks, the scalable video coding (SVC) allows on-the-fly adaptation in the spatiotemporal
and quality dimensions according to network conditions and receiver capabilities. Widely used video coding
standards such as MPEG-2,MPEG-4,and H.264 allow this scalability, and at the same timeenable interoperability
of diverse encoder and decoder products. More detail on the scalable video coding extension of the H.264/AVC
standard is provided in Section 14.5.

Critical Video-Decoding Modules
Since video bitstream decoding involves entropy decoding of many headers, parameters, and residual coefficients,
and computing of inverse transform, motion compensation, loop filter, and so on, proper decoder implementation
on a particular processor is very important; otherwise, the video decoder consumes most of the processor
MIPS and leaves much less processor time for rest of the system (which may include video post-processing,
audio decoding, graphics, protocol stack, operating system, etc.). Given inefficient system design and decoder
implementation, it is even possible that the video decoder cannot run in real time on an embedded processor.
Sequence, picture, and slice-layer code usually contain much of the control code, and use much less processor
time as they are performed once per sequence or picture. This is why most sequence and slice-layer software
code will be in high-level languages. The macroblock layer is in between; it is accessed once per macroblock,
and coded in high-level language or assembly language depending on the available MIPS budget.

The most critical blocks in video decoding, as highlighted in Figure 14.15, are residuals entropy decoding,
zig-zag scan, inverse quantization, inverse block transform, motion compensation, and loop filter (if the standard
supports the same). These blocks are critical in video decoder implementation because they are performed at the
pixel level, and the way we implement them on a processor for a particular application may make or break that
application on a particular processor. In addition, the computational complexity of these blocks increases with

672 Chapter 14

Slice Layer Headers

Macroblock Layer Headers

Entropy Decoder,
Zig-Zag Scan and

Quantization

Block
Transformation

Motion
Compensation

Deblock Filtering

Perform once per slice
(code may be in C)

Perform once per MB
(code may be in C or ASM)

Perform at the pixel level (code
usually in ASM and optimized)

Block layer

Figure 14.15: Video-decoding algorithm showing critical modules.

Table 14.2: Selected video coding standards

Video Coding Standard Year Introduced Originating Body

M-JPEG 1980s ISO

H.261 1990 ITU-T

QuickTime 1990s Apple Computer

Windows Media Video 1990s Microsoft

MPEG-1 1993 ISO/IEC

MPEG-2, H.262 1994,1995 ISO/IEC, ITU-T

H.263, H.263+ 1995–2000 ITU-T

DV 1996 IEC

RealVideo 1997 RealNetworks

MPEG-4 1998–2001 ISO/IEC

Ogg Theora 2002 Xiph Foundation

H.264 2003 ITU-T and ISO/IEC

bit rate and frame resolution. Optimization of these blocks both at the algorithm and program instruction levels is
very important to minimize processing time, memory, and data-transfer bandwidth requirements. Typically, the
software for these critical blocks is written in assembly language, and the code is fully optimized by utilizing all
processor resources. We return to these critical modules in Sections 14.3 and 14.4 when discussing the MPEG-2
and H.264 decoder modules.

14.2.4 Video Compression Standards

Table 14.2 lists a number of popular video coding standards, as well as their originating bodies. In this section,
we briefly review each.

Motion JPEG
Although not specifically encompassed by the JPEG standard, motion JPEG (M-JPEG) offered a convenient way
to compress video frames before MPEG-1 formalized a method. Essentially, each video frame is individually
JPEG encoded, and the resulting compressed frames are stored (and later decoded) in sequence.

A motion JPEG2000 codec also exists, which uses J2K instead of JPEG to encode individual frames. It is
likely that this codec will replace M-JPEG at a rate similar to the adoption of J2K over JPEG.

H.261
This standard, developed in 1990, was the first widespread video codec. It introduced the idea of segmenting a
frame into 16×16 macroblocks that are tracked between frames to determine motion compensation vectors. It is
mainly targeted at video conference applications over ISDN lines (64r kbps, where r ranges from 1 to 30). Input

Video Coding Technology 673

frames are typically CIF at 30 fps, and output compressed frames occupy 64 to 128 kbps for 10-fps resolution.
Although still used today, it has mostly been superseded by its successor, H.263.

MPEG-1
When MPEG-1 entered the scene in the early 1990s, it provided a way to digitally store audio and video and
retrieve it at roughly VHS quality. The main focus of this codec was storage on CD-ROM media. Specifically,
the primary objective was to allow storage and playback of VHS-quality video on a 650- to 750-Mbyte CD,
allowing creation of a so-called video CD (VCD). The combined video/audio bitstream could fit within a 1.5 Mbps
bandwidth, corresponding to the data retrieval speed from CD-ROM and digital audio tape systems at that time.

At high bit rates, it surpasses H.261 in quality (allowing over 1 Mbps for CIF input frames). Although CIF is
used for some source streams, another format called SIF is perhaps more popular. It is 352 ×240 pixels per frame,
which turns out to be about one-quarter of a full 720 ×480 NTSC frame. MPEG-1 was intended for compressing
SIF video at 30 frames per second, a progressive scan. Compared to H.261, MPEG-1 adds bidirectional motion
prediction and half-pixel motion estimation. Although MPEG-1 is still used for VCD creation, MPEG-1 pales
in popularity today compared to MPEG-2.

MPEG-2
Driven by the need for scalability across various end-user markets, MPEG-2 improved on MPEG-1, with the
capability to scale in an encoded bit rate from 1 Mbps up to 30 Mbps. This opened the door to high-performance
applications, including DVD videos and standard- and high-definition TV. Even at the lower end of MPEG-2 bit
rates, the quality of the resulting stream is superior to that of an MPEG-1 clip.

This complex standard is composed of 10 parts. The “visual” component is also called H.262. Whereas
MPEG-1 focused on CDs and VHS-quality video, MPEG-2 achieved DVD-quality video with an input con-
forming to BT.601 (NTSC 720×480 at 30 fps), and an output in the range of 4 to 30 Mbps, depending on which
performance profile is chosen. MPEG-2 supports interlaced and progressive scanning. We discuss MPEG-2
decoding modules in more detail in Section 14.3.

H.263
This codec is ubiquitous in video conferencing, outperforming H.261 at all bit rates. Input sources are usually
QCIF or CIF at 30 fps, and output bit rates can be less than 28.8 kbps at 10 fps, for the same performance as
H.261. Therefore, whereas H.261 needs an ISDN line, H.263 can use ordinary phone lines. H.263 is used in end
markets such as video telephony and networked surveillance (including Internet-based applications).

MPEG-4
MPEG-4 starts from a baseline of H.263 and adds several improvements. Its prime focus is streaming multimedia
over a network. Because the network usually has somewhat limited bandwidth, typical input sources for MPEG-4
codec are CIF resolution and lower. MPEG-4 allows diverse types of coding to be applied to different types
of objects. For instance, static background textures and moving foreground shapes are treated differently to
maximize the overall compression ratio. MPEG-4 uses several different performance profiles, the most popular
among them being “simple” (similar to MPEG-1) and “advanced simple” (field based like MPEG-2). The simple
profile is suitable for low video resolutions and low bit rates, like streaming video to cell phones. The advanced
simple profile, on the other hand, is intended for higher video resolutions and higher bit rates.

DV
DV is designed expressly for consumer (and subsequently professional) video devices. Its compression scheme
is similar in nature to motion JPEG and it accepts the BT.601 sampling formats for luma and chroma. It is quite
popular in camcorders, and it allows several different “playability” modes that correspond to different bit rates
and/or chroma subsampling schemes. DV is commonly sent over an IEEE 1394 (“FireWire”) interface, and its
bit-rate capability scales from the 25 Mbps commonly used for standard-definition consumer-grade devices, to
beyond 100 Mbits/second for high-definition video.

QuickTime
Developed by Apple Computer, QuickTime comprises a collection of multimedia codecs and algorithms that
handle digital video, audio, animation, images, and text. QuickTime 7.0 compiles with MPEG-4 and H.264.

674 Chapter 14

In fact, QuickTime’s file format served as the basis for the ISO-based MPEG-4 standard, partly because it
provided an end-to-end solution, from video capture, editing, and storage to content playback and distribution.

RealVideo
RealVideo is a proprietary video codec developed by RealNetworks. RealVideo started as a low-bit-rate streaming
format to PCs, but now it extends to the portable device market as well, for streaming over broadband and
cellular infrastructures. It can be used for live streaming, as well as video-on-demand viewing of a previously
downloaded file. RealNetworks bundles RealVideo with RealAudio, its proprietary audio codec, to create a
RealMedia container file that can be played with the PC application RealPlayer.

Windows Media Video/VC-1
This codec is a Microsoft-developed variant on MPEG-4 (starting from WMV7). It also features Digital Rights
Management (DRM) for control of how content can be viewed, copied, modified, or replayed. In an effort to
standardize this proprietary codec, Microsoft submitted WMV9 to the Society of Motion Picture and Television
Engineers (SMPTE) organization, and it is currently the draft standard under the name “VC-1.”

Theora
Theora is an open-source, royalty-free video codec developed by the Xiph Foundation, which has also developed
several open-source audio codecs (see Chapters 12 and 13 for further information about Speex [for speech] and
Vorbis [for music]). Theora is based on the VP3 codec that On2 Technologies released into the public domain.
It mainly competes with low-bit-rate codecs like MPEG-4 and Windows Media Video.

H.264
H.264 is also known as the MPEG-4 Part 10, H.26L, or MPEG-4 advanced video coding (AVC) standard. It
actually represents a hallmark of cooperation in the form of a joint definition between the ITU-T and ISO/IEC
committees. The objective of H.264 is to reduce bit rates by 50% or more for comparable video quality, relative
to its predecessors. It works across a wide range of bit rates and video resolutions. H.264’s dramatic bit-rate
reductions come at the cost of significant implementation complexity. This complexity limits H.264 coding at
high frame resolutions to work only with higher-end embedded processors, often requiring multiple processors
that split the coder processing load. The H.264 decoder is discussed further in Section 14.4.

Quality, Bit Rate, and Complexity Comparison
Today many of the video compression algorithms mentioned here are competing for industry and consumer
acceptance. As Figure 14.16 shows, all of these algorithms strive to provide higher-resolution video at lower
bit rates than their predecessors and at comparable or better quality. But that is not all—they also extend to
many more applications than the previous generation of standards by offering features like increased scalability

H.264 (main)

B
an

dw
id

th
 a

nd
 C

om
pl

ex
ity

1.0

1.5

0.7 0.7

0.4

Bit rate

Complexity

WMV9MPEG-4 (ASP)MPEG-2MPEG-1

Figure 14.16: Progress in video encoding algorithms leads to lower bit rates and higher complexity for comparable
video quality.

Video Coding Technology 675

(grabbing only the subset of the encoded bitstream needed for the application), error resilience (better immunity to
errors), and digital rights management capabilities (to protect content from unauthorized viewing or distribution).
However, the downside of these newer algorithms is that they generally require even more processing power
than their predecessors in order to achieve their remarkable results.

In the following sections, we further discuss the widely used MPEG-2, rapidly emerging H.264, and the
next-generation video coding algorithm, H.264 SVC (scalable video coding).

14.3 MPEG-2 Decoder

As shown in Figure 14.13, the encoded bitstream consists of video sequence layer headers, picture layers
headers, slice layer headers, macroblock layer headers, motion vectors, the coded block pattern, and residual
coefficients. Figure 14.14 shows the received MPEG-2 hierarchical video bitstream with the following six layers
of parameters and the coded pixel data: video sequence, group of pictures (GOP), picture layer, slice layer,
macroblock parameters, and coded data block (of 8×8 pixels). After decoding all headers and parameters, the
entropy-decoded transform coefficients are reconstructed (with inverse quantization) and inverse transformed
to produce the prediction error. This is added to the motion-compensated prediction generated from previously
decoded pictures to produce the decoded output. Providing complete details of decoding of MPEG-2 compressed
video bitstream is beyond the scope of this book. See ISO/IEC (1995) and Jack (2001) for more information on
MPEG-2 video bitstream decoding. Next, various layers of the MPEG-2 decoder are discussed. Later discussion
focuses on the critical modules (e.g., shown in Figure 14.15) belonging to the macroblock and block layers.

14.3.1 Slice Layer and Above

A video sequence commences with a sequence header that may optionally be followed by a picture group header
and then by one or more coded frames. The video sequence is the highest syntactic structure of the coded video
bitstream, and in MPEG-2 it is terminated by a 32-bit sequence_end_code, 0×000001B7. A video sequence
header commences with a sequence_header_code (0×000001B3), and is followed by a series of parameters,
such as frame width, height, aspect ratio, frame rate, bit rate, buffer size, quantization parameters, and so on.

A 32-bit string of 0×000001B5, referred to as extension_start_code, indicates the beginning of extension data
beyond MPEG-1. For MPEG-2 video bitstreams, an extension_start_code and a sequence extension must follow
each sequence header. At various points in the video sequence, a particular coded picture may be preceded by
either a repeat sequence_header() or a GOP_header() or both. All data elements (except quantization matrices)
in the sequence_extension() that follow a repeat sequence_header() will have the same values as in the first
sequence_extension(). Repeating the sequence header allows the data elements of the initial header to be repeated
in order that random access into the video sequence is possible.

In MPEG-2, several extensions are used to support various levels of capability. These extensions include
sequence display extension, sequence scalable extension, picture coding extension, quant matrix extension,
picture display extension, picture temporal scalable extension, and picture spatial scalable extension. MPEG-2
sequence extensions are beyond the scope of this book. In addition, MPEG-2 supports both progressive coding
(frame structured pictures) and interlaced coding (field-structured pictures), but discussion in this section is
limited to progressive coding algorithms.

The flow chart diagram of MPEG-2-sequence layer-level bitstream parsing is shown in Figure 14.17. The
layer highlighted in the gray box is the critical layer of all layers as it involves the critical video decoder modules,
as shown in Figure 14.15.

A picture_data() process involves decoding of one or more of the slice layers. The flow chart diagram
of the MPEG-2 slice-layer-level bitstream parsing is shown in Figure 14.18. Data for each slice layer con-
sists of a slice header followed by macroblock_data(). Slice header decoding involves decoding of slice_
start_code, optional slice_vertical_ position_extension, optional priority_breakpoint, quantizer_scale_code,
intra_slice_ flag, intra_slice, reserved_bits, extra_bit_slice, extra_information_slice, and macroblock_data.
Once again, here the macroblock_data() is the critical function as it involves decoding of macroblock headers,
motion vectors, coded block pattern and residual coefficients.

676 Chapter 14

Decode
sequence_header()

Is EXTENSION_START_CODE
present?

Decode MPEG-1
Bitstream

Decode
sequence_extensions

extension_and_
_user_data(0)

Is GOP_START_CODE
decoded?

Decode GOP_
headers(),
extension_and_
user data(1)

Decode picture_
headers(),
picture_coding_
extension(),
extension_and_
_user_data(0)

Decode
picture_data()

Is GOP_START_CODE or
PICTURE_START_CODE

decoded?

Is SEQUENCE_END_CODE
decoded?

Decode
sequence_header()

End

Start

N

Y

Y

N

Y

Y

N

N

Figure 14.17: MPEG-2 sequence layer-level bitstream parsing.

14.3.2 Macroblock Layer

Data for each macroblock layer consists of a macroblock header followed by motion vectors, coded block pattern,
and residual block data. The flow chart diagram of macroblock-layer bitstream parsing is shown in Figure 14.19
(see page 678). The 11-bit field 0000 0001 000, referred to as macroblock_escape, is used when the difference
between the current macroblock address and previous macroblock address is greater than 33. A variable-length
codeword, referred to as macroblock_address_increment, is used to update the macroblock_address when the
difference between the current macroblock address and the previous macroblock address is less than or equal to 33.
Except at the start of a slice, if the value of macroblock_address recovered from macroblock_address_increment

Video Coding Technology 677

Start

Y

Y

Y

Y

N

N

N

N

N

Y

Is vertical_size�2800

Decode slice_vertical_
position_extension

Is ((SEQUENCE_SCALABLE_EXTENSION)
&&(scalable_mode��

“data partitioning”))�� 1
Decode
priority_breakpoint

Decode quantizer_
scale_code

Is bit ‘1’ decoded?

Decode
intra_slice_flag,
Intra_slice,
reserved_bits

Is bit ‘1’ decoded?

Decode extra_
information_slice

Extra_bit_slice�0

Decode
macroblock()

Are bits ‘000 0000 0000 0000 0000 0000’
decoded?

Decode next_start_code()

End

Decode slice_start_code

Figure 14.18: Bitstream parsing by MPEG-2 slice-layer level.

and the macroblock_escape codes differs from the previous_macroblock_address by more than 1, then some
macroblocks have been skipped. A skipped macroblock is one for which no data is encoded. The skipped
macroblock is constructed using the pixels of the colocated macroblock in the reference frame.

The function macroblock_modes() decodes macroblock_type, spatial_temporal_weight_code, frame_
motion_type, field_motion_type, DCT_type, and optional quantizer_scale_code. The variable-length code-
word, macroblock_type, indicates the decoding method for the macroblock content. Various parameters (e.g.,
macroblock_quant, macroblock_intra, macroblock_motion_ forward) are derived from macroblock_type.

678 Chapter 14

Start

Y

Y

N

Y

Y

Y

Y

N

N

N

N

Y

N

NAre bits ‘0000 0001
000’ decoded?

Decode escape
macroblock

Decode macroblock_
address_increment

Is macroblock_quant !�0?

Derive forward_
motion_vectors()

Decode block(i)

End

Decode
macroblock_modes()

Decode
quantizer_scale_code

Is (((macroblock_motion_forward)||
(macroblock_intra && concealment_

motion_vectors)) !�0)?

Is macroblock_motion_backward
present?

Derive backward_
motion_vectors()

Is ((macroblock_intra &&
concealment_motion_vectors) !�0)? Decode marker_bit

Is macroblock_pattern !�0?Decode coded_block_pattern()

Is i�block_count?

Figure 14.19: MPEG-2 macroblock layer-level bitstream parsing.

Motion vectors are coded differentially with respect to previously coded motion vectors in order to reduce the
number of bits required to represent them. In order to decode the motion vectors, the decoder will maintain four
motion-vector predictors denoted as MVP[i][j][k], where i = 0 to 1 (to hold up to two motion-vector predictors),
j = 0,1 (to hold forward or backward motion), and k = 0,1 (to hold horizontal and vertical motion components).
For each prediction, a motion vector MV[i][j][k] is derived by adding the prediction to the decoded motion
difference value, delta. Then, a scaled motion vector, sMV[i][j][k], is derived for chrominance components.
The index i also take the values 2 and 3 for derived motion vectors used with dual-prime prediction, as these
motion vectors do not themselves have motion vector predictors.

The optional variable-length codeword, coded_block_ pattern (CBP), is used to derive the 4:2:0 CBP. The
CBP indicates which blocks in the macroblock have at least one transform coefficient, and it is present only if

Video Coding Technology 679

macroblock_ pattern = 1. The CBP is represented as B1B2B3B4B5B6, where Bn = 1 if at least one coefficient
is in block n; otherwise, Bn = 0. This block numbering was shown in Figure 14.6. The most critical block in the
macroblock layer is block decoding, which is highlighted with the gray box in Figure 14.19.

14.3.3 Block Layer

Data for each block layer consists of residual coefficient data. The flow chart diagram of block-layer-level
bitstream parsing is shown in Figure 14.20. In this layer, we decode a block of quantized DCT coefficients from
the bitstream. A block denotes an 8×8-pixel area of video data. With 4:2:0 representation, we will have six such
8×8 blocks for both luminance and chrominance decoding (as shown in Figure 14.6). The decoding complexity
of the macroblock layer and all layers above it is almost independent of bit rates. However, the complexity of
the block layer increases nonlinearly with the bit rate because the complexity of entropy decoding of residual
data coefficients per 8×8 block increases (due to increased number of coefficients) when the bit rate increases
for a given frame resolution.

As illustrated in Figure 14.15, the most critical modules of the decoder are in the macroblock and block
layers. The MPEG-2 modules VLD, zig-zag scan, inverse quantization, IDCT, and motion compensation are

Start

Is block_pattern[i] !�0?

Decode DCT_dc_
size_luminance

Is i�4?

End

Is intra_macroblock?

Is DCT_dc_size_
luminance !�0?

Decode DCT_dc_
differential

Decode DCT_dc_
size_chrominance

Is DCT_dc_size_
chrominance !�0?

Decode DCT_dc_
differential

Decode First DCT
Coefficient

Is END_OF_BLOCK
decoded?

Decode Subsequent
DCT Coefficients

N

Y

Y

Y

YY

N

N

Y

N

N

N

Figure 14.20: MPEG-2 block layer-level bitstream parsing.

680 Chapter 14

VLD (decodes,
headers, MVs,
and residuals)

Zig-Zag Scan
and Inverse
Quantization

Inverse
DCT

Motion Compensation
P or B Frames

I Frames

MVs To Display

Bitstream

Reference Buffer

Display
Buffer

�

Figure 14.21: Illustration of MPEG-2 block decoding.

very critical since they are called at the pixel level. The simplified block diagram of the MPEG-2 decoder with
the critical modules is shown in Figure 14.21. Next, we focus on these critical modules.

MPEG-2 VLD
The MPEG-2 standard specifies many codeword tables to encode various headers, parameters, and residual data
coefficients into the bitstream using variable-length coding (VLC). At the decoder, corresponding variable-length
decoding (VLD) extracts information of headers, parameters, and data coefficients from the received bitstream.
Of all VLD functions, residual data coefficients decoding VLD is critical, as we needed to decode all the non-zero
coefficients of an 8×8 block. See Section 5.2 for more detail on MPEG-2 VLD.

Inverse Zig-Zag Scan
The residual coefficients are rearranged from serial fashion (0 to 63) to 8×8 block fashion using inverse zig-zag
scanning. The scanner places the coefficients starting at the DC position and slowly moves toward high-frequency
positions according to the scan patterns given in the following table. The received bitstream contains a flag that
indicates which zig-zag pattern the encoder adapted for scanning.

0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63

Zig-zag scan

0 4 6 20 22 36 38 52

1 5 7 21 23 37 39 53

2 8 19 24 34 40 50 54

3 9 18 25 35 41 51 55

10 17 26 30 42 46 56 60

11 16 27 31 43 47 57 61

12 15 28 32 44 48 58 62

13 14 29 33 45 49 59 63

Field scan

Inverse Quantization
The slice-layer parameter, quantizer_scale_code, specifies the scalefactor of the reconstruction level of the
received DCT coefficients. The decoder uses this value until another quantizer_scale_code is received at the
slice or macroblock layer. The 2D array of residual coefficients is inverse quantized to produce the reconstructed
DCT coefficients. This process is essentially a multiplication by the quantizer step size (which is derived from
the quantization matrix and a scalefactor). After the appropriate inverse quantization arithmetic, the resulting
coefficients are saturated and then a mismatch control operation is performed to give the final reconstructed
DCT coefficients for an 8×8 block. For complete details on inverse quantization process, see Section 7.4 in
ISO/IEC (1995).

8×8 IDCT
Once the DCT coefficients are reconstructed (i.e., after inverse quantization), an 8×8 IDCT transform will be
applied to obtain the spatial domain pixels (in case of intramacroblocks) or to obtain the residual data (in case of
intermacroblocks). For more detail on 8×8 IDCT computation and implementation techniques, see Section 7.2.

Video Coding Technology 681

Decoded
motion_vector_
difference

Input
Bitstream

Predicted
Motion

Additional
Dual-prime
Processing

Half pel
Prediction
Filtering

Reference
Frame Buffer

From
IDCT

Decoded
Macroblock
Pixels

11

Figure 14.22: Simplified MPEG-2 motion-compensation process.

Motion Compensation
The motion compensation process forms predictions from previously decoded pictures, which are combined with
the residual data coefficients from IDCT in order to recover the final decoded pixels as shown in Figure 14.22.
Predictions are formed by reading prediction samples from the reference frames. A given sample is predicted
by reading the corresponding sample in the reference frame offset by the motion vector. All motion vectors are
specified to an accuracy of one-half sample. Thus, if a component of the motion vector is odd, the samples will be
read from the midpoint between actual samples in the reference frame. These midway samples are calculated by
simple linear interpolation from the actual samples. For complete details on the MPEG-2 motion compensation
process, see Section 7.6 in ISO/IEC (1995).

14.3.4 MPEG-2 Decoding Complexity

The complexity of a video decoder in terms of processor MIPS and memory depends on a few parameters.
For example, the computational complexity of the decoder increases with the video frame resolution (since the
number of pixels to be reconstructed per frame is greater), frame rate (since the number of frames to be processed
per second is greater), bit rate (since the number of coefficients per block increases with the bit rate per given
resolution and frame rate), and the profile used (since algorithm complexity varies from profile to profile). All
these parameters determine the complexity of video decoding. This is why most of the standards specify the
coding levels for the video coder.

Next, we provide the decoding complexity in terms of cycles per pixel and the amount of L1 memory required
to decode the MPEG-2 bitstream on the reference embedded processor. For D1-resolution, MPEG-2-coded video
bitstream at 8 Mbps, we require a total of 35 cycles per pixel to decode it using the reference embedded processor.
Cycle counts by module are given in the following:

• Parser (control code to parse bitstream at various layers): 7 cycles per pixel
• VLD (decoding all headers and residual coefficients and zig-zag scan): 10 cycles per pixel
• Quantization: 3 cycles per pixel
• IDCT: 6 cycles per pixel
• MC: 4 cycles per pixel
• Miscellaneous (DMA waits, data packing/unpacking, and others): 5 cycles per pixel

With respect to memory usage, although we require storage of one or two reference frames (occupying up
to 1 MB memory with D1 frame resolution) that are used for reconstructing the current frame and the memory
to hold the current frame itself (512 kB with D1 frame resolution), all of these use slow off-chip L3 memory.
Typically, we will have sufficient off-chip L3 memory. The problem is that on-chip L1 memory (used to hold the
program code, parameters, headers from all layers, VLD look-up tables, temporary work buffers, etc.) is costly
as it occupies chip space and there is usually not much available on the chip to hold a whole video frame. For
MPEG-2 decoding, we require about 48 kB of L1 memory.

14.4 H.264 Decoder

ITU-T H.264/MPEG-4 (Part 10) advanced video coding (AVC), commonly referred as H.264/AVC, is the
newest entry in the series of international video coding standards. Compared with previous standards, H.264

682 Chapter 14

Table 14.3: Comparison of MPEG-2 and H.264 coding features

Coding Features MPEG-2 H.264

Entropy coding VLC UVLC, CAVLC, CABAC

Transform 8×8 DCT 4×4, 8×8 integer transforms, Hadamard transform

Picture-coding types I, P, B I, P, B, SP, SI

Intraprediction support No Yes

Motion estimation resolution Half-pixel Quarter-pixel

Number of motion vectors per macroblock Up to 2 Up to 16

Weighted prediction No Yes

Multiple reference-frame support No Yes

Deblocking filter No Yes

achieves up to 50% improvement in bit-rate efficiency. It has been adapted by many application standards
such as DVB-H, HD-DTV, 3G, and so on. It is currently the most powerful and state-of-the-art standard and
its VLSI design technology provides balance among coding efficiency, implementation complexity, and cost.
While H.264 uses the same general coding principles as previous standards, it has many new features (e.g.,
context-based entropy coding, intraprediction, 4×4 integer transform, quarter-pixel motion estimation, multi-
ple reference-frame support, adaptive deblocking filter, etc.) that distinguish it from the previous standards.
Table 14.3 highlights the differences between MPEG-2 and H.264 video coding standards.

H.264 supports many profiles (baseline, main, extended, high, etc.) and levels to play an important role
in many industry-wide applications. The baseline profile requires less computation and system memory and
is optimized for low-latency applications such as video telephony, Internet streaming, and so on. The main
profile provides highest coding efficiency but at the cost of increased complexity. Broadcast and content storage
applications are primarily interested in the main profile to leverage the highest possible video quality at the
lowest possible bit rates. The extended profile combines the robustness of the baseline profile and greater
network robustness to support video-streaming applications. The high profiles are intended for high-resolution,
high-quality, high-bit-rate applications such as DVB (digital video broadcasting), BD-ROM (Blu-ray disk ROM),
and so on.

As the extended and high-profile designs are based on the baseline and main profile coding techniques, here
we discuss only the baseline and main profile decoder modules and respective implementation techniques.

As shown in Figure 14.23, the H.264 coded video sequence consists of a series of NAL (network abstraction
layer) units, each containing an RBSP (raw-byte-sequence payload) data. The output of video encoding process
consists of video-coding layer (VCL) bits that are mapped to NAL units before storage or transmission. H.264
makes a distinction between VCL data and NAL data. Bits associated with the slice layer and below are identified
as VCL NAL data, and the bits associated with higher layers are identified as non-VCL NAL data. The purpose
of separately specifying the VCL NAL and non-VCL NAL data is to distinguish between specific features of the
video coding and of the network transport. The VCL NAL data and non-VCL NAL data can be sent together as
part of a single bitstream or can be sent separately. In this book, we will focus on the VCL NAL data, which is
the heart of compression capability.

As the coding of video involves coding of many types of data (e.g., parameters, supplemental information,
actual video slices, end-of-sequence or stream flags), each type of data is placed in a separate RBSP unit and
each of the RBSP units is transmitted in a separate NAL unit. The header of the NAL unit signals the type of
RBSP unit and RBSP data makes up the rest of the NAL unit. An NAL unit specifies a generic format for use
in both packet-oriented and bitstream systems. The format of NAL units for both packet-based transport and
byte-stream-based systems is identical, except that each NAL unit can be preceded by a start-code prefix and
extra padding bytes in the byte-stream format.

Video Coding Technology 683

NAL
Header

RBSP
Data

NAL
Header

RBSP
Data

NAL
Header

RBSP
Data

NAL
Header

RBSP
Data

Sequence
Parameter Set

Optional
SEI

Picture
Parameter Set

Slice Slice Slice Slice

Slice
Header

MB
Data

MB
Data

MB
Data

MB
Data

MB
Header

Intraprediction Modes /
Motion Vectors

Optional CBP and
Quantization Value

Residual
Data

Figure 14.23: Simplified structure of H.264 bitstream format.

A pseudocode for decoding NAL unit headers is given in Pcode 14.1. Before decoding NAL headers, we
search for the start_code_ prefix to know the starting of the NAL unit in the bitstream. The simulation code for
finding start_code_ prefix is given in Pcode 14.2.

// ReadNalu()
found = 0;
while(!found) {

found = SearchStartCodePrefix(buf);
if (buf->water_mark < 512)

LoadData(buf,512);
if (found) {

tmp = Uv(buf,8);
nal->forbidden_zero_bit = tmp >> 7;
nal->nal_ref_idc = (tmp>>5) & 0x3;
nal->nal_unit_type = tmp & 0x1f;
if ((nal->nal_unit_type == 0) || (nal->nal_unit_type > 19))

found = 0;
}

};

Pcode 14.1: Pseudocode for decoding NAL unit header.

The first byte of each NAL unit is a header byte (forbidden_zero_bit, nal_ref_idc, and nal_unit_type) that
contains an indication of the type of data in the NAL unit, and the remaining bytes contain payload data of the
type indicated by the header.

The pseudocode for decoding the sequence of RBSP units is given in Pcode 14.3. Depending on the NAL unit
type, we decode corresponding headers, slice data, or end of sequence. In H.264, the global parameters used for
coding video sequences are divided into two parameter sets: (1) sequence parameter set and (2) picture parameter
set. These parameter sets contain an infrequently changing sequence and picture parameters. A sequence param-
eter set contains parameters applied to a complete video sequence, whereas the picture parameter set contains
the parameters that are applied to a few pictures within a sequence.

The sequence parameter set includes the following: profile_idc, constraint_set0/1/2/3_ flags, reserved_zero_
bits, level_idc, sequence_ parameter_set_id, log2_max_ frame_num_minus4, picture_order_cnt_type, optional
log2_ max_ pic_order_cnt_lsb_minus4, optional delta_ pic_order_always_zero_ flag, optional offset_ for_non_
ref_ pic,optional offset_ for_top_to_bottom_ field,optional num_ref_ frames_in_ pic_order_cnt_cycles,optional
offset_ for_ref_ frame[i], num_ref_ frames, gaps_in_ frame_num_value_allowed_ flag, pic_width_in_mbs_
minus1, pic_height_in_map_units_minus1, frame_mbs_only_ flag, optional mb_adaptive_ frame_ field_ flag,

684 Chapter 14

int SearchStartCodePrefix(InBuffer_t *buf)
{
int i;
uword value1, value2, value3;
int tmp = 1024, x = 0;
uword ref = 0xffffff00, prefix = 0x00000100;

tmp = buf->water_mark >> 2;
value1 = buf->curr_word;
for(i = 0;i < tmp-1;i++){

value2 = buf->start_ptr[(buf->read_index++) & 0x1ff];
if ((value1 & ref) == prefix){

buf->read_index+ = -2;
if (buf->read_index < 0)

buf->read_index = 0x1ff;
buf->curr_word = buf->start_ptr[(buf->read_index++) & 0x1ff];
buf->bit_pos = 24; x = 1;
break;

}
value3 = value1 << 8;
if ((value3 & ref) == prefix){

buf->read_index--;
if (buf->read_index < 0)

buf->read_index = 0x1ff;
buf->curr_word = buf->start_ptr[(buf->read_index++) & 0x1ff];
buf->bit_pos = 0; x = 1;
break;

}
value1 = value1 << 16;
value3 = value2 >> 16;
value3 = value3 + value1;
if ((value3 & ref) == prefix) {

buf->read_index--;
if (buf->read_index < 0)

buf->read_index = 0x1ff;
buf->curr_word = buf->start_ptr[(buf->read_index++) & 0x1ff];
buf->bit_pos = 8; x = 1;
break;

}
value3 = value3 << 8;
if ((value3 & ref) == prefix) {

buf->read_index--;
if (buf->read_index < 0)

buf->read_index = 0x1ff;
buf->curr_word = buf->start_ptr[(buf->read_index++) & 0x1ff];
buf->bit_pos = 16; x = 1;
break;

}
value1 = value2;

}
return (x);

}

Pcode 14.2: Simulation code for finding start_code_prefix.

direct_8×8_reference_ flag, frame_cropping_ flag, optional frame_crop_left_offset, optional frame_crop_right_
offset, optional frame_crop_top_offset, optional frame_crop_bottom_offset, vui_ parameters_ present_ flag, and
optional vui_ parameters.

The picture parameter set includes the following: picture_ parameter_set_id, seq_ parameter_set_id,entropy_
coding_mode_ flag, pic_order_ present_ flag, num_slice_groups_minus1, slice_group_map_type, optional
run_length_minus1, optional top_left, optional bottom_right, optional slice_group_change_direction_ flag,
optional slice_group_change_rate_minus1, optional slice_group_id[], num_ref_idx_l0_minus1, num_ref_idx_
l1_active_minus1, weighted_ pred_ flag, weighted_bipred_idc, pic_init_qp_minus26, pic_init_qs_minus26,
chroma_qp_index_offset, deblocking_ filter_control_ present_ flag, constrained_intra_ pred_ flag, and redun-
dant_ pic_cnt_ present_ flag.

Video Coding Technology 685

eos_read = 0;
slice_header_read = 0;
if (buf->water_mark < 512) {

LoadData(buf, 512);
}
while((!slice_header_read) && (!eos_read)){

// read nal unit information
ReadNalu(nalu);
if (nalu->forbidden_zero_bit != 0) {

while(nalu->forbidden_zero_bit != 0) {
ReadNalu(nalu);

};
}
switch(nalu->nal_unit_type) {

case 1: // coded slice of a non-IDR picture
SliceLayerWithoutPartitioningRbsp(pvc);
Break;

case 2: //contains headers data for all MBs in the slice
SliceDataPartitionALayerRbsp(pvc);
Break;

case 3: //contains intra coded data
SliceDataPartitionBLayerRbsp(pvc);
Break;

case 4: //contains inter coded data
SliceDataPartitionCLayerRbsp(pvc);
Break;

case 5: // coded slice of an IDR picture
ReadSliceHeaders(pvc); // read slice headers
DecodeSliceData (pvc); // decode a slice
slice_header_read = 1;
break;

case 7: // contains sequence parameter set
ReadSeqParmSet(pvc);
break;

case 8: // contains picture parameter set
ReadPicParmSet(pvc);
break;

case 10: // end of sequence
case 11: // end of stream

eos_read = 1;
break;

default:
break;

}
};

Pcode 14.3: Pseudocode for decoding different types of RBSP data.

The sequence and picture parameter sets can be sent well ahead of the VCL NAL units. At the decoder, one or
more sequence parameter sets and picture parameter sets are decoded prior to decoding of slice headers and slice
data. The sequence parameter and picture parameter sets are considered not active at the start of the operation
of decoding. Each VLC NAL unit contains an identifier that refers to the content of the picture parameter
set, and each picture parameter set contains an identifier that refers to the content of the relevant sequence
parameter set. In other words, a decoded slice header, pic_parameter_set_id, activates a particular parameter set.
Then the activated picture parameter set header, seq_parameter_set_id, in turn activates a particular sequence
parameter set. The activated picture or sequence parameter set then remains active until a different picture or
sequence parameter set is activated by another slice header pic_parameter_set_id or picture parameter set header
seq_parameter_set_id.

H.264 uses UVLC (universal variable-length code) in decoding the sequence and picture parameter sets.
UVLC codes include both fixed-length codes (Uv(n)) and exp-Golomb codes (Ue(n) and Se(n)). See Section 5.3
for more detail on UVLC decoding and implementation techniques. The simulation code for exp-Golomb codes
was provided earlier in Pcodes 5.12 and 5.13.

686 Chapter 14

14.4.1 Slice Layer

In H.264, a video picture is coded with one or more slices as shown in Figure 14.24 and a coded picture may
be composed of different types of slices. For example, a baseline profile coded picture may contain a mixture of
I and P slices, and the main profile picture may contain a mixture of I, P, and B slices. Each slice is a sequence of
macroblocks that is processed in the order of a raster scan when not using FMO (flexible macroblock order). Each
slice contains an integer number of macroblocks. The number of macroblocks per slice need not be constant.
Each slice is self-contained, in the sense that, given the active sequence and picture parameter sets, its data can
be decoded from the bitstream. The slice header defines the slice type. In H.264, there are five fundamental slice
types: I slice (contains only I macroblocks), P slice (contains P macroblocks, and/or I macroblocks), B slice
(contains B macroblocks and/or I macroblocks), SI slice (contains a special type of intracoded macroblocks),
and SP slice (contains P and/or I macroblocks). The slice types I, P, and B are very similar to coding methods
used in previous standards such as MPEG-2. The other two slice types SI and SP are newly introduced in H.264
(Karczewicz and Kurceren, 2003) and they are used with the H.264 extended profile.

The construction of I macroblocks uses predicted samples from previously constructed macroblocks within
the same slice. The P macroblocks are predicted from list 0 reference pictures, whereas the B macroblocks are
predicted from list 0 and/or list 1 reference pictures. For more detail on reference picture marking and reordering,
see ISO/IEC (2003).

In H.264, an IDR (instantaneous decoder refresh) coded picture (made up of I slices) is used to clear the
contents of the reference picture buffer. On receiving an IDR-coded picture, the decoder marks all pictures in
the reference buffer as “unused for reference.” After decoding of an IDR picture, all following coded pictures
in decoding order can be decoded without reference to any frames decoded prior to the IDR picture. The first
picture of each coded video sequence is always an IDR picture. Slice data partitioning cannot be used for IDR
pictures. A “coded slice NAL unit” refers to a coded slice of a non-IDR picture NAL unit or to a coded slice of
an IDR picture NAL unit.

The slice layer header, slice_type, directs the type of slice to be decoded. The other slice headers include
first_mb_in_slice, pic_ parameter_set_id, frame_num, and so on. The slice layer headers are decoded using
UVLC (see Section 5.3). After decoding the headers, we proceed to decode the corresponding slice data. The
pseudocode for decoding slice data is given in Pcode 14.4.

The slice data consists of a series of coded macroblocks and/or indication of skipped macroblocks. A skipped
macroblock is one for which no data is coded other than an indication that the macroblock is to be decoded as
“skipped.” Both P and B slices contain the skipped macroblocks. An end_of_slice_ flag indicates that the end of
slice is reached. Depending on the entropy_coding _mode_ flag, we use either UVLC or CABAC (context-based
adaptive binary arithmetic coding) to decode the slice layer data. See Section 5.5 for more detail on decoding
binary symbols with CABAC.

In H.264, the context information for CABAC is generated with the neighbor blocks information. The neigh-
bors for current block Q are defined as A (left), B (top), C (top right) and D (top left) as shown in Figure 14.25.
The context information is derived based on many factors (e.g., presence of neighbors A and B, their macroblock
type, the corresponding parameters strength). We use this information as an offset to the context model look-up
tables and obtain the context model (or the probability value) for CABAC. For example, to decode mb_skip_ flag

Figure 14.24: Division of picture into
multiple slices.

Slice 0

Slice 1

Slice 2

Slice 3

Video Coding Technology 687

void DecodeSliceData(pvc)
{

InitSliceParameters();
if (pvc->entropy_coding_mode_flag){

ByteAlign();
psh-> cabac_alignment_one_bit = BitFifo(1);

}
psh->CurrentMbAddr = psh->first_mb_in_slice*(1+psh->MbaffFrameFlag);
psh->moreDataFlag = 1; psh->prevMbSkipped = 0;
do {

if ((psh->slice_type != I) && (psh->slice_type != SI))
if(!pvc->entropy_coding_mode_flag) {

psh->mb_skip_run = Ue(n);
psh->prevMBSkipped = psh->mb_skip_run > 0 ? 1 : 0;
for(i = 0;i < psh->mb_skip_run;i++)

psh->CurrMbAddr++;
psh->moreDataFlag = MoreRbspData();

}
else {

psh->mb_skip_flag = mb_skip_flag_cabac();
psh->moreDataFlag = !psh->mb_skip_flag;

}
if (psh->moreDataFlag) {

if (psh->MbaffFrameFlag && (((psh->CurrMbAddr %2) == 0) ||
(((psh->CurrMbAddr % 2) == 1) && psh->prevMbSkipped)))
psh->mb_field_decoding_flag = mb_field_decoding_flag_cabac();

DecodeMacroblock();
}
if (!pvc->entropy_coding_mode_flag)

psh->moreDataFlag = MoreRbspData();
else {

if ((psh->slice_type != I) && (psh->slice_type != SI))
psh->prevMbSkipped = psh->mb_skip_flag;

if (psh->MbaffFrameFlag && ((psh->CurrMbAddr %2) == 0))
psh -> moreDataFlag = 1;

else {
psh->end_of_slice_flag = end_slice_flag_cabac();
psh->moreDataFlag = !psh->end_of_slice_flag;

}
}
psh->CurrMbAddr++;

} while(psh->moreDataFlag);
}

Pcode 14.4: Pseudocode for decoding slice data.

Figure 14.25: Showing neighbor
blocks for current block Q.

QA

D B C

using CABAC, we generate the offset for the mb_skip_ flag context look-up table to choose the appropriate
context model as follows:

offset = a +b

where

a = (mb_skip_ flag(A)! = 0) ? 0 : 1, and b = (mb_skip_ flag(B)! = 0) ? 0 : 1

If one or both of the neighboring macroblocks (A or B) are not available (because they are outside the current
slice), the corresponding values a or b is set to zero. In coding of the mb_skip_ flag, statistical dependencies
between neighboring blocks mb_skip_ flag are exploited by means of the previous simple but effective context
design.

688 Chapter 14

The H.264 standard specifies about 460 context variables for coding various parameters and residual coef-
ficients using CABAC. We initialize all these contexts in the slice layer using the current slice quantization
parameter value. The critical part of slice decoding is decoding of macroblock data. In the next section, we
discuss macroblock layer decoding.

14.4.2 Macroblock Layer

At the encoder, all luma and chroma samples of a macroblock are either spatially or temporally predicted, and
the resulting prediction residual is encoded using transform coding. At the decoder, in the macroblock layer, we
basically decode the macroblock type (indicates the prediction types), intraprediction modes (if Imacroblock)
or motion vectors and reference frames information (if P or B macroblocks), coded block pattern (to know
the non-zero coefficient blocks), quantization offset parameters (to get quantization values from the look-up
table), and residual transform data. The pseudocode for macroblock layer decoding with CABAC is given in
Pcode 14.5. For more detail on the decoding process of macroblock layer headers and parameters, see Section
9.3.2 in ISO/IEC (2003).

void DecodeMacroblock()
{

InitMacroblockParameters();
pmb->mb_type = mb_type_cabac();
if (pmb->mb_type == I_PCM)

DecodePcmSamples();
else {

DecodeMbPredModes(); // for both intra and inter macroblocks
if (pmb->MbPredType != I_16x16)

DecodeCodedBlcokPattern();
else

DeriveCodedBlockPattern();
if ((pmb->CodedBlockPattern > 0) || (pmb->MbPredType == I_16x16)) {

pmb->mb_qp_delta = mb_qp_delta_cabac();
DecodeResidualData();

}
}

}

Pcode 14.5: Pseudocode for decoding macroblock layer.

Macroblock Type
The macroblock layer header mb_type determines whether the current macroblock is coded in intra-(I) or inter-
(P or B) mode. H.264 assigns the mb_type names (as I_4×4, I_16×16, I_PCM, P_skip, P_8×8, B_8×8,
etc.) and macroblock prediction mode names (as Intra_4×4, Intra_16×16, Pred_L0, Pred_L1, BiPred, etc.),
depending on the mb_type value. With I_PCM coding type, we bypass the transform decoding and predic-
tion, and directly obtain the macroblock samples from the received bitstream. In P or B macroblocks, if the
macroblock is coded in P_8×8 or B_8×8 mode, an additional sub_mb_type is in the bitstream that specifies
the corresponding submacroblock’s type. We determine the macroblock partition sizes using headers mb_type
or sub_mb_type.

At the decoder, depending on the slice type, availability and mb_type of left (A) and up (B) neighbors (see
Figure 14.25), we derive the context model look-up table offset for decoding current mb_type using CABAC.
When the entropy_coding_mode_ flag is zero, we use the UVLC function, Ue(n), for decoding the mb_type and
sub_mb_type.

Intraprediction Modes
As discussed at the beginning of this chapter, video frames contain spatially correlated macroblocks. Macroblocks
belonging to portions of picture with fewer details exhibit very high correlation. In previous standards, only
transform (DCT) coding is used to exploit this spatial correlation at the 8×8 block level. In H.264, to exploit spatial
correlation among pixels, intraspatial prediction is used apart from transform coding. In all slice coding types,
intracoding modes Intra_4×4, Intra_16×16 together with chroma prediction are supported. The Intra_4×4

Video Coding Technology 689

prediction mode is based on predicting each 4×4 luma block separately, and is well-suited for coding parts of
a picture with significant details. The Intra_16×16 prediction mode, on the other hand, performs prediction of
the whole 16×16 luma block and is more suited for coding very smooth areas of picture.

At the decoder side, the prediction modes are decoded in the macroblock layer. We use most probable mode
information for the context model to decode the luma intraprediction modes with CABAC. In the case of chroma
prediction mode decoding, we use the left (A) and up (B) neighbors’ availability and chroma prediction modes
information in deriving the offset for the context model look-up table. When the entropy_coding_mode_ flag
is zero, we use functions U(1) and U(3) for decoding the luma intraprediction modes and function Ue(n) to
decode the chroma intraprediction modes. The H.264 intraprediction process is further discussed in the next
section.

Motion Vectors Difference and Reference Pictures
In P or B slices, temporal prediction is used in estimating the motion between pictures. The motion is estimated
at the block partition (see Figure 14.26) level. The motion of the block in the horizontal and vertical directions
are represented with a vector, containing horizontal displacement (x) and vertical displacement (y), as (x , y).
A motion vector (x , y) is estimated for each block partition, and refers to the corresponding position of its picture
signal in an already processed reference picture. Unlike in MPEG-2, where the most recent picture is used as
reference picture, it is possible to refer several preceding pictures in H.264. For this purpose, an additional picture
reference parameter is sent to the decoder along with the motion information. The residual error for the block
resulting after the motion estimation and compensation process is transform coded.

Typically the neighbor block motion vectors are correlated and so we only send the motion vector differences
(dx, dy) (between the current motion vector and the predicted vector MVP from previously calculated motion
vectors) to the decoder. The method of calculating the MVP depends on availability of neighbor blocks (A, B,
and C) (see Figure 14.26) and current and neighbor block partition sizes. The motion vector difference and
residual error is zero in the case of skipped macroblocks.

At the decode side, we use left (A) and up (B) neighbor block availability and respective MVD information to
calculate the offset for the MVD context model look-up table in decoding MVD with CABAC. We use left (A)
and up (B) neighbor blocks availability and their reference frame number information to calculate the offset for
the reference frame context model look-up table in decoding the current block reference frame number using
CABAC. When entropy_coding_mode_ flag is zero, we use UVLC functions Se(n) and Te(n) to decode the
current block MVD and reference frame numbers.

Motion Vector Prediction
We use the motion vector predictor at the decoder to obtain the predicted vector MVP and add MVP to the
MVD to retrieve actual motion vectors (x , y) information. The MVP calculation depends on neighbor block
availability and partition sizes. Let A, B, and C blocks be left, up and up-right neighbors for current block Q as
shown Figure 14.26(a). With different partition sizes, the choice of neighbor blocks left (A: 4×8), up (B: 8×8),
and up-right (C : 16×8) for the current block (Q: 16×16) is shown in Figure 14.26(b). Depending on the current
block Q partition size, the MVP is calculated in one of the following ways.

(a)

A Q

B C

(b)

A

B C

Q

Figure 14.26: Neighboring blocks for motion vector prediction. (a) With equal partition sizes. (b) With different
partition sizes.

690 Chapter 14

Figure 14.27: Computing median of
three numbers. Median (a, b, c)

a b c

min

min

max

max

If the current block Q partition size is either 16×8 or 8×16, we use directional prediction for MVP:

• For 16×8 block partitions, the MVP for the upper 16×8 partition is predicted from B, and the MVP for
the lower 16×8 partition is predicted from A.

• For 8×16 block partitions, the MVP for the left 8×16 partition is predicted from A, and the MVP for the
right 8×16 partition is predicted from C .

Otherwise, the MVP is the median of the motion vectors of partitions A, B, and C . Given the three values, the
median can be computed with four min-max operations as shown in Figure 14.27.

For a skipped macroblock, there is no decoded MVD and a motion-compensated block is generated using
MVP as the motion vector. We will discuss more about the H.264 motion compensation process in the next
section.

Coded Block Pattern
The macroblock header, coded_block_ pattern, specifies which of the six 8×8 blocks—luma and chroma—may
contain non–zero-transform coefficient levels. For macroblocks with a prediction mode not equal to Intra_16×16,
coded_block_ pattern is in the bitstream. The coded_block_ pattern is comprised of two parts, CBPL and CBPC,
which are derived as follows:

CBPL = coded_block_pattern %16,CBPC = coded_block_pattern/16

When coded_block_ pattern is decoded from the bitstream, CBPL specifies, for each of the four 8×8 luma blocks
of the macroblock, one of the following cases:

• All transform coefficient levels of the four 4×4 luma blocks in the 8×8 luma block are equal to zero
• One or more transform coefficient levels of one or more of the 4×4 luma blocks in the 8×8 luma block

will be non-zero valued

When the prediction mode is I_16×16, the coded_block_ pattern is derived from the decoded mb_type. In
this case, CBPL specifies whether, for the luma component, non-zero AC transform coefficient levels are present.
CBPL equal to 0 specifies that all AC transform coefficient levels in the luma component of the macroblock
are equal to 0. CBPL equal to 15 specifies that at least one of the AC transform coefficient levels in the luma
component of the macroblock is non-zero, requiring scanning of AC transform coefficient levels for all 16 of
the 4×4 blocks in the 16×16 block.

CBPC contains the coded_block_ pattern value for chroma and specifies one of the following cases:

• CBPC = 0, all chroma transform coefficient levels are equal to 0
• CBPC = 1, one or more chroma DC transform coefficient levels will be non-zero; all chroma AC transform

coefficient levels are equal to 0
• CBPC = 2, zero or more chroma DC transform coefficient levels are non-zero; one or more chroma AC

transform coefficient levels will be non-zero

At the decoder, we use left (A) and up (B) neighbor macroblock availability, coded_block_ pattern and
macroblock type in computing the offset for context model look-up table when decoding coded_block_ pattern

Video Coding Technology 691

using CABAC. When entropy_coding_mode_ flag is zero, we use UVLC function Me(n) and the mapping
look-up table to decode the coded_block_ pattern.

Quantization Parameter
A quantization parameter (QP) is used for determining quantization of transform coefficients in H.264. A total
of 52 values of quantizer step sizes (Qstep) are supported by the standard, indexed by a QP. These values are
arranged so that an increase of 1 in QP means an increase of Qstep by approximately 12% (or Qstep doubles
in size for every increment of 6 in QP). By updating the Qstep at the macroblock level, the encoder controls
the trade-off accurately between bit rate and video quality. The quantized transform coefficients of a block are
generally scanned in a zig-zag fashion and transmitted using entropy coding methods.

At the decoder, to update the Qstep at the macroblock level, a parameter, mb_qp_delta, is in the bitstream
when the coded_block_ pattern is not zero. We use previously decoded QP information to choose the context
for decoding mb_qp_delta with CABAC. When entropy_coding_mode_ flag is zero, we use the UVLC func-
tion Se(n) to decode the mb_qp_delta. For more details and examples on performing fixed-point coefficient
quantization in H.264, see Richardson (2003).

14.4.3 Residuals Decoding

Of all entropy decoding modules, residual decoding is the most costly module because this module works on
individual data coefficients of block. For this reason, we go a little bit deeper into the residual decoding process
to understand its complex functions. Residual decoding for a macroblock (with 4:2:0 sampling) involves decoding
of 16 4×4 blocks luma coefficient data and eight 4×4 chroma blocks coefficient data. These 4×4 blocks are
decoded in an inverse raster scan order as shown in Figure 14.28.

Residuals decoding uses either context-based adaptive variable-length coding (CAVLC) or CABAC. The
CAVLC-based decoding is a bit simpler than CABAC, as CAVLC uses less complex context models. For more
detail on CAVLC decoding and its implementation, see Section 5.3, which focuses on CABAC-based residual
decoding.

The coded_block_pattern decoded in the macroblock layer contains the information about which 8×8 blocks
(four luma 8×8 blocks and two chroma 8×8 blocks) consist of non-zero coefficients. With the Intra_16×16
prediction mode, the DC coefficients (i.e., 0th coefficient) of the 4×4 blocks are separately decoded, inverse
zig-zag (or field, if mbaff = 1) scanned (see Figure 14.31, page 696) and passed to the Hadamard transform
block, whereas with Intra_4×4 prediction mode, we decode all coefficients of 4×4 block in the same way. In
this section, we focus on residual decoding with the Intra_4×4 prediction mode (i.e., no separate DC decoding
and no Hadamard transformation are present).

Coded-Block-Flag Decoding
The H.264 bitstream contains flag information about the presence or absence of 27 possible types of coefficients
in a macroblock. Those 27 types of coefficients are given in the Table 14.4. First, we decode the coded_block_ flag
before proceeding to decode its coefficients. If the decoded value of coded_block_ flag is zero then we skip the
decoding of that block’s coefficients. Efficient implementation of the coded_block_ flag decoding function is very
important because it must be called for every one of the 27 block types unless coded_block_ pattern indicates
no coefficients are in that block group.

To decode each coded_block_ flag with CABAC, we choose an appropriate context model table from the given
eight context models. The offset is calculated for the chosen context model table by using the neighbor block
coded_block_ flag. The H.264 reference software decodes and stores the coded_block_ flag using a C function,
read_and_store_CBP_block_bit(). The H.264 reference software model is not written for real-time decoding;

Figure 14.28: Inverse-raster-order
residuals decoding for 4×4 blocks of
macroblock.

Cb

Y

Cr

0

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

1

2 3

0 1

2 3

692 Chapter 14

Table 14.4: coded_block_ f lag index
and associated coefficient type

Flag Index Block Type

0 Luma DC

1 to 16 Sixteen 4×4 luma blocks

17 Cb DC

18 Cr DC

19 to 22 Four 4×4 Cb blocks

23 to 26 Four 4×4 Cr blocks

Figure 14.29: Algorithm
implementation. (a) Reference software
approach (chain model). (b) Optimized
implementation (sphere model). (a)

Start

End

Single
Function

Start

End

Multiple
Functions

(b)

its aim is to provide general framework to decode the bitstream for all possible cases. In this particular case, for
choosing appropriate context model, and to obtain the offset for the chosen context model (belonging to particular
coefficient block) from the neighbor blocks coded_block_ flag information, the reference software performs many
operations such as condition checks, jumps and data extracts, and data movements. This is because the task of
deriving neighbor information from many combinations (of different macroblock types, coefficient block types,
block positions, context models, etc.) is performed with a single loop code as illustrated in Figure 14.29(a). A
couple of thousand cycles may be needed to decode the coded_block_ flag using the reference software model
on the reference embedded processor.

For example, to store the decoded coded_block_ flag information about 27 different coefficient blocks for
future purposes (for the CABAC and loop filter), the reference software packs the flags by computing the bit-pos
as follows:

bit-pos = (y_dc ? 0 : y_ac ? 1 + 4*j + i : u_dc ? 17 : v_dc ? 18 : u_ac ? 19 + 2*j + i : 23 + 2*j + i)

This C code gives the following bit position packing for the 27 block types coded_block_ flag:

CodedBlockFlags = CBF_Cr_3|CBF_Cr2|CBF_Cr_1|CBF_Cr0|CBF_Cb3| CBF_Cb2| CBF_Cb1| CBF_Cb0|
CBF_Cr_DC| CBF_Cb_DC|CBF_Y_15|CBF_Y_14|CBF_Y_11| CBF_Y_10| CBF_Y_13| CBF_Y_12| CBF_Y_
9|CBF_Y_8|CBF_Y_7|CBF_Y_6|CBF_Y_3|CBF_Y_2|CBF_Y_5|CBF_Y_4|CBF_Y_1|CBF_Y_0|CBF_Y_DC

We can clearly see how many operations the reference software performs just to pack the bits in an appropriate
order. We can see similar C code throughout the reference software. Thus, it is possible that an optimized H.264
C code for a particular profile and level may be 50 to 100 times faster than the reference software, because the
latter is not written from a cycle optimization point of view.

Now, let us handle this and bring the cycle cost from a few thousand to 20 or less. (Note: This does not
include the core CABAC symbol decoding function, to perform this we require additional 20 or more cycles. See
Section 5.5 for more detail.) Instead of using a single path for decoding different blocks’ coded_block_ flag, if we
handle different coefficient block types (e.g., luma DC, luma_AC_4×4, Chroma_Cb_DC) with different function
codes, it is possible to derive neighbor information and to store the coded_block_ flag information without so

Video Coding Technology 693

many condition checks and jumps. This is illustrated in Figure 14.29(b) with the sphere implementation. In this
implementation, we handle different blocks with separate codes and avoid all the condition checks.

For example, if we want to decode the coded_block_ flag for the third 4×4 block of luma AC (i.e., with
inverse raster scan index equal to 2 in Figure 14.28), we know everything about that block (i.e., its left 4×4 block
neighbor is from the previous macroblock with inverse raster scan order index 7, its up neighbor’s 4×4 block is
from the current macroblock with inverse raster scan order index 0, its bit position for packing coded_block_ flag
is 5) without performing any condition checks and jumps. So, we use less than 20 cycles to choose the appropriate
context model look-up table, to get the offset for that table from the information of coded_block_ flag of the
neighbor blocks and to pack the decoded coded_block_ flag information.

Once we decode the coded_block_ flag for the present data block, it directs us whether to proceed to decode
the coefficients or to skip that data block since no residual coefficients are present and proceed to the next block.
If we decode coded_block_ flag as bit 0 for the current block, we skip that block; otherwise, we proceed to decode
the coefficients by first computing the significance map of the coefficients and then the significant coefficients
and their sign information.

Significance Map Decoding
The H.264 CABAC uses significance map coding instead of run-length coding to code the position of non-
zero coefficients. In the decoder, the significance map is decoded before the actual coefficient values. The
pseudocode for decoding the significance map is given in Pcode 14.6. The significance map decoding algorithm
can be understood as follows: first, we enter into this block because the coded_block_ flag said that there are
non-zero coefficients (but it didn’t say anything about their positions and how many of these coefficients are
present). The significance map algorithm assumes that there are coefficients in the current block and decodes
their position by decoding conditionally two flags, map_ flag and last_ flag, in a loop (the loop count is given
by the maximum number of coefficients in that block (e.g., 16 for luma DC or Intra_4×4, 15 for Intra_16×16,
4 for chroma DC, 3 for chroma AC) for each non-zero coefficient position. If the map_ flag is decoded as bit 1,
then check it for any further coefficients by decoding last_ flag; otherwise, it assumes there are still non-zero
coefficients in the block and continues the loop by decoding map_ flag for the next coefficient position. One
important thing here is that whatever way we optimize, there will be at least one jump in the process (except
when all block coefficients are non-zero). Jumps are costly on deep-pipeline processors such as the reference
embedded processor (see Appendix A on the companion website).

coeff_pos = -1; coeff_ctr = 0
ctx1 = &map_contexts
ctx2 = &last_contexts

loop_start:
coeff_pos++;
ctx2++;
if (decode_symbol(valrng, ctx1)) {

ctx2--;
store coeff_pos;
coeff_ctr++;
if (decode_symbol(valrng,ctx2)) jump sig_map_exit;

}
ctx1++;
ctx2++;

loop_end:

coeff_ctr++;
coeff_pos++;
store coeff_pos;

sig_map_exit:

Pcode 14.6: Pseudocode for decoding residual coefficients significance map.

In decoding the significance map, up to 15 different probability models are used for both map_ flag and
last_ flag. Offset increments for the context model look-up tables depend on the scanning position, that is,
map_offset(coeff [i]) = last_offset(coeff [i]) = i.

694 Chapter 14

Decoding Significant Coefficients
Significance map decoding indicates the location of all coefficients in the array (in the inverse zig-zag scanned
order). One such significance map array for Intra_4×4 block follows:

0 X X 0 0 X X X 0 0 X 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

According to the preceding significance map, there are coefficients at positions 1, 2, 5, 6, 7, and 10. When the
significance map says there is a coefficient, it means it is non-zero. It also means that the significance map itself
decodes the magnitude of 1 for all non-zero coefficients. In other words, the significance map not only gives the
position of non-zero coefficients but also indirectly decodes the minimum coefficient value of 1 (except for the
sign). Consequently, the actual significance map array contains 1s and 0s as follows:

0 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

As given in Pcode 14.7, the significant coefficient decoding loop builds (or debinarizes) the coefficient levels if
their values are greater than 1. At the beginning, we decode a one_ flag with the one_contexts probability model,
and if the decoded one_flag value is 1, then that coefficient magnitude will be greater than 1, and we increment
the coefficient value by 1 and proceed to build the coefficient value with the unary_exp_golomb_level_decode()
function using abs_contexts probability models. Otherwise, we assume that the coefficient has a value of 1, and
proceed to decode its sign information with the cabac_decode_symbol_equiprob() function.

c1 = 1; c2 = 0;
ctx1 = &one_contexts; ctx2 = &abs_contexts;
loop0_start: 1 to coeff_ctr

cf = 1; a = min(c1,4);
if (cabac_decode_symbol (valrng, ctx1[a]){

cf+= 1;b = min(c2,4); c1 = 0;
c2++;
// Below code perform unary_exp_golomb_level_decode() function
if (cabac_decode_symbol (valrng, ctx2[b]){

loop1_start: 1 to 12
if (cabac_decode_symbol (valrng, ctx2[b]));

cf+=1;
else

jump exp_golomb_eqprob_done;
loop1_end:
s = 0; k = 0; cf+= 1;
while(cabac_decode_symbol_eqprob (valrng)){

s += (1<<k);
k++;

}
while(k--){

if (cabac_decode_symbol_eqprob (calrng))
s+= (1<<k);

}
cf+= s;

}
}
else if (c1){

c1++;
}

exp_golomb_eqprob_done:
if (cabac_decode_symbol_eqprob(valrng){

cf = -cf;
}

loop0_end:

Pcode 14.7: Pseudocode for decoding significant coefficients.

Video Coding Technology 695

Next, we discuss, and provide an example of, the decoding of a larger coefficient value with the unary_
exp_golomb_level_decode() or UEGk function. Assume that the coefficient value is 58. We start with a minimum
coefficient value of 2 (because when the one_ flag is decoded as 1 we increment the coefficient value by 1).
Then we decode abs_ flag in a loop with a max loop count of 13. We check the value of abs_ flag at the
beginning of every iteration, and if the decoded abs_ flag results in zero, then we terminate the loop; otherwise,
we continue it. In our example, as the coefficient value is very large, we complete all loop iterations and
update the coefficient value as 15 (i.e., 2 + 13). This process is equivalent to the decoding process of truncated
unary code.

The rest of the magnitude 43 (i.e., 58 − 15) is decoded with k-th order exponential Golomb (EGk) debina-
rization scheme. Exp-Golomb codes are constructed by a concatenation of a prefix and a suffix codeword. The
prefix part is decoded conditionally with the expression s+ = (1 <<(k ++)) with an initial s = k = 0; the suffix
part is decoded conditionally with the expression s+ = (1 << (−− k)). The prefix process is repeated as long
as the decoded output of cabac_decode_symbol_equiprob() function is 1, and the suffix part is repeated as
long as k > 0. (Note: The suffix value is updated in a loop only if cabac_decode_symbol_equiprob() function
outputs 1; otherwise, the loop is simply continued.) In our example, to get the magnitude of 43, the output
flags of cabac_decode_symbol_equiprob() function are 1 1 1 1 1 0 (for the prefix part) and 0 1 1 0 0 (for the
suffix part). Like in significance map decoding, there are a few unavoidable jumps in this significant coefficient
decoding process.

The decoding complexity of CABAC (includes binary symbols decoding using a binary arithmetic coder and
the debinarization process to construct syntax elements) is relatively very high when compared to CAVLC. At
the end of this section, we provided the cycle cost of H.264 parser+cabac and parser+vlc to implement on the
reference embedded processor.

14.4.4 Macroblock Reconstruction

In the previous section, we discussed decoding of macroblock parameters and residual coefficients from the
received bitstream using VLC and CABAC. Once the macroblock parameters and residual data are available,
we proceed to reconstruct the macroblock pixel data. The basic building blocks of the H.264 macroblock recon-
struction process is shown in Figure 14.30. As previously mentioned, the modules of macroblock reconstruction
are critical, and their cycle cost is 85 to 90% (which includes residual decoding) of the total video decoder. Thus,
the code for these modules is written in low-level language most of the time, and highly optimized to minimize
the video decoding cycle cost and to provide headroom for running remaining applications on the processor.

Like previous standards, the H.264 reconstructs the macroblocks by passing the entropy-decoded residual
coefficients of 4×4 blocks (which are decoded in the inverse raster scan order as shown in Figure 14.28)

Entropy Decoder
(decodes headers,
MVs, and residuals)

Zig-Zag Scan
and Inverse
Quantization

Inverse
H.264

Transform

Motion Compensation

Reference Buffer

P or B Frames I Frames

MVs

Display
Buffer

To Display

Bitstream Deblock
Filter

Intraprediction

1

Figure 14.30: Simplified block diagram of the H.264 decoder.

696 Chapter 14

Figure 14.31: Zig-zag scan for a 4×4
block. (a) In frame mode. (b) In field
mode. (a) (b)

through a series of block-processing modules that include zig-zag scan, inverse quantizer, inverse transform,
intraprediction, or motion compensation and deblocking filter. Next, we briefly discuss these block-processing
modules.

Zig-Zag Scan
In the H.264 baseline or main profile, we decode the residual coefficient array for 4×4 blocks. We map this
coefficient array to the 4×4 block by using a zig-zag or field scan as shown in Figure 14.31. The zig-zag scan
is used for frame macroblocks and the field scan for field macroblocks. As an example, consider an array[]
containing 16 decoded residual coefficients of Intra_4×4 luma block:

array[] = {18,7,4,1,3,2,1,1,1,0,1, 0,0, 0, 0,0}
In the frame mode, this coefficient array is converted to a 4×4 block using zig-zag scan:

18 7 2 1

4 3 1 0

1 1 0 0

0 1 0 0

In the Intra_16×16 prediction mode, we decode 16 DC coefficients of 16 4×4 luma blocks. These DC
coefficients are placed in 4×4 subblocks by scanning the subblocks in zig-zag scan or field scan order depending
on the macroblock frame/field coding mode.

Inverse Quantization
Inverse quantization is performed on the zig-zag scanned block of coefficients. In this process, we basically
multiply each coefficient with a quantization value obtained from the precalculated look-up table. The offset for
the look-up table is derived from the mb_qp_delta parameter decoded in the macroblock layer. For more detail
on scaling different types of residual coefficients (i.e., luma DC and AC, and chroma DC and AC), see the H.264
standard (ISO/IEC, 2003).

H.264 Inverse Transform
H.264 uses the following integer transform to transform the dequantized 4×4 AC coefficient block X to the
spatial domain 4×4 block x:

x =

⎡
⎢⎢⎣

1 1 1 1/2
1 1/2 −1 −1
1 −1/2 −1 1
1 −1 1 −1/2

⎤
⎥⎥⎦ ([X] · [Si])

⎡
⎢⎢⎣

1 1 1 1
1 1/2 −1/2 −1
1 −1 −1 1
1/2 −1 1 −1/2

⎤
⎥⎥⎦ (14.1)

where the operation symbol · represents the element-wise multiplication of matrix X , with scaling matrix Si and
the elements of Si given by

Si =

⎡
⎢⎢⎣

a2 ab a2 ab
ab b2 ab b2

a2 ab a2 ab
ab b2 ab b2

⎤
⎥⎥⎦, a = 1/2,b =

√
2

5
(14.2)

The scaling of X coefficients with matrix elements of Si requires one multiplication for every coefficient, which
can be absorbed into the quantization process. The rest of the transform can be carried out with integer arithmetic,

Video Coding Technology 697

// horizontal
for(j = 0;j < 4;j++){

for(i = 0;i < 4;i++)
d[i]=X[i][j];

e[0]=d[0]+d[2];
e[1]=d[0]-d[2];
e[2]=(d[1]>>1)-d[3];
e[3]=d[1]+(d[3]>>1);
for(i = 0;i < 2;i++){

k = 3-i;
w[i][j]=e[i]+e[k];
w[k][j]=e[i]-e[k];

}
}
// vertical
for(i = 0;i < 4;i++){

for(j = 0;j < 4;j++)
d[j]=w[i][j];

e[0]=(d[0]+d[2]);
e[1]=(d[0]-d[2]);
e[2]=(d[1]>>1)-d[3];
e[3]=d[1]+(d[3]>>1);
for(j = 0;j < 2;j++){

k = 3-j;
x[i][j] = e[j]+e[k];
x[i][k] = e[j]-e[k];

}
}

Pcode 14.8: Pseudocode for computing H.264 4×4 integer transform.

Figure 14.32: Signal-flow diagram of
H.264 inverse transform.

X0

X2

X1

X3

x0

x1

x2

x3

1/2

1/2 2

2

2

1

1

1

1

2

1

1

1

1

using only additions, subtractions, and shifts as illustrated Pcode 14.8. The equivalent signal flow diagram is
shown in Figure 14.32.

In the Intra_16×16 prediction mode, the 4×4 blocks’ DC coefficients are separately decoded, zig-zag scanned,
and inverse transformed using the Hadamard transform before performing the inverse transform of 4×4 blocks.
With an Intra_16×16-coded macroblock, much of the energy is concentrated in the DC coefficients, and this
extra transform helps to decorrelate the 4×4 luma DC coefficients by the encoder. At the decoder, an inverse
Hadamard transform is applied as

yDC =

⎡
⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

⎤
⎥⎥⎦[YDC]

⎡
⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

⎤
⎥⎥⎦ (14.3)

The preceding inverse Hadamard transform is carried out with only additions and subtractions as illustrated
with the pseudocode given in Pcode 14.9. The inverse Hadamard transform output is properly scaled and inserted
into respective DC positions of 4×4 blocks and each 4×4 block of coefficients is then inverse transformed using
the inverse H.264 transform given in Equation (14.1).

698 Chapter 14

// horizontal
for(j = 0;j < 4;j++){

for(i = 0;i < 4;i++)
d[i]=Y_dc[i][j];

e[0]=d[0]+d[2]; e[1]=d[0]-d[2];
e[2]=d[1]-d[3]; e[3]=d[1]+d[3];
for(i = 0;i < 2;i++){

k = 3-i;
w[i][j] = e[i]+e[k]; w[k][j] = e[i]-e[k];

}
}
// vertical
for(i = 0;i < 4;i++){

for(j = 0;j < 4;j++)
d[j]=w[i][j];

e[0]=d[0]+d[2]; e[1]=d[0]-d[2];
e[2]=d[1]-d[3]; e[3]=d[1]+d[3];
for(j = 0;j < 2;j++){

k = 3-j;
y_dc[i][j] = e[j]+e[k];
y_dc[i][k] = e[j]-e[k];

}
}

Pcode 14.9: Pseudocode for inverse 4×4 Hadamard transform.

For chroma components, the inverse 2×2 Hadamard transform is applied to all 4×4 chroma block DC
coefficients as

cdc =
[

1 1
1 −1

]
[Cdc]

[
1 1
1 −1

]
(14.4)

H.264 Intraprediction
In intracoded macroblocks, a predicted block is formed based on the previously decoded and reconstructed
blocks, and is added to the IDCT of the residual output to reconstruct the current intracoded block. Two types of
intraspatial prediction are defined in the H.264 baseline and main profiles to exploit spatial correlation among
pixels in intracoded macroblocks: 4×4 luma prediction and full-macroblock prediction (for 16×16 luma or
corresponding chroma block size). Smooth macroblocks containing few details can be predicted more efficiently
on a full macroblock basis. This kind of prediction is provided by the full macroblock (16×16) intraprediction
mode, whereas the macroblocks with greater detail are predicted using 4×4 intraprediction. There are a total of
nine optional prediction modes for each 4×4 luma block, four optional modes for 16×16 luma block, and four
optional modes for the chroma component blocks. The encoder typically selects the prediction mode for each
block that minimizes the difference between the predicted block and the block to be encoded.

In the 4×4 intraprediction mode, a 16×16 macroblock is divided into 16 4×4 blocks and each 4×4 block
is predicted by the adjacent pixels of the decoded neighboring 4×4 blocks as shown in Figure 14.33. DC
prediction mode and eight direction modes can be applied to a 4×4 luma block as shown in Figure 14.34. The
nine 4×4-block intraprediction modes are named vertical (mode 0), horizontal (mode 1), DC (mode 2), diagonal
down-left (mode 3), diagonal down-right (mode 4), vertical-right (mode 5), horizontal-down (mode 6), vertical-
left (mode 7), and horizontal-up (mode 8). Different prediction modes can be selected for each of the 16 4×4
blocks in a macroblock.

Given the prediction mode, PM, the samples a,b,c, . . . , p of the current block Q are calculated based on the
samples A to M . If any of the neighbor blocks are not available, then the participating pixels of the corresponding
blocks are set to the default value as follows:

• A = B = C = D = 128 (if up block is not available)
• E = F = G = H = D (if up-right block is not available)
• I = J = K = L = 128 (if left block is not available)
• M = 128 (if up-left block is not available)

Video Coding Technology 699

Figure 14.33: Neighboring 4×4 blocks
participating in current 4×4 block
intraprediction.

Top-left
4 3 4 Block

a b c

e f g

d

h

i j k l

m n o p

M A B C D E F HG

I

J

K

L

Current 4 3 4 Block

Left 4 3 4
Block

Top 4 3 4
Block

Top-right
4 3 4 Block

Figure 14.34: H.264 luma 4×4
intraprediction modes. 0

1

3 4

5

6

7

8

Mode 2: DC
Predicted pixel�
Mean (A, B , C, D, I, J, K, L)

With mode 0 (i.e., vertical), the predicted samples of 4×4 block are obtained as: a = e = i = m = A,
b = f = j = n = B, c = g = k = o = C , and d = h = l = p = D. In the same way, with mode 1 (i.e., horizontal),
the predicted samples of the 4×4 block are obtained as follows: a = b = c = d = I , e = f = g = h = J,
i = j = k = l = K, and m = n = o = p = L . In mode 2 (i.e., DC prediction), all samples of the 4×4 block are
predicted by the mean of samples A to D and I to L . For modes 3 to 8, the predicted samples are obtained from
a weighted average of the samples A to M . For example, for mode 5 (i.e., vertical-right), the predicted samples
of a 4×4 block are obtained with the pseudocode given in Pcode 14.10. See ISO/IEC (2003) for more detail
about other 4×4 luma prediction modes.

a = j = (M + A + 1) >> 1;
b = k = (A + B + 1) >> 1;
c = l = (B + C + 1) >> 1;
d = (C + D + 1) >> 1;
e = n = (I + 2*M + A + 2) >> 2;
f = o = (M + 2*A + B + 2) >> 2;
g = p = (A + 2*B + C + 2) >> 2;
h = (B + 2*C + D + 2) >> 2;
i = (M + 2*I + J + 2) >> 2;
m = (I + 2*J + K + 2) >> 2;

Pcode 14.10: Pseudocode for predicting pixels of a current block with 4×4 luma vertical-right prediction mode.

In the 16×16 luma (i.e., full macroblock) prediction mode, only one prediction mode is used for the entire
macroblock. Four different prediction modes are supported in 16×16 luma prediction: vertical (mode 0), hori-
zontal (mode 1), DC (mode 2), and plane prediction (mode 3). Vertical, horizontal, and DC are similar to the
modes of the same names for 4×4 luma prediction, whereas the plane prediction mode uses a linear function
between the neighboring samples to the left and to the top in order to predict the current 16×16 block samples.
The pseudocode for obtaining the samples using 16×16 luma plane prediction is given in Pcode 14.11.

The chroma samples of a macroblock are predicted using a similar prediction technique as for the luma
component in 16×16 luma prediction mode, since chroma is usually smooth over large areas. The same prediction
mode is always used for both chroma Cb and chroma Cr blocks. The four prediction modes are very similar to
the 16×16 luma prediction modes except that the order is different. The four intrachroma predictions are; DC
(mode 0), horizontal (mode 1), vertical (mode 2), and plane (mode 3).

700 Chapter 14

Hz = 0; Vt = 0;
for(i = 1;i < 9;i++){

Hz += i*(Up_Delay[N+7+i] - Up_Delay[N+7-i]);
Vt += i*(Left_MB[8+i] - Left_MB[8-i]);

}
Pb=(5*Hz+32)>>6;
Pc=(5*Vt+32)>>6;
Paa=16*(Up_delay[N+15]+Left_MB[15]);
for(j = 0;j < 16;j++){

Pcc = (j-7)*Pc;
for(i = 0;i < 16;i++){

Pbb = (i-7)*Pb;
Pd = min((Paa + Pbb + Pcc + 16)>>5, 255); // clip between 0 and 255
d[16*j+i]=max(0,Pd);

}
}

Pcode 14.11: Pseudocode for predicting samples using 16×16 luma plane prediction mode.

As discussed, the prediction mode information is decoded from the bitstream in the macroblock layer. Since
the neighbor block prediction modes are highly correlated, H.264 does not encode the 4×4 luma prediction
modes as it is; instead it encodes the most probable prediction mode with side information. This means that the
actual 4×4 luma prediction modes at the decoder are derived with the information decoded from the bitstream.
Such predictive coding is not used in encoding/decoding the full macroblock prediction modes (i.e., 16×16 luma
or chroma modes) information.

H.264 Motion Compensation
The H.264 standard uses rather advanced and flexible motion estimation and motion compensation agorithms,
which make this standard very efficient. It allows both P and B frames to be used as a reference frame apart from
the I -frame, then each 8×8 subblock can have its own reference frames, and each 4×4 block of a macroblock can
be assigned its own motion vector. Motion vectors can be defined with quarter-pixel accuracy, which increases
the efficiency of the motion compensation. Finally, it allows weighted prediction: when samples from different
frames are combined in a certain proportion with weighting coefficients, it also can improve video coding
efficiency.

Assume that we have motion vectors and reference frame numbers for a certain block of data (its size and
shape can be any 4×4, 4×8, 8×4, 8×16, 16×8, and 16×16 block, as shown in Figure 14.35). Because reference
frames are usually stored in L3 memory and should be moved for processing into L1 memory by the DMA,
we first have to find the size and position of the block of data to be moved by the DMA, and if DMA has
limitations—for instance, it can work only on 16- or 32-bit addresses—then we have to perform calculations to
properly organize the DMA transfer and then use some adjustments when retrieving the samples from the buffer
in L1 memory where they were written by the DMA. Here we do not explore details of this mechanism, but
rather describe the basic motion compensation algorithm.

If motion vectors are integer, there are no calculations—we just use the samples from the buffer where samples
from the reference frame are located; it is the fine resolution of the motion vectors (one-quarter sample) that
makes the algorithm computationally intensive. According to the standard, the samples at fractional (i.e., half

Figure 14.35: Subblock partitioning
for motion compensation.

16

16 16

8

8
16

8

8

8

88 8

8

8
4

8

4

4

4

4

4

8

4 4

Video Coding Technology 701

A aa

C bb

FE G

M

R

T

N

S

H

L

a b c

d

h

n

gg

cc dd

B

D

U

e f g

ji k m

p q r

s

ee ff

hh

K P Q

I J

Figure 14.36: Integer samples (shaded blocks with uppercase letters) and fractional sample positions (unshaded
blocks with lowercase letters for quarter sample and with bold lowercase letters for half-sample) for
quarter-sample luma interpolation.

and quarter) sample positions are obtained using a 6-tap FIR filter, which closely approximates a 2D Wiener
filter—an optimal low-pass filter in this situation—because a simple bilinear filter was found to be inadequate
to combat aliasing introduced by the filtering process. According to the standard, in the worst case we have to
perform 2D filtering of the original samples with the 6-tap filter with coefficients (1,−5,20,20,−5,1)—this
amounts to, roughly speaking, 35 = 5 ∗ 7 multiply-add instructions, five such instructions for every 1D filtering,
and seven such computations to get the final result. The algorithm is illustrated in Figure 14.36.

It is convenient to introduce a “sample signature,” which is a vector of fractional parts of horizontal and
vertical components of the motion vector, x and y, and multiplied by 4 to get integer indices (i.e., the decoded
motion vector is in Q14.2 format):

sig = [4 ∗ fract(x),4 ∗ fract(y)].

First, the interpolation for half-sample positions (bold lower case letters b,h,j,m,s) is defined. Sample b

has signature [2,0]—it is located exactly between integer samples G and H on the horizontal line containing
integer samples E, F, G, H, I, J, and is obtained by first applying our 6-tap filter to get the intermediate value

b1 = E −5 ∗ F +20 ∗ G +20 ∗ H −5 ∗ I + J (14.5)

and then rounding up, normalizing, and clipping the result between 0 and 255:

b = Clip((b1 +16) >> 5,0,255) (14.6)

Correspondingly, sample h with the signature [0,2], located between integer samples G and M on the vertical
line containing integer samples A,C, G, M, R, T, is obtained in the same way from these samples:

h1 = A−5 ∗C +20 ∗G +20 ∗ M −5 ∗ R + T (14.7)

h = Clip((h1 +16) >> 5,0,255) (14.8)

So samples b and h are calculated with a 1D 6-tap filter.
To get sample j, in which both coordinates are fractional—half-samples (signature [2,2])—we have to perform

2D filtering. First, we calculate six values corresponding to the preliminary results of 1D filtering for samples
with the signatures [0,2], which lie on the same vertical line as j, but have integer horizontal coordinates—
namely, values aa,bb,b1, s1, gg, and hh. To do this, we need to apply the 6-tap filter six times (2D filtering), and

702 Chapter 14

then filter these values with the following:

j1 = aa−5 ∗ bb+20 ∗ b1 +20 ∗ s1 −5 ∗ gg+hh (14.9)

The same result can be obtained by using six values corresponding to the preliminary results of 1D filtering
for samples with the signatures [2,0], which lie on the same horizontal line as j but have vertical horizontal
coordinates—namely, values cc, dd, h1,m1, ee, and ff. Then we calculate the final result—round, normalize,
and clip j1:

j = Clip((j1 +512) >> 10,0,255) (14.10)

The samples a,c,d,n, f, i,k , and q with the signatures [0,1], [0,3], [1,0], [3,0], [1,2], [2,1], [3,2], and [2,3] are
obtained by bilinear filtering, or simply averaging with upward rounding of their nearest integer or half-sample–
filtered neighbors on the vertical or horizontal line.

a = (G +b +1) >> 1

c = (H +b +1) >> 1

d = (G +h +1) >> 1

n = (M +h +1) >> 1
(14.11)

f = (b + j +1) >> 1

i = (h + j +1) >> 1

k = (j +m +1) >> 1

q = (j + s +1) >> 1

The samples at quarter-sample positions e, g, p, and r (their signatures are [1,1], [3,1], [1,3], and [3,3]) are
derived by averaging with upward rounding of the two nearest samples at half-sample positions in the diagonal
direction:

e = (b +h +1) >> 1

g = (b +m +1) >> 1
(14.12)

p = (h + s +1) >> 1

r = (m + s +1) >> 1

The motion compensation code should handle the algorithm related to the macroblock partition with great
flexibility—there are many ways a macroblock can be partitioned from having only one motion vector for the
whole macroblock and up to 16 pairs of motion vectors for every 4×4 block (see Figure 14.37). Each motion
vector must be coded and transmitted, and the choice of partitions must be encoded in the compressed bitstream.
With large partition sizes, we will have less motion vectors and require fewer bits for representing the motion
vectors. However, the residual error will be large with a large block partition, so we need more bits to code the
residual error. The opposite situation occurs when partition sizes are smaller. Typically, we use smaller partitions

Figure 14.37: Selected possible
macroblock partitions.

Video Coding Technology 703

to accommodate fast motion of objects in the video. After the structure of the current macroblock is decoded
and the total number of partitions is found, the algorithm works in the loop-over partitions.

First, DMA transfers for all partitions should be set up. This is a somewhat complicated procedure, which,
for every partition, should calculate all geometry, and indicate whether samples should be copied after the DMA
(if the motion vector comes close to the frame boundary or even out of the boundary, we have to copy samples
on the boundary to run the filter). About 40 parameters per partition should be calculated.

After this we can start the motion compensation loop over the partitions. In the loop, we first should wait for
a signal that DMA for this partition is completed, and then calculate the results of the motion compensation for
one or two motion vectors, and if there were two, combine the results either by averaging with rounding up,
which is default for weighted prediction, or by mixing the results with the given weights.

The main goal and challenge of this code is to use all the power of the reference processor and to work on
two 16-bit samples in parallel. The complexity of the code lies not in the implementation of basic 6-tap filter
operation, but in the proper organization of the pointer and data access to run the filter smoothly.

To perform 2D filters efficiently, we work on whole partitions, creating a special buffer with w intermediate
results. In the worst case (j samples), the buffer size for the 4×4 partition is 9×4 so we have to run 36 1D filters,
and then one more 1D filter and averaging per one motion vector. If we have two motion vectors for this block,
we should calculate predicted samples with both vectors and then average them with rounding up if there is no
weighing or combine them with weighing coefficients with rounding according to the standard. Thus, the worst
case requires 37 basic 6-tap filtering operations per 16 samples.

To efficiently implement such an algorithm with many branches, we have to create a table with pointers to
functions that will be called for different motion vectors’ fractional signatures. There are 16 major cases, but to
make our calculation faster, we have to create 48 functions for three possible block width values—4, 8, and 16.

Fortunately, motion vector statistics show that most of the time we have integer motion vectors, and on average,
around four partitions and six motion vectors. Including all the overhead related to organizing calculations on
the upper level—setting all pointers and so on—motion compensation can take an average of 15 to 20 cycles
per pixel for luma samples.

In Pcodes 14.12 and 14.13, the pseudocode to perform the motion compensation filter for sample j (refer to
Figure 14.36) is presented. In the same manner, a set of functions for all 16 cases can be created.

void get_luma_h1(short * dma_addr, short * res_addr, int dma_stride,
int filt_height, int filt_width)

{
int x, y;
short * refp, h1;

for(y = 0; y < filt_height; y++) {
for(x = 0; x < filt_width; x++) {

refp = dma_addr + x;
h1 = 1 * (refp [0*dma_stride] + refp [5*dma_stride])

- 5 * (refp [1*dma_stride] + refp [4*dma_stride])
+ 20 * (refp [2*dma_stride] + refp [3*dma_stride]);

res_addr[x] = h1;
}
dma_addr += dma_stride;
res_addr += filt_width;

}

}

Pcode 14.12: Pseudocode for computing h1 with 6-tap filter.

Since the chroma components (Cb and Cr) of a macroblock have half the horizontal and vertical resolution
(assuming 4:2:0 sampling) as that of the luma component, the same block partition with exactly half the resolution
(i.e., luma 16×8 partition size corresponds to chroma 8×4 partition size) applies to chroma. The horizontal and
vertical components of each motion vector are halved when applied to the chroma blocks. With this, the motion

704 Chapter 14

void get_luma_j(short * dma_addr, // start for DMA output buffer
short * temp_addr, // store intermediate result here
unsigned char * mb_part_addr, // store the result here

int dma_stride, // 10 or 12 for width 4, etc.
int part_height,
int part_width)

{
int mb_part_stride = 16 - part_width;
int filt_width = part_width + 5;
int filt_height = part_height;
int x, y, j1, j2;
unsigned char j;

get_luma_h1(dma_addr, temp_addr, dma_stride, filt_height, filt_width);

for(y = 0; y < part_height; y++) {
for(x = 0; x < part_width; x++) {

j1 = 1 * (temp_addr[x] + temp_addr[x+5])
- 5 * (temp_addr[x+1] + temp_addr[x+4])
+ 20 * (temp_addr[x+2] + temp_addr[x+3]);
j2 = (j1+512)>>10;
j = clip (j2,0,255);
* mb_part_addr++ = j;

}
mb_part_addr += mb_part_stride;
temp_addr += filt_width;

}

}

Pcode 14.13: Pseudocode to calculate pixel j using multiple 6-tap filters.

Figure 14.38: Fractional sample
position dependent variables in chroma
interpolation and surrounding integer
position samples A, B, C, and D.

A B

C D

Yf

Xf 8 2Xf

8 2Yf

a

c

b

vector for chroma components has one-eighth resolution (i.e., it will be in Q13.3 format). Motion compensation
for chroma samples is much easier—it uses bilinear 2D interpolation as shown in Figure 14.38.

Given the chroma samples A, B,C , and D at full-sample locations, the filtered chroma sample value c is
obtained as follows:

a = A ∗ (8− X f)+ B ∗ X f (14.13a)

b = C ∗ (8− X f)+ D ∗ X f (14.13b)

c = (a ∗ (8−Yf)+b ∗ Yf +32) >> 6 (14.13c)

H.264 Deblocking Filter
The need for this filter arises from the fact that blocking artifacts are inherent in the video coding because it
is essentially block-based: first, the discrete cosine transform coding and decoding is performed on blocks of
the size 4 * 4 or 8 * 8, and second, motion compensation is also based on blocks of the size from 4 * 4 to 16 * 16
(or the entire macroblock). In such cases, using the deblocking filter reduces the blockiness introduced in a
decoded picture. The deblock filter smoothes block edges, improving the appearance of decoded video frames.
An example of a decoded video frame without and with a deblocking filter is shown in Figures 14.39 and 14.40,

Video Coding Technology 705

Figure 14.39: Decoded video before filtering with deblock filter.

Figure 14.40: Decoded video after filtering with deblock filter.

respectively. Considering the region highlighted with the dashed circle, the blockiness is clearly visible in the
decoded video in the absence of deblock filter. This blockiness disappears in that region after filtering the decoded
video appropriately. Recent video coding standards (e.g., MPEG-4, WMV9, H.264), specify deblock filtering
for reconstructed video frames. Various standards perform deblock filtering slightly differently. In this section,
we discuss the H.264 deblock filter and its complexity.

706 Chapter 14

Figure 14.41: Deblock filtering on
luma blocks of frame pictures. (a) (b)

Macroblock edges

One of the powerful features of the H.264 video coding standard is its deblocking filter, which is done not
as a post-processing step but inside the coding loop. This filtered frame is used by the motion compensation
modules for future frame reconstruction. Although the intracoded macroblocks are filtered using a deblock filter,
intraprediction is carried out using unfiltered reconstructed macroblocks to form the prediction.

The H.264 deblock filter is rather complex because it is highly adaptive (i.e., it adjusts its strength depending on
the compression mode of the macroblock, quantization parameter, motion vector, frame or field coding decision,
and the pixel values) on both the edge and sample levels, so it accounts for 30 to 40% of total H.264 decoder
complexity. Therefore, the code for the filter needs to be highly optimized to fit in real-time processing.

The filter operates on a macroblock-by-macroblock basis as follows: first, all four vertical edges and then all
four horizontal edges are filtered in the order of increasing macroblock addresses (in a basic case, just in the
raster order).

Luma filtering is illustrated in the simple case of frame pictures as shown in Figure 14.41. In the so-called
adaptive frame-field mode, the filter is somewhat more complicated. In this case, each full macroblock edge
filter is further subdivided into four smaller edges of the 4×4 blocks.

To filter macroblock edges, samples from neighboring macroblock have to be available—left neighbor when
filtering left-most vertical edge and top neighbor when doing the upper horizontal edge. There are several
parameters that control adaptive filtering. On the block edge level, for every edge between 4×4 blocks, a special
parameter of boundary strength (BS) is assigned an integer value from 1 to 4 as follows:

• BS = 4 if the edge is macroblock edge and one of the macroblocks is intracoded (i.e., intraprediction is
used to obtain the macroblock samples, not motion compensation)

• BS = 3 for inner edges of the intracoded macroblock
• BS = 2 if macroblock is not intracoded, and one of the blocks on either side of the edge has coded residual

coefficients
• BS = 1 if the blocks motion vectors or reference frames that are used in the motion compensation are

different

If none of the previous conditions is true, BS = 0 or, simply speaking, there is no filtering for this edge. The
choice of filtering outcome depends on the BS and on the gradient of image samples across the boundary. Based
on the value of the BS parameter, the decision is made about which filter to use: when BS = 4, the strongest
5-tap filter is used; in all other instances, less strong 4-tap filters are used.

There are two more edge-level parameters, α and β, that are tabulated functions of the quantization parameter
(QP) of the macroblock (or rounded average of these parameters for two neighboring macroblocks when filtering
macroblock edges) and global adaptive parameters (offsets of the QP). In brief,

α = α(IndexA), IndexA = Min(Max(0,QP+OffsetA),51) (14.14a)

β = β(IndexB), IndexB = Min(Max(0,QP +OffsetB),51) (14.14b)

where 51 is the maximum of QP value. They are used on the sample level where the actual filtering work is done.
When QP is small, anything other than a very small gradient across the boundary is likely due to image features
that should be preserved and so the thresholds α and β are low. When QP is larger, blocking distortion is likely
to be more significant and α and β are higher so that more boundary samples are filtered.

Video Coding Technology 707

The values of α and β are constant for all inner edges, but can be different for macroblock edges because an
average QP of two macroblocks can be different. Finally, there is a clipping parameter tc0, which is a tabulated
function of BS and IndexA:

tc0 = tc(IndexA,BS) (14.15)

which also should be calculated for every block edge. Before starting the actual filtering, some work should be
done that already requires some effort. Having all these parameters calculated for an edge, we start working on
the sample level.

On every block edge we have to filter four lines across the edge, and every line includes up to 8 pixels
participating in the filtering process, which we denote as p0, p1, p2, p3, and q0,q1,q2,q3, with the numbering
starting from the edge boundary (see Figure 14.42).

First, all three filtering conditions should be satisfied to start filtering these samples:

abs(p0 −q0) < α,abs(p1 − p0) < β,abs(q1 −q0) < β (14.16)

These conditions ensure that gradients of the pixel values are limited by the adaptive (dependent on the QP)
parameters α and β. For BS < 4, the filtering is defined in the following way. Two more threshold variables—
ap = abs(p2 − p0) and aq = abs(q2 −q0)—are used to calculate Boolean variables bp = ap < β and bq = aq < β,
and the clipping variable

tcpq = tc0 +bp +bq (14.17)

Then the “filtering step,” parameter D, is calculated:

D = (((q0 − p0) << 2)+ (p1 −q1)+4) >> 3 (14.18)

D is clipped between −tcpq and +tcpq

D = clip(D,−tcpq, tcpq) (14.19)

where clipping is defined as

clip(D, low,high) = min(max(D, low),high). (14.20)

Finally, the filtered samples p′
0 and q ′

0, clipped between 0 and 255, are obtained as follows:

p′
0 = clip(p0 + D,0,255),q ′

0 = clip(q0 − D,0,255) (14.21)

To find whether we need to modify samples p1 and q1, we have to calculate if the conditions on the sample
differences hold: abs(p2 − p0) < β (or p condition), and correspondingly, abs(q2 −q0) < β (or q condition). If,
say, p condition is true, “filtering step” Dp is calculated as follows:

Dp = (p2 + (p0 +q0 +1) >> 1)−2p1) >> 1 (14.22)

Then it is clipped using the original clipping variable tc0,

D′
p = clip(Dp,−tc0, tc0) (14.23)

Figure 14.42: Location of pixels
participating in vertical and horizontal
edge filtering.

p3 p2 p1 p0 q0 q1 q2 q3

Vertical
boundary

p3

p2

p1
p0
q0
q1
q2
q3

Horizontal
boundary

708 Chapter 14

Finally, we have the result of filtering:

p′
1 = p1 + D′

p (14.24)

Without clipping this can be represented after some transformations as

p′
1 = (p2 + ((p0 +q0 +1) >> 1) >> 1 (14.25)

which corresponds to the relatively strong low-pass impulse response, (1, 0, 0.5, 0.5)/2.
All calculations in the case of BS = 1,2,3 necessary to obtain one or two filtered samples on both sides of the

edge are presented in the pseudocode given in Pcode 14.14. For clarity, Boolean variables with names starting
from “b” are used. For BS = 4, when we filter macroblock edges of I macroblocks, strong filtering is done with
the pseudocode given in Pcode 14.15.

bpq00 = abs(p0 - q0) < α, bp01 = abs(p1 - p0) < β, bq01 = abs(q1 - q0) < β;

if(bpq00 & bp01 & bq01)
{

bp = abs(p2 - p0) < β, bq = abs(q2 - q0) < β;
tcpq = tc0 + bp + bq;
D = (((q0 - p0) << 2) + (p1 - q1) + 4) >> 3;
D = clip(D, -tcpq, tcpq);
p0’ = clip(p0 + D, 0, 255), q0’ = clip(q0 - D, 0, 255);
Dp = ((p2 + (p0 + q0 + 1) >> 1) - 2p1) >> 1;
Dq = ((q2 + (q0 + p0 + 1) >> 1) - 2q1) >> 1;
Dp1 = clip(Dp, -tc0, tc0), Dq1 = clip(Dq, -tc0, tc0);
p1’ = p1 + bp*Dp1, q1’ = q1 + bq*Dq1;

}

Pcode 14.14: Core filtering for boundary strength BS < 4.

bpq00 = abs(p0 - q0) < α; bp01 = abs(p1 - p0) < β; bq01 = abs(q1 - q0) < β;
if(bpq00 & bp01 & bq01) {

bpq = abs(p0 - q0) < (α >> 2) + 2;
bp = abs(p2 - p0) < β; bq = abs(q2 - q0) < β;
if(bp & bpq) {

p0’ = (p2 + 2p1 + 2p0 + 2q0 + q1 + 4) >> 3;
p1’ = (p2 + p1 + p0 + q0 + 2) >> 2;
p2’ = (2p3 + 3p2 + p1 + p0 + q0 + 4) >> 3;

}
else

p0’ = (2p1 + p0 + q1 + 2) >> 2;
if(bq & bpq) {

q0’ = (q2 + 2q1 + 2q0 + 2p0 + p1 + 4) >> 3;
q1’ = (q2 + q1 + q0 + p0 + 2) >> 2;
q2’ = (2q3 + 3q2 + q1 + q0 + p0 + 4) >> 3;

}
else

q0’ = (2q1 + q0 + p1 + 2) >> 2;
}

Pcode 14.15: Strong core filtering for boundary strength BS = 4.

H.264 Deblocking Filter Complexity
A quick estimate shows that to perform all these calculations, more than 40 basic instructions (add, multiply,
min, and max) are needed, and the total number of cycles for a simple implementation on a generic processor
is about 40. There are many possibilities for optimizing the computations, even when coding in C, but to make
this filter suitable for real-time implementation is different for every DSP.

The presence of Boolean variables and the adaptive nature of the filter makes it challenging to attempt to
parallelize computations even if there are enough registers to process, say, two lines in parallel, using the fact
that a pixel is represented as a 16-bit value and one 32-bit register can hold two pixel values.

Video Coding Technology 709

Hand-optimized code on the reference embedded processor makes extensive use of parallel and vector instruc-
tions (i.e., performed on two 16-bit halves of one 32-bit register independently) and some special organization
of handling pointers to optimize information retrieval and storage. For BS < 4, it takes 35 cycles in the loop to
filter one line across the block edge and about 40 cycles for the relatively rare case of BS = 4. For the entire
macroblock, the computational load for only the luma samples follows: filter four lines in each of 32 vertical and
horizontal edges of 16 blocks, or 128 lines, which translates to 128 ∗ 35/256 =∼18 cycles per pixel. Chroma
filtering is faster and simpler; 2 ∗ 32 = 64 chroma lines can be filtered in ∼5 cycles per pixel. But this is only
“core” filtering. If we add all necessary service functions—strength calculation and DMA setup, packing the
pixels into 8 bits, and conversion to 4:2:0 format, we will be close to 30 cycles per pixel if all strength values
are not zero. In practice, the strength is 0 for many edges and on average, the H.264 loop filter requires about 20
cycles per pixel.

There are other issues related to the output organization in the real-time implementation of the filter when,
say, macroblocks are decoded in the raster order; therefore, we should keep two “live” macroblocks, and filter
with a time delay of one macroblock because we can complete processing of one macroblock only when its right
neighbor is available.

For the same reason, we need to store in the history buffer up to four lines of the top neighbor pixels to filter
the top horizontal edge of a macroblock as well as additional information related to the top neighbor—its type,
motion vectors, reference frame, coded residuals, and so on—which is necessary to calculate the strength of the
top blocks’ edges. In our simple (mbaff = 0) case, we have to keep 140 bytes per macroblock, so the total size
of the history for D1 resolution with a frame width of 45 macroblocks is 6.2 kB.

14.4.5 H.264 Decoder Complexity

We achieve better compression (for a given video quality) with H.264 coding only at the cost of encoding/decoding
complexity. Implementation of H.264 coding tools is two to three times more complex when compared to earlier
versions of this standard. Next, we provide H.264 bitstream decoding complexity (in terms of cycles and memory)
for baseline and main profiles to decode using the reference embedded processor. As the cycles and memory
requirements for video decoding depend on frame resolution and bit rate, we provide H.264 decoding complexity
here for the D1 resolution video at the bit rate of 1.5 Mbps.

H.264 Baseline Profile: 45 cycles per pixel
Parser+CAVLC+zig-zag scan: 7 cycles per pixel
Quant+IDCT: 3 cycles per pixel
MC/Ipred: 13 cycles per pixel
Loop filter: 21 cycles per pixel
Misc: 1 cycle per pixel
L1 memory (data+program): 64 kB

H.264 Main Profile: 60 cycles per pixel
Parser+CABAC+zig-zag scan: 21 cycles per pixel
Quant+IDCT: 3 cycles per pixel
MC/Ipred: 16 cycles per pixel
Loop filter: 18 cycles per pixel
Misc: 2 cycles per pixel
L1 memory (data+program): 96 kB

14.5 Scalable Video Coding

Scalable video coding (SVC) is a highly attractive solution to problems posed by characteristics of modern video
transmission systems. The SVC can be used for various application scenarios such as bandwidth adaptation,
content adaptation, and complexity adaptation. For example, as shown in Figure 14.43, a video surveillance
application transmits the recorded video to various portable devices, computer monitors, and TVs. The screen

710 Chapter 14

Video
Encoder

Portable

Network
Server and
Storage

Mobile

Television

Different Screen
Resolutions

Different
Bandwidths

Video
Camera

Figure 14.43: Typical video coding application.

resolutions, frame rates, processing power, and receiving bandwidths of the receiving-end devices are very
different. In addition, the quality of various transmission channels and networks need not be the same. Given
this application scenario, encoding and transmission of the same compressed bitstream on various channels to
diverse devices is definitely not an effective solution from a user perception point of view. To serve diverse
clients over heterogeneous networks, the SVC allows on-the-fly adaptation in the spatial-temporal and quality
dimensions according to network conditions and receiver capabilities.

In principle, the SVC scheme supports an arbitrary number of temporal/spatial/SNR scalability layers and
offers scalability at a bitstream level (in other words,SVCallows partial transmission and decoding of a bitstream).
Three basic types of video scalability are temporal scalability, spatial scalability, and SNR (or quality) scalability.
The SVC scheme for achieving a wide range of spatiotemporal and quality scalability can be classified as a layered
video codec. At the encoder, with the scalable coding, we decompose the video into multiple layers of prioritized
importance and code layers into base and enhancement bitstreams. At the decoder, progressively combine one or
more bitstream layers to produce different levels of video quality. The complexity of the SVC encoding process
is determined by the number of spatial, temporal, and quality (SNR) layers that are used for coding. While SVC
enjoys flexible bitstream adaptation, it comes with a loss of coding efficiency.

14.5.1 Video Scalability

Spatial Scalability
Assume that we receive a low bit-rate QVGA resolution video and wish to watch the same video on cell phone and
HDTV. Since the cell phone’s screen resolution is in the range of QVGA to VGA, we can watch the video after
proper scaling without many artifacts. However, many staircase artifacts and blurred video (due to smoothing)
will be seen when we play the same video clip (with appropriate scaling) on 720p or 1080i HDTV. This is due
to video scaling by the end device with a factor of 4 to 6 from a very low to very high frame resolution. The
other option is to have a two-layer bitstream—base layer (low-resolution version of video) and enhancement
layer (contains the coded difference between up-scaled base layer and original video)—and decoding the layered
bitstream and playing the corresponding video on different resolution screens. This allows us to watch the same
video clip on two different resolution screens with good perceptual quality.

With spatial scalability, we can transmit video to different screen-resolution end devices with the best possible
video quality. Since video is coded at multiple spatial resolutions, the decoded samples of lower resolutions can
be used to predict samples of higher resolutions in order to reduce the bit rate in coding higher-resolution frames.
Many recent video coding standards support spatial-scalable coding with arbitrary resolution ratios.

Temporal Scalability
Temporal scalability is a technique that allows a single bitstream to support multiple frame rates. Motion com-
pensation dependencies are structured so that complete video frame packets can be dropped from the bitstream.
One way to achieve temporal scalability is by using B-frames. Since no I - or P-frames depend on B-frames
(from the motion compensation point of view), temporal scalability can be achieved simply by discarding the
B-frames without affecting the other frames.

Video Coding Technology 711

Temporal scalability is typically supported with predetermined temporal prediction structures defined by the
standard. Previous video coding standards MPEG-1, MPEG-2 video, H.263, and MPEG-4 visual all support
temporal scalability to some degree. For example, in MPEG-2 video, temporal scalability is achieved by the
well-known IBBP prediction structure. With this, three levels of temporal scalability can be achieved: one-quarter
frame rate by discarding two B-frames and one P-frame, one-half frame rate by discarding two B-frames, and
three-fourths frame rate by discarding one B-frame.

SNR Scalability
With SNR scalability, the bitstream provides the same spatiotemporal resolution as the complete bitstream but
with a different quality. SNR scalability is achieved by refining the amplitude resolutions. For example, with
two-layer SNR scalable coding, the base layer uses a coarse quantizer, and the enhancement layer applies a
finer quantizer to the difference between the original DCT coefficients and the coarsely quantized base-layer
coefficients. Here the base and enhancement layers are at the same spatiotemporal resolution.

Combined Scalability
With combined scalability, a bitstream can provide a wide variety of combinations of the previous basic scalability
types.

14.5.2 H.264 SVC

Scalability was already available in earlier versions of video coding standards MPEG-2 video, H.263, and
MPEG-4 visual in the form of scalable profiles. However, the provision of scalability in terms of picture size
and reconstruction quality in these standards comes with considerable growth in decoder complexity and a
significant reduction in coding efficiency. These drawbacks are addressed by the new SVC amendment of
H.264/AVC standard (JVT, 2007). The original H.264/AVC specification includes the basic features necessary
to enable temporal scalability. The new H.264 SVC adds scalability in terms of picture size (spatial scalability) and
reconstruction quality (SNR scalability). A simplified H.264 SVC encoder architecture is shown in Figure 14.44.
The SVC encodes the video into multiple spatial, temporal and SNR layers for combined scalability. The input
video is spatially decimated and interpolated to support multiple spatial resolutions.

In H.264 SVC, different types of scalability are achieved using the following techniques:

• Adaptive interlayer prediction techniques, including intratexture, motion, and residue predictions, are used to
exploit correlation among spatial and SNR coding layers (see Figure 14.44). For each spatial layer, prediction

ME� Intraprediction

ME� Intraprediction

ME� IntrapredictionHD Video

 Video
D1
Video

¼ D1
Video

Residual
Tx Coding

Residual
Tx Coding

Motion
Prediction

Motion
Prediction

Residual
Tx Coding

Motion
Prediction

Entropy
Coding

Entropy
Coding

Entropy
Coding

M
ul

tip
le

x

L2

Base /L0

L1

Interlayer
Intraprediction Interlayer

Residual
Prediction

Interlayer
Motion
Prediction

Spatial
Decimator

Spatial
Interpolator

Figure 14.44: Simplified H.264 SVC encoder architecture.

712 Chapter 14

L0 L2 L1 L2 L0 L2 L1 L2 L0L3 L3 L3 L3 L3 L3 L3 L3

Figure 14.45: Enabling temporal scalability in H.264 AVC with hierarchical B-frame structure.

L0 L1 L2 Ln

Video Frame Bitstream in Multiple Layers

Decode
base layer

Decode base 1
first enhancement
layer

Decode base 1
first two enhancement
layers

Figure 14.46: Video-frame bitstream with scalable video coding.

comes from either a spatially upsampled lower layer frame or a temporally neighboring frame at the same
layer.

• A hierarchical B-frame structure is used to support multilevel temporal scalability as shown in Figure 14.45.
The enhancement layers are typically coded as B-frames. Compared to MPEG-2 IBBP structure, the H.264
SVC hierarchical B-frame structure has better coding efficiency using more efficient frame-level bit allocation,
especially for video sequences with fine texture and regular motion.

The bitstreams from all spatial or SNR layers are then combined to form the final SVC bitstream as shown in
Figure 14.46. The number of layers in an SVC bitstream is dependent on the needs of an application. The H.264
SVC supports up to 128 layers in a bitstream. For more description of H.264 SVC, see Schwarz et al. (2007)
and JVT (2007).

CHAPTER 15

Video Post-Processing

Video data is often processed after decompression to enhance it in some way before playing it on-screen. This
part of video processing is known as video post-processing. The post-processing modules include video scaling,
video filtering, video enhancement, alpha blending, gamma correction, and video transcoding, among others.
This chapter focuses on selected video post-processing modules and respective simulation techniques.

15.1 Video Quality Measurement

In practice, the quality of processed video data is compared to reference video data. Typically, two approaches
are used for comparison: objective measures such as peak-signal-to-noise-ratio (PSNR) and subjective measures
such as mean opinion score (MOS). The most common objective metric is the PSNR. After processing the video
data, the PSNR is computed as

PSNR(dB) = 20 log10
(2b −1)√

MSE
(15.1)

where b denotes the number of bits used to represent the pixel. If R_Video() and P_Video() denote the reference
video frame and processed video frame, respectively, and M and N denote the height and width of video frames,
then the mean square error (MSE) is computed as

MSE = 1

M × N

M−1∑
j=0

N−1∑
i=0

{R_Video(i, j)− P_Video(i, j)}2 (15.2)

In general, individuals have different perceptions of the same video sequence. Thus, there is also a need for
subjective perspectives on video quality. Subjective video quality involves a group of people viewing the same
video sequences and grading the quality, and an MOS is calculated.

15.2 Video Scaling

Image scaling plays a very important role when we want to work with two display systems of different resolutions
(e.g., the resolution of a portable player screen is 320 × 240 whereas an HDTV screen is 1920 × 1080) and
when we want to transmit image data on low-bandwidth communication channels such as the Internet. Most
of the time image scaling is used to convert low-resolution images to high-resolution images or vice versa. In
video applications, apart from changing the resolution, image scaling is also used for changing the aspect ratio
(e.g., from 4:3 to 16:9). With the YUV video format, we must scale both luminance and chrominance components
separately with the same scaling ratio, as shown in Figure 15.1. In this case, both luminance and chrominance
components are scaled using the horizontal scaling (HS) ratio of 2 and vertical scaling (VS) ratio of 3/2.

The core of a video scalar is an interpolator function. The output quality of a video scalar depends on the
type of interpolator function used in scaling each video component. The most commonly used interpolators
are the bilinear, bicubic, spline, discrete cosine transform (DCT)-based, and Gaussian. High-end interpolators
used in video scaling are nonlinear and image model based. In Section 10.7, we discussed a few interpolation

© 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-678-1.00015-6 713

714 Chapter 15

Figure 15.1: Illustration of video
scaling with YUV format.

Y
U

V

Y

U

V

HS: 1-�2
VS: 2-�3

Figure 15.2: Playing low-resolution
video on a high-resolution display
system.

Portable
Player

HDTV Display
Docking Station

Audio
System

(includes video scaler)

functions. Image quality was observed after using nearest-neighbor and bilinear interpolators. The nearest-
neighbor technique is not used for practical applications, as its output consists of staircase artifacts. The bilinear
interpolator is commonly used in many applications for scaling the chrominance component.

In this chapter, we discuss various scaling methods for scaling both luminance and chrominance components.
To the human eye, scaling artifacts of chrominance components are imperceptible, whereas intensity scaling
artifacts are clearly visible. Thus, different scaling algorithms are used to scale luminance and chrominance
components. In Section 15.2.2, we discuss the bicubic interpolator for scaling chrominance components. For
scaling luminance components, we must use high-end interpolator functions such as cubic-spline, DCT-based,
nonlinear, or model-based interpolators to maintain image quality by preserving edge information and other
details of small objects. Depending on the quality requirement and selected embedded processor capabilities, we
choose an appropriate scaling method to scale the video frames. There are many other methods in the literature
for scaling video frames; discussion of all methods is beyond the scope of this book.

15.2.1 Luminance Scaling

The human eye is very sensitive to luminance (or intensity) component variations. If we use simple interpo-
lators to perform video scaling, the result may be unacceptable quality. For example, if we use a portable
player as the video decoding engine and connect it to HDTV to watch a video, as shown in Figure 15.2, the
video’s quality depends entirely on the type of scalar used. One such scaled image using bilinear interpolator
and using a nonlinear interpolator is shown in Figure 15.3. As shown in Figure 15.3(a), the staircase arti-
facts, which are not present in the original image, pop up when the luminance component of the image was
upscaled using the bilinear interpolator. However, these staircase artifacts are not noticeable in the upscaled
image using nonlinear interpolator as shown in Figure 15.3(b). In both cases, the chrominance components are
scaled using a bilinear interpolator. Next, we discuss various interpolation techniques for scaling the luminance
component of images.

Using Cubic B-Spline Interpolation
Spline interpolation is preferred over polynomial interpolation because the interpolation error can be made small
even when using lower-degree splines. Many spline functions are proposed in the literature for the purpose
of data point interpolation. B-splines (where B stands for basis) are the most widely used in image process-
ing applications. A B-spline is a spline function that has minimal support with respect to a given degree,

Video Post-Processing 715

(a) (b)

Figure 15.3: Video scaling. (a) Using bilinear interpolator. (b) Using nonlinear interpolator.

smoothness, and domain partition. Every cardinal spline (which is an actual interpolation function) of a given
degree, smoothness and domain partition can be represented as a linear combination of many B-splines of
the same degree and smoothness. The computation of cardinal splines involves solving many linear equations;
hence, we focus on B-spline approximations for scaling images. B-splines of orders 0 and 1 coincide with the
nearest-neighbor and linear interpolation functions, respectively. B-splines of order n can be constructed by a
repetitive convolution of the 0-th order B-spline hbs(x) (i.e., nearest-neighbor or rectangle function) with itself:

hnbs(x) = hbs(x) ∗ hbs(x) ∗ · · · ∗ hbs(x), (n +1) times (15.3)

An explicit expression for n-th order B-spline generation follows:

hnbs(x) = 1

n!

n+1∑
k=0

Cn+1
k (−1)k

{(
x + n +1

2
− k

)n}
+

(15.4)

where Cn+1
k are the binomial coefficients, and the function {y}+ is defined as

{y}+ =
{

y, if y > 0

0, otherwise
(15.5)

If we substitute n = 3 in Equation (15.4), then we obtain the widely used cubic B-splines:

hcbs(x) = 1

6

[{
(x +2)3}

+ −4
{
(x +1)3}

+ +6
{

x3}
+ −4

{
(x −1)3}

+ +{(x −2)3}
+
]

(15.6)

If we choose two neighboring points on each side of current interpolating pixel position with variable x
as the distance between the interpolation and neighboring points, then the interpolation coefficient values for
neighboring points using the cubic B-spline approximation function is as follows:

hcbs(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

6

[|(x +2)3|−4|(x +1)3|+6|x |3], for 0 ≤ |x | < 1

1

6

[|(x +2)3|−4|(x +1)3|+6|x |3 −4|(x −1)3|], for 1 ≤ |x | ≤ 2

0, otherwise

(15.7)

or

hcbs(x) =

⎧⎪⎪⎨
⎪⎪⎩

(1/2)|x |3 − |x |2 +2/3, 0 ≤ |x | < 1

−(1/6)|x |3 + |x |2 −2|x |+4/3, 1 ≤ |x | ≤ 2

0, otherwise

(15.8)

The spatial-frequency characteristics of the cubic B-spline approximation function are shown in Figure 15.4.
The stopband characteristics of the cubic B-spline approximation function are far better when compared to

716 Chapter 15

0 1 222
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

21
(a)

2180

2160

2140

2120

2100

280

260

240

220

0

420
(b)

Figure 15.4: Cubic B -spline approximation characteristics. (a) Spatial domain. (b) Frequency domain.

xe
35 0.8

xe
45 1.8

xe
25 20.2

xe
15 21.2

e
A B C D

hcbs(x4)hcbs(x3)hcbs(x2)hcbs(x1) f g h

Original image pixel

Interpolated image pixel

20.2 0.0 0.2 0.4 0.6 0.8

Figure 15.5: Illustration of interpolation coefficients computation.

the stopband characteristics of both nearest-neighbor interpolation and bilinear interpolation functions (see
Section 10.7). Computing interpolation coefficients for given interpolating point e with four neighbor points
A, B,C , and D and scaling ratio 1:5 is illustrated in Figure 15.5.

The interpolation coefficients for neighboring points A, B,C , and D to compute interpolating points e, f, g,
and h are tabulated as follows:

cbs A : hcbs(x1) B : hcbs(x2) C : hcbs(x3) D : hcbs(x4)

e 0.0853 0.6307 0.2827 0.0013
f 0.0360 0.5387 0.4147 0.0107
g 0.0107 0.4147 0.5387 0.0360
h 0.0013 0.2827 0.6307 0.0853

The superior performance of cubic B-spline approximation-function interpolation compared to bilinear interpo-
lation in scaling the parrot image by a factor of 4 can be seen in Figure 15.6. We hardly see the staircase artifacts
after B-spline interpolation.

Using DCT-Based Interpolation
In scaling images at the block level, the 2D-DCT interpolator works as an optimum interpolator in the sense
of generating good interpolated points using sinusoidal functions. When the scaling ratio is larger, DCT-based
interpolation outperforms bilinear interpolation. It is computationally expensive to achieve arbitrary scaling
ratios with DCT interpolation. However, we can always use a combination of DCT and bilinear interpolation
functions to efficiently compute interpolated points for arbitrary scaling. One such DCT-based scaling scheme to
scale the n ×m block to the N × M block is shown in Figure 15.7. In DCT scaling, optional frequency-domain
enhancement and median filtering modules are shown with dashed rectangles.

Video Post-Processing 717

(a) (b)

Figure 15.6: Video scaling. (a) With cubic B -spline approximation. (b) With bilinear interpolation.

K /2 3 K /2
DCT

K /2 3 K /2
DCT

K 3 K
IDCT

K 3 K
IDCT

Enhance
Image in the
Frequency

Domain

Input (n 3 m block)

Output (N 3 M block)

First Stage

Last Stage

Bilinear
Interpolator

Clip

Median
Filtering

Middle Stages

Figure 15.7: Block diagram of DCT-based video scaling.

In DCT-based video scaling, interpolation is achieved by computing the DCT and inverse DCT (IDCT) of
video data blocks. Scaling happens only when DCT and IDCT sizes are different. DCT and IDCT are performed
multiple times for scaling from m ×n to M × N . The supported scaling ratios with DCT-based interpolation
are 2k . The value of k is a positive integer for upscaling and negative for downscaling. For example, k = 1 doubles
the image size and k = −1 downscales the image size by half in both directions. If we already have DCT data,
then we immediately compute IDCT by choosing an appropriate IDCT matrix size for scaling the video frames.
Otherwise, we first compute DCT with one of block size 4× 4, 8× 8, or 16×16 pixels, and then perform IDCT
with a different block size to achieve appropriate scaling.

As an example, consider scaling video from QVGA (320 × 240) to HD (1920 × 1080) resolution. In this
case, the horizontal scaling ratio is 6 and the vertical scaling ratio is 4.5. One way to perform this scaling
is by using DCT-based scaling first to get a factor of 4 in both horizontal and vertical directions and then

718 Chapter 15

(a) (b)

Figure 15.8: Video scaling. (a) DCT-based interpolation. (b) Bilinear interpolation.

performing horizontal scaling with factor 3/2 and vertical scaling with factor 9/8 using bilinear interpolation.
To get a factor-4 scaling using the DCT-based approach, we perform scaling in two stages with factor-2 scaling
as follows. We compute DCT for each 4 × 4 block of the original image and take the 8 × 8 IDCT. This scales
the 4 × 4 of the original image to the 8 × 8 block—let’s call this factor-2 scaled image “stage1_image.” We
repeat the same procedure, computing DCT for each 4×4 block of stage1_image and take 8×8 IDCT to form
stage2_image. Now, stage2_image is a factor-4 scaled version of the original image in both the horizontal and
vertical directions. Then we perform the rest of the scaling using a bilinear transform to obtain the final resolution
of 1920×1080. Video scalar performance with DCT-based interpolation is shown in Figure 15.8(a), and simple
bilinear interpolation in Figure 15.8(b); we can see the improved performance of DCT-based scaling.

DCT Scaling and Video Enhancement Apart from improved scaling performance, there are other advantages
of DCT-based scaling. We handle transform-domain data in DCT-based scaling, and thus we can also perform
filtering (i.e., smoothing or edge enhancement) of the image without much extra computational cost. Filtering with
transform-domain data is achieved as follows. As the transform-domain data represents frequency components
in the image, we can achieve the image filtering with modification of transform-domain data. Eliminating the
high-frequency components in the 4 × 4 transform domain block and taking the 8 × 8 IDCT of the remaining
coefficients results in a smooth image in the spatial domain. Similarly, boosting high-frequency components in a
4×4 block and taking its 8×8 IDCT results in edge enhancement in the spatial domain. Boosting high-frequency
components can be achieved with a simple element-by-element multiplication of the 4×4 DCT block with the
following 4×4 matrix elements:

HF =

⎡
⎢⎢⎢⎣

0.00 0.08 0.15 0.30
0.08 0.15 0.30 0.50
0.15 0.30 0.50 0.80
0.30 0.50 0.80 1.00

⎤
⎥⎥⎥⎦ (15.9)

Figure 15.9 shows edge sharpening of the spatial-domain image due to high-frequency component boosting in
the transform domain. The upscaled image using DCT interpolation with and without edge sharpening is shown
in Figure 15.9(a) and (b), respectively.

In the same way, we smooth the image by eliminating the high-frequency content in the 4 × 4 transform-
domain data. For example, say that we obtain D4×4 by taking DCT of a 4×4 pixel block and that the following
are DCT coefficients of D4×4.

D4×4 =

⎡
⎢⎢⎢⎣

27.5 14.3 6.9 2.2
12.9 7.1 4.5 1.3

5.2 2.9 1.6 0.9
2.7 1.1 0.6 0.2

⎤
⎥⎥⎥⎦, Dz

4×4 =

⎡
⎢⎢⎢⎣

27.5 14.3 6.9 2.2
12.9 7.1 4.5 0.0

5.2 2.9 0.0 0.0
2.7 0.0 0.0 0.0

⎤
⎥⎥⎥⎦

Video Post-Processing 719

(a) (b)

Figure 15.9: Image sharpening along with scaling using DCT-based interpolation. (a) With boosting of high
frequencies. (b) Without boosting of high frequencies.

Figure 15.10: Efficient implementation
of DCT-based upscaling. 8

8

4

4

Horizontal
4- to 8-point IDCT

Vertical
4- to 8-point IDCT

Then we replace six high-frequency components in D4×4 with zeros and form matrix Dz
4×4. Computing the 8×8

IDCT of Dz
4×4 results in a filtered 8 × 8 block. In this way, we perform image smoothing without adding extra

computations.

Efficient Implementation of DCT-Based Scaling DCT-based scaling involves the computation of DCT and
IDCT. We can sometimes use bilinear interpolation along with DCT interpolation to scale the image arbitrarily.
Depending on the type of scaling (i.e., up or down), DCT-based scaling can be efficiently implemented using
the DCT input and output pruning techniques discussed in Section 7.2. For example, in the case of upscaling,
first we compute 4×4 DCT and then 8×8 IDCT. Since we know that 50% of the inputs are not present for the
8-point IDCT, we can use the input-pruned, signal-flow diagram shown in Figure 7.11. As shown in Figure 15.10,
computing four 4- to 8-point IDCTs horizontally and eight 4- to 8-point IDCTs vertically results in an 8 × 8
IDCT of 4×4 block data.

Image downscaling by a factor of 2 in both horizontal and vertical directions involves computing the DCT of
the 8 × 8 spatial-domain block followed by special IDCT computation (of the 8 × 8 transform domain block)
that outputs only 4 × 4 spatial-domain data. Here we have two options to efficiently implement DCT-based
downscaling. In the first option, we use the output pruning technique shown in Figure 7.14 to avoid most of the
computations. In the second option, we compute 4×4 IDCT directly, ignoring the high-frequency components.
Now, which option is better to perform DCT-based downscaling? It depends on the number of high-frequency
DCT coefficients in that particular block. If we have less high-frequency components, then performing 4 × 4
IDCT avoids many computations. In contrast, if we have more high-frequency components, then we must perform
eight 8- to 4-point IDCTs vertically followed by four 8- to 4-point IDCTs horizontally to get better results.

Using Edge-Based Interpolation
The linear interpolator treats all image pixels in the same way during interpolation. Because of this, the scaled
output image with the bilinear interpolator may not be very crisp, as its edge information and other small object

720 Chapter 15

details are destroyed. If we find the image edges and specifically take care of them during scaling, then the
scaled image results look very sharp and crisp. In the absence of edges, the difference between bilinear output
and edge-based interpolator output is negligible to the human eye. Therefore, in our scaling algorithm we apply
edge-based interpolation whenever we come across edge pixels; otherwise, we use bilinear interpolation to
minimize overall scaling computational complexity.

Here we discuss and simulate the edge-based interpolation algorithm presented in Raghupathy et al. (2003).
Consider a block of 4 × 4 pixels as a working block for the edge-based interpolation algorithm. If an edge is
in a block of pixels, then the difference between the pixel minimum and maximum values is very large; in the
absence of an edge, the difference will be small. For example, as shown in Figure 15.11, the pixel difference in
4 × 4 blocks 2, 3, 4, and 5 is very large as an edge is passing through them, and the pixel difference in 4 × 4
blocks 1 and 6 is very small. Now, if we treat all 4×4 blocks in the same way, and scale them by the large factor
using bilinear interpolation, then we see staircase artifacts along the edges. Instead, if we scale the pixel blocks
2, 3, 4, and 5 using the edge-based interpolation, scaling artifacts are minimized.

Consider 16 pixels of a 4×4 block as shown in Figure 15.12. We use the criteria of pixel difference in 4×4
blocks to loosely classify whether the current 4 × 4 block pixels contain an edge. If the pixel difference in the
current 4 × 4 block is less than the threshold, then we treat it as a non-edge block and scale it with bilinear
interpolation. Otherwise, we assume that the current block is an edge block, compute all pixel orientations,
and scale the 4 × 4 block using edge-based interpolation if it has a dominant edge orientation. Sometimes we
scale edge blocks using bilinear interpolation as well if dominant edge orientation is not found. In any case,
we compute all interpolated points in a given 4 × 4 block using the same interpolation method. Two types of
interpolation methods are not applied in any single 4×4 block.

The pixel difference in the 4 × 4 block determines whether the pixel P (i, j) of a 4 × 4 block needs edge-
oriented interpolation or bilinear interpolation for computing its neighboring pixels a, b, and c by interpolation.
If we classify the current 4 × 4 block as edge oriented, then the orientations of all 4 × 4 pixels are computed
and similarly oriented pixels are grouped. If any group contains more than six pixels with the same orientation,
then the current pixel is strictly classified as an edge-oriented pixel and the interpolated pixels a,b, and c for

Figure 15.11: Schematic of 4× 4 pixel
blocks with edges.

1 2 3

4 5 6

One pixel 4 3 4

4 3 4

4 3 4

4 3 4

4 3 4

4 3 4

Figure 15.12: Block of 4×4 pixels
with highlighted actual and
interpolated pixels.

P (0, 1)P (0, 0) P (0, 2)P (0, �1)

P (�1, 1)P (�1, 0) P (�1, 2)P (�1, �1)

P (1, 1)

P (1, 0)

P (1, 2)P (1, �1)

P (2, 1)P (2, 0) P (2, 2)P (2, �1)

c

a

b

Video Post-Processing 721

Figure 15.13: Pixel-gradient angle
quantization.

� �22.5�

� �0�

the current pixel P (i, j) are obtained with edge-oriented filter interpolation; otherwise, the interpolated pixels
(a,b,c) are obtained with bilinear interpolation. Note: The edge-based interpolator discussed here is used to
scale images by only a factor of 2. The filter coefficients derived are not suitable for arbitrary scaling.

Given the pixel x -gradient xg and y-gradient yg, we compute the pixel gradient angle θ as

θ = tan−1
(

yg

xg

)
(15.10)

We quantize the pixel gradient angle θ such that it takes any one of eight angles 0, 22.5, 45, 67.5, 90, 112.5, 135,
or 157.5, as shown in Figure 15.13 using Equation (15.11).

α =
⌊

θ −11.25

22.5

⌋
mod 8 (15.11)

Based on Equation (15.11), we will have eight quantized orientations (α) in the interval [0, 180). We obtain
interpolated pixels a,b, and c for one original pixel P to scale the image in both horizontal and vertical directions
by a factor of 2. For each interpolated position, we will have eight types of filters to choose from depending on
the orientation of current pixel gradient, and any of 16 original pixels in the 4 × 4 block can participate in the
interpolation process.

In Raghupathy et al. (2003), a least-mean-square (LMS) algorithm is used to compute 4×4 interpolator filter
weights, and with this the filter weights that are obtained will have uniform values for all pixels participating in
the interpolation process for a given pixel gradient orientation.

Instead of using equal weights for all pixels participating in the interpolation, we use filter weights such that
the weights of participating pixels are inversely proportional to their distances to the interpolating pixel. Also, we
restrict the number of pixels participating in the interpolation process to 4, 6, or 8. For example, if the orientation
of pixel gradient P(0,0) is 157.5◦, then for obtaining the interpolated pixel b, the chosen pixels are P(0, −1),
P(0,0), P(1,0), and P(1,1), as shown in Figure 15.12, and the filter weights are given by the vector [0.1545,
0.3455, 0.3455, 0.1545]. As 4, 6, or 8 taps are used out of 16 taps, in an actual implementation we can reduce
the number of computations by computing the interpolation with only non-zero filter coefficients.

The scaled images using an edge-based interpolator and bilinear interpolator are shown in Figure 15.14(a)
and (b). We can clearly see the performance difference between them. As discussed, the bilinear interpolation
destroys the edge information in the scaled image, whereas the edge-based interpolator preserves the edge
information during the scaling process.

15.2.2 Chrominance Scaling

In scaling a YUV image, we scale the two chrominance components U and V (or Cb and Cr) using the same
scaling ratio that is used for scaling the luminance component. The human eye is relatively insensitive to small
artifacts arising in chrominance-component scaling. Because of this, less complex interpolation methods to scale
chrominance components are acceptable. In general, bilinear or bicubic interpolation methods are widely used
in scaling the chrominance component. See Section 10.7 for more detail on bilinear interpolation. In this section,
we briefly discuss the bicubic interpolation function. With four neighboring points, the bicubic interpolation

722 Chapter 15

Figure 15.14: Video scaling. (a) Edge-
based interpolation. (b) Bilinear
interpolation. (a) (b)

02122
20.2

0.2

0.4

0.6

1

0.8

1.2

0

1 2
(a)

210

2180

2160

2140

2120

2100

280

260

240

220

0

20

3
(b)

Figure 15.15: Bicubic interpolation function. (a) Spatial domain. (b) Frequency domain.

function is defined as

hcubic(x) =

⎧⎪⎨
⎪⎩

(3/2)|x |3 − (5/2)|x |2 +1, 0 ≤ |x | < 1

(−1/2)|x |3 + (5/2)|x |2 −4|x |+2, 1 ≤ |x | ≤ 2

0, otherwise

(15.12)

The spatial-frequency characteristics of the bicubic interpolation function are shown in Figure 15.15; the
stopband attenuation of bicubic interpolation function is better when compared to bilinear interpolation.

The interpolation coefficient computation illustrated in Figure 15.5 is also applicable for scaling chrominance
components by a 1:5 scaling ratio using bicubic interpolation. The interpolation coefficients for neighboring
points A, B,C , and D to compute interpolating points e, f, g, and h using bicubic interpolation follow.

cubic A : hcubic(x1) B : hcubic(x2) C : hcubic(x3) D : hcubic(x4)

e −0.0640 0.9120 0.1680 −0.0160
f −0.0720 0.6960 0.4240 −0.0480
g −0.0480 0.4240 0.6960 −0.0720
h −0.0160 0.1680 0.9120 −0.0640

Chrominance component scaling using bilinear and bicubic interpolation by a factor of 4 is shown in Figure 15.16;
the figure shows that color differences are imperceptible after scaling using bilinear or bicubic methods.

15.2.3 Simulation of Interpolation Functions

In this section, the simulation code for bicubic, cubic B-spline, DCT, and edge-based interpolation methods
is provided. Before calling the interpolation function, we precompute the interpolation coefficients for given

Video Post-Processing 723

Figure 15.16: Video chroma scaling.
(a) Bicubic interpolation. (b) Bilinear
interpolation. (a) (b)

scaling ratios and store them in a look-up table in fixed-point format. We simulate all interpolation functions
discussed so far to scale image components by a factor of 4. To achieve factor-4 scaling, in DCT- and edge-
based interpolation, scaling is performed in two steps, whereas we achieve factor-4 scaling in a single step
using B-spline and bicubic interpolation. In addition, we perform block-based scaling in DCT- and edge-based
interpolation methods, whereas B-spline and bicubic interpolation methods scale the images one line at a time.

We precompute the interpolation filter coefficients and store their equivalent fixed-point format values in
memory. Given the scaling ratio, filter taps for B-spline and bicubic interpolation methods are obtained using
Equations (15.8) and (15.12). The filter taps for DCT-based interpolation are given by DCT matrix elements. In
edge-based interpolation, filter taps are obtained either by using the LMS algorithm or pixel distances.

Luminance Scaling Based on Cubic B-Splines
To scale image components by a factor of 4 using cubic B-splines, we precompute the filter taps as follows. To
achieve factor-4 scaling, we must output four pixels for each input pixels as shown in Figure 15.17. The ai ,bi ,
and ci filter taps are obtained by substituting the 0.25, 0.50, and 0.75 values in Equation (15.6). The decimal and
corresponding 1.15 fixed-point format for ai ,bi , and ci values follow:

a1 = 0.0703(2303), a2 = 0.6120(20054),a3 = 0.3151(10325),a4 = 0.0026(85)

b1 = 0.0208(681), b2 = 0.4792(15702),b3 = 0.4792(15702),b4 = 0.0208(681)

c1 = 0.0026(85), c2 = 0.3151(10325),c3 = 0.6120(20054),c4 = 0.0703(2303)

As we scale the image by a factor of 4 in both horizontal and vertical directions, we can use the same filter
tap values for interpolating both directions. However, if the horizontal scaling ratio is different from the vertical

Figure 15.17: Illustration of scaling
using line-based interpolation.

P (i �1, j)

P (n, m)

P (n, m) �P (i, j)

P (n � 1, m) � a1P (i �1, j) � a2P (i , j) � a3P (i � 1, j) � a4P (i � 2, j)

P (n � 2, m) � b1P (i �1, j) � b2P (i , j) � b3P (i � 1, j) � b4P (i � 2, j)

P (n � 3, m) � c1P (i �1, j) � c2P (i , j) � c3P (i � 1, j) � c4P (i � 2, j)

P (n �1, m) P (n �2, m) P (n �3, m)

P (i �1, j) P (i �2, j)P (i, j)

0.00 0.25 0.50 0.75

724 Chapter 15

// scale luminance component from resolution mxn to MxN, m = M/4, n = N/4
for(j = 0;j < m;j++){ // horizontal scaling

p = j*N; q = j*n;
sBufY[p] = BufY[q]; // duplicate edge pixels
sBufY[p+1] = BufY[q];
sBufY[p+2] = (BufY[q]+BufY[q+1])>>1; // linear interpolation
sBufY[p+3] = BufY[q+1];
for(i = 4;i < N-4;i+ = 4){ // cubic B-spline interpolation starts

k = i>>2;
sBufY[p+i] = BufY[q+k];
sBufY[p+i+1] = ((BufY[q+k-1]*a1)>>15) + ((BufY[q+k]*a2)>>15) +

((BufY[q+k+1]*a3)>>15) + ((BufY[q+k+2]*a4)>>15);
sBufY[p+i+2] = ((BufY[q+k-1]*b1)>>15) + ((BufY[q+k]*b2)>>15) +

((BufY[q+k+1]*b3)>>15) + ((BufY[q+k+2]*b4)>>15);
sBufY[p+i+3] = ((BufY[q+k-1]*c1)>>15) + ((BufY[q+k]*c2)>>15) +

((BufY[q+k+1]*c3)>>15) + ((BufY[q+k+2]*c4)>>15);
}
sBufY[p+N-4] = BufY[q+n-1];
sBufY[p+N-3] = BufY[q+n-1];
sBufY[p+N-2] = BufY[q+n-1];
sBufY[p+N-1] = BufY[q+n-1];

}
for(j = 0;j < N;j++){ // vertical scaling

tBufY[j] = (unsigned char) sBufY[j]; // duplicate edge pixels
tBufY[j+N] = (unsigned char) sBufY[j];
tBufY[j+2*N] = (unsigned char) (sBufY[j] + sBufY[j+N])>>1;
tBufY[j+3*N] = (unsigned char) sBufY[j+N];
for(i = 4;i < M-4;i+=4){ // cubic B spline interpolation starts

k = i>>2;
tBufY[i*N+j] = (unsigned char) sBufY[k*N+j];
tBufY[(i+1)*N+j] = (unsigned char) ((sBufY[(k-1)*N+j]*a1)>>15) +

((sBufY[k*N+j]*a2)>>15) + ((sBufY[(k+1)*N+j]*a3)>>15) + ((sBufY[(k+2)*N+j]*a4)>>15);
tBufY[(i+2)*N+j] = (unsigned char) ((sBufY[(k-1)*N+j]*b1)>>15) +

((sBufY[k*N+j]*b2)>>15) + ((sBufY[(k+1)*N+j]*b3)>>15) + ((sBufY[(k+2)*N+j]*b4)>>15);
tBufY[(i+3)*N+j] = (unsigned char) ((sBufY[(k-1)*N+j]*c1)>>15) +

((sBufY[k*N+j]*c2)>>15) + ((sBufY[(k+1)*N+j]*c3)>>15) + ((sBufY[(k+2)*N+j]*c4)>>15);
}
tBufY[(M-4)*N+j] = (unsigned char) sBufY[(m-1)*N+j];
tBufY[(M-3)*N+j] = (unsigned char) sBufY[(m-1)*N+j];
tBufY[(M-2)*N+j] = (unsigned char) sBufY[(m-1)*N+j];
tBufY[(M-1)*N+j] = (unsigned char) sBufY[(m-1)*N+j];

}

Pcode 15.1: Simulation code for cubic B-spline based luminance scaling.

scaling ratio, then the filter taps are different for horizontal and vertical directions; in that case we obtain the
horizontal and vertical filter taps separately using Equation (15.6) to perform interpolation in both directions.
The simulation code for luminance component scaling based on cubic B-splines is given in Pcode 15.1.

Luminance Scaling Based on DCT Interpolation
In DCT-based scaling, we perform DCT followed by IDCT to either upscale or downscale the video frames. To
upscale the video frame, first we compute the 4×4 DCT and followed by the 8×8 IDCT. For downscaling, first
we perform the 8×8 DCT followed by the 4 ×4 IDCT. We can efficiently perform DCT-based interpolation by
using DCT input- and output-pruning techniques as discussed in Section 7.2. The fixed-point simulation code
to upscale the video frame by a factor of 2 is given in Pcode 15.2.

The simulation code given in Pcode 15.2 upscales the video frames by a factor of 2. If we want to scale
the video frame by a factor of 4, then we will call Pcode 15.2 two times consecutively. We can get sharpened
upscaled video frames with Pcode 15.2 by performing element-by-element multiplication of the DCT data and
elements of the matrix given in Equation (15.9) just before computing the 8×8 IDCT. We can also get smoothed
video frames without performing any extra computations by considering a few low-frequency DCT coefficients
(or ignoring a few high frequencies in the DCT data) as an input to the 8×8 IDCT.

Video Post-Processing 725

a = 0x4000; b = 0x539f; c = 0x2283; // 1/2, sqrt(1/2)*cos(PI/8), sqrt(1/2)*cos(3*PI/8)
for(m = 0;m < M;m+=4) // compute 4x4 DCT

for(n = 0;n < N;n+=4){
for(i = 0;i < 4;i++)

for(j = 0;j < 4;j++)
blk1[4*i+j] = BufY[(m+i)*N+(n+j)];

for(i = 0;i < 4;i++){
r0 = blk1[4*i+0]<<4; r1 = blk1[4*i+1]<<4;
r2 = blk1[4*i+2]<<4; r3 = blk1[4*i+3]<<4;
r4 = r0 + r3; r5 = r1 + r2;
r6 = (r4 + r5)>>1; r7 = (r4 - r5)>>1;
tmpP[4*i+0] = r6; tmpP[4*i+2] = r7;
r4 = r0 - r3; r5 = r1 - r2;
rr0 = r4 * b; rr1 = r4 * c;
rr2 = r5 * b; rr3 = r5 * c;
r6 = (rr0 + rr3 + RC) >> 15; r7 = (rr1 - rr2 + RC) >> 15;
tmpP[4*i+1] = r6; tmpP[4*i+3] = r7;

}
for(i = 0;i < 4;i++){

r0 = tmpP[0+i]; r1 = tmpP[4+i];
r2 = tmpP[8+i]; r3 = tmpP[12+i];
r4 = r0 + r3; r5 = r1 + r2;
r6 = (r4 + r5)>>1; r7 = (r4 - r5)>>1;
blk1[0+i] = r6; blk1[8+i] = r7;
r4 = r0 - r3; r5 = r1 - r2;
rr0 = r4 * b; rr1 = r4 * c;
rr2 = r5 * b; rr3 = r5 * c;
r6 = (rr0 + rr3 + RC) >> 15; r7 = (rr1 - rr2 + RC) >> 15;
blk1[4+i] = r6; blk1[12+i] = r7;

}
for(i = 0;i < 4;i++)

for(j = 0;j < 4;j++)
BufX[(m+i)*N+n+j] = blk1[4*i+j];

}

c0 = 0x5a82; // (1/sqrt(2)*32768) = 23170
c1 = 0x7d8a; // cos(pi/16)*32768 = 32138
c2 = 0x18f9; // sin(pi/16)*32768 = 6393
c3 = 0x6a6e; // cos(3*pi/16)*32768 = 27246
c4 = 0x471d; // sin(3*pi/16)*32768 = 18205
c5 = 0x22a2; // cos(6*pi/16)/sqrt(2)*32768 = 8867
c6 = 0x539f; // sin(6*pi/16)/sqrt(2)*32768 = 21407

for(m = 0;m < 2*M;m+=8) // 8x8 IDCT starts here
for(n = 0; n < 2*N;n+=8){

for(i = 0;i < 8;i++)
for(j = 0;j < 8;j++)

blk2[i*8+j] = 0.0;
for(i = 0;i < 4;i++)

for(j = 0;j < 4;j++)
blk2[i*8+j] = BufX[((m>>1)+i)*N+(n>>1)+j];

for(i = 0;i < 4;i++){
r0 = (blk2[8*i+0] + blk2[8*i+4]); r1 = (blk2[8*i+0] - blk2[8*i+4]);
rr2 = (blk2[8*i+2] * c5) >> 0; rr3 = (blk2[8*i+6] * c5) >> 0;
rr4 = (blk2[8*i+2] * c6) >> 0; rr5 = (blk2[8*i+6] * c6) >> 0;
r2 = (rr2 - rr5 + RC/2)>>14; r3 = (rr3 + rr4 + RC/2) >> 14;
tmp1 = (blk2[8*i+1] - blk2[8*i+7]);
tmp2 = (blk2[8*i+1] + blk2[8*i+7]);
tmp3 = (blk2[8*i+3] * c0 + RC/2) >> 14;
tmp4 = (blk2[8*i+5] * c0 + RC/2) >> 14;
r4 = tmp1 + tmp4; r6 = tmp1 - tmp4;
r5 = tmp2 - tmp3; r7 = tmp2 + tmp3;
tmp1 = r0; tmp2 = r1;
r0 = tmp1 + r3; r3 = tmp1 - r3;
r1 = tmp2 + r2; r2 = tmp2 - r2;
rr1 = (r5 * c1) >> 0; rr2 = (r5 * c2) >> 0;
rr3 = (r6 * c1) >> 0; rr4 = (r6 * c2) >> 0;

// continued on the next page

726 Chapter 15

// continuation from previous Pcode

r5 = (rr1 - rr4 + RC) >> 15; r6 = (rr3 + rr2 + RC) >> 15;
rr1 = (r4 * c3) >> 0; rr2 = (r4 * c4) >> 0;
rr3 = (r7 * c3) >> 0; rr4 = (r7 * c4) >> 0;
r4 = (rr1 - rr4 + RC) >> 15; r7 = (rr3 + rr2 + RC) >> 15;
tmpP[8*i+0] = (r0 + r7)>>1; tmpP[8*i+7] = (r0 - r7)>>1;
tmpP[8*i+1] = (r1 + r6)>>1; tmpP[8*i+6] = (r1 - r6)>>1;
tmpP[8*i+2] = (r2 + r5)>>1; tmpP[8*i+5] = (r2 - r5)>>1;
tmpP[8*i+3] = (r3 + r4)>>1; tmpP[8*i+4] = (r3 - r4)>>1;

}

for(i = 0;i < 8;i++){
r0 = tmpP[8*0+i] + tmpP[8*4+i]; r1 = tmpP[8*0+i] - tmpP[8*4+i];
rr2 = (tmpP[8*2+i] * c5) >> 0; rr3 = (tmpP[8*6+i] * c5) >>0;
rr4 = (tmpP[8*2+i] * c6) >> 0; rr5 = (tmpP[8*6+i] * c6) >>0;
r2 = (rr2 - rr5 + RC/2) >> 14; r3 = (rr3 + rr4 + RC/2) >>14;
tmp1 = tmpP[8*1+i] - tmpP[8*7+i];
tmp2 = tmpP[8*1+i] + tmpP[8*7+i];
tmp3 = (tmpP[8*3+i] * c0 + RC/2) >> 14;
tmp4 = (tmpP[8*5+i] * c0 + RC/2) >> 14;
r4 = tmp1 + tmp4; r6 = tmp1 - tmp4;
r5 = tmp2 - tmp3; r7 = tmp2 + tmp3;

tmp1 = r0; tmp2 = r1;
r0 = tmp1 + r3; r3 = tmp1 - r3;
r1 = tmp2 + r2; r2 = tmp2 - r2;
rr1 = (r5 * c1) >> 0; rr2 = (r5 * c2) >> 0;
rr3 = (r6 * c1) >> 0; rr4 = (r6 * c2) >> 0;
r5 = (rr1 - rr4 + RC) >> 15; r6 = (rr3 + rr2 + RC) >> 15;
rr1 = (r4 * c3) >> 0; rr2 = (r4 * c4) >> 0;
rr3 = (r7 * c3) >> 0; rr4 = (r7 * c4) >> 0;
r4 = (rr1 - rr4 + RC) >> 15; r7 = (rr3 + rr2 + RC) >> 15;

blk2[8*0+i] = (r0 + r7)>>1; blk2[8*7+i] = (r0 - r7)>>1;
blk2[8*1+i] = (r1 + r6)>>1; blk2[8*6+i] = (r1 - r6)>>1;
blk2[8*2+i] = (r2 + r5)>>1; blk2[8*5+i] = (r2 - r5)>>1;
blk2[8*3+i] = (r3 + r4)>>1; blk2[8*4+i] = (r3 - r4)>>1;

}

for(i = 0;i < 8;i++)
for(j = 0;j < 8;j++)

sBufY[(m+i)*640+n+j] = blk2[i*8+j];
}

Pcode 15.2: Simulation code to upscale the video frame by a factor of 2 using DCT based interpolation.

Luminance Scaling Based on Edge Interpolation
As discussed in the Section 15.2.1, there are several steps in upscaling video frames by using edge-based
interpolation:

• Classification of the 4×4 block as an edge block or non-edge block
• Determining edge orientation
• Generating filter coefficients for different orientations and interpolating points (i.e., for a, b, and c)
• Performing edge-based or bilinear interpolation for current original pixel once its classification is given

The simulation code to classify the current 4 × 4 block as an edge block or non-edge block, determine pixel
orientation in a 4×4 block, and to perform edge-based or bilinear interpolation is given in Pcode 15.3.

The fixed-point 1.15 format values of filter coefficients for edge-based interpolation are provided on the
companion website. In the 2D array Tbn[3][16], coefficients Tbn[0][16], Tbn[1][16], and Tbn[2][16] are used
to get the interpolated points a, b, and c, respectively.

The simulation code given in Pcode 15.3 upscales the images by a factor of 2; this Pcode is called twice con-
secutively to scale the image by a factor of 4. To scale from 2× to 4×, we need not recompute all orientations for

Video Post-Processing 727

for(j = 1;j < m-2;j++) // m: image height
for(i = 1;i < n-2;i++) { // n: image width
for(q = 0;q < 4;q++)
for(p = 0;p < 4;p++)
Edge[q*4+p] = BufY[(j+q-1)*n+i+p-1]; // get a 4x4 block

x0 = 255; y0 = 0;
for(p = 0;p < 16;p++) // get the minimum value of pixels in a 4x4 block
if(x0 > Edge[p])

x0 = Edge[p];
for(p = 0;p < 16;p++) // get maximum pixel value in a 4x4 pixel block
if(y0 < Edge[p])

y0 = Edge[p];
if((y0 - x0) < 25)

orient_flag = 0; // classify as edge block or non-edge block
else {
for(q = 0;q < 4;q++)
for(p = 0;p < 4;p++) {
if(BufX[(j+q-1)*n+i+p-1] == 8) {

x = BufY[(j+q)*n+(i+q)] + BufY[(j+q-1)*n+(i+q)]*2 + BufY[(j+q-
2)*n+(i+q)] - BufY[(j+q)*n+(i+q-2)] - BufY[(j+q-1)*n+(i+q-2)]*2
- BufY[(j+q-2)*n+(i+q-2)]; // compute pixel x-gradient

y = BufY[(j+q)*n+(i+q)] + BufY[(j+q)*n+(i+q-1)]*2 +
BufY[(j+q)*n+(i+q-2)] - BufY[(j+q-2)*n+(i+q)] - BufY[(j+q-
2)*n+(i+q-1)]*2 - BufY[(j+q-2)*n+(i+q-2)]; // compute pixel y-gradient

if (y != 0) {
x0 = (int) -57.2958*atan(x/y); // compute orientation
if(x0 < 0) x0+= 180;

}
else

x0 = 90;
x0 = ((int)((x0-11.25)/22.5)+1) % 8; // quantize the orientation
BufX[(j+q-1)*n+i+p-1] = x0; // store quantized orientation
Hist[x0]+=1; // group similar orientations

}
else {

x0 = BufX[(j+q-1)*n+i+p-1]; // get previously computed present pixel orientation
Hist[x0]+=1;

}
}
x0 = 0;
for(p = 0;p < 8;p++)
if(Hist[p] > x0)

x0 = Hist[p]; // get the maximum count of similar orientations
for(p = 0;p <8;p++)
Hist[p] = 0;

if(x0 > 6) // if maximum count is greater than six, then classify
orient_flag = 1; // the current pixel as strictly oriented

else
orient_flag = 0;

}
BufZ[j*n+i] = orient_flag;
if(orient_flag) { // if the current pixel is oriented, use edge based interpolation

x0 = BufX[j*n+i]; pTb = Tb[x0];
tBufY[2*j*N+2*i] = BufY[j*n+i];
x0 = 0; y0 = 0; z0 = 0;
for(q = 0;q < 4;q++)

for(p = 0;p < 4;p++) {
x0 = x0 + ((pTb[0][q*4+p]*BufY[(j+q-1)*n+i+p-1])>>15);
y0 = y0 + ((pTb[1][q*4+p]*BufY[(j+q-1)*n+i+p-1])>>15);
z0 = z0 + ((pTb[2][q*4+p]*BufY[(j+q-1)*n+i+p-1])>>15);

}
tBufY[2*j*N+2*i+1] = x0; tBufY[(2*j+1)*N+2*i] = y0; tBufY[(2*j+1)*N+2*i+1] = z0;

}
else{ // use bilinear interpolation if the current pixel is not oriented pixel

tBufY[2*j*N+2*i] = BufY[j*n+i];
tBufY[2*j*N+2*i+1] = (BufY[j*n+i] + BufY[j*n+i+1] + 1)>>1;
tBufY[(2*j+1)*N+2*i] = (BufY[j*n+i] + BufY[(j+1)*n+i] + 1)>>1;

// continued on the next page

728 Chapter 15

// continuation of previous Pcode

tBufY[(2*j+1)*N+2*i+1] = (BufY[j*n+i] + BufY[(j+1)*n+i] + BufY[j*n+i+1] +
BufY[(j+1)*n+i+1] + 2)>>2;

}
}

Pcode 15.3: Simulation code for edge-based interpolation.

each pixel of the 2× image; instead, we reuse previously computed pixel orientations of the original image. In the
filtering process, pixel intensity values may go out of range, so at the end each pixel is clipped between 0 and 255.

15.2.4 Chrominance Scaling Based on Bicubic Interpolation

To scale image components by a factor of 4 using bicubic interpolation, we precompute the filter taps as follows.
To achieve factor-4 scaling, we must output 4 pixels for each input pixel, as shown in Figure 15.17. The ai , bi ,
and ci filter taps are obtained by substituting values 0.25, 0.50, and 0.75 in Equation (15.12). The decimal and
the corresponding 1.15 fixed-point format values for ai , bi , and ci follow:

a1 = −0.0703(0 × F701), a2 = 0.8672(0 ×6F00), a3 = 0.2266(0 ×1D01), a4 = −0.0234(0 × F D02)

b1 = −0.0625(0 × F800), b2 = 0.5625(0 ×4800), b3 = 0.5625(0 ×4800), b4 = −0.0625(0 × F800)

c1 = −0.0234(0 × F D02), c2 = 0.2266(0 ×1D01), c3 = 0.8672(0 ×6F00), c4 = −0.0703(0 × F701)

As we scale the image by a factor of 4 in both horizontal and vertical directions, we can use the same filter-tap
values for interpolating both of the directions. However, if the horizontal scaling ratio is different from the
vertical scaling ratio, then the filter taps are different for the horizontal and vertical directions; in this instance,
we obtain horizontal and vertical filter taps separately using Equation (15.12) to perform interpolation in both
directions. The simulation code for bicubic-based chrominance component scaling is given in Pcode 15.4.

15.3 Video Processing

Apart from scaling, the other commonly used video post-processing modules are filtering, blending, and gamma
correction. In Section 10.5, we discussed the median filter to filter noisy images, and the same can be used to
minimize artifacts due to scaling, quantization, and so on. In this section, we discuss efficient implementation of
the median filter. In addition, we briefly discuss and simulate the alpha-blending and gamma-correction modules.

15.3.1 Filtering

When we process video pixels in the digital domain, a kind of random data (noise) from many sources adds to the
original pixels, such as noise from video quantization, compression, scaling, and so on. We apply a 2D filter to
eliminate noisy components from video pixels. Median filters are widely used in video processing applications.
In this section, we discuss efficient techniques to implement a 3×3 median filter.

Simulation of a 3× 3 median filter using the bubble-sort method is given in Section 10.11.4. With a K × K
median filter, we replace the center pixel of K × K (where K = 2∗i + 1, i = 1,2, . . .) block with the median
of K × K-block pixels. For example, using a 3×3 median filter in Figure 15.18, we replace pixel p5 with the
fifth pixel in the sorted (either ascending or descending) array of 3× 3 block pixels p1, p2, p3, p4, p5, p6, p7,
p8, and p9. Now the question is, how complex is the median filter to apply to the L × L block of pixels? For
example, if L = 16, then the cost of the median filter with the bubble-sort method (as simulated in Pcode 10.8)
is estimated as follows.

In this estimation, we are not including overhead such as data loading and storing. For finding a median
pixel in a 3 × 3 block of pixels, we have to run a nested loop with two loops. Both inner and outer loops run
nine times. With sorting in ascending order, we perform three operations (checking, conditional update of the
minimum pixel index, and conditional update of the minimum pixel value). Assuming each operation consumes
1 cycle, the inner loop requires 27 cycles for nine iterations. Thus, to find a median for a 3 × 3 block of pixels

Video Post-Processing 729

// scale chrominance component from resolution mxn to MxN, m = M/4, n = N/4
for(j = 0;j < m;j++){ // horizontal scaling

p = j*N; q = j*n;
sBufY[p] = BufY[q]; // duplicate edge pixels
sBufY[p+1] = BufY[q];
sBufY[p+2] = (BufY[q]+BufY[q+1])>>1; // linear interpolation
sBufY[p+3] = BufY[q+1];
for(i = 4;i < N-4;i+=4){ // bicubic interpolation starts

k = i>>2;
sBufY[p+i] = BufY[q+k];
sBufY[p+i+1] = ((BufY[q+k-1]*a1)>>15) + ((BufY[q+k]*a2)>>15) +

((BufY[q+k+1]*a3)>>15) + ((BufY[q+k+2]*a4)>>15);
sBufY[p+i+2] = ((BufY[q+k-1]*b1)>>15) + ((BufY[q+k]*b2)>>15) +

((BufY[q+k+1]*b3)>>15) + ((BufY[q+k+2]*b4)>>15);
sBufY[p+i+3] = ((BufY[q+k-1]*c1)>>15) + ((BufY[q+k]*c2)>>15) +

((BufY[q+k+1]*c3)>>15) + ((BufY[q+k+2]*c4)>>15);
}
sBufY[p+N-4] = BufY[q+n-1];
sBufY[p+N-3] = BufY[q+n-1];
sBufY[p+N-2] = BufY[q+n-1];
sBufY[p+N-1] = BufY[q+n-1];

}
for(j = 0;j < N;j++){ // vertical scaling

tBufY[j] = (unsigned char) sBufY[j]; // duplicate edge pixels
tBufY[j+N] = (unsigned char) sBufY[j];
tBufY[j+2*N] = (unsigned char) (sBufY[j] + sBufY[j+N])>>1;
tBufY[j+3*N] = (unsigned char) sBufY[j+N];
for(i = 4;i < M-4;i+=4){ // bicubic interpolation starts

k = i>>2;
tBufY[i*N+j] = (unsigned char) sBufY[k*N+j];
tBufY[(i+1)*N+j] = (unsigned char) ((sBufY[(k-1)*N+j]*a1)>>15) +

((sBufY[k*N+j]*a2)>>15) + ((sBufY[(k+1)*N+j]*a3)>>15) + ((sBufY[(k+2)*N+j]*a4)>>15);
tBufY[(i+2)*N+j] = (unsigned char)((sBufY[(k-1)*N+j]*b1)>>15) +

((sBufY[k*N+j]*b2)>>15) + ((sBufY[(k+1)*N+j]*b3)>>15) + ((sBufY[(k+2)*N+j]*b4)>>15);
tBufY[(i+3)*N+j] = (unsigned char)((sBufY[(k-1)*N+j]*c1)>>15) +

((sBufY[k*N+j]*c2)>>15) + ((sBufY[(k+1)*N+j]*c3)>>15) + ((sBufY[(k+2)*N+j]*c4)>>15);
}
tBufY[(M-4)*N+j] = (unsigned char) sBufY[(m-1)*N+j];
tBufY[(M-3)*N+j] = (unsigned char) sBufY[(m-1)*N+j];
tBufY[(M-2)*N+j] = (unsigned char) sBufY[(m-1)*N+j];
tBufY[(M-1)*N+j] = (unsigned char) sBufY[(m-1)*N+j];

}

Pcode 15.4: Simulation code for bicubic based chrominance scaling.

Figure 15.18: Block of 3×3 pixels.

p 1 p 2 p 3

p 4 p5 p 6

p7 p8 p9

with the bubble-sort method, we consume about 243 (= 27×9) cycles. Therefore, to apply a median filter to a
macroblock, we have to find 256 (= 16 × 16) medians, and the number of cycles required to find 256 medians
is about 62,208 (= 256×243). Thus, filtering the N × M image with a median filter by the bubble-sort method
is very costly in terms of cycles.

Efficient Implementation of Median Filter
In Vega-Rodriguez et al. (2002), a very efficient way of finding the 3 × 3 median by the divide-and-conquer
approach is presented as in Figure 15.19. We divide the nine pixels of the 3 × 3 block into three segments and
find the median pixel in three stages. The number of cycles consumed by this method to find a median for a 3×3
block of pixels is estimated in this section. With this method, we use a butterfly as shown at the top-right corner
of Figure 15.19, and consume 2 cycles to find the minimum and maximum of 2 pixels. In the first stage, we find

730 Chapter 15

P1

P 2

P 3

P6

P5

P4

P9

P8

P7

Median

Min

Max

Med

Stage 1 Stage 2 Stage 3

Max

Min

Figure 15.19: Median filter–signal-flow diagram.

the minimum, median, and maximum for 3 pixel sets by consuming 6 cycles using three butterflies for each set.
The first stage consumes a total of 18 cycles.

In the second stage, we find a maximum of three minimums, a median of three medians, and a minimum
of three maximums coming from the first stage. In this stage, we use a total of six butterflies and consume 8
cycles by computing only the required butterfly outputs. In the third stage, we find the median of three outputs
(maximum, median, and minimum) coming from the second stage. We consume 4 cycles in the third stage.
With this, we find the median for the 3 × 3 block of pixels by performing 30 min-max operations as shown in
Figure 15.19.

On the reference embedded processor (see Appendix A on the companion website), as we have two arithmetic
logic units (ALUs), we can perform two min/max operations per cycle. Therefore, only 15 cycles per pixel are
required when we compute 2 pixel medians at a time. To apply a median filter for a 16×16 block of pixels with
this method as shown in Figure 15.20, represented in case (1), we consume 3,840 cycles, which is about 6% of
cycles when compared to cycles of the median filter with the bubble-sort method. The simulation code for this
efficient 3×3 median filter method is given in Pcode 15.5.

Block-Based Median Filter Implementation
Next we discuss ways of reducing computation cycles in filtering large images. A few aspects of applying the
median filter to an entire image are discussed. In general, larger images in terms of data occupy a lot of memory.
Typically, we store an entire image of size 0.5 MB (for 720 × 480 resolution) in off-chip memory, and a small
amount of image data in terms of a block of pixels (of size 256 bytes for a 16×16 block) is brought to the on-chip
memory to process the image. Assuming one block of 16×16 pixels is processed at a time, we use the embedded
processor DMA controller to move a block of data from off-chip memory to on-chip memory for processing
the image and from on-chip memory to off-chip memory to store the processed image (see Appendix A on the
companion website for more details on DMA controller usage). We filter one 16 × 16 block of image pixels at
a time. In this approach, we will have a problem in filtering block edges as we do not have sufficient pixels to
apply the median filter at the block edges. As shown in Figure 15.20, for the pixel position indicated by (2), its
median is computed by using 3 pixels from the previous 16 × 16 block and 6 pixels from the current 16 × 16

Video Post-Processing 731

Figure 15.20: Macroblock (16×16
block) pixels.

Current 16 3 16 Block Pixels
Previous

Block

3

Up-
block

1

2

//short Median(int j, int k) // j: current pixel position in raster scan, k: block width, 16
// ------------------- first stage ------------------------
i = j; r1 = pixels[i+0];
r2 = pixels[i+1]; r3 = pixels[i+2];
tmp1 = min(r2, r3); tmp2 = max(r2, r3);
tmp3 = min(r1, tmp1); tmp4 = max(r1, tmp1); // first row min, tmp3
tmp_buf[0] = tmp3; tmp1 = min(tmp2, tmp4); // first row med, tmp1
tmp_buf[1] = tmp1; tmp2 = max(tmp2, tmp4); // first row max, tmp2
tmp_buf[2] = tmp2; i = j+k;
r1 = pixels[i+0]; r2 = pixels[i+1];
r3 = pixels[i+2]; tmp1 = min(r2, r3);
tmp2 = max(r2, r3); tmp3 = min(r1, tmp1); // second row min, tmp3
tmp4 = max(r1, tmp1); tmp_buf[3] = tmp3;
tmp1 = min(tmp2, tmp4); tmp_buf[4] = tmp1; // second row med, tmp1
tmp2 = max(tmp2, tmp4); tmp_buf[5] = tmp2; // second row max, tmp2
i = j+(k<<1); r1 = pixels[i+0];
r2 = pixels[i+1]; r3 = pixels[i+2];
tmp1 = min(r2, r3); tmp2 = max(r2, r3);
tmp3 = min(r1, tmp1); tmp4 = max(r1, tmp1); // third row min, tmp3
tmp_buf[6] = tmp3; tmp1 = min(tmp2, tmp4); // third row med, tmp1
tmp_buf[7] = tmp1; tmp2 = max(tmp2, tmp4); // third row max, tmp2
tmp_buf[8] = tmp2;
// -------------------- second stage ---------------------------
r1 = tmp_buf[0]; r2 = tmp_buf[3];
r3 = tmp_buf[6]; tmp1 = max(r1, r2);
tmp1 = max(tmp1, r3); tmp_buf[9] = tmp1;
r1 = tmp_buf[1]; r2 = tmp_buf[4];
r3 = tmp_buf[7]; tmp1 = min(r2, r3);
tmp2 = max(r2, r3); tmp4 = max(r1, tmp1);
tmp1 = min(tmp2, tmp4); tmp_buf[10] = tmp1;
r1 = tmp_buf[2]; r2 = tmp_buf[5];
r3 = tmp_buf[8]; tmp1 = min(r1, r2);
tmp1 = min(tmp1, r3); r1 = tmp_buf[9];
r2 = tmp_buf[10]; r3 = tmp1;
// --------------------- third stage -------------------------------
tmp1 = min(r2, r3); tmp2 = max(r2, r3);
tmp4 = max(r1, tmp1); tmp1 = min(tmp2, tmp4); // median!, tmp1

Pcode 15.5: Simulation code for efficient 3× 3 median filter implementation.

732 Chapter 15

block. Now, if we want to filter one block at a time to avoid large on-chip memory usage, we have to find ways
to filter pixels at the following positions for all 16×16 blocks:

1. Top left corner pixel
2. Left-most column pixels
3. Top row pixels
4. Right-most column pixels
5. Bottom row pixels

If we always filter the first three cases, then we automatically cover 4 and 5 for all 16×16 blocks except for the
right-most column of 16×16 blocks and bottom-most row of 16×16 blocks of an image. We do not filter those
edge pixels of the image as they are not much viewed. Let us assume that m and n denote image row and column
indexes for 16×16 blocks, and we proceed to filter the image by filtering its 16×16 blocks in raster-scan order.
We use the following procedure to always filter the first three cases and output 16 × 16-block of pixels. This
procedure is shown in Figure 15.20, case (3).

To filter the bottom-row pixels of a 16×16 block (with index [n, m-1]) just above the current 16×16 block
(with index [n, m]) and top-most–row pixels of the current 16 × 16 block, we maintain a delay line buffer
(dl_pixels[]) to hold the two bottom-most–row pixels of the [n, m-1] 16 × 16 block. Similarly, to filter the
right-most–column pixels of the previous 16×16 block [n-1, m] and left-most–column of pixels for the current
16 × 16 block, we maintain another buffer (lt_pixels[]) to hold the two right-most columns of pixels from the
previous 16×16 block [n-1, m]. We load the current 16×16-block pixels from off-chip memory to the on-chip
memory buffer by using the DMA. Thus, we need three types of buffers to apply the median filter for the entire
image with this block-by-block approach as shown in Figure 15.21. We output a 16×16-size quantity of filtered
pixels always to the DMA to send them to the processor off-chip memory.

Initialization In filtering a 16 × 16 block of pixels, if the row index of the current 16 × 16 block is zero
(i.e., m = 0), then the buffer dl_pixels[] is initialized with zeros. If the column index of the current 16×16 block
is zero (i.e., n = 0), then the buffer lt_pixels[] is initialized with zeros.

Filtering As shown in Figure 15.20 by case (3), in the suggested approach, we filter 4 pixels in a single
iteration, and the filtering process continues column-wise. To filter one column, we go through four iterations.
In this process, we will have six sets of {minimum, median, and maximum} in any iteration from six rows
of three pixels each (such that the center pixel lies on the current filtering column) in the med_row_pixels[]
buffer with 18 entries. Before entering the loop, we find the two sets of {minimum, median, and maximum}
corresponding to the up 16 × 16 block bottom-most two rows (of 3 pixels each) from the dl_pixels[] buffer.
Then, in the first iteration, we find four sets of {minimum, median, and maximum} corresponding to the four

Figure 15.21: Pixel area filtered by
median filter in block-by-block
approach.

Up

CurrentLeft

Up-left

Video Post-Processing 733

top-most rows from the current block of pixels. Using these six sets (four sets from the current buffer and two
sets from the delay-line buffer), we find 4 median pixels. Now, we copy the two computed sets {minimum,
median, and maximum} corresponding to the last two rows sets of first iteration’s six row sets to the beginning
of the buffer med_row_pixels[]. We compute the remaining four sets {minimum, median, and maximum} for the
second iteration, again using the next four rows (of 3 pixels each). After repeating the preceding procedure four
times, we find 16 median pixels for one column of the 16 × 16 block. The same procedure is repeated for the
remaining 15 columns.

Once we complete filtering of the current 16 × 16 block, and before we proceed to filter the next 16 × 16
block, we store the right-most two columns of the current 16 × 16 block to the lt_pixels[] buffer and store the
bottom-most two rows to dl_pixels[] for future use.

At this juncture, we estimate the cycle cost of the suggested median filter approach to filter a block of pixels. In
any iteration of the loop, we reuse one-third of the first-stage outputs of the median filter from previous iterations,
and we only compute two-thirds of the first stage of the median filter. In other words, in effect we compute the first
stage of the median filter only once for a row, and we do not compute the first stage of the median filter multiple
times as in case (1) of Figure 15.20. We ignore load/store cycles as these can be executed in parallel to compute
operations. To find 16 median pixels, we compute the first stage for 18 rows (of 3 pixels each), which consumes 54
(= 18×3) cycles. We spend 6 cycles after the first stage of median filter to find a single median-filter output pixel.
Therefore, we require 96 (= 16 × 6) cycles for computing all 16 median pixels. With this, to apply a median filter
on a 16 × 16 block of pixels, we consume nearly 2400 (= 16 × (54 + 96)) cycles, which is about 33% less when
compared to implementation of case (1) in Figure 15.20. It is possible to save up to 50% of computation cycles with
full reuse of intermediate outputs (refer to Figure 15.19). The intermediate outputs above the dashed line (which
account for 50% of operations) in Figure 15.19 can be reused in filtering the next pixel.

Thesuggested method can beeasily extended to multiple-ALU embedded processors, as there is no dependency
between one median filter output and another median filter output. Unlike case (1) of Figure 15.20, where one
median filter per iteration is outputted, in the suggested approach indicated by case (3) in Figure 15.20, we
output multiple median filter outputs per iteration. So, with a four-ALU embedded processor, theoretically, we
consume only 600(= 2400/4) cycles per block with the preceding approach.

Implementation of Line-Based Median Filter
We can also implement the median filter row- or column-wise instead of block-wise. In the case of line-based
median filtering, the pixels are filtered line by line. In row-based filtering, we bring one row of pixels from off-
chip memory to on-chip memory, and filter the row just above and move the filtered row to off-chip memory. We
always hold three rows of pixels—one above and one below—in buffers apart from the current row being filtered
as shown in Figure 15.22. As we move the 3×3 mask horizontally, we consider 3-pixel columns as a base unit
and find the median. In this case as well, intermediate results are reused to speed up the filtering process. Also,
the overall overhead is less in row-based filtering, which is efficient when compared to block-based filtering in
terms of cycle cost. However, we require more on-chip memory (especially with high-resolution video frames)
in the case of row-based filtering to hold the full row inputs and intermediate outputs.

We use either block-based or line-based filtering depending on the context. For example, if we want to filter the
scaled image, depending of the interpolation type used in scaling, we choose one of these filtering approaches.

Figure 15.22: Row-wise median
filtering.

P 1

P 2

P 3

P 4

P 5

P 6

P 7

P 8

P 9

734 Chapter 15

If we scale the image in terms of blocks (using DCT- or edge-based interpolation), then working with block-based
filtering avoids extra data transfer from L1 to L3 and L3 to L1. Similarly, line-based filtering is useful when we
scale the image using line-based interpolation methods (e.g., bilinear, bicubic, and B-splines).

15.3.2 Alpha Blending

Alpha blending is a simple technique by which we can overlay two images allowing transparency of images
or objects. This technique is really a form of intensity and color control, dictating what amount of information
should be allowed to show through from a lower-lying image. Given two pixel values X and Y at the same
location in background and foreground images, we obtain the effective pixel value Z by combining the two
pixels X and Y using the following rule:

Z = αX + (1−α)Y = α(background pixel)+ (1−α)(foreground pixel) (15.13)

The parameter α in Equation (15.13) controls the amount of transparency that is allowed for lower-lying image
objects. The range of parameter α is anywhere between 0.0 and 1.0. If α = 0.0, then the objects of the background
image with pixel values X are completely opaque. Similarly, if α = 1.0, then the objects of the background image
with pixel values X are completely transparent.

In practice, apart from the image pixel values, we get the α values in a separate channel called the alpha
channel. For example, in 32-bit RGBA, 24 bits are used to specify colors R, G, and B, and the remaining 8
bits are used to specify the α value for each pixel. We compute the alpha-blend pixels using the α value before
displaying the images.

The alpha-blending simulation code for a particular value of α is given in Pcode 15.6. In Pcode 15.6,
a and b represent the 2.14 fixed-point format for real values of α and 1-α. Two test image pixels that require
blending are stored in two buffers, BufR[] and BufY[]. Blending output will be stored in BufD[]. The alpha-
blending simulation results of two grayscale test images depicting Lord Ganesh and Lord Krishna are shown
in Figure 15.23. The four values of α within the allowed range—α = 0.0,α = 0.25,α = 0.75, and α = 1.00—
are used in the simulation. The corresponding 2.14 fixed-point values are a = 0,4096,12288, and 16384, and
b = 16384,12288,4096, and 0.

for(j = 0;j < M;j++){
p = j*N; q = (j + 1)*N;
for(i = p;i < q;i++){

m = (a*BufY[i]) >> 14; r = (b*BufR[i]) >> 14; // a = alpha, b = 1-alpha
BufD[i] = m + r;

}
}

Pcode 15.6: Simulation code for alpha blending.

15.3.3 Gamma Correction

Previously, images were processed by representing each component of the image with 256 levels (or 8 bits). If
we uniformly quantize the entire intensity range (i.e., 0.0 to 1.0) into 256 levels, and then process and send to
the display, then the display output of the processed image need not be as good as the raw image. This is due to
two factors: (1) improper intensity quantization, and (2) the gamma factor associated with display systems. The
proper way for achieving intensity quantization is discussed later. The gamma factor of the display system does
not affect all colors in the same way at the time of display. Displaying an image without gamma correction is
likely to cause problems, because the eye is more sensitive to intensity variations at the dark end of the luminance
scale. The nonlinear effect of the gamma factor is illustrated in Figure 15.24. For display, we choose the input
shown in Figure 15.24(a) with intensities uniformly quantized between 0 and 255. The display system output
scales the intensities in a nonlinear fashion as shown in Figure 15.24(b).

Display systems have an intensity-to-voltage response curve, which is a power function, as follows:

I = KV γ (15.14)

Video Post-Processing 735

(a)

(c)

(b)

(d)

Figure 15.23: Alpha blending for various alpha values. (a) Lord Ganesh with 100% pixel intensity completely
transparent using α = 0. (b) Lord Ganesh with 75% pixel intensity and Lord Krishna with 25% pixel intensity using
α = 0.25. (c) Lord Ganesh with 25% pixel intensity and Lord Krishna with 75% pixel intensity using α = 0.75.
(d) Lord Krishna with 100% pixel intensity and Lord Ganesh is completely opaque with α = 1.00.

0 1.0

255

0.5

127

(b)(a)
0 1.0

255

0.5

127

Figure 15.24: Illustration of display system gamma effect. (a) Input intensity pixels. (b) Displayed intensity pixels.

The value of gamma (i.e., exponent value) is in the range 2.2 to 2.5 for nearly all display systems. To transform
an intensity value into a voltage to drive the display system, it is necessary to perform gamma correction before
displaying, using a power function with an exponent that is the inverse of the gamma value:

V = (I/K)1/γ (15.15)

Gamma correction, then, is the process of precompensating for the nonlinear intensity-voltage function of the
display system in order to obtain correct intensity reproduction. Gamma correction is important for good picture
quality on the display screen. The values of constant K and factor γ in Equations (15.14) and (15.15) depend
on the particular display system used in our applications.

Suppose that we want to display 256 different intensities in the range 0.0 to 1.0. Which 256 intensity levels
should we use for the display? If we use the uniformly quantized intensities as shown in Figure 15.24(a), then

736 Chapter 15

we ignore an important characteristic of the human eye. That is, the eye is sensitive to ratios of intensity levels
rather than to absolute values of intensity. For example, our eye sees a big difference in brightness if we change
the intensity from 0.20 to 0.25 when compared to 0.70 to 0.75. To see the same effect of brightness, we should
change from 0.70 to 0.875 instead of 0.75. This is because 0.20/0.25 = 0.8 = 0.70/0.875, results in the same
intensity ratio. Therefore, the intensity levels should be spaced nonlinearly rather than linearly to achieve equal
steps in brightness. In general, we determine the initial intensity value I0 for a given display system, and then
obtain the 256 different intensity levels as

In = rn I0 for 0 ≤ n ≤ 255 (15.16)

where r = (1/I0)
1/255. Then we determine the pixel value Vn needed to create In by using Equations (15.15)

and (15.16) as follows:

Vn = ⌊(In/K)1/γ
⌋

(15.17)

Figures 15.25 and 15.26 illustrate the importance of gamma correction. The test image for gamma correction is
shown in Figure 15.26(a), and the corresponding pixel-to-intensity map is shown in Figure 15.25(a) with a solid

Gamma-corrected
input

Display
output

Pixels Input

In
te

ns
ity

 O
ut

pu
t

0
0 50 100 150

(b)

200 250 300

50

100

150

200

250

300

Actual
input

Display
output

Pixels Input

In
te

ns
ity

 O
ut

pu
t

0
0 50 100 150

(a)

200 250 300

50

100

150

200

250

300

Figure 15.25: Pixel to intensity map. (a) Without gamma correction. (b) With gamma correction.

Video Post-Processing 737

(a)

(c) (d)

(b)

Figure 15.26: Gamma correction with γ = 2.5. (a) Original input image. (b) Display output (simulated) image
without gamma correction. (c) Gamma-corrected input image. (d) Display output (simulated) image with gamma
correction.

line. The pixel-to-intensity map of the display system for the uncorrected input image is shown in Figure 15.25(a)
with a dashed line and the corresponding display output (simulated) image is shown in Figure 15.26(b). A gamma-
corrected pixel-to-intensity map is shown in Figure 15.25(b) with a dashed line and the corresponding image is
shown in Figure 15.26(c). Finally, the pixel-to-intensity map of display output with gamma corrected input is
shown in Figure 15.25(b) with dotted line and the corresponding image is shown in Figure 15.26(d).

Next, we simulate the gamma correction process. We assume that the pixel values (i.e., In/K) are obtained
with proper nonlinear quantization and are available in buffer BufY[]. We can implement Equation (15.17) for
gamma correction efficiently by using the look-up table GmC[]. In this approach, we precompute the look-up
table values for various gammas. The look-up table consists of pixel values that are obtained by raising the values
between 0 and 255 to the power γ . An example look-up table for γ = 2.5 is given on the companion website.
The simulation code for the look-up table-based gamma correction is given in Pcode 15.7.

for(j = 0;j < M;j++){
p = j*N;q = (j + 1)*N;
for(i = p;i < q; i++){

y0 = BufY[i];
x0 = GmC[y0];
BufR[i] = x0;

}
}

Pcode 15.7: Simulation code for look-up table-based Gamma correction.

15.4 Video Transcoding

Video transcoding is the process of converting a video from one format to another format. A format is defined
by characteristics such as bit rate, temporal resolution, spatial resolution, frame format, and coding standard

738 Chapter 15

DCT Q VLC

ME MC

IQIDCT

MPEG-2 Encoder

Parser � Entropy
Decoding

Zig-Zag Scanning
� Dequantization

IDCT

MC

Reference Buffer
IP

H.264 Decoder

�

�

�

�

�

� �

�

LP

Figure 15.27: H.264 to MPEG-2 reference video transcoder.

format. Video transcoding, due to high demand for a wide range of networked video applications, has become
an important research topic in recent years. In Vetro et al. (2003), many approaches are suggested to efficiently
perform video transcoding. In the straightforward method (SFM), we completely decode the given compressed
video and then fully re-encode it to get the target video format. This approach is computationally very expensive,
and sometimes the best quality may not be achieved with this approach. An example of MPEG-2 decoding of an
H.264 encoded bitstream is shown in Figure 15.27. This situation can occur when we have MPEG-2 supporting
player at the customer end and we encode the video data using H.264 encoder to reduce the memory requirement
for video storage or to minimize video transmission bandwidth. In this case we should have MPEG-2 encoded
video by the time customer wants to play the video. For this we require a transcoder that decodes H.264-encoded
video and encodes it as MPEG-2 video.

As seen in Figure 15.27, the complexity of the SFM transcoder is the sum of the complexity of H.264 decoder
and the complexity of MPEG-2 encoder. In practice, we do not implement the transcoder in the way that SFM
describes transcoding. We take many shortcuts and reuse a lot of information to reduce overall complexity and
memory requirements, and to improve video quality. For example, the decoder part of transcoding provides
details such as motion information, transform domain coefficients, and so on, and we may reuse this information
as it is or derive the information from already decoded information instead of recomputing everything. The cost
of motion estimation in the video encoder is about 40 to 60% of the encoder cost, and we can avoid motion
estimation if we can reuse already available information in the decoding process.

In the literature, by considering the SFM as the reference, the performance of various new transcoding methods
is discussed. Computational complexity of various transcoding approaches is discussed, and complexity reduction
of 10% (with good video quality) to 50% (with average video quality) with respect to SFM is reported. Because
video transcoding involves many parameters, the transcoding complexity depends on a particular application.
If we just want to increase the frame rate with the same coding format, then the transcoder may not have many
modules or parameters to take care of and the complexity of transcoding will also be relatively low.

In this section, we consider two transcoding applications and discuss various methods to reduce overall
transcoder complexity. The first transcoding application converts the DV (digital video) to MPEG-2 video to
play the DV on DVD players, and the second converts MPEG-2 to H.264 video.

Video Post-Processing 739

15.4.1 DV to MPEG-2 Transcoding

As shown in Figure 15.28, the DV decoder of the DV-MPEG-2 transcoder consists of variable-length decoding,
inverse quantization, and inverse DCT, and it has no motion compensation nodules (i.e., DV handles only
intraframes). On the other hand, MPEG-2 is based on the hybrid DCT motion-compensated scheme. Motion
compensation and DCT effectively remove temporal and spatial redundancies in the video.

Because both coding methods utilize DCT, transcoding in the DCT domain can minimize computational
complexity. The following steps are used for transcoding video from DV to MPEG-2:

1. Get DV 8×8 block or 4×8 block symbols from the bitstream using the DV VLD table.
2. Get DV 8×8 or 4×8 DCT domain data values by dequantizing the symbols in (1).
3. If 4 × 8 DCT data blocks are present, then convert them directly to 8 × 8 DCT data blocks using

Equation (15.18).

X8×8 = A8×8

[
D14×8

D24×8

]
(15.18)

where A8×8 is a conversion matrix (Kim et al., 2001) to convert two 4 × 8 DCT matrices to one 8 × 8 DCT
matrix.

4. Convert DV chroma-color format (4:1:1) to MPEG-2 chroma-color format (4:2:0), and also convert DV
macroblock (MB) luma space (8×32 pixels) to MPEG-2 MB luma space (16×16), as shown in Figure 15.29.

5. If the current frame is intraframe coding, then go to step 7.
6. Interframe coding:

(a) Decide intra/inter-MB mode, depending on DCT block variance
(b) Motion search

(i) Method 1: Three-step search
• With 2 ×2 IDCT (coarse)
• With MB-integer pixel
• MB half-pixel (fine)

(ii) Method 2: Five/four step search
• With 4 subblock (i.e., four 8×8 blocks) DC values
• With 2 ×2 IDCT data

DV Decoder

DCT QIQ VLC

ME MCP

IQIDCT

MPEG-2 Encoder

1
2

1

IDCTVLD

Figure 15.28: DV to MPEG-2 using SFM approach.

Figure 15.29: DV 4:1:1 to MPEG-2
4:2:0 conversion.

8

8 8 8 8 8 8

8

88

8
Y

Cb

Cr

8

8

8

Y Cb

Cr

88

8

740 Chapter 15

• With 4×4 IDCT data
• With 8×8 IDCT-data or MB-integer pixel
• With half-pixel

– Without overlap
– With overlap

7. MPEG-2 quantization parameter calculation:
(a) Compute as the multiplication of virtual buffer fullness by macroblock subblock least variance, σ 2

sub

σ 2
sub =

64∑
n=1

(x2(n)− (x̄)2) (15.19)

(b) Qmpeg = 31∗d/r where d = S −αC and α 	= 1 (15.20)

r = 2∗DV(bits/frame)
C = cumulative bit count of DV bitstream
S = cumulative bit count for resulting MPEG-2 output bitstream

8. Apply quantization to DCT coefficients.
9. Encode quantized symbols with MPEG-2 VLC tables.

15.4.2 MPEG-2 to H.264 Transcoding

Both MPEG-2 and H.264 video coding standards use block-based hybrid algorithms that employ transform
coding of the motion-compensated prediction error. While motion compensation exploits temporal redundancies,
the DCT transform exploits spatial redundancies. Although the basic principle is the same in both algorithms,
H.264 achieves the same quality of video with the half-bit rate when compared to MPEG-2 video coding.
However, this bit-rate savings of H.264 is at the cost of more computational complexity. The reason for the huge
complexity of H.264 is that its modules are enhanced a lot relative to MPEG-2. In addition, the H.264 coding
standard includes two extra modules—intraprediction and loop filter—that do not exist in MPEG-2 coding.

MPEG-2 is well established and deployed in many applications, whereas H.264 is more recent, with better
compression qualities and penetrating all applications wherever MPEG-2 is used. However, establishing the
infrastructure to replace MPEG-2 with H.264 takes many years. So, transcoding is a quick fix to enjoy the better
qualities of H.264 before its establishment. The reference architecture (SFM) for transcoding MPEG-2 to H.264
is shown in Figure 15.30.

The MPEG-2 standard consists of VLD, 8×8, 8×16, or 16×16 block partitions, and 8×8 DCT and simple
interpolation with one reference frame for motion compensation, whereas H.264 uses UVLC, CAVLC, and
CABAC algorithms for entropy coding, 4×4 or 8×8 integer transforms for transforming the pixels, uses 4×4,
4 × 8, 8 × 4, 8 × 8, 8 × 16, 16 × 8, and 16 × 16 block partitions for motion compensation, six-tap interpolator
function up to one-fourth pixel motion search, multiple reference-frame support, intraprediction for I -frames,
a complex loop filter, and more. Given these many differences between the MPEG-2 and H.264 modules,
accomplishing efficient transcoding between MPEG-2 and H.264 and obtaining all H.264 enhancements is not
simple. We discuss a few simple methods for transcoding from MPEG-2 to H.264; of course, the approaches
discussed here may not guarantee the best performance of H.264.

Our discussion is limited to MPEG-2-to-H.264 baseline profile transcoding as other H.264 profiles are rela-
tively complex for transcoding. Given MPEG-2 encoded video data, we focus on the following parameters for
transcoding from MPEG-2 to H.264: MPEG-2 frame information to determine frame type for H.264 frames,
8×8 DCT coefficients information to compute the H264 transform coefficients and to decide the intraprediction
modes, and MPEG-2 motion vector information to decide block partitions and to simplify the motion search for
H.264 encoding.

Mapping MPEG-2 DCT to H.264 Transform
Given the MPEG-2 8×8 block DCT coefficients, one way to transform 8×8 MPEG-2 transform coefficients to
four 4 × 4 H.264 transform (HT) coefficients is by first computing the IDCT followed by applying four H.264

Video Post-Processing 741

VLD IQ IDCT

MC

Ref

1

1

1

1
1

1

2

MPEG-2

H.264

ME

HT

QH

Entropy
Coding

Ref IQHIHTLP

IP

Figure 15.30: Reference architecture for MPEG-2 to H.264 transcoding.

Figure 15.31: Transcoding MPEG-2 to
H.264 transform data.

(a)

(b)

H.264
Transform

Data
(four 4 3 4)

MPEG-2
Transform

Data (8 3 8)
X Transform

MPEG-2
Transform

Data (8 3 8)

CT

(IDCT)

H.264
Transform

Data
(four 4 3 4)

HT HT

HT HT

transforms as shown in Figure 15.31(a). The other way is to directly transform the 8×8 DCT to H.264 transform
coefficients using the X-transform as shown in Figure 15.31(b). One such X-transform is given in Quian et al.
(2006).

The values of matrix elements used for the transformations in Figure 15.31 follow:

C T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536
0.4904 0.4157 0.2778 0.0975 −0.0975 −0.2778 −0.4157 −0.4904
0.4619 0.1913 −0.1913 −0.4619 −0.4619 −0.1913 0.1913 0.4619
0.4157 −0.0975 −0.4904 −0.2778 0.2778 0.4904 0.0975 −0.4157
0.3536 −0.3536 −0.3536 0.3536 0.3536 −0.3536 −0.3536 0.3536
0.2778 −0.4904 0.0975 0.4157 −0.4157 −0.0975 0.4904 −0.2778
0.1913 −0.4619 0.4619 −0.1913 −0.1913 0.4619 −0.4619 0.1913
0.0975 −0.2778 0.4157 −0.4904 0.4904 −0.4157 0.2778 −0.0975

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

HT =

⎡
⎢⎢⎢⎣

1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

⎤
⎥⎥⎥⎦

742 Chapter 15

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.4142 1.2815 0.0000 −0.4500 0.0000 0.3007 0.0000 −0.2549
0.0000 −0.9236 2.2304 1.7799 0.0000 −0.8638 −0.1585 0.4824
0.0000 −0.1056 0.0000 0.7259 1.4142 1.0864 0.0000 −0.5308
0.0000 0.1169 0.1585 −0.0922 0.0000 1.0379 2.2304 1.9750
1.4142 −1.2815 0.0000 0.4500 0.0000 −0.3007 0.0000 0.2549
0.0000 0.9236 −2.2304 1.7799 0.0000 0.8638 0.1585 0.4824
0.0000 0.1506 0.0000 −0.7259 1.4142 −1.0864 0.0000 0.5308
0.0000 0.1169 −0.1585 −0.0922 0.0000 1.0379 −2.2304 1.9750

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

As elements of the preceding matrices are symmetric either in the horizontal or vertical direction, we can further
reduce the number of multiplications required to perform matrix multiplication. With the X-transform method,
we have 30% fewer operations when compared to the IDCT-HT transform method.

Both MPEG-2 and H.264 support I (intrapredictive), P (interpredictive), and B (bidirectional predictive) frame
types. Whatever information we have on frame type in the MPEG-2 bitstream can be directly used in the
transcoding of MPEG-2-to-H.264 coding format. After knowing the frame type, we continue to transcode bits
for that frame type. Next, we briefly discuss transcoding techniques for intraframe (I) and inter (P or B) frames.

Intraframe Transcoding
In video coding, intraframe coding deals with video-frame spatial redundancy, and we do not have the costly
motion-estimation block in this case. However, we have an intraprediction module in H.264 intraframes coding,
which is also a relatively complex module. The H.264 standard supports many intraprediction modes. Compared
with H.264, MPEG-2 has only the DC differential prediction used in intra-MB, but lets the AC coefficients be
coded independently. Thus, the intra-MB mode decision is required in MPEG-2-to-H.264 transcoding. The H.264
intraprediction requires two parameters—prediction size and prediction mode—for performing intraprediction.
Making decisions on these two parameters following the H.264 reference software is a costly process. To quickly
determine prediction size and mode, many techniques are proposed in the literature (Shengfa et al., 2006). As we
are in the transform domain, we are particularly interested in decision-making techniques based on transform-
domain coefficients. H.264 supports two prediction sizes, 16 × 16 and 4 × 4. Typically, the prediction size
16 × 16 is used for macroblocks with fewer details, and the 4 × 4 prediction size is used if the macroblock has
high spatial activity. If the image block is smooth without many details, then the DCT of that block results in
fewer coefficients; if the block has more information, then the DCT of that block contains many coefficients.
Thus, we decide which prediction size to choose depending on the number of DCT coefficients present for a
given quantization level as follows:

if (Coeff_Count_Q > Threshold)
Pred_Size = 4x4

else
Pred_Size = 16x16

In Wang et al. (2006) and Kalva et al. (2005), fast decision making on intraprediction modes is proposed using
transformed domain coefficients. Depending on the presence of transform coefficients and the nature of DC
and AC coefficients in the current and neighboring blocks, we can make a decision on prediction modes for the
current block. These algorithms significantly reduce computations toward making decisions on intraprediction
modes, while maintaining a similar PSNR as reference architectures.

Interframe Transcoding
Interframes compress video data by removing temporal redundancies in video frames. Both MPEG-2 and H.264
use block-motion estimation/compensation-based interframe coding. The only difference between MPEG-2 and
H.264 is that the size of the block partitions, the number of reference frames, and the interpolation functions
used in block motion estimation/compensation are different. The MPEG-2 standard supports 16×16, 8×16, or
16×8 block partitions, whereas H.264 supports all block partitions (with multiples of 4) from 4×4 to 16×16.
Depending on the motion of objects in the current block, we choose one of the block partition sizes and search
for that size blocks in the reference frame buffer to match it with the actual block, and then transmit the matched

Video Post-Processing 743

Start

Parse MPEG-2 bitstream and obtain
parameters and residual coefficients.

Is I frame?

Convert MPEG-2 transform
domain data to H.264 transform
domain data using X transform.

Based on current and neighbor
block’s DCT coefficients, decide
intra-MB prediction size and mode.

Based on MPEG-2 current block’s size,
decide the block partition for H.264
motion estimation/compensation.

Set MPEG-2 current block MV as
H.264 PMV. Refine MVs by matching
2 3 2 HT coefficients at 4 3 4 block level.

Encode the coefficients from HT,
MVs, prediction modes, etc. using
H.264 entropy coding algorithms.

End

YN

Figure 15.32: Flow chart diagram of MPEG-2 to H.264 transcoding.

location (i.e., motion information), and the difference between the actual block and matched block (i.e., residual).
Typically, we have more temporal redundancies among video frames with slow-motion objects, and we find less
temporal redundancy in the video with fast-motion objects. We use bigger block partitions with slow-motion
video interframe coding, and smaller block partitions with fast-motion video interframe coding to have good
PSNR after decompressing video.

After decoding the block partition size and its motion information from the MPEG-2 bitstream, we can use
this information to get block partition size and motion information for the H.264 encoder in transcoding of
MPEG-2 coding format to H.264 coding format. Without using this MPEG-2 block partition size and motion
information, performing full-motion estimation for generating H.264 compressed bitstream, as shown in Figure
15.30, is very costly in terms of cycles. The Kim et al. (2005) approach of reusing the MPEG-2 block-partition size
and motion information for transcoding from MPEG-2 to H.264 is suggested. Using this method, we choose block
partitions for H.264 as 16×16, 16×8, or 8×16 when MPEG-2 block partition is 16×16 and choose partitions
4 × 4, 4 × 8, 8 × 4, or 8 × 8 when MPEG-2 block partition is either 16 × 8 or 8 × 16, assuming that the current
block contains fast-motion objects. Also, we use MPEG-2 motion vector information as H.264 motion-vector
prediction (MVP) value, and from there we search for finer-motion estimation using H.264 transform-domain
coefficients. Figure 15.32 shows the flow chart diagram of MPEG-2 to H.264 transcoding.

This page intentionally left blank

Index

A
A-law companding, 603, 615–616
a posteriori probabilities (APPs)

LDPC codes, 147
turbo decoder, 138–139

AAC codec, 647, 652
decoder, 650–651
encoder, 647–650

Absolute threshold of hearing (ATH),
637–638

AC coefficients
H.264 VLC-based entropy coding, 246–247
MPEG-2 VLDs, 232–235, 237

Accuracy, 339–341
ACELP. See Algebraic Code Excited Linear

Prediction
Acoustic Coder 3 (AC3) codec, 653
Acoustic echo, 630
Adaptive binary arithmetic coding (ABAC),

231
Adaptive chosen plain-text attack, 18
Adaptive DM (ADM), 616–617
Adaptive DPCM (ADPCM), 616–617, 644
Adaptive filters, 346, 350
Adaptive jitter buffer (AJB), 632–633
Adaptive signal processing, 381–383

lattice filters, 403–405
least mean square algorithm, 388–392
least-squares filter, 393–398
linear prediction, 397–403
Wiener filter, 384–392

Adaptive transform coding (ATC), 618
ADC. See Analog-to-digital conversion
ADD operation, in HMAC, 57
Additive white Gaussian noise (AWGN)

channels
adaptive signal processing, 383
channel estimation, 470
demodulation, 445
digital communications, 442
modeling, 440
orthogonal modulation, 451
PAM, 446
PSK, 449
QAM, 448
RSC encoder, 203
symbol synchronization, 494–495, 497
turbo encoder, 138
Viterbi algorithm, 134–135

AddRoundKey (AR) function
AES, 37–38, 44–45
AES-128, 40

ADIF. See Audio data interchange format
ADM. See Adaptive DM
ADPCM. See Adaptive DPCM
ADTS. See Audio data transport stream
Advanced encryption standard (AES), 24,

37–39
AES-128 simulation, 39–43
computational complexity, 43–46
implementation, 46–50
memory requirements, 45–46

Advanced Television Standards Committee
(ATSC), 653

Advanced video coding (AVC). See H.264
standard

AES. See Advanced encryption standard
Affine to projective conversion, 77
Affine transform (AT) parameters,

564–566
AJB. See Adaptive jitter buffer
Algebraic Code Excited Linear Prediction

(ACELP), 624
Algorithm-flow statistics, 10
Algorithm implementation, 5

complexity, 7–9
DSP architecture, 6–7
optimization, 11–12
techniques, 9–11

Aliasing
image frequencies, 306–308
image rotation, 556, 559
multirate signal processing, 406
QMF banks, 413–415

All-pole and all-zero models, 399
Alpha blending, 734
Alpha metric

MAP decoder, 207
turbo decoder, 212–214

ALS. See Audio lossless codec
Amplitude modulation (AM), 444
Analog filters, 345–346

IIR, 365–368
Analog modulation, 444
Analog-to-digital conversion (ADC)

audio signals, 597–600
Analog-to-digital IIR filter mapping methods,

365–366
Analog video inputs, 659
Analysis filter, 411
AND operations

CRC algorithm, 90
DES algorithm, 27–29

Antialiasing filters, 308

APPs. See a posteriori probabilities
Arithmetic coding

entropy, 228–231
JPEG, 586
video, 669

ARMA. See Autoregressive moving-average
process

Artifacts
image processing, 512–513
JPEG 2000, 588
video scaling, 714, 720

ASIL. See Automotive software integrity level
asm construct, 12
Aspect ratio, in license plate detection, 574
Asymptotic coding gain, in TCM, 132
AT. See Affine transform
ATC. See Adaptive transform coding
ATH. See Absolute threshold of hearing
ATSC. See Advanced Television Standards

Committee
Attacks, on cryptographic systems,

16–18
Audio coding, 3–4, 637

encoder structure, 646
interchannel techniques, 642–644
intrachannel techniques, 644–646
MPEG-4 AAC codec, 647–651
popular codecs, 651–653
post-processing, 653–656
psychoacoustics and perceptual coding,

637–642
Audio data interchange format (ADIF), 650
Audio data transport stream (ADTS), 650
Audio frame, 646
Audio lossless (ALS) codec, 652
Audio packet, 646
Audio processing

converters, 598–602
dynamic range and precision, 602–608
embedded processors, 608–611
equalizers, 655
jitter buffer, 631–635
sampling and quantization, 596–598
sound waves and signals, 595–596
speech compression. See Speech

compression
stereo enhancement, 655
VoIP, 626–631

Authentication, 19
Autocorrelation

random variables, 298–299
RLS algorithm, 395

© 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-678-1.00024-7 745

746 Index

Autocorrelation (continued)
vocoder, 622–623
Wiener filter, 384

Autocovariance function, 299
Automotive software integrity level (ASIL),

102–103
Autoregressive moving-average (ARMA)

process, 399
AVC. See Advanced video coding. See also

H.264 standard
Average energy of constellation, 446
Average filters, and image processing,

512–513, 544–545
Average mutual information, in channel

capacity, 439
Average self-information, in channel capacity,

439
AWGN. See Additive white Gaussian noise

channels

B
B-frames. See Bidirectional predicted frames
B slices, in H.264 decoders, 686
B-spline interpolation

image rotation, 557–559
video scaling, 714–717, 723–724

BAC. See Binary arithmetic coding
Bandpass digital modulation, 445
Bandpass filters, 346–347
Bandpass signal sampling, 309–310
Bandwidth, compression. See Compression
Bark band, 638–640
Bayes theorem

random signals, 295
turbo decoder, 139

BCH codes. See Bose-Chaudhuri-
Hocquenghem codes

Belief propagation, in LDPC codes, 217
BER. See Bit-error rate
Berlekamp-Massey (BM) recursion

BCH codes, 110, 158
RS codes, 115, 167–168, 172–174, 183–184

Beta metric
MAP decoder, 207
turbo decoder, 212–215

Bicubic interpolation, 728–729
Bidirectional predicted frames (B-frames)

DV, 663
MPEG-2 to H.264 transcoding, 742
video decoding, 712

Bilinear interpolation
image rotation, 556–557
image scaling, 528–531, 548–550
video scaling, 714–718

Bilinear z-transform method, 365–366, 368
Binary arithmetic coding (BAC), 229–231
Binary decisions (bins), in CABAC, 269–270
Binary phase shift keying (BPSK)

constellation diagrams, 449
convolutional codes, 121
eye diagrams, 453–454
LDPC codes, 146
MAP decoder, 206

Binary trees, in Huffman coding, 227
Biorthogonal wavelet functions, 425
Biquad IIR filters, 372–373

fixed-point simulation, 373–375
simulation results, 375–378

Bit allocation, in MPEG-4 AAC encoder, 650
Bit-error rate (BER)

block codes, 98
DMT transceiver, 463
Hamming (72, 64) coder, 101–102
LDPC codes, 143
orthogonal modulation, 451
PAM, 447, 449
PSK and QAM, 449
TCM, 128
turbo decoder, 139
Viterbi decoder, 199

Bit FIFO operation
CABAC, 279
CAVLC, 249, 257
MPEG-2 VLD simulation, 235

Bit-flip algorithm, 144–145
Bit loading, in DMT transceiver, 461–463
Bit node processing, 217
Bit rates

speech compression, 613
video compression, 674–675

Bit reservoir, in MPEG-4 AAC encoder, 650
Bit-reversal order, in FFT, 326–327, 329–330
Bit-sliced arithmetic coding (BSAC), 652
Bitplane, in JPEG 2000, 590–591
Bjorck-Pereyra algorithm, 182
Blackman window, 354–356
Blending, 734
BLMS. See Block LMS
Block-based bilinear interpolation, 530–531
Block-based filtering

image filter, 578–579
median filter, 730–733

Block codes, 97–98
example, 98–99
linear, 99–101

Block layer, for MPEG-2 decoder, 679–681
Block LMS (BLMS), 392
Block-matching algorithm, for motion

estimation, 667
Block processing

audio signals, 608–609
H.264 decoder, 686, 688–689, 695–709
image stabilization, 563–565
video coding, 663–666

Block transform, for video coding, 668
Blocking artifacts, in JPEG 2000, 588
BM. See Berlekamp-Massey recursion
Bose-Chaudhuri-Hocquenghem (BCH) codes,

108, 155
BCH(67, 53) optimization, 161–166
computational complexity, 159–161
decoder, 109–112, 156–163, 165
encoder, 108–109, 155–156, 159–162
error correction, 112
linear block codes, 100–101

Boundary strength (BS), in H.264 decoder,
706–709

Box-Muller transformation, 444
BPSK. See Binary phase shift keying
Branch metrics

convolutional decoder, 122
MAP decoder, 206
turbo decoder, 140

Brightness adjustment
image processing, 510, 512
simulation, 541–543

Broadcast communication, 437
Brute force attack, 16
BSAC. See Bit-sliced arithmetic coding
BT.601 recommendation, 662
BT.656 recommendation, 662
Buffer

audio processing, 609–610
bitstream, 272, 275
FIR filter, 359–360
IIR filter, 374
jitter, 631–635
turbo decoder, 210–211

Butterworth IIR filter, 365–368

C
CABAC. See Context-based adaptive binary

arithmetic coder
Canny edge detector, 517–518

CORDIC algorithm, 519–521
edge orientation computation, 519
gradient computation, 518–519
hysteresis threshold, 523–525
noise reduction, 518
nonmaximum suppression, 523
quantized edge orientation, 521–522
simulation, 545–546

Cascade realization, in IIR filters, 372
Causality, in LTI systems, 313
CAVLC. See Context-based adaptive

variable-length coder
CBP. See Coded_block_pattern
CCDs. See Charge-coupled devices
CCIR-601 and CCIR-656 recommendations,

662
CD-ROM media, MPEG-1 for, 673
cdf. See Cumulative distribution function
CE. See Channel equalization
CELP. See Code-excited linear prediction
Center-clipping techniques, 623–624
Central limit theorem, 297
Central moments, for random variables, 296
Cepstrum method, for pitch estimation,

623–624
Channel equalization (CE), 472–473

adaptive signal processing, 381–382
DFE, 475–476
DMT systems, 476–480
linear equalization, 473–475
OFDM systems, 480–485
turbo equalizer, 488–491
Viterbi equalizer, 485–488

Channel estimation, 464
DMT systems, 464–465
OFDM systems, 469–472
wireless channels, 466–469

Channel vocoder, 619–620
Channels

AWGN. See Additive white Gaussian noise
channel

capacity, 439–440
Charge-coupled devices (CCDs), 661
Chebyshev IIR filter, 365–367
Chien’s search algorithm

BCH codes, 164–165
RS codes, 167, 173, 184

Cholesky decomposition, 506–508
Chosen plain-text attack, 18

Index 747

Chrominance
coding, 662–664
scaling, 721–722, 728

Ciphers, 15–16
AES, 40–41, 45, 48–49
DES, 25–26, 33–37

Ciphertext-only attack, 18
Circle detection, Hough transform, 536,

539–540
Circular buffer

audio processing, 610
FIR filters, 360
IIR filters, 374

Class D amplifiers, 602
CLVE. See Combined linear Viterbi equalizer
CMOS technology, in video cameras, 661
CNG. See Comfort noise generation
Coarse-symbol synchronization, 495–496,

500–502
Code blocks, in JPEG 2000, 590–591
Code-excited linear prediction (CELP),

623–624
Code rate, for block codes, 99
Codecs

audio, 597, 600, 618–619, 647–653
speech, 600–601, 625
video, 10, 663, 672–674
VoIP, 628

Coded-block-flag decoding, 691–692
Coded_block_pattern (CBP)

H.264 decoder, 690
MPEG-2 decoder, 678–679

Coding delay, in speech compression, 613
Coding gains with TCM, 131–133
Coeff_Token, in H.264 CAVLC, 247, 249–251,

258
Coherence bandwidth and time, in wireless

channels, 466–467, 468
Color

coding, 662–664
conversion, 509–510, 540–542
enhancement, 510–511
scaling, 721–722, 728
skin, 568–569

Comb filter, 610
Comb method, 79–81
Combined linear Viterbi equalizer (CLVE),

485
Combined scalability, 711
Comfort noise generation (CNG), 624
Companding audio signals, 603, 615–616
Compiler-level optimization, 9, 11
Complex addition, for DFTs, 322, 325
Complex exponentials, for Laplace transform,

318
Complex multiplications

DFT, 322
radix-2 FFT algorithm, 325

Complex noise, 442
Complexity. See Computational complexity
Compression, 584–585

DCT, 312
lossless. See Lossless compression
speech. See Speech compression
video redundancy, 662–663
video standards, 672–675

Computational complexity
AES algorithm, 43–46

BCH codes, 159–161
CABAC, 272–273
convolutional decoder, 123
cubic B-spline interpolation, 559
deblocking filter, 708–709
DES algorithm, 33–35
DFT, 321–322
discrete wavelet transform, 431
erasure codes, 184
erasure decoder, 188
FIR filter, 360
Goertzel algorithm, 380
H.264 decoder, 709
H.264 VLC, 257
Hamming (72, 64) coder, 107
HMAC, 57–58
Hough transform, 538
IIR filter, 374–375
MAP decoder, 207–208
min-sum algorithm, 218–221
MPEG-2 decoder, 681
MPEG-2 VLD, 239–241
MQ-decoder, 265–268
RC4 simulation, 23
RLS algorithm, 397
RS codes, 177–178
symbol synchronization, 500–503
turbo encoder, 201
video compression, 674–675
Viterbi decoder, 191–192

Concatenated constituent convolutional coder,
136

Conditional entropy, 439
Conditional probability density function,

294–295
Confidentiality, 19
Conjugate structure ACELP (CS-ACELP),

625
Constant function, 288–289
Constant-log-MAP operator, 204
Constellation diagram, 498
Constellation points

PAM, 446
PSK, 448–449
QAM, 447

Context-based adaptive binary arithmetic coder
(CABAC), 261, 269

computation complexity, 272–273
H.264 decoder, 686–689, 691–692, 695
H.264 VLC-based entropy coding, 246–247
normalization, 274–279
symbol coding, 269–272
symbol decoding, 271–272, 279

Context-based adaptive variable-length coder
(CAVLC)

computational complexity, 257
decoding, 249–254
H.264 decoder, 691
H.264 VLC-based entropy coding,

246–247
simulation results, 254–257

Context parameters, for MQ-decoder, 261, 263,
266

Continuous random variables, 292–293
Continuous-time signals

LTI systems, 313
sampling, 304–310
time-frequency representation, 299–304

Contrast adjustment
image processing, 510, 512
simulation, 541–543

Convergence
adaptive signal processing, 383
LMS algorithm, 387–388, 432–436
RLS algorithm, 396–398
steepest-descent method, 386–389

Convolution
AWGN channel model, 383
DFT based, 314–317

Convolutional codes, 118
decoding criterion, 121–122
encoder representation, 118–121
hard decision decoder, 122–123
TCM encoder, 129–130, 190–191

CORDIC algorithm, 519–521, 546
Corner detection, 534–537, 551–552
Correlation-based coarse symbol

synchronization, 495–496, 500, 503
Correlation-based Doppler spread estimation,

471
Correlation function, for wireless channels,

468–469
Cosinusoid function, 286
CRC. See Cyclic redundancy check
Critical bands, in audio, 638–639
Critical video-decoding modules, 671–672
Cross-correlation function

orthogonal modulation, 450
random processes, 299
RLS algorithm, 395

Cross-correlation, 384
Cryptanalysis, 15, 18
Cryptography, 15–16

algorithms and applications, 19
practices, 16–18
random numbers, 19–24

Cryptology, 15
encryption. See Encryption

Cryptosystems, 15, 17
CS-ACELP. See Conjugate structure ACELP
Cubic B-spline interpolation

image rotation, 557–559
video scaling, 714–717, 723–724

Cumulative distribution function (cdf),
292–294, 297

Curves, elliptic, 61–64
Cyclic redundancy check (CRC)

CRC32, 94–97
error detection, 89–94
RS erasure codes, 180–181

Cyclo-stationary random processes, 298

D
DAC. See Digital-to-analog conversion
Data authentication, 19
Data compression. See Compression
Data confidentiality, 19
Data encryption standard (DES) algorithm, 10,

24
cipher, 25–26, 34–37
computational complexity, 33–35
inverse cipher, 26
key scheduler, 24–25, 27–29, 34
simulation, 26–33

Data errors. See Error correction

748 Index

Data integrity, 19
Data polynomials

BCH codes, 156–157
RS codes, 168

Data security. See Security
Daubechies-2 scaling and wavelet function,

425, 428–429
Daubechies-4 scaling and wavelet function,

430
dBSPL, 595–596
dBu units and dBV scale, 596
DC coefficients

H.264 VLC-based entropy coding, 247
MPEG-2 VLDs, 234–236

DC-TEQ (divide-and-conquer TEQ) design,
478

DC values
deterministic signals, 288
Fourier series, 301

DCT. See Discrete cosine transform
Dead time, in VoIP, 630
Deblocking filter

complexity, 708–709
H.264 decoder, 704–709

Decibel (dB), 595–596
Decimation

audio SRC, 654
multirate signal processing, 405–407

Decimation-in-frequency (DIF) radix-2
algorithm, 326

Decimation-in-time (DIT) radix-2 algorithm,
326–327

Decision-directed mode, adaptive signal
processing, 382

Decision feedback equalization (DFE),
475–476

Decorrelation transform, 663
Decryption, 15
Deinterleaver, 142
Delay estimator, for jitter buffer, 633–634
Delays

audio processing, 610
speech compression, 613
VoIP, 629–630
wireless channels, 466–467

Delta modulation (DM), for audio signals,
616–617

Demapping, turbo equalizer, 490
DES. See Data encryption standard algorithm
Detection, image processing, 568

corners, 534–537, 551–552
edges. See Edge detection
errors, 88–97
faces, 568–571
license plates, 571–575

Deterministic normal equation, 394
Deterministic signals, 285–290
DFE. See Decision feedback equalization
DFT. See Discrete Fourier transform
Diamond search pattern, 667
DIF. See Decimation-in-frequency radix-2

algorithm
Differential PCM (DPCM), and audio signals,

616–617, 644
Digital communications, 437–438

channel capacity, 439–440
channel equalization. See Channel

equalization

channel estimation, 464–472
DMT transceiver, 459–463
eye diagrams, 453–456
modulation techniques, 444–451
multicarrier systems, 454–455, 457–459
noise generation and measurement, 441–444
OFDM transceiver, 463–464
raised cosine modulation filter, 452–453
simulation techniques, 504–598
single-carrier systems, 454–457
synchronization. See Synchronization

Digital filters. See Filters
Digital image stabilization (DIS)

implementation, 566–568
modules, 563–566
process, 562–563

Digital Living Network Alliance (DLNA), 653
Digital media, 1–2
Digital modulation, 444
Digital Rights Management (DRM), 652, 674
Digital signature algorithm (DSA), 58–59
Digital-to-analog conversion (DAC)

audio signals, 597, 599
Digital video (DV), 661–662

coding process, 663–672
compression standards, 672–675
redundancy, 662–663
transcoding, 738–740

Dilation, in image processing tools, 531–533,
550–551

Dilation morphological operation, 569
Dirac delta function, 287–288, 290, 304–305
Direct-form realization, for IIR filter, 370–372
Direct memory access (DMA)

2D filters, 577–579
audio signal processing, 608–610
fisheye distortion correction, 583
H.264 decoder, 700, 703
image rotation, 561–562
median filter, 730
motion estimation, 666–668

Direct-stream digital (DSD), 599
DIS. See Digital image stabilization
Discrete cosine transform (DCT), 312,

334–335
algorithm, 335
DV to MPEG-2 transcoding, 739
fixed-point simulations, 338–342
input pruning, 342–343
inverse, 717–719, 739
JPEG, 585–587
JPEG 2000, 588–589
matrix factorization, 337–338
output pruning, 343–346
simulation, 336–337
video coding, 664, 668–669
video scaling interpolation, 716–719,

724–726
Discrete Fourier transform (DFT), 311–312

audio codec, 619
audio coding, 644
bit-reversal order, 326–327
computational complexity, 321–322
convolution computation, 314–317
DMT modulation, 459–461
FIR filter, 357
larger DFT simulations, 331–333
matrix factorization, 323–325

OFDM systems, 464
radix-2 algorithm, 325–327
radix-4 algorithm, 327–330
radix FFT fixed-point simulation,

329–331
simulation results, 333–334

Discrete logarithm-based DSA (DLDSA),
60–61

Discrete multitone (DMT) system, 459
channel equalization, 476–480
channel estimation, 464–465
frequency offset estimation, 492–493
symbol synchronization, 494, 497–498, 503
transceiver, 459–463

Discrete random variables, 292–293
channel capacity, 439

Discrete time Fourier transform (DTFT),
310–311

Discrete-time signals
LTI systems, 313
time-frequency representation, 310–312

Discrete wavelet transform (DWT)
wavelet signal processing, 425–431

Distortion, fisheye, 581–583
Distribution functions, random processes,

297–298
DIT. See Decimation-in-time radix-2 algorithm
Divide-and-conquer median filter approach,

729
Divide-and-conquer TEQ (DC-TEQ) design,

478
Division simulation techniques, 504–505
DLDSA. See Discrete logarithm-based DSA
DLNA. See Digital Living Network Alliance
DM. See Delta modulation for audio signals
DMA. See Direct memory access
DMT. See Discrete multitone systems
Dolby audio, 653, 656
Dolby Pro Logic audio, 656
Domain parameters, in ECDSA, 67, 86
Doppler frequency, in symbol synchronization,

501
Doppler spread

channel equalization, 480–481
channel estimation, 470–472
wireless channels, 466, 468

Dot product, 7–8, 11–12
Double buffering, in audio processing,

609–610
Double-precision data type

DCT simulation, 339–340
fixed-point emulation, 607
floating-point operations, 370

Double sideband (DSB), 449
Doubling elliptic curve point, 63, 77–78
Downsampler, in multirate signal processing,

405–407
Downscaling, 343–344
DPCM. See Differential PCM
DRM. See Digital Rights Management
DSA. See Digital signature algorithm
DSD. See Direct-stream digital
DTFT. See Discrete time Fourier transform
DTS audio, 656
DV. See Digital video
DVB-H standard, 169, 180
DVD, and MPEG-2, 673
DWT. See Discrete wavelet transform

Index 749

Dyadic decomposition, 588–589
Dynamic range, 602–608

E
ECDLP. See Elliptic curve discrete logarithm

problem
ECDSA. See Elliptic-curve digital signature

algorithm
Echoes

MPEG-4 AAC encoders, 648–649
pre-echo, 640
VoIP, 629–630

Edge-based interpolator, 719–722, 726–728
Edge detection, 513–514

Canny edge detector. See Canny edge
detector

Laplace edge detector, 515–517
simulation, 545–547
Sobel operator, 514–515

Edges
enhancing and sharpening, 512, 542, 544
face detection, 569–570

Efficient implementation. See Optimization
Eigenvalue spread

least-mean square algorithm, 387
steepest-descent method, 386–387

8-point DCT, 337–338
8-PSK modulation, 449
8 × 8 IDCT transform, 680
8.8 fixed-point Q-format, 194
Elliptic curve digital signature algorithm

(ECDSA), 58, 59–61
application, 64–67
over binary field, 67–84
digital signature algorithm, 58–59

Elliptic curve discrete logarithm problem
(ECDLP), 64

Elliptic curves, 61–64
binary Galois fields, 77–83
representation, 76–77

Elliptic filter, 365–367
ELP. See Error-locator polynomial
Embedded systems and applications, 4–5
Emulation

fixed-point processors, 606–608
floating-point processors, 607

Encryption, 15
AES. See Advanced encryption standard
TDEA. See Triple data encryption algorithm

Enhancement
color, 510–511
edges, 512
signals, 345–346
stereo, 655
video, 718–719

Ensemble, 291, 297
Entropy

channel capacity, 439
entropy coding. See Lossless compression
MPEG-4 AAC encoder, 648

Entropy rate, 226
Equalization

audio, 655
channel. See Channel equalization

Erasure codes, 179–180
complexity, 184, 188
decoder, 181–182

encoder, 180–181
errors and erasures, 182–184
optimization, 185–188
polynomial, 182–183
simulation results, 188–190

Ergodic stationary process, 298
Erosion

image processing tools, 531–533, 550–551
skin color detection, 569

Error convergence, in LMS algorithm, 432–436
Error correction, 87–88, 155

BCH codes. See Bose-Chaudhuri-
Hocquenghem codes

block codes, 97–101
convolutional codes, 118–126
detection algorithms, 88

CRC bits, 89–94
CRC32, 94–97
parity bits, 88–89

Hamming (72, 64) coder, 101–107
LDPC codes. See Low-density parity check

codes
RS codes. See Reed-Solomon codes
TCM, 126–134
turbo codes. See Turbo codes
Viterbi decoder. See Viterbi decoder

Error-locator polynomial (ELP)
BCH codes, 110–111, 157–159, 161, 164
RS codes, 116, 167–169, 172–175, 183–184

Error resilience, in JPEG 2000, 592
Estimation and correction

channel. See Channel estimation
image stabilization, 563–565
motion, in video coding, 563, 663, 665–668
synchronization, 491–493

Euclidean distance
constellation points, 446
convolutional decoder, 122–123
TCM, 132

European Telecommunications Standards
Institute (ETSI), 624

Even parity, 88
Expand function (E-function), 30, 32, 34–35
Expected value

random processes, 298
random variables, 295

Exponential Golomb codes, 243–246, 249–250
Extended-precision registers, 351
Extrinsic information

LDPC codes, 219
RSC encoder, 203
turbo decoder, 138, 141, 214

Eye diagrams, 453–456

F
Face detection and facial features, 568–571
Fast Fourier transforms (FFTs)

audio coding, 645–646
audio processing, 611
bit-reversal order, 326–327
erasure decoder, 185–188
matrix symmetry, 322–323
radix-2 algorithm, 325–327
radix-4 algorithm, 327–330
radix FFT fixed-point simulation, 329–331
simulation results, 333–334

Fast time-varying channel equalization, 381

FEC. See Forward error correction
FEQ. See Frequency-domain equalizer
FFTs. See Fast Fourier transforms
Field mode, H.264 decoder, 696
Field of view (FOV), for fisheye lenses, 583
Field scan, for MPEG-2 decoder, 680
Filter bank

audio coding, 644
QMF, 411

Filtered LMS (FLMS), 392
Filters, 345–348

analysis, 411
audio processing, 611
design parameters, 348–350
digital filter, overview, 345–348, 350–351
discrete wavelet transform, 427–428
edge-based interpolation, 721
finite-word-length effects, 350–351
FIR. See Finite impulse response filter
Gaussian. See Gaussian filters
IIR. See Infinite impulse response filter
lattice, 403–405
least-squares, 383, 393–398
LMS algorithm, 432–435
median, 512–513, 728–734
multiresolution analysis, 424
polyphase, 407–411
video scaling, 718
Wiener, 383–392

Final permutation (FP), in DES, 25, 29–31,
34–35

Fine motion search, 668
Fine-symbol synchronization, 496, 500–501
Finite Galois fields, for elliptic curve points, 62
Finite impulse response (FIR) filter, 348, 352

audio processing, 611
fixed-point simulation, 357–360
H.264 decoder, 701
vs. IIR, 350
multirate system, 408
realization, 356–357
simulation results, 360–363
Viterbi equalizer, 486
windowing, 353–356

Finite precision data, digital filters, 351
Finite-precision LMS, 392
Finite word-length effects

biquad IIR filter, 373
digital filters, 350–351

First moment, random variables, 296
Fisheye distortion correction, 581–583
5 × 5 Gaussian filter

image smoothing, 546
license plate detection, 573

Fixed-length code (FLC), 242–243, 249
Fixed-point operations and simulations

audio signals, 604–608
biquad IIR filter, 373–375
DCT, 337–342
digital filters, 351
FIR filter, 357–360
Goertzel algorithm, 379–380
LMS algorithm, 431–434
radix FFT, 329–331

FLAC. See Free Lossless Audio Code
FLMS. See Filtered LMS
Floating-point operations

audio signals, 604–606

750 Index

Floating-point operations (continued)
DCT, 337
digital filters, 351
IIR filter, 370
LMS algorithm, 431–432, 436

FM. See Frequency modulation
Forward error correction (FEC)

block codes, 97
RS codes. See Reed-Solomon codes

4:2:2 profile (422P), 670
4 × 4 luma prediction, 698–700
4-PSK modulation, 449
Four-step search (FSS), 667
Fourier series, 301–304
Fourier transform, 304

audio processing, 609, 619
DFT. See Discrete Fourier transform
DTFT, 310–311
FFTs. See Fast Fourier transforms
limitations, 416–417
STFT, 417–419

FOV. See Field of view, for fisheye lenses
FP. See Final permutation step, in DES
Frame synchronization, 503–504
Free Lossless Audio Code (FLAC), 653
Frequency masking, 638
Frequency-domain characteristics

bilinear interpolation, 528
Blackman window, 354–355
chrominance scaling, 722
continuous-time signals, 299–304
cubic B-spline interpolation, 715–716
discrete-time signals, 310–312
Hamming window, 353–354
IIR filter, 365–367, 369
moving-average filter, 353
raised cosine filter, 452–453
square wave, 303

Frequency-domain equalizer (FEQ), 476,
479–480

Frequency-domain linear prediction, 649
Frequency modulation (FM), 444
Frequency-shift keying (FSK), 450–451
FSS. See Four-step search
Full-macroblock prediction, 698
Full-search block-matching algorithm,

665–668
FullAdd function, 82
FullSub function, 82

G
G-dot standards, 625
Galois field

BCH codes, 108, 155, 157, 161
CRC algorithm, 90
elliptic curve points, 62–64, 67–84
multiplication, 44, 46, 69–71, 73–75
RS codes, 112, 169, 171–175, 180

Gamma correction, 734–737
Gamma metric

MAP decoder, 206–207
turbo decoder, 211–212

Gateways, in VoIP, 626
Gaussian distribution, 293–294, 362, 432, 434

noise modeling, 297
Gaussian filter

Canny edge detector, 518

fisheye distortion correction, 583
image rotation, 559–561
image smoothing, 544–546
license plate detection, 573–574

Gaussian noise
adaptive signal processing, 383
AWGN. See Additive white Gaussian noise

channel
Gaussian probability density function, 135
Generalized Fourier transforms, 317–320
Generalized likelihood radio test (GLRT),

503–504
Generator polynomial

CRC algorithms, 90–96
RS codes, 169–170

Generator/transfer function representation; for
convolutional encoder, 119

Gibbs phenomenon, 303
Global system for mobile communications

(GSM), 486–488
GLRT. See Generalized likelihood radio test
Goertzel algorithm, 378–380
Golomb Rice coding, 652
Good-Thomas FFT, 185–186
Graphical representation, of parity check

matrices, 143–145
Gray coding, 446
Group of picture (GOP) structure, 665
GSM. See Global system for mobile

communications
GSM-AMR (GSM adaptive multirate) codec,

625
GSM-EFR (GSM enhanced full rate) codec,

624
GSM-FR (GSM full rate) codec, 624

H
H.261 standard, 672–673
H.263 codec, 673
H.264 standard

CABAC. See Context-based adaptive binary
arithmetic coder

CAVLC optimization, 257–260
decoder, 674, 681–685

complexity, 709
macroblock layer, 688–691
macroblock reconstruction, 695–709
residuals, 691–695
slice layer, 686–688

SVC, 711–712
transcoding, 738, 740–743

H.323 protocol, 626–628
Haar scaling function, 422–423
Hadamard transform, 697–698
Hamming (72, 64) coder, 101–102

decoder, 104–105
encoder, 103–104
memory error correction, 102–103
simulation, 105–107

Hamming codes, in linear block codes, 100–101
Hamming distance

convolutional decoder, 122–124
linear block codes, 99

Hamming window function, 353–355
Hard-decision channel output, 144–145
Hard decision convolutional decoder, 121–123

Harris/Plassey operator, 534–535, 537,
551–552

Hash-based algorithm, 19
Head-related transfer function (HRTF) filter,

656
Hearing threshold, 595, 637–638
Heisenberg inequality, 419
Heisenberg uncertainty principle, 348
Hertz, 286
Hierarchical B-frame structure, 712
High-pass filter, 346–348, 350
High profile (HP), video coding, 670
Histogram

CABAC symbol coding, 276–277
color enhancement, 510–511

HMAC (keyed-hash message authentication
code), 50–52

algorithm, 50
computational complexity, 57–58
SHA-256 function, 52–57

Holmes vocoder, 619–620
Horner’s method, 185, 188
Hough transform

image processing, 536–540
implementing, 552
license plate detection, 572–573

HRTF. See Head-related transfer function filter
HSV format, 584
Huffman coding

JPEG, 586, 226–228
MPEG-4 AAC decoder, 650
video, 669

Human face detection, 568–571
Hybrid coder, 623–624
Hysteresis threshold, 523–525, 546–547

I
I-frames. See Intracoded frames
I slices, in H.264 decoder, 686
I2S. See Inter-IC sound protocol
IBBP prediction structure, 711
ICI. See Intercarrier interference
IDCT. See Inverse DCT
IDFT operation

channel estimation, 465
DMT transceiver, 459–461

IDR. See Instantaneous decoder refresh
IDWT. See Inverse DWT
IIR filter. See Infinite impulse response filter
Image frequency aliasing, 306–308
Image processing algorithms and tools, 3, 509,

553–554
2D filters, 575–581
brightness and contrast adjustment, 510,

512
color conversion, 509–510
color enhancement, 510–511
compression. See Compression
corner detection, 534–536
edge detection. See Edge detection
edge enhancement and sharpening, 512
erosion and dilation, 531–533
face detection, 568–571
filters, 512–513
fisheye distortion correction, 581–583
Hough transform, 536–540
license plate detection, 571–575

Index 751

rotation. See Rotation of images
scaling, 525–531
simulation, 540–552
stabilization, 562–568

IMDCT transform, 650
Impulse function, 287–288
Impulse invariant mapping method, 366
Impulse response

filters, 348–349
LTI Systems, 313

Infinite impulse response (IIR) filter, 348,
363–364

audio processing, 611
biquad, 372–375
design, 364–370
vs. FIR, 350
fixed-point simulation, 373–375
Goertzel algorithm, 378–380
realization, 370–373
simulation results, 375–378

Initial permutation (IP) step, in DES, 25, 29,
31, 34

Inline assembly code, 12
Input pruning

DCT, 342–343
erasure decoder, 187–188

Instantaneous decoder refresh (IDR), 686
Instruction-level optimization, 9
Integrity, 19
Intensity coupling, 649
Intensity stereo (IS), 642–643
Inter-IC-Sound (I2S) protocol, 599–600
Inter-symbol interference, 445
Intercarrier interference (ICI)

channel equalization, 480–485
DMT transceiver, 459
OFDM transceiver, 464

Interchannel techniques, in audio coding,
642–644

Interference noise, 441
Interframe transcoding, 742–743
Interlaced coding, 675
Interleaving

RSC encoder, 203
turbo codes, 141–142, 210, 214

International Telecommunication Union
(ITU), 625

Internet protocol (IP)
jitter buffer, 631–632, 634
VoIP, 626

Interpolation
audio SRC, 654
chrominance scaling, 728–729
DCT, 343–344
image rotation, 556–559
image scaling, 528–531, 548–550
multirate signal processing, 405–407
nearest-neighbor, 526–528, 548
pilot symbol-aided channel estimation,

471–472
simulation, 722–728
video scaling, 713–718

Interprediction, in video coding, 663
Interpredictive (P) frames, 742
Intersymbol interference (ISI)

adaptive signal processing, 381–382
digital communications, 441
DMT transceiver, 459

eye diagrams, 454
MCM systems, 455
OFDM transceiver, 464
raised cosine modulation filter, 452

Interval normalization, 230
Interval range (A), for MQ-decoder, 261, 263,

266
Interval subdivision

binary arithmetic coding, 230
MQ-decoder, 263–264

Intra_16×16 prediction mode, 697
Intrachannel techniques, in audio coding,

644–646
Intracoded frames (I-frames), 663, 665
Intraframe transcoding, 742
Intraprediction, in H.264 decoder, 688–689,

698–700
Intrinsic information

RSC encoder, 203
turbo decoder, 138, 140

Intrinsic instructions, 11
InvAddRoundKey function, 42
Inverse cipher, 15

AES, 45
AES-128, 42–43
DES, 24, 26, 29–30

Inverse DCT (IDCT), 335–336
DV to MPEG-2 transcoding, 739
fixed-point simulations, 338–342
MPEG-2 decoder, 680
video scaling, 717–719

Inverse DWT (IDWT), 428
Inverse Hadamard transform, 697–698
Inverse quantization

DV to MPEG-2 transcoding, 739
H.264 decoder, 696
MPEG-2 decoder, 680

Inverse zig-zag scan, 680
InvMixColumns function, 42–43
InvShiftRows function, 42
InvSubBytes function, 42
IP. See Initial permutation step, in DES
IP. See Internet protocol
Irregular LDPC codes, 146
IS. See Intensity stereo
ISI. See Intersymbol interference
ITU. See International Telecommunication

Union
ITU H.323 protocol, 627–628

J
Jacobian coordinates, 77–80
Jakes model, 468–469, 471
Jitter in VoIP, 626, 631–635
Joint probability density function, 294
Joint stereo coding, 642
JPEG standard, 585–587
JPEG 2000 standard, 260, 587–592

K
Kalman filter, 383
Key expansion (KE) module

AES, 37–38
AES-128, 39–40

Key scheduler, in DES, 24–25, 33
complexity, 34
simulation, 27–29

Key space, 15
Keyed-hash message authentication code

algorithm, 50
computational complexity, 57–58
description, 50–52
SHA-256 function, 52–57

Known plain-text attack, 18
Koblitz elliptic curves, 84–86

L
Laplace edge detector, 515–517, 545
Laplace transform, 317–319
Latency, in VoIP, 629
Lattice filter, 403–405
LCR. See Level crossing rate,
LDPC. See Low-density parity check codes
Least-mean-square (LMS) algorithm

edge-based interpolator, 721
implementation, 431–436
Wiener filter, 388–392

Least probable symbol (LPS)
binary arithmetic coding, 230
CABAC, 269–271, 273–275
MQ-decoder, 261, 263, 266

Least-squares filter, 383, 393–395
recursive, 395–398

Left/right synchronization lines, in audio
ADC, 599

Lenses, fisheye distortion correction, 581–583
Level crossing rate (LCR), in Doppler spread

estimation, 471
Level prefix, in H.264 CAVLC, 251, 258
Level suffix, in H.264 CAVLC, 258
Level, and video coding, 670
Levinson-Durbin algorithm, 401–403
LFSR-SHA system, 21
LFSR. See Linear feedback shift register
License plate detection (LPD), 571–575
License plate recognition (LPR), 571
Likelihood ratio (LR), in turbo decoder, 139
Line detection, Hough transform, 536, 539–540
Line echo, 630
Line spectral pairs (LSP), in linear prediction,

400
Linear block codes, 99–101
Linear channel equalization, 473–475
Linear feedback shift register (LFSR)

BCH codes, 156–157, 161
CRC algorithm, 92–93
pseudorandom number generation, 20–21

Linear-phase, in FIR filters, 350, 357
Linear prediction (LP)

adaptive signal processing, 397–403
MPEG-4 AAC encoder, 649

Linear prediction coding (LPC)
audio coding, 644
hybrid coders, 623
MPEG-4 ALS, 652
speech compression, 399–400
vocoder, 619–620

Linear-time-invariant (LTI) systems, 312
convolution, 314–317
generalized Fourier transforms, 317–320
impulse response, 313

Linearity, in LTI systems, 312–313
LLRi computational complexity, LDPC

decoding, 221

752 Index

LLR. See Log likelihood ratio
LMS. See Least-mean-square algorithm
Log likelihood ratio (LLR)

LDPC codes, 219
MAP decoder, 204, 207–210
turbo decoder, 212, 214–215
turbo equalizer, 489

Log–log LMS algorithm, 392
Log-MAP operator, 140, 204
Logarithmic quantization of audio signals, 603
Long-term prediction (LTP) tool, 649
Long window, in MPEG-4 AAC encoder, 648
Lossless compression, 225–226, 584

arithmetic coding, 228–231
audio encoder, 646
CABAC. See Context-based adaptive binary

arithmetic coder
H.264 VLC-based. See H.264 standard
Huffman coding, 226–227
JPEG, 586–587
JPEG 2000, 590–591
MPEG-2 VLDs. See MPEG-2 standard
MPEG-4 AAC encoder, 650
MQ-decoder. See MQ-decoder
variable-length decoding, 231–242
video coding, 669

Lossy compression, 584, 586
Low-density parity check (LDPC) codes, 143,

216
decoder, 146, 219–223
encoder, 145–146
linear block codes, 100–101
min-sum algorithm, 149, 218–221
parity check matrix representation, 143–145
simulation results, 149–154
sum-product algorithm, 146–149
Tanner graphs for, 143, 146–148, 216–218

Low-pass filters
design, 346–348, 350
FIR, 360
IIR, 365–368

LP. See Linear prediction
LPC. See Linear prediction coding
LPD. See License plate detection
LPR. See License plate recognition
LPS. See Least probable symbol
LR. See Likelihood ratio, in turbo decoders
LSP. See Line spectral pairs, in linear prediction
LTI. See Linear-time-invariant systems
LTP. See Long-term prediction tool
Luma filtering, 706
Luma prediction, 698–700
Luminance, video

coding, 662–664
redundancy, 662–663
scaling, 714–728

M
M-channel filter bank, 411–413
M-coder, 231
M-JPEG. See Motion JPEG standard
M-PSK modulation, 127
M/S coding, 649
M subband filter, 411
MA. See Moving-average process, in linear

prediction
MAC. See Message authentication code

MAC (multiply-accumulate) unit, 7
Macroblock layer

H.264 decoder, 688–691
MPEG-2 decoder, 676–679

Macroblock
H.264 decoder, 686, 688–689, 695–709
image stabilization, 563–565
video coding, 663–666

MAD. See Mean of absolute difference
Main profile (MP), in video coding, 670
Mantissas, in floating-point arithmetic,

606–607
MAP. See Maximum a posteriori algorithm
MAP criterion, for turbo equalizer, 489
MAP decoder, 138–141

computational complexity, 207–208
implementation, 210
metrics computation, 203–207

Masking audio, 639–642
Masking-Pattern Adapted Universal Subband

Integrated Coding and Multiplexing
(MUSICAM), 651

Masking threshold
audio, 641
MPEG-4 AAC encoder, 648

Matched z-transform method, 365–366
Matrix factorization

DCT, 337–338
DFT, 323–325

Max-log-MAP operator, 204
Maximizing shortening SNR (MSSNR)

approach, 477–478
Maximum a posteriori (MAP) algorithm

RSC encoder, 199–200
turbo decoder, 138–141

Maximum likelihood (ML) algorithm
convolutional decoder, 122–123
symbol synchronization, 494

Maximum likelihood estimate (MLE) for
symbol synchronization, 493

Maximum likelihood sequence estimation
(MLSE)

convolutional decoder, 122
Viterbi algorithm, 134–135, 485–486

MC. See Motion compensation
MCM. See Multicarrier modulation techniques
MDCT. See Modified discrete cosine transform
Mean

random processes, 298
random variables, 295

Mean-access delay, in wireless channels, 467
Mean of absolute difference (MAD), 665
Mean opinion score (MOS)

speech compression, 613
video quality measurement, 713

Mean square error (MSE)
DCT simulations, 341
PSNR, 713
Wiener filter, 384–385

Media codecs, in VoIP, 628
Media transport layer, in VoIP, 629
Median filter, 728–730
Memory error correction, 102–103
Memory requirements

AES, 45–46
audio codec, 654
convolutional decoder, 123
H.264 decoder, 709

IIR filter, 350
LDPC codes, 221
MAP decoder, 208–210
MPEG-2 decoding, 681
speech compression, 625
turbo decoder, 214
Viterbi decoder, 191–192

Message authentication code. See HMAC
(keyed-hash message authentication
code)

Message digest generation
DSA, 59
ECDSA, 65

Message passing, in LDPC codes, 217
Metrics

convolutional decoder, 122
MAP decoder, 203–207
turbo decoder, 140

Meyer wavelet function, 425
Microphone, 595
Midside (MS) stereo, 642–643
Min-sum algorithm, 149, 218–221
Minimal polynomial, in BCH codes,

155–156
Minimum mean-square error (MMSE) criterion

channel equalization, 474–477
channel estimation, 465, 470
symbol synchronization, 494
turbo equalizer, 488–490
Wiener filter, 384–385

MIPS
audio codec, 654
speech compression, 625
MPEG-2 decoding, 681

MixColumns (MC) function
AES, 37, 39, 44–45
AES-128, 40–41

ML. See Maximum likelihood algorithm
ML-based coarse symbol synchronization, 496,

503
ML/MAP criterion, 488
MLE. See Maximum likelihood estimate, for

symbol synchronization
MLSE. See Maximum likelihood sequence

estimation
MLT. See Modulated lapped transform
MMSE criterion. See Minimum mean-square

error criterion
Modified Berlekamp-Massey algorithm,

183–184
Modified discrete cosine transform (MDCT)

audio coding, 645–646
audio processing, 611
MPEG-4 AAC encoder, 648–649

Modified Jacobian coordinates, 77–80
Modulated lapped transform (MLT),

644–645
Modulation, 444–445

MCM, 455, 458–459
orthogonal schemes, 449–451
PAM, 445–447
PSK, 448–449
QAM, 447–448
schemes comparison, 451
TCM. See Trellis coded modulation

Modulo-2 operation
block codes, 99
CRC algorithm, 90

Index 753

Modulo reduction
binary Galois field, 69–70
prime Galois field, 74–75

Moments, for random variables, 296
Montgomery multiplication, 74–75
MOS. See Mean opinion score
Most probable symbol (MPS)

BAC, 230
CABAC, 269–271, 273–275
MQ-decoder, 261, 263, 266

Mother wavelet, 381, 420
Motion compensation (MC)

DV to MPEG-2 transcoding, 739
H.264 decoder, 700–704
image stabilization, 565–566
MPEG-2 decoder, 681
video coding, 665–668

Motion estimation
image stabilization, 563
video, 663, 665–668

Motion JPEG (M-JPEG) standard, 672
Motion vector prediction (MVD), 689–690
Motion vector

H.264 decoder, 689–690
video coding, 665

Moving-average filter, 352–353
Moving-average (MA) process, in linear

prediction, 399
Moving Pictures Experts Group (MPEG), 651
MP. See Main profile, in video coding
MPE-FEC frame, 180–181
MPEG-1 standard

audio codec, 651
video compression, 673

MPEG-2 standard
audio codec, 652
decoder, 675

block layer, 679–681
complexity, 681
vs. H.264, 682
macroblock layer, 676–679
slice layer, 675–676

profiles, 670
transcoding, 738–743
video compression, 673
VLD, 231–232

MPEG-4 standard, 652
AAC codec, 647
video, 673

MPS. See Most probable symbol
MQ-coder, 231
MQ-decoder, 260

coder overview, 261–262
computational complexity, 265–268
optimization, 266–269
simulation, 261–265

MS. See Midside stereo
MSE. See Mean square error
MSSNR. See Maximizing shortening SNR
Multicarrier communication systems, 454–455,

457–459
Multicarrier modulation (MCM) techniques,

455, 458–459
Multicarrier system synchronization, 492–493
Multiple random variables, 294
Multiplication

audio processing, 610
binary Galois field, 69–71

DFT, 322–323
elliptic curve points, 62, 78–83
prime Galois field, 73–75
radix-2 FFT algorithm, 325

Multiply-accumulate (MAC) unit, 7
Multirate signal processing, 405

downsampler and upsampler, 405–407
polyphase filter, 407–411
QMF bank, 411–416

Multiresolution analysis, 420–425
Multistage two-channel DWT filter bank, 427
Multiview profile (MVP), video coding, 670
Munich model, 638–639
MUSICAM. See Masking-Pattern Adapted

Universal Subband Integrated Coding
and Multiplexing

Mutual information, 439
MVD. See Motion vector prediction

N
N-FSK orthogonal modulation, 451
N-level dyadic decomposition, 588–589
N-point DFT

radix-2 FFT algorithm, 325
radix-4 FFT algorithm, 327

N-point IDCT, 336
N-th moments, random variables, 296
Narrowband noise, 361–363
NB. See Normal burst, in Viterbi equalizer
Nearest-neighbor approach

image rotation, 556–557
image scaling, 526–528, 548
video scaling, 714

Network abstraction layer (NAL) unit, 682
Noise

adaptive signal processing, 383
AWGN. See Additive white Gaussian noise

channel
Canny edge detector, 518
digital communications, 441–444
error correction for. See Error correction
FIR filter, 361–363
Gaussian distribution, 297
image rotation, 559
speech compression, 611
steepest-descent method, 387

Noise-masking noise (NMN), 640
Noise-masking tone (NMT), 640
Noise-to-mask ratio (NMR), 641
Nonlinear interpolator, 714–715
Nonmaximum suppression, in Canny edge

detector, 523, 546–547
Nonstationary random processes, 298
Nonsystematic block codes, 99
Nonsystematic convolutional (NSC) codes,

120–121, 137
Nonuniform quantization

JPEG, 586
speech compression, 614–615

Normal burst (NB), Viterbi equalizer, 486–487
Normal equations, Wiener filter, 385
Normalization

binary arithmetic coding, 230
CABAC, 270, 274–279
MQ-decoder, 261, 263–264
turbo decoder, 213

Normalized channel capacity, 440

Normalized LMS algorithm, 392
Normalized sinc function, 290, 309
NSC. See Nonsystematic convolutional codes
NTSC systems, 661–662
Numeric formats, for audio, 604–608
Nyquist criterion

audio signals, 597, 599
bandpass signals, 309–310
raised cosine modulation filter, 452
sampling low-pass signals, 306–308

O
Object detection, 568

corners, 534–537, 551–552
faces, 568–571
license plates, 571–575

Odd parity, 88
OFDM. See Orthogonal frequency-division

multiplexing
Offset, in synchronization, 491–493
1.15 format, 376–377
1.31 format, 377–378
One-level dyadic decomposition, 588–589
One-step predictor, in linear prediction, 399
One-third octave model, 638–639
One-way hash functions, 50
1D filters, 701–703
Open-loop speech analysis/synthesis process,

619, 621
Open systems interconnection (OSI)

seven-layer model, 626
Optimization, in algorithm implementation

techniques, 9–11
AES algorithm, 46–50
BCH coder, 161–166
C-level programs, 11
CABAL symbol coding, 275
CRC, 95–97
DCT-based video scaling, 719
DES cipher, 35–37
FIR filter, 358–360
Gaussian filter, 580–581
Goertzel algorithm, 380
H.264 CAVLC, 257–260
Hough transform, 538
IIR filter, 350
JPEG 2000 coding, 592
LDPC decoder, 221–223
MAP decoder, 210
median filter, 729–730
MPEG-2 VLD, 240–245
MQ-decoder, 266–269
polyphase filter, 407–411
RC4, 23
residuals decoding, 691–693
RS decoder, 178–179, 185–188
turbo encoder, 202–203

Optimum predictor coefficients, 401
OR operations

AES, 49
DES, 27–28, 35
HMAC, 57

Orthogonal frequency-division multiplexing
(OFDM), 459

channel equalization, 480–485
channel estimation, 469–472
frequency offset estimation, 492–493

754 Index

Orthogonal frequency-division multiplexing
(continued)

symbol synchronization, 494–495,
500–503

transceivers, 463–464
wireless channels, 468–469

Orthogonal modulation schemes, 449–451
OSI. See Open systems interconnection

seven-layer model
Output pruning, for RS erasure decoder,

186–187
Outstanding bits, CABAC, 269–270, 274–278
Overflow

biquad IIR filter, 373–374
digital filters, 351

P
P-frames. See Predicted frames
P slices, in H.264 decoder, 686
PAL standard, 662
PAM. See Pulse amplitude modulation
Parametric stereo coding, 643
Parity check matrix

block codes, 99
graphical representation, 143–145
LDPC codes, 221

Parity data
BCH codes, 155–156
error detection, 88–89
RS codes, 166, 169–170, 180–181
RSC encoder, 203

Parity nodes, for LDPC codes, 217–218
Passband ripple, 351
PCM. See Pulse-code-modulation
pdf. See Probability density function
PDP. See Power delay profile
Peak amplitude, in sinusoidal signals, 286
Peak signal-to-noise-ratio (PSNR), 713
Perceptual entropy, 648
Perceptual noise substitution (PNS), 649
Perfect reconstruction (PR) property, for

QMF bank, 415
Permutation choice-1 (PC-1), 27–28, 34
Permutation choice-2 (PC-2), 29, 34
Permutation operation, in DES, 25–26, 34
PGO. See Profile-guided optimization
Phase, and sinusoidal signals, 286
Phase modulation (PM), 444
Phase shift keying (PSK) modulation, 444,

448–449
TCM, 127–128
Viterbi decoder, 196–198

Photography, fisheye distortion correction in,
581–583

Pilot carriers in channel equalization, 483
Pilot symbol-aided channel estimation,

471–472
Pilot synchronization algorithm, 500
Ping-Pong buffer

FIR filter, 359–360
IIR filter, 374
turbo decoder, 211

Pitch, in vocoder
detection, 621
estimation, 622–623

Pixel-to-intensity map, 736–737
Pixels, 584

Plain-text attack, 18
Plaintext, 15
Playout control, for jitter buffer, 634–635
PM. See Phase modulation, 444
pmf. See Probability mass function
PNS. See Perceptual noise substitution
Point double operation, in ECDSA, 62,

78–82
Point-to-point communication, 437
Poles, of transfer function

IIR filters, 365–367, 369
LTI systems, 318–320

Polyphase decomposition, 408–409
Polyphase filter

MPEG-1 audio codec, 651
multirate signal processing, 407–411

Post-masking, in audio, 640
Post-processing, in audio, 653–656
Power delay profile (PDP), 469
Power spectral density (PSD)

noise, 442
single-carrier systems, 456

PR. See Perfect reconstruction property
Pre-echo, 640, 648–649
Pre-masking, for audio, 640
Precincts, in JPEG 2000, 590
Precision

audio signals, 602–608
biquad IIR filter, 373
DCT simulations, 339–341
digital filters, 350–351

Predicted frames (P-frames), 663
Prediction error, in video coding, 665
Prediction modes, in H.264 decoder,

697–700
Predictor coefficients, in linear prediction, 401
Prefix, in H.264 CAVLC, 251, 258–260
Preprocessing stage, in JPEG 2000, 587–588
Prewhitening of input data, 387
Prime field arithmetic, 72
Prime Galois field, 62, 67, 72–75
Private key

DLDSA, 60
DSA, 58–59

PRNG. See Pseudorandom number generator
Probability, and random signals, 291–295
Probability density function (pdf)

channel capacity, 440
random signals, 292–294
Viterbi algorithm, 135

Probability mass function (pmf)
channel capacity, 440
random signals, 292–293

Profile-guided optimization (PGO), 12
Profiles

H.264 decoder, 682, 709
video coding, 670

Program-flow optimization, 9–10
Program sequencer, 6
Progressive coding, 675
Projective coordinates, 76–77
Projective-to-affine conversion, 77
PSD. See Power spectral density
Pseudorandom number generator (PRNG)

cryptography, 20, 22
ECDSA, 65

PSK. See Phase shift keying modulation
PSNR. See Peak signal-to-noise ratio

PSTN. See Public switched telephone network
Psychoacoustics and perceptual coding, 637

absolute threshold of hearing, 637–638
audio encoder, 646–648
critical bands, 638–639
masking, 639–642

Psychovisual redundancy, 663
Public key algorithms, 19
Public key cryptography, 58, 60
Public key, in DSA, 58–59
Public switched telephone network (PSTN),

626
Pulse amplitude modulation (PAM), 444–447
Pulse-code-modulation (PCM)

audio signals, 597, 600–601, 603
waveform codec, 616–617

Q
Q-format

audio signals, 604
biquad IIR filter, 373

Quadrature amplitude modulation (QAM), 444,
447–448

Quadrature mirror filter (QMF) bank, 411–416
audio codec, 618

Quadrature phase shift keying (QPSK), 449
Quantization

audio encoder, 646
audio signals, 596–598, 603–605, 618
digital filters, 350–351
DV to MPEG-2 transcoding, 739
H.264 decoder, 696
IIR filter, 373
JPEG, 586, 590
MPEG-2 decoder, 680
MPEG-4 AAC encoder, 649
noise, 441
video coding, 668–669

QMF bank, 416–417
speech compression, 614–615

Quantization parameter (QP)
H.264 decoder, 691, 706–707
video coding, 669

QuickTime standard, 673–674

R
Radix-2 FFT algorithm, 325–327
Radix-4 FFT algorithm, 327–330
Radix FFT fixed-point simulation, 329–331
Raised cosine modulation filter, 452–453
rand command, 444
randn command, 443
Random numbers, in cryptography, 19–24
Random processes, 297–299
Random variables, 291–292

Bayes theorem, 295
central limit theorem, 297
channel capacity, 439
distribution function, 292–294
statistical independence, 295
statistical measures, 295–296

Range
arithmetic coding, 228–230
CABAC, 269–279
MQ-decoder, 261, 263, 266

Index 755

Rate-control algorithm, 669
Rate k/n encoder, 118
Raw BER (RBER), 101–102
Raw byte-sequence payload (RBSP) unit,

682–683
Rayleigh distribution, 466
RC4 algorithm, 8–9, 22–24
Real-time transport protocol (RTP), 629

jitter buffer, 634–635
UDP, 628

RealAudio10 codec, 653
Realization

FIR filter, 356–357
IIR filter, 370–373

RealVideo codec, 674
Receiver front end, 438
Reconstruction

macroblock, 695–709
signal from discrete samples, 308–309

Rectangular pulse
continuous-time signals, 304–305
deterministic signals, 289

Recursive filters, 363
Recursive least-squares (RLS) algorithm,

395–398
Recursive systematic convolutional (RSC)

coder, 121, 137, 199–203
Red, green, and blue (RGB) format

color conversion, 509–510, 540–542
DV, 662
JPEG, 585
video camera, 661

Redundancy
in compression, 584
linear prediction, 400
video, 662–663

Reed-Solomon (RS) codes, 112–113, 166
erasure. See Erasure codes
error-locator polynomial, 115–116
error magnitude, 116, 117
error polynomial computation,

117–118
linear block codes, 100–101
RS(204, 188) coder, 170–177
RS(N, K) coder. See RS(N, K) coder
syndrome computation, 114–115

Reference frame (RF)
image stabilization, 563, 566
video coding, 664

Reference pictures, in H.264, 689
Reflection coefficients, in linear prediction,

403
Region of convergence, in Laplace transform,

318, 320
Register overflow

biquad IIR filter, 373–374
digital filters, 351

Regular LDPC codes, 146
Regular pulse excited linear predictive coder

(RPE-LPC), 624
Residual coefficients

CABAC, 691–695
H.264 CAVLC, 252–254, 258–259
MPEG-2 decoder, 680
MPEG-2 VLDs, 232–233

Residual error
least-squares filter, 393
linear prediction, 400

Residuals decoding
H.264 decoder, 691–695
video coding, 671–672

Resistor as noise source, 441–442
Resolution

DV, 661
video scaling for, 713–714

Reverse-state metrics
MAP decoder, 205
turbo decoder, 140, 212

Reversible JPEG 2000, 588
RGB format. See Red, green and blue format
Rician distribution, 466
Rijndael algorithm, 37
Ripple

digital filters, 351
Fourier series, 303

R j i computational complexity, LDPC decoding,
220–221

RLE. See Run-length encoding
RLS. See Recursive least-squares algorithm
RMS delay spread

OFDM systems, 469–470
wireless channels, 467

Roll-off factor, in raised cosine modulation
filter, 452

Roots of error-locator polynomial, 116,
173–175

Rotation estimation, DIS module, 564–565
Rotation of images, 553–554

3 × 3 Gaussian filter, 559–561
bilinear interpolation, 556–557
cubic B-spline interpolation, 557–559
issues, 554–556
nearest-neighbor, 556–557
real-time implementation, 560–562

ROTR operation, in HMAC, 57
Round-off errors

audio signals, 604
IIR filter, 370, 373

Round-trip latency, 629
RPE-LPC. See Regular pulse excited linear

predictive coder
RS codes. See Reed-Solomon codes
RS(204, 188) coder

decoder simulation, 170–176
encoder simulation, 170
generator polynomial, 170
simulation results, 176–177

RS(N, K) coder
computational complexity, 177–178
decoder, 114, 167–169
encoder, 113–114, 166–167
implementation, 178–179

RSA DSA, 60–61
RSC. See Recursive systematic convolutional

coder
RTP. See Real-time transport protocol
RTP control protocol (RTCP), 629
Run before, in H.264 CAVLC, 248–249,

252–253, 258–259
Run-length encoding (RLE), 652

S
S_Box function, 29, 32
S-Box mixing, 30–32, 34–35
S-Box tables, 22, 25

S-plane pole-zero locations, IIR filters, 365,
367

SACD. See Super Audio CD format
SAD. See Sum of absolute difference
Sample function, for random processes, 297
Sample rate conversion (SRC), 654
Sampling

audio signals, 596–598, 608–609
bandpass signals, 309–310
continuous-time signals, 304–310
low-pass signals, 306–308
signal reconstruction, 308–309

Saturation, 339–341
SBC. See Subband coding
Scalable video coding (SVC), 670–671,

709–712
Scalar point multiplication, 62, 78–83
Scalar quantization, in JPEG, 586
Scalefactor band (SFB), 638, 648–649
Scaling functions, 420–425
Scattered pilot synchronization algorithm,

501–503
Scene change detector (SCD), 566–567
SDP. See Session description protocol
SearchStartCodePrefix, 684
Secret key, 15–17, 60
Secure hash algorithm (SHA) function,

50–52
Security, with cryptography, 15

AES encryption. See Advanced encryption
standard

cryptography. See Cryptography
elliptic-curve. See Elliptic-curve digital

signature algorithm
HMAC. See Keyed-hash message

authentication code
TDEA encryption. See Triple data

encryption algorithm
Self-information, 439
Sequence header, in MPEG-2 decoder, 675
Serial peripheral interface (SPI), 599–600
Session-control protocol, for VoIP, 626–627
Session description protocol (SDP), 628
SFB. See Scalefactor band
SHA. See Secure hash algorithm function
SHA-256 function, 52–57
Shannon channel-capacity limit, 136
Shannon-Nyquist sampling theorem, 597
Sharpening edges, 512, 542, 544
SHIFT operations

AES, 49
DES algorithm, 27–28
HMAC, 57

Shift registers
BCH codes, 156–157, 161
CRC algorithms, 92–93
pseudorandom number generation, 20–21

ShiftRows (SR) function
AES, 37–38, 44
AES-128, 40

Short-time energy, and vocoder, 621
Short-time Fourier transform (STFT), 417–419
Short-time zero-crossing rate, vocoder,

621–622
Short window, MPEG-4 AAC encoder, 648
Shortened impulse response (SIR), 477
Shortened SNR (SSNR), 477
SI slices, H.264 decoder, 686

756 Index

Sign LMS (SLMS), 392
Signal flow diagram

DCT, 337–338, 342–346
FIR linear-phase realization, 357
H.264 inverse transform, 697
IDCT, 338–339
LFSR, 20, 108–110, 156–158
LMS algorithm, 432–433
median filter, 730
radix-2 FFT algorithm, 325–327
radix-4 FFT algorithm, 329
RLS algorithm, 397
RS codes, 167, 170
steepest-descent method, 386

Signal-to-mask (SMR) ratio, 641
Signal-to-noise ratio (SNR)

audio codecs, 618
audio masking, 641
audio signals, 603–605
DMT transceiver, 462
symbol synchronization, 494, 501–502

Signals, 285
continuous-time. See Continuous-time

signals
deterministic, 285–290
filters. See Filters
random. See Random variables
time-frequency representation, 310–312

Signature generation, cryptography
DLDSA, 60
DSA, 59
ECDSA, 65–67, 83–86

Signed level, in H.264 CAVLC, 248
Significance coefficients, in H.264 decoder,

693–695
signum function, 289–290
Silence compression technique, 630
Simple profile (SP), 670
Simulation techniques, 504

division, 504–505
matrix inversion, 506–508
square root, 505–507

sinc function
deterministic signals, 290
normalized, 309

Single-bit error correction
BCH codes, 163
Hamming (72, 64) coder, 106–107

Single-carrier communication systems,
454–457

frequency offset estimation, 492
Single-pole analog IIR filters, 365–366
Single sideband (SSB), 449
6-dB rule, 603
16-PSK modulation, 449
16 × 16 luma prediction, 699–700
SIP protocol, 626–628
SIR. See Shortened impulse response
Skin color detection, 568–569
Slave select (SSEL) line, 600
Slice layer

H.264 decoder, 686–688
MPEG-2 decoder, 675–676

SLMS. See Sign LMS
Slow time-varying channels, equalization, 381
SMR. See Signal-to-mask ratio
SNR. See Signal-to-noise ratio
SNR-spatial profile (SNRSP), 670

Sobel operator
edge detection, 514–515, 545
license plate detection, 573–574

Soft decision convolutional decoder, 121–122
Soft-output Viterbi algorithm (SOVA), 136
Sound. See Audio coding; Audio processing
Sound pressure level (SPL), 595
SP. See Simple profile
SP slice, in H.264 decoder, 686
Spatial scalability, SVC, 710–711
Spatial-temporal redundancy, 663
Spectral analysis, in license plate detection,

571–572
Spectral levels, in audio masking, 641
Spectrum, frequency domain, 307
Speech compression, 611

codec, 600–601
hybrid coders, 623–624
LPC, 399–400
objectives and requirements, 613
standards, 624–625
vocoders, 619–623
waveform coders, 613–619

Speech signals, 596
Speex codec, 625
SPI. See Serial peripheral interface
Spiral search method, 667
SPL. See Sound pressure level
Spreading function, in audio masking,

640–641
Square root, simulation techniques, 505–507
Square waves, 302–303
Squaring binary Galois field elements, 68–69
SRC. See Sample rate conversion
SSB. See Single sideband
SSEL. See Slave select line
SSNR. See Shortened SNR
Stability

FIR filters, 350
IIR filters, 370
LTI systems, 313

Staircase effect, in ADCs, 597
Standard deviation, 296
Standard projective coordinates, 76–78
Start window, MPEG-4 AAC encoder, 648
State machine representation, convolutional

encoder, 119
State metrics (SM)

convolutional decoder, 122
MAP decoder, 206
Viterbi decoder, 192

Static-channel equalization, 382
Stationarity, in random processes, 298
Statistical averages, 298–299
Statistical independence, 295
Steady-state trellis

MAP decoder, 204
RSC encoder, 200–201
Viterbi equalizer, 486

Steepest-descent method, 385–389
Stereo coding, 642–643, 649
Stereo enhancement, 655
STFT. See Short-time Fourier transform
Stop window, in MPEG-4 AAC encoder, 648
Streaking, in Canny edge detector, 524
Subband coding (SBC)

audio codec, 618
QMF bank, 411, 413

SubBytes (SB) function
AES, 37–38, 44
AES-128, 40

Subspaces, in multiresolution analysis, 420–424
Sum of absolute difference (SAD), 665–666
Sum-product algorithm, 146–149
Super Audio CD (SACD) format, 599
Surround sound, 656
SVC. See Scalable video coding
Switching gateway, in VoIP, 626
Symbol error probability, 449
Symmetric key algorithms, 19, 37
Synchronization, 491

frequency offset estimation, 491–493
symbol synchronization, 493–504

Syndromes computation
BCH codes, 109–110, 157–158, 160–163,

165
Hamming (72, 64) decoder, 104–107
RS codes, 114–115, 167, 171–172, 185–187

Synthesis filter, 411
System-level optimization, 12
Systematic block code, 99
Systematic convolutional code, 120–121
Systems, LTI, 312

convolution, 314–317
generalized Fourier transforms, 317–320
impulse response, 313

T
Tanner graph, LDPC codes, 143, 146–148,

216–218
Taylor series approximation, 611
TCM. See Trellis coded modulation
TCP/IP protocol, 437–438, 628–629
TDAC. See Time-domain alias cancellation
TDEA. See Triple data encryption algorithm
TDM. See Time-division multiplexing
TDMA. See Time-division multiple access
Temporal correlation, 665
Temporal masking, 640
Temporal noise shaping (TNS) tool, 640,

648–649
Temporal redundancy, 663
Temporal scalability, 710–711
TEQ. See Time domain equalization
Theora codec, 674
Thermal noise, 441–442
3rd-Generation Partnership Project (3GPP), 625
31-bit accurate emulation, 608
32-bit accurate emulation, 607
THP. See Tomlinson-Harashima precoding
3 × 3 average filter, 512–513, 544–545,

579–580
3 × 3 convolution mask, 514
3 × 3 Gaussian filter

image processing, 544
image rotation, 557–561

3 × 3 median filter
image processing, 544–545
video processing, 728–730

Three-step search (TSS), 667–668
Time averages, in random processes, 299
Time bandwidth product, in STFT, 418–419
Time-division multiple access (TDMA), 492
Time-division multiplexing (TDM), 599
Time-domain alias cancellation (TDAC), 644

Index 757

Time-domain characteristics
Blackman window, 354–355
continuous-time signals, 299–304
discrete-time signals, 310–312
filter basics, 348
FIR filter, 353, 361–363
Hamming window, 353–354
IIR filter, 365–366
moving-average filter, 353
raised cosine filter, 452–453

Time domain equalization (TEQ)
channel equalization, 476–480
channel estimation, 464

Time invariance, in LTI systems, 313
Time localization

Fourier transform, 416–417
STFT, 418–419

Time-scale grid, multiresolution analysis, 420
TNS. See Temporal noise shaping tool
Toeplitz matrix, 401–402
Tomlinson-Harashima precoding (THP), 476
Tone-masking noise (TMN), 638
Tone-masking tone (TMT), 638
Total zeros, in H.264 CAVLC, 248, 251–252,

258–259
Trailing 1s, in H.264 CAVLC, 247, 258
Training sequence

adaptive signal processing, 382
GSM protocol, 486–487

Transceivers, multicarrier modulation
DMT, 459–463
OFDM, 463–464

Transcoding video, 737–738
DV to MPEG-2, 739–740
MPEG-2 to H.264, 740–743

Transducer, 595–596
Transfer function, 318
Transform-domain processing, 618–619, 646
Transforms

audio encoder, 646
Fourier. See Fourier transform
H.264 decoder, 696
JPEG, 585

Transmitter back end, 438
Transport protocol, in VoIP, 626, 628
Transversal filters

FIR, 356
structures, 383

Tree diagrams, 119–120
Trellis coded modulation (TCM), 126–129

coding gains, 131–133
convolutional encoder, 190–191
DMT system, 133–134
encoder, 129–131
performance, 199

Trellis diagram, 120–123
Trellis processing

convolutional decoder, 124–125
MAP decoder, 204, 207
RSC encoder, 200–201
turbo decoder, 211
Viterbi decoder, 192–195
Viterbi equalizer, 486

Triple data encryption algorithm (TDEA),
24–26

computational complexity, 33–35
implementation, 35–37
simulation, 26–33

Truncation error, 604
TSS. See Three-step search
Turbo codes, 136–137, 199

decoder, 137–138, 210–216
encoder, 201–203
equalizer, 488–491
interleaver, 141–142
MAP decoder, 138–141, 203–208
RSC encoder, 137, 199–203
Window-based decoder, 208–210

Twiddle factors
DFT, 323–324, 331–332
radix FFT fixed-point simulation, 330–331

Two-channel filter bank, 427
Two-level dyadic decomposition, 588–589
2-PSK modulation, 449
2D discrete wavelet transform, 588–590
2D DMA

audio processing, 609–610
image rotation, 562

2D filters
images, 575–581
video coding, 701–703

2D Gaussian window, 559
2D logarithmic search (TDL), 667–668
Type-1 and Type-2 polyphase decomposition,

408
Type-II DCT, 335
Type-III DCT, 335–336

U
u-law companding, 603, 615–616
UDP. See User datagram protocol
UEGk function, 695
Unnormalized sinc function, 290
Uncorrectable BER (UBER), 101–102
Ungerboeck’s set partitioning rules, 132
Uniform distribution function, 293–294
Uniform quantizer, 586
Unit step function, 289
Unitary matrix, 336
Universal variable-length code (UVLC)

computational complexity, 257
decoding, 249
H.264 decoder, 685
H.264 VLC-based entropy coding, 242

Unvoiced speech, and vocoder, 621–622
Upsampler, 405–407
User datagram protocol (UDP), 628
UVLC. See Universal variable-length code

V
VAD. See Voice activity detection
Variable length codes (VLCs)

H.264, 242
MPEG-2 decoder, 680
MPEG-2 VLDs, 231
UVLC. See Universal variable-length code

Variable length decoder (VLDs), 231
DV to MPEG-2 transcoding, 739
MPEG-2. See MPEG-2 standard

Variance, 296–297
VCL. See Video-coding layer
Vector quantization, JPEG, 586
Vector space representation, 445

Verification, and ECDSA signatures, 66–67,
84–86

Video
coding, 659–662
enhancement, 718–719
scaling, 713–728

Video CD (VCD), MPEG-1, 673
Video coding, 659–661, 662

codecs, 10
compression standards, 672–675
H.264 decoder. See H.264 standard
MPEG-2 decoder, 675–681
scalable video coding, 709–712
transcoding, 738–740

Video-coding layer (VCL), 682
Video post-processing, 713

alpha blending, 734
enhancement, 718–719
filtering, 728–734
gamma correction, 734–737
quality measurement, 713
transcoding, 737–743

Video scaling, 713–714
chrominance, 721–722
luminance, 714–728

Viterbi
algorithm, 134–136, 190
equalizer, 485–488
simulation, 191–193, 195–199

VLC NAL units, 685
VLC. See Variable length codes
VLD. See Variable length decoder
Vocoder, 619–624
Voice. See Speech compression
Voice activity detection (VAD), 621, 624
Voiced speech, 611–612
VoIP (voice over IP), 626–631
Vorbis codec, 653

W
Warped linear prediction coding (WLPC), 644
Waveform coder, 613–619
Wavelet function, 422–425
Wavelet signal processing, 415–419

DWT, 425–431
multiresolution analysis, 420–425

Wavelet transform
JPEG 2000, 588–590
STFT, 418–419

Weight of codeword, 99
White noise, 442
Wide-angle lens, fisheye distortion correction,

581–583
Wide-sense stationary (WSS) processes,

298–299, 466
Wideband noise, 362–363
Wiener filter, 383–384

channel estimation, 472
LMS algorithm, 388–392
MMSE criterion, 384–385
steepest-descent method, 385–389

WiMax, 145
Windowing

FIR filter, 353–356
MPEG-4 AAC encoder, 648
short-time Fourier transform, 417–419

758 Index

Windows Media Audio (WMA) codec,
652–653

Windows Media Video/VC-1, 674
Wireless channel characterization, 466–469
WLPC. See Warped linear prediction coding
WMA 9 lossless codec, 652
WSS. See Wide-sense stationary process

X
Xiph Foundation, 674
XOR operations

AES, 44–45, 47–48
block codes, 99

CRC algorithm, 90
DES algorithm, 25, 35
HMAC, 51, 57
RC4 algorithm, 22
SHA parser, 54

Y
YUV format

chrominance scaling, 721–722
color conversion, 509–510, 540–542
DV, 662–663
JPEG, 585
skin color, 568–569
video scaling, 713–714

Z
z-transform, 319–320, 365–366, 368, 370
Zero-crossing rate (ZCR)

Doppler spread estimation, 471
voice activity detection, 621–622

Zero-forcing equalization (ZFE), 473–474
Zero-mean unit variance, 443
Zeros of transfer function

IIR filters, 365–367, 369
LTI systems, 318–320

Zig-zag scan
CAVLC, 246–247, 249
H.264 decoder, 696
JPEG, 586–587
MPEG-2 decoder, 680

	Title Page
	Copyright Page
	Dedication
	Contents
	Preface
	Chapter 1. Introduction

	1.1 Digital Media Processing
	1.2 Media-Processing Algorithms
	1.3 Embedded Systems and Applications
	1.4 Algorithm Implementation on DSP Architectures

	Part 1: Data Processing
	Chapter 2. Data Security
	2.1 Cryptography Basics
	2.2 Triple Data Encryption Algorithm
	2.3 Advanced Encryption Standard
	2.4 Keyed-Hash Message Authentication Code
	2.5 Elliptic-Curve Digital Signature Algorithm

	Chapter 3. Introduction to Data Error Correction
	3.1 Definitions
	3.2 Error Detection Algorithms
	3.3 Block Codes
	3.4 Hamming (72, 64) Coder
	3.5 BCH Codes
	3.6 RS Codes
	3.7 Convolutional Codes
	3.8 Trellis Coded Modulation
	3.9 Viterbi Algorithm
	3.10 Turbo Codes
	3.11 LDPC Codes

	Chapter 4. Implementation of Error Correction Algorithms
	4.1 BCH Codes
	4.2 Reed-Solomon Error-Correction Codes
	4.3 RS Erasure Codes
	4.4 Viterbi Decoder
	4.5 Turbo Codes
	4.6 LDPC Codes

	Chapter 5. Lossless Data Compression
	5.1 Entropy Coding
	5.2 Variable Length Decoding
	5.3 H.264 VLC-Based Entropy Coding
	5.4 MQ-Decoder
	5.5 Context-Based Adaptive Binary Arithmetic Coding

	Part 2: Digital Signal and Image Processing
	Chapter 6. Signals and Systems
	6.1 Introduction to Signals
	6.2 Time-Frequency Representation of Continuous-Time Signals
	6.3 Sampling of Continuous-Time Signals
	6.4 Time-Frequency Representation of Discrete-Time Signals
	6.5 Linear Time-Invariant Systems
	6.6 Generalized Fourier Transforms

	Chapter 7. Transforms and Filters
	7.1 Fast Fourier Transform
	7.2 Discrete Cosine Transform
	7.3 Filter Basics
	7.4 Finite Impulse-Response Filters
	7.5 Infinite Impulse-Response Filters

	Chapter 8. Advanced Signal Processing
	8.1 Adaptive Signal Processing
	8.2 Multirate Signal Processing
	8.3 Wavelet Signal Processing
	8.4 Simulation and Implementation Techniques

	Chapter 9. Digital Communications
	9.1 Introduction
	9.2 Single- and Multicarrier Communication Systems
	9.3 Channel Estimation
	9.4 Channel Equalization
	9.5 Synchronization
	9.6 Simulation Techniques

	Chapter 10. Image Processing Tools
	10.1 Color Conversion
	10.2 Color Enhancement
	10.3 Brightness and Contrast Adjustment
	10.4 Edge Enhancement/Sharpening of Edges
	10.5 Image Filtering
	10.6 Edge Detection
	10.7 Image Scaling
	10.8 Erosion and Dilation
	10.9 Objects Corner Detection
	10.10 Hough Transform
	10.11 Simulation of Image Processing Tools

	Chapter 11. Advanced Image Processing Algorithms
	11.1 Image Rotation
	11.2 Digital Image Stabilization
	11.3 Image Objects Detection
	11.4 2D Image Filters
	11.5 Fisheye Distortion Correction
	11.6 Image Compression

	Part 3: Digital Speech and Audio Processing
	Chapter 12. Speech and Audio Processing
	12.1 Sound Waves and Signals
	12.2 Digital Representation of Audio Signals
	12.3 Signal Processing with Embedded Processor
	12.4 Speech Compression
	12.5 VoIP and Jitter Buffer

	Chapter 13. Audio Coding
	13.1 Psychoacoustics and Perceptual Coding
	13.2 Audio Signals Coding
	13.3 MPEG-4 AAC Codec
	13.4 Popular Audio Codecs
	13.5 Audio Post-Processing

	Part 4: Digital Video Processing
	Chapter 14. Video Coding Technology
	14.1 Introduction
	14.2 Video Coding Basics
	14.3 MPEG-2 Decoder
	14.4 H.264 Decoder
	14.5 Scalable Video Coding

	Chapter 15. Video Post-Processing
	15.1 Video Quality Measurement
	15.2 Video Scaling
	15.3 Video Processing
	15.4 Video Transcoding

	Index

